# SEMI-ANNUAL OPERATION & MAINTENANCE REPORT January through June – 2016

APPLETON WIRE
FORMER ALBANY INTERNATIONAL
Chrome Plant
Groundwater Treatment System

908 North Lawe Street Appleton, Wisconsin WDNR ERP# 02-45-000015

Prepared for the WISCONSIN DEPARTMENT OF NATURAL RESOURCES

August 25, 2016

Ms. Jennifer Borski Wisconsin Department of Natural Resources 625 East County Road Y, Suite No. 700 Oshkosh, WI 54901-9731

Re: Appleton Wire, Former Albany International Chrome Plant – Appleton, WI

Semi-Annual Operation & Maintenance Report

January through June, 2016 WDNR ERP# 02-45-000015

Dear Ms. Borski:

Enclosed, please find Badger Laboratories and Engineering Co., Inc.'s "Semi-Annual Operation and Maintenance Report" for the Appleton Wire, Former Albany International Chrome Plant, 908 North Lawe Street Street, Appleton, Wisconsin, (WDNR ERP# 02-45-000015). Our report covers the time period from January 1, 2016 through June 30, 2016.

This report includes a site history, a summary of treatment system performance and monitoring, results of any compliance sampling, operation and maintenance activities over the last six months, historical analytical data and conclusions and recommendations for the site.

If you have any questions or require additional information, feel free to contact me.

Very truly yours,

Badger Laboratories and Engineering Co., Inc.

David J. Casper John M. Stoeger

David J. Casper . John M. Stoeger

Project Manager Stoeger and Associates, LLC

Enclosure: "Semi-Annual Operation & Maintenance Report"

cc: JP Hammerton, Albany International Amy Monk, Albany International Joe Gaug, Albany International

Sam Edwards, Luvata

Brian Kreski, City of Appleton Wastewater Division

# SEMI-ANNUAL OPERATION & MAINTENANCE REPORT Year

January through June - 2016

# APPLETON WIRE FORMER ALBANY INTERNATIONAL CHROME PLANT GOUNDWATER TREATMENT SYSTEM 908 North Lawe Street Appleton, Wisconsin Appleton, Wisconsin

Appleton, Wisconsin WDNR ERP# 02-45-000015

## Prepared for the WISCONSIN DEPARTMENT OF NATURAL RESOURCES

Prepared by
Badger Laboratories & Engineering Co., Inc.
Neenah, Wisconsin

And

Stoeger & Associates, LLC Appleton, Wisconsin

August 25, 2016

#### **Table of Contents**

#### HYDROGEOLOGIST CERTIFICATION

| I. | SITE | DΛ | CV           | CD   | UI. | INIT  |
|----|------|----|--------------|------|-----|-------|
| I. | OLIE | DA | $\mathbf{C}$ | יאנט | W.  | JINI. |

- II. BATCH TREATMENT PROCESS
  - A. Groundwater Treatment System
  - B. Permit Monitoring & Reporting
    - 1. Quarterly Reporting
      - a. City of Appleton Quarterly Discharge Reports
      - b. Wisconsin DNR Quarterly Groundwater Sampling Reports
    - 2. Semi-Annual Operation & Maintenance Summary
  - C. Compliance Sampling
  - D. Routine Operation & Maintenance Activities
  - E. Significant Operation & Maintenance Activities
  - F. Emergency Operation Shut Downs

#### III. GROUNDWATER SAMPLING

- A. Groundwater Sampling Procedures
- B. Groundwater Sampling Results

#### IV. GROUNDWATER COLLECTION SYSTEM

#### V. CONCLUSIONS & RECOMMENDATIONS

#### List of Tables

| Table #1 | -City of Appleton Effluent Compliance Limits / Effluent Point 001        |
|----------|--------------------------------------------------------------------------|
| Table #2 | -Laboratory Analytical Results / Effluent Point 001                      |
| Table #3 | -Batch Discharges January 1, 2016 through June 30, 2016                  |
| Table #4 | -Groundwater Analytical Results / Total and Hexavalent Chromium –        |
|          | Monitoring Wells                                                         |
| Table #5 | -Groundwater Analytical Results / Total and Hexavalent Chromium- Manhole |
|          | and Sump                                                                 |
| Table #6 | -Groundwater Elevations                                                  |
| Table #7 | -Total Pounds Chromium Removed                                           |
| Table #8 | -Groundwater Analytical Results- Geoprobe Monitoring Wells               |
|          |                                                                          |

#### List of Figures

| Figure #1 | -Site Layout Map and Monitoring Well Locations    |
|-----------|---------------------------------------------------|
| Figure #2 | -Chromium Concentration Map - April 14, 2016      |
| Figure #3 | -Groundwater Elevation Contour – January 21, 2016 |
| Figure #4 | -Groundwater Elevation Contour – April 14, 2016   |
| Figure #5 | -2005 Aerial Photograph                           |

#### List of Appendices

| Appendix A | -Concentration Versus Time Graphs – All Wells, Sump and French Drain    |
|------------|-------------------------------------------------------------------------|
| Appendix B | -Groundwater Elevations versus Time / All Wells                         |
| Appendix C | -Operation & Maintenance Report / Form 4400-194                         |
| Appendix D | -Historical Soil Boring and Groundwater Monitoring Well Data, Abandoned |
|            | Borings and Wells                                                       |
| Appendix E | -Laboratory Analytical Data                                             |

#### **HYDROGEOLOGIST CERTIFICATION**

"I, Mark Love, hereby certify I am a Hydrogeologist as that term is defined in s NR 712.03 (1) Wisconsin Administrative Code; and that to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements of chs. NR 700 to 726, Wisconsin Administrative Code."

Mark Love, PSS

Document Reference: Semi-annual Operation and Maintenance Report -

January through June 2016

Albany International Former Chrome Site, Appleton, WI

August 24, 2016

Date

Former Albany International Chrome Plant Groundwater Treatment System 908 North Lawe Street Appleton, Wisconsin WDNR ERP# 02-45-000015

### Prepared for the WISCONSIN DEPARTMENT OF NATURAL RESOURCES

#### I. SITE BACKGROUND

The Appleton Wire, Former Albany International, Chrome Plant, located at 908 North Lawe, Appleton, Wisconsin, was utilized as a chrome plating facility from 1963 to 1982. The chrome plant building and a parking lot north of the building were sold to Valley Cast in 1984. The address of the Valley Cast portion of the site is 908 North Lawe Street. The loading dock area near the chrome plating area was referred to as 831 North Meade Street. An office building and parking lot south of the former chrome plant were sold to Appleton Papers (now Appvion) between 1985 and 1990. The address of the office building is 714 East Hancock Street. Reporting related to the release of chromium on the site has been referenced under the Meade Street, Hancock Street and Lawe Street addresses. As of June, 2009, the physical address (for reporting purposes) of the former chrome plant site was changed to 908 North Lawe Street. An aerial photograph of the site delineating current property ownership is shown in Figure #5.

Valley Cast became a fully owned subsidiary of Outokumpu in 1985. The facility name was changed to Outokumpu in 2001. In 2006, the company was sold and currently operates under the name Luvata Appleton.

In 1985, Valley Cast employees noted groundwater collecting in the basement of the building. Subsequent tests indicated concentrations of chromium in the collected groundwater.

STS Consultants, Inc. conducted an investigation of the former chrome plant site on January 19, 1987. The purpose of the investigation was to determine the horizontal and vertical extent of the chromium contamination and to evaluate the effectiveness of the facility's basement sump to collect contaminated groundwater from the north and south sides of the building.

The results of the investigation indicated that the chromium contamination appeared limited to areas along the northeast and southeast ends of the building and to a depth of approximately 15-feet below grade. The existing basement sump was found to be adequate for collection of groundwater along the south end of the building. The consultant proposed installation of a collection system along the north side of the building to improve groundwater collection.

In 1988, a chemical precipitation process was installed to treat the groundwater collecting in the facility basement sump. The system was operated until 1998, when it was replaced by an ion exchange treatment system.

In 1992, a groundwater collection system was installed along the north side of the building. The system consists of approximately 110 feet of perforated piping, placed

14 feet below grade. The piping empties into a manhole, located at the northeast corner of the facility. Collected groundwater is pumped from the manhole to two storage tanks, located in the basement of the facility. Groundwater flowing to the basement sump is also pumped to the storage tanks.

In 2003, eleven geoprobe monitoring wells were installed in and around the two source areas in an attempt to better define the vertical and horizontal extent of the chromium contamination. Periodic sampling was conducted from the geoprobe monitoring wells until their abandonment in April, 2008. The results of the sampling are contained in Figure 8.

On June 30, 2009, groundwater monitoring wells MW-19 and MW-19A were placed in the warehouse portion of the Luvata facility, west of the basement area. MW-19 was placed to a depth of 20 feet below the facility floor. MW-19A was placed to a depth of approximately 40 feet below the facility floor. The resultant groundwater sampling data indicated that chromium contaminated groundwater is present to the west of the former plating area and under the current Luvata Appleton warehouse building.

Between May 12, 2014 and May 14, 2014, eleven Geoprobe borings were placed in the interior of the former chrome plant building and in the current Luvata Appleton production area to further delineate the extent of subsurface Chromium contamination. As part of the investigation, Monitoring Well MW-20 and Piezometer MW-20A were installed in the Luvata warehouse area. Monitoring well MW-21 and Piezometer MW-21A were installed in the Luvata production area. The Geoprobe™ and monitoring well locations have been added to Figure #1.

The results of the May, 2014 investigation indicated that subsurface chromium contamination was present in the northeastern portion of the Luvata Appleton warehouse area. Several former employees were interviewed regarding these findings and it was discovered that there had been a second plating operation to the north of the main chrome plating line. Groundwater samples collected from monitoring wells MW-20 and MW-20A, in the area of the second plating line, recorded high levels of total chromium. Groundwater sampling from the Luvata production area at monitoring wells MW-21 and MW-21A, recorded little to no total chromium. With the data provided by the addition of the 4 monitoring wells in 2014, the extent of the chromium concentration has been confirmed to lie under the warehouse building.

A total of 16 groundwater monitoring wells exist on the former chrome plant property to monitor the subsurface chromium contamination. Additionally, the groundwater collection system (French Drain) and basement sump are monitored to track the effectiveness of the treatment system

The monitoring well and soil boring locations are shown on Figure #1. Historical investigation data in regard to soil borings and abandoned monitoring wells is contained in Appendix D. The current property and adjacent property ownership information, monitoring well locations and soil boring locations are shown on Figure #1.

#### **II. BATCH TREATMENT PROCESS**

#### A. Groundwater Treatment System

The impacted groundwater on the site is collected in a basement sump and a groundwater collection system (French Drain). The collected water is pumped to two-2000 gallon storage tanks, located in the basement of the facility. The groundwater is treated in batches at the operator's discretion. Prior to initiation of the treatment process, the pH in the basement storage tanks is adjusted down to a pH of around 4.00 to maximize the efficiency of the ion exchange resin. The water is pumped at a flow rate of 8-12 gallons per minute through a series of filters and two (2) ion exchange canisters. The water then flows to another tank where the pH is adjusted back up to a pH between 6.0 and 7.0. The treated water then decants to the City of Appleton Sanitary Sewer System.

#### B. Permit Monitoring and Reporting

The discharge from the groundwater treatment system is tested for Hexavalent Chromium during each batch discharge using a Hach Hexavalent Chromium test kit. The effluent is tested monthly for Total Chromium and annually for the parameters listed in Table #1. The parameters are a requirement of the City of Appleton Industrial Use Permit Number 04-17, issued for the site in May, 2014 and are valid through May 31, 2017.

The reporting requirements for compliance with the City of Appleton Industrial User Permit and the Wisconsin DNR are summarized below.

#### 1. Quarterly Reporting

#### a. City of Appleton Quarterly Discharge Reports

Quarterly reports are submitted to the City of Appleton Wastewater Division covering the time periods of January through March, April through June, July through September, and October through December. The City Reports include batch process discharge volumes; discharge pHs, Hexavalent chromium as measured with the Hach test kit and the monthly laboratory analytical results.

#### b. Wisconsin DNR Quarterly Groundwater Sampling Reports

As of April, 2009, quarterly groundwater sampling reports are no longer required by the Wisconsin DNR.

#### 2. <u>Semi-Annual Operation and Maintenance Summary</u>

With the elimination of quarterly groundwater monitoring reports to the Wisconsin DNR, semi annual reports are prepared. The semiannual operation and maintenance summary consists of a review of the treatment process, an overview of operation and maintenance activities, a summary of the treatment system analytical results and a summary of the analytical results from the groundwater monitoring wells.

#### C. Compliance Sampling

Compliance sampling of the treatment system effluent is conducted twice per year by the City of Appleton. The effluent is analyzed for all the parameters listed in Table #1, except hexavalent chromium. During the first quarter of each year,

Stoeger & Associates, LLC collects one sample at the system outfall and tests for the parameters listed in Table #1. The compliance sampling laboratory results are summarized on Table #2. Table #3 summarizes the monthly batch discharge volumes by month and totaled by quarter.

#### D. Routine Operation and Maintenance Activities

The groundwater treatment system is operated in batches, at the operator's discretion. Site visits are conducted 1-2 times per week to check on the water levels in the storage tanks. When sufficient water is collected to run a batch, the system is operated. Each batch discharge is tested for Hexavalent Chromium using a Hach test kit. The monthly and quarterly volumes of treated groundwater are shown on Table #3.

Additionally a walk through of the building is conducted to check the equipment or look for any obvious problems. Site activities are documented on log sheets. The log sheets are kept on-site.

The pH probes are cleaned and calibrated monthly. The in-line filters are changed when an increase in system pressure is noted. The ion exchange canisters are changed out when the total chromium concentration in the outfall exceeds 2 mg/l.

#### E. Significant Operation and Maintenance Activities

Between January 1, 2016 and June 30, 2016, Ron Buck (Albany International) and Ron Moddes (Luvata Appleton) retired from their respective oversite positions and were replaced by JP Hammerton and Sam Edwards, respectively.

#### F. Emergency Shut Downs

There were no emergency shut downs of the system during the reporting period.

#### III. GROUNDWATER SAMPLING

#### G. Groundwater Sampling Procedures

A total of 16 groundwater monitoring wells are associated with the groundwater treatment system. Monitoring Wells MW-20, MW-20A, MW-21 and MW-21A were installed between May 12 and 14, 2014 and were first sampled on, June 2, 2014. Monitoring wells, MW-19 and MW-19A were installed on June 30, 2009 and were first sampled on July 13, 2009. Sampling of MW-20, MW-20A, MW-21, MW-21A, MW-19 and MW-19A is conducted quarterly along with the two source area wells, MW-05 and MW-05A. The remainder of the monitoring wells are sampled annually.

Groundwater levels are measured in the monitoring wells and piezometers relative to the north side of the top of the well casing. The groundwater elevations are collected from each monitoring well prior to sampling. A dedicated 12-volt submersible pump is installed in each well. Each well is slowly pumped dry,

allowed to recharge and sampled. Purge water is collected and treated in the treatment system.

The laboratory analytical data is contained in Tables #4, and #5. The analytical data sheets are contained in Appendix E.

Graphs of the chromium contaminant concentrations for each monitoring well, the building sump and French Drain are contained in Appendix A.

Table #6 summarizes the historical groundwater elevation data collected from each monitoring well during the quarterly sampling. Groundwater elevation contours are calculated based upon the observed elevations of the monitoring wells, basement sump and French Drain. The groundwater elevation contour maps from the January and April sampling events are presented in Figures #3 and #4. Groundwater elevation versus time graphs is presented in Appendix B.

#### H. Groundwater Sampling Results

The collected groundwater samples are analyzed for Total and Hexavalent chromium.

A total of two sampling events took place during the reporting period. On January 21, 2016, monitoring wells MW-05, MW5A, MW19, MW-19A, MW-20, MW-20A, MW-21 and MW-21A were sampled as part of the regularly schedule quarterly sampling. Monitoring wells MW-05 (444 ug/l), MW-19 (15,295 ug/l), MW-19A (121 ug/l) and MW-20 (212,000 ug/l) had exceedances of the NR 140.10 Enforcement Standard (ES) of 100 ug/l for Total Chromium. None of the remaining sampled wells had an exceedance of the ES or NR140.10 Preventative Action limit (PAL) of 10 ug/l for total chromium.

On April 14, 2016, all 16 monitoring wells associated with the site were sampled. Exceedences of the ES for total chromium were detected in monitoring wells MW-05 (562 ug/l), MW-19 (18,420 ug/l), MW-19A (233 ug/l) and MW-20 (412750 ug/l). MW-20A had an exceedence of the PAL with a concentration of 66 ug/l. None of the remaining sampled wells had an exceedance of the ES or (PAL) for total chromium.

A chromium isoconcentration map is developed once per year with the results from the April sampling. The April sampling is the only event where all the wells attributed to the property are sampled and therefore is the most accurate representation of the data as a whole. The chromium isoconcentration map from the April 14, 2016 sampling is shown on Figure #2.

Samples are collected monthly from the Manhole (French Drain) and basement Collection Sump. All samples collected from the Manhole and basement Collection Sump during the period from January 1, 2016 through June 30, 2016 had exceedances of the ES for Total Chromium. The laboratory analytical results for the Manhole and Collection Sump are shown in Table #5. Current and historical groundwater elevation data is contained in Table #6.

A review of the historical analytical data shows decreasing concentrations of chromium in monitoring wells MW-05 and MW-05A. Historical data from the French Drain and Building Sump also show stable or decreasing chromium concentrations. Historical data collected for MW-19 shows a stable or increasing chromium concentrations and data from MW-19A is too inconsistent to develop a trend line. There are only nine data points on MW-20 and MW-20A. While the chromium

concentrations in MW-20A are decreasing, concentrations in MW-20 do not present a consistent pattern.

The groundwater treatment system is effectively removing chromium from the groundwater on the site. With the information gathered from sampling the four new groundwater wells, a study of remediation options to speed up the chromium removal process in the areas of MW-19 and MW-20 has been presented to Albany International and is currently under review.

The yearly chromium removal quantities were calculated utilizing the monthly analytical data and flow quantities from the building sump and French Drain. From January 1, 2016 through June 30, 2016, 4.46 pounds of chromium was removed from the building sump and 0.76 pounds of chromium removed from the French Drain. The pounds of chromium removed from the sump and French Drain is calculated using the chromium concentrations (in mg/L) from the sump and French Drain from each months sampling; times the total volume (in millions of gallons) of groundwater treated during each month from the two extraction points; times 8.34 pounds per gallon of water treated. The historical chromium removal quantities are summarized in Table #7. The Wisconsin DNR Operation and Maintenance form 4400-194 is included in Appendix C.

#### IV. GROUNDWATER COLLECTION SYSTEM

The groundwater collection system (French Drain) was installed in 1992 to collect contaminated groundwater from the north side of the property. The collection system consists of approximately 110-feet of perforated piping, placed 14-feet below grade. The collected groundwater flows by gravity to a collection sump, where it is pumped to the storage tanks in the basement of the facility. The collection trench creates a capture zone for contaminated groundwater along the north end of the building.

The building sump creates a capture zone for contaminants along the south side and under the building. The building sump is located at the northeast corner of the building basement.

#### V. CONCLUSIONS AND RECOMMENDATIONS

On January 21, 2016, groundwater samples were collected from the monitoring wells that have been identified as requiring quarterly monitoring. On April 14, 2016, all 16 wells associated with the site were sampled. Samples collected from source area wells, MW-05 and MW-20 as well as MW-19 and MW-19A, the nearest monitoring wells west of the two source areas, recorded detections for total chromium in excess of the NR 140.10 Enforcement Standard (ES). MW- 20A had an exceedance of the PAL (66 ug/l) during the April 14, 2016 sampling and no exceedances of the PAL during the January 21, 2016 sampling. The remaining sampled monitoring wells had no exceedances of the ES or PAL during either sampling event.

All monthly samples collected during the monitoring period from the French Drain and collection sump had exceedances of the NR 140.10 ES for Total Chromium.

Data collected to date from the groundwater wells on the exterior of the building, the collection sump and French drain show stable, if not decreasing, concentrations of chromium. Monitoring well MW-19A has shown stable, if not increasing concentrations of total chromium. MW-19 has recorded analytical results for which the linear trend of detected concentrations is upward. Monitoring well MW-20 wasn

sampled 9 times to the end of this report period. The latest analysis yielded the highest detected concentration so far and the linear trend line of the data is slightly upward in concentration. MW-20A has shown a significant decrease in total chromium over the 9 sampling times.

A Remedial Actions Options Report was developed on behalf of Albany International to identify and evaluate potential options to more efficiently remove the chromium contamination under the warehouse floor. The report concluded that the chromium contamination is within the capture zone of the collection sump and French Drain. It further concluded that there is at present no cost effective method to improve the present collection/treatment to speed up the chromium removal.

Prior to issuance of the current three year wastewater discharge permit, the City of Appleton was petitioned to allow the direct discharge of flows from the French Drain (Manhole). Total chromium concentrations in the Manhole have remained close to an average of 7 mg/l, which is the current upper limit for direct discharge to the City of Appleton Wastewater Treatment Facility. The City of Appleton determined that there was not enough historical data to allow the direct discharge and will again reevaluate the option when the current permit expires in 2017.

Based upon the historical analytical results from the groundwater monitoring wells and treatment systems, Badger Laboratories and Engineering Co., Inc., recommends continued operation of the groundwater treatment system at the Appleton Wire, Former Albany International Chrome Plant.

## **Data Tables**

#### CITY OF APPLETON EFFLUENT COMPLIANCE LIMITS

#### Permit #11-17 Effluent Point 001

#### **Appleton Wire Former Albany International Chrome Plant**

| Aluminum<br>(mg/l) | Arsenic<br>(mg/l) | Cadmium<br>(mg/l) | Chromium<br>Total<br>(mg/l) | Copper<br>(mg/l) | Cyanide<br>(mg/l) | Lead<br>(mg/l) | Mercury<br>(mg/l) | Nickel<br>(mg/l) | Zinc<br>(mg/l) | Hexavalent<br>Chromium<br>(mg/L) |
|--------------------|-------------------|-------------------|-----------------------------|------------------|-------------------|----------------|-------------------|------------------|----------------|----------------------------------|
| 70                 | 1.0               | 0.3               | 7.0                         | 3.5              | 0.3               | 2.0            | 0.002             | 2.0              | 10.0           | 4.5                              |

mg/l = milligram / liter ug/l = microgram / liter

Table #2

# LABORATORY ANALYTICAL RESULTS Effluent Point 001 Appleton Wire Former Albany International Chrome Plant

| Date                      | Cyanide<br>(mg/l) | Aluminum<br>(mg/l) | Arsenic<br>(mg/l) | Cadmium<br>(mg/l) | Chromium<br>(mg/l) | Hexavalent<br>Chromium<br>(mg/l) | Copper<br>(mg/l) | Lead<br>(mg/l) | Mercury<br>(mg/l) | Nickel<br>(mg/l) | Zinc<br>(mg/l) |
|---------------------------|-------------------|--------------------|-------------------|-------------------|--------------------|----------------------------------|------------------|----------------|-------------------|------------------|----------------|
| 2/26/03 ***               | <0.0014           | <0.027             | <0.0082           | < 0.00053         | 1.0                | NA                               | 0.011            | 0.0075         | <0.000028         | 0.0045           | 0.0057         |
| 4/24/03 **                | < 0.0015          | <0.027             | <0.0081           | < 0.0053          | 0.049              | N/A                              | 0.1              | 0.0017         | < 0.00003         | < 0.0021         | <0.0072        |
| 10/23/03 ***              | <2.7              | 0.0500             | <0.0012           | <0.0001           | 1.588              | NA                               | 0.034            | 0.0033         | <0.0002           | 0.0046           | <0.010         |
| 03/18/04 **               | <.005             | 0.001              | <.0012            | <.0001            | 0.399              | NA                               | 0.019            | 0.0053         | <.0002            | 0.0034           | 0.02           |
| 04/19/04 ***              | <.005             | <.01               | <.0012            | <.01              | 0.32               | <.002                            | 0.02             | <.05           | <.0002            | <.03             | 0.01           |
| 01/13/05 ***              | < 0.005           | 0.012              | 0.009             | <0.0001           | 1.651              | NA                               | 0.024            | 0.0051         | <0.0002           | 0.0035           | <0.010         |
| 04/11/05**                | < 0.005           | < 0.07             | < 0.0012          | <0.01             | 0.0027             | < 0.002                          | 0.02             | < 0.05         | <0.0002           | < 0.03           | 0.03           |
| 10/12/05 ***              | 0.014             | 0.132              | <0.006            | < 0.0005          | 0.0032             | NA                               | 0.0087           | 0.0089         | <0.0002           | 0.0046           | 0.05           |
| 01/31/06 ***              | < 0.005           | 0.068              | < 0.0012          | 0.0002            | 1.887              | NA                               | 0.038            | 0.051          | <0.0002           | 0.0071           | 0.03           |
| 04/11/06 **               | < 0.005           | < 0.07             | <0.0011           | <0.01             | 1.3                | 0.004                            | 0.06             | < 0.05         | 0.0006            | < 0.03           | 0.05           |
| 9/26/06 ***               | 0.004             | 0.152              | 0.0016            | <0.0001           | 5.59               | NA                               | 0.156            | 0.019          | <0.0002           | 0.0086           | 0.03           |
| 02/28/07 ***              | 0.010             | 0.096              | <0.001            | <0.0001           | 1.222              | NA                               | 0.019            | 0.0042         | <.0002            | 0.0077           | 0.050          |
| 04/29/07 **               | 0.005             | < 0.07             | <0.001            | <.01              | 0.12               | < 0.002                          | 0.12             | < 0.03         | <0.0002           | < 0.04           | 0.03           |
| 10/30/07 ***              | < 0.004           | < 0.07             | <1.0              | <0.01             | 0.04               | NA                               | <0.01            | < 0.03         | <0.0002           | < 0.04           | 0.03           |
| 2/17/08 ***               | <.004             | <.07               | <.001             | <.01              | 2.4                | NA                               | 0.25             | <.03           | <.0002            | <.04             | 0.98           |
| 4/23/08 **                | <.008             | <.08               | <.001             | <.01              | 0.36               | <.002                            | 0.05             | <.03           | <.0002            | <.02             | 0.81           |
| 11/20/08 ***              | <.008             | <.08               | <.08              | <.01              | 0.72               | NA                               | 0.03             | <.03           | <.0002            | 0.02             | 0.07           |
| 2/24/09 ***               | <0.008            | < 0.09             | < 0.09            | <0.01             | 3.9                | NA                               | 0.04             | 0.05           | < 0.0002          | < 0.02           | 0.07           |
| 4/07/09 **                | <0.008            | < 0.09             | < 0.0012          | <0.01             | 0.07               | < 0.001                          | <0.01            | < 0.05         | <0.0002           | < 0.02           | 0.15           |
| 10/08/09 ***              | <0.008            | <0.08              | <0.012            | <0.01             | 0.03               | NA                               | <0.01            | < 0.05         | <0.0002           | <0.02            | 0.01           |
| 2/24/10 ***               | <0.008            | <0.06              | < 0.0002          | <0.01             | 0.11               | NA                               | <0.01            | < 0.03         | < 0.0002          | <0.01            | 0.06           |
| 4/13/10 **                | <0.008            | <0.06              | <0.0019           | <0.01             | 0.2                | 0.047                            | 0.05             | < 0.03         | <0.0002           | <0.01            | 0.06           |
| 2/17/11 ***               | <0.008            | <0.08              | <0.001            | <0.001            | 0.15               | NA                               | 0.05             | < 0.04         | <0.0002           | 0.02             | 0.08           |
| 4/27/11**                 | <0.008            | 0.33               | <0.01             | <0.01             | 0.47               | 0.008                            | 0.84             | < 0.04         | <0.0002           | < 0.02           | 0.27           |
| 11/15/11***               | < 0.007           | <0.008             | < 0.005           | <0.01             | 0.27               | NA                               | 0.05             | < 0.04         | <0.0002           | < 0.02           | 0.05           |
| 3/19/12***                | <0.007            | <0.11              | <0.001            | <0.01             | 0.1                | NA                               | 0.02             | <0.02          | <0.0002           | <0.02            | 0.05           |
| Appleton<br>Permit Limits | 0.30              | 70                 | 1.0               | 0.30              | 7.0                | 4.5                              | 3.5              | 2.0            | 0.002             | 2.0              | 10.0           |

# LABORATORY ANALYTICAL RESULTS Effluent Point 001 Appleton Wire Former Albany International Chrome Plant

| Date                      | Cyanide<br>(mg/l) | Aluminum<br>(mg/l) | Arsenic<br>(mg/l) | Cadmium<br>(mg/l) | Chromium<br>(mg/l) | Hexavalent<br>Chromium<br>(mg/l) | Copper<br>(mg/l) | Lead<br>(mg/l) | Mercury<br>(mg/l) | Nickel<br>(mg/l) | Zinc<br>(mg/l) |
|---------------------------|-------------------|--------------------|-------------------|-------------------|--------------------|----------------------------------|------------------|----------------|-------------------|------------------|----------------|
| 04/10/12**                | < 0.007           | <0.08              | < 0.001           | <0.01             | 0.07               | 0.023                            | <0.01            | < 0.04         | < 0.0002          | < 0.02           | 0.08           |
| 08/07/12***               | 0.0046            | 3.38               | 0.044             | 0.0012            | 0.336              | NA                               | 0.462            | <0.0014        | <0.0001           | 0.171            | 0.0699         |
| 4/15/13**                 | <.006             | <0.1               | < 0.001           | 0.01              | 0.16               | 0.073                            | <0.01            | < 0.02         | <0.0002           | < 0.02           | 0.01           |
| 5/22/13***                | 0.0039            | <0.714             | < 0.0042          | <0.00048          | 0.389              | NA                               | 0.01             | <0.0027        | <0.0001           | 0.006            | 0.0188         |
| 11/18/13***               | <0.0038           | <0.714             | < 0.0042          | <0.00048          | 0.0185             | NA                               | 0.0156           | <0.0027        | <0.0001           | 0.0054           | 0.0192         |
| 04/09/14**                | <0.006            | < 0.05             | <0.0015           | <0.01             | 0.1                | 0.04                             | <0.01            | < 0.03         | <0.0002           | < 0.02           | 0.04           |
| 5/12/2014***              | <0.020            | 0.102*             | <0.0068           | <0.001            | 0.0724             | NA                               | 0.017            | <0.0016        | <0.0001           | 0.0033           | 0.025*         |
| 9/25/14***                | <0.01             | <0.0655            | <0.0068           | <0.001            | 0.0075*            | NA                               | 0.0075*          | 0.0023*        | <0.001            | 0.0058*          | 0.0141*        |
| 4/2/15***                 | <0.01             | <0.112*            | 0.0148*           | 0.0014*           | 0.24               | NA                               | 0.0079*          | 0.0043*        | <.0001            | 0.0069*          | 0.0319*        |
| 04/21/2015                | < 0.007           | <0.1               | < 0.0015          | <0.01             | 0.24               | 0.162                            | 0.03             | < 0.03         | < 0.0002          | < 0.03           | 0.03           |
| 7/22/2015***              | <0.010            | 0.155*             | <0.0068           | < 0.0010          | 0.0587             | NA                               | 0.0474           | 0.0021*        | < 0.0001          | 0.0043*          | 0.0477         |
| 4/14/16**                 | <0.007            | <0.09              | < 0.001           | <0.01             | 0.09               | 0.053                            | 0.04             | < 0.03         | < 0.0002          | < 0.02           | 0.03           |
| Appleton<br>Permit Limits | 0.30              | 70                 | 1.0               | 0.30              | 7.0                | 4.5                              | 3.5              | 2.0            | 0.002             | 2.0              | 10.0           |

mg/l = milligram / liter (ppm)

NA = Not Analyzed

<sup>\* =</sup> Analyte detected between Limit of Detection and Limit of Quantitation

<sup>\* =</sup> Sampled by Operator

<sup>\*\*\* =</sup> Sampled by the City of Appleton

Table #3

#### **BATCH DISCHARGES**

January 1, through June 30, 2016 Appleton Wire Former Albany International Chrome Plant

| Month    | Monthly<br>(gallons) | Quarterly Flow<br>(gallons) |
|----------|----------------------|-----------------------------|
| January  | 3,590                |                             |
| February | 11,910               | 29,790                      |
| March    | 14,290               |                             |
| April    | 11,190               |                             |
| May      | 9,820                | 28,010                      |
| June     | 7,000                |                             |
| TOTAL    | 57,800               |                             |

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

| Well<br>Name | Sample<br>Date | Adjusted<br>Chromium<br>Value | Total<br>Chromium<br>(ug/l) | Hexavalent<br>Chromium<br>(ug/l) |
|--------------|----------------|-------------------------------|-----------------------------|----------------------------------|
|              | 02/09/87       | 50                            | 50                          |                                  |
| MW-1         | 07/29/87       | 20                            | <40                         |                                  |
|              | 09/25/87       | 50                            | <100                        |                                  |
|              | 12/11/87       | 50                            | <100                        |                                  |
|              | 03/21/88       | 1.6                           | 1.6                         |                                  |
|              | 06/13/88       | 3.0                           | 3.0                         |                                  |
|              | 09/08/88       | 9                             | 9                           |                                  |
|              | 12/15/88       | 2.5                           | 2.5                         |                                  |
|              | 03/26/92       | 20                            | <40                         |                                  |
|              | 06/16/92       | 4.9                           | 4.9                         |                                  |
|              | 09/04/92       | 50                            | 50                          |                                  |
|              | 03/25/93       | 40                            | <80                         |                                  |
|              | 09/16/93       | 40                            | <80                         |                                  |
|              | 03/15/94       | 35                            | <70                         |                                  |
|              | 09/20/94       | 13                            | 13                          |                                  |
|              | 03/31/95       | 39                            | 39                          |                                  |
|              | 09/07/95       | 7.2                           | 7.2                         |                                  |
|              | 03/15/96       | 15                            | 15                          |                                  |
|              | 09/05/96       | 6.4                           | 6.4                         |                                  |
|              | 04/26/97       | 11                            | 11                          |                                  |
|              | 04/30/98       | 60                            | 60                          |                                  |
|              | 10/22/98       | 7                             | 7                           |                                  |
|              | 04/16/99       | 12                            | 12                          |                                  |
|              | 10/19/99       | 9.3                           | 9.3                         |                                  |
|              | 04/17/00       | 11                            | 22**                        |                                  |
|              | 04/06/01       | 5.5                           | <11                         |                                  |
|              | 04/18/02       | 5.5                           | <11                         |                                  |
|              | 04/16/03       | 2.9                           | 2.9                         |                                  |
|              | 04/19/04       | 2.8                           | 2.8                         | <2.0                             |
|              | 04/11/05       | 82                            | 82                          | 16                               |
|              | 07/18/05       | 15                            | <30                         | <2                               |
|              | 04/11/06       | 1.7                           | 1.7                         | <2.0                             |
|              | 04/29/07       | 4                             | 4                           | <2.0                             |
|              | 04/23/08       | 4.4                           | 4.4                         | <2.0                             |
|              | 04/07/2009     | 4.6                           | 4.6                         | <0.1                             |
|              | 04/13/2010     | 26                            | 26                          | <3.0                             |
|              | 04/27/2011     | 3                             | 3                           | <3                               |
|              | 04/10/2012     | 1.7                           | 1.7                         | <3                               |
|              | 04/15/2013     | 2.6                           | 2.6                         | <2.6                             |
|              | 04/09/2014     | 4.2                           | 4.2                         | <3.0                             |
|              | 04/21/2015     | 0.5                           | 0.5                         | <0.5                             |
|              | 04/14/2016     | 0.35                          | 0.35                        | <2                               |

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

|      |            | Adjusted | Total    | Hexavalent |
|------|------------|----------|----------|------------|
| Well | Sample     | Chromium | Chromium | Chromium   |
| Name | Date       | Value    | (ug/l)   | (ug/l)     |
|      | 02/09/87   | 70       | 70       |            |
| MW-2 | 07/29/87   | 20       | <40      |            |
|      | 09/25/87   | 100      | 100      |            |
|      | 12/11/87   | 100      | 100      |            |
|      | 03/21/88   | 85       | 85       |            |
|      | 06/13/88   | 140      | 140      |            |
|      | 09/08/88   | 70       | 71       |            |
|      | 12/15/88   | 130      | 130      |            |
|      | 03/26/92   | 20       | <40      |            |
|      | 06/16/92   | 17       | 17       |            |
|      | 09/04/92   | 20       | <40      |            |
|      | 03/25/93   | 40       | <80      |            |
|      | 09/16/93   | 40       | <80      |            |
|      | 03/15/94   | 35       | <70      |            |
|      | 09/20/94   | 19       | 19       |            |
|      | 03/31/95   | 19       | 19       |            |
|      | 09/07/95   | 14       | 14       |            |
|      | 03/15/96   | 11       | 11       |            |
|      | 09/05/96   | 29       | 29       |            |
|      | 04/26/97   | 9.2      | 9.2      |            |
|      | 10/29/97   | 10       | 10       |            |
|      | 04/30/98   | 11       | 11       |            |
|      | 10/22/98   | 9.3      | 9.3      |            |
|      | 04/16/99   | 7.7      | 7.7      |            |
|      | 10/19/99   | 6.8      | 6.8      |            |
|      | 04/17/00   | 11       | 22**     |            |
|      | 04/06/01   | 5.5      | <11      |            |
|      | 04/18/02   | 5.5      | <11      |            |
|      | 04/16/03   | 0.55     | <1.1     |            |
|      | 04/19/04   | 1.0      | 1.0      | <2.0       |
|      | 04/11/05   | 1.3      | 1.3      | <2.0       |
|      | 04/11/06   | 0.4      | 0.4      | <2.0       |
|      | 04/29/07   | 1.5      | 1.5      | <2.0       |
|      | 04/23/08   | 2.4      | 2.4      | <2.0       |
|      | 04/07/2009 | 8.3      | 8.3      | <.1        |
|      | 04/13/2010 | 5        | 5        | <3.0       |
|      | 04/27/2011 | 3        | 3        | <3.0       |
|      | 04/10/2012 | 0.7      | 0.7      | <3.0       |
|      | 04/15/2013 | 0.4      | 0.4      | <.4        |
|      | 04/09/2014 | 0.6      | 0.6      | <0.6       |
|      | 04/21/2015 | 0.94     | 0.94     | < 0.94     |
|      | 04/14/2016 | 4.9      | 4.9      | <2         |

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

|       |            | Adjusted | Total    | Hexavalent |
|-------|------------|----------|----------|------------|
| Well  | Sample     | Chromium | Chromium | Chromium   |
| Name  | Date       | Value    | (ug/l)   | (ug/l)     |
|       | 03/26/92   | 20       | <40      |            |
| MW-2A | 06/16/92   | 1.5      | 1.5      |            |
|       | 09/04/92   | 20       | <40      |            |
|       | 03/25/93   | 40       | <80      |            |
|       | 09/16/93   | 40       | <80      |            |
|       | 03/15/94   | 35       | <70      |            |
|       | 09/20/94   | 14       | 14       |            |
|       | 03/31/95   | 17       | 17       |            |
|       | 09/07/95   | 3.9      | 3.9      |            |
|       | 03/15/96   | 3.6      | 3.6      |            |
|       | 09/05/96   | 1.2      | 1.2      |            |
|       | 04/26/97   | 0.3      | 0.3      |            |
|       | 04/30/98   | 2.5      | 2.5      |            |
|       | 04/16/99   | 2.4      | 2.4      |            |
|       | 04/17/00   | 11.5     | 23**     |            |
|       | 04/06/01   | 5.5      | <11      |            |
|       | 04/18/02   | 5.5      | <11      |            |
|       | 04/16/03   | 0.55     | <1.1     |            |
|       | 04/19/04   | 0.6      | 0.6      | <2.0       |
|       | 04/11/05   | 0.4      | 0.4      | <2.0       |
|       | 04/11/06   | 0.1      | 0.1      | <2.0       |
|       | 04/29/07   | 0.7      | 0.7      | <2.0       |
|       | 04/23/08   | 0.2      | < 0.4    | <2.0       |
|       | 04/07/2009 | 1.5      | 1.5      | <0.1       |
|       | 04/13/2010 | 5        | 5        | <3.0       |
|       | 04/27/2011 | 2        | 2        | <3.0       |
|       | 04/10/2012 | 0.5      | 0.5      | <3.0       |
|       | 04/15/2013 | 0.1      | < 0.2    | <0.2       |
|       | 04/09/2014 | 0.4      | 0.4      | <0.4       |
|       | 04/21/2015 | 0.11     | 0.11     | <0.11      |
|       | 04/14/2016 | 0.56     | 0.56     | <2         |
|       | 03/26/92   | 33,000   | 33,000   |            |
| MW-5  | 06/16/92   | 27,000   | 27,000   |            |
|       | 09/04/92   | 33,000   | 33,000   |            |
|       | 12/17/92   | 28,000   | 28,000   |            |
|       | 03/25/93   | 29,000   | 29,000   |            |
|       | 06/22/93   | 24,000   | 24,000   |            |
|       | 09/16/93   | 25,000   | 25,000   |            |
|       | 12/03/93   | 26,000   | 26,000   |            |
|       | 03/15/94   | 26,000   | 26,000   |            |
|       | 06/16/94   | 2,013    | 2,013    |            |
|       | 09/20/94   | 29,000   | 29,000   |            |
|       | 12/13/94   | 19,000   | 19,000   |            |
|       | 03/31/95   | 19,960   | 19,960   |            |

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

|       |                      | Adjusted       | Total          | Hexavalent |
|-------|----------------------|----------------|----------------|------------|
| Well  | Sample               | Chromium       | Chromium       | Chromium   |
| Name  | Date                 | Value          | (ug/l)         | (ug/l)     |
|       | 06/15/95             | 21,190         | 21,190         | , ,        |
| MW-5  | 09/07/95             | 25,400         | 25,400         |            |
| Cont. | 12/11/95             | 18,000         | 18,000         |            |
|       | 03/15/96             | 15,830         | 15,830         |            |
|       | 06/27/96             | 18,000         | 18,000         |            |
|       | 09/05/96             | 14,000         | 14,000         |            |
|       | 12/03/96             | 24,000         | 24,000         |            |
|       | 01/23/97             | 22,000         | 22,000         |            |
|       | 04/26/97             | 17,000         | 17,000         |            |
|       | 07/16/97             | 20,000         | 20,000         |            |
|       | 10/29/97             | 1,600          | 1,600          |            |
|       | 01/20/98             | 18,000         | 18,000         |            |
|       | 04/30/98             | 15,000         | 15,000         |            |
|       | 07/10/98             | 18,000         | 18,000         |            |
|       | 10/22/98             | 21,000         | 21,000         |            |
|       | 01/19/99             | 14,000         | 14,000         |            |
|       | 04/16/99             | 15,000         | 15,000         |            |
|       | 07/23/99             | 14,000         | 14,000         |            |
|       | 10/19/99             | 18,175         | 18,175         |            |
|       | 01/10/00             | 12,000         | 12,000         |            |
|       | 04/17/00             | 8,500          | 8,500          |            |
|       | 07/20/00             | 11,000         | 11,000         |            |
|       | 10/25/00             | 8,500          | 8,500          |            |
|       | 01/17/01             | 14,000         | 14,000         |            |
|       | 04/06/01             | 7,900          | 7,900          |            |
|       | 07/20/01             | 10,000         | 10,000         |            |
|       | 10/16/01             | 12,000         | 12,000         |            |
|       | 01/14/02             | 11,000         | 11,000         |            |
|       | 04/18/02             | 5,500          | 5,500          |            |
|       | 07/23/02             | 788            | 788            |            |
|       | 10/30/02             | 1,500          | 1,500          |            |
|       | 01/20/03             | 19,000         | 19,000         |            |
|       | 04/16/03             | 7,000          | 7,000          |            |
|       | 07/10/03             | 33             | 33             |            |
|       | 10/07/03             | 3,300          | 3,300          |            |
|       | 01/30/04             | 1,200          | 1,200          | 10000      |
|       | 04/19/04<br>07/26/04 | 7,900<br>6,700 | 7,900<br>6,700 | 6300       |
|       | 10/11/04             | 6,700<br>6,500 | 6,700<br>6,500 | 6500       |
|       | 01/11/04             | 6,460          | 6,460          | 6300       |
|       | 04/11/05             | 5,085          | 5,085          | 4500       |
|       | 04/11/03             | 4,900          | 4,900          | 4900       |
|       | 10/11/05             | 5,100          | 5,100          | 4900       |
|       | 10/11/00             | 3,100          | J, 100         | TJUU       |

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

|       |          | Adjusted | Total    | Hexavalent |
|-------|----------|----------|----------|------------|
| Well  | Sample   | Chromium | Chromium | Chromium   |
| Name  | Date     | Value    | (ug/l)   | (ug/l)     |
|       | 01/10/06 | 10,880   | 10,880   | 10000      |
| MW-5  | 04/11/06 | 4,455    | 4,455    | 3880       |
| Cont. | 07/27/06 | 3,190    | 3,190    | 3400       |
|       | 10/18/06 | 5,100    | 5,100    | 4500       |
|       | 01/09/07 | 2,900    | 2,900    | 2800       |
|       | 04/29/07 | 2,895    | 2,895    | 2500       |
|       | 07/24/07 | 2,465    | 2,465    | 2465       |
|       | 10/24/07 | 3,205    | 3,205    | 2700       |
|       | 01/16/08 | 2,335    | 2,335    | 2300       |
|       | 04/23/08 | 2,067    | 2,067    | 1700       |
|       | 07/15/08 | 2,425    | 2,425    | 1700       |
|       | 10/23/08 | 2,400    | 2,400    | 1800       |
|       | 1/22/09  | 2,024    | 2,024    | 1900       |
|       | 4/7/09   | 2,116    | 2,116    | 1700       |
|       | 7/7/09   | 2,200    | 2,200    | 2000       |
|       | 10/11/09 | 2,500    | 2,500    | 2300       |
|       | 1/19/10  | 2,015    | 2,015    | 1900       |
|       | 4/13/10  | 1,600    | 1,600    | 1400       |
|       | 7/29/10  | 1,800    | 1,800    | 1300       |
|       | 10/19/10 | 1,700    | 1,700    | 1400       |
|       | 1/13/11  | 1,500    | 1,500    | 1400       |
|       | 4/27/11  | 1,200    | 1,200    | 1200       |
|       | 7/19/11  | 1,100    | 1,100    | 1000       |
|       | 10/11/11 | 1,100    | 1,100    | 1000       |
|       | 1/10/12  | 1,140    | 1,140    | 950        |
|       | 4/10/12  | 1,200    | 1,200    | 1100       |
|       | 8/8/12   | 1,200    | 1,200    | 49         |
|       | 10/9/12  | 1,139    | 1,139    | 1100       |
|       | 1/8/13   | 1,500    | 1,500    | 1310       |
|       | 4/15/13  | 1,166    | 1,166    | 1166       |
|       | 7/10/13  | 1,300    | 1,300    | 1300       |
|       | 10/14/13 | 1,338    | 1,338    | 1300       |
|       | 1/15/14  | 1,594    | 1,594    | 1730       |
|       | 4/9/14   | 1,430    | 1,430    | 1280       |
|       | 7/8/14   | 1,300    | 1,300    | 1180       |
|       | 10/14/14 | 960      | 960      | 960        |
|       | 1/13/15  | 784      | 784      | 670        |
|       | 4/21/15  | 576      | 576      | 514        |
|       | 7/15/15  | 605      | 605      | 591        |
|       | 10/20/15 | 604      | 604      | 512        |
|       | 1/21/16  | 444      | 444      | 408        |
|       | 4/14/16  | 462      | 462      | 430        |

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

|        |          | Adjusted | Total    | Hexavalent |
|--------|----------|----------|----------|------------|
| Well   | Sample   | Chromium | Chromium | Chromium   |
| Name   | Date     | Value    | (ug/l)   | (ug/l)     |
|        | 02/09/87 | 80       | 80       |            |
| MW-5A* | 07/29/87 | 8,000    | 8,000    |            |
|        | 09/25/87 | 2,100    | 2,100    |            |
|        | 12/11/87 | 14,400   | 14,400   |            |
|        | 03/21/88 | 26,000   | 26,000   |            |
|        | 06/13/88 | 7,800    | 7,800    |            |
|        | 09/08/88 | 3,000    | 3,000    |            |
|        | 12/15/88 | 7,100    | 7,100    |            |
|        | 03/26/92 | 5,600    | 5,600    |            |
|        | 06/16/92 | 7,600    | 7,600    |            |
|        | 09/04/92 | 13,000   | 13,000   |            |
|        | 12/17/92 | 1,500    | 1,500    |            |
|        | 03/25/93 | 2,200    | 2,200    |            |
|        | 06/22/93 | 1,400    | 1,400    |            |
|        | 09/16/93 | 3,800    | 3,800    |            |
|        | 12/03/93 | 10,000   | 10,000   |            |
|        | 03/15/94 | 900      | 900      |            |
|        | 06/16/94 | 312      | 312      |            |
|        | 09/20/94 | 350      | 350      |            |
|        | 12/13/94 | 580      | 580      |            |
|        | 03/31/95 | 568      | 568      |            |
|        | 06/15/95 | 228      | 228      |            |
|        | 09/07/95 | 1,928    | 1,928    |            |
|        | 12/11/95 | 24       | 24       |            |
|        | 03/15/96 | 552      | 552      |            |
|        | 06/27/96 | 490      | 490      |            |
|        | 09/05/96 | 2,200    | 2,200    |            |
|        | 12/03/96 | 1,600    | 1,600    |            |
|        | 01/23/97 | 170      | 170      |            |
|        | 04/26/97 | 68       | 68       |            |
|        | 07/16/97 | 40       | 40       |            |
|        | 10/29/97 | 140      | 140      |            |
|        | 01/20/98 | 1,500    | 1,500    |            |
|        | 04/30/98 | 130      | 130      |            |
|        | 07/10/98 | 150      | 150      |            |
|        | 10/22/98 | 160      | 160      |            |
|        | 01/19/99 | 900      | 900      |            |
|        | 04/16/99 | 99       | 99       |            |
|        | 07/23/99 | 76       | 76       |            |
|        | 10/19/99 | 104      | 104      |            |

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

|        |          | Adjusted     | Total        | Hexavalent |
|--------|----------|--------------|--------------|------------|
| Well   | Sample   | Chromium     | Chromium     | Chromium   |
| Name   | Date     | Value        | (ug/l)       | (ug/l)     |
|        | 01/10/00 | 1,200        | 1,200        | ( 0 )      |
| MW-5A* | 04/17/00 | 880          | 880          |            |
| Cont.  | 07/20/00 | 400          | 400          |            |
|        | 10/25/00 | 1,100        | 1,100        |            |
|        | 01/17/01 | 280          | 280          |            |
|        | 04/06/01 | 65           | 65           |            |
|        | 07/20/01 | 11           | 11           |            |
|        | 10/16/01 | 8            | 16**         |            |
|        | 01/14/02 | 78           | 78           |            |
|        | 04/18/02 | 380          | 380          |            |
|        | 07/23/02 | 207          | 207          |            |
|        | 10/30/02 | <i>4</i> 5   | <i>4</i> 5   |            |
|        | 01/20/03 | 1,200        | 1,200        |            |
|        | 04/16/03 | 270          | 270          |            |
|        | 07/10/03 | 1,200        | 1,200        |            |
|        | 10/07/03 | 16           | 16           |            |
|        | 01/30/04 | 23           | 23           |            |
|        | 04/19/04 | 480          | 480          | 82         |
|        | 07/26/04 | 40           | 40           | <4         |
|        | 10/11/04 | 12           | 12           | 12         |
|        | 01/12/05 | 30           | 30           | <2         |
|        | 04/11/05 | 13           | 13           | 10         |
|        | 07/18/05 | 15           | <30          | <2         |
|        | 10/11/05 | 26           | 26           | <2         |
|        | 01/10/06 | 1            | <2           |            |
|        | 04/11/06 | 1            | <2           |            |
|        | 07/27/06 | 720          | 720          |            |
|        | 10/18/06 | 5.2          | 5.2          |            |
|        | 01/09/07 | 2.3          | 2.3          | <2.0       |
|        | 04/29/07 | 12           | 12           | 10         |
|        | 07/24/07 | 2.4          | 2.4          | <2.0       |
|        | 10/24/07 | 2.7          | 2.7          | <2.0       |
|        | 01/16/08 | 10           | 10           | <2.0       |
|        | 04/23/08 | 167          | 167          | 20         |
|        | 07/15/08 | 6.4          | 6.4          | <1.0       |
|        | 10/23/08 | 18           | 18           | 10         |
|        | 01/22/09 | 2 <i>4</i> 8 | 2 <i>4</i> 8 | 210        |
|        | 4/7/09   | 630          | 630          | 590        |
|        | 7/7/09   | 7            | 7            | <4.0       |
|        | 10/11/09 | 33           | 33           | <3.0       |

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

|              |                | Adjusted          | Total              | Hexavalent         |
|--------------|----------------|-------------------|--------------------|--------------------|
| Well<br>Name | Sample<br>Date | Chromium<br>Value | Chromium<br>(ug/l) | Chromium<br>(ug/l) |
|              | 1/19/10        | 24                | 24                 | <3.0               |
| MW-5A*       | 4/13/10        | 7                 | 7                  | 7                  |
| Cont.        | 7/29/10        | 6                 | 6                  | <3.0               |
|              | 10/19/10       | 5                 | 5                  | 5                  |
|              | 1/13/11        | 5                 | 5                  | 5                  |
|              | 4/27/11        | 27                | 27                 | 14                 |
|              | 7/19/11        | 1.5               | <3                 | <3                 |
|              | 10/11/11       | 11                | 11                 | 7                  |
|              | 1/10/12        | 94                | 94                 | 60                 |
|              | 4/10/12        | 4.2               | 4.2                | <3.0               |
|              | 8/8/12         | 49                | 49                 | <3.0               |
|              | 10/9/12        | 39                | 39                 | 26                 |
|              | 1/8/13         | 7.9               | 7.9                | <3.0               |
|              | 4/15/13        | 3.7               | 3.7                | <3.0               |
|              | 7/10/13        | 1300              | 1300               | <3.0               |
|              | 10/14/13       | 65                | 65                 | 67                 |
|              | 1/15/14        | 23                | 23                 | 21                 |
|              | 4/9/14         | 12                | 12                 | 7                  |
|              | 7/8/14         | 4                 | 4                  | <3                 |
|              | 10/14/14       | 5                 | 5                  | <3                 |
|              | 1/13/15        | 3.1               | 3.1                | <3                 |
|              | 4/21/15        | 1.2               | 1.2                | <1.2               |
|              | 7/15/15        | 4.6               | 4.6                | <0.1               |
|              | 10/20/15       | 16                | 16                 | <2.0               |
|              | 1/21/16        | 7.8               | 7.8                | <2.0               |
|              | 4/14/16        | 1.2               | 1.2                | 9                  |
|              | 01/19/99       | 3.7               | 3.7                |                    |
| MW-10R       | 04/16/99       | 4.4               | 4.4                |                    |
|              | 07/23/99       | 8.3               | 8.3                |                    |
|              | 10/19/99       | 1                 | 1                  |                    |
|              | 01/10/00       | 5.5               | <11                |                    |
|              | 04/17/00       | 6.5               | 13**               |                    |
|              | 07/20/00       | 8                 | 16**               |                    |
|              | 10/25/00       | 5.5               | <11                |                    |
|              | 01/17/01       | 5.5               | <11                |                    |
|              | 04/06/01       | 5.5               | <11                |                    |
|              | 04/18/02       | 5.5               | <11                |                    |
|              | 04/30/03       | 1.1               | 1.1                | 0.0                |
|              | 04/19/04       | 1.2               | 1.2                | <2.0               |
|              | 04/11/05       | 1.2               | 1.2                | <2.0               |
|              | 07/18/05       | 15                | <30                | <2.0               |
|              | 04/11/06       | 1                 | 1                  | <2.0               |
|              | 04/29/07       | 1.5               | 1.5                | 1.5                |
|              | 04/23/08       | 3.5               | 3.5                | 3.5                |

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

| Well<br>Name | Sample<br>Date | Adjusted<br>Chromium<br>Value | Total<br>Chromium<br>(ug/l) | Hexavalent<br>Chromium<br>(ug/l) |
|--------------|----------------|-------------------------------|-----------------------------|----------------------------------|
|              | 4/7/09         | 4.4                           | 4.4                         | <0.1                             |
| MW-10R       | 4/13/10        | 11                            | 11                          | <3.0                             |
| Cont.        | 4/27/11        | 5                             | 5                           | <3.0                             |
|              | 4/10/12        | 5.5                           | 5.5                         | <3.0                             |
|              | 4/15/13        | 0.5                           | 0.5                         | < 0.5                            |
|              | 4/9/14         | 0.5                           | 0.5                         | < 0.5                            |
|              | 4/21/15        | 0.41                          | 0.41                        | < 0.41                           |
|              | 4/14/16        | 0.31                          | 0.31                        | <2                               |
|              | 03/26/92       | 20                            | <40                         |                                  |
| MW-17        | 06/16/92       | 1.3                           | 1.3                         |                                  |
|              | 09/04/92       | 20                            | <40                         |                                  |
|              | 03/25/93       | 40                            | <80                         |                                  |
|              | 09/16/93       | 40                            | <80                         |                                  |
|              | 03/15/94       | 35                            | <70                         |                                  |
|              | 09/20/94       | 15                            | 15                          |                                  |
|              | 03/31/95       | 9.8                           | 9.8                         |                                  |
|              | 09/07/95       | 8.1                           | 8.1                         |                                  |
|              | 03/15/96       | 3.6                           | 3.6                         |                                  |
|              | 09/05/96       | 2.4                           | 2.4                         |                                  |
|              | 04/26/97       | 0.5                           | 0.5                         |                                  |
|              | 04/30/98       | 1.7                           | 1.7                         |                                  |
|              | 04/16/99       | 2.9                           | 2.9                         |                                  |
|              | 04/17/00       | 5.5                           | <11                         |                                  |
|              | 04/06/01       | 5.5                           | <11                         |                                  |
|              | 04/18/02       | 5.5                           | <11                         |                                  |
|              | 04/16/03       | 0.55                          | <1.1                        |                                  |
|              | 04/19/04       | 1.7                           | 1.7                         | <2.0                             |
|              | 04/11/05       | 0.3                           | 0.3                         | <2.0                             |
|              | 04/11/06       | 1.5                           | 1.5                         | <2.0                             |
|              | 04/29/07       | 0.8                           | 0.8                         | <2.0                             |
|              | 04/23/08       | 0.2                           | < 0.4                       | <2.0                             |
|              | 04/07/2009     | 1.7                           | 1.7                         | <0.1                             |
|              | 04/13/2010     | 12                            | 12                          | <3.0                             |
|              | 04/27/2011     | 2                             | 2                           | <3.0                             |
|              | 04/10/2012     | 0.4                           | 0.4                         | <3.0                             |
|              | 04/15/2013     | 0.1                           | <0.2                        | <0.2                             |
|              | 04/09/2014     | 0.8                           | 0.8                         | <0.8                             |
|              | 04/21/2015     | 0.39                          | 0.39                        | < 0.39                           |
|              | 04/14/2016     | 0.68                          | 0.68                        | <2                               |

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

|        |          | Adjusted | Total    | Hexavalent |
|--------|----------|----------|----------|------------|
| Well   | Sample   | Chromium | Chromium | Chromium   |
| Name   | Date     | Value    | (ug/l)   | (ug/l)     |
| Name   |          |          |          | (ug/i)     |
|        | 03/26/92 | 20       | <40      |            |
| MW-17A | 06/16/92 | 26       | 26       |            |
|        | 09/04/92 | 20       | <40      |            |
|        | 03/25/93 | 40       | <80      |            |
|        | 09/16/93 | 40       | <80      |            |
|        | 03/15/94 | 35       | <70      |            |
|        | 09/20/94 | 22       | 22       |            |
|        | 03/31/95 | 14       | 14       |            |
|        | 09/07/95 | 6.4      | 6.4      |            |
|        | 03/15/96 | 3.4      | 3.4      |            |
|        | 09/05/96 | 0.7      | 0.7      |            |
|        | 04/26/97 | 0.1      | <.2      |            |
|        | 04/30/98 | 1.5      | 1.5      |            |
|        | 04/16/99 | 0.9      | 0.9      |            |
| MW-17A | 04/17/00 | 5.5      | <11      |            |
| Cont.  | 04/06/01 | 5.5      | <11      |            |
|        | 04/18/02 | 5.5      | <11      |            |
|        | 04/16/03 | 0.55     | <1.1     |            |
|        | 04/19/04 | 0.2      | 0.2      | <2.0       |
|        | 04/11/05 | 0.3      | 0.3      | <2.0       |
|        | 04/11/06 | 0.05     | <0.1     | <2.0       |
|        | 04/29/07 | 0.2      | 0.2      | <2.0       |
|        | 04/23/08 | 0.2      | < 0.4    | <2.0       |
|        | 04/07/09 | 0.3      | 0.3      | <0.1       |
|        | 04/13/10 | 0.9      | 0.9      | <3.0       |
|        | 04/27/11 | 3        | 3        | <3.0       |
|        | 04/10/12 | 0.5      | 0.5      | <3.0       |
|        | 04/15/13 | 0.1      | 0.2      | 0.2        |
|        | 04/09/14 | 0.2      | 0.2      | <0.2       |
|        | 04/21/15 | 0.17     | 0.17     | <0.17      |
|        | 04/14/16 | 0.1      | <0.2     | <2         |

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

|        |          | Adjusted | Total    | Hexavalent |
|--------|----------|----------|----------|------------|
| Well   | Sample   | Chromium | Chromium | Chromium   |
| Name   | Date     | Value    | (ug/l)   | (ug/l)     |
|        |          |          |          |            |
| MW-18  | 08/13/02 | 6        | <12      |            |
|        | 04/16/03 | 0.55     | <1.1     |            |
|        | 04/19/04 | 0.1      | <0.2     | <2.0       |
|        | 04/11/05 | 0.1      | <0.2     | <2.0       |
|        | 04/11/06 | 0.55     | <0.1     | <2.0       |
|        | 04/29/07 | 0.55     | 0.1      | 2          |
|        | 04/23/08 | 0.2      | <0.4     | <2.0       |
|        | 04/07/09 | 0.3      | 0.3      | <0.1       |
|        | 04/13/10 | 8.1      | 8.1      | <3.0       |
|        | 04/27/11 | 0.3      | 0.3      | <3.0       |
|        | 04/10/12 | 0.2      | 0.2      | <3.0       |
|        | 04/15/13 | 0.1      | <0.2     | <0.2       |
|        | 04/09/14 | 0.4      | 0.4      | <0.4       |
|        | 04/21/15 | 0.05     | <0.1     | <0.1       |
|        | 04/14/16 | 1.6      | 1.6      | <2         |
|        | 08/13/02 | 6        | <12      |            |
| MW-18A | 04/16/03 | 0.55     | <1.1     |            |
|        | 04/19/04 | 0.1      | <0.2     | <2.0       |
|        | 04/11/05 | 0.4      | 0.4      | <2.0       |
|        | 04/11/06 | 1.5      | 1.5      | <2.0       |
|        | 04/29/07 | 0.3      | 0.3      | <2.0       |
|        | 04/23/08 | 1.1      | 1.1      | <4.0       |
|        | 04/07/09 | 3.8      | 3.8      | <2.0       |
|        | 04/13/10 | 6.9      | 6.9      | <3.0       |
|        | 04/27/11 | 0.4      | 0.4      | <3.0       |
|        | 04/10/12 | 0.2      | 0.2      | <3.0       |
|        | 04/15/13 | 0.1      | <0.2     | <0.2       |
|        | 04/09/14 | 3.3      | 3.3      | <3.0       |
|        | 04/21/15 | 15       | 15       | <3.0       |
|        | 04/14/16 | 0.1      | <0.2     | 2          |

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

|       |          | Adjusted | Total    | Hexavalent |
|-------|----------|----------|----------|------------|
| Well  | Sample   | Chromium | Chromium | Chromium   |
| Name  | Date     | Value    | (ug/l)   | (ug/l)     |
|       | 07/13/09 | 13000    | 13000    | 15000      |
| MW-19 | 07/28/09 | 22000    | 22000    | 20000      |
|       | 10/11/09 | 5300     | 5300     | 4000       |
|       | 01/19/10 | 3030     | 3030     | 2600       |
|       | 04/13/10 | 5270     | 5270     | 5270       |
|       | 07/29/10 | 6400     | 6400     | 3900       |
|       | 10/19/10 | 7100     | 7100     | 4800       |
|       | 01/13/11 | 7100     | 7100     | 7100       |
|       | 04/27/11 | 15000    | 15000    | 15000      |
|       | 07/19/11 | 9400     | 9400     | 8700       |
|       | 10/11/11 | 21000    | 21000    | 17000      |
|       | 01/10/12 | 41100    | 41100    | 40000      |
|       | 04/10/12 | 21672    | 21672    | 23000      |
|       | 08/08/12 | 26000    | 26000    | 26000      |
|       | 10/09/12 | 14187    | 14187    | 13000      |
|       | 01/08/13 | 12575    | 12575    | 11000      |
|       | 04/15/13 | 16300    | 16300    | 16300      |
|       | 07/10/13 | 19000    | 19000    | 19000      |
|       | 10/14/13 | 15440    | 15440    | 16000      |
|       | 04/09/14 | 20005    | 20005    | 20005      |
|       | 07/08/14 | 18000    | 18000    | 17000      |
|       | 10/14/14 | 21600    | 21600    | 21300      |
|       | 01/13/15 | 18050    | 18050    | 15000      |
|       | 04/21/15 | 18587    | 18587    | 18000      |
|       | 07/15/15 | 17200    | 17200    | 16000      |
|       | 10/20/15 | 18000    | 18000    | 18000      |
|       | 01/21/16 | 15295    | 15295    | 17000      |
|       | 04/14/16 | 18420    | 18420    | 18100      |

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

|        |          | Adjusted | Total    | Hexavalent |
|--------|----------|----------|----------|------------|
| Well   | Sample   | Chromium | Chromium | Chromium   |
| Name   | Date     | Value    | (ug/l)   | (ug/l)     |
|        | 07/13/09 | 30       | 30       | 50         |
| MW-19A | 07/28/09 | 40       | 40       | 40         |
|        | 10/11/09 | 3        | 3        | <3.0       |
|        | 01/19/10 | 4.3      | 4.3      | <3.0       |
|        | 04/13/10 | 8.2      | 8.2      | <3.0       |
|        | 07/29/10 | 3        | 3        | <3.0       |
|        | 10/19/10 | 1        | 1        | <3.0       |
|        | 01/13/11 | 1        | 1        | 1          |
|        | 04/27/11 | 3        | 3        | 3          |
|        | 07/19/11 | 143      | 143      | <3         |
|        | 10/11/11 | 4        | 4        | 4          |
|        | 01/10/12 | 4        | 4        | <3.0       |
|        | 04/10/12 | 1.8      | 1.8      | <3.0       |
|        | 08/08/12 | 6100     | 6100     | 5400       |
|        | 10/09/12 | 22       | 22       | 40         |
|        | 01/08/13 | 8.1      | 8.1      | <3.0       |
|        | 04/15/13 | 500      | 500      | <3.0       |
|        | 04/09/14 | 1.8      | 1.8      | <1.8       |
|        | 07/08/14 | 3.8      | 3.8      | <3         |
|        | 10/14/14 | 4        | 4        | <3         |
|        | 01/13/15 | 321      | 321      | <3         |
|        | 04/21/15 | 1.5      | 1.5      | <1.5       |
|        | 07/15/15 | 97       | 97       | <2.0       |
|        | 10/20/15 | 1.7      | 1.7      | <2.0       |
|        | 01/21/16 | 121      | 121      | <2.0       |
|        | 04/14/16 | 233      | 233      | <2.0       |
|        | 06/02/14 | 338000   | 338000   | 338000     |
| MW-20  | 07/08/14 | 283000   | 283000   | 89000      |
|        | 10/14/14 | 330000   | 330000   | 297000     |
|        | 01/13/15 | 199000   | 199000   | 155000     |
|        | 04/21/15 | 248900   | 248900   | 248900     |
|        | 07/15/15 | 248150   | 248150   | 247000     |
|        | 10/20/15 | 385000   | 385000   | 385000     |
|        | 01/21/16 | 212000   | 212000   | 234000     |
|        | 04/14/16 | 412750   | 412750   | 279000     |

Table #4

Groundwater Analytical Results
Appleton Wire Former Albany International Chrome Plant

| Well                                                     | Sample                  | Adjusted<br>Chromium | Total<br>Chromium | Hexavalent<br>Chromium |
|----------------------------------------------------------|-------------------------|----------------------|-------------------|------------------------|
| Name                                                     | Date                    | Value                | (ug/l)            | (ug/l)                 |
|                                                          | 06/02/14                | 1200                 | 1200              | 1060                   |
| MW-20A                                                   | 07/08/14                | 230                  | 230               | 15                     |
|                                                          | 10/14/14                | 117                  | 117               | <3                     |
|                                                          | 01/13/15                | 11                   | 11                | <3                     |
|                                                          | 04/21/15                | 1.1                  | 1.1               | <1.1                   |
|                                                          | 07/15/15                | 192                  | 192               | <2.0                   |
|                                                          | 10/20/15                | 23                   | 23                | <2.0                   |
|                                                          | 01/21/16                | 5.4                  | 5.4               | <2.0                   |
|                                                          | 04/14/16                | 66                   | 66                | 8                      |
|                                                          | 06/02/14                | 2.6                  | 2.6               | <30                    |
| MW-21                                                    | 07/08/14                | 210                  | 210               | <3                     |
|                                                          | 10/14/14                | 0.05                 | <0.1              | <3                     |
|                                                          | 01/13/15                | 0.63                 | 0.63              | <3                     |
|                                                          | 04/21/15                | 5.9                  | 5.9               | <3.0                   |
|                                                          | 07/15/15                | 2.6                  | 2.6               | <2.0                   |
|                                                          | 10/20/15                | 1.7                  | 1.7               | <2.0                   |
|                                                          | 01/21/16                | 0.89                 | 0.89              | <2.0                   |
|                                                          | 04/14/16                | 2.2                  | 2.2               | <2.0                   |
|                                                          | 06/02/14                | 1.8                  | 1.8               | <30                    |
| MW-21A                                                   | 07/08/14                | 1.1                  | 1.1               | <3                     |
|                                                          | 10/14/14                | 0.05                 | <0.1              | <3                     |
|                                                          | 01/13/15                | 0.05                 | <0.1              | <3                     |
|                                                          | 04/21/15                | 0.54                 | 0.054             | < 0.54                 |
|                                                          | 07/15/15                | <0.2                 | 0.1               | <2.0                   |
|                                                          | 10/20/15                | 0.51                 | 0.51              | <2.0                   |
|                                                          | 01/21/16                | 0.21                 | 0.21              | <2                     |
|                                                          | 04/14/16                | 0.6                  | 0.6               | <2.0                   |
| NR 140 Total Chromium Enforcement Standard (ES) 100 ug/l |                         |                      |                   |                        |
| NR 140 To<br>Action Limi                                 | tal Chromium<br>t (PAL) | n Preventive         | 10 ug/l           |                        |

## Groundwater Analytical Results Total and Hexavalent Chromium- Manhole and Sump

|            |                | I              |          |            |
|------------|----------------|----------------|----------|------------|
|            |                | Manhole        |          |            |
|            | Manhole        | (French Drain) | Sump     | Sump       |
|            | (French Drain) | Hexavalent     | Total    | Hexavalent |
|            | Total Chromium | Chromium       | Chromium | Chromium   |
| Date       | ug/l           | ug/l           | ug/l     | ug/l       |
| 1989*      |                |                | 9,700    |            |
| 1990*      |                |                | 129,000  |            |
| 1991*      |                |                | 94,000   |            |
| 1992*      | 125,000        |                | 101,000  |            |
| 1993*      | 71,000         |                | 72,000   |            |
| 1994*      | 58,000         |                | 76,000   |            |
| 1995*      | 36,000         |                | 88,000   |            |
| 1996*      | 44,000         |                | 35,000   |            |
| 1997*      | 32,000         |                | 41,000   |            |
| 1998*      | 37,000         |                | 61,000   |            |
| 12/09/1999 | 21,000         |                | 76,000   |            |
| 03/08/2000 | 13,000         |                | 33,000   |            |
| 01/17/2001 | 20,000         |                | 6,000    |            |
| 02/15/2001 | 11,000         |                | 35,000   |            |
| 03/15/2001 | 19,000         |                | 38,000   |            |
| 04/06/2001 | 8,300          |                | 21,000   |            |
| 05/18/2001 | 15,000         |                | 48,000   |            |
| 06/18/2001 | 15,000         |                | 51,000   |            |
| 07/20/2001 | 31,000         |                | 74,000   |            |
| 08/14/2001 | 17,000         |                | 70,000   |            |
| 09/18/2001 | 16,000         |                | 55,000   |            |
| 10/16/2001 | 13,000         |                | 38,000   |            |
| 11/12/2001 | 17,000         |                | 53,000   |            |
| 12/25/2001 | 15,000         |                | 39,000   |            |
| 01/11/2002 | 15,000         |                | 54,000   |            |
| 02/12/2002 | 16,000         |                | 43,000   |            |
| 03/13/2002 | 11,000         |                | 27,000   |            |
| 04/18/2002 | 11,000         |                | 17,000   |            |
| 05/20/2002 | 17,000         |                | 49,000   |            |
| 06/20/2002 | 14,000         |                | 35,000   |            |
| 07/15/2002 | 16,000         |                | 61,000   |            |
| 08/15/2002 | 19,000         |                | 63,000   |            |
| 09/18/2002 | 13,000         |                | 61,000   |            |
| 10/30/2002 | 18,000         |                | 12,000   |            |
| 11/20/2002 | 13,000         |                | 38,000   |            |
| 12/12/2002 | 13,000         |                | 44,000   |            |
| 01/20/2003 | 16,000         |                | 47,000   |            |
| 02/19/2003 | 22,000         |                | 37,000   |            |
| 03/17/2003 | 9000           |                | 30,000   |            |
| 04/16/2003 | 8,800          |                | 5,300    |            |
| 05/28/2003 | 11,000         |                | 32,000   |            |
| 06/10/2003 | 10,000         |                | 66,000   |            |
| 07/10/2003 | 9,600          |                | 27,000   |            |
| 08/20/2003 | 13,000         |                | 55,000   |            |
| 09/12/2003 | 16,000         |                | 64,000   |            |

Groundwater Analytical Results
Total and Hexavalent Chromium- Manhole and Sump

|            |                | I              |          |            |
|------------|----------------|----------------|----------|------------|
|            |                | Manhole        |          | _          |
|            | Manhole        | (French Drain) | Sump     | Sump       |
|            | (French Drain) | Hexavalent     | Total    | Hexavalent |
|            | Total Chromium | Chromium       | Chromium | Chromium   |
| Date       | ug/l           | ug/l           | ug/l     | ug/l       |
| 10/07/2003 | 9,800          |                | 32,000   |            |
| 11/18/2003 | 8,100          |                | 29,000   |            |
| 12/08/2003 | 8,700          |                | 31,000   |            |
| 01/30/2004 | 9,700          |                | 44,000   |            |
| 02/12/2004 | 11,260         |                | 42,175   |            |
| 03/25/2004 | 9,200          |                | 55,000   |            |
| 04/19/2004 | 13,000         | 14,000         | 41,000   | 41,000     |
| 05/10/2004 | 10,000         |                | 17,000   |            |
| 06/14/2004 | 5,400          | 5,000          | 16,000   | 15,000     |
| 07/19/2004 | 8,700          | 8,700          | 52,000   | 52,000     |
| 08/17/2004 | 11,000         | 10,000         | 79,000   | 66,000     |
| 09/14/2004 | 12,000         | 12,000         | 76,000   | 43,000     |
| 10/11/2004 | 9,900          | 8,900          | 80,000   | 73,000     |
| 11/16/2004 | 11,000         | 10,500         | 55,000   | 53,000     |
| 12/08/2004 | 15,000         |                | 7,700    | ·          |
| 01/12/2005 | 8,900          | 7,200          | 33,000   | 13,100     |
| 02/16/2005 | 6,200          | 5,600          | 25,000   | 22,000     |
| 03/07/2005 | 9,900          | 8,500          | 9,800    | 7,600      |
| 04/11/2005 | 5,700          | 5,800          | 33,000   | 31,000     |
| 05/18/2005 | 12,000         | 9,200          | 33,000   | 33,000     |
| 06/13/2005 | 11,000         | 8,000          | 42,000   | 42,000     |
| 07/18/2005 | 10,000         | 10,000         | 82,000   | 40,000     |
| 08/19/2005 | 10,000         | 9,500          | 76,000   | 80,000     |
| 09/15/2005 | 8,900          | 7,600          | 64,000   | 60,000     |
| 10/11/2005 | 8,100          | 7,400          | 46,000   | 46,000     |
| 11/16/2005 | 8,200          | 6,500          | 14,000   | 13,000     |
| 12/15/2005 | 7,900          | 7,000          | 43,000   | 40,000     |
| 01/10/2006 | 5,600          | 5,100          | 17,000   | 15,000     |
| 02/01/06   | 7,000          | 5,800          | 15,000   | 14,000     |
| 03/13/06   | 3,800          | 3,400          | 9,000    | 7,200      |
| 04/11/06   | 8,000          | 8,000          | 25,000   | 23,900     |
| 05/17/06   | 6,800          | 6,800          | 23,000   | 23,000     |
| 06/21/06   | 6,900          | 6,800          | 66,000   | 67,000     |
| 07/27/06   | 7,400          | 7,200          | 67,000   | 67,000     |
| 08/11/06   | 11,000         | 9,800          | 80,000   | 59,000     |
| 09/12/06   | 6,800          | 6,000          | 19,000   | 17,000     |
| 10/18/06   | 8,200          | 6,500          | 9,100    | 6,900      |
| 11/14/06   | 7,800          | 4,200          | 47,000   | 22,900     |
| 12/13/06   | 7,800          | 7,000          | 32,000   | 26,000     |
| 01/09/07   | 6,900          | 6,900          | 32,000   | 32,000     |
| 02/14/07   | 7,100          | 6,900          | 48,000   | 48,000     |
| 03/06/07   | 5,100          | 4,500          | 29,000   | 29,000     |
| 04/29/07   | 7,500          | 7,400          | 31,000   | 16,200     |
| 05/14/07   | 8,400          | 6,600          | 45,000   | 17,800     |
| 06/17/07   | 7,600          | 3,900          | 18,000   | 9,800      |

Groundwater Analytical Results
Total and Hexavalent Chromium- Manhole and Sump

|           |                | Manhole        | _        | _          |
|-----------|----------------|----------------|----------|------------|
|           | Manhole        | (French Drain) | Sump     | Sump       |
|           | (French Drain) | Hexavalent     | Total    | Hexavalent |
|           | Total Chromium | Chromium       | Chromium | Chromium   |
| Date      | ug/l           | ug/l           | ug/l     | ug/l       |
| 07/24/07  | 8,000          | 7,300          | 103,000  | 103,000    |
| 08/09/07  | 11,000         | 8,200          | 95,000   | 95,000     |
| 09/20/07  | 7,100          | 6,200          | 58,000   | 50,000     |
| 10/24/07  | 5,800          | 5,600          | 22,000   | 18,700     |
| 11/27/007 | 6,400          | 4,000          | 65,000   | 26,500     |
| 12/12/07  | 5,500          | 4,700          | 60,000   | 60,000     |
| 01/16/08  | 4,700          | 3,700          | 25,000   | 27,000     |
| 02/07/08  | 6,000          | 4,300          | 45,000   | 9,600      |
| 03/05/08  | 6,100          | 5,600          | 15,000   | 9,600      |
| 04/23/08  | 5,900          | 5,100          | 48,000   | 48,000     |
| 05/21/08  | 5,900          | 1,500          | 49,000   | 25,000     |
| 06/16/08  | 4,900          | 3,900          | 34,000   | 23,000     |
| 07/15/08  | 6,600          | 3,900          | 68,000   | 52,000     |
| 08/21/08  | 7,500          | 6,200          | 94,000   | 69,000     |
| 09/09/08  | 5,565          | 4,600          | 94,800   | 64,000     |
| 10/23/08  | 5,900          | 4,700          | 89,000   | 88,000     |
| 11/20/08  | 6,400          | 3,600          | 48,000   | 21,000     |
| 12/16/08  | 4,900          | 3,700          | 21,000   | 8,900      |
| 01/22/09  | 5,200          | 3,200          | 40,000   | 18,000     |
| 02/10/09  | 5,200          | 3,600          | 5,800    | 4,000      |
| 03/16/09  | 3,100          | 1,700          | 8,900    | 3,800      |
| 04/07/09  | 3,900          | 2,800          | 33,000   | 15,000     |
| 05/12/09  | 3,400          | 1,600          | 41,000   | 19,000     |
| 06/17/09  | 3,200          | 2,300          | 47,000   | 39,000     |
| 07/07/09  | 6,000          | 4,000          | 91,000   | 49,000     |
| 08/11/09  | 4,900          | 3,500          | 95,000   | 94,000     |
| 09/08/09  | 7,200          | 2,900          | 99,000   | 61,000     |
| 10/08/09  | 7,800          | 3,100          | 38,000   | 15,000     |
| 11/10/09  | 4,900          | 4,400          | 49,000   | 42,000     |
| 12/15/09  | 5,000          | 3,600          | 47,000   | 17,000     |
| 01/19/10  | 5,300          | 5,300          | 43,000   | 44,000     |
| 02/09/10  | 4,400          | 4,100          | 36,000   | 31,000     |
| 03/15/10  | 2,000          | 1,800          | 19,000   | 16,000     |
| 04/13/10  | 3,900          | 2,800          | 31,000   | 20,000     |
| 05/11/10  | 5,000          | 4,200          | 23,000   | 20,000     |
| 06/08/10  | 5,500          | 5,100          | 52,000   | 42,000     |
| 07/14/10  | 5,800          | 3,800          | 66,000   | 27,000     |
| 08/24/10  | 7,700          | 2,700          | 66,000   | 26,000     |
| 09/15/10  | 5,700          | 2,900          | 85,000   | 39,000     |
| 10/19/10  | 5,800          | 2,300          | 81,000   | 62,000     |
| 11/04/10  | 5,000          | 3,500          | 53,000   | 53,000     |
| 12/14/10  | 4,800          | 3,000          | 49,000   | 65,000     |
| 01/13/11  | 320            | 3,200          | 39,000   | 36,000     |
| 02/08/11  | 5,700          | 4,000          | 46,000   | 43,000     |
| 03/15/11  | 3,500          | 3,300          | 9,500    | 7,100      |

Groundwater Analytical Results
Total and Hexavalent Chromium- Manhole and Sump

| Manhole (French Drain) Sump Sump<br>(French Drain) Hexavalent Total Hexavalent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                       |                                       |          |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------|---------------------------------------|----------|------------|
| Care   Care |          |                                       | Manhole                               |          |            |
| Total Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | Manhole                               | (French Drain)                        | -        | Sump       |
| Date         ug/l         ug/l         ug/l         ug/l           04/27/11         2,400         2,400         20,000         20,000           05/16/11         5,500         5,300         25,000         25,000           06/07/11         5,500         5,200         56,000         62,000           07/19/11         4,200         3,600         105,000         51,000           08/23/11         4,900         4,100         98,000         89,000           08/13/11         5,300         3,900         100,000         61,000           10/11/11         31,000         26,000         88,000         72,000           11/08/11         4,300         2,800         54,000         39,000           11/08/11         3,500         3,400         57,000         52,000           11/08/11         3,600         3,400         57,000         52,000           11/08/12         4,200         3,800         60,000         49,000           12/13/12         420         360         41,000         39,000           03/13/12         2,000         1,500         20,000         18,000           05/22/12         5,300         5,100         84,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | (French Drain)                        | Hexavalent                            | Total    | Hexavalent |
| 04/27/11         2,400         2,400         20,000         20,000           05/16/14         5,500         5,300         25,000         25,000           06/07/11         5,500         5,300         25,000         62,000           06/07/11         4,200         3,600         105,000         51,000           08/23/11         4,900         4,100         98,000         89,000           09/13/11         5,300         3,900         100,000         61,000           10/11/11         31,000         26,000         88,000         72,000           10/11/11         31,000         26,000         88,000         72,000           11/08/11         4,300         2,800         54,000         39,000           12/13/11         3,600         3,400         57,000         52,000           01/10/12         5,400         3,800         60,000         49,000           02/14/12         420         360         41,000         39,000           03/13/12         2,000         1,500         20,000         18,000           04/10/12         4,800         4,200         44,000         32,000           05/22/12         5,300         5,100         84,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | <b>Total Chromium</b>                 | Chromium                              | Chromium | Chromium   |
| 05/16/11         5,500         5,300         25,000         25,000           06/07/11         5,500         5,200         56,000         62,000           07/19/11         4,200         3,600         105,000         51,000           08/23/11         4,900         4,100         98,000         89,000           09/13/11         5,300         3,900         100,000         61,000           10/11/11         31,000         26,000         88,000         72,000           11/08/11         4,300         2,800         54,000         39,000           11/08/11         4,300         2,800         54,000         39,000           11/08/11         3,600         3,400         57,000         52,000           01/10/12         5,400         3,800         60,000         49,000           02/14/12         420         360         41,000         39,000           03/13/12         2,000         1,500         20,000         18,000           05/22/12         5,300         5,100         84,000         32,000           05/22/12         5,300         5,100         84,000         37,000           06/18/12         4,800         4,200         42,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )ate     | ug/l                                  | ug/l                                  | ug/l     | ug/l       |
| 06/07/11         5,500         5,200         56,000         62,000           07/19/11         4,200         3,600         105,000         51,000           08/23/11         4,900         4,100         98,000         89,000           09/13/11         5,300         3,900         100,000         61,000           10/11/11         31,000         26,000         88,000         72,000           11/08/11         4,300         2,800         54,000         39,000           12/13/11         3,600         3,400         57,000         52,000           01/10/12         5,400         3,800         60,000         49,000           02/14/12         420         360         41,000         39,000           03/13/12         2,000         1,500         20,000         18,000           04/10/12         4,800         4,200         44,000         32,000           05/22/12         5,300         5,100         84,000         37,000           06/18/12         5,000         4,400         111,000         88,000           07/18/12         4,800         4,200         12,000         90,000           08/08/12         6,100         5,500         63,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4/27/11  | 2,400                                 | 2,400                                 | 20,000   | 20,000     |
| 07/19/11         4,200         3,600         105,000         51,000           08/23/11         4,900         4,100         98,000         89,000           09/13/11         5,300         3,900         100,000         61,000           10/11/11         31,000         26,000         88,000         72,000           11/08/11         4,300         2,800         54,000         39,000           12/13/11         3,600         3,400         57,000         52,000           01/10/12         5,400         3,800         60,000         49,000           02/14/12         420         360         41,000         39,000           03/13/12         2,000         1,500         20,000         18,000           04/10/12         4,800         4,200         44,000         32,000           05/22/12         5,300         5,100         84,000         37,000           06/18/12         5,000         4,400         111,000         88,000           07/18/12         4,800         4,200         142,000         39,000           08/08/12         6,100         5,500         63,000         18,000           09/11/12         4,100         4,100         101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5/16/11  | 5,500                                 | 5,300                                 | 25,000   | 25,000     |
| 08/23/11         4,900         4,100         98,000         89,000           09/13/11         5,300         3,900         100,000         61,000           10/11/11         31,000         26,000         88,000         72,000           11/08/11         4,300         2,800         54,000         39,000           12/13/11         3,600         3,400         57,000         52,000           01/10/12         5,400         3,800         60,000         49,000           02/14/12         420         360         41,000         39,000           03/13/12         2,000         1,500         20,000         18,000           04/10/12         4,800         4,200         44,000         32,000           05/2/2/12         5,300         5,100         84,000         37,000           06/18/12         5,000         4,400         111,000         88,000           07/18/12         4,800         4,200         122,000         90,000           08/08/12         6,100         5,500         63,000         18,000           09/11/12         4,100         4,100         101,000         92,000           11/20/12         3,500         3,400         43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6/07/11  | 5,500                                 | 5,200                                 | 56,000   | 62,000     |
| 09/13/11         5,300         3,900         100,000         61,000           10/11/11         31,000         26,000         88,000         72,000           11/08/11         4,300         2,800         54,000         39,000           12/13/11         3,600         3,400         57,000         52,000           01/10/12         5,400         3,800         60,000         49,000           02/14/12         420         360         41,000         39,000           03/13/12         2,000         1,500         20,000         18,000           04/10/12         4,800         4,200         44,000         32,000           05/22/12         5,300         5,100         84,000         37,000           06/18/12         5,000         4,400         111,000         88,000           07/18/12         4,800         4,200         122,000         90,000           08/08/12         6,100         5,500         63,000         18,000           09/11/12         4,100         4,100         101,000         92,000           10/09/12         620         505         89,000         92,000           11/20/12         3,500         3,400         43,000<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7/19/11  | 4,200                                 | 3,600                                 | 105,000  | 51,000     |
| 10/11/11         31,000         26,000         88,000         72,000           11/08/11         4,300         2,800         54,000         39,000           12/13/11         3,600         3,400         57,000         52,000           01/10/12         5,400         3,800         60,000         49,000           02/14/12         420         360         41,000         39,000           03/13/12         2,000         1,500         20,000         18,000           04/10/12         4,800         4,200         44,000         32,000           05/22/12         5,300         5,100         84,000         37,000           06/18/12         5,000         4,400         111,000         88,000           07/18/12         4,800         4,200         122,000         90,000           08/08/12         6,100         5,500         63,000         18,000           09/11/12         4,100         4,100         101,000         92,000           11/20/12         3,500         3,400         43,000         44,000           11/20/12         3,500         3,200         30,000         30,000           11/20/12         3,500         3,400         43,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/23/11  | 4,900                                 | 4,100                                 | 98,000   | 89,000     |
| 11/08/11         4,300         2,800         54,000         39,000           12/13/11         3,600         3,400         57,000         52,000           01/10/12         5,400         3,800         60,000         49,000           02/14/12         420         360         41,000         39,000           03/13/12         2,000         1,500         20,000         18,000           04/10/12         4,800         4,200         44,000         32,000           05/22/12         5,300         5,100         84,000         37,000           06/18/12         5,000         4,400         111,000         88,000           07/18/12         4,800         4,200         122,000         90,000           08/08/12         6,100         5,500         63,000         18,000           09/11/12         4,100         4,100         101,000         92,000           11/20/12         3,500         3,400         43,000         44,000           12/18/12         3,600         3,200         30,000         30,000           11/20/12         3,500         3,200         30,000         30,000           12/18/13         3,600         3,200         30,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9/13/11  | 5,300                                 | 3,900                                 | 100,000  | 61,000     |
| 12/13/11         3,600         3,400         57,000         52,000           01/10/12         5,400         3,800         60,000         49,000           02/14/12         420         360         41,000         39,000           03/13/12         2,000         1,500         20,000         18,000           04/10/12         4,800         4,200         44,000         32,000           05/22/12         5,300         5,100         84,000         37,000           06/18/12         5,000         4,400         111,000         88,000           07/18/12         4,800         4,200         122,000         90,000           08/08/12         6,100         5,500         63,000         18,000           09/11/12         4,100         4,100         101,000         92,000           10/09/12         620         505         89,000         92,000           11/20/12         3,500         3,400         43,000         44,000           12/18/12         3,600         3,200         30,000         30,000           11/20/12         3,500         3,200         30,000         30,000           10/08/13         <30         <3         41,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0/11/11  | 31,000                                | 26,000                                | 88,000   | 72,000     |
| 01/10/12         5,400         3,800         60,000         49,000           02/14/12         420         360         41,000         39,000           03/13/12         2,000         1,500         20,000         18,000           04/10/12         4,800         4,200         44,000         32,000           05/22/12         5,300         5,100         84,000         37,000           06/18/12         5,000         4,400         111,000         88,000           07/18/12         4,800         4,200         122,000         90,000           08/08/12         6,100         5,500         63,000         18,000           09/11/12         4,100         4,100         101,000         92,000           10/09/12         620         505         89,000         92,000           11/20/12         3,500         3,400         43,000         44,000           12/18/12         3,600         3,200         30,000         30,000           12/18/12         3,600         3,200         30,000         30,000           12/18/13         3,300         3,300         13,000         14,000           03/12/13         2,600         2,200         12,000 <th>1/08/11</th> <th>4,300</th> <th>2,800</th> <th>54,000</th> <th>39,000</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/08/11  | 4,300                                 | 2,800                                 | 54,000   | 39,000     |
| 02/14/12         420         360         41,000         39,000           03/13/12         2,000         1,500         20,000         18,000           04/10/12         4,800         4,200         44,000         32,000           05/22/12         5,300         5,100         84,000         37,000           06/18/12         5,000         4,400         111,000         88,000           07/18/12         4,800         4,200         122,000         90,000           08/08/12         6,100         5,500         63,000         18,000           09/11/12         4,100         4,100         101,000         92,000           10/09/12         620         505         89,000         92,000           11/20/12         3,500         3,400         43,000         44,000           12/18/12         3,600         3,200         30,000         30,000           12/18/12         3,600         3,200         30,000         30,000           12/18/13         3,300         3,000         13,000         14,000           03/12/13         2,600         2,200         12,000         7,500           05/07/13         3,900         3,490         25,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2/13/11  | 3,600                                 | 3,400                                 | 57,000   | 52,000     |
| 03/13/12         2,000         1,500         20,000         18,000           04/10/12         4,800         4,200         44,000         32,000           05/22/12         5,300         5,100         84,000         37,000           06/18/12         5,000         4,400         111,000         88,000           07/18/12         4,800         4,200         122,000         90,000           08/08/12         6,100         5,500         63,000         18,000           09/11/12         4,100         4,100         101,000         92,000           10/09/12         620         505         89,000         92,000           11/20/12         3,500         3,400         43,000         44,000           12/18/12         3,600         3,200         30,000         30,000           10/08/13         <30         <3         41,000         33,000           01/08/13         <30         <3         41,000         33,000           03/12/13         2,600         2,200         12,000         7,500           04/15/13         3,900         3,490         25,000         25,000           05/07/13         3,900         3,900         48,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/10/12  | 5,400                                 | 3,800                                 | 60,000   | 49,000     |
| 03/13/12         2,000         1,500         20,000         18,000           04/10/12         4,800         4,200         44,000         32,000           05/22/12         5,300         5,100         84,000         37,000           06/18/12         5,000         4,400         111,000         88,000           07/18/12         4,800         4,200         122,000         90,000           08/08/12         6,100         5,500         63,000         18,000           09/11/12         4,100         4,100         101,000         92,000           10/09/12         620         505         89,000         92,000           11/20/12         3,500         3,400         43,000         44,000           12/18/12         3,600         3,200         30,000         30,000           11/20/12         3,500         3,400         43,000         44,000           11/28/12         3,600         3,200         30,000         30,000           01/08/13         <30         <3         41,000         33,000           03/12/13         2,600         2,200         12,000         7,500           04/15/13         3,900         3,900         38,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2/14/12  | -                                     | •                                     | •        | •          |
| 04/10/12         4,800         4,200         44,000         32,000           05/22/12         5,300         5,100         84,000         37,000           06/18/12         5,000         4,400         111,000         88,000           07/18/12         4,800         4,200         122,000         90,000           08/08/12         6,100         5,500         63,000         18,000           09/11/12         4,100         4,100         101,000         92,000           10/09/12         620         505         89,000         92,000           11/20/12         3,500         3,400         43,000         44,000           12/18/12         3,600         3,200         30,000         30,000           01/08/13         <30         <3         41,000         33,000           02/11/13         3,300         3,000         13,000         14,000           03/12/13         2,600         2,200         12,000         7,500           04/15/13         3,900         3,490         25,000         25,000           05/07/13         3,900         3,900         38,000         35,000           06/20/13         3,900         3,900         48,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3/13/12  | 2,000                                 | 1,500                                 | 20,000   | •          |
| 05/22/12         5,300         5,100         84,000         37,000           06/18/12         5,000         4,400         111,000         88,000           07/18/12         4,800         4,200         122,000         90,000           08/08/12         6,100         5,500         63,000         18,000           09/11/12         4,100         4,100         101,000         92,000           10/09/12         620         505         89,000         92,000           11/20/12         3,500         3,400         43,000         44,000           12/18/12         3,600         3,200         30,000         30,000           10/08/13         <30         <3         41,000         33,000           02/11/13         3,300         3,000         13,000         14,000           03/12/13         2,600         2,200         12,000         7,500           04/15/13         3,900         3,490         25,000         25,000           05/07/13         3,900         3,900         38,000         35,000           06/20/13         3,900         3,900         48,000         50,000           08/20/13         5,100         5,000         84,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4/10/12  | -                                     | •                                     |          | •          |
| 06/18/12         5,000         4,400         111,000         88,000           07/18/12         4,800         4,200         122,000         90,000           08/08/12         6,100         5,500         63,000         18,000           09/11/12         4,100         4,100         101,000         92,000           10/09/12         620         505         89,000         92,000           11/20/12         3,500         3,400         43,000         44,000           12/18/12         3,600         3,200         30,000         30,000           01/08/13         <30         <3         41,000         33,000           02/11/13         3,300         3,000         13,000         14,000           03/12/13         2,600         2,200         12,000         7,500           04/15/13         3,900         3,490         25,000         25,000           05/07/13         3,900         3,900         38,000         35,000           06/20/13         3,900         3,900         48,000         50,000           08/20/13         5,100         5,000         84,000         50,000           08/20/13         5,100         5,000         84,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/22/12  | 5,300                                 | 5,100                                 | 84,000   | 37,000     |
| 07/18/12         4,800         4,200         122,000         90,000           08/08/12         6,100         5,500         63,000         18,000           09/11/12         4,100         4,100         101,000         92,000           10/09/12         620         505         89,000         92,000           11/20/12         3,500         3,400         43,000         44,000           12/18/12         3,600         3,200         30,000         30,000           01/08/13         <30         <3         41,000         33,000           02/11/13         3,300         3,000         13,000         14,000           03/12/13         2,600         2,200         12,000         7,500           04/15/13         3,900         3,490         25,000         25,000           05/07/13         3,900         3,900         38,000         35,000           06/20/13         3,900         3,900         48,000         50,000           07/10/13         4,300         4,300         9,000         41,506           08/20/13         5,100         5,000         84,000         80,000           09/19/13         6,000         6,000         76,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                       | 4,400                                 | •        | •          |
| 08/08/12         6,100         5,500         63,000         18,000           09/11/12         4,100         4,100         101,000         92,000           10/09/12         620         505         89,000         92,000           11/20/12         3,500         3,400         43,000         44,000           12/18/12         3,600         3,200         30,000         30,000           01/08/13         <30         <3         41,000         33,000           02/11/13         3,300         3,000         13,000         14,000           03/12/13         2,600         2,200         12,000         7,500           04/15/13         3,900         3,490         25,000         25,000           05/07/13         3,900         3,900         38,000         35,000           06/20/13         3,900         3,900         48,000         50,000           07/10/13         4,300         4,300         9,000         41,506           08/20/13         5,100         5,000         84,000         80,000           09/19/13         6,000         6,000         76,000         76,000           10/14/13         3,900         3,700         27,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7/18/12  | · · · · · · · · · · · · · · · · · · · | · ·                                   | 122,000  | •          |
| 09/11/12         4,100         4,100         101,000         92,000           10/09/12         620         505         89,000         92,000           11/20/12         3,500         3,400         43,000         44,000           12/18/12         3,600         3,200         30,000         30,000           01/08/13         <30         <3         41,000         33,000           02/11/13         3,300         3,000         13,000         14,000           03/12/13         2,600         2,200         12,000         7,500           04/15/13         3,900         3,490         25,000         25,000           05/07/13         3,900         3,900         38,000         35,000           06/20/13         3,900         3,900         48,000         50,000           07/10/13         4,300         4,300         9,000         41,506           08/20/13         5,100         5,000         84,000         80,000           09/19/13         6,000         6,000         76,000         76,000           10/14/13         3,800         3,800         75,000         85,000           11/12/13         3,900         3,500         46,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8/08/12  | •                                     |                                       | •        | 18,000     |
| 10/09/12         620         505         89,000         92,000           11/20/12         3,500         3,400         43,000         44,000           12/18/12         3,600         3,200         30,000         30,000           01/08/13         <30         <3         41,000         33,000           02/11/13         3,300         3,000         13,000         14,000           03/12/13         2,600         2,200         12,000         7,500           04/15/13         3,900         3,490         25,000         25,000           05/07/13         3,900         3,900         38,000         35,000           06/20/13         3,900         3,900         48,000         50,000           07/10/13         4,300         4,300         9,000         41,506           08/20/13         5,100         5,000         84,000         80,000           09/19/13         6,000         6,000         76,000         76,000           10/14/13         3,800         3,800         75,000         85,000           11/12/13         3,900         3,500         46,000         48,000           01/15/14         170         126         27,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/11/12  | •                                     |                                       |          | · ·        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | •                                     | •                                     | •        | •          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 3,500                                 | 3,400                                 | •        | ·          |
| 01/08/13         <30         <3         41,000         33,000           02/11/13         3,300         3,000         13,000         14,000           03/12/13         2,600         2,200         12,000         7,500           04/15/13         3,900         3,490         25,000         25,000           05/07/13         3,900         3,900         38,000         35,000           06/20/13         3,900         3,900         48,000         50,000           07/10/13         4,300         4,300         9,000         41,506           08/20/13         5,100         5,000         84,000         80,000           09/19/13         6,000         6,000         76,000         76,000           10/14/13         3,800         3,800         75,000         85,000           11/12/13         3,900         3,700         27,000         29,000           12/17/13         3,700         3,500         46,000         48,000           01/15/14         170         126         27,000         27,600           02/18/14         12,000         2,900         39,000         38,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                       | •                                     | •        | ·          |
| 02/11/13         3,300         3,000         13,000         14,000           03/12/13         2,600         2,200         12,000         7,500           04/15/13         3,900         3,490         25,000         25,000           05/07/13         3,900         3,900         38,000         35,000           06/20/13         3,900         3,900         48,000         50,000           07/10/13         4,300         4,300         9,000         41,506           08/20/13         5,100         5,000         84,000         80,000           09/19/13         6,000         6,000         76,000         76,000           10/14/13         3,800         3,800         75,000         85,000           11/12/13         3,900         3,700         27,000         29,000           12/17/13         3,700         3,500         46,000         48,000           01/15/14         170         126         27,000         27,600           02/18/14         12,000         2,900         39,000         38,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                       |                                       | •        | ·          |
| 03/12/13         2,600         2,200         12,000         7,500           04/15/13         3,900         3,490         25,000         25,000           05/07/13         3,900         3,900         38,000         35,000           06/20/13         3,900         3,900         48,000         50,000           07/10/13         4,300         4,300         9,000         41,506           08/20/13         5,100         5,000         84,000         80,000           09/19/13         6,000         6,000         76,000         76,000           10/14/13         3,800         3,800         75,000         85,000           11/12/13         3,900         3,700         27,000         29,000           12/17/13         3,700         3,500         46,000         48,000           01/15/14         170         126         27,000         27,600           02/18/14         12,000         2,900         39,000         38,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                       | 3,000                                 | •        | ·          |
| 04/15/13         3,900         3,490         25,000         25,000           05/07/13         3,900         3,900         38,000         35,000           06/20/13         3,900         3,900         48,000         50,000           07/10/13         4,300         4,300         9,000         41,506           08/20/13         5,100         5,000         84,000         80,000           09/19/13         6,000         6,000         76,000         76,000           10/14/13         3,800         3,800         75,000         85,000           11/12/13         3,900         3,700         27,000         29,000           12/17/13         3,700         3,500         46,000         48,000           01/15/14         170         126         27,000         27,600           02/18/14         12,000         2,900         39,000         38,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                       | •                                     |          |            |
| 05/07/13         3,900         38,000         35,000           06/20/13         3,900         3,900         48,000         50,000           07/10/13         4,300         4,300         9,000         41,506           08/20/13         5,100         5,000         84,000         80,000           09/19/13         6,000         6,000         76,000         76,000           10/14/13         3,800         3,800         75,000         85,000           11/12/13         3,900         3,700         27,000         29,000           12/17/13         3,700         3,500         46,000         48,000           01/15/14         170         126         27,000         27,600           02/18/14         12,000         2,900         39,000         38,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                       | •                                     | •        | ·          |
| 06/20/13         3,900         3,900         48,000         50,000           07/10/13         4,300         4,300         9,000         41,506           08/20/13         5,100         5,000         84,000         80,000           09/19/13         6,000         6,000         76,000         76,000           10/14/13         3,800         3,800         75,000         85,000           11/12/13         3,900         3,700         27,000         29,000           12/17/13         3,700         3,500         46,000         48,000           01/15/14         170         126         27,000         27,600           02/18/14         12,000         2,900         39,000         38,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                       |                                       | •        | ·          |
| 07/10/13         4,300         4,300         9,000         41,506           08/20/13         5,100         5,000         84,000         80,000           09/19/13         6,000         6,000         76,000         76,000           10/14/13         3,800         3,800         75,000         85,000           11/12/13         3,900         3,700         27,000         29,000           12/17/13         3,700         3,500         46,000         48,000           01/15/14         170         126         27,000         27,600           02/18/14         12,000         2,900         39,000         38,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                       | , , , , , , , , , , , , , , , , , , , |          | ·          |
| 08/20/13         5,100         5,000         84,000         80,000           09/19/13         6,000         6,000         76,000         76,000           10/14/13         3,800         3,800         75,000         85,000           11/12/13         3,900         3,700         27,000         29,000           12/17/13         3,700         3,500         46,000         48,000           01/15/14         170         126         27,000         27,600           02/18/14         12,000         2,900         39,000         38,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                       |                                       |          |            |
| 09/19/13         6,000         6,000         76,000         76,000           10/14/13         3,800         3,800         75,000         85,000           11/12/13         3,900         3,700         27,000         29,000           12/17/13         3,700         3,500         46,000         48,000           01/15/14         170         126         27,000         27,600           02/18/14         12,000         2,900         39,000         38,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                       | •                                     | •        | ·          |
| 10/14/13     3,800     3,800     75,000     85,000       11/12/13     3,900     3,700     27,000     29,000       12/17/13     3,700     3,500     46,000     48,000       01/15/14     170     126     27,000     27,600       02/18/14     12,000     2,900     39,000     38,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9/19/13  |                                       |                                       |          |            |
| 11/12/13     3,900     3,700     27,000     29,000       12/17/13     3,700     3,500     46,000     48,000       01/15/14     170     126     27,000     27,600       02/18/14     12,000     2,900     39,000     38,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0/14/13  |                                       | · · · · · · · · · · · · · · · · · · · | •        | •          |
| 12/17/13     3,700     3,500     46,000     48,000       01/15/14     170     126     27,000     27,600       02/18/14     12,000     2,900     39,000     38,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                       | •                                     |          |            |
| 01/15/14         170         126         27,000         27,600           02/18/14         12,000         2,900         39,000         38,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                       |                                       |          |            |
| 02/18/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01/15/14 |                                       |                                       | ·        | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2/18/14  | 12,000                                | 2,900                                 | ·        | -          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3/11/14  |                                       |                                       |          |            |
| 04/09/14 <b>1,900 1,570 19,000 17,000</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4/09/14  |                                       |                                       | ·        | · ·        |
| 05/12/14 2,200 2,200 4,400 4,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                                       |                                       |          |            |
| 06/02/14 1,500 1,500 7,000 6,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | •                                     |                                       | •        | •          |
| 07/08/14 <b>3,800 3,200 27,000 27,000</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | •                                     |                                       |          |            |
| 08/05/14 <b>4,200 3,300 64,000 41,000</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                       |                                       |          |            |
| 09/09/14 4,700 4,000 67,000 61,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                                       |                                       |          |            |
| 10/16/14 3,300 3,300 8,000 6,800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | -                                     | •                                     |          | •          |
| 11/4/14 2,600 2,600 37,000 37,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | •                                     |                                       | •        | •          |
| 12/16/14 3000 2700 15000 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                                       |                                       |          |            |

## Groundwater Analytical Results Total and Hexavalent Chromium- Manhole and Sump

|          |                | Manhole        |          | _          |
|----------|----------------|----------------|----------|------------|
|          | Manhole        | (French Drain) | Sump     | Sump       |
|          | (French Drain) | Hexavalent     | Total    | Hexavalent |
|          | Total Chromium | Chromium       | Chromium | Chromium   |
| Date     | ug/l           | ug/l           | ug/l     | ug/l       |
| 1/13/15  | 2400           | 2100           | 36000    | 31000      |
| 2/10/15  | 3200           | 2500           | 39000    | 33000      |
| 3/10/15  | 2700           | 2400           | 25000    | 18000      |
| 4/21/15  | 1800           | 1600           | 16000    | 4400       |
| 5/18/15  | 2700           | 1800           | 1900     | 8600       |
| 6/9/15   | 1900           | 1700           | 56000    | 9100       |
| 7/15/15  | 3441           | 3300           | 10627    | 10000      |
| 8/11/15  | 3700           | 3200           | 45000    | 32000      |
| 9/8/15   | 5900           | 3400           | 42000    | 24000      |
| 10/20/15 | 3700           | 3200           | 50000    | 42000      |
| 11/10/15 | 3700           | 3000           | 24000    | 19000      |
| 12/8/15  | 3300           | 2700           | 25000    | 7900       |
| 1/21/16  | 2800           | 2640           | 22000    | 22400      |
| 2/8/16   | 3200           | 3150           | 6700     | 6130       |
| 3/14/16  | 2600           | 2490           | 17000    | 16500      |
| 4/14/16  | 3200           | 3150           | 19000    | 18200      |
| 5/17/16  | 3100           | 2880           | 26000    | 0          |
| 6/9/16   | 2700           | 2210           | 35000    | 24400      |
|          |                |                |          |            |

<sup>\*\*</sup> Estimated result based on Enchem Laboratory Report

 Max. Contaminant Level
 100
 100

 NR 140.10 ES
 100
 100

 NR 140.10 PAL
 10
 10

 102
 Indicates exceedance of NR 140.10 ES & PAL

 14
 Indicates exceedance of NR 140.10 PAL

<sup>\*</sup> Number are average over 1-year.

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

| Well<br>Name | Date<br>Measured                                                                                                                                                                          | Depth<br>Water<br>(feet)                                                                                                                      | Reference<br>Elevation<br>(to top<br>PVC) | Groundwater<br>Elevation<br>(feet)                                                                                                                                               | Elevation<br>Top of<br>Screen |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| MW-1         | 1/19/10<br>4/13/10<br>7/29/10<br>10/19/10<br>1/13/11<br>4/27/11<br>7/19/11<br>10/11/11<br>1/10/12<br>4/10/12<br>8/8/12<br>10/9/12<br>1/18/13<br>4/15/13<br>7/10/13<br>11/14/13<br>1/15/14 | 9.48<br>8.21<br>9.28<br>7.31<br>7.94<br>6.86<br>5.51<br>7.41<br>9.32<br>8.45<br>9.88<br>9.83<br>9.17<br>7.30<br>8.22<br>9.32<br>10.32<br>7.42 | 770.01                                    | 760.53<br>761.80<br>760.73<br>762.70<br>762.07<br>763.15<br>764.50<br>762.60<br>760.69<br>761.56<br>760.13<br>760.18<br>760.84<br>762.71<br>761.79<br>760.69<br>759.69<br>762.59 | 757.96                        |
|              | 6/2/14<br>7/8/14<br>10/14/14<br>1/13/15<br>4/21/15<br>7/15/15<br>10/20/15<br>1/21/16<br>4/14/16                                                                                           | 8.16<br>7.80<br>8.18<br>9.22<br>8.68<br>8.90<br>8.72<br>8.90<br>8.61                                                                          |                                           | 761.85<br>762.21<br>761.83<br>760.79<br>761.33<br>761.11<br>761.29<br>761.11<br>761.40                                                                                           |                               |

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

| Well<br>Name | Date<br>Measured | Depth<br>Water<br>(feet) | Reference<br>Elevation<br>(to top<br>PVC) | Groundwater<br>Elevation<br>(feet) | Elevation<br>Top of<br>Screen |
|--------------|------------------|--------------------------|-------------------------------------------|------------------------------------|-------------------------------|
|              | 1/19/10          | 8.42                     | 770.76                                    | 762.34                             | 759.04                        |
| MW-2         | 4/13/10          | 8.31                     |                                           | 762.45                             |                               |
|              | 7/29/10          | 9.00                     |                                           | 761.76                             |                               |
|              | 10/19/10         | 7.03                     |                                           | 763.73                             |                               |
|              | 1/13/11          | 8.81                     |                                           | 761.95                             |                               |
|              | 4/27/11          | 7.51                     |                                           | 763.25                             |                               |
|              | 7/19/11          | 4.41                     |                                           | 766.35                             |                               |
|              | 10/11/11         | 7.20                     |                                           | 763.56                             |                               |
|              | 1/10/12          | 8.70                     |                                           | 762.06                             |                               |
|              | 4/10/12          | 7.54                     |                                           | 763.22                             |                               |
|              | 8/8/12           | 8.57                     |                                           | 762.19                             |                               |
|              | 10/9/12          | 9.21                     |                                           | 761.55                             |                               |
|              | 1/8/13           | 8.20                     |                                           | 762.56                             |                               |
|              | 4/15/13          | 5.30                     |                                           | 765.46                             |                               |
|              | 7/10/13          | 7.42                     |                                           | 763.34                             |                               |
|              | 10/14/13         | 8.71                     |                                           | 762.05                             |                               |
|              | 1/15/14          | 8.98                     |                                           | 761.78                             |                               |
|              | 4/9/14           | 6.53                     |                                           | 764.23                             |                               |
|              | 6/2/14           | 7.10                     |                                           | 763.66                             |                               |
|              | 7/8/14           | 7.48                     |                                           | 763.28                             |                               |
|              | 10/14/14         | 7.82                     |                                           | 762.94                             |                               |
|              | 1/13/15          | 8.52                     |                                           | 762.24                             |                               |
|              | 4/21/15          | 6.63                     |                                           | 764.13                             |                               |
|              | 7/15/15          | 8.31                     |                                           | 762.45                             |                               |
|              | 10/20/15         | 8.38                     |                                           | 762.38                             |                               |
|              | 1/21/16          | 7.38                     |                                           | 763.38                             |                               |
|              | 4/14/16          | 6.42                     |                                           | 764.34                             |                               |
|              |                  |                          |                                           |                                    |                               |

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

| Well<br>Name | Date<br>Measured  | Depth<br>Water<br>(feet) | Reference<br>Elevation<br>(to top<br>PVC) | Groundwater<br>Elevation<br>(feet) | Elevation<br>Top of<br>Screen |
|--------------|-------------------|--------------------------|-------------------------------------------|------------------------------------|-------------------------------|
|              | 1/19/10           | 15.39                    | 770.64                                    | 755.25                             | 733.72                        |
| MW-2A        | 4/13/10           | 15.55                    |                                           | 755.09                             |                               |
|              | 7/29/10           | 15.55                    |                                           | 755.09                             |                               |
|              | 10/19/10          | 13.62                    |                                           | 757.02                             |                               |
|              | 1/13/11           | 17.13                    |                                           | 753.51                             |                               |
|              | 4/27/11           | 16.22                    |                                           | 754.42                             |                               |
|              | 7/19/11           | 15.21                    |                                           | 755.43                             |                               |
|              | 10/11/11          | 14.16                    |                                           | 756.48                             |                               |
|              | 1/10/12           | 15.03                    |                                           | 755.61                             |                               |
|              | 4/10/12<br>8/8/12 | 15.32<br>16.54           |                                           | 755.32<br>754.10                   |                               |
|              | 10/9/12           | 15.41                    |                                           | 754.10<br>755.23                   |                               |
|              | 1/8/13            | 14.84                    |                                           | 755.23<br>755.80                   |                               |
|              | 4/15/13           | 14.57                    |                                           | 755.80<br>756.07                   |                               |
|              | 7/10/13           | 15.20                    |                                           | 755.44                             |                               |
|              | 10/14/13          | 15.20                    |                                           | 755.44<br>755.44                   |                               |
|              | 1/15/14           | 15.22                    |                                           | 755.42                             |                               |
|              | 4/9/14            | 15.12                    |                                           | 755.52                             |                               |
|              | 6/2/14            | 15.12                    |                                           | 755.46                             |                               |
|              | 7/8/14            | 15.11                    |                                           | 755.53                             |                               |
|              | 10/14/14          | 14.63                    |                                           | 756.01                             |                               |
|              | 1/13/15           | 14.63                    |                                           | 756.01                             |                               |
|              | 4/21/15           | 15.23                    |                                           | 755.41                             |                               |
|              | 7/15/15           | 15.38                    |                                           | 755.26                             |                               |
|              | 10/20/15          | 14.58                    |                                           | 756.06                             |                               |
|              | 1/21/16           | 13.32                    |                                           | 757.32                             |                               |
|              | 4/14/16           | 14.22                    |                                           | 756.42                             |                               |
|              |                   |                          |                                           |                                    |                               |

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

| Well<br>Name | Date<br>Measured                                                                                                                                                                                                                                                                                      | Depth<br>Water<br>(feet)                                                                                                                                                                                                   | Reference<br>Elevation<br>(to top<br>PVC) | Groundwater<br>Elevation<br>(feet)                                                                                                                                                                                                                                         | Elevation<br>Top of<br>Screen |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| MW-5         | 1/19/10<br>4/13/10<br>7/29/10<br>10/19/10<br>1/13/11<br>4/27/11<br>7/19/11<br>10/11/11<br>1/10/12<br>4/10/12<br>8/8/12<br>10/9/12<br>1/8/13<br>4/15/13<br>7/10/13<br>10/14/13<br>1/15/14<br>4/9/14<br>6/2/14<br>7/8/14<br>10/14/14<br>1/13/15<br>4/21/15<br>7/15/15<br>10/20/15<br>1/21/16<br>4/14/16 | 11.25<br>5.50<br>10.13<br>8.44<br>7.17<br>6.20<br>4.16<br>8.50<br>8.79<br>8.82<br>11.72<br>12.52<br>8.36<br>5.39<br>7.04<br>11.67<br>9.74<br>6.08<br>5.96<br>7.69<br>6.48<br>8.28<br>5.48<br>7.18<br>11.84<br>6.61<br>5.65 | 771.16                                    | 759.91<br>765.66<br>761.03<br>762.72<br>763.99<br>764.96<br>767.00<br>762.66<br>762.37<br>762.34<br>759.44<br>758.64<br>762.80<br>765.77<br>764.12<br>759.49<br>761.42<br>765.08<br>765.20<br>763.47<br>764.68<br>762.88<br>765.68<br>763.98<br>759.32<br>764.55<br>765.51 | 756.73                        |

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

| Well<br>Name | Date<br>Measured                     | Depth<br>Water<br>(feet) | Reference<br>Elevation<br>(to top<br>PVC) | Groundwater<br>Elevation<br>(feet) | Elevation<br>Top of<br>Screen |
|--------------|--------------------------------------|--------------------------|-------------------------------------------|------------------------------------|-------------------------------|
|              | 1/19/2010                            | 8.90                     | 769.94                                    | 761.04                             | 732.83                        |
| MW-5A        | 4/13/2010                            | 5.81                     |                                           | 764.13                             |                               |
|              | 07/29/10                             | 8.31                     |                                           | 761.63                             |                               |
|              | 10/19/10                             | 10.24                    |                                           | 759.70                             |                               |
|              | 01/13/11                             | 14.98                    |                                           | 754.96                             |                               |
|              | 04/27/11                             | 3.72                     |                                           | 766.22                             |                               |
|              | 07/19/11                             | 8.12                     |                                           | 761.82                             |                               |
|              | 10/11/11                             | 9.95                     |                                           | 759.99                             |                               |
|              | 01/10/12                             | 13.08                    |                                           | 756.86                             |                               |
|              | 04/10/12                             | 6.70                     |                                           | 763.24                             |                               |
|              | 08/08/12                             | 14.15                    |                                           | 755.79                             |                               |
|              | 10/09/12                             | 14.04                    |                                           | 755.90                             |                               |
|              | 01/08/13                             | 11.24                    |                                           | 758.70                             |                               |
|              | 04/15/13                             | 4.32                     |                                           | 765.62                             |                               |
|              | 07/10/13                             | 6.77                     |                                           | 763.17                             |                               |
|              | 10/14/13                             | 16.42                    |                                           | 753.52                             |                               |
|              | 01/15/14                             | 13.80                    |                                           | 756.14                             |                               |
|              | 04/09/14                             | 4.40                     |                                           | 765.54                             |                               |
|              | 06/02/14                             | 5.48                     |                                           | 764.46                             |                               |
|              | 07/08/14                             | 6.72                     |                                           | 763.22                             |                               |
|              | 10/14/14                             | 13.73                    |                                           | 756.21                             |                               |
|              | 01/13/15<br>04/21/15                 | 7.61<br>4.04             |                                           | 762.33<br>765.90                   |                               |
|              | 04/21/15                             | 4.04<br>8.44             |                                           | 765.90<br>761.50                   |                               |
|              | 10/20/15                             | 8.44<br>7.44             |                                           | 761.50<br>762.50                   |                               |
|              | 01/20/15                             | 7.44<br>7.50             |                                           | 762.30<br>762.44                   |                               |
|              | 04/14/16                             | 7.30<br>5.34             |                                           | 762.44<br>764.60                   |                               |
|              | 0 <del>-1</del> /1 <del>-1</del> /10 | 0.04                     |                                           | 7 0-7.00                           |                               |

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

| Well<br>Name | Date<br>Measured    | Depth<br>Water<br>(feet) | Reference<br>Elevation<br>(to top<br>PVC) | Groundwater<br>Elevation<br>(feet) | Elevation<br>Top of<br>Screen |
|--------------|---------------------|--------------------------|-------------------------------------------|------------------------------------|-------------------------------|
|              | 1/19/10             | 7.88                     | 767.13                                    | 759.25                             | 757.51                        |
| MW-10R       | 4/13/10             | 4.84                     |                                           | 762.29                             |                               |
|              | 7/29/10             | 6.98                     |                                           | 760.15                             |                               |
|              | 10/19/10            | 5.59                     |                                           | 761.54                             |                               |
|              | 1/13/11             | 4.80                     |                                           | 762.33                             |                               |
|              | 4/27/11             | 4.81                     |                                           | 762.32                             |                               |
|              | 7/19/11             | 3.36                     |                                           | 763.77                             |                               |
|              | 10/11/11            | 5.68                     |                                           | 761.45                             |                               |
|              | 1/10/12             | 5.41                     |                                           | 761.72                             |                               |
|              | 4/10/12             | 5.37                     |                                           | 761.76                             |                               |
|              | 8/8/12              | 6.01                     |                                           | 761.12                             |                               |
|              | 10/9/12             | 8.14                     |                                           | 758.99                             |                               |
|              | 1/8/13              | 8.03                     |                                           | 759.10                             |                               |
|              | 4/15/13             | 2.32                     |                                           | 764.81                             |                               |
|              | 7/10/13<br>10/14/13 | 4.38<br>5.86             |                                           | 762.75<br>761.27                   |                               |
|              | 1/15/14             | 7.92                     |                                           | 759.21                             |                               |
|              | 4/9/14              | 4.53                     |                                           | 762.60                             |                               |
|              | 6/2/14              | 4.53                     |                                           | 762.60<br>762.62                   |                               |
|              | 7/8/14              | 5.54                     |                                           | 761.59                             |                               |
|              | 10/14/14            | 5.08                     |                                           | 762.05                             |                               |
|              | 1/13/15             | 6.35                     |                                           | 760.78                             |                               |
|              | 4/21/15             | 5.02                     |                                           | 762.11                             |                               |
|              | 7/15/15             | 5.61                     |                                           | 761.52                             |                               |
|              | 10/20/15            | 5.83                     |                                           | 761.30                             |                               |
|              | 1/21/16             | 5.68                     |                                           | 761.45                             |                               |
|              | 4/14/16             | 5.08                     |                                           | 762.05                             |                               |
|              |                     |                          |                                           |                                    |                               |

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

| Well<br>Name | Date<br>Measured     | Depth<br>Water<br>(feet) | Reference<br>Elevation<br>(to top<br>PVC) | Groundwater<br>Elevation<br>(feet) | Elevation<br>Top of<br>Screen |
|--------------|----------------------|--------------------------|-------------------------------------------|------------------------------------|-------------------------------|
|              | 01/19/10             | 9.58                     | 771.97                                    | 762.39                             | 759.39                        |
| MW-17        | 04/13/10             | 6.36                     |                                           | 765.61                             |                               |
|              | 07/29/10             | 8.61                     |                                           | 763.36                             |                               |
|              | 10/29/10             | 7.11                     |                                           | 764.86                             |                               |
|              | 01/13/11             | 8.06                     |                                           | 763.91                             |                               |
|              | 04/27/11             | 7.92                     |                                           | 764.05                             |                               |
|              | 07/19/11             | 6.30                     |                                           | 765.67                             |                               |
|              | 10/11/11             | 7.20                     |                                           | 764.77                             |                               |
|              | 01/10/12             | 9.25                     |                                           | 762.72                             |                               |
|              | 04/10/12             | 8.24                     |                                           | 763.73                             |                               |
|              | 08/08/12             | 8.23                     |                                           | 763.74                             |                               |
|              | 10/09/12             | 9.46                     |                                           | 762.51                             |                               |
|              | 01/08/13             | 9.76                     |                                           | 762.21                             |                               |
|              | 04/15/13             | 7.78                     |                                           | 764.19                             |                               |
|              | 07/10/13             | 8.18                     |                                           | 763.79                             |                               |
|              | 10/14/13             | 8.38                     |                                           | 763.59                             |                               |
|              | 01/15/14<br>04/09/14 | 9.71<br>7.90             |                                           | 762.26                             |                               |
|              | 04/09/14             | 7.90<br>7.82             |                                           | 764.07<br>764.15                   |                               |
|              | 07/08/14             | 7.82<br>7.96             |                                           | 764.13<br>764.01                   |                               |
|              | 10/14/14             | 7.96                     |                                           | 764.01<br>764.01                   |                               |
|              | 01/13/15             | 6.14                     |                                           | 765.83                             |                               |
|              | 04/21/15             | 6.68                     |                                           | 765.29                             |                               |
|              | 07/15/15             | 7.71                     |                                           | 764.26                             |                               |
|              | 10/20/15             | 9.18                     |                                           | 762.79                             |                               |
|              | 01/21/16             | 9.61                     |                                           | 762.36                             |                               |
|              | 04/14/16             | 8.20                     |                                           | 763.77                             |                               |
|              |                      |                          |                                           |                                    |                               |

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

| Well<br>Name | Date<br>Measured                                                                                                                                                                                                                                                                                                                 | Depth<br>Water<br>(feet)                                                                                                                                                                                                                                                  | Reference<br>Elevation<br>(to top<br>PVC) | Groundwater<br>Elevation<br>(feet)                                                                                                                                                                                                                               | Elevation<br>Top of<br>Screen |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| MW-17A       | 01/19/10<br>04/13/10<br>07/29/10<br>10/19/10<br>01/13/11<br>04/27/11<br>07/19/11<br>10/11/11<br>01/10/12<br>04/10/12<br>08/08/12<br>10/09/12<br>01/08/13<br>04/15/13<br>07/10/13<br>10/14/13<br>01/15/14<br>04/09/14<br>06/02/14<br>07/08/14<br>10/14/14<br>01/13/15<br>04/21/15<br>07/15/15<br>10/10/15<br>01/21/16<br>04/14/16 | 16.32<br>16.58<br>14.28<br>16.97<br>17.20<br>18.02<br>17.21<br>16.82<br>15.50<br>16.16<br>16.00<br>15.56<br>15.60<br>16.29<br>15.32<br>15.32<br>15.32<br>15.32<br>15.32<br>15.91<br>16.32<br>15.48<br>15.21<br>6.60<br>15.02<br>16.08<br>15.72<br>15.09<br>14.98<br>15.22 | 771.26                                    | 754.94<br>754.68<br>756.98<br>754.29<br>754.06<br>753.24<br>754.05<br>754.44<br>755.76<br>755.10<br>755.26<br>755.70<br>755.66<br>754.97<br>755.94<br>755.94<br>755.35<br>754.94<br>755.78<br>756.05<br>764.66<br>756.24<br>755.18<br>756.17<br>756.28<br>756.04 | 733.85                        |

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

|         | leasured                                                                                                                                                                                                                                                              | Water<br>(feet)                                                                                                                                                                                               | Elevation<br>(to top<br>PVC) | Groundwater<br>Elevation<br>(feet)                                                                                                                                                                                                                               | Elevation<br>Top of<br>Screen |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| MW-18 ( | 01/19/10<br>04/13/10<br>07/29/10<br>10/19/10<br>1/13/11<br>4/27/11<br>7/19/11<br>10/11/11<br>1/10/12<br>4/10/12<br>8/8/12<br>10/9/12<br>1/8/13<br>4/15/13<br>7/10/13<br>10/14/13<br>1/15/14<br>4/9/14<br>6/2/14<br>7/8/14<br>1/13/15<br>4/21/15<br>7/15/15<br>1/21/16 | 9.60<br>7.80<br>9.57<br>8.63<br>8.35<br>8.82<br>6.42<br>8.60<br>9.27<br>8.80<br>9.31<br>9.85<br>9.22<br>7.06<br>8.78<br>9.04<br>10.35<br>8.20<br>8.75<br>8.62<br>8.71<br>9.32<br>8.00<br>8.94<br>8.85<br>8.61 | 770.03                       | 760.43<br>762.23<br>760.46<br>761.40<br>761.68<br>761.21<br>763.61<br>761.43<br>760.76<br>761.23<br>760.72<br>760.18<br>760.81<br>762.97<br>761.25<br>760.99<br>759.68<br>761.83<br>761.28<br>761.41<br>761.32<br>760.71<br>762.03<br>761.09<br>761.18<br>761.42 | 757.23                        |

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

| Well<br>Name | Date<br>Measured | Depth<br>Water<br>(feet) | Reference<br>Elevation<br>(to top<br>PVC) | Groundwater<br>Elevation<br>(feet) | Elevation<br>Top of<br>Screen |
|--------------|------------------|--------------------------|-------------------------------------------|------------------------------------|-------------------------------|
| MW-18A       | 1/19/10          | 27.48                    | 770.67                                    | 743.19                             | 732.37                        |
|              | 4/13/10          | 27.72                    |                                           | 742.95                             |                               |
|              | 7/29/10          | 27.93                    |                                           | 742.74                             |                               |
|              | 10/19/10         | 27.72                    |                                           | 742.95                             |                               |
|              | 1/13/11          | 29.44                    |                                           | 741.23                             |                               |
|              | 4/27/11          | 29.44                    |                                           | 741.23                             |                               |
|              | 7/19/11          | 28.87                    |                                           | 741.80                             |                               |
|              | 10/11/11         | 28.33                    |                                           | 742.34                             |                               |
|              | 1/10/12          | 26.43                    |                                           | 744.24                             |                               |
|              | 4/10/12          | 26.80                    |                                           | 743.87                             |                               |
|              | 8/8/12           | 27.45                    |                                           | 743.22                             |                               |
|              | 10/9/12          | 27.97                    |                                           | 742.70                             |                               |
|              | 1/8/13           | 26.11                    |                                           | 744.56                             |                               |
|              | 4/15/13          | 26.48                    |                                           | 744.19                             |                               |
|              | 7/10/13          | 27.18                    |                                           | 743.49                             |                               |
|              | 10/14/13         | 27.32                    |                                           | 743.35                             |                               |
|              | 1/15/14          | 26.32                    |                                           | 744.35                             |                               |
|              | 4/9/14           | 27.03                    |                                           | 743.64                             |                               |
|              | 6/2/14           | 29.62                    |                                           | 741.05                             |                               |
|              | 7/8/14           | 28.14                    |                                           | 742.53                             |                               |
|              | 10/14/14         | 26.88                    |                                           | 743.79                             |                               |
|              | 1/13/15          | 9.32                     |                                           | 761.35                             |                               |
|              | 4/21/15          | 26.92                    |                                           | 743.75                             |                               |
|              | 7/15/15          | 27.13                    |                                           | 743.54                             |                               |
|              | 10/20/15         | 26.31                    |                                           | 744.36                             |                               |
|              | 1/21/16          | 25.18                    |                                           | 745.49                             |                               |
|              | 4/14/16          | 25.56                    |                                           | 745.11                             |                               |
|              |                  |                          |                                           |                                    |                               |

Table #6

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

| Well<br>Name | Date<br>Measured     | Depth<br>Water<br>(feet) | Reference<br>Elevation<br>(to top<br>PVC) | Groundwater<br>Elevation<br>(feet) | Elevation<br>Top of<br>Screen |
|--------------|----------------------|--------------------------|-------------------------------------------|------------------------------------|-------------------------------|
|              | 01/19/10             | 5.20                     | 768.19                                    | 762.99                             | 758.27                        |
| MW-19        | 04/13/10             | 5.33                     |                                           | 762.86                             |                               |
|              | 07/29/10             | 6.57                     |                                           | 761.62                             |                               |
|              | 10/19/10             | 5.50                     |                                           | 762.69                             |                               |
|              | 01/13/11             | 7.29                     |                                           | 760.90                             |                               |
|              | 04/27/11             | 5.60                     |                                           | 762.59                             |                               |
|              | 07/19/11             | 6.63                     |                                           | 761.56                             |                               |
|              | 10/11/11             | 5.55                     |                                           | 762.64                             |                               |
|              | 01/10/12             | 5.97                     |                                           | 762.22                             |                               |
|              | 04/10/12             | 4.78                     |                                           | 763.41                             |                               |
|              | 08/08/12             | 6.38                     |                                           | 761.81                             |                               |
|              | 10/09/12             | 6.70                     |                                           | 761.49                             |                               |
|              | 01/08/13             | 5.74                     |                                           | 762.45                             |                               |
|              | 04/15/13             | 2.40                     |                                           | 765.79                             |                               |
|              | 07/10/13             | 4.25                     |                                           | 763.94                             |                               |
|              | 10/14/13             | 6.30                     |                                           | 761.89                             |                               |
|              | 01/15/14             | 6.22                     |                                           | 761.97                             |                               |
|              | 04/09/14             | 4.47                     |                                           | 763.72                             |                               |
|              | 06/02/14             | 4.11                     |                                           | 764.08                             |                               |
|              | 07/08/14             | 4.40                     |                                           | 763.79                             |                               |
|              | 10/14/14<br>01/13/15 | 4.70<br>5.78             |                                           | 763.49<br>762.41                   |                               |
|              | 04/21/15             | 5.78<br>4.20             |                                           | 762.41<br>763.99                   |                               |
|              | 04/21/15             | 4.20<br>5.17             |                                           | 763.99<br>763.02                   |                               |
|              | 10/20/15             | 5.17<br>5.70             |                                           | 763.02<br>762.49                   |                               |
|              | 01/21/16             | 4.44                     |                                           | 763.75                             |                               |
|              | 04/14/16             | 3.48                     |                                           | 764.71                             |                               |
|              | 5 1, 1 1, 10         | 00                       |                                           | 70                                 |                               |

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

| Well<br>Name | Date<br>Measured                                                                                                                                                                                                                                                                             | Depth<br>Water<br>(feet)                                                                                                                                                                                                      | Reference<br>Elevation<br>(to top<br>PVC) | Groundwater<br>Elevation<br>(feet)                                                                                                                                             | Elevation<br>Top of<br>Screen |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| MW-19A       | 01/19/10<br>04/13/10<br>07/29/10<br>10/19/10<br>01/13/11<br>04/27/11<br>07/19/11<br>10/11/11<br>01/10/12<br>04/10/12<br>04/10/12<br>08/08/12<br>10/09/12<br>01/08/13<br>04/15/13<br>07/10/13<br>10/14/13<br>01/15/14<br>04/09/14<br>06/02/14<br>07/08/14<br>10/13/15<br>04/21/15<br>07/15/15 | 18.36<br>18.33<br>18.22<br>18.40<br>20.47<br>18.40<br>18.44<br>18.42<br>16.58<br>16.98<br>20.13<br>16.56<br>15.40<br>16.22<br>16.37<br>16.83<br>18.73<br>17.24<br>16.80<br>16.84<br>16.24<br>16.23<br>18.21<br>18.42<br>18.03 | 768.04                                    | 749.68 749.71 749.82 749.64 747.57 749.64 749.60 749.62 751.46 751.06 747.91 751.48 752.64 751.82 751.67 751.21 749.31 750.80 751.24 751.20 751.80 751.81 749.83 749.62 750.01 | 731.1                         |
|              | 01/21/16<br>04/14/16                                                                                                                                                                                                                                                                         | 15.68<br>16.02                                                                                                                                                                                                                |                                           | 752.36<br>752.02                                                                                                                                                               |                               |

Groundwater Elevations
Appleton Wire Former Albany International Chrome Plant

| Well<br>Name | Date<br>Measured                                                                                         | Depth<br>Water<br>(feet)                                                      | Reference<br>Elevation<br>(to top<br>PVC) | Groundwater<br>Elevation<br>(feet)                                                     | Elevation<br>Top of<br>Screen |
|--------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------|
| MW-20        | 06/02/14<br>07/08/14<br>10/14/14<br>01/13/15<br>04/21/15<br>07/15/15<br>10/20/15<br>01/21/16<br>04/14/16 | 7.36<br>5.63<br>5.57<br>7.91<br>5.68<br>6.48<br>7.48<br>7.19<br>5.81          | 768.29                                    | 760.93<br>762.66<br>762.72<br>760.38<br>762.61<br>761.81<br>760.81<br>761.10<br>762.48 | 764.29                        |
| MW-20A       | 06/02/14<br>07/08/14<br>10/14/14<br>01/13/15<br>04/21/15<br>07/15/15<br>10/20/15<br>01/21/16<br>04/14/16 | 32.73<br>20.88<br>12.61<br>17.04<br>18.06<br>18.53<br>16.78<br>16.07<br>17.25 | 768.36                                    | 735.63<br>747.48<br>755.75<br>751.32<br>750.30<br>749.83<br>751.58<br>752.29<br>751.11 | 739.02                        |
| MW-21        | 06/02/14<br>07/08/14<br>10/14/14<br>01/13/15<br>04/21/15<br>07/15/15<br>10/20/15<br>01/21/16<br>04/14/16 | 4.96<br>5.02<br>6.82<br>6.18<br>5.34<br>5.74<br>6.00<br>5.22<br>4.48          | 768.85                                    | 763.89<br>763.83<br>762.03<br>762.67<br>763.51<br>763.11<br>762.85<br>763.63<br>764.37 | 764.8                         |
| MW-21A       | 06/02/14<br>07/08/14<br>10/14/14<br>01/13/15<br>04/21/15<br>07/15/15<br>10/20/15<br>01/21/16<br>04/14/16 | 32.18<br>16.27<br>15.98<br>14.80<br>15.52<br>13.03<br>14.73<br>14.49<br>12.35 | 768.85                                    | 736.67<br>752.58<br>752.87<br>754.05<br>753.33<br>755.82<br>754.12<br>754.36<br>756.50 | 739.85                        |

Table #7

Appleton Wire Former Albany international Chrome Plant
Total Pounds Chromium Removed

|            |       |         | Yearly | Historic |  |
|------------|-------|---------|--------|----------|--|
| Year       | Sump  | Manhole | Total  | Total    |  |
| 1988-1998* |       |         |        | 550.00   |  |
| 1998**     | 10.68 | 13.26   | 23.94  | 573.94   |  |
| 1999       | 21.81 | 8.4     | 30.21  | 604.15   |  |
| 2000       | NA    | NA      | 22.00  | 626.15   |  |
| 2001       | 18.75 | 8.69    | 27.64  | 653.79   |  |
| 2002       | 13.1  | 9.98    | 23.08  | 676.87   |  |
| 2003       | 12.94 | 4.95    | 17.89  | 694.76   |  |
| 2004       | 12.83 | 5.29    | 18.12  | 712.88   |  |
| 2005       | 8.07  | 4.57    | 12.64  | 725.52   |  |
| 2006       | 7.36  | 4.27    | 11.63  | 736.88   |  |
| 2007       | 11.72 | 2.87    | 14.59  | 751.47   |  |
| 2008       | 16.40 | 3.40    | 19.80  | 771.27   |  |
| 2009       | 13.79 | 2.66    | 16.45  | 796.03   |  |
| 2010       | 17.09 | 3.36    | 20.45  | 816.48   |  |
| 2011       | 16.26 | 2.60    | 18.86  | 835.34   |  |
| 2012       | 11.66 | 2.39    | 14.05  | 849.39   |  |
| 2013       | 8.24  | 1.78    | 10.02  | 859.37   |  |
| 2014       | 8.10  | 1.30    | 9.4    | 868.77   |  |
| 2015       | 8.59  | 1.30    | 9.89   | 878.66   |  |
| 2016***    | 4.46  | 0.76    | 5.22   | 883.88   |  |

<sup>\*</sup>Chemical Precipitation process was utilized from June 29, 1988 to April 20, 1998. During that period 550# of chromium was removed in the form of chromium sulfate.

<sup>\*\*</sup> Partial Year - Ion exchange System on-line April 20, 1998

<sup>\*\*\*</sup> Partial Year

NA - Data not available

# Geoprobe Monitoring Wells GROUNDWATER ANALYTICAL RESULTS

#### **Total Chromium and Hexavalent Chromium**

## Appleton Wire Former Albany International Chrome Plant Appleton, Wisconsin

| Appleton, Wisconsin |             |          |                 |  |  |
|---------------------|-------------|----------|-----------------|--|--|
|                     |             | Total    | Hexavalent      |  |  |
| Well Name           | Sample Date | Chromium | Chromium (ug/l) |  |  |
| GMW-01              | 06/30/04    | 5300     | 5100            |  |  |
|                     | 08/01/07    | 8490     | N/A             |  |  |
|                     | 10/24/07    | 3085     | 1900            |  |  |
|                     | 01/16/08    | 3020     | 2260            |  |  |
|                     | 04/23/08    | 2001     | 2000            |  |  |
| GMW-02              | 06/30/04    | 5700     | 4700            |  |  |
|                     | 08/01/04    | 6355     | N/A             |  |  |
|                     | 10/24/07    | 6115     | 6115            |  |  |
|                     | 01/16/08    | 7040     | 6800            |  |  |
|                     | 04/23/08    | 6600     | 4900            |  |  |
| GMW-03              | 06/30/04    | 5000     | 4700            |  |  |
|                     | 08/01/04    | 4790     | N/A             |  |  |
|                     | 10/24/07    | 3545     | 2300            |  |  |
|                     | 01/16/08    | 4550     | 3100            |  |  |
|                     | 04/23/08    | 3320     | 1400            |  |  |
| GMW-04              | 06/30/04    | 52       | 52              |  |  |
|                     | 08/01/04    | 56       | N/A             |  |  |
|                     | 10/24/07    | 14       | <2.0            |  |  |
|                     | 01/16/08    | 31       | <.002           |  |  |
|                     | 04/23/08    | 3.7      | <2.0            |  |  |
| GMW-05              | 06/30/04    | 40       | 34              |  |  |
|                     | 08/01/04    | 55       | N/A             |  |  |
|                     | 10/24/07    | 5.6      | <2.0            |  |  |
|                     | 01/16/08    | 8.5      | <.002           |  |  |
|                     | 04/23/08    | 31.0     | <2.0            |  |  |
| GMW-06              | 06/30/04    | 3.3      | <2              |  |  |
| GIVIVV-00           | 08/01/04    | 4.2      | N/A             |  |  |
|                     | 10/24/07    | 3.5      | <2.0            |  |  |
|                     | 01/16/08    | 3.3      | <.002           |  |  |
|                     | 04/23/08    | 5.2      | <2.0            |  |  |
| GMW-07              | 06/30/04    | 0.8      | <2              |  |  |
| Omr. o.             | 08/01/04    | 1.7      | N/A             |  |  |
|                     | 10/24/07    | 2.3      | <2.0            |  |  |
|                     | 01/16/08    | 13.0     | <.002           |  |  |
|                     | 04/23/08    | 3.1      | <2.0            |  |  |
| GMW-08              | 06/30/04    | 0.4      | <2              |  |  |
|                     | 08/01/04    | 1.4      | N/A             |  |  |
|                     | 10/24/07    | 489.0    | 270             |  |  |
|                     | 01/16/08    | 8.6      | <.002           |  |  |
|                     | 04/23/08    | 101.0    | 20              |  |  |
| GMW-09              | 06/30/04    | 1.3      | <2              |  |  |
|                     | 08/01/04    | 1.5      | N/A             |  |  |
|                     | 10/24/07    | 2.8      | <2.0            |  |  |
|                     | 01/16/08    | 9.3      | <.002           |  |  |
|                     | 04/23/08    | 4.2      | <2.0            |  |  |
| CMM 40              |             |          |                 |  |  |
| GMW-10              | 06/30/04    | 0.5      | <2              |  |  |

## Table #8 Geoprobe Monitoring Wells

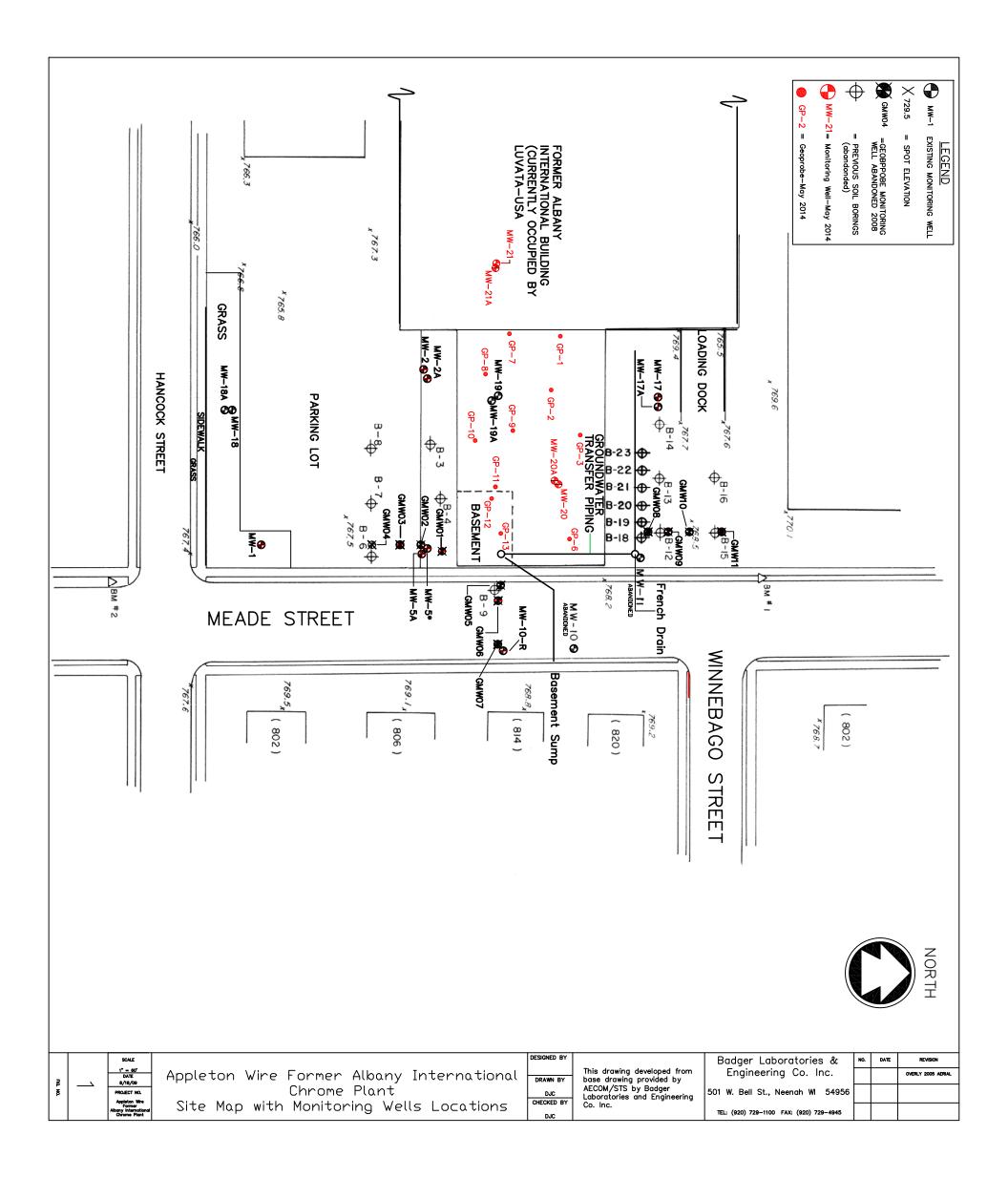
## **GROUNDWATER ANALYTICAL RESULTS Total Chromium and Hexavalent Chromium**

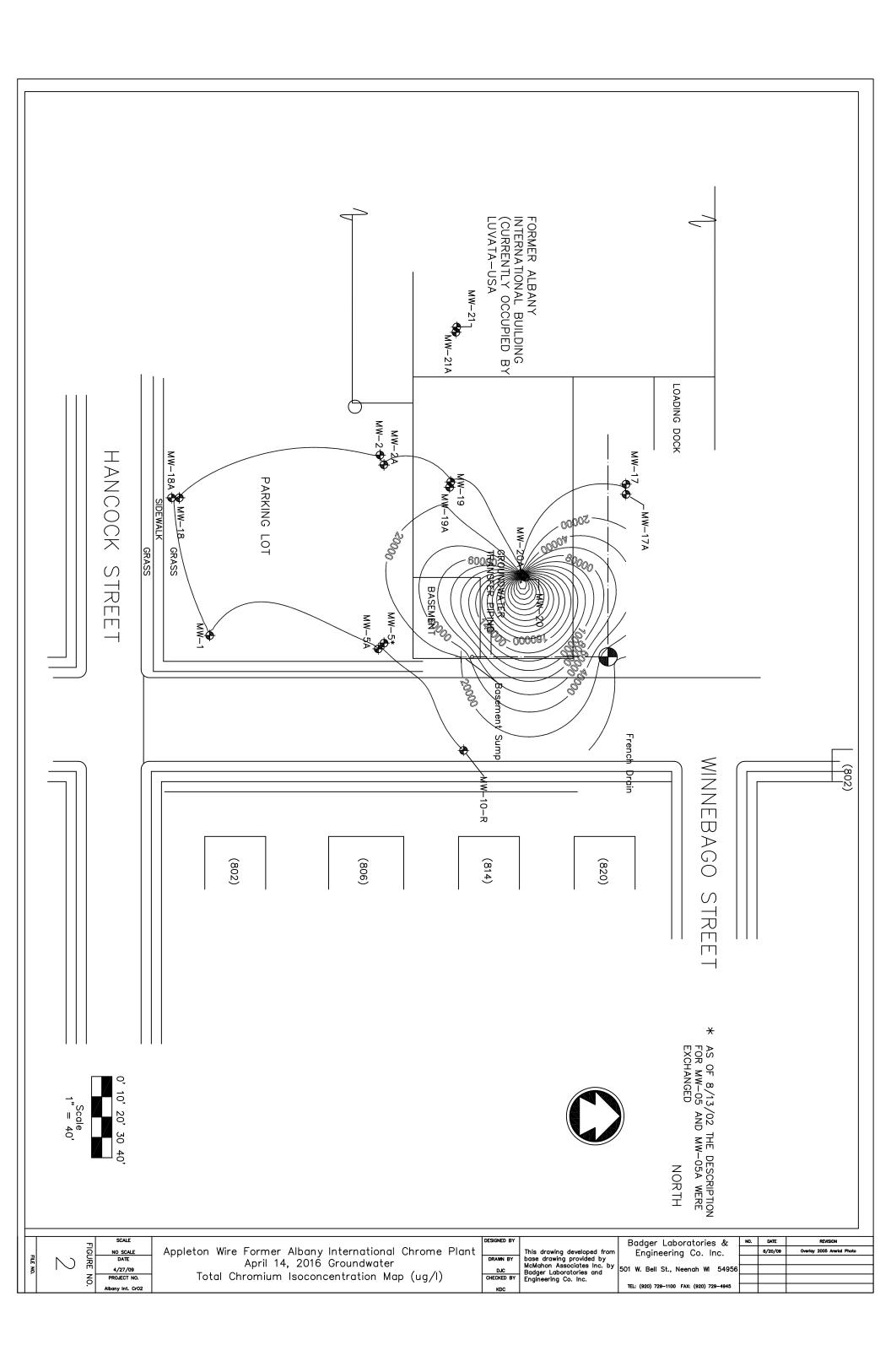
#### Appleton Wire Former Albany International Chrome Plant Appleton, Wisconsin

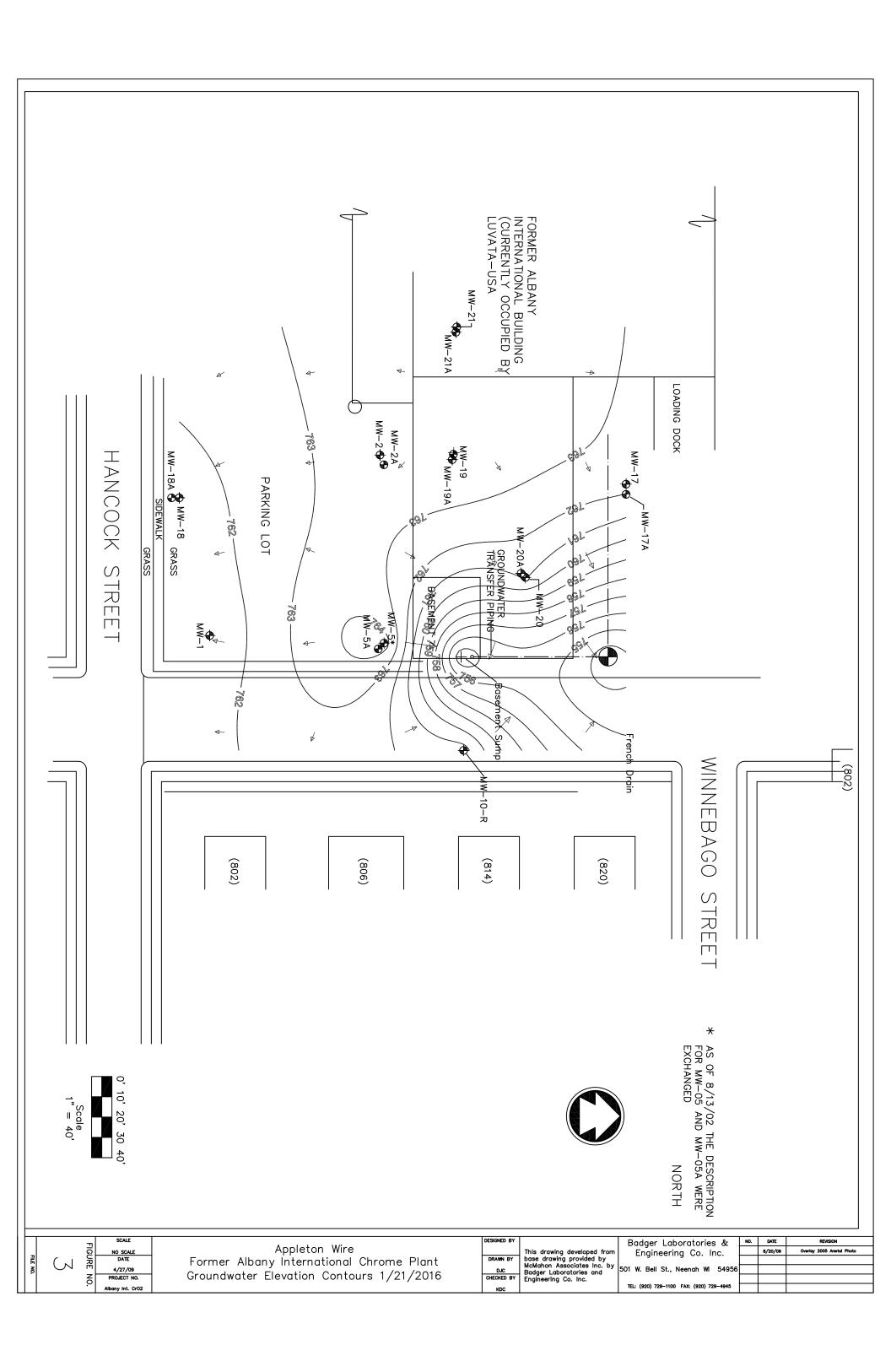
| Appleton, Wisconsin                     |          |       |       |  |  |
|-----------------------------------------|----------|-------|-------|--|--|
|                                         | 08/01/04 | 0.6   | N/A   |  |  |
|                                         | 10/24/07 | 11.0  | <2.0  |  |  |
|                                         | 01/16/08 | 0.5   | <.002 |  |  |
|                                         | 04/23/08 | 2.6   | <2.0  |  |  |
| GMW-11                                  | 06/30/04 | 1.1   | <2    |  |  |
|                                         | 08/01/04 | 1.9   | N/A   |  |  |
|                                         | 10/24/07 | 3.6   | <2.0  |  |  |
|                                         | 01/16/08 | 5.6   | <.002 |  |  |
|                                         | 04/23/08 | 4.1   | <2.0  |  |  |
| Enforcement Standard, Chapter NR140     |          | 100.0 | ***   |  |  |
| Preventive Action Limit, Chpater NR 140 |          | 10.0  | ****  |  |  |

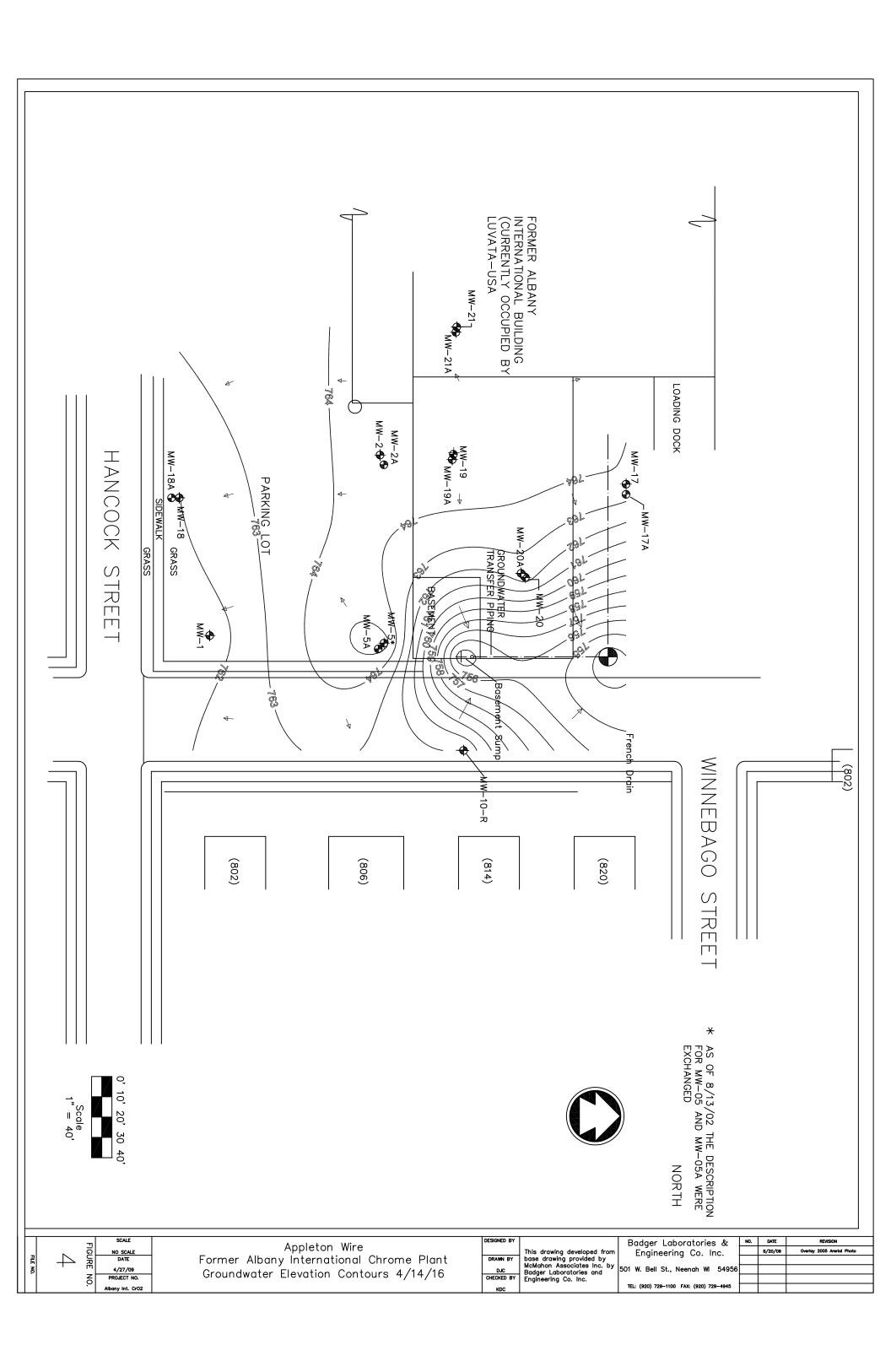
#### **EXPLANATION:**

\*\*\*\* = Hexavalent Chromi not have a State G Groundwater Quality Standard. However, Hexavalent Chromium is part of total chromium, which has a State Groundwater Quality Standard.


N/A = Not Analyzed


ug/l = Microgram / Liter (ppb)


100 = Exceeds Enforcement Standards (ES), Chapter NR 140of the Wis. Admin. Cc


121 = Exceeds Preventive Action Limit (PAL), Chapter NR 140 of the Wis. Admin. (


## **Figures**







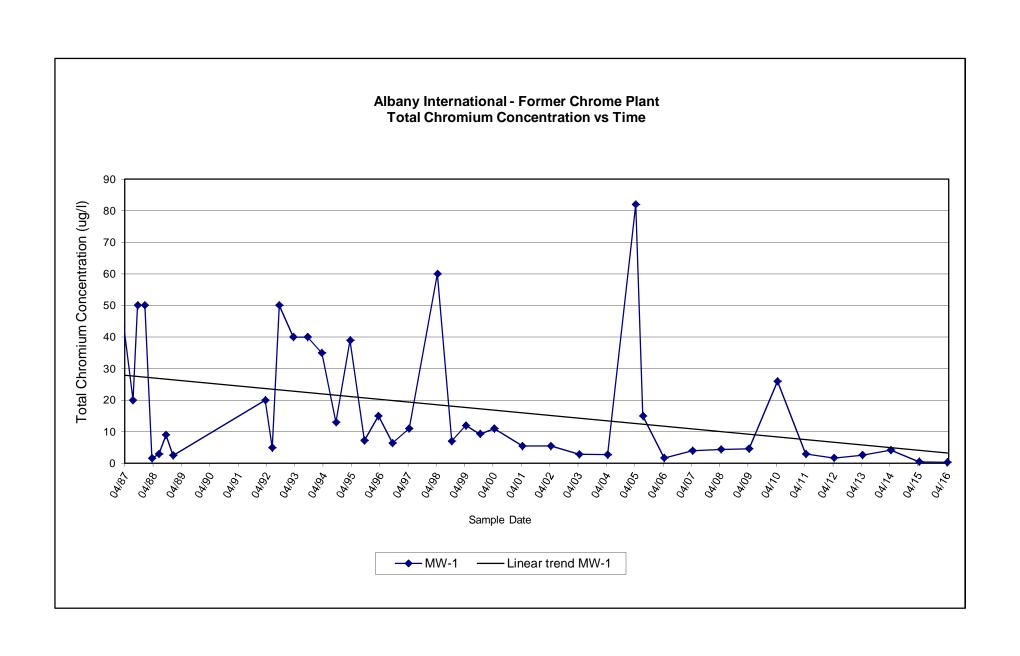


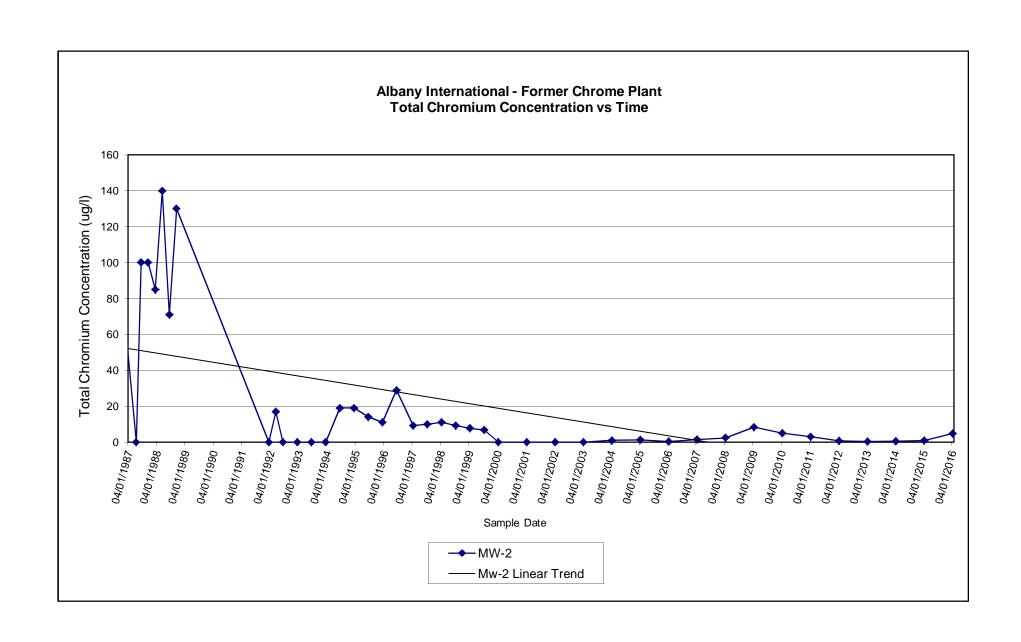


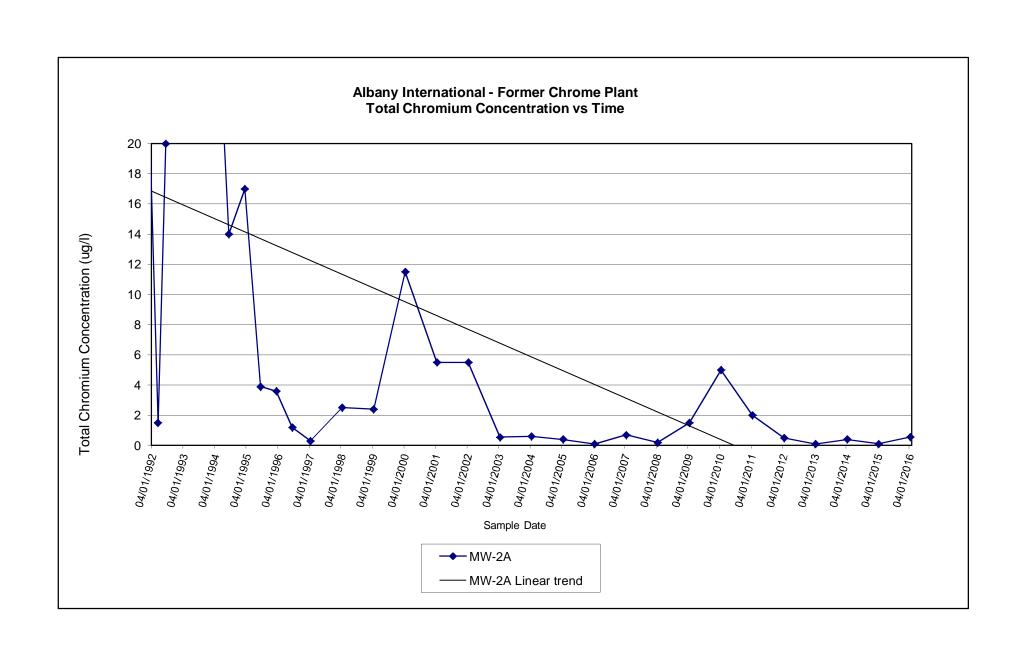


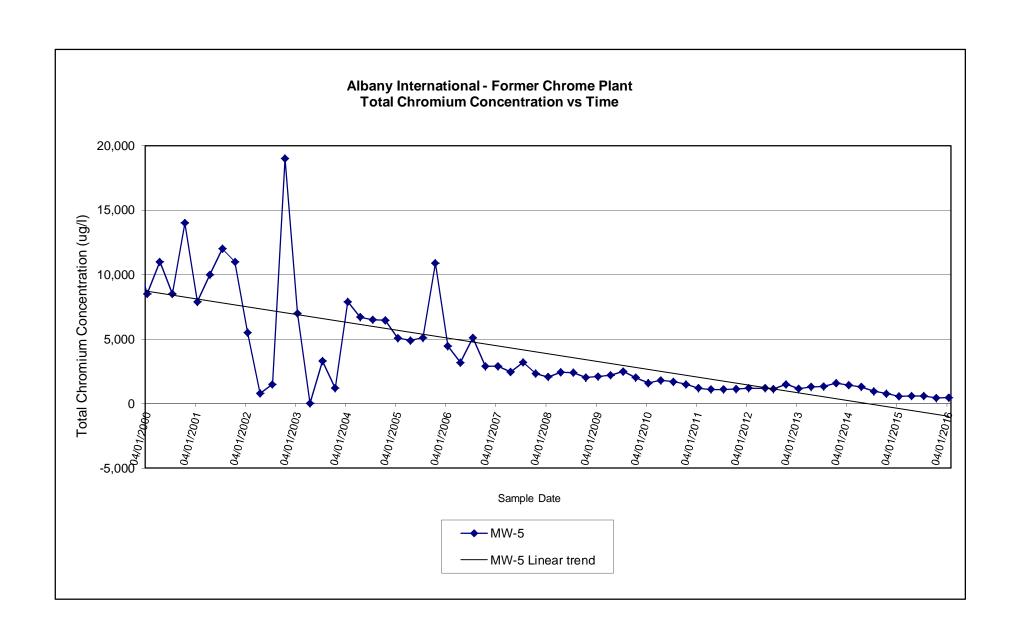
This drowing developed from Engineering Co. Inc. symmetric provided by Spirit S

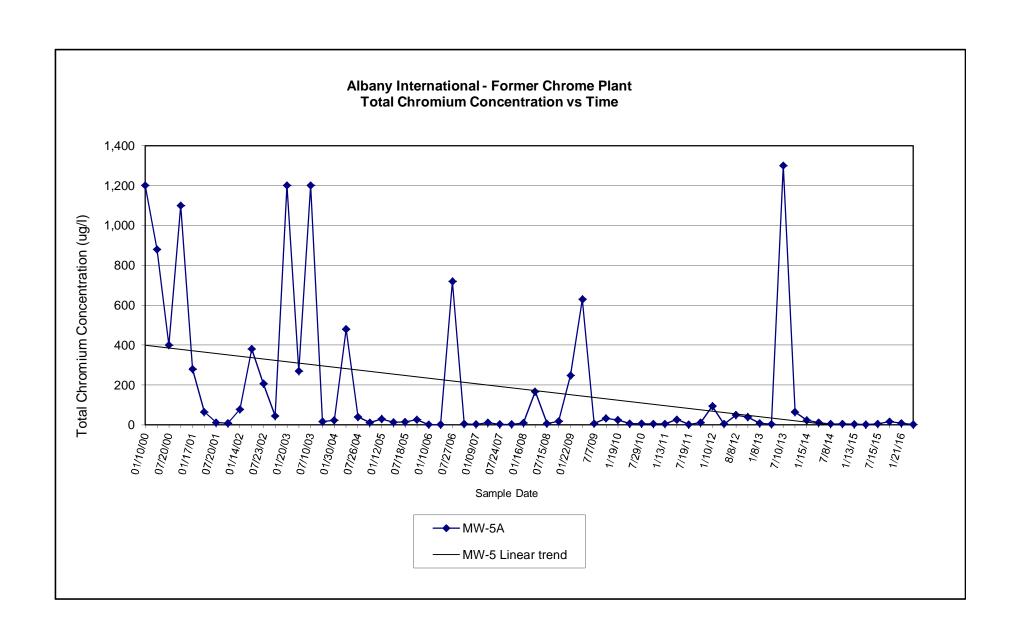
Appleton Wire Former Albany International Chrome Plant Site Layout on 2005 Aerial Photo

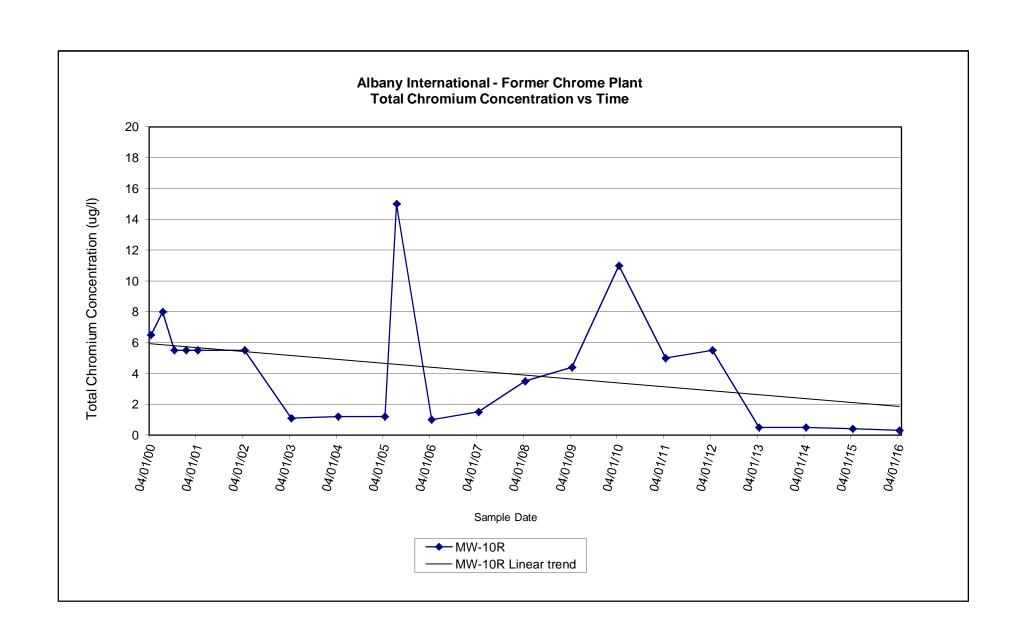

FIGURE NO.

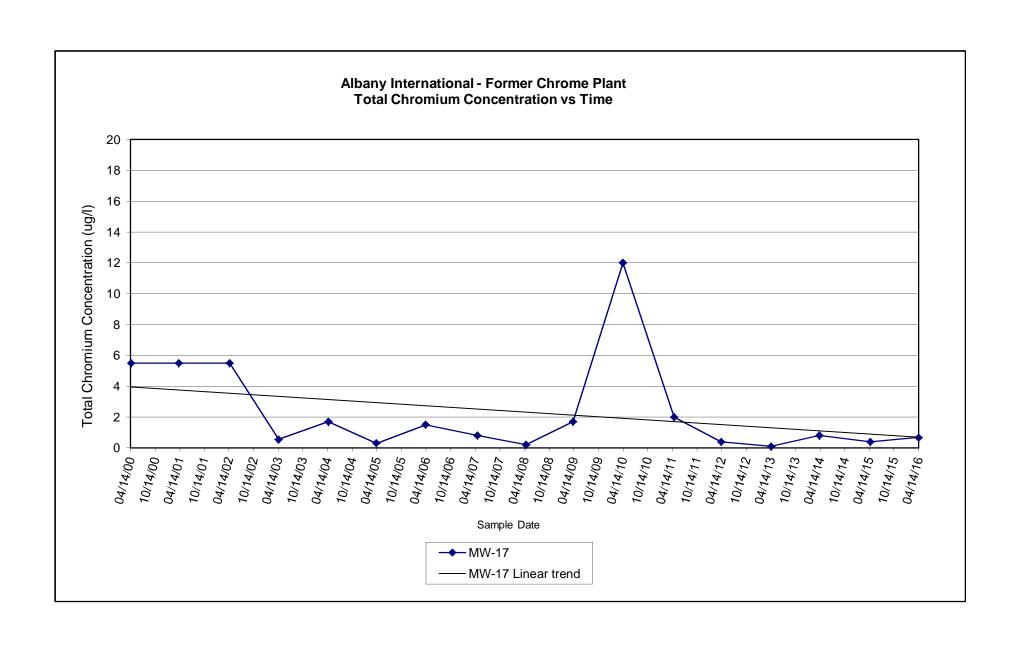

5

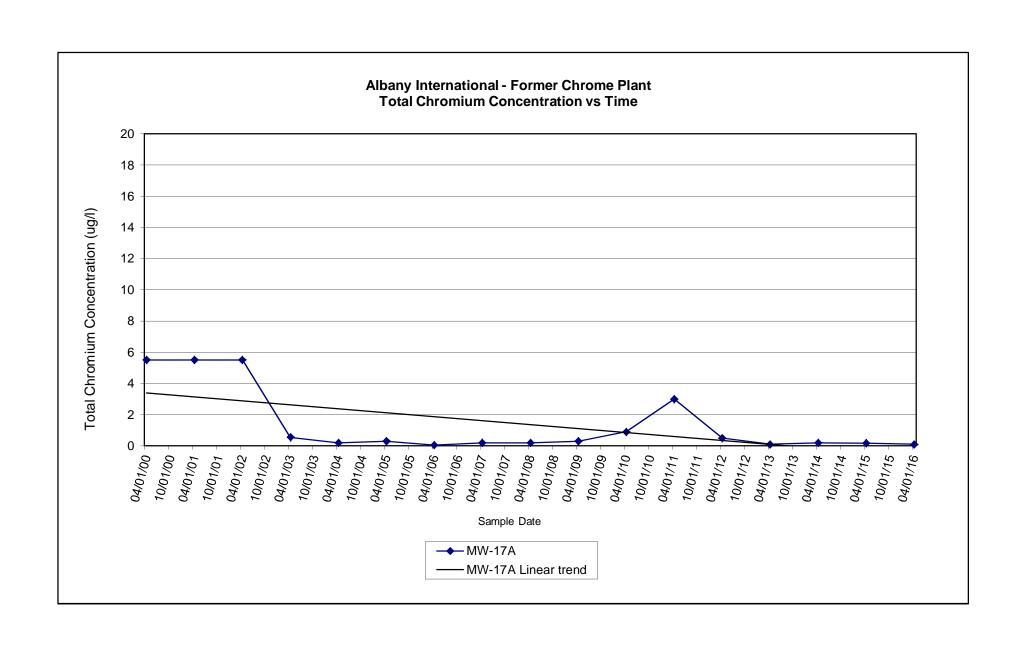

9' 20' 40' 60 80' Scale 1" = 80'

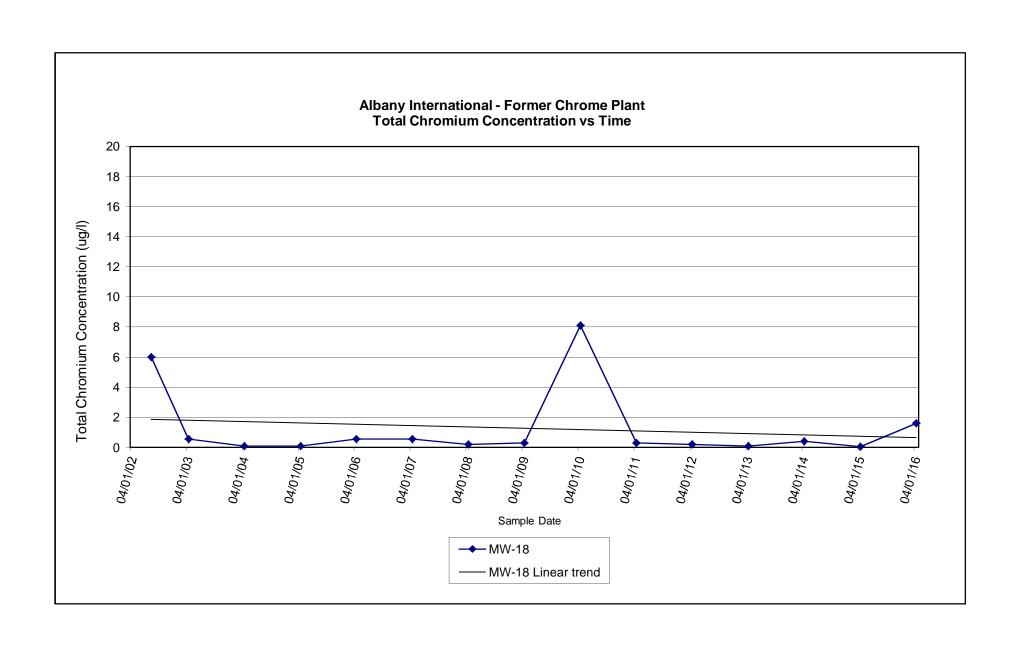

#### **APPENDIX A**

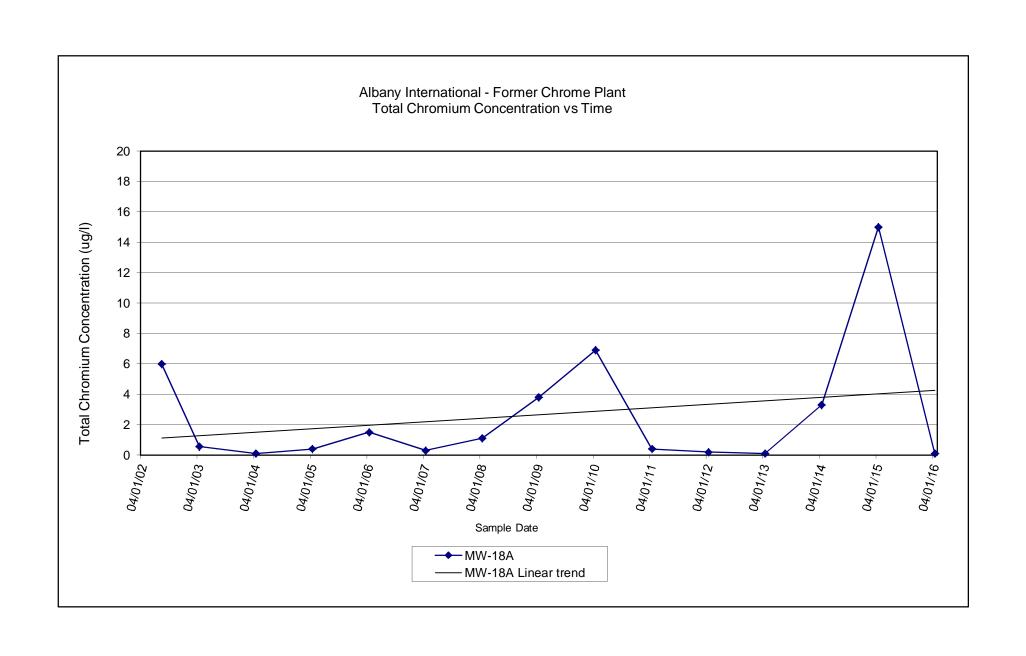

Concentration Versus Time Graphs – All Wells, Sump and French Drain

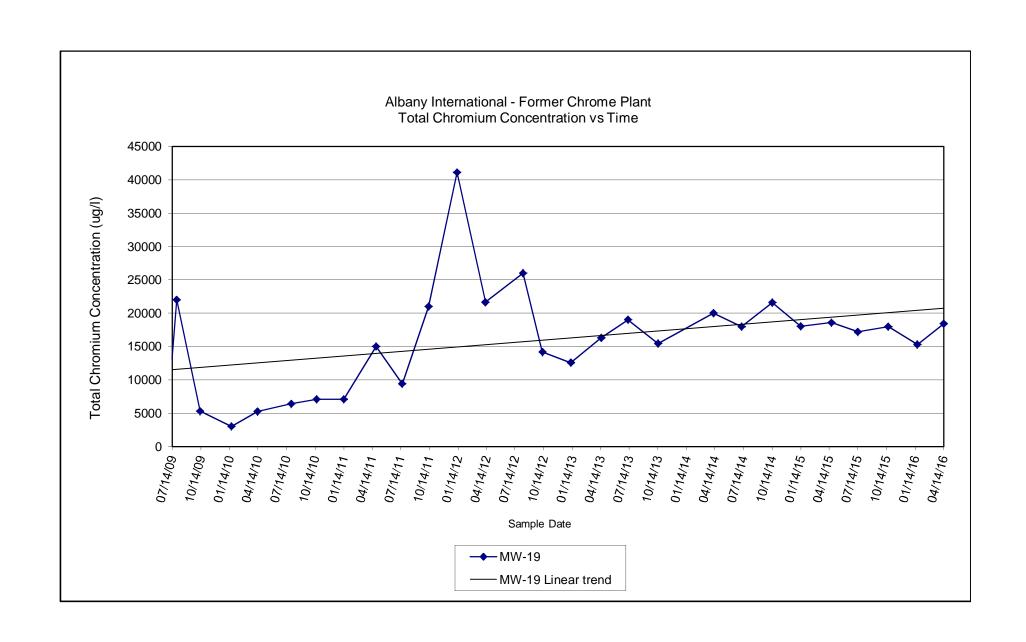


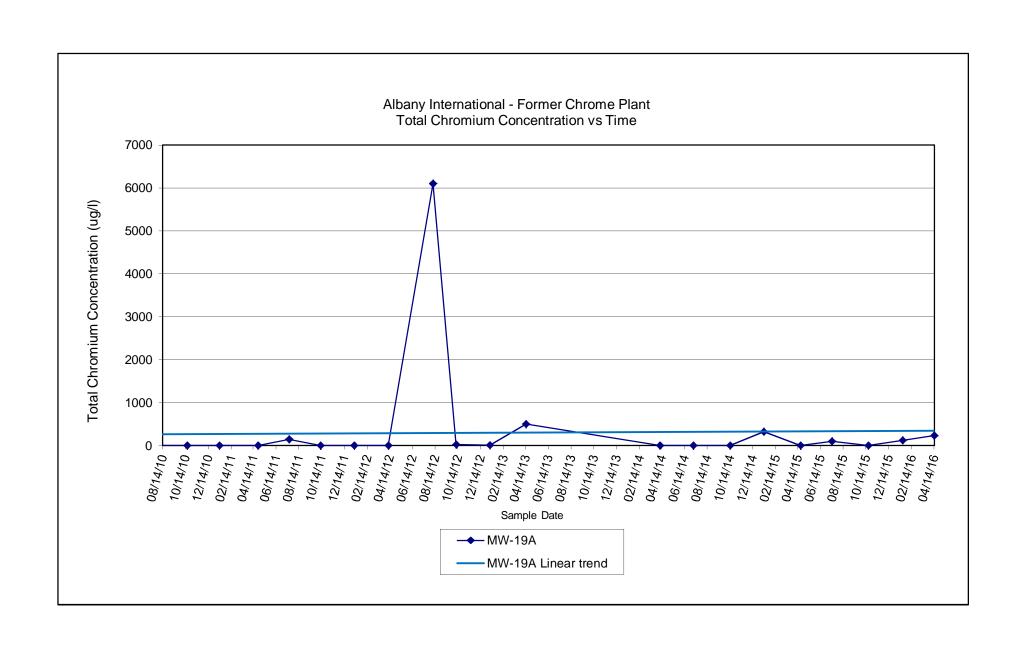



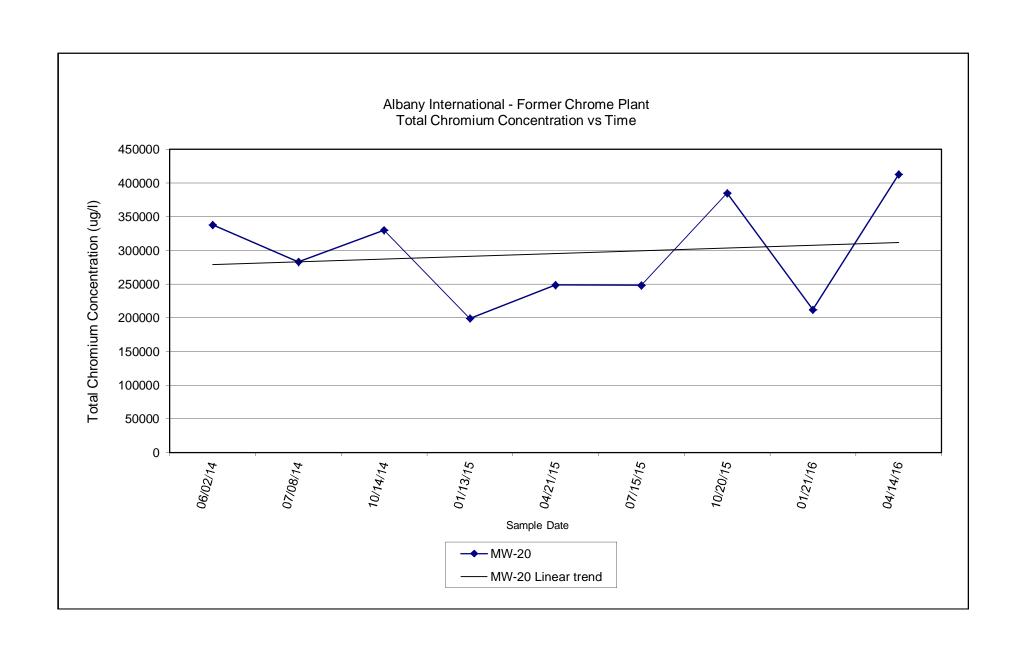



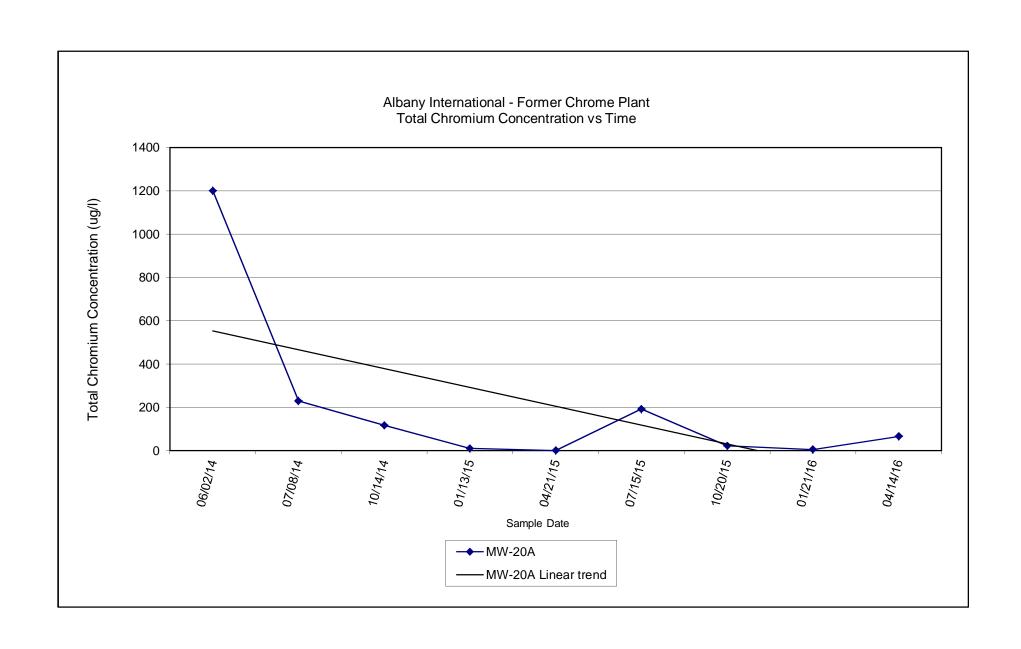



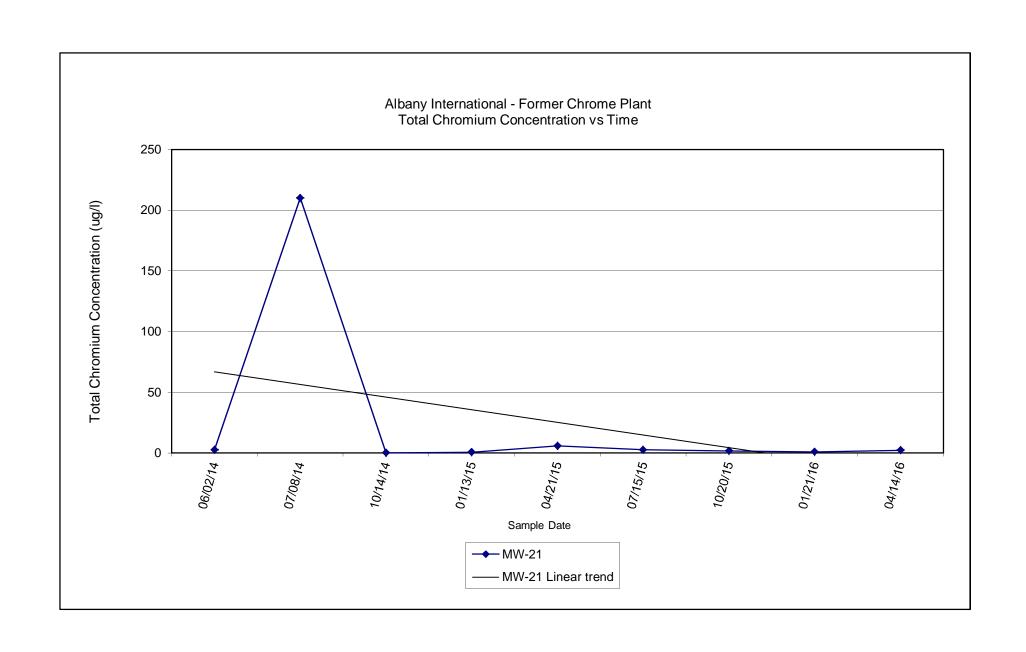



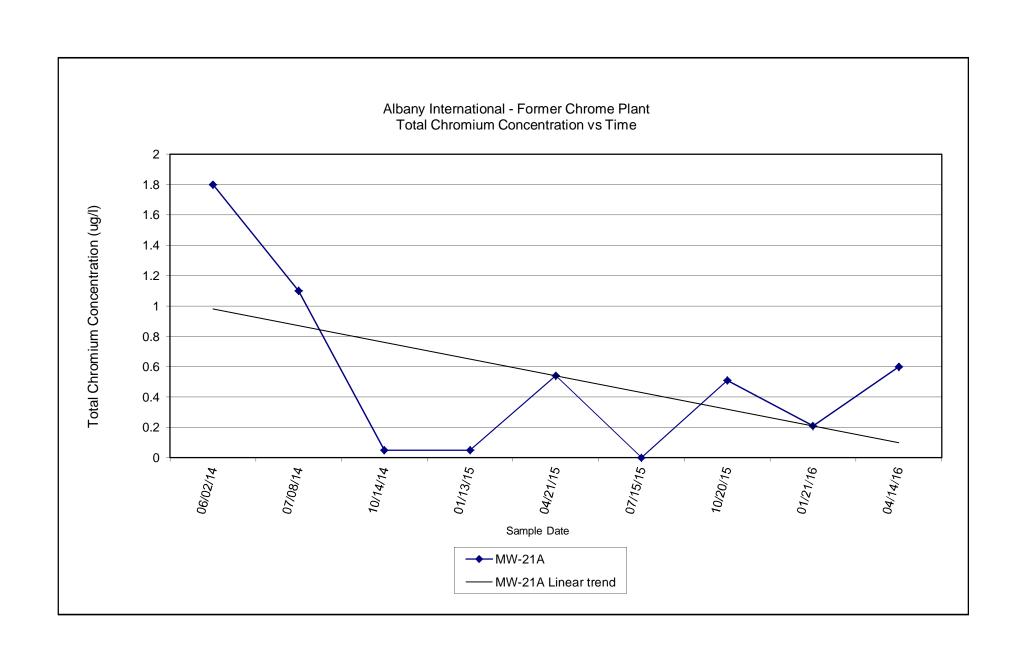



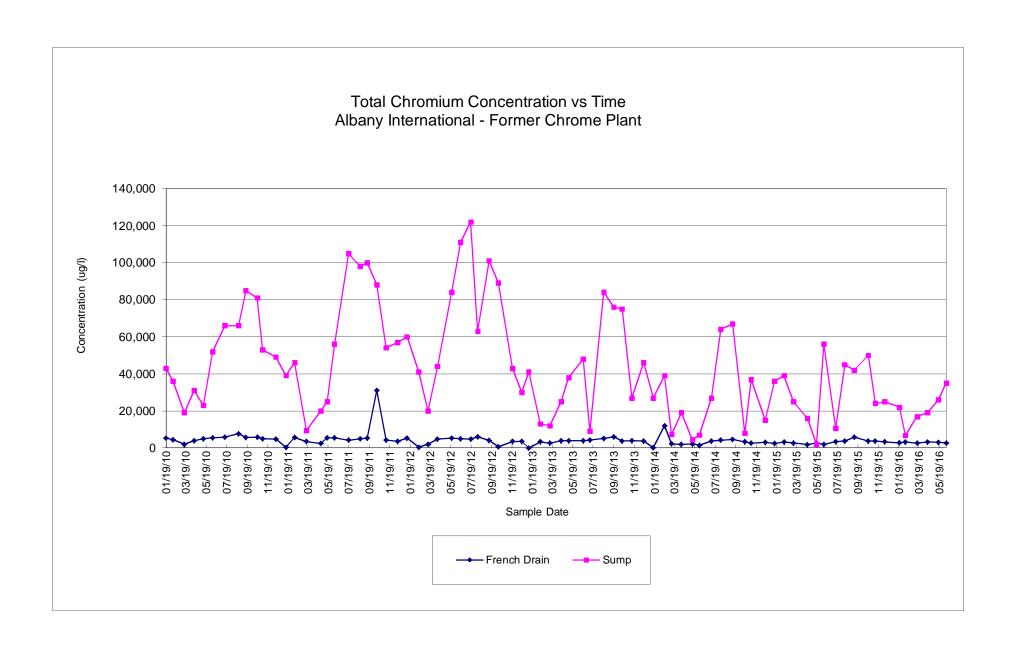



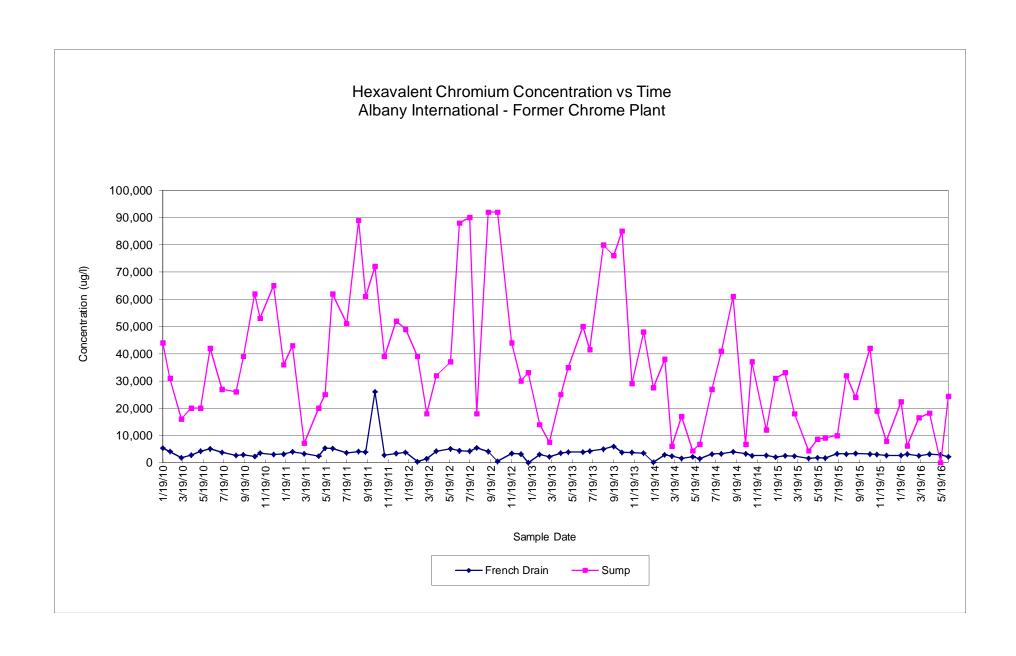



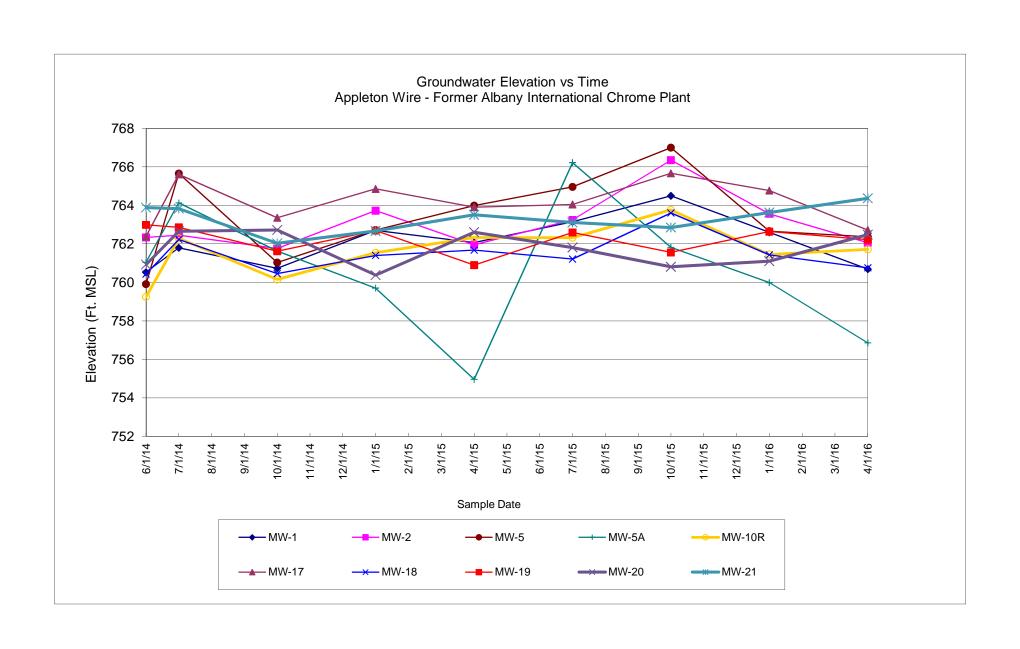












## **APPENDIX B**

**Groundwater Elevations Versus Time – All Wells** 



## **APPENDIX C**

Operation & Maintenance Report Form 4400-194 State of Wisconsin Department of Natural Resources PO Box 7921, Madison WI 53707-7921 dnr.wi.gov

# Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 1/14)

Page 1 of 29

**Notice:** Pursuant to ss. NR 700.11(1) and 724.13(3), Wis. Adm. Code, this form is required to be completed or a narrative report or letter containing the equivalent information required in this form may be submitted in lieu of the actual form. Failure to submit this form as required is a violation and is subject to the penalties as stated in s. 292.99, Wis. Stats. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Open Records Law (ss. 19.31-19.39, Wis. Stats.). *Unless otherwise noted, all citations refer to Wisconsin Administrative Code*.

**GENERAL INSTRUCTIONS, PURPOSE AND APPLICABILITY OF THIS FORM:** Completion of this form is required under s. NR 700.11(1) and s. NR 724.13(3), Wis. Adm. Code. A narrative report or letter containing the equivalent information required in this form may be submitted in lieu of the actual form. Failure to submit this form as required is a violation of s. NR 700.11(1) and s. NR 724.13(3), Wis. Adm. Code, and is subject to the penalties in s. 292.99, Wis. Stats. This form must be submitted every six months for remediation projects that are regulated under the NR 700 series of Wis. Adm. Code. Specifically, for sites meeting any of the following criteria:

- Any site where a discharge has occurred that report progress in accordance with s. NR 700.11(1), Wis. Adm. Code until site closure is granted. This
  includes sites where no response activities occurred during the six month reporting period. Attach, if applicable, a separate brief summary of the
  work completed during the reporting period and the anticipated future work.
- Soil or groundwater remediation projects that report operation and maintenance progress in accordance with s. NR 724.13(3), Wis. Adm. Code.

Note: Long-term monitoring results submitted in accordance with s. NR 724.17(3), Wis. Adm. Code are required to be submitted within 10 business days of receiving sampling results and are not required to be submitted using this form. However, portions of this form require monitoring data summary information that may be based on information previously submitted in accordance with s. NR 724.17(3), Wis. Adm. Code.

Note: Responsible parties should check with the State Project Manager assigned to the site to determine if this form is required to be submitted at sites responded to under the Federal Comprehensive Environmental Response and Compensation Act (commonly known as Superfund) or an equivalent State lead Superfund response.

Note: Responsible parties should check with the State Project Manager assigned to the site to determine if any of the information required in this form may be omitted or changed and obtain prior written approval for any omissions or changes.

Submittal of this form is not a substitute for reporting required by Department programs such as Waste Water or Air Management. Personally identifiable information on this form is not intended to be used for any other purpose than tracking progress of the remediation by the Bureau for Remediation and Redevelopment.

Only complete and submit all of page GI-1 and Section E on pages 3 and 4 for sites where a discharge has been reported but no response, monitoring or remediation has begun or occurred during the six month reporting period that are required to report only under s. NR 700.11(1), Wis. Adm. Code and attach, if applicable, a summary of the anticipated future work.

#### Section GI - General Site Information

| A Constal Information                | Offication        |               | _   |                             |               |         |              |          |            |           |
|--------------------------------------|-------------------|---------------|-----|-----------------------------|---------------|---------|--------------|----------|------------|-----------|
| A. General Information  1. Site name |                   |               |     |                             |               |         |              |          |            |           |
| Appleton Wire-Albany Inter           | national Former C | Chrome Plant  | ţ   |                             |               |         |              |          |            |           |
| 2. Reporting period from:            | 01/01/2016        | To: 0         | 6/3 | 0/2016                      | Days in       | period: |              |          | 182        |           |
| 3. Regulatory agency (enter DN       | R, DCOM, DATCP    | and/or other) | 4.  | BRRTS ID No                 | . (2 digit pr | ogram-2 | digit        | county-6 | digit site | specific) |
| WDNR                                 |                   |               | 02  | 2-45-000015                 |               |         |              |          |            |           |
| 5. Site location<br>Region           | County            |               |     | Address                     |               |         |              |          |            |           |
| Northeast Region                     | Outagamie         |               |     | 908 North L                 | awe Stree     | t       |              |          |            |           |
| Municipality name                    | Town O Village    |               |     |                             | Township      | Range   | <b>⊙</b> E   | Section  | 1/4        | 1/4 1/4   |
| Appleton                             |                   |               |     |                             | 21 N          | 17      | $\bigcirc$ W | 25       | NW         | NW        |
| 6. Responsible party<br>Name         |                   |               |     | 7. Consultant Select if the | e following   | informa | tion h       | as chan  | ged since  | the last  |
| Albany International Formin          | g Fabrics Divisio | n             |     | └─ submittal                |               |         |              |          |            |           |
| Mailing address                      |                   |               | 7   | Company nam                 | е             |         |              |          |            |           |
| PO Box 1939, Appleton, WI            | 54913-1939        |               |     | Stoeger & As                | sociates,     | LLC     |              | ····     |            |           |
| Phone number                         |                   |               | -   | Mailing addres              | s             |         |              |          | Phone nur  | nber      |
|                                      | 725-2600          |               |     | 527 South Sto               | ory St, Ap    | pleton, | WI 5         | 4914     | (920) 42   | 28-9513   |

8. Contaminants

Chromium

| Site name: Appleton Wire-Albany International Former Chrome Plant                                                                      | <ul> <li>Remediation Site Progress and Operation,</li> <li>Maintenance, Monitoring &amp; Optimization</li> </ul> |                                         |              |                                              |                 |
|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|----------------------------------------------|-----------------|
| Reporting period from: <u>01/01/2016</u> To: <u>06/30/2016</u>                                                                         |                                                                                                                  | Monitori                                | ng & O       | ptim                                         | ization         |
| Days in period: 182                                                                                                                    | Report<br>Form 4400-194 (R1                                                                                      | /14)                                    |              |                                              | Page 2 of 29    |
| 9. Soil types (USCS or USDA)<br>Clay/Silty Clay                                                                                        |                                                                                                                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              |                                              |                 |
| 10. Hydraulic conductivity(cm/sec):                                                                                                    | . Average linear velocit                                                                                         | y of groundwa                           | ater (ft/yr) | ······································       |                 |
| 1 X 10 -2                                                                                                                              | 002                                                                                                              |                                         |              |                                              |                 |
| 12. If soil is treated ex situ, is the treatment location off site? Yes                                                                | No No                                                                                                            |                                         |              |                                              |                 |
| If yes, give location: Region                                                                                                          | County                                                                                                           |                                         |              |                                              |                 |
| Municipality name City Town Village                                                                                                    | Township<br>N                                                                                                    | Range ⊝E<br>⊝W                          | Section      | 1/4                                          | 1/4 1/4         |
| B. Remediation Method                                                                                                                  |                                                                                                                  |                                         |              | <u>.                                    </u> |                 |
| Only submit sections that apply to an individual site. Check all that app                                                              | oly:                                                                                                             |                                         |              |                                              |                 |
| Groundwater extraction (submit a completed Section GW-1).                                                                              |                                                                                                                  |                                         |              |                                              |                 |
| Free product recovery (submit a completed Section GW-1).                                                                               |                                                                                                                  |                                         |              |                                              |                 |
| In situ air sparging (submit a completed Section GW-2).                                                                                |                                                                                                                  |                                         |              |                                              |                 |
| Groundwater natural attenuation (submit a completed Section GW-                                                                        | -3).                                                                                                             |                                         |              |                                              |                 |
| Other groundwater remediation method (submit a completed Section                                                                       | ·                                                                                                                |                                         |              |                                              |                 |
| Soil venting (including soil vapor extraction building venting and bid                                                                 | *                                                                                                                | leted Section                           | IS-1).       |                                              |                 |
| Soil natural attenuation (submit a completed Section IS-2).                                                                            | ,                                                                                                                |                                         | ,            |                                              |                 |
| Other in situ soil remediation method (submit a completed Section                                                                      | IS-3).                                                                                                           |                                         |              |                                              |                 |
| Biopiles (submit a completed Section ES-1).                                                                                            | •                                                                                                                |                                         |              |                                              |                 |
| Landspreading/thinspreading of petroleum contaminated soil (subn                                                                       | nit a completed Section                                                                                          | ES-2).                                  |              |                                              |                 |
| Other ex situ remediation method (submit a completed Section ES                                                                        | -3).                                                                                                             |                                         |              |                                              |                 |
| Site is a landfill (submit a completed Section LF-1).                                                                                  |                                                                                                                  |                                         |              |                                              |                 |
| C. General Effectiveness Evaluation for All Active Systems                                                                             |                                                                                                                  |                                         |              |                                              |                 |
| If the remediation is active (not natural attentuation), complete this sub                                                             | section                                                                                                          |                                         |              |                                              |                 |
| ·                                                                                                                                      | res () No                                                                                                        |                                         |              |                                              |                 |
| If the answer is no, explain whether or not modifications are necess                                                                   | •                                                                                                                | that was prev                           | iously est   | ablishe                                      | ed in design.   |
| if the answer is no, explain whether or not meaning are necess                                                                         | ary to dome to the goar                                                                                          | mat was prov                            | loudly out   |                                              | ,a iii addigiii |
| Are modifications to the system warranted to improve effectiveness                                                                     | ◯ Yes <b>④</b> No                                                                                                |                                         |              |                                              |                 |
| If yes, explain:                                                                                                                       |                                                                                                                  |                                         |              |                                              |                 |
|                                                                                                                                        | ◯ Yes <b>⊚</b> No                                                                                                |                                         |              |                                              |                 |
| 4. Is closure sampling warranted at this time? Yes   No                                                                                |                                                                                                                  |                                         | _            |                                              |                 |
| 5. Are there any modifications that can be made to the remediation to                                                                  | improve cost effectiven                                                                                          | ess?                                    | Yes 🔘 N      | lo                                           |                 |
| If yes, explain: A remedial action plan detailing the installation of an additio warehouse area is under review by the facility owner. | nal groundwater coll                                                                                             | ection trench                           | system       | in the                                       |                 |

| Site name: Appleton Wire-Albany Internation           | nal Former Chrome Plant                              | Remediation Site Progres                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reporting period from: 01/01/2016                     | To: <u>06/30/2016</u>                                | Maintenance, Monitoring                                                                                                                                                                  | & Optimization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Days in period: 182                                   | •                                                    | Report<br>Form 4400-194 (R 1/14)                                                                                                                                                         | Page 3 of 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| D. Economic and Cost Data to Date                     |                                                      |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1. Total investigation cost: \$45,00                  | 00.00                                                |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2. Implementation costs (design, capita               | and installation costs, e                            | excluding investigation costs: \$10,000.0                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3. Total costs during the previous repor              | ting period: \$18,0                                  | 00.00                                                                                                                                                                                    | PROPERTY OF THE PROPERTY OF TH |
| 4. Total costs during this reporting period           | od: \$15,000.00                                      |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5. Total anticipated costs for the next re            | eporting period: \$                                  |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Are any unusual or one-time costs list fyes, explain: | sted in the reporting perio                          | ods covered by D.3., D.4. or D.5. above? (                                                                                                                                               | Yes  No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7. If closure is anticipated within 12 mor            | nths, estimated costs for                            | project closeout:                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| E. Name(s), Signature(s) and Date o                   | f Person(s) Submitting                               | g Form                                                                                                                                                                                   | a de la companya de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                       | on, monitoring or an inve                            | bmit reports under ch. NR 712 Wis. Adm. Code estigation. Other persons may sign this form for                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Registered Professional Engineers:                    |                                                      |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| of ch. A-E 4, Wis. Adm. Code; that this               | document has been prep<br>st of my knowledge, all in | ne State of Wisconsin, registered in accordance<br>pared in accordance with the rules of Professio<br>iformation contained in this document is correct<br>NR 700 to 726, Wis. Adm. Code. | nal Conduct in ch. A-E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Print name                                            |                                                      | Title                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Signature                                             |                                                      | Date                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Hydrogeologists:                                      |                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                       | this document is correct                             | ed in s. NR 712.03(1), Wis. Adm. Code, and that<br>and the document was prepared in compliance                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Print name Mark Love                                  |                                                      | Title Profession Sal Scientel                                                                                                                                                            | - Project Mgr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Signature Inc                                         |                                                      | August 24,2016                                                                                                                                                                           | / 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                       |                                                      | NR 712.03(3), Wis. Adm. Code, and that, to th cument was prepared in compliance with all app                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Print name                                            |                                                      | Title                                                                                                                                                                                    | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Signature                                             |                                                      | Date                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Other Persons:                                        |                                                      | en e                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Print name                                            |                                                      | Title                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Signature                                             |                                                      | Date                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Site name: Appleton Wire-Albany Internation | onal Former Chrome Plant | Remediation Site Progress and Operation |                |  |
|---------------------------------------------|--------------------------|-----------------------------------------|----------------|--|
| Reporting period from: 01/01/2016           | To: 06/30/2016           | Maintenance, Monitoring                 | & Optimization |  |
| Days in period: 182                         |                          | Report Form 4400-194 (R 1/14)           | Page 4 of 29   |  |
| Professional Seal(s), if applicable:        |                          |                                         |                |  |
|                                             |                          |                                         |                |  |
|                                             |                          |                                         |                |  |
|                                             |                          |                                         |                |  |
|                                             |                          |                                         |                |  |
|                                             |                          |                                         |                |  |
|                                             |                          |                                         |                |  |
|                                             |                          |                                         |                |  |

| Site name: Appleton Wire-Albany International Former Chrome Plant |                                                                                                                                                                         |                         | Remediation Site Progress and Operation |                          |                  |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------|--------------------------|------------------|--|
| Reporting period from: <u>01/01/2016</u> To: <u>06/30/2016</u>    |                                                                                                                                                                         | 06/30/2016              |                                         | e, Monitoring &          | Optimization     |  |
| Day                                                               | s in period: 182                                                                                                                                                        |                         | Report<br>Form 4400-194 (               | R 1/14)                  | Page 5 of 29     |  |
| 200                                                               | ction GW-1, Groundwater Pump and Trea<br>Groundwater Extraction System Operation                                                                                        |                         | e Product Recove                        | ry Systems               |                  |  |
| 1. T                                                              | otal number of groundwater extraction wells o                                                                                                                           | or trenches available:  | 2 and the                               | e number in use during   | period: 2        |  |
|                                                                   | lumber of days of operation (only list the number 82                                                                                                                    | ber of days the syster  | m actually operated, i                  | if unknown explain:      |                  |  |
|                                                                   | System utilization in percent (days of operation $00$                                                                                                                   | n divided by reporting  | time period multiplied                  | d by 100). If < 80%, exp | blain:           |  |
| <b>4</b> . C                                                      | Quantity of groundwater extracted during this t                                                                                                                         | ime period:             | 55,540 g                                | allons                   |                  |  |
| 5. A                                                              | Average groundwater extraction rate:                                                                                                                                    | 0.21 gpm                |                                         |                          |                  |  |
| 6. 0                                                              | Quantity of dissolved phase contaminants rem                                                                                                                            | oved during this time   | period in pounds:                       | 5.22                     | lbs              |  |
|                                                                   | Free Product Recovery System Operation                                                                                                                                  |                         |                                         |                          |                  |  |
|                                                                   | s free product (nonaqueous phase liquid) bein<br>f yes, explain:                                                                                                        | ig recovered at this si | te? ○ Yes <b>⊙</b> N                    |                          |                  |  |
| 2.                                                                | Quantity of free product extracted during this t                                                                                                                        | time period (enter non  | e if none):                             | 0 gallo                  | ons              |  |
| 3. /                                                              | Average free product extraction rate:                                                                                                                                   |                         | jpm                                     |                          |                  |  |
| 1.                                                                | System Effectiveness Evaluation Is a contaminated groundwater plume fully co If no, explain:                                                                            | ontained in the capture | e zone?                                 |                          |                  |  |
|                                                                   | If free product is present, is the free product for If no, explain:                                                                                                     | ully contained in capti | ure zone?                               |                          | ○ Yes ○ No       |  |
| 3.                                                                | If free product is present in any wells at the si                                                                                                                       | ite, but free product w | as not recovered dur                    | ing reporting period, ex | xplain:          |  |
|                                                                   | If free product is not present, determine the si<br>ES and PAL. Perform this calculation for all or<br>highest contaminant concentration measured<br>PRODUCT" in C.4.a. | ontaminants that were   | e present at the site t                 | hat have ch. NR 140 st   | andards. Use the |  |
|                                                                   | a. Contaminant:                                                                                                                                                         |                         | Chromium                                |                          |                  |  |
|                                                                   | b. Percent reduction necessary to reach ch. N                                                                                                                           | NR 140 ES and PAL:      | 99.99 %                                 |                          |                  |  |
|                                                                   | c. Maximum contaminant concentration level                                                                                                                              | in any monitoring wel   | l of that contaminant                   | 412,750                  | μg/L             |  |
|                                                                   | d. Maximum contaminant concentration level                                                                                                                              | in any extraction well  | of that contaminant:                    | 26,000                   | μg/L             |  |

| Site name: Appleton Wire-Albany International Former Chrome Plant                                                                 |                                                                                                                                           | Remediation Site Progress and Operation                                                                                                                                                                         |                                                              |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
| Reporting period from: 01/01/2016                                                                                                 | To: <u>06/30/2016</u>                                                                                                                     | Maintenance, Monitoring                                                                                                                                                                                         | & Optimization                                               |  |
| Days in period: 182                                                                                                               |                                                                                                                                           | Report Form 4400-194 (R 1/14)                                                                                                                                                                                   | Page 6 of 29                                                 |  |
| extraction well, explain why locations within the aquifer. The high chromium consecond plating line. The monitoring wells outside | the extracted groundwater contartentrations in MW-20 (412,750 area is assumed to be an isolat of the area do not show contartentrations.) | t one order of magnitude above the concernination levels are significantly less than the ug/l) are in an area that housed a received area of high contamination as soil be minant levels near those shown in MW | e levels at other  orthogology  orings and  7-20. A remedial |  |
| action plan to collect and                                                                                                        | treat the contaminated ground                                                                                                             | dwater from the area of MW-20 is curr                                                                                                                                                                           | ently under review by                                        |  |

Remediation Site Progress and Operation,

#### D. Additional Attachments

Attach the following to this form:

the facility owner.

- Most recent report to the DNR Wastewater Program, if applicable.
- Groundwater contour map with capture zone indicated.
- Groundwater contaminant distribution map (may be combined with contour map).
- Graph of cumulative contaminant removal, if both free product recovery and ground water extraction are used, provide separate
- Time versus groundwater contaminant concentration graphs for the contaminant listed in C.4.a. (above), as follows:
  - Graph of contaminant concentrations versus time for each extraction well in use during the period.
  - Graph of contaminant concentrations versus time for the monitoring well with the greatest level of contamination.
- Groundwater contaminant chemistry table.
- Groundwater elevations table.
- System operational data table.

| Site | e name: <u>Appleton Wire-Albany Internati</u>                                           | onal Former Chrome Plant                                |                                                                                                                            | ogress and Operation,           |
|------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Re   | porting period from: 01/01/2016                                                         | To: <u>06/30/2016</u>                                   | Maintenance, Monito                                                                                                        | oring & Optimization            |
| Эα   | ys in period: 182                                                                       |                                                         | Report<br>Form 4400-194 (R 1/14)                                                                                           | Page 7 of 29                    |
| Š    | ction GW-2, In Situ Air Spargin                                                         | g Systems                                               |                                                                                                                            |                                 |
| Α.   | In Situ Air Sparging System Op                                                          | eration                                                 |                                                                                                                            |                                 |
| 1.   | Number of air injection wells at the                                                    | site and the number actually                            | in use during the period:                                                                                                  | 0                               |
| 2.   | Number of days of operation (only                                                       | list the number of days the sy                          | stem actually operated, if unknown e                                                                                       | explain):                       |
| 3.   | System utilization in percent (days                                                     | of operation divided by report                          | ting time period multiplied by 100). It                                                                                    | f < 80%, explain:               |
| 3.   | System Effectiveness Evaluation                                                         | on                                                      |                                                                                                                            |                                 |
| 1.   | ES and PAL. Perform this calculate                                                      | tion for all contaminants that w                        | hat requires the greatest percent red<br>ere present at the site that have ch.<br>pints during reporting period. If free p | NR 140 standards. Use the       |
|      | a. Contaminant:                                                                         |                                                         |                                                                                                                            |                                 |
|      | b. Percent reduction necessary to                                                       | reach ch. NR 140 ES and PAI                             | L: %                                                                                                                       |                                 |
|      | c. Maximum contaminant concent                                                          | ration level in any monitoring v                        | vell: µg.                                                                                                                  | /L                              |
| 2.   | Is there any evidence that air is shalf yes, explain:                                   | ort circuiting through natural o                        | r man-made pathways? Yes(                                                                                                  | ) No                            |
| 3.   | Is the size of the plume:                                                               | easing ( ) Stabalized ( ) Dec                           | reasing ?                                                                                                                  |                                 |
|      | If increasing, explain:                                                                 |                                                         |                                                                                                                            |                                 |
| Ξ.   | Additional Attachments                                                                  |                                                         |                                                                                                                            |                                 |
| ٩tt  | ach the following to this form:                                                         |                                                         |                                                                                                                            |                                 |
|      | Groundwater contour map.                                                                |                                                         |                                                                                                                            |                                 |
|      |                                                                                         | stribution map (may be combined by biodegradable attach | ned with contour map).<br>a dissolved oxygen in groundwater n                                                              | nan (dissalved avvaen may he    |
|      | combined with the contamina                                                             |                                                         | a dissolved oxygen in groundwater in                                                                                       | iap (dissolved oxygen may be    |
|      | Site map with all air injection                                                         | wells and groundwater monito                            |                                                                                                                            |                                 |
|      | •                                                                                       |                                                         | ontaminant listed in B.1.a. (above) fo                                                                                     | r the monitoring point with the |
|      | <ul> <li>greatest level of contamination</li> <li>Groundwater contaminant ch</li> </ul> |                                                         |                                                                                                                            |                                 |
|      | Groundwater elevations table                                                            | •                                                       |                                                                                                                            |                                 |

System operational data table.

| Site name: Appleton Wire-Albany International Former Chrome Plant                                                                                                                                                                                      | Remediation Site Progress and Operation    |                        |              |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------|--------------|--|
| Reporting period from: <u>01/01/2016</u> To: <u>06/30/2016</u>                                                                                                                                                                                         | Maintenance, Monit                         | oring & Optim          | ization      |  |
| Days in period: 182                                                                                                                                                                                                                                    | Report Form 4400-194 (R 1/14)              |                        | Page 8 of 29 |  |
| Section GW-3, Natural Attenuation (Passive Bioremediation)  A. Effectiveness Evaluation                                                                                                                                                                | on) in Groundwater                         |                        |              |  |
| <ol> <li>If free product is not present, determine the single contaminant that rec<br/>Perform this calculation for all contaminants that were present at the sit<br/>concentration measured in any sampling points during reporting period</li> </ol> | te that have ch. NR 140 standards. Use the | ne highest contaminant |              |  |
| a. Contaminant:                                                                                                                                                                                                                                        | Chromium                                   |                        |              |  |
| b. Percent reduction necessary to reach ch. NR 140 ES and PA                                                                                                                                                                                           | AL: 99.99 %                                |                        |              |  |
| c. Maximum contaminant concentration level in any monitoring                                                                                                                                                                                           | well of that contaminant:                  | 412,750                | μg/L         |  |
| 2. Aquifer parameters:                                                                                                                                                                                                                                 |                                            |                        |              |  |
| a. Hydraulic conductivity:                                                                                                                                                                                                                             |                                            | 1 X 10-7               | cm/sec       |  |
| b. Groundwater average linear velocity:                                                                                                                                                                                                                |                                            | 0.002                  | ft/yr        |  |
| 3. Is there a downgradient monitoring well that meets ch. NR 140                                                                                                                                                                                       | standards? • Yes O No                      |                        |              |  |
| 4. Based on water chemistry results, is the plume:   Expanding                                                                                                                                                                                         | Stabalized ○ Contracting ?                 |                        |              |  |
| 5. If the answer in 4. (above) is "expanding," is natural attenuation                                                                                                                                                                                  | n still the best option? O Yes O N         | 0                      |              |  |
| If yes, explain:                                                                                                                                                                                                                                       |                                            |                        |              |  |
| 6. Biodegradation parameters:                                                                                                                                                                                                                          |                                            |                        |              |  |
| a. Upgradient (or other site specific background) DO level:                                                                                                                                                                                            |                                            |                        | μg/L         |  |
| b. DO levels in the part of the plume that is most heavily contain                                                                                                                                                                                     | minated                                    |                        | μg/L         |  |
| 7. Is site closure a viable option within 12 months from the date of                                                                                                                                                                                   | f this form? Yes No                        |                        |              |  |
| 8. Are there any modifications that can improve cost effectiveness<br>If yes, explain:                                                                                                                                                                 | s? Yes  No                                 |                        |              |  |
| Have groundwater table fluctuations changed the contaminant<br>if yes, explain:                                                                                                                                                                        | level trends over time? Yes                | No                     |              |  |
| 10. Has the direction of groundwater flow changed during the rep                                                                                                                                                                                       | orting period? Yes  No                     |                        |              |  |
| If yes, approximate change in degrees:                                                                                                                                                                                                                 |                                            |                        |              |  |

Attach the following:

- Groundwater contour map.
- Groundwater contaminant distribution map (may be combined with contour map).
- When contaminants are aerobically biodegradable, attach a dissolved oxygen in groundwater map (dissolved oxygen may be combined with the contaminant data on a single map).
- Graph of contaminant concentrations versus time for the contaminant listed in A.1.a. (above) for the monitoring point with the greatest level of contamination.
- Graph of contaminant concentrations versus distance.
- · Groundwater contaminant chemistry table.
- Groundwater biological parameters.
- · Groundwater elevations table.

| Site name: Appleton Wire-Albany International Former Chrome Plant |                                                                                                                                                                  |                                                           | Remediation Site Progress and Operation |             |                      |              |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|-------------|----------------------|--------------|
|                                                                   | Reporting period from: <u>01/01/2016</u> To: <u>06/30/2016</u>                                                                                                   |                                                           |                                         | ce, Mon     | itoring & Opti       | mization     |
| D                                                                 | ays in period: <u>182</u>                                                                                                                                        |                                                           | <b>leport</b><br>orm 4400-194           | (R 1/14)    |                      | Page 9 of 29 |
|                                                                   | ection GW-4, Other Groundwater Ren                                                                                                                               | nediation Methods                                         |                                         |             |                      |              |
| A                                                                 | . Effectiveness Evaluation                                                                                                                                       |                                                           |                                         |             |                      |              |
| 1.                                                                | If free product is not present, determine the significant this calculation for all contaminants the concentration measured in any sampling point                 | at were present at the site that have                     | ch. NR 140 sta                          | ndards. Use | the highest contamin | ant          |
|                                                                   | a. Contaminant:                                                                                                                                                  | Chro                                                      | mium                                    |             |                      |              |
|                                                                   | b. Percent reduction necessary: 99.99                                                                                                                            | %                                                         |                                         |             |                      |              |
|                                                                   | c. Maximum contaminant concentration le                                                                                                                          | evel in any monitoring well:                              | 412,750                                 | ) μ         | g/L                  |              |
| 2                                                                 | . Is the size of the plume:   Increasing (                                                                                                                       | Stabalized    Decreasing 1                                | >                                       |             |                      |              |
| 3.                                                                | Describe the method used to remediate good Groundwater from underneath the for chromium is removed through an ion Appleton wastewater facility and the recycled. | rmer chrome plant is collected exchange process. Wastewat | er from the p                           | process is  | discharged to the    | City of      |
| 4                                                                 | . List any additional information required b                                                                                                                     | y the DNR for this method for this                        | s site:                                 |             |                      |              |

Attach the following:

- · Groundwater contour map.
- Groundwater contaminant distribution map (may be combined with contour map).
- When contaminants are aerobically biodegradable, attach a dissolved oxygen in groundwater map (dissolved oxygen may be combined with the contaminant data on a single map).
- Graph of contaminant concentrations versus time for the contaminant listed in A.1.a. (above) for the monitoring point with the greatest level of contamination.
- Groundwater contaminant chemistry table.
- · Groundwater elevations table.
- Any other attachments required by the DNR for this remediation method.

| Site name: Appleton Wire-Albany Internation                                                     | nal Former Chrome Plant                                | Remediation Site Progi                                   | •                         |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|---------------------------|
| Reporting period from: 01/01/2016                                                               | To: 06/30/2016                                         | Maintenance, Monitorir                                   | ng & Optimization         |
| Days in period: 182                                                                             |                                                        | Report<br>Form 4400-194 (R 1/14)                         | Page 10 of 29             |
| Section 15-1, Soil Venting (Includin                                                            | ig Soll Vapor Extraction, E                            | Building Venting and Bloventing)                         |                           |
| A. Soil Venting Operation                                                                       |                                                        |                                                          |                           |
| <b>Note:</b> This form is not required for buil<br>and are not considered part of ongoing       |                                                        | s that are installed proactively to protect              | building occupants/users  |
| 1. Number of air extraction wells availa                                                        | ble and number of wells actua                          | ally in use during the period:                           |                           |
| 2. Number of days of operation (only lis                                                        | st the number of days the syst                         | tem actually operated, if unknown expla                  | in):                      |
| 3. System utilization in percent (days o                                                        | f operation divided by reportin                        | ng time period multiplied by 100). If < 80               | )%, explain:              |
| 4. Average depth to groundwater:                                                                | gpm                                                    |                                                          |                           |
| B. Building Basement/Subslab Ven                                                                |                                                        |                                                          |                           |
| <ol> <li>Number of venting points available a</li> </ol>                                        | nd number of points actually                           | in use during the period:                                |                           |
| 2. Number of days of operation (only lis                                                        | t the number of days the syst                          | tem actually operated, if unknown expla                  | in):                      |
| 3. System utilization in percent (days o                                                        | of operation divided by reporting                      | ng time period multiplied by 100). If < 8                | 0%, explain:              |
| If the venting system is passive, note the restore it.                                          | nat here and describe if any pa                        | art of the system was not functioning an                 | nd what was done to       |
| C. Effectiveness Evaluation                                                                     |                                                        |                                                          |                           |
| 1. Average contaminant removal rate for                                                         | or the entire system:                                  | pounds per day                                           |                           |
| 2. Average contaminant removal rate p                                                           | er well or venting point:                              | pounds per day                                           |                           |
| <ol><li>If the average contaminant removal<br/>rate per well is less than one tenth o</li></ol> |                                                        | er day for the entire system, or if the avene following: | erage contaminant removal |
| a. If contaminants are aerobically bid                                                          | odegradable and confirmation                           | borings have not been drilled in the pas                 | st year:                  |
| i. Oxygen levels in extracted air:                                                              | percent                                                |                                                          |                           |
| ii. Methane levels in extracted air                                                             | (ppm <sub>V</sub> ) If over 10 ppm <sub>V</sub> , expl | lain:                                                    |                           |
| iii. If methane is not present above                                                            | e 10 ppmv and if oxygen is gr                          | reater than 20 percent in extracted air, y               | ou should either:         |

- Drill confirmation borings during the next reporting period, if the entire site should be considered for closure.
- Or, perform an in situ respirometry test in a zone of high contamination. Do not perform the test in an air extraction well, use a gas probe or water table well. If a zero order rate of decay based on oxygen depletion is less than 2 mg/kg per day, then you should drill confirmation borings, if the entire site should be considered for closure. If the rate of decay is between 2 and 10 mg/kg, operate for one more reporting period before evaluating further. If the zero order rate of decay is greater than 10 mg/kg total hydrocarbons, continue operating the system in a manner than maximizes aerobic biodegradation.
- b. If contaminants are not aerobically biodegradable and confirmation borings have not been recently drilled during the past year, you should drill confirmation borings during the next reporting period if the entire site should be considered for closure.
- c. If soil borings were drilled during the past year and soil contamination remains above acceptable levels, explain if the system effectiveness can be increased and/or if other options need to be considered to achieve cleanup criteria.

- Well and soil sample location map indicating all air extraction wells. If forced air injection wells are also in use, identify those
- If water table monitoring wells are present at the site, a map of well locations.
- Time versus vapor phase contaminant concentration graph.
- Time versus cumulative contaminant removal graph.
- Groundwater elevations table, if water table wells are present at the site; also list screen lengths and elevations.
- Table of soil contaminant chemistry data.
- Soil gas data, if gas probes are used to monitor subsurface conditions in locations other than where air is extracted.
- System operational data table.

| Site name: Appleton Wire-Albany International Former Chrome Plant |                      | ome Plant         | Remediation Site Progress and Operation,      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|-------------------------------------------------------------------|----------------------|-------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Reporting period from: 01/01/2016                                 | To: <u>06/3</u> 0    | 0/2016            | Maintenance, Monitoring & Optimization        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Days in period: 182                                               |                      |                   | Report Form 4400-194 (R 1/14)                 | Page 11 of 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| Section IS-2, Natural Attenuat                                    | on (Passive Blor     | remediation) in   | Soll                                          | 12 (20 m) (4 |  |  |  |
| A. Effectiveness Evaluation                                       |                      |                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| Soil gas information in the soil t                                | hat is most contam   | inated from a pe  | ermanently installed gas probe(s) or water to | able monitoring well(s).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| a. Hydrocarbon levels:                                            |                      | ppm, with an      | FID                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| b. Oxygen levels:                                                 | percent              |                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| c. Carbon dioxide levels(specify                                  | ppm or percent):     |                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| d. Methane levels:                                                |                      | ppm               |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 2. Soil gas information in backgrou                               | und (uncontaminate   | ed soil) from per | manently installed gas probe(s)or water tab   | le monitoring well(s):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| a. Hydrocarbon levels:                                            |                      | ppm, with an      | FID                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| b. Oxygen levels:                                                 | percent              |                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| c. Carbon dioxide levels(specify                                  | ppm or percent):     |                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| d. Methane levels:                                                | -                    | ppm               |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| from prior sampling events.                                       |                      | . •               | s based on the most recent soil sampling ev   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| a. Total hydrocarbons (Specify                                    | if GRO and/or DRO    | O):               |                                               | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| b. Specific compounds (μg/kg):                                    |                      |                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| i. Benzene:                                                       |                      | µg/kg             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| ii. 1,2 Dichloroethane:                                           |                      | µg/kg             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| iii. Ethylbenzene:                                                |                      | μg/kg             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| iv. Toluene:                                                      |                      | µg/kg             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| v. Total xylenes:                                                 |                      | μg/kg             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 4. Is there any evidence that conta                               | aminants are leach   | ing into groundw  | rater? Yes No                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| If the answer is yes and if grour                                 | ndwater quality is n | ot being monitor  | red, explain:                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                   |                      |                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                   |                      |                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 5. Is site closure a viable option w                              | ithin 12 months from | m the date of thi | s form? Yes No                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 6. Are there any modifications that                               | can be made to th    | ne remediation to | improve cost effectiveness? O Yes             | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| If yes, explain:                                                  |                      |                   |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

- · Well and soil sample location map.
- Cross sections showing the water table, soil sampling locations, screened intervals for gas probes or water table wells, geologic contacts, and any former excavation boundaries.
- Graphs of contaminant concentrations, oxygen, carbon dioxide and methane levels over time.
- Groundwater elevations table, if water table wells are present at the site.
- Table of soil contaminant chemistry.
- Table of soil gas readings.

| Site name: Appleton Wire-Albany International Former Chrome Plant |                                | Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization |               |  |  |
|-------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------|---------------|--|--|
| Reporting period from: 01/01/2016                                 | To: <u>06/30/2016</u>          | Report Form 4400-194 (R 1/14)                                                   |               |  |  |
| Days in period: 182                                               |                                | Form 4400-194 (R 1/14)                                                          | Page 12 of 29 |  |  |
| Section IS-3, Other in Situ Soil Re                               | mediation Methods              |                                                                                 |               |  |  |
| A. Effectiveness Evaluation     Describe the method used to remed | liate soil at the site:        |                                                                                 | ,             |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
| 2. List all information required by the D                         | NR for this remediation metho  | nd for this site:                                                               |               |  |  |
| 2. List all morniation required by the b                          | Territor and remodication mean | od for this site.                                                               |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
|                                                                   |                                |                                                                                 |               |  |  |
| B. Additional Attachments                                         |                                |                                                                                 |               |  |  |
| Attach the following to this form:                                |                                |                                                                                 |               |  |  |
| <ul> <li>Any other attachments require</li> </ul>                 | ed by the DNR for this remedi  | ation method.                                                                   |               |  |  |

| Site name: Appleton Wire-Albany Internations                                                           |                                 | Kemediation Site Progre<br>Maintenance, Monitoring |               |
|--------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------|---------------|
| Reporting period from: 01/01/2016  Days in period: 182                                                 | To: <u>06/30/2016</u>           | Report Form 4400-194 (R 1/14)                      | •             |
|                                                                                                        |                                 | Form 4400-194 (R 1/14)                             | Page 13 of 29 |
| Section ES-1, Ex Situ Soil Treatmen  A. Effectiveness Evaluation                                       | it Using Bioplies               |                                                    |               |
| Volume of soil in the biopile (if multiple)                                                            | e biopiles, list number of pile | s and total volume):                               |               |
|                                                                                                        |                                 |                                                    |               |
| 2. Monitoring used to assess progress a                                                                |                                 | -                                                  |               |
| a. Vapor phase measurements of gas                                                                     | ses (average of all readings fi | rom most recent sampling event):                   |               |
| i. VOCs by FID:                                                                                        | ppm                             |                                                    |               |
| ii. Oxygen:percent                                                                                     |                                 |                                                    |               |
| iii. Carbon dioxide:per                                                                                | rcent                           |                                                    |               |
| iv. Methane:                                                                                           | ppm                             |                                                    |               |
| b. Soil temperature:°                                                                                  | F                               |                                                    |               |
| c. Soil moisture sensors, if used:                                                                     | percent                         |                                                    |               |
| 3. Treatment amendments added to the                                                                   | soil during construction:       |                                                    |               |
| <ul> <li>a. Artificial nutrients, excluding manur</li> <li>i. Types and total pounds added:</li> </ul> | ·e.                             |                                                    |               |
| ii. Nitrogen and phosphorous conte                                                                     | ent of the added amendment:     | percent                                            |               |
| b. Manure:                                                                                             | total pounds                    |                                                    |               |
| c. Natural organic materials (straw, w                                                                 | ood chips, etc.)(type and tota  | al pounds):                                        |               |
| 4. Forced air biopiles only answer the fo                                                              | llowina:                        |                                                    |               |
| a. Total air flow rate of the ventilation                                                              | •                               | scfm                                               |               |
| b. Average contaminant removal rate:                                                                   |                                 | pounds per day                                     |               |
| c. Average biodegradation rate based                                                                   |                                 | pounds per da                                      | v             |
|                                                                                                        |                                 | Only list the most recent results. If none of      | •             |
| a. Total hydrocarbons. Specify if GRC                                                                  | and/or DRO:                     | μg/kg                                              |               |
| b. Specific compounds (µg/kg):                                                                         |                                 |                                                    |               |
| i. Benzene:                                                                                            | μg/kg                           |                                                    |               |
| ii. 1,2 Dichloroethane:                                                                                | μg/kg                           |                                                    |               |
| iii. Ethylbenzene:                                                                                     | μg/kg                           |                                                    |               |
| iv. Toluene:                                                                                           | μg/kg                           |                                                    |               |
| v. Total xylenes:                                                                                      | μg/kg                           |                                                    |               |

- Figure showing the construction details of the biopile and any sampling locations within the biopile. Table of soil contaminant chemistry data.
- Table of operational data.

| Site name: Appleton Wire-Albany International Former Chrome Plant                                                                  |                       | Remediation Site Progress and Operation, |                             |  |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------|-----------------------------|--|
| Reporting period from: <u>01/01/2016</u> To: <u>06/30</u>                                                                          | To: <u>06/30/2016</u> | Maintenance, Monitorin                   | g & Optimization            |  |
| Days in period: 182                                                                                                                |                       | Report<br>Form 4400-194 (R 1/14)         | Page 14 of 29               |  |
| Section ES-2, Ex Situ Soil Treatment Using Lar<br>A. Effectiveness Evaluation                                                      | ndspreading/T         | <u> Phinspreading</u>                    |                             |  |
| 1. Method used: O landspreading o thinspreading                                                                                    | ng                    |                                          |                             |  |
| Note: For purposes of this form, "landspreading" is the native soil and planting crops or other plantimpervious base for aeration. |                       |                                          |                             |  |
| 2. Was any progress monitoring using field screening                                                                               | g on soil conduc      | cted during this reporting period? O Ye  | s O No                      |  |
| 3. If the answer to A.2. (above) is yes:                                                                                           |                       |                                          |                             |  |
| i. List monitoring method:                                                                                                         |                       |                                          |                             |  |
| ii. List monitoring results:                                                                                                       |                       |                                          |                             |  |
| 4. Is there any evidence of soil erosion at the landspr                                                                            | reading/thinspre      | eading location? Yes No                  |                             |  |
| 5. Spreading thickness:                                                                                                            | inches                |                                          |                             |  |
| 6. Type of crop planted (if thinspreading with no crop                                                                             | planted, so sta       | ate):                                    |                             |  |
| 7. Confirmation sampling date:                                                                                                     | Anticipate            | ed confirmation sampling date:           |                             |  |
| Most recent soil sample results, if soil samples for result of the most recent sampling round. If no sar                           |                       |                                          | ress. Only list the highest |  |
| a. Total hydrocarbons. Specify if GRO and/or DRO                                                                                   | D:                    | µg/kg                                    |                             |  |
| b. Specific compounds (μg/kg):                                                                                                     |                       |                                          |                             |  |
| i. Benzene:                                                                                                                        | μg/kg                 |                                          |                             |  |
| ii. 1,2 Dichloroethane:                                                                                                            | µg/kg                 |                                          |                             |  |
| iii. Ethylbenzene:                                                                                                                 | µg/kg                 |                                          |                             |  |
| iv. Toluene:                                                                                                                       | µg/kg                 |                                          |                             |  |
| v. Total xylenes:                                                                                                                  | µg/kg                 |                                          |                             |  |

B. Additional Attachments
Attach the following to this form:

- Map of the landspreading/thinspreading area. If soil samples have been collected, specify locations of samples and dates of sampling.
- Table of soil contaminant chemistry data.
- Table of any field screening results with dates of sample collection.

| Reporting period from: 01/01/20                                            | To: <u>06/30/20</u>                                                                                                                                     | 710                | Maintenance, Monitor                    | ing & Optimization           |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------------------------|------------------------------|
| Days in period: 182                                                        |                                                                                                                                                         |                    | <b>Report</b><br>Form 4400-194 (R 1/14) | Page 15 of 29                |
| Section ES-3, Landfills  Note: Reporting forms or r the place of this form |                                                                                                                                                         | Department approve | ed Operation and Maintenance            | Plan for a landfill may take |
| Specific Inspection Items                                                  | Potential Problem Areas                                                                                                                                 | Status             |                                         | Notes                        |
| Perimeter Security Fencing                                                 | Broken or missing wood slats, torn chain link fabric, barbed wire, other - list                                                                         |                    |                                         |                              |
| Entrance Gate and Locking<br>Mechanism                                     | Lock broken/missing, mechanism inoperative.                                                                                                             |                    |                                         |                              |
| Monitoring Wells and<br>Wellhead Covers                                    | Signs of tampering, casing damaged, lock missing.                                                                                                       |                    |                                         |                              |
| Final Cover Vegetation                                                     | Bare spots, stressed vegetation, deep rooted vegetation.                                                                                                |                    |                                         |                              |
| Final Cover Slope (explain below)                                          | Gullies, lack of vegetation, subsidence, ponding.                                                                                                       |                    |                                         |                              |
| Evidence of Burrowing<br>Animals                                           | Damage to final cover, evidence of waste.                                                                                                               |                    |                                         |                              |
| Stormwater Drainage<br>Channels                                            | Gullies, erosion, debris, culvert blocked.                                                                                                              |                    |                                         |                              |
| Passive Landfill Gas Venting<br>System                                     | Damaged or blocked vent risers, stressed vegetation.                                                                                                    |                    |                                         |                              |
| Active Landfill Gas Extraction<br>System                                   | Damaged or blocked piping, cleanouts, other blower flare, knockouts, etc.                                                                               |                    |                                         |                              |
| Leachate Collection System                                                 | Pumps, connection piping, collection system piping, extraction wells, collection tanks, tanker truck loading system or sanitary sewer discharge piping. |                    |                                         |                              |
| Access Road<br>Cover Mowing; Tall<br>Vegetation<br>Removal                 | Ponding, rutting, erosion, cracked or damaged pavement. Mowing and tall vegetation removal done to specified vegetation.                                |                    |                                         |                              |
| Summary of Deficiencies an                                                 | d/or Corrective Actions:                                                                                                                                |                    |                                         |                              |

Site name: Appleton Wire-Albany International Former Chrome Plant

Remediation Site Progress and Operation,

| Site name: Appleton Wire-Albany International Former Chrome Plant |                       | Remediation Site Progre                 |                  |
|-------------------------------------------------------------------|-----------------------|-----------------------------------------|------------------|
| Reporting period from: 01/01/2016                                 | To: <u>06/30/2016</u> | Maintenance, Monitoring                 | g & Optimization |
| Days in period: 182                                               |                       | <b>Report</b><br>Form 4400-194 (R 1/14) | Page 16 of 29    |

- Any photographs documenting problems and maintenance activities.
- Maps, drawings showing site features requiring maintenance.
  Records for leachate pumping/discharge/hauling.
  Records for active gas extraction volumes.

| Site name: Appleton Wire-Albany International Former Chrome Plant |                       | Remediation Site Progr           |                   |
|-------------------------------------------------------------------|-----------------------|----------------------------------|-------------------|
| Reporting period from: 01/01/2016                                 | To: <u>06/30/2016</u> | Maintenance, Monitorin           | ig & Optimization |
| Days in period: 182                                               |                       | Report<br>Form 4400-194 (R 1/14) | Page 17 of 29     |

#### Section INS- 1, Section by Section Instructions and Information

<u>Specific Section by Section Instructions for This Form.</u> The site name and reporting period is listed on every page. Then if the pages are inadvertently separated, that information can be used to determine which pages form the report.

#### **General Site Information**

- -- A.1. List the name as it appears on the DNR tracking system. If the person filling out the form does not know what the name on the tracking system is, use the name that the DNR used in the most recent correspondence.
- -- A.2. The reporting period should be either from January 1 to June 30 or July 1 to December 31 for active systems. For passive systems, use a calendar year basis. If however the report covers a newly installed system, list the actual startup date instead of January 1 or July 1. For new passive systems, use the first date that monitoring data is available as the date of startup.
- -- A.3. Enter all regulatory agencies that regulate the site.
- -- A.4. This form is a DNR form. For that reason, list the DNR site number. If there are other agencies regulating the site, listing identification numbers for other agencies is also recommended, but not mandatory, unless specified by those other agencies.
- A.5. If the information listed for the site location is not sufficient information for a person to use to drive to a site (example: no street address in a rural area), also include a map that is sufficient for a person to use to drive to the site. A U.S.
   G.S. topographic map that shows the site location may be used.
- -- A.8. List the contaminants that have at one time exceeded the PALs or Table Values in ch. NR 720. If GRO and/or DRO exceed the ch. NR 720 standards, also list GRO and/or DRO. Do not list other contaminants that have never exceeded state standards at the site. If more room is necessary, write "SEE ATTACHED SHEETS" and list all contaminants on a separate sheet.
- -- A.9. List the predominant soil types that are contaminated. If there is both contaminated soil and groundwater at the site, list soil types both above and below the water table. If only some soil is contaminated, do not list the soil types that are uncontaminated. If the site soils meet soil cleanup criteria, but groundwater is contaminated, so state that. Specify if the USCS or USDA system is used for soil descriptions. This line specifies soil because the vast majority of contaminated sites do not have contaminated bedrock. If bedrock is contaminated, also list that bedrock type.
- -- A.10.If the groundwater meets ch. NR 140 standards, enter "NA NO NR 140 EXCEEDANCES". Otherwise, list the estimated hydraulic conductivity and the method used to estimate it (bail-down tests, calculations based on grain size, pumping test, etc.) If the hydraulic conductivity has not been determined, state when the tests are to be conducted. When a number of test results are available, list the range of results and the geometric mean. If however some results have a low level of accuracy and some results have a high level of accuracy, you should only list the most accurate results. See the Section on aquifer testing in the Guidance on Design, Installation and Operation of Ground Water Extraction and Product Recovery Systems for more information.
- -- A.11. If the groundwater meets ch. NR 140 standards, enter "NA NO NR 140 EXCEEDANCES". Otherwise, enter groundwater average linear velocity as a function of hydraulic conductivity, effective porosity and the groundwater gradient. You should use the geometric mean from A.11. (above) and the most representative value for the gradient at the site. Estimate the effective porosity based on soil types and geologic origin of the soil. If there are reasons to believe that the average liner velocity estimate is less than the actual rate at the site, so state that reason. Secondary porosity effects, flow through submerged utility trenches, widespread contaminant distribution in low permeability soils, etc., are reasons to assume that the actual migration rate is much greater than the predicted average linear velocity. In such cases, you should explain the reasoning for doubting the predicted average linear velocity.
- A.12.If the information listed for the soil treatment location is not sufficient information for a person to use to drive to a site, also include a map that is sufficient for a person to use to drive to the site. A U.S.G.S. topographic map or a plat map that shows the site location may be used.

| Site name: Appleton Wire-Albany Internation | onal Former Chrome Plant | Remediation Site Progres |                |
|---------------------------------------------|--------------------------|--------------------------|----------------|
| Reporting period from: 01/01/2016           | To: <u>06/30/2016</u>    | Maintenance, Monitoring  | & Optimization |
| Days in period: 182                         |                          | Report (R 1/14)          | Page 18 of 29  |

-- B. Check all methods used at a site. For example, if groundwater extraction, free product recovery and soil venting are used, check all three methods and submit the additional pages for those methods. If dual-phase or bioslurping are used, these methods extract both air and groundwater, check boxes for and attach additional pages for both soil venting and pump and treat.

- -- C. Remediation systems that use any form of enhancement are considered "active" and sites where there are no enhancements of any kind are considered "passive" forms of remediation. For purposes of these forms, natural attenuation (also called naturally occurring bioremediation) is "passive" and all other remediation methods are "active" methods.
- -- C.1. Design flow rates refers to flow rates such as gallons per minute extracted by a ground water extraction system, standard cubic feet per minute extracted by a soil venting system, standard cubic feet per minute injected by an in situ air sparging system, etc. If the actual flow rate is within 80 percent of the rate predicted in the design, consider that as meeting the design specification.
- -- D. The cost data in this section is used by DNR staff to evaluate whether or not the selected remedy is the most cost effective remedy and whether or not system modifications may be warranted to improve efficiency and/or cost effectiveness. Responsible parties and consultants are encouraged to submit cost information so that DNR staff may assist responsible parties and consultants accomplish environmental cleanups in the most cost effective manner.

Total costs for past costs are all costs to date. This information is for all costs that were incurred to investigate and/ or remediate the site. These costs include but are not limited to: consulting labor and supplies, laboratory testing, transportation, equipment, etc. If the consultant does not pass all costs through the consulting firm, the consultant will need to contact their client for other non-consulting costs to determine total costs. Exceptions include costs for attorney fees, accounting, claim assistance in preparing claims to state reimbursement funds, or other indirect expenses that are not essential to remediating the site.

- -- D.2. The initial implementation costs are all costs that are incurred to start implementing a remedy at a site. Costs for the investigation however are excluded because those costs are incurred prior to remedy selection. Since costs for treatability and/or pilot testing are used to procure data for remedial design and are specific to different remediation methods, these costs should be included in implementation costs and not investigation costs. Startup or shakedown costs are also considered implementation costs and should not be considered operation and maintenance costs.
- -- D.3. Costs for implementation or investigation should not be repeated here or they will be double counted.
- -- D.4. Costs for implementation or investigation should not be repeated here or they will be double counted.
- -- D.5. Costs for implementation or investigation should not be repeated here or they will be double counted.
- -- D.6. Examples of one-time or unusual costs include the following:
  - Replacing a burned out motor on a pump.
  - Replacement of a well that was destroyed by a snowplow.
  - Confirmation sampling to determine if the site meets closeout criteria. This type of cost is considered an unusual
    cost because this type of sampling is not conducted during most reporting periods.
- -- D.7. This estimate of costs is for all costs to close out a site minus the salvage value of any remediation equipment. Pertinent costs include items such as well abandonment, equipment removal from the site, consulting costs associated with these items, etc. Do not include any costs that will not be paid by a state reimbursement fund, such as repaving.

| Site name: Appleton Wire-Albany International Former Chrome Plant |                | Remediation Site Progre          |                |
|-------------------------------------------------------------------|----------------|----------------------------------|----------------|
| Reporting period from: 01/01/2016                                 | To: 06/30/2016 | Maintenance, Monitoring          | & Optimization |
| Days in period: 182                                               |                | Report<br>Form 4400-194 (R 1/14) | Page 19 of 29  |

#### Section GW-1, Groundwater Extraction and Product Recovery

- A.1. List two numbers, the total number of extraction wells at the site and the number that were in actual use during the period. If all wells were in use, state that on the form.
- -- A.2. The number of days of operation are the number of days that the system was actually operated. If the system was shut down for reasons such as: repairs were necessary, piping froze, shut down to provide time for subsurface conditions to equilibrate before sampling, etc., do not list those days as being in operation.
- -- A.3. System utilization is a measure of the amount of time that the system operated relative to the amount of time that it could have operated.
- -- A.5. The average is for the entire site, not per well or trench. For purposes of determining the average ground water extraction rate, calculate the average based on the total volume of groundwater extracted divided by the time of the reporting period. For example, if the system operated at 10 gallons per minute for one month, the amount of water extracted would be approximately 432,000 gallons. If the reporting period was six months long, then the time period is approximately 260,000 minutes. Therefore, the average flow rate over six months is 432,000 divided by 260,000 minutes for an average flow rate of 1.67 gallons per minute (gpm).
- -- A.6. Calculate the total dissolved contaminants removed in pounds. If the estimate is a sum of BTEX and not based on a total hydrocarbon test (GRO and/or DRO), so state that on the form.
- -- B.3. The average should be based on the entire site over the entire reporting period. See instructions above for A.5. List the free product recovery rate as gallons per day (gpd), not gallons per minute (gpm).
- -- C.1. To answer this question, a thorough evaluation of water levels and chemical analyses in all monitoring points at the site is necessary.
- -- C.2. If the capture zone has not been determined mathematically, it will need to be determined to answer this question. See the Guidance on Design, Installation and Operation of Ground Water Extraction and Product Recovery Systems for and any recent update or errata sheets for more information on plume capture.
- C.4. When free product is present, line C.4.a. should state "FREE PRODUCT" and lines C.4.b. through C.4.d. are left blank. Otherwise, complete the following calculations.

  There typically are several compounds at most contaminated sites that exceed the standards in ch. NR 140. The purpose of this question is to focus on the single contaminant that requires the most treatment to achieve groundwater quality standards on a percent reduction basis. For example, the most recent round of sampling at an example site demonstrated the highest levels of contaminants were 1,000 μg/L benzene and 1,000 μg/L toluene in the most heavily contaminated monitoring well. The ES and PAL for benzene is 5 μg/L and 0.5 μg/L (respectively) and for toluene the ES and PAL is 343 μg/L and 68.6 μg/L (ES and PAL data as of August 1995). Therefore the percent reduction to meet the ES and PAL for benzene is 99.5 and 99.95 percent and for toluene it is 65.7 and 93.14 percent. For that reason, the single contaminant that is most critical to reaching state groundwater standards is benzene. Therefore benzene is entered on line a. In this example, 99.5 and 99.95 percent is entered on line b. In this example, 1,000 μg/L is entered on line c. In this example, benzene is the driving factor, therefore enter the maximum benzene level in the single most heavily contaminated extraction well during the most recent sampling period on line d.
- D. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

#### Section GW-2, In Situ Air Sparging

- -- B.1. See instructions for Section GW-1, Item C.4.
- C. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

| Site name: Appleton Wire-Albany International Former Chrome Plant |                       | Remediation Site Progre       |                |
|-------------------------------------------------------------------|-----------------------|-------------------------------|----------------|
| Reporting period from: 01/01/2016                                 | To: <u>06/30/2016</u> | Maintenance, Monitoring       | & Optimization |
| Days in period: 182                                               |                       | Report Form 4400-194 (R 1/14) | Page 20 of 29  |

#### Section GW-3, Natural Attenuation in Groundwater

- -- A.1. See instructions for Section GW-1, Item C.4.
- -- A.2.a. List the estimated hydraulic conductivity that was listed on line A.11 in Section GI-1.
- -- A.2.b. List the groundwater average linear velocity that was listed on line A.12 in Section GI-1.
- -- A.3. Assess the monitoring well network to determine if there is a down gradient well that has not been impacted by the contaminants. Consider the possibility of a submerged (or diving) plume in that assessment. If all evidence indicates that the plume does not extend to the farthest "clean" downgradient well, indicate "YES" on the form. Otherwise indicate "NO" on the form. If there are not plans to install such a well, explain.
- A.4. Based on the contaminant distribution, evaluate whether or not the plume is expanding, stabilized, or contracting.
   When making this determination, consider the contaminant that requires the greatest percent reduction to achieve ch. NR 140 standards.
- -- A.5. If the plume is expanding and a justification is necessary, add additional sheets justifying why natural attenuation is still the appropriate remedy. If it is not, further describe in the explanation the plans to use a different remedy.
- -- A.6.a. Enter the upgradient dissolved oxygen (DO) level(s). If however there are contaminants measured in the upgradient well, it is not a true background measurement. In that case enter "UNKNOWN" on the form.
- -- A.6.b. Enter the range of DO values measured in wells within the plume.
- B. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

#### Section GW-4, Other Groundwater Remediation Methods

- -- A.1. See instructions for Section GW-1, Item C.4.
- -- A.2. Self explanatory.
- -- A.3-4. Enter the information specified by the DNR for this method at this site.

#### Section IS-1, Soil Venting (Including both Soil Vapor Extraction and Bioventing)

- -- B.3. This subsection is used as a trigger for determining if the system requires an evaluation for future activities, such as improvements, converting the site to monitoring for natural attenuation, closure, etc. If an in situ respiration test must be performed, see Hinchee, R.E. and Ong, S.K. 1992. A Rapid In Situ Respiration Test for Measuring Aerobic Biodegradation Rates of Hydrocarbons in Soil. *Journal of the Air and Waste Management Association*. Volume 42, Number 10. Pages 1305 to 1312 for general procedures. For a discussion of methane monitoring, see the instructions for Section IS-2, item A.1.d., below. If the contaminant extraction rate in B.3. is greater than the trigger levels, leave lines B.3.a.i. and B.3.a.ii. blank.
- -- C. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

| Site name: Appleton Wire-Albany International Former Chrome Plant |                       | Remediation Site Progre          |                  |
|-------------------------------------------------------------------|-----------------------|----------------------------------|------------------|
| Reporting period from: 01/01/2016                                 | To: <u>06/30/2016</u> | Maintenance, Monitoring          | g & Optimization |
| Days in period: 182                                               |                       | Report<br>Form 4400-194 (R 1/14) | Page 21 of 29    |

#### Section IS-2, Natural Attenuation in Soil

- -- A.1. This data is used to assess subsurface conditions based on soil gas data. Whenever possible, a permanently installed gas probe should be used. If at all possible, the gas probe should be located in the part of the site that is most heavily contaminated, since that is the part of the site that is likely to take the longest amount of time to meet ch. NR 720 standards. Water table wells that have screen exposed above the water table are also good measuring points. When installing permanent gas probes, you should install the screen deep enough that a true measure of the most heavily contaminated soil is possible, but install the screen shallow enough to assure that it is not submerged by groundwater table fluctuations. In some situations where the depth of contamination is variable, consideration should be given to using nested gas probes instead of only using probes at a single depth. Measuring points that should not be used include temporary gas probes because these points are less repeatable from one monitoring event to the next. Also, if there has been an active soil venting system in use at the site, the air extraction wells should not be used because these wells are in locations that have had much more aggressive treatment than the rest of the site.
- -- A.1.a. A flame ionization detector (FID) is specified instead of a photo ionization detector (PID) because PIDs often read inaccurately in moist oxygen deficient/carbon dioxide rich atmospheres. Also, PIDs do not detect some petroleum compounds.
- -- A.1.d. Methane readings are used to measure for anaerobic conditions. When the original product that is lost is a refined petroleum product (not crude oil), there should not be any methane within the product. Methane however may be produced under very anaerobic conditions. Any method may be used for measuring methane provided that the detection limit is less than a few ppmy. One convenient method is to use an FID that is equipped with a granular activated carbon filter to filter out non-methane components. Some instrument manufacturers make these filters available as options. In some cases an FID will flame out due to an oxygen deficiency. Some instrument manufacturers offer a dilution device as an accessory that is designed to prevent flameouts and also raises the upper limit of measurement to 10,000 ppmy or higher. If the meter "pegs" at 10,000 ppmy (or one percent), enter ">10,000 ppmy."
- -- A.2. The background monitoring point is predominantly used to measure natural oxygen and carbon dioxide levels in soil over time. For this reason, the background monitoring point should be reasonably close to the site, but not so close that the conditions are no longer representative. Considerable variations over time can occur, this background point should be measured during every sample event. Considerations for determining if a background point is representative include:
  - If an on-site background point has minor levels of VOCs in it due to gas phase diffusion, that is acceptable, but if the levels are high, it may not be representative of true background conditions.
  - Background oxygen and carbon dioxide levels vary with soil type and natural organic carbon content. For this
    reason, if at all possible, the soil types should be identical within the screened interval of all gas probes.
  - The same depths should be used for all gas probes to allow comparison from one location to the next. If the
    depth to water varies greatly across the site, a certain amount of confusion in the data is likely. In this case, use
    professional judgement to provide the best data possible at a reasonable cost.
- -- A.3. Enter this data for petroleum fuel sites. For other sites, provide the data that is most appropriate for the situation.
- B. Cross sections are self explanatory, see the generic discussion at the end of the instructions (below) for other attachments.

#### Section IS-3, Other In Situ Soil Treatment Methods

- A.2. Enter the information specified by the DNR for this method at this site.

| Site name: Appleton Wire-Albany International Former Chrome Plant |                       | Remediation Site Progres         | •              |
|-------------------------------------------------------------------|-----------------------|----------------------------------|----------------|
| Reporting period from: 01/01/2016                                 | To: <u>06/30/2016</u> | Maintenance, Monitoring          | & Optimization |
| Days in period: 182                                               |                       | Report<br>Form 4400-194 (R 1/14) | Page 22 of 29  |

#### Section ES-1, Ex Situ Soil Treatment Using Biopiles

- -- A.3.a. The term "artificial nutrients" essentially means agricultural fertilizers or any other fertilizer products.
- -- A.3.a.i. The types of fertilizers that are added should be listed here by chemical names, not by vendor trade names.
- -- A.3.a.ii. List nitrogen content as N, list phosphorous content as phosphoric acid (P2O5). Note: Fertilizer ratings are based not on actual content of N, P and K, but on nitrogen (as N), phosphorous (as P2O5) and potassium (as K2O).
- -- A.4.c. See example calculations at the end of this set of instructions.
- -- A.5. Enter this data for petroleum fuel sites. For other sites, provide the data that is most appropriate for the situation.
- -- B. The figure is self explanatory. See the generic discussion at the end of the instructions (below) for instructions for the tables.

#### Section ES-2, Ex Situ Soil Treatment Using Landspreading/Thinspreading

 -- B. A map to scale of the landspreading location including and landmarks or benchmarks. When samples have been collected, the distances to any landmarks or benchmarks should be indicated.

#### Section ES-3, Other Ex Situ Soil Treatment Methods

-- A.2. Enter the information specified by the DNR for this method at this site.

| Site name: Appleton Wire-Albany International Former Chrome Plant |                       | Remediation Site Progre                 |                  |
|-------------------------------------------------------------------|-----------------------|-----------------------------------------|------------------|
| Reporting period from: 01/01/2016                                 | To: <u>06/30/2016</u> | Maintenance, Monitorin                  | g & Optimization |
| Days in period: 182                                               |                       | <b>Report</b><br>Form 4400-194 (R 1/14) | Page 23 of 29    |

#### Section INS- 2, Figures, Graphs and Tables

When figures and graphs are specified, they should at a minimum contain the following information, or an explanation as to why the information is not necessary.

**Maps.** All maps should include the applicable information specified in s. NR 724.11(6), Wis. Adm. Code. In most cases, all information can be combined into a single map. There are times that a single map will have so much data that it is essentially unreadable. The consultant should use professional judgement when determining if a single map or multiple maps best portray the information necessary.

- Groundwater Contour Map Guidelines.
  - -- List groundwater elevations for each measuring point on the map.
  - Use the most recent data available.
  - -- For water table maps, do not use data from deeper piezometers. If piezometer data is shown, use a different symbol for the piezometers than used for water table wells.
  - -- If any wells are dry, indicate that on the map.
  - -- If free product is present at site, shade the area where free product is estimated to be present.
  - -- If groundwater is extracted with a pump and treat system, also denote plume capture zone.
  - -- If in situ air sparging or soil venting is in use, specify on the map if the system was operating or shut down during the water level measurements. See the Subsection on water table maps in the *Guidance on Design, Installation and Operation of Ground Water Extraction and Product Recovery Systems* for more information on this topic.
- Groundwater Contaminant Distribution Map Guidelines.
  - -- Only contaminants that exceed the ch. NR 140 ES or PAL should be shown on the map. When contaminants are above the PAL or ES at some data points and below the PAL or ES at other data points, list the data for all locations to portray which areas of the site meet ch. NR 140 groundwater quality standards.
  - -- If a well is not sampled due to the presence of free product indicate "FREE PRODUCT" at those data points.
  - -- If more than five contaminants exceed ch. NR 140 ES, only the five contaminants that require the greatest percent reduction to achieve ch. NR 140 ES or PAL should be shown on the map.
  - -- Drawing isoconcentration lines is optional, unless specified for the site on a site specific basis.
  - -- If the contamination has crossed the property line, that property line should be clearly denoted on the map.
  - -- If in situ air sparging is used, water samples from ch. NR 141 type monitoring wells may not represent aquifer water quality as a whole. For that reason, groundwater data should be obtained from driven probes with no filter pack. If there are no driven probes and conventional ch. NR 141 monitoring wells are used, shut down the air injection system at least two weeks prior to collecting groundwater samples. See the *Guidance on Design, Installation and Operation of In Situ Air Sparging Systems* and the August 1995 update sheets for more information on this topic.
- Dissolved Oxygen Map Guidelines.
  - -- Dissolved oxygen data may be shown on the contaminant concentration graphs or on a separate graph.
  - -- Dissolved oxygen maps are optional for ground water extraction and product recovery systems.
  - -- When in situ air sparging is used, monitoring points may not represent aquifer water quality as a whole. For that reason, groundwater data should be obtained from driven probes with no filter pack. If there are no driven probes and conventional ch. NR 141 monitoring wells are used, shut down the air injection system at least two weeks prior to collecting groundwater samples for DO. See the *Guidance on Design, Installation and Operation of In Situ Air Sparging Systems* and the August 1995 update sheets for more information on this topic.
- Well and Soil Sample Location Map Guidelines. Well and sample location maps for all methods should clearly indicate the
  location(s) of the release or the area where soil contamination historically has been highest. Also, if part of the contamination
  has been excavated, the pit boundaries.

The recommended documentation for each remedial method is as follows:

- -- Groundwater Extraction and Product Recovery separate well location maps should not be provided, instead the wells should be indicated on the groundwater contour and contaminant distribution maps.
- -- In Situ Air Sparging the map should indicate all air injection wells, soil venting extraction wells, and all groundwater monitoring points.

| Site name: Appleton Wire-Albany International Former Chrome Plant |                | Remediation Site Progre          |                  |
|-------------------------------------------------------------------|----------------|----------------------------------|------------------|
| Reporting period from: 01/01/2016                                 | To: 06/30/2016 | Maintenance, Monitoring          | g & Optimization |
| Days in period: 182                                               |                | Report<br>Form 4400-194 (R 1/14) | Page 24 of 29    |

#### Maps (Continued).

- -- Natural Attenuation in Groundwater separate well location maps should not be provided, instead the wells should be indicated on the groundwater contour maps.
- -- Soil Venting indicate all air extraction wells. If any gas probes are used to assess subsurface conditions in either contaminated zones or background locations, also indicate those data points with a different symbol. If soil samples have been collected recently to track progress, indicate those locations with the date of sampling noted on the map.
- -- Natural Attenuation in Soil show all monitoring points. Indicate which data points are background measuring points. If soil samples have been collected recently to track progress, indicate those locations with the date of sampling noted on the map. If the site was previously treated by soil venting, the locations of former air extraction wells should also be shown since these are areas where aggressive treatment has been applied. Also show area(s) of paved and unpaved ground surface. If pavement is significantly broken to allow significant water infiltration and air diffusion, map that area as broken pavement.

**Graphs.** All graphs that show time versus contaminant concentration or cumulative contaminant removal should be based on total time, not only operation time. All graphs that denote cumulative removal should use pounds of contaminant removed. Graphs should accurately show the time period(s) when the system was not operating. Plot time on the X axis, concentration or cumulative removal data on the Y axis.

- Time Versus Cumulative Removal. The recommended documentation for each remedial method is as follows:
  - Groundwater Extraction and Product Recovery separate graphs should be used for free product recovery and dissolved phase recovery. A single graph for each phase is adequate, per well graphs are only necessary when specified by the Department on a site specific basis.
  - -- In Situ Air Sparging no graph is necessary (removal data is shown on the graphs for the soil venting system).
  - -- Natural Attenuation in Groundwater no graph is necessary.
  - -- Soil Venting provide a graph of cumulative removal for total VOCs for the total system.
  - -- Natural Attenuation in Soil no graph is necessary.
  - -- Ex Situ Soil Treatment Using Biopiles Provide two graphs, one showing cumulative removal of total VOCs and a second graph showing total contaminant biodegradation over time.
  - -- Ex Situ Soil Treatment Using Landspreading/Thinspreading no graphs are needed.
- <u>Time Versus Contamination Concentration Graphs.</u> Create graphs with contamination level on the y axis (semilog scale) and time on the x axis (linear scale). If free product is present, time versus contamination concentration graphs are not necessary.

The recommended documentation for each remedial method is as follows:

- Groundwater Extraction and Product Recovery graph the contaminant level over time for the groundwater that is extracted by the extraction system. List all compounds that exceed ch. NR 140 ES or PAL. If over five contaminants exceed ch. NR 140 ES or PAL, only list the five contaminants that exceed ch. NR 140 standards by the greatest percent.
- -- In Situ Air Sparging provide a graph for the single monitoring well that is most heavily contaminated. If over five contaminants exceed ch. NR 140 ES or PAL, only list the five contaminants that exceed ch. NR 140 standards by the greatest percent.
- -- Natural Attenuation in Groundwater provide a graph for all monitoring wells that contain any compounds that exceed ch. NR 140 standards. If over five contaminants exceed ch. NR 140 ES or PAL, only list the five contaminants that exceed ch. NR 140 standards by the greatest percent.
- Soil Venting provide a graph of contaminant concentration over time for the entire system for total VOCs. If any gas probes are used to assess subsurface conditions in either contaminated zones, also provide a graph with the data from the most heavily contaminated gas probe.
- -- Natural Attenuation in Soil provide a graph of contaminant concentration over time for total vapor phase VOCs as measured with an FID, oxygen, carbon dioxide and methane in an gas probe.
- -- Ex Situ Soil Treatment Using Biopiles no graph is necessary.
- -- Ex Situ Soil Treatment Using Landspreading/Thinspreading no graphs are needed.

| Site name: Appleton Wire-Albany International Former Chrome Plant |                       | Remediation Site Progress and Operation, |                   |
|-------------------------------------------------------------------|-----------------------|------------------------------------------|-------------------|
| Reporting period from: 01/01/2016                                 | To: <u>06/30/2016</u> | Maintenance, Monitorii                   | ng & Optimization |
| Days in period: 182                                               |                       |                                          | Page 25 of 29     |

#### Graphs (Continued).

• <u>Graph of Contaminant Concentrations Versus Distance.</u> If free product is present, a graph of contaminant concentrations versus distance is not necessary.

The recommended documentation for each remedial method is as follows:

- -- Groundwater Extraction and Product Recovery no graph is necessary.
- In Situ Air Sparging and Natural Attenuation in Groundwater plot a graph with distance (on the x axis, linear scale) and contaminant concentrations (y axis, log scale) from the upgradient measurement point to the farthest downgradient data point along the centerline of the plume. List the same contaminants as shown on the Time Versus Contaminant Concentration Graphs. Clearly show the source area on the graph. If free product has been present, label the data points that previously contained free product. For in situ air sparging, see comments above about samples collected from conventional monitoring wells with filter packs versus driven probes.

**Tables.** Whenever possible, data over the life of the project should be listed.

The recommended documentation for each type of table is as follows:

Groundwater Contaminant Chemistry Data.

#### List

- -- Contamination levels for all contaminants that exceed ch. NR 140 standards.
- Dissolved oxygen levels if applicable.
- -- Other biological parameters, if applicable (nitrogen, phosphorous, manganese, sulphate, iron, dissolved methane, redox potential, pH, microbial population size, etc.). See instructions for page GW-3 for more information on these parameters. Also, list the dates the samples were collected and the standard methods used to analyze the samples.
- Groundwater Biological Parameters.

For natural attenuation in groundwater only, these measurements should be listed (if known) to provide information on biodegradation. This table is not necessary for free product extraction, groundwater extraction or in situ air sparging.

Provide a table that includes any results of tests conducted for dissolved oxygen, nitrate, manganese, iron, sulphate, methane, redox potential, heterotrophic and/or hydrocarbon degrading microorganism populations. Identify on the table if the monitoring locations are upgradient, side gradient, downgradient, or within the plume, dates of sampling, and the analytical methods used for those parameters. Include all data for the life of the project. Since some of these tests are only conducted once, or periodically - enter "NS" in the table for not sampled for any parameters that were not sampled during a particular round of sampling.

When asked to list the standard methods, list the method if a standard method exists. There are however some tests (for example dissolved methane) where there are no official standard laboratory or field methods. In this case the laboratory will have to create their own standard procedures. In these cases list the name of the laboratory and that laboratory's name for that test.

Specific considerations for each parameter are as follows:

- -- Dissolved oxygen (mg/L). The most efficient mechanism for natural or enhanced biodegradation of petroleum compounds is aerobic biodegradation.
- -- Nitrate (mg/L as N). Nitrate (NO3<sup>-1</sup>) is a potential electron acceptor for denitrification and also serves as a nutrient for heterotrophic microbial populations to enhance aerobic biodegradation. Decreasing nitrate levels from background wells to wells within the plume are an indication of either aerobic or anaerobic biodegradation.
- -- Manganese as Mn<sup>+2</sup> (mg/L). Manganese as Mn<sup>+4</sup> is converted to soluble manganese as Mn<sup>+2</sup> under anaerobic biodegradation. For this reason, total manganese analysis is not appropriate, only soluble manganese as Mn<sup>+2</sup>. When the levels of soluble manganese are higher in wells within the plume than in background wells, that is an indication of anaerobic biodegradation.
- -- Iron as Fe<sup>+2</sup> (mg/L). Iron as Fe<sup>+3</sup> is converted to soluble iron as Fe<sup>+2</sup> under anaerobic biodegradation. For this reason, total iron analysis is not appropriate, only soluble iron as Fe<sup>+2</sup>. When the levels of soluble iron are higher in wells within the plume than in background wells, that is an indication of anaerobic biodegradation.

| Site name: Appleton Wire-Albany International Former Chrome Plant |                | Remediation Site Progress and Operation |                |
|-------------------------------------------------------------------|----------------|-----------------------------------------|----------------|
| Reporting period from: 01/01/2016                                 | To: 06/30/2016 | Maintenance, Monitoring                 | & Optimization |
| Days in period: 182                                               |                | Report Form 4400-194 (R 1/14)           | Page 26 of 29  |

#### Tables (Continued).

- -- Dissolved sulphate (SO<sub>4</sub><sup>-2</sup>, mg/L). Sulphate (SO<sub>4</sub><sup>-2</sup>) is a potential electron acceptor. Decreasing sulphate levels from background wells to wells within the plume are an indication of anaerobic biodegradation.
- -- Dissolved methane (mg/L). Methane is produced under anaerobic conditions. Since background methane levels can usually be assumed to be zero, in most cases only measurements within the plume are used. Exceptions are when the natural soils have very high levels of TOC (for example peat), background methane levels are also warranted. When the contaminant is crude oil instead of a refined petroleum product, methane measurements may however cause erratic results. Significant amounts of methane may be created when other electron acceptors (NO3<sup>-1</sup>, Mn<sup>+4</sup>, Fe<sup>+3</sup> and SO4<sup>-2</sup>) are exhausted. For this reason, significant levels of methane are indicative of very very anaerobic conditions.
- -- Redox potential (millivolts, include + or sign). Redox potential is another measure of the level of aerobic/anaerobic conditions, however it is a much more sensitive measurement than DO at very low levels of DO.
- -- Heterotrophic and hydrocarbon degrading microorganism populations (CFU/mL). Heterotrophic and specific hydrocarbon degrader population sizes should be listed for both background locations and locations within the plume, if there is information available. There is disagreement by many of the experts within the field as to the merits of sampling for this parameter. Refer to other DNR guidance documents on natural attenuation (or passive bioremediation) for more information on this topic.

#### Soil Gas Data.

The recommended documentation for each remedial method is as follows:

- -- When natural attenuation in soil is used, provide a graph of all soil gas readings over time for every data point.
- -- When soil venting is used, if a gas probe is used to assess subsurface conditions over time in a location where air is not extracted, provide that data in a table.
- System Operational Data.

The recommended documentation for each remedial method is as follows:

- -- Groundwater Extraction and Product Recovery:
  - Well by well flow rates in gpm for each extraction well. If a well is off line, list flow rate as "ZERO." Clearly denote on the table periods of system shutdown.
- -- In Situ Air Sparging:
  - Air pressure and injection flow rates in scfm for each well. If a well is off line, list flow rate as "ZERO." Clearly
    denote on the table periods of system shutdown.
- -- Natural Attenuation in Groundwater no table needed.
- -- Soil Venting:
  - Vacuum readings and extraction rates in scfm for each well. If a well is off line, list flow rate as "ZERO." Clearly
    denote on the table periods of system shutdown.
  - Air concentrations in ppmy or in mg/L for total VOCs.
  - Total system contaminants removed in pounds and the pounds per day removal rate.
- -- Natural Attenuation in Soil no table needed.

| Sito namo: A                                                                                    |                                                          |                                           | Remediation Site Progre                | ss and Operation |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|----------------------------------------|------------------|
|                                                                                                 | ppleton Wire-Albany Internation<br>riod from: 01/01/2016 |                                           | Maintenance, Monitoring                |                  |
|                                                                                                 |                                                          | To: <u>06/30/2016</u>                     | Report                                 | , о ориниции.    |
| Days in perio                                                                                   | d: <u>182</u>                                            |                                           | Form 4400-194 (R 1/14)                 | Page 27 of 29    |
| Tables (Con                                                                                     | tinued).<br>Ex Situ Soil Treatment Us                    | ing Biopiles:                             |                                        |                  |
|                                                                                                 | If forced air ventilation                                | n is used:                                |                                        |                  |
|                                                                                                 |                                                          | s in ppm <sub>V</sub> for total VOCs.     | s and the pounds per day removal rate. |                  |
|                                                                                                 | If passive ventilation                                   | is used, a table of temperatu             | res.                                   |                  |
|                                                                                                 | Ex Situ Soil Treatment Us                                | ing Landspreading/Thinsprea               | ding - no table is needed.             |                  |
| Acronyms                                                                                        | and Abbreviations:                                       |                                           |                                        |                  |
| cm/sec<br>DATCP<br>DCOM<br>DNR<br>DO<br>DRO<br>ES<br>FID<br>ft/yr<br>gpd<br>gpm<br>GRO<br>mg/kg |                                                          | Trade and Consumer Protectsources  NR 140 | ction                                  |                  |

NR

P.E.

P.G.

PAL

ppmv

scfm TOC

μg/kg μg/mL VOC

Y/N

prefix for rules established by the DNR

parts per million by volume (vapor phase only)

PECFA the state sponsored cleanup fund for certain petroleum contaminated sites

Registered Professional Engineer

Registered Professional Geologist Preventative Action Limit in NR 140

standard cubic feet per minute

**Total Organic Carbon** USCS Unified Soil Classification System USDA United States Department of Agriculture micrograms per kilogram

micrograms per milliliter Volatile Organic Compounds

Yes or No

| Site name: Appleton Wire-Albany Internation | Remediation S  |              |
|---------------------------------------------|----------------|--------------|
| Reporting period from: 01/01/2016           | To: 06/30/2016 | Maintenance, |
| Days in period: 192                         |                | Report       |

Remediation Site Progress and Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 1/14)

Page 28 of 29

#### Section INS-3, Example Calculations for Determining the Biodegradation Rate on Forced Air Biopiles

Important Note: This page uses a nonproportional font and characters that are unique to WordPerfect. If the user received this document electronically, this page may need to be converted to a different font for the formulas to print correctly. The original font used for this page was prestige elite with 16.67 characters per inch.

#### Assumptions:

- · The measurements at the stack are as follows:
  - -- Average flow rate is 20 scfm.
  - -- Average oxygen level extracted from biopile is 14.0 percent by volume.
  - -- Average carbon dioxide level extracted from biopile is 3.5 percent by volume or 35,000 ppmy.
- Atmospheric air contains 21 percent oxygen by volume and 400 ppm<sub>V</sub> (or 0.04 percent) carbon dioxide. (Note: On each site
  visit, the consultant should check atmospheric air to assure that the instrument is spanned correctly.)
- Atmospheric air weight 0.0763 pounds per cubic foot at standard temperature and pressure (Gibbs, 1971).
- Average molecular weight of air is 28.97 (Gibbs, 1971) which is rounded off to 29, molecular weight of O2 is 32, molecular weight of CO2 is 44.
- For every pound of contaminants biodegraded, 3.3 pounds of oxygen is utilized and up to 3.2 pounds of carbon dioxide is generated.
  - -- The stoichiometry of aerobic benzene biodegradation can be described as follows:

Based on this, benzene biodegradation requires that 3.07 pounds of oxygen are utilized to fully oxidize one pound of benzene, assuming no electron acceptors other than oxygen are used. Assuming no biomass is produced and no geochemical reactions consume carbon dioxide, 3.38 pounds of carbon dioxide is generated from one pound of benzene.

-- The stoichiometry of aerobic hexane biodegradation can be described as follows:

Based on the above assumptions, hexane biodegradation requires 3.52 pounds of oxygen and generates up to 3.06 pounds of carbon dioxide.

Other hydrocarbons also require a similar ratio of oxygen for aerobic biodegradation. For purposes of this guidance it is assumed that a pound of petroleum contamination requires 3.3 pounds of oxygen and generates up to 3.2 pounds of carbon dioxide and 1.1 pounds of water in the biodegradation reaction.

#### Calculations:

Oxygen utilization rate:

Carbon dioxide production rate:

| Site name: Appleton Wire-Albany Internation | al Former Chrome Plant | Remediation Site Progre       |                  |
|---------------------------------------------|------------------------|-------------------------------|------------------|
| Reporting period from: 01/01/2016           | To: 06/30/2016         | Maintenance, Monitoring       | J & Optimization |
| Days in period: 182                         |                        | Report Form 4400-194 (R 1/14) | Page 29 of 29    |
| Calculations (Continued):                   |                        |                               |                  |
| Biodegradation rate based on oxyge          | en:                    |                               |                  |
| 7.07 / 3.3 = 2.1 pounds per hou             | ır                     |                               |                  |
| Biodegradation rate based on carbo          | n dioxide:             |                               |                  |

Since the biodegradation rate is based on oxygen utilization and/or carbon dioxide generation, it is a measure of the overall biodegradation rate of all carbon sources, including natural organic carbon and any organic materials that were added. For this reason, the biodegradation rate is not specific to hydrocarbons and it is likely that the measured biodegradation rate will overestimate the rate of contaminant reduction.

4.81 / 3.2 = 1.5 pounds per hour

Commonly the measured biodegradation rate based on carbon dioxide generation is less than the rate estimated with oxygen. Because of geochemical interferences and biomass formation, estimates based on carbon dioxide measurements are often low. If however the biodegradation rate estimate based on carbon dioxide is significantly greater than the estimate based on oxygen, it is likely that there is a measurement or calculation error. In this way, the carbon dioxide measurements can be used to double check the oxygen measurements and calculations.

## **Appendix D**

Historical Soil Boring and Groundwater Monitoring Well Data Abandoned Borings and Wells

OWNER LOG OF BORING NUMBER Albany International **PROJECT NAME ENGINEER** STS Consultants Ltd. Chromium Contamination Assessment SITE LOCATION N. Meade Street, Appleton, Wisconsin UNCONFINED COMPRESSIVE STRENGTH, Qp (10NS/FT) STANDARD PENETRATION TEST, N (8/F1) WELL INSTALLATION TOP STANDPIPE EL. + 769.98 WATER CONTENT, % LIQUID/PLASTIC LIMIT LL/PL PERMEABILITY, K (CM/SEC) UNIT DRY WEIGHT (LBS/FT<sup>3</sup>) SAMPLE DISTANCE ELEVATION SAMPLE TYPE DESCRIPTION OF MATERIAL SAMPLE NO. RECOVERY SURFACE ELEVATION 767.89 (USGS) 1 SS Dark brown sandy silt (ML) - little roots and 12 grass - medium dense - topsoil Fill: Brown silty clay (CL) - trace of sand and 21/6" gravel - medium dense SS ss 36 5 SS 37 SS 29 Brown silty clay (CL) - trace of gravel - medium 7 SS dense to dense - glacial till - saturated at 13.0 15 8 SS 8 9 SS 6 10 SS 6 End of Boring Boring advanced from 0.0 to 20.0 feet by power 2 inch diameter PVC observation well installed at 20.0 feet with protector pipe

| · | i ne stratifica | ition lines repres | ent the approxim | ate boundary be | stween soil types | . In situ, the tre | insition may be gradual. W | Vater levels were mei | sured at the time | s indic | ated. Water level | s may vary s | easonally. |
|---|-----------------|--------------------|------------------|-----------------|-------------------|--------------------|----------------------------|-----------------------|-------------------|---------|-------------------|--------------|------------|
| I | WL              |                    | BCR              |                 |                   | ACR                | BORING STARTED             | 1-19-87               | STS OFFICE        |         | 540 Lambe         |              |            |
|   | WL-T PIPE       | DATE               | TIME             | WL-T. PIPE      | DATE              | TIME               | BORING COMPLETED           |                       |                   |         | Green Bay         | , WI.        | 54303      |
| Ł | Dry             | 1-21-87            |                  | 15.3            | 2-9-87            |                    | BONING COMPLETED           | 1-19-87               | DRAWN BY          | JJT     | SHEET 1           | OF           | ı          |
|   | Dry             | 1-22-87            |                  | 9.0             | 3-26-87           |                    | RIG Joy 15                 | .,                    |                   |         |                   |              |            |
| Ī | 16.1            | 2-4-87             |                  |                 |                   |                    | FOREMAN RER                |                       | APP'D. BY         | JWK     | STS JOB NO.       | 13685        |            |
|   | 1 . E 002       |                    |                  |                 |                   |                    |                            | <del></del>           | <del></del>       |         |                   |              |            |



OWNER
Albany International
PROJECT NAME
LOG OF BORING NUMBER
MW-2
ENGINEER

Chromium Contamination Assessment SITE LOCATION N. Meade Street, Appleton, Wisconsin UNCONFINED COMPRESSIVE STRENGTH. Op (TONS/FT\*) STANDARD PENETRATION TEST, N (B/FT) WELL INSTALLATION LIQUID/PLASTIC LIMI LL/PL PERCENT PASSING #200 SIEVE PERMEABILITY, K (CM/SEC) UNIT DRY WEIGHT (LBS/FT³) WATER CONTENT. TOP STANDPIPE EL. + 770.63 SAMPLE DISTANCE SAMPLE TYPE DESCRIPTION OF MATERIAL SAMPLE NO. SURFACE ELEVATION 768.53 (USGS) Dark brown sandy silt (ML) - trace of gravel, 1 SS 9 little roots - loose - topsoil 2 ss 10 Brown silty clay (CL) - trace of sand and gravel trace of roots - medium dense - possible fill 3 55 25 4 **|**SS 26 5 ss 29 6 lss 23 Brown silty clay (CL) - trace of gravel - medium dense - glacial till - saturated at 14.0 feet 7 ss 23 7 8 SS 9 SS 6 10 ss 7

End of Boring
Boring advanced from 0.0 to 20.0 feet by power
auger
2 inch diameter PVC observation well installed
at 20.0 feet with protector pipe

The stratification lines represent the approximate boundary between soil types. In situ, the transition may be gradual, Water levels were measured at the times indicated. Water levels may vary seasonally, 540 Lambeau Street WL BCR ACR BORING STARTED 1-19-87 STS OFFICE Green Bay, WI. 54303 WL-T. PIPE DATE TIME WL-T. PIPE DATE TIME BORING COMPLETED 1-19-87 8.1 2-9-87 DRAWN BY JJT 14.3 1-21-87 SHEET 1 1 3-26-87 Joy 15 1-22-87 6.1 11.4 APP'D. BY STS JOB NO. 2-4-87 7.7 FOREMAN .TWK 13685

|                 | _              | 3            |                 |          | OWNER             |                 |                  |                     |                                       | 1            |                                                  | RING N                                            | UMBER            | 1                           |                                |                               | 1                                     |
|-----------------|----------------|--------------|-----------------|----------|-------------------|-----------------|------------------|---------------------|---------------------------------------|--------------|--------------------------------------------------|---------------------------------------------------|------------------|-----------------------------|--------------------------------|-------------------------------|---------------------------------------|
| TA              | L              | 4            |                 | L        | Albany Int        |                 | 1                |                     |                                       | MW-          |                                                  |                                                   |                  |                             |                                |                               |                                       |
|                 | _              |              |                 | - 1      | PROJECT I         |                 |                  |                     |                                       | 1            | INEER                                            |                                                   |                  |                             |                                |                               |                                       |
| STS Co          |                |              |                 |          | Site Remed        | iiation         |                  |                     |                                       | 515          | Consul                                           | tants,                                            | bta.             |                             |                                |                               |                                       |
| ITE             | LOC            | ATI          | ON              | !        | Former All        |                 |                  | Chromium            | Facility                              |              | ION                                              | UNCONFINED COMPRESSIVE<br>STRENGTH, Op (TONS/FT²) |                  |                             | _                              |                               |                                       |
|                 |                |              |                 |          |                   |                 |                  | WELL INSTAL         | LATION<br>PE EL. + 764.               | 74           | STANDARD PENETRATION<br>TEST, N (B/FT)           | RES<br>NS/                                        | WATER CONTENT, % | 동                           | LIQUID/PLASTIC LIMIT<br>I.L/PL | SN INC                        | ¥                                     |
| r               |                |              | CE              |          |                   |                 |                  | IOF STANDER         | rc cc. /                              | I            | (B/1                                             | PMP<br>TO                                         | TEN              | UNIT DRY WEIGHT<br>(LBS/FT) | 22                             | PERCENT PASSING<br>#200 SIEVE | PERMEABILITY, K<br>(CM/SEC)           |
| z               |                | w            | SAMPLE DISTANCE |          |                   | DESCR           | IPTION OF MA     | TERIAL              |                                       | 1            | d Z                                              | 000                                               | S                | 38/1                        | LAS                            | O S                           | M/S                                   |
| ÎH<br>ELEVATION | NO.            | SAMPLE TYPE  | Sia             | æ        |                   | 0.000           |                  |                     |                                       |              | DAR<br>EST                                       | ET E                                              | 85               | ==                          | 9/01                           | SCE.                          | M C M                                 |
| . ÌH<br>LEVAI   | PLE            | 교            | 7               | S        |                   |                 |                  |                     |                                       |              | I AN                                             | S S S S S S S S S S S S S S S S S S S             | WA               | 5                           | no.                            | E                             | ۳ ا                                   |
| 3               | SAMPLE NO      | AW.          | SAM             | RECOVERY | SURFACE ELE       | VATION +7       | 62.80            |                     |                                       | 7            | S                                                | STS                                               | ŀ                | l                           | -                              | 1                             |                                       |
| $\times$        | <u> </u>       | <del> </del> | -               |          |                   |                 |                  |                     | · · · · · · · · · · · · · · · · · · · | 1-1-         | <del>                                     </del> | -                                                 |                  |                             |                                |                               |                                       |
|                 |                |              | $\  \ $         |          |                   |                 |                  |                     |                                       | 1            |                                                  |                                                   |                  |                             | 1                              | 1                             | 1                                     |
|                 |                |              | Ш               |          |                   |                 |                  |                     |                                       | 1            |                                                  |                                                   | 1                |                             | 1                              | l                             | 1                                     |
|                 |                | нѕ           | Ш               |          |                   |                 |                  |                     |                                       | \$           | 1                                                |                                                   |                  |                             |                                | 1                             |                                       |
|                 |                |              |                 |          |                   |                 |                  |                     |                                       | 1 5          |                                                  |                                                   | 1                |                             |                                | 1                             |                                       |
|                 |                |              | $\ \ $          |          |                   |                 |                  |                     |                                       | 1 1          | 1                                                |                                                   |                  |                             | Ì                              | 1                             |                                       |
| <u> </u>        | 1              | Ì            | Ш               |          |                   |                 |                  |                     |                                       | 1 3          | 1                                                |                                                   |                  |                             |                                |                               |                                       |
| <u> </u>        | 1              | 1            | $\Pi$           | П        | No sample         | s collect       | eđ - see         | boring lo           | g of Boring                           | 2            |                                                  |                                                   | 1                |                             |                                |                               |                                       |
| - <del>10</del> | ]              |              | $\  \ $         |          |                   |                 |                  |                     |                                       | 1 5          | 1                                                | 1                                                 | 1                |                             |                                |                               |                                       |
| 10              | }              |              | $\  \ $         |          |                   |                 |                  |                     |                                       | }            |                                                  |                                                   | - 1              |                             |                                |                               |                                       |
|                 | 1              |              | $\  \ $         |          |                   |                 |                  |                     |                                       | 1            | 1                                                |                                                   | 1                | ļ                           |                                |                               |                                       |
| <del> </del>    | 4              |              |                 |          |                   |                 |                  |                     |                                       | 1 1          |                                                  |                                                   | -                |                             |                                |                               |                                       |
|                 | 1              | RE           | Ш               |          |                   |                 |                  |                     |                                       | 1 2          |                                                  |                                                   | 1                |                             |                                |                               |                                       |
|                 | ન<br>•         |              | Ш               |          |                   |                 |                  |                     |                                       | 4            | İ                                                |                                                   | İ                |                             |                                |                               |                                       |
| 15              | 1              |              |                 |          |                   |                 |                  |                     |                                       | {            |                                                  | 1 1                                               | - 1              |                             |                                |                               |                                       |
|                 | 1              |              | II i            |          |                   |                 |                  |                     |                                       | : <b>5</b>   |                                                  |                                                   |                  |                             |                                |                               |                                       |
| 1.              | 7              |              | li i            |          |                   |                 |                  |                     |                                       | 1            |                                                  |                                                   |                  |                             |                                |                               | 1                                     |
|                 | E              |              | Ш               |          | :                 |                 |                  |                     |                                       |              |                                                  |                                                   | - 1              |                             |                                |                               | 1 1                                   |
| 20              | }              |              | Ш               |          |                   |                 |                  |                     |                                       | 1 1          |                                                  |                                                   | l                |                             |                                |                               |                                       |
| 20              | <del>+ -</del> | +-           | tri             | III      |                   |                 | ·····            |                     | · · · · · · · · · · · · · · · · · · · | 1 1          | 1                                                | 1.5                                               |                  |                             | <u> </u>                       | 1                             |                                       |
|                 | ] 1            | 51           |                 | Ш        |                   |                 |                  |                     |                                       |              |                                                  |                                                   |                  |                             | 1                              |                               | 1 1                                   |
|                 | ╪              | +-           | +-              | 111      |                   |                 |                  |                     |                                       |              | -                                                |                                                   | l                |                             |                                | 1                             |                                       |
|                 | ‡              |              |                 |          |                   |                 |                  |                     |                                       | 1 2          |                                                  |                                                   |                  |                             |                                |                               | 1 1                                   |
|                 | 1              | i            |                 | <u> </u> |                   |                 |                  |                     |                                       | 1            |                                                  |                                                   | - 1              |                             |                                | 1                             | 1 1                                   |
|                 | i              | T            | T               | Ш        | }                 |                 |                  |                     |                                       |              |                                                  |                                                   |                  |                             | 1                              |                               | 1 1                                   |
|                 | _ 2            | į S'         | T]]             | Ш        | Brown si          | ltv clav        | (CT.) - tr       | ace of gra          | avel - firm                           | _   5        | 1                                                | 1.0                                               | ]                |                             | j                              | 1                             |                                       |
|                 |                | 1            |                 |          | wet - ti          |                 | (CD) CI          | ace or gre          |                                       | 1            | .                                                | 1 1                                               |                  |                             | 1                              |                               |                                       |
|                 | _              |              |                 |          |                   |                 |                  |                     |                                       | : Z          |                                                  | 1                                                 |                  |                             |                                | 1                             | 1                                     |
| 30              |                | <del> </del> | +               |          | 1                 |                 |                  |                     |                                       | 3            |                                                  |                                                   |                  |                             |                                |                               |                                       |
|                 | ∃ 3            | s            | T               |          | 1                 |                 |                  |                     |                                       |              |                                                  | 1.0                                               |                  |                             |                                |                               | 1                                     |
|                 |                | +-           | #               | Щ        | 1                 |                 |                  |                     |                                       |              |                                                  |                                                   |                  |                             |                                |                               |                                       |
|                 | 3              |              |                 | 1        |                   |                 |                  |                     |                                       |              |                                                  |                                                   |                  | İ                           |                                |                               |                                       |
|                 | =              |              |                 | 1        |                   |                 |                  |                     |                                       |              |                                                  |                                                   |                  |                             |                                |                               |                                       |
| - 35            | +              | +            | +               | Ш        | 1                 |                 |                  |                     |                                       |              |                                                  |                                                   | ļ                |                             |                                |                               |                                       |
|                 | ‡ 4            | ı   s        | 괴               |          |                   |                 |                  |                     |                                       |              |                                                  | .75                                               |                  | 1                           |                                |                               |                                       |
|                 | 1              | 1            | 7               | 7        | 1                 |                 |                  |                     |                                       |              | 1                                                |                                                   |                  |                             |                                | l                             |                                       |
|                 | $\exists$      | 1            |                 |          |                   |                 |                  |                     |                                       |              | :                                                | 1                                                 |                  |                             |                                |                               |                                       |
| 40              | Ξ_             | $\perp$      |                 | 丄        | ]                 |                 |                  |                     |                                       | &            | :                                                |                                                   |                  |                             |                                |                               |                                       |
| 1,              | -              | Τ            | $\prod$         | $\prod$  |                   |                 |                  |                     |                                       |              |                                                  | .75                                               |                  |                             |                                |                               |                                       |
| . 32            | ] :            | 5   5        | T               | 凹        | 1                 |                 |                  |                     |                                       |              | _                                                | 1 ./3                                             | <b>]</b>         | <b></b>                     | 4                              |                               |                                       |
|                 |                |              |                 |          |                   | n               |                  |                     |                                       |              |                                                  |                                                   |                  |                             |                                |                               |                                       |
|                 | $\exists$      |              |                 |          | End of I          |                 | o 7.0 fee        | t with po           | wer auger a                           | od From      | 7 0 +                                            | 42.0 6                                            | eet              |                             |                                |                               |                                       |
|                 | =              |              |                 |          | with ro           | ak hit - f      | R O feet o       | of 6 inch           | diameter ter                          | npokary      | / casin                                          | ; linstal                                         | lled             |                             |                                |                               |                                       |
|                 | 7              |              |                 |          | 1                 |                 |                  |                     | onitoring we                          | 1            | 1                                                |                                                   | ł                | 1                           |                                |                               |                                       |
| The :           | stratific      | cation       | line            | repr     | esent the approxi | nate boundary b | etween soll type | s. In situ. the tra | nsition may be gradu                  | al. Water le | weis were m                                      | easured at th                                     | e times in       | dicated. V                  | AO T                           | may vary                      | seasonally.                           |
| /L              |                |              |                 |          | BCR               |                 | ·                | ACR                 | BORING STARTED                        | 1-29         | 9-90                                             | STS OFF                                           | ICE              |                             |                                | abeau S<br>Bay, Wl            | 54303                                 |
| VL-T.           | PIPE           | $\perp$      | DAT             | E        | TIME              | WL-T. PIPE      | DATE             | TIME                | BORING COMPLET                        | ED 1-29      | 9-90                                             | ]                                                 |                  |                             |                                |                               | · · · · · · · · · · · · · · · · · · · |
| 8.              | 96'            | 4-           | 2-5             | -90      |                   | <del> </del>    |                  |                     | RIG CME 75                            |              |                                                  | DRAWN                                             | BY RLS           | SHEE                        | 1                              | OF                            | 1                                     |
| ١               |                | +            |                 |          | -                 | <b> </b>        | 1                |                     | FOREMAN BZ                            |              |                                                  | APP'D. E                                          | Y MAB            | STS.                        | 108 NO.                        | 168982                        | (H                                    |

|                                                           | OWNER                                                                                       |             |                                        | RING NI                                           | JMBER          |                        |                               |                               |                             |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------|----------------------------------------|---------------------------------------------------|----------------|------------------------|-------------------------------|-------------------------------|-----------------------------|
|                                                           | Albany International PROJECT NAME                                                           | ENGII       |                                        |                                                   |                |                        |                               |                               |                             |
| STS Consultants Ltd.                                      | Chromium Contamination Assessment                                                           | <u> </u>    |                                        | <del></del> -                                     |                | <del></del>            | <del></del>                   | <del></del>                   |                             |
| ITE LOCATION                                              | N. Meade Street, Appleton, Wisconsin                                                        |             | NOI                                    | SIVE<br>FT?)                                      |                |                        |                               |                               |                             |
|                                                           | WELL INSTALLATION TOP STANDPIPE EL. +                                                       |             | STANDARD PENETRATION<br>TEST, N (B/FT) | UNCONFINED COMPRESSIVE<br>STRENGTH, Qp (10NS/FT*) | N1. %          |                        | LIQUID/PLASTIC LIMIT<br>LL/PL | PERCENT PASSING<br>#200 SIEVE | ×<br>≿                      |
| LANCE                                                     | DESCRIPTION OF MATERIAL                                                                     |             | N (8                                   | 00 a                                              | CONTE          | 3S/FI                  | LAS1                          | NT PA                         | M/SEC                       |
| ELEVATION MPLE NO MPLE TYPE MPLE DISTA                    |                                                                                             |             | NDAR                                   | NGTH                                              | WATER CONTENT. | (LBS/FT <sup>3</sup> ) | a/qin                         | FRCE<br>#20                   | PERMEABILITY, K<br>(CM/SEC) |
| ELEVATION SAMPLE NO. SAMPLE TYPE SAMPLE DISTANCE RECOVERY | SURFACE ELEVATION                                                                           | 1           | STA                                    | STRE                                              | >              |                        | ۱ ا                           |                               |                             |
| 1 55                                                      | Dark brown clayey sandy silt (ML) - trace of                                                |             | 5                                      |                                                   |                |                        |                               |                               |                             |
| 13 85                                                     | gravel, little roots and gravel - loose - topsoil                                           |             |                                        |                                                   |                |                        | .                             |                               |                             |
| 2 SS                                                      | Brown silty clay (CL) - trace of gravel - loose - possible fill                             |             | 6                                      |                                                   |                |                        |                               |                               |                             |
| 3 SS                                                      | position                                                                                    |             | 30                                     |                                                   |                |                        |                               |                               |                             |
| 4 SS                                                      |                                                                                             |             | 26                                     |                                                   |                |                        |                               |                               |                             |
| 5 SS                                                      |                                                                                             |             | 24                                     |                                                   |                |                        |                               |                               | İ                           |
| 6 SS                                                      | Brown silty clay (CL) - trace of gravel - medium                                            |             | 20                                     |                                                   |                |                        |                               |                               |                             |
|                                                           | dense - glacial till - saturated at 16.0 feet                                               |             | 18                                     |                                                   |                |                        |                               |                               |                             |
| 7 55                                                      | <u>Ш</u> .<br>п                                                                             |             | 11                                     |                                                   |                |                        |                               |                               |                             |
| 8 SS                                                      |                                                                                             |             | 6                                      |                                                   |                |                        |                               |                               | į                           |
| 9 SS                                                      |                                                                                             |             |                                        |                                                   |                |                        |                               |                               |                             |
| 9.5 10 SS                                                 |                                                                                             |             | 9                                      |                                                   |                |                        |                               |                               |                             |
|                                                           | End of Boring Boring advanced from 0.0 to 19.5 feet by power                                |             |                                        |                                                   |                |                        |                               |                               |                             |
|                                                           | auger Boring backfilled with bentonite                                                      |             | -                                      |                                                   |                |                        | ·                             |                               |                             |
|                                                           | Bolling bookillist and a                                                                    | İ           |                                        |                                                   |                |                        |                               |                               |                             |
|                                                           |                                                                                             |             |                                        |                                                   |                |                        |                               |                               |                             |
|                                                           |                                                                                             |             |                                        |                                                   |                |                        |                               |                               |                             |
|                                                           |                                                                                             |             |                                        | 1                                                 |                |                        |                               |                               |                             |
|                                                           |                                                                                             |             |                                        |                                                   |                |                        |                               |                               |                             |
|                                                           |                                                                                             |             |                                        |                                                   |                |                        |                               |                               |                             |
|                                                           |                                                                                             |             |                                        |                                                   |                |                        |                               |                               |                             |
|                                                           |                                                                                             |             |                                        |                                                   |                |                        |                               |                               |                             |
|                                                           |                                                                                             |             |                                        |                                                   |                |                        |                               | Ì                             |                             |
|                                                           |                                                                                             |             |                                        |                                                   |                |                        |                               |                               |                             |
|                                                           |                                                                                             |             |                                        |                                                   |                |                        |                               |                               |                             |
|                                                           |                                                                                             |             |                                        |                                                   |                |                        | 1                             |                               |                             |
|                                                           |                                                                                             |             |                                        |                                                   |                |                        |                               |                               |                             |
|                                                           |                                                                                             |             |                                        |                                                   |                |                        |                               |                               |                             |
| The stratification lines                                  | represent the approximate boundary between soil types. In situ, the transition may be gradu | el. Water k | wels were r                            | neasured at 1                                     | ne times inc   | i<br>licated. V        | Vater level                   | s may vary                    | seasonally.                 |
| : "L                                                      | BCR ACR BORING STARTED                                                                      |             | 4-87                                   | STS OF                                            |                |                        |                               | eau Str<br>/, WI.             |                             |
| ILT, PIPE DAT                                             |                                                                                             | TED 1-      | 14-87                                  | DRAW                                              | YBY JJ         | SHE                    |                               | OF                            | 1                           |
|                                                           | RIG JOY<br>FOREMAN                                                                          | 15<br>RER   |                                        | APP'D.                                            |                | ere                    | JOB NO.                       | 13685                         |                             |

| C:         | 7            |                  |                  | OWNER                   | ny Interna      | tional           |                     |                                         | LC      | ) DC   |                                        | RING I                                            | NUMBE          | ER                            |                               |                               |                           |
|------------|--------------|------------------|------------------|-------------------------|-----------------|------------------|---------------------|-----------------------------------------|---------|--------|----------------------------------------|---------------------------------------------------|----------------|-------------------------------|-------------------------------|-------------------------------|---------------------------|
| 51         | 57           |                  |                  | PROJECT                 |                 | CIONAL           |                     |                                         | -       |        | VEER                                   |                                                   |                |                               |                               |                               |                           |
| STS Cons   |              | ite 1            |                  |                         | nium Conta      | mination         | Accocemor           | \ <del>+</del>                          | E       | YG!!   | ACEH                                   |                                                   |                |                               |                               |                               |                           |
| SITE LO    |              |                  |                  | Chio                    | arua conce      | miliacion        | ASSESSME            | <i>1</i> L                              |         |        |                                        |                                                   |                |                               | T                             |                               |                           |
|            |              |                  | `<br>            | N. Me                   | eade Stree      | et, Applet       |                     | <del></del>                             |         | _      | NOI                                    | UNCONFINED COMPRESSIVE<br>STRENGTH, Op (TONS/FT²) | , o            |                               | <u>-</u>                      |                               |                           |
| .          |              |                  |                  |                         |                 |                  | WELL INSTA          | ALLATION<br>PIPE EL.+                   |         |        | STANDARD PENETRATION<br>TEST, N (8/FT) | PRES<br>NS/                                       | ٦. %           | GH1                           | LIQUID/PLASTIC LIMIT<br>LL/PL | 9NI                           | ×                         |
|            |              | SAMPLE DISTANCE  |                  |                         |                 |                  |                     |                                         |         |        | ENE (B/C)                              | OMO:                                              | WATER CONTENT. | UNIT DRY WEIGHT<br>(1.85/FT²) | 57                            | PERCENT PASSING<br>#200 SIEVE | PERMEABILITY.<br>(CM/SEC) |
| 8          | <u>.</u>   ₩ | STA              |                  |                         | DESCI           | RIPTION OF M     | IATERIAL            |                                         |         |        | 87.<br>N. N.                           | ED (                                              | ີວິ            | DRY<br>BS/                    | P.L.                          | NT I                          | EAB<br>M/S                |
| ELEVATION  | 1   1        | 9                | E                |                         |                 |                  |                     |                                         |         |        | NDA                                    | NFIN                                              | ATER           | T IN                          | )<br>In                       | ERCE<br>#2                    | EPN<br>(C                 |
| _=         | SAMPLE NO.   | AMP              | RECOVERY         | SURFACE EL              | CVATION         |                  |                     | *************************************** | 7       |        | STA                                    | NCO                                               | *              | ٦                             | E .                           | ۵.                            | -                         |
| ٩          | v i o        | S                | 12               |                         |                 |                  | (107.)              |                                         | +-      | -      |                                        | 50                                                | ···            |                               |                               |                               |                           |
|            | 1 88         | Щ                | Ш                | Dark brown<br>gravel, 1 |                 |                  |                     |                                         |         |        | 7                                      |                                                   |                |                               |                               |                               |                           |
| ·==        | 2 SS         | Ш                | Щ                |                         |                 |                  |                     |                                         |         | 1      | 9                                      |                                                   |                |                               |                               |                               |                           |
| -72        | 3 SS         | Til              | -                |                         |                 |                  |                     | vel - loose                             |         |        | 25                                     | ٠                                                 |                |                               |                               |                               |                           |
| =          | 4 55         | $\overline{\Pi}$ | F                | to medium               | dense -         | possible         | fill                |                                         |         |        | 24                                     |                                                   |                |                               |                               |                               |                           |
| $\equiv$   | 4 33         | 끢                |                  |                         |                 |                  |                     |                                         |         |        |                                        |                                                   |                |                               |                               | -                             |                           |
| 10         | 5 55         | Щ                |                  |                         |                 |                  |                     |                                         |         |        | 6                                      |                                                   |                |                               |                               |                               |                           |
| -          | 6 SS         |                  | $\prod$          |                         |                 |                  |                     |                                         |         |        | 17                                     |                                                   |                |                               |                               |                               |                           |
|            | ==           |                  | $\overline{\Pi}$ |                         |                 |                  | _                   |                                         |         |        | 9                                      |                                                   |                |                               |                               |                               |                           |
|            | 7 SS         | 11               | Щ                |                         |                 |                  |                     | vel - loose<br>urated at                |         |        | 9                                      |                                                   |                |                               |                               |                               |                           |
|            | 8 ss         | : ]]             | Ш                | 10.0 feet               | :               |                  |                     |                                         |         |        | 9                                      |                                                   |                |                               |                               |                               |                           |
|            | 9 5          |                  | $\prod$          |                         |                 |                  |                     |                                         | i       |        | 7                                      |                                                   |                |                               |                               |                               |                           |
|            | #            | +                | #                |                         |                 |                  |                     |                                         |         |        | _                                      | Ì                                                 |                |                               |                               |                               |                           |
| 19.5       | 10 S         | ij               | !!               | •                       |                 |                  |                     | *************************************** | _       |        | 7                                      |                                                   |                | ļ                             |                               |                               | ļ                         |
|            |              |                  |                  | End of Bo               | oring           |                  |                     |                                         |         |        |                                        |                                                   |                |                               |                               |                               |                           |
|            |              |                  |                  | Boring ad               | lvanced fr      | com 0.0 to       | 19.5 fee            | et by power                             |         |        |                                        |                                                   |                |                               |                               |                               |                           |
|            |              |                  | 1                |                         | ackfilled       | with bent        | onite               |                                         |         |        |                                        |                                                   |                |                               |                               |                               |                           |
|            |              |                  |                  |                         |                 |                  |                     |                                         |         |        |                                        | İ                                                 |                |                               |                               |                               |                           |
|            | ļ            |                  |                  |                         |                 |                  |                     |                                         |         |        |                                        |                                                   |                |                               |                               |                               |                           |
|            |              |                  |                  |                         |                 |                  |                     |                                         | İ       |        |                                        |                                                   |                |                               |                               |                               |                           |
|            |              |                  |                  |                         |                 |                  |                     |                                         |         |        |                                        |                                                   |                |                               |                               |                               |                           |
|            |              |                  |                  |                         |                 |                  | ٠                   |                                         |         |        |                                        |                                                   |                |                               |                               |                               |                           |
|            |              |                  |                  |                         | •               |                  |                     |                                         |         |        |                                        |                                                   |                |                               |                               |                               |                           |
|            |              |                  |                  |                         |                 |                  |                     |                                         |         |        |                                        |                                                   |                |                               |                               |                               |                           |
|            |              |                  |                  |                         |                 |                  |                     |                                         |         |        |                                        |                                                   |                |                               |                               |                               |                           |
|            |              |                  |                  |                         |                 |                  |                     |                                         |         |        |                                        |                                                   |                |                               |                               |                               |                           |
|            |              |                  |                  | 1                       |                 |                  |                     |                                         |         |        |                                        |                                                   |                |                               |                               |                               |                           |
| 三          |              |                  |                  |                         |                 |                  |                     |                                         |         |        |                                        |                                                   |                |                               |                               |                               |                           |
|            |              |                  |                  |                         |                 |                  |                     |                                         |         |        |                                        |                                                   |                |                               |                               |                               |                           |
|            |              |                  |                  |                         |                 |                  |                     |                                         |         |        | 1                                      |                                                   |                |                               |                               |                               | 1                         |
|            |              |                  |                  |                         |                 |                  |                     |                                         |         |        |                                        |                                                   |                |                               |                               |                               |                           |
| F          |              |                  |                  |                         |                 |                  |                     |                                         |         |        |                                        |                                                   |                |                               |                               |                               |                           |
|            |              |                  |                  |                         |                 |                  |                     |                                         |         |        |                                        |                                                   |                |                               |                               |                               |                           |
| The strati | ification    | lines            | repre            | i<br>sent the approxim  | nate boundary b | etween soil type | s. In situ, the tra | nsition may be gradue                   | . Water | levels | were met                               | Sured at th                                       | e times in     | dicated. W                    | ater levels                   | may vary se                   | asonalty.                 |
| <u>n</u>   |              |                  |                  | BCR.                    |                 |                  | ACR                 | BORING STARTED                          |         | -19-   |                                        | STS OFF                                           |                | 540                           | Lambea                        | u Stre                        | et                        |
|            |              |                  | _                | TIME                    | WL-T. PIPE      | DATE             | TIME                | 2021/2021/2021                          |         |        |                                        |                                                   |                | Gree                          | en Bay,                       | MI. 3                         |                           |
| YL-T PIPI  | E            | DAT              |                  | 1                       |                 |                  |                     | BORING COMPLETE                         | D 1.    | -19-   | 87                                     | Deam                                              | RY             | QUEE                          | т.                            | OF -                          |                           |
| VL-T PIPI  | E            | DAI              |                  |                         |                 |                  |                     | RIG Joy 1                               |         | -19-   | ·87                                    | DRAWN<br>APP'D. E                                 | BY JJT         |                               | T 1<br>OB NO. 1               | OF 1                          |                           |



SAMPLE NO.

3

4

6

LOG OF BORING NUMBER OWNER Albany International **ENGINEER** PROJECT NAME Chromium Contamination Assessment SITE LOCATION N. Meade Street, Appleton, Wisconsin UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT²) STANDARD PENETRATION TEST. N (B/FT) LIQUID/PLASTIC LIMIT LL/PL WELL INSTALLATION TOP STANDPIPE EL.+ 769.88 PERMEABILITY, K (CM/SEC) PERCENT PASSING #200 SIEVE UNIT DRY WEIGHT (LBS/FT<sup>3</sup>) WATER CONTENT. SAMPLE DISTANCE DESCRIPTION OF MATERIAL SAMPLE TYPE SURFACE ELEVATION 768.08 (USGS) Concrete Fill: Crushed stone 12 1 55 Brown silty clay (CL) - trace of gravel - medium dense - possible fill 15 2 55 26 ss 12 ss 14 5 lss 5 SS 6 7 6 8 55 Brown silty clay (CL) - trace of gravel - loose to medium dense - glacial till - saturated at 18.0 feet 9 SS 6 10 SS 6 11 SS 9 12 55 End of Boring Boring advanced from 0.0 to 17.5 feet by power auger - Boring advanced from 17.5 to 41.5 feet

2 inch diameter PVC piezometer installed at 40 ft. with protector pipe - 7.0 feet of HW casing used The stratification lines represent the approximate boundary between soil types. In aitu, the transition may be graduel, Water levels were measured at the times indicated. Water levels may vary seasonally. 540 Lambeau Street WL BORING STARTED 1-20-87 STS OFFICE Green Bay, WI. 54303 WL-T. PIPE DATE TIME TIME WL-T, PIPE DATE BORING COMPLETED 1-29-87 TLL YE HWARD 2-9-87 SHEET 1 25.3 1-21-87 Joy 15 16.8 3-26-87 1-22-87 APP'D. BY JWK STS JOB NO. 13685 FOREMAN RER 2-4-87

by roller bit and water

|             | =          | 7            | OWNER           |           |            |                 |                  |             |                                        | LOG                                               | OF BC                                  | RING                                              | NUMBE          | R                                         |                               | ·                             |                             |
|-------------|------------|--------------|-----------------|-----------|------------|-----------------|------------------|-------------|----------------------------------------|---------------------------------------------------|----------------------------------------|---------------------------------------------------|----------------|-------------------------------------------|-------------------------------|-------------------------------|-----------------------------|
| 1           | L          | 4            |                 |           | Albany I   | nternatio       | nal              |             |                                        | MW-                                               | -5A                                    |                                                   |                |                                           |                               |                               |                             |
|             |            | •            |                 |           | PROJECT    | NAME            |                  |             |                                        | ENG                                               | INEER                                  |                                                   |                |                                           |                               |                               |                             |
| STS C       | onsu       | tant         | s Lt            | d.        | Site Rem   | ediation        |                  |             |                                        | STS                                               | Consu                                  | ltants                                            | , Ltd.         |                                           |                               |                               |                             |
| ITE         | LOC        | TAC          | 10              | ł         | Former A   | lhany Int       | ernationa        | Chromiu     | m Facility                             |                                                   |                                        |                                                   |                |                                           |                               |                               |                             |
|             |            |              |                 |           |            | , Wiscons       |                  |             |                                        |                                                   | <u> </u>                               | ₹£                                                |                |                                           |                               |                               | 1                           |
|             |            |              |                 | П         |            |                 |                  | WELL INST   | ALLATION<br>PIPE EL.+_765.2            |                                                   | STANDARD PENETRATION<br>TEST, N (B/FT) | UNCONFINED COMPRESSIVE<br>STRENGTH, Qp (TONS/FT²) | %              | =                                         | LIQUID/PLASTIC LIMIT<br>LL/PL | ទ                             | ×                           |
|             |            |              | ببر             |           |            |                 |                  | TOP STAND   | PIPE EL. + 765.2                       | <u>9</u>                                          | 18.6                                   | E S                                               | EN 1           | FIG.                                      | CLI                           | SS                            | خ ا                         |
| _           |            | <u></u>      | Ä               |           |            |                 |                  |             |                                        |                                                   | N S S                                  | 8.8                                               | N.             | Y W                                       | ASTI<br>/PL                   | SE                            | SEC                         |
| 101         | Š          | Ž            | DIST            | $ $ _ $ $ |            | DESC            | RIPTION OF A     | MATERIAL    |                                        |                                                   | ST.                                    | B                                                 | S<br>æ         | LBS                                       | 5구                            | Sen                           | CW (                        |
| THELEVATION | SAMPLE NO. | SAMPLE TYPE  | SAMPLE DISTANCE | RECOVERY  |            |                 |                  |             |                                        |                                                   | Š.                                     | E S                                               | WATER CONTENT, | UNIT DRY WEIGHT<br>(LBS/FT <sup>3</sup> ) | ĝ                             | PERCENT PASSING<br>#200 SIEVE | PERMEABILITY, K<br>(CM/SEC) |
|             | AMP        | A W          | AMP             | 꼾         | CHOCAGE EI | F1471A11        |                  | ~~~         | <del></del>                            | ,                                                 | STA                                    | SE                                                | W              |                                           | 2                             | ۵ ا                           | -                           |
|             | S          | Š            | Š               | œ         | SUHFACE E  | LEVATION +      | 762.41           |             |                                        |                                                   |                                        | 200                                               |                |                                           |                               |                               |                             |
|             |            | 1            |                 |           |            |                 |                  |             |                                        |                                                   |                                        |                                                   |                |                                           |                               |                               |                             |
|             |            |              | li I            |           |            |                 |                  |             |                                        | 1                                                 |                                        |                                                   |                |                                           |                               |                               | - 1                         |
| =           | !          |              | Ш               |           | •          |                 |                  |             |                                        |                                                   |                                        | 1                                                 |                |                                           | l                             |                               |                             |
|             |            |              |                 |           |            |                 |                  |             |                                        | 1                                                 |                                        |                                                   |                |                                           | 1                             |                               | 1                           |
| 5           |            |              | $\ \ $          |           |            |                 |                  |             |                                        | 1                                                 |                                        |                                                   |                |                                           |                               |                               |                             |
| $F \equiv$  |            |              | $\ \ $          |           |            |                 |                  |             |                                        |                                                   |                                        |                                                   |                |                                           | l                             |                               |                             |
|             |            |              |                 |           |            |                 |                  |             |                                        |                                                   | ļ                                      |                                                   | *              |                                           |                               |                               |                             |
|             |            |              |                 |           |            |                 |                  |             |                                        |                                                   |                                        | 1                                                 |                |                                           |                               |                               |                             |
| 10          | 1          | ЯS           |                 | ] ]       | No samal:  | es collec       | ted - see        | log of h    | oring log                              | \$ <b>№</b> В В В В В В В В В В В В В В В В В В В |                                        | 1                                                 |                |                                           | 1                             |                               |                             |
| 1           | 1          |              | Ш               |           | MW-5       |                 |                  |             |                                        |                                                   |                                        |                                                   |                |                                           | l                             |                               |                             |
|             |            |              | $\ \ $          |           |            |                 |                  |             |                                        |                                                   |                                        |                                                   |                |                                           |                               |                               |                             |
|             | 1          | İ            |                 |           |            |                 |                  |             |                                        |                                                   | 1                                      |                                                   |                |                                           | 1                             | ł                             | 1                           |
|             | }          | İ            | $\ \ $          |           |            |                 |                  |             |                                        |                                                   | 1                                      |                                                   |                |                                           | 1                             |                               |                             |
| -15         | 1          |              | $\  \ $         |           |            |                 |                  |             |                                        |                                                   |                                        |                                                   | İ              |                                           | l                             | 1                             |                             |
|             | 1          |              | Ш               |           |            |                 |                  |             |                                        |                                                   |                                        |                                                   | }              |                                           | 1                             | 1                             |                             |
|             | 1          |              | Ш               |           |            |                 |                  |             |                                        | i                                                 |                                        |                                                   |                |                                           | }                             |                               |                             |
|             | 1          |              | Ш               |           |            |                 |                  |             |                                        |                                                   |                                        |                                                   | İ              |                                           | ł                             |                               |                             |
| -20         | Ì          |              |                 |           | •          |                 |                  |             |                                        |                                                   | İ                                      |                                                   | 1              |                                           |                               | }                             |                             |
| 20          | }_         | <del> </del> | ┞               | $\vdash$  |            |                 | ·                | ····        |                                        | - 22                                              |                                        | <del> </del>                                      | <del> </del>   | ļ                                         |                               | ļ                             |                             |
|             | 1          | ĺ            | l               |           | End of E   |                 |                  |             |                                        | 1                                                 | 1                                      |                                                   |                |                                           |                               | 1                             |                             |
| <u> </u>    | 1          |              |                 |           |            |                 |                  |             | ower auger                             | }                                                 |                                        |                                                   |                |                                           | 1                             | 1                             |                             |
| ==          | 1          |              |                 |           | 2 inch c   |                 | monitoring       | well ins    | stalled                                |                                                   | 1                                      | 1                                                 | ĺ              |                                           | 1                             | 1                             |                             |
|             | 1          |              |                 |           |            |                 |                  |             |                                        |                                                   | İ                                      |                                                   | ł              |                                           | İ                             |                               |                             |
|             | ]          | Į            |                 | li        |            |                 |                  |             |                                        | 1                                                 |                                        |                                                   |                |                                           |                               |                               |                             |
|             | ]          | i            |                 |           |            |                 |                  |             |                                        |                                                   |                                        | 1                                                 |                |                                           | 1                             |                               |                             |
| =           | į          |              | l               |           |            |                 |                  |             |                                        |                                                   |                                        |                                                   | 1              |                                           |                               | 1                             | 1 1                         |
|             | 1          | 1            |                 |           |            |                 |                  |             |                                        |                                                   |                                        |                                                   |                | İ                                         |                               |                               |                             |
| F. —        | -i         |              |                 | !         |            |                 |                  |             |                                        | 1                                                 |                                        |                                                   |                | •                                         |                               |                               | j                           |
| [ ==        | ]          | ĺ            |                 |           |            |                 |                  |             |                                        |                                                   |                                        | ]                                                 | 1              |                                           |                               |                               |                             |
|             |            |              |                 |           |            |                 |                  |             |                                        | 1                                                 |                                        |                                                   |                | 1                                         |                               |                               |                             |
| -           | 1          |              |                 |           |            |                 |                  |             |                                        |                                                   |                                        |                                                   | 1              |                                           |                               |                               |                             |
| ==          | 1          |              |                 |           |            |                 |                  |             |                                        |                                                   |                                        |                                                   |                | -                                         |                               |                               |                             |
|             | 1          |              |                 |           |            |                 |                  |             |                                        |                                                   |                                        |                                                   |                |                                           |                               |                               |                             |
|             | }          |              |                 |           |            |                 |                  |             | -                                      |                                                   | 1                                      |                                                   |                |                                           |                               | 1                             |                             |
|             | ]          |              |                 |           |            |                 |                  |             |                                        |                                                   |                                        | 1                                                 |                |                                           |                               | 1                             |                             |
| 1:=         | 1          |              |                 |           |            |                 |                  |             |                                        |                                                   |                                        |                                                   |                | 1                                         |                               |                               |                             |
|             | 1          |              |                 |           |            |                 |                  |             |                                        | 1                                                 |                                        |                                                   | 1              |                                           |                               | 1                             |                             |
| -           | 1          |              |                 |           |            |                 |                  |             |                                        |                                                   |                                        |                                                   |                |                                           | 1                             | 1                             |                             |
|             | 1          |              |                 |           |            |                 |                  |             |                                        |                                                   |                                        | 1                                                 | 1              |                                           |                               | İ                             |                             |
|             | 1          | l            | 1               |           |            |                 |                  |             |                                        |                                                   |                                        |                                                   |                |                                           | 1                             |                               |                             |
|             | }          | 1            |                 |           |            |                 |                  |             |                                        |                                                   |                                        | 1                                                 |                |                                           | 1                             |                               |                             |
|             | }          |              |                 |           |            |                 |                  |             |                                        |                                                   |                                        | 1                                                 |                |                                           |                               |                               |                             |
|             | <u> </u>   |              |                 |           |            |                 |                  |             |                                        |                                                   |                                        | <u></u>                                           |                |                                           | <u></u>                       | <u></u>                       |                             |
|             |            |              | nes             | epres     |            | nate boundary b | etween soil type |             | nsition may be gradual.                |                                                   |                                        | sured at th                                       | e times in     |                                           |                               |                               |                             |
| -           | Dry        |              |                 |           | BCR        | 140             | I                | ACR         | BORING STARTED                         | 1-29-                                             | -90                                    | STS OFF                                           | ICE .          |                                           |                               | beau S<br>ay, WI              |                             |
| -T. P       | 1PE        |              | ATE             |           | TIME       | WL-T. PIPE      | DATE             | TIME        | BORING COMPLETED                       | 1-29-                                             | -90                                    |                                                   | nv 137.0       | 7                                         |                               |                               |                             |
| RIG CME 75  |            |              |                 |           |            | RIG CME 75      |                  | <del></del> | DRAWN                                  | BY RLS                                            | SHEE                                   | r 1                                               | OF             | 1                                         |                               |                               |                             |
| -           |            |              |                 |           |            |                 | ~~~              |             | ······································ | APP'D. E                                          | Y MAB                                  | STS J                                             | OB NO.         | 16898x                                    | H                             |                               |                             |
| :           |            |              |                 |           |            |                 |                  |             |                                        |                                                   |                                        |                                                   |                |                                           |                               |                               |                             |

|                    |              | 3           |                                                  |               | OWNER                                            | *************************************** |                   |                        | LO    |       |                                        | RING N                                            | UMBE              | R                             |                               | <del></del>                             |                           |
|--------------------|--------------|-------------|--------------------------------------------------|---------------|--------------------------------------------------|-----------------------------------------|-------------------|------------------------|-------|-------|----------------------------------------|---------------------------------------------------|-------------------|-------------------------------|-------------------------------|-----------------------------------------|---------------------------|
| 1                  | 6            | 4           |                                                  | -             | Albany Internat:                                 | ional                                   |                   |                        |       | В-    |                                        |                                                   |                   | <del></del>                   |                               | T-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 |                           |
|                    | _            |             |                                                  |               | PROJECT NAME                                     |                                         |                   |                        | EN    | IGIN  | NEER                                   |                                                   |                   |                               |                               |                                         | İ                         |
| STS Co             |              |             |                                                  |               | Chromium Contam                                  | ination                                 | Assessmen         | t                      |       |       |                                        |                                                   |                   |                               |                               |                                         |                           |
| SITE               | LOC          | ATI         | 10                                               |               | N. Meade Street                                  | , Applet                                | on, Wisco         | nsin                   |       |       | NO.                                    | UNCONFINED COMPRESSIVE<br>Strength, op (Tons/FT*) |                   |                               | <b>-</b>                      |                                         |                           |
|                    |              |             |                                                  |               |                                                  |                                         | WELL INSTA        | LLATION                |       | l     | STANDARD PENETRATION<br>TEST, N (B/FT) | NS/                                               | ٦. %              | ЗНТ                           | LIQUID/PLASTIC LIMIT<br>LL/PL | ING                                     | ×                         |
|                    |              |             | Š                                                |               |                                                  |                                         | 101 0711101       |                        |       |       | (B/I                                   | OMP<br>(TO                                        | WATER CONTENT,    | UNIT DRY WEIGHT<br>(1.85/FT³) | 21.1                          | PERCENT PASSING<br>#200 SIEVE           | PERMEABILITY,<br>(CM/SEC) |
| . S                |              | £.          | SAMPLE DISTANCE                                  |               | DESCRIP                                          | TION OF M                               | ATERIAL           |                        |       |       | 0.T                                    | . oc                                              | Ö                 | DRY<br>BS/                    | LL/F                          | N1 F                                    | M/S                       |
| UEPTH<br>ELEVATION | SAMPLE NO.   | SAMPLE TYPE | 3                                                | RECOVERY      |                                                  |                                         |                   |                        |       |       | TES                                    | IGT.                                              | TER               | N 12                          | 10                            | RCE.                                    | RM<br>C                   |
| 금                  | MP.          | M           | MP                                               | 흜             |                                                  |                                         |                   |                        | _     |       | STAN                                   | SE                                                | X.                | 5                             | L OC                          | 74                                      | ā                         |
| X                  | δ            | 8           | Ş                                                | 뿐             | SURFACE ELEVATION                                |                                         |                   |                        |       |       | ٠.                                     | 20                                                |                   |                               |                               |                                         |                           |
|                    |              |             |                                                  |               | Blacktop and crushed                             | stone                                   |                   |                        |       |       |                                        |                                                   |                   |                               |                               |                                         |                           |
|                    |              |             | Ĺ.,                                              |               |                                                  |                                         |                   |                        |       |       |                                        |                                                   |                   |                               |                               |                                         |                           |
|                    | 1            | ss          |                                                  |               |                                                  |                                         |                   | •                      |       | '     | 18                                     |                                                   |                   |                               |                               |                                         |                           |
|                    |              |             | Ļ                                                |               |                                                  |                                         |                   |                        |       |       |                                        |                                                   |                   |                               |                               |                                         |                           |
|                    | 2            | ss          | Ш                                                | Ш             |                                                  |                                         |                   |                        |       |       | 20                                     |                                                   |                   |                               | Ì                             |                                         |                           |
|                    |              |             |                                                  |               |                                                  |                                         |                   |                        |       |       |                                        |                                                   |                   | ·                             |                               |                                         |                           |
| -                  | 3            | SS          |                                                  | Ш             |                                                  |                                         |                   |                        |       |       | 23                                     |                                                   |                   |                               |                               |                                         |                           |
| ŢŒ                 |              |             | ١.,                                              | $\square$     |                                                  |                                         |                   |                        |       |       |                                        |                                                   |                   |                               |                               |                                         |                           |
|                    | 4            | SS          | Ш                                                | Ш             | Brown silty clay (CI to medium dense - gl        | L) - tra                                | ce of gra         | vel - loose            |       |       | 15                                     |                                                   |                   |                               |                               | İ                                       |                           |
| -                  | <del>!</del> | <u> </u>    | 111                                              |               | 15.0 feet                                        | Lactar C                                | III - Saci        | irateu at              |       |       |                                        |                                                   |                   | İ                             | ļ                             |                                         |                           |
|                    | 5            | ss          | Ш                                                |               |                                                  |                                         |                   |                        |       |       | 9                                      |                                                   |                   |                               |                               |                                         |                           |
| 15                 | <u> </u>     | -           | <del>                                     </del> | H             |                                                  |                                         |                   |                        |       |       |                                        |                                                   |                   |                               |                               |                                         |                           |
|                    | 6            | ss          | Ш                                                | Ш             |                                                  |                                         |                   |                        | 1     |       | 4                                      |                                                   |                   |                               |                               |                                         |                           |
|                    | 1            | ├-          | H                                                | _             |                                                  |                                         |                   |                        |       |       | _                                      |                                                   |                   |                               |                               |                                         |                           |
| ,                  | 7            | SS          | Щ                                                | Щ             |                                                  |                                         |                   |                        |       |       | 5                                      |                                                   |                   |                               | 1                             |                                         |                           |
|                    | _            | -           | <del>                                     </del> | $\  \cdot \ $ | •                                                |                                         |                   |                        |       |       | 5                                      |                                                   |                   |                               |                               |                                         |                           |
| 71.5               | 18           | SS          | Ш                                                | Щ             |                                                  |                                         |                   |                        | 1_    |       | ,                                      |                                                   |                   |                               |                               |                                         |                           |
|                    | j            | İ           |                                                  |               | End of Boring                                    |                                         |                   |                        |       |       |                                        |                                                   |                   |                               |                               |                                         |                           |
|                    | 1            |             |                                                  |               | Boring advanced from                             | m 0.0 to                                | 21.5 fee          | t by power             |       |       |                                        |                                                   |                   |                               |                               |                                         |                           |
|                    | 1            |             |                                                  |               | auger<br>Boring backfilled w                     | ith bent                                | conite            |                        |       |       |                                        |                                                   | 1                 |                               |                               |                                         | ļ                         |
| , <del>}</del>     | 1            |             |                                                  |               |                                                  |                                         |                   |                        |       |       |                                        |                                                   |                   |                               |                               |                                         |                           |
|                    | 7            |             | 1                                                |               |                                                  |                                         |                   |                        |       |       |                                        |                                                   |                   |                               |                               |                                         |                           |
|                    | 1            |             |                                                  |               |                                                  |                                         | •                 |                        | Ì     |       |                                        |                                                   |                   |                               |                               |                                         |                           |
|                    | -            |             |                                                  |               |                                                  |                                         |                   |                        |       |       |                                        |                                                   |                   |                               |                               |                                         |                           |
|                    | 1            |             |                                                  |               |                                                  |                                         |                   |                        |       |       |                                        |                                                   |                   |                               |                               |                                         |                           |
|                    |              |             |                                                  |               |                                                  |                                         |                   |                        |       |       |                                        | İ                                                 |                   | -                             |                               |                                         |                           |
|                    | 1            |             |                                                  |               |                                                  |                                         |                   |                        |       |       |                                        |                                                   |                   |                               |                               |                                         |                           |
| ,                  | }            |             |                                                  |               |                                                  |                                         |                   |                        |       |       |                                        |                                                   |                   |                               |                               |                                         |                           |
|                    | 1            |             |                                                  |               |                                                  |                                         |                   |                        |       |       |                                        |                                                   |                   |                               |                               |                                         | 1                         |
| -                  | 1            |             |                                                  |               |                                                  |                                         |                   |                        |       |       |                                        |                                                   |                   |                               |                               | i                                       |                           |
|                    | 1            |             | 1                                                |               |                                                  |                                         |                   |                        |       |       | İ                                      |                                                   |                   | .                             |                               |                                         |                           |
|                    | ‡            |             |                                                  |               |                                                  |                                         | •                 |                        |       |       |                                        |                                                   |                   |                               |                               |                                         |                           |
|                    | ]            |             |                                                  |               |                                                  |                                         |                   |                        |       |       |                                        |                                                   |                   |                               |                               |                                         |                           |
| -                  | 1            |             |                                                  |               |                                                  |                                         |                   |                        |       |       |                                        |                                                   |                   |                               |                               |                                         |                           |
|                    | <u> </u>     |             |                                                  |               |                                                  |                                         |                   |                        |       |       |                                        |                                                   |                   |                               | 1                             | 1                                       |                           |
|                    | 4            |             |                                                  |               |                                                  |                                         |                   |                        |       |       |                                        |                                                   |                   |                               |                               |                                         |                           |
| The                | Tanific.     | 1           | <u></u>                                          | <u></u>       | sent the approximate boundary betw               | reen soil turn                          | s in situ the see | neiting they be are to | Water | laua! | ware mo                                | Sikes as a                                        | e tunes           | KIKSTON W                     | (ater lever                   | may yar.                                | 1                         |
| WL                 |              |             |                                                  | ,             | BCR                                              |                                         | ACR               | BORING STARTED         |       | 20-8  |                                        | Ī                                                 |                   | 540                           | Lambe                         | au Stre                                 | et                        |
| WL-T. F            | HPE          |             | DAT                                              | E             | TIME WL-T, PIPE                                  | DATE                                    | TIME              | BORING COMPLETE        |       |       |                                        | STS OFF                                           |                   |                               | en Bay                        | , WI. 5                                 | 4303                      |
|                    |              | -           |                                                  | <del>,</del>  | <del> </del>                                     |                                         |                   | DIC                    |       |       | ··                                     | DRAWN                                             | <sup>BY</sup> JJT | SHEE                          | 1                             | OF 1                                    | L                         |
| L                  |              | <u> </u>    |                                                  |               | <del>                                     </del> | -14                                     | ļ                 | FOREMAN PER            |       |       | ·                                      | APP'D. E                                          | SY TUTY           | STS                           | OB NO.                        | 13685                                   |                           |

: 5-983

|                 |              | <b>3</b> 1  |                                                  | ١             | OMNEH       |                 | 100              |            | 1                       | LO            | G C  | )r BO                                  | KING N                                            | OWRF             | :К                           |                               |                               | ١                         |
|-----------------|--------------|-------------|--------------------------------------------------|---------------|-------------|-----------------|------------------|------------|-------------------------|---------------|------|----------------------------------------|---------------------------------------------------|------------------|------------------------------|-------------------------------|-------------------------------|---------------------------|
| -               | 6            | 4           |                                                  | -             |             | nv Intern       | ational          |            |                         |               | 3-   |                                        |                                                   |                  |                              |                               |                               |                           |
|                 |              |             |                                                  | - 1           | PROJECT I   |                 |                  |            |                         | EN            | GIN  | IEER                                   |                                                   |                  |                              |                               |                               | 1                         |
| STS CO          |              |             |                                                  |               | Chrom       | 1um Conta       | mination         | Assessmen  | <u> </u>                | <u> </u>      | T    |                                        | T                                                 |                  |                              |                               |                               |                           |
| 412             | LOO          | 'A ! !      | <b>U</b> 11                                      |               | N. Me       | ade Stree       | t, Applet        | on, Wisco  | nsin                    |               |      | z                                      | 35                                                |                  |                              |                               |                               |                           |
|                 |              |             |                                                  | П             | ,           |                 |                  | WELL INSTA | LLATION                 |               |      | STANDARD PENETRATION<br>TEST, N (B/FT) | UNCONFINED COMPRESSIVE<br>STRENGTH, Qp (TONS/FT*) | %                | <b>=</b>                     | ¥                             | ១                             | ~                         |
|                 |              |             | ų                                                |               |             |                 |                  | TOP STANDP | IPE EL.+                | <del></del> , |      | BTR 9/FI                               | TON                                               | WATER CONTENT, % | UNIT DRY WEIGHT<br>(LBS/FT³) | LIQUID/PLASTIC LIMIT<br>LL/PL | PERCENT PASSING<br>#200 SIEVE | <u>⊁</u>                  |
|                 |              | 111         | SAMPLE DISTANCE                                  |               |             |                 |                  |            |                         |               | -    | N SE                                   | 88                                                | ONI              | ₹<br>S/F1                    | AS1                           | SIE                           | PERMEABILITY.<br>(CM/SEC) |
| - 0             | 2            | TYPI        | DISI                                             | ≥             |             | DESCR           | IPTION OF M      | AIERIAL    |                         | -             |      | ARD<br>ST.                             | HE T                                              | 3                | 101                          | 42                            | 200 K                         | C W C                     |
| TH<br>ELEVATION | SAMPLE NO.   | SAMPLE TYPE | 끪                                                | RECOVERY      |             |                 |                  |            |                         |               |      | AN I                                   | ENG                                               | VAT              | N                            | ā                             | PER                           | 臣                         |
| 7               | SAM          | SAM         | SAM                                              | EC.           | SURFACE ELI | EVATION         |                  |            |                         |               | - 1  | SI                                     | STR                                               |                  |                              | =                             |                               |                           |
|                 | - ·          | <u> </u>    |                                                  |               | Blacktop a  |                 | d stone          |            |                         | $\dashv$      | ┿    |                                        |                                                   |                  |                              |                               |                               | $\vdash$                  |
|                 |              |             |                                                  | $\sqcup$      | Blacktop a  | uia Crusiie     |                  |            |                         | -             |      |                                        |                                                   |                  |                              | ļ                             |                               |                           |
|                 | _            | <u> </u>    | Ш                                                | Ш             |             |                 |                  |            |                         |               |      | 30                                     |                                                   |                  |                              |                               |                               |                           |
|                 | 1            | SS          | Ш                                                | Щ             |             |                 |                  |            |                         | ·             |      | 30                                     |                                                   |                  |                              |                               |                               |                           |
| : 2             | _            |             | <b> </b>                                         | $\mathbf{H}$  |             |                 |                  |            |                         |               |      | _                                      |                                                   |                  |                              |                               | 1                             |                           |
|                 | 2            | ss          | Щ                                                |               |             |                 |                  |            |                         |               |      | 14                                     |                                                   |                  |                              |                               |                               |                           |
|                 |              | -           |                                                  | H             |             |                 |                  |            |                         |               |      |                                        |                                                   | •                | ]                            |                               |                               |                           |
|                 | 3            | ss          | Ш                                                | Ш             | Brown silt  | ty clay (       | CL) - trad       | ce of grav | rel - loose to          |               |      | 20                                     |                                                   |                  |                              |                               |                               |                           |
| 回               | <u> </u>     | <u> </u>    | ļ.,                                              | $\frac{1}{1}$ | medium der  | nse - glad      | cial till        | - saturat  | ed at 15.0              |               | 1    |                                        |                                                   |                  |                              |                               | 1                             |                           |
|                 | 4            | ss          | Ш                                                | Щ             | feet        |                 |                  |            |                         |               | 1    | 15                                     |                                                   |                  |                              | 1                             |                               | 1                         |
| =               | 1            | ├           | <b> </b>                                         | Ш             |             |                 |                  |            |                         |               | ļ    | _                                      |                                                   |                  |                              |                               |                               |                           |
|                 | 5            | ss          | Ш                                                | Щ             |             |                 |                  |            |                         |               | į    | 9                                      |                                                   |                  |                              |                               |                               |                           |
| 15              | ┼            |             | <del>                                     </del> | $\square$     |             |                 |                  |            |                         |               |      |                                        |                                                   |                  |                              |                               |                               |                           |
|                 | 6            | ss          | Ш                                                | Щ             |             |                 |                  |            |                         | !<br>:        |      | 9                                      |                                                   |                  |                              |                               |                               |                           |
| 1-              | <del> </del> | ╀           | 1                                                | $\mathbf{H}$  |             |                 |                  |            |                         |               |      | _                                      |                                                   |                  | 1                            |                               |                               |                           |
|                 | 7            | ss          | Ш                                                | Щ             |             |                 |                  |            |                         |               | - 1  | 6                                      |                                                   | ٠                |                              |                               |                               |                           |
| 20              | ‡            | ↓_          | ╁-                                               | $\mathbb{H}$  |             |                 |                  |            |                         |               |      | _                                      |                                                   |                  |                              |                               |                               |                           |
| 41.5            | 8            | ss          | Ш                                                | Ш             |             |                 |                  |            |                         | <u> </u>      |      | 5                                      |                                                   |                  | <u> </u>                     | <u> </u>                      |                               |                           |
|                 | 1            |             |                                                  |               | End of Bo   |                 |                  |            |                         | ĺ             |      |                                        |                                                   |                  |                              |                               |                               |                           |
|                 | ]            |             |                                                  |               | Boring ad   | vanced fr       | om 0.0 to        | 21.5 fee   | t by power              |               |      |                                        |                                                   |                  |                              |                               |                               | 1                         |
|                 | 1            |             |                                                  |               | auger       |                 |                  |            |                         |               |      |                                        |                                                   |                  |                              |                               |                               |                           |
|                 | 3            |             |                                                  |               | Boring ba   | CKILLIEG        | with bent        | onice      |                         |               |      |                                        |                                                   |                  |                              |                               |                               |                           |
| =               | İ            |             |                                                  |               |             |                 |                  |            |                         |               |      |                                        |                                                   |                  |                              |                               |                               |                           |
|                 | 7            |             |                                                  |               |             |                 |                  |            |                         |               |      |                                        |                                                   |                  | 1                            |                               |                               | 1                         |
|                 | <del>-</del> |             |                                                  |               |             |                 |                  |            |                         |               |      |                                        |                                                   |                  |                              |                               |                               |                           |
| [ ]             | 1            |             |                                                  |               |             |                 |                  |            |                         |               |      |                                        | 1                                                 | ]                |                              |                               |                               |                           |
| <u> </u>        | =            |             |                                                  |               |             |                 |                  |            |                         |               |      | 1                                      | '                                                 |                  | 1                            |                               |                               |                           |
|                 | -            | 1           | 1                                                |               |             |                 |                  |            |                         |               |      |                                        |                                                   |                  |                              |                               |                               |                           |
| =               | 7            |             |                                                  |               |             |                 |                  |            |                         |               |      |                                        |                                                   |                  |                              |                               |                               |                           |
|                 | 3            |             | 1                                                |               |             |                 |                  |            |                         |               |      |                                        |                                                   | 1                |                              |                               |                               |                           |
|                 | ‡            |             |                                                  |               | 1           |                 |                  |            |                         |               |      |                                        |                                                   |                  |                              |                               | 1                             |                           |
|                 | =            |             |                                                  |               |             |                 |                  |            |                         |               |      |                                        |                                                   |                  |                              |                               |                               |                           |
|                 | ‡            |             |                                                  |               |             |                 |                  | •          |                         |               |      |                                        |                                                   |                  |                              |                               |                               |                           |
|                 | =            |             |                                                  |               |             |                 |                  |            |                         |               |      |                                        |                                                   |                  |                              |                               |                               |                           |
| =               | 4            |             |                                                  |               |             |                 |                  |            |                         |               |      |                                        |                                                   |                  |                              |                               |                               |                           |
|                 | ]            |             |                                                  |               |             |                 |                  |            |                         | 1             |      |                                        |                                                   |                  |                              |                               |                               |                           |
| -               | =            |             |                                                  |               | 1           |                 |                  |            |                         | 1             |      |                                        |                                                   |                  |                              |                               |                               |                           |
|                 | 1            |             |                                                  | L             |             |                 |                  |            |                         | 丄             |      | <u></u>                                | <u> </u>                                          |                  |                              |                               |                               |                           |
|                 | tratific     | ation       | ines                                             | repre         |             | nate boundary b | stween soil type |            | nsition may be gradual. |               |      |                                        | sured at th                                       | e times H        |                              |                               | s may vary<br>au Str          |                           |
| WL<br>'L-T. I   | PIPE         | Т           | DATI                                             |               | TIME        | WL-T. PIPE      | DATE             | TIME       | BORING STARTED          |               |      | -87                                    | STS OF                                            | TICE .           | Gre                          | en Bay                        | 7, WI.                        | 54303                     |
|                 | BORING COMPL |             |                                                  |               |             |                 |                  |            |                         |               | L-20 | ) <del>-</del> 87                      | DRAWN                                             | BY JJ            | T SHE                        | ET 1                          | OF                            | 1                         |
|                 |              | RIG Joy     |                                                  |               |             |                 |                  |            |                         |               |      | *                                      | APP'D.                                            |                  | ere                          | JOB NO.                       | 12605                         |                           |
| 1               |              | 1           |                                                  |               | ı           | ı               | 1                |            | FOREMAN DED             |               |      |                                        |                                                   | <sup>5₹</sup> JW | K 1 3,3                      |                               | 1.1085                        |                           |

LOG OF BORING NUMBER OWNER Albany International **ENGINEER PROJECT NAME** Chromium Contamination Assessment SITE LOCATION N. Meade Street, Appleton, Wisconsin UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT\*) STANDARD PENETRATION TEST, N (B/FT) LIQUID/PLASTIC LIMIT LL/PL WELL INSTALLATION TOP STANDPIPE EL. + UNIT DRY WEIGHT (LBS/FT) PERCENT PASSING #200 SIEVE WATER CONTENT. PERMEABILITY. I SAMPLE DISTANCE DESCRIPTION OF MATERIAL SAMPLE TYPE SAMPLE NO. SURFACE ELEVATION Fill: Blacktop, stone and clay 19 ss Brown to yellowish brown slightly clayey.silt (ML) 16 ss trace of fine to coarse sand - moist at 5.0 feet medium dense 28 SS 17 SS 8 Brown silty clay (CL) - trace of fine to medium SS sand - trace of organics at 12.5 feet - loose to medium dense - moist 7 SS 7 SS Brown to pale olive silty clay (CL) - trace of 5 fine sand and wood - pale olive by wood - moist SS End of Boring Boring advanced from 0.0 to 21.5 feet by power auger Boring bacfilled with bentonite

The stratification lines represent the approximate boundary between soil types. In situ, the transition may be graduel. Water levels were measured at the times indicated. Water levels may vary seasonally. 540 Lambeau Street BORING STARTED 1-20-87 Green Bay, WI. 54303 STS OFFICE WL.T. PIPE DATE TIME NLT. PIPE DATE TIME BORING COMPLETED 1-20-87 SHEET 1 DRAWN BY Joy 15 APP'D. BY STS JOB NO. 13685 JWK FOREMAN RER

| C                  | 7        |             |              |              | OWNER<br>Alba       | ny Intern                                                                                                                              | ational                                 |                         |                                       | LC       |        | OF BO                                  | RING I                                            | NUMBE          | R                            | ·                             | ·                             |                             |
|--------------------|----------|-------------|--------------|--------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------|---------------------------------------|----------|--------|----------------------------------------|---------------------------------------------------|----------------|------------------------------|-------------------------------|-------------------------------|-----------------------------|
|                    | <b>\</b> |             |              | t            | PROJECT             |                                                                                                                                        |                                         |                         |                                       | EN       |        | NEER                                   |                                                   |                |                              | <del></del>                   | <del></del>                   |                             |
| STS Cons           |          |             |              | $\perp$      | Chro                | mium Cont                                                                                                                              | amination                               | Assessme                | nt                                    |          |        |                                        |                                                   |                |                              |                               |                               | İ                           |
| SITE LO            | OCA      | TIC         | N            |              |                     |                                                                                                                                        |                                         |                         | _                                     |          |        |                                        |                                                   |                |                              |                               |                               |                             |
|                    |          | _           |              | _            | N. M                | leade Stre                                                                                                                             | et, Apple                               |                         | · · · · · · · · · · · · · · · · · · · |          |        | NO.                                    | SIVE<br>FT1)                                      |                |                              | <b>-</b>                      |                               |                             |
|                    |          | ١.          |              |              |                     |                                                                                                                                        |                                         | WELL INST.<br>TOP STAND | ALLATION<br>PIPE EL. +                |          |        | TRAT<br>FT)                            | PRES<br>INS/                                      | 11. %          | GHT                          | L! M                          | SNI                           | ×                           |
|                    |          |             | 2            | ١            |                     |                                                                                                                                        |                                         |                         |                                       |          |        | ENE<br>I (B/                           | COM<br>P (T                                       | NTEN           | WEI<br>FT³)                  | STIC<br>PL                    | PAS                           | E0:                         |
|                    | 5 5      |             |              |              |                     | DESC                                                                                                                                   | RIPTION OF A                            | MATERIAL                |                                       |          |        | ST. P                                  | NED<br>H. 0                                       | R C0           | URY<br>LBS/                  | /PLA<br>LL/                   | SOL                           | SW/S                        |
| DEPTH<br>ELEVATION | ۲   E    | SAMPLE LITE | SAMPLE U     | 2            |                     |                                                                                                                                        |                                         |                         |                                       |          |        | STANDARD PENETRATION<br>TEST, N (B/FT) | UNCONFINED COMPRESSIVE<br>STRENGTH, Qp (TONS/FT²) | WATER CONTENT. | UNIT ORY WEIGHT<br>(LBS/FT²) | LIQUID/PLASTIC LIMIT<br>LL/PL | PERCENT PASSING<br>#200 SIEVE | PERMEABILITY, K<br>(CM/SEC) |
|                    | NAN S    |             | E   6        | 护            | SURFACE EL          | EVATION                                                                                                                                |                                         |                         |                                       | 1        |        | ST,                                    | UNC                                               | \$             |                              | 25                            | -                             |                             |
|                    | 十        | +           | 十            | +            |                     |                                                                                                                                        |                                         |                         |                                       |          |        | -                                      |                                                   |                |                              |                               |                               |                             |
|                    |          |             |              |              |                     |                                                                                                                                        |                                         |                         |                                       |          |        |                                        |                                                   |                |                              |                               |                               |                             |
|                    | , ,      | :1          | $\mathbf{H}$ | T            |                     |                                                                                                                                        |                                         |                         | y fine sand<br>ilt - loose            |          |        | _                                      |                                                   |                |                              |                               |                               |                             |
|                    | 1 5      | +           | 干            | $\exists$    | to medium           |                                                                                                                                        | graver -                                | iittie s                | 11t - 100se                           |          |        | 5                                      |                                                   |                |                              |                               |                               |                             |
|                    | 2 S      | ;           | 巾            | 耳            |                     |                                                                                                                                        |                                         |                         |                                       |          |        | 18                                     |                                                   |                |                              |                               |                               |                             |
|                    | $\top$   | _           | +            | +            | -                   |                                                                                                                                        | *···                                    |                         |                                       | $\vdash$ |        |                                        |                                                   |                |                              |                               |                               |                             |
|                    | 3 S      | 5           | $\prod$      | $\prod$      |                     |                                                                                                                                        |                                         |                         |                                       |          |        | 27                                     |                                                   |                |                              |                               |                               |                             |
| 10                 | 土        | 士           | Ï            | 1            |                     |                                                                                                                                        |                                         |                         |                                       |          |        |                                        |                                                   |                |                              |                               |                               |                             |
|                    | 4 S      | 3           |              |              |                     | cown silty clay (CL) - trace of fine sand -                                                                                            |                                         |                         |                                       |          |        | 16                                     |                                                   |                |                              |                               |                               |                             |
|                    | 1        | 1,          | Ţ,           |              |                     | own silty clay (CL) - trace of fine sand -<br>coarse sand - thin streaks of gray clay 1:<br>14.0 feet - streaks of fine to medium sand |                                         |                         |                                       |          |        |                                        |                                                   |                |                              |                               |                               |                             |
|                    | 5 S      | s           | Ш            | $\coprod$    | to 14.0 f           | feet - str                                                                                                                             | eaks of f                               | dium sand at            |                                       |          | 9      |                                        |                                                   |                |                              |                               |                               |                             |
| 15                 | 4        | 4           | +            | $\dashv$     | 15.0 to 1 to medium |                                                                                                                                        | - moist a                               | et - loose              |                                       |          |        |                                        |                                                   |                |                              |                               |                               |                             |
|                    | લ s      | s           | Щ            | Ц            |                     |                                                                                                                                        |                                         |                         |                                       | !        |        | 6                                      |                                                   |                |                              | 1                             |                               |                             |
|                    | $\dashv$ | +           | +            | $\mathbf{H}$ |                     |                                                                                                                                        |                                         |                         |                                       |          |        |                                        |                                                   |                |                              |                               |                               |                             |
| <del> </del>       | 7 S      | s           | Щ.           | Ц            |                     |                                                                                                                                        |                                         |                         |                                       |          |        | 6                                      |                                                   |                |                              |                               |                               |                             |
| 20                 | +        | ╁           | +            | $\forall$    |                     | •                                                                                                                                      |                                         |                         |                                       | İ        |        | _                                      |                                                   |                |                              |                               |                               |                             |
| 21.5               | 8 5      | S   !       | Щ            | 4            |                     |                                                                                                                                        | *************************************** | <del></del>             |                                       |          |        | 5                                      |                                                   | ļ              |                              |                               | ļ                             |                             |
|                    |          |             | 1            | 1            | End of Bo           | oring                                                                                                                                  |                                         | _                       |                                       | 1        |        |                                        |                                                   |                |                              |                               |                               |                             |
|                    |          |             | ļ            |              | Boring ad           | dvanced fi                                                                                                                             | com 0.0 to                              | 215. fee                | et by power                           |          |        |                                        |                                                   |                |                              |                               |                               |                             |
|                    |          |             |              | l            | -                   | ackfilled                                                                                                                              | with ben                                | tonite                  |                                       |          |        |                                        |                                                   |                |                              |                               |                               |                             |
|                    |          |             |              |              |                     |                                                                                                                                        |                                         |                         |                                       |          |        |                                        |                                                   |                |                              |                               |                               |                             |
| 三                  |          |             | 1            |              |                     |                                                                                                                                        |                                         |                         |                                       |          |        |                                        |                                                   |                | İ                            |                               |                               |                             |
|                    |          |             |              |              |                     |                                                                                                                                        |                                         |                         |                                       |          |        |                                        |                                                   |                |                              |                               |                               |                             |
|                    |          |             |              |              |                     |                                                                                                                                        |                                         | •                       |                                       |          |        |                                        |                                                   |                |                              |                               |                               |                             |
| 目                  |          |             |              |              |                     |                                                                                                                                        |                                         |                         |                                       |          |        |                                        |                                                   |                |                              |                               |                               |                             |
|                    |          |             |              | -            |                     |                                                                                                                                        |                                         |                         |                                       |          |        |                                        |                                                   |                |                              |                               |                               |                             |
|                    |          |             |              |              |                     |                                                                                                                                        |                                         |                         |                                       |          |        |                                        |                                                   |                |                              |                               | ].                            |                             |
|                    |          | 1           |              |              |                     |                                                                                                                                        |                                         |                         |                                       |          |        |                                        |                                                   |                |                              |                               |                               |                             |
| . ====             |          |             |              | 1            |                     |                                                                                                                                        |                                         |                         |                                       |          |        |                                        |                                                   |                |                              |                               |                               |                             |
|                    |          |             |              |              |                     |                                                                                                                                        |                                         |                         |                                       |          |        |                                        |                                                   |                |                              |                               |                               |                             |
|                    |          |             |              |              |                     |                                                                                                                                        |                                         | •                       |                                       |          |        |                                        |                                                   |                |                              |                               |                               |                             |
|                    |          |             |              |              |                     |                                                                                                                                        |                                         |                         |                                       |          |        |                                        |                                                   |                |                              |                               |                               | 1                           |
| -                  |          |             |              | -            |                     |                                                                                                                                        |                                         |                         |                                       |          |        |                                        |                                                   |                | 1                            |                               |                               |                             |
|                    |          |             |              |              |                     |                                                                                                                                        |                                         |                         |                                       |          |        |                                        | 1                                                 |                |                              |                               |                               |                             |
|                    |          |             |              |              |                     |                                                                                                                                        |                                         |                         |                                       |          |        |                                        |                                                   | 1              |                              |                               |                               |                             |
| The stratif        | lication | line        | s ret        | xes          | ent the approxim    | nate boundary be                                                                                                                       | etween soil type                        | s. In situ, the tra     | naition may be graduel. I             | Nater    | levels | were mea                               | l<br>sured at th                                  | times in       | dicated. W                   | ater levets                   | may vary se                   | asonally.                   |
| . WL               |          |             |              |              | BCR                 |                                                                                                                                        |                                         | ACR                     | BORING STARTED                        |          | 21-    |                                        | STS OFF                                           |                | 540                          | Lambea                        | u Stre                        | et                          |
| WL-T. PIPE         | +        | DA.         | TE           | $\dashv$     | TIME                | WL-T. PIPE                                                                                                                             | DATE                                    | TIME                    | BORING COMPLETED                      | 1-       | 21-    | 87                                     |                                                   |                | 1                            |                               | WI. 5                         | 4303                        |
|                    |          |             |              |              |                     |                                                                                                                                        |                                         |                         | RIG Joy 15                            |          |        |                                        | DRAWN                                             |                | SHEET                        | 1                             | OF 1                          | <del></del>                 |
| -                  | $\perp$  | FOREMAN     |              |              |                     |                                                                                                                                        |                                         |                         |                                       |          |        | APP'D. B                               | y jwk                                             | STS J          | OB NO.                       | 13685                         |                               |                             |

LOG OF BORING NUMBER **OWNER** Albany International MW-10 **ENGINEER PROJECT NAME** Chromium Contamination Assessment STS Consultants Ltd. SITE LOCATION %. Meade Street, Appleton, Wisconsin UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT²) STANDARD PENETRATION TEST, N (B/FT) LIQUID/PLASTIC LIMIT WELL INSTALLATION TOP STANDPIPE EL. + 767.46 PERCENT PASSING #200 SIEVE PERMEABILITY, K (CM/SEC) UNIT DRY WEIGHT (LBS/FT<sup>2</sup>) WATER CONTENT. SAMPLE DISTANCE DESCRIPTION OF MATERIAL SAMPLE TYPE SAMPLE NO. SURFACE ELEVATION 767.80 (USGS) Brown clayey sandy silt (ML) - trace of fine 23 ss gravel - medium dense 22 2 SS 18 3 55 10 11 4 SS 11 Brown silty clay (CL) - trace of sand - fractured 5 SS at 10.0 feet - moist at 20.0 feet - loose to medium dense 11 6 ss 6 ss -20 5 8 SS End of Boring Boring advanced from 0.0 to 21.5 feet by power auger 2 inch diameter PVC observation well installed at 20.0 feet with protector pipe isured at the times indicated. Water levels may vary seasonally. The stratification lines represent the approximate boundary between soil types, in artu, the transition may be graduel, Water levels were m 540 Lambeau Street WL BORING STARTED 1-21-87 STS OFFICE Green Bay, WI. 54303 NL-T. PIPE TIME WL-T. PIPE DATE DATE BORING COMPLETED 1-21-87 1 6.1 3-26-87 DRAWN BY JJT SHEET 1 Dry 1-21-87 Joy 12

FOREMAN RER

APP'D. BY JWK

STS JOB NO.

13685

1-22-87

2-9-87

7.5

|                 | =                                                | 3                                                |                 | l                | OWNER                  |                 | 1.00             |                     |                       |       |        |                                        | RING N                                                         | UMBE                                  | R                                         |                               |                               |                             |
|-----------------|--------------------------------------------------|--------------------------------------------------|-----------------|------------------|------------------------|-----------------|------------------|---------------------|-----------------------|-------|--------|----------------------------------------|----------------------------------------------------------------|---------------------------------------|-------------------------------------------|-------------------------------|-------------------------------|-----------------------------|
| 7               | 1                                                | 1                                                |                 | -                |                        | Internat        | ional            |                     |                       | ENG   | -WM    |                                        | <del></del>                                                    | · · · · · · · · · · · · · · · · · · · | <del></del>                               |                               |                               |                             |
|                 |                                                  |                                                  |                 | - 1              | PROJECT N              |                 | ination A        | .ssessment          |                       | ENG   | JINI   | EEN                                    |                                                                |                                       |                                           |                               |                               | 1                           |
| STS Co          |                                                  |                                                  |                 |                  | CHEOMA                 | un concen       |                  |                     |                       |       | Т      |                                        |                                                                |                                       |                                           |                               |                               |                             |
|                 |                                                  |                                                  | • • •           |                  | N. Mea                 | de Street       | , Appleto        | n, Wiscon           | sin                   |       |        | 8                                      | ¥£.                                                            |                                       |                                           |                               |                               |                             |
|                 |                                                  |                                                  |                 | T                |                        |                 | ,                | WELL INSTAL         | LATION                |       |        | STANDARD PENETRATION<br>TEST, N (B/FT) | UNCONFINED COMPRESSIVE<br>STRENGTH, Op (TONS/FT <sup>2</sup> ) | %                                     | H                                         | LIQUID/PLASTIC LIMIT<br>LL/PL | ING                           | ×                           |
|                 |                                                  |                                                  | 빙               |                  |                        |                 |                  | IOP STANUPI         | PE EL. + 768.65       |       |        | BET                                    | MP (TOP)                                                       | WATER CONTENT.                        | UNIT DRY WEIGHT<br>(LBS/FT <sup>1</sup> ) | 101                           | PERCENT PASSING<br>#200 SIEVE | PERMEABILITY, K<br>(CM/SEC) |
| 2               |                                                  | 'n                                               | TAN             | İ                |                        | DESCRI          | PTION OF MA      | TERIAL              |                       |       |        | 0                                      | . g                                                            | CON                                   | BS/F                                      | LAS<br>LL/P                   | NT P                          | M/S                         |
| H<br>ATIC       | NO.                                              | Ι.                                               | Sid             | ¥                |                        | 0200            |                  |                     |                       | 1     |        | TES                                    | EFE                                                            | TER                                   | ===                                       | 9/0                           | RCE<br>#26                    | CERM                        |
| TH<br>ELEVATION | SAMPLE NO.                                       | SAMPLE TYPE                                      | SAMPLE DISTANCE | RECOVERY         |                        |                 |                  |                     |                       | .     |        | STAN                                   | THE                                                            | W                                     | 5                                         | 릴                             | 2                             | •                           |
|                 | SA                                               | 3                                                | SAI             | 副                | SURFACE ELE            | VATION 76       | 3.90 (US         | GS)                 |                       |       |        | <u>"</u>                               | 50                                                             |                                       |                                           |                               |                               |                             |
|                 |                                                  |                                                  |                 |                  |                        |                 |                  |                     |                       |       |        |                                        |                                                                |                                       |                                           |                               |                               |                             |
| _               |                                                  |                                                  |                 |                  |                        |                 |                  |                     |                       | I     |        |                                        |                                                                |                                       |                                           |                               |                               |                             |
|                 | 1                                                | ss                                               | $\prod$         | Ш                |                        |                 |                  |                     |                       | 1     |        | 20                                     |                                                                |                                       |                                           |                               |                               |                             |
| - 5             | <del>                                     </del> | <del>                                     </del> | 111             | $\dashv$         |                        |                 |                  |                     |                       | 1     |        |                                        |                                                                |                                       |                                           |                               |                               |                             |
|                 | 2                                                | ss                                               | $\prod$         | $\prod$          | Brown silt             | y clay (C       | L) - 2" to       | opsoil -            | medium                |       |        | 24                                     |                                                                |                                       |                                           |                               |                               |                             |
| ·               | -                                                |                                                  | 1"              | Ш                | dense                  |                 |                  |                     |                       | 1     |        |                                        |                                                                |                                       |                                           |                               |                               |                             |
|                 | 3                                                | ss                                               | $\prod$         | 円                |                        |                 |                  |                     |                       |       |        | 24                                     |                                                                |                                       |                                           |                               |                               |                             |
| . 10            |                                                  |                                                  |                 |                  |                        |                 |                  |                     |                       |       |        |                                        |                                                                |                                       |                                           |                               |                               |                             |
|                 | 4                                                | ss                                               | Ili             |                  |                        |                 |                  |                     |                       |       |        | 17                                     |                                                                |                                       |                                           |                               |                               |                             |
|                 |                                                  |                                                  |                 |                  |                        |                 |                  |                     | ·                     | ┷     |        |                                        |                                                                |                                       | ļ                                         | ļ                             | <u> </u>                      |                             |
|                 | 5                                                | ss                                               |                 |                  |                        |                 |                  |                     |                       |       |        | 8                                      |                                                                |                                       |                                           |                               |                               |                             |
| 15              |                                                  |                                                  |                 |                  |                        |                 |                  |                     |                       | #     | 1      |                                        |                                                                |                                       |                                           |                               |                               |                             |
| <i></i>         | 6                                                | ss                                               | Ш               |                  | Brown silt             | y clay (        | L) - trac        | e of sand           | l and gravel          | ┤     | 1      | 5                                      | İ                                                              |                                       |                                           |                               |                               |                             |
| ž:              | -                                                |                                                  | L,              |                  | moist at 1             | L5.0 feet       | - loose          |                     |                       | #     | 1      |                                        | Ì                                                              |                                       |                                           |                               |                               |                             |
|                 | 7                                                | ss                                               |                 |                  |                        | •               |                  |                     |                       |       | 1      | 6                                      |                                                                |                                       |                                           | 1                             |                               |                             |
| 20              |                                                  |                                                  |                 |                  |                        |                 |                  |                     |                       | =     | ] [    |                                        |                                                                |                                       |                                           |                               |                               | 1 1                         |
| 1 21 5          | 8                                                | ss                                               |                 |                  |                        |                 |                  |                     |                       |       |        | 6                                      |                                                                |                                       | <u> </u>                                  |                               |                               |                             |
|                 | =                                                | T                                                | T               |                  |                        |                 |                  |                     |                       |       |        |                                        |                                                                |                                       | 1                                         |                               |                               | 1 1                         |
|                 | Ė                                                |                                                  |                 |                  | End of Bo              | ring            | om 0 0 to        | 21.5 fee            | t by power            |       |        |                                        |                                                                |                                       |                                           |                               |                               | 1                           |
| -               | 7                                                |                                                  |                 |                  | anger                  |                 |                  |                     |                       |       |        |                                        |                                                                |                                       |                                           |                               |                               |                             |
| <u> </u>        | =                                                |                                                  |                 |                  | 2 inch di<br>at 20.0 f | ameter PV       | C observa        | tion well<br>pipe   | installed             |       |        |                                        |                                                                |                                       |                                           |                               |                               | 1                           |
|                 | =                                                |                                                  |                 |                  | at 20.0 1              | eer aron        | p1000000         | E-E-                |                       |       |        |                                        |                                                                |                                       |                                           |                               |                               | 1 1                         |
| <u> </u>        | Ξ                                                | ĺ                                                |                 |                  |                        |                 |                  | •                   |                       | 1     |        |                                        |                                                                |                                       |                                           |                               |                               | 1 1                         |
| 1               |                                                  |                                                  |                 |                  |                        |                 |                  |                     |                       |       |        |                                        |                                                                |                                       |                                           |                               |                               | 1 1                         |
| -               | =                                                |                                                  |                 |                  |                        |                 |                  |                     |                       |       |        |                                        |                                                                |                                       |                                           |                               |                               |                             |
|                 | $\exists$                                        |                                                  |                 |                  |                        |                 |                  |                     |                       | 1     |        |                                        |                                                                |                                       |                                           |                               |                               |                             |
|                 | 7                                                |                                                  |                 |                  |                        |                 |                  |                     |                       |       |        |                                        |                                                                |                                       |                                           |                               |                               |                             |
|                 | 3                                                | 1                                                |                 |                  |                        |                 |                  |                     |                       |       |        |                                        | 1                                                              |                                       |                                           |                               |                               |                             |
|                 | 7                                                |                                                  |                 |                  | ,                      |                 |                  |                     |                       |       |        |                                        |                                                                | 1                                     |                                           |                               |                               |                             |
| ·               | 3                                                |                                                  |                 |                  |                        |                 |                  | •                   |                       |       |        |                                        | İ                                                              |                                       |                                           |                               | j.                            |                             |
| \ <u>-</u>      | ╡                                                |                                                  |                 |                  |                        |                 |                  |                     |                       |       |        |                                        |                                                                |                                       |                                           |                               |                               |                             |
|                 | 3                                                |                                                  |                 |                  |                        |                 |                  | •                   |                       |       |        |                                        |                                                                | 1                                     |                                           |                               |                               |                             |
|                 | #                                                |                                                  |                 |                  |                        |                 |                  |                     |                       |       |        | 1                                      |                                                                |                                       |                                           |                               |                               |                             |
|                 | Ξ                                                |                                                  |                 |                  |                        |                 |                  |                     |                       |       |        |                                        |                                                                |                                       |                                           |                               |                               |                             |
|                 | $\exists$                                        |                                                  |                 |                  |                        |                 |                  |                     |                       | 1     |        |                                        |                                                                |                                       |                                           |                               |                               |                             |
|                 | =                                                |                                                  |                 |                  |                        |                 |                  |                     | •                     |       |        |                                        | '                                                              |                                       |                                           | 1                             |                               |                             |
| 1               | <u> </u>                                         | C37'C                                            |                 |                  | esent the apotovim     | ate boundary be | tween soil types | s, in situ. the tra | nsition may be gradue | Water | levets | were me                                | esured at 1                                                    | he times                              | indicated.                                | Water leve                    | is may vary                   | seasonally.                 |
| ·VL             | = (11)                                           | uU                                               |                 |                  | 8CR                    |                 |                  | ACR                 | BORING STARTED        |       | 21-8   |                                        | STS OF                                                         |                                       | 54                                        | O Lamb                        | eau St<br>y, WI.              | reet                        |
| YL-T.           | PIPE                                             | I                                                | DA'             | ΓE               | TIME                   | WL-T. PIPE      | DATE             | TIME                | BORING COMPLETE       | D 1-  | 21-8   | <br>B7                                 | 1                                                              |                                       |                                           |                               |                               |                             |
| Dr              | У                                                | _                                                |                 | -87              | -                      | 3.1             | 3-26-87          | ,                   | RIG Joy 1             |       |        |                                        | DRAWN                                                          | BY JJ                                 | T SH                                      | ET 1                          | OF                            | 1                           |
| L_Dr            | -                                                |                                                  | -22<br>-9-      | <u>-87</u><br>87 | -                      |                 |                  |                     | FOREMAN RE            |       |        |                                        | APP'D.                                                         | WL YB                                 | K STS                                     | JOB NO.                       | 136                           | 85                          |

LOG OF BORING NUMBER OWNER Albany International **ENGINEER PROJECT NAME** Chromium Contamination Assessment STS Consultants Ltd. SITE LOCATION N. Meade Street, Appleton, Wisconsin UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT\*) STANDARD PENETRATION TEST, N (B/FT) LIQUID/PLASTIC LIMIT LL/PL WATER CONTENT, % UNIT DRY WEIGHT (LBS/FT<sup>3</sup>) WELL INSTALLATION TOP STANDPIPE EL. +\_ PERCENT PASSING #200 SIEVE PERMEABILITY, K (CM/SEC) SAMPLE DISTANCE SAMPLE TYPE DESCRIPTION OF MATERIAL RECOVERY SURFACE ELEVATION Dark brown silty clay (CL) - medium dense 12 1 SS 23 2 SS 23 3 SS Brown silty clay (CL) - trace of sand and gravel 16 ss fractured - moist at 15.0 feet - loose to medium dense 12 5 SS 6 SS 5 5 ss || | End of Boring Boring advanced from 0.0 to 21.5 feet by power auger Boring backfilled with bentonite

| The stratifica | tion lines repres | ent the approxim | nate boundary be | tween soil type: | s. In situ, the tra | nsition may be gradual. Water le | oveis were mea | sured at the times i | ndicated. Wat | er levels | may vary | seasonally. |
|----------------|-------------------|------------------|------------------|------------------|---------------------|----------------------------------|----------------|----------------------|---------------|-----------|----------|-------------|
| WL             |                   | BCR              |                  |                  | ACR                 |                                  | 21-87          | STS OFFICE           | 540           | -ambe     | au st.   | 54303       |
| WL-T PIPE      | DATE              | TIME             | WL-T. PIPE       | DATE             | TIME                | BORING COMPLETED 1-2             | 21-87          |                      | 1             |           | OF       |             |
| 1              |                   |                  |                  |                  |                     | RIG JOY 12                       |                | DRAWN BY J           | TT SHEET      | 1         |          | L           |
|                |                   |                  |                  |                  |                     | FOREMAN RER                      |                | APP'D. BY            | TK STS JO     | B NO.     | 13685    |             |

Albany International B-13 PROJECT NAME **ENGINEER** Chromium Contamination Assessment Consultants Ltd. SITE LOCATION N. Meade Street, Appleton, Wisconsin UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT\*) STANDARD PENETRATION TEST, N (B/FT) WELL INSTALLATION TOP STANDPIPE EL. + LIQUID/PLASTIC LIMIT LL/PL UNIT DRY WEIGHT (LBS/FT) PERCENT PASSING #200 SIEVE PERMEABILITY, K (CM/SEC) WATER CONTENT. SAMPLE DISTANCE ELEVATION SAMPLE TYPE DESCRIPTION OF MATERIAL SAMPLE NO. SURFACE ELEVATION Fill: Dark brown to brown silty clay (CL) trace of gravel - medium dense SS 10 SS 27 26 SS Brown silty clay (CL) - trace of sand and gravel 20 SS moist at 15.0 feet - medium dense 5 13 SS SS 17 Gray to brown silty clay (CL) - trace of sand -SS 4 some wood - loose Brown silty clay (CL) - trace of coarse sand -6 8 SS loose End of Boring Boring advanced from 0.0 to 21.5 feet by power auger Boring backfilled with bentonite The stratification lines represent the approximate boundary between soil types. In situ, the transition may be gradual. Water levels were measured at the times indicated. Water levels may vary seasonally. BCR 540 Lambeau Street **BORING STARTED** 1-21-87 STS OFFICE Green Bay, WI. 54303 WL-T. PIPE DATE TIME WL-T. PIPE DATE TIME BORING COMPLETED 1-21-87 DRAWN BY JJT SHEET 1 1 Joy 12 APP'D. BY FOREMAN RER STS JOB NO. .TWK 13685

LOG OF BORING NUMBER

OWNER

**-: 5-983** 

LOG OF BORING NUMBER OWNER B-14 Albany International **ENGINEER PROJECT NAME** Chromium Contamination Assessment STS Consultants Ltd. TE LOCATION N. Meade Street, Appleton, Wisconsin UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT\*) STANDARD PENETRATION TEST, N (B/FT) WATER CONTENT, % LIQUID/PLASTIC LIMIT PERMEABILITY, K (CM/SEC) UNIT DRY WEIGHT (LBS/FT<sup>3</sup>) WELL INSTALLATION PERCENT PASSING #200 SIEVE TOP STANDPIPE EL. + SAMPLE DISTANCE DESCRIPTION OF MATERIAL ELEVATION SAMPLE TYPE SAMPLE NO. SURFACE ELEVATION Fill: Brown silty clay (CL) - some sand - trace of gravel - slight yellow stain on gravel - medium 11 ss 27 2 SS 20 SS 3 :0 20 4 SS Brown silty clay (CL) - trace to a little sand trace of gravel - fractured to 14.0 feet -12 SS moist at 15.0 feet - loose to medium dense 6 SS 6 6 7 SS 13 8 SS End of Boring Boring advanced from 0.0 to 21.5 feet by power auger Boring backfilled with bentonite

The stratification lines represent the approximate boundary between soil types. In situ, the transition may be gradual, Water levels were measured at the times indicated. Water levels may vary seasonally, 540 Lambeau Street ACR BORING STARTED 1-21-87 STS OFFICE Green Bay, WI. 54303 TIME WL-T. PIPE DATE TIME 'L-T PIPE DATE BORING COMPLETED 1-21-87 SHEET 1 DRAWN BY JJT Joy 12 APP'D. BY JWK STS JOB NO. 13685 FOREMAN RER

B-15 Albany International PROJECT NAME **ENGINEER** Chromium Contamination Assessment SITE LOCATION N. Meade Street, Appleton, Wisconsin UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT\*) STANDARD PENETRATION TEST, N (8/FT) LIQUID/PLASTIC LIMIT LL/PI. WELL INSTALLATION UNIT DRY WEIGHT (LBS/FT) PERMEABILITY, K (CM/SEC) PERCENT PASSING #200 SIEVE WATER CONTENT. TOP STANDPIPE EL. + SAMPLE DISTANCE SAMPLE TYPE DESCRIPTION OF MATERIAL SAMPLE NO. SURFACE ELEVATION 16 1 ss Brown silty clay (CL) - little sand - trace of gravel - medium dense 2 SS 26 3 26 SS 4 ss 17 5 9 SS Brown silty clay (CL) - trace of sand and gravel moist at 15.0 to 16.5 feet - loose to medium 6 6 SS 6 7 SS 5 SS 8 End of Boring Boring advanced from 0.0 to 21.5 feet by power auger Boring backfilled with bentonite The stratification lines represent the approximate boundary between soil types. In situ, the transition may be gradual. Water levels were measured at the times undicated. Water levels may vary seasonally. 540 Lambeau Street 2-4-87 BORING STARTED STS OFFICE Green Bay, WI. 54303 WL-T PIPE DATE TIME WL-T. PIPE TIME BORING COMPLETED 2-4-87 SHEET DRAWN BY JJT #12 APP'D. BY ON BOL 2TZ 13685 FOREMAN RER

**OWNER** 

L: 5-983

LOG OF BORING NUMBER

|                      |                 |          | OWNER                          |                  | 14 je t                 |                            |                              | LOC   |                 |                                        | RING N                                            | UMBE             | R                                         |                                |                                       |                             |
|----------------------|-----------------|----------|--------------------------------|------------------|-------------------------|----------------------------|------------------------------|-------|-----------------|----------------------------------------|---------------------------------------------------|------------------|-------------------------------------------|--------------------------------|---------------------------------------|-----------------------------|
| 7274                 |                 | L        |                                | Internat         | ional                   |                            |                              |       | B-1             |                                        |                                                   |                  |                                           |                                | · · · · · · · · · · · · · · · · · · · |                             |
|                      |                 | F        | PROJECT N                      |                  |                         |                            |                              | ENC   | SINE            | EER                                    |                                                   |                  |                                           |                                |                                       | -                           |
| STS Consultan        |                 |          | Chromi                         | um Contam        | ination !               | \ssessment                 |                              |       | <del>-,</del> - | <del></del> -                          |                                                   |                  |                                           |                                |                                       |                             |
| ITE LOCAT            | ΓΙΟΝ            |          | N. Mea                         | ide Street       | ., Appleto              | on, Wisco                  | nsin                         |       |                 | 2                                      | 13)                                               |                  |                                           |                                |                                       |                             |
| ELEVATION SAMPLE NO. | SAMPLE DISTANCE | RECOVERY |                                | DESCRII          | PTION ÖF MA             | WELL INSTAL<br>TOP STANDPI | LATION<br>PE EL. +           |       |                 | STANDARD PENETRATION<br>TEST. N (B/FT) | UNCONFINED COMPRESSIVE<br>STRENGTH, Qp (TONS/FT¹) | WATER CONTENT. % | UNIT DRY WEIGHT<br>(LBS/FT <sup>3</sup> ) | LIQUID/PI,ASTIC LIMIT<br>LL/PL | PERCENT PASSING<br>#200 SIEVE         | PERMEABILITY. K<br>(CM/SEC) |
| 3 3                  | SS              | E.       | SURFACE ELE                    | VATION           |                         |                            |                              |       | - 1 '           | "                                      | 32                                                |                  |                                           |                                |                                       |                             |
| 1 ss                 |                 |          | Fill: Bro                      |                  | clay (CL)               | - trace                    | of sand -                    |       |                 | . 5                                    |                                                   |                  |                                           |                                |                                       |                             |
| 2 55                 | 5 <b> </b>      | 囲        |                                | ·                |                         |                            |                              |       |                 | 24                                     |                                                   |                  |                                           |                                |                                       |                             |
| 3 55                 | s III           | Ш        | •                              |                  |                         |                            |                              |       |                 | 28                                     |                                                   |                  |                                           |                                |                                       |                             |
| 10 4 5               | s               |          |                                |                  |                         |                            |                              |       |                 | 13                                     |                                                   |                  |                                           |                                |                                       |                             |
| 5 S                  | s               | Ш        | Brown silt fractured to medium | - moist a        | L) - trac<br>at 12.0 to | e of sand<br>15.5 fee      | l and gravel -<br>et - loose |       |                 | 9                                      |                                                   |                  |                                           |                                |                                       |                             |
| 15 6 S               | s               | 団        |                                |                  |                         |                            |                              |       |                 | 7                                      |                                                   |                  |                                           |                                |                                       |                             |
| 7 8                  | s               | 田        |                                |                  |                         |                            |                              |       |                 | 6                                      |                                                   |                  |                                           |                                |                                       |                             |
| 20 8 S               | ss              | $\prod$  |                                |                  |                         |                            |                              |       |                 | 6                                      |                                                   |                  |                                           |                                |                                       |                             |
|                      | ion lines       | 3 190/0  | auger<br>Boring ba             | vanced from      | with bent               | onite                      | t by power                   | Water | Forests         | were me                                | asured at 12                                      | ne times.        | indicated.                                | Water level                    | s may vary                            | seasonally                  |
| The stratificati     | ion line        | s repre  | BCR                            | sate poundary be | eween soil type:        | s. In situ, the tra<br>ACR | BORING STARTED               |       | -87             |                                        | 1                                                 |                  | 54                                        | 0 Lamb                         | eau St                                | reet                        |
| WL-T. PIPE           | DA              | TE       | TIME                           | WL-T. PIPE       | DATE                    | TIME                       | BORING COMPLETE              |       |                 |                                        | STS OF                                            | BY JJ            |                                           | een Bar                        | of                                    | 54303<br>1                  |
|                      |                 |          |                                |                  |                         |                            | RIG #12                      |       |                 |                                        | }                                                 | BY JW            |                                           | JOB NO.                        | 136                                   |                             |

| C                 |            | 3           |                 | 1        | OWNER                   | <b></b>                                                                                                                            |                   |                            |                                        | LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | RING N                                            | IUMBE          | R                                         |                               |                               |                             |
|-------------------|------------|-------------|-----------------|----------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------|----------------|-------------------------------------------|-------------------------------|-------------------------------|-----------------------------|
|                   | 6          | 7           |                 | t        | PROJECT N               |                                                                                                                                    | · <del></del>     | <u></u>                    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ENGI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NEER                                   |                                                   |                |                                           |                               |                               |                             |
| STS Co            |            |             |                 |          | Site Remed              | liation                                                                                                                            |                   |                            |                                        | STS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Consu                                  | ltants,                                           | Ltd.           |                                           |                               | т                             |                             |
| SITE              | LOC        | ATI         | OV.             | )<br>    | Former All<br>Appleton, |                                                                                                                                    | 1                 |                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOE                                    | SSIVE<br>/FT*)                                    | %              |                                           | =                             |                               |                             |
|                   |            |             | 33              |          |                         |                                                                                                                                    |                   | WELL INSTAL<br>TOP STANDPI | LATION<br>PE EL. + 771.8               | 4_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ENETRA<br>(B/FT)                       | OMPRES<br>(TONS,                                  |                | WEIGHT<br>FT³)                            | STIC LIM                      | PASSING                       | LITY. K<br>SEC)             |
| - TH<br>ELEVATION | E NO.      | SAMPLE TYPE | SAMPLE DISTANCE | .RY      |                         | DESCR                                                                                                                              | IPTION OF MA      | TERIAL                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STANDARD PENETRATION<br>TEST, N (B/FT) | UNCONFINED COMPRESSIVE<br>STRENGTH, Qp (TONS/FT*) | WATER CONTENT. | UNIT DRY WEIGHT<br>(LBS/FT <sup>3</sup> ) | LIQUID/PLASTIC LIMIT<br>LL/PL | PERCENT PASSING<br>#200 SIEVE | PERMEABILITY, K<br>(CM/SEC) |
| ELEVAT            | SAMPLE NO. | MPLI        | ME ME           | RECOVERY |                         |                                                                                                                                    |                   |                            | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STAN                                   | NCO<br>TREA                                       | W              | 5                                         | ğ                             | 9.                            | ۵                           |
|                   | S          | Ŝ           | क               |          | SURFACE ELE             | VATION +7                                                                                                                          | 69.07             |                            |                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                      | ٥, ٥                                              |                |                                           |                               |                               |                             |
| ]10<br>           |            | HS          |                 |          | No sample               | s collect                                                                                                                          | ed - see l        | boring loo                 | g of MW-17A                            | S Intribution of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |                                        |                                                   |                |                                           |                               |                               |                             |
|                   |            |             |                 |          | Boring a                | End of Boring Boring advanced to 20.0 feet with power auger 2 inch diameter Schedule 40 PVC monitoring well installed at 20.0 feet |                   |                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                   |                |                                           |                               |                               |                             |
|                   |            |             |                 |          |                         |                                                                                                                                    |                   |                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                   |                |                                           |                               |                               |                             |
|                   | $\exists$  |             |                 |          |                         |                                                                                                                                    |                   |                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                   |                |                                           |                               |                               |                             |
| The               | stratifi   | cation      | line            | s repr   | resent the approxi      | nate boundary b                                                                                                                    | etween soll type: | s. In situ, the tra        | nsition may be gradue                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | neesured at                                       | the times i    | ndicated.                                 | Water leve                    | s may vary                    | seasonally.                 |
| 71_               |            |             |                 |          | BCR                     |                                                                                                                                    |                   | AÇR                        | BORING STARTED                         | 1-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-90                                   | STS OF                                            | FICE           |                                           |                               | mbeau<br>Bay, W               | I 54303                     |
| VL-T.             | PIPE       | +           | DA              | TE       | TIME                    | WL-T. PIPE                                                                                                                         | DATE              | TIME                       | BORING COMPLET                         | ED 1-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-90                                   | DRAWI                                             | NBY RLS        | T                                         | ET 1                          | OF                            | 1                           |
|                   |            | $\dagger$   |                 |          |                         |                                                                                                                                    |                   |                            | RIG CME 45                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                   |                |                                           |                               |                               |                             |
| ******            |            |             |                 |          |                         | 1                                                                                                                                  |                   |                            | FOREMAN BZ                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | APP D.                                            | BY MAI         | B [ 515                                   | JOB NO.                       | 1689                          | ихо                         |

| 6                                            |            | 3                                      |                 | T        | OWNER                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            |                                        | RING N                                            | UMBE           | R                            |                                                  |                               |                           |
|----------------------------------------------|------------|----------------------------------------|-----------------|----------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------|----------------------------------|---------------------------------------|------------|----------------------------------------|---------------------------------------------------|----------------|------------------------------|--------------------------------------------------|-------------------------------|---------------------------|
|                                              | 6          | 4                                      |                 | -        | Albany Int             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                      |                                        |                                  | MW-17A ENGINEER STS Consultants, Ltd. |            |                                        |                                                   |                |                              |                                                  |                               |                           |
|                                              | _          |                                        |                 | -        | PROJECT I              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            |                                        | tante.                                            | Ltd.           |                              |                                                  |                               |                           |
| STS Co                                       |            |                                        |                 |          | Site Remed             | niation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                                        | 1                                |                                       |            | -011341                                | T                                                 |                |                              |                                                  |                               |                           |
| ,115                                         | LUC        | AH                                     | Oi              |          | Former Ali             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Chromium                               | Facility                         |                                       | - 1        | _                                      | w                                                 |                |                              |                                                  |                               |                           |
|                                              |            |                                        |                 | Т        | Appleton,              | Wisconsin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                      | WELL INSTA                             | LLATION                          |                                       | $\dashv$   | STANDARD PENETRATION<br>TEST, N (B/FT) | UNCONFINED COMPRESSIVE<br>STRENGTH, Qp (TONS/FT*) | 8              | _                            | H.                                               |                               |                           |
| -                                            |            |                                        | ш               |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | TOP STANDE                             | IPE EL. + 771.07                 |                                       | - 1        | ₹E                                     | ONS                                               | WATER CONTENT. | UNIT DRY WEIGHT<br>(LBS/FT³) | LIQUID/PLASTIC LIMIT<br>LL/PL                    | PERCENT PASSING<br>#200 SIEVE | >_                        |
|                                              |            |                                        | SAMPLE DISTANCE |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            | NENE<br>(B                             | 00 d                                              | NTE            | , WE                         | STIC                                             | PAS                           | PERMEABILITY.<br>(CM/SEC) |
|                                              | ġ.         | YPE                                    | IST             |          |                        | DESCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IPTION OF M            | ATERIAL                                |                                  | 1                                     |            | 87.                                    | 증구.                                               | 8              | LBS                          | PLA<br>LL/                                       | EN 1                          | SW (                      |
| TH                                           | 9          | LE                                     | 'LE             | VER      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            | ND H                                   | NET                                               | ATE            | IN                           | à<br>S                                           | ERC                           | EB.                       |
| <u>=</u>                                     | SAMPLE NO. | SAMPLE TYPE                            | AMF             | RECOVERY | CHOCACE EL             | EVATION +7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                                        |                                  | 1                                     | - 1        | STA                                    | STE                                               | >              |                              | 2                                                | ۵.                            | _                         |
|                                              | S          | S                                      | S               |          | SURFACE ELI            | EVALION +/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 69.02                  |                                        |                                  |                                       | -          |                                        | 50,                                               |                |                              |                                                  |                               |                           |
| -                                            | 1          | PA                                     |                 |          | Brown san              | d and gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vel - fil              | .1                                     |                                  | 5                                     |            |                                        |                                                   |                |                              |                                                  |                               |                           |
| 1. =                                         |            | - Cm                                   | #               |          | Red silty              | clay - f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i11                    |                                        |                                  | 1                                     | $\Box$     |                                        |                                                   |                |                              |                                                  |                               |                           |
|                                              | Ž          | ST                                     | Ш               | 鬥        | Black pea<br>\dry - to | t - trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of roots               | - trace                                | of cinders -                     |                                       | H          |                                        |                                                   |                |                              |                                                  |                               |                           |
| - 3                                          |            |                                        | <b> </b>        |          | / <u>a=1</u>           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | <del></del>                            |                                  | 3                                     |            |                                        |                                                   |                |                              |                                                  |                               |                           |
| -=                                           | 3          | ST                                     | Ш               | Ш        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  | 1                                     |            |                                        | 4.5+                                              |                |                              |                                                  |                               |                           |
|                                              |            |                                        | -               |          |                        | rown silt<br>cobbles -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                                        | e of gravel -                    |                                       |            |                                        |                                                   |                |                              |                                                  |                               | ]                         |
|                                              | 4          | ST                                     | Ш               | Щ        | damp - ti              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ACT A SUI              | rr to set                              | 1 mara -                         | 1                                     |            |                                        | 3.75                                              |                |                              |                                                  |                               |                           |
| 10-                                          |            |                                        | ļ.,             | $\prod$  |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            |                                        | 1                                                 |                |                              |                                                  |                               |                           |
|                                              | 5          | ST                                     | $\ \ $          | Ш        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            |                                        | 3.5                                               |                |                              |                                                  |                               |                           |
| ' =                                          |            | Ë                                      | 片               |          | Reddich h              | eddish brown silty clay (CL) - stiff - damp -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                                        |                                  |                                       |            |                                        |                                                   |                |                              | <del>                                     </del> | <b> </b>                      | +-1                       |
|                                              | 6          | ST                                     |                 | Щ        | till                   | eddish brown silty clay (CL) - stiff - damp -<br>ill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                                        |                                  |                                       |            |                                        | 1.0                                               |                |                              |                                                  |                               |                           |
| 15                                           |            |                                        | Щ               |          | ***                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            |                                        |                                                   |                |                              | <u> </u>                                         |                               | <b> </b>                  |
| :                                            | 7          | ST                                     | $\  \ $         | $\  \ $  |                        | Brown silty clay (CL) - trace of gravel - trace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            |                                        |                                                   |                |                              |                                                  |                               | 1 1                       |
| -                                            | -          |                                        | Ш               | Щ        | OI SIIC a              | Brown silty clay (CL) - trace of gravel - trace of silt and very fine sand layers-moist-firm-till                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                        |                                  |                                       |            |                                        |                                                   |                |                              | <del> </del>                                     | -                             | <del>  </del>             |
|                                              | 8          | SI                                     | $\  \ $         | Щ        |                        | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                        |                                        |                                  |                                       |            |                                        | 1.0                                               |                |                              |                                                  |                               |                           |
| 20                                           |            | Ë                                      | Ш               | 닖        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  | 1                                     |            |                                        |                                                   |                |                              |                                                  |                               | 1 1                       |
| ·                                            | 1          | ١.,                                    | $\ \ $          |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  | 1                                     |            |                                        | .5                                                |                |                              |                                                  |                               |                           |
|                                              | 9          | S7                                     | Ш               | Щ        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  | 1                                     |            |                                        |                                                   |                | ŀ                            |                                                  | -                             | 1 1                       |
|                                              | 1          |                                        |                 |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            |                                        |                                                   |                |                              |                                                  |                               | 1 1                       |
| 25                                           | 1          |                                        |                 |          |                        | lty clay (<br>soft - wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        | ace of gra                             | vel - very                       | 1                                     |            |                                        |                                                   |                |                              |                                                  |                               |                           |
|                                              | 1          |                                        |                 |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            |                                        | .25                                               |                |                              |                                                  |                               |                           |
| · :                                          | 10         | S:                                     | 11              |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            |                                        | .23                                               |                |                              |                                                  |                               |                           |
| <u>;                                    </u> | 1          | 1                                      | }               |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            |                                        |                                                   |                |                              |                                                  |                               |                           |
| 30                                           | 1          |                                        |                 |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            |                                        |                                                   |                |                              |                                                  |                               |                           |
|                                              | 1          |                                        | $\prod$         |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            |                                        | -                                                 | l<br>l         |                              |                                                  |                               |                           |
| }                                            | 11         | S'                                     | 1               | Щ        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  | 8                                     |            |                                        | .5                                                |                |                              |                                                  |                               |                           |
|                                              | 1          |                                        |                 |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            |                                        |                                                   | 1              |                              | İ                                                |                               |                           |
|                                              | 1          |                                        |                 |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  | 8                                     |            |                                        |                                                   |                |                              |                                                  |                               |                           |
|                                              | 1          |                                        | $\mathbb{T}$    |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            |                                        |                                                   | ]              |                              |                                                  |                               |                           |
| <u> </u>                                     | 12         | S'                                     | 4               | Щ        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            |                                        | .75                                               | 1              |                              |                                                  |                               |                           |
| - ;                                          | -          |                                        |                 |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | •                                      |                                  |                                       |            |                                        |                                                   |                |                              |                                                  | 1                             |                           |
| 40                                           | 1          |                                        |                 |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            |                                        |                                                   |                |                              |                                                  |                               |                           |
|                                              | ]          |                                        | T               |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | •                                      |                                  | "                                     |            |                                        | 1                                                 |                |                              |                                                  |                               |                           |
| 42                                           | 13         | S                                      | <u> </u>        | Щ        |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | ······································ |                                  | 1_                                    |            |                                        | 1.5                                               | <u> </u>       |                              | -                                                | 4                             |                           |
|                                              | ]          |                                        |                 |          | End of B               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            |                                        |                                                   |                |                              |                                                  | 1                             |                           |
| -                                            | 1          |                                        |                 |          | Boring a               | dvanced to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o 20.0 fe              | et with p                              | ower auger and                   | fro                                   | om         | 20.0 t                                 | 42.0                                              | feet           | with 1                       | rdck b                                           | iŧ                            |                           |
|                                              | Ė          |                                        |                 |          | 2 inch d               | icor o in<br>Liameter S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on alamet<br>chedule 4 | er tempor<br>10 PVC mon                | ary casing ins<br>itoring well i | install                               | ıed<br>all | while<br>ed at                         | o.0 f                                             | ing<br>eet     |                              |                                                  |                               |                           |
| The s                                        | ratific    | ation                                  | lines           | repre    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        | nsition may be gradual.          | 1                                     |            | 1                                      | I                                                 | I              | dicated. W                   | /ater levels                                     | may vary                      | Seasonally.               |
| .VL                                          |            |                                        |                 |          | BCR                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | ACR                                    | BORING STARTED                   |                                       | 30-        |                                        | STS OFF                                           |                | 5                            | 40 Lam                                           | beau S                        | treet                     |
| AL-T.                                        | PIPE       |                                        | DAT             | E        | TIME                   | WL-T. PIPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DATE                   | TIME                                   | BORING COMPLETED                 |                                       |            |                                        | <b>}</b>                                          |                | <del></del>                  |                                                  |                               | 54303                     |
| }                                            |            | -                                      |                 |          | <del> </del>           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 1                                      | RIG CME 75                       |                                       |            |                                        | DRAWN                                             | BY RLS         | SHEE                         | 7 1                                              | OF                            | 1                         |
| i                                            |            | +-                                     |                 |          | -                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                | <del> </del>                           | FOREMAN BZ                       | APP'D RY STS IOR NO 1 COOCHY          |            |                                        |                                                   |                |                              |                                                  |                               |                           |
| . 5-983                                      |            | ــــــــــــــــــــــــــــــــــــــ |                 |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                        |                                  |                                       |            |                                        | <u> </u>                                          |                |                              | ····                                             |                               |                           |

5-18 Albany International **PROJECT NAME ENGINEER** STS Consultants, Ltd. Site Remediation STS Consultants Ltd. SITE LOCATION Former Albany International Chromium Facility UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT¹) Appleton, Wisconsin STANDARD PENETRATION TEST. N (B/FT) LIOUID/PLASTIC LIMIT LL/PL WELL INSTALLATION PERCENT PASSING #200 SIEVE PERMEABILITY, K (CM/SEC) UNIT DRY WEIGHT (LBS/FT<sup>3</sup>) WATER CONTENT. TOP STANDPIPE EL. +\_ SAMPLE DISTANCE SAMPLE TYPE DESCRIPTION OF MATERIAL SAMPLE NO. SURFACE ELEVATION 1 PA Fill: Brown sand and gravel 4.5+ 2 ST 3.75 3 ST Reddish brown silty clay (CL) - trace of gravel yellowish brown silt laminations - very stiff to very hard - damp - fractured - till 3.75 SI 1.75 5 SI 3.50 6 SI Reddish brown to brown silty clay (CL) - stiff -.75 7 SI moist - till .50 Brown silty clay (CL) - firm - wet - till 1.75 ST End of Boring Boring advanced to 22.0 feet with power auger Boring backfilled with granular bentonite The stratification lines represent the approximate boundary between soil types. In situ, the transition may be gradual, Water levels were measured at the times indicated. Water levels may vary seasonally. 540 Lambeau Street BCR BORING STARTED 2-1-90 STS OFFICE Green Bay, WI 54303 WL-T. PIPE TIME WL-T. PIPE DATE TIME BORING COMPLETED 2-1-90 DRAWN BY RLS 1 OF 1 **CME 75** APP'D. BY STS JOB NO. 16898XH FOREMAN BZ MAB

LOG OF BORING NUMBER

**OWNER** 

:: 5-983

LOG OF BORING NUMBER OWNER B-19 Albany International **ENGINEER PROJECT NAME** Site Remediation STS Consultants, Ltd. SITE LOCATION Former Albany International Chromium Facility UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT\*) STANDARD PENETRATION TEST, N (B/FT) Appleton, Wisconsin LIQUID/PLASTIC LIMIT LL/PL PERCENT PASSING #200 SIEVE UNIT DRY WEIGHT (LBS/FT<sup>3</sup>) WELL INSTALLATION PERMEABILITY, K (CM/SEC) WATER CONTENT. TOP STANDPIPE EL. + SAMPLE TYPE SAMPLE DISTANCE ELEVATION DESCRIPTION OF MATERIAL SAMPLE NO. SURFACE ELEVATION +768.98 Fill: Brown sand and gravel 1 AS 2 ST 4.5+ Reddish brown silty clay (CL) - trace of gravel -3 ST 4.5+ trace of medium sand from 10.0 to 12.0 feet very hard - damp - fractured - till SI 4.5+ 5 4.5+ 6 SI 4.5+ .75 Brown silty clay (CL) - firm - wet - till .75 .75 End of Boring Boring advanced to 22.0 feet with power auger Boring backfilled with granular bentonite The stratification lines represent the approximate boundary between soil types, in situ, the transition may be gradual, Water levels were measured at the times, indicated. Water levels may vary seasonally. 540 Lambeau Street BCR BORING STARTED 1-31-90 STS OFFICE Green Bay, WI 54303 WL-T. PIPE TIME WL-T PIPE DATE TIME BORING COMPLETED 1-31-90 OF SHEET 1 DRAWN BY RLS 1 RIG CME 75 STS JOB NO. APP'D. BY 16898XH FOREMAN MAB

Albany International. PROJECT NAME **ENGINEER** Site Remediation STS Consultants, Ltd. SITE LOCATION Former Albany International Chromium Facility UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT\*) Appleton, Wisconsin STANDARD PENETRATION TEST, N (B/FT) LIQUID/PLASTIC LIMIT LL/PL UNIT DRY WEIGHT (LBS/FT³) WELL INSTALLATION PERCENT PASSING #200 SIEVE PERMEABILITY, K (CM/SEC) WATER CONTENT. TOP STANDPIPE EL. +. SAMPLE DISTANCE SAMPLE TYPE DESCRIPTION OF MATERIAL SURFACE ELEVATION +769.01 Fill: Brown sand and gravel 1 PA 4.5+ 2 ST Reddish brown silty clay (CL) - trace of gravel yellowish brown fine sand laminations from 3.0 to 3.5 feet - trace of coarse sand from 5.0 to 7.0 4.5+ 3 ST feet - 1/4 inch thick yellowish brown fine sand lense at 8.0 feet - very hard - damp - fractured-4.5+ 4 ST Reddish brown silty clay (CL) - very stiff -3.5 5 ST moist - fractured - till Reddish brown silty clay (CL) - trace of 2.25 6 ST gravel - very stiff - moist - till 7 .75 ST Brown silty clay (CL) - trace of gravel from 15.0 to 17.0 feet - firm - wet - till .5 R ST .5 9 ST Boring advanced to 22.0 feet with power auger Boring backfilled with bentonite The stratification lines represent the approximate boundary between soil types. In situ, the transition may be gradual. Water levels were measured at the times indicated. Water levels may vary seasonally. 540 Lambeau Street **BCR** BORING STARTED STS OFFICE Green Bay, WI 54303 WL-T. PIPE DATE DATE TIME BORING COMPLETED 2-1-90 OF DRAWN BY RLS SHEET 1 **CME 75** APP'D. BY STS JOB NO. 16898XH MAB FOREMAN

LOG OF BORING NUMBER

OWNER -

LOG OF BORING NUMBER OWNER 5-21 Albany International **ENGINEER** PROJECT NAME STS Consultants, Ltd. Site Remediation STS Consultants Ltd. SITE LOCATION Former Albany International Chromium Facility UNCONFINED COMPRESSIVE STRENGTH, Op (TONS/FT\*) Appleton, Wisconsin STANDARD PENETRATION TEST, N (8/FT) LIQUID/PLASTIC LIMIT LL/PL WELL INSTALLATION TOP STANDPIPE EL. + PERCENT PASSING #200 SIEVE PERMEABILITY, K (CM/SEC) UNIT DRY WEIGHT (LBS/FT³) WATER CONTENT. SAMPLE DISTANCE ELEVATION SAMPLE TYPE DESCRIPTION OF MATERIAL SAMPLE NO. SURFACE ELEVATION +769.04 Fill: Brown sand and gravel 1 4.5+ 2 ST Reddish brown silty clay (CL) - trace of gravel - very hard - damp - fractured from 4.5+ 3 ST 5.0 to 10.0 feet - till 4.5+ 4 ST 4.5+ 5 ST Reddish brown silty clay (CL) - trace of coarse sand - trace of gravel - stiff - moist - till 1.75 6 ST 1.0 7 ST . 5 8 ST Brown silty clay (CL) - trace of gravel - firm wet - till . 5 9 ST End of Boring Boring advanced to 22.0 feet with power auger Boring backfilled with bentonite The stratification times represent the approximate boundary between soil types. In situ, the transition may be graduel. Water levels were measured at the times indicated. Water levels may vary seasonally 540 Lambeau Stree BORING STARTED 2-1-90 Green Bay, WI 54303 STS OFFICE WL-T. PIPE WL-T. PIPE DATE TIME DATE TIME BORING COMPLETED 2-1-90

RIG

**FOREMAN** 

**CME 75** 

OF

1

STS JOB NO. 16898XH

SHEET

DRAWN BY RLS

MAB

APP'D. BY

| C               |            | 3                                                |                 |           | OWNER                |                       |                  |                          | ***                                     | LOG OF BORING NUMBER  B-22  ENGINEER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                                        |                                                   |                  |                                                  |                               |                               |                           |
|-----------------|------------|--------------------------------------------------|-----------------|-----------|----------------------|-----------------------|------------------|--------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------|---------------------------------------------------|------------------|--------------------------------------------------|-------------------------------|-------------------------------|---------------------------|
| 5               | 6          | 7                                                |                 | -         |                      | ternation             | al               |                          | · · · · · · · · · · · · · · · · · · ·   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                        | ~~~                                               |                  |                                                  |                               |                               |                           |
|                 | _          |                                                  |                 |           | PROJECT<br>Site Reme |                       |                  |                          | •                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        | ltants,                                           | Y + A            |                                                  |                               |                               | 1                         |
| STSC            |            |                                                  |                 | _         | Site Keme            | diation               |                  |                          |                                         | Т.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 313 | Consu                                  | I I                                               | LLU.             | <del></del>                                      |                               |                               |                           |
| SITE            | LOC        | AII                                              | Or              | · · · · · |                      | bany Inte<br>Wisconsi |                  | Chromium                 | Facility                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | NO                                     | SIVE<br>FT*)                                      |                  |                                                  | _                             |                               |                           |
|                 |            |                                                  |                 |           |                      |                       |                  | WELL INSTA               | LLATION<br>PIPE EL. +                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | STANDARD PENETRATION<br>TEST, N (B/FT) | UNCONFINED COMPRESSIVE<br>STRENGTH, Qp (TONS/FT*) | WATER CONTENT. % | UNIT DRY WEIGHT<br>(LBS/FT <sup>3</sup> )        | LIQUID/PLASTIC LIMIT<br>LL/PL | 9NI                           | ×                         |
|                 |            |                                                  | SAMPLE DISTANCE |           |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | (8 ER                                  | W)-                                               | (TEN             | WE!                                              | 55.                           | PÉRCENT PASSING<br>#200 SIEVE | PERMEABILITY.<br>(CM/SEC) |
| Š               | Э.         | <u>P</u> E                                       | STA             |           |                      | DESCR                 | RIPTION OF N     | IATERIAL                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 67.                                    | 9-                                                | ຣົ               | JRY<br>BS/                                       | E &                           | NT P                          | M/S                       |
| TH<br>ELEVATION | SAMPLE NO. | SAMPLE TYPE                                      | ED              | RECOVERY  |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | TES                                    | £ 5                                               | E                | ===                                              | ě                             | #SE                           | ₹ <u>9</u>                |
| TH<br>ELEVAT    | MPL        | MP                                               | 를               | 힗         |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | I.A.                                   | SE                                                | ¥<br>¥           | 5                                                | ₽                             | PÉ                            | E                         |
| 1               | SA         | SA                                               | S               | æ         | SURFACE EL           | EVATION +7            | 69.07            |                          |                                         | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | S                                      | Sis                                               |                  |                                                  | -                             |                               | i                         |
|                 |            |                                                  | П               | П         | Fill: Br             | own sand              | and grave        | <u> </u>                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        |                                                   |                  |                                                  |                               |                               |                           |
|                 | 1          | PA                                               | $\  \ $         |           |                      |                       | -                |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        |                                                   |                  |                                                  |                               |                               |                           |
| <u> </u>        |            |                                                  | III             | Ш         |                      |                       |                  |                          | *****                                   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1   |                                        |                                                   |                  | <del>                                     </del> |                               |                               |                           |
|                 | 2          | ST                                               | Ш               | П         |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        | 4.5+                                              |                  |                                                  |                               |                               |                           |
|                 |            |                                                  | Ш               | Ш         |                      |                       |                  |                          | e of gravel                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                        |                                                   |                  |                                                  |                               |                               | 1 1                       |
|                 | 3          | ST                                               | Ш               | 出         |                      |                       |                  | 7.0 to 9.0<br>ed from 5. |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        | 4.5+                                              |                  |                                                  |                               |                               |                           |
|                 | 4          | ST                                               | Ш               | Ш         | feet - ti            |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        | 4.5+                                              |                  | 1                                                |                               |                               |                           |
| -               |            | 31                                               | Ш               | 出         |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        | 4.5                                               |                  |                                                  |                               | l                             |                           |
| 10              | 5          | ST                                               | Ш               | Ш         |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        | 4.5+                                              |                  |                                                  |                               |                               |                           |
|                 |            |                                                  | Ш               | 閆         | ······               | ***                   |                  |                          | *************************************** | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}$ |     |                                        | 1.3                                               |                  |                                                  |                               |                               |                           |
| ! -             | 6          | ST                                               | Ш               | Ш         |                      |                       |                  | CL) - trad               | ce of gravel                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                        | 2,75                                              |                  |                                                  |                               |                               |                           |
|                 | L          | 31                                               | Ш               | 出         | very sti             | ff - mois             | t - t111         |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        | 2.73                                              |                  |                                                  |                               |                               |                           |
| 1 13            | -          | Ι                                                | Ш               | hnl       | <u></u>              | ···                   | <del></del>      |                          | -                                       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | <u> </u>                               | <del> </del>                                      | <b></b>          | <del> </del>                                     | ├                             | -                             | 1                         |
| : <del></del>   | 7          | ST                                               | $\  \ $         | Ш         |                      |                       |                  | _                        |                                         | İ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                        | .50                                               |                  |                                                  |                               |                               |                           |
|                 |            |                                                  | П               | Ш         |                      |                       |                  |                          | avel from wet - till                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        |                                                   |                  |                                                  |                               |                               | 1                         |
| <del></del>     | 8          | SI                                               |                 |           |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        | .75                                               |                  |                                                  |                               |                               |                           |
| 20              | $\vdash$   | -                                                | In              | П         |                      |                       |                  |                          |                                         | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                        | 1                                                 |                  |                                                  |                               |                               |                           |
| 22              | 9          | SI                                               | 111             | Щ         |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        | .50                                               |                  |                                                  |                               |                               | 1 1                       |
| 22              |            |                                                  | Τ               |           | End of B             | oring                 |                  |                          |                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •   |                                        | 1                                                 |                  | <del>                                     </del> | 1                             |                               |                           |
|                 | 1          |                                                  |                 |           | Boring a             | dvanced t             |                  |                          | ower auger                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        |                                                   |                  | !<br>!                                           |                               |                               |                           |
|                 | 1          |                                                  |                 |           | Boring b             | ackfilled             | with ben         | tonite                   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        | 1                                                 |                  |                                                  |                               |                               | 1 1                       |
| <u> </u>        | 1          | İ                                                |                 |           |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        |                                                   |                  |                                                  | 1                             |                               | 1 1                       |
|                 | ]          |                                                  |                 |           |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        |                                                   |                  | ļ                                                |                               |                               | 1                         |
|                 | 1          |                                                  |                 |           |                      |                       |                  | ••                       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        | 1                                                 |                  |                                                  |                               |                               |                           |
|                 | -<br>-     |                                                  |                 |           |                      |                       |                  |                          |                                         | į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                        |                                                   | 1                | 1                                                |                               |                               |                           |
|                 | ]          |                                                  |                 |           |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | .                                      | 1                                                 |                  |                                                  |                               |                               |                           |
|                 | 1          |                                                  |                 |           | -                    |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        | l                                                 |                  |                                                  |                               |                               |                           |
|                 | 1          |                                                  | l               |           |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        |                                                   |                  | İ                                                |                               |                               |                           |
| `h              | 1          |                                                  |                 |           |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        |                                                   |                  | Ì                                                |                               |                               |                           |
|                 | 1          |                                                  |                 |           |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        |                                                   |                  |                                                  | 1                             |                               | 1 '                       |
| :               | 1          |                                                  |                 |           |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        |                                                   |                  |                                                  |                               | }                             |                           |
| -               | 1          |                                                  |                 |           |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        |                                                   |                  |                                                  |                               |                               |                           |
|                 | 1          |                                                  |                 |           |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        |                                                   |                  |                                                  | -                             |                               | 1                         |
|                 | 3          |                                                  |                 |           |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        |                                                   |                  |                                                  |                               |                               | 1 1                       |
|                 | ‡          |                                                  |                 |           |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        |                                                   |                  |                                                  |                               |                               |                           |
|                 | E          |                                                  |                 |           |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        |                                                   |                  |                                                  |                               |                               |                           |
|                 | ‡          |                                                  |                 |           |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        |                                                   |                  |                                                  |                               |                               |                           |
| -               | 1_         | L                                                |                 |           |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        |                                                   |                  |                                                  |                               |                               |                           |
|                 | ratifica   | ution I                                          | ines            | repre     |                      | nate boundary b       | atween soil type |                          | nsition may be gradua                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        | asured at th                                      | e times i        |                                                  |                               |                               |                           |
| VL<br>WL-T. F   | npc        |                                                  | DAT:            |           | BCR                  | WL-T. PIPE            | DATE             | TIME                     | BORING STARTED                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1-9 |                                        | STS OFF                                           | ICE              |                                                  |                               | abeau S<br>Bay, WI            |                           |
| 1               | 11.5       | <del>                                     </del> | DATI            |           | TIME                 | NOI. FIFE             | DATE             | TIME                     | BORING COMPLETE                         | D 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-9 | 0                                      | DRAWN                                             | BY RLS           |                                                  |                               | OF                            | 1                         |
|                 |            | $I^{-}$                                          |                 |           |                      |                       |                  |                          | RIG CME 75                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        | J                                                 |                  |                                                  |                               |                               | -                         |
|                 |            |                                                  |                 |           |                      | RIG CM<br>FOREMAN     |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        | APP'D.                                            | IAM YE           | sts.                                             | JOB NO.                       | 16898X                        | н                         |
| .: 5-983        |            |                                                  |                 |           |                      |                       |                  |                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                        |                                                   |                  | -                                                | -                             |                               |                           |

|            | _                                                | ₹           | 7                     |                               | OWNER                                                                             |                          |                 |                    | <u> </u>                | LO       | GC       | F BO                                   | RING N                                            | UMBE                                    | R                                                | ·                             | <del></del>                             |                           |
|------------|--------------------------------------------------|-------------|-----------------------|-------------------------------|-----------------------------------------------------------------------------------|--------------------------|-----------------|--------------------|-------------------------|----------|----------|----------------------------------------|---------------------------------------------------|-----------------------------------------|--------------------------------------------------|-------------------------------|-----------------------------------------|---------------------------|
|            | 1                                                | 4           |                       |                               | Albany Inte                                                                       | ernational               | 1               |                    | *                       | B        | -23      |                                        |                                                   |                                         |                                                  |                               |                                         | -                         |
|            |                                                  | - 1         |                       | Ī                             | PROJECT N                                                                         |                          |                 |                    |                         | EN       | IGIN     | NEER                                   |                                                   |                                         |                                                  |                               | *************************************** |                           |
| STSC       | nsul                                             | tant        | sLt                   | a.                            | Site Remed                                                                        | iation                   |                 |                    | l l                     | S        | TS (     | Consul                                 | tants,                                            | Ltd.                                    |                                                  |                               |                                         | 1                         |
| SITE       |                                                  |             |                       |                               | Former Alb                                                                        |                          |                 | Chromium :         | Facility                |          |          | z                                      | ν.<br>C                                           |                                         |                                                  |                               |                                         |                           |
| 1          |                                                  |             |                       | П                             | Appleton,                                                                         | wisconsin                |                 | WELL INSTAL        | LATION                  |          | $\dashv$ | STANDARD PENETRATION<br>TEST, N (B/FT) | UNCONFINED COMPRESSIVE<br>STRENGTH, Qp (TONS/FT*) | %                                       | <b>,</b>                                         | Ē                             | 9                                       | L L                       |
| <b>}</b> . |                                                  |             | ш                     |                               |                                                                                   |                          |                 | TOP STANDPI        | PE EL. +                |          |          | ETB/                                   | P C N                                             | WATER CONTENT.                          | UNIT DRY WEIGHT                                  | LIQUID/PLASTIC LIMIT<br>LL/PL | PERCENT PASSING<br>#200 SIEVE           | Σ<br>×                    |
|            |                                                  |             | SAMPLE DISTANCE       |                               |                                                                                   |                          |                 | •                  |                         |          |          | 8 SEN                                  | 80                                                | NTE                                     | ĭ.<br>ŽĖ                                         | IST.                          | SIEV                                    | PERMEABILITY.<br>(CM/SEC) |
| ] §        | 6                                                | 32          | 121/                  |                               |                                                                                   | DESCRI                   | PTION OF MA     | TERIAL             |                         | 1        |          | 8 H                                    | ਰੂ <sub>ਦ</sub>                                   | 8                                       | PBS                                              | 53                            | 2 S                                     | SEA                       |
| ELEVATION  | N N                                              | ш           | ш.<br>О               | E                             |                                                                                   |                          |                 |                    |                         |          |          | ¥¥                                     | £5                                                | ATE!                                    | E C                                              | È                             | SE SE                                   | 8                         |
| ELEVAT     | SAMPLE NO.                                       | SAMPLE TYPE | Ž                     | RECOVERY                      |                                                                                   |                          |                 |                    |                         |          |          | STA                                    | ջ뿐                                                | *                                       | ]                                                | 림                             | •                                       |                           |
| VA         | Ϋ́                                               | SS          | Ş                     | #[                            | SURFACE ELE                                                                       | VATION +76               | 59.12           |                    |                         |          |          |                                        | 5 S                                               |                                         |                                                  |                               |                                         |                           |
|            |                                                  |             | Ш                     |                               | Fill: Bro                                                                         | wn sand a                | nd gravel       |                    |                         |          |          |                                        |                                                   |                                         |                                                  |                               |                                         |                           |
|            | 1                                                | PA          | $\ \ $                |                               |                                                                                   |                          | •               |                    |                         |          |          |                                        |                                                   |                                         |                                                  |                               |                                         |                           |
| -          | <del>                                     </del> | $\vdash$    | $\parallel \parallel$ | Ш                             |                                                                                   |                          |                 |                    |                         |          |          |                                        |                                                   | *************************************** |                                                  |                               |                                         |                           |
|            | 2                                                | ST          | Ш                     |                               |                                                                                   |                          |                 |                    |                         |          |          |                                        | 4.5+                                              |                                         |                                                  |                               |                                         | 1 1                       |
|            |                                                  | -           | In                    | $\mathbf{H}$                  |                                                                                   |                          | 1 (C1           | ·\                 | of average =            |          |          |                                        |                                                   |                                         |                                                  |                               |                                         | 1 1                       |
| ,          | 3                                                | ST          | Ш                     | Щ                             | trace of                                                                          | cown slity<br>coarse san | d from 3.       | .0 to 4.0          | of gravel -<br>feet -   |          |          |                                        | 4.5+                                              |                                         |                                                  |                               |                                         | 1 1                       |
|            | +                                                | $\vdash$    | 1                     |                               | very hard                                                                         | - damp -                 | fracture        | from 5.0           | to 7.0                  |          |          |                                        | 1 1                                               |                                         |                                                  |                               |                                         |                           |
|            | 4                                                | ST          |                       |                               | feet - ti                                                                         | 11                       |                 |                    |                         |          |          |                                        | 4.5+                                              |                                         |                                                  |                               |                                         |                           |
|            | 1                                                | 〓           | H                     | 4                             |                                                                                   |                          |                 |                    |                         |          |          |                                        |                                                   |                                         |                                                  |                               |                                         | 1 1                       |
|            | 5                                                | ST          |                       |                               |                                                                                   |                          |                 |                    |                         |          |          |                                        | 4.5+                                              |                                         |                                                  |                               |                                         | 1                         |
|            | 1                                                | _           | 上                     | 1111                          |                                                                                   |                          |                 |                    |                         |          |          |                                        | <del> </del>                                      |                                         | <del>                                     </del> | +                             | ╅                                       |                           |
|            | 1 6                                              | ST          | .11                   | $\parallel\parallel\parallel$ | Reddish brown silty clay (CL) - trace of gravel - very stiff - moist - till       |                          |                 |                    |                         |          |          |                                        | 2.0                                               |                                         |                                                  | 1                             |                                         |                           |
| 14.5       | <del> </del>                                     | 131         | #                     | Щ                             | Very Serr                                                                         |                          |                 |                    |                         | ┼        |          |                                        | <b> </b>                                          |                                         | <del> </del>                                     | <del> </del>                  |                                         |                           |
|            | 3                                                |             |                       |                               | End of Boring Boring advanced to 14.5 feet with power auger                       |                          |                 |                    |                         |          |          |                                        |                                                   |                                         |                                                  |                               |                                         | 1 1                       |
| -          | 1                                                |             | 1                     | 1                             |                                                                                   | wer auger                | 1               |                    | l                       |          |          |                                        |                                                   |                                         |                                                  |                               |                                         |                           |
|            | ‡                                                |             |                       | 1                             | Boring advanced to 14.5 feet with power auger<br>Boring backfilled with bentonite |                          |                 |                    |                         |          |          |                                        |                                                   |                                         |                                                  | 1                             |                                         | 1 1                       |
|            | 3                                                |             |                       | 1                             |                                                                                   |                          |                 |                    |                         |          |          |                                        |                                                   |                                         |                                                  |                               |                                         |                           |
|            | =                                                | İ           |                       |                               | ,                                                                                 | •                        |                 |                    |                         |          |          |                                        |                                                   |                                         |                                                  | 1                             |                                         |                           |
|            | ‡                                                |             |                       |                               |                                                                                   |                          |                 |                    |                         | 1        |          |                                        | 1                                                 |                                         |                                                  |                               |                                         | 1 1                       |
|            | ‡                                                |             |                       |                               |                                                                                   |                          |                 |                    |                         |          |          |                                        |                                                   |                                         |                                                  |                               |                                         | 1 1                       |
|            | Ξ                                                |             |                       | Ì                             |                                                                                   |                          |                 |                    |                         | 1        |          |                                        | 1                                                 | İ                                       |                                                  |                               |                                         | 1 1                       |
| <u> </u>   | =                                                |             |                       |                               |                                                                                   |                          |                 | •                  |                         |          |          |                                        | 1                                                 |                                         |                                                  |                               |                                         |                           |
|            | ⇉                                                |             |                       |                               |                                                                                   |                          |                 |                    |                         |          |          |                                        | 1                                                 |                                         |                                                  | }                             |                                         | 1 1                       |
|            | 3                                                |             |                       |                               |                                                                                   |                          |                 |                    |                         |          |          |                                        |                                                   |                                         |                                                  |                               |                                         | 1 1                       |
| -          | =                                                |             |                       |                               |                                                                                   |                          |                 | -                  |                         |          |          | -                                      |                                                   |                                         |                                                  |                               | 1                                       | 1 1                       |
|            |                                                  |             |                       | 1                             |                                                                                   |                          |                 |                    |                         |          |          | 1                                      |                                                   |                                         |                                                  |                               |                                         |                           |
|            | =                                                |             | Ì                     |                               |                                                                                   |                          |                 |                    |                         | i        |          |                                        |                                                   | 1                                       |                                                  |                               |                                         |                           |
|            | $\exists$                                        |             |                       |                               |                                                                                   |                          |                 |                    |                         | 1        |          | 1                                      |                                                   |                                         |                                                  |                               |                                         |                           |
|            | #                                                |             | 1                     |                               |                                                                                   |                          |                 |                    |                         |          |          |                                        |                                                   |                                         | 1                                                |                               |                                         |                           |
|            | 3                                                | 1           |                       |                               |                                                                                   |                          |                 |                    |                         |          |          |                                        | 1                                                 |                                         | 1                                                |                               |                                         |                           |
| -          | $\exists$                                        |             |                       |                               |                                                                                   |                          |                 |                    |                         |          |          |                                        |                                                   |                                         | 1                                                | İ                             |                                         |                           |
|            | =                                                |             |                       | l                             |                                                                                   |                          |                 |                    |                         |          |          |                                        |                                                   |                                         |                                                  |                               |                                         |                           |
|            | 7                                                |             | 1                     |                               |                                                                                   |                          |                 |                    |                         |          |          |                                        |                                                   |                                         |                                                  |                               | 1                                       |                           |
|            | $\exists$                                        |             |                       |                               |                                                                                   |                          |                 |                    |                         |          |          |                                        |                                                   |                                         | ľ                                                |                               |                                         |                           |
|            | 3                                                |             |                       |                               |                                                                                   |                          |                 | •                  |                         |          |          | 1                                      | 1                                                 |                                         | 1                                                |                               |                                         |                           |
| -          | =                                                |             |                       |                               |                                                                                   |                          |                 | •                  |                         |          |          |                                        |                                                   |                                         | 1                                                |                               |                                         |                           |
|            | 7                                                |             |                       |                               |                                                                                   |                          |                 |                    |                         |          |          |                                        |                                                   |                                         |                                                  |                               |                                         |                           |
|            | $\exists$                                        |             |                       |                               |                                                                                   |                          |                 |                    |                         |          |          | 1                                      |                                                   |                                         | 1                                                |                               |                                         |                           |
| 1          | $\exists$                                        |             |                       |                               |                                                                                   |                          |                 |                    |                         |          |          |                                        |                                                   | 1                                       |                                                  |                               | 1                                       |                           |
|            | =                                                |             |                       |                               |                                                                                   |                          |                 |                    |                         |          |          |                                        |                                                   |                                         | 1                                                |                               |                                         |                           |
| -          | 97/2414                                          |             |                       |                               | mant the annovin                                                                  | nate houndary he         | tween soil type | a. in situ the tra | nsition may be gradual. | Wate     | er leve  | is were m                              | easured at t                                      | he times                                | indicated.                                       | Water leve                    | l<br>Is may van                         | i<br>seasonally.          |
| NL NL      | -v.=K(1                                          |             | in 16                 |                               | BCR                                                                               |                          |                 | ACR                | BORING STARTED          |          | -1-9     |                                        | STS OF                                            |                                         |                                                  | 540 La                        | mbeau                                   | Street                    |
| -          | PIPE                                             | T           | DA                    | TE                            | TIME                                                                              | WL-T. PIPE               | DATE            | TIME               | BORING COMPLETE         |          |          |                                        | 313 0                                             | . 105                                   |                                                  | Green                         | Bay, W                                  | I 54303                   |
| L          |                                                  | 工           |                       |                               |                                                                                   |                          |                 |                    |                         | <u> </u> | -1-3     |                                        | DRAW                                              | BY R                                    | LS SH                                            | EET 1                         | OF                                      | 1                         |
| 1          |                                                  | 1           |                       |                               |                                                                                   |                          |                 |                    | RIG CME 75              | CME 75   |          |                                        |                                                   |                                         | хн                                               |                               |                                         |                           |



### BADGER LABORATORIES & ENGINEERING RE

1110 S. ONEIDA STREET . APPLETON, WISCONSIN 54915 . [414] 739-9213

FAX (414) 739-5399 • TOLL FREE PHONE IN WISCONSIN 1-800-242-3556

STS Project No. 16898XH Forty-Five (45) Soil Samples Received February 5, 1990 Sampled By: Client

Our Report No. 200856 Issued February 26, 1990

STS CONSULTANTS, LTD. 540 Lambeau Street Green Bay, WI 54303

Att'n: Mr. Mark Bergeron

Request: Total and EP Toxicity Chromium determination as listed below.

#### Results:

|      | Chromium, Total ppm. Wet Weight Basis | Chromium, EP Toxicity mg/l. |
|------|---------------------------------------|-----------------------------|
| 18-2 | 26.1                                  | NR                          |
| 18-3 | 46.7                                  | NR                          |
| 18-4 | 38.7                                  | NR                          |
| 18-5 | 40.0                                  | NR                          |
| 10.0 |                                       | · ·                         |
| 18-6 | 26.6                                  | NR                          |
| 18-7 | 23.9                                  | NR                          |
| 18-8 | 20.9                                  | NR                          |
| 18–9 | 20.2                                  | NR                          |
| 19-2 | 164                                   | <0.04                       |
| 19-3 | 105                                   | 0.40                        |
| 19-4 | 138                                   | 1.7                         |
| 19-5 | 103                                   | 2.8                         |
| 19-6 | 42.8                                  | NR                          |
| 19-7 | 24.7                                  |                             |
| 19-8 | 23.6                                  | NR.                         |
| 19-9 | 22.6                                  | NR<br>NR                    |
| 00.0 |                                       |                             |
| 20-2 | 96.2                                  | NR                          |
| 20-3 | 111                                   | 0.97                        |
| 20-4 | 138                                   | 4.0                         |
| 20–5 | 340                                   | 10.1                        |
| 20-6 | . 167                                 | 4.5                         |
| 20-7 | 20.5                                  | NR                          |
| 20-8 | 22.2                                  | NR                          |
| 20-9 | 22.2                                  | NR                          |
| 21-2 | 138                                   | <b>70.04</b>                |
| 21-3 | 148                                   | <0.04                       |
| 21-4 | 148                                   | 0.24                        |
| 21-5 |                                       | 4.3                         |
| 21-0 | 439                                   | 10.9                        |

WI Reg. Engineers (Corp.) #CE00601 WI DNR Certified Lab #445023150 WI Div Heath Cert, Lab #205, Bacteria water/milk USDA Certified Lab #5585, Various tests for (Meat & Poultry) foods

Members
Wt Environmental Labs: Am Chemical Soc.;
Water Pollution Control Fed., T.A.P.P.L.;
Wt Food Processors Assn.; Wisc. Paper Council

|      | Chromium, Total ppm. Wet Weight Basis | Chromium, EP Toxicity mg/l. |
|------|---------------------------------------|-----------------------------|
| 21-6 | 596                                   | 21.5                        |
| 21-7 | 280                                   | 1.8                         |
| 21-8 | 20.4                                  | NR                          |
| 21-9 | 19.6                                  | NR                          |
| 22-2 | 472                                   | <0.04                       |
| 22-3 | 150                                   | <0.04                       |
| 22-4 | 121                                   | 1.2                         |
| 22-5 | 184                                   | 5.0                         |
| 22-6 | 510                                   | 15.0                        |
| 22-7 | 21.0                                  | NR                          |
| 22-8 | 20.9                                  | NR                          |
| 22-9 | 21.8                                  | NR                          |
| 23-2 | 20.4                                  | NR                          |
| 23-3 | 108                                   | 0.83                        |
| 23-4 | 142                                   | 3.4                         |
| 23-5 | 203                                   | 7.0                         |
| 23-6 | 140                                   | 4.1                         |
|      |                                       |                             |

Method: Test Methods for Evaluating Solid Waste, EPA, 1982, SW-846.

BADGER LABORATORIES & ENGINEERING WDNR Certified Lab #445023150

Carla M Brown

Carla M. Brown Lab Analyst

CMB:mw

Chain of Custody Enclosed.

Lower British Comment

WELL DATA SUMMARY SHEET June 11, 1991 

(parts per million) Total Chromium\* 

| Well No. 3-31-89 | 6-30-89      | 9-28-89     | 12-14-89     | 3-30-90         | 6-21-90       | 9-27-90         | 4 I             | 3-26-91 | 6-11-91     |
|------------------|--------------|-------------|--------------|-----------------|---------------|-----------------|-----------------|---------|-------------|
| <b>*.</b> 001    | .0037        | <b>*.10</b> | <b>*.</b> 04 | 90•             | <0.04         | <0.04           | <b>&lt;0.04</b> | 70.0    | <b>40.0</b> |
| .083             | .073         | .13         | •05          | .07             | 60.0          | 0.05            | 0.05            | <0.04   | 0.04        |
|                  |              |             |              | <b>*.04</b>     | <0.04         | 0.05            | 90.0            | 0.05    | <0.04       |
| 18.80            | 1.55         | 3.4         | 4.4          | 14.1            | <del>1.</del> | 0.75            | 1.32            | 2.69    | 1.8         |
|                  |              | •           |              | 34.4            | 39.3          | 57.1            | 47.8            | 43.3    | . 41        |
| *                | <b>*.</b> 10 | <b>10</b>   | <b>*.04</b>  | .07             | 0.05          | 40.04           | <0.04           | 40°04   | <0.04       |
| 14.30            | 40.90        | 24.5        | 9.5          | 18.0            | 31.3          | 28.1            | 19.1            | 11.2    | 14          |
|                  |              |             |              | <b>********</b> | 60.0          | <b>&lt;0.04</b> | <0.04           | 40.04   | <0.04       |
|                  |              |             |              | .04             | <0.04         | <0.04           | <0:04           | <0.04   | <0.04       |

\* Analyses were run by Badger Laboratories \*\* Flush mounted well cap jammed

# **Appendix E**

**Laboratory Analytical Data** 



#### BADGER LABORATORIES & ENGINEERING INC.

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: 46003827 Description: MW-19A Sample Date: 1/21/2016 Date Received: 1/21/2016

| Parameter          | Results | Units | LOD   | LOQ   | Dil. | Method    | Analyzed Codes |
|--------------------|---------|-------|-------|-------|------|-----------|----------------|
| CHROMIUM,DISSOLVED | 121     | ug/l  | 30    | 100   | 1    | SM3113B   | 01/25/16       |
| HEX CHROME         | <0.002  | mg/l  | 0.002 | 0.006 | 1    | SM3500CrB | 01/21/16       |

Sample Number: 46003828
Description: MW-20
Sample Date: 1/21/2016
Date Received: 1/21/2016

| Parameter           | Results       | Units | LOD   | LOQ   | Dil. | Method    | Analyzed Codes |
|---------------------|---------------|-------|-------|-------|------|-----------|----------------|
| CHROMIUM, DISSOLVED | <b>212000</b> | ug/l  | 6210  | 20679 | 207  | SM3113B   | 01/25/16       |
| HEX CHROME          | 234           | mg/l  | 0.020 | 0.067 | 1000 | SM3500CrB | 01/21/16       |

Sample Number: 46003829
Description: MW-20A
Sample Date: 1/21/2016
Date Received: 1/21/2016

| Parameter          | Results | Units | LOD   | LOQ   | Dil. | Method    | Analyzed Codes |
|--------------------|---------|-------|-------|-------|------|-----------|----------------|
| CHROMIUM,DISSOLVED | 5.4     | ug/l  | 0.20  | 0.66  | 1    | SM3113B   | 01/29/16       |
| HEX CHROME         | <0.002  | mg/l  | 0.002 | 0.006 | 1    | SM3500CrB | 01/21/16       |

Sample Number: 46003830
Description: MW-20B
Sample Date: 1/21/2016
Date Received: 1/21/2016

| Parameter           | Results | Units | LOD   | LOQ   | Dil. | Method      | Analyzed Codes |
|---------------------|---------|-------|-------|-------|------|-------------|----------------|
| CHROMIUM, DISSOLVED | 216000  | ug/l  | 6143  | 20456 | 205  | SM3113B     | 01/25/16       |
| HEX CHROME          | 156     | mg/l  | 0.020 | 0.067 | 1000 | ) SM3500CrB | 01/21/16       |



### BADGER LABORATORIES & ENGINEERING INC.

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: 46003831
Description: MW-21
Sample Date: 1/21/2016
Date Received: 1/21/2016

| Parameter          | Results | Units | LOD   | LOQ   | Dil. | Method    | Analyzed Codes |
|--------------------|---------|-------|-------|-------|------|-----------|----------------|
| CHROMIUM,DISSOLVED | 0.89    | ug/l  | 0.20  | 0.66  | 1    | SM3113B   | 01/29/16       |
| HEX CHROME         | <0.002  | mg/l  | 0.002 | 0.006 | 1    | SM3500CrB | 01/21/16       |

Sample Number: 46003832
Description: MW-21A
Sample Date: 1/21/2016
Date Received: 1/21/2016

| Parameter          | Results | Units | LOD   | LOQ   | Dil. | Method    | Analyzed Codes |
|--------------------|---------|-------|-------|-------|------|-----------|----------------|
| CHROMIUM,DISSOLVED | 0.21    | ug/l  | 0.20  | 0.66  | 1    | SM3113B   | 01/29/16       |
| HEX CHROME         | <0.002  | mg/l  | 0.002 | 0.006 | 1    | SM3500CrB | 01/21/16       |

Sample Number: 46003833
Description: MANHOLE
Sample Date: 1/21/2016
Date Received: 1/21/2016

| Parameter                                         | Results             | Units               | LOD                | LOQ                | Dil.      | Method                           | Analyzed Codes                   |
|---------------------------------------------------|---------------------|---------------------|--------------------|--------------------|-----------|----------------------------------|----------------------------------|
| CHROMIUM,TOTAL REC<br>HEX CHROME<br>TURBIDITY-LAB | 2.8<br>2.64<br>0.20 | mg/l<br>mg/l<br>NTU | 0.08<br>0.040<br>0 | 0.27<br>0.133<br>0 | 2.7<br>20 | SM3111D<br>SM3500CrB<br>EPA180.1 | 01/25/16<br>01/21/16<br>01/22/16 |

Sample Number: 46003834
Description: SUMP
Sample Date: 1/21/2016
Date Received: 1/21/2016

| Parameter                                            | Results            | Units        | LOD                | LOQ              | Dil.      | Method                          | Analyzed Codes                   |
|------------------------------------------------------|--------------------|--------------|--------------------|------------------|-----------|---------------------------------|----------------------------------|
| CHROMIUM,TOTAL REC<br>HEX CHROME<br>METALS DIGESTION | 22<br>22.4<br>DONE | mg/l<br>mg/l | 0.67<br>0.400<br>0 | 2.2<br>1.33<br>0 | 22<br>200 | SM3111D<br>SM3500CrB<br>SM3030E | 01/25/16<br>01/21/16<br>01/22/16 |



#### BADGER LABORATORIES & ENGINEERING INC.

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: 46003835

Description: CANISTER A

Sample Date: 1/21/2016

Date Received: 1/21/2016

| Parameter          | Results | Units | LOD  | LOQ  | Dil. | Method   | Analyzed Codes |
|--------------------|---------|-------|------|------|------|----------|----------------|
| CHROMIUM,TOTAL REC | 4.0     | mg/l  | 0.12 | 0.40 | 4    | SM3111D  | 01/25/16       |
| TURBIDITY-LAB      | 0.45    | NTU   | 0    | 0    |      | EPA180.1 | 01/22/16       |

Sample Number: 46003836
Description: OUTFALL 001
Sample Date: 1/21/2016
Date Received: 1/21/2016

| Parameter          | Results | Units | LOD  | LOQ  | Dil. | Method   | Analyzed Codes |
|--------------------|---------|-------|------|------|------|----------|----------------|
| CHROMIUM,TOTAL REC | 0.20    | mg/l  | 0.03 | 0.10 | 1    | SM3111D  | 01/25/16       |
| TURBIDITY-LAB      | 0.80    | NTU   | 0    | 0    |      | EPA180.1 | 01/22/16       |

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffey M. Wagner

JMW:rt



253 TROY RD

RENSSLEAER, NY 12144-

### BADGER LABORATORIES & ENGINEERING INC.

501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

**REISSUED-Cr CORRECTION** 

Report Number: 16001668 Report Date: 2/3/2016 Sampled By: Client

Emailed:

2/4/2016

PO#: # Samples:

4500 208835 13 GROUNDWATERS

/WASTEWATERS

Sample Number: 46003824 Description: MW-05

ALBANY INTERNATIONAL-APPLETON

Sample Date: Date Received: 1/21/2016

1/21/2016

LOD LOQ Dil. Parameter Results Units Method Analyzed Codes CHROMIUM, DISSOLVED 444 ug/l 30 100 1 SM3113B 01/25/16 **HEX CHROME** 0.408 mg/l 0.008 0.027 4 SM3500CrB 01/21/16

Sample Number: 46003825 Description: MW-05A Sample Date: 1/21/2016

Date Received: 1/21/2016

Parameter Results Units LOD LOQ Dil. Method Analyzed Codes CHROMIUM, DISSOLVED 7.8 ug/l 0.20 0.66 1 SM3113B 01/29/16 **HEX CHROME** < 0.002 mg/l 0.002 0.006 1 SM3500CrB 01/21/16

Sample Number: 46003826 Description: MW-19 Sample Date: 1/21/2016 Date Received:

1/21/2016

LOD LOQ Dil. Parameter Results Units Method Analyzed Codes CHROMIUM, DISSOLVED 15295 ug/l 452 1505 15 SM3113B 01/25/16 **HEX CHROME** 17.0 0.200 0.666 100 SM3500CrB 01/21/16 mg/l

### sampprct2.xls 11-26-08

# BADGER LABORATORIES & ENGINEERING CO., INC.

[BO] (00)

SAMPLE RECEIPT FORM

| )   |
|-----|
| U   |
| Z   |
|     |
| ĭ   |
| ~~  |
| Ē   |
| ~   |
| MAN |
| ñ   |
| -   |
|     |
|     |
|     |
|     |
|     |
|     |

CLIENT INFORMATION

| CONTRACTOR OF COLUMN   | =               | ļ          | -             | J               |      |                                         | . —          | プレア       | V      | TURN AROUND TIME: | 35            | MIL      | انا          | える           | 1                | SAINFLE I IFE | ij |                                          |      |      |          |
|------------------------|-----------------|------------|---------------|-----------------|------|-----------------------------------------|--------------|-----------|--------|-------------------|---------------|----------|--------------|--------------|------------------|---------------|----|------------------------------------------|------|------|----------|
| NAME:                  | 41000           | 1          | 2 1 1 2 1     | 1300            |      |                                         | i Ex         | S<br>K    | mal    | Normal            |               |          |              | 2            | Groundwater      | ater          | u  | Lab Filtered                             | **** | *    | (        |
| NAME:                  | 000             |            | Jane O        |                 |      |                                         |              | چ<br>10   | sh (Ap | proval            |               |          | _            | <u>\$</u>    | ☑ Wastewater     | ē             |    | Z Field Filtered                         | _    | TO I | \        |
| בים שעה                | 4               |            | 4             | 777161          |      |                                         |              |           |        |                   |               |          |              | <u>§</u>     | □ WPDES          |               | LI | Grab                                     |      | )    | ,        |
|                        | ۲               | @NS>186485 |               | 1211            |      |                                         |              |           |        |                   |               |          |              |              | ☐ Cooling Water  | <b>Vater</b>  | u  | ☐ Composite                              |      |      |          |
| PHONE/ FAX:            |                 | ١          | 708826        |                 |      |                                         | •            |           |        | •                 | ,             | -        |              |              | ☐ Drinking Water | Water         | Ļ  | ☐ Flow Proportional                      |      |      |          |
| P.O. #:                | -               | K          | 00.00         | 7.7             |      |                                         |              |           |        |                   |               |          |              |              | ☐ Solid Waste    | ejs           | u  | ☐Time Proportional                       |      |      |          |
| REPORT & BILL TO:      | 31.L TO:        |            | Projection 1  | 11.23           | 13   | Lipset To Albery                        | 12           | 415c,     |        |                   |               |          |              |              | ا ق              |               |    |                                          |      |      |          |
| ADDITIONAL REPORTS 10: | אטקידא<br>באטאי | 2          | - CH 31-      | 10000           | 7    |                                         |              |           |        |                   |               |          |              |              |                  |               | ľ  |                                          | ľ    | ľ    | F        |
|                        |                 |            |               |                 | F    |                                         |              | DELIV     | ERY    | DELIVERY METHOD   | a             |          | 8            | PRESERVATION | I ON             |               | 7  |                                          |      | Ę    |          |
| CUSTOMER               | SAMPLE          | TATE BECY  | BL & E REPORT | BL & E SAMPLE # | en . | CONTAINERS TO YAN BLAE CLIENT UPS OTHER | N/A          | SAE G     |        | <u> </u>          | 85<br>F       | 분        | PRES<br>PRES | H2304        | ¥33              | NACH OTHER    | £  | ANALYTICAL REQUESTS                      | STS  | ě    | <u>a</u> |
|                        | DATE HIME       |            | Ŀ             |                 | Ť    | 7                                       | T            | ╬         | ╟      |                   | 7             |          |              |              | 1                |               |    | 11411111111111111111111111111111111111   | Ž,   |      |          |
| M. 25-25               | 2 / S           | 7          |               | くざい             |      | 7                                       | 켜            | +         | ᅱ      | $\dashv$          | 1             | 4        | <u>4</u>     |              | 4                |               | T  | 20 V V V V V V V V V V V V V V V V V V V | 1    | T    | T        |
| T                      | -               |            |               | 722             |      |                                         | <del>_</del> |           | _      |                   | _             |          | <u> </u>     |              | メ                |               |    |                                          |      |      | Ī        |
| MU 20SA                |                 |            |               | 1, 10           | Ŧ    | 1                                       | Ŧ            | $\dagger$ | +      | +                 | 丰             | Ļ        |              |              |                  |               | T  | 1                                        |      |      |          |
| har s - Je             |                 |            |               | シアン             |      |                                         |              |           |        |                   |               |          | $\forall$    |              | Y                |               | T  | +                                        |      | T    | T        |
| 3                      | -               |            |               | 757             | F    |                                         |              |           | Ę      |                   |               |          | $\checkmark$ |              | X                |               |    |                                          |      |      |          |
| MU-190                 |                 |            |               | 0               | Ŧ    | 1                                       | Ŧ            | $\dagger$ | 十      | +                 | 丰             | 1        | 1            | L            | L                |               | T  |                                          |      |      |          |
| m.//a                  |                 |            |               | 305             |      |                                         |              |           |        |                   |               |          | 4            |              | 4                |               | T  |                                          |      |      | I        |
| 30° m(1)               |                 |            |               | 222             |      |                                         | <u> </u>     |           | -      |                   |               |          | $\forall$    |              | ¥                |               |    |                                          |      |      |          |
| Ωυ(-~W                 |                 |            |               | 000             | Ŧ    | $\overline{+}$                          | Ī            | t         | 十      | +                 | $\frac{1}{1}$ | F        | <u> </u>     | _            |                  |               |    |                                          |      |      |          |
| ANC A W. W             |                 |            |               | 13830           |      |                                         |              |           |        | $\dashv$          | 4             |          | 4            |              | 4                |               | T  |                                          |      |      | I        |
| 200                    |                 |            |               | インスト            |      |                                         |              |           | -      |                   |               |          | 4            |              | 4                |               |    |                                          |      |      |          |
| IP-MW                  |                 |            |               | 1000            | F    | H                                       | F            | Ħ         | 卜      | <u> </u><br>      | ┝             |          | <u> </u>     |              | 5                |               |    | A C                                      |      |      |          |
| VIC- JW                | -p              |            |               | 38.6            | 7]   | *                                       | 7            | $\exists$ | 寸      | $\dashv$          | +             | $\pm$    | ᆚ            | _            | <u> </u>         |               | Ī  | <b>)</b>                                 |      |      | Τ        |
|                        |                 |            |               |                 |      |                                         |              |           |        |                   |               | <u> </u> |              |              |                  |               |    |                                          |      |      |          |
|                        |                 |            |               |                 |      |                                         |              | j         |        |                   |               |          |              |              |                  |               |    |                                          |      |      |          |

## CHAIN OF CUSTODY RECORD

|                                         | CNE S CON LONG SO SO SE CT.             |   |
|-----------------------------------------|-----------------------------------------|---|
| ELL I ED IN BY CUSTOMER                 | FILLED IN BIT BADGEN LABOR LING         |   |
|                                         | 07:07                                   | - |
| SAMPLED BY: -18th SIGLEY                |                                         |   |
| 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | DATE/TIME REGEIVED:                     |   |
| DATE/IME SAMPLED.                       |                                         |   |
| BET INCHIED BY: WA                      | LOGGED IN: CODE                         |   |
|                                         |                                         |   |
|                                         | and an haviage acolumn trackers and and |   |

\* Temperature over 4°C are above EPA/DNR Protocol unless received on ice. \* EP= If pH was not correct, extra preservation was added until correct pH was achieved.

\* PIF= Preserved in field.

\* PIL= Preserved In lab.

### sampprct2.xls 11-26-08

# BADGER LABORATORIES & ENGINEERING CO., INC.

## SAMPLE RECEIPT FORM

**CLIENT INFORMATION** 

| 2000                   |             | ļ         | -                                       | -               |      |                  |     | アスプ       | ₹<br>≥       | 2002            | TURN AROUND TIME: | IME |                                        | T T          | SAMPLE ITE                 |          | i i                 | •                | (        | , -    |
|------------------------|-------------|-----------|-----------------------------------------|-----------------|------|------------------|-----|-----------|--------------|-----------------|-------------------|-----|----------------------------------------|--------------|----------------------------|----------|---------------------|------------------|----------|--------|
| NAME:                  | 41660       | 7         | 7 78700                                 | 7/07 5:1        |      |                  | ובא | Š         | (文 Normal    |                 |                   |     |                                        | Sou<br>Bog   | C Groundwater              |          | Lab Filtered        | v                | 707      |        |
| ODRESS: -              | 253         | 107       | 7 Rociel                                |                 |      |                  | ·L  | Ž         | sh (Aps      | roval           |                   | Î   | טנ                                     | Wastewa L    | Wastewater                 |          |                     |                  |          |        |
|                        | M           | enssleaer | Jer 1                                   | HAIEI F         |      | 1                |     |           |              |                 |                   |     | ם נ                                    |              | ⊒ WrDES<br>⊐ Coolina Water | ě        | Composite           |                  |          |        |
| HONE/ FAX:             |             | ı         |                                         |                 |      |                  |     |           |              |                 |                   |     | ıu                                     | Drink        | ☐ Drinking Water           | ter      | Flow Proportional   |                  |          |        |
| .o.<br>#<br>.o.        | ب<br>چ<br>گ | k         | JC 28 35                                |                 | 1    |                  |     |           |              |                 |                   |     | Ц                                      | ] Solld      | ☐ Solid Waste              |          | ☐Time Proportional  |                  |          |        |
| ROJECT/SITE:           | TE:         | - Appl    | 10 1-10 - 10 - 10 - 10 - 10 - 10 - 10 - | A 17 11 17      | 2 3  | Ropert To Allson | 5   | 1180      | -            | •               |                   |     | ш                                      | <u>8</u>     |                            |          | ٠                   |                  |          |        |
| ADDITIONAL REPORTS TO: | REPORT      | 'S TO:    | Jeho                                    | S-55,54-2       | 0    | OJC.             |     |           |              |                 |                   |     | u                                      | Other        |                            |          |                     |                  |          |        |
|                        |             |           |                                         |                 | ľ    | Ī                | F   | DELIV     | ERYN         | DELIVERY METHOD |                   |     | PRES                                   | PRESERVATION | NO                         |          |                     |                  |          |        |
| CUSTOMER               | SAMPLE      |           | BL & E REPORT                           |                 | TEMP | b                |     | H         |              |                 | l d               | ă   | ************************************** | 3            | HOM                        | 8        | ANALYTICAL REQUESTS | ./***** <b>*</b> | 문<br>동   | EP     |
| SAMPLEID               | DATE/TIME   | DATE RECO | *                                       | BL & E SAMPLE # |      | CHIVINERS        |     | BAE CLENI |              | O DE            |                   |     |                                        |              |                            | -        | لسال                |                  | Γ        |        |
| - 70                   | الماللا     | 73        | 11,000                                  | 371             |      | 7                | ×   |           | <u>~</u>     |                 |                   |     | $\prec$                                |              |                            | -        | Total Her Cham      | T N              | T        | $\top$ |
| 1 C 2 h 6 k            | 20.5        |           |                                         | 1000            | Ŧ    | 7                |     | 十         |              |                 |                   |     | 7                                      |              | _                          |          | _+<br>_€<br>        |                  |          |        |
| Se 25                  |             |           |                                         | 18 76           | 1    | 1                | 丰   | $\dagger$ | +            | 1               | 1                 |     | 十                                      | $\dagger$    | +                          | +        | -                   |                  |          |        |
|                        |             |           |                                         | してくて            |      | -                | _   |           | <del>-</del> |                 |                   |     |                                        |              |                            |          | Total Change        | 4                | $ \top $ |        |
| Carister A             |             |           |                                         | 10 8 10         | I    | 1                | T   | t         | 卡            | L               | L                 |     |                                        |              | _                          |          |                     |                  |          |        |
|                        |             |           |                                         | マペンク<br>-       | Z    |                  |     |           | <u>ー</u>     |                 |                   |     |                                        | $\exists$    | 닊                          | $\dashv$ | *                   | Ť                | T        | I      |
| المراجا ود             | 7           |           |                                         |                 |      |                  |     | _         | <u> </u>     |                 |                   |     |                                        |              |                            |          |                     |                  |          |        |
|                        |             |           |                                         |                 |      |                  | Ī   | $\dagger$ | $\dagger$    | 4               | 4                 |     | $\dagger$                              | t            | t                          | +        |                     | Ī                | Γ        |        |
|                        |             |           |                                         |                 |      |                  | •   |           |              | <del></del>     |                   |     |                                        |              |                            |          |                     |                  |          |        |
|                        |             |           |                                         |                 |      |                  | Ī   | t         | t            | $rac{1}{1}$    | Ļ                 |     | İ                                      | Ħ            | <u> </u>                   | -        |                     |                  |          |        |
|                        | -           |           |                                         |                 |      |                  |     |           | ᅱ            | $\dashv$        | 4                 |     |                                        | 十            | $\dagger$                  | $\dashv$ |                     | 1                | T        |        |
|                        |             |           |                                         |                 |      |                  |     |           | =            | _               |                   |     |                                        | -            | ===                        | -        |                     | ===              |          |        |

## CHAIN OF CUSTODY RECORD

|                       | DATECTIVE RECEIVED: AND 2 1 2015 | Logged IN: (550)            |                  |
|-----------------------|----------------------------------|-----------------------------|------------------|
| FILLED IN BY CUSTOMER | SAMPLED BY: 13h 5                | DATE/TIME SAMPLED: 1 /(11 ) | KELINGOISHED BI: |

\* Temperature over 4°C are above EPA/DNR Protocol unless received on ice. \* EP= If pH was not correct, extra preservation was added until correct pH was achieved.

\* PIF= Preserved in field.

\* PIL= Preserved In lab.



501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

ALBANY INTERNATIONAL-APPLETON

253 TROY RD

RENSSLEAER, NY 12144-

Report Number: Report Date: Sampled By:

16002246 2/12/2016

Emailed:

Client 2/12/2016

PO#: # Samples: 4500 208835 **4 WASTEWATERS** 

/GROUNDWATERS

Sample Number: 46005030 Description: **MANHOLE** Sample Date: 2/8/2016

Date Received:

2/8/2016

Parameter Results Units LOD LOQ Dil. Method Analyzed Codes

CHROMIUM, TOTAL REC 3.2 0.10 0.33 3.3 SM3111D 02/10/16 mg/l **HEX CHROME** 3.15 0.038 0.127 20 SM3500CrB 02/08/16 mg/l 02/05/16 **TURBIDITY-LAB** NTU 0 0 0.15 EPA180.1

46005031 Sample Number: Description:

**SUMP** 

Sample Date: 2/8/2016 Date Received: 2/8/2016

Parameter Results Units LOD LOQ Dil. Method Analyzed Codes

CHROMIUM, TOTAL REC 6.7 mg/l 0.21 0.70 7 SM3111D 02/10/16 **HEX CHROME** 6.13 0.380 200 SM3500CrB 02/08/16 mg/l 1.27 **METALS DIGESTION** DONE 0 0 SM3030E 02/09/16

Sample Number: 46005032 Description: **CANISTER A** 

Sample Date: 2/8/2016 Date Received: 2/8/2016

LOD LOQ Parameter Results Units Dil. Method Analyzed Codes

CHROMIUM, TOTAL REC 2.0 mg/l 0.06 0.20 2 SM3111D 02/10/16 **TURBIDITY-LAB** 0.15 NTU 0 0 EPA180.1 02/05/16



501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: 46005033
Description: OUTFALL 001
Sample Date: 2/8/2016

Date Received: 2/8/2016

| Parameter          | Results | Units | LOD  | LOQ  | Dil. | Method   | Analyzed Codes |
|--------------------|---------|-------|------|------|------|----------|----------------|
| CHROMIUM,TOTAL REC | 0.22    | mg/l  | 0.03 | 0.10 | 1    | SM3111D  | 02/10/16       |
| TURBIDITY-LAB      | 0.15    | NTU   | 0    | 0    |      | EPA180.1 | 02/05/16       |

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffry M. Wagner

JMW:rt

## SAMPLE RECEIPT FORM

### CLIENT INFORMATION

| SAMPLE TYPE:                 | _        | Wastewater               | O WPDES ☐ Grab | Cooling Water Composite | Drinking Water         | Solid Waste CTime Proportional | <i>[] 0,1</i>                                      | Other                  |
|------------------------------|----------|--------------------------|----------------|-------------------------|------------------------|--------------------------------|----------------------------------------------------|------------------------|
| TURN AROUND TIME:            | 区 Normal | Rush (Approval           |                |                         |                        |                                | 13 Roort To Alsen                                  |                        |
| COMPANY: Alle The Tage Amage | - 1      | ADDRESS: 757 TONG Rocket | 00000000       | DUONE CAV.              | THOUSE TAY: USB 208835 | CT/SITE: (1)                   | TO: -(1/10/12/12/12/12/12/12/12/12/12/12/12/12/12/ | 18 TO: JOhn Stucker) 4 |

|                 |                            |                |        | 1           |              |             | <del></del>  | <del>T</del> | <del>,                                     </del> |                | 1        |
|-----------------|----------------------------|----------------|--------|-------------|--------------|-------------|--------------|--------------|---------------------------------------------------|----------------|----------|
|                 | <u>G</u>                   |                | 2      |             |              |             | <del> </del> | <u> </u>     |                                                   | $\blacksquare$ | $\dashv$ |
| -               | 표 %                        |                |        | ****        |              |             | ļ            | <u> </u>     |                                                   |                | _        |
|                 | ANALYTICAL REQUESTS        | Tota Hex Close | →<br>→ | Total charm | <b>→</b>     |             |              |              |                                                   |                |          |
|                 | NACH OTHER                 |                |        |             |              |             |              |              |                                                   |                |          |
|                 | NACH                       |                |        |             |              |             |              |              |                                                   |                |          |
| NO.             | H<br>SQ                    | X              | ×      | ~           | -            | Ī           | T            |              |                                                   |                |          |
| PRESERVATION    | юзан                       |                |        |             |              |             | Ī            |              |                                                   |                |          |
| PRES            | # 83<br># 83<br># 83       | $\prec$        | イ      |             |              | Ì           |              |              | T                                                 |                |          |
|                 | 롡                          |                |        | ĺ           | ĺ            |             | 1            | T            |                                                   |                |          |
|                 | H.                         | Ī              | F      | F           |              |             | T            | T            |                                                   |                |          |
| DELIVERY METHOD | OTHER                      |                |        |             |              |             |              |              |                                                   |                |          |
| / MET           | 8                          |                |        |             |              |             |              |              |                                                   |                |          |
| VER             | R.AE CLIENT                | ×              | ~      | 1~          | 1            |             |              |              |                                                   |                |          |
| 130             |                            |                |        |             |              |             |              | 1            |                                                   |                |          |
|                 | For YAN                    |                |        |             |              |             |              |              |                                                   |                |          |
|                 | s of<br>containens for Y/N | C              | -      | -           | <del> </del> |             |              |              |                                                   |                |          |
| Γ               | e e                        | Ī              | F      |             |              | 1           |              |              |                                                   |                |          |
|                 | BL & E SAMPLE#             | 5020           | 1810   | 70717       | 7750         |             |              |              |                                                   |                |          |
|                 | BL&EREPORT                 | 2146           |        |             |              |             |              |              |                                                   |                |          |
|                 | DATE RECT                  |                | X 18   |             |              |             |              |              |                                                   |                |          |
|                 | SAMPLE                     |                | 4:84   |             | 10           | î           |              |              |                                                   |                |          |
|                 | CUSTOMER<br>SAMPLE ID      | <u> </u>       | 100407 | الكرية      | Canske A     | 00.th=  081 |              |              |                                                   |                |          |

## CHAIN OF CUSTODY RECORD

| SAMPLED BY: 10 Stress DATE/TIME RECEIVED: 19 0 2016  DATE/TIME SAMPLED: 3-6-14 \$136/A  LOGGED IN: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED BY: 100/11/SHED | EIL I ED IN BY CLISTOMER | FILLED IN BY BADGER LABS & ENG         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------|
| S:36A DATE/TIME RECEIVED:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMPLED BY. 12 STOCKS    | RECEIVED BY:                           |
| LOGGED IN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O.                       | DATE/TIME RECEIVED: CED () 8 2016 // / |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RETINOUISHED BY: (V      | LOGGED IN:                             |

\* Temperature over 4°C are above EPA/DNR Protocol unless received on ice.

\* EP= If pH was not correct, extra preservation was added until correct pH was achieved.

\* PIF= Preserved in field.

\* PIL= Preserved In lab.

sampprct2.xls 11-26-08



501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

ALBANY INTERNATIONAL-APPLETON

253 TROY RD

RENSSLEAER, NY 12144

Report Number: Report Date:

16003508

Sampled By:

3/21/2016 Client

Emailed:

3/21/16 4700001444

# Samples:

PO#:

Sample Number: Description:

46007747

Sample Date:

Parameter

**HEX CHROME** 

**TURBIDITY-LAB** 

**MANHOLE** 3/14/2016

Date Received:

3/14/2016

LOQ

Dil. Method

4

Analyzed Codes

CHROMIUM, TOTAL REC

2.6 2.49 0.20

Results

0.05 0.038

0

LOD

Units

mg/l

mg/l

NTU

Units

Units

mg/l

NTU

0.17 0.127

0

2.5 SM3111D 20 SM3500CrB

EPA180.1

03/18/16 03/14/16 03/15/16

Sample Number:

46007748 Description:

Sample Date:

Parameter

**SUMP** 3/14/2016

Date Received:

3/14/2016

CHROMIUM, TOTAL REC

**HEX CHROME METALS DIGESTION**  17 16.5 DONE

Results

0.31 mg/l mg/l 0.38

0

LOD

1.03 1.27 0

LOQ

16 200

Dil.

SM3111D SM3500CrB SM3030E

Method

03/18/16 03/14/16

03/14/16

Analyzed Codes

Sample Number:

46007749

Description: Sample Date: **CANISTER A** 3/14/2016

Date Received:

**TURBIDITY-LAB** 

Parameter

3/14/2016

CHROMIUM, TOTAL REC

0.50 0.25

Results

LOD

0

0.02

LOQ

0.07

0

Dil.

1

Method SM3111D

EPA180.1

Analyzed Codes

03/18/16 03/15/16

WI DNR Certified Lab #445023150 WI Reg. Engineers (Corp.) #CE00601 WI DATCP Certified #205 (Bacteria-Water)



501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: 46007750
Description: 001 OUTFALL
Sample Date: 3/14/2016
Date Received: 3/14/2016

| Parameter          | Results | Units | LOD  | LOQ  | Dil. | Method   | Analyzed Codes |
|--------------------|---------|-------|------|------|------|----------|----------------|
| CHROMIUM,TOTAL REC | 0.04    | mg/l  | 0.02 | 0.07 | 1    | SM3111D  | 03/18/16       |
| TURBIDITY-LAB      | 0.20    | NTU   | 0    | 0    |      | EPA180.1 | 03/15/16       |

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffry M. Wogner

JMW:jc

### $\overline{Q}$ トナチ アイ こんだ 10th (Library ANALYTICAL REQUESTS NACH OTHER 8 PRESERVATION H2904 ¥SE BASE £ Ë OTHER DELIVERY METHOD CONTANIENS NO YAN BLAE CLIENT UPS

Composite Time Proportional

Drinking Water Cooling Water

☐ Solid Waste

Other /o ||

aport To Alberr

くならなら

ADDITIONAL REPORTS TO:

REPORT & BILL TO: PROJECT/SITE:

EN .

BL & E SAMPLE#

BL & E REPORT

DATE RECO

SAMPLE DATE/TIME

CUSTOMER SAMPLE ID

255

Menhale 3-13:4-1

872t

051t

Shit

ハンドイト WHELL ON

ついっと

Field Filtered ☐ Lab Filtered

SAMPLE TYPE:

TURN AROUND TIME:

区 Normal Rush (Approval\_

COMPANY: Albany International

CLIENT INFORMATION

Conssleader, MY

PHONE/ FAX:

NAME: ADDRESS:

308338

Rocie

Spundwater

☑ Wastewater □ WPDES

Grab

16 00 3508

BADGER LABORATORIES & ENGINEERING CO., INC.

SAMPLE RECEIPT FORM

## CHAIN OF CUSTODY RECORD

| FILLED IN BY BADGEN LABO & LING | RECEIVED BY, J. T. T. T. T. T. T. T. T. T. T. T. T. T. |                                     | LOGGED IN: ( 🖰 ) h   |  |
|---------------------------------|--------------------------------------------------------|-------------------------------------|----------------------|--|
| FILLED IN BY CUSTOMER           | SAMPLED BY: Jah Stacker                                | DATE/TIME SAMPLED: 3-17-16 9: 30 70 | RELINQUISHED BY: M X |  |

\* EP= If pH was not correct, extra preservation was added until correct pH was achieved. \* Temperature over 4°C are above EPA/DNR Protocol unless received on ice.

\* PIF= Preserved in field.

\* PIL= Preserved in lab.

sampprct2.xls 11-26-08



501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

**REISSUE – UNIT CHANGE** 

ALBANY INTERNATIONAL-APPLETON

253 TROY RD

RENSSLEAER, NY 12144-

Report Number: 16004710 Report Date: 4/26/2016

Sampled By: Client Emailed: 5/2/16

Attn: JOHN STOEGER

PO#: 4500 208835 # Samples: 23 GROUNDWATER

/WASTEWATER

Sample Number: 46010515
Description: MW-01
Sample Date: 4/14/2016

Date Received: 4/14/2016

Parameter Result

LOD LOQ Dil. Results Units Method Analyzed Codes CHROMIUM, DISSOLVED 0.35 ug/l 0.20 0.66 1 SM3113B 04/22/16 **HEX CHROME** <2 1 SM3500CrB 04/15/16 ug/l 2 6

Sample Number: 46010516
Description: MW-02
Sample Date: 4/14/2016
Date Received: 4/14/2016

Parameter Results Units LOD LOQ Method Dil. Analyzed Codes CHROMIUM, DISSOLVED 4.9 ug/l 0.20 0.66 1 SM3113B 04/22/16 **HEX CHROME** <2 1 SM3500CrB 04/15/16 ug/l 2 6

Sample Number: 46010517 Description: MW-02A Sample Date: 4/14/2016 Date Received: 4/14/2016

Parameter Units LOD LOQ Dil. Results Method Analyzed Codes CHROMIUM, DISSOLVED 0.56 ug/l 0.20 0.66 1 SM3113B 04/22/16 **HEX CHROME** SM3500CrB 04/15/16 <2 2 6 1 ug/l



501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: 46010518
Description: MW-05
Sample Date: 4/14/2016
Date Received: 4/14/2016

| Parameter          | Results | Units | LOD | LOQ | Dil. | Method    | Analyzed Codes |
|--------------------|---------|-------|-----|-----|------|-----------|----------------|
| CHROMIUM,DISSOLVED | 462     | ug/l  | 20  | 67  | 1    | SM3111D   | 04/15/16       |
| HEX CHROME         | 430     | ug/l  | 19  | 63  | 10   | SM3500CrB | 04/15/16       |

Sample Number: 46010519
Description: MW-05A
Sample Date: 4/14/2016
Date Received: 4/14/2016

| Parameter          | Results | Units | LOD  | LOQ  | Dil. | Method    | Analyzed Codes |
|--------------------|---------|-------|------|------|------|-----------|----------------|
| CHROMIUM,DISSOLVED | 1.2     | ug/l  | 0.20 | 0.66 | 1    | SM3113B   | 04/22/16       |
| HEX CHROME         | 9       | ug/l  | 2    | 6    |      | SM3500CrB | 04/15/16       |

Sample Number: 46010520 Description: MW-05B Sample Date: 4/14/2016 Date Received: 4/14/2016

| Parameter          | Results | Units | LOD | LOQ | Dil. | Method    | Analyzed Codes |
|--------------------|---------|-------|-----|-----|------|-----------|----------------|
| CHROMIUM,DISSOLVED | 458     | ug/l  | 20  | 67  | 1    | SM3111D   | 04/15/16       |
| HEX CHROME         | 467     | ug/l  | 2   | 6   |      | SM3500CrB | 04/15/16       |

Sample Number: 46010521
Description: MW-10R
Sample Date: 4/14/2016
Date Received: 4/14/2016

| Parameter          | Results | Units | LOD  | LOQ  | Dil. | Method    | Analyzed Codes |
|--------------------|---------|-------|------|------|------|-----------|----------------|
| CHROMIUM,DISSOLVED | 0.31    | ug/l  | 0.20 | 0.66 | 1    | SM3113B   | 04/22/16       |
| HEX CHROME         | <2      | ug/l  | 2    | 6    | 1    | SM3500CrB | 04/15/16       |



501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: 46010522 Description: MW-17 Sample Date: 4/14/2016 Date Received: 4/14/2016

| Parameter           | Results | Units | LOD  | LOQ  | Dil. | Method    | Analyzed Codes |
|---------------------|---------|-------|------|------|------|-----------|----------------|
| CHROMIUM, DISSOLVED | 0.68    | ug/l  | 0.20 | 0.66 | 1    | SM3113B   | 04/22/16       |
| HEX CHROME          | <2      | ug/l  | 2    | 6    | 1    | SM3500CrB | 04/15/16       |

Sample Number: 46010523
Description: MW-17A
Sample Date: 4/14/2016
Date Received: 4/14/2016

| Parameter          | Results | Units | LOD  | LOQ  | Dil. | Method    | Analyzed Codes |
|--------------------|---------|-------|------|------|------|-----------|----------------|
| CHROMIUM,DISSOLVED | <0.20   | ug/l  | 0.20 | 0.66 | 1    | SM3113B   | 04/22/16       |
| HEX CHROME         | <2      | ug/l  | 2    | 6    | 1    | SM3500CrB | 04/15/16       |

Sample Number: 46010524
Description: MW-18
Sample Date: 4/14/2016
Date Received: 4/14/2016

| Parameter          | Results | Units | LOD  | LOQ  | Dil. | Method    | Analyzed Codes |
|--------------------|---------|-------|------|------|------|-----------|----------------|
| CHROMIUM,DISSOLVED | 1.6     | ug/l  | 0.20 | 0.66 | 1    | SM3113B   | 04/22/16       |
| HEX CHROME         | <2      | ug/l  | 2    | 6    | 1    | SM3500CrB | 04/15/16       |

Sample Number: 46010525 Description: MW-18A Sample Date: 4/14/2016 Date Received: 4/14/2016

| Parameter          | Results | Units | LOD  | LOQ  | Dil. | Method    | Analyzed Codes |
|--------------------|---------|-------|------|------|------|-----------|----------------|
| CHROMIUM,DISSOLVED | <0.20   | ug/l  | 0.20 | 0.66 | 1    | SM3113B   | 04/22/16       |
| HEX CHROME         | <2      | ug/l  | 2    | 6    | 1    | SM3500CrB | 04/15/16       |



501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: 46010526 Description: MW-19 Sample Date: 4/14/2016 Date Received: 4/14/2016

| Parameter          | Results | Units | LOD | LOQ  | Dil. | Method    | Analyzed Codes |
|--------------------|---------|-------|-----|------|------|-----------|----------------|
| CHROMIUM,DISSOLVED | 18420   | ug/l  | 328 | 1092 | 16   | SM3111D   | 04/15/16       |
| HEX CHROME         | 18100   | ug/l  | 190 | 633  | 100  | SM3500CrB | 04/15/16       |

Sample Number: 46010527 Description: MW-19A Sample Date: 4/14/2016 Date Received: 4/14/2016

| Parameter           | Results | Units | LOD | LOQ | Dil. | Method    | Analyzed Codes |
|---------------------|---------|-------|-----|-----|------|-----------|----------------|
| CHROMIUM, DISSOLVED | 233     | ug/l  | 20  | 67  | 1    | SM3111D   | 04/15/16       |
| HEX CHROME          | <2      | ug/l  | 2   | 6   | 1    | SM3500CrB | 04/15/16       |

Sample Number: 46010528
Description: MW-20
Sample Date: 4/14/2016
Date Received: 4/14/2016

| Parameter           | Results | Units | LOD  | LOQ   | Dil. | Method    | Analyzed Codes |
|---------------------|---------|-------|------|-------|------|-----------|----------------|
| CHROMIUM, DISSOLVED | 412750  | ug/l  | 6945 | 23127 | _    | SM3111D   | 04/15/16       |
| HEX CHROME          | 279000  | ug/l  | 1900 | 6330  |      | SM3500CrB | 04/15/16       |

Sample Number: 46010529
Description: MW-20A
Sample Date: 4/14/2016
Date Received: 4/14/2016

| Parameter           | Results | Units | LOD | LOQ | Dil. | Method    | Analyzed Codes |
|---------------------|---------|-------|-----|-----|------|-----------|----------------|
| CHROMIUM, DISSOLVED | 66      | ug/l  | 2.0 | 6.7 | 10   | SM3113B   | 04/22/16       |
| HEX CHROME          | 8       | ug/l  | 2   | 6   | 1    | SM3500CrB | 04/15/16       |



501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: 46010530
Description: MW-20B
Sample Date: 4/14/2016
Date Received: 4/14/2016

| Parameter          | Results | Units | LOD  | LOQ   | Dil. | Method    | Analyzed Codes |
|--------------------|---------|-------|------|-------|------|-----------|----------------|
| CHROMIUM,DISSOLVED | 406500  | ug/l  | 6670 | 22211 |      | SM3111D   | 04/15/16       |
| HEX CHROME         | 581000  | ug/l  | 1900 | 6330  |      | SM3500CrB | 04/15/16       |

Sample Number: 46010531
Description: MW-21
Sample Date: 4/14/2016
Date Received: 4/14/2016

| Parameter          | Results | Units | LOD  | LOQ  | Dil. | Method    | Analyzed Codes |
|--------------------|---------|-------|------|------|------|-----------|----------------|
| CHROMIUM,DISSOLVED | 2.2     | ug/l  | 0.20 | 0.66 | 1    | SM3113B   | 04/22/16       |
| HEX CHROME         | <2      | ug/l  | 2    | 6    | 1    | SM3500CrB | 04/15/16       |

Sample Number: 46010532
Description: MW-21A
Sample Date: 4/14/2016
Date Received: 4/14/2016

| Parameter          | Results | Units | LOD  | LOQ  | Dil. | Method    | Analyzed Codes |
|--------------------|---------|-------|------|------|------|-----------|----------------|
| CHROMIUM,DISSOLVED | 0.60    | ug/l  | 0.20 | 0.66 | 1    | SM3113B   | 04/22/16       |
| HEX CHROME         | <2      | ug/l  | 2    | 6    | 1    | SM3500CrB | 04/15/16       |

Sample Number: 46010533
Description: MANHOLE
Sample Date: 4/14/2016
Date Received: 4/14/2016

| Parameter                                         | Results              | Units               | LOD           | LOQ             | Dil.    | Method                           | Analyzed Codes                   |
|---------------------------------------------------|----------------------|---------------------|---------------|-----------------|---------|----------------------------------|----------------------------------|
| CHROMIUM,TOTAL REC<br>HEX CHROME<br>TURBIDITY-LAB | 3200<br>3150<br>0.20 | ug/l<br>ug/l<br>NTU | 60<br>38<br>0 | 200<br>127<br>0 | 3<br>20 | SM3111D<br>SM3500CrB<br>EPA180.1 | 04/15/16<br>04/15/16<br>04/15/16 |



501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: 46010534
Description: SUMP
Sample Date: 4/14/2016
Date Received: 4/14/2016

| Parameter                                            | Results                | Units        | LOD             | LOQ               | Dil.      | Method                          | Analyzed Codes                   |
|------------------------------------------------------|------------------------|--------------|-----------------|-------------------|-----------|---------------------------------|----------------------------------|
| CHROMIUM,TOTAL REC<br>HEX CHROME<br>METALS DIGESTION | 19000<br>18200<br>DONE | ug/l<br>ug/l | 500<br>380<br>0 | 1700<br>1270<br>0 | 25<br>200 | SM3111D<br>SM3500CrB<br>SM3030E | 04/21/16<br>04/15/16<br>04/18/16 |

Sample Number: 46010535
Description: CANISTER A
Sample Date: 4/14/2016
Date Received: 4/14/2016

| Parameter          | Results | Units | LOD | LOQ | Dil. | Method   | Analyzed Codes |
|--------------------|---------|-------|-----|-----|------|----------|----------------|
| CHROMIUM,TOTAL REC | 450     | ug/l  | 20  | 60  | 1    | SM3111D  | 04/15/16       |
| TURBIDITY-LAB      | 0.20    | NTU   | 0   | 0   |      | EPA180.1 | 04/15/16       |

Sample Number: 46010536

Description: 001 OUTFALL

Sample Date: 4/14/2016

Date Received: 4/14/2016

| Parameter      | Results | Units | LOD   | LOQ   | Dil. | Method   | Analyzed Codes |
|----------------|---------|-------|-------|-------|------|----------|----------------|
| CYANIDE, TOTAL | <0.007  | mg/l  | 0.007 | 0.023 | 1    | EPA335.4 | 04/15/16       |



501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: 46010537
Description: 001 OUTFALL
Sample Date: 4/14/2016
Date Received: 4/14/2016

| Parameter          | Results  | Units | LOD    | LOQ    | Dil. | Method    | Analyzed Codes |
|--------------------|----------|-------|--------|--------|------|-----------|----------------|
| ALUMINUM, TOTAL    | <0.09    | mg/l  | 0.09   | 0.31   | 1    | SM3111D   | 04/21/16       |
| ARSENIC,TOTAL REC. | < 0.001  | mg/l  | 0.001  | 0.0034 | 1    | SM3113B   | 04/15/16       |
| CADMIUM,TOTAL REC  | < 0.01   | mg/l  | 0.01   | 0.03   | 1    | SM3111B   | 04/15/16       |
| CHROMIUM,TOTAL REC | 90       | ug/l  | 20     | 60     | 1    | SM3111D   | 04/15/16       |
| COPPER,TOTAL REC   | 0.04     | mg/l  | 0.01   | 0.03   | 1    | SM3111B   | 04/15/16       |
| HEX CHROME         | 53       | ug/l  | 2      | 6      | 1    | SM3500CrB | 04/15/16       |
| LEAD,TOTAL REC     | <0.03    | mg/l  | 0.03   | 0.10   | 1    | SM3111B   | 04/15/16       |
| MERCURY,TOTAL REC  | < 0.0002 | mg/l  | 0.0002 | 0.0008 | 1    | EPA245.1  | 04/15/16       |
| NICKEL,TOTAL REC   | < 0.02   | mg/l  | 0.02   | 0.04   | 1    | SM3111B   | 04/18/16       |
| TURBIDITY-LAB      | 0.20     | NTU   | 0      | 0      |      | EPA180.1  | 04/15/16       |
| ZINC,TOTAL REC     | 0.03     | mg/l  | 0.01   | 0.03   |      | SM3111B   |                |

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffrey M. Wagner

JMW:rt

## SAMPLE RECEIPT FORM

| 2            |
|--------------|
| <b>Stem</b>  |
| 0            |
| OF           |
| d            |
| -            |
|              |
| ORMA         |
| 0            |
| 2            |
| 2            |
| -            |
|              |
| EZ           |
| Sec.         |
| LL!          |
| <b>Emant</b> |
|              |
| 4.0          |
| 5            |

| TURN AROUND TIME: SAMPLE TYPE: | K Normal | pproval                  | ☐ WPDES ☐ Grab  | □ Cooling Water □ Composite | ☐ Drinking Water ☐ Flow Proportional | Solid Waste                     | Ju Riport 72 Allson | OUC.                                     |
|--------------------------------|----------|--------------------------|-----------------|-----------------------------|--------------------------------------|---------------------------------|---------------------|------------------------------------------|
| COMPANY: Albert Taternetional  | NAME:    | ADDRESS: 253 Trad Koccel | 24161 X 7 13142 | PHONE/ FAX:                 | P.O. #: 4500 30835                   | PROJECT/SITE: And to Change SIG | 4Kh Billing 1       | ADDITIONAL REPORTS TO: JOhn Stacken of 1 |

|                       |                     |           |               |             | L   | -                        |       | ELIVE       | RYN | DELIVERY METHOD | L             |              | PRE                                       | PRESERVATION | ATION        | П              |                     | _  |   |
|-----------------------|---------------------|-----------|---------------|-------------|-----|--------------------------|-------|-------------|-----|-----------------|---------------|--------------|-------------------------------------------|--------------|--------------|----------------|---------------------|----|---|
| CUSTOMER<br>SAMPLE ID | SAMPLE<br>DATE/TIME | DATE RECE | BL & E REPORT | BLAESANPLE# |     | P OF<br>CONTAINERS (CO.) | PR YW | BLAE CLIENT | 1   | UPS OTHER       |               | F            | ¥SE SE SE SE SE SE SE SE SE SE SE SE SE S | юѕан         | Ş<br>H       | <br>NACH OTHER | ANALYTICAL REQUESTS | 표중 | 요 |
| MW-01                 | 4 Miles             | 7         | 470           | LOTTO       | , , | <u>کا</u> د              |       |             |     |                 | $\mathcal{I}$ |              | $\succeq$                                 |              | <b>Y</b>     |                | Told a Her Chans    |    |   |
|                       | 1:4 Pm              | r`        | -             | わしり         | u   | 3                        |       |             |     |                 |               |              | 4                                         |              | *            |                |                     |    |   |
| tro-mu                |                     |           |               | 16812       | •   | ~                        |       | ×           |     |                 | 〓             |              | *                                         |              | *            |                |                     |    |   |
| 70-0M                 |                     |           |               | 1/1/10/     | 2   |                          |       | $\prec$     |     |                 |               |              | *                                         |              | +            |                |                     |    |   |
| MW-05A                |                     |           |               | 10779       | 7   |                          |       | 7           |     |                 |               |              | <b>→</b>                                  |              | $\checkmark$ |                |                     |    |   |
| MU-056                |                     |           |               | or To J     | 7   |                          |       | *           |     |                 |               |              | ~                                         |              | $\searrow$   |                |                     |    |   |
| MU-10R                |                     |           |               | 16501       | 7   | 7                        |       | <b>\</b>    |     |                 |               |              | *                                         |              | $\checkmark$ |                |                     |    |   |
| MU-17                 |                     |           |               | 7650]       | • • | 7                        |       | <i>→</i>    |     |                 |               |              | *                                         |              | $\checkmark$ |                |                     |    |   |
| AC)-UM                |                     |           |               | [Ceso!      | 2   | 7                        |       | 7           |     |                 |               |              | *                                         |              | 4            |                |                     |    |   |
| 81-mw                 | 13                  |           |               | heson       | C   | 9                        |       | 7           |     |                 |               | <del>\</del> | · - L                                     |              | $\checkmark$ |                | <b>-</b> P          |    |   |

## CHAIN OF CUSTODY RECORD

| FILLED IN BY CUSTOMER  | FILLED IN BY BADGER LABS & ENG |  |
|------------------------|--------------------------------|--|
| SAMPLED BY: JOL STUCKE | RECEIVED BY: DESCRIPED: 1-1410 |  |
| RELINQUISHED BY: ON X  | LOGGED IN:   L'I, I TAN        |  |
|                        | A                              |  |

\* Temperature over 4°C are above EPA/DNR Protocol unless received on ice. \* EP≒ If pH was not correct, extra preservation was added until correct pH was achieved.

\* PIF= Preserved in field.

sampprct2.xls 11-26-08

## Badger Laboratories & Engineering Co., Inc.

SAMPLE RECEIPT FORM

2-0+3 WW

## CLIENT INFORMATION

| TURN AROUND TIME: SAMPLE TYPE: | _     | ☐ Rush (Approval) ☐ Wastewater ☐ Field Filtered | □ WPDES □ Grab           | ☐ Cooling Water ☐ Composite | ☐ Drinking Water ☐ Flow Proportional | Solid Waste   Trime Proportional | 112 Allson                                      | Other                                       |
|--------------------------------|-------|-------------------------------------------------|--------------------------|-----------------------------|--------------------------------------|----------------------------------|-------------------------------------------------|---------------------------------------------|
| COMPANY: Albert Tateractional  | NAME: | ADDRESS: 353 Tray Kocie                         | 1200155 Podes , NY 13144 | PHONE/ FAX:                 | P.O. #: 4500 30835                   | PROJECT/SITE: Antito ( Ling Sit  | REPORT & BILL TO: Thenday Billing No Growing 12 | ADDITIONAL REPORTS TO: JOhn Street 1 4 DJC. |

|                                            |           |               |                | F        | _                     |       | ELIV     | ERY        | DELIVERY METHOD | 8         |        | ď                          | ESER            | PRESERVATION | 2      |        |                     |    |     |
|--------------------------------------------|-----------|---------------|----------------|----------|-----------------------|-------|----------|------------|-----------------|-----------|--------|----------------------------|-----------------|--------------|--------|--------|---------------------|----|-----|
| CUSTOMER SAMPLE SAMPLE SAMPLE ID DATE/TIME | OATE RECT | BL & E REPORT | BL & E SAMPLE# | TENP     | # OF<br>CONTAINERS IN | FG YW | BLAE CO. | CLENT      | UPS OT          | OTHER PIF | #<br># | \$ 85<br>\$ 85             | HZSQH .         | FRO3         | 1 NACH | STHER. | ANALYTICAL REQUESTS | 표송 | - G |
| MU-184 4/11/18                             | 71/2      | 17.7a         | 1.(50)         | <b>-</b> | 2                     |       |          | ×          |                 | <i>U</i>  | 9      | <u> </u>                   |                 | $\times$     |        |        | Tota Hex Chur       | 7  |     |
| MV-19 1:08                                 |           |               | 25701          |          | 2                     |       |          | ~ <u> </u> |                 |           |        | ×                          |                 | 7            |        |        |                     |    |     |
| Mu-19/4                                    |           |               | M TO P         |          | 7                     |       | ,        |            | i               |           |        | $\stackrel{\checkmark}{=}$ |                 | ×            |        |        |                     |    |     |
| . 08-71K                                   |           |               | 21,70          |          | 7                     |       | 7        | <b>1</b>   |                 |           |        | <b>→</b>                   |                 | $\prec$      |        |        |                     |    |     |
| Acc - un                                   |           |               | 603            |          | ~                     |       |          | *          |                 |           |        | $\prec$                    |                 | $\prec$      |        |        |                     |    |     |
| MU-306                                     |           |               | 105701         |          | 7                     |       |          | ~          |                 |           |        | ×                          | a respectively. | $\times$     |        |        |                     |    |     |
| NC-31                                      |           |               | (053/          |          | 7                     |       |          |            |                 |           |        | $\prec$                    |                 | $ \times $   |        |        |                     |    |     |
| MW-3(A                                     |           |               | 1057           |          | 4                     |       | ,        | 4          |                 |           |        | Y                          |                 | X            |        |        |                     |    |     |
| Mcnholy                                    |           |               | 26507          |          | ぺ                     |       | ,        | 7          |                 |           |        | ¥                          |                 | X            |        |        |                     |    |     |
| Sunp                                       |           |               | 10534          |          | E                     |       |          | _          |                 |           |        | $\searrow$                 |                 | イ            |        |        | <b>李</b>            |    |     |

## CHAIN OF CUSTODY RECORD

| ABS & ENG               | <u> </u>                                   |                       |
|-------------------------|--------------------------------------------|-----------------------|
| FILLED IN BY BADGER LAE | RECEIVED BY: (1)(1) DATE/ME RECEIVED: (-1) | LOGGED IN:            |
| FILLED IN BY CUSTOMER   | SAMPLED BY: Jak Stack                      | RELINQUISHED BY: (Y } |

\* Temperature over 4°C are above EPA/DNR Protocol unless received on ice.

\* EP= If pH was not correct, extra preservation was added until correct pH was achieved.

\* PIF= Preserved in field.

\* PIL= Preserved In lab.

sampprct2.xls 11-26-08

### sampprct2.xfs 11-26-08

## BADGER LABORATORIES & ENGINEERING CO., INC.

## SAMPLE RECEIPT FORM

| San San        |
|----------------|
| Office.        |
| 0              |
| -              |
| -              |
|                |
|                |
|                |
| South          |
|                |
| NFORWATION     |
| Ŭ.             |
| 223420         |
| de             |
| (SPEC)         |
| CLENT          |
| ED-FETT        |
| 1              |
| ***            |
| ш              |
| <b>Over</b>    |
|                |
| <del>and</del> |
| C              |
|                |

| COMPANY: Albert Taternetional                      | TURN AROUND TIME: | SAMPLE TYPE:   |                     | ~ 1 |
|----------------------------------------------------|-------------------|----------------|---------------------|-----|
| NAME:                                              | Normal            | Groundwater    | ☐ Lab Filtered      |     |
| ADDRESS: 253 Tray Rocket                           | Rush (Approval)   | - Wastewater   | Field Filtered      |     |
| (Conts/Octor, 12 12144                             |                   | ☐ WPDES        | Grab                |     |
| PHONE/ FAX:                                        |                   | Cooling Water  | ☐ Composite         |     |
| P.O. #: 4500 30835                                 | •                 | Drinking Water | ☐ Flow Proportional |     |
| PROJECT/SITE: And I ten ( Lygner SI to             |                   | Solid Waste    | Time Proportional   |     |
| REPORT & BILL TO: 11 Mondell Billing No Ropert To  | 7 To Albers       | <u></u>        |                     |     |
| ADDITIONAL REPORTS TO: John   Stresson   of Diffe. |                   | Other          |                     |     |
| ,                                                  |                   |                |                     |     |

|                 | 습                     | <del></del> T | <del></del>  | ·<br> |               |   |  |      |
|-----------------|-----------------------|---------------|--------------|-------|---------------|---|--|------|
|                 | 표<br>등                |               |              |       | <br>          |   |  |      |
|                 |                       |               |              |       | <br>- Company |   |  | <br> |
|                 | ANALYTICAL REQUESTS   | Total Charin- | See Below: A |       |               |   |  |      |
|                 | NACH OTHER            |               |              |       |               |   |  |      |
|                 |                       |               | _            |       |               |   |  |      |
| ATION           | £<br>₹                | _             |              | · _   |               |   |  |      |
| PRESERVATION    | назон                 |               |              |       |               |   |  |      |
| PRE             | NOY<br>PRES           |               |              |       |               |   |  |      |
|                 | 퓜                     |               |              |       |               |   |  |      |
|                 | ם                     | 54            | 12           | -5    |               |   |  |      |
| BOH.            | OTHER                 |               |              |       |               |   |  |      |
| ME              | LP3                   |               |              |       |               |   |  |      |
| DELIVERY METHOD | BLAE CLIENT           | X             | X            |       |               |   |  |      |
| DEL             | BLAE                  |               |              |       |               |   |  |      |
| Γ               | los Y/R/              | ×             |              |       |               | · |  |      |
|                 | P OF<br>CONTAINERS    | ~             | iv           | \     |               |   |  |      |
| Γ               | TENP                  | 6             |              | 7     |               |   |  |      |
|                 | Bl. & E SAWPLE#       | 10135         | 10136        | 10137 |               |   |  |      |
|                 | BL & E REPORT         | 4712          | ·            |       |               |   |  |      |
|                 | DATE RECD             | 71/h          |              |       |               |   |  |      |
|                 | SAMPLE<br>DATE/TIME   | J) N/h        | J:18         |       |               |   |  |      |
|                 | CUSTOMER<br>SAMPLE ID | Conster A     | 9.1 m 17.0   |       |               |   |  |      |

## CHAIN OF CUSTODY RECORD

| FILLED IN BY CUSTOMER.     | FILLED IN BY BADGER LABS & ENG | + Aluminan, Arsenie, Cedonian            |
|----------------------------|--------------------------------|------------------------------------------|
| SAMPLED BY: John Stick     | RECEIVED BY:                   | Tata Chanal Haracett Chanal              |
| DATE/TIME SAMPLED: 4 14 14 | DATE/TIME RECEIVED:            | Copper, Cychidy, Local, Mercel           |
| RELINQUISHED BY:           | LOGGED IN:                     | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |
|                            |                                |                                          |

\* Temperature over 4°C are above EPA/DNR Protocol unless received on ice. \* EP= If pH was not correct, extra preservation was added until correct pH was achieved.

\* PIF= Preserved in field. \* PIL= Preserved in lab.



501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

ALBANY INTERNATIONAL-APPLETON

253 TROY RD

RENSSLEAER, NY 12144-

Report Number: 16005870 Report Date: 5/25/2016 Sampled By: Client

Emailed: 5/25/16

PO#: 4500208835 # Samples: 4 GROUNDWATER

/WASTEWATER

Sample Number: 46013115
Description: MANHOLE
Sample Date: 5/17/2016
Date Received: 5/17/2016

| Parameter                                         | Results              | Units               | LOD           | LOQ            | Dil.    | Method                           | Analyzed Codes                   |
|---------------------------------------------------|----------------------|---------------------|---------------|----------------|---------|----------------------------------|----------------------------------|
| CHROMIUM,TOTAL REC<br>HEX CHROME<br>TURBIDITY-LAB | 3100<br>2880<br>0.20 | ug/l<br>ug/l<br>NTU | 20<br>38<br>0 | 60<br>127<br>0 | 1<br>20 | SM3111D<br>SM3500CrB<br>EPA180.1 | 05/20/16<br>05/17/16<br>05/19/16 |

Sample Number: 46013116
Description: SUMP
Sample Date: 5/17/2016
Date Received: 5/17/2016

| Parameter                                            | Results                | Units        | LOD             | LOQ               | Dil.      | Method                          | Analyzed Codes                   |
|------------------------------------------------------|------------------------|--------------|-----------------|-------------------|-----------|---------------------------------|----------------------------------|
| CHROMIUM,TOTAL REC<br>HEX CHROME<br>METALS DIGESTION | 26000<br>25300<br>DONE | ug/l<br>ug/l | 480<br>380<br>0 | 1600<br>1270<br>0 | 24<br>200 | SM3111D<br>SM3500CrB<br>SM3030E | 05/20/16<br>05/17/16<br>05/19/16 |

Sample Number: 46013117
Description: CANISTER A
Sample Date: 5/17/2016
Date Received: 5/17/2016

| Parameter          | Results | Units | LOD | LOQ | Dil. | Method   | Analyzed Codes |
|--------------------|---------|-------|-----|-----|------|----------|----------------|
| CHROMIUM,TOTAL REC | 880     | ug/l  | 20  | 60  | 1    | SM3111D  | 05/20/16       |
| TURBIDITY-LAB      | 0.30    | NTU   | 0   | 0   |      | EPA180.1 | 05/19/16       |



501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: 46013118
Description: 001 OUTFALL
Sample Date: 5/17/2016
Date Received: 5/17/2016

| Parameter          | Results | Units | LOD | LOQ | Dil. | Method   | Analyzed Codes |
|--------------------|---------|-------|-----|-----|------|----------|----------------|
| CHROMIUM,TOTAL REC | 170     | ug/l  | 20  | 60  | 1    | SM3111D  | 05/20/16       |
| TURBIDITY-LAB      | 0.40    | NTU   | 0   | 0   |      | EPA180.1 | 05/19/16       |

All LOD/LOQs adjusted for dilution and/or solids content.

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffry M. Wagner

JMW:rt

## SAMPLE RECEIPT FORM

018500011

### CLIENT INFORMATION

| COMPANY: Alban International                           | TURN AROUND TIME: | SAMPLE TYPE:   | a a                 |  |
|--------------------------------------------------------|-------------------|----------------|---------------------|--|
| NAME:                                                  | Normal            | K Groundwater  | ☐ Lab Fillered      |  |
| ADDRESS: 353 Trady Rockel                              | Rush (Approval    | (Z) Wastewater | Field Filtered      |  |
| 12enss/Pages, NY 13144                                 |                   | ☐ WPDES        | Grab                |  |
| PHONE/ FAX:                                            |                   | Cooling Water  | ☐ Composite         |  |
| P.O. #: 4500 308835                                    |                   | Drinking Water | ☐ Flow Proportional |  |
| PROJECT/SITE: Antiton ( Line SIG                       |                   | Solid Waste    | ☐Time Proportional  |  |
| REPORT & BILL TO: THE MONTHY BILLY, Nº GOORT TO Allen. | To Alberr         | )<br> <br>     |                     |  |
| ADDITIONAL REPORTS TO: 16 K. 1 Stack-1 & DJC.          |                   | Offier         |                     |  |
|                                                        |                   |                |                     |  |

|                 |                       |                  |              | 1                |           |   |   | <br> | <br> |
|-----------------|-----------------------|------------------|--------------|------------------|-----------|---|---|------|------|
|                 | 급                     |                  |              |                  |           |   |   |      |      |
|                 | 포송                    | <u></u>          |              |                  |           |   |   |      |      |
|                 | ANALYTICAL REQUESTS   | Totalle Chis     | +            | Told Chance      | +         |   |   |      |      |
| П               | Æ                     |                  |              |                  |           |   |   |      |      |
|                 | NACH OTHER            |                  |              |                  |           |   |   |      |      |
| NOI             | 2008H                 |                  | 1            | 7                | Ť         |   |   |      |      |
| PRESERVATION    | HOS2M                 |                  |              |                  |           |   |   |      |      |
| PRES            | PPES<br>PPES          | ×                | 7            |                  |           |   |   |      |      |
|                 | 분                     |                  |              |                  |           |   |   |      |      |
|                 | 뷥                     | <b>-</b>         |              |                  |           |   |   |      |      |
| 말               | OTHER                 |                  |              |                  |           |   |   |      |      |
| MET             | 845                   |                  |              |                  |           |   |   |      |      |
| /ERY            |                       |                  | 7            | 7                | 7         |   |   |      |      |
| DELIVERY METHOD | BLAE CLIENT           |                  |              |                  |           |   |   |      |      |
| F               | 18 YW                 |                  |              | **************** |           |   | · |      |      |
|                 | P OP<br>CONTAINERS    | Z,               | ۲            | ~                |           |   |   |      |      |
|                 | TENP                  |                  |              |                  |           | F |   |      |      |
|                 | BL & E SAWPLE#        | 13til            | 13116        | 131(7            | JANC!     | • |   |      |      |
|                 | BL & E REPORT         | R<br>R<br>S<br>S |              |                  |           |   |   |      |      |
|                 | DATE RECE             | 5/17             |              |                  |           |   |   |      |      |
|                 | SAMPLE<br>DATE/TIME   | 5/17/1/84        |              |                  | P         |   |   |      |      |
|                 | CUSTOMER<br>SAMPLE ID | MANHOLE          | ريج<br>حج 7. | Cenoter A        | ONF-11 ON |   |   |      |      |

## CHAIN OF CUSTODY RECORD

| FILLED IN BY CUSTOMER                | FILLED IN BY BADGER LABS & ENG |  |
|--------------------------------------|--------------------------------|--|
| SAMPLED BY: JUL Strac                | RECEIVED BY: 17 1368           |  |
| DATE/TIME SAMPLED: 5/17/4 CIS. 30 M- | DATE/IIME RECEIVED:            |  |
| RELINQUISHED BY:                     | LOGGED IN:                     |  |
|                                      |                                |  |

- \* Temperature over 4°C are above EPA/DNR Protocol unless received on ice. \* EP≂ If pH was not correct, extra preservation was added until correct pH was achieved.
  - \* PIF= Preserved in field.
    - \* PIL= Preserved in lab.

sampprct2.xts 11-26-08



501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966

(920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

ALBANY INTERNATIONAL-APPLETON

253 TROY RD

RENSSLEAER, NY 12144-

Report Number: Report Date:

16006720 6/21/2016

Sampled By:

Client

PO#: # Samples: 470000144

4 WASTEWATER/ **GROUNDWATER** 

Sample Number:

46015021

Description:

**MANHOLE** 6/9/2016

Sample Date: Date Received:

6/9/2016

Parameter

LOD Results Units LOQ Dil. Method

CHROMIUM, TOTAL REC

2.7 mg/l 0.05 2.21 0.038 mg/l

NTU

Units

0.17

2.5 SM3111D 19

Analyzed Codes

**HEX CHROME TURBIDITY-LAB** 

0.35

0

0.127 0

SM3500CrB EPA180.1

06/09/16 06/09/16

06/10/16

Sample Number:

46015022

Description: Sample Date: **SUMP** 

Date Received:

6/9/2016 6/9/2016

Parameter

35

LOD

LOQ

Dil.

Method

SM3030E

Analyzed Codes

CHROMIUM.TOTAL REC **HEX CHROME METALS DIGESTION** 

24.4

Results

DONE

mg/l 0.65 mg/l 0.380 0

2.2 1.265 0

33 SM3111D 190 SM3500CrB

06/09/16 06/10/16

06/15/16

Sample Number:

46015023

Description: Sample Date: **CANISTER A** 6/9/2016

Date Received:

6/9/2016

Parameter

**TURBIDITY-LAB** 

Units

LOQ

Dil.

1

Method

Analyzed Codes

CHROMIUM, TOTAL REC

0.09 0.30

Results

mg/l NTU

0.02 0

LOD

0.06 0

SM3111D EPA180.1 06/09/16 06/10/16



501 WEST BELL STREET • NEENAH, WISCONSIN 54956-4868 • EST. 1966 (920) 729-1100 • FAX (920) 729-4945 • 1-800-776-7196

Sample Number: 46015024
Description: OUTFALL 001
Sample Date: 6/9/2016
Date Received: 6/9/2016

| Parameter          | Results | Units | LOD  | LOQ  | Dil. | Method   | Analyzed Codes |
|--------------------|---------|-------|------|------|------|----------|----------------|
| CHROMIUM,TOTAL REC | 0.26    | mg/l  | 0.02 | 0.06 | 1    | SM3111D  | 06/09/16       |
| TURBIDITY-LAB      | 0.20    | NTU   | 0    | 0    |      | EPA180.1 | 06/10/16       |

All LOD/LOQs adjusted for dilution and/or solids content.

BADGER LABS & ENGINEERING WDNR Certified Lab #445023150 Approved By:

Jeffry M. Wagner

JMW:rt

### sampprct2.xls 11-26-08

## levole too BADGER LABORATORIES & ENGINEERING CO., INC.

SAMPLE RECEIPT FORM

| ZO        |
|-----------|
| NFORMATIC |
| CLIENT    |

| Rush (Approval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rush (Approval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | COMPANY: Albert Internetional | TURN AROUND TIME: 双 Normal | SAMPLE TYPE:   | <u>E.</u><br>□Lab Fillered |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------|----------------|----------------------------|--|
| 55   Cede 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 55   Peter   13144   13144   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   1 | 253                           | Rush (Approval)            | (A) Wastewater | ☐ Field Filtered           |  |
| Donking Water  Donking Water  Applica ( Limit Site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Do 30 \$ \$ 3 5 Ching Water  Application (Linux Site Cooling Water  Solid Waster  STO: Let A Stock of Cooling Waster  Cooling Water  Cooling Water  Cooling Water  Cooling Water  Cooling Water  Cooling Water  Cooling Water  Cooling Water  Cooling Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Renss/eafer, MY 12144        |                            | □ WPDES        | Grab                       |  |
| Applition (Limit Site Sold Wester 17 Allson) STO: Let Street & OJC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apply 100 (Liming Water Site Site Site Site Site Site Site Solid Waster Story of Milling with Master Story Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer Story of Officer S |                               |                            | Cooling Water  | ☐ Composite                |  |
| Applyton Chrume Site Sold Waste [ Solid Waste [ Solid Waste [ Oll Month of Marken of Dilling with Record of Dilling with Record of Dilling with Street of Dilling with Street of Dilling of the Street of Dilling of the Street of Dilling of the Street of Dilling of the Street of Dilling of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Street of the Stre | Solid Waste C Limber SIE Court 17 Allen Court 18 Allen Court States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States Stat |                               |                            | Drinking Water | ☐ Flow Proportional        |  |
| STO: 161, Street of DJC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 TO: - John Streeze-) & DJC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CTISITE: And to Change Sit    |                            | Solid Waste    | Trime Proportional         |  |
| John Stack-1 4 DJC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16h~ Stacse-1 & OJC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 Month Billing No Ropert    | 3 Albers                   | <i>[</i> 6]    |                            |  |
| į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                            | Other          |                            |  |

|                 |                            |               |          | 1         |            |   | <br> | <br> |  |
|-----------------|----------------------------|---------------|----------|-----------|------------|---|------|------|--|
|                 | EP                         |               |          |           |            |   |      |      |  |
|                 | 표송                         |               |          |           |            |   |      |      |  |
|                 | ANALYTICAL REQUESTS        | Total He Chon | +        | TO Charan | + +        |   |      |      |  |
| П               | <b>8</b>                   |               |          |           |            |   |      |      |  |
|                 | NACH OTHER                 |               |          |           |            |   |      |      |  |
| TION            | 8                          | X             | メ        |           |            |   |      |      |  |
| PRESERVATION    | FOS 24                     |               |          |           |            |   |      |      |  |
| PRES            | N SE                       | $\prec$       | Ý        | À         | ノ          |   |      |      |  |
|                 | 분                          |               |          |           |            |   |      |      |  |
|                 | PIF                        |               |          |           |            |   |      |      |  |
| OOH.            | OTNER                      |               |          |           |            |   |      |      |  |
| r MET           | Sah                        |               |          |           |            |   |      |      |  |
| DELIVERY METHOD | BLAE CLENT                 | ×             | 7        | ×         | 1          |   |      |      |  |
| DEL             | BLAE                       |               |          |           |            |   |      |      |  |
|                 | ice Y/I/V                  |               |          |           |            |   |      |      |  |
|                 | P OF<br>CONTAINERS TON YAN | 7             | 7        |           | _          |   |      |      |  |
|                 | TEMP                       |               |          |           |            |   |      |      |  |
|                 | BL & E SAMPLE#             | 1-02).1       | 1-051    | [[02]     | 1502       |   |      |      |  |
|                 | BL & E REPORT              | <b>6</b> (1)  |          |           |            |   |      |      |  |
|                 | DATE RECE                  | 5/0           |          |           |            |   |      |      |  |
|                 | SAMPLE<br>DATE/TIME        | 10.4-(G       | <u> </u> |           | 1          | • |      |      |  |
|                 | CUSTOMER<br>SAMPLE ID      | Manhil        | 2000     | Cansher A | Askell Oot |   |      |      |  |

## CHAIN OF CUSTODY RECORD

| FILLED IN BY CUSTOMER           | FILLED IN BY BADGER L. 1BS & ENG                                |
|---------------------------------|-----------------------------------------------------------------|
| SAMPLED BY: John Stay           | RECEIVED BY: J. J. C. S. C. C. C. C. C. C. C. C. C. C. C. C. C. |
| DATE/TIME SAMPLED: 6-4-16 1012A | DATE/TIME RECEIVED:                                             |
| RELINQUISHED BY:                | LOGGED IN:                                                      |
|                                 |                                                                 |

\* Temperature ove∮4°C are above EPA/DNR Protocol unless received on ice.

\* EP= If pH was not correct, extra preservation was added until correct pH was achieved.

\* PIF= Preserved in field. \* PIL= Preserved in lab.