24-MONTH ASSESSMENT REPORT GROUNDWATER EXTRACTION, TREATMENT AND DISCHARGE SYSTEM

Marathon Electric Manufacturing Company Wausau, Wisconsin

> PRINTED ON FEB 17 1993

24-MONTH ASSESSMENT REPORT GROUNDWATER EXTRACTION, TREATMENT AND DISCHARGE SYSTEM

Marathon Electric Manufacturing Company Wausau, Wisconsin

FEBRUARY 1993

REF. NO. 2115 (21) This report is printed on recycled paper. **CONESTOGA-ROVERS & ASSOCIATES**

TABLE OF CONTENTS

<u>Page</u>

1.0	INTRODUCTION	1
2.0	WELL OPERATION	
	2.1 HYDRAULIC MONITORING	
	2.2 GROUNDWATER SAMPLING	
	2.2.1 Analytical Results	7
3.0	ASSESSMENT OF GROUNDWATER EXTRACTION	
	AND TREATMENT SYSTEM	10
	3.1 HYDRAULIC CONTAINMENT	10
	3.2 CONTAMINANT EXTRACTION AND TREATMENT	
4.0	SUMMARY	19

LIST OF FIGURES

FIGURE 1.1	REGIONAL LOCATION MAP
FIGURE 1.2	SITE LOCATION
FIGURE 1.3	EXTRACTION WELL AND MONITORING WELL LOCATIONS
FIGURE 3.1	SHALLOW WELL PIEZOMETRIC CONTOURS (11/13/90)
FIGURE 3.2	SHALLOW WELL PIEZOMETRIC CONTOURS (01/30/91)
FIGURE 3.3	SHALLOW WELL PIEZOMETRIC CONTOURS (03/25/91)
FIGURE 3.4	SHALLOW WELL PIEZOMETRIC CONTOURS (06/27/91)
FIGURE 3.5	SHALLOW WELL PIEZOMETRIC CONTOURS (08/05/91)
FIGURE 3.6	SHALLOW WELL PIEZOMETRIC CONTOURS (11/04/91)
FIGURE 3.7	SHALLOW WELL PIEZOMETRIC CONTOURS (02/17/92)
FIGURE 3.8	SHALLOW WELL PIEZOMETRIC CONTOURS (05/11/92)
FIGURE 3.9	SHALLOW WELL PIEZOMETRIC CONTOURS (08/03/92)
FIGURE 3.10	SHALLOW WELL PIEZOMETRIC CONTOURS (11/02/92)
FIGURE 3.11	DEEP WELL PIEZOMETRIC CONTOURS (11/13/90)
FIGURE 3.12	DEEP WELL PIEZOMETRIC CONTOURS (01/30/91)
FIGURE 3.13	DEEP WELL PIEZOMETRIC CONTOURS (03/25/91)
FIGURE 3.14	DEEP WELL PIEZOMETRIC CONTOURS (06/27/91)

LIST OF FIGURES

.

FIGURE 3.15	DEEP WELL PIEZOMETRIC CONTOURS (08/05/91)
FIGURE 3.16	DEEP WELL PIEZOMETRIC CONTOURS (11/04/91)
FIGURE 3.17	DEEP WELL PIEZOMETRIC CONTOURS (02/17/92)
FIGURE 3.18	DEEP WELL PIEZOMETRIC CONTOURS (05/11/92)
FIGURE 3.19	DEEP WELL PIEZOMETRIC CONTOURS (08/03/92)
FIGURE 3.20	DEEP WELL PIEZOMETRIC CONTOURS (11/02/92)
FIGURE 3.21	MONTHLY AVERAGE PRECIPITATION, ANTIGO, WISCONSIN
FIGURE 3.22	HYDROGRAPH FOR MONITORING WELL NEST C4S AND C4D
FIGURE 3.23	HYDROGRAPH FOR MONITORING WELL NEST R1S AND R1D
FIGURE 3.24	HYDROGRAPH FOR MONITORING WELL NEST R3S AND R3D
FIGURE 3.25	HYDROGRAPH FOR MONITORING WELL NEST W52 AND W52A
FIGURE 3.26	HYDROGRAPH FOR MONITORING WELL NEST WSWD AND WSWS
FIGURE 3.27	TOTAL CHLORINATED ETHENES CONCENTRATION CONTOURS
FIGURE 3.28	TOTAL CHLORINATED ETHENES ISOCONCENTRATION SECTION A-A'
FIGURE 3.29	EXTRACTION WELL (INFLUENT), TCE AND 1,2-DCE ACCUMULATIVE REMOVAL VS. TIME
FIGURE 3.30	EW1 INFLUENT PARAMETER CONCENTRATIONS
FIGURE 3.31	EW1 EFFLUENT PARAMETER CONCENTRATIONS
FIGURE 3.32	C4D PARAMETER CONCENTRATIONS

.

LIST OF FIGURES

FIGURE 3.33	WSWD PARAMETER CONCENTRATIONS
FIGURE 3.34	W53A PARAMETER CONCENTRATIONS
FIGURE 3.35	W53 PARAMETER CONCENTRATIONS
FIGURE 3.36	W54 PARAMETER CONCENTRATIONS
FIGURE 3.37	IWD PARAMETER CONCENTRATIONS
FIGURE 3.38	C25 PARAMETER CONCENTRATIONS
FIGURE 3.39	R4D PARAMETER CONCENTRATIONS
FIGURE 3.40	W52 PARAMETER CONCENTRATIONS
FIGURE 3.41	R2D PARAMETER CONCENTRATIONS
FIGURE 3.42	W55 PARAMETER CONCENTRATIONS
FIGURE 3.43	CW6 PARAMETER CONCENTRATIONS
FIGURE 3.44	CW7 PARAMETER CONCENTRATIONS
FIGURE 3.45	CW9 PARAMETER CONCENTRATIONS
FIGURE 3.46	CW3 PARAMETER CONCENTRATIONS

LIST OF TABLES

1

۲

TABLE 1	PIEZOMETRIC ELEVATIONS
TABLE 2	SAMPLE KEY/FIELD DATA
TABLE 3	GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY - VOLATILE ORGANIC COMPOUNDS (VOCs) WELL C2S
TABLE 4	GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY - VOLATILE ORGANIC COMPOUNDS (VOCs) WELL C4D
TABLE 5	GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY - VOLATILE ORGANIC COMPOUNDS (VOCs) WELL R2D
TABLE 6	GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY - VOLATILE ORGANIC COMPOUNDS (VOCs) WELL R4D
TABLE 7	GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY - VOLATILE ORGANIC COMPOUNDS (VOCs) WELL W52
TABLE 8	GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY - VOLATILE ORGANIC COMPOUNDS (VOCs) WELLS W53A AND W53
TABLE 9	GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY - VOLATILE ORGANIC COMPOUNDS (VOCs) WELL W54
TABLE 10	GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY - VOLATILE ORGANIC COMPOUNDS (VOCs) WELL W55
TABLE 11	GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY - VOLATILE ORGANIC COMPOUNDS (VOCs) WELL WSWD

LIST OF TABLES

- TABLE 12GROUNDWATER SAMPLE ANALYTICAL DATA
SUMMARY VOLATILE ORGANIC COMPOUNDS
(VOCs) WELL IWD
- TABLE 13GROUNDWATER SAMPLE ANALYTICAL DATA
SUMMARY VOLATILE ORGANIC COMPOUNDS
(VOCs) WELLS CW3, CW6, CW7 AND CW9
- TABLE 14GROUNDWATER SAMPLE ANALYTICAL DATASUMMARY VOLATILE ORGANIC COMPOUNDS
(VOCs) WELL EW1 (INFLUENT)
- TABLE 15GROUNDWATER SAMPLE ANALYTICAL DATA
SUMMARY VOLATILE ORGANIC COMPOUNDS
(VOCs) WELL EW1 (EFFLUENT)
- TABLE 16GROUNDWATER SAMPLE ANALYTICAL DATA
SUMMARY METALS
- TABLE 17GROUNDWATER SAMPLE ANALYTICAL DATA
SUMMARY PESTICIDES AND PCBs
- TABLE 18GROUNDWATER SAMPLE ANALYTICAL DATA
SUMMARY BNAs

APPENDIX A DATA QUALITY ASSESSMENT AND VALIDATION FOR GROUNDWATER SAMPLES

CONESTOGA-ROVERS & ASSOCIATES

1.0 INTRODUCTION

In accordance with a Consent Decree, entered with the court on September 9, 1989, Marathon Electric Manufacturing Company (Marathon) proceeded with an extraction well (EW1) and associated treatment/discharge outlet installation. EW1 and associated treatment/discharge structures were installed at the Marathon facility, under the supervision of Conestoga-Rovers & Associates (CRA) personnel, between June 1, 1990 and September 28, 1990. The extraction well treatment and discharge system commenced operation on November 14, 1990. The facility is located along the west side of the Wisconsin River within the City of Wausau. Regional and Site location maps are shown on Figures 1.1 and 1.2, respectively. The locations of EW1 and existing monitoring wells are shown on Figure 1.3.

The response objectives, as specified in the 1988 Record of Decision (ROD), for the operation of EW1 were:

- protection from long-term exposure to low levels of TCE from ingestion of drinking water; and
- protection from future increased levels of contaminants in the West Well Field.

The purpose of installing EW1 at the selected location, as discussed in the 1988 ROD, was to control an identified volatile organic compound (VOC) contaminant plume source in the vicinity of the Marathon property/former City landfill, while capturing a large portion of the west side

containment plume. EW1 was intended to remove VOC contaminants in the southern section of the west side contaminant plume (southern plume) while VOC contaminants in the northern section of the west side contaminant plume (northern plume) would continue to be captured by City production well 6 (CW6). The operation of EW1 and CW6 was expected to provide a block to the migration of VOC contaminants to City production wells CW7 and CW9 located northwest of CW6. The operation of EW1 was also expected to provide a block to the migration of VOC contaminants beneath the Wisconsin River to the East Well Field.

Based on modeling results presented in the 1988 ROD, the cone of depression created by the pumping of EW1 (desired cone of depression) would create a groundwater divide between EW1 and CW6 extending from west-northwest to east-southeast in the vicinity of Bos Creek and Randolph Street. The cone of depression would also create a divide between EW1 and CW3 beneath the Wisconsin River, in the vicinity of the island. The desired cone of depression for EW1, based on the modeling results presented in the 1988 ROD, is illustrated on Figure 1.3.

A 6-Month Assessment Report was prepared in accordance with the March 1990 Remedial Action Plan (RAP) and summarized all activities associated with the installation and operation of the groundwater extraction, treatment and discharge system during the first six months of operation, and provided an assessment toward achieving overall objectives of source reduction and control. The 6-Month Assessment Report was initially submitted to the United States Environmental Protection Agency (USEPA) and the Wisconsin Department of Natural Resources

CONESTOGA-ROVERS & ASSOCIATES

(WDNR) on July 9, 1991. Comments were received on the 6-Month Assessment Report from the USEPA and WDNR on September 27, 1991.

A 12-Month Assessment Report was prepared in accordance with the RAP which included data collected through to the twelfth month of operation of the system (November 1991) and incorporated the USEPA and WDNR comments regarding the 6-Month Assessment Report. The 12-Month Assessment Report was submitted to the USEPA and WDNR on February 28, 1991.

This report provides an assessment of the operation of the groundwater extraction, treatment and discharge system based on monitoring data collected through to the twenty-fourth month of operation of the system (November 1992) in accordance with the annual reporting requirements of the RAP. Section 2.0 summarizes the well operation and monitoring data. Section 3.0 provides an assessment of the groundwater extraction and treatment system based on the monitoring data. Section 4.0 provides a summary of the assessment.

The groundwater extraction, treatment and discharge system commenced operation on November 14, 1990. Groundwater hydraulic monitoring and sampling have been performed in accordance with the schedule specified in the Groundwater Monitoring Program (GMP) and are discussed in the following subsections.

2.1 <u>HYDRAULIC MONITORING</u>

Hydraulic monitoring commenced on November 13, 1990, prior to system startup. Piezometric elevations of the monitored wells for each sampling event conducted between November 13, 1990 and November 2, 1992 are presented in Table 1.

It is noted that wells IWD, IWM and IWS located on the island were not monitored from November 26, 1990 to April 1, 1991 and on November 4, 1991 and February 17, 1992 because they were inaccessible due to weather conditions.

Additional monitoring wells W56, W56A, MW1A, GM1S, MW1, MW2 and MW3 were included in the water level monitoring network beginning in January 1991 in order to more accurately delineate the extent of the cone of depression created by the pumping of EW1. Monitoring wells MW1, MW2 and MW3 were added to evaluate whether a potential source of groundwater contamination located to the southwest of the Marathon

property/former City landfill area was being captured by EW1. Monitoring wells MW1A, GM1S, W56 and W56A were added to better define the cone of depression northeast of EW1 and southwest of CW6.

Evaluation of hydraulic monitoring data collected during the first month of operation of the system indicated that the initial EW1 pumping rate of approximately 1,550 gpm was creating a larger than necessary cone of depression. The progressive expansion of the cone of depression towards the northeast indicated a potential interference with the cone of depression created by CW6, which would result in a stagnation zone being developed where the two cones of depression overlapped. The expansion of the EW1 cone of depression towards the south indicated a potential capture of contaminated groundwater southwest of the Marathon property/former City landfill area.

Based on the August 15, 1990 EW1 pump test data, CRA calculated that the pumping rate of EW1 should range between 415 and 800 gpm in order to minimize interference with the CW6 cone of depression and potential capture of contaminants south of the Marathon property/former City landfill area. The details of this evaluation were provided in the report entitled "Evaluation of the Pumping Rate in Extraction Well No. 1", prepared by CRA and dated January 16, 1991. The pumping rate of EW1 was reduced to approximately 800 gpm on January 31, 1991, with written approval provided by the USEPA.

It is to be noted that after the pumping rate was reduced on January 31, 1991, the hydraulic monitoring events were increased from

CONESTOGA-ROVERS & ASSOCIATES

twice per month (as specified in the GMP) to weekly events until June 27, 1991. After the June 27, 1991 sampling event, the hydraulic monitoring events proceeded according to the quarterly schedule defined in the GMP. An assessment of the hydraulic containment created by EW1 is provided in Section 3.1.

2.2 GROUNDWATER SAMPLING

Groundwater sampling has proceeded according to the GMP. Table 2 summarizes all sampling events for the monitoring wells (C2S, C4D, R2D, R4D, W52, W53A, W53, W54, W55, WSWD, IWD), City production wells (CW3, CW6, CW7, CW9), and extraction well EW1 conducted from November 14, 1990 to November 2, 1992.

It should be noted that monitoring well C2S went dry on November 26, 1990 and the sampling pump was subsequently removed on March 4, 1991. The water level in monitoring well C2S recovered to an elevation of approximately 1,181.5 ft AMSL subsequent to the reduction in the pumping rate of EW1 to 800 gpm and C2S was sampled using a dedicated bottom-loading bailer beginning with the February 17, 1992 quarterly sampling event. The bottom of the C2S well screen has been measured at approximately 1,178.8 ft AMSL, therefore, adequate water is now available within the well such that the dedicated bladder pump, previously removed from the well, could be reinstalled and utilized to collect groundwater samples if the pumping rate of EW1 is maintained at 800 gpm. Should the pumping rate increase as part of the final remedy, the water level in

monitoring well C2S would decrease and the well could go dry. Therefore, monitoring well C2S will continue to be sampled using a dedicated bottom-loading stainless steel bailer until the pumping rate of EW1 as part of the final remedy has been finalized and approved by the USEPA.

Well W53A was dry during January 1991 and was therefore not sampled on the January 7, 1991 sampling event. Monitoring well IWD, located on the island, was not sampled between December 4, 1990 and April 1, 1991 and on November 4, 1991 and February 17, 1992 due to weather conditions which made the island inaccessible.

On January 21, 1991, the Force Majeure clause specified in the Consent Decree, Section XII, was invoked due to the closure of Radian Laboratory's commercial laboratory. The extraction well samples scheduled for January 21, 1991 were, therefore, omitted from the schedule and the sampling activities originally scheduled for February 4 and 5, 1991 were delayed until February 12 and 13, 1991 with the approval of the USEPA. S-Cubed, a Division of Maxwell Laboratories Inc., of San Diego, California, a USEPA approved Contract Laboratory Program (CLP), laboratory was retained on February 5, 1991 to perform subsequent analyses.

2.2.1 Analytical Results

Groundwater samples analyzed for TCL VOCs are summarized in Tables 3 to 15. In addition, six groundwater samples were collected from monitoring wells C4D, W52, W53A, W54, and EW1 (influent

and effluent) on December 3, 1990 for full TCL and TAL analyses. These six locations were specific sampling points determined by the USEPA and the WDNR to receive the full TCL/TAL analyses one month after the start-up of EW1 and on an annual basis thereafter as specified in the RAP. Tables 16, 17 and 18 summarize the metals, pesticide/PCB and BNA data for the six locations sampled.

Based on the results of the first round of TCL/TAL analyses on December 3, 1990, there was a possible exceedance of copper and zinc in the discharge stream of EW1. The WDNR requested that a sample be collected from the EW1 discharge and analyzed for metals to determine if there was an exceedance of copper and zinc. Effluent samples were collected on January 30, 1991 and February 6, 1991 for copper and zinc analyses, and the analytical data indicated that copper and zinc concentrations in the effluent were far below the water quality limits. At the request of the USEPA and the WDNR the six specific sampling locations (C4D, W52, W53A, W54 and EW1 influent/effluent) were resampled for TAL metals analysis during the March 4, 1991 sampling event. The analytical results for the additional TAL metals analysis conducted on March 4, 1991 and for the third round of TAL metals analysis conducted on February 17, 1992 are summarized in Table 16. Both the second and third rounds of TAL metals analyses confirmed that copper and zinc concentrations in the EW1 effluent were below the maximum allowable effluent limits for copper (36 μ g/L) and zinc (220 μ g/L).

The pesticide/PCB and BNA data for the December 3, 1990 samples from the six sample locations specified by the USEPA and the WDNR were below CLP detection limits, therefore a recommendation was

CONESTOGA-ROVERS & ASSOCIATES

made in the 6-Month Assessment Report that the annual full TCL/TAL analysis for the six sample locations be reduced to include only TCL VOCs and metals detected in the December 3, 1990 and March 4, 1991 sampling rounds. This recommendation was approved by the USEPA and the WDNR. During the February 17, 1992 quarterly sampling round the six sample locations were sampled for TCL VOCs and the TAL metals list.

QA/QC reviews of the analytical data for all the sampling events were performed by CRA and are included in Appendix A. Data qualifiers have been added to the data summarized in Tables 3 through 18, as appropriate. It should be noted that QA/QC reviews for particular wells found that some secondary dilution and/or reanalysis data reported by the laboratory was frequently unacceptable in relation to the trends indicated by the remaining data. In instances where the dilutions and reanalyses have resulted in data that do not correspond to other data for that specific well, the data have been assumed and qualified as anomalies.

3.0 ASSESSMENT OF GROUNDWATER EXTRACTION AND TREATMENT SYSTEM

3.1 HYDRAULIC CONTAINMENT

Figures 3.1 to 3.20 depict selected shallow well and deep well piezometric contours prior to system startup, before and after the pumping rate was reduced from approximately 1,550 gpm to 800 gpm on January 31, 1991, and for the quarterly hydraulic monitoring events performed between June 27, 1991 and November 2, 1992.

Figures 3.2 and 3.12 present shallow well and deep well piezometric contours, respectively, based on piezometric elevations measured on January 30, 1991 at which time EW1 was still operating at a pumping rate of approximately 1,550 gpm. These figures show that the cone of depression created by pumping EW1 at approximately 1,550 gpm was creating a larger than necessary cone of depression, which could potentially interfere with CW6 and was potentially capturing contaminated groundwater to the southwest of the Site (area of MW1, MW2, MW3). The desired cone of depression for EW1 is discussed in Section 1.0 and is illustrated on Figure 1.3.

Therefore, on January 31, 1991, the pumping rate of EW1 was reduced to approximately 800 gpm. Figures 3.3 to 3.10 present shallow well piezometric contours and Figures 3.13 to 3.20 present deep well piezometric contours based on piezometric elevations measured after the pumping rate of EW1 was reduced to 800 gpm. These figures show that the cone of depression created by pumping well EW1 at approximately 800 gpm receded until approximately June 27, 1991. After June 27, 1991, the cone of

CONESTOGA-ROVERS & ASSOCIATES

depression stabilized and corresponded approximately to the desired cone of depression discussed in Section 1.0 and shown on Figure 1.3.

Both the shallow and deep well piezometric contours shown on Figure 3.3 to 3.10 and 3.13 to 3.20, respectively, exhibit seasonal variations which indicate that the extent of the cone of depression created by EW1 is smallest during the spring and summer months. The seasonal variations in the extent of the cone of depression may be attributed to the high average monthly precipitation which occurs during the months of May through to September, as shown on Figure 3.21 which presents the 1991 and 1992 precipitation data for Antigo, Wisconsin located approximately 25 miles northeast of Wausau. The high levels of precipitation in the spring and summer months recharges the aquifer through infiltration and therefore reduces the extent of the cone of depression created by EW1 during these months.

Hydrographs for the monitoring well nests C4S/C4D, R1S/R1D, R3S/R3D, W52A/W52 and WSWS/WSWD, are shown on Figures 3.22 to 3.26, respectively. The hydrographs support the above discussion that following the reduction in the pumping rate of EW1 to approximately 800 gpm, the water levels in these monitoring wells stabilized after June 27, 1991 and exhibit seasonal fluctuations in piezometric elevations.

<u>بر</u> 11

3.2 <u>CONTAMINANT EXTRACTION AND TREATMENT</u>

As discussed in Section 1.0, the purpose of installing EW1 at the selected location, was to control an identified VOC contaminant plume source in the vicinity of the Marathon property/former City landfill area, while capturing the southern contaminant plume.

As such, EW1 was installed within an area and was vertically screened at an elevation which exhibited the highest VOC concentrations detected during the RI in the source area. Figures 3.27 and 3.28, reproduced from figures presented in the RI report, present total chlorinated ethane concentration contours in plan and cross-sectional view respectively. Extraction well EW1 has been added to both figures.

Figure 3.29 presents the accumulative amounts of 1,2-dichloroethene and trichloroethene which have been removed from the contaminant plume by the operation of EW-1. Since the groundwater extraction, treatment and discharge system began operation on November 14, 1990, approximately 190 pounds of 1,2-dichloroethene and 2,140 pounds of trichloroethene have been extracted from the contaminant plume up to and including November 2, 1992. These values have been calculated by assuming a constant parameter concentration between sampling events in conjunction with the EW1 influent VOC analytical results (see Table 14) and the corresponding EW1 pumping rate.

Figures 3.30 to 3.46 present concentration versus time plots for the primary contaminants, trichloroethene and 1,2-dichloroethene,

for extraction well EW1 (influent and effluent), C4D, WSWD, W53A, W53, W54, IWD, C2S, R4D, W52, R2D and W55 and the City production wells CW3, CW6, CW7 and CW9. It is noted that when a duplicate analysis was performed for a sample, an average concentration of the two samples has been plotted. It is further noted that certain wells exhibit one or more data points which have been labelled as anomalies because they do not correspond with the overall trend indicated by the remainder of the data for that well. These anomalies also occurred during reanalysis or secondary dilution analyses as discussed in Section 2.2.1.

Figure 3.30 indicates a decreasing contaminant concentration trend in the EW1 influent between November 1990 and November 1991. This is attributed to the initial reduction in contaminant concentrations in the southern plume in the vicinity of EW1. Subsequent to November 1991, the trichloroethene concentrations in EW1 have levelled off to approximately 170 μ g/L indicating that EW1 is effective in capturing a large portion of the west side plume.

Comparison of Figures 4.30 and 4.31 shows that the EW1 effluent concentrations of the primary contaminants are approximately 30 percent lower than the EW1 influent concentrations of these contaminants. This indicates that the passive VOC stripping rip rap discharge structure has a removal efficiency of approximately 30 percent for the primary contaminants, trichloroethene and 1,2-dichloroethene. The average concentrations of trichloroethene and 1,2-dichloroethene discharged to the Wisconsin River during the first 24 months of system operation were approximately 200 µg/L and 40 µg/L, respectively. These concentrations are

well below the maximum water quality effluent limits of $41,000 \ \mu g/L$ for trichloroethene, and $120,000 \ \mu g/L$ for 1,2-dichloroethene as specified in Table 3.1 of the RAP.

The concentration versus time plots for the monitoring wells located southwest of EW1, namely C4D, WSWD, W53A, W53, and W54 (Figures 3.32 to 3.36) show generally decreasing trends in the concentrations of 1,2-dichloroethene and trichloroethene since EW1 began operating. As shown on Figures 3.4 to 3.10 and Figures 3.14 to 3.20, the areal extent of the cone of depression created by EW1 approximately encompasses these monitoring wells and the southern plume. The hydraulic and groundwater quality data show that EW1 is effectively capturing the southern plume source in the vicinity of the Marathon property/former City landfill.

The island monitoring well (IWD) was not sampled regularly due to weather conditions. The concentration versus time plot for IWD presented on Figure 3.37 shows a general increase in the concentration of trichloroethene between November 1990 and August 1991 and a general decrease in concentration of trichloroethene between August 1991 and May 1992. Based on the extent of the deep well piezometric contours shown on Figures 3.12 to 3.20, and the contaminant plume contours shown on Figure 3.27, it is concluded that the initial EW1 pumping rate of approximately 1550 gpm caused a cone of depression which captured a section of the eastern contaminant plume with a concentration of trichloroethene in the order of 1000 ppm. After the pumping rate in EW1 was reduced to approximately 800 gpm on January 31, 1991, the estimated extent of the cone of depression receded to the area of the island, however, the previously

CONESTOGA-ROVERS & ASSOCIATES

14

÷.

captured section of the eastern contaminant plume continued to move northwest towards EW1. The trichloroethene concentrations in IWD increased from November 1990 to August 1991 as the captured section of the eastern contaminant plume moved through IWD towards EW1 and subsequently decreased from August 1991 to May 1992 as the eastern plume section moved past IWN northwest towards EW1. Contaminant concentrations in IWD indicate an increasing trend between May and November 1992, however, it is anticipated that the concentrations will level off and decrease as the southern plume conatminant concertions are reduced in the area of the island by the operation of EW1.

The concentration versus time plot for shallow well C2S presented in Figure 3.38 indicates that the trichloroethene concentrations have stabilized at approximately 50 ug/L between February 1992 and November 1992. The relatively low level of contamination exhibited in C2S is consistent with the low contaminant concentrations found in the shallow groundwater of the west side plume in the area of C2S as shown on Figure 3.28.

The concentration versus time plots for the deep monitoring wells located northeast of EW1, namely R4D, W52, R2D, and W55 (Figures 4.39 to 4.42) generally indicate relatively high concentrations of trichloroethene in these wells. The cause of the high concentrations of trichloroethene in these wells may be seen with reference to Figures 3.27 and 3.28. When the EW1 pumping rate was approximately 1550 gpm, the cone of depression extended northeast of monitoring well R2D, (see Figure 3.12) thereby capturing a section of the northern plume which has contaminant

concentrations exceeding 4000 µg/L, as shown on Figure 3.28. When the EW1 pumping rate was reduced to approximately 800 gpm on January 31, 1991, the cone of depression began to recede, however, the previously captured section of the northern contaminant plume continued to move southwest towards EW1. As the captured section of the northern contaminant plume moved southwest, significant increases in trichloroethene concentrations were observed in monitoring wells W55, R2D, W52 and R4D between November 1990 and approximately August 1991.

The trichloroethene concentration in well W55 decreased significatly between November 1991 and May 1992 as shown in Figure 3.42. This decrease in trichloroethene concentration in W55 may be attributed to the northern contaminant plume section, initially captured by EW1, moving past this well location towards EW1. Trichloroethene concentrations in R2D have varied between 2500 and 5200 μ g/L during the period of February 1991 to November 1992 as shown on Figure 3.41. The consistently high concentrations of trichloroethene exhibited in R2D indicate that the previously captured portion of the northern plume is continuing to move towards EW1. The trichloroethene concentrations in well W52 have varied between 2100 and 200 μ g/L subsequent to August 1991 as shown on Figure 3.40. The variations in trichloroethene concentrations in well W52 are attributed to the capture and movement of the northern plume contaminants through this well location towards EW1. Well R4D has exhibited increasing concentrations of trichloroethene as shown on Figure 3.39. Well R4D is located within an area of high contaminant concentrations in the southern plume as shown on Figures 3.27 and 3.28. High concentrations of

trichloroethene in R4D are also caused by the northern plume contaminants which are moving southwest towards EW1 through R4D.

The concentrations of trichloroethene in CW6 have varied between $31 \mu g/L$ and $220 \mu g/L$ as shown on Figure 3.43. The contaminant concentrations between November 1991 and November 1992 indicate and increasing trend which may be attributed to CW6 capturing sections of the northern plume which have areas of high concentrations south of CW6, as shown on Figures 4.27 and 4.28. If the current pumping rates of EW1 and CW6 are maintained, it is expected that the contaminant concentrations in CW6 will level off and then decrease as the northern plume is captured by CW6.

The concentration versus time plots for CW7 and CW9 (Figures 3.44 and 3.45) indicate that they are not capturing contaminants at detectable levels, therefore, the cones of depression created by EW1 and CW6 are effective in capturing the southern and northern contaminant plumes, preventing them from moving northeast towards CW7 and CW9.

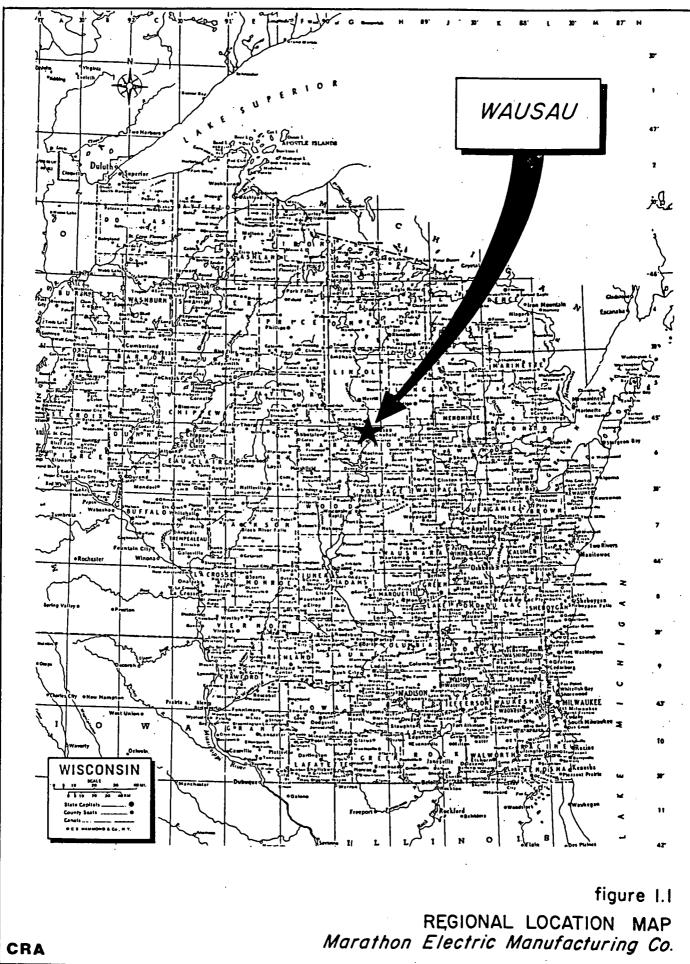
CW3 indicates a slightly decreasing contaminant concentration trend. This is attributed to the fact that EW1 is effectively creating a hydraulic barrier between the southern plume and the east side plume, preventing groundwater and contaminants from flowing under the river towards CW3.

Pursuant to the RAP and as discussed in Section 2.2.1, six sampling locations as specified by EPA and WDNR were subject to full TCL

and TAL analyses. Tables 17 and 18 show that there were no pesticides/PCBs or BNAs detected above CLP detection limits in the six locations sampled on December 3, 1990. Table 16 shows that all metals detected in the EW1 effluent were below the water quality effluent limits defined in Table 3.1 of the RAP for all sampling rounds, with the exception of a possible exceedance of copper and zinc for the December 3, 1990 sampling round as discussed in Section 2.3.1.

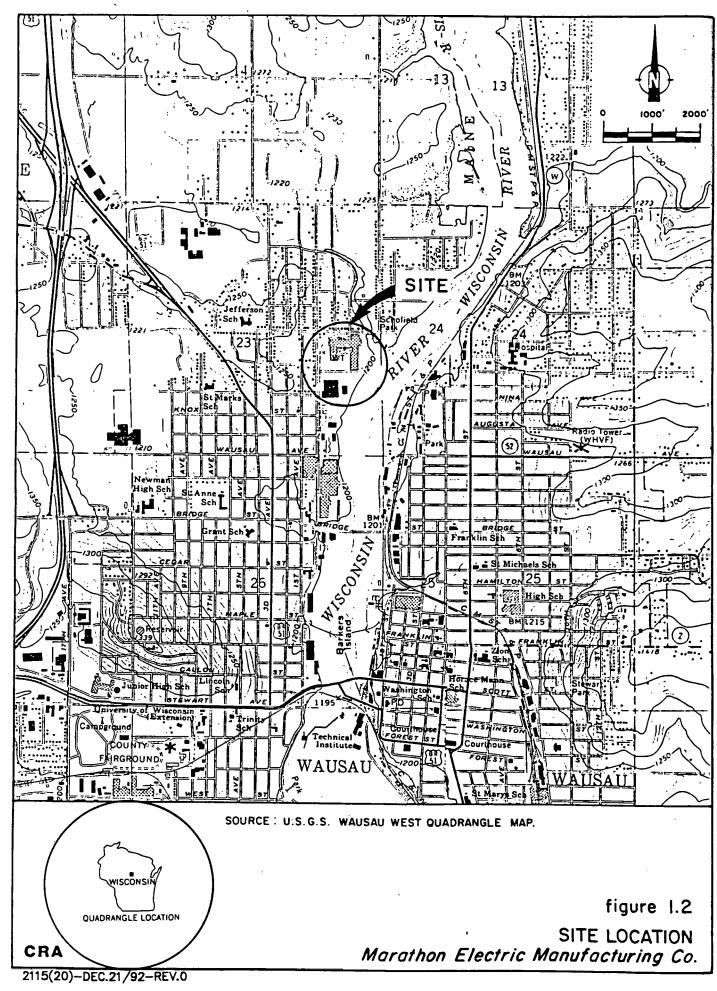
When the EW1 pumping rate of approximately 1,550 gpm was in effect between November 14, 1990 and January 30, 1991, the resulting cone of depression was extensive, causing capture of potentially contaminated groundwater south of the Marathon property/former City landfill area and potential interference with the cone of depression created by City production well CW6.

Subsequent to reducing the pumping rate to approximately 800 gpm on January 31, 1991, the water level monitoring data indicate that the desired cone of depression as presented in the 1988 ROD and as discussed in Section 1.0 is being achieved and has stabilized after June 1991. Seasonal variations in the extent of the EW1 cone of depression may be attributed to high levels of precipitation during the spring and summer months which causes a reduction in the size of the cone of depression during these months.

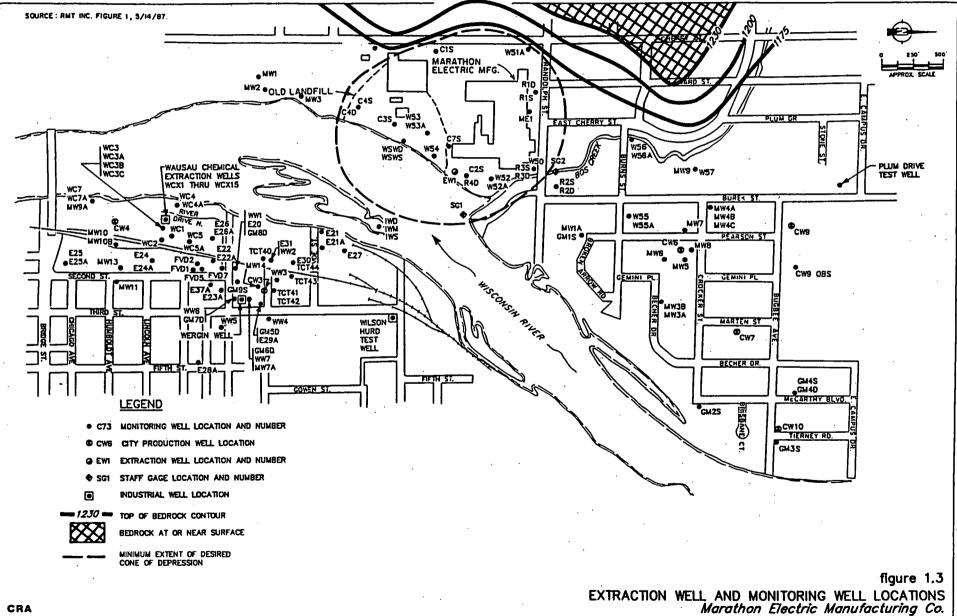

Based on EW1 influent groundwater sampling data, approximately 190 pounds of 1,2-dichloroethene and 2,140 pounds of trichloroethene have been extracted from the west side VOC contaminant plume between November 14, 1990 and November 8, 1992.

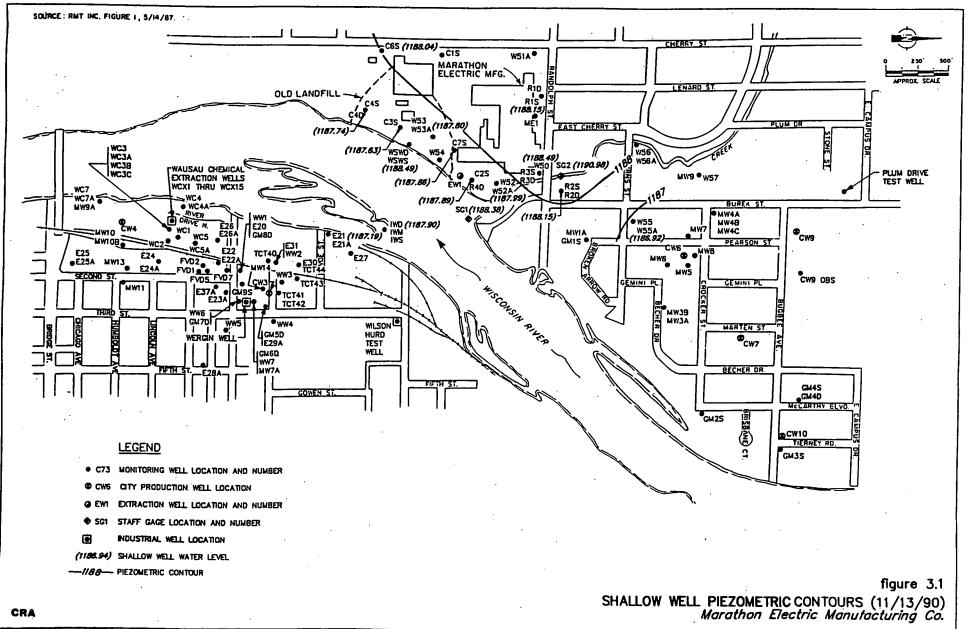
The EW1 treatment/discharge structure has been removing primary contaminants at an efficiency of approximately 30 percent, and the discharge concentrations of the primary contaminants are two and three orders of magnitude below the water quality effluent limits of

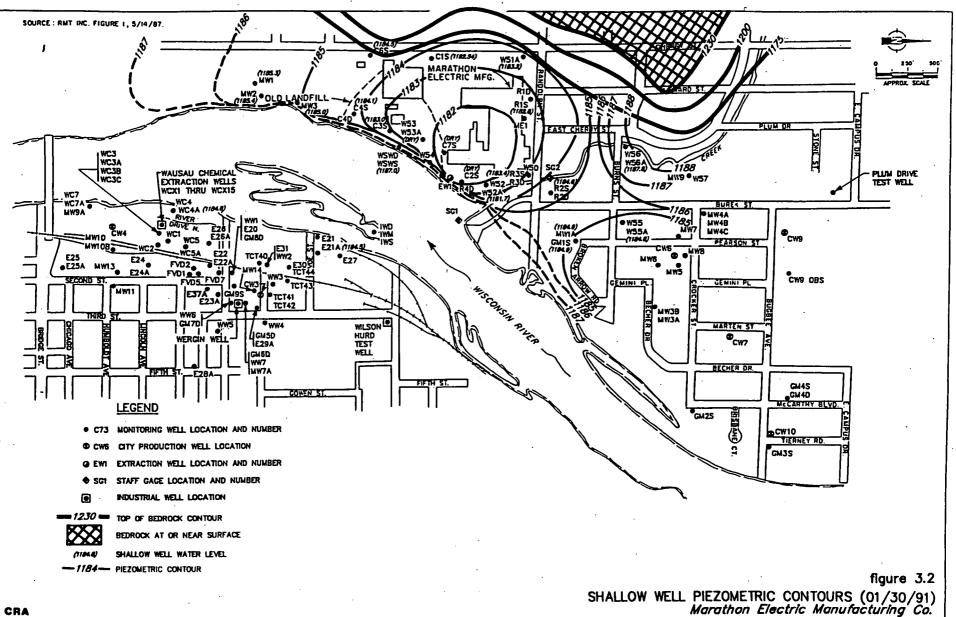
41,000 μ g/L for trichloroethene and 120,000 μ g/L for 1,2-dichloroethene, respectively.

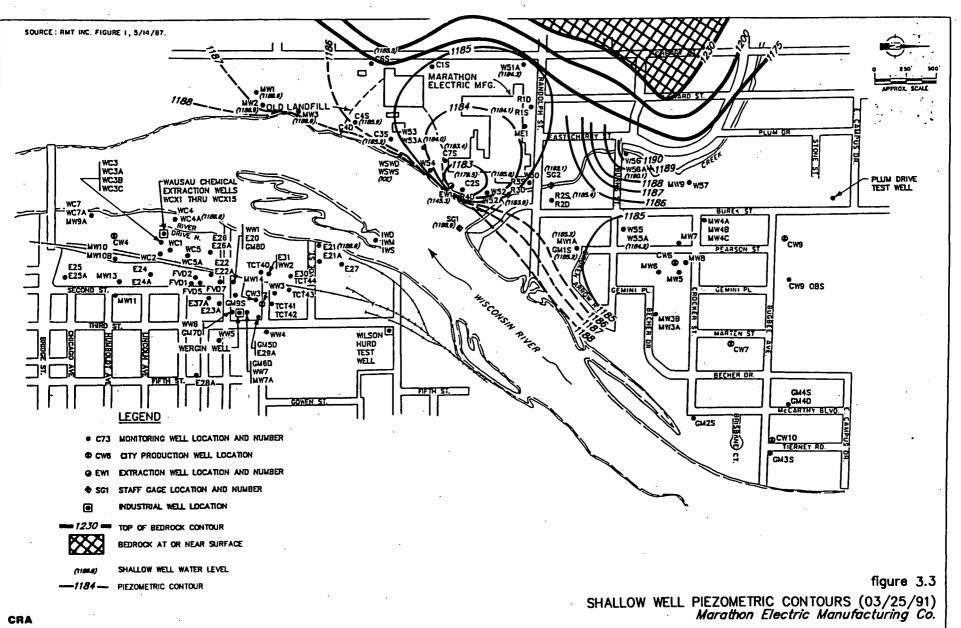

Decreasing contaminant concentrations in CW3 and continued non-detect contaminant concentrations in CW7 and CW9 indicates that the operation of EW1 and CW6 is effective in capturing the west side plume and in preventing the west side plume from moving towards CW3, CW7 and CW9.

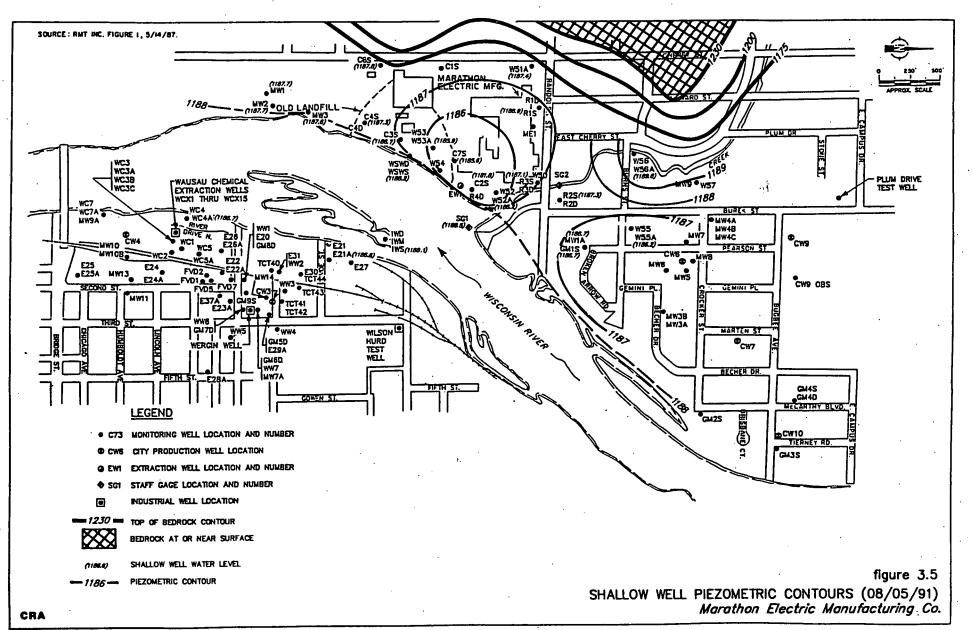
Æ.

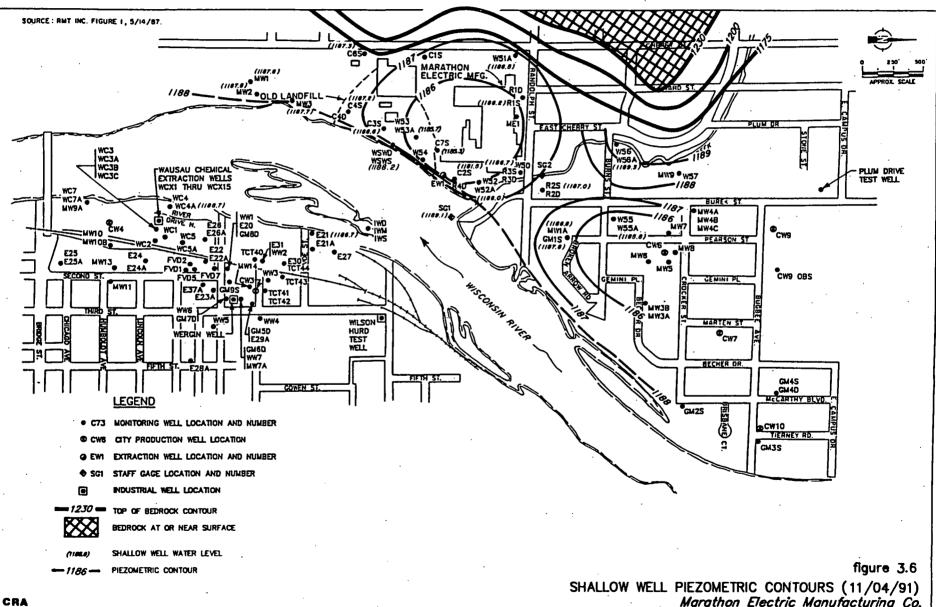


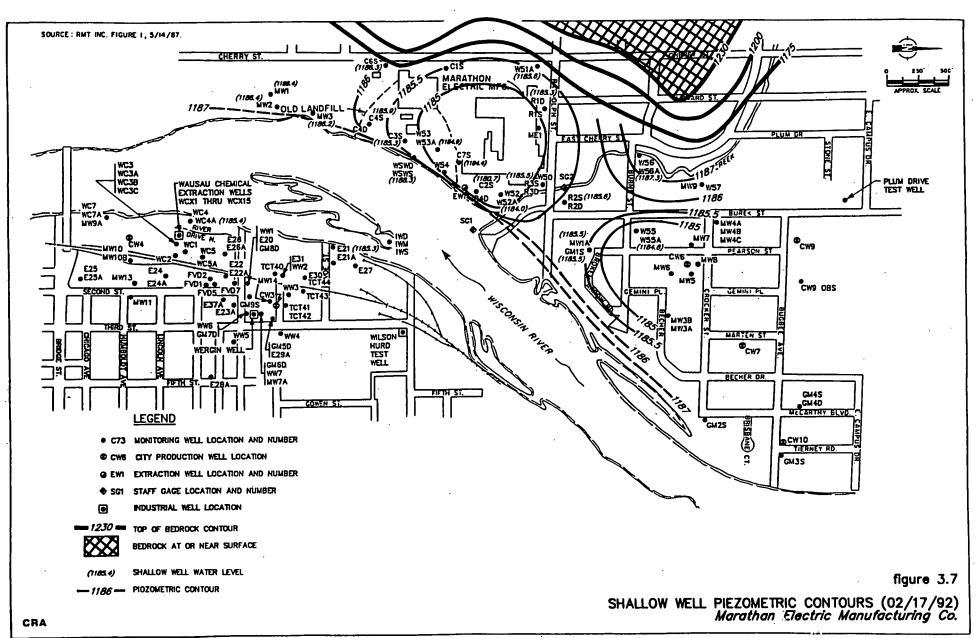

2115(20)-DEC.21/92-REV.0

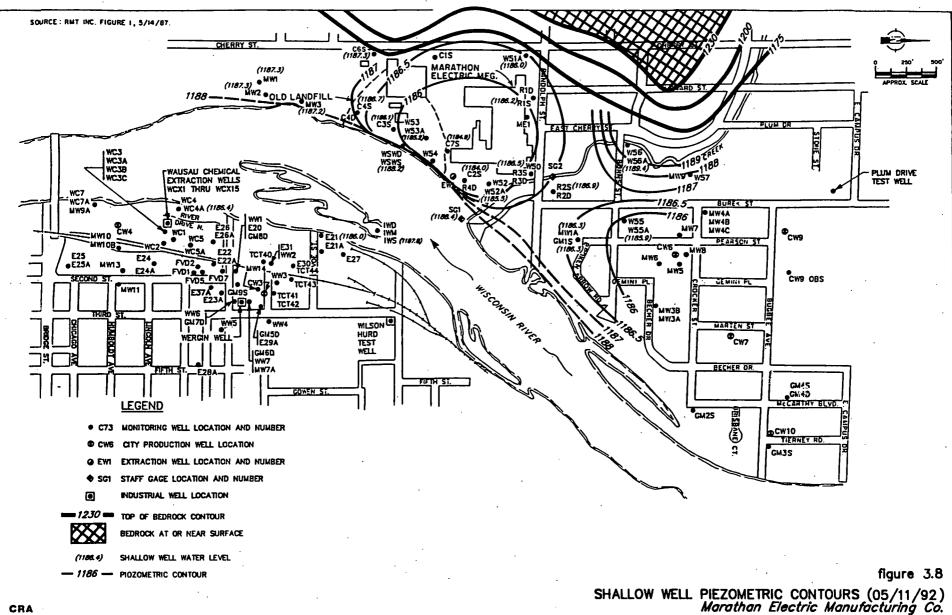


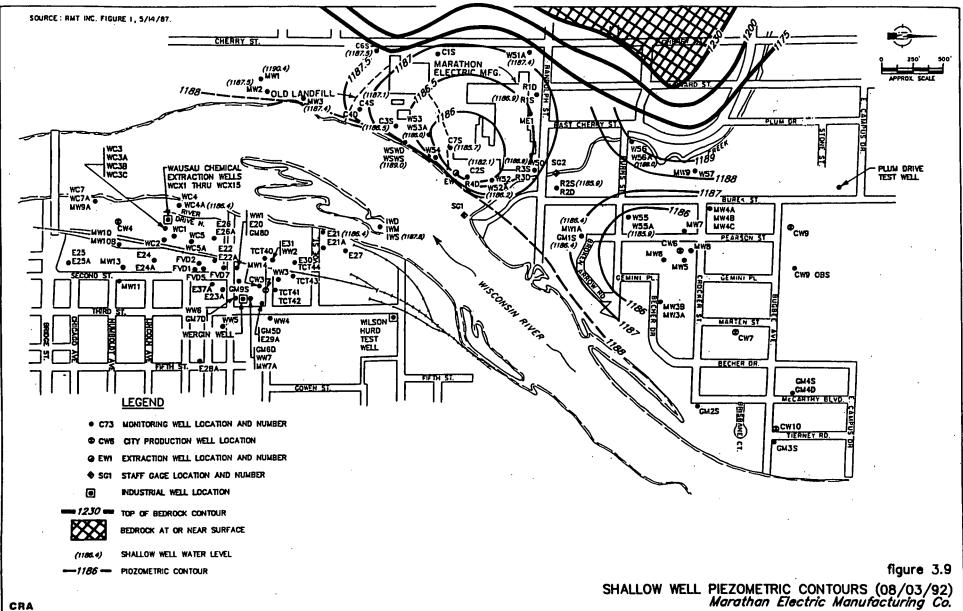



2115(20)-JAN.29/93-REV.0




2115(20)-JAN.29/93-REV.0





SHALLOW WELL PIEZOMETRIC CONTOURS (11/04/91) Marathon Electric Manufacturing Co.

1

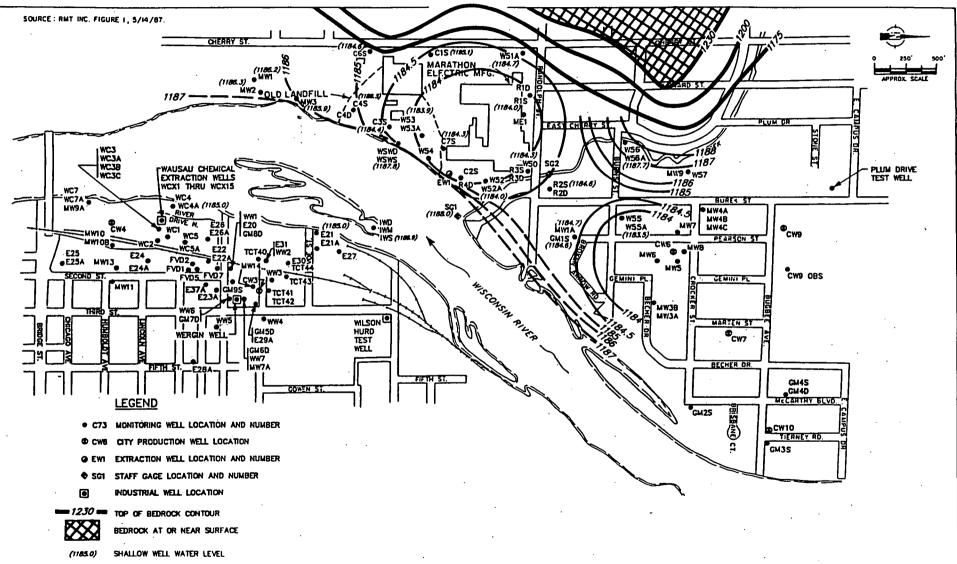
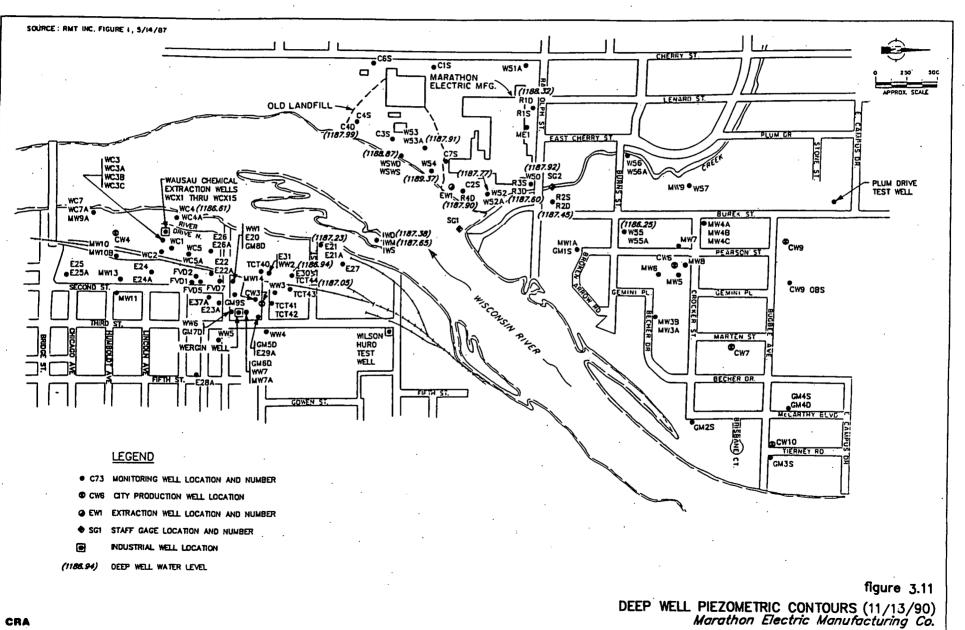
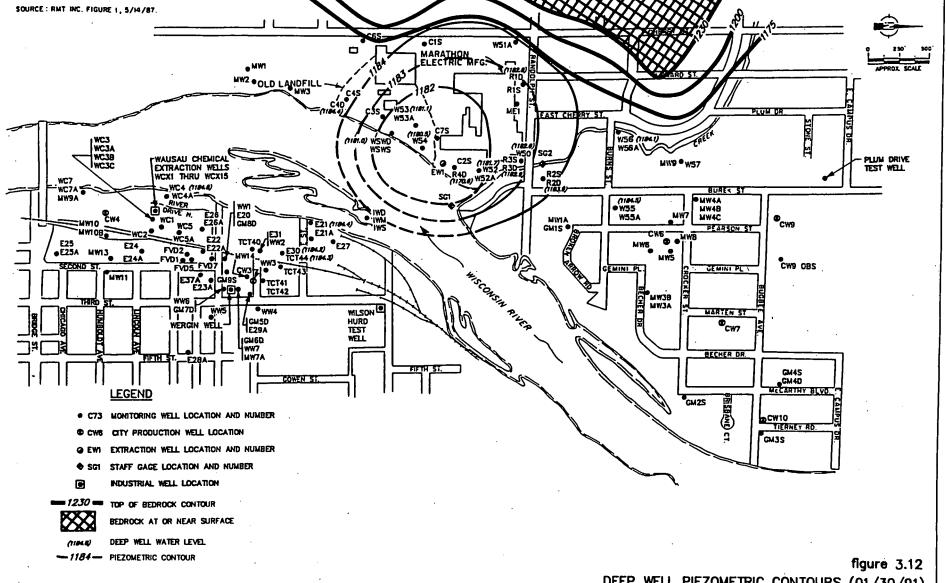
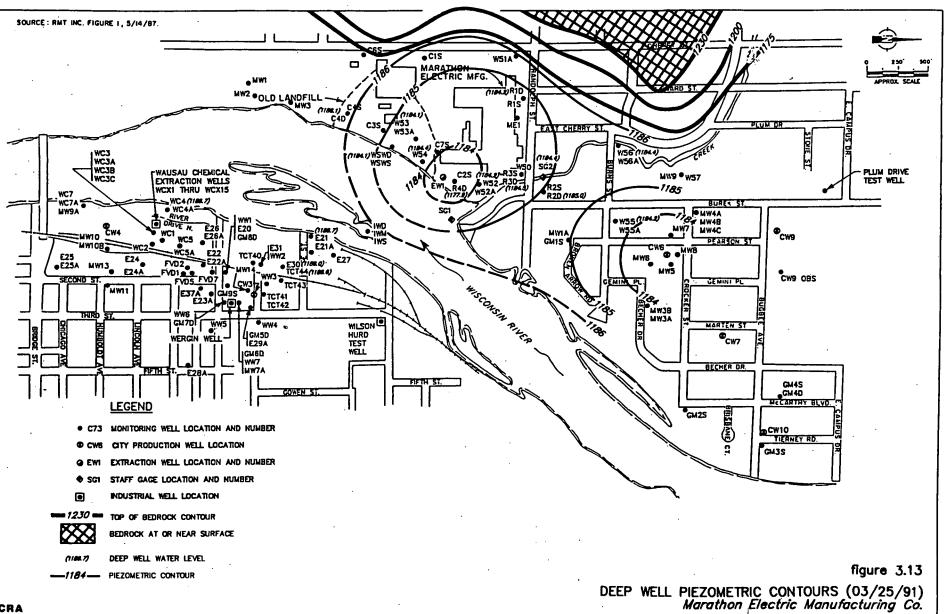



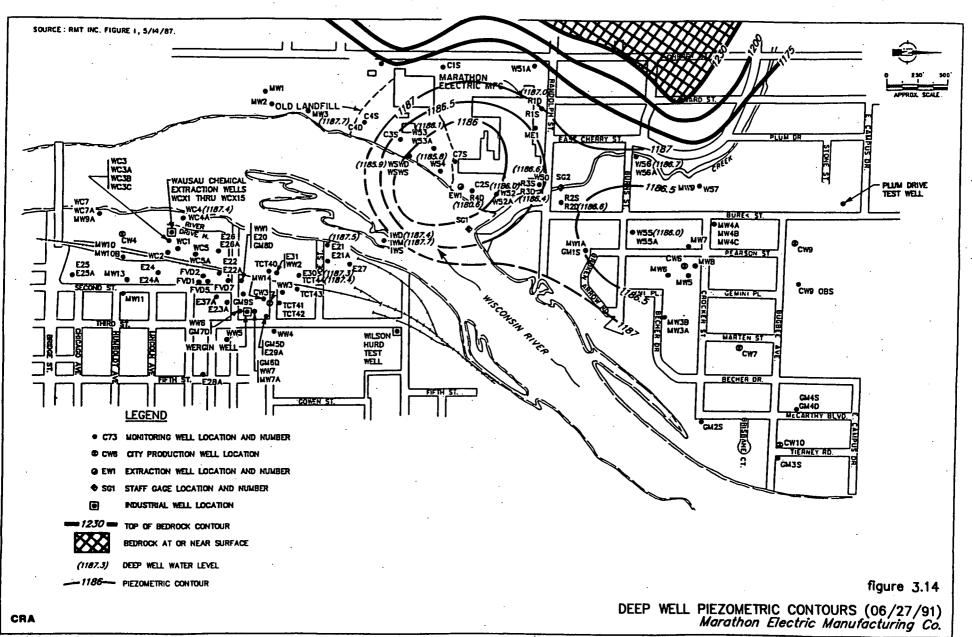
figure 3.10

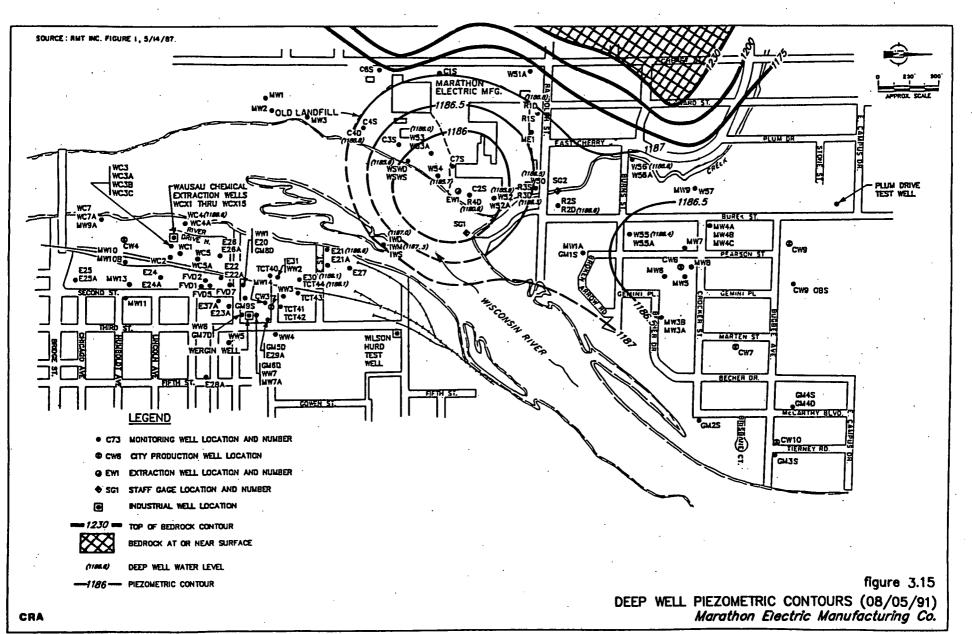

SHALLOW WELL PIEZOMETRIC CONTOURS (11/02/92) Marathan Electric Manufacturing Co.

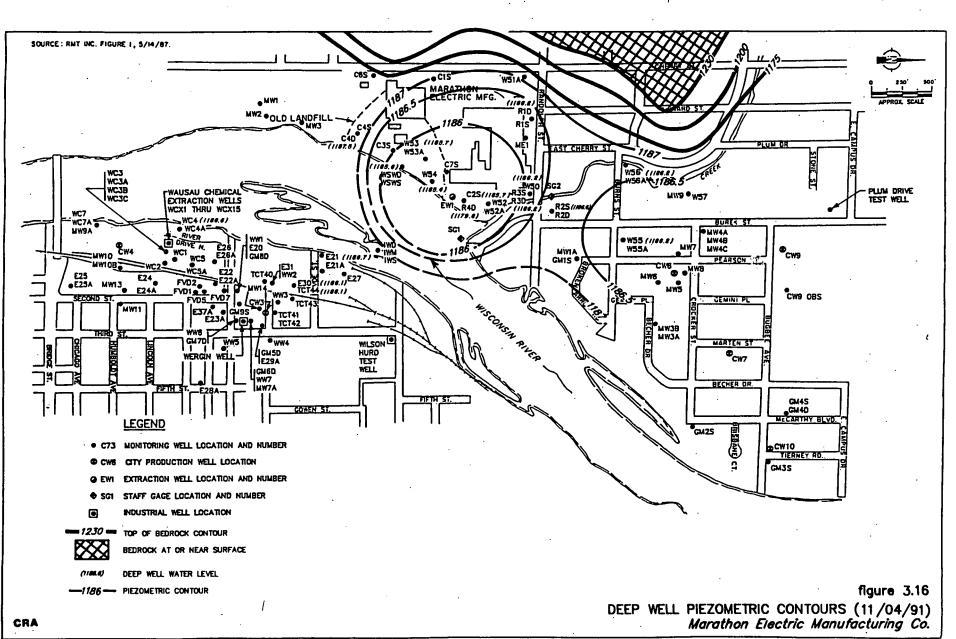
CRA

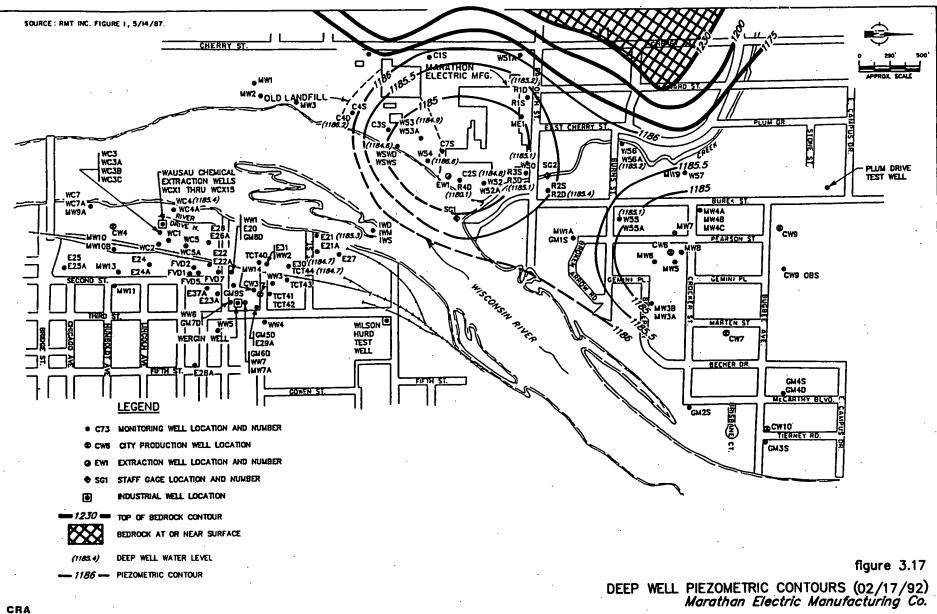
-1186- PIOZOMETRIC CONTOUR

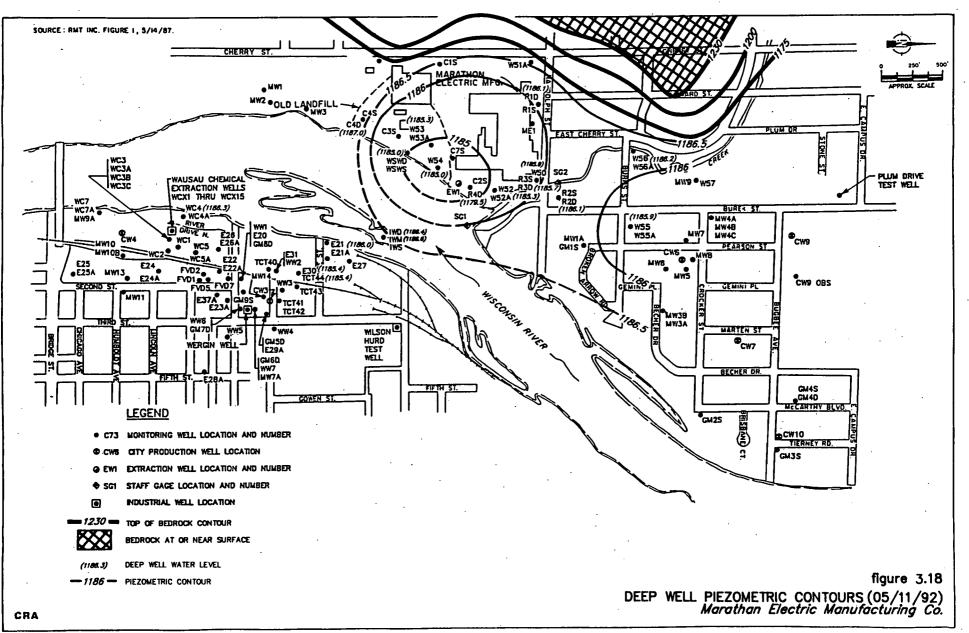


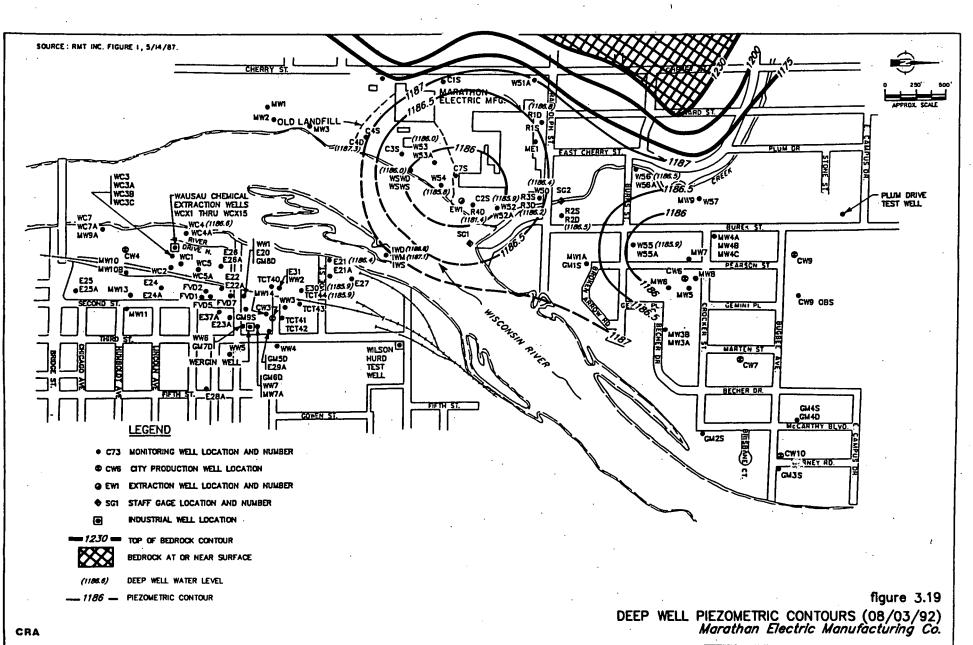


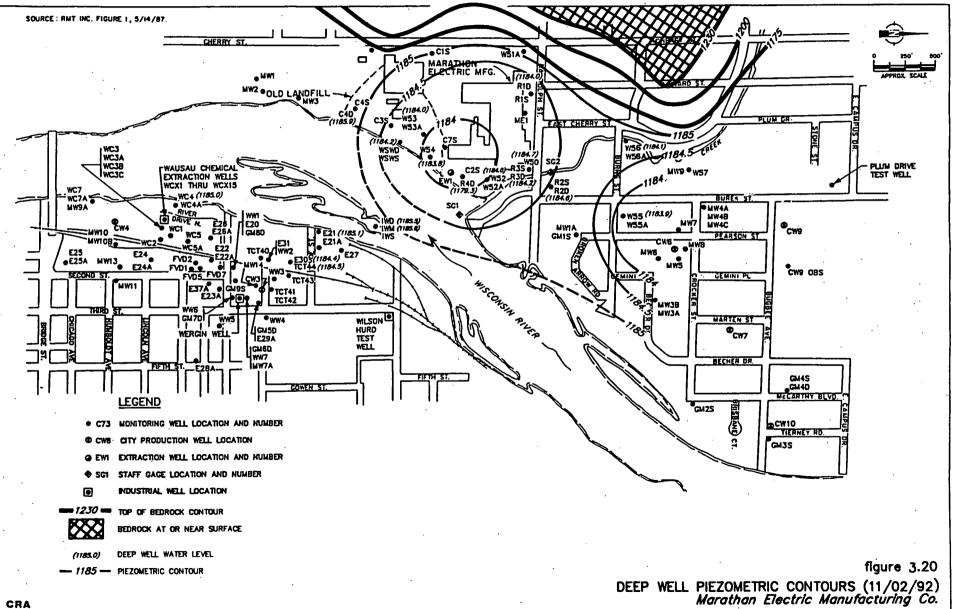

DEEP WELL PIEZOMETRIC CONTOURS (01/30/91) Marathon Electric Manufacturing Co.

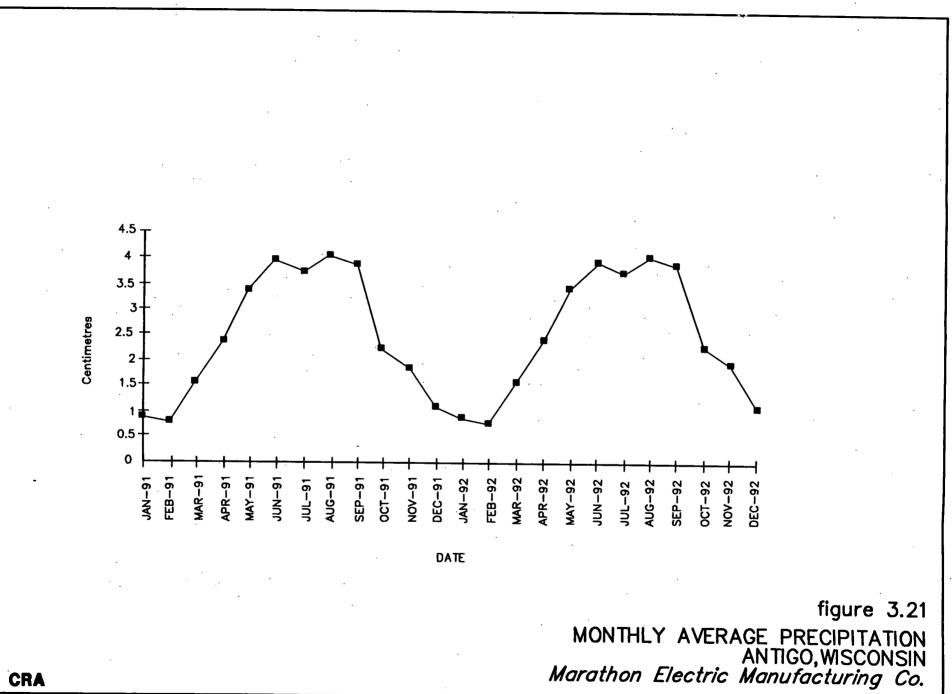

CRA

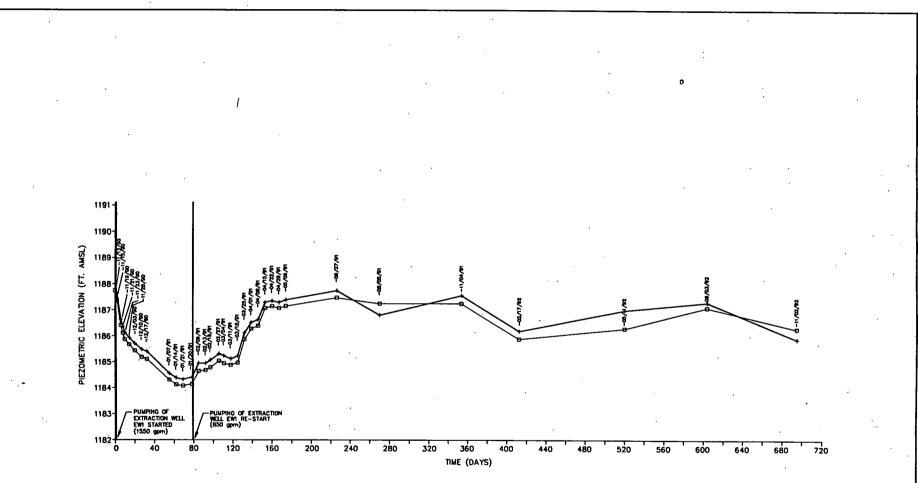



CRA



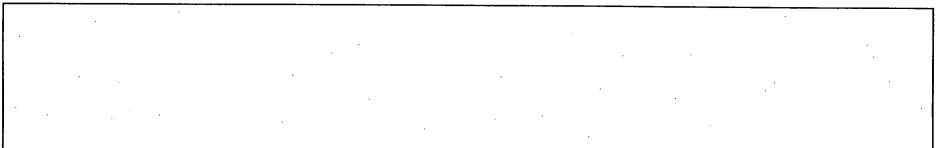






2115 (20) FEB 10/93 REV.0 (G-34)

LEGEND o SHALLOW WELL (C4S) + DEEP WELL (C4D)


figure 3.22

HYDROGRAPH FOR MONITORING FLL NEST C4S AND C4D Marathon Electri Manufacturing Co.

2115 (20) FEB 10/93 REV.0 (G-11)

CRA

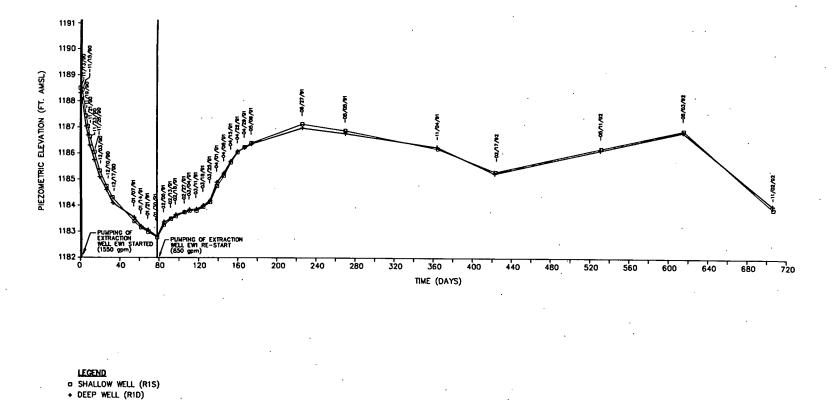
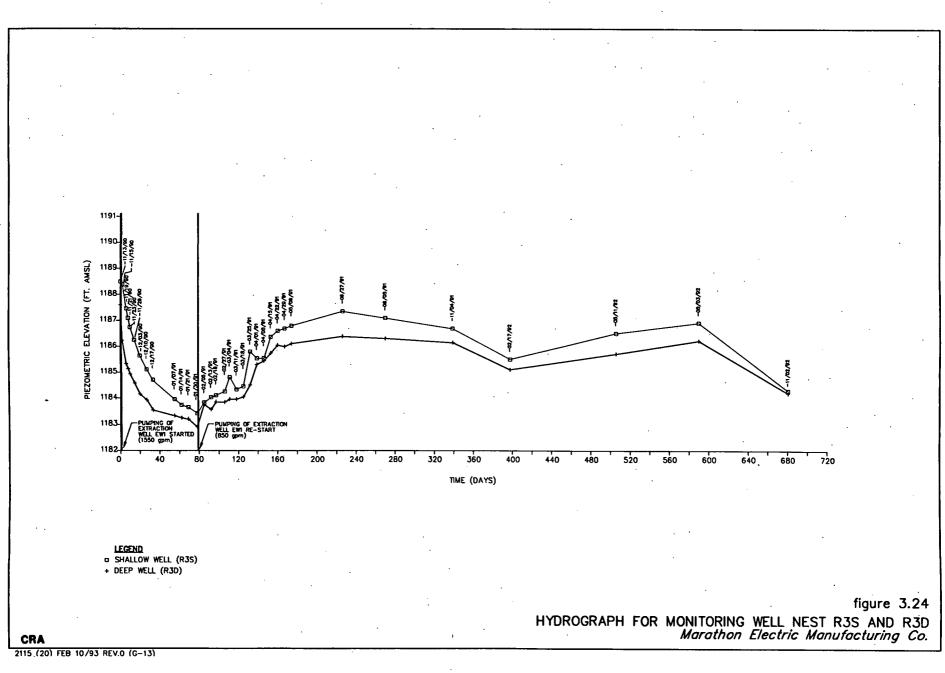
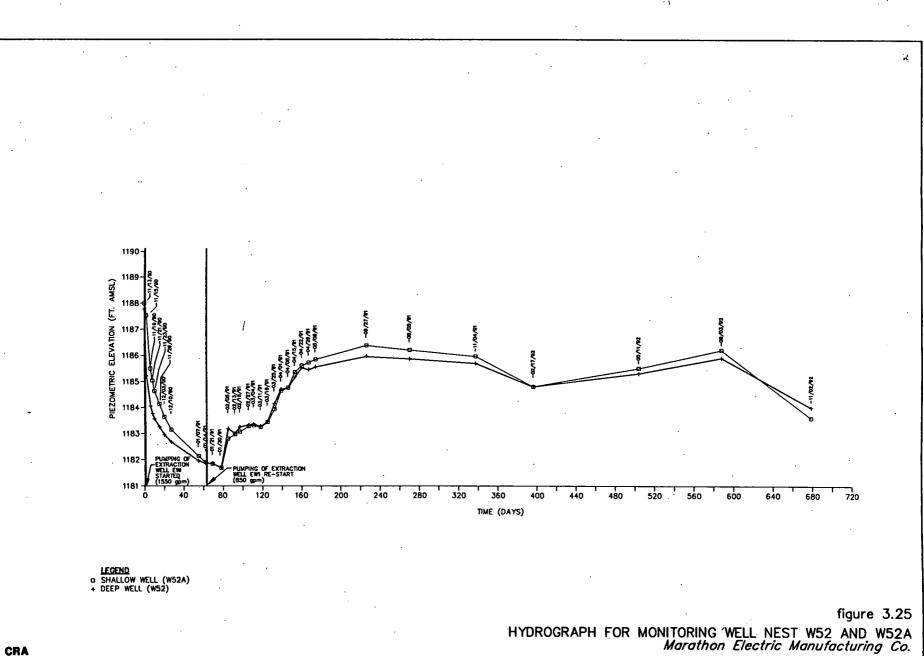
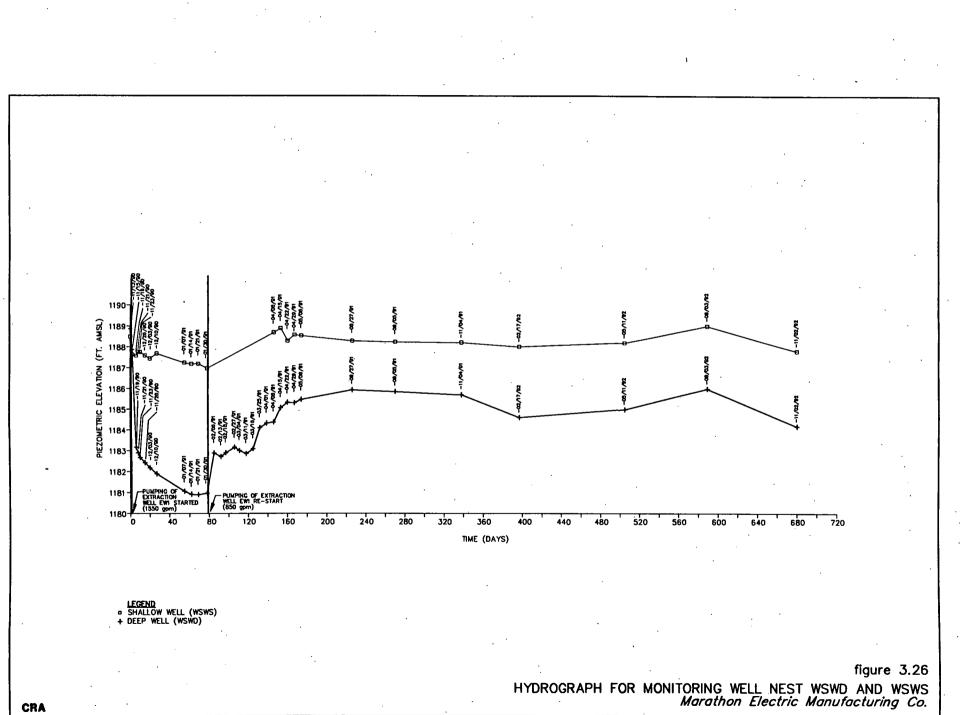
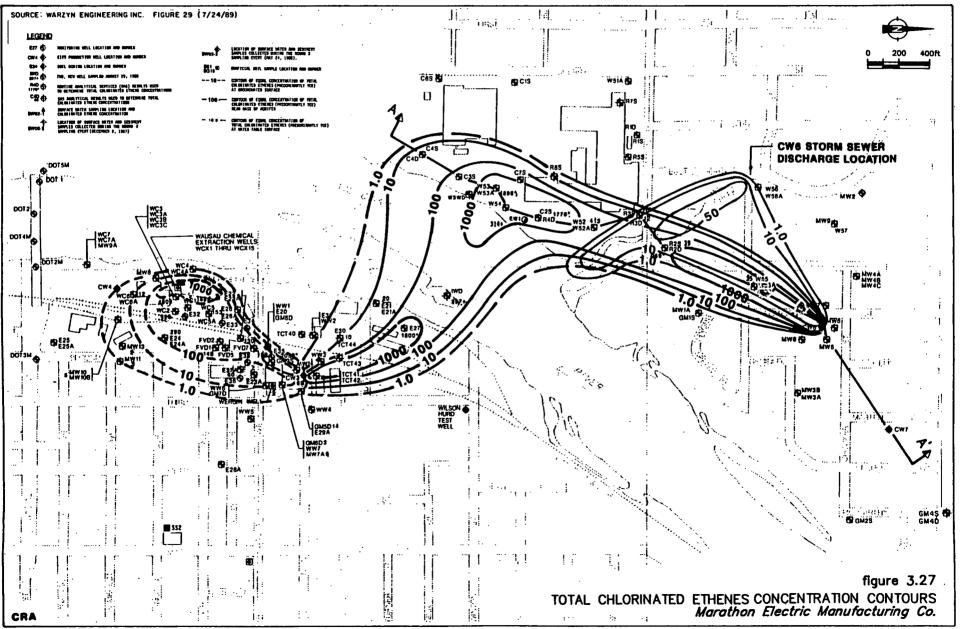
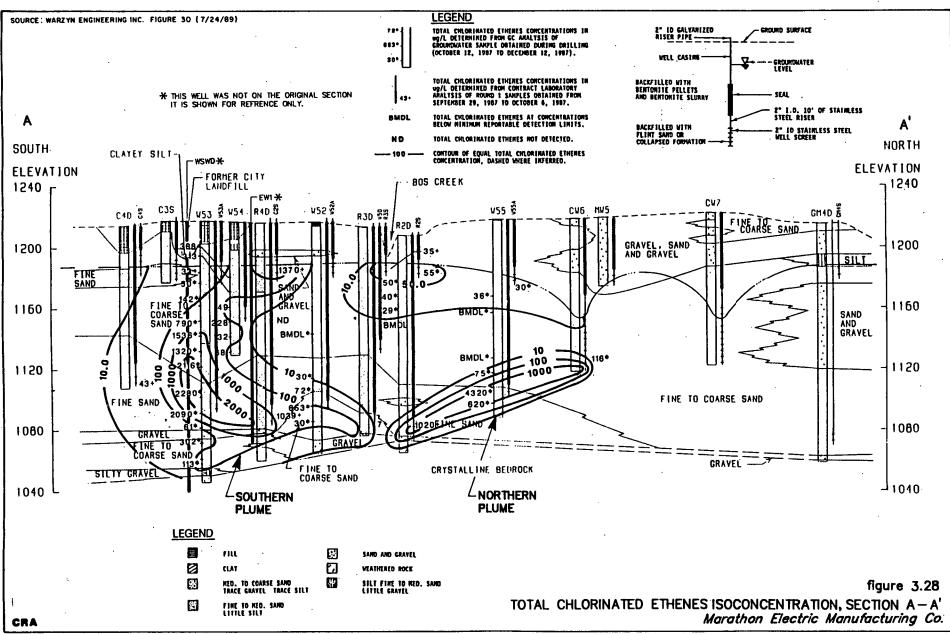




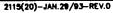
figure 3.23 HYDROGRAPH FOR MONITORING WELL NEST R1S AND R1D Marathon Electric Manufacturing Co.

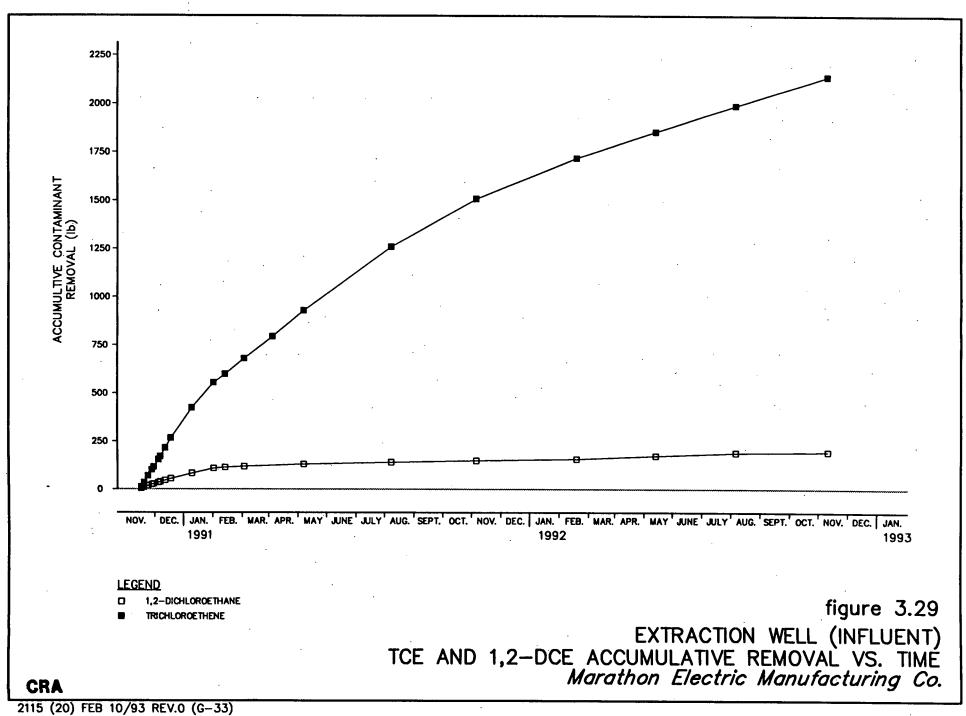

2115 (20) FEB 10/93 REV.0 (G-12)

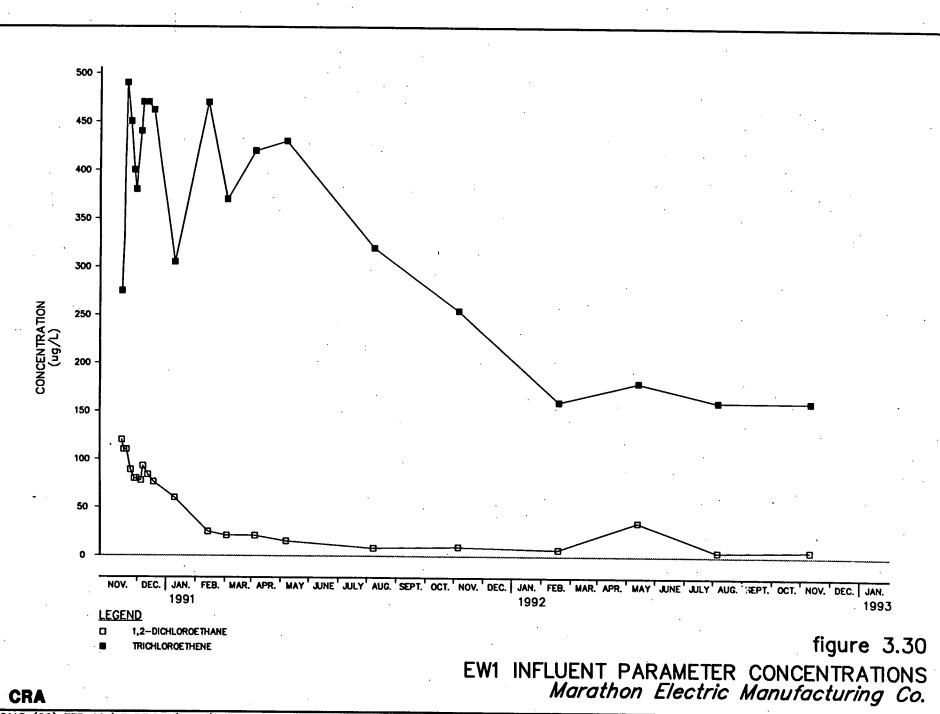
CRA

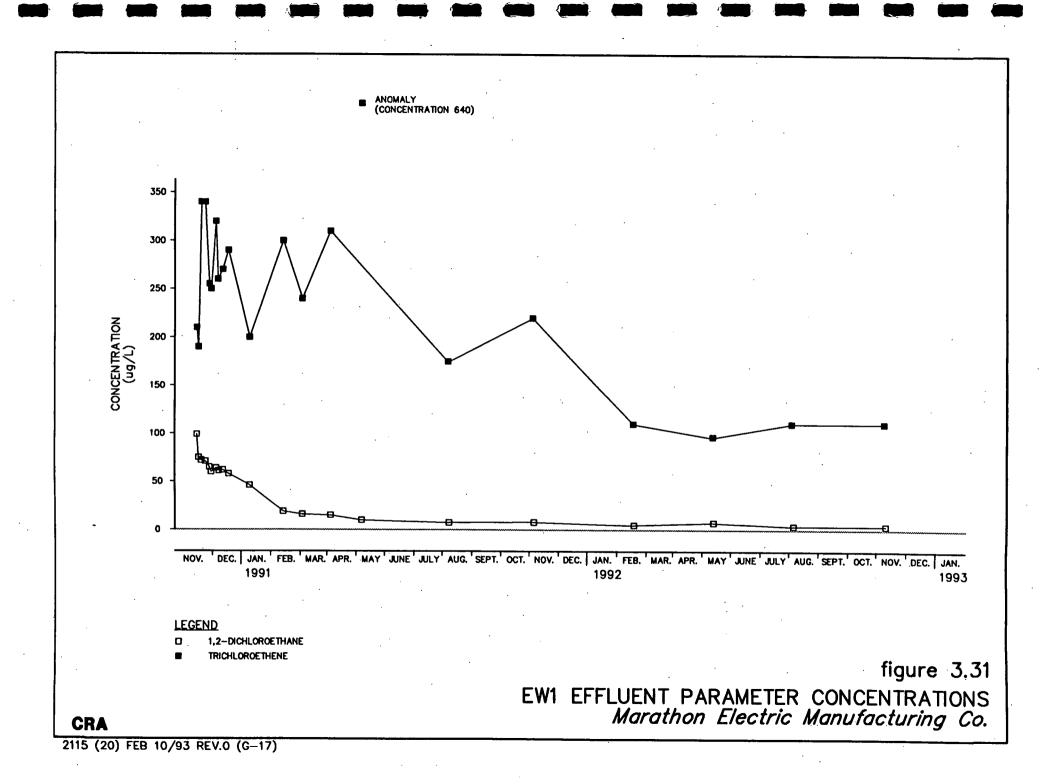


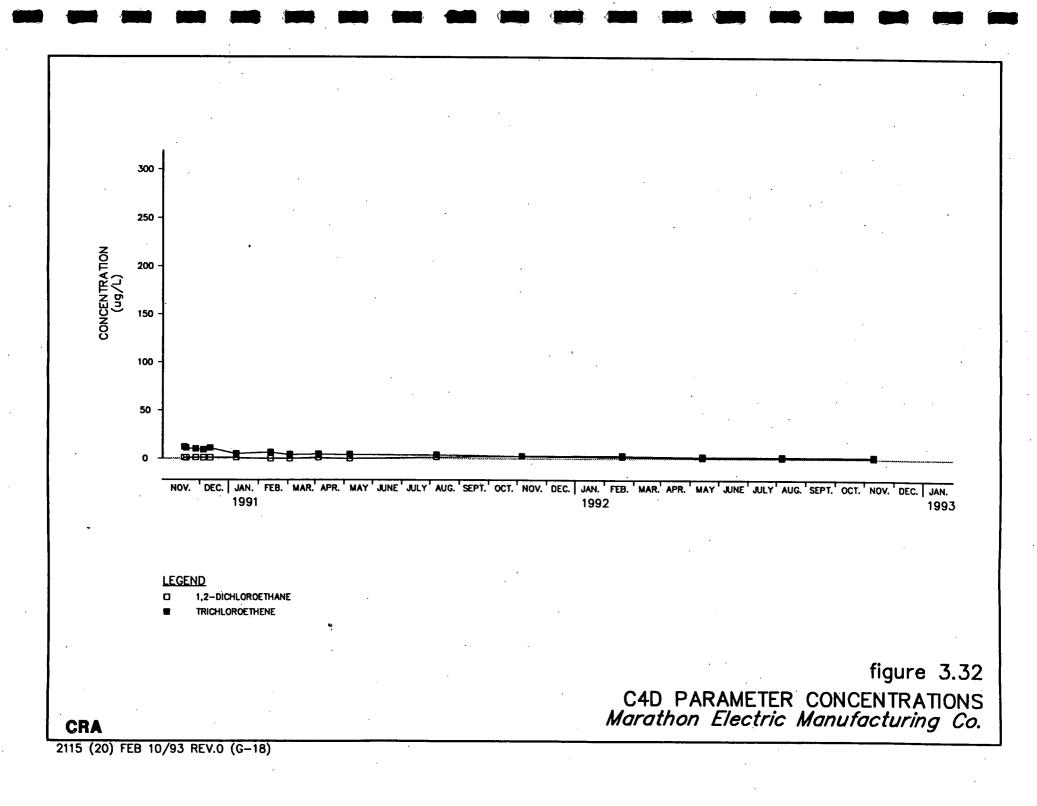


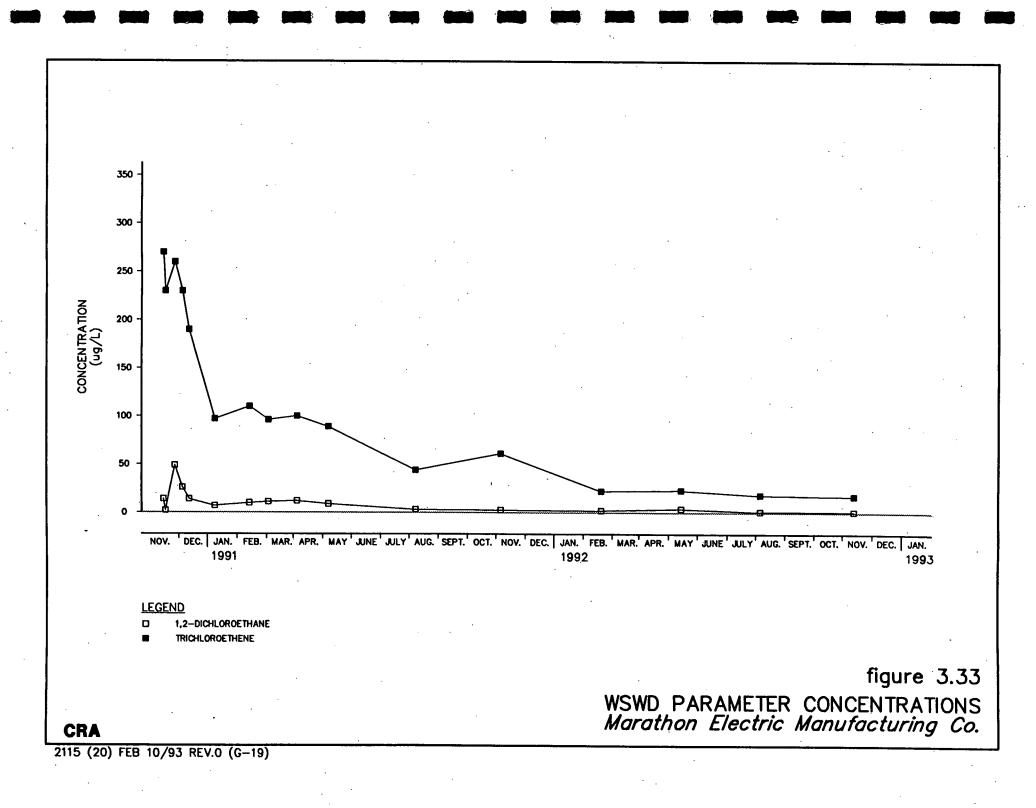

2115 (20) FEB 10/93 REV.0 (G-14)

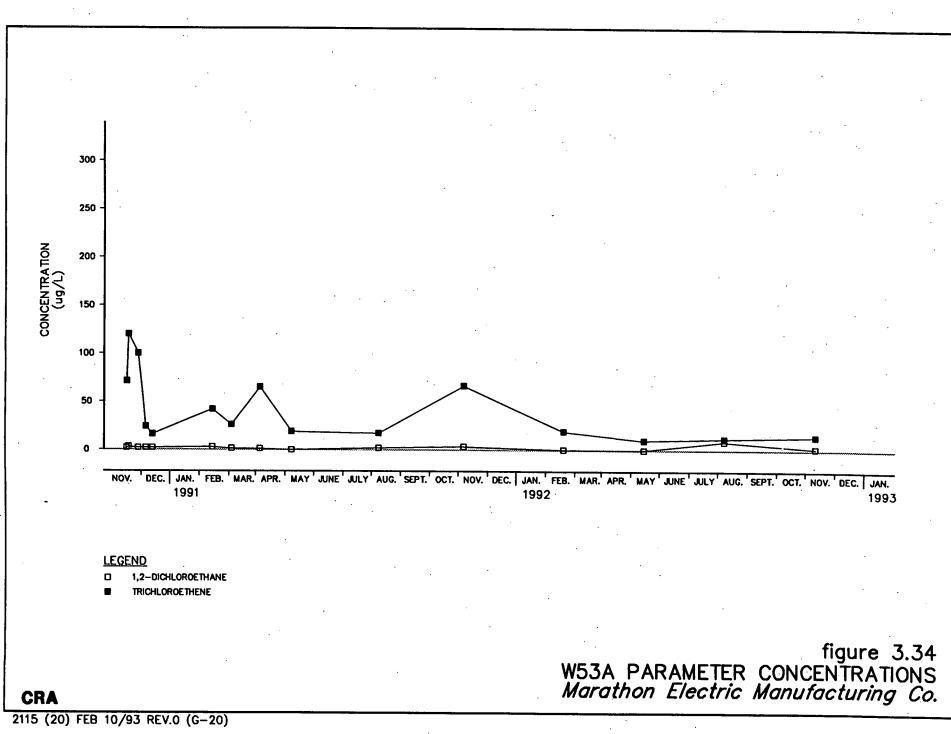



2115 (20) FEB 10/93 REV.0 (G-15)

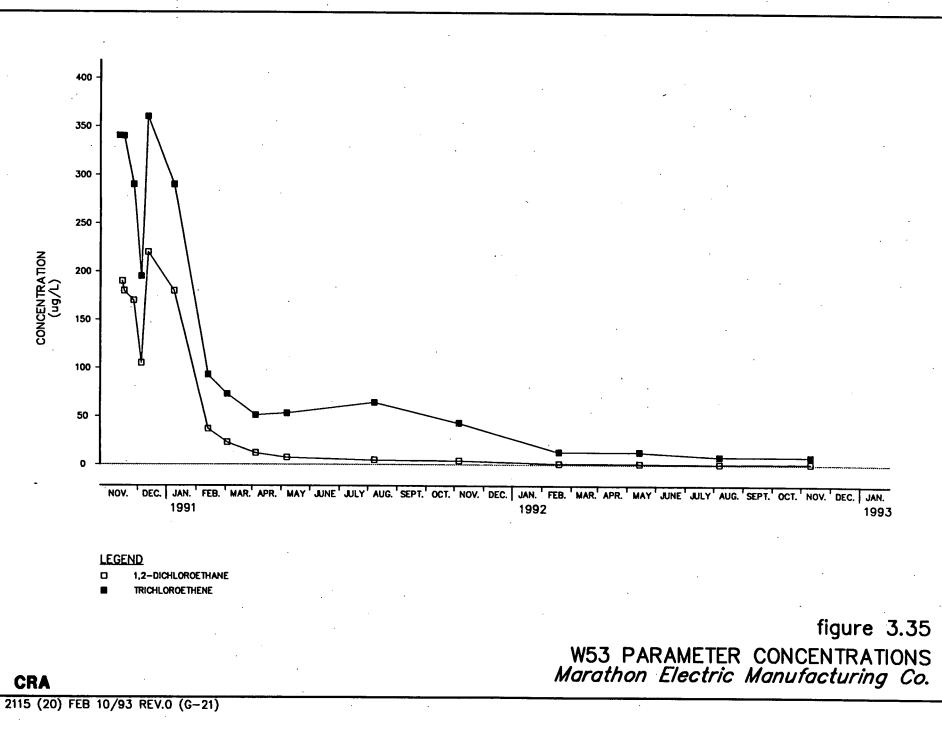


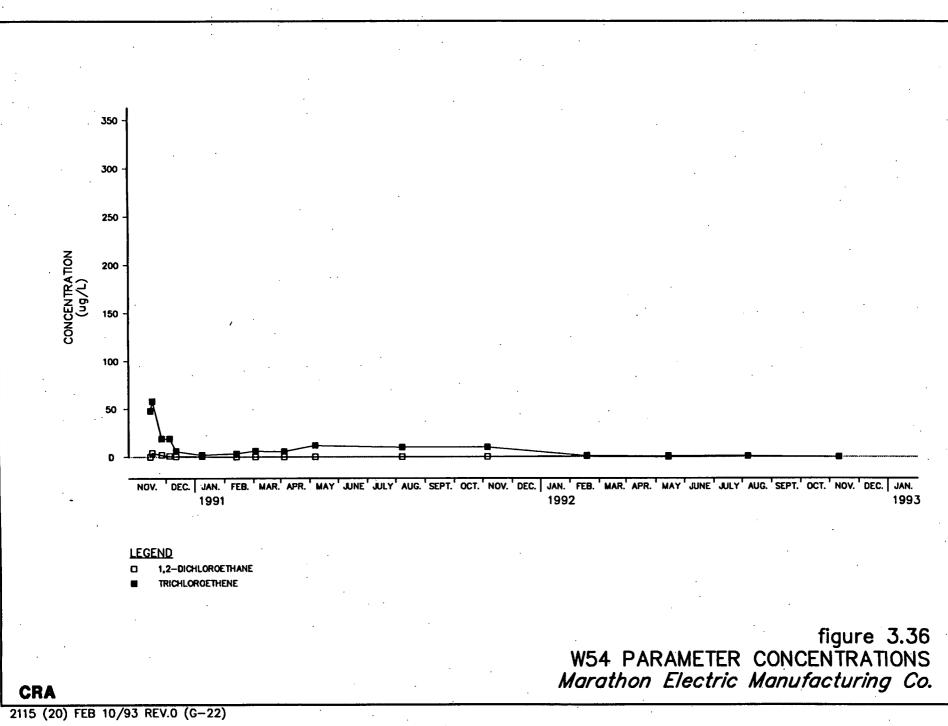


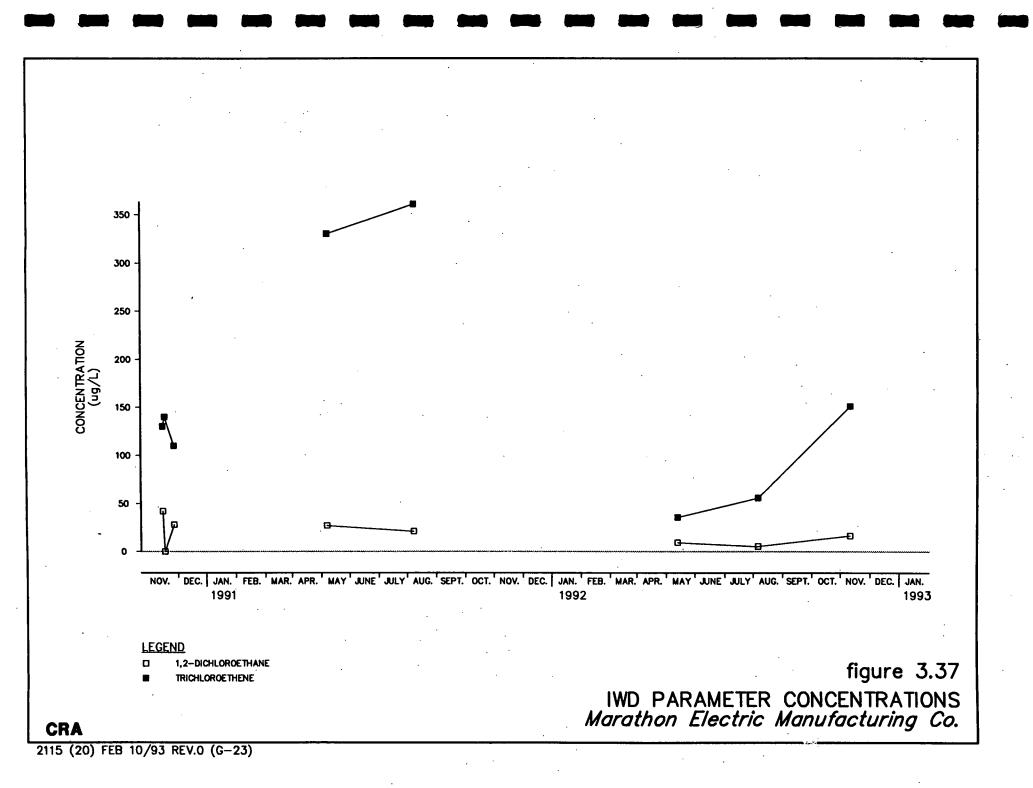


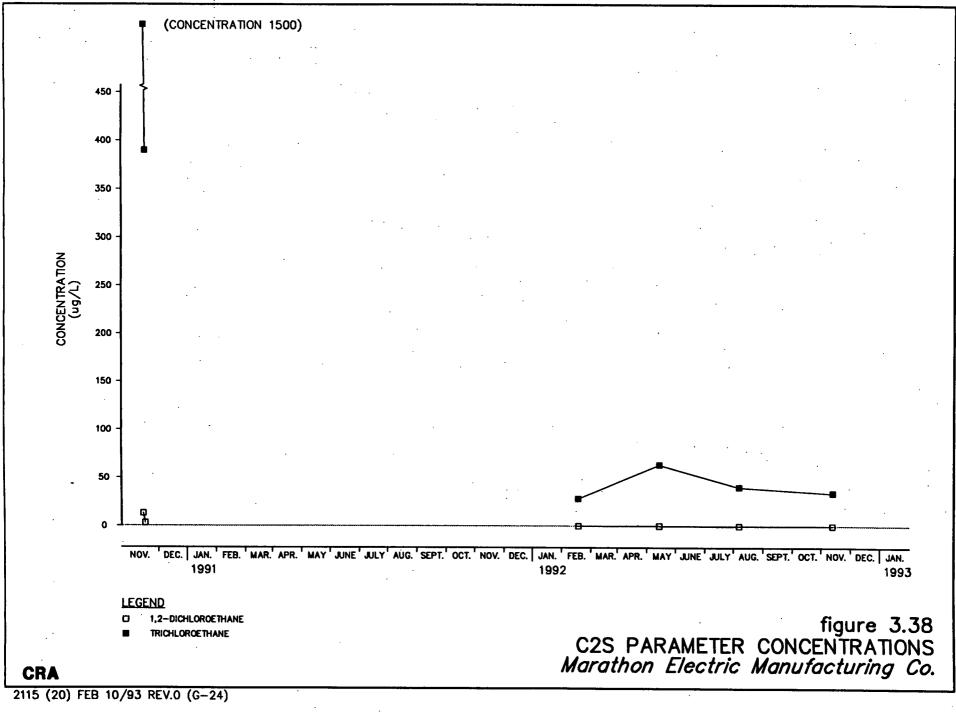


2115 (20) FEB 10/93 REV.0 (G-16)

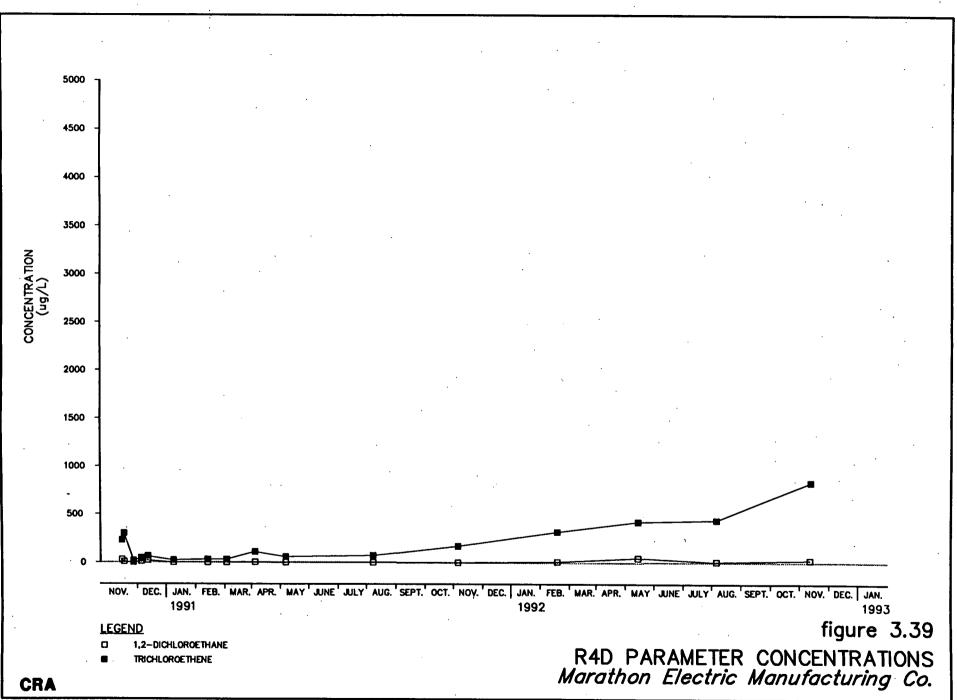


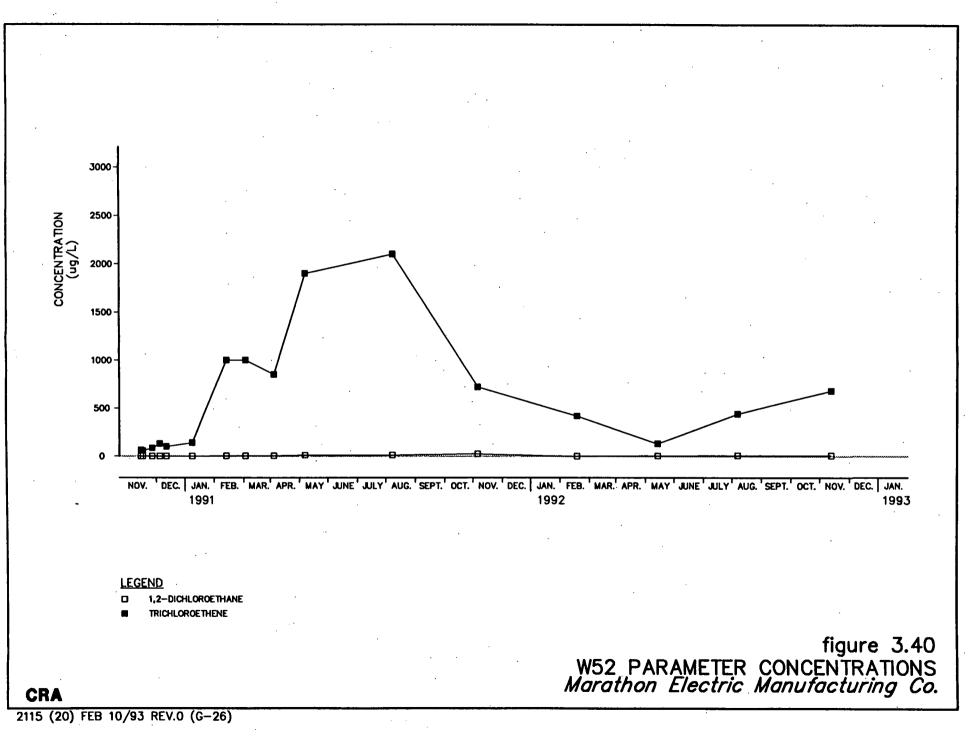


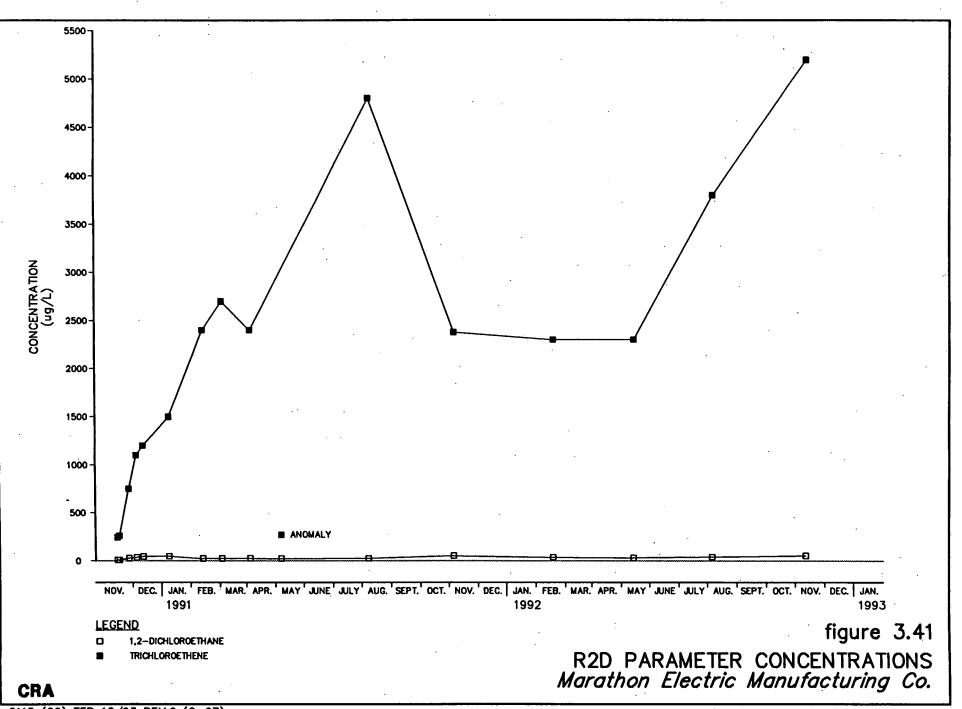




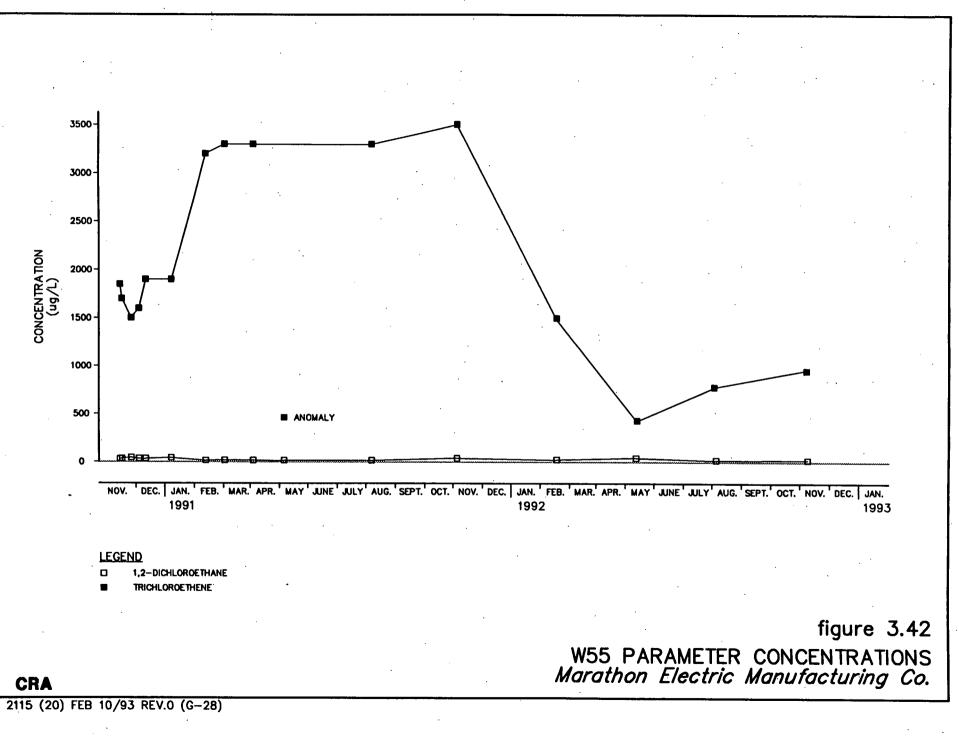
•

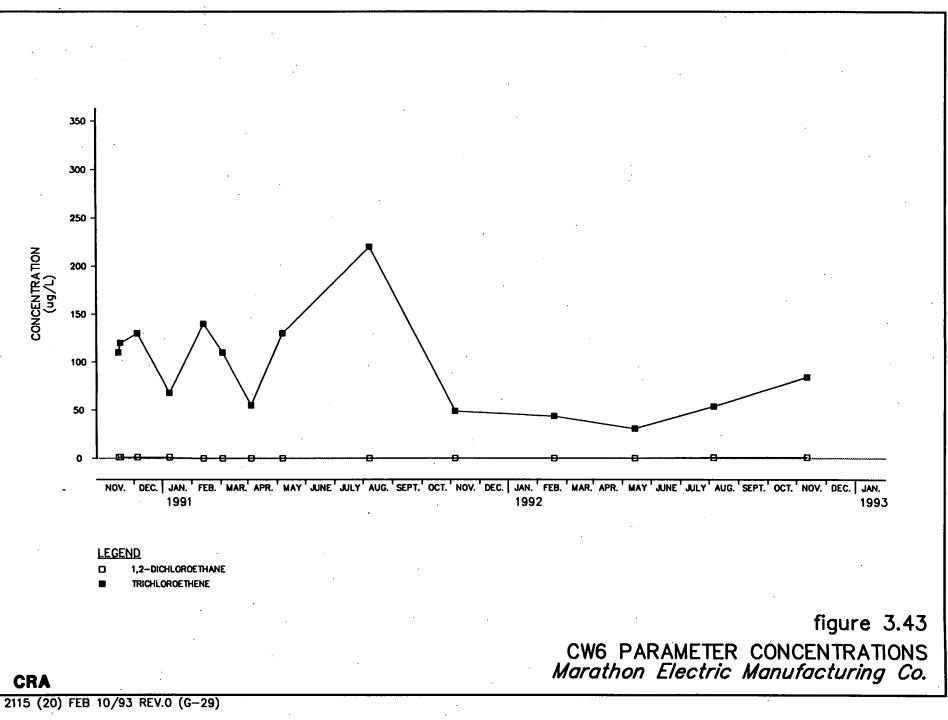


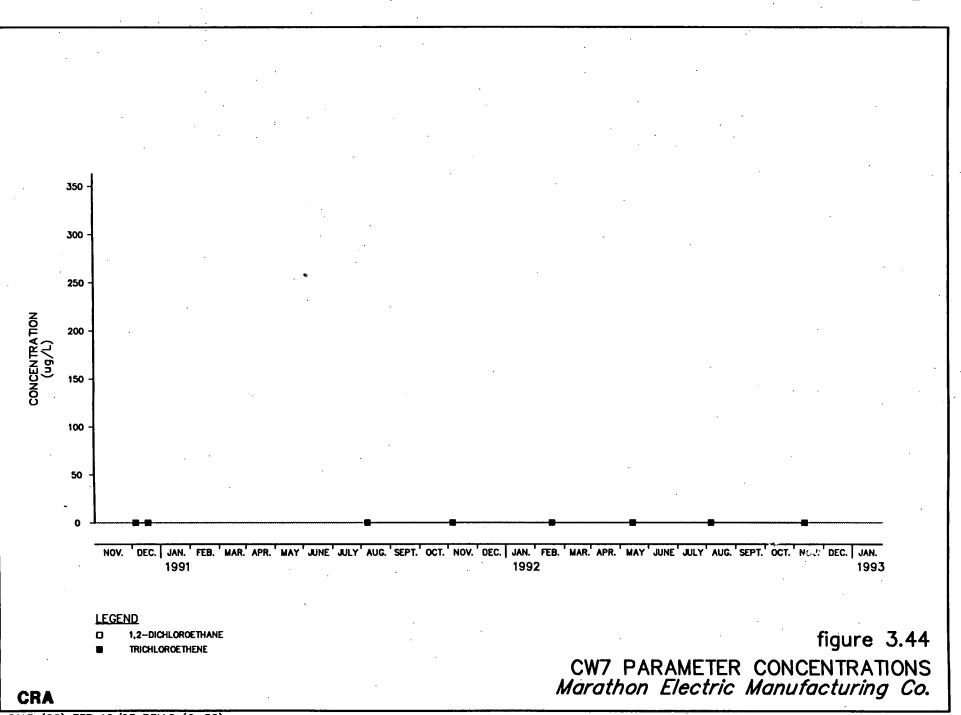


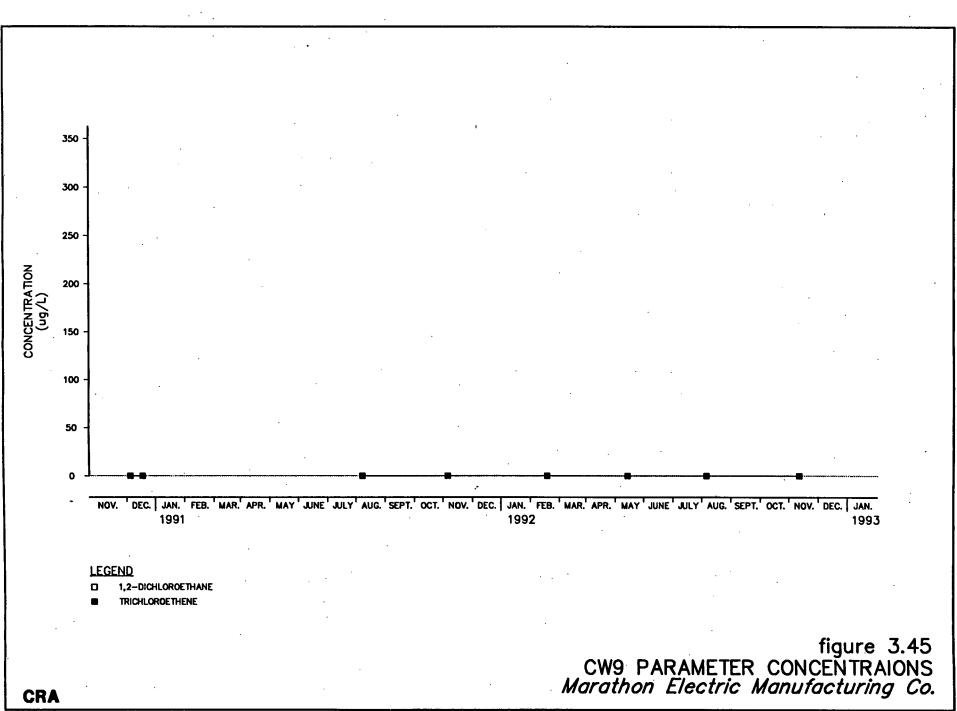


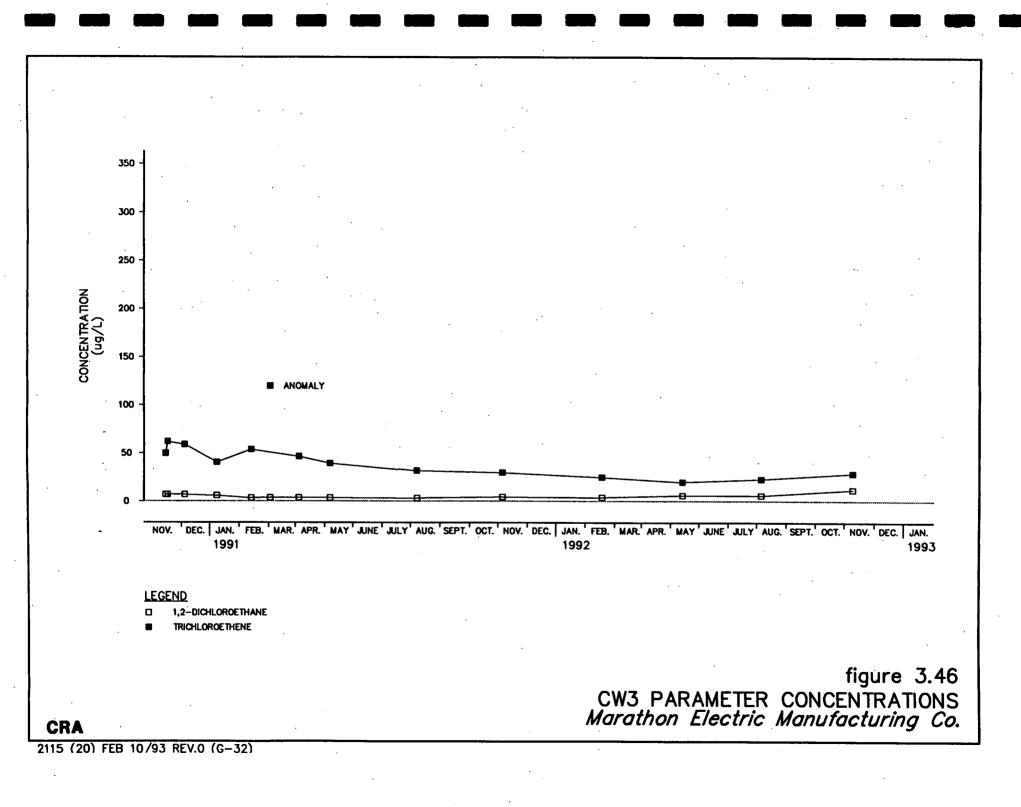
.




2115 (20) FEB 10/93 REV.0 (G-25)




2115 (20) FEB 10/93 REV.0 (G-27)



2115 (20) FEB 10/93 REV.0 (G-30)

2115 (20) FEB 10/93 REV.0 (G-31)

Page 1 of 4

TABLE 1

PIEZOMETRIC ELEVATIONS GROUNDWATER MONITORING PROGRAM MARATHON ELECTRIC COMPANY WAUSAU, WISCONSIN

Monitoring Well	Top of Casing Elevation	g Piezometric Elevations (ft. AMSL)							
No.	(ft. AMSL)	11/13/90	11/15/90	11/19/90	11/21/90	11/23/90	11/26/90	12/03/90	12/10/90
C1S	1,223.69	1,195.08	1,194.99	1,194.69	1,194.66	1,194.46	-	1,194.34	1,193.94
C2S(1)	1,216.23	1,187.89	1,181.09	Dry	Dry	Dry	Dry	Dry	Dry
CIS CIP	1,220.24	1,187.63	1,186.84	1,185.51	1,185.21	1,184.95	-	1,184.43	1,184.14
C4S	1,216.84	1,187.74	1,187.37	1,186.40	1,186.11	1,185.87	-	1,185.43	1,185.18
C4D	1,216.50	1,187.99	1,187.62	1,186.64	1,186.36	1,186.14	1,185.99	1,185.71	1,185.48
C6S	1,221.69	1,188.04	1,188.04	1,187.66	1,187.40	1,187.10	-	1,186.17	1,185.91
C7S (2)	1,221.00	1,187.86	1,185.89	1,183.67	1,183.24	1,182.90		1,182.07	1,181.72
R1S	1,222.13	1,188.51	1,188.43	1,187.43	1,187.03	1,186.63		1,185.33	1,184.74
R1D	1,222.39	1,188.32	1,188.06	1,187.03	1,186.69	1,186.30		1,185.09	1,184.60
R2S	1,209.88	1,188.15	1,187.84	1,187.12	1,186.94	1,186.79		1,186.08	1,185.58
R2D	1,209.66	1,187.43	1,187.35	1,185.85	1,185.72	1,185.61	1,185.69	1,184.87	1,184.81
R3S	1,215.29	1,188.49	1,188.38	1,187.46	1,187.09	1,186.74		1,185.64	1,185.11
R3D	1,215.53	1,187.60	1,186.23	1,185.33	1,185.13	1,184.93	_	1,184.16	1,183.93
R4D	1,219.07	1,187.90	1,175.19	1,173.47	1,173.03	1,172.81	1,172.43	1,172.12	1,171.75
E21	1,197.61	1,187.23	1,186.95	1,185.45	1,185.23	1,185.08		1,185.89	1,184.92
E21A	1,197.95	1,187.19	1,186.55	1,185.39	1,185.15	1,185.03		1,185.85	1,184.87
E30	1,204.58	1,186.94	1,186.86	1,184.60	1,184.33	1,184.19		1,185.83	1,184.13
TCT44	1,204.57	1,187.05	1,186.97	1,184.75	1,184.47	1,184.29		1,185.92	1,184.27
W50	1,215.67	1,187.92	1,187.20	1,186.00	1,185.69	1,185.41		1,184.48	1,184.11
W51A	1,224.50	Blockage	1,188.93	1,188.48	1,188.20	1,187.87		1,186.40	1,185.76
W52A	1,219.08	1,187.99	1,187.53	1,185.50	1,185.04	1,184.63	-	1,183.63	1,183.14
W52	1,219.25	1,187.77	1,185.22	1,184.05	1,183.76	1,183.56	1,183.32	1,182.95	1,182.67
W53A (3)	1,217.12	1,187.80	1,186.05	1,183.95	1,183.55	1,183.27	1,182.92	1,181.60	1,182.29
W53	1,216.91	1,187.91	1,185.98	1,184.01	1,183.63	1,183.33	1,183.01	1,182.73	1,182.33
W54	1,216.44	1,189.37	1,185.31	1,183.17	1,182.80	1,182.54	1,182.24	1,181.92	1,181.61
W55A	1,217.40	1,186.92	1,186.48	1,186.43	1,186.48	1,186.45		1,185.63	1,185.39
W55	1,217.29	1,186.24	1,185.64	1,186.29	1,186.29	1,186.29	1183.30*	1,184.88	1,185.43
W56		-	-	-		-			_
W56A			-				-		
IWD	1,192.08	1,187.38	1,186.78	1,185.62	1,185.48	1,185.35			-
IWM	1,192.91	1,187.65	1,187.05	1,185.91	1,185.77	1,185.65	-		-
IWS	1,193.17	1,187.90	1,187.52	1,187.00	1,187.01	1,186.92			-
WSWD	1,193.25	1,188.87	1,187.87	1,183.17	1,182.89	1,182.67	_	1,182.17	1,181.89
WSWS	1,193.24	1,188.49	1,187.63	1,187.58	1,187.78	1,187.75	-	1,187.44	1,187.68
WC4	1,196.86	1,186.61	1,186.61	1,185.76	1,185.58	1,185.46		1,185.91	1,185.39
WC4A	1,196.69	_	1,186.59	1,185.76	1,185.58	1,185.46	<u></u>	1,185.89	1,185.39
MW1A	_	_		-					
GM1S	-	-		-	-		-		-
MW1	-	_		-			-		
MW2			-		-	·			-
MW3	-		_		_				-
EW1	-	-	-				-		-
Staff Gages									
SG1	1,189.37	1,188.36	1,187.88	1,187.75	1,187.96	1,187.89	-	1,187.83	1,188.35
SG2	1,193.94	1,191.58	1,191.88	1,191.57	1,191.61	1,191.52	-	1,191.54	1,191.73

Notes:

* Measured on 11/27/90.

(1) Bottom of well measured at approximately 1,178.8 ft. AMSL.

(2) Bottom of well measured at approximately 1,181.3 ft. AMSL.

Page 2 of 4

TABLE 1

÷

PIEZOMETRIC ELEVATIONS GROUNDWATER MONITORING PROGRAM MARATHON ELECTRIC COMPANY WAUSAU, WISCONSIN

Monito ring Well	Top of Casing Elevation	Piezometric Elevations (ft. AMSL)								
No.	(ft. AMSL)	12/17/90	01/07/91	01/14/91	01/21/91	01/30/91	02/06/91	02/13/91	02/18/91	
CIS	1,223.69	1,193.62	1,193.13	1,193.13	1,192.74	1,192.54	1,192.51	1,191.95	1,191.68	
C15 C25 (1)	1,216.23	Dry	Dry	Dry	Dry	Dry	1,178.33	1,178.18	1,178.38	
CIS (I)	1,220.24	1,184.10	1,183.24	1,183.06	1,183.02	1,183.06	1,183.95	1,183.96	1,184.05	
C4S	1,216.84	1,184.10	1,183.24	1,184.12	1,184.07	1,184.14	1,184.66	1,184.69	1,184.80	
C45 C4D	1,216.50	1,185.40	1,184.55	1,184.38	1,184.32	1,184.40	1,184.97	1,184.96	1,185.08	
C6S	1,221.69	1,185.65	1,184.86	1,184.29	1,184.53	1,184.47	1,184.71	1,184.86	1,184.94	
C7S (2)	1,221.09	1,180.85	1,104.00 Dry	Dry	Dry	Dry	1,182.25	1,182.28	1,182.41	
	1,222.13	1,184.29	1,183.39	1,183.15	1,182.98	1,182.77	1,183.25	1,183.48	1,183.58	
R1S R1D	1,222.39	1,184.12	1,183.54	1,183.19	1,183.06	1,182.80	1,183.37	1,183.49	1,183.65	
R2S	1,209.88	1,184.12	1,185.03	1,184.94	1,184.90	1,184.57	1,184.78	1,184.64	1,184.77	
R2D	1,209.66	1,184.32	1,184.39	1,184.34	1,184.30	1,183.90	1,184.40	1,184.15	1,184.50	
R3S	1,215.29	1,184.70	1,183.96	1,183.74	1,183.65	1,183.42	1,183.83	1,184.03	1,184.11	
R3D	1,215.53	1,183.58	1,183.33	1,183.25	1,183.20	1,182.90	1,183.75	1,183.57	1,183.86	
R4D	1,219.07	1,171.60	1,170.87	1,170.54	1,170.45	1,170.58	1,176.77	1,176.18	1,176.51	
E21	1,197.61	1,185.83	1,183.99	1,183.85	1,184.19	1,184.42	1,185.01	1,184.22	1,184.49	
E21A	1,197.95	1,185.79	1,183.93	1,183.80	1,183.77	1,184.45	1,184.95	1,184.15	1,184.44	
E30	1,204.58	1,185.83	1,183.09	1,182.95	1,182.92	1,184.24	1,184.74	1,183.29	1,183.83	
TCT44	1,204.57	1,185.92	1,183.20	1,183.06	1,183.03	1,184.31	1,184.82	1,183.39	1,183.83	
W50	1,215.67	1,183.71	1,183.27	1,183.13	1,183.07	1,182.79	1,183.53	1,183.53	1,183.72	
W51A	1,224.50	1,185.16	1,183.98	1,183.65	1,183.45	1,183.20	1,183.52	1,183.77	1,183.87	
W52A	1,219.08	1,182.79	1,182.13	1,181.90	1,181.84	1,181.69	1,182.80	1,182.98	1,183.07	
W52A	1,219.25	1,182.41	1,181.95	1,181.87	1,181.85	1,181.69	1,183.18	1,183.00	1,183.25	
W53A (3)	1,217.12	1,182.17	Dry	Dry	Dry	Dry	1,182.81	1,182.78	1,182.91	
W53	1,216.91	1,182.21	1,181.39	1,181.19	1,181.16	1,181.07	1,182.41	1,182.86	1,182.91	
W54	1,216.44	1,181.49	1,180.65	1,180.51	1,180.47	1,180.49	1,183.54	1,183.46	1,182.59	
W55A	1,217.40	1,184.75	1,185.58	1,185.62	1,185.62	1,184.84	1,184.59	1,183.97	1,184.39	
W55	1,217.29	1,184.21	1,185.57	1,185.64	1,185.66	1,184.46	1,184.25	1,183.89	1,184.69	
W56	1,200.17		1,184.97	1,184.91	1,184.86	1,184.12	1,184.16	1,183.87	1,184.40	
W56A	1,200.95	-	1,188.19	1,188.07	1,188.00	1,187.77	1,187.73	1,187.67	1,187.58	
IWD	1,192.08	_		1,100.07	1,100.00	-	-			
IWD	1,192.91	-		-	_	_	-		-	
IWS	1,192.91	_		_	-					
WSWD	1,193.25		 1,181.05	1,180.91	 1,180.89	1,180.96	1,182.88	1,182.71	1,182.90	
WSWS	1,193.25	1,187.49	1,181.00	1,187.18	1,187.19	1,186.97	ice	ice	ice	
WC4	1,196.86	1,185.93	1,187.24	1,184.40	1,184.36	1,184.77	1,185.00	1,184.56	1,184.76	
WC4A	1,196.69	1,185.93	1,184.52	1,184.39	1,184.37	1,184.76	1,185.01	1,184.57	1,184.75	
MW1A	1,215.79		1,184.52	1,185.54	1,185.54	1,184.86	1,184.84	1,184.52	1,184.99	
GM1S	1,216.07	_	1,185.53	1,185.55	1,185.57	1,184.94	1,184.91	1,184.57	1,184.99	
	•	-	•	1,185.22	1,185.18	1,185.32	1,185.57	1,185.46	1,185.56	
MW1 MW2	1,221.86 1,220.25	_		1,185.25	1,185.22	1,185.32	1,185.60	1,185.46	1,185.58	
		-		1,185.25	1,185.22	1,185.03	1,185.33	1,185.26	1,185.37	
MW3 EW1	1,218.75 1,218.30	_		1,130.80	1,184.91	1,130.80	1,130.80	1,145.53	1,185.37	
19441	10.00	_		1,100.00	1,100.00	1,100.00	1,100.00	-,- 10:00	-,0.00	
Staff Gages										
SG1	1,189.37	1,187.81	1,187.72	1,187.72	1,187.68	1,187.66	1,187.93	1,187.70	ice	
SG2	1,193.94	1,191.54	1,191.38	1,191.40	1,191.38	1,191.24	1,191.42	1,191.41	1,191.29	

Notes:

Bottom of well measured at approximately 1,178.8 ft. AMSL.
 Bottom of well measured at approximately 1,181.3 ft. AMSL.
 Bottom of well measured at approximately 1,181.7 ft. AMSL.

.

PIEZOMETRIC ELEVATIONS GROUNDWATER MONITORING PROGRAM MARATHON ELECTRIC COMPANY WAUSAU, WISCONSIN

Monitoring Well	Top of Casing Elevation			Piezometric	Elevation	s (ft. AMSL)			
No.	(ft. AMSL)	02/27/91	03/04/91	03/11/91	03/18/91	03/25/91	04/01/91	04/08/91	04/15/91	04/22/91
										1 107 20
CIS	1,223.69	1,191.61	1,191.60	1,191.59	1,191.70	1,198.36	1,197.55	1,196.83	1,197.45	1,197.39
C2S (1)	1,216.23	1,178.62	1,178.53	1,178.38	1,178.71	1,179.48	1,179.90	1,179.97	1,180.60	1,181.13
CIS	1,220.24	1,184.29	1,184.22	1,184.14	1,184.25	1,185.20	1,185.56	1,185.70	1,186.34	1,186.48
C4S	1,216.84	1,185.05	1,184.96	1,184.89	1,184.98	1,185.88	1,186.29	1,186.40	1,187.08	1,187.15
C4D	1,216.50	1,185.33	1,185.25	1,185.13		1,186.13	1,186.53	1,186.64	1,187.30	1,187.36
C6S	1,221.69	1,185.11	1,185.16	1,185.15	1,185.25	1,185.45	1,183.24	1,186.49	1,187.01	1,187.39
C7S (2)	1,221.00	1,182.65	1,182.60	1,182.51	1,182.74	1,183.36	1,183.90	1,184.01	1,184.64	1,185.00
R1S	1,222.13	1,183.74	1,183.80	1,183.80	1,183.95	1,184.13	1,184.74	1,185.14	1,185.65	1,186.03
R1D	1,222.39	1,183.75	1,183.84	1,183.86	1,184.00	1,184.20	1,184.89	1,185.24	1,185.69	1,186.07
R2S	1,209.88	1,184.82	1,184.86	1,184.93	1,184.99	1,185.40	1,177.67	1,187.00	1,187.51	1,187.53
R2D	1,209.66	1,184.42	1,184.58	1,184.61	1,184.64	1,185.01	1,185.93	1,186.07	1,186.07	1,186.54
R3S	1,215.29	1,184.26	1,184.81	1,184.34	1,184.46	1,185.80	1,185.54	1,185.84	1,186.37	1,186.60
R3D	1,215.53	1,183.85	1,183.96	1,183.96	1,184.05	1,184.52	1,185.30	1,185.44	1,185.74	1,186.05
R4D	1,219.07	1,176.81	1,176.52	1,176.03	1,176.89	1,177.89	1,177.92	1,178.11	1,178.35	1,179.71
E21	1,197.61	1,185.41	1,184.72	1,184.60	1,184.67	1,186.65	1,185.95	1,185.76	1,187.37	1,187.43
E21A	1,197.95	1,185.37	1,184.65	1,184.54	1,184.60	1,186.63	1,185.91	1,185.71	1,187.36	1,187.41
E30	1,204.58	1,185.23	1,184.12	1,183.75	1,183.83	1,185.98	1,185.08	1,184.89	1,187.20	1,187.40
TCT44	1,204.57	1,185.33	1,184.13	1,183.87	1,183.96	1,186.58	1,185.20	1,184.90	1,187.29	1,187.50
W50	1,215.67	1,183.80	1,183.88	1,183.88	1,183.99	1,184.35	1,185.19	1,185.41	1,185.83	1,186.13
W51A	1,224.50	1,183.95	1,184.08	1,184.10	1,184.19	1,184.30	1,184.58	1,184.93	1,185.34	1,185.76
W52A	1,219.08	1,183.28	1,183.31	1,183.24	1,183.43	1,183.93	1,184.64	1,184.76	1,185.36	1,185.60
W52A	1,219.25	1,183.33	1,183.36	1,183.27	1,183.45	1,184.15	1,184.70	1,184.76	1,185.17	1,183.53
W53A (3)	1,217.12	1,183.16	1,183.08	1,182.98	1,183.20	1,184.00	1,184.38	1,184.52	1,185.16	1,185.44
W53A (5) W53	1,216.91	1,183.18	1,182.99	1,185.00	1,182.96	1,184.05	1,184.44	1,184.57	1,185.22	1,185.49
W54	1,216.44	1,182.84	1,183.20	1,182.64	1,182.83	1,184.44	1,184.99	1,184.19	1,184.82	1,185.16
	1,217.40	1,184.14	1,184.42	1,184.55	1,184.56	1,184.22	1,185.71	1,186.37	1,186.38	1,186.81
W55A	1,217.29	1,183.81	1,184.77	1,184.95	1,184.74	1,184.21	1,186.31	1,186.49	1,185.67	1,186.63
W55		1,183.01	1,184.52	1,184.61	1,184.63	1,184.44	1,185.80	1,186.37	1,186.07	1,186.65
W56	1,200.17					1,190.09	1,190.63	1,192.35	1,191.30	1,190.58
W56A	1,200.95	1,187.57	1,187.96	1,187.89	1,188.03		•		1,191.30	1,187.31
IWD	1,192.08							1,186.23		1,187.55
IWM	1,192.91		**	-	-	-	-	1,186.51	1,187.59	
IWS	1,193.17	-		-	-			1,188.09	1,188.67	1,188.23
WSWD	1,193.25	1,183.17	1,183.00	1,182.86	1,183.09	1,184.11	1,184.33	1,184.38	1,185.07	1,185.33
WSWS	1,193.24	ice	ice	ice	ice	ice	ice	1,188.69	1,188.90	1,188.29
WC4	1,196.86	1,185.41	1,185.04	1,185.04	1,185.08	1,186.72	1,186.21	1,186.11	1,187.18	1,187.28
WC4A	1,196.69	1,185.40	1,185.05	1,185.05	1,185.11	1,186.55		1,186.43.		1,187.39
MW1A	1,215.79	1,184.64	1,185.07	1,185.13	1,185.06	1,185.19		• 1,186.63		1,186.83
GM1S	1,216.07	1,184.71	1,185.06	1,185.12	1,185.08	1,185.22	1,186.50	: 1,186.65 -	1,186.61	1,186.91
MW1	1,221.86	1,185.85	1,185.71	1,185.68	1,185.68		1,187.08	1,187.19	1,187.87	1,187.82
MW2	1,220.25	1,185.90	1,185.75	1,185.69	1,185.71	1,186.87	1,187.10	⁻ 1,187.27	1,187.95	1,185.83
MW3	1,218.75	1,185.65	1,185.53	1,185.49	1,185.53	1,186.59	1,186.89	1,187.03	1,187.73	1,187.67
EW1	1,218.30	1,146.30	1,144.30	1,143.30	1,145.30	1,145.30	1,145.30	1,146.30	1,145.30	1,152.30
Staff Gages										
SGĨ	1,189.37	ice	ice	ice	1,187.67	1,188.91	1,188.75	1,188.68	1,189.02	1,188.44
SG2	1,193.94	1,191.27	1,191.56	1,191.60	1,191.76	1,192.05	1,192.05	1,192.04	1,191.95	1,191.74

Notes:

(1) Bottom of well measured at approximately 1,178.8 ft. AMSL.

(2) Bottom of well measured at approximately 1,181.3 ft. AMSL.

.

TABLE 1

.

PIEZOMETRIC ELEVATIONS GROUNDWATER MONITORING PROGRAM MARATHON ELECTRIC COMPANY WAUSAU, WISCONSIN

Monitoring Well	Top of Casing Elevation		1	Piezometric	Flenation	s (ff. AMSI)			
No.	(ft. AMSL)	04/29/91	05/06/91	06/27/91	08/05/91	11/04/91	02/17/92	05/11/92	08/03/92	11/02/92
	-				_					
C1S	1,223.69	1,197.25	1,196.99	1,196.92	1,195.87	1,194.71	1,193.13	1,196.95	1,195.10	1,195.14
C2S (1)	1,216.23	1,181.13	1,181.23	1,181.87	1,181.77	1,181.45	1,180.72	1,181.04	1,182.09	_
CIS	1,220.24	1,186.42	1,186.52	1,186.90	1,186.70	1,186.64	1,185.30	1,186.05	1,186.52	1,184.44
C4S	1,216.84	1,187.08	1,187.16	1,187.48	1,187.26	1,187.24	1,185.87	1,186.73	1,187.07	1,186.26
C4D	1,216.50	1,187.30	1,187.40	1,187.75	1,186.82	1,187.52	1,186.16	1,187.00	1,187.32	1,185.86
C6S	1,221.69	1,187.52	1,187.69	1,188.11	1,187.81	1,187.31	1,186.25	1,187.30	1,187.45	1,184.59
C7S (2)	1,221.00	1,185.05	1,185.17	1,185.71	1,185.56	1,185.26	1,184.35	1,184.89	1,185.73	1,183.35
R1S	1,222.13	1,186.24	1,186.40	1,187.13	1,186.88	1,186.21	1,185.26	1,186.22	1,186.87	1,183.91
R1D	1,222.39	1,186.22	1,186.36	1,186.98	1,186.77	1,186.22	1,185.24	1,186.14	1,186.77	1,183.96
R2S	1,209.88	1,187.38	1,187.34	1,187.64	1,187. 29	1,187.02	1,185.63	1,186.86	1,185.91	1,184.48
R2D	1,209.66	1,186.42	1,186.50	1,186.63	1,186.63	1,186.61	1,185.42	1,186.11	1,186.46	1,184.62
R3S	1,215.29	1,186.68	1,186.79	1,187.35	1,187.09	1,186.72	1,185.52	1,186.52	1,186.93	1,184.33
R3D	1,215.53	1,185.99	1,186.10	1,186.38	1,186.30	1,186.18	1,185.07	1,185.74	1,186.20	1,184.20
R4D	1,219.07	1,179.77	1,179.77	1,180.60	1,180.61	1,179.83	1,180.06	1,179.45	1,181.43	1,179.29
E21	1,197.61	1,186.36	1,186.41	1,187.48	1,186.63	1,186.74	1,185.33	1,186.03	1,186.41	1,185.08
E21A	1,197.95	1,186.33	1,186.56	1,187.45	1,186.59	1,186.69	1,185.27	1,185.99	1,186.34	1,185.01
E30	1,204.58	1,185.43	1,186.04	1,187.35	1,186.08	1,186.14	1,184.72	1,185.40	1,185.85	1,184.42
TCT44	1,204.57	1,185.37	1,186.03	1,187.42	1,186.09	1,186.14	1,184.73	1,185.42	1,185.85	1,184.46
W50	1,215.67	1,186.11	1,186.22	1,186.65	1,186.49	1,186.17	1,185.09	1,185.90	1,186.39	1,184.71
W51A	1,224.50	1,186.10	1,186.36	1,187.55	1,187.44	1,186.48	1,185.60	1,185.95	1,187.36	1,184.70
W52A	1,219.08	1,185.72	1,185.84	1,186.38	1,186.21	1,185.95	1,184.83	1,185.54	1,186.22	1,183.58
W52	1,219.25	1,185.45	1,185.55	1,185.96	1,185.87	1,185.70	1,184.75	1,185.25	1,185.91	1,184.03
W53A (3)	1,217.12	1,185.45	1,185.58	1,186.07	1,185.86	1,185.67	1,184.67	1,185.22	1,185.96	1,183.87
W53	1,216.91	1,185.49	1,185.61	1,186.11	1,185.95	1,185.74	1,184.91	1,185.31	1,186.04	1,184.01
W54	1,216.44	1,185.16	1,185.28	1,185.85	1,185.72	1,185.44	1,186.58	1,184.95	1,185.80	1,183.81
W55A	1,217.40	1,186.38	1,186.30	1,186.43	1,186.23	1,185.82	1,184.78	1,185.86	1,185.88	1,183.53
W55	1,217.29	1,186.41	1,186.34	1,185.92	1,186.39	1,186.23	1,185.13	1,185.94	1,186.12	1,183.94
W56	1,200.17	1,186.59	1,186.60	1,186.71	1,186.77	1,186.23	1,185.22	1,186.22	1,186.51	1,184.08
W56A	1,200.95	1,190.47	1,190.21	1,190.87	1,189.82	1,189.30	1,187.28	1,189.40	1,189.04	1,187.70
IWD	1,192.08	1,188.28	1,186.90	1,187.45	1,187.03			1,186.36	1,186.76	1,185.51
IWM	1,192.91	1,186.99	1,188.21	1,187.73	1,187.32		-	1,186.61	1,187.05	1,185.81
īws	1,193.17	1,188.31	1,188.33	1,188.15	1,188.09	-		1,187.76	1,187.80	1,186.85
WSWD	1,193.25	1,185.31	1,185.47	1,185.93	1,185.85	1,185.63	1,184.64	1,185.02	1,185.95	1,184.15
WSWS	1,193.24	1,185.58	1,188.54	1,188.29	1,188.24	1,188.16	1,187.99	1,188.19	1,188.95	1,187.78
WC4	1,196.86	1,186.68	1,186.78	1,187.42	1,189.63	1,186.62	1,185.47	1,186.31	1,186.61	1,185.04
WC4A	1,196.69	1,186.87	1,186.91	1,187.44	1,186.67	1,186.73	1,185.44	1,186.36	1,186.49	1,185.03
MW1A	1,215.79	1,186.63	1,186.71	1,186.63	1,186.72	1,186.79	1,185.50	1,186.29	1,186.43	1,184.69
GM1S	1,216.07	1,186.65	1,186.73	1,186.73	1,186.74	1,187.80	1,185.49	1,186.32	1,186.44	1,184.64
MW1	1,221.86	1,187.66	1,187.74	1,187.92	1,187.67	1,187.77	1,186.35	1,187.29	1,190.44	1,186.22
MW2	1,220.25	1,186.69	1,187.78	1,187.95	1,187.70	1,187.80	1,186.38	1,187.34	1,187.50	1,186.31
MW3	1,218.75	1,187.56	1,187.64	1,187.82	1,187.58	1,187.67	1,186.23	1,18 7 .16	1,187.35	1,185.90
EW1	1,218.30	1,152.30	1,153.30	1,153.30	1,153.30	1,152.30	1,153.30	1,153.30	1,153.30	1,153.30
Staff Gages	A. Starten and									
SG1	1,189.37	1188.72	1,188.81	1,188.45	1,188.50	1,189.12	-	1,188.43	1,188.30	1,188.02
SG2	1,193.94	1192.08	1,191.83	1,191.58	1,191.45	1,191.63	1,191.37	1,191.74	1,191.41	1,192.17

Notes:

•

(1) Bottom of well measured at approximately 1,178.8 ft. AMSL.

(2) Bottom of well measured at approximately 1,181.3 ft. AMSL.

.

TABLE 2

SAMPLE KEY/FIELD DATA MARATHON ELECTRIC MANUFACTURING CORP.

Sample	Date	Sample		Purge	· (Conductivity	•	
Source	Stamped	Number	Analyses .	Volume (gal.)	pH -	(µmhos)	L	Appearance
C2S	11/14/90	W-111490-JM-008	VOCs	5	6.00	360	12.3	Clear, No Odor
		W-111590-RRR-023	VOCs	3	6.07	<u>.</u> 440	12.8	Clear, No Odor
	11/26/90	dry				-		
	12/03/90	dry			•			
	12/10/90	dry						
	01/07/91	dry				•		
	02/12/91	dry						
	03/04/91	pump pulled						
	02/17/92	W-02179-RR-217	VOCs	3	6.62	830	12.2	
	05/12/92	W-051192-RR-238	VOCs	3	5.99	650	11.8	-
	08/04/92	W-080492-RR-268	VOCs	4	5.49	420	11.7	-
	11/03/92	W-110392-RR-258	VOCs	6	6.36	430	11.6	
	12							
C4D	11/14/90	W-111490-JM-005	VOCs	6	5.92	380	10.6	
	11/16/90	W-111690-RRR-033	VOCs	6	6.20	380	11.1	Clear
	11/26/90	W-112690-JM-050	VOCs	. 6	6.73	398	9.7	-
	12/03/90	W-120390-MB-042	VOCs, BNAs	6	6.12	390	· 10.1 · ·	Clear, No Odor
			Pest/PCB, Metals			• . •		
		W-121090-RR-054	VOCs	6	6.10	400	10.7	-
		W-010791-RR-068(MS/MSD)	VOCs	6	5.81	420 ~-	10.0	
		W-010791-RR-069 (Dup)	VOCs	-	٩.		Ξ.	-
	• •	W-021291-RR-085	VOCs	6	0.00	• 49 0	10.4	 .
		W-030491-RR-102 (MS/MSD)	VOCs, Metals	6	6.47	470	10.2	-
		W-030491-RR-107 (Dup)	VOC, Metals	-				-
		W-040191-RR-122	. VOCs	6	6.15	530	11.2	-
		W-050691-RR-139	VOCs	6	5.67	570	10.4	. .
		W-080591-RR-164(MS/MSD)	VOCs	6	6.33	550	11.4	-
		W-080691-RR-177 (Dup)	VOCs					-
	• •	W-110491-RR-184	VOCs	6	6.32	710	10.4	
	• •	W-021892-RR-212	VOCs, Metals	6	6.18	717	9.9	-
		W-051292-RR-231	VOCs	6	6.40	730	10.5	-
		W-051292-RR-232 (Dup)	VOCs	-		· _	-	-
		W-080492-RR-261	VOCs	. .	. 6.67	650	10.1	-
	11/03/92	W-110392-RR-251	VOCs	6	÷ 6.53	', 610	9.6	-

:

:

SAMPLE KEY/FIELD DATA MARATHON ELECTRIC MANUFACTURING CORP.

Sample	Date	Sample		Purge		Conductivity Temp.		
Source	Stamped	Number	Analyses	Volume (gal.)	pН	(µmhos)	°C	Appearance
R2D	11/14/90	W-111490-RRR-015	VOCs	6	6.79	270	10.7	Slightly Cloudy, No Odor
		W-111490-RRR-016 (Dup)	VOCs					-
		W-111590-JM-027	VOCs	6	6.88	280	11.7	Clear, No Odor
		W-112690-JM-044	VOCs	6	7.15	300	9.3	Clear, No Odor
	12/04/90	W-120490-MB-044	VOCs	6	6.30	300	9.5	Clear, No Odor
	12/11/90	W-121190-RR-058	VOCs	6	6.85	320	9.9	-
	01/08/91	W-010891-RR-075	VOCs	6	6.88	310	9.6	· <u>-</u>
	02/13/91	W-021391-RR-097	VOCs	6	5.81	310	9.5	
	03/05/91	W-030591-RR-110	VOCs	6	6.24	310	9.9	-
	04/02/91	W-040291-RR-130 (MS/MSD)	VOCs	6	8.11	310	9.7	
	04/02/91	W-040291-RR-131 (Dup)	VOCs	-			-	- .
	05/07/91	W-050791-RR147	VOCs	6	6.46	290	9.8	-
	08/06/91	W-080691-RR-172	VOCs	6	6.42	280	10.1	-
	11/05/91	W-110591-RR-193(MS/MSD)	VOCs	6	. 6.00	320	10.2	. –
	11/05/91	W-110591-RR-194 (Dup)	VOCs			-	-	_
	02/18/92	W-021892-RR-211	VOCs	. 6	6	400	9	-
	05/11/92	W-051192-RR-225	VOCs	6	9.42	380	10	-
	08/03/92	W-080392-RR-255	VOCs	6	6.39	340	10.1	-
,	11/02/92	W-110292-RR-245	VOCs	6	· 7.20	340	10.2	-
R4D	11/14/90	W-111490-RRR-007	VOCs	6	5.99	450	11.4	Clear, No Odor
	11/15/90	W-111590-RRR-024	VOCs	. 6	6.06	500	12.3	Clear, No Odor
	11/26/90	W-112690-JM-041	VOCs	6	6.50	450	10.8	-
	12/04/90	W-120490-MB-046	VOCs	6	6.35	375	10.9	Clear, No Odor
	12/11/90	W-121190-RR-059	VOCs	6	6.18	400	11.5	-
	01/07/91	W-010791-RR-073	VOCs	6	6.34	370	9.5	
	02/12/91	W-021291-RR-90 (MS/MSD)	VOCs	6	5.45	290	11.6	
	02/12/91	W-021291-RR-91 (Dup)	VOCs	-			-	-
	03/04/91	W-030491-RR-106	VOCs	6	6.30	280	11.4	-
	04/01/91	W-040291-RR-123	VOCs	6	6.20	380	11.2	
	05/08/91	W-050691-RR140 (MS/MSD)	VOCs	6	6.10	300	11.8	-
	05/06/91	W-050691-RR-151 (Dup)	VOCs	-,		'	-	-
	08/05/91	W-080591-RR-165	VOCs `	6	6.05	320	12.4	-
	11/04/91	W-110491-RR-185	VOCs	6	5.89	310	11.3	-
	02/18/92	W-021892-RR-214 (MS/MSD)	VOCs	6	6.02	330	11.0	-
	02/18/92	W-021892-RR-215 (Dup)	VOCs		·			-
	05/12/92	W-051292-RR-236	VOCs	6	6.22	360	11.5	-
		W-080392-RR-265 (MS/MSD)	VOCs	6	5.66	280	12.4	-
	11/03/92	W-110392-RR-256	VOCs	6	6.40	330 /	11.0	-

SAMPLE KEY/FIELD DATA MARATHON ELECTRIC MANUFACTURING CORP.

Sample Date		Sample		Purge	Conductivity Temp.				
Source	Stamped	Number	Analyses	Volume (gal.)	рН	(µmhos)	°C	Appearance	
W52	11/14/90	W-111490-CH-009	VOCs	6	6.92	283	11.1	Clear, No Odor	
		W-111590-JM-025	VOCs	6	7.17	292	11.6	Clear, No Odor	
	• •	W-11590-JM-026 (Dup)	VOC	-		- '		-	
		W-112690-JM-042	VOCs	6	7.42	310	9.3	Cloudy	
		W-120490-MB-045	VOCs, BNAs, Pest/PCB, Metals	6	6.95	283	10.4	Clear, No Odor	
	12/11/90	W-121190-RR-060	VOCs	6	7.39	320	10.6	 .	
	01/07/91	W-010791-RR-074	VOCs	6	6.79	340	9.8	-	
	02/12/91	W-021291-RR-089	VOCs	6	6.88	370	10.3	-	
	03/04/91	W-030491-RR-105	VOCs, Metals	6	7.15	370	10.2	-	
	04/01/91	W-040191-RR-124	VOCs	. 6	7.29	410	10.3	-	
	05/06/91	W-050691-RR-141	VOCs	6	7.14	380	9.9	-	
	08/05/91	W-080591-RR-166	VOCs	6	7.02	500	10.2	-	
	11/04/91	W-110491-RR-186	VOCs	6	6.97	340	9.1	-	
	02/18/92	W-021892-RR-213	VOCs, Metals	6	8.12	327	7.6	-	
		W-051292-RR-237	VOCs	. 6	7.06	410	9.8		
	08/04/92	W-080492-RR-266	VOCs	6	6.42	340	10.6	-	
	08/04/92	W-080492-RR-267 (Dup)	VOCs	-				-	
	11/03/92	W-110392-RR-257	VOCs	6	7.76	390	9.5	-	
W53A	11/14/90	W-111490-CH-004	VOCs	6	6.29	780	11.3	Clear, No Odor	
	11/15/90	W-111590-RRR-020	VOCs	6	6.26	786	11.8	Clear, No Odor	
	11/26/90	W-112690-JM-037	VOCs	. 5	6.40	1190	11.2	Clear, No Odor	
	11/26/90	W-112690-JM-038 (Dup)	VOCs				-	-	
	12/03/90	W-120390-MB-039	VOCs, BNAs, Pest/PCB, Metals	5	6.00	1180	11.0	Clear, No Odor	
	12/10/90	W-121090-RR-056	VOCs	5	6.73	1140	11.5		
	01/07/91	dry							
	02/12/91	W-021291-RR-087	VOCs	5	7.42	350	10.6	-	
	03/04/91	W-030491-RR-104	VOCs, Metals	5	7.20	290	10.4		
	04/02/91	W-040291-RR-132	VOCs	5	8.13	220	11.5		
	05/07/91	W-050791-RR-150	VOCs	5	6.85	190	10.8		
	08/06/91	W-080691-RR-175	VOCs	5	6.78	180	9.3	-	
		W-110591-RR-197	VOCs	5	6.46	680	7.9	-	
		W-021792-RR-206	VOCs, Metals	4	6.88	293	10.3	·	
		W-051192-RR-234	VOCs	4	6.48	280	14.2	-	
	08/04/92	W-080492-RR-263	VOCs	5	6.20	480	12.9	· _	
		W-110392-RR-253	VOCs	4	7.03	560	12.0	-	

SAMPLE KEY/FIELD DATA MARATHON ELECTRIC MANUFACTURING CORP.

Sample Date		Sample		Purge		Conductivity	y Temp.		
Source	Stamped	Number	Analyses	Volume (gal.)	pH	(µmhos)	C	Appearance	
W53	11/33/90	W-111390-RRR-002	VOCs	7.5	6.90	4 385	9.9	Clear, No Odor	
		W-111590-RRR-021	VOCs	6	7.35	380	10.9	Clear, No Odor	
	• •	W-111590-RRR-022 (Dup)	VOCs				-	-	
	• •	W-112690-JM-039	VOCs	6	8.62	460	9.5	-	
	12/03/90	W-120390-MB-040	VOCs	6	6.75	590	9.3	Clear, No Odor	
		W-120390-MB-041 (Dup)	VOCs		, <u></u> ·				
•	12/10/90	W-121090-RR-057 (MS/MSD)	VOCs	6	6.94	540	9.8		
•	01/07/91	W-010791-RR-071	VOCs	6	7.51	520	7.8		
	02/12/91	W-021291-RR-086	VOCs	6	7.24	100	10.1	-	
	03/04/91	W-030491-RR-103	VOCs	6	7.50	730	9.7	-	
	04/02/91	W-040291-RR-133	VOCs	6	8.95	860	10.1	-	
		W-050791-RR-149	VOCs	6	6.78	720	10.2		
		W-080691-RR-174	VOCs	6	6.71	705	9.9	-	
	11/05/91	W-110591-RR-196	VOCs	6	7.88	580	6.5		
		W-021792-RR-205	VOCs	6	7.42	403	8.9	-	
		W-051292-RR-233	VOCs	. 6	7.25	280	10.9	-	
		W-080492-RR-262	VOCs	6	6.80	180	10.6	-	
		W-110392-RR-252	VOCs	6	7.76	250	9.8		
W54	· 11/13/90	W-111390-MB-001	VOCs	20			-	Clear, No Odor	
	11/15/90	W-111590-JM-019	VOCs	16	7.10	680	11.8	Clear, No Odor	
	11/26/90	W-112690-JM-036	VOCs	17	7.48	480	10.2	Slightly gray	
	12/03/90	W-120390-MB-038	VOCs, BNAs,	17	7.60	560	9.2		
			Pest/PCBs, Metals						
	12/10/90	W-120990-RR-053	VOCs	15	7.46	350	10.4	-	
		W-120990-RR-055 (Dup)	VOCs	-			-	-	
	01/07/91	W-010791-RR-072	VOCs	15	6.67	250	10.2		
	02/12/91	W-021291-RR-088	VOCs	15	9.83	370	10.2	-	
	03/05/91	W-030591-RR-111	VOCs, Metals	15	7.19	180	8.5		
		W-040291-RR-134	VOCs	15	9.56	250	5.1	-	
		W-050791-RR_148	VOCs	15	6.93	170	3.4	-	
	•	W-080691-RR-173	VOCs	16	6.88	170	10.9	~ ,	
		W-110591-RR-195	VOCs	16	6.74	190	12.2	-	
		W-021792-RR-207	VOCs, Metals	16	7.12	730	12.1	-	
		W-051192-RR-237	VOCs	15.5	7.24	310	8.2		
		W-080492-RR-264	VOCs	16	6.38	190	9.0	-	
		W-110392-RR-255 (Dup)	VOCs				-		
		W-110392-RR-254 (MS/MSD)	VOCs	15	7.12	150	9.5	-	

SAMPLE KEY/FIELD DATA MARATHON ELECTRIC MANUFACTURING CORP.

Sample	Date	Sample		Purge	(Conductivity Temp.		
Source	Stamped	Number	Analyses	Volume (gal.)	pН	(µmhos)	°C	Appearance
W55	11/14/90	W-111490-018 (MS/MSD)	VOCs	. 6	6.80	320	9.8	Cloudy Gray, No Odor
	• •	W-111490-RRR-017 (Dup)	VOCs					-
		W-111690-RRR-032	VOCs	6	7.52	310	9.6	Clear, No Odor
	• •	W-112790-JM-049	VOCs	6	6.64	310	9.3	Gray, Cloudy
		W-120490-MB-043 (MS/MSD)	VOCs	6	6.88	280	8.6	Gray, cloudy, No Odor
		W-121190-RR-061	VOCs	6	7.60	330	9.4	_
	01/08/91	W-010891-RR-076	VOCs	6	6.99	310	9.2	-
		W-021391-RR-092	VOCs	6	6.93	400	9.0	
		W-030591-RR-108	VOCs	6	7.10	370	8.9	-
	04/02/91	W-040291-RR-129	VOCs	6	8.32	380	9.3	_
	05/07/91	W-050791-RR-146	VOCs	6	7.08	380	9.4	
	08/06/91	W-080691-RR-171	VOCs	6	6.98	370	10.2	
	11/05/91	W-110591-RR-192	VOCs	6	7.01	440	9.4	
	02/17/92	W-021792-RR-204	VOCs	6	7.38	383	9.0	-
	05/11/92	W-051192-RR-224	VOCs	6	12.70	400	10.4	·
	08/03/92	W-080392-RR-254	VOCs	. 6	7.25	360	10.0	-
	11/02/92	W-110292-RR-244	VOCs	6	7.66	380	9.8	-
WSWD	11/14/90	W-111490-RRR-013	VOCs	6	6.70	290	9.5	Cloudy (Rusty), No Odor
	11/16/90	W-111690-MB-028	VOCs	6	6.72	280	9.8	Light Orange Color, No Odor
	11/27/90	W-112790-JM-045	VOCs	6	6.57	510	9.2	Clear
	12/04/90	W-120490-MB-047	VOCs	6	6.37	430	8.6	Slight off color, No Odor
	12/11/90	W-121190-RR-062	VOCs	6	6.75	430	8.6	
	01/08/91	W-010891-RR-077	VOCs	6	6.27	470	8.1	·
	02/13/91	W-021391-RR-093	VOCs	6	5.74	540	6.0	-
	03/05/91	W-030591-RR-109	VOCs	6	5.92	550	4.9	-
	04/01/91	W-040191-RR-125	VOCs	' 6	6.85	570	4.6	
	05/06/91	W-050691-RR-142	VOCs	6	6.67	540	6.6	-
	08/05/91	W-080591-RR-167	VOCs	6	6.31	550	11.6	
	11/04/91	W-110491-RR-187	VOCs	6 ·	5.92	420	10.0	·
	02/18/92	W-021892-RR-216	VOCs	6	6.22	417	7.0	-
	05/11/92	W-051192-RR-226	VOCs	6	6.34	440	7.3	
	08/03/92	W-080392-RR-256	VOCs	6	6.14	390	12.0	-
	11/02/92	W-110292-RR-246	VOCs	6	6.84	370	10.1	

SAMPLE KEY/FIELD DATA MARATHON ELECTRIC MANUFACTURING CORP.

Sample Date		Sample		Purge			, Temp.			
Source	Stamped	Number	Analyses	Volume (gal.)	pН	(µmhos)	°C	Appearance		
IWD	11/14/90	W-111490-RRR-014	VOCs	6	6.62	448	10.1	Cloudy (Rusty), No Odor		
	11/16/90	W-111690-MB-029	VOCs	` 6	6.48	470	9.8	Clear, No Odor		
	11/27/90	W-112790-JM-046	VOCs	6	6.59	360	9.3	Clear		
	12/04/90	Not sampled								
	12/11/90	Not sampled								
	01/07/91	Not sampled								
	02/13/91	Not sampled								
	03/04/91	Not sampled								
	04/02/91	Not sampled	$\mathbf{e}_{1} = \mathbf{e}_{1}^{\mathbf{e}}$							
	05/07/91	W-050791-RR-152	VOCs	6	6.81	240	8.4	-		
	08/06/91	W-080691-RR-176	VOCs	6	7.61	380	9.2	-		
•	11/04/91	Not sampled	•							
	02/18/92	Not sampled								
		W-051192-RR-227	VOCs	6	8.64	150	8.8	-		
	08/03/92	W-080392-RR-257	VOCs	6	6.45	190	9.6	-		
	11/02/92	W-110292-RR-247	VOCs	. 6	8.66	150	8.1	-		
CW3	11/14/90	W-111490-MB-003	VOCs	NA		-				
	11/16/90	W-111690-MB-030	VOCs	NA		-		-		
	12/03/90	W-120390-MB-036	VOCs	NA		-	-	-		
	01/07/91	W-010791-RR-066	VOCs	NA			-	-		
	02/12/91	W-021291-RR-081	VOCs	NA		-	<u></u>	-		
	03/04/91	W-030491-RR-100	VOCs	NA				-		
	04/01/91	W-040191-RR-120	VOCs	NA		-	-	-		
	05/06/91	W-050191-RR-135	VOCs	NA			-	-		
	08/05/91	W-080591-RR-160	VOCs	NA		-	-			
	11/04/91	W-110491-RR-180	VOCs	NA						
	02/17/92	W-021792-RR-200	VOCs	NA				· –		
	05/12/92	W-051192-RR-220	VOCs	NA			-			
	08/03/92	W-080392-RR-250	VOCs	NA		- '		-		
	11/02/92	W-110292-RR-240	VOCs	NA						

SAMPLE KEY/FIELD DATA MARATHON ELECTRIC MANUFACTURING CORP.

Sample Date		Sample		Purge		Conductivity		
Source	Stamped	Number	Analyses	Volume (gal.)	, pH	(µmhos)	L	Appearance
CW6	11/14/90	W-111490-MB-006	VOCs	NA		_ ·		-
		W-111690-MB-031	VOCs	NA		·		
		W-120390-MB-037	VOCs	NA		. 		
		W-010791-RR-067	VOCs	NA			-	
		W-021291-RR-082	VOCs	NA				-
		W-030491-RR-101	VOCs	NA		- .		
•		W-040191-RR-121	VOCs	NA				
	• •	W-050691-RR-136	VOCs	NA		-		
	08/05/91	W-080591-RR-161	VOCs	NA		-		-
	11/04/91	W-110491-RR-181	VOCs	NA		-	-	-
		W-021792-RR-201	VOCs	NA				
		W-051192-RR-221	VOCs	NA		-		
		W-080392-RR-251	VOCs	NA				-
	11/02/92	W-110292-RR-241	VOCs	NA			-	-
CW7	02/12/91	W-021291-RR-083	VOCs	. NA		-		_
	05/06/91	W-050691-RR-137	VOCs	NA		-	-	
	08/05/91	W-080591-RR-162	VOCs	NA		-		
	11/04/91	W-110491-RR-182	VOCs	NA				
	02/17/92	W-021792-RR-202	VOCs	NA		. —	•==	. -
	05/12/92	W-051192-RR-222	VOCs	NA		-		
	08/03/92	W-080392-RR-252	VOCs	NA		-		
	11/02/92	W-110292-RR-242	VOCs	NA		-		-
CW9	02/12/91	W-021291-RR-084	VOCs	NA				-
	05/06/91	W-050691-RR-138	VOCs					
	08/05/91	W-080591-RR-163	VOCs	NA			-	-
	11/04/91	W-110491-RR-183	VOCs	NA		-		-
		W-021792-RR-203	VOCs	NA			-	
		W-051192-RR-223	VOCs	NA .		-	-	
		W-080392-RR-253	VOCs	NA				-
	11/02/92	W-110292-RR-243	VOCs	NA				

SAMPLE KEY/FIELD DATA MARATHON ELECTRIC MANUFACTURING CORP.

Sample	ample Date Sample		•	Purge		Conductivity	JTemp.		
Source	Stamped	Number	Analyses	Volume (gal.)	pН	(µmhos)	C	Appearance	
EW1 (Influent)	11/14/90	W-111490-RRR-010	VOCs	NA	5.99	390	11.3	Clear, No Odor	
2001 (11214610)		W-111490-RRR-011 (Dup)	VOCs	NA				·	
		W-111690-RRR-034	VOCs	NA		-		-	
		PW-112790-JM-001	VOCs	NA			-	-	
		PW-112390-RRR-003	VOCs	NA	·		-		
	• •	PW-112790-JM-005 (MS/MSD)	VOCs	NA			-		
		PW-112990-RRR-009	VOCs	NA	5.95	710	11.8	Clear, No Odor	
		PW-112990-RRR-010 (Dup)	VOCs	NA			-	-	
	12/04/90	W-120490-MB-048	VOCs, BNAs,	NA				-	
	12/04/90	W-120490-MB-050 (Dup)	Pest/PCBs, Metals						
	12/06/90	PW-120690-MH-011	VOCs	NA	6.75	545	11.9	Clear, No Odor	
	12/06/90	PW-120690-MH-012 (Dup)	VOCs	NA		-	-	-	
	12/11/90	W-121190-RR-063	VOCs	NA		-	-	-	
	12/17/90	PW-121790-JM-014 (MS/MSD)	VOCs	NA			-	-	
	12/17/90	PW-121790-JM-015 (Dup)	VOCs	NA			-	-	
	01/08/91	W-010891-RR-078	VOCs	NA			-		
	01/08/91	W-010891-RR-079 (Dup)	VOCs	NA		-	-		
		W-021391-RR-094	VOCs	NA		-	-	. 	
		W-030591-RR-112	VOCs, Metals	NA				-	
		W-030591-RR-113 (Dup)	VOCs, Metals	NA				-	
	04/01/91	W-040191-RR-126	VOCs	NA			 '		
	05/06/91	W-050691RR-143	VOCs	NA		-	-	-	
	05/06/91	W-050691RR-144 (Dup)	VOCs	NA		-	-	-	
	08/05/91	W-080591-RR-168	VOCs	NA		-	-	-	
	11/04/91	W-110491-189	VOCs	NA			-		
	11/04/91	W-110491-190 (Dup)	VOCs	NA		·		-	
	02/17/92	W-021792-RR-208 (MS/MSD)	VOCs, Metals	NA		-	-	-	
	05/11/92	W-051192-RR-228	VOCs	NA		-		-	
	08/03/92	W-080392-RR-258	VOCs	NA	·		-	-	
		W-080392-RR-259 (Dup)	VOCs	NA			-	-	
	11/02/92	W-110292-RR-248	VOCs	NA			-	-	

SAMPLE KEY/FIELD DATA MARATHON ELECTRIC MANUFACTURING CORP.

Sample	Date	Sample		Purge		Conductivit	y Temp.	
Source	Stamped	Number	Analyses	Volume (gal.)	pН	(µmhos)	ົຕໍ	Appearance
EW1 (Effluent)	11/14/90	W-111490-RRR-012	VOCs	ŇA	6.31	390	11.1	Clear, No Odor
	11/16/90	PW-111690-RRR-035	VOCs .	NA				Clear, No Odor
		PW-111990-RRR-002	VOCs	NA	[.]			Clear
		PW-112390-RRR-004	VOCs	NA		-		-
	11/27/90	PW112790-JM-006	VOCs	NA		-		-
	11/27/90	PW112790-JM-007 (Dup)	VOCs	NA				-
		PW-112990-RRR-008	VOCs	NA	6.35	370	10.9	-
		W-120490-MB-049	VOCs, BNAs,	NA	6.56	350	10.9	
			Pest/PCBs, Metals				• ,	
	12/06/90	PW-120690-MN-013	VOCs	NA	- 6.89	, <u>380</u>	10.1	Clear, No Odor
	12/11/90	W-121190-RR-064	VOCs	NA	6.77	370	10.9	-
		W-1211190-RR-065 (Dup)	VOCs	NA	· · · · · ·	:	[']	
	12/17/90	PW-121790-JM-016	VOCs	NA	6.96	620	10.9	
	01/08/91	W-010891-RR-080	VOCs	NA	•••		-	-
	02/13/91	W-021391-RR-095	VOCs	NA	6.20	290	9.3	-
	02/13/91	W-021391-RR-096 (Dup)	VOCs	. NA			·	
	03/05/91	W-030591-RR-114	VOCs	NA	7.27	290	10.4	- .
	03/05/91	W-030591-RR-115	Metals	NA	7.27	290	10.4	-
	04/01/91	W-040191-RR-127	VOCs	NA	6.86	300	9.8	-
	04/01/91	W-040191-RR-128 (Dup)	VOCs	NA			-	·
	05/06/91	W-050691-RR-145	VOCs	NA	7.92	270	9.3	
	08/05/91	W-080591-RR-169	VOCs	NA				-
	08/05/91	W-080591-RR-170 (Dup)	VOCs	ŇA				-
	11/04/91	W-110491-RR-191	VOCs	NA	6.34	- 260	10.2	· –
	02/17/92	W-021792-RR-209	VOCs, Metals	NA	6.92	260	10.1	-
	02/17/92	W-021792-RR-210 (Dup)	VOCs, Metals	NA	+			-
	05/11/92	W-051192-RR-229	VOCs	NA	7.49	280	10.6	-
	05/11/92	W-051192-RR-230 (Dup)	VOCs	NA				-
		W-080392-RR-260	VOCs	NA	6.54	420	10.0	
	11/02/92	W-110292-RR-249	VOCs	NA	6.58	430	9.9	-
	11/02/92	W-110292-RR-250 (Dup)	VOCs	NA		-		-

Note: NA = Not Applicable

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL C2S

				WELL C2S			
Parameter (µg/L)	C25						
VOCs	11/14/90	11/15/90	02/17/92	02/17/92	05/12/92	08/04/92	11/02/92
				Diluted			
Chloromethane ·		ND20	ND2	ND4	ND2	ND2	2
Bromomethane	ND80	ND20	ND2	ND4	ND2	ND2	ND2
Vinyl Chloride	ND80	ND20	ND2	ND4	ND2	ND2	ND2
Chloroethane	ND80	ND20	ND2	ND4	ND2	ND2	ND2
Methylene Chloride	ND80	13U	ND1	3D	ND1	ND1	ND1
Acetone	44U	ND20J	ND2	ND4	ND2J	ND2J	ND2UJ
Carbon Disulfide	ND80J	ND10	ND1	ND2	ND1	ND1J	ND1
1,1-Dichloroethene	ND40	ND10	ND1	ND2	ND1	ND1J	ND1
1,1-Dichloroethane	ND40	ND10	ND1	ND2	ND1	ND1	ND1
1,2-Dichloroethene (total)	ND40	3J	ND1	ND2	0.6J	0.2J [.]	ND1
Chloroform	· 13J	ND10	ND1	ND2	ND1	ND1	ND1
1,2-Dichloroethane	ND40	ND10	ND1	ND2	ND1	ND1	ND1
2-Butanone	ND40	ND20J	ND2	ND4	ND2J	ND2	ND2
1,1,1-Trichloroethane	ND80J	ND10	ND1	ND2	ND1	ND1	ND1
Carbon Tetrachloride	ND40	ND10	ND1J	ND2J	ND1	ND1	ND1
Vinyl Acetate	ND40	ND20	ND2	ND4	ND2J	ND2	ND2
Bromodichloromethane	ND80	ND10	ND1	ND2	ND1J	ND1	ND1
1,2-Dichloropropane	ND40	ND10	ND1	ND2	ND1	ND1	ND1
cis-1,3-Dichloropropene	ND40	ND10	ND1	ND2	ND1	ND1	ND1
Trichloroethene	1500	390J	62J	28D	63	40	34
Dibromochloromethane	ND40	ND10	ND1	ND2	ND1J	ND1	ND1
1,1,2-Trichloroethane	ND40	ND10	ND1	ND2	ND1	ND1	ND1
Benzene	ND40	ND10	ND1	ND2	ND1	ND1	ND1
Trans-1,3-Dichloropropene	ND40	ND10	ND1	ND2	ND1	ND1	ND1UJ
Bromoform	ND40	ND10	ND1	ND2	ND1J	ND1	ND1UJ
4-Methyl-2-Pentanone	ND40	ND20J	ND2	ND4	ND2	ND2	ND2
2-Hexanone	ND80	ND20J	ND2	ND4	ND2	ND2	ND2
Tetrachloroethene	ND80	ND10	ND1	ND2	ND1	ND1	ND1
1,1,2,2-Tetrachloroethane	ND40	ND10	ND1	ND2	ND1	ND1	ND1
Toluene	ND40	ND10	ND1	ND2	ND1	ND1	ND1
Chlorobenzene	ND40	ND10	ND1	ND2	ND1	ND1	ND1
Ethylbenzene	ND40	ND10	ND1	ND2	ND1	ND1	. ND1
Styrene	ND40	ND10	ND1	ND2	ND1	ND1	ND1
Total Xylenes	ND40	ND10	ND1	ND2	ND1	ND1	ND1

Notes:

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY **VOLATILE ORGANIC COMPOUNDS (VOCs)** WELL C4D

Parameter (µg/L)	C4D											
VOCs.	11/14/90	11/16/90	11/26/90	12/03/90	12/10/90	01/07/91	01/07/91	02/12/91	03/04/91	03/04/91	04/03/91	05/06/91
							Dup		MS/MSD			
Chloromethane	ND2	ND2J	ND2									
Bromomethane	ND2											
Vinyl Chloride	ND2	2.2	ND2	1.3J	3.8	3.3						
Chloroethane	ND2											
Methylene Chloride	0.4U	0.5U	ND1	0.5U	0.6U	0.2U	0.3U	ND1	ND1	ND1	ND1	ND1
Acetone	ND2J	ND2J	ND2J	ND2J	ND2J	ND2J	ND2	6.9UJ	ND2J	ND2J	3J	ND2
Carbon Disulfide	ND1	ND1	ND1	ND1	0.3J	ND1	ND1	ND1	ND1	· ND1	ND1	ND1
1,1-Dichloroethene	ND1											
1,1-Dichloroethane	ND1											
1,2-Dichloroethene (total)	1	0.9J	1	0.9J	0.95	1	1	ND1	ND1	ND1	1	ND1
Chloroform	0.9J	0.9J	0.9J	0.6J	0.5J	0.2J	0.3J	ND1	ND1	ND1	ND1	ND1
1,2-Dichloroethane	ND1											
2-Butanone	ND2	ND2	ND2	ND2J	ND2J	ND2J	ND2	ND2R	ND2J	ND2J	ND2	ND2R
1,1,1-Trichloroethane	ND1											
Carbon Tetrachloride	ND1											
Vinyl Acetate	ND2	ND2R										
Bromodichloromethane	ND1											
1,2-Dichloropropane	ND1											
cis-1,3-Dichloropropene	ND1											
Trichloroethene	12J	11	10	9	11	5J	5J	6.5	3.4 J	4.1 J	4.6J	4.3
Dibromochloromethane	ND1											
1,1,2-Trichloroethane	ND1											
Benzene	ND1											
Trans-1,3-Dichloropropene	ND1	· ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1
Bromoform ·	ND1											
4-Methyl-2-Pentanone	ND2	ND2	ND2	ND2	ND2J	ND2						
2-Hexanone	ND2	ND2	ND2	ND2	ND2J	ND2						
Tetrachloroethene	ND1	ND1	ND1	ND1	ND1	3	3	7.5	7.2	7.2	12	8.7
1,1,2,2-Tetrachloroethane	ND1											
Toluene	ND1											
Chlorobenzene	ND1											
Ethylbenzene	ND1											
Styrene	· ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1
Total Xylenes	ND1	ND1	ND1	ND1	ND1J	ND1						

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination.

J = the associated numerical value is an estimated quantity.

D = secondary dilution was performed to obtain result. R = data was rejected, analyte may or may not be present.

Page 2 of 2

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY **VOLATILE ORGANIC COMPOUNDS (VOCs)** WELL C4D

Parameter (µg/L)	C4D							
VOCs	08/05/91	08/05/91	11/04/91	02/18/92	05/12/92	05/12/92	08/04/92	11/02/92
		Duplicate				Duplicate		
Chloromethane	ND2	ND2	ND2J	ND2	ND2	ND2	ND2	ND2
Bromomethane	ND2	ND2	ND2J	ND2	ND2	ND2	ND2	ND2
Vinyl Chloride	2.9	3.6	1.8J	ND2	ND2	ND2	ND2	ND2
Chloroethane	ND2	ND2	ND2J	ND2	ND2	ND2	ND2	ND2
Methylene Chloride	ND1	ND1	1.2J	0.6J	ND1	ND1	ND1	ND1
Acetone	ND2J	ND2J	ND2J	ND1	ND2J	ND2	ND2J	ND2UJ
Carbon Disulfide	ND1	ND1	ND1J	ND1	ND1	ND1	ND1J	ND1
1,1-Dichloroet	ND1	ND1	ND1J	ND1	ND1	ND1	ND1J	ND1
1,1-Dichloroethane	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1
1,2-Dichloroethene (total)	1.4	1.6	2.5J	2	1	1	1	1
Chloroform	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1
1,2-Dichloroethane	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1
2-Butanone	ND2J	ND2J	ND2J	ND2	ND2	ND2	ND2	ND2UJ
1,1,1-Trichloroethane	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1
Carbon Tetrachloride	ND1	ND1	ND1J	ND1J	ND1	ND1	ND1	ND1
Vinyl Acetate	ND2	ND2	ND2J	ND2	ND2J	ND2	ND2	ND2
Bromodichloromethane	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1
1,2-Dichloropropane	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1
cis-1,3-Dichloropropene	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1
Trichloroethene	3.9	3.8J	2.7]	3	2J	2	2	2
Dibromochloromethane	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1
1,1,2-Trichloroethane	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1
Benzene	ND1	ND1J	ND1J	ND1	ND1	ND1	ND1	ND1
Trans-1,3-Dichloropropene	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1
Bromoform	ND1	ND1	ND1J	ND1	ND1R	ND1	ND1	ND1
4-Methyl-2-Pentanone	ND2	ND2	ND2J	ND2	ND2	ND2	ND2	ND2
2-Hexanone	ND2	ND2	ND2J	ND2	ND2	ND2	ND2	ND2
Tetrachloroethene	10	12	8.9J	9	6	7	8	8
1,1,2,2-Tetrachloroethane	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1
Toluene	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1
Chlorobenzene	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1
Ethylbenzene	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1
Styrene	ND1	ND1	ND1J	ND1	ND1R	ND1R	ND1	ND1
Total Xylenes	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination.

J = the associated numerical value is an estimated quantity.

D = secondary dilution was performed to obtain result.

R = data was rejected, analyte may or may not be present.

Page 1 of 3

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL R2D

Parameter (µg/L)	R2D											
VOCs	11/14/90	11/14/90	11/15/90	11/26/90	12/04/90	12/11/90	12/11/90	01/08/91	02/12/91	02/12/91	03/04/91	03/04/91
		Dup				•	Reanalysis			Diluted		Diluted
Chloromethane	ND20	ND20	ND20	ND40	ND80	ND50	ND80	ND98J	ND2	ND100	ND2	ND200J
Bromomethane	ND20	ND20	ND20	ND40	ND80	ND50	ND80	ND98	ND2	ND100	ND2	ND200
Vinyl Chloride	ND20	ND20	ND20	ND40	ND80	ND50	ND80	ND98	ND2	ND100	ND2	ND200
Chloroethane	ND20	ND20	ND20	ND40	ND80	ND50	ND80	ND98	ND2	ND100	ND2	ND200
Methylene Chloride	ND10	ND10	13U	19U	100U	7U	25U	50U	ND1	53DU	ND1 ·	190D
Acetone	ND20J	ND20J	ND20J	ND40J	ND80J	ND50J	ND80J	ND98J	ND2J	ND100J	ND2J	ND200J
Carbon Disulfide	ND10	ND10	ND10	ND20J	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100
1,1-Dichloroethene	ND10	ND10	ND10	ND20	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100
1,1-Dichloroethane	ND10	ND10	ND10	ND20	ND40	ND25	ND40J	ND49	ND1	ND50	ND1	ND100
1,2-Dichloroethene (total)	8J	8J	8J	27	35J	44	43D	48J	24	ND50	24	ND100
Chloroform	ND10	ND10	ND10	ND20	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100
1,2-Dichloroethane	ND10	ND10	ND10	ND20	ND40	ND25J	ND40J	ND49	ND1	ND50	ND1	ND100
2-Butanone	ND20J	ND20J	ND20J	ND40	ND80J	ND50J	ND80J	ND98	ND2R	ND100R	ND2R	ND200J
1,1,1-Trichloroethane	ND10	ND10	ND10	ND20	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100
Carbon Tetrachloride	ND10	ND10	ND10	ND20	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100
Vinyl Acetate	ND20	ND20	ND20	ND40J	ND80	ND50J	ND80J	ND98	ND2	ND100	ND2	ND200
Bromodichloromethane	ND10	ND10	ND10	ND20	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100
1,2-Dichloropropane	ND10	ND10	ND10	ND20	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100
cis-1,3-Dichloropropene	ND10	ND10	ND10	ND20	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100
Trichloroethene	240	250	260	750	1100	1200	1200	1500J	650	2400D	650	2700D
Dibromochloromethane	ND10	ND10	ND10	ND20	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100
1,1,2-Trichloroethane	ND10	ND10	ND10	ND20	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100
Benzene	ND10	ND10	ND10	ND20	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100
Trans-1,3-Dichloropropene	ND10	ND10	ND10	ND20	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100
Bromoform	ND10	ND10	ND10	ND20	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100J
4-Methyl-2-Pentanone	ND20	ND20	ND20J	ND40	ND80	ND50J	ND80J	ND98	ND2	ND100	ND2	ND200
2-Hexanone	ND20	ND20	ND20J	ND40J	ND40	ND50J	ND80J	ND98	ND2	ND100	ND2J	ND200
Tetrachloroethene	ND10	ND10	ND10	ND20	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100
1,1,2,2-Tetrachloroethane	ND10	ND10	ND10	ND20	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100
Toluene	ND10	ND10	ND10	ND20	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100
Chlorobenzene	ND10	ND10	ND10	ND20	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100
Ethylbenzene	ND10	ND10	ND10	ND20	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100
Styrene	ND10	ND10	ND10	ND20	ND40	ND25	ND40	ND49	ND1	ND50	ND1	ND100
Total Xylenes	ND10	ND10	ND10	ND20	ND40	ND25J	ND40J	ND49	ND1	ND50	ND1	ND100

à

Notes:

NDx = not detected at quantitation limit x.

U = the analyte was detected but was attributed to laboratory contamination.

J = the associated numerical value is an estimated quantity.

D = secondary dilution was performed to obtain result.

R = data was rejected, analyte may or may not be present.

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY **VOLATILE ORGANIC COMPOUNDS (VOCs)** WELL R2D

	R2D											
Parameter (µg/L)	04/03/91	04/03/91	04/03/91	04/03/91	05/07/91	05/07/91	08/06/91	08/06/91	11/05/91	11/05/91	11/05/91	11/05/91
VOCs		Diluted	Dup	Dup-Diluted		Diluted		Diluted		Diluted	Dup	Dup/Diluted
Chloromethane	ND2	ND100	ND2	ND100	ND2J	ND100	ND2	ND200	ND2J	ND200J	ND2J	ND400J
Bromomethane	ND2	ND100	ND2	ND100	ND2	ND100	ND2	ND200	ND2J	ND200J	ND2J	ND400J
Vinyl Chloride	ND2	ND100	ND2	ND100	ND2	ND100	ND2	ND200	ND2J	ND200J	ND2J	ND400J
Chloroethane	ND2	ND100	ND2	ND100	ND2	ND100	ND2	ND200	ND2J	ND200J	ND2J	ND400J
Methylene Chloride	ND1	83D	ND1	ND50	ND1	ND50	ND1	160D	ND1J	250DUJ	ND1J	100DJ
Acetone	ND2J	290UJ	ND2J	ND100J	ND2	ND100J	ND2J	340DJ	ND2J	ND200J	ND2J	ND400J
Carbon Disulfide	ND1U	ND50	ND1U	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	9600DJ
1,1-Dichloroethene	ND1	ND50	ND1	ND50	1.2	ND50	1.1	ND100	ND1J	ND100J	ND1J	ND200J
1,1-Dichloroethane	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
1,2-Dichloroethene (total)	25	ND50	27	ND50	24	ND50	25	ND100	57 J	ND100J	49J	ND200J
Chloroform	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
1,2-Dichloroethane	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
2-Butanone	ND2	ND100	ND2	ND100	ND2R	ND100R	ND2J	ND200J	ND2J	ND200J	ND2J	170DJ
1,1,1-Trichloroethane	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
Carbon Tetrachloride	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
Vinyl Acetate	ND2J	ND100	ND2	ND100	ND2R	ND100	ND2	ND200	ND2J	ND200J	ND2J	ND400J
Bromodichloromethane	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
1,2-Dichloropropane	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
cis-1,3-Dichloropropene	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
Trichloroethene	690J	2700D	780J	2100D	880R	270JA	860J	4800D	1300J	3800DJ	550J	960DJ
Dibromochloromethane	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
1,1,2-Trichloroethane	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
Benzene	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
Trans-1,3-Dichloropropene	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
Bromoform	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
4-Methyl-2-Pentanone	ND2J	ND100	ND2	ND100	ND2	ND100	ND2	ND200	ND2J	ND200J	ND2J	ND400J
Chlorobenzene	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
Ethylbenzene	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
Styrene	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
Total Xylenes	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
Chlorobenzene	ND1	ND50	ND1	ND50	ND1	ND50	ND1	. ND100	ND1J	ND100J	ND1J	ND200J
Ethylbenzene	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
Styrene	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J
Total Xylènes	ND1	ND50	ND1	ND50	ND1	ND50	ND1	ND100	ND1J	ND100J	ND1J	ND200J

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination. J = the associated numerical value is an estimated quantity. D = secondary dilution was performed to obtain result.

R = data was rejected, analyte may or may not be present.

A = assumed anomaly

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY **VOLATILE ORGANIC COMPOUNDS (VOCs)** WELL R2D

	R2D								
Parameter (µg/L)	02/18/92	02/18/92	02/18/92	05/11/92	05/11/92	08/03/92	08/03/92	11/02/92	11/02/92
VOCs		Reanalysis	Diluted		Diluted		Diluted		Diluted
		·							
Chloromethane	ND2J	ND2J	ND100J	ND2	ND50	ND2J	ND250J	1J	ND200
Bromomethane	ND2J	ND2J	ND100J	ND2	ND50	ND2	ND250	ND2	ND200
Vinyl Chloride	ND2J	ND2J	ND100J	ND2	ND50	ND2	ND250	ND2	ND200
Chloroethane	ND2J	ND2J	ND100J	ND2	ND50	ND2	ND250	ND2	ND200
Methylene Chloride	ND1J	ND1J	ND50J	1U	33U	ND1	79DJ	ND1	100U
Acetone	ND2J	ND2J	ND100J	3U	180U	ND2J	ND250	ND2UJ	ND200UJ
Carbon Disulfide	ND1J	ND1J	ND50J	ND1	ND25	ND1J	ND120	ND1	ND100
1,1-Dichloroethene	ND1J	ND1J	ND50J	1J	ND25	1J	ND120	2	ND100
1,1-Dichloroethane	ND1J	ND1J	ND50J	ND1	ND25	ND1	ND120	ND1	ND100
1,2-Dichloroethene (total)	39J	37J	ND50J	32	39D	40	26DJ	53	ND100
Chloroform	ND1J	ND1J	ND50J	ND1	ND25	ND1	ND120	ND1	ND100
1,2-Dichloroethane	ND1J	ND1J	ND50J	ND1	ND25	ND1	ND120	ND1	ND100
2-Butanone	ND2J	ND2J	ND100J	ND2	ND50	ND2	ND250	ND2	ND200
1,1,1-Trichloroethane	ND1J	ND1J	ND50J	ND1	ND25	ND1	ND120	ND1	ND100
Carbon Tetrachloride	ND1J	ND1J	ND50J	ND1	ND25	ND1	ND120	ND1	ND100
Vinyl Acetate	ND2J	ND2J	ND100J	ND2	ND50	ND2	ND250	ND2	ND200
Bromodichloromethane	ND1J	ND1J	ND50J	ND1	ND25	ND1	ND120	ND1	ND100
1,2-Dichloropropane	ND1J	ND1J	ND50J	ND1	ND25	ND1	ND120	ND1	ND100
cis-1,3-Dichloropropene	ND1J	ND1J	ND50J	ND1	ND25	ND1	ND120	ND1	ND100
Trichloroethene	1300J	1300J	2300DJ	190J	2300D	240J	3800D	480J	5200D
Dibromochloromethane	ND1J	ND1J	ND50J	ND1	ND25	ND1	ND120	ND1	ND100
1,1,2-Trichloroethane	ND1J	ND1J	ND50J	ND1	ND25	3	ND120	3	ND100
Benzene	ND1J	ND1J	ND50J	ND1	ND25	ND1	ND120	ND1	ND100
Trans-1,3-Dichloropropene	ND1J	ND1J	ND50J	ND1	ND25	ND1	ND120	ND1UJ	ND100UJ
Bromoform	ND1J	·ND1J	ND50J	ND1	ND25	ND1	ND120	ND1UJ	ND100UJ
4-Methyl-2-Pentanone	ND2J	ND2J	ND100J	ND2	ND50	ND2	ND250	ND2	ND200
2-Hexanone	ND2J	ND2J	ND100J	ND2	ND50	ND2	ND250	ND2	ND200
Tetrachloroethene	ND1J	ND1J	ND50J	0.9J	ND25	1	ND120	1	ND100
1,1,2,2-Tetrachloroethane	ND1J	ND1J	ND50J	ND1	ND25	ND1	ND120	ND1	ND100
Toluene	ND1J	ND1J	ND50J	ND1	ND25	ND1	ND120	ND1	ND100
Chlorobenzene	ND1J	ND1J	ND50J	ND1	ND25	ND1	ND120	ND1	ND100
Ethylbenzene	ND1J	ND1J	ND50J	ND1	ND25	ND1	ND120	ND1	ND100
Styrene	ND1J	ND1J	ND50J	ND1R	ND25R	ND1	ND120	ND1	ND100
Total Xylenes	ND1J	ND1J	ND50J	ND1	ND25	ND1	ND120	ND1	ND100

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination. J = the associated numerical value is an estimated quantity.

D = secondary dilution was performed to obtain result. R = data was rejected, analyte may or may not be present.

A = assumed anomaly

;

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL R4D

Parameter (µg/L)	R4D																	
VOCs	11/14/90	11/15/90	11/26/90	12/04/90	12/11/90	01/07/91	02/12/91	02/12/91	03/04/91	04/03/91	04/03/91	05/06/91	05/06/91	05/06/91	08/05/91	08/05/91	11/04/91	11/04/91
								Dup			Diluted		Dup	Dup-Diluted		Diluted		Diluted
Chloromethane	ND14	ND20	ND2J	ND4	ND5	4	ND2	ND2	ND2	ND2	ND10	ND2J	ND2J	ND4	ND2	ND4	ND2J	ND20J
Bromomethane	ND14	ND20	ND2	ND4	ND5	ND2	ND2	ND2	ND2	ND2	ND10	ND2	ND2	ND4	ND2	ND4	ND2J	ND20J
Vinyl Chloride	ND14	ND20	ND2	ND4	ND5	ND2	ND2	ND2	ND2	ND2	ND10	ND2	ND2	ND4	ND2	ND4	ND2J	ND20J
Chloroethane	ND14	ND20	ND2	ND4	ND5	ND2	ND2	ND2	ND2	ND2	ND10	ND2	ND2	ND4	ND2	ND4	ND2J	ND20J
Methylene Chloride	8U	13U	ND1	4U	0.9U	0.2U	ND1	ND1	ND1	ND1	ND5 .	ND1	ND1	ND2	ND1	2.3D	3.3J	19DUJ
Acetone	ND14J	ND20J	ND2J	ND4J	ND5J	ND2	ND2J	ND2J	ND2J	ND2J	ND10J	ND2	ND2	ND4J	ND2J	ND4J	ND2J	ND20J
Carbon Disulfide	ND7	ND10	ND1J	ND2	ND3	ND1	ND1	ND1	ND1	ND1	ND5	ND1	ND1	ND2	ND1	ND2	1.6J	ND10J
1,1-Dichloroethene	ND7	ND10	ND1	ND2	ND3	ND1	ND1	ND1	ND1	ND1	ND5	ND1	ND1	ND2	ND1	ND2	ND1J	ND10J
1,1-Dichloroethane	ND7	ND10	ND1	ND2	ND3	ND1	ND1	ND1	ND1	ND1	ND5	ND1	ND1	ND2	ND1	ND2	ND1J	ND10J
1,2-Dichloroethene (total)	27	8J	0.9J	11	21	1	ND1	ND1	ND1	2.8	ND5	ND1	NDI	ND2	ND1	ND2	2.7J	- ND10J
Chloroform	ND7	ND10	1	0. 8 J	0.9J	1	NDI	ND1	ND1	ND1	ND5	ND1	NDI	ND2	ND1	ND2	ND1J	ND10J
1,2-Dichloroethane	ND7	ND10	ND1	ND2	ND3	ND1	ND1	ND1	ND1	ND1	ND5	ND1	ND1	ND2	ND1	ND2	ND1J	ND10J
2-Butanone	ND14J	ND20J	ND2	ND4J	ND5J	ND2	ND2R	ND2R	ND2J	ND2	ND10	ND2R	ND2R	ND4R	ND2J	ND4J	ND2J	ND20J
1,1,1-Trichloroethane	ND7	ND10	ND1	ND2	ND3	0.2J	ND1	ND1	ND1	ND1	ND5	ND1	ND1	ND2	ND1	ND2	NDIJ	ND10J
Carbon Tetrachloride	ND7	ND10	NDI	ND2	ND3	ND1	ND1	ND1	ND1	ND1	ND5	ND1	ND1	ND2	ND1	ND2	ND1J	ND10J
Vinyl Acetate	ND14	ND20	ND2	ND4	ND5	ND2	ND2	ND2	ND2	ND2	ND10J	ND2R	ND2R	ND4R	ND2	ND4	ND2J	ND20J
Bromodichloromethane	ND7	ND10	NDI	ND2	ND3	ND1	ND1	ND1	ND1	ND1	ND5	ND1	ND1	ND2	ND1	ND2	NDIJ	ND10J
1,2-Dichloropropane	ND7	ND10	NDI	ND2	ND3	ND1	ND1	ND1	ND1	ND1	ND5	ND1	ND1	ND2	ND1	ND2	ND1J	ND10J
cis-1,3-Dichloropropene	ND7	ND10	ND1	ND2	ND3	ND1	ND1	ND1	ND1	ND1	ND5	ND1	ND1	ND2	ND1	ND2	ND1J	ND10J
Trichloroethene	230	300	17	45	64	23J	28J	32	31	80J	110D	58	74J	58D	74J	71D	220J	170DJ
Dibromochloromethane	ND7	ND10	ND1	ND2	ND3	ND1	NDI	NDI	ND1	ND1	ND5	ND1	ND1	ND2	ND1	ND2	ND1J	ND10J
1,1,2-Trichloroethane	ND7	ND10	ND1	ND2	ND3	ND1	NDI	ND1	ND1	ND1	ND5	ND1	ND1	ND2	NDI	ND2	NDIJ	ND10J
Benzene	ND7	ND10	ND1	ND2	ND3	ND1	NDI	ND1	ND1	ND1	ND5	ND1	ND1	ND2	ND1	ND2	ND1J	ND10J
Trans-1,3-Dichloropropene	ND7	ND10	ND1	ND2	ND3	ND1	ND1	ND1	NDI	ND1	ND5	ND1	ND1	ND2	ND1	ND2	ND1J	ND10J
Bromoform	ND7	ND10	ND1	ND2	ND3	ND1	ND1	ND1	ND1	ND1	ND5	ND1	ND1	ND2	ND1	ND2	NDIJ	ND10J
4-Methyl-2-Pentanone	ND14	ND20J	ND2	ND4	ND5J	ND2	ND2	ND2	ND2	ND2	ND10J	ND2	ND2	ND4	ND2	ND4	ND2J	ND20J
2-Hexanone	ND14	ND20J	ND2	ND4	ND5J	ND2	ND2	ND2	ND2J	ND2	ND10	ND2	ND2	ND4	ND2	ND4	ND2J	ND20J
Tetrachloroethene	3J	2J	ND1	ND2	0.5J	ND1	ND1	ND1	ND1	ND1	ND5	ND1	ND1	ND2	ND1	ND2	NDIJ	ND10J
1,1,2,2-Tetrachloroethane	ND7	ND10	ND1	ND2	ND3	ND1	ND1	ND1	ND1	ND1	ND5	ND1	ND1	ND2	ND1	ND2	ND1J	ND10J
Toluene	ND7	ND10	ND1	ND2	ND3	ND1	ND1	ND1	ND1	ND1	ND5	ND1	NDI	ND2	ND1	ND2	NDIJ	ND10J
Chlorobenzene	ND7	ND10	ND1	ND2	ND3	ND1	ND1	ND1	ND1	ND1	ND5	ND1	ND1	ND2	ND1	ND2	NDIJ	ND10J
Ethylbenzene	ND7	ND10	ND1	ND2	ND3	ND1	ND1	ND1	ND1	ND1	ND5	ND1	ND1	ND2	NDI	ND2	NDIJ	ND10J
Styrene	ND7	ND10	ND1	ND2	ND3	ND1	ND1	ND1	ND1	ND1	ND5	ND1	ND1	ND2	ND1	ND2	ND1J	ND10J
Total Xylenes	ND7	ND10	NDI	ND2	ND3J	ND1	ND1	ND1	ND1	ND1	ND5	ND1	ND1	ND2	ND1	ND2	NDIJ	ND10J

÷

Notes:

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL R4D

Parameter (µg/L)	R4D										
VOCs	02/18/2	02/18/92	02/18/92	02/18/92	02/18/92	05/12/92	05/12/92	08/04/92	08/04/92	11/02/92	11/02/92
		Diluted	Dup	Dup-Reanalysis	Dup-Diluted		Diluted		Diluted		Diluted
Chloromethane	ND2	ND20	ND2	ND2	ND20	ND2	ND8	ND2	ND50J	ND2	ND40
Bromomethane	ND2	ND20	ND2	ND2	ND20	ND2	ND8	ND2	ND50	ND2	ND40
Vinyl Chloride	ND2	ND20	ND2	ND2	ND20	ND2	ND8	ND2	ND50	ND2	ND40
Chloroethane	ND2	ND20	ND2	ND2	ND20	ND2	ND8	ND2	ND50	ND2	ND40
Methylene Chloride	ND1	9JD	ND1	ND1	ND10	ND1	ND4	ND1	ND25	ND1	15JDB
Acetone	ND2	ND20	ND2	ND2	ND20	ND2J	ND8	ND2J	ND50	ND2UJ	ND40UJ
Carbon Disulfide	ND1	ND10	ND1	ND1	ND10	ND1	ND4	ND1J	ND25	ND1	ND20
1,1-Dichloroethene	ND1	ND10	ND1	ND1	ND10	0.8J	ND4	ND1J	ND25	ND1	ND20
1,1-Dichloroethane	ND1	ND10	ND1	ND1	ND10	ND1	ND4	NDI	ND25	ND1	ND20
1,2-Dichloroethene (total)	11J	ND10	11J	10J	8DJ	50J	30DJ	9	8DJ	26	18JD
Chloroform	ND1	ND10	ND1	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND20
1,2-Dichloroethane	ND1	ND10	ND1	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND20
2-Butanone	ND2	ND20	ND2	ND2	ND20	ND2J	ND8	ND2	ND50	ND2	ND40
1,1,1-Trichloroethane	ND1	ND10	ND1	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND20
Carbon Tetrachloride	ND1J	ND10J	ND1J	ND1J	ND10J	ND1	ND4	ND1	ND25	ND1	ND20
Vinyl Acetate	ND2	ND20	ND2	ND2	ND20	ND2J	ND8	ND2	ND50	ND2	ND40
Bromodichloromethane	ND1	ND10	ND1	ND1	ND10	ND1J	ND4	ND1	ND25	ND1	ND20
1,2-Dichloropropane	ND1	ND10	ND1	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND20
cis-1,3-Dichloropropene	ND1	ND10	ND1	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND20
Trichloroethene	410J	330DJ	420J	380J	300DJ	140J	420D	110J	440D	350J	830D
Dibromochloromethane	ND1	ND10	ND1	ND1	ND10	ND1J	ND4	ND1	ND25	ND1	ND20
1,1,2-Trichloroethane	ND1	ND10	ND1	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND20
Benzene	ND1	ND10	ND1	ND1	ND10	ND1	ND4	NDì	ND25	ND1	ND20
Trans-1,3-Dichloropropene	ND1	ND10	ND1	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND20
Bromoform	ND1	ND10	ND1	ND1	ND10	ND1J	ND4	ND1	ND25	ND1	ND20
4-Methyl-2-Pentanone	ND2	ND20	ND2	ND2	ND20	ND2	ND8	ND2	ND50	ND2UJ	ND40
2-Hexanone	ND2	ND20	ND2	ND2	ND20	ND2	ND8	ND2	ND50	ND2UJ	ND40
Tetrachloroethene	ND1	ND10	ND1	ND1	ND10	0.9J	ND4	ND1	ND25	0.5J	ND20
1,1,2,2-Tetrachloroethane	ND1	ND10	ND1	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND20
Toluene	ND1	ND10	ND1	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND20
Chlorobenzene	ND1	ND10	ND1	ND1	ND10	ND1	ND4	ND1	ND25	NDI	ND20
Ethylbenzene	ND1	ND10	ND1	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND20
Styrene	ND1	ND10	ND1	ND1	ND10	ND1	ND4R	ND1	ND25	ND1	ND20
Total Xylenes	ND1	ND10	ND1	ND1	ND10	ND1	ND4	NDI	ND25	ND1	ND20

Notes:

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL W52

Parameter (µg/L)	W52																
VOCs	11/14/90	11/15/90	11/15/90	11/26/90	12/04/90	12/11/90	01/07/91	02/12/91	02/12/91	03/04/91	03/04/91	04/03/91	04/03/91	05/06/91	05/06/91	08/05/91	08/05/91
			Dup						Diluted								
Chlessenshare	ND4	ND4	ND4	ND6	ND10	ND8	ND12J	ND2	ND40	ND2	ND40	ND2	ND40	ND2	ND100	ND2	ND100
Chloromethane Bromomethane	ND4 ND4	ND4	ND4	ND6	ND10	ND8	ND12	ND2	ND40	ND2	ND40	ND2	ND40	ND2	ND100	ND2	ND100
Vinvl Chloride	ND4	ND4	ND4	ND6	ND10	ND8	ND12	ND2	ND40	ND2	ND40	ND2	ND40	ND2	ND100	ND2	ND100
Chloroethane	ND4 ND4	ND4	ND4	ND6	ND10	ND8	ND12	ND2	ND40	ND2	ND40	ND2	ND40	ND2	ND100	ND2	ND100
Methylene Chloride	10	10	10	4U	70	8U	70	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	84D
	ND4J	ND4J	ND4J	ND6I	ND10J	ND8J	ND121	ND2j	ND40I	ND21	ND40J	3.7]	ND40J	ND2	ND100J	ND2J	ND100J
Acetone Carbon Disulfide	ND4J	ND4)	ND4)	ND3I	ND5	ND4	ND6	ND1	ND20	1.9	ND20	ND1	ND20	ND1	ND50	ND1	ND50
1.1-Dichloroethene	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND50
1,1-Dichloroethane	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND50
1.2-Dichloroethene (total)	ND2	ND2	ND2	ND3	ND5	ND4	ND6	2	ND20	2.5	ND20	4.5	ND20	9.4	ND50	9.8	ND50
Chloroform	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND50
1,2-Dichloroethane	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND50
2-Butanone	ND4	ND4J	ND4I	ND6	ND10J	ND8J	ND12	ND2R	ND40R	ND2R	ND40I	ND2	ND40	ND2R	ND100R	ND2I	ND100I
1.1.1-Trichloroethane	ND2	ND2	ND1	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	NDI	ND50
Carbon Tetrachloride	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND50
Vinyl Acetate	ND4	ND4	ND4	ND6I	ND10	ND8	ND12	ND2	ND40	ND2	ND40	ND2	ND40J	ND2R	ND100	ND2	ND100
Bromodichloromethane	ND2	ND2	ND2	ND3	ND5	· ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND50
1,2-Dichloropropane	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND50
cis-1,3-Dichloropropene	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND50
Trichloroethene	64	56	55	84	130	100	140J	500	1000D	480	1000D	490J	850D	750]	1900D	620J	2100D
Dibromochloromethane	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	NDI	ND20	ND1	ND50	ND1	ND50
1,1,2-Trichloroethane	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND50
Benzene	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND50
Trans-1,3-Dichloropropene	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND50
Bromoform	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND50
4-Methyl-2-Pentanone	ND4	ND4	ND4	ND6	ND10	ND8	ND12	ND2	ND40	ND2	ND40	ND2	ND40J	ND2	ND100	ND2	ND100
2-Hexanone	ND4J	ND4	ND4	ND61	ND10	ND8	ND12	ND2	ND40	ND2J	ND40	ND2	ND40	ND2	ND100	ND2	ND100
Tetrachloroethene	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND50
1,1,2,2-Tetrachloroethane	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND50
Toluene	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND50
Chlorobenzene	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND50
Ethylbenzene	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	290D
Styrene	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND50
Total Xylenes	ND2	ND2	ND2	ND3	ND5	ND4	ND6	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND50

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination. J = the associated numerical value is an estimated quantity.

D = secondary dilution was performed to obtain result. R = data was rejected, analyte may or may not be present.

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL W52

Parameter (µg/L)	W52											
VOCs	11/04/91	11/04/91	.02/18/92	02/18/92	05/12/92	05/12/92	08/04/92	08/04/92	08/04/92	08/04/92	11/02/92	11/02/92
		Diluted		Diluted		Diluted		Diluted	Duplicate	Dup-Diluted		Diluted
Chloromethane	ND2J	ND2001	ND2	ND20	ND2	ND8	ND2	ND50j	ND2	ND50J	ND2	ND40
Bromomethane	ND2J	ND200J	ND2	ND20	ND2	ND8	ND2	ND50	ND2	ND50	ND2	ND40
Vinyl Chloride	ND2J	ND200J	ND2	ND20	ND2	ND8	ND2	ND50	ND2	ND50	ND2	ND40
Chloroethane	ND2J	ND200J	ND2	ND20	ND2	ND8	ND2	ND50	ND2	ND50	ND2	ND40
Methylene Chloride	ND1J	ND100J	ND1	ND10	10	4U	ND1	ND25	ND1	ND25	ND1	20U
Acetone	ND2j	ND200J	ND2	ND20	3U	21U	ND2I	ND50	ND2I	ND50UJ	ND2UJ	ND40
Carbon Disulfide	ND1J	22001	51	ND10	ND1	ND4	ND1I	ND25	1]	ND25	ND1	ND20
1.1-Dichloroethene	ND1J	ND: .)J	ND1	ND10	ND1	ND4	ND1I	ND25	ND1J	ND25	ND1	ND20
1,1-Dichloroethane	ND1J	ND100J	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND25	ND1	ND20
1,2-Dichloroethene (total)	23J	ND100J	ND1	ND10	4	4D	7 .	ND25	7	ND25	7	ND20
Chloroform	ND1I	ND100J	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND25	ND1	ND20
1.2-Dichloroethane	ND1	ND1001	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND25	ND1	ND20
2-Butanone	ND2I	ND2001	ND2	ND20	ND2	ND8	ND2	ND50	ND2	ND50	ND2	ND40
1.1.1-Trichloroethane	ND1	ND100I	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND25	ND1	ND20
Carbon Tetrachloride	ND1I	ND1001	ND1I	ND10J	ND1	ND4	ND1	ND25	ND1	ND25	ND1	ND20
Vinyl Acetate	ND2I	ND2001	ND2	ND20	ND2	ND8	ND2	ND50	ND2	ND50	ND2	ND40
Bromodichloromethane	ND1I	ND100J	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND25	ND1	ND20
1,2-Dichloropropane	ND1J	ND100]	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND25	ND1	ND20
cis-1,3-Dichloropropene	ND1	ND100J	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND25	ND1	ND20
Trichloroethene	610J	720DJ	470J	420D	110J	130D	300J	440D	140J	440D	450E	680D
Dibromochloromethane	ND1J	ND100J	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND25	ND1	ND20
1,1,2-Trichloroethane	ND1J	ND100J	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND25	ND1	ND20
Benzene	ND1J	ND100J	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND25	ND1	ND20
Trans-1,3-Dichloropropene	ND1J	ND100J	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND25	ND1UJ	ND20
Bromoform	ND1J	ND100J	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND25	ND1UJ	ND20
4-Methyl-2-Pentanone	ND2J	ND200J	ND2	ND20	ND2	ND8	ND2	ND50	ND2	ND50	ND2	ND40
2-Hexanone	ND2J	ND200J	ND2	ND20	ND2	ND8	ND2	ND50	ND2	ND50	ND2	ND40
Tetrachloroethene	ND1J	ND100J	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND25	ND1	ND20
1,1,2,2-Tetrachloroethane	ND1J	ND100J	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND25	ND1	ND20
Toluene	ND1J	ND100J	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND25	ND1	ND20
Chlorobenzene	ND1J	ND100J	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND25	ND1	ND20
Ethylbenzene	ND1J	ND100J	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND25	ND1	ND20
Styrene	ND1J	ND100J	ND1	ND10	ND1R	ND4R	ND1	ND25	ND1	ND25	ND1	ND20
Total Xylenes	ND1J	ND100J	ND1	ND10	ND1	ND4	ND1	ND25	ND1	ND25	ND1	ND20

Notes:

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELLS W53A AND W53

Parameter (µg/L)	W53A																
VOCs	11/14/90	11/15/90	11/26/90	11/26/90	12/03/90	12/10/90	02/12/91	02/12/91	03/04/91	04/02/91	05/07/91	08/06/91	11/05/91	02/17/92	05/12/92	08/04/92	11/08/92
				Dup				Diluted									
											NIDAI		NIDAI				
Chloromethane	ND6	ND8	ND6	ND10J	ND2	ND2	ND2	ND4	ND2	ND2 ND2	ND2J	ND2	ND2J	ND2	ND2 ND2	ND2 ND2	2J ND2
Bromomethane	ND6	ND8	ND6	ND10	ND2	ND2	ND2	ND4	ND2		ND2	ND2	ND2J	ND2			
Vinyl Chloride	ND6	ND8	ND6	ND10	ND2	ND2	ND2	ND4	ND2	ND2	ND2	ND2	ND2J	ND2	ND2	ND2	ND2
Chloroethane	ND6	ND8	ND6	ND10	ND2	ND2	ND2	ND4	ND2	ND2	ND2	ND2	ND2J	ND2	ND2	ND2	ND2
Methylene Chloride	1U	2U	ND3	3U	0.5U	0.4U	ND1	ND2	ND1	ND1	ND1	ND1	NDIJ	ND1	1U	ND1	ND1
Acetone	ND6J	ND8J	ND6J	ND5J	ND2J	ND2J	ND2J	3.6J	ND2J	1.5J	ND2	ND2J	ND2J	ND2	4U	ND2J	ND2UJ
Carbon Disulfide	ND3	ND4	ND3J	ND5J	ND1	3	ND1	ND2	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1J	ND1
1,1-Dichloroethene	ND3	ND4	ND3	ND5	ND1	ND1	ND1	ND2	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1J	
1,1-Dichloroethane	ND3	ND4	ND3	ND5	ND1	ND1	ND1	ND2	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
1,2-Dichloroethene (total)	2J	_ 3J	2J	ND5	2	2	2.8	ND2	1.5	1.2	ND1	1.9	3.4J	0.5J	ND1	9	2
Chloroform	ND3	ND4	ND3	ND5	ND1	ND1	3.5	2.2D	1.3	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
1,2-Dichloroethane	ND3	ND4	ND3	ND5	ND1	ND1	ND1	ND2	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
2-Butanone	ND6J	ND8J	ND6	ND10	ND2J	ND2J	ND2R	ND4R	ND2R	ND2	ND2R	ND2J	ND2J	ND2	ND2	ND2	ND2
1,1,1-Trichloroethane	0.8J	ND4	ND3	ND5	ND1	ND1	ND1	ND2	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Carbon Tetrachloride	ND3	ND4	ND3	ND5	ND1	ND1	ND1	2.5D	1.7	ND1	ND1	ND1	NDIJ	ND1	ND1	ND1	ND1
Vinyl Acetate	ND6	ND8	ND6J	ND10	ND2	ND2	ND2	ND4	ND2	ND2J	ND2R	. ND2	ND2J	ND2	ND2	ND2	ND2UJ
Bromodichloromethane	ND3	ND4	ND3	ND5	ND1	ND1	ND1	ND2	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
1,2-Dichloropropane	ND3	ND4	ND3	ND5	ND1	ND1	ND1	ND2	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
cis-1,3-Dichloropropene	 ND3 	ND4	ND3	ND5	ND1	ND1	ND1	ND2	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	NDI	ND1
Trichloroethene	71	120	100	100	24	16	72J	42D	26	65	19	17	66J	19 -	10	12	14
Dibromochloromethane	ND3	ND4	ND3	ND5	ND1	ND1	ND1	ND2	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
1,1,2-Trichloroethane	ND3	ND4	ND3	ND5	ND1	ND1	ND1	ND2	NDI	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Benzene	ND3	ND4	ND3	ND5	0.2J	0.3J	ND1	ND2	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	0.6J
Trans-1,3-Dichloropropene	ND3	ND4	ND3	ND5	ND1	ND1	ND1	ND2	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Bromoform	ND3	ND4	ND3	ND5	ND1	ND1	ND1	ND2	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
4-Methyl-2-Pentanone	ND6	ND8	ND6	ND10	ND2	ND2J	ND2	ND4	ND2	ND2J	ND2	ND2	ND2J	ND2	ND2	ND2	ND2
2-Hexanone	ND6J	ND8	ND6J	ND10	ND2	ND2J	ND2	ND4	ND2J	ND2	ND2	ND2	ND2J	ND2	ND2	ND2	ND2
Tetrachloroethene	ND3	ND4	ND3	ND5	ND1	ND1	ND1	ND2	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
1,1,2,2-Tetrachloroethane	ND3	ND4	ND3	ND5	ND1	ND1	ND1	ND2	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Toluene	ND3	ND4	ND3	ND5	ND1	ND1	ND1	ND2	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Chlorobenzene	ND3	ND4	ND3	ND5	ND1	ND1	ND1	ND2	ND1	ND1	ND1	ND1	NDIJ	ND1	ND1	ND1	ND1
Ethylbenzene	ND3	ND4	ND3	ND5	ND1	ND1	NDI	ND2	ND1	ND1	ND1	ND1	NDIJ	ND1	ND1	ND1	ND1
Styrene	ND3	ND4	ND3	ND5	ND1	ND1	ND1	ND2	ND1	ND1	ND1	ND1	ND1J	ND1	ND1R	NDI	ND1
Total Xylenes	ND3	ND4	ND3	ND5	ND1	NDIJ	ND1	ND2	ND1	NDI	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
·····						•											

Notes:

.

.

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELLS W53A AND W53

Parameter (µg/L)	W53														
VOCs	11/13/90	11/15/90	11/15/90	11/26/90	12/03/90	12/03/90	12/10/90	01/07/91	02/12/91	02/12/91	03/04/91	03/04/91	04/03/91	05/07/91	08/06/91
			Dup			Dup				Diluted		Diluted			
Chloromethane	ND26	ND20	ND20	ND20J	ND14	ND14	ND25	ND20	ND2	ND10	ND2	ND10	ND2	ND2J	ND2
Bromomethane	ND26	ND20	ND20	ND20	ND14	ND14	ND25	ND20	ND2	ND10	ND2	ND10	ND2	ND2	ND2
Vinyl Chloride	ND26	ND20	ND20	ND20	ND14	ND14	ND25	ND20	ND2	ND10	ND2	ND10	ND2	ND2	ND2
Chloroethane	ND26	ND20	ND20	ND20	ND14	ND14	ND25	ND20	ND2	ND10	ND2	ND10	ND2	ND2	ND2
Methylene Chloride	22U	35U	27U	47U	24U	21U	8U	25U	51U	48U	16U	18U	8.4J	4.7U	1.3
Acetone	ND26J	ND20J	ND20J	ND20J	ND14J	ND14J	ND25J	ND20J	12UJ	ND10J	ND2J	ND10J	1.9J	ND2	5.3
Carbon Disulfide	ND13	ND10	ND10	ND10J	ND7	ND7	ND13	ND10	ND1	ND5	NDI	ND5	ND1	ND1	ND1
1,1-Dichloroethene	ND13	ND10	ND10	ND10	ND7	ND7	ND13J	ND10	ND1	ND5	ND1	ND5	ND1	ND1	ND1
1,1-Dichloroethane	ND13	ND10	ND10	ND10	ND7	ND7	ND13	ND10	ND1	ND5	ND1	ND5	ND1	ND1	ND1
1,2-Dichloroethene (total)	190	190	170	170	110	100	220	180	37	28	23	23	12	7.4	4.7
Chloroform	ND13	ND10	ND10	ND10	ND7	ND7	ND13	ND10	ND1	ND5	ND1	ND5	ND1	7.6	6.4
1,2-Dichlorœthane	ND13	ND10	ND10	ND10	ND7	ND7	ND13	ND10	ND1	ND5	ND1	ND5	ND1	ND1	ND1
2-Butanone	ND26J	ND20J	ND20J	ND20	ND14J	ND14J	ND25J	ND20	ND2R	ND10R	ND2R	ND10J	ND2	ND2R	ND2
1,1,1-Trichloroethane	ND13	ND10	ND10	ND10	ND7	ND7	ND13	ND10	ND1	ND5	ND1	ND5	ND1	ND1	ND1
Carbon Tetrachloride	ND13	ND10	ND10	ND10	ND7	ND7	ND13	ND10	ND1	ND5	ND1	ND5	ND1	7	4.4
Vinyl Acetate	ND26	ND20	ND20	ND20	ND14	ND14	ND25	ND20	ND2	ND10	ND2	ND10	ND2J	ND2R	ND2
Bromodichloromethane	ND13	ND10	ND10	ND10	ND7	ND7	ND13	ND10	ND1	ND5	ND1	ND5	ND1	ND1	ND1
1,2-Dichloropropane	ND13	ND10	ND10	ND10	ND7	ND7	ND13	ND10	ND1	ND5	ND1	ND5	ND1	ND1	ND1
cis-1,3-Dichloropropene	ND13	ND10	ND10	ND10	ND7	ND7	ND13	ND10	ND1	ND5	ND1	ND5	ND1	ND1	ND1
Trichloroethene	340	360	320	290	200	190	360J	290J	110J	93	73	73	51	53	64
Dibromochloromethane	ND13	ND10	ND10	ND10	ND7	ND7	ND13	ND10	ND1	ND5	ND1	ND5	ND1	ND1	ND1
1,1,2-Trichloroethane	ND13	ND10	ND10	ND10	ND7	ND7	ND13	ND10	ND1	ND5	ND1	ND5	ND1	ND1	ND1
Benzene	ND13	ND10	ND10	ND10	ND7	ND7	ND13J	ND10	ND1	ND5	ND1	ND5	ND1	ND1	ND1
Trans-1,3-Dichloropropene	ND13	ND10	ND10	ND10	ND7	ND7	ND13	ND10	ND1	ND5	ND1	ND5	ND1	ND1	ND1
Bromoform	ND13	ND10	ND10	ND10	ND7	ND7	ND13	ND10	ND1	ND5	ND1	ND5	ND1	ND1	ND2
4-Methyl-2-Pentanone	ND26J	ND20J	ND20	ND20	ND14	ND14	ND25J	ND20	ND2	ND10	ND2	ND10	ND2J	ND2	ND2
2-Hexanone	ND26J	ND20J	ND20	ND20	ND14	ND14	ND25J	ND20	ND2	ND10	ND2J	ND10	ND2	ND2	ND1
Tetrachloroethene	ND13	ND10	ND10	3J	1J	ND7	3J	2J	ND1	ND5	ND1	ND5	ND1	ND1	ND1
1,1,2,2-Tetrachloroethane	ND13	ND10	ND10	ND10	ND7	ND7	ND13	ND10	ND1	ND5	ND1	ND5	ND1	ND1	ND1
Toluene	ND13	ND10	ND10	ND10	ND7	ND7	ND13	ND10	ND1	ND5	ND1	ND5	ND1	ND1	ND1
Chlorobenzene	ND13	ND10	ND10	ND10	ND7	· ND7	ND13	ND10	ND1	ND5	ND1	ND5	ND1	ND1	ND1
Ethylbenzene	ND13	ND10	ND10	ND10	ND7	ND7	ND13	ND10	ND1	ND5	ND1	ND5	ND1	ND1	ND1
Styrene	ND13	ND10	ND10	ND10	ND7	ND7	ND13	ND10	ND1	ND5	ND1	ND5	ND1	ND1	ND1
Total Xylenes	ND13	ND10	ND10	ND10	ND7	ND7	ND13J	ND10	ND1	ND5	ND1	ND5	ND1	ND1	ND1

.

Notes:

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOC3) WELLS W53A AND W53

Parameter (µg/L)	W53					
VOCs	11/05/91	11/05/91	02/17/92	05/12/92	08/04/92	11/02/92
		Diluted				
Chioromethane	ND2J	ND20J	ND2	ND2	ND2	ND2
Bromomethane	ND2J	ND20J	ND2	ND2	ND2	ND2
Vinyl Chloride	ND2J	ND20J	ND2	ND2	ND2	ND2
Chloroethane	ND2J	ND20J	ND2	ND2	ND2	ND2
Methylene Chloride	ND1J	18DUJ	ND1	ND1	ND1	ND1
Acetone	ND2J	ND20J	ND2	ND2J	ND2J	ND2UJ
Carbon Disulfide	ND1J	ND10J	ND1	ND1	ND1J	ND1
1.1-Dichloroethene	ND1J	ND10J	ND1	ND1	ND1J	ND1
1,1-Dichloroethane	ND1J	ND10J	ND1	ND1	ND1	ND1
1,2-Dichloroethene (total)	4.1J	ND10J	1	1	0.7J	1J
Chloroform	11Ĵ	13DJ	9	ND1	ND1	NDI
1,2-Dichloroethane	ND1J	ND10J	ND1	ND1	ND1	ND1
2-Butanone	ND2J	ND20J	ND2	ND2J	ND2	ND2UJ
1,1,1-Trichloroethane	ND1J	ND10J	ND1	ND1	ND1	ND1
Carbon Tetrachloride	13J	ND10J	6	ND1	ND1	ND1
Vinyl Acetate	ND2J	ND20J	ND2	ND2J	ND2	ND2
Bromodichloromethane	ND1J	ND10J	ND1	NDIJ	ND1	ND1
1,2-Dichloropropane	ND1J	ND10J	ND1	ND1	ND1	ND1
cis-1,3-Dichloropropene	ND1J	ND10J	ND1	ND1	ND1	ND1
Trichloroethene	220JR	43DJ	13	13	8	8
Dibromochloromethane	ND1J	ND10J	ND1	ND1J	ND1	ND1
1,1,2-Trichloroethane	ND1J	ND10J	ND1	ND1	NDI	NDI
Benzene	ND1J	ND10J	NDI	ND1	ND1	ND1
Trans-1,3-Dichloropropene	ND1J	ND10J	ND1	ND1	ND1	ND1
Bromoform	ND1J	ND10J	ND1	ND1J	ND1	ND1
4-Methyl-2-Pentanone	ND2J	ND20J	ND2	ND2	ND2	ND2
2-Hexanone	ND2J	ND20J	ND2	ND2	ND2	ND2
Tetrachloroethene	ND1J	ND10J	ND1	NDI	ND1	ND1
1,1,2,2-Tetrachloroethane	ND1J	ND10J	ND1	ND1	ND1	ND1
Toluene	ND1J	ND10J	ND1	ND1	ND1	ND1
Chlorobenzene	ND1J	ND10J	ND1	ND1	ND1	ND1
Ethylbenzene	ND1J	ND10J	ND1	0.5J	ND1	ND1
Styrene	ND1J	ND10J	ND1	ND1	ND1	ND1
Total Xylenes	ND1J	ND10J	ND1	ND1	ND1	ND1

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination.

J = the associated numerical value is an estimated quantity.

D = secondary dilution was performed to obtain result. R = data was rejected, analyte may or may not be present.

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL W54

Parameter (ug(L) VOCs W54 W113690 11/126/90 12/10/90 12/10/90 12/10/90 02/12/91 03/04/91 04/03/91 08/06/91 11/05/91 10/04 10/04 11/05/91 10/04 10/01 </th
Chloromethane ND4 ND4 ND2 0.5j ND2 ND1
Cholonie hane ND4 ND4 ND2 <
Cholonie hane ND4 ND4 ND2 <
Distribute ND4 ND4 ND4 ND2
This ND4 ND4 ND4 ND2
Chlorodutate ND1 ND1 <t< td=""></t<>
Acetone ND4j ND4j ND2j 2Uj ND2j ND1j ND1j ND1j ND1j ND1j ND1j ND1j ND1 ND1 ND1 ND1 ND1 ND1 ND1 ND1 ND1 ND1 ND1 ND1 ND1 ND1 ND1 ND1 ND1 ND1 ND1 ND1 N
Carbon Disulfide ND2 ND2 ND1
LiteND2ND2ND1N
1,1-DichloroethaneND2ND2ND1 <th< td=""></th<>
1,2-DichloroethaneND4420.9J0.4J0.4J.5JND1ND1ND1ND1AJRND10JChloroformND2ND2ND1ND1ND1ND1ND1ND1ND1ND1ND1ND1ND1ND11,2-DichloroethaneND2JND2JND1ND1ND1ND1ND1ND1ND1ND1ND1ND1ND11,2-DichloroethaneND2JND2JND1ND1ND1ND1ND1ND1ND1ND1ND12-ButanoneND4ND2ND2ND2JND2JND2JND2ND2RND2JND2ND2RND2ND22-ButanoneND2ND2ND1ND1ND1ND1ND1ND1ND1ND1ND1ND11,1-TrichloroethaneND2ND2ND1ND1ND1ND1ND1ND1ND1ND1ND12-ButanoneND2ND2ND2ND2ND2ND2ND2ND2ND2ND2ND2ND2ND2ND2ND2ND2ND2ND1
ChloroformND2ND2ND1
IndexND2ND2ND2ND1ND1ND1ND1ND1ND1ND1ND1ND1ND11,2-DichloroethaneND4ND4ND2ND1
1.2-DichlorochlancND4ND4ND2ND1 <th< td=""></th<>
1,1,1-TrichloroethaneND2ND2ND1
Apple InductorND2ND2ND1
Vinyl AcetateND4ND2ND1<
BromodichloromethaneND2ND2ND1<
1,2-DichloropropaneND2ND2ND1 <t< td=""></t<>
cis-1,3-Dichloropropene ND2 ND2 ND1
Trichloroethene 48 58 19 19 6 6 2J 3.3 6.1 J 5.7J 12 10 350JR 10DJ
Dibromochloromethane ND2 ND2 ND1
1,1,2-Trichloroethane ND2 ND2 ND1
Benzene ND2 ND2 ND1
Trans-1,3-Dichloropropene ND2 ND2 ND1
Bromoform ND2 ND2 ND1
4-Methyl-2-Pentanone ND4 ND4 ND2 ND2 ND2 ND2J ND2
2-Hexanone ND4I ND4 ND2 ND2 ND2 ND2] ND2
Tetrachloroethene ND2 ND2 ND1
1.1.2.2-Tetrachloroethane ND2 ND2 ND1
Toluene ND2 ND2 ND1 0.3J ND1
Chlorobenzene ND2 ND2 ND1
Ethylbenzene ND2 ND2 ND1
Styrene ND2 ND2 ND1
Total Xylenes ND2 ND2 ND1 ND1 ND1J ND2J ND2 ND1 ND1 ND1 ND1 ND1 ND1 ND1J ND10J

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination.

J = the associated numerical value is an estimated quantity.

D = secondary dilution was performed to obtain result. R = data was rejected, analyte may or may not be present.

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL W54

Parameter (µg/L)	W54					
VOCs	02/17/92	02/17/92	05/12/92	08/04/92	11/02/92	11/02/92
		Reanalysis				Duplicate
Chloromethane	ND2J	ND2	ND2	ND2	2]	1J
Bromomethane	ND2J	ND2	ND2	ND2	ND2	ND2
Vinyl Chloride	ND2J	ND2	ND2	ND2	ND2	ND2
Chloroethane	ND2J	ND2	ND2	ND2	ND2	ND2
Methylene Chloride	ND1	ND1	1U	ND1	ND1	ND1
Acetone	ND1J	ND2	3U	ND2J	ND2UJ	ND2UJ
Carbon Disulfide	ND1J	ND1	ND1	ND1J	ND1	ND1
1,1-Dichloroethene	ND1J	ND1	ND1	ND1J	ND1	ND1
1,1-Dichloroethane	ND1J	ND1	ND1	ND1	ND1	ND1
1,2-Dichloroethene (total)	ND1J	ND1	ND1	0.6J	ND1	ND1
Chloroform	2j	1J	ND1	ND1	ND1	ND1
1,2-Dichloroethane	ND1J	ND1	ND1	ND1	ND1	ND1
2-Butanone	ND2J	ND2	ND2	ND1 ND2	ND2UJ	ND2UJ
1,1,1-Trichloroethane	ND1J	ND1	ND1	ND1	ND1	ND1
Carbon Tetrachloride	ND1J	ND1J	ND1	ND1	ND1	ND1
Vinyl Acetate	ND2J	ND2	ND2	ND2	ND2	ND2
Bromodichloromethane	ND1J	ND1	ND1	ND1	ND1	ND1
1,2-Dichloropropane	ND1J	ND1	ND1	ND1	ND1	ND1
cis-1,3-Dichloropropene	ND1J	ND1	ND1	ND1	ND1	ND1
Trichloroethene	0.8J	0.9J	1	0.8J	ND1	ND1
Dibromochloromethane	ND1J	ND1	ND1	ND1	ND1	ND1
1,1,2-Trichloroethane	ND1J	· ND1	ND1	ND1	ND1	ND1
Benzene	ND1J	ND1	ND1	ND1	ND1	ND1
Trans-1,3-Dichloropropene	ND1J	ND1	ND1	ND1	ND1	ND1
Bromoform	ND1	ND1	ND1	ND1	· ND1	ND1
4-Methyl-2-Pentanone	ND2J	ND2	ND2	ND2	ND2	ND2
2-Hexanone	ND2J	ND2	ND2	ND2	ND2	ND2
Tetrachloroethene	ND1J	ND1	ND1	ND1	ND1	ND1
1,1,2,2-Tetrachloroethane	ND1J	ND1	ND1	ND1	ND1	ND1
Toluene	ND1J	ND1	ND1	ND1	ND1	ND1
Chlorobenzene	ND1J	ND1	ND1	ND1	ND1	ND1
Ethylbenzene	ND1J	ND1	ND1	ND1	ND1	ND1
Styrene	ND1J	ND1	ND1	ND1	ND1	ND1
Total Xylenes	ND1J	ND1	ND1	ND1	ND1	ND1
	-					

Notes:

1

NDx = not detected at quantitation limit x.

U = the analyte was detected but was attributed to laboratory contamination.

J = the associated numerical value is an estimated quantity.

D = secondary dilution was performed to obtain result.

R = data was rejected, analyte may or may not be present.

Page 1 of 2

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL W55

Parameter (µg/L)	W55															
VOCs	11/14/90	11/14/90	11/16/90	11/27/90	12/04/90	12/11/90	01/08/91	02/12/91	02/12/91	03/04/91	03/04/91	04/03/91	04/03/91	05/07/91	05/07/91	08/06/91
		Dup							Diluted		Diluted		Diluted		Diluted	
Chlementhese	ND100	ND100	ND100]	ND80	ND100	ND100	ND120J	ND2	ND100	ND2	ND200I	ND2	ND100	ND2J	ND100	ND2
Chloromethane Browner athene	ND100	ND100	ND100j	ND80	ND100	ND100	ND120	ND2	ND100	ND2	ND200	ND2	ND100	ND2	ND100	ND2
Bromomethane Winnel Chlorida	ND100	ND100	ND100	ND80	ND100	ND100	ND120	ND2	ND100	ND2	ND200	ND2	ND100	ND2	ND100	ND2
Vinyl Chloride	ND100 ND100	ND100 ND100	ND100	ND80	ND100	ND100	ND120	ND2	ND100	ND2	ND200	ND2	ND100	ND2	ND100	ND2
Chloroethane Mathalana Chlorida	ND100 ND50	ND100	74U	34U	29U	85U	56U	ND2 ND1	51U	ND1	ND100	ND1	ND50	ND1	ND100	ND1
Methylene Chloride	ND30	ND100J	ND100J	ND80J	ND100J	ND100J	ND120J	ND2J	ND100	ND2J	ND2001	ND2J	64UJ	ND2	ND100J	ND2J
Acetone	•	ND100J ND50	ND100j	ND40J	ND100j	ND100j	ND120j	ND2j ND1	ND100j	ND2j ND1	ND100	1.5	ND50	ND1	ND50	8
Carbon Disulfide	ND50 ND50	ND50	ND50	ND40J	ND50	ND50	ND59	ND1	ND50	ND1	ND100	1.5	ND50	1.3	ND50	- 1
1,1-Dichloroethene	ND50	ND50	ND50	ND40	ND50	ND50	ND59	ND1	ND50	ND1	ND100	ND1	ND50	ND1	ND50	ND1
1,1-Dichloroethane			33J	42	33]	32J	41J	13	ND50	15	ND100	15	ND50	14	ND50	14
1,2-Dichloroethene (total)	28J ND50	27J ND50	33) ND50	42 ND40	33J ND50	ND50	41) ND59	ND1	ND50	ND1	ND100	ND1	ND50	ND1	ND50	ND1
Chloroform	ND50 ND50	ND50 ND50	ND50	ND40	ND50	ND50	ND59	ND1	ND50	ND1	ND100	ND1	ND50	ND1	ND50	ND1
1,2-Dichloroethane	ND50 ND100I	ND30 ND100J	ND30	ND40 ND80	ND30	ND30	ND39	ND1 ND2R	ND100R	ND2R	ND200J	ND1 ND2	ND100	ND2R	ND100R	ND2J
2-Butanone	ND100J	ND100J	ND100	ND40	ND50	ND50	ND120	ND1	ND50	ND2R	ND100	ND1	ND50	ND1	ND50	ND1
1,1,1-Trichloroethane	ND50	ND50	ND50	ND40 ND40	ND50	ND50	ND59	ND1	ND50	ND1	ND100	ND1	ND50	ND1	ND50	ND1
Carbon Tetrachloride		• • • • • •	ND50 ND100	ND40 ND80J	ND30	ND30	ND120	ND1 ND2	ND30	ND1 ND2	ND100	ND1 ND2]	ND100	ND2R	ND100	ND1 ND2
Vinyl Acetate	ND100	ND100	ND100 ND50	ND40	ND100 ND50	ND100 ND50	ND120	ND2 ND1	ND100	ND1	ND100	ND2j ND1	ND100	ND2R ND1	ND100	ND1
Bromodichloromethane	ND50 ND50	ND50 ND50	ND50	ND40 ND40	ND50	ND50	ND59	ND1	ND50	ND1	ND100	ND1	ND50	ND1	ND50	ND1
1,2-Dichloropropane			-	ND40 ND40	ND50	ND50	ND59	ND1	ND50	ND1	ND100	ND1	ND50	ND1	ND50	ND1
cis-1,3-Dichloropropene	ND50 1900	ND50 1800	ND50 1700	1500	1600J	1900	1900J	710	3200	720	3300	860J	3300D	830R	230DJA	780J
Trichloroethene	1900 ND50	ND50	ND50	ND40	ND50	1900 ND50	ND59	ND1	ND50	ND1	ND100	ND1	ND50	ND1	250DJA ND50	ND1
Dibromochloromethane	ND50 ND50	ND50 ND50	ND50 ND50	ND40 ND40	ND50	ND50	ND59	ND1	ND50	ND1	ND100	ND1	ND50	ND1	ND50	ND1
1,1,2-Trichloroethane	-		ND50 ND50	ND40 ND40	ND50	ND50	ND59	ND1	ND50	ND1	ND100	ND1	ND50	ND1	ND50	ND1
Benzene Trans 1.2 Disklass service	ND50	ND50	ND50	ND40 ND40	ND50	ND50	ND59	ND1	ND50	ND1	ND100	ND1	ND50	ND1	ND50	ND1
Trans-1,3-Dichloropropene	ND50 ND50	ND50 ND50	ND50	ND40 ND40	ND50	ND50	ND59	ND1	ND50	ND1	ND100	ND1	ND50	ND1	ND50	ND1
Bromoform	ND30	ND50	ND30	ND40	ND100	ND30	ND39	ND1 ND2	ND30	ND1 ND2	ND100J	ND1 ND2J	ND30	ND1 ND2	ND100	ND1 ND2
4-Methyl-2-Pentanone				ND80	ND100	ND100	ND120	ND2 ND2	ND100	ND2	ND200	ND2J	ND100	ND2 ND2	ND100	ND2 ND2
2-Hexanone	ND100	ND100	ND100		ND100 ND50	ND100 ND50	ND120 ND59	ND2 ND1	ND100	ND2j ND1	ND200 ND100	ND2 ND1	ND100 ND50	ND2 ND1	ND100 ND50	ND2 ND1
Tetrachloroethene	ND50	ND50	ND50	ND40	ND50 ND50	ND50 ND50	ND59	NDI ND1	ND50	ND1 ND1	ND100	ND1	ND50	NDI ND1	ND50 ND50	ND1 ND1
1,1,2,2-Tetrachloroethane	ND50 ND50	ND50 ND50	ND50 ND50	ND40 ND40	ND50 ND50	ND50 ND50	ND59 ND59	ND1 ND1	ND50 ND50	ND1 ND1	ND100	NDI NDI	ND50 ND50	NDI ND1	ND50 ND50	ND1
Toluene																
Chlorobenzene	ND50	ND50	ND50	ND40	ND50	ND50	ND59	ND1	ND50	ND1	ND100	ND1	ND50	ND1	ND50	ND1
Ethylbenzene	ND50	ND50	ND50	ND40	ND50	ND50	ND59	ND1	ND50	ND1	ND100	ND1	ND50	ND1	ND50	ND1
Styrene	ND50	ND50	ND50	ND40	ND50	ND50	ND59	ND1	ND50	ND1	ND100	ND1	ND50	ND1	ND50	ND1
Total Xylenes	ND50	ND50	ND50	ND40	ND50	ND50	ND59	ND1	ND50	ND1	ND100	ND1	ND50	ND1	ND50	ND1

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination. J = the associated numerical value is an estimated quantity.

D = secondary dilution was performed to obtain result. R = data was rejected, analyte may or may not be present.

A = assumed anomaly

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL W55

Parameter (µg/L)	W55		_								
VOCs	08/06/91	11/05/91	11/05/91	02/17/92	02/17/92	05/11/92	05/11/92	08/03/92	08/03/92	11/02/92	11/02/92
	Diluted		Diluted		Diluted		Diluted		Diluted		Diluted
Chloromethane	ND100	ND2J	ND2001	ND2	ND50	ND2]	ND8	ND2I	ND50	ND2	ND40
Bromomethane	ND100	ND2J	ND200J	ND2	ND50	ND2	ND8	ND2	ND50	ND2	ND40
Vinyl Chloride	ND100	ND2J	ND200J	ND2	ND50	ND2J	ND8	ND2	ND50	ND2	ND40
Chloroethane	ND100	ND2J	ND200J	ND2	ND50	ND2J	ND8	ND2	ND50	ND2	ND40
Methylene Chloride	310D	ND1J	190DUJ	ND1	ND25	ND1J	4U	ND1	ND25	ND1	24U
Acetone	460UJ	ND2J	ND200J	ND2	ND50	ND2J	11U	ND2J	ND50	ND2UJ	ND40UJ
Carbon Disulfide	ND50	ND1	ND100J	ND1	ND25	4J	ND4	ND1J	ND25	2	ND20
1.1-Dichloroethene	ND50	1.1]	ND100J	0.7]	ND25	0.8J	ND4	0.8J	ND25	0.8J	ND20
1,1-Dichloroethane	ND50	ND1	ND100J	ND1	ND25	ND1J	ND4	ND1	ND25	ND1	ND20
1,2-Dichloroethene (total)	ND50	37]	ND100[22	ND25	40J	16DJ	16	17D]	18	18JD
Chloroform	ND50	ND1J	ND100	ND1	ND25	ND1I	ND4	ND1	ND25	ND1	ND20
1.2-Dichloroethane	ND50	ND1J	ND100	ND1	ND25	ND1J	ND4	ND1	ND25	ND1	ND20
2-Butanone	ND100J	ND2I	ND200J	ND2	ND50	ND2J	ND8	ND2	ND50	ND2	ND40
1.1.1-Trichloroethane	ND50	ND1J	ND100J	ND1	ND25	ND1J	ND4	ND1	ND25	ND1	ND20
Carbon Tetrachloride	ND50	ND1	ND100	ND1	ND25J	ND1	ND4	ND1	ND25	ND1	ND20
Vinyl Acetate	ND100	ND2J	ND2001	ND2	ND50	ND2J	ND8	ND2	ND50	ND2UJ	ND40
Bromodichloromethane	ND50	ND1J	ND100J	ND1	ND25	ND1J	ND4	ND1	ND25	ND1	ND20
1,2-Dichloropropane	ND50	ND1J	ND100J	ND1	ND25	ND1J	ND4	ND1	ND25	ND1	ND20
cis-1,3-Dichloropropene	ND50	ND1J	ND100	ND1	ND25	ND1J	ND4	ND1	ND25	ND1	ND20
Trichloroethene	3300D	1600]	3500DJ	740J	1500D	130J	430D	170J	780D	530J	950D
Dibromochloromethane	ND50	ND1J	ND100J	ND1	ND25	NDIJ	ND4	ND1	ND25	ND1	ND20
1,1,2-Trichloroethane	ND50	ND1J	ND100J	ND1	ND25	ND1J	ND4	ND1	ND25	1	ND20
Benzene	ND50	ND1J	ND100J	ND1	ND25	ND1J	ND4	ND1	ND25	ND1	ND20
Trans-1,3-Dichloropropene	ND50	ND1J	ND100J	ND1	ND25	ND1J	ND4	ND1	ND25	ND1	ND20UJ
Bromoform	ND50	ND1J	ND100J	ND1	ND25	ND1J	ND4	. ND1	ND25	ND1	ND20UJ
4-Methyl-2-Pentanone	ND100	ND2J	ND200J	ND2	ND50	ND2J	ND8	ND2	ND50	ND2	ND40
2-Hexanone	ND100	ND2J	ND200J	ND2	ND50	ND2J	ND8	ND2	ND50	ND2	ND40
Tetrachloroethene	ND50	2J	ND100J	ND1	ND25	ND1J	ND4	ND1	ND25	ND1	ND20
1,1,2,2-Tetrachloroethane	ND50	ND1J	ND100J	ND1	ND25	ND1J	ND4	ND1	ND25	ND1	ND20
Toluene	ND50	ND1J	ND100J	ND1	ND25	ND1J	ND4	ND1	ND25	ND1	ND20
Chlorobenzene	ND50	ND1J	ND100J	ND1	ND25	ND1J	ND4	ND1	· ND25	ND1	ND20
Ethylbenzene	ND50	ND1J	ND100J	ND1	ND25	ND1J	ND4	ND1	ND25	ND1	ND20
Styrene	ND50	ND1J	ND100J	ND1	ND25	ND1J	ND4R	ND1	ND25R	ND1	ND20
Total Xylenes	ND50	ND1J	ND100J	ND1	ND25	ND1J	ND4	ND1	ND25	ND1	ND20
-											

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination. J = the associated numerical value is an estimated quantity. D = secondary dilution was performed to obtain result.

R = data was rejected, analyte may or may not be present.

A = assumed anomaly

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL WSWD

Parameter (µg/L)	WSWD							•								
VOCs	11/14/90	11/16/90	11/27/90	12/04/90	12/11/90	01/08/91	02/12/91	02/12/91	03/04/91	03/04/91	04/03/91	04/03/91	05/06/91	05/06/91	08/05/91	11/04/91
								Diluted		Diluted		Diluted		Diluted		
								•								
Chloromethane	ND20	ND20	ND20	ND20	ND12	ND6J	ND2	ND10	ND2	ND10	ND2	ND10	ND2	ND10	ND2	ND2J
Bromomethane	ND20	ND20	ND20	ND20	ND12	ND6	ND2	ND10	ND2	ND10	ND2	ND10	ND2	ND10	ND2	ND2J
Vinyl Chloride	ND20	ND20	ND20	ND20	ND12	ND6	ND2	ND10	ND2	ND10	ND2	ND10	ND2	ND10	ND2	ND2J
Chloroethane	ND20	ND20	ND20	ND20	ND12	ND6	ND2	ND10	ND2	ND10	ND2	ND10	ND2	ND10	ND2	ND2J
Methylene Chloride	11U	5U	7U	25U	5U	2U	ND1	5U	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
Acetone	ND20J	ND20J	ND20J	ND20J	ND12J	ND6J	1.6J	ND10J	ND2J	ND10J	ND2J	ND10J	ND2	ND10J	ND2J	- ND2J
Carbon Disulfide	ND10	ND10	ND10J	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
1,1-Dichloroethene	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
1,1-Dichloroethane	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
1,2-Dichloroethene (total)	14	2	49	26	14	7	9.8	9.2D	11	10D	12	9.9D	8.9	9.5D	3.3	2.8J
Chloroform	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
1,2-Dichloroethane	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
2-Butanone	ND20J	ND20J	ND20	ND20J	ND12J	ND6	ND2R	ND10R	ND2R	ND10J	ND2	ND10	ND2R	ND10R	ND2J	ND2J
1,1,1-Trichloroethane	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
Carbon Tetrachloride	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
Vinyl Acetate	ND20	ND20	ND20J	ND20	ND12	ND6	ND2	ND10	ND2	ND10	ND2J	ND10	ND2R	ND10	ND2	ND2J
Bromodichloromethane	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
1,2-Dichloropropane	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
cis-1,3-Dichloropropene	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
Trichloroethene	270	230	260	230	190	97 J	100	110D	96	86D	100J	100D	80J	89D	44	61J
Dibromochloromethane	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
1,1,2-Trichloroethane	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
Benzene	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
Trans-1,3-Dichloropropene	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
Bromoform	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
4-Methyl-2-Pentanone	ND20	ND20	ND20J	ND20	ND12	ND6	ND2	ND10	ND2	ND10	ND2J	ND10	ND2	ND10	ND2	ND2J
2-Hexanone	ND20	ND20	ND20	ND20	ND12	ND6	·ND2	ND10	ND2J	ND10	ND2	ND10	ND2	ND10	ND2	ND2J
Tetrachloroethene	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
1,1,2,2-Tetrachloroethane	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
Toluene	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	· ND5	ND1	ND5	ND1	ND1J
Chlorobenzene	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	. ND1J
Ethylbenzene	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
Styrene	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J
Total Xylenes	ND10	ND10	ND10	ND10	ND6	ND3	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND1J

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination. J = the associated numerical value is an estimated quantity. D = secondary dilution was performed to obtain result. R = data was rejected, analyte may or may not be present.

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL WSWD

Parameter (µg/L)	WSWD			
VOCs	02/18/92	05/11/92	08/03/92	11/02/92
Chloromethane	ND2	ND2	ND2	ND2
Bromomethane	ND2	ND2	ND2	ND2
Vinyl Chloride	ND2	ND2	ND2	ND2
Chloroethane	ND2	ND2	ND2	ND2
Methylene Chloride	ND1	ND1	ND1	ND1
Acetone	ND2	ND2I	ND2	ND2UJ
Carbon Disulfide	ND1	ND1	ND1	ND1
1.1-Dichloroethene	ND1	ND1	ND1	ND1
1,1-Dichloroethane	ND1	ND1	ND1	ND1
1,2-Dichloroethene (total)	2	4	1	1
Chloroform	ND1	ND1	ND1	1
1.2-Dichloroethane	ND1	ND1	ND1	ND1
2-Butanone	ND2	ND2	ND2	ND2
1,1,1-Trichloroethane	ND1	ND1	ND1	ND1
Carbon Tetrachloride	ND1	ND1	ND1	ND1
Vinyl Acetate	ND2	ND2J	ND2	ND2
Bromodichloromethane	ND1	ND1	ND1	ND1
1,2-Dichloropropane	ND1	ND1	ND1	ND1
cis-1,3-Dichloropropene	ND1	ND1	ND1	ND1
Trichloroethene	22	23	18	17
Dibromochloromethane	ND1	ND1	ND1	ND1
1,1,2-Trichloroethane	ND1	ND1	ND1	ND1
Benzene	ND1	ND1	ND1	ND1
Trans-1,3-Dichloropropene	ND1	ND1	ND1	ND1UJ
Bromoform	MD1	ND1J	ND1	ND1UJ
4-Methyl-2-Pentanone	ND2	ND2	ND2	ND2
2-Hexanone	ND2	ND2	ND2	ND2
Tetrachloroethene	ND1	ND1	ND1	ND1
1,1,2,2-Tetrachloroethane	ND1	ND1	ND1	ND1
Toluene	ND1	ND1	ND1	ND1
Chlorobenzene	ND1	ND1	ND1	ND1
Ethylbenzene	ND1	ND1	ND1	ND1
Styrene	ND1	ND1	ND1	ND1
Total Xylenes	ND1	ND1	ND1	ND1

Notes:

'NDx = not detected at quantitation limit x.

U = the analyte was detected but was attributed to laboratory contamination.

J = the associated numerical value is an estimated quantity.

D = secondary dilution was performed to obtain result.

R = data was rejected, analyte may or may not be present.

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL IWD

		L									
Parameter (µg/L)	IWD										
VOCs	11/14/90	11/16/90	11/27/90	05/07/91	05/07/91	08/06/91	08/06/91	05/11/92	08/03/92	11/02/92	11/02/92
				•	Diluted		Diluted				Diluted
Chloromethane	ND10	ND10J	ND10	ND2	ND40	ND2	ND40	ND2	ND2J	0. 8 J	ND10
Bromomethane	ND10	ND10	ND10	ND2	ND40	ND2	ND40	ND2	ND2	ND2	ND10
Vinyl Chloride	ND10	ND10	ND10	ND2	ND40	ND2	ND40	ND2	ND2	ND2	ND10
Chloroethane	ND10	ND10	ND10	ND2	ND40	ND2	ND40	ND2	ND2	ND2	ND10
Methylene Chloride	ND5	2U	4U	ND1	ND20	ND1	ND20	ND1	ND1	ND1	5U
Acetone	ND10J	ND10J	ND10J	ND2J	ND40J	ND2J	ND40J	ND2J	ND2J	ND2UJ	ND10UJ
Carbon Disulfide	ND5	ND5	ND5J	ND1	ND20	ND1	ND20	ND1	ND1J	ND1	ND5
1,1-Dichloroethene	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1J	ND1	ND5
1,1-Dichloroethane	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1	ND1	ND5
1,2-Dichloroethene (total)	42	ND5	28	27	23D	21	ND20	9	5	16	14D
Chloroform	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1	ND1	ND5
1,2-Dichloroethane	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1	ND1	ND5
2-Butanone	ND10J	ND10	ND10	ND2R	ND40R	ND2J	ND40J	ND2	ND2	ND2	ND10
1,1,1-Trichloroethane	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1	ND1	ND5
Carbon Tetrachloride	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1	ND1	ND5
Vinyl Acetate	ND10	ND10	ND10J	ND2	ND40	ND2	ND40	ND2J	ND2	ND2UJ	ND10
Bromodichloromethane	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1	ND1	ND5
1,2-Dichloropropane	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1	ND1	ND5
cis-1,3-Dichloropropene	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1	ND1	ND5
Trichloroethene	130	140	110	290J	330D	280J	360D	35	55	150E	120D
Dibromochloromethane	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1	ND1	ND5
1,1,2-Trichloroethane	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1	ND1	ND5
Benzene	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1	ND1	ND5
Trans-1,3-Dichloropropene	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1	ND1	ND5UJ
Bromoform	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1J	ND1	ND1	ND5UJ
4-Methyl-2-Pentanone	ND10	ND10	ND10	ND2	ND40	ND2	ND40	ND2	ND2	ND2	ND10
2-Hexanone	ND10	ND10	ND10J	ND2	ND40	ND2	ND40	ND2	ND2	ND2	ND10
Tetrachloroethene	ND5	ND5	ND5	2.5	ND20	1.7	ND20	ND1	ND1	0.7J	ND5
1,1,2,2-Tetrachioroethane	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1	ND1	ND5
Toluene	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1	ND1	ND5
Chlorobenzene	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1	ND1	ND5
Ethylbenzene	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1	ND1	ND5
Styrene	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1	ND1	ND5
Total Xylenes	ND5	ND5	ND5	ND1	ND20	ND1	ND20	ND1	ND1	ND1	ND5

Notes:

NDx = not detected at quantitation limit x.

U = the analyte was detected but was attributed to laboratory contamination.

J = the associated numerical value is an estimated quantity.

D = secondary dilution was performed to obtain result.

R = data was rejected, analyte may or may not be present.

Page 1 of 3

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELLS CW3, CW6, CW7 AND CW9

Parameter (µg/L;	С₩Э														
VOCs	11/14/90	11/16/90	12/03/90	01/07/91	02/12/91	03/04/91	03/04/91	04/03/91	05/06/91	08/05/91	11/04/91	02/17/92	05/12/92	08/03/92	11/02/92
							Diluted								
					100	100	ND10	ND2	ND2	ND2	ND2	ND2	ND2	ND2I	ND2
Chloromethane	ND4	ND6J	ND4	ND3J	ND2	ND2	ND10 ND10	ND2 ND2	ND2 ND2	ND2 ND2	ND2]	ND2 ND2	ND2	ND2	ND2
Bromomethane	ND4	ND6	ND4	ND3	ND2	ND2		ND2	ND2	ND2 ND2	ND2J	ND2 ND2	ND2	ND2	ND2
Vinyl Chloride	ND4	ND6	ND4	ND3	ND2	ND2	ND10		-	ND2 ND2	ND2j ND2j	ND2	ND2 ND2	ND2 ND2	ND2
Chloroethane	ND4	ND6	ND4	ND3	ND2	ND2	ND10	ND2	ND2	ND2 ND1	ND2J ND1J	ND2 ND1	ND2 ND1	ND1	ND1
Methylene Chloride	1U	2U	10	.7U	ND1	ND1	ND5	ND1	ND1			ND1 ND2	ND1 ND2	ND1 ND2I	ND1 ND2
Acetone	ND4J	2J	ND4J	ND3j	31J	ND2J	ND10	ND2J	32	28J	ND2J		ND2j ND1	ND2J ND1J	ND2 ND1
Carbon Disulfide	ND2	ND3	ND2	ND2	ND1	ND1	ND5	ND1	ND1	ND1	ND1J	ND1			ND1 ND1
1,1-Dichloroethene	ND2	ND3	ND2	ND2	ND1	ND1	ND5	ND1	ND1	ND1	ND1J	ND1	ND1	ND1J	
1,1-Dichloroethane	ND2	ND3	ND2	ND2	ND1	ND1	ND5	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
1,2-Dichloroethene (total)	7	7	7	6	3.5	3.8	ND5	3.8	3.7	3.1	4.6j	4	6	6	12
Chloroform	0.3J	ND3	0.5J	ND2	ND1	ND1	ND5	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
1.2-Dichloroethane	ND2	ND3	ND2	ND2	ND1	ND1	ND5	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
2-Butanone	ND4J	ND6	ND4J	ND3	ND2R	ND2R	ND10J	6.5	ND2R	5.4j	ND2J	ND2	ND2J	ND2	ND2
1,1,1-Trichloroethane	ND2	ND3	ND2	ND2	ND1	ND1	ND5	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Carbon Tetrachloride	ND2	ND3	ND2	ND2	ND1	ND1	ND5	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Vinyl Acetate	ND4	ND6	ND4	ND3	ND2	ND2	ND10	ND2	ND2R	ND2	ND2J	ND2	ND2J	ND2	ND2
Bromodichloromethane	ND2	ND3	ND2	ND2	ND1	ND1	ND5	ND1	ND1	ND1	ND1J	ND1	ND1J	ND1	ND1
1,2-Dichloropropane	ND2	ND3	ND2	ND2	ND1	ND1	ND5	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
cis-1,3-Dichloropropene	ND2	ND3	ND2	ND2	ND1	ND1	ND5	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Trichloroethene	50	62	59	41j	54	47	120A	47	40	32	30j	25	20	23	29
Dibromochloromethane	ND2	ND3	ND2	ND2	ND1	ND1	ND5	ND1	ND1	ND1	NDIJ	ND1	ND1J	ND1	ND1
1,1,2-Trichloroethane	ND2	ND3	ND2	ND2	ND1	ND1	ND5	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Benzene	2	ND3	4	5	8.8	7.4	ND5	7.7	7.4	8.2	5 J	7	7	6	8
Trans-1,3-Dichloropropene	ND2	ND3	ND2	ND2	ND1	ND1	ND5	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Bromoform	ND2	ND3	ND2	ND2	ND1	ND1	ND5	ND1	ND1	ND1	ND1J	ND1	ND1J	ND1	ND1
4-Methyl-2-Pentanone	ND4	ND6	ND4	ND3	ND2	ND2	ND10	ND2	ND2	ND2	ND2J	ND2	ND2	ND2	ND2
2-Hexanone	ND4J	ND6	ND4	ND3	ND2	ND2J	ND10	ND2	ND2	ND2	ND2J	ND2	ND2	ND2	ND2
Tetrachloroethene	. 4	6	8	8	12	13	ND5	13	11	12	11J	11	10	10	16
1,1,2,2-Tetrachloroethane	ND2	ND3	ND2	ND2	ND1	ND1	ND5	ND1	ND1	ND1	ND1J'	ND1	ND1	ND1	ND1
Toluene	ND2	ND3	ND2	ND2	ND1	ND1	ND5	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Chlorobenzene	ND2	ND3	ND2	ND2	ND1	ND1	ND5	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Ethylbenzene	ND2	ND3	ND2	ND2	ND1	ND1	ND5	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Styrene	ND2	ND3	ND2	ND2	ND1	ND1	ND5	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Total Xylenes	ND2	ND3	ND2	ND2	ND1	ND1	ND5	NDI	ND1	ND1	NDIJ	ND1	ND1	ND1	ND1

Notes: NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination. J = the associated numerical value is an estimated quantity. D = secondary dilution was performed to obtain result. R = data was rejected, analyte may or may not be present. A = assumed anomaly

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELLS CW3, CW6, CW7 AND CW9

Parameter (µg/L)	CW6																				
VOCs	11/14/90	11/16/90	12/03/90	01/07/91	02/12/91	02/12/91	03/04/91	04/03/91	05/06/91	05/06/91	08/05/91	08/05/91	11/04/91	02/17/92	02/17/92	05/12/92	05/12/92	08/03/92	08/03/92	11/02/92	11/02/92
						Diluted				Diluted		Diluted			Diluted		Diluted		Diluted		Diluted
													NIDAL				NDA	NIDAI	NDA		
Chloromethane	ND10	ND8J	ND10	ND4	ND2	ND10	ND2	ND2	ND2	ND10	ND2	ND20	ND2J	ND2	ND4	ND2	ND4	ND2J	ND4J	. 1J ND2	1JD
Bromomethane	ND10	ND8	ND10	ND4	ND2	ND10	ND2	ND2	ND2	ND10	ND2	ND20	ND2J	ND2	ND4	ND2	ND4	ND2	ND4		ND4
Vinyl Chloride	ND10	ND8	ND10	ND4	ND2	ND10	ND2	ND2	ND2	ND10	ND2	ND20	ND2J	ND2	ND4	ND2	ND4	ND2	ND4	ND2	ND4
Chloroethane	ND10	ND8	ND10	ND4	ND2	ND10	ND2	ND2	ND2	ND10	ND2	ND20	ND2J	ND2	ND4	ND2	ND4	ND2	ND4	ND2	ND4
Methylene Chloride	2U	3U	2U	10	ND1	ND5	ND1	ND1	ND1	ND5	ND1	10D	ND1J	ND1	2JD	10	6U	ND1	1DJ	ND1	2U
Acetone	ND10J	ND8J	ND10J	ND4J	ND2J	ND10J	ND2J	ND2	ND2	ND10J	ND2J	56UJ	ND2J	ND2	ND4	3U	8U	ND2	ND4	ND2UJ	ND4UJ
Carbon Disulfide	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1	ND2	ND1	ND2	ND1J	ND2	ND1	ND2
1,1-Dichloroethene	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1	ND2	ND1	ND2	ND1J	ND2	ND1	ND2
1,1-Dichloroethane	ND5	ND4	·ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1	ND2	ND1	ND2	ND1	ND2	ND1	ND2
1,2-Dichloroethene (total)	1]	1J	1J	1J	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1	ND2	ND1	ND2	0.8J	0.6DJ	0.9]	ND2
Chloroform	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1	ND2	ND1	ND2	ND1	ND2	NÐ1	ND2
1,2-Dichloroethane	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	NDI	ND2	ND1	ND2	ND1	ND2	ND1	ND2
2-Butanone	ND10J	ND8J	ND10J	ND4	ND2R	ND10R	ND2R	ND2	ND2R	ND10R	ND2J	ND20J	ND2J	ND2	ND4	ND2	ND4	ND2	ND4	ND2	ND4
. 1,1,1-Trichloroethane	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1	ND2	ND1J	12DJ	ND1	ND2	ND1	ND2
Carbon Tetrachloride	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1J	ND2J	ND1	ND2	ND1	ND2	ND1	ND2
Vinyl Acetate	ND10	ND8	ND10	ND4	ND2	ND10	ND2	ND2	ND2R	'ND10R	ND2	ND20	ND2J	ND2	ND4	ND2	ND4	ND2	ND4	ND2	ND4
Bromodichloromethane	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1	ND2	ND1	ND2	ND1	ND2	ND1	ND2
1,2-Dichloropropane	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1	ND2	ND1	ND2	ND1	ND2	ND1	ND2
cis-1,3-Dichloropropene	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1	ND2	ND1	ND2	ND1	ND2	ND1	ND2
Trichloroethene	110	120	130	68J	150	140	110	55	110j	130D	100J	220D	49j	73J	44D	74)	31DJ	74J	54D	95)	84D
Dibromochloromethane	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1	ND2	ND1	ND2	ND1	ND2	ND1	ND2
1,1,2-Trichloroethane	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1	ND2	ND1	ND2	ND1	ND2	ND1	ND2
Benzene	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	NDIJ	ND1	ND2	ND1	ND2	ND1	ND2	ND1	ND2
Trans-1,3-Dichloropropene	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1	ND2	ND1	ND2	ND1	ND2	ND1UJ	ND2UJ
Bromoform	ND5	ND4	ND5,	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1	ND2	ND1	ND2	ND1	ND2	ND1UJ	ND2UJ
4-Methyl-2-Pentanone	ND10	ND8	ND10	ND4	ND2	ND10	ND2	ND2	ND2	ND10	ND2	ND20	ND2J	ND2	ND4	ND2	ND4	ND2	ND4	ND2	ND4
2-Hexanone	ND10J	ND8	ND10	ND4	ND2	ND10	ND2J	ND2	ND2	ND10	ND2	ND20	ND2J	ND2	ND4	ND2	ND4	ND2	ND4	ND2	ND4
Tetrachloroethene	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1	ND2	ND1	ND2	ND1	ND2	ND1	ND2
1,1,2,2-Tetrachloroethane	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1	ND2	ND1	ND2	ND1	ND2	ND1	ND2
Toluene	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	·ND1J	ND1	ND2	ND1	8DJ	ND1	ND2	ND1	ND2
Chlorobenzene	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1	ND2	ND1	ND2	ND1	ND2	ND1	ND2
Ethylbenzene	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1	ND2	ND1	ND2	ND1	ND2	ND1	ND2
Styrene	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND5	ND1	ND10	ND1J	ND1	ND2	ND1R	ND2R	ND1	ND2	ND1	ND2
Total Xylenes	ND5	ND4	ND5	ND2	ND1	ND5	ND1	ND1	ND1	ND1	ND1	ND10	NDIJ	ND1	ND2	ND1	2U	ND1	ND2	ND1	ND2
													•								

Notes: NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination. J = the associated numerical value is an estimated quantity. D = secondary dilution was performed to obtain result. R = data was rejected, analyte may or may not be present.

Page 3 of 3

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELLS CW3, CW6, CW7 AND CW9

Parameter (µg/L)	CW7									CW9							
VOCs	02/12/91	05/06/91	08/05/91	11/04/91	02/17/92	05/12/92	05/12/92	08/03/92	11/02/92	02/12/91	05/06/91	08/05/91	11/04/91	02/17/92	05/12/92	08/03/92	11/02/92
Chloromethane	ND2	ND2	ND2	ND2J	ND2	ND2	ND2	ND2J	ND2	ND2	ND2	ND2	ND2J	ND2	ND2	ND2J	ND2
Bromomethane	ND2	ND2	ND2	ND2J	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND2J	ND2	ND2	ND2	ND2
Vinyl Chloride	ND2	ND2	ND2	ND2J	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND2J	ND2	ND2	ND2	ND2
Chloroethane	ND2	ND2	ND2	ND2J	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND2J	ND2	ND2	ND2	ND2 .
Methylene Chloride	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	1.1U	ND1	ND1	ND1J	2	ND1	ND1	ND1
Acetone	5.7UJ	ND2	ND2J	ND2J	ND2	ND2	4 B J	ND2J	ND2UJ	6.1UJ	ND2	ND2J	ND2J	ND2	ND2J	ND2J	ND2UJ
Carbon Disulfide	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1J	ND1
1,1-Dichloroethene	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1J	ND1
1,1-Dichloroethane	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
1,2-Dichloroethene (total)	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Chloroform	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
1,2-Dichloroethane	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
2-Butanone	ND2R	ND2R	ND2J	ND2J	ND2	ND2	ND2	ND2	ND2UJ	ND2R	ND2R	ND2j	ND2J	ND2	ND2	ND2	ND2UJ
1,1,1-Trichloroethane	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Carbon Tetrachloride	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1J	ND1J	ND1	ND1	ND1
Vinyl Acetate	ND2	ND2R	ND2	ND2J	ND2	ND2	ND2J	ND2	, ND2	ND2	ND2R	ND2	ND2J	ND2	ND2J	ND2	ND2
Bromodichloromethane	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
1,2-Dichloropropane	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
cis-1,3-Dichloropropene	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Trichloroethene	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Dibromochloromethane	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1]	ND1	ND1	ND1	ND1
1,1,2-Trichloroethane	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1]	ND1	ND1	ND1	ND1
Benzene	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1 .	ND1	ND1
Trans-1,3-Dichloropropene	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Bromoform	ND1	ND1	ND1	ND1J	ND1	ND1	ND1R	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1J	ND1	ND1
4-Methyl-2-Pentanone	ND2	ND2	ND2	ND2J	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND2J	ND2	ND2	ND2	ND2
2-Hexanone	ND2	ND2	ND2	ND2J	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND2	ND2J	ND2	ND2	ND2	ND2
Tetrachloroethene	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
1,1,2,2-Tetrachloroethane	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Toluene	ND1	ND1	ND1	ND1]	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Chlorobenzene	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Ethylbenzene	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Styrene	ND1	ND1	ND1	ND1J	ND1	ND1	ND1R	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1
Total Xylenes	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1	ND1J	ND1	ND1	ND1	ND1

<u>Notes:</u> NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination.

J = the associated numerical value is an estimated quantity.

D = secondary dilution was performed to obtain result. R = data was rejected, analyte may or may not be present.

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL EW1 (INFLUENT)

Parameter (µg/L)	EW1 (Influent	t)					_				
VOCs	11/14/90	11/14/90	11/16/90	11/19/90	11/23/90	11/27/90	11/29/90	11/29/90	12/04/90	12/04/90	12/06/90
		Dup.						Dup		Dup	
Chloromethane	ND20	ND20	ND20	ND30I	ND30J	ND32	ND20	ND20	ND30	ND32	ND30J
Bromomethane	ND20	ND20	ND20	ND30	ND30	ND32	ND20	ND20	ND30	ND32	ND30
Vinyl Chloride	ND20	ND20	ND20	ND30	ND30	ND32	ND20	ND20	ND30	ND32	ND30
Chloroethane	ND20	ND20	ND20	ND30	ND30	ND32	ND20	ND20	ND30	ND32	ND30
Methylene Chloride	9U	ND10	8U	ND15	ND15	ND16	ND10	ND10	36U	36U	20U
Acetone	ND20J	ND20J	ND201	ND30]	ND30J	ND32J	ND20J	ND20J	ND30J	ND32J	ND30J
Carbon Disulfide	ND10	ND10	ND10	ND15	ND15J	ND16	ND10	ND10	ND15	ND16	ND15
1,1-Dichloroethene	ND10	ND10	ND10	ND15	ND15	ND16	ND10	ND10	ND15	ND16	ND15
1,1-Dichloroethane	ND10	ND10	ND10	ND15	ND15	ND16	ND10	ND10	ND15	ND16	ND15
1,2-Dichloroethene (total)	130	110	110	110	89	80	80	80	75	78	93
Chloroform	ND10	ND10	ND10	ND15	ND15	ND16	ND10	ND10	ND15	ND16	ND15
1.2-Dichloroethane	ND10	ND10	ND10	ND15	ND15	ND16	ND10	ND10	ND15	ND16	ND15
2-Butanone	ND20J	ND20]	ND20J	ND30	ND30	ND32R	ND20R	ND20R	ND30J	ND32J	ND30J
1.1.1-Trichloroethane	ND10	ND10	ND10	ND15	7]	11J	10	11	8J	9J	9J
Carbon Tetrachloride	ND10	ND10	ND10	ND15	ND15	ND16	ND10	ND10	ND15	ND16	ND15
Vinyl Acetate	ND20	ND20	ND20	ND30J	ND30J	ND32	ND20	ND20	ND30	ND32	ND30
Bromodichloromethane	ND10	ND10	ND10	ND15	ND15	ND16	ND10	ND10	ND15	ND16	ND15
1,2-Dichloropropane	ND10	ND10	ND10	ND15	ND15	ND16	. ND10	ND10	ND15	ND16	ND15
cis-1,3-Dichloropropene	ND10	ND10	ND10	ND15	ND15	ND16	ND10	ND10	ND15	ND16	ND15
Trichloroethene	290	260	330	490	450	400	380J	380J	440J	440J	47 0J
Dibromochloromethane	ND10	ND10	ND10	ND15	ND15	ND16	ND10	ND10	ND15	ND16	ND15
1,1,2-Trichloroethane	ND10	ND10	ND10	ND15	ND15	ND16	ND10	ND10	ND15	ND16	ND15
Benzene	ND10	ND10	ND10	ND15	ND15	ND16	ND10	ND10	ND15	ND16	ND15
Trans-1,3-Dichloropropene	ND10	ND10	ND10	ND15	ND15	ND16	ND10	ND10	ND15	ND16	ND15
Bromoform	ND10	ND10	ND10	ND15	ND15	ND16	ND10	ND10	ND15	ND16	ND15
4-Methyl-2-Pentanone	ND20	ND20J	ND20	ND30	ND30	ND32	ND20J	ND20J	ND30	ND32	ND30
2-Hexanone	ND20	ND20J	ND20	ND30	ND30	ND32	ND20J	ND20J	ND30	ND32	ND30
Tetrachloroethene	2J	2J	5J	4J	3J	ND16J	2J	2J	ND15	ND16	ND15
1,1,2,2-Tetrachloroethane	ND10	ND10	ND10	ND15	ND15	ND16	ND10	ND10	ND15	ND16	ND15
Toluene	ND10	ND10	ND10	ND15	ND15	ND16	ND10	ND10	ND15	ND16	ND15
Chlorobenzene	ND10	ND10	ND10	ND15	ND15	ND16	ND10	ND10	ND15	ND16	ND15
Ethylbenzene	ND10	ND10	ND10	ND15	ND15	ND16	ND10	ND10	ND15	ND16	ND15
Styrene	ND10	ND10	ND10	ND15	ND15	ND16	ND10	ND10	ND15	ND16	ND15
Total Xylenes	ND10	ND10	ND10	ND15	ND15	ND16	ND10	ND10	ND15	ND16	ND15

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination. J = the associated numerical value is an estimated quantity. D = secondary dilution was performed to obtain result. R = data was rejected, analyte may or may not be present.

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL EW1 (INFLUENT)

Parameter (µg/L)	EW1 (Influent)										
VOCs	12/06/90	12/11/90	12/17/90	12/17/90	12/17/90	12/17/90	01/08/91	01/08/91	02/12/91	02/12/91	03/04/91
	Dup			Reanalysis	Dup	Dup-Reanalysis		Dup		Diluted	
Chloromethane	ND30J	ND28	ND20	ND40J	ND20	ND40J	ND20	ND20	3.2	ND20	ND2
Bromomethane	ND30	ND28	ND20	ND40J	ND20	ND40J	ND20	ND20	ND2	ND20	ND2
Vinyl Chloride	ND30	ND28	ND20	ND40J	ND20	ND40	ND20	ND20	ND2	ND20	ND2
Chloroethane	ND30	ND28	ND20	ND40J	ND20	ND40	ND20	ND20	ND2	ND20	ND2
Methylene Chloride	16U	14U	3U	4U	3U	ND20	9U	8U	ND1	ND10	ND1
Acetone	ND30J	ND28J	ND20J	ND40J	ND20J	ND40J	ND20J	ND20J	ND2J	ND20J	ND2J
Carbon Disulfide	ND15	ND14	ND10	ND20J	ND10	ND20J	ND10	ND10	ND1	ND10	ND1
1,1-Dichloroethene	ND15	ND14	ND10	ND20	ND10	ND20	ND10	ND10	ND1	ND10	ND1
1,1-Dichloroethane	ND15	ND14	ND10J	ND20	ND10J	ND20	ND10	ND10	ND1	ND10	ND1
1,2-Dichloroethene (total)	89	84	76	75D	83	72D	60	60	25	25D	22
Chloroform	ND15	ND14	ND10	ND20	ND10	ND10	ND20	ND10	ND1	ND10	ND1
1,2-Dichloroethane	ND15	ND14	ND10J	ND20	ND10J	ND10	ND20	ND10	ND1	ND10	ND1
2-Butanone	ND30J	28J	ND20J	ND40J	ND20J	ND20J	ND40	ND20	ND2R	ND20R	ND2R
1,1,1-Trichloroethane	9J	6	4J	ND20	5J	ND20	ND20	ND10	ND1	ND10	ND1
Carbon Tetrachloride	ND15	ND14	ND10	ND20	ND10	ND20	ND20	ND10	ND1	ND10	ND1
Vinyl Acetate	ND30	ND28	ND20J	ND40	ND20J	ND20	ND40	ND20	ND2	ND20	ND2
Bromodichloromethane	ND15	ND14	ND10	ND20	ND10	ND40	ND20	ND10	ND1	ND10	ND1
1,2-Dichloropropane	ND15	ND14	ND10 ·	ND20	ND10	ND40 .	ND20	ND10	ND1	ND10	ND1
cis-1,3-Dichloropropene	ND15	ND14	ND10	ND20	ND10	ND40	ND20	ND10	ND1	ND10	ND1
Trichloroethene	460	470	440	500DJ	450	460D	320J	29 0J	310	470D	290
Dibromochloromethane	ND15	ND14	ND10	ND20	ND10	ND20	ND10	ND10	ND1	ND10	ND1
1,1,2-Trichloroethane	ND15	ND14	ND10	ND20	ND10	ND20	ND10	ND10	ND1	ND10	ND1
Benzene	ND15	ND14	ND10	ND20	ND10	ND20	ND10	ND10	ND1	ND10	ND1
Trans-1,3-Dichloropropene	ND15	ND14	ND10	ND20	ND10	ND20	ND10	ND10	ND1	ND10	ND1
Bromoform	ND15	ND14	ND10	ND20	ND10	ND20	ND10	ND10	ND1	ND10	ND1
4-Methyl-2-Pentanone	ND30	ND28	ND20J	ND40	ND20J	ND40	ND20	ND20	ND2	ND20	ND2
2-Hexanone	ND30	ND28	ND20J	ND40	ND20J	ND40	ND20	ND20	ND2	ND20	ND2J
Tetrachioroethene	ND15	ND14	ND10	ND20	ND10	ND20	ND10	ND10	ND1	ND10	1.3
1,1,2,2-Tetrachloroethane	ND15	ND14	ND10	ND20	ND10	ND20	ND10	ND10	ND1	ND10	ND1
Toluene	ND15	ND14	ND10	ND20	ND10	ND20	ND10	ND10	ND1	ND10	ND1
Chlorobenzene	ND15	ND14	ND10	ND20	ND10	ND20	ND10	ND10	ND1	ND10	ND1
Ethylbenzene	ND15	ND14	ND10	8DJ	ND10	ND20	ND10	ND10	ND1	ND10	ND1
Styrene	ND15	ND14	ND10	ND20	ND10	ND20	ND10	ND10	ND1	ND10	ND1
Total Xylenes	ND15	ND14	ND10J	46J	ND10J	ND20J	ND10	ND10	ND1	ND10	ND1

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination. J = the associated numerical value is an estimated quantity. D = secondary dilution was performed to obtain result. R = data was rejected, analyte may or may not be present.

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL EW1 (INFLUENT)

	EW1 (Influent)												
Parameter (µg/L)	03/04/91	03/04/91	03/04/91	04/03/91	04/03/91	05/06/91	05/06/91	05/06/91	05/06/91	08/05/91	08/05/91	11/04/91	11/04/91
VOCs	Diluted	Dup	Dup-Diluted		Diluted		Diluted	Dup	Dup-Diluted		Diluted		Diluted
Chloromethane	ND20	ND2	ND40	ND2	ND40	ND2	ND40	ND2I	ND100	ND2	ND20	ND2I	ND20I
Bromomethane	ND20	ND2	ND40	ND2	ND40	ND2	ND40	ND2	ND100	ND2	ND20	ND2I	ND201
Vinyl Chloride	ND20	ND2	ND40	ND2	ND40	ND2	ND40	ND2	ND100	ND2	ND20	ND2J	ND20J
Chloroethane	ND20	ND2	ND40	ND2	ND40	ND2	ND40	ND2	ND100	ND2	ND20	ND2J	ND20J
Methylene Chloride	ND20	ND2 ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	10D	ND1J	17DUJ
•	ND201	ND2J	ND40J	ND2J	ND40J	ND1	ND40J	ND2	ND100J	ND2J	66J	ND2J	ND20J
Acetone Carbon Disulfide	ND10	ND2J ND1	ND20	ND2j ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND10	ND1J	ND10J
1.1-Dichloroethene	ND10	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND10	ND1J	ND10J
1,1-Dichloroethane	ND10	NDI NDI	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND10	ND1J	-ND10J
	22D	24	20D	21	ND20	16	ND20	15	ND50	8.3	ND10	9.5]	ND10J
1,2-Dichloroethene (total)	ND10	24 ND1	20D ND20	ND1	ND20	ND1	ND20	ND1	ND50	8.3 ND1	ND10	ND1J	ND10J
Chloroform		NDI NDI	ND20	ND1	ND20 ND20	ND1	ND20	NDI NDI	ND50	ND1	ND10	NDIJ	ND10J
1,2-Dichloroethane	ND10	ND1 ND2R		ND1 ND2	ND20 ND40	ND2R	ND40R	ND2R	ND100R	ND1 ND2I	ND20J	ND1	ND20J
2-Butanone	ND20J		ND40J	ND2 ND1	ND40 ND20	ND2K ND1	ND40K	ND2K	ND50	ND2j ND1	ND20J ND10	ND2J ND1J	ND10J
1,1,1-Trichloroethane	ND10	ND1	ND20 ND20	NDI NDI	ND20 ND20	ND1	ND20 ND20	NDI NDI	ND50	ND1	ND10 ND10	NDIJ NDIJ	ND10J
Carbon Tetrachloride	ND10	ND1		ND1 ND2	ND20 ND40	ND1 ND2R	ND20 ND40R	ND1 ND2R	ND100	ND1 ND2	ND10 ND20	ND1J	ND20J
Vinyl Acetate	ND20	ND2	ND40			ND2k ND1	ND40K	ND2K ND1	ND50	ND2 ND1	ND20 ND10	ND2J ND1J	•
Bromodichloromethane	ND10	ND1	ND20	ND1	ND20							-	ND10J
1,2-Dichloropropane	ND10	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50 ND50	ND1 ND1	ND10	ND1J	ND10J
cis-1,3-Dichloropropene	ND10	ND1	ND20	ND1	ND20	ND1	ND20	ND1			ND10	ND1J	ND10J
Trichloroethene	370D	300	370D	340J	420D	290J	430D	270R	29DA	240J	320D	290J	210DJ
Dibromochloromethane	ND10	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND10	ND1J	ND10J
1,1,2-Trichloroethane	ND10	ND1.	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND10	ND1J	ND10J
Benzene	ND10	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND10	ND1J	ND10J
Trans-1,3-Dichloropropene		ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND10	ND1J	ND10J
Bromoform	ND10	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND10	ND1J	ND10J
4-Methyl-2-Pentanone	ND20	ND2	ND40	ND2	ND40J	ND2	ND40	ND2	ND100	ND2	ND20	ND2J	ND20J
2-Hexanone	ND20	ND2J	ND40	ND2	ND40	ND2	ND40	ND2	ND100	ND2	ND20	ND2J	ND20J
Tetrachloroethene	ND10	ND1	ND20	1.2	ND20	ND1	ND20	ND1	ND50	ND1	ND10	ND1J	ND10J
1,1,2,2-Tetrachloroethane	ND10	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND10	ND1J	ND10J
Toluene	ND10	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND10	ND1J	ND10J
Chlorobenzene	ND10	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND10	ND1J	ND10J
Ethylbenzene	ND10	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND10	ND1J	ND10J
Styrene	ND10	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND10	ND1]	ND10J
Total Xylenes	ND10	ND1	ND20	ND1	ND20	ND1	ND20	ND1	ND50	ND1	ND10	ND1J	ND10J

Notes:

NDx = not detected at quantitation limit x.

U = the analyte was detected but was attributed to laboratory contamination. J = the associated numerical value is an estimated quantity. D = secondary dilution was performed to obtain result. R = data was rejected, analyte may or may not be present. A = assumed anomaly.

Page 3 of 4

CONESTOGA-ROVERS & ASSOCIATES

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL EW1 (INFLUENT)

Parameter (µg/L)	EW1 (Influen	t)										
VOCs	11/04/91	11/04/91	02/17/92	02/17/92	05/11/92	05/11/92	08/03/92	08/03/92	08/03/92	08/03/92	11/02/92	11/02/92
	Dup	Dup-Diluted		Diluted		Diluted		Diluted	Duplicate	Dup-Diluted		Diluted
Chlorenthese	ND2J	ND20J	ND2	ND10	ND2	ND10	ND2	ND10J	ND2	ND10J	0.9]	ND10
Chloromethane Bromomethane	ND2j ND2j	ND20J	ND2	ND10	ND2	ND10	ND2	ND10	ND2	ND10,	ND2	ND10
	ND2J	ND20J	ND2	ND10	ND2	ND10	ND2	ND10	ND2	ND10	ND2	ND10
Vinyl Chloride	ND2J	ND20J	ND2	ND10	ND2	ND10	ND2	ND10	ND2	ND10	ND2	ND10
Chloroethane	ND2J ND1J	17DU	ND2 ND1	ND10	ND2 ND1	5U	ND1	ND5	ND1	ND5	ND1	5U
Methylene Chloride	NDIJ ND2J	ND20J	ND1 ND2	ND10	ND2J	15U	ND2j	ND10J	ND2	ND10J	ND2UJ	ND10UT
Acetone	ND2J ND1J	ND20J ND10J	ND2 ND1	ND10 ND5	ND2j ND1	ND5	ND1J	ND5J	ND1J	ND5J	ND1	ND5
Carbon Disulfide	NDIJ NDIJ	ND10J	ND1	ND5	ND1	ND5	NDIJ	ND5J	ND1J	ND5j	ND1	ND5
1,1-Dichloroethene		ND10J	NDI ND1	ND5	ND1	ND5	NDI NDI	ND5	ND1	ND5	ND1	ND5
1,1-Dichloroethane	ND1J		7	5JD	10	60	4	4D	5	4D	5	6D
1,2-Dichloroethene (total)	9.9J	ND10J	ND1	ND5	ND1	ND5	4 ND1	ND5	ND1	ND5	ND1	ND5
Chloroform	ND1J	ND10J		ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5
1,2-Dichloroethane	ND1J	ND10J	ND1	ND5 ND10	NDI ND2	ND10	ND1 ND2	ND10	ND1 ND2	ND10	ND2UJ	ND10
2-Butanone	ND2J	ND20J	ND2			ND10 ND5	ND2 ND1	ND5	ND2 ND1	ND5	ND20J	ND5
1,1,1-Trichloroethane	NDIJ	ND10J	ND1	ND5	ND1 ND1	ND5 ND5	ND1	ND5	NDI NDI	ND5	ND1	ND5
Carbon Tetrachloride	ND1J	ND10J	ND1J	ND5J	-	ND10	ND1 ND2	ND10	ND1 ND2	ND10	ND1 ND2	ND10
Vinyl Acetate	ND2J	ND20J	ND2	ND10	ND2J	-	ND2 ND1	ND10 ND5	ND2 ND1	ND5	ND2 ND1	ND5
Bromodichloromethane	ND1J	ND10J	ND1	ND5	ND1	ND5		ND5	NDI NDI	ND5	ND1	ND5
1,2-Dichloropropane	ND1J	ND10J	ND1	ND5	ND1	ND5	ND1	ND5	NDI NDI	ND5	ND1	ND5
cis-1,3-Dichloropropene	ND1J	ND10J	ND1	ND5	ND1	ND5	ND1			160D		150D
Trichloroethene	340J	300DJ	240J	160D	210J	180D	150J	150D ND5	160J ND1	ND5	160J ND1	ND5
Dibromochloromethane	ND1J	ND10J	ND1	ND5	ND1	ND5	ND1		NDI NDI	ND5	ND1	ND5
1,1,2-Trichloroethane	ND1J	ND10J	ND1	ND5	ND1	ND5	ND1	ND5				ND5 ND5
Benzene	ND1J	ND10J	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	
Trans-1,3-Dichloropropene	ND1J	ND10J	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5UJ
Bromoform	ND1J	ND10J	ND1	ND5	ND1J	ND5	ND1	ND5	ND1	ND5	ND1	ND5UJ
4-Methyl-2-Pentanone	ND2J	ND20J	ND2	ND10	ND2	ND10	ND2	ND10	ND2	ND10	ND2	ND10
2-Hexanone	ND2J	ND20]	ND2	ND10	ND2	ND10	ND2	ND10	ND2	ND10	ND2	ND10
Tetrachloroethene	ND1J	ND10J	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5
1,1,2,2-Tetrachloroethane	ND1J	ND10J	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5
Toluene	ND1J	ND10J	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5
Chlorobenzene	ND1J	ND10J	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5
Ethylbenzene	ND1J	ND10J	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5
Styrene	ND1J	ND10J	ND1	ND5	ND1	ND5R	ND1	ND5	ND1	ND5	ND1	ND5
Total Xylenes	NDIJ	ND10J	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5	ND1	ND5

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination. J = the associated numerical value is an estimated quantity.

D = secondary dilution was performed to obtain result.

R = data was rejected, analyte may or may not be present.

Page 1 of 4

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL EW1 (EFFLUENT)

Parameter (µg/L)	EW1 (Efferent,)											
VOCs	11/14/90	11/16/90	11/19/90	11/23/90	11/27/90	11/27/90	11/29/90	12/04/90	12/06/90	12/11/90	12/11 90	12/17/90	12/17/90
						Dup				•	Dup		Reanalysis
Chloromethane	ND20	ND10J	ND30J	ND30]	ND20	ND20	ND20	ND20	ND20J	ND20	ND20	ND20	ND20J
Bromomethane	ND20	ND10	ND30	ND30	ND20	ND20	ND20	ND20	ND20	ND20	ND20	ND20	ND20J
Vinyl Chloride	ND20	ND10	ND30	ND30	ND20	ND20	ND20	ND20	ND20	ND20	ND20	ND20	ND20
Chloroethane	ND20	ND10	ND30	ND30	ND20	ND20	ND20	ND20	ND20	ND20	ND20	ND20	ND20
Methylene Chloride	10U	4U	ND15	ND15	4U	4U	ND10	24U	13U	4U	4U	3U	ND10
Acetone	ND20J	ND10I	ND30J	ND30J	ND20J	ND20J	ND20J	ND20J	ND20J	ND20J	ND20J	ND20J	ND20J
Carbon Disulfide	ND10	ND5	ND15	ND15J	ND10	ND10	ND10	ND10	ND10	4J	ND10	5J	ND10J
1,1-Dichloroethene	ND10	ND5	ND15	ND15	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10	NID10
1.1-Dichloroethane	ND10	ND5	ND15	ND15	ND10	ND10	ND10	ND10	3J	ND10	ND10	ND10J	ND10
1,2-Dichloroethene (total)	99	75	72	. 71	60	65	60	64	62	62	49	58·	50
Chloroform	ND10	ND5	ND15	ND15	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10
1,2-Dichloroethane	ND10J	ND5	ND15	ND15	ND10R	ND10R	ND10R	ND10	ND10	ND10	ND10	ND10J	ND10J
2-Butanone	ND20	ND10	ND30	ND30	ND20	ND20	ND20	ND20J	ND20J	ND20J	ND20J	ND20J	ND20J
1,1,1-Trichloroethane	ND10	ND5	ND15	ND15	5J	6J	6J .	6 j	5J	3J	3J	3J	3J
Carbon Tetrachloride	ND10	ND5	ND15]	ND15J	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10
Vinyl Acetate	ND20	ND10	ND30	ND30	ND20	ND20	ND20	ND20	ND20	ND20	ND20	ND20J	ND20J
Bromodichloromethane	ND10	ND5	ND15	ND15	ND10	ND10	ND10	ND10	• ND10	ND10	ND10	ND10	ND10
1,2-Dichloropropane	ND10	ND5	ND15	ND15	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10
cis-1,3-Dichloropropene	ND10	ND5	ND15	ND15	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10
Trichloroethene	210	190	340	340J	250	260	250J	320	260	300	240	290	290
Dibromochloromethane	ND10	ND5	ND15	ND15	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10
1,1,2-Trichloroethane	ND10	ND5	ND15	ND15	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10
Benzene	ND10	ND5	ND15	ND15	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10
Trans-1,3-Dichloropropene	ND10	ND5	ND15	ND15	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10
Bromoform	ND10	ND5	ND15	ND15	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10
4-Methyl-2-Pentanone	ND20	ND10	ND30	ND30	ND20	ND20	ND20J	ND20	ND20	ND20	ND20	ND20J	ND20J
2-Hexanone	ND20	ND10	ND30	ND30	ND20	ND20	ND20J	ND20	ND20	ND20	ND20	ND20J	ND20J
Tetrachloroethene	ND10	3J	ND15	ND15	ND10J	ND10J	ND10	ND10	ND10	ND10	ND10	ND10	ND10
1,1,2,2-Tetrachloroethane	ND10	ND5	ND15	ND15	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10
Toluene	ND10J	ND5	ND15	ND15	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10
Chlorobenzene	ND10	ND5	ND15	ND15	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10
Ethylbenzene	ND10	ND5	ND15	ND15	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10
Styrene	ND10	ND5	ND15	ND15	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10
Total Xylenes	ND10	ND5	ND15	ND15	ND10	ND10	ND10	ND10	ND10	ND10	ND10	ND10J	ND10J

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination. J = the associated numerical value is an estimated quantity. D = secondary dilution was performed to obtain result. R = data was rejected, analyte may or may not be present.

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL EW1 (EFFLUENT)

Parameter (µg/L)	EW1 (Effluent)						•						
VOCs	01/08/90	02/12/91	02/12/91	02/12/91	02/12/91	03/04/91	03/04/91	04/03/91	04/03/91	04/03/91	04/03/91	05/06/91	05/06/91
			Diluted	Dup	Dup-Diluted		Diluted		Diluted	Duplicate	Dup-Diluted		Diluted
Chloromethane	ND20	ND2	ND20	ND2	ND20	ND2	ND20	ND2	ND20	ND2	ND20	ND2J	ND20
Bromomethane	ND20	ND2	ND20	ND2	ND20	ND2	ND20	ND2	ND20	ND2	ND20	ND2	ND20
Vinyl Chloride	ND20	ND2	ND20	ND2	ND20	ND2	ND20	ND2	ND20	ND2	ND20	ND2	ND20
Chloroethane	ND20	ND2	ND20	ND2	ND20	ND2	ND20	ND2	ND20	ND2	ND20	ND2	ND20
Methylene Chloride	8U	ND1	ND10	ND1	18U	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10
Acetone	ND201	ND2J	ND20J	ND2J	78J	ND2J	ND20J	4 J	ND20J	ND1J	163UJ	ND2	ND20J
Carbon Disulfide	ND10	ND1	ND10	ND1	ND10	NDI	ND10	ND1	ND10	ND1	ND10	ND1	ND10
1.1-Dichloroethene	ND10	ND1	ND10	· ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	NID10
1,1-Dichloroethane	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10
1,2-Dichloroethene (total)	46	17]	18D	18J	19D	15J	16D	15	12D	15	14D	9.9	75DA
Chloroform	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10
1,2-Dichloroethane	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10
2-Butanone	ND20	ND2R	ND20R	ND2R	ND20R	ND2R	ND20J	· ND2	ND20	ND2	ND20	ND2R	ND20R
1.1.1-Trichloroethane	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10
Carbon Tetrachloride	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10
Vinyl Acetate	ND20	ND2	ND20	ND2	ND20	ND2	ND20	ND2	ND20J	· ND2J	ND20J	ND2R	ND20R
Bromodichloromethane	ND10	ND1	ND10	ND1	ND10	ND1	. ND10	ND1	ND10	ND1	ND10	ND1	ND10
1,2-Dichloropropane	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10
cis-1,3-Dichloropropene	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10
Trichloroethene	2001	250J	300D	230J	300D	220J	240D	250J	270D	280J	350D	200J	640DA
Dibromochloromethane	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10
1,1,2-Trichloroethane	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10
Benzene	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10
Trans-1,3-Dichloropropene	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10
Bromoform	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10
4-Methyl-2-Pentanone	ND20	ND2	ND20	ND2	ND20	ND2	ND20	ND2	ND20J	ND2J	ND20	ND2	ND20
2-Hexanone	ND20	ND2	ND20	ND2	ND20	ND2J	ND20J	ND2	ND20	ND2	ND20	ND2	ND20
Tetrachloroethene	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10
1,1,2,2-Tetrachloroethane	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1 -	ND10
Toluene	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10
Chlorobenzene	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10
Ethylbenzene	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10
Styrene	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10
Total Xylenes	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10	ND1	ND10

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination. J = the associated numerical value is an estimated quantity. D = secondary dilution was performed to obtain result. R = data was rejected, analyte may or may not be present. A = assumed anomaly.

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL EW1 (EFFLUENT)

	EWI (Effluen	t)									<u>.</u>
Parameter (µg/L)	08/05/91	08/05/91	08/05/91	08/05/91	08/05/91	11/04/91	11/04/91	02/17/92	02/17/92	02/17/92	02/17/92
VOCs		Re-Analysis	Diluted	Dup.	Dup-Diluted		Diluted		Diluted	Dup	Dup-Diluted
							•				
Chloromethane	ND2J	ND2I	ND40	ND2	ND10	ND2J	ND20I	ND2	ND10	ND2	ND10
Bromomethane	ND2J	ND2J	ND40	ND2	ND10	ND2J	ND20J	ND2	ND10	ND2	ND10
Vinyl Chloride	ND2J	ND2J	ND40	ND2	ND10	ND2J	ND20J	ND2	ND10	ND2	ND10
Chloroethane	ND2J	ND2J	ND40	ND2	ND10	ND2J	ND20J	ND2	ND10	ND2	ND10
Methylene Chloride	ND1J	2J	ND10	ND1	ND5	ND1J	24DUJ	ND1	ND5	ND1	ND5
Acetone	ND2J	ND2J	ND40	ND2J	21UJ	ND2J	ND20J	ND2	ND10	ND2	ND10
Carbon Disulfide	ND1J	1.9]	ND20	ND1	ND5	ND1	ND10J	ND1	ND5	ND1	ND5
1.1-Dichloroethene	ND1J	ND1J	ND20	ND1	ND5	ND1J	ND10J	ND1	ND5	ND1	ND5
1,1-Dichloroethane	ND1J	ND1J	ND20	ND1	ND5	NDIJ	ND10J	ND1	ND5	ND1	ND5
1,2-Dichloroethene (total)	11]	24JA	ND20	5.7	5.6D	7.9]	ND10J	5	3JD	5	ND5
Chloroform	ND1J	1.5]	ND20	ND1	ND5	ND1J	ND10J	ND1	ND5	ND1	ND5
1,2-Dichloroethane	ND1J	ND1J	ND20	ND1	ND5	ND1J	ND10J	ND1	ND5	ND1	ND5
2-Butanone	ND1J	ND2J	ND40	ND2I	ND10J	ND2I	ND20J	ND2	ND10	ND2	ND10
1,1,1-Trichloroethane	ND1J	ND1J	ND20	ND1	ND5	ND1J	ND10J	ND1	ND5	ND1	ND5
Carbon Tetrachloride	ND1J	ND1J	ND20	ND1	ND5	ND1J	ND10J	ND1J	ND5J	ND1J	ND5I
	ND1J ND2J	ND2J	ND40	ND2	ND10	ND2J	ND20J	ND2	ND10	ND2	ND10
Vinyl Acetate	ND1J	ND1J	ND20	ND1	ND5	NDIJ	ND10J	ND1	ND5	ND1	ND5
Bromodichloromethane	NDIJ NDIJ	ND1J	ND20	ND1	ND5	ND1J	ND10J	ND1	ND5	ND1	ND5
1,2-Dichloropropane	ND1J	NDIJ NDIJ	ND20	ND1	ND5	ND1J	ND10J	ND1	ND5	ND1	ND5
cis-1,3-Dichloropropene	330J	590JA	160D	160]	190D	210]	220DJ	140]	120D	130]	100D
Trichloroethene	ND1J ⁽	ND1J	ND20	ND1	ND5	ND1J	ND10J	ND1	ND5	ND1	ND5
Dibromochloromethane	NDIJ NDIJ	NDIJ NDIJ	ND20	ND1	ND5	NDIJ	ND10J	ND1	ND5	ND1	ND5
1,1,2-Trichloroethane	NDIJ NDIJ	NDIJ NDIJ	ND20	ND1	ND5	ND1J	ND10J	ND1	· ND5	ND1	ND5
Benzene	NDIJ NDIJ	NDIJ NDIJ	ND20	NDI NDI	ND5	ND1J	ND10J	ND1	ND5	ND1	ND5
Trans-1,3-Dichloropropene	NDIJ NDIJ	ND1J	ND20	ND1	ND5	ND1J	ND10J	NDI	ND5	ND1	ND5
Bromoform	NDIJ ND2J	ND1J ND2J	ND40	ND1 ND2	ND10	ND1J	ND20J	ND2	ND10	ND2	ND10
4-Methy1-2-Pentanone 2-Hexanone	ND2J ND2J	ND2J	ND40	ND2	ND10	ND2J	ND20J	ND2	ND10	ND2	ND10
2-Hexanone Tetrachloroethene	ND2J ND1J	1.1J	ND40 ND20	ND2 ND1	ND5	ND1J	ND10J	ND1	ND5	ND1	ND5
	•	•	ND20	ND1	ND5	NDIJ NDIJ	ND10J	ND1	ND5	ND1	ND5
1,1,2,2-Tetrachloroethane	ND1J	ND1J	ND20 ND20	ND1	ND5	NDIJ NDIJ	ND10J	ND1	ND5	ND1	ND5
Toluene	ND1J	ND1J					ND10J	ND1	ND5	ND1	ND5
Chlorobenzene	ND1J	ND1J	ND20	ND1 ND1	ND5 ND5	ND1J ND1J	ND10J ND10J	NDI NDI	ND5 ND5	NDI NDI	ND5
Ethylbenzene	ND1J	ND1J	ND20			•	•	NDI ND1	ND5 ND5	NDI NDI	ND5
Styrene	ND1J	ND1J	ND20	ND1	ND5	ND1J	ND10J	NDI NDI	ND5 ND5	NDI ND1	ND5 ND5
Total Xylenes	NŲIJ	ND1J	ND20	, ND1	ND5	ND1J	ND10J	NUI	NU5	NUI	ND5

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination. J = the associated numerical value is an estimated quantity. D = secondary dilution was performed to obtain result. R = data was rejected, analyte may or may not be present.

A = assumed anomaly.

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY VOLATILE ORGANIC COMPOUNDS (VOCs) WELL EW1 (EFFLUENT)

Parameter (µg/L)										11100 100
	05/11/92	05/11/92	05/11/92	05/11/92	08/03/92	08/03/92	11/02/92	11/02/92	11/02/92	11/02/92
VOCs		Diluted	Duplicate	Dup-Diluted		Diluted		Duplicate	Diluted	Dup-Diluted
Chloromethane	ND2	ND8	ND2	ND8	ND2	ND10J	0.9J	ND2	ND4	1JD
Bromomethane	ND2	ND8	ND2	ND8	ND2	ND10	ND2	ND2	ND4	ND4
Vinyl Chloride	ND2	ND8	ND2	ND8	ND2	ND10	ND2	ND2	ND4	ND4
Chloroethane	ND2	ND8	ND2	ND8	ND2	ND10	ND2	ND2	ND4	ND4
Methylene Chloride	ND1	ND4	ND1	4U	ND1	3DJ	ND1	ND1	2U	2U
Acetone	ND2J	11U	ND2J	9U	ND2J	ND10J	ND2UJ	ND2UJ	ND4UJ	ND4UJ
Carbon Disulfide	ND1	ND4	ND1	ND4	ND1J	ND5J	ND1	ND1	ND2	ND2
1.1-Dichloroethene	ND1	ND4	ND1	ND4	ND1J	ND5J	ND1	ND1	ND2	ND2
1.1-Dichloroethane	ND1	ND4	ND1	ND4	ND1	ND5	ND1	ND1	ND2	ND2
1,2-Dichloroethene (total)	8	4DJ	7	3JD	4	3DJ	3	3	3D	4D
Chloroform	ND1	ND4	ND1	ND4	ND1	ND5	ND1	ND1	ND2	ND2
1.2-Dichloroethane	ND1	ND4	ND1	ND4	ND1	ND5	ND1	ND1	ND2	ND2
2-Butanone	4	ND8	ND2	ND8	ND2	ND10	ND2UJ	ND2UJ	ND4	ND4
1.1.1-Trichloroethane	ND1	ND4	ND1	ND4	ND1	ND5	ND1	ND1	ND2	ND2
Carbon Tetrachloride	ND1	ND4	ND1	ND4	ND1	ND5	ND1	ND1	ND2	ND2
Vinyl Acetate	ND2J	ND8	ND2J	ND8	ND2	ND10	ND2	ND2	ND4	ND4
Bromodichloromethane	ND1	ND4	NDI	ND4	ND1	ND5	. ND1	ND1	ND2	ND2
1,2-Dichloropropane	ND1	ND4	ND1	ND4	ND1	ND5	ND1	ND1	ND2	ND2
cis-1,3-Dichloropropene	ND1	ND4	ND1	ND4	ND1	ND5	ND1	ND1	ND2	ND2
Trichloroethene	170J	110DJ	130J	83DJ	120J	110D	100E	110E	77 D	110D
Dibromochloromethane	ND1	ND4	ND1	ND4	ND1	ND5	ND1	ND1	ND2	ND2
1,1,2-Trichloroethane	ND1	ND4	ND1	ND4	ND1	ND5	ND1	ND1	ND2	ND2
Benzene	ND1	ND4	ND1	ND4	ND1	ND5	ND1	ND1	ND2	ND2
Trans-1,3-Dichloropropene	ND1	ND4	ND1	ND4	ND1	ND5	ND1	ND1	ND2UJ	ND2UJ
Bromoform	ND1J	ND4	ND1J	ND4	ND1	ND5	ND1	ND1	ND2UJ	ND2UJ
4-Methyl-2-Pentanone	ND2	ND8	ND2	ND8	ND2	ND10	ND2	ND2	ND4	ND4
2-Hexanone	ND2	ND8	ND2	ND8	ND2	ND10	ND2	ND2	ND4	ND4
Tetrachloroethene	ND1	ND4	ND1	ND4	ND1	ND5	ND1	ND1	ND2	ND2
1,1,2,2-Tetrachloroethane	ND1	ND4	ND1	ND4	ND1	ND5	ND1	ND1	ND2	ND2
Toluene	ND1	ND4	ND1	ND4	ND1	ND5	ND1	ND1	ND2	ND2
Chlorobenzene	ND1	ND4	ND1	ND4	ND1	ND5	ND1	ND1	ND2	ND2
Ethylbenzene	ND1	ND4	ND1	ND4	ND1	ND5	ND1	ND1	ND2	ND2
Styrene	ND1	ND4R	ND1	ND4R	ND1	ND5	ND1	ND1	ND2	ND2
Total Xylenes	ND1	ND4	ND1	ND4	ND1	ND5	ND1	ND1	ND2	ND2

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination. J = the associated numerical value is an estimated quantity. D = secondary dilution was performed to obtain result. R = data was rejected, analyte may or may not be present. A = assumed anomaly.

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY METALS

Parameter (µg/L)	3	C4D			W52			W53A			W54	
Metals	12/33/90	03/04/91	02/18/92	12/04/90	03/04/91	02/18/92	12/03/90	03/04/91	02/17/92	12/03/90	03/04/91	02/17/92
Aluminum	188U	ND72	1030	771J	ND72	ND81	ND38.5	264	120U	750	300	659
Antimony	28.2J	ND56	ND58	170J	ND56	ND58	41.9J	ND56	ND58	27.3J	ND56	ND58
Arsenic	ND3	ND1	ND3J	ND3J	ND1	ND3J	ND3	ND1	ND3J	ND3	ND1	ND3J
Barium	54.9J	13U	185U	641J	63U	ND35	114J	59U	62U	131J	ND32	53U
Beryllium	ND0.3	ND2	ND2	16.4J	ND2	ND2	ND0.3	ND2	ND2	ND0.3	ND2	ND2
Cadmium	3.8J	ND3	ND3	20.2J	5	15	ND1.7	ND3	ND3	ND1.7	8	ND3
Calcium	43000J	50200	60100	30400J	37700	28900	106000J	29700	17800	61100J	27700	33100
Chromium	ND1.7	ND7	ND7	61.6J	ND7	ND7	ND1.7	27	ND7	2.6J	ND7	7U
Cobalt	6.5J	ND15	ND10	157j	ND15	ND10	ND1.7	ND15	ND10	2.8J	ND15	ND10
Copper	178J	25	ND18	270J	19J	ND18	15.3UJ	51	ND18	27.4UJ	35	29
Iron	173	ND70	ND62	1380J	992	651	52U	3280	285	641	634	2320
Lead	ND1J	ND1	ND2J	34.7]	· 21.6	48.8J	ND1J	46.7	3.1J	3.6J	13.6	17.9J
Magnesium	11600	15400	24300	14500J	13700	10300	27900	10500	10100	24400	2570J	3980U
Manganese	431J	2430	6270	3480J	4220	3740	3.1J	39	16	226J	157	1160
Mercury	ND0.1	ND0.2UJ	ND0.2J	ND0.1	ND0.2UJ	ND0.2J	ND0.1	ND0.2UJ	ND0.2J	ND0.1	ND0.2UJ	ND0.2J
Nickel	18.8J	ND32	ND32	163J	ND32	ND32	ND10.7	ND32	ND32	ND10.7	ND32	ND32
Potassium	1430J	8340	18600	1430J	1390	ND1300	5910	9380	18500	11700	4080J	3890U
Selenium	ND3	9.8	ND4J	ND3J	2J	ND4J	ND3	3J	ND4J	4.4J	ND1	ND4J
Silver	ND8.4	ND11	ND10	18.5J	ND11	ND10	ND8.4	ND11	ND10	ND8.4	ND11	ND10
Sodium	12800J	21200	23300	15300J	12800	10800	61700J	12300	7640	16300J	9460 [°]	113000
Thallium	ND2	ND3R	ND3J	ND2	3.4R	ND3J	ND2	ND3R	ND3J	ND2	ND3R	ND3J
Vandium	ND2	ND19	ND20	149J	ND19	ND20	ND2	ND19	ND20	ND2	ND19	ND20
Zinc	158J	56U	167	16100J	16800	51500	356J	2490	453	1240J	1340	1860
Cyanide	ND10J		-	ND10J		-	ND10J			ND10J		

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination.

J = the associated numerical value is an estimated quantity.

R = data was rejected, analyte may or may not be present

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY METALS

						EW1		
Parameter (µg/L)		E	W1 (Influent)		(Effluent)		
Metals	12/04/90	12/04/90	03/04/91	02/17/92	12/04/90	03/04/91	02/17/92	02/17/92
		(Dup)						(Dup)
Aluminum	ND38.5	ND38.5	ND72	114U	66.3U	ND72	115U	128U
Antimony	19.1J	13J	ND56	ND58	18.5J	ND56	ND58	ND58
Arsenic	ND3	ND3	ND1	ND3J	ND3	ND1	ND3J	ND3J
Barium	59.4J	35.1J	46U	35U	57.6J	44U	35U	36U
Beryllium	ND0.3	ND0.3	ND2	ND2	ND0.3	ND2	ND2	ND2
Cadmium	ND1.7	ND1.7	ND3	ND3	3.1J	ND3	ND3	ND3
Calcium	32400J	18700J	27400	21000	30600J	26600	20900	20700
Chromium	ND1.7	ND1.7	ND7	ND7	ND1.7	ND7	ND7	ND7
Cobalt	4.2J	2.7J	ND15	ND10	7.2J	ND15	ND10	ND10
Copper	54.4J	63.6J	24J	42	176J	21J	ND18	ND18
Iron	1290	1050	1450	1820	1100	1330	1240	1260
Lead	38.9J	ND1J	2J	6.7J	ND1J	ND1	ND2J	ND2J
Magnesium	10700J	6150J	7750	5550	10200	7430J	5540	5610
Manganese	373J	219J	471	290	·357J	455	291	291
Mercury	ND0.1	0.11J	ND0.2UJ	ND0.4J	ND0.1	ND0.2UJ	ND0.2J	0.46J
Nickel	ND10.7	ND10.7	ND32	ND32	14.5J	ND32	ND32	ND32
Potassium	ND970	2190J	1390	1810U	2170J	ND1390	ND1300	1830U
Selenium	ND3	ND3	ND1	ND4J	ND3	ND1	ND4J	ND4J
Silver	ND8:4	ND8.4	ND11	ND10	ND8.4	ND11	ND10	ND10
Sodium	21300J	12000J	15900	11600	19800J	15900	12400	12300
Thallium	ND2	ND2	ND3R	ND3J	ND2	ND3R	ND3J	ND3J
Vandium	ND2	ND2	ND19	ND20	ND2	ND19	ND20	ND20
Zinc	90.8J	90.6J	119U	223	56.3J	55U	56	58
Cyanide	ND10J	ND10J		-	ND10J		-	-

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination.

J = the associated numerical value is an estimated quantity.

R = data was rejected, analyte may or may not be present

.

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY PESTICIDES AND PCBs

Deservator (us/L)	C4D	W52	W53A	W54	EW1 (I1	ufluent)	EW1 (Effluent)
Parameter (µg/L) Pesticides	12/03/90	12/04/90	12/03/90	12/03/90	12/04/90	12/04/90	12/04/90
Festilines	12/03/30	12/02/50	12100/00		12/01/00	(Dup)	
alpha-BHC	ND0.025						
beta-BHC	ND0.025						
delta-BHC	ND0.025						
gamma-BHC	ND0.025						
Heptachlor	ND0.025						
Aldrin	ND0.025						
Heptachlor epoxide	ND0.025						
Endosulfan I	ND0.025						
Dieldrin	ND0.025						
4,4'-DDE	ND0.05						
Endrin	ND0.05						
Endosolfan II	ND0.05						
4,4'-DDD	ND0.05						
Endosulfan Sulfate	ND0.05						
4,4'-DDT	ND0.05						
Methoxychlor	ND0.25						
Endrin ketone	ND0.05						
alpha-Chlordane	ND0.25						
gamma-chlordane	ND0.25						
Toxaphene	ND0.50						
PCBs							
Aroclor-1016	ND0.25						
Aroclor-1221	ND0.25						
Aroclor-1232	ND0.25						
Aroclor-1242	ND0.25						
Aroclor-1248	ND0.25						
Aroclor-1254	ND0.50						
Aroclor-1260	ND0.50						
•							

Notes:

NDx = not detected at quantitation limit x.

~

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY

BNAs

										EW1
Parameter (µg/L)	C	4D	и	/52	W53A	W54	. i	EW1 (Influent))	(Effluent)
BNAs	12/03/90	12/03/90	12/04/90	12/04/90	12/03/90	12/03/90	12/04/90	12/04/90	12/04/90	12/04/90
		Reanalysis		Reanalysis				Reanalysis	Dup	
3-Nitroaniline	ND50	ND50J	ND50	ND50J	ND50	ND50	ND50	ND50J	ND50	ND50
Acenaphthene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
2,4-Dinitrophenol	ND50	ND50J	ND50R	ND50R	ND50	ND50	ND50R	ND50J	ND50	ND50
4-Nitrophenol	ND50J	ND50J	ND50R	ND50R	ND50J	ND50J	ND50R	ND50J	ND50J	ND50J
Dibenzofuran	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
2,4-Dinitrotoluene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Diethylphthalate	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
4-Chlorophenyl-phenylether	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Fluorene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
4-Nitroaniline	ND50	ND50J	ND50	ND50J	ND50	ND50	ND50	ND50J	ND50	ND50
4,6-Dinitro-2-Methylphenol	ND50	ND50J	ND50R	ND50R	ND50	ND50	ND50R	ND50J	ND50	ND50
N-Nitrosodiphenylamine (1)	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
4-Bromophenyl-phenylether	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Hexachlorobenzene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Pentachlorophenol	ND50	ND50J	ND50R	ND50R	ND50	ND50	ND50R	ND50J	ND50	ND50
Phenanthrene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Anthracene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Di-n-Butylphthalate	ND10	ND10J	0.3J	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Fluoranthene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Pyrene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Butylbenzylphalate	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
3,3'-Dichlorobenzidine	ND20	ND20J	ND20	ND20J	ND20	ND20	ND20	ND20J	ND20	ND20
Benzo(a)Anthracene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Chrysene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Bis(2-ethylhexyl)phthalate	4 J	1UJ	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Di-n-Octyl Phthalate	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Benzo(b)Fluoranthene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Benzo(k)Fluoranthene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Benzo(a)Pyrene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Indeno(1,2,3-cd)Pyrene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Dibenz(a,h) Anthracene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Benzo(g,h,i)Perylene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10

Notes:

NDx = not detected at quantitation limit x. U = the analyte was detected but was attributed to laboratory contamination. J = the associated numerical value is an estimated quantity. R = data was rejected, analyte may or may not be present.

GROUNDWATER SAMPLE ANALYTICAL DATA SUMMARY

BNAs

										EW1
Parameter (μg/L)	c	24D	И	/52	W53A	W54	i	EW1 (Influent))	(Effluent)
BNAs	12/03/90	12/03/90	12/04/90	12/04/90	12/03/90	12/03/90	12/04/90	12/04/90	12/04/90	12/04/90
		Reanalysis		Reanalysis				Reanalysis	Dup	
Phenol	ND10	ND10J	ND10R	ND10R	ND10	ND10	ND10R	ND10J	ND10	ND10
bis(2-Chloroethyl)Ether	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
2-Chlorophenol	ND10	ND10J	ND10R	ND10R	ND10	ND10	ND10R	ND10J	ND10	ND10
1,3-Dichlorobenzene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
1,4-Dichlorobenzene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Benzyl Alcohol	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
1,2-Dichlorobenzene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
2-Methylphenol	ND10	ND10J	ND10	ND10R	ND10	ND10	ND10R	ND10J	ND10	ND10
bis(2-Chloroisopropyl) Ether	ND10J	ND10R	ND10	ND10J	ND10J	ND10J	ND10J	ND10J	ND10J	ND10J
4-Methylphenol	ND10	ND10J	ND10R	ND10R	ND10	ND10	ND10R	ND10J	ND10	ND10
N-Nitroso-Di-n-Propylamine	ND10	ND10J	ND10J	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Hexachloroethane	ND10	ND10J	ND10R	ND10J	ND10	ND10	ND10	ND10J	ND10	[·] ND10
Nitrobenzene	ND10	ND10R	ND10	ND10R	ND10	ND10	ND10	ND10R	ND10	ND10
Isophorone	ND10	ND10J	. ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
2-Nitrophenol	ND10	ND10J	ND10R	ND10R	ND10	ND10	ND10R	ND10J	ND10	ND10
2,4-Dimethylphenol	ND10	ND10J	ND10R	ND10R	ND10	ND10	ND10R	ND10J	ND10	ND10
Benzoic Acid	ND50R	ND50J	ND50R	ND50R	ND50R	ND50R	ND50R	ND50J	ND50R	ND50R
bis(2-Chloroethoxy)Methane	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
2,4-Dichlorophenol	ND10	ND10J	ND10R	ND10R	ND10	ND10	ND10R	ND10J	ND10	ND10
1,2,4-Trichlorobenzene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Naphthalene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
4-Chloroaniline	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Hexachlorobutadiene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
4-Chloro-3-Methylphenol	ND10	ND10J	ND10R	ND10R	ND10	ND10	ND10R	ND10J	ND10	ND10
2-Methylnaapthalene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Hexachlorocyclopentadiene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
2,4,6-Trichlorophenol	ND10	ND10J	ND10R	ND10R	ND10	ND10	ND10R	ND10J	ND10	ND10
2,4,5-Trichlorophenol	ND50	ND50J	ND50R	ND50R	ND50	ND50	ND50R	ND50J	ND50	ND50
2-Chloronaphthalene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10J	ND10J	ND10	ND10
2-Nitroaniline	ND50	ND50J	ND50	ND50J	ND50	ND50	ND50	ND50J	ND50	ND50
Dimethyl Phthalate	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10
Acenaphthylene	ND10J	ND10J	ND10J	ND10J	ND10J	ND10J	ND10J	ND10J	ND10J	ND10J
2,6-Dinitrotoluene	ND10	ND10J	ND10	ND10J	ND10	ND10	ND10	ND10J	ND10	ND10

Notes:

NDx = not detected at quantitation limit x. J = the associated numerical value is an estimated quantity. R = data was rejected, analyte may or may not be present.

APPENDIX A

DATA QUALITY ASSESSMENT AND VALIDATION FOR GROUNDWATER SAMPLES

MEMORANDUM

TO: Ed Roberts

FROM: David Dempsey

REFERENCE NO. 2115

DATE: February 26, 1991

RE: Data Quality Assessment and Validation for Sixty-Three Groundwater Samples Collected during the November 1990 Sampling Events at the Wausau, Wisconsin, Site

The following details a data quality assessment and validation for 63 groundwater samples collected November 13 through November 29, 1990, at the Wausau, Wisconsin, site. All samples were analyzed for target compound list volatile organic compounds (TCL VOC) by the Radian Corporation-Sacramento.¹ Quality assurance criteria are defined in the associated quality assurance project plan (QAPP).²

Holding Time Period

The holding time period for VOC samples is defined in the QAPP and requires samples to be analyzed within 14 days from sample collection. Examining the analysis dates showed samples were analyzed within the allotted time frame.

Instrument Performance

Prior to analyzing samples, the gas chromatograph/mass spectrometer (GC/MS) performance was checked using 4-bromofluorobenzene. Relative peak intensities for selected ions were within limits specified in the QAPP. Therefore, the GC/MS was in proper working condition prior to sample analysis.

Initial Calibration Data

The initial calibration data were used to judge analyte response versus concentration. For system performance check compounds, the minimum response factor allowed is 0.300 (0.150 for bromoform).³ All remaining analytes are required to have response factors greater than 0.050. Percent relative standard deviations for all analytes are required to be less than 30. Table 1 lists the outlying initial calibration data.

The 1,1,2,2-tetrachloroethane mean response factor on November 29 was below the limit of 0.300 (1,1,2,2-tetrachloroethane is a system performance check compound). Discussion with Radian technical advisor Marilyn Melton revealed 1,1,2,2-tetrachloroethane does not usually meet the 0.300 limit when using a 25 ml purge volume. I was told David Payne (USEPA) has reviewed previous Radian data and found this violation to have no impact on the data. A copy of a letter confirming this is presented as Attachment A.

¹The analytical method was the Contract Laboratory Program-Statement of Work, February 1988, revised September 1988 and April 1989.

September 1988 and April 1989. ²Application of quality assurance criteria was consistent with "Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses", February 1, 1988.

³This criterion is from the low level detection VOC CLP-SOW 1990 and has been extrapolated to these data as the CLP-SOW 1988 does not specify calibration criteria using a 25 ml purge volume.

Reference No. 2115 Page 2

Typographical errors were found for the butanone initial calibration data from November 23, 1990 and November 29, 1990. The mean response factors for butanone were reported to be 0.082 and 0.039, respectively; however, recalculating gives mean response factors of 0.103 and 0.065, respectively.

Only the acetone data from all samples were qualified as estimated (J or UJ). Thus, the GC/MS were properly calibrated prior to sample analysis.

Continuing Calibration Data

Continuing calibration data were used to assess analyte response versus concentration on a daily basis. For system performance check compounds, daily response factors are required to be greater than 0.300 (0.150 for bromoform). All remaining analytes are required to have daily response factors greater than 0.05. Percent differences between mean response factors and daily response factors for all analytes must be less than 25. Table 2 lists the outlying continuing calibration data.

Again, 1,1,2,2-tetrachloroethane had response factors below 0.300 and no action upon the data was necessary. Analytes with response factors below 0.05 had data qualified as estimated (J) if detected and unusable (R) if not detected. Analytes with percent differences greater than 25 had data from associated samples qualified as estimated (J or UJ).

Method Blank Samples

Extent of lab contamination of samples was measured using method blank samples. Table 3 summarizes the analytes detected in method blank samples. Note that only methylene chloride was detected often and had data qualified from associated samples as non-detect (U).

As a low level detection method was used, the lab stated acetone and methylene chloride in the range of $10 \,\mu g/l$ or less should be considered a lab artifact even if the associated method blank sample is clean. This criterion is applied to the actual result; therefore, dilutions were <u>not</u> taken into consideration. Table 4 lists the methylene chloride data, which were qualified as non-detect (U). Sample W-111690-MB-030 acetone datum was also qualified as non-detect (U).

Surrogate Compounds Percent Recoveries (Surrogate Recoveries)

Individual sample performance for VOC analyses was judged using surrogate recoveries. Control limits are set in the QAPP. All percent recoveries were within these limits.

The d_8 -toluene recoveries were calculated using 1,4-difluorobenzene as the internal standard, rather than d_5 -chlorobenzene. As d_8 -toluene elutes nearly midway between these two internal standards, either may be used to calculate d_8 -toluene recoveries. Thus, the method was in control during each sample analysis.

Reference No. 2115 Page 3

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Percent Recoveries

Matrix efficacy with respect to analytical data was checked using MS/MSD analyses. Samples W-111490-MB-005, W-111490-RRR-012, W-111490-RRR-018, W-111590-RRR-023, PW-112390-RRR-004, PW-111990-RRR-002 and W-112990-RRR-008 underwent MS/MSD analyses.

The trichloroethene MS/MSD recoveries from sample W-111590-RRR-023 were 0 and -40; therefore, this datum was qualified as estimated (J). Sample PW-112390-RRR-004 had trichloroethene data qualified as estimated (J) as the MS/MSD recoveries were 66 and 54.

Samples W-111490-MB-005 and W-111490-RRR-012 had typographical errors in the MS/MSD data. The benzene MSD recovery from sample W-111490-RRR-012 was recalculated to be 72 and the relative percent difference for toluene was 30, not 40. The toluene datum was qualified as estimated (J), while no action was taken on the benzene datum. For sample W-111490-MB-005, all reported MS/MSD recoveries were miscalculated. Table 5 lists the correct recoveries. Trichloroethene datum from this sample was qualified as estimated (UJ).

Overall, no significant matrix effects were observed.

Internal Standard Summaries

Overall instrument performance was monitored using internal standard peak area and retention times. Peak areas are required to match within +100 percent and -50 percent the daily calibration sample internal standard peak areas. Retention time must match within 0.5 minutes. Examining the data showed both criteria were met. Therefore, the GC/MSs were in proper working order during each analysis.

Trip Blank Samples

Trip blank samples were used to monitor the extent of cross contamination of samples during shipment to Radian. Two such sample were sent from Radian, TB11/14 and TB11/16. Both sample contained methylene chloride; however, both results were qualified as non-detect (U).

No trip blank samples were sent with samples from November 19, 23, 26, 27 and 29.

Rinsate Samples

Rinsate samples were originally part of the field quality assurance plan. However, a switch to dedicated bailer made rinsate sampling unnecessary.

Prior to inserting bailers into wells, a rinsate sample should have been taken to insure the bailers were clean. This was not done. As the data have been consistent over the first month of sampling, the bailers apparently have had no effect upon the data.

Field Duplicate Samples

Overall precision for these sampling events was measured using field duplicate samples. A total of seven sets of field duplicate samples was collected. Table 6 lists the field duplicate sample sets. Note that not every sampling event, namely, November 19 and 23, contains a field duplicate sample as is required in the QAPP. No action upon the data was necessary despite this.

Agreement between field duplicate samples was acceptable; thereby indicating the overall sampling program was precise.

Overall Assessment

Overall the data were found to be accurate and precise. Exceptions have been discussed and documented in the above sections. These qualified data may be used for qualitative assessment purposes, except where the data have been rejected.

cc: Bruce Clegg

OUTLYING INITIAL CALIBRATION DATA ASSOCIATED WITH THE NOVEMBER 1990 SAMPLING EVENTS AT THE WAUSAU, WISCONSIN SITE

Date	<u>Analyte</u>	<u>RRF</u> ¹	<u>%RSD</u> ²	<u>Qualifier</u> ³
11/23/90	Butanone ⁴	0.082	16.0	NR
	Acetone	0.505	43.9	J/UJ
11/29/90	Butanone ⁴	0.039	16.0	NR .
	Acetone	0.244	40.0	J/UJ
	1,1,2,2-tetrachloroethane	0.260	8.1	NR

1RRF = Mean Relative Response Factor 2 %RSD = Percent Relative Standard Deviation

³Analyte reslts was qualified as:

= The associated value is an estimated quantity, for detected analytes. J

UJ = The analyte was checked for, but not detected. The associated value is an estimate.

NR = No additional qualifiers were required.

 4 RRF values were miscalculated. For 11/23/90, RRF = 0.103 and for 11/29/90 RRF = 0.065.

OUTLYING CONTINUING CALIBRATION DATA ASSOCIATED WITH NOVEMBER 1990 SAMPLING EVENTS AT THE WAUSAU, WISCONSIN, SITE

Date/Time	Analyte	<u>RRF</u> 1	<u>%D</u> 2	Qualifier ³	Associated Samples
11/25, 09:13	Acetone Butanone 2-hexanone	0.727 0.073 0.187	44.0 29.1 31.8	NR J/UJ J/UJ	W-111490-CH-009; W-111390-MB-001; W-111490-MB-003; W-111490-CH-004; W-111490-CH-006
11/26, 08:41	Butanone	0.069	33	ן/טן	W-111490-RRR-007; W-111490-JM-008; W-111490-RRR-010; W-111490-RRR-012 through W-111490-RRR-018
i1/27, 07:52	Acetone Butanone 4-methyl-2-pentanone 2-hexanone	0.306 0.061 0.147 0.163	39.4 40.8 33.8 40.5	NR J/UJ J/UJ J/UJ	W-111390-RRR-002; W-111490-RRR-011; W-111490-RRR-012 MS/MSD; W-111490-RRR-018 MS/MSD; W-111590-JM-019; W-111590-RRR-021; W-111590-RRR-023; W-111590-RRR-024; W-111590-RRR-027
11/29, 08:38	Butanone	0.131	27.2	J/UJ	W-111590-RRR-020; W-111590-RRR-022; W-111590-RRR-025; W-111590-RRR-026; W-111590-RRR-023 MS/MSD; W-111690-RRR-028; W-111690-RRR-034
11/30, 08:51	Chloromethane	1.886	27.6	J/UJ	W-111690-MB-029; W-111690-MB-030; W-111690-MB-031; W-111690-MB-032; W-111690-MB-033; W-111690-MB-035
11/30, 09:22	Chloromethane Vinyl Acetate Bromoform 1,1,2,2-tetrachloroethane	1.953 0.058 0.144 0.233	26.9 83.5 6.5 13.1	J/UJ J/UJ NR NR	PW-111990-RRR-01; PW-111990-RRR-02; Starsample 11/19; Starsample 11/23

TABLE 2 (CONT'D)

OUTLYING CONTINUING CALIBRATION DATA ASSOCIATED WITH NOVEMBER 1990 SAMPLING EVENTS AT THE WAUSAU, WISCONSIN, SITE

Date/Time	<u>Analyte</u>	<u>RRF</u> ¹	<u>%D</u> 2	Qualifier ³	Associated Samples
12/3, 10:59	1,1,2,2-tetrachloroethane	0.287	7.1	NR	PW-112390-RRR-003;
	Chloromethane	1.108	28	J/UJ	PW-112390-RRR-004
	Carbon Disulfide	4.707	34	J/UJ	
	Vinyl Acetate	0.058	83.5	J/UJ	
	2-hexanone	0.177	25.3	NR	· ·
12/4, 11:52	Chloromethane	1.087	29.4	J/UJ	W-112690-JM-036;
	Carbon Disulfide	4.881	31.5	J/UJ	W-112690-JM-038;
				•	W-112690-JM-039;
			•		W-112690-JM-041
12/5, 11:43	1,1,2,2-tetrachloroethane	0.224	16.4	NR	W-112690-JM-037;
	Acetone	0.134	45.1	NR	W-112690-JM-042;
	Carbon Disulfide	5.255	26.3	J/UJ	W-112690-JM-044;
	Vinyl Acetate	0.186	17.2	J/UJ	W-112790-JM-045;
	2-hexanone	0.125	47.3	J/UJ	W-112790-JM-046;
					W-112790-JM-049
12/6, 08:31	Acetone	0.157	35.7	NR	W-112790-JM-005;
	Butanone	0.049	24.6	J/R	W-112790-JM-005 MS/MSD;
	4-methyl-2-pentanone	0.091	25.4	NR	W-112790-JM-006;
	Tetrachloroethene	0.520	31.7	J/UJ	W-112790-JM-007;
					Starsample 11/27
12/7, 10:27	Butanone	0.016	75.4	J/R	W-112990-008;
	1,1,2,2-tetrachloroethane	0.239	10.8	NR	W-112990-009;
	Acetone	0.152	37.7	NR	W-112990-010;
	Trichloroethene	0.548	28.9	J/UJ	Starsample 11/29
	4-methyl-2-pentanone	0.091	25.4	j/Uj	▲ ·
	2-hexanone	0.111	53.2	j/Uj	
	d ₄ -1,2-dichloroethane ⁴	0.727	30.2	J/UJ	

¹RRF = Daily Relative Response Factor

²%D = Percent Difference

³Analyte data from associated samples were qualified as:

J = The associated value is an estimated quantity, for detected analytes.

 UJ_{\perp} = The analyte was checked for, but not detected. The associated value is an estimate.

R = The data are unusable, for non-detected analytes.

NR = No additional qualifiers were necessary.

⁴Surrogate Compound

ANALYTES DETECTED IN METHOD BLANK SAMPLES ASSOCIATED WITH THE NOVEMBER 1990 SAMPLING EVENTS AT THE WAUSAU, WISCONSIN, SITE

Blank ID	<u>Analyte</u>	<u>Concentration (µg/1)</u>	Associated Samples ¹
VBLK3-11/26	Methylene Chloride	0.6 J ²	TB11/14; W-111490-RRR-007; W-111490-JM-008; W-111490-RRR-010; W-111490-RRR-012; W-111490-RRR-013
VBLK2-11/29	Methylene Chloride	0.5 J	W-111590-RRR-020; W-111590-RRR-022; W-111590-RRR-025; W-111590-RRR-026; W-111690-RRR-028; W-111690-MB-034;
VBLK3-11/29	Methylene Chloride	0.9 J	TB11/18; W-111690-MB-029; W-111690-MB-030; W-111690-MB-031; W-111690-MB-032; W-111690-MB-033; W-111690-MB-035
VBLK1-11/30	Styrene Xylenes	0.4 J 0.2 J	
VBLK1-12/4	Methylene Chloride	0.8 J	W-112690-JM-038; W-112690-JM-039
VBLK3-12/7	Styrene	0.2 J	
VBLK4-12/11	Methylene Chloride 2-hexanone Acetone	0.6 J 1 J 2 J	

 $^1{\rm Analyte}$ data from associated samples were qualified as non-detect (U). $^2{\rm The}$ associated value is an estimate.

a.

ADDITIONAL METHYLENE CHLORIDE DATA QUALIFIED AS NON-DETECT NOVEMBER 1990 SAMPLING EVENTS AT THE WAUSAU, WISCONSIN, SITE

Sample ID¹

W-111490-JM-005 W-111490-CH-004 W-111390-RRR-002 W-111490-MB-006 W-111490-MB-003 W-111590-RRR-023 W-111590-JM-027 W-111590-RRR-024 W-111590-RRR-021 W-111590-JM-019 W-112690-TM-044 W-112690-JM-042 W-112790-JM-049 W-112790-JM-045 W-112790-JM-046 W-112790-JM-006 W-112790-JM-007

¹Methylene chloride data for these samples were qualified as non-detect (U).

CORRECTED MS/MSD RECOVERIES FOR SAMPLE W-111490-MB-005 COLLECTED **DURING THE NOVEMBER 1990 SAMPLING EVENTS** AT THE WAUSAU, WISCONSIN, SITE

<u>Analyte</u>	<u>MS</u>	<u>Recoveries</u> <u>MSD</u>	Limits ¹	Qualifier ²
1,1-dichloroethene	162	144	61-145	NR
Trichloroethene	182	125	71-120	J
Benzene	129	130	76-127	NR
Toluene	129	125	76-125	NR
Chlorobenzene	124	121	75-130	NR

¹Limits are specified in the QAPP.
²Analyte datum for sample W-111490-MB-005 was qualified as:
J - The associated value is an estimated quantity.
NR - No additional qualifiers were required.

LIST OF FIELD DUPLICATE SAMPLE SETS COLLECTED DURING THE NOVEMBER 1990 SAMPLING EVENTS AT THE WAUSAU, WISCONSIN, SITE

Sample IDs

W-111490-RRR-015/W-111490-RRR-016 W-111490-RRR-017/W-111490-RRR-018 W-111590-JM-025/W-111590-JM-026 W-112690-JM-037/W-112690-JM-038 W-111590-RRR-021/W-111590-RRR-022 W-111490-RRR-010/W-111490-RRR-011 W-112990-RRR-009/W-112990-RRR-010 W-112790-JM-006/W-112790-JM-007

ATTACHMENT A

19 February 1991

8501 Mo-Pac Blvd. P.O. Box 201088 Austin, TX 78720-1088 (512)454-4797

Rec ORA

Mr. David Dempsey Conestoga-Rovers & Associates 382 West County Road D St. Paul, MN 55112

FEB 2 5. 91

Dear Dave:

You had raised a question about the Rf value of 1,1,2,2-tetrachloroethane in some 8240 work the Sacramento laboratory did for CRA. CLP requires that the Rf for this compound be 0.3 or greater for a 5 mL purge. CRA asked us to run a 25 mL purge, which is less efficient than a 5 mL purge. While all other analytes met the required criteria, this compound did not.

To obtain this Rf with a 25 mL purge, conditions were required which caused other analytes to perform badly. When these results were discussed with David Paine from EPA Region V, he sanctioned the use of the lower Rf for tetrachloroethane.

If you should have any further questions regarding this matter, please feel free to call me.

Sincerely,

Marilyn

Marilyn A. Melton, Ph.D.

mam/dg

cc: Robert Richardson Wanda Brown

MEMORANDUM

TO:

REFERENCE NO. 2115

FROM: David Dempsey

DATE: March 3, 1991

RE: Data Quality Assessment and Validation for Thirty Eight Groundwater Samples Collected during the December 1990 Sampling Events at the Wausau, Wisconsin, Site

The following details a data quality assessment and validation for 38 groundwater samples collected December 3 through December 17, 1990, at the Wausau, Wisconsin, site. All samples were analyzed for target compound list volatile organic compounds (TCL VOC), while six samples were also analyzed for TCL base-neutral/acid extractable organic compounds (BN/A), TCL pesticides/polychlorinated biphenyls (PEST/PCB), target analyte list (TAL) metals and cyanide. All analyses were performed by the Radian Corporation-Sacramento.¹ Quality assurance/quality control criteria are defined in the associated quality assurance project plan (QAPP).²

Holding Time Periods

Holding time periods are defined in the QAPP and are summarized below:

VOC	- 14 days from sample collection to completion of analysis
BN/A	 7 days from sample collection to extraction 40 days from extraction to completion of analysis
PEST/PCB	 7 days from sample collection to extraction 40 days from extraction to completion of analysis
metals	 6 months from sample collection to completion of analysis, except for mercury 28 days from sample collection to completion of mercury analysis
cyanide	- 14 days from sample collection to completion of analysis

Samples W-120390-MB-042, W-120490-MB-045 and W-120490-MB-048 were reanalyzed for BN/A. These samples were re-extracted 55 and 54 days, respectively, from dates of sample collection; therefore, the reanalyses data were qualified as estimated (UJ).

All remaining analyses were completed within the prescribed holding time periods.

¹The analytical methods were the Contract Laboratory Program-Statement of Work, February 1988, revised September 1988 and April 1989.

²Application of quality assurance/quality control criteria was consistent with "Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses", February 1, 1988 and "Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses", July 1, 1988.

Instrument Performance

Prior to VOC and BN/A analyses, the gas chromatograph/mass spectrometer (GC/MS) performance was checked using 4-bromofluorobenzene and decafluorotriphenylphosphine, respectively. Selected ion peak relative intensities were within limits specified in the QAPP. Therefore, the GC/MSs were in proper working condition prior to sample analysis.

Prior to PEST/PCB analyses, the gas chromatograph performance was checked using 4,4'-DDT retention times, endrin/4,4'-DDT breakdown percentages and dibutylchlorendate retention times. All criteria were met for both qualitative and quantitative columns.

Initial Calibration Data

The initial calibration data were used to judge analyte response versus concentration. For system performance check compounds, the minimum response factor allowed is 0.300 (0.100 for bromoform³) and 0.050 for VOC and BN/A analyses, respectively. All remaining analytes are required to have response factors greater than 0.050. Percent relative standard deviations (%RSD) for all analytes are required to be less than 30. Table 1 lists the outlying initial calibration data. Acetone and butanone data for all samples were qualified as estimated (J or UJ) as a result. Other analyte data were qualified as estimated (J or UJ) or unusable (R) for samples listed in Table 1.

The initial calibration curve for PEST/PCB analyses consists of three standards. The %RSD for aldrin, endrin, dibutylchlorendate and 4,4'-DDT are required to be less than ten. Calibration data for qualitative and quantitative columns met this criterion. Therefore, the gas chromatograph was properly calibrated prior to sample analyses.

Initial calibration curves for metals consisted of a minimum of two points. Metals analyzed by atomic absorption and cyanide required curves with minimum of four points. Five points were used in determining the mercury calibration curve. Linear regression calculations were performed and the correlation factors were greater than 0.995. Thus, these methods were properly calibrated.

Continuing Calibration Data

Continuing calibration data were used to assess analyte response versus concentration on a daily basis. For system performance check compounds, daily response factors are required to be greater than 0.300 (0.100 for bromoform) and 0.050 for VOC and BN/A analyses, respectively. All remaining analytes are required to have daily response factors greater than 0.050. Percent differences between mean response factors and daily response factors for all analytes must be less than 25. Table 2 lists the outlying continuing calibration data. These data were qualified as estimated (J or UJ).

³This criterion is from the low level detection VOC CLP-SOW 1990 (draft). As the VOC CLP-SOW 1988 does not allow for a 25 ml sample purge volume, the criterion has been extrapolated to these data.

Reference No. 2115 Page 3

hl

Calibration factors for PEST/PCB analyses were required to within 15 percent for the quantitative column and 20 percent for the qualitative column with respect to initial calibration factors. As both criteria were met, the gas chromatograph was properly calibrated throughout the PEST/PCB analyses.

Calibration standards were analyzed to check the metals and cyanide calibrations. Due to the sample case, no calibration standard analyses were required.

Method Blank Samples

Extent of lab contamination of samples was measured using method blank samples. Table 3 summarizes the analytes detected in method blank samples. Analyte data listed in Table 3 were attributed to lab contamination and were qualified as non-detect (U) for associated samples.

As a low level detection method was used, the lab stated acetone and methylene chloride in the range of $10 \,\mu g/l$ or less should be considered a lab artifact even if the associated method blank sample is clean. This criterion is applied to the actual result; therefore, dilutions are <u>not</u> taken into consideration. Table 4 lists the methylene chloride data below $10 \,\mu g/l$ and were qualified as non-detect (U).

ICP Interference Check Samples

The ICP method is shown to be free of interelemental interferences using a check sample. Percent recoveries were within required limits. Thus, no significant interelemental interferences are suspected.

<u>Laboratory Control Sample</u>

Accuracy of metals and cyanide methods was demonstrated using control samples. Percent recoveries were within specified limits. Thus, these methods were accurate at time of samples analyses.

Surrogate Compounds Percent Recoveries (Surrogate Recoveries)

Individual sample performance for VOC, BN/A and PEST/PCB analyses was judged using surrogate recoveries. Control limits are set in the QAPP. Table 5 lists outlying surrogate recoveries for VOC and BN/A analyses. No action upon the VOC data was necessary, as the surrogate compound d_4 -1,2-dichloroethane data were qualified as estimated based upon calibration data.

The d_8 -tolue recoveries were calculated using 1,4-difluorobenzene as the internal standard, rather than d_5 -chlorobenzene. As d_8 -toluene elutes nearly midway between these two internal standards, either may be used to calculate d_8 -toluene recoveries.

The acid fraction data of samples listed in Table 5 were qualified as estimated (J) or unusable (R) as the outlying surrogate recoveries were below ten. The base-neutral fraction data were not qualified based upon the surrogate recoveries.

All dibutylchlorendate recoveries were in required limits. Thus, the PEST/PCB method was in control for all analyses.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Percent Recoveries

Matrix efficacy with respect to analytical data was checked using MS/MSD analyses. Samples W-120490-MB-045, PW-121790-JM-014DL⁴, W-120690-MH-011, W-121090-RR-057, W-120490-MB-043 and W-120390-MB-042RE⁵ underwent MS/MSD analyses. Table 6 lists the outlying MS/MSD recoveries.

The metals matrix spike analyses were performed upon sample W-120490-MB-045. The majority of metals had recoveries below the control window. As a result, these data were qualified as estimated (J or UJ). As the spikes added were less than one-fourth the amount of manganese or zinc detected, no qualifier was required for the manganese or zinc data although these recoveries were out of control limits. Due to the excessive amounts of calcium and magnesium detected in this sample no matrix spike recoveries could be calculated. Therefore, these results were qualified as estimated (J).

Samples PW-121790-JM-014DL, W-120690-MH-011, W-120390-MB-043 and W-121090-RR-057 underwent MS/MSD analyses for VOC. Although trichloroethene and toluene recoveries from sample PW-121790-JM-014DL were out of specified limits, no action upon the data was taken. However, the trichloroethene data from samples W-120690-MH-011 and W-120390-MB-043 were qualified as estimated (J), while 1,1-dichloroethene, trichloroethene and benzene data from sample W-121090-RR-057 were qualified as estimated (J or UJ).

The BN/A MS/MSD recoveries from sample W-120390-MB-042RE were qualified as estimated (J) as this sample was analyzed out of the holding time period. Therefore, these recoveries could not be used to quantitate matrix effects. However, reviewing the data showed no major matrix effects.

No MS/MSD analyses were performed upon PEST/PCB analytes. Also, no matrix spike data for cyanide were reported.

Duplicate Analyses

Precision for metals and cyanide methods was measured using duplicate analyses upon sample W-120390-MB-042. Table 7 summarizes the duplicate analyses results. All zinc data were qualified as estimated (J or UJ) based upon low analytical precision. Precisions for remaining analytes, excluding cyanide, were acceptable.

No duplicate analysis for cyanide was reported. Coupled with a lack of matrix spike data, all cyanide results were qualified as estimated (UJ).

⁴The suffix 'DL' denotes sample was reanalyzed after being diluted. ⁵The suffix 'RE' denotes sample was reanalyzed.

ICP Dilution Recoveries

Matrix effects with respect to ICP data were also checked for using a five-fold dilution of sample W-120390-MB-045. Agreement between five times the five-fold dilution data and undiluted data showed no significant matrix effects.

Method of Standard Addition

Lead results for samples W-120390-MB-038 and W-120390-MD-045 were obtained using method of standard addition. As the correlation coefficients are greater than 0.995, these data are acceptable.

Internal Standard Summaries

Overall instrument performance for VOC and BN/A analyses was monitored using internal standard peak area and retention times. Peak areas from each sample are required to match within +100 percent and -50 percent the daily calibration sample internal standard peak areas. Retention time must match within 0.5 minutes. Examining the data showed both criteria were met. Therefore, the GC/MSs were in proper working order during each analysis.

Trip Blank Samples

Trip blank samples were used to monitor the extent of cross contamination of samples during shipment to Radian. Five trip blank samples were sent from Radian. Each sample contained methylene chloride; however, these results were qualified as non-detect (U). Trichloroethene, 4-methyl-2-pentanone and 1,2-dichloroethane were also detected within selected trip blank samples. However, these concentrations were not comparable to the investigative samples.

Chloromethane was detected at $1 \mu g/l$ in trip blank sample TB12/4. The chloromethane datum from sample W-120390-MB-038 was qualified as estimated (J) as this concentration was within five time the amount detected in TB12/4.

Rinsate Samples

Rinsate samples were originally part of the field quality assurance plan. However, a switch to dedicated bailer made rinsate samples unnecessary.

Field Duplicate Samples

Overall precision for these sampling events was measured using field duplicate samples. A total of five sets of field duplicate samples was collected. Table 8 lists the field duplicate sample sets.

Field duplicate samples W-121790-JM-014 and W-121790-JM-015 were reanalyzed for VOC due to necessary dilutions. Comparing the reanalyses showed acceptable precision, as did the majority of field duplicate samples.

Samples W-120490-MB-048 and W-120490-MB-050 were analyzed for VOC, BN/A, PEST/PCB, metals and cyanide. Table 9 summarizes detected analyte concentrations for these samples. The overall precision was acceptable.

Overall Assessment

Based on the data packages, the majority of data are acceptable for quantitative assessment purposes. Qualified data are suitable for qualitative assessments, except where the data have been rejected.

OUTLYING INITIAL CALIBRATION DATA ASSOCIATED WITH SAMPLES COLLECTED DURING THE DECEMBER 1990 EVENTS

Analyte	Date	Analyte	<u>RRF</u> 1	<u>%RSD</u> ²	<u>Qualifier</u> ³	Associated _Samples
VOC	11/23/90	Acetone Butanone	0.505 0.082	_43.9 58.8	J/UJ J/UJ	All Samples
BN/A	12/10/90	Benzoic Acid	0.040	29.8	J/R	W-120390-MB-038; W-120390-MB-039; W-120390-MB-042; W-120490-MB-045; W-120490-MB-048; W-120490-MB-049; W-120490-MB-050;
	2/12/92	Nitrobenzene 2-chloronaphthalene Indeno(1,2,3-cd)pyrene Benzo(g,h,i)perylene	0.026 1.433 0.534 0.587	63.4 37.0 36.9 33.0	J/R UJ J/UJ J/UJ	W-120390-MB-042RE; W-120490-MB-045RE; W-120490-MB-048RE

 1 RRF = Mean Relative Response Factor

 2 %RSD = Percent Relative Standard Deviation

³Associated samples had analyte data qualified as:

J - The associated value is an estimated quantity, for detected analytes.

UJ - The analyte was checked for, but not detected. The associated value is an estimate.

R - The data are unusable.

OUTLYING CONTINUING CALIBRATION DATA ASSOCIATED WITH SAMPLES COLLECTED DURING THE DECEMBER 1990 EVENTS

<u>Analysis</u>	<u>Time/Date</u>	Analyte	<u>RRF</u> ¹	<u>%D</u> 2	<u>Oualifier</u> ³	Associated Samples
VOC	12-7;10:36	Butanone	0.129	25.2	NR	
	12-10;10:51	Acetone	0.890	76.2	NR	
·		Butanone	0.129	25.2	NR	
	12-11;10:57	Chloromethane	1.88	27.9	J/UJ	W-120690-MH-011; W-120690-MH-011 MS/MSD; W-120690-MH-012; W-120690-MH-013;
						TB12/6; W-120390-MB-043 MS/MSD
•	10 10 10 07	A .				
	12-19;10:31	Acetone	0.362	28.3	NR	W-121090-RR-053;
		4-methyl-2-pentanone	0.155	30.2	J/UJ	W-121090-RR-054;
		2-hexanone	0.194	29.2	J/UJ	W-121090-RR-055;
		Xylenes	0.701	27.5	J/UJ	W-121090-RR-056;
						W-121090-RR-057;
						W-121090-RR-059
	12/21;11:47	Bromoform	0.110	61	NR	W-121790-JM-014;
•		1,2-dichloroethane	. 1.500	28.7	J/UJ	W-121790-JM-015;
		Vinyl Acetate	2.074	36.6	J/UJ	W-121790-JM-016;
		4-methyl-2-pentanone	0.143	35.6	J/UJ	W-121090-JM-058;
		2-hexanone	0.200	27.0	J/UJ	W-121090-RR-057 MS;
		Xylenes	0.713	26.3	J/UJ	TB12/17;
		d ₄ -1,2-dichloroethane ⁴	0.508	31.9	J/UJ	W-121090-RR-058DL
	12-26;12:37	Chloromethane	3.287	26.1	J/UJ	W-121790-JM-014 DL;
		Bromomethane	4.632	27.5	J/UJ	W-121790-JM-015 DL;
		Acetone	1.910	99.9	NR	W-121790-JM-016 RE;
		Carbon Disulfide	8.583	32.7	J/UJ	W-121790-JM-014 MS/MSD;
		Butanone	0.163	58.3	NR	W-121090-RR-057 MSD;
		Xylenes	0.715	26.1	J/UJ	TB12/17RE

TABLE 2 (CONT'D)

OUTLYING CONTINUING CALIBRATION DATA ASSOCIATED WITH SAMPLES COLLECTED DURING THE DECEMBER 1990 EVENTS

<u>Analysis</u>	<u>Time/Date</u>	<u>Analyte</u>	<u>RRF</u> ¹	<u>%D</u> 2	<u>Qualifier</u> ³	Associated Samples
BN/A	12-19;09:51	Benzoic Acid	0.024	31.4	NR	W-120390-MB-038;
		Acenaphthylene	0.820	37.3	UĴ	W-120390-MB-039;
		4-nitrophenol	0.103	42.5	UJ	W-120390-MB-042;
		-				W-120490-MB-045;
						W-120490-MB-049;
						W-120490-MB-050
	12-26;11:22	Benzoic Acid	0.023	34.3	NR	W-120490-MB-048
		2-chloronaphthalene	2.203	42.5	UJ	
		Acenaphthylene	0.797	39.1	UJ	
		4-nitrophenol	0.093	48.0	UJ	

¹RRF = Daily Response Factors

²%D = Percent Difference

³Associated samples had analyte data qualified as:

J - The associated value is an estimated quantity, for detection analytes.

UJ - The analyte was checked for, but not detected. The associated value is an estimate.

R - The data are unusable.

NR - No additional qualifiers were required.

⁴Surrogate Compound

ANALYTES DETECTED IN METHOD BLANK SAMPLE

.

<u>Blank ID</u>	Analyte	Concentration (µg/l)	Associated Samples ¹
VBLK12/11	Methylene Chloride	0.6 J ²	W-120690-MH-011; W-120690-MH-012; W-120690-MH-013; TB12/6
	Acetone	2	1012,0
·	2-hexanone	1 ∫	
VBLK12/07	Methylene Chloride	1	W-120390-MB-038; W-120390-MB-039; W-120390-MB-042; W-120490-MB-045; W-120490-MB-047; W-120490-MB-049; TB12/4
	Acetone 2-hexanone	2 0.9 J	W-120390-MB-038
VBLK12/10	Methylene Chloride	0.5 J	W-120390-MB-036; W-120390-MB-037; W-120390-MB-040; W-120390-MB-041; W-120490-MB-043;
	· · · ·		W-120490-MB-044; W-120490-MB-046; W-120490-MB-048; W-120490-MB-050;
	Acetone 2-hexanone	1 J 1 J	(*************************************
VBLK12/19	Methylene Chloride	0.5 J	W-121090-RR-053; W-121090-RR-054; W-121090-RR-055; W-121090-RR-056; W-121090-RR-057; W-121090-RR-057;
· ·	2-hexanone	0.6 J	W-121090-RR-059
VBLK12/20	Methylene Chloride	0.3 J	W-121090-RR-060; W-121190-RR-061; W-121190-RR-062; W-121190-RR-063; W-121190-RR-064; W-121190RR-065; TB12/11

TABLE 3 (CONT'D)

ANALYTES DETECTED IN METHOD BLANK SAMPLE

<u>Blank ID</u>	Analyte	Concentration (µg/l)	Associated Samples ¹
VBLK12/21	Acetone	2	
VBLK12/26	2-hexanone	0.5 J	
SBLK2/13	Di- <i>n-</i> butylphthalate Bis(2-ethylhexyl)phthalate	0.4 J 0.9 J	W-120390-MB-042RE
Metals	Aluminum	44.2 J	W-120390-MB-042; W-120490-MB-049
	Beryllium	0.6 J	•
	Calcium	40.9 J	
	Copper	5.9 J	W-120390-MB-038;
		-	W-120390-MB-039
	Iron	18 J	W-120390-MB-039
	Magnesium	42 J	
	Zinc	3 J	

¹Associated samples had analyte result qualified as non-detect. ²The associated value is an estimate.

ADDITIONAL METHYLENE CHLORIDE DATA QUALIFIED AS NON-DETECT

Sample ID W-121790-MH-014 W-121790-MH-014DL W-121790-MH-015 W-121790-MH-016 W-121090-RR-058 W-121090-RR-058DL

OUTLYING SURROGATE COMPOUND PERCENT RECOVERIES

Sample ID	<u>Analysis</u>	Compound	<u>%R</u> ¹	Limits ²	<u>Qualifier³</u>
W-121790-JM-014	VOC	d ₄ -1,2-dichloroethane	128	76-114	NR
W-121790-JM-014MSD	VOC	4-bromofluorobenzene	116	86-115	NR
W-121790-JM-015	VOC	d ₄ -1,2-dichloroethane	134	76-114	NR
W-121790-JM-016	VOC	d ₄ -1,2-dichloroethane	127	76-114	NR
TB12/17	VOC	d ₄ -1,2-dichloroethane	134	76-114	NR
W-120490-MB-045	BN/A ⁴	d ₅ -phenol	7	10-94	J/R
		2-fluorophenol	0	21-100	
		2,4,6-tribromophenol	1	10-123	
W-120490-MB-045RE	BN/A ⁴	2-fluorophenol	1	21-100	J/R
		2,4,6-tribromophenol	2	10-123	19 - 4 4
W-120490-MB-048	BN/A ⁴	2-fluorophenol	3	21-100	J/R
W-121090-RR-057MS	VOC	d ₄ -1,2-dichloroethane	123	76-114	NR
W-121090-RR-058	VOC	d ₄ -1,2-dichloroethane	124	76-114	NR
W-121090-RR-058DL	VOC	d ₄ -1,2-dichloroethane	122	76-114	NR

¹%R = Percent Recovery

 2 Limits were specified in the QAPP.

³Sample data were qualified as:

J - The associated value is an estimated quantity, for detected analytes.

R - The data are usable.

NR - No qualifiers were required.

⁴Only the acid fraction was qualified.

OUTLYING MS/MSD RECOVERIES

			Percent	Recovery			
Sample ID	Analysis	Analyte	MS	MSD	Limits ¹	<u>Qualifier</u> ²	
W-120690-MH-011	VOC	Trichloroethene	68	· 66	71-120	J	
W-121790-014DL	VOC	Trichloroethene	68	78	71-120	NR	
	• •	Toluene	74	, 77	76-125	NR	
W-120390-MB-043	VOC	Trichloroethene	84	98	71-120	, J	
W-120490-MB-045	Metals	Aluminum	54.8		75-125	T	
W-120490-Wib-043	Wietais	Antimony	58.1		75-125 75-125	J	
		Barium	55.1	-	75-125	J	
			62.2		75-125	· J	
•		Beryllium Cadmium	61.2	-		J	
		Calcium	NC ³	-	75-125	J	
				-	75-125	J	
		Chromium	57.2	-	75-125	J	
•		Cobalt	56.6	-	75-125	J	
		Copper	6.8	-	75-125	J	
		Iron	46.2	-	75-125	J	
		Lead	64	-	75-125	J -	
•		Magnesium	NC	-	75-125	1	
		Manganese	22.2	-	75-125	J	
		Nickel	56.7	-	75-125	J	
		Potassium	NC	-	75-125	J.	
		Selenium	66.0	-	75-125	J	
		Silver	46.2	- ·	75-125	J	
		Sodium	NC	-	75-125	J	
		Vanadium	56.2	-	75-125	J	
		Zinc	- 120	-	75-125	J	
W-121090-RR-057	VOC	1,1-dichloroethene	116	91	61-145	Ī	
		Trichloroethene	100	150	71-120	· T	·
		Benzene	91 ·	78	76-127	Ļ T	
		Chlorobenzene	73	73 77	75-130	NR	
		·	15	<i>,,</i>	75-150	INK .	

¹Limits were specified in the QAPP.

²Sample result for analytes were qualified as:

J - The associated value is an estimated quantity, for detected analytes.

UJ - The analyte was checked for, but not detected. The associated value is an estimate.

NR - No qualifiers were required.

³Recovery was not calculated.

SUMMARY OF LABORATORY DUPLICATE ANALYSES

Sample ID

W-120390-MB-042

Concentration $(\mu g/l)$ Qualifier² RPD¹ Analyte Initial Duplicate 28.2 J³ NR 2.10 J Antimony Cadmium 3.8 J 2.4 J NR . NR 5.2 J Cobalt 6.5 J 70.5 J NR Copper 178.5 J Nickel 18.8 J 13.8 J NR Potassium NR 1,432 J 1,991] ` 0.7 NR Sodium 12,770 12,860 38 157.9 107.9 Zinc T UJ

Cyanide

Analysis

Metals

Not Reported

 1 RPD = relative percent difference

²Analyte data for all samples were qualified as:

- The associated value is an estimated quantity, for detected analytes. I

UJ - The analyte was looked for, but not detected. The associated value is an estimate.

NR - No qualifiers were required.

³The associated value is an estimate.

LIST OF FIELD DUPLICATE SAMPLE SETS

Sample IDs

W-120390-MB-040/W-120390-MB-041 W-121090-RR-053/W-121090-RR-055 W-120490-MB-048/W-120490-MB-050 W-121790-JM-014/W-121790-JM-015 W-121190-RR-064/W-121190-JM-065

COMPARING FIELD DUPLICATE SAMPLE DATA FROM W-120490-MB-048 AND W-120490-MB-050

		Concentratio	n (µg/l)		
<u>Analysis</u>	<u>Analyte</u>	<u>W-120490-MB-048</u>	W-120490-MB-050	<u>RPD</u> ¹	
VOC	Methylene Chloride	36 U ²	36 U	-	
	1,2-dichloroethane	75	78	3.9	
	1,1,1-trichloroethane	8 J ³	9 J	-	
	Trichloroethene	440	440	0	
Metals	Antimony	19.1 J	13 J	-	
	Barium	59.4 J	35.1 J	-	
	Calcium	32,400 J	18,700 J	-	
	Cobalt	4.2 J	2.7 J	-	
	Copper	. 54.4	63.6 J	-	
	Iron	1,290	1,050	20	
	Lead	38.9 J	ND (<1) UJ ⁴	-	
	Manganese	373 J	219 J	-	
	Magnesium	(10,700 J	6,150 J	-	
	Mercury	ND (<0.1)	0.11 J	-	
	Sodium	21,300 J	1,200 J	-	
	Zinc	90.8 J	90.6 J	-	

¹RPD = Relative Percent Difference

²The associated result is qualified as non-detect.

³The associated value is an estimate.

⁴The quantitation limit is an estimate.

MEMORANDUM

TO:

FROM: David Dempsey

REFERENCE NO. 2115

DATE: March 26, 1991

Data Quality Assessment and Validation for Fifteen RE: Groundwater Samples Collected during the January 1991 Sampling Event at the Wausau, Wisconsin, Site

The following details a data quality assessment and validation for 15 groundwater samples collected January 7 and 8, 1991, at the Wausau, Wisconsin, site. All samples were analyzed for target compound list volatile organic compounds (TCL VOC) by the Radian Corporation-Sacramento.¹ Quality assurance criteria are defined in the associated quality assurance project plan (QAPP).²

Holding Time Period

The holding time period for VOC samples is defined in the QAPP and requires samples to be analyzed within 14 days from sample collection. Examining the analysis dates showed samples were analyzed within the allotted time frame.

Instrument Performance

Prior to analyzing samples, the gas chromatograph/mass spectrometer (GC/MS) performance was checked using 4-bromofluorobenzene. Relative peak intensities for selected ions were within limits specified in the QAPP. Therefore, the GC/MS was in proper working condition prior to sample analysis.

Initial Calibration Data

The initial calibration data were used to judge analyte response versus concentration. For system performance check compounds, the minimum response factor allowed is 0.300 (0.100 for bromoform³). All remaining analytes are required to have response factors greater than 0.050. Percent relative standard deviations for all analytes are required to be less than 30. Table 1 lists the outlying initial calibration data.

The 1,1,2,2-tetrachloroethane mean response factor below the limit of 0.300 (1,1,2,2-tetrachloroethane is a system performance check compound). As reported in the November 1990 data validation memo, this violation has no impact on the data.

The %RSD value for acetone was less than one percent above 30. Thus, the acetone data were not qualified based upon the initial calibration data.

¹The analytical method was the Contract Laboratory Program-Statement of Work, February 1988, revised September 1988 and April 1989. ²Application of quality assurance criteria was consistent with "Laboratory Data Validation Functional

Guidelines for Evaluating Organics Analyses", February 1, 1988.

³This criterion is from the low level detection VOC CLP-SOW 1990 (draft) and has been extrapolated to these data as the CLP-SOW 1988 does not specify calibration criteria using a 25 ml purge volume.

Continuing Calibration Data

Continuing calibration data were used to assess analyte response versus concentration on a daily basis. For system performance check compounds, daily response factors are required to be greater than 0.300 (0.100 for bromoform). All remaining analytes are required to have daily response factors greater than 0.050. Percent differences between mean response factors and daily response factors for all analytes must be less than 25. Table 2 lists the outlying continuing calibration data.

On January 16 and 21, the 1,1,2,2-tetrachloroethane had response factors below 0.300 and no action upon the data was necessary. Acetone data for all samples were qualified as estimated (J or UJ) as the percent differences between the initial mean and daily calibration factors were greater than 25. Chloromethane data for samples analyzed on January 21 were also qualified as estimated (J or UJ) for this reason.

Method Blank Samples

Extent of lab contamination upon samples was measured using method blank samples. Table 3 summarizes the analytes detected in method blank samples. Note that only methylene chloride was detected and methylene chloride data from associated samples were qualified as non-detect (U).

As a low level detection method was used, the lab stated acetone and methylene chloride in the range of $10 \,\mu g/l$ or less should be considered a lab artifact even if the associated method blank sample is clean. This criterion is applied to the actual result; therefore, dilutions are <u>not</u> taken into consideration. Therefore, samples W-010791-RR-068, W-010791-RR-072 and W-010791-RR-073 methylene chloride data were also qualified as non-detect (U).

Surrogate Compounds Percent Recoveries (Surrogate Recoveries)

Individual sample performance for VOC analyses was judged using surrogate recoveries. Control limits are set in the QAPP. All percent recoveries were within these limits. Thus, the method was in control during each sample analysis.

The d_8 -toluene recoveries were calculated using 1,4-difluorobenzene as the internal standard, rather than d_5 -chlorobenzene. As d_8 -toluene elutes nearly midway between these two internal standards, either may be used to calculate d_8 -toluene recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Percent Recoveries

Matrix efficacy with respect to analytical data was checked using MS/MSD analyses. Sample W-010791-RR-068 underwent MS/MSD analyses.

The trichloroethene MS/MSD recoveries from this sample were 85 and 67, which results in an relative percent difference greater than 14. Therefore, these data were qualified as estimated (J), due to the poor precision. All remaining MS/MSD recoveries showed no significant matrix effects.

Internal Standard Summaries

Overall instrument performance was monitored using internal standard peak areas and retention times. Peak areas from each sample are required to match within +100 percent and -50 percent the daily calibration sample internal standard peak areas. Retention time must match within 0.5 minutes. Examining the data showed both criteria were met. Therefore, the GC/MS was in proper working order during each analysis.

Trip Blank Sample

A trip blank sample was used to monitor the extent of cross contamination of samples during shipment to Radian. Table 4 lists the analytes detected in this sample. The methylene chloride result was qualified as non-detect (U) based upon method blank sample data, and no samples contained 1,2-dichloroethane. The trichloroethene result from sample W-010891-RR-072 was qualified as estimated (J) as this value was within five times the amount in the trip blank sample. Overall, no significant cross contamination had occurred.

Rinsate Samples

Rinsate samples were originally part of the field quality assurance plan. However, a switch to dedicated bailer made rinsate samples unnecessary.

Field Duplicate Samples

Overall precision for these sampling events was measured using field duplicate samples. Two sets of field duplicate samples were collected, namely, W-010791-RR-068 and W-010791-RR-069, W-010891-RR-078 and W-010891-RR-079. Agreement between field duplicate samples was acceptable; indicating the overall sampling program was precise.

Overall Assessment

Overall the data were found to be accurate and precise. Exceptions have been discussed and documented in the above sections. These qualified data may be used for qualitative assessment purposes.

OUTLYING VOC INITIAL CALIBRATION DATA

<u>Date</u>	<u>Analyte</u>	<u>RRF</u> ¹	% RSD ²
1/15/91	1,1,2,2-tetrachloroethane	0.293	6.6
	Acetone	0.450	30.2

 1 RRF = mean relative response factor. 2 % RSD = percent relative standard deviation.

OUTLYING VOC CONTINUING CALIBRATION DATA

<u>Date/Time</u> 1/16/91; 10:33	<u>Analyte</u> 1,1,2,2-tetrachloroethane Acetone	<u>RRF</u> 1 0.262 0.964	<u>% D</u> ² 10.6 99.9	<u>Qualifier</u> ³ J/UJ J/UJ	<u>Associated Samples</u> W-010791-RR-067 W-010791-RR-067 W-010791-RR-068 MSD W-010791-RR-071 W-010891-RR-078 W-010891-RR-079 W-010891-RR-080
					TB 1/4
1/21/91; 09:02	1,1,2,2-tetrachloroethane Chloromethane Acetone Vinyl Acetate	0.285 0.897 0.646 2.365	2.7 29.6 43.6 25.3	NR J/UJ J/UJ NR	W-010791-RR-066 W-010791-RR-068 MSD W-010791-RR-074 W-010891-RR-075 W-010891-RR-076 W-010891-RR-077

- ¹RRF = daily relative response factor.
 ²% D = Percent difference.
 ³Analyte data for associated samples were qualified as:
 J associated value is an estimated quantity.
 UJ the analyte was checked for, but not detected. The associated value is an estimate.
 - NR no qualifiers were required.

METHYLENE CHLORIDE CONCENTRATIONS IN METHOD BLANK SAMPLES

 Blank ID
 Concentration (µg/l)
 Associated Samples¹

 VBLK 1/16
 0.3 J²
 W-010791-RR-067; W-010791-RR-071; W-010891-RR-078; W010891-RR-079; W-010891-RR-080; TB 1/7

 VBLK 1/21
 0.3 J
 W-010791-RR-066; W-0101791-RR-074;

W-010891-RR-075; W-010891-RR-076;

W-010891-RR-077

¹Assocated samples had methylene chloride data qualified as non-detect (U). ²The associated value is an estimate.

ANALYTES DETECTED IN SAMPLE TB1/7

<u>Analyte</u>	Concentration (µg/l)	Associated Samples ¹
Methylene Chloride	0.8 U ²	
1,2-dichloroethane	0.2 J ³	
Trichloroethene	0.3 J	W-010791-RR-072

¹Associated samples had analyte data qualified as estimated (J). ²The analyte datum was qualified as non-detect. ³The associated value is an estimate.

MEMORANDUM

FROM: David Dempsey $\mathcal{D}\mathcal{P}$

REFERENCE NO. 2115

DATE: April 5, 1991

RE: Data Quality Assessment and Validation for Seventeen Groundwater Samples Collected during the February 1991 Sampling Events at the Wausau, Wisconsin, Site

The following details a data quality assessment and validation for 17 groundwater samples collected February 12 and 13, 1991, at the Wausau, Wisconsin, site. All samples were analyzed for target compound list volatile organic compounds (TCL VOC) by S-Cubed.¹ Quality assurance/quality control criteria are defined in the associated quality assurance project plan (QAPP).²

Holding Time Period

The holding time period for VOC samples is defined in the QAPP and requires samples to be analyzed within 14 days from sample collection. Examining the analysis dates showed samples were analyzed within the allotted time frame.

Instrument Performance

Prior to analyzing samples, the gas chromatograph/mass spectrometer (GC/MS) performance was checked using 4-bromofluorobenzene. Relative peak intensities for selected ions were within limits specified in the QAPP. Therefore, the GC/MS was in proper working condition prior to sample analysis.

Initial Calibration Data

The initial calibration data were used to judge analyte response versus concentration. For system performance check compounds, the minimum response factor allowed is 0.300 (0.100 for bromoform).³ All remaining analytes are required to have response factors greater than 0.050. Percent relative standard deviations for all analytes are required to be less than 30. Table 1 lists the outlying initial calibration data.

Bromoform and 1,1,2,2-tetrachloroethane mean response factors were below these limits. However, discussing the matter with S-Cubed revealed bromoform and 1,1,2,2-tetrachloroethane do not usually meet these limits when using a 25 ml purge volume and a packed column. Thus, these violations have no impact on the data. A copy of a letter configuring this is presented as Attachment A.

Butanone data for all samples were qualified as estimated (J) or unusable (R) as the mean relative response factor was 0.045. Acetone data for all samples were qualified as estimated (J or UJ) as the percent relative standard deviation was 32.5.

¹The analytical method was the Contract Laboratory Program-Statement of Work, February 1988, revised September 1988 and April 1989.

September 1988 and April 1989. ²Application of quality assurance/quality control criteria was consistent with "Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses", February 1, 1988.

³These criteria are from the low level detection VOC CLP-SOW 1990 (draft) and have been extrapolated to these data as the CLP-SOW 1988 does not specify calibration criteria using a 25 ml purge volume.

Continuing Calibration Data

Continuing calibration data were used to assess analyte response versus concentration on a daily basis. For system performance check compounds, daily response factors are required to be greater than 0.300 (0.100 for bromoform). All remaining analytes are required to have daily response factors greater than 0.05. Percent differences between mean response factors and daily response factors for all analytes must be less than 25. Table 2 lists the outlying continuing calibration data.

Again, bromoform and 1,1,2,2-tetrachloroethane had response factors below these limits and no action upon the data was necessary. Butanone was the only other analyte to fail continuing calibration criteria; however, as these data were qualified based upon the initial calibration data, no additional action was necessary.

Method Blank Samples

Extent of lab contamination of samples was measured using method blank samples. Table 3 summarizes the analytes detected in method blank samples. Note that only methylene chloride was detected often and had data qualified from associated samples as non-detect (U).

Surrogate Compounds Percent Recoveries (Surrogate Recoveries)

Individual sample performance for VOC analyses was judged using surrogate recoveries. Control limits are set in the QAPP. All percent recoveries were within these limits.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Percent Recoveries

Matrix efficacy with respect to analytical data was checked using MS/MSD analyses. Sample W-021291-RR-090 underwent MS/MSD analyses. The relative percent difference for trichloroethene MS/MSD recoveries was reported to be 9. Recalculating yields a value of 24, which is correct. As a result, the trichloroethene datum for this sample was qualified as estimated (J). Thus, no significant matrix effects were observed.

Internal Standard Summaries

Overall instrument performance was monitored using internal standard peak area and retention times. Peak areas are required to match within +100 percent and -50 percent the daily calibration sample internal standard peak areas. Retention time must match within 0.5 minutes. Examining the data showed both criteria were met. Therefore, the GC/MS was in proper working order during each analysis.

Trip Blank Samples

A trip blank sample was used to monitor the extent of cross contamination of samples during shipment to S-Cubed. This sample contained methylene chloride; however, this datum was qualified as non-detect (U). Thus, no significant cross contamination was observed.

Rinsate Samples

Rinsate samples were originally part of the field quality assurance plan. However, a switch to dedicated bailers made rinsate samples unnecessary.

Field Duplicate Samples

Overall precision for this sampling event was measured using field duplicate samples. Two sets of field duplicate samples were collected, namely, W-021291-RR-090 and W-021291-RR-091, W-021391-RR-095 and W-021391-RR-096. The latter set was reanalyzed as dilutions to bring all analyte peaks on scale were required. Agreement between the field duplicate samples showed this event was precise.

Overall Assessment

Overall the data were found to be accurate and precise. Exceptions have been discussed and documented in the above sections. These qualified data may be used for qualitative assessment purposes, except where the data have been rejected.

OUTLYING INITIAL CALIBRATION DATA

Analyte	<u>RRF1</u>	<u>%RSD²</u>	<u>Qualifier³</u>
Bromoform	0.094	11.7	NR
1,1,2,2-tetrachloroethane	0.273	9.8	NR
Acetone	0.227	32.5	J/UJ
Butanone	0.045	15.7	J/R

¹RRF = Mean Relative Response Factor
²%RSD = Percent Relative Standard Deviation
³All samples had analyte data qualified as:
J - The associated value is an estimated quantity, for detected analytes.
UJ - The analyte was checked for, but not detected. The associated value is an estimate.

R - The datum is unusable, for non-detected results.

OUTLYING CONTINUING CALIBRATION DATA

Date/Time	Analyte	<u>RRF</u> 1	<u>%D</u> 2	Qualifier ³
2/19; 10:47	Bromoform	0.093	1.5	NR
	1,1,2,2-tetrachloroethane	0.288	5.5	NR
	Butanone	0.049	8.6	NR
		• •	0	
2/20; 08:18	Bromoform	0.087	7.8	NR
	1,1,2,2-tetrachloroethane	0.249	8.9	NR

¹RRF = Daily Relative Response Factor ²%D = Percent Difference ³No data were qualified based upon continuing calibrations.

ANALYTES DETECTED WITH METHOD BLANK SAMPLES

Method Blank	Analyte	Concentration (µg/l)	Associated Samples ¹
VBLK11	Methylene Chloride	3.3	W-021291-RR-084;
	· .		W-021291-RR-086;
	Acetone	8.4	W-021291-RR-081;
			W-021291-RR-083;
			W-021291-RR-084;
			W-021291-RR-085;
			W-021291-RR-086
VBLK12	Methylene Chloride	2.2	W-021291-RR-086DL ²
VBLK13	Methylene Chloride	3.1	W-021391-RR-092DL;
		• •	W-021391-RR-093DL;
			W-021391-RR-096DL;
			W-021391-RR-097DL;
			TB02/12-13
	· .		· · ·

¹Associates samples had analyte datum qualified as non-detect (U). ²Sample was diluted and re-analyzed.

ľ

ATTACHMENT A

A Division of Maxwell Laboratories, Inc.

Rec'd CRA

APR 0 5. 91

David Dempsey Conestoga-Rovers and Associates 382 W. County Road D St. Paul, MN 55112

Dear Mr. Dempsey:

April 4, 1991

This letter is to confirm our recent discussion concerning the mean relative response factors for bromoform and 1,1,2,2-tetrachloroethane. EPA 2/88 SOW VOA procedures call for minimum RRFs for these compounds of 0.25 and 0.30, respectively. When modifying the method by introducing a 25-mL purge in place of a 5-mL purge, the achievable RRFs for these compounds are reduced. 1,1,2,2-Tetrachloroethane RRFs are generally in the range of 0.20 and 0.30. Bromoform is affected more significantly especially when a packed column is used. The RRFs generally achieved under these circumstances range from 0.08 to 0.15. Detection limit studies performed by S-Cubed under these analytical conditions for bromoform have demonstrated a detection limit of 0.2 μ g/L. This indicates that the lower response does not affect the quality of the data produced.

We are currently one of two laboratories that are performing low detection VOA analysis for Region V's residential well program and using the draft CLP 25-mL procedure. This procedure utilizes a capillary column for the GC separation. By utilizing a capillary column instead of a packed column (as we currently do for the MEM project). Bromoform RRFs are generally in the 0.15 to 0.22 range and pass the criteria. 1,1,2,2-Tetrachloroethane is still reduced and does not meet the criteria and we take exception to this requirement. Some versions of the method do allow two compounds to be out.

If I can provide more information concerning this issue, please let me know.

Sincerely All A

John DeWald Manager, Commerical Analysis

MEMORANDUM

TO: FROM: David Dempsey $\mathcal{P}_{\mathcal{I}}$

REFERENCE NO. 2115

DATE: April 18, 1991

RE: Data Quality Assessment and Validation for Sixteen Groundwater Samples Collected during the March 1991 Sampling Event at the Wausau, Wisconsin Site

The following details a data quality assessment and validation for 16 groundwater samples collected March 4 and 5, 1991, at the Wausau, Wisconsin, site. All samples were analyzed for target compound list volatile organic compounds (TCL VOC) by S-Cubed.¹ Seven samples were also analyzed for target analyte list metals by S-Cubed. Quality assurance/quality control criteria are defined in the associated quality assurance project plan (QAPP).²

Holding Time Period

The holding time period for VOC samples is defined in the QAPP. VOC samples must be analyzed within 14 days from sample collection. Metals samples must be analyzed within 6 months (28 days-mercury) from sample collection. Examining the analysis dates showed samples were analyzed within allotted time frames.

Instrument Performance

Prior to analyzing samples, the gas chromatograph/mass spectrometer (GC/MS) performance was checked using 4-bromofluorobenzene. Selected ion relative peak intensities were within limits specified in the QAPP. Therefore, the GC/MS was in proper working condition prior to sample analysis.

Initial Calibration Data

The initial calibration data were used to judge analyte response versus concentration. For system performance check compounds, the minimum response factor allowed is 0.300 (0.100 for bromoform³). All remaining analytes are required to have response factors greater than 0.050. Percent relative standard deviations for all analytes are required to be less than 30. Bromoform and 1,1,2,2-tetrachloroethane mean response factors were below these limits However, discussing the matter with S-Cubed revealed bromoform and 1,1,2,2-tetrachloroethane do not usually meet these limits when using a 25 ml purge volume and a packed column. As reported in the data validation memo for the February 1991 event, these violations have no impact on the data.

¹The analytical method was the Contract Laboratory Program-Statement of Work, February 1988, revised September 1988 and April 1989.

²Application of quality assurance/quality control criteria was consistent with "Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses", February 1, 1988 and "Laboratory Data Validation Functional Guidelines for Evaluating Inorganics Analyses", July 1, 1988.

³This criterion is from the low level detection VOC CLP-SOW 1990 (draft) and has been extrapolated to these data as the CLP-SOW 1988 does not specify calibration criteria using a 25 ml purge volume.

Calibration curves for metals consisted at least of two points. Atomic absorption method calibration curves had four points, while the mercury calibration curve had five points. Calibration coefficients for all curves were greater than 0.995. Thus, the instruments used for metals analyses were properly calibrated.

Continuing Calibration Data

Continuing calibration data were used to assess analyte response versus concentration on a daily basis. For system performance check compounds, daily response factors are required to be greater than 0.300 (0.100 for bromoform). All remaining analytes are required to have daily response factors greater than 0.05. Percent differences between mean response factors and daily response factors for all analytes must be less than 25. Table 1 lists the outlying VOC continuing calibration data.

Again, bromoform and 1,1,2,2-tetrachloroethane had response factors below these limits and no action upon the data was necessary. Acetone, butanone and 2-hexanone also failed continuing calibration criteria. Therefore, these analyte data were qualified as directed in Table 1 as estimated (J or UJ) or unusable (R).

Calibration standards were analyzed to verify the metals calibration curves. Thallium, selenium and arsenic had standards with recoveries below the control limits. However, as these recoveries were less than one percent below the limits, no action upon the data was necessary. Thus, the instruments used for metals analyses were properly calibrated.

Method Blank Samples

Extent of lab contamination of samples was measured using method blank samples. Table 2 summarizes the analytes detected in method blank samples. Note that only methylene chloride was detected in both VOC method blank samples and had data qualified from associated samples as non-detect (U). Copper, iron, lead and zinc were all detected in the metals method blank sample and had data qualified as non-detect (U).

Initially, nickel was reported in the method blank sample at -129 μ g/l. S-Cubed reported instrument problems and recalculated nickel concentrations for all samples. Thus, no extensive lab contamination was observed.

Laboratory Control Samples

Accuracy for metals methods was measured using control samples. Percent recoveries are required to between 80 and 120. However, lead and arsenic percent recoveries were 136 and 144 percent, respectively. Therefore, all detected data for each analyte were qualified as estimated (J). Accuracy for remaining metals was acceptable.

ICP Interference Check Sample

The ICP method was shown to be free of interelemental interferences via a check sample. As the percent recoveries were within specified limits, no interelemental interferences were observed.

Surrogate Compounds Percent Recoveries (Surrogate Recoveries)

Individual sample performance for VOC analyses was judged using surrogate recoveries. Control limits are set in the QAPP. All percent recoveries were within these limits.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Percent Recoveries

Matrix efficacy with respect to analytical data was checked using MS/MSD analyses. Sample W-030491-RR-102 underwent VOC MS/MSD analyses. The relative percent difference for trichloroethene MS/MSD recoveries was reported to be 10. Recalculating gives a value of 11, which is correct. Thus, no significant matrix effects were observed for VOC analyses.

Samples W-030491-RR-104, W-030591-RR-112 and W-030591-RR-115 underwent metals - MS/MSD analyses. Table 3 lists the outlying recoveries. As a result, thallium data for all samples were qualified as estimated (J) or unusable (R), mercury data for all samples were qualified as estimated (J or UJ), and silver data for all samples were qualified as estimated (J) for detected results only. No severe matrix effects were observed for the remaining metals.

Laboratory Duplicate Analyses

Precision for metals analyses was measured using duplicate analyses of samples W-030591-RR-112 and W-030591-RR-115. Thallium duplicate analyses for sample W-030591-RR-112 showed poor precision; however, as thallium datum for this sample was already qualified as unusable (R), no additional action was taken. Duplicate analyses for sample W-030591-RR-115 showed an acceptable degree of precision. Therefore, these methods were precise when investigative samples were analyzed.

Internal Standard Summaries

Overall instrument performance was monitored using internal standard peak area and retention times. Peak areas are required to match within +100 percent and -50 percent the daily calibration sample internal standard peak areas. Retention time must match within 0.5 minutes. Examining the data showed both criteria were met. Therefore, the GC/MS were in proper working order during each analysis.

Reference No. 2115 Page 4

Trip Blank Samples

A trip blank sample was used to monitor the extent of cross contamination of samples during shipment to S-Cubed. This sample contained trichloroethene at $1.2 \,\mu g/l$. Trichloroethene data from samples W-030491-RR-102, W-030491-RR-107 and W-030591-RR-111 were qualified as estimated as these data were within five times the amount detected in the trip blank sample. Overall, no significant cross contamination was observed.

Rinsate Samples

Rinsate samples were originally part of the field quality assurance plan. However, a switch to dedicated bailers made rinsate samples unnecessary.

Field Duplicate Samples

Overall precision for these sampling events was measured using field duplicate samples. Two sets of field duplicate samples were collected, namely, W-030491-RR-102 and W-030491-RR-103, W-030591-RR-112 and W-030591-RR-113. Both sets were analyzed for VOC only. Based on these data, the overall event was precise for VOC.

No field duplicate samples for metals were collected.

Overall Assessment

Overall the data were found to be accurate and precise. Exceptions have been discussed and documented in the above sections. These qualified data may be used for qualitative assessment purposes, except where the data have been rejected.

OUTLYING VOC CONTINUING CALIBRATION DATA ASSOCIATED WITH THE WAUSAU, WISCONSIN SITE

Date/Time	Analyte	RRF ¹	<u>%D2</u>	Qualifier ³	Associated Samples
3/11, 10:48	Butanone	0.043	14.1	J/R	W-030491-RR-100
	Bromoform	0.110	10	NR	W-030491-RR-101
	1,1,2,2-tetrachloroethane	0.263	3.6	NR	W-030491-RR-103
	Acetone	0.118	45.7	J/UJ	W-030491-RR-104
	2-hexane	0.095	31.7	J/UJ	W-030491-RR-105
					W-030491-RR-106
					W-030591-RR-108
		·			W-030591-RR-109
					W-030591-RR-110
					W-030591-RR-111
					W-030591-RR-112
					W-030591-RR-113
					W-030591-RR-114
					TB 3/91

TABLE 1 (CONT'D)

OUTLYING VOC CONTINUING CALIBRATION DATA ASSOCIATED WITH THE WAUSAU, WISCONSIN SITE

Date/Time	<u>Analyte</u>	RRF ¹	<u>%D2</u>	Qualifier ³	Associated Samp
3/12, 8:40	Acetone	0.319	46.8	J/UJ	W-030491-RR-10
· · ·	Butone	0.072	42.2	J/UJ	W-030491-RR-10
	Bromoform	0.107	1.9	NR	W-030491-RR-10
	1,1,2,2-tetrachloroethane	0.265	3.0	• NR	W-030491-RR-10
					W-030491-RR-10
					W-030591-RR-10
					W-030591-RR-11
		· .			W-030591-RR-11
					W-030591-RR-11
3/13; 9:40	Chloromethane	1.277	34.9	J/UJ	W-030591-RR-10
	Acetone	0.300	37.8	J/UJ	W-030591-RR-11
	Butanone	0.068	35.4	J/UJ	
	Bromoform	0.080	26.3	J/UJ	
	1,1,2,2-tetrachloroethane	0.238	12.9	NR	

¹RRF = Daily Relative Response Factor ${}^{2}\%$ D = Percent Difference

³Analyte datum for associated samples was qualified as:
 J = The associated value is an estimated quantity, for detected analytes.
 UJ = The analyte was checked for, but not detected. The associated value is an estimate.

= The datum is rejected, for non-detected analytes. R

NR = No additional qualifiers were required.

nples 102 107 101DL 103DL 105DL 109DL 112DL 113DL 14DL

08DL 10DL

ANALYTES DETECTED IN METHOD BLANK SAMPLES ASSOCIATED WITH THE WAUSAU, WISCONSIN, SITE

<u>Blank ID</u> VBLK11	<u>Analyte</u> Methylene Chloride Acetone	<u>Concentration (μg/l)</u> 1.5 5.8	<u>Associated Samples</u> ¹ W-030491-RR-103
VBLK12	Methylene Chloride	2.2	W-030491-RR-103DL
Metals	Copper	22 J ²	W-030491-RR-102; W-030491-RR-104; W-030491-RR-105; W-030591-RR-111; W-030591-RR-112; W-030591-RR-114;
	Iron Lead	71 J 1.5 J	W-030591-RR-115 W-030491-RR-105 W-030491-RR-102; W-030591-RR-112;
	Zinc	59	W-030591-RR-114; W-030591-RR-115 W-030591-RR-102; W-030591-RR-114; W-030591-RR-115

 1 Analyte data from associated samples were qualified as non-detect (U). 2 The associated value is an estimate.

OUTLYING METALS/MATRIX SPIKE RECOVERIES FOR SAMPLES COLLECTED AT THE WAUSAU, WISCONSIN, SITE

<u>Blank ID</u>	<u>Analyte</u>	Percent Recovery	<u>Limits</u> ¹	<u>Qualifier</u> ²
W-030491-RR-105	Mercury	61.4	75-125	J/UJ
W-030591-RR-112	Thallium	18	75-125	J/R
W-030591-RR-115	Silver	144	75-125	J/NR

¹Limits are specified in the QAPP.

²Analyte data for all samples are qualified as:

J - the associated value is an estimated quantity for detected analytes.

UJ - the analyte was checked for, but not detected. The associated value is an estimate.

R - The datum is rejected, for non-detected analytes.

NR - No additional qualifiers are necessary.

MEMORANDUM

REFERENCE NO. 2115

DATE: April 30, 1991

FROM: David Dempsey

RE: Addendum to the March 1991 Data Validation and Assessment Memo for the March 1991 Sampling event at the Wausau, Wisconsin Site

S-Cubed reported lead data for seven groundwater samples collected during the March 1991 sampling event at the Wausau, Wisconsin site. The lead control sample percent recovery was out of control limits. Therefore, S-Cubed reanalyzed these samples. The following details a data quality assessment and validation for these reanalyses.

Holding Time Period

Holding time period for lead analysis is six months from sample collection to completion of analysis. Examining the analysis dates showed the lead holding time period was met.

Continuing Calibration

The initial calibration curve consisted of one blank and four standards. The correlation coefficient was greater than 0.995; therefore, the initial calibration was acceptable.

Calibration standards were analyzed prior to sample analyses. The percent recoveries were within ten percent of the standard's concentration. Therefore, the instrument was properly calibrated.

Continuing Calibrations

Calibration standards were used to verify the instrument calibration during sample analyses. As the percent recoveries were within ten percent of the standard's concentration, the instrument calibration was verified for all sample analyses.

Method Blank Samples

Lab contamination was measured using a method blank sample. This sample was free of lead; therefore, no lab contamination was observed.

Lab Control Sample

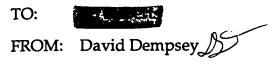
Overall accuracy for this method was measured using a check sample. As the percent recovery was within ten percent of the sample concentration, the method was accurate.

Matrix Spike Analyses

Matrix effects were checked for using a matrix spike analysis upon sample W-030491-RR-102. As the percent recovery was within limits, no significant matrix effects were observed.

Lab Duplicate Analysis

Analytical precision was measured using duplicate analysis of sample W-030491-RR-102. As both analyses were in agreement, the precision was acceptable.


Field Quality Assurance Samples

No field quality assurance samples were analyzed for lead.

Overall Assessment

The data are accurate and precise. Therefore, the data may be used for quantitative assessment of lead concentrations.

MEMORANDUM

REFERENCE NO. 2115

DATE: May 9, 1991

RE: Data Quality Assessment and Validation for Fifteen Groundwater Samples Collected during the April 1991 Sampling Event at the Wausau, Wisconsin Site

The following details a data quality assessment and validation for 15 groundwater samples collected on April 1, 1991, at the Wausau, Wisconsin site. All samples were analyzed for target compound list volatile organic compounds (TCL VOC) by S-Cubed.¹ Quality assurance/quality control criteria are defined in the associated quality assurance project plan (QAPP).²

Holding Time Period

The holding time period for VOC samples is defined in the QAPP. All VOC samples must be analyzed within 14 days from sample collection. Examining the analysis dates showed samples were analyzed within the allotted time frame.

Instrument Performance

Prior to analyzing samples, the gas chromatograph/mass spectrometer (GC/MS) performance was checked using 4-bromofluorobenzene. Selected ion relative peak intensities were within limits specified in the QAPP. Therefore, the GC/MS was in proper working condition prior to sample analysis.

Initial Calibration Data

The initial calibration data were used to judge analyte response versus concentration. For system performance check compounds, the minimum response factor allowed is 0.300 (0.100 for bromoform³). All remaining analytes are required to have response factors greater than 0.050. Percent relative standard deviations for all analytes are required to be less than 30. Bromoform and 1,1,2,2-tetrachloroethane mean response factors were below these limits However, discussing the matter with S-Cubed revealed bromoform and 1,1,2,2-tetrachloroethane do not usually meet these limits when using a 25 ml purge volume and a packed column. As reported in the data validation memo for the February 1991 event, these violations have no impact on the data.

Acetone failed the percent relative percent difference criteria for both initial calibration curves. Therefore all acetone data are qualified as estimated (J or UJ).

³This criterion is from the low level detection VOC CLP-SOW 1990 (draft) and has been extrapolated to these data as the CLP-SOW 1988 does not specify calibration criteria using a 25 ml purge volume.

¹The analytical method was the Contract Laboratory Program-Statement of Work, February 1988, revised September 1988 and April 1989.

²Application of quality assurance/quality control criteria was consistent with "Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses", February 1, 1988.

Continuing Calibration Data

Continuing calibration data were used to assess analyte response versus concentration on a daily basis. For system performance check compounds, daily response factors are required to be greater than 0.300 (0.100 for bromoform). All remaining analytes are required to have daily response factors greater than 0.05. Percent differences between mean response factors and daily response factors for all analytes must be less than 25. Table 1 lists the outlying VOC continuing calibration data.

Again, bromoform and 1,1,2,2-tetrachloroethane had response factors below these limits and no action upon the data was necessary. On April 10, vinyl acetate and 4-methyl-2pentanone also failed continuing calibration criteria. Therefore, these analyte data from samples listed in Table 1 are qualified as estimated (J or UJ).

Method Blank Samples

Extent of lab contamination of samples was measured using method blank samples. Methylene chloride was detected in the method blank sample from April 10. As a result, methylene chloride data from samples W-040191-RR-133 and TB4/2 are qualified as non detect (U). As no other action upon the data based upon method blank sample data was necessary, no significant lab contamination was observed.

However, methylene chloride and acetone were detected in diluted analyses for several samples, which are listed in Table 2. These analytes were not detected in initial analyses; therefore, the water used to dilute these samples is the most likely source. These data are believed to be lab artifacts, even though the associated method blank samples are VOC free. Therefore, these data are qualified as non detect (U).

Surrogate Compounds Percent Recoveries (Surrogate Recoveries)

Individual sample performance for VOC analyses was judged using surrogate recoveries and control limits are set in the QAPP. All percent recoveries were within these limits, indicating the method was in control for all analyses.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Percent Recoveries

Matrix efficacy with respect to analytical data was checked using MS/MSD analyses. Sample W-040191-RR-130 underwent VOC MS/MSD analyses. The reported percent difference recoveries were miscalculated due to rounding errors. Table 3 presents the corrected MS/MSD recoveries, which indicate that there are no significant matrix effects upon the data.

Internal Standard Summaries

Overall instrument performance was monitored using internal standard peak area and retention times. Peak areas are required to match within +100 percent and -50 percent the daily calibration sample internal standard peak areas. Retention time must match within 0.5 minutes. Examining the data showed both criteria were met. Therefore, the GC/MS was in proper working order during each analysis.

Trip Blank Samples

A trip blank sample was used to monitor the extent of cross contamination of samples during shipment to S-Cubed. This sample contained methylene chloride, acetone and trichloroethene. Concentrations are given in Table 4. Samples listed in Table 4 have the analyte datum qualified as estimated (J) as the sample concentration is less than five times the amount detected in the trip blank sample.

Rinsate Samples

Rinsate samples were originally part of the field quality assurance plan. However, a switch to dedicated bailers made rinsate samples unnecessary.

Field Duplicate Samples

Overall precision for these sampling events was measured using field duplicate samples. Two sets of field duplicate samples were collected, namely, W-040191-RR-127 and W-040191-RR-128, W-040191-RR-130 and W-040191-RR-131. Based on these data, the overall event was precise.

Overall Assessment

Overall the data were found to be accurate and precise. Exceptions have been discussed and documented in the above sections. These qualified data may be used for qualitative assessment purposes.

OUTLYING VOC CONTINUING CALIBRATION DATA ASSOCIATED WITH THE WAUSAU, WISCONSIN SITE

Date/Time	Analyte	<u>RRF¹</u>	<u>%D2</u>	<u>Qualifier³</u>	Associated Samples ⁴
4/10; 8:08	Vinyl Acetate	0.073	31.2	J/UJ	W-040191-RR-128
	4-methyl-2-pentanone	0.17	28.2	J/UJ	W-040191-RR-129
	Bromoform	0.095	23.7	NR	W-040191-RR-130
	1,1,2,2-tetrachloroethane	0.281	20.7	NR	W-040191-RR-132
	· · · ·				W-040191-RR-133
			•		W-040191-RR-134
• .					W-040191-RR-123DL
					W-040191-RR-124DL
					W-040191-RR-125DL
			· .		W-040191-RR-126DL
					W-040191-RR-127DL
				•	TB 4/2
4/12; 8:26	Bromoform	0.083	1.3	NR	W-040191-RR-130DL
•	1,1,2,2-tetrachloroethane	0.239	13.9	NR	

¹ RRF = Daily relative response factor ² %D = Percent difference

 ³ Analyte datum for associated samples is qualified as:
 J - The associated value is an estimated quantity.
 UJ - The analyte was checked for, but not detected. The associated value is an estimate.

NR - No additional qualifers are necessary. ⁴ Sufix 'DL' represents a diluted analysis.

SUMMARY OF DILUTED ANALYSES WITH DETECTABLE AMOUNTS OF ACETONE AND/OR METHYLENE CHLORIDE WAUSAU, WISCONSIN

Sample ID

Qualified¹

W-040191-RR-128DL

W-040191-RR-129DL

W-040191-RR-130DL

Acetone

Acetone

Methylene Chloride Acetone

 1 Analyte datum from the sample is qualified as non-detect (U).

CORRECTED MS/MSD RECOVERIES WAUSAU, WISCONSIN

		Percent.	Recovery	
<u>Sample ID</u>	<u>Analyte</u>	<u>MS</u>	<u>MŠD</u>	<u>Limits¹</u>
W-040191-RR-130	1,1-dichloroethene	131	135	61-145 (14)
	Trichloroethene	68	75	71-120 (14)
	Benzene	124	127	76-127 (11)
	Toluene	110	107	76-125 (13)
	Chlororbenzene	113	111	75-130 (13)

¹ Limits are specified in the QAPP.

ANALYTES DETECTED IN THE TRIP BLANK SAMPLE WAUSAU, WISCONSIN

<u>Analyte</u> Methylene Chloride	Concentration (mg/l) 2.7 U ²	<u>Associated Samples</u> ¹
Acetone	19	W-040191-RR-122
		W-040191-RR-124
		W-040191-RR-127
		W-040191-RR-132
		W-040191-RR-137
Trichloroethene	1.2	W-040191-RR-122
		W-040191-RR-134

¹ Analyte datum is qualified as estimated (J).
 ² Analyte datum is qualified as non-detect, based upon method blank samples data.

MEMORANDUM

TO:

FROM: David Dempsey

REFERENCE NO. 2115

DATE: June 8, 1991

RE: Data Quality Assessment and Validation for Eighteen Groundwater Samples Collected during the May 1991 Sampling Event at the Wausau, Wisconsin Site

The following details a data quality assessment and validation for 18 groundwater samples collected on May 6 and 7, 1991, at the Wausau, Wisconsin site. All samples were analyzed for target compound list volatile organic compounds (TCL VOC) by S-Cubed.¹ Quality assurance/quality control criteria are defined in the associated quality assurance project plan (QAPP).²

Holding Time Period

The holding time period for VOC samples is defined in the QAPP. All VOC samples must be analyzed within 14 days from sample collection. Examining the analysis dates showed samples were analyzed within the allotted time frame.

Instrument Performance

Prior to analyzing samples, the gas chromatograph/mass spectrometer (GC/MS) performance was checked using 4-bromofluorobenzene. Selected ion relative peak intensities are within limits specified in the QAPP. Therefore, the GC/MS was in proper working condition prior to sample analysis.

Initial Calibration Data

The initial calibration data were used to judge analyte response versus concentration. For system performance check compounds, the minimum response factor allowed is 0.300 (0.100 for bromoform³). All remaining analytes are required to have response factors greater than 0.050. The 1,1,2,2-tetrachloroethane mean response factors were below this limit However, discussing the matter with S-Cubed revealed 1,1,2,2-tetrachloroethane does not usually meet this limit when using a 25 ml purge volume and a packed column. As reported in the data validation memo for the February 1991 sampling event, these violations have no impact on the data. Percent relative standard deviations for all analytes are required to be less than 30.

On May 16, butanone and vinyl acetate failed the minimum response factor criterion. Butanone also failed this criterion on May 20. Therefore, all butanone data and vinyl chloride data from samples analyzed before May 20 are qualified as estimated (J) or

- ²Application of quality assurance/quality control criteria was consistent with "Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses", February 1, 1988.
- ³This criterion is from the low level detection VOC CLP-SOW 1990 (draft) and has been extrapolated to these data as the CLP-SOW 1988 does not specify calibration criteria using a 25 ml purge volume.

¹The analytical method was the Contract Laboratory Program-Statement of Work, February 1988, revised September 1988 and April 1989.

Reference No. 2115 Page 2

unusable (R). On May 20, acetone failed the percent difference criterion for both initial calibration curves. Therefore, acetone data from samples analyzed on May 20 are qualified as estimated (J or UJ). These violations are summarized in Table 1.

Continuing Calibration Data

Continuing calibration data were used to assess analyte response versus concentration on a daily basis. For system performance check compounds, daily response factors are required to be greater than 0.300 (0.100 for bromoform). All remaining analytes are required to have daily response factors greater than 0.050. Percent differences between mean response factors and daily response factors for all analytes must be less than 25. Table 2 lists the outlying VOC continuing calibration data.

Again, 1,1,2,2-tetrachloroethane had response factors below the required limit and no action upon the data was necessary. Butanone and vinyl acetate violated the continuing calibration criteria on each day samples were analyzed (excluding vinyl acetate on May 20.) However, as these data have been qualified based upon the initial calibration data, no additional action upon is necessary.

Method Blank Samples

Extent of lab contamination of samples was measured using method blank samples. Methylene chloride was detected in the method blank samples from May 17 and May 20. As a result, methylene chloride data from sample W-050791-RR-149 is qualified as non detect (U). As no other action upon the data based upon method blank sample data was necessary, no significant lab contamination was observed.

Surrogate Compounds Percent Recoveries (Surrogate Recoveries)

Individual sample performance for VOC analyses was judged using surrogate recoveries and control limits are set in the QAPP. All percent recoveries were within these limits, indicating the method was in control for all analyses.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Percent Recoveries

Matrix efficacy with respect to analytical data was checked using MS/MSD analyses. Sample W-050691-RR-140 underwent VOC MS/MSD analyses. The reported percent difference values were miscalculated due to rounding errors. Table 3 presents the corrected percent difference values, which indicate the analytical precision is acceptable. No matrix effects upon the data were observed.

Internal Standard Summaries

Overall instrument performance was monitored using internal standard peak area and retention times. Peak areas are required to match within +100 percent and -50 percent the daily calibration sample internal standard peak areas. Retention time must match within 0.5 minutes. Examining the data showed all samples met these criteria. Therefore, the GC/MS was in proper working order during each analysis.

Trip Blank Samples

A trip blank sample was used to monitor the extent of cross contamination of samples during shipment to S-Cubed. This sample contained chloromethane and butanone. As samples did not contain either analytes within five times the amount detected in the trip blank sample, no cross contamination was observed.

Rinsate Samples

Rinsate samples were originally part of the field quality assurance plan. However, a switch to dedicated bailers made rinsate samples unnecessary.

Field Duplicate Samples

Overall precision for these sampling events was measured using field duplicate samples. Two sets of field duplicate samples were collected, namely, W-050691-RR-140 and W-050691-RR-151, W-050791-RR-143 and W-050791-RR-144. Based on these data, the overall event was precise.

Overall Assessment

Overall the data were found to be accurate and precise. Exceptions have been discussed and documented in the above sections. These qualified data may be used for qualitative assessment purposes, except where the data have been rejected.

OUTLYING INITIAL CALIBRATION DATA

<u>Date</u>	Analyte	<u>RRF1</u>	%RSD ²	Qualifier ³	Associated Samples ⁴
5/16	Butanone	0.034	31.7	J/R	W-050691-RR-135
	Vinyl Acetate	0.032	11.1	J/R	W-050691-RR-136
	1,1,2,2-tetrachloroethane	0.272	6.2	NR	W-050691-RR-136 DL
					W-050691-RR-137
					W-050691-RR-138
					W-050691-RR-139
					W-050691-RR-140
					W-050791-RR-141
					W-050791-RR-142
					W-050791-RR-142 DL
					W-050791-RR-143
				•	W-050791-RR-143 DL
					W-050791-RR-144
					W-050791-RR-145
					W-050791-RR-145 DL
	· · ·				W-050791-RR-146
					W-050791-RR-147
					W-050791-RR-148
					W-050791-RR-149
					W-050791-RR-150
					W-050691-RR-151
					W-050691-RR-151 DL
	i				Trip Blank
5/20	Acetone	0.170	31.6	J/UJ	W-050791-RR-141 DL
	Butanone	0.046	47.1	J/R	W-050791-RR-144 DL
	1,1,2,2-tetrachloroethane	0.155	3.2	NR	W-050791-RR-146 DL
					W-050791-RR-147 DL
					W-050791-RR-152

W-050791-RR-152 DL

- ¹ RRF = Relative Response Factor
- ² %RSD = Percent Relative Standard Deviation
- ³ Analyte result is qualified as:
 - J The associated value is an estimated quantity for detected analytes.
 - UJ The analyte was checked for, but not detected. The associated value is an estimate.
 - R The datum is rejected, for non-detected analytes.
 - NR No additional qualifiers are necessary.
- ⁴ Suffix 'DL' means samples was diluted and reanalyzed.

OUTLYING CONTINUING CALIBRATION DATA

	•				
Date/Time	Analyte	<u>RRF¹</u>	<u>%D</u> 2	<u>Oualifier³</u>	Associated Samples ⁴
5/17; 08:11	Chloromethane	1.468	27.4	J/UJ	W-050791-RR-144
	Butanone	0.037	6.8	NR	W-050791-RR-145
	Vinyl Acetate	0.021	34.9	NR	W-050791-RR-146
	1,1,2,2-tetrachloroethane	0.205	24.7	NR	W-050791-RR-147
					W-050791-RR-148
,	· .	·			W-050791-RR-149
					W-050791-RR-150
					W-050691-RR-151
		·			W-050691-RR-140
5/18; 0:44	Acetone	0.159	51.3	J/UJ	Trip Blank
5/ 10, 0.44	Butanone	0.043	24.5	NR	W-050691-RR-136 DL
	Vinyl Acetate	0.019	40.8	NR	W-050791-RR-142 DL
	2-hexanone	0.101	39.8	J/UJ	W-050791-RR-143 DL
		0.211	22.4	J7 CJ NR	W-050791-RR-145 DL
	1,1,2,2-tetrachloroethane	0.211	. 22.4	INK	W-050691-RR-151 DL
					W-000091-KK-151 DL
5/20; 16:51	Butanone	0.040	14.2	NR	W-050791-RR-141 DL
	1,1,2,2-tetrachloroethane	0.169	8.9	NR	W-050791-RR-144 DL
					W-050791-RR-146 DL
,			<u>.</u>		W-050791-RR-147 DL
					W-050791-RR-152 DL

¹ RRF = Relative Response Factor

. ₩

² %D = Percent Difference

³ Analyte result is qualified as:

J - The associated value is an estimated quantity, for detected analytes.

UJ - The analyte was checked for, but not detected. The associated value is an estimate.

NR - No additional qualifiers are necessary.

⁴ Suffix 'DL' means sample was diluted and reanalyzed.

CORRECTED PERCENT DIFFERENCE VALUES FROM MS/MSD ANALYSES UPON SAMPLE W-050691-RR-140

	Percent	Difference
<u>Analyte</u>	<u>Reported</u>	<u>Corrected</u>
1,1-dichloroethene	1	0.1
Trichloroethene	0	0.1
Benzene	1	0.8
Toluene	3	3.2
Chlorobenzene	2	2.0

MEMORANDUM

TO: Ed Roberts **REFERENCE NO. 2115**

Ruth M. Lewis FROM:

DATE: February 24, 1992

RE: Data Quality Assessment and Validation for Eighteen Groundwater Samples Collected during the August 1991 Sampling Event at the Wausau, Wisconsin, Site

The following details a data quality assessment and validation for 18 groundwater samples collected on August 5 and 6, 1991, from the Wausau, Wisconsin, site. The samples were analyzed for target compound list volatile organic compounds (TCL VOC). All analyses were performed by Maxwell/S-Cubed Division in Sorrento Valley, California.¹ The quality assurance criteria were defined in the associated quality assurance project plan (QAPP).²

Holding Time Period

The holding time for the analysis is 14 days from sample collection to completion of analysis. All analyses were completed within the specified holding time period.

Instrument Performance

To ensure that the data for the analyses would be interpreted correctly, each instrument was tuned using bromofluorobenzene (BFB). Analysis of the data reported for the GC/MS instrument tunes indicated criteria were met for all VOC analyses.

Initial Calibration

Initial calibration data were used to demonstrate that each instrument was capable of generating acceptable quantitative data. Criteria for VOC analytes required a mean relative response factor (RRF) greater than 0.300 (0.100 for bromoform)³ for system performance check compounds (SPCC). The remaining analytes were required to have response factors greater than 0.050. Percent relative standard deviations for all analytes were required to be less than 30. Bromoform and 1,1,2,2-tetrachloroethane mean response factors were below these limits. However, discussing the matter with S-

¹Analytical method derived from Contract Laboratory Program Statement of Work, February 1988, revised September 1988 and April 1989.

²Application of quality assurance criteria was consistent with "Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses", February 1988. ³This criterion was taken from the low level detection VOC CLP SOW 1990 (draft) and was extrapolated

to these data since the CLP SOW 1988 does not specify calibration criteria using a 25 ml purge volume.

Reference No. 2115 Page 2

Cubed revealed bromoform and 1,1,2,2-tetrachloroethane do not usually meet these limits when using a 25 ml purge volume and a packed GC column. As reported in the data validation memorandum for the February 1991 event, these violations have no impact on the data.

Table 1 lists the analytes that failed mean relative response factor and relative percent difference criteria for the initial calibration curve. Associated sample data should be qualified as estimated (J or UJ) or unusable (R).

Continuing Calibration

To ensure that each instrument was capable of producing quantitative results over the specified analysis period, routine checks upon the instrument calibration were performed. For SPCC, daily response factors were required to be greater than 0.300 (0.100 for bromoform). All remaining analytes were required to have daily response factors greater than 0.05. Percent difference between mean response factors and daily response factors for all analytes must be less than 25.

Again, bromoform and 1,1,2,2-tetrachloroethane had response factors below these limits, but no action upon the data was necessary. A number of analytes failed the mean RRF and percent difference criteria. As a result, associated sample data should be qualified as estimated (see Table 2).

Method Blank Samples

Contamination of the samples contributed by laboratory conditions or procedures was monitored by the concurrent preparation and analysis of method blank samples. One method blank was reported to contain methylene chloride $(1 \mu g/l)$. Since associated sample results were non-detect for methylene chloride, no qualification of data was deemed necessary.

Surrogate Compound Percent Recoveries (Surrogate Recoveries)

Individual sample performance for VOC analyses was monitored using surrogate recoveries. One VOC surrogate recovery was outside the control limits. The sample that should be qualified as estimated (J) for positive results and the detection limit estimated for negative results is listed in Table 3. The remainder of the surrogate data were within the control limits.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Percent Recoveries

To assess the long term accuracy and precision of the analytical method on various matrices, MS/MSD percent recoveries and relative percent difference (RPD) of the recoveries were determined. Sample W-080591RR-164 underwent VOC MS/MSD analyses. RPD data listed in Table 4 were outside the control limits. As the data indicate a lack of precision, benzene and trichloroethane results for sample W080591RR-164 should be qualified as estimated (J/UJ).

Internal Standard Summaries

Overall instrument performance was monitored using internal standard peak area and retention time data. Peak areas were required to fall within +100 percent and -50 percent of the daily calibration sample internal standard peak areas. Sample retention times must fall within a 0.5 minute window from the calibration sample retention times. Table 5 lists the outlying internal standard data. Associated sample results should be qualified as estimated (J or UJ). It should be noted that sample W-080591RR-169RE was previously qualified based on surrogate recovery criteria and no further qualification of the data was deemed necessary.

Field QA/QC

The field QA/QC for this sampling event included one trip blank and two sets of field duplicate samples.

To evaluate the possibility of contamination arising from sample transport, the environment and/or shipping, a trip blank was submitted to the laboratory for VOC analysis. The trip blank yielded a positive concentration of methylene chloride (2.3 $\mu g/l$). The majority of method blanks and project samples were reported to be free of methylene chloride. One method blank yielded a positive concentration of methylene chloride (1 $\mu g/l$). Several project samples not associated with this method blank were reported to contain low positive concentrations of methylene chloride. Since none of the investigative samples contained high concentrations of methylene chloride, cross contamination during shipment was unlikely. Positive sample results for methylene chloride were likely due to laboratory error. As a result, none of the investigative sample data should be qualified based on trip blank results.

Overall precision for the sampling event was monitored using two field duplicate sample sets. Sample summaries appear on Tables 6A through 6C. The overall level of precision was found to be acceptable.

Diluted Sample Results

A number of investigative samples were diluted and reanalyzed to obtain results within calibration range. Several dilution runs yielded data that was not comparable to the associated undiluted run. In most instances, this was considered acceptable since the original undiluted sample was reported to contain analyte concentrations so far above the calibration range that instrument response was completely non-linear. As expected, the diluted run yielded much higher analyte concentrations.

Reference No. 2115 Page 4

In several instances, compounds were detected in the diluted run but not in the nondiluted run. The case narrative for the data package acknowledged this and noted that there was no evidence of carryover or apparent cross-contamination from samples. The narrative discussed the possibility that samples were not homogeneous as second VOC vials were used for diluted sample analysis.

Overall Assessment

The data were found to exhibit acceptable levels of accuracy and precision with the specific qualifications noted herein.

cc: Steve Day

OUTLYING INITIAL CALIBRATION DATA ASSOCIATED WITH SAMPLES COLLECTED DURING THE AUGUST 1991 SAMPLING EVENT

<u>Date</u>	<u>Analysis</u>	Analyte	<u>RRF</u> 1	<u>%RSD</u> 2	<u>Oualifier</u> ³	Associated Samples
7/17/91	voc	Acetone	0.122	31.5	J/UJ	All Project Samples
		2-Butanone	0.042	32.2	J/R	
		Bromoform	0.111	5.9	NR	
		1,1,2,2-				
		Tetrachloroethane	0.196	5.3	NR	

¹RRF = Mean Relative Response Factor

 2 %RSD = Percent Relative Standard Deviation

³Sample data should be qualified as:

 ${\bf j}$ - The associated value is an estimated quantity, for detected analytes.

U] - The analyte was checked for, but not detected. The associated value is an estimate.

NR - No qualification of the data was deemed necessary.

OUTLYING CONTINUING CALIBRATION DATA ASSOCIATED WITH SAMPLES COLLECTED DURING THE AUGUST 1991 SAMPLING EVENT

Date/ <u>Time</u>	<u>Analysis</u>	Analyte	RRF1	<u>%D</u> 2	Qualifier ³	Associated Samples
08/08/91	voc	Acetone	0.195	60.2	NR	VBW2525-1
07:41		2-Butanone	0.045	6.8	NR	W-080591RR-160
		Bromoform	0.094	15.5	NR	- W-080591RR-161
		2-Hexanone	0.082	47.7	J/UJ	W-080591RR-162
•		1,1,2,2-	0.186	5.2	NR	W-080591RR-164
		Tetrachloroethane				W-080591RR-165
						W-080591RR-166
						W-080591RR-167
						W-080591RR-168
					•	W-080591RR-169
						W-080591RR-170
						W-080691RR-171
						W-080691RR-172
						W-080691RR-173
8/09/91	voc	2-Butanone	0.039	7.4	NR	VBW2525-2
)7:45		Bromoform	0.089	20.5	NR	Trip Blank
		2-Hexanone	0.072	29.6	J/UJ	W-080691RR-174
		1,1,2,2-	0.182	7.4	NR	W-080691RR-175
		Tetrachloroethane				W-080691RR-176
						W-080591RR-168DL
						W-080591RR-170DL
						W-080691RR-171DL
						W-080591RR-163
						W-080591RR-161DL
						W-080591RR-165DL
8/12/91	voc	Acetone	0.208	71.1	NR	VBW2525-3
9:43		Bromoform	0.092	17.5	NR	W-080691RR-177
		2-Hexanone	0.082	47.7	J/UJ	W-080591RR-169RE
		1,1,2,2-	0.199	1.3	NR	W-080691RR-176DL
		Tetrachloroethane				W-080591RR-166DL
		2-Butanone	0.041	2.5	NR	W-080691RR-172DL
						W-080591RR-169DL
8/13/91	VOC	Methylene Chloride	2.200	34.9	J/UJ	VBW2525-4
7:51		Acetone	0.204	68.1	-	W-080591RR-164MS
		2-Butanone	0.045	6.3	NR	LCS2525
		Bromoform	0.087	21.7	NR	W-080591RR-164MSI
		2-Hexanone	0.073	32.1	J/UJ	
		1,1,2,2-	v.185	5.4	NR	
		Totas at Lana ath an a				•

Tetrachloroethane

¹RRF = Mean Relative Response Factor

2%D = Percent Difference

³Sample data should be qualified as:

J - The associated value is an estimated quantity, for detected analytes.

UJ - The analyte was checked for, but not detected. The associated value is an estimate.

NR - No additional qualification of the data was deemed necessary.

.

OUTLYING SURROGATE RECOVERY FROM SAMPLE COLLECTED DURING THE AUGUST 1991 SAMPLING EVENT

Sample ID	<u>Analysis</u>	Compound	<u>%R</u> 1	<u>Limits²</u>	<u>Qualifier</u> ³
W-080591RR-169RE4	VOC	Toluene-d ₈	85	88-110	J/UJ
	e				
					•
	•				

1%R = Percent Recovery ²Limits = Control limits established in associated QAPP.

³Sample data should be qualified as:

J - The associated value is an estimated quantity, for detected analytes.

UJ - The analyte was checked for, but not detected.

NR - No qualification of the data was deemed necessary.

⁴Suffix "RE" denotes re-analyzed sample.

OUTLYING MS/MSD PERCENT RECOVERIES FOR SAMPLES COLLECTED DURING THE AUGUST 1991 SAMPLING EVENT

Sample ID	<u>Analysis</u>	Parameter	<u>MS%R</u>	MSD%R	Limits ¹	<u>rpd</u> ²	Limits ³	<u>Oualifier</u> ⁴
W-080591RR-164	VOC	Trichloroethene	91	109	71-120	18	14	J/UJ
		Benzene	93	1 17	76-127	23	11	J/UJ
		Chlorobenzene	103	119	75-130	14	13	NR

1%R Limits = Percent recover;⁷ control limits established in associated QAPP. 2RPD = Relative Percent Difference

³RPD Limits = Relative Percent Difference Limits

⁴Sample data should be qualified as:

NR - No additional qualification of the data was deemed necessary.

SUMMARY OF VIOLATIONS OF INTERNAL STANDARD AREAS FOR SAMPLES COLLECTED DURING THE AUGUST 1991 SAMPLING EVENT

Sample ID	<u>Analysis</u>	Internal Standard	Area	<u>Rt</u> 1	<u>Oualifier</u> ²	
W-080591RR-169	VOC	Bromochloromethane 1,4-Difluorobenzene	20491 155480	8.07 18.30	J/UJ	
		Chlorobenzene-d5	109926	23.07		
W-080591RR-169RE	VOC	Bromochloromethane	10728	8.03	NR	
		1,4-Difluorobenzene	87699	18.3		
		Chlorobenzene-d5	64634	23.11		

¹Rt = Retention Time

²Sample data should be qualified as:

J - The associated value is an estimated quantity, for detected analytes.

UJ - The analyte was checked for, but not detected. The associated value is an estimate.

NR - No additional qualification of the data was deemed necessary.

TABLE 6A

SUMMARY OF FIELD DUPLICATE SAMPLE DATA FOR SAMPLES W-080591RR-169RE AND W-080591RR-170

		(Concentration (µg/l)					
Analysis	Parameter	<u>W-080591RR-169RE</u>	Qualifier ¹	W-080591RR-170	Qualifier	<u>RPD</u> ²	
VOC	Methylene Chloride	2 J	NR	ND (<1)	UJ		
	Carbon Disulfide	1.9 J	NR	ND (<1)	UJ		
	1,2-Dichloroethene	24 J	NR	5.7	J		
	Chloroform	1.5 J	NR	ND (<1)	UJ	. 	
	Trichloroethene	590 J	NR	160 J	NR		
	Tetrachloroethene	1.1 J	NR	ND (<1)	UJ		

¹Sample data should be qualified as:

J - The associated value is an estimated quantity for detected analytes.

UJ - The analyte was check for, but not detected. The associated value is an estimate.

NR - No additional qualification of the data was deemed necessary.

²Relative Percent Difference

TABLE 6B

SUMMARY OF FIELD DUPLICATE SAMPLE DATA FOR SAMPLES W-080591RR-169DL AND W-080591RR-170DL

		(Concentration (µg/l)				
Analysis	Parameter	<u>W-080591RR-169DL</u>	Qualifier ¹	W-080591RR-170DL	Qualifier	<u>RPD</u> ²
VOC	Acetone	ND (<40) UJ	NR	21 J	NR	-
	Trichloroethene	160	NR	190	NR	17
	1,2-Dichloroethene	ND (<20)	ŪJ	5.6	NR	

¹Sample data should be qualified as:

J - The associated value is an estimated quantity for detected analytes.

UJ - The analyte was check for, but not detected. The associated value is an estimate.

NR - No additional qualification of the data was deemed necessary.

²Relative Percent Difference

TABLE 6C

SUMMARY OF FIELD DUPLICATE SAMPLE DATA FOR SAMPLES W-080519RR-164 AND W-080591RR-177

Parameter	<u>Concentra</u> <u>W-080591RR-164</u>	tion (μg/l) <u>W-080591RR-177</u>	RPD ¹	<u>Qualifier</u> ²
Vinyl Chloride	2.9	3.6	21	NR
1,2-Dichloroethene	1.4	1.6	13	NR
Trichloroethene	3.9 J	3.8		NR
Tetrachloroethene	10	12	18	NR
	Vinyl Chloride 1,2-Dichloroethene Trichloroethene	ParameterW-080591RR-164Vinyl Chloride2.91,2-Dichloroethene1.4Trichloroethene3.9 J	Vinyl Chloride2.93.61,2-Dichloroethene1.41.6Trichloroethene3.9 J3.8	Parameter W-080591RR-164 W-080591RR-177 RPD1 Vinyl Chloride 2.9 3.6 21 1,2-Dichloroethene 1.4 1.6 13 Trichloroethene 3.9 J 3.8

¹Relative Percent Difference
 ²Sample data should be qualified as: NR - No qualification of the data was deemed necessary.
 J - The associated value is an estimated quantity for detected analytes.

MEMORANDUM

TO: Ed Roberts

REFERENCE NO. 2115

FROM: Ruth M. Lewis Run

DATE: January 24, 1992

RE: Data Quality Assessment and Validation for Eighteen Groundwater Samples Collected during the November 1991 Sampling Event at the Wausau, Wisconsin, Site

The following details a data quality assessment and validation for 18 groundwater samples collected on November 4 and 5, 1991, from the Wausau, Wisconsin, site. The samples were analyzed for target compound list volatile organic compounds (TCL VOC). All analyses were performed by Maxwell/S-Cubed Division in Sorrento Valley, California.¹ The quality assurance criteria were defined in the associated quality assurance project plan (QAPP).²

Holding Time Period

The holding time for the analysis is 14 days from sample collection to completion of analysis.

Samples W-110491RR-186DL³ and W-110591RR-194DL were analyzed 26 and 25 days, respectively, from the date of sample collection to completion of analysis; therefore, the data for these samples should be qualified as estimated (Table 1).

All remaining analyses were completed within the specified holding time period.

Instrument Performance

To ensure that the data for the analyses would be interpreted correctly, each instrument was tuned using bromofluorobenzene (BFB). Analysis of the data reported for the GC/MS instrument tunes indicated criteria were met for all VOC analyses.

Initial Calibration

Initial calibration data were used to demonstrate that each instrument was capable of generating acceptable quantitative data. Criteria for VOC analytes required a mean relative response factor (RRF) greater than 0.300 (0.100 for bromoform)⁴ for system performance check compounds (SPCC). The remaining analytes were required to have response factors greater than 0.050. Percent relative standard deviations for all analytes were required to be less than 30. Bromoform and 1,1,2,2-tetrachloroethane mean response factors were below these limits. However, discussing the matter with S-

³Suffix "DL" denotes a diluted sample.

⁴This criterion was taken from the low level detection VOC CLP SOW 1990 (draft) and was extrapolated to these data since the CLP SOW 1988 does not specify calibration criteria using a 25 ml purge volume.

¹Analytical method derived from Contract Laboratory Program Statement of Work, February 1988, revised September 1988 and April 1989.

²Application of quality assurance criteria was consistent with "Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses", February 1988.

Reference No. 2115 Page 2

Cubed revealed bromoform and 1,1,2,2-tetrachloroethane do not usually meet these limits when using a 25 ml purge volume and a packed GC column. As reported in the data validation memorandum for the February 1991 event, these violations have no impact on the data.

Table 2 lists the analytes that failed the relative percent difference criteria for the initial calibration curves. Associated sample data should be qualified as estimated (J or UJ).

Continuing Calibration

To ensure that each instrument was capable of producing quantitative results over the specified analysis period, routine checks upon the instrument calibration were performed. For SPCC, daily response factors were required to be greater than 0.300 (0.100 for bromoform). All remaining analytes were required to have daily response factors greater than 0.05. Percent difference between mean response factors and daily response factors for all analytes must be less than 25.

Again, bromoform and 1,1,2,2-tetrachloroethane had response factors below these limits, but no action upon the data was necessary. A number of analytes failed the percent difference criteria. As a result, associated sample data should be qualified as estimated (see Table 3).

Method Blank Samples

Contamination of the samples contributed by laboratory conditions or procedures was monitored by the concurrent preparation and analysis of method blank samples. One method blank associated with diluted samples was reported to contain acetone (2.0 $\mu g/l$) and methylene chloride (2.6 $\mu g/l$). As a result, data for these analytes from several samples should be qualified as non-detect (U). A summary of these samples appears in Table 4.

Although reported acetone and methylene chloride data for the samples were much greater than the amount found in the method blank sample, the investigative samples were diluted to bring analyte peaks into calibration range. Dividing the reported value by the dilution factor yields the amount of analyte detected in the sample aliquot. Based on the amount of analyte detected in the sample aliquot relative to the amount in the method blank, acetone and methylene chloride data for the samples should be qualified as non-detect (U) as shown in Table 4.

Surrogate Compound Percent Recoveries (Surrogate Recoveries)

Individual sample performance for VOC analyses was monitored using surrogate recoveries. A number of VOC surrogate recoveries were outside the control limits. The samples that should be qualified as estimated (J) for positive results and the detection limit estimated for negative results are listed in Table 5. It should be noted that many of these samples were previously qualified for selected analytes and no additional qualifiers were necessary (NR). The remainder of the surrogate data were within the control limits.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Percent Recoveries

To assess the long term accuracy and precision of the analytical method on various matrices, MS/MSD percent recoveries and relative percent difference (RPD) of the recoveries were determined. Sample W-110591RR-193 underwent VOC MS/MSD analyses. Percent recoveries and RPD data listed in Table 6 were outside the control limits. However, since the matrix spike samples had been previously qualified, no further action was taken upon the data.

Internal Standard Summaries

Overall instrument performance was monitored using internal standard peak area and retention time data. Peak areas were required to fall within +100 percent and -50 percent of the daily calibration sample internal standard peak areas. Sample retention times must fall within a 0.5 minute window from the calibration sample retention times. Table 7 lists the outlying internal standard data. All of the sample data had been previously qualified so no further qualification of data was necessary.

Field QA/QC

The field QA/QC for this sampling event included one trip blank and two sets of field duplicate samples.

To evaluate the possibility of contamination arising from sample transport, the environment and/or shipping, a trip blank was submitted to the laboratory for VOC analysis. The trip blank yielded a positive concentration of methylene chloride (2.4 $\mu g/l$). The associated method blank was reported to be free of all target analytes, including methylene chloride. Investigative samples that had been diluted out with reagent water and the associated reagent (method) blank were reported to contain methylene chloride. The investigative sample results for methylene chloride were qualified as non-detect (U) with the associated value being the quantitation limit. As a result, none of the investigative sample data should be qualified based on trip blank results.

Overall precision for the sampling event was monitored using two field duplicate sample sets. Sample summaries appear on Tables 8A through 8D. The overall level of precision was found to be acceptable despite the fact that all results were previously qualified as estimated. Sample W-110591RR-194DL yielded positive results for carbon disulfide and 2-butanone. The compounds were not detected in the undiluted sample or duplicate sample. For this reason, positive results for these analytes from this well should be qualified as unusable (R).

Diluted Sample Results

A number of investigative samples were diluted and reanalyzed to obtain results within calibration range. Several dilution runs yielded data that was not comparable to the associated undiluted run. In some instances, this was considered acceptable since the

Reference No. 2115 Page 4

original undiluted sample was reported to contain analyte concentrations so far above the calibration range that instrument response was completely non-linear. As expected, the diluted run yielded much higher analyte concentrations.

Samples from two wells yielded non-comparable data in that much lower results were reported for diluted samples (see Table 9). The history of results from past sampling events for the two wells suggest the diluted results to be more accurate. Positive results from the undiluted samples which were out of calibration range should be qualified as unusable (R). Diluted sample results should be qualified as estimated. However, diluted sample results were previously qualified and no additional qualifiers were necessary.

Overall Assessment

Violation of several quality assurance criteria resulted in qualification of the majority of the data as detailed in the text and tables. Therefore, the VOC data should be used for qualitative assessment purposes only.

cc: Steve Day

HOLDING TIME VIOLATIONS FOR SAMPLES COLLECTED DURING THE NOVEMBER 1991 SAMPLING EVENT

Sample ID	Date <u>Collected</u>	<u>Analysis</u>	Days to <u>Analysis</u>	<u>Limit</u>	<u>Qualifier</u> ¹
W-110491RR-186DL	11/04/91	VOC	26	14	J/UJ
W-110591RR-194DL ²	11/05/91	VOC	25	14	J/UJ

¹Sample data should be qualified as:

J - The associated value is an estimated quantity for detected analytes.

UJ - The analyte was checked for, but not detected. The associated value is an estimate.

 2 Methylene chloride was detected in the associated method blank; the sample result should be qualified as nondetect (U) with the associated value being the quantitation limit.

OUTLYING INITIAL CALIBRATION DATA ASSOCIATED WITH SAMPLES COLLECTED DURING THE NOVEMBER 1991 SAMPLING EVENT

Date	Analysis	<u>Analyte</u>	<u>RRF</u> 1	<u>%RSD</u> 2	<u>Qualifier</u> ³	Associated Samples
11/13/91	VOC	1,2-dichloroethane	2.119	30.64	NR	•
		Vinyl Acetate	0.062	43.01	រ/ហ្	Trip Blank
						W-110491RR-180
						W-110491RR-181
			·			W-110491RR-182
						W-110491RR-183
						W-110491RR-184
			•			VBW2678-1
11/14/91	VOC	Acetone	0.669	. 77.98]∕UJ4	VBW2678-2
,,		Vinyl Acetate	0.068	38.37	J/UJ	W-110491RR-185
		·	•	• =		W-110491RR-186
•						W-110491RR-187
						W-110491RR-189
					,	W-110491RR-190
						W-110491RR-191
						W-110591RR-192
						W-110591RR-193
						W-110591RR-194
						W-110591RR-195
						W-110591RR-196
						W-110591RR-197
						LCS2678
						VBW2678-3
						W-110491RR-185DL
·						W-110491RR-189DL
						W-110491RR-190DL
						W-110491RR-191DL
						W-110591RR-192DL
					•	W-110591RR-193DL
						W-110591RR-195DL
						W-110591RR-196DL
						W-110591RR-193DLMS
						W-110591RR-193DLMSD

¹RRF = Mean Relative Response Factor

2%RSD = Percent Relative Standard Deviation

³Sample data should be qualified as:

J - The associated value is an estimated quantity, for detected analytes.

UJ - The analyte was checked for, but not detected. The associated value is an estimate.

NR - No qualification of the data was deemed necessary.

⁴Acetone was detected in the associated method blank for sample W-110591RR-193DLMSD; the sample result should be qualified as non-detect (U) with the associated value being the quantitation limit. See method blank section.

OUTLYING CONTINUING CALIBRATION DATA ASSOCIATED WITH SAMPLES COLLECTED DURING THE NOVEMBER 1991 SAMPLING EVENT

Date/ <u>Time</u>	<u>Analysis</u>	Analyte	<u>RRF</u> 1	<u>%D</u> 2	Qualifier ³	Associated Samples
11/13/91	VOC	1,1,1-trichloroethane	0.426	38.3	J/UJ	VBW2678-1
18:49		Vinvl Acetate	0.062	. 27.4	NR	Trip Blank
		,	<i>ب</i>			W-110491RR-180
						W-110491RR-181
						W-110491RR-182
						W-110491RR-183
						W-110491RR-184
11/15/91	VOC	Chloromethane	4.922	25.4	NR	VBW2678-2
09:06		Acetone	0.6 69	57.0	NR	W-110491RR-185
		2-butanone	0.522	37.7	J/UJ	W-110491RR-186
		cis-1,3-dichloropropene	0.296	25.7	NR	W-110491RR-187
		Bromoform	0.072	31.9	J/UJ	W-110491RR-189
		2-hexanone	0.091	57.1	J/UJ	W-110491RR-190
		1,1,2,2-	0.097	32.0	J/UJ	W-110491RR-191
	-	tetrachloroethane	·			W-110591RR-192
						W-110591RR-193
	•					W-110591RR-194
						W-110591RR-195
						W-110591RR-196
						W-110591RR-197
						LCS2678
						VBW2678-3
						W-110491RR-185DL
		2	•			W-110491RR-189DL
	•					W-110491RR-190DL
						W-110591RR-192DL
						W-110591RR-193DL
						W-110591RR-195DL
	•					W-110591RR-196DL
						W-110591RR-193DLN
						W-110591RR-193DLN

¹RRF = Mean Relative Response Factor

²%D = Percent Difference

³Sample data should be qualified as:

J - The associated value is an estimated quantity, for detected analytes.

UJ - The analyte was checked for, but not detected. The associated value is an estimate.

NR - No qualification of the data was deemed necessary.

SUMMARY OF ANALYTES DETECTED IN METHOD BLANK SAMPLES ASSOCIATED WITH THE NOVEMBER 1991 SAMPLING EVENT

<u>Blank ID</u>	Analysis	Analyte	Concentration (µg/1)	Associated Samples ¹
VBW2678-3	VOC	Acetone	2.0	W-110591RR-193DLMSD
	. · ·	Methylene	2.6	W-110491RR-185DL
		Chloride		W-110491RR-187DL
				W-110491RR-189DL
	· r			W-110491RR-190DL
				W-110491RR-191DL
				W-110591RR-192DL
				W-110591RR-193DL
	·		•	W-110591RR-194DL
-				W-110591RR-195DL
				W-110591RR-196DL
				W-110591RR-193DLMS
				W-110591RR-193DLMSD

¹Sample results should be qualified as non-detect (U) with the associated value being the quantitation limit.

OUTLYING SURROGATE RECOVERIES FROM SAMPLES COLLECTED DURING THE 'NOVEMBER 1991 SAMPLING EVENT

W11091R2.80 VOC Bromofluorobenzane 85 65-115 J/U W11091R2.81 VOC Bromofluorobenzane 81 85-115 J/UI W11091R2.82 VOC Bromofluorobenzane 81 85-115 J/UI W11091R2.83 VOC Bromofluorobenzane 81 85-115 J/UI W11091R2.84 VOC Bromofluorobenzane 81 85-115 J/UI W11091R2.84 VOC 12-dickloroethane-d_ 67 76-114 J/UI W11091RR.185 VOC Tolenon-d_ 73 85-115 NR W11091RR.185 VOC Tolenon-d_ 73 85-115 NR W11091RR.187 VOC 12-dickloroethane-d_ 71 76-114 J/UI W11091RR.187 VOC 12-dickloroethane-d_ 76 76-114 J/UI W11091RR.187 VOC 12-dickloroethane-d_ 76 76-114 J/UI W11091RR.187 VOC Bromofluorobenzane 80 86-115 J/UI	Sample ID	<u>Analysis</u>	Compound	<u>%R</u> 1	Limits ²	<u>Qualifier</u> ³
W.1109/JRR-181 VOC Bromenfuorobenzene 83 85-115 //UI W.1109/JRR-182 VOC Bromenfuorobenzene 81 85-115 //UI W.1109/JRR-183 VOC 12-dichorechane-d_ 65 76-114 //UI W.1109/JRR-184 VOC 12-dichorechane-d_ 67 76-114 //UI W.1109/JRR-185 VOC 12-dichorechane-d_ 67 76-114 //UI W.1109/JRR-185 VOC Bromefluorobenzene 85 86-115 NR W.1109/JRR-186 VOC Bromefluorobenzene 85 86-115 //UI W.1109/JRR-186 VOC Bromefluorobenzene 85 86-115 //UI W.1109/JRR-186 VOC 12-dichorochane-d_4 27 76-114 //UI W.1109/JRR-186 VOC 12-dichorochane-d_4 45 76-114 //UI W.1109/JRR-189D VOC Bromefluorobenzene 81 86-115 //UI W.1109/JRR-199DL VOC Bromefluorobenzene 77 <	W-110491RR-180	voc	Bromofluorobenzene	85	86-115	NR
W-110491RR-182 VOC Bromofluorobenzene 81 84-115 //UI W-110491RR-183 VOC Bromofluorobenzene 81 84-115 //UI W-110491RR-184 VOC Bromofluorobenzene 81 84-115 //UI W-110491RR-184 VOC 12-dichorechane-d_ 67 76-114 //UI W-110491RR-185 VOC 12-dichorechane-d_ 58 86-115 NR W-110491RR-185DL VOC Bromofluorobenzene 85 86-115 //UI W-110491RR-185 VOC Tolene-d_ 73 88-110 //UI W-110491RR-185 VOC 12-dichorosthane-d_ 52 76-114 //UI W-110491RR-187 VOC 12-dichorosthane-d_ 42 76-114 //UI W-110491RR-1872 VOC Bromofluorobenzene 80 86-115 //UI W-110491RR-1872 VOC Bromofluorobenzene 80 86-115 //UI W-110491RR-1870 VOC Bromofluorobenzene 80 86-1	W-110491RR-181	VOC	Bromofluorobenzene	83	86-115	J/UJ
W. 10491RR-183 VOC 12-dichorechane-d ₄ 65 76-114 //U W. 10491RR-184 VOC 12-dichorechane-d ₄ 67 76-114 //U W. 10491RR-185 VOC 12-dichorechane-d ₄ 67 76-114 //U W. 10491RR-185 VOC Bromofluorobenzme 65 86-115 NR W. 10491RR-186 VOC Bromofluorobenzme 65 86-115 NR W. 10491RR-186 VOC Bromofluorobenzme 85 86-115 I/U W. 10491RR-187 VOC 12-dichorechane-d ₄ 42 76-114 I/U W. 10491RR-187 VOC 12-dichorechane-d ₄ 42 76-114 I/U W. 10491RR-187 VOC 12-dichorechane-d ₄ 43 76-114 I/U W. 10491RR-189 VOC Bromofluorobenzme 43 86-115 I/U W. 10491RR-189DL VOC Bromofluorobenzme 44 86-115 I/U W. 10491RR-190DL VOC Bromofluorobenzme 44 86-		VOC	Bromofluorobenzene	81	86-115	J/UJ
W-11091RR-183 VOC 12-dichlorechane-d ₄ 65 76-114 J/UJ W-11091RR-184 VOC 12-dichlorechane-d ₄ 67 76-114 J/UJ W-11091RR-184 VOC 12-dichlorechane-d ₄ 67 76-114 J/UJ W-11091RR-185 VOC 12-dichlorechane-d ₄ 67 76-114 J/UJ W-11091RR-186 VOC Bronnofluorobenzare 85 86-115 NR W-11091RR-186 VOC 12-dichlorechane-d ₄ 72 76-114 J/UJ W-11091RR-187E VOC 12-dichlorechane-d ₄ 42 76-114 J/UJ W-11091RR-187E VOC 12-dichlorechane-d ₄ 43 76-114 J/UJ W-11091RR-189D VOC Bronnofluorobenzare 86 15 J/UJ W-11091RR-190L VOC Bronnofluorobenzare 76 66-115 J/UJ W-11091RR-190DL VOC Bronnofluorobenzare 63 76-114 J/UJ W-11091RR-190DL VOC 12-dichlorechane-d ₄ 64		VOC	Bromofluorobenzene	84	86-115	J/UJ
W.11091RR-184 VOC Bronnflurorbenzme 81 86-115 J/UJ W.11091RR-185 VOC 1,2-dichloroethane-d, 59 76-114 J/UJ W.11091RR-185D VOC Bronnflurorbenzme 85 86-115 NR W.11091RR-186 VOC Bronnflurorbenzme 85 86-115 J/UJ W.11091RR-186 VOC 1,2-dichloroethane-d, 55 76-114 J/UJ W.11091RR-186 VOC 1,2-dichloroethane-d, 42 77-114 J/UJ W.11091RR-187E VOC 1,2-dichloroethane-d, 47 76-114 J/UJ W.11091RR-187E VOC 1,2-dichloroethane-d, 47 76-114 J/UJ W.11091RR-187DL VOC Bronnoflurorbenzane 80 76-114 J/UJ W.11091RR-189DL VOC Bronnoflurorbenzane 77 86-115 J/UJ W.11091RR-189DL VOC Bronnoflurorbenzane 77 86-115 J/UJ W.11091RR-190DL VOC Bronnoflurorbenzane 76			1,2-dichloroethane-d4	65	76-114	
W. 11091RR-184 VOC 1.2-dickhorechane-dq 67 76-114 J/UJ W. 11091RR-185 VOC 1.2-dickhorechane-dq 73 86-115 NR W. 11091RR-186 VOC Bromofluorobenzne 85 86-115 J/UJ W. 11091RR-186 VOC Bromofluorobenzne 85 86-115 J/UJ W. 11091RR-186 VOC 1.2-dickhorechane-dq 27 7114 J/UJ W. 11091RR-187 VOC 1.2-dickhorechane-dq 76 76-114 J/UJ W. 11091RR-189 VOC 1.2-dickhorechane-dq 45 76-114 J/UJ W. 11091RR-189 VOC 1.2-dickhorechane-dq 45 76-114 J/UJ W. 11091RR-189DL VOC 1.2-dickhorechane-dq 46 76-114 J/UJ W. 11091RR-189DL VOC 1.2-dickhorechane-dq 43 76-114 J/UJ W. 11091RR-190DL VOC 1.2-dickhorechane-dq 46 76-114 J/UJ W. 11091RR-191DL VOC 1.2-dickhorechane-dq <		VOC		81	86-115	
W.11091RR-185 VOC 1.2-dickloresthane-d ₄ 59 7-114 J/UJ W.11091RR-186 VOC Bronnofluorobenzane 85 86-115 I/W W.11091RR-186 VOC Bronnofluorobenzane 85 86-115 I/UJ W.11091RR-186 VOC 1.2-dicklorosthane-d ₄ 55 76-114 I/UJ W.11091RR-187 VOC 1.2-dicklorosthane-d ₄ 72 76-114 I/UJ W.11091RR-187 VOC 1.2-dicklorosthane-d ₄ 72 76-114 J/UJ W.11091RR-189 VOC 1.2-dicklorosthane-d ₄ 77 76-114 J/UJ W.11091RR-189 VOC 1.2-dicklorosthane-d ₄ 77 76-114 J/UJ W.11091RR-189DL VOC 1.2-dicklorosthane-d ₄ 76 76-114 J/UJ W.11091RR-189DL VOC 1.2-dicklorosthane-d ₄ 66 76-114 J/UJ W.11091RR-19DL VOC 1.2-dicklorosthane-d ₄ 86-115 J/UJ W.11091RR-19DL VOC 1.2-dicklorosthane-d ₄	W-110491RR-184	VOC	1,2-dichloroethane-d ₄	67	76-114	J/UJ
W-110491RR-185DL VOC Bromoluorobenzane 85 86-115 NR W-110491RR-186 VOC Bromoluorobenzane 85 86-115 1//U1 W-110491RR-186 VOC 12-dichlorosthane-d4 55 76-114 1//U1 W-110491RR-187 VOC 12-dichlorosthane-d4 42 76-114 1//U1 W-110491RR-187 VOC 12-dichlorosthane-d4 77 76-114 1//U1 W-110491RR-189 VOC 12-dichlorosthane-d4 76-114 1//U1 W-110491RR-189 VOC 12-dichlorosthane-d4 45 76-114 1//U1 W-110491RR-189 VOC 12-dichlorosthane-d4 66 76-114 1//U1 W-110491RR-190 VOC 12-dichlorosthane-d4 68 76-114 1//U1 W-110491RR-190 VOC 12-dichlorosthane-d4 66 76-114 1//U1 W-110491RR-190DL VOC 12-dichlorosthane-d4 66 76-114 1//U1 W-110491RR-191DL VOC 12-dichlorosthane-d4 66	W-110491RR-185	VOC	1,2-dichloroethane-da	5 9	76-114	J/UJ
W-110491RR-186 VOC Toluene-dq 73 88-110 J/UJ W-110491RR-186 VOC 12-dichloroethane-dq 55 76-114 J/UJ W-110491RR-186 VOC 12-dichloroethane-dq 55 76-114 J/UJ W-110491RR-1872 VOC 12-dichloroethane-dq 42 76-114 J/UJ W-110491RR-1872 VOC 12-dichloroethane-dq 45 76-114 J/UJ W-110491RR-189 VOC 12-dichloroethane-dq 45 76-114 J/UJ W-110491RR-189DL VOC 12-dichloroethane-dq 46 76-114 J/UJ W-110491RR-189DL VOC 12-dichloroethane-dq 43 76-114 J/UJ W-110491RR-189DL VOC 12-dichloroethane-dq 43 76-114 J/UJ W-110491RR-190L VOC 12-dichloroethane-dq 40 76-114 J/UJ W-110491RR-191 VOC 12-dichloroethane-dq 44 86-115 J/UJ W-110491RR-191L VOC 12-dichloroethane-dq		VOC		85	86-115	
W-11091RR-186 VOC Bromoluorobenzene 85 86-115 J/UJ W-11091RR-187 VOC 1.2-dichloroethane-d, 42 76-114 J/UJ W-11091RR-187 VOC 1.2-dichloroethane-d, 42 76-114 J/UJ W-11091RR-187 VOC 1.2-dichloroethane-d, 76-114 J/UJ W-11091RR-187 VOC 1.2-dichloroethane-d, 76-114 J/UJ W-11091RR-189 VOC 1.2-dichloroethane-d, 45 76-114 J/UJ W-11091RR-189DL VOC 1.2-dichloroethane-d, 66 76-114 J/UJ W-11091RR-190DL VOC 1.2-dichloroethane-d, 43 76-114 J/UJ W-11091RR-190DL VOC 1.2-dichloroethane-d, 69 76-114 J/UJ W-11091RR-190DL VOC 1.2-dichloroethane-d, 68 714 J/UJ W-11091RR-191DL VOC 1.2-dichloroethane-d, 63 76-114 J/UJ W-11091RR-191DL VOC 1.2-dichloroethane-d, 63 76-114				73		J/UJ
W-110491RR-186 VOC 1.2-dichloroethane-d., 55 7-6114 J/UI W-110491RR-187RE* VOC 1.2-dichloroethane-d., 71 76-114 J/UI W-110491RR-187B* VOC 1.2-dichloroethane-d., 71 76-114 J/UI W-110491RR-187B* VOC 1.2-dichloroethane-d., 45 76-114 J/UI W-110491RR-189DL VOC Bromofluorobenzene 80 86-115 J/UI W-110491RR-190L VOC Bromofluorobenzene 76 86-115 J/UI W-110491RR-190L VOC Bromofluorobenzene 76 76-114 J/UI W-110491RR-190L VOC Bromofluorobenzene 80 86-115 J/UI W-110491RR-191L VOC 1.2-dichloroethane-d., 60 76-114 J/UI W-110491RR-191L VOC 1.2-dichloroethane-d., 63 76-114 J/UI W-110491RR-191L VOC 1.2-dichloroethane-d., 64 76-114 J/UI W-110491RR-191DL VOC 1.2-dichlor		VOC		85	86-115	J/UJ
W-110491RR-187 VOC 12-dickloroethane-d, 2-dickloroethane-d, 71 76.114 J/UJ W-110491RR-189 VOC 12-dickloroethane-d, 71 76.114 J/UJ W-110491RR-189 VOC 12-dickloroethane-d, 45 76.114 J/UJ W-110491RR-189 VOC 12-dickloroethane-d, 45 76.114 J/UJ W-110491RR-189DL VOC 12-dickloroethane-d, 43 76.114 J/UJ W-110491RR-190 VOC 12-dickloroethane-d, 43 76.114 J/UJ W-110491RR-190 VOC 12-dickloroethane-d, 69 76.114 J/UJ W-110491RR-190L VOC 12-dickloroethane-d, 69 76.114 J/UJ W-110491RR-191D VOC 12-dickloroethane-d, 60 76.114 J/UJ W-110491RR-191D VOC 12-dickloroethane-d, 63 76.114 J/UJ W-110491RR-191DL VOC 12-dickloroethane-d, 63 76.114 J/UJ W-110591RR-192DL VOC 12-di						
W-110491RR-187824 VOC 12-dickloroethane-dq 71 76-114 J/UJ W-110491RR-189 VOC Bromofluorobenzene 80 86-115 J/UJ W-110491RR-189DL VOC Bromofluorobenzene 81 86-115 J/UJ W-110491RR-189DL VOC Bromofluorobenzene 81 86-115 J/UJ W-110491RR-190 VOC Bromofluorobenzene 77 86-115 J/UJ W-110491RR-190 VOC 12-dickloroethane-dq 43 76-114 J/UJ W-110491RR-190 VOC 12-dickloroethane-dq 43 76-114 J/UJ W-110491RR-190 VOC 12-dickloroethane-dq 63 76-114 J/UJ W-110491RR-191 VOC 12-dickloroethane-dq 63 76-114 J/UJ W-110491RR-191DL VOC Bromofluorobenzene 84 86-115 J/UJ W-110491RR-192 VOC 12-dickloroethane-dq 24 88-110 J/UJ W-110591RR-192 VOC 12-dickloroethane-dq <					76-114	
W-110991RR-189 VOC Bromofluorobenzene 80 86-115 J/Uj W-110991RR-189D VOC 1,2-dichloroethane-d ₄ 45 76-114 J/Uj W-110991RR-189DL VOC 1,2-dichloroethane-d ₄ 66 76-114 J/Uj W-110991RR-190L VOC 1,2-dichloroethane-d ₄ 66 76-114 J/Uj W-110991RR-190L VOC 1,2-dichloroethane-d ₄ 63 76-114 J/Uj W-110991RR-190L VOC 1,2-dichloroethane-d ₄ 69 76-114 J/Uj W-110991RR-190L VOC 1,2-dichloroethane-d ₄ 60 76-114 J/Uj W-110991RR-191 VOC 1,2-dichloroethane-d ₄ 40 76-114 J/Uj W-110991RR-191L VOC 1,2-dichloroethane-d ₄ 43 76-114 J/Uj W-110591RR-192 VOC 1,2-dichloroethane-d ₄ 28 86-115 J/Uj W-110591RR-193 VOC 1,2-dichloroethane-d ₄ 26 76-114 J/Uj W-110591RR-193 VOC <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
W-110991RR-189 VOC 12-dichloroethane-d, Bromofluorobenzene 45 76-114 J/Uj W-110491RR-189DL VOC Bromofluorobenzene 81 86-115 J/Uj W-110491RR-189DL VOC Bromofluorobenzene 77 86-115 J/Uj W-110491RR-190 VOC Bromofluorobenzene 78 86-115 J/Uj W-110491RR-190 VOC Bromofluorobenzene 84 86-115 J/Uj W-110491RR-190DL VOC Bromofluorobenzene 80 86-115 J/Uj W-110491RR-191 VOC 12-dichloroethane-4, 63 76-114 J/Uj W-110491RR-191 VOC 12-dichloroethane-4, 63 76-114 J/Uj W-110491RR-191DL VOC Bromofluorobenzene 84 86-115 J/Uj W-110591RR-192 VOC 12-dichloroethane-4, 64 76-114 J/Uj W-110591RR-192 VOC 12-dichloroethane-4, 25 88-110 J/Uj W-110591RR-192 VOC 12-dichloroethane-4			•			
W-11091RR-189DL VOC Bromofluorobenzene 81 86-115 J/Uj W-11091RR-189DL VOC 12-dichloroethane-d, 66 76-114 J/Uj W-11091RR-190 VOC 12-dichloroethane-d, 43 76-114 J/Uj W-11091RR-190 VOC 12-dichloroethane-d, 43 76-114 J/Uj W-11091RR-190 VOC 12-dichloroethane-d, 69 76-114 J/Uj W-11091RR-190 VOC Bromofluorobenzene 80 86-115 J/Uj W-11091RR-191 VOC 12-dichloroethane-d, 40 76-114 J/Uj W-11091RR-191DL VOC 12-dichloroethane-d, 48 86-115 J/Uj W-110591RR-192 VOC 12-dichloroethane-d, 28 76-114 J/Uj W-110591RR-192 VOC 12-dichloroethane-d, 26 76-114 J/Uj W-110591RR-193 VOC 12-dichloroethane-d, 26 76-114 J/Uj W-110591RR-193DL VOC 12-dichloroethane-d,						
W-110491RR-190L VOC 1.2-dichloroethane-d ₁ 66 76-114 [/U] W-110491RR-190 VOC Bromofluorobenzene 77 86-115]/U] W-110491RR-190 VOC Bromofluorobenzene 84 86-115]/U] W-110491RR-190DL VOC Bromofluorobenzene 84 86-115]/U] W-110491RR-190DL VOC Bromofluorobenzene 80 86-115]/U] W-110491RR-191 VOC 1.2-dichloroethane-d_4 63 76-114]/U] W-110491RR-191DL VOC 1.2-dichloroethane-d_4 63 76-114]/U] W-110591RR-192 VOC 1.2-dichloroethane-d_4 63 76-114]/U] W-110591RR-192 VOC 1.2-dichloroethane-d_4 24 88-110]/U] W-110591RR-193 VOC 1.2-dichloroethane-d_4 25 88-110]/U] W-110591RR-193 VOC 1.2-dichloroethane-d_4 26 76-114]/U] W-110591RR-193DLMS VOC 1.2-dichloroetha			•			
W-110491RR-190 VOC Bromofluorobenzene 77 86-115 J/UJ W-110491RR-190D VOC 1.2-dichloroethane-d ₄ 43 76-114 J/UJ W-110491RR-190DL VOC 1.2-dichloroethane-d ₄ 69 76-114 J/UJ W-110491RR-190DL VOC 1.2-dichloroethane-d ₄ 69 76-114 J/UJ W-110491RR-191 VOC 1.2-dichloroethane-d ₄ 63 76-114 J/UJ W-110491RR-191DL VOC 1.2-dichloroethane-d ₄ 63 76-114 J/UJ W-110591RR-192 VOC 1.2-dichloroethane-d ₄ 24 88-110 J/UJ W-110591RR-192 VOC 1.2-dichloroethane-d ₄ 25 88-110 J/UJ W-110591RR-193 VOC 1.2-dichloroethane-d ₄ 26 76-114 J/UJ W-110591RR-193 VOC 1.2-dichloroethane-d ₄ 26 76-114 J/UJ W-110591RR-193 VOC 1.2-dichloroethane-d ₄ 27 76-114 J/UJ W-110591RR-193DLMS VOC						
W-110491RR-190VOC $12-dichloroethane-d_4$ 4376-114 J/UJ W-110491RR-190DLVOCBromofluorobenzene8486-115 J/UJ W-110491RR-191VOCBromofluorobenzene8086-115 J/UJ W-110491RR-191VOC12-dichloroethane-d_46376-114 J/UJ W-110491RR-191DLVOC12-dichloroethane-d_46376-114 J/UJ W-110491RR-191DLVOC12-dichloroethane-d_46376-114 J/UJ W-110591RR-192VOC12-dichloroethane-d_43876-114 J/UJ W-110591RR-192VOC12-dichloroethane-d_43876-114 J/UJ W-110591RR-193VOC12-dichloroethane-d_42676-114 J/UJ W-110591RR-193VOC12-dichloroethane-d_42676-114 J/UJ W-110591RR-193VOC12-dichloroethane-d_42676-114 J/UJ W-110591RR-193DLVOC12-dichloroethane-d_42676-114 J/UJ W-110591RR-193DLMSDVOC12-dichloroethane-d_42088-110 J/UJ W-110591RR-193DLMSDVOC12-dichloroethane-d_42088-110 J/UJ W-110591RR-194VOC12-dichloroethane-d_42088-110 J/UJ W-110591RR-195VOC12-dichloroethane-d_42288-110 J/UJ W-110591RR-195VOC12-dichloroethane-d_46576-114 J/UJ W-110591RR-195VOC12-dichloroethane-d_4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
W-110491RR-190DL VOC Bromofluorobenzene 84 86-115 J/UJ W-110491RR-190DL VOC 1.2-dichloroethane-d_4 69 76-114 J/UJ W-110491RR-191 VOC 1.2-dichloroethane-d_4 60 86-115 J/UJ W-110491RR-191DL VOC 1.2-dichloroethane-d_4 63 76-114 J/UJ W-110491RR-191DL VOC Bromofluorobenzene 84 86-115 J/UJ W-110591RR-192 VOC Toluene-d_4 24 88-110 J/UJ W-110591RR-192 VOC 1.2-dichloroethane-d_4 64 76-114 J/UJ W-110591RR-193 VOC 1.2-dichloroethane-d_4 64 76-114 J/UJ W-110591RR-193 VOC 1.2-dichloroethane-d_4 26 76-114 J/UJ W-110591RR-193DL VOC 1.2-dichloroethane-d_4 26 76-114 J/UJ W-110591RR-193DL VOC 1.2-dichloroethane-d_4 71 76-114 J/UJ W-110591RR-193DLMSD VOC Bromofluoroben						
W+110491RR-190DLVOC1,2-dichloroethane-dq6976-114//UIW+110491RR-191VOCBromofluorobenzene8086-115//UIW+110491RR-191DLVOC1,2-dichloroethane-dq4076-114//UIW+110491RR-191DLVOC1,2-dichloroethane-dq6376-114//UIW+110491RR-191DLVOCBromofluorobenzene8486-115//UIW+110591RR-192VOC1,2-dichloroethane-dq2488-110//UIW+110591RR-192VOC1,2-dichloroethane-dq6476-114//UIW+110591RR-192VOC1,2-dichloroethane-dq6476-114//UIW+110591RR-193VOC1,2-dichloroethane-dq6476-114//UIW+110591RR-193DLVOC1,2-dichloroethane-dq6476-114//UIW+110591RR-193DLMSVOC1,2-dichloroethane-dq6476-114//UIW+110591RR-193DLMSDVOC1,2-dichloroethane-dq7176-114//UIW+110591RR-194VOCToluene-dq2088-115//UIW+110591RR-195VOC1,2-dichloroethane-dq1576-114//UIW+110591RR-195VOC1,2-dichloroethane-dq6576-114//UIW+110591RR-195VOC1,2-dichloroethane-dq6576-114//UIW+110591RR-195VOC1,2-dichloroethane-dq6576-114//UIW+110591RR-196VOCBromofluorobenzene8386-115//UI						
W-110491RR-191 VOC Bromofluorobenzene 80 86-115 J/UJ W-110491RR-191 VOC 1.2-dichloroethane-d ₄ 63 76-114 J/UJ W-110491RR-191DL VOC 1.2-dichloroethane-d ₄ 63 76-114 J/UJ W-110491RR-191DL VOC Bromofluorobenzene 84 86-115 J/UJ W-110591RR-192 VOC 1.2-dichloroethane-d ₄ 38 76-114 J/UJ W-110591RR-192 VOC 1.2-dichloroethane-d ₄ 26 76-114 J/UJ W-110591RR-193DL VOC 1.2-dichloroethane-d ₄ 26 76-114 J/UJ W-110591RR-193DLMS VOC 1.2-dichloroethane-d ₄ 26 76-114 J/UJ W-110591RR-193DLMSD VOC 1.2-dichloroethane-d ₄ 27 76-114 J/UJ W-110591RR-193DLMSD VOC 1.2-dichloroethane-d ₄ 71 76-114 J/UJ W-110591RR-194 VOC Bromofluorobenzene 85 86-115 J/UJ W-110591RR-195 VOC						
W-110491RR-191 VOC 1.2-dichloroethane-d ₄ 40 76-114 J/UJ W-110491RR-191DL VOC 1.2-dichloroethane-d ₄ 63 76-114 J/UJ W-110491RR-191DL VOC Bromofluorobenzene 84 86-115 J/UJ W-110591RR-192 VOC 1.2-dichloroethane-d ₄ 24 88-110 J/UJ W-110591RR-192 VOC 1.2-dichloroethane-d ₄ 25 88-110 J/UJ W-110591RR-193 VOC 1.2-dichloroethane-d ₄ 25 88-110 J/UJ W-110591RR-193 VOC 1.2-dichloroethane-d ₄ 26 76-114 J/UJ W-110591RR-193DL VOC 1.2-dichloroethane-d ₄ 26 76-114 J/UJ W-110591RR-193DLMSD VOC 1.2-dichloroethane-d ₄ 20 88-115 J/UJ W-110591RR-193DLMSD VOC T.2-dichloroethane-d ₄ 20 88-110 J/UJ W-110591RR-194 VOC Bromofluorobenzene 85 86-115 J/UJ W-110591RR-195 VOC			•			
W-110491RR-191DLVOC12-dichloroethane-dq6376-114 J/UJ W-110691RR-191DLVOCBromofluorobenzene8486-115 J/UJ W-110591RR-192VOC12-dichloroethane-dq2488-110 J/UJ W-110591RR-192VOC12-dichloroethane-dq3876-114 J/UJ W-110591RR-192DLVOC12-dichloroethane-dq6476-114 J/UJ W-110591RR-193VOC12-dichloroethane-dq6476-114 J/UJ W-110591RR-193DLVOC12-dichloroethane-dq6476-114 J/UJ W-110591RR-193DLMSVOC12-dichloroethane-dq6476-114 J/UJ W-110591RR-193DLMSDVOC12-dichloroethane-dq7176-114 J/UJ W-110591RR-193DLMSDVOC12-dichloroethane-dq7176-114 J/UJ W-110591RR-194VOCBromofluorobenzene8586-115 J/UJ W-110591RR-194VOC12-dichloroethane-dq1576-114 J/UJ W-110591RR-195VOC12-dichloroethane-dq1976-114 J/UJ W-110591RR-195DLVOC12-dichloroethane-dq6576-114 J/UJ W-110591RR-196VOC12-dichloroethane-dq6576-114 J/UJ W-110591RR-196VOC12-dichloroethane-dq6488-110 J/UJ W-110591RR-196VOC12-dichloroethane-dq8288-110 J/UJ W-110591RR-196VOC12-dichloroethane-dq76-114<	•					
W-110491RR-191DL VOC Bromofluorobenzene 84 86-115 J/UJ W-110591RR-192 VOC Toluene-d ₄ 24 88-110 J/UJ W-110591RR-192 VOC 1,2-dichloroethane-d ₄ 38 76-114 J/UJ W-110591RR-192DL VOC 1,2-dichloroethane-d ₄ 64 76-114 J/UJ W-110591RR-193 VOC Toluene-d ₄ 26 76-114 J/UJ W-110591RR-193DL VOC 1,2-dichloroethane-d ₄ 64 76-114 J/UJ W-110591RR-193DLMSD VOC 1,2-dichloroethane-d ₄ 64 76-114 J/UJ W-110591RR-193DLMSD VOC 1,2-dichloroethane-d ₄ 70 86-115 J/UJ W-110591RR-194 VOC Toluene-d ₆ 20 88-110 J/UJ W-110591RR-194 VOC 1,2-dichloroethane-d ₄ 19 76-114 J/UJ W-110591RR-195 VOC 1,2-dichloroethane-d ₄ 19 76-114 J/UJ W-110591RR-195DL VOC 1,2-dichloroethane-d						
W-110591RR-192 VOC Toluene-dg 24 88-110 J/UJ W-110591RR-192 VOC 1.2-dichloroethane-dq 38 76-114 J/UJ W-110591RR-192 VOC 1.2-dichloroethane-dq 64 76-114 J/UJ W-110591RR-193 VOC 1.2-dichloroethane-dq 26 76-114 J/UJ W-110591RR-193 VOC 1.2-dichloroethane-dq 26 76-114 J/UJ W-110591RR-193DLMS VOC 1.2-dichloroethane-dq 64 76-114 J/UJ W-110591RR-193DLMSD VOC 1.2-dichloroethane-dq 71 76-114 J/UJ W-110591RR-193DLMSD VOC 1.2-dichloroethane-dq 71 76-114 J/UJ W-110591RR-193DLMSD VOC Toluene-dg 20 88-110 J/UJ W-110591RR-194 VOC Bromofluorobenzene 85 86-115 J/UJ W-110591RR-195 VOC 1.2-dichloroethane-dq 15 76-114 J/UJ W-110591RR-195 VOC 1.2-dichloroethane-dq 16 76-114 J/UJ W-110591RR-195DL VOC						
W-110591RR-192VOC1.2-dichloroethane-d43876-114 J/UJ W-110591RR-192DLVOC1.2-dichloroethane-d46476-114 J/UJ W-110591RR-193VOCToluene-d42588-110 J/UJ W-110591RR-193DLVOC1.2-dichloroethane-d46476-114 J/UJ W-110591RR-193DLMSVOC1.2-dichloroethane-d46476-114 J/UJ W-110591RR-193DLMSDVOC1.2-dichloroethane-d46476-114 J/UJ W-110591RR-193DLMSDVOC1.2-dichloroethane-d47176-114 J/UJ W-110591RR-193DLMSDVOC1.2-dichloroethane-d47176-114 J/UJ W-110591RR-193DLMSDVOC1.2-dichloroethane-d47176-114 J/UJ W-110591RR-194VOCToluene-d82088-110 J/UJ W-110591RR-195VOCToluene-d82288-110 J/UJ W-110591RR-195VOCToluene-d82288-110 J/UJ W-110591RR-195DLVOC1.2-dichloroethane-d46576-114 J/UJ W-110591RR-195DLVOCToluene-d86488-110 J/UJ W-110591RR-196VOCToluene-d82886-115 J/UJ W-110591RR-196VOC1.2-dichloroethane-d41476-114 J/UJ W-110591RR-196VOC1.2-dichloroethane-d41476-114 J/UJ W-110591RR-196VOC1.2-dichloroethane-d42886-115 J/UJ <						
W-110591RR-192DLVOC1.2-dichloroethane-d46476-114//UIW-110591RR-193VOCToluene-d42588-110//UIW-110591RR-193VOC1.2-dichloroethane-d42676-114//UIW-110591RR-193DLVOC1.2-dichloroethane-d46476-114//UIW-110591RR-193DLMSDVOC1.2-dichloroethane-d46476-114//UIW-110591RR-193DLMSDVOC1.2-dichloroethane-d47176-114//UIW-110591RR-194VOCToluene-d42088-110//UIW-110591RR-194VOCToluene-d41576-114//UIW-110591RR-194VOC1.2-dichloroethane-d41576-114//UIW-110591RR-195VOC1.2-dichloroethane-d41576-114//UIW-110591RR-195VOC1.2-dichloroethane-d41976-114//UIW-110591RR-195VOC1.2-dichloroethane-d41976-114//UIW-110591RR-195DLVOC1.2-dichloroethane-d46576-114//UIW-110591RR-196VOC1.2-dichloroethane-d46576-114//UIW-110591RR-196VOC1.2-dichloroethane-d41476-114//UIW-110591RR-196VOC1.2-dichloroethane-d41476-114//UIW-110591RR-196VOC1.2-dichloroethane-d47476-114//UIW-110591RR-196DLVOC1.2-dichloroethane-d47476-114//UIW-110591RR						
W-110591RR-193 VOC Toluene-dg 25 88-110 J/UJ W-110591RR-193 VOC 1,2-dichloroethane-dq 26 76-114 J/UJ W-110591RR-193DL VOC 1,2-dichloroethane-dq 64 76-114 J/UJ W-110591RR-193DLMS VOC Bromofluorobenzene 82 86-115 J/UJ W-110591RR-193DLMSD VOC 1,2-dichloroethane-dq 71 76-114 J/UJ W-110591RR-193DLMSD VOC Toluene-dg 20 88-110 J/UJ W-110591RR-194 VOC Bromofluorobenzene 85 86-115 J/UJ W-110591RR-194 VOC Toluene-dg 22 88-110 J/UJ W-110591RR-195 VOC Toluene-dg 22 88-110 J/UJ W-110591RR-195 VOC Toluene-dg 65 76-114 J/UJ W-110591RR-195 VOC 1,2-dichloroethane-dg 19 76-114 J/UJ W-110591RR-195DL VOC 1,2-dichloroethane-dg 65 76-114 J/UJ W-110591RR-196DL VOC 1,2-dichloroethane-dg						
W-110591RR-193 VOC 1.2-dichloroethane-d ₄ 26 76-114 J/UJ W-110591RR-193DL VOC 1.2-dichloroethane-d ₄ 64 76-114 J/UJ W-110591RR-193DLMSD VOC Bromofluorobenzene 82 86-115 J/UJ W-110591RR-193DLMSD VOC 1.2-dichloroethane-d ₄ 71 76-114 J/UJ W-110591RR-194 VOC Toluene-d ₈ 20 88-110 J/UJ W-110591RR-194 VOC 1.2-dichloroethane-d ₄ 15 76-114 J/UJ W-110591RR-194 VOC 1.2-dichloroethane-d ₄ 15 76-114 J/UJ W-110591RR-195 VOC 1.2-dichloroethane-d ₄ 15 76-114 J/UJ W-110591RR-195 VOC Toluene-d ₈ 22 88-110 J/UJ W-110591RR-195DL VOC Bromofluorobenzene 83 86-115 J/UJ W-110591RR-196 VOC Toluene-d ₈ 64 88-110 J/UJ W-110591RR-196 VOC Bromofluorobenzene			•			
W-110591RR-193DLVOC $1,2-dichloroethane-d_4$ 64 $76-114$ J/UJ W-110591RR-193DLMSVOCBromofluoroethane-d_4 71 $76-114$ J/UJ W-110591RR-193DLMSDVOC $1,2-dichloroethane-d_4$ 71 $76-114$ J/UJ W-110591RR-193DLMSDVOC $1,2-dichloroethane-d_4$ 71 $76-114$ J/UJ W-110591RR-194VOCToluene-d_8 20 $88-110$ J/UJ W-110591RR-194VOC $1,2-dichloroethane-d_4$ 15 $76-114$ J/UJ W-110591RR-195VOC $1,2-dichloroethane-d_4$ 15 $76-114$ J/UJ W-110591RR-195VOC $1,2-dichloroethane-d_4$ 19 $76-114$ J/UJ W-110591RR-195DLVOC $1,2-dichloroethane-d_4$ 65 $76-114$ J/UJ W-110591RR-195DLVOC $1,2-dichloroethane-d_4$ 65 $76-114$ J/UJ W-110591RR-195DLVOC $1,2-dichloroethane-d_4$ 65 $76-114$ J/UJ W-110591RR-196DLVOC $1,2-dichloroethane-d_4$ 46 $88-110$ J/UJ W-110591RR-196DLVOC $1,2-dichloroethane-d_4$ 74 $76-114$ J/UJ W-110591RR-196DLVOC $1,2-dichloroethane-d_4$ 74 $76-114$ J/UJ W-110591RR-196DLVOC $1,2-dichloroethane-d_4$ 74 $76-114$ J/UJ W-110591RR-197VOC $1,2-dichloroethane-d_4$ 74 $76-114$ J/UJ W-110591RR-197VOC $1,2-dichloroethane-d_4$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
W-110591RR-193DLMS VOC Bromofluorobenzene 82 86-115 J/UJ W-110591RR-193DLMSD VOC 1,2-dichloroethane-d4 71 76-114 J/UJ W-110591RR-194 VOC Toluene-d8 20 88-110 J/UJ W-110591RR-194 VOC Bromofluorobenzene 85 86-115 J/UJ W-110591RR-194 VOC 1,2-dichloroethane-d4 15 76-114 J/UJ W-110591RR-195 VOC Toluene-d8 22 88-110 J/UJ W-110591RR-195DL VOC Bromofluorobenzene 83 86-115 J/UJ W-110591RR-195DL VOC D/2-dichloroethane-d4 19 76-114 J/UJ W-110591RR-195DL VOC Toluene-d8 64 88-110 J/UJ W-110591RR-196DL VOC Toluene-d8 64 88-115 J/UJ W-110591RR-196DL VOC Bromofluorobenzene 76 86-115 J/UJ W-110591RR-196DL VOC Toluene-d8 82 88-110 <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td>	•					
W-110591RR-193DLMSD VOC 1,2-dichloroethane-d ₄ 71 76-114 J/UJ W-110591RR-194 VOC Toluene-d ₈ 20 88-110 J/UJ W-110591RR-194 VOC Bromofluorobenzene 85 86-115 J/UJ W-110591RR-194 VOC 1,2-dichloroethane-d ₄ 15 76-114 J/UJ W-110591RR-195 VOC Toluene-d ₈ 22 88-110 J/UJ W-110591RR-195 VOC 1,2-dichloroethane-d ₄ 19 76-114 J/UJ W-110591RR-195DL VOC 1,2-dichloroethane-d ₄ 65 76-114 J/UJ W-110591RR-195DL VOC 1,2-dichloroethane-d ₄ 65 76-114 J/UJ W-110591RR-195DL VOC Toluene-d ₈ 64 88-110 J/UJ W-110591RR-196 VOC Toluene-d ₈ 64 88-115 J/UJ W-110591RR-196 VOC 1,2-dichloroethane-d ₄ 14 76-114 J/UJ W-110591RR-196DL VOC 1,2-dichloroethane-d ₄			•			
W-110591RR-194 VOC Toluene-dg 20 88-110 J/UJ W-110591RR-194 VOC Bromofluorobenzene 85 86-115 J/UJ W-110591RR-194 VOC 1,2-dichloroethane-dq 15 76-114 J/UJ W-110591RR-195 VOC Toluene-dg 22 88-110 J/UJ W-110591RR-195 VOC 1,2-dichloroethane-dq 19 76-114 J/UJ W-110591RR-195DL VOC Bromofluorobenzene 83 86-115 J/UJ W-110591RR-195DL VOC Toluene-dg 65 76-114 J/UJ W-110591RR-196 VOC Toluene-dg 64 88-110 J/UJ W-110591RR-196 VOC Bromofluorobenzene 76 86-115 J/UJ W-110591RR-196 VOC 1,2-dichloroethane-dq 14 76-114 J/UJ W-110591RR-196DL VOC Bromofluorobenzene 84 86-115 J/UJ W-110591RR-197 VOC Toluene-dg 82 88-110 J						
W-110591RR-194 VOC Bromofluorobenzene 85 86-115 J/UJ W-110591RR-194 VOC 1,2-dichloroethane-d ₄ 15 76-114 J/UJ W-110591RR-195 VOC Toluene-d ₈ 22 88-110 J/UJ W-110591RR-195 VOC 1,2-dichloroethane-d ₄ 19 76-114 J/UJ W-110591RR-195DL VOC Bromofluorobenzene 83 86-115 J/UJ W-110591RR-195DL VOC Toluene-d ₈ 64 88-110 J/UJ W-110591RR-195DL VOC Toluene-d ₈ 64 88-110 J/UJ W-110591RR-196 VOC Toluene-d ₈ 64 88-110 J/UJ W-110591RR-196 VOC Bromofluorobenzene 76 86-115 J/UJ W-110591RR-196 VOC 1,2-dichloroethane-d ₄ 14 76-114 J/UJ W-110591RR-196DL VOC Bromofluorobenzene 84 86-115 J/UJ W-110591RR-197 VOC Toluene-d ₈ 82 88-110<						
W-110591RR-194VOC1,2-dichloroethane-d41576-114J/UJW-110591RR-195VOCToluene-d82288-110J/UJW-110591RR-195VOC1,2-dichloroethane-d41976-114J/UJW-110591RR-195DLVOCBromofluorobenzene8386-115J/UJW-110591RR-195DLVOC1,2-dichloroethane-d46576-114J/UJW-110591RR-195DLVOC1,2-dichloroethane-d46576-114J/UJW-110591RR-196VOCToluene-d86488-110J/UJW-110591RR-196VOCBromofluorobenzene7686-115J/UJW-110591RR-196VOC1,2-dichloroethane-d41476-114J/UJW-110591RR-196VOC1,2-dichloroethane-d41476-114J/UJW-110591RR-196DLVOC1,2-dichloroethane-d47476-114J/UJW-110591RR-196DLVOC1,2-dichloroethane-d47476-114J/UJW-110591RR-197VOCToluene-d88288-110J/UJW-110591RR-197VOCBromofluorobenzene8086-115J/UJW-110591RR-197VOC1,2-dichloroethane-d42076-114J/UJW-110591RR-197VOC1,2-dichloroethane-d46776-114J/UJW-110591RR-197VOC1,2-dichloroethane-d46776-114J/UJW-110591RR-197VOC1,2-dichloroethane-d46776-114J/UJW-110591RR-197VOC<						
W-110591RR-195VOCToluene-d82288-110J/UJW-110591RR-195VOC1,2-dichloroethane-d41976-114J/UJW-110591RR-195DLVOCBromofluorobenzene8386-115J/UJW-110591RR-195DLVOC1,2-dichloroethane-d46576-114J/UJW-110591RR-196VOCToluene-d86488-110J/UJW-110591RR-196VOCBromofluorobenzene7686-115J/UJW-110591RR-196VOC1,2-dichloroethane-d41476-114J/UJW-110591RR-196DLVOC1,2-dichloroethane-d41476-114J/UJW-110591RR-196DLVOC1,2-dichloroethane-d47476-114J/UJW-110591RR-196DLVOC1,2-dichloroethane-d47476-114J/UJW-110591RR-197VOC1,2-dichloroethane-d47476-114J/UJW-110591RR-197VOCBromofluorobenzene8086-115J/UJW-110591RR-197VOC1,2-dichloroethane-d42076-114J/UJW-110591RR-197VOC1,2-dichloroethane-d42076-114J/UJTrip BlankVOCBromofluorobenzene8586-115NRVBW2678-2VOC1,2-dichloroethane-d46776-114J/UJVBW2678-3VOCBromofluorobenzene8386-115J/UJVBW2678-3VOCBromofluorobenzene8386-115J/UJVBW2678-3VOCBromofluorobenze						
W-110591RR-195 VOC 1,2-dichloroethane-d4 19 76-114 J/UJ W-110591RR-195DL VOC Bromofluorobenzene 83 86-115 J/UJ W-110591RR-195DL VOC 1,2-dichloroethane-d4 65 76-114 J/UJ W-110591RR-196 VOC Toluene-d8 64 88-110 J/UJ W-110591RR-196 VOC Bromofluorobenzene 76 86-115 J/UJ W-110591RR-196 VOC 1,2-dichloroethane-d4 14 76-114 J/UJ W-110591RR-196 VOC 1,2-dichloroethane-d4 14 76-114 J/UJ W-110591RR-196DL VOC Bromofluorobenzene 84 86-115 J/UJ W-110591RR-196DL VOC 1,2-dichloroethane-d4 74 76-114 J/UJ W-110591RR-197 VOC Toluene-d8 82 88-110 J/UJ W-110591RR-197 VOC Bromofluorobenzene 80 86-115 J/UJ W-110591RR-197 VOC 1,2-dichloroethane-d4 20 76-114 J/UJ W-110591RR-197 VOC Bromofluorob						
W-110591RR-195DL VOC Bromofluorobenzene 83 86-115 J/UJ W-110591RR-195DL VOC 1,2-dichloroethane-d ₄ 65 76-114 J/UJ W-110591RR-196 VOC Toluene-d ₈ 64 88-110 J/UJ W-110591RR-196 VOC Bromofluorobenzene 76 86-115 J/UJ W-110591RR-196 VOC 1,2-dichloroethane-d ₄ 14 76-114 J/UJ W-110591RR-196 VOC 1,2-dichloroethane-d ₄ 14 76-114 J/UJ W-110591RR-196DL VOC Bromofluorobenzene 84 86-115 J/UJ W-110591RR-196DL VOC 1,2-dichloroethane-d ₄ 74 76-114 J/UJ W-110591RR-197 VOC Toluene-d ₈ 82 88-110 J/UJ W-110591RR-197 VOC Bromofluorobenzene 80 86-115 J/UJ W-110591RR-197 VOC 1,2-dichloroethane-d ₄ 20 76-114 J/UJ W-110591RR-197 VOC 1,2-dichloroethane-d ₄ 67 76-114 J/UJ WBW2678-2 VOC B						
W-110591RR-195DL VOC 1,2-dichloroethane-d ₄ 65 76-114 J/UJ W-110591RR-196 VOC Toluene-d ₈ 64 88-110 J/UJ W-110591RR-196 VOC Bromofluorobenzene 76 86-115 J/UJ W-110591RR-196 VOC 1,2-dichloroethane-d ₄ 14 76-114 J/UJ W-110591RR-196DL VOC Bromofluorobenzene 84 86-115 J/UJ W-110591RR-196DL VOC 1,2-dichloroethane-d ₄ 74 76-114 J/UJ W-110591RR-196DL VOC 1,2-dichloroethane-d ₄ 74 76-114 J/UJ W-110591RR-197 VOC Toluene-d ₈ 82 88-110 J/UJ W-110591RR-197 VOC Bromofluorobenzene 80 86-115 J/UJ W-110591RR-197 VOC 1,2-dichloroethane-d ₄ 20 76-114 J/UJ W-110591RR-197 VOC Bromofluorobenzene 85 86-115 NR VBW2678-2 VOC 1,2-dichloroethane-d ₄ 67 76-114 J/UJ VBW2678-3 VOC Bromoflu						
W-110591RR-196 VOC Toluene-d ₈ 64 88-110 J/UJ W-110591RR-196 VOC Bromofluorobenzene 76 86-115 J/UJ W-110591RR-196 VOC 1,2-dichloroethane-d ₄ 14 76-114 J/UJ W-110591RR-196DL VOC Bromofluorobenzene 84 86-115 J/UJ W-110591RR-196DL VOC 1,2-dichloroethane-d ₄ 74 76-114 J/UJ W-110591RR-196DL VOC 1,2-dichloroethane-d ₄ 74 76-114 J/UJ W-110591RR-196DL VOC Toluene-d ₈ 82 88-110 J/UJ W-110591RR-197 VOC Toluene-d ₈ 82 88-115 J/UJ W-110591RR-197 VOC Bromofluorobenzene 80 86-115 J/UJ W-110591RR-197 VOC 1,2-dichloroethane-d ₄ 20 76-114 J/UJ Trip Blank VOC Bromofluorobenzene 85 86-115 NR VBW2678-2 VOC 1,2-dichloroethane-d ₄ 67 76-114 J/UJ VBW2678-3 VOC Bromofluorobenzene						
W-110591RR-196 VOC Bromofluorobenzene 76 86-115 J/UJ W-110591RR-196 VOC 1,2-dichloroethane-d4 14 76-114 J/UJ W-110591RR-196DL VOC Bromofluorobenzene 84 86-115 J/UJ W-110591RR-196DL VOC 1,2-dichloroethane-d4 74 76-114 J/UJ W-110591RR-196DL VOC 1,2-dichloroethane-d4 74 76-114 J/UJ W-110591RR-197 VOC Toluene-d8 82 88-110 J/UJ W-110591RR-197 VOC Bromofluorobenzene 80 86-115 J/UJ W-110591RR-197 VOC 1,2-dichloroethane-d4 20 76-114 J/UJ W-110591RR-197 VOC 1,2-dichloroethane-d4 20 76-114 J/UJ W-110591RR-197 VOC Bromofluorobenzene 85 86-115 NR VBW2678-2 VOC 1,2-dichloroethane-d4 67 76-114 J/UJ VBW2678-3 VOC Bromofluorobenzene 83 86-115 J/UJ VBW2678-3 VOC 1,2-dichloroethane-d4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
W-110591RR-196 VOC 1,2-dichloroethane-d ₄ 14 76-114 J/UJ W-110591RR-196DL VOC Bromofluorobenzene 84 86-115 J/UJ W-110591RR-196DL VOC 1,2-dichloroethane-d ₄ 74 76-114 J/UJ W-110591RR-196DL VOC 1,2-dichloroethane-d ₄ 74 76-114 J/UJ W-110591RR-197 VOC Toluene-d ₈ 82 88-110 J/UJ W-110591RR-197 VOC Bromofluorobenzene 80 86-115 J/UJ W-110591RR-197 VOC 1,2-dichloroethane-d ₄ 20 76-114 J/UJ Trip Blank VOC Bromofluorobenzene 85 86-115 NR VBW2678-2 VOC 1,2-dichloroethane-d ₄ 67 76-114 J/UJ VBW2678-3 VOC Bromofluorobenzene 83 86-115 J/UJ VBW2678-3 VOC 1,2-dichloroethane-d ₄ 74 76-114 J/UJ VBW2678-3 VOC 1,2-dichloroethane-d ₄ 74 76-114 J/UJ LCS2678 VOC Bromofluorobenzene </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
W-110591RR-196DL VOC Bromofluorobenzene 84 86-115 J/UJ W-110591RR-196DL VOC 1,2-dichloroethane-d4 74 76-114 J/UJ W-110591RR-197 VOC Toluene-d8 82 88-110 J/UJ W-110591RR-197 VOC Bromofluorobenzene 80 86-115 J/UJ W-110591RR-197 VOC 1,2-dichloroethane-d4 20 76-114 J/UJ W-110591RR-197 VOC 1,2-dichloroethane-d4 20 76-114 J/UJ Trip Blank VOC Bromofluorobenzene 85 86-115 NR VBW2678-2 VOC 1,2-dichloroethane-d4 67 76-114 J/UJ VBW2678-3 VOC Bromofluorobenzene 83 86-115 J/UJ VBW2678-3 VOC 1,2-dichloroethane-d4 74 76-114 J/UJ VBW2678-3 VOC 1,2-dichloroethane-d4 74 76-114 J/UJ LCS2678 VOC Bromofluorobenzene 75 86-115 J/UJ						
W-110591RR-196DL VOC 1,2-dichloroethane-d ₄ 74 76-114 J/UJ W-110591RR-197 VOC Toluene-d ₈ 82 88-110 J/UJ W-110591RR-197 VOC Bromofluorobenzene 80 86-115 J/UJ W-110591RR-197 VOC 1,2-dichloroethane-d ₄ 20 76-114 J/UJ Trip Blank VOC Bromofluorobenzene 85 86-115 NR VBW2678-2 VOC 1,2-dichloroethane-d ₄ 67 76-114 J/UJ VBW2678-3 VOC Bromofluorobenzene 83 86-115 J/UJ VBW2678-3 VOC 1,2-dichloroethane-d ₄ 74 76-114 J/UJ VBW2678-3 VOC 1,2-dichloroethane-d ₄ 74 76-114 J/UJ LCS2678 VOC Bromofluorobenzene 83 86-115 J/UJ						
W-110591RR-197 VOC Toluene-d8 82 88-110 J/UJ W-110591RR-197 VOC Bromofluorobenzene 80 86-115 J/UJ W-110591RR-197 VOC 1,2-dichloroethane-d4 20 76-114 J/UJ Trip Blank VOC Bromofluorobenzene 85 86-115 NR VBW2678-2 VOC 1,2-dichloroethane-d4 67 76-114 J/UJ VBW2678-3 VOC Bromofluorobenzene 83 86-115 J/UJ VBW2678-3 VOC 1,2-dichloroethane-d4 74 76-114 J/UJ VBW2678-3 VOC 1,2-dichloroethane-d4 74 76-114 J/UJ LCS2678 VOC Bromofluorobenzene 75 86-115 J/UJ			•			
W-110591RR-197 VOC Bromofluorobenzene 80 86-115 J/UJ W-110591RR-197 VOC 1,2-dichloroethane-d4 20 76-114 J/UJ Trip Blank VOC Bromofluorobenzene 85 86-115 NR VBW2678-2 VOC 1,2-dichloroethane-d4 67 76-114 J/UJ VBW2678-3 VOC Bromofluorobenzene 83 86-115 J/UJ VBW2678-3 VOC 1,2-dichloroethane-d4 74 76-114 J/UJ VBW2678-3 VOC 1,2-dichloroethane-d4 74 76-114 J/UJ LCS2678 VOC Bromofluorobenzene 75 86-115 J/UJ			, ,			
W-110591RR-197 VOC 1,2-dichloroethane-d4 20 76-114 J/UJ Trip Blank VOC Bromofluorobenzene 85 86-115 NR VBW2678-2 VOC 1,2-dichloroethane-d4 67 76-114 J/UJ VBW2678-3 VOC Bromofluorobenzene 83 86-115 J/UJ VBW2678-3 VOC 1,2-dichloroethane-d4 74 76-114 J/UJ VBW2678-3 VOC 1,2-dichloroethane-d4 74 56-115 J/UJ LCS2678 VOC Bromofluorobenzene 75 86-115 J/UJ						
Trip Blank VOC Bromofluorobenzene 85 86-115 NR VBW2678-2 VOC 1,2-dichloroethane-d4 67 76-114 J/UJ VBW2678-3 VOC Bromofluorobenzene 83 86-115 J/UJ VBW2678-3 VOC 1,2-dichloroethane-d4 74 76-114 J/UJ LCS2678 VOC Bromofluorobenzene 75 86-115 J/UJ						
VBW2678-2 VOC 1,2-dichloroethane-d4 67 76-114 J/UJ VBW2678-3 VOC Bromofluorobenzene 83 86-115 J/UJ VBW2678-3 VOC 1,2-dichloroethane-d4 74 76-114 J/UJ LCS2678 VOC Bromofluorobenzene 75 86-115 J/UJ						
VBW2678-3VOCBromofluorobenzene8386-115J/UJVBW2678-3VOC1,2-dichloroethane-d47476-114J/UJLCS2678VOCBromofluorobenzene7586-115J/UJ	-					
VBW2678-3VOC1,2-dichloroethane-d47476-114J/UJLCS2678VOCBromofluorobenzene7586-115J/UJ			•			
LCS2678 VOC Bromofluorobenzene 75 86-115 J/UJ						
LCS26/8 VOC 1,2-dichloroethane-d ₄ 38 76-114 J/UJ						
	LC52678	VOC	1,2-dichloroethane-d4	55	76-114	J/ UJ

¹%R = Percent Recovery

²Limits = Control limits established in associated QAPP.

³Sample data should be qualified as:

J - The associated value is an estimated quantity, for detected analytes.

UJ - The analyte was checked for, but not detected.

• NR - No qualification of the data was deemed necessary.

⁴Suffix "RE" denotes re-analyzed sample.

OUTLYING MS/MSD PERCENT RECOVERIES FOR SAMPLES COLLECTED DURING THE NOVEMBER 1991 SAMPLING EVENT

Sample I	<u>) Analysis</u>	Parameter	MS%R	MSD%R	<u>Limits</u> 1	<u>RPD</u> 2	Limits ³	Qualifier ⁴
W-11059	RR-193 VOC	Trichloroethene	0	0	71-120	-	14	NR
		Benzene	110	130	76-127	17	11	NR .
·		Toluene	99	120	76-125	19	13	NR
		Chlorobenzene	110	130	75-130	17	13	NR

¹%R Limits = Percent recovery control limits established in associated QAPP.

²RPD = Relative Percent Difference

³RPD Limits = Relative Percent Difference Limits

⁴Sample data should be qualified as:

NR - No additional qualification of the data was deemed necessary.

SUMMARY OF VIOLATIONS OF INTERNAL STANDARD AREAS FOR SAMPLES COLLECTED DURING THE NOVEMBER 1991 SAMPLING EVENT

Sample ID	<u>Analysis</u>	Internal Standard	<u>Area</u>	<u>Rt</u> 1	<u>Qualifier</u> ²
W-110491RR-186	voc	Chlorobenzene-d5	9713018	57.23	NR
W-110491RR-187	VOC	1,4-difluorobenzene Chlorobenzene-d5	14438018 10784019	34.82 57.28	NR
W-110491RR-190	VOC	Chlorobenzene-d5	11458020	57.23	NR
W-110491RR-191	VOC	1,4-difluorobenzene Chlorobenzene-d5	16697018 10537020	34.88 57.28	NR
W-110591RR-192	VOC	1,4-difluorobenzene Chlorobenzene-d5	13253016 3296012	34.82 57.28	NR
W-110591RR-193	voc	1,4-difluorobenzene Chlorobenzene-d5	17289018 2514011	34.82 57.28	NR
W-110591RR-194	VOC	1,4-difluorobenzene Chlorobenzene-d5	11110015 1538010	34.77 57.17	NR
W-110591RR-195	VOC	1,4-difluorobenzene Chlorobenzene-d5	15297015 1891010	34.77 57.23	NR
W-110591RR-196	VOC	1,4-difluorobenzene Chlorobenzene-d5	7828015 7253016	34.77 57.23	NR
W-110591RR-197	voc	1,4-difluorobenzene	14891018	34.77	NR
W-110491RR-191DL	voc	1,4-difluorobenzene Chlorobenzene-d5	21087000 14657026	34.77 57.28	NR
W-110591RR-192DL	VOC	Chlorobenzene-d5	12323000	57.23	NR
W-110591RR-193DL	VOC	1,4-difluorobenzene Chlorobenzene-d5	15905000 12184000	34.71 57.23	NR
W-110591RR-193DLMSD	VOC	1,4-difluorobenzene	20450000	34.77	NR

¹Rt = Retention Time

²Sample data should be qualified as:

NR - No additional qualification of the data was deemed necessary.

TABLE 8A

SUMMARY OF FIELD DUPLICATE SAMPLE DATA FOR SAMPLES W-110491RR-189 AND W-110491RR-190

		(Concentra		
<u>Analysis</u>	<u>Parameter</u>	W-110491RR-189	<u>ation (μg/l)</u> <u>W-110491RR-190</u>	<u>RPD</u> 1
VOC	1,2-dichloroethene	9.5 J	9.9 J	
	Trichloroethene	290 J	340 J	•

¹Relative Percent Difference

TABLE 8B

SUMMARY OF FIELD DUPLICATE SAMPLE DATA FOR SAMPLES W-110491RR-189DL AND W-110491RR-190DL

<u>Analysis</u>	Parameter	<u>(Concentra)</u> W-110491RR-189DL	<u>ation (μg/l)</u> <u>W-110491RR-190DL</u>	RPD ¹
VOC Methylene Chlorid		17 U	17 U	
	Trichloroethene	210 J	300 J	. · •

¹Relative Percent Difference

2

TABLE 8C

SUMMARY OF FIELD DUPLICATE SAMPLE DATA FOR SAMPLES W-110591RR-193 AND W-110591RR-194

		(Concentra		
<u>Analysis</u>	Parameter	<u>W-110591RR-193</u>	<u>W-110591RR-194</u>	<u>RPD</u> 1
VOC	1,2-dichloroethene	57 J	49 J	
. •	Trichloroethene	1300 J	550 J	•
· · ·	Tetrachloroethene	1.4 J	1.8 J	

⁴ ¹Relative Percent Difference

TABLE 8D

SUMMARY OF FIELD DUPLICATE SAMPLE DATA FOR SAMPLES W-110591RR-193DL AND W-110491RR-194DL

		(Concentration (µg/l)				
<u>Analysis</u>	Parameter	W-110591RR-193DL	Qualifier ¹	W-110591RR-194DL	Qualifier	<u>RPD</u> ²
VOC	Methylene Chloride	250 U	NR	100 U	NR	
	Trichloroethene	3800 J	NR	960 J	NR	,
	2-butanone	ND (<200) UJ	NR	170 J	R	
	Carbon Disulfide	ND (<100) UJ	NR	9600 J	R	

¹Sample data should be qualified as: NR - No additional qualification of the data was deemed necessary.

R - The data was unusable.

²Relative Percent Difference

COMPARISON OF UNDILUTED/DILUTED SAMPLE RESULTS FOR SAMPLES W-110591RR-195 AND W-110591RR-196

		Concentration (µg/l)			
<u>Analysis</u>	<u>Analyte</u>	W-110591RR-195	Qualifier ¹	W-110591RR-195DL	<u>Qualifier</u>
VOC	1,2-dichloroethene	43 J	R	ND (<10) UJ	NR
	Trichloroethene	350 J	R	10 J	NR
	Tetrachloroethene	1.2 J	NR	ND (<10) UJ	NR
	Methylene Chloride	ND (<2) UJ	NR	21 U	NR
<u>Analysis</u>	Analyte	<u>W-110591RR-196</u>	Qualifier	<u>W-110591RR-196DL</u>	Qualifier
VOC	1,2-dichloroethene	4.1 J	NR	ND (<10) UJ	NR
	Chloroform	11 J	NR	13 J	NR
	Carbon Tetrachloride	13 J	NR	ND (<10) UJ	NR
	Trichloroethene	220 J	R	43 J	NR
	Methylene Chloride	ND (<2) UJ	NR	18 U	NR
	•				

¹Sample data should be qualified as:

R - The data was unusable.

U - Sample results should be qualified as non-detect with the associated value being the quantitation limit.

NR - No additional qualifiers were required.

J - The associated value is an estimated quantity for detected analytes.

UJ - The anayte was check for, but not detected. The associated value is an estimate.

TO: Ed Roberts

REFERENCE NO. 2115

FROM: Ruth M. Lewis

DATE: February 26, 1992

RE: Amendments to Data Quality Assessment Memorandums for Groundwater Samples Collected during Several Sampling Events at the Wausau, Wisconsin, Site

The following details amendments to data quality assessment memos for groundwater samples collected during the February, May and August 1991 sampling events at the Wausau, Wisconsin, site. The samples were analyzed for Target Compounds List Volatile Organic Compounds (TCL VOC). All analyses were performed by Maxwell/S-Cubed Division in Sorrento Valley, California.¹ The quality assurance criteria were defined in the associated quality assurance project plan.²

Several investigative samples from February, May and August sampling events were diluted and reanalyzed to obtain results within calibration range. Several dilution runs yielded data that was not comparable to the associated undiluted run. In some instances, this was considered acceptable since the original undiluted sample was reported to contain analyte concentrations so far above the calibration range that instrument response was completely non-linear. As expected, the diluted run yield much higher analyte concentrations.

Samples from a number of wells yielded non-comparable data in that much lower results were reported for diluted samples. This is indicative of analytical difficulties experienced at the laboratory. There is no quality control criteria for diluted/undiluted sample results for data validation purposes. As a result, qualification is based on the judgement of the data validation chemist. After further review, non-comparable sample data should be qualified as detailed in Table 1.

The remaining data from the sampling events was found to be acceptable with the specific qualifications noted in previous memos.

¹Analytical method derived from Contract Laboratory Program Statement of Work, February 1988, revised September 1988 and April 1989.

²Application of quality assurance criteria was consistent with "Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses", February 1988.

COMPARISON OF UNDILUTED/ DILUTED SAMPLE RESULTS

Sampling <u>Event</u>	Sample ID	VOC Analyte	Concentration (µg/l)	Previous <u>Qualifier</u> 1	Current <u>Qualifier</u>
02/12/91	W53A	Trichloroethene	72	NR	J
02/12/91	W53A DL	Trichloroethene	42	NR	J -
05/06/91	R2D	Trichloroethene	880	J	R
05/06/91	R2D DL	Trichloroethene	270	l	NR
05/06/91	W55	Trichloroethene	830	l	R
05/06/91	W55 DL	Trichloroethene	230	J	NR
05/06/91	EW1 Inf.	Trichloroethene	270	J	R
05/06/91	EW1 Inf. DL	Trichloroethene	29	NR	J
08/05/91	EW1 Eff.	Trichloroethene	330	J	R
08/05/91	EW1 Eff. DL	Trichloroethene	160	NR	J

¹Sample data should be qualified as: J - The associated value is an estimated quantity for detected analytes.

R - The data are unusable.

NR - No qualification of the data was deemed necessary.

Note: Current qualifiers account for results from undiluted/diluted sample runs.

Waterico File Copy

MEMORANDUM

TO: Ed Roberts

REFERENCE NO. 2115

FROM: Ruth M. Lewis Rom

DATE: May 7, 1992

RE: Data Quality Assessment and Validation for 18 Groundwater Samples Collected during the February 1992 Sampling Event at the Marathon Electric Manufacturing Site

The following details a data quality assessment and validation for 18 groundwater samples collected on February 17 and 18, 1992, from the Marathon Electric Manufacturing site in Wausau, Wisconsin. The samples were analyzed for target compound list volatile organic compounds (TCL VOC) and target analyte list metals (TAL metals). All analyses were performed by Maxwell/S-Cubed Division in Sorrento Valley, California.¹ The quality assurance criteria were defined in the associated quality assurance project plan (QAPP).²

Holding Time Period

Holding time periods are summarized below:

TCL VOC - 14 days from sample collection to completion of analysis

TAL Metals - 6 months from sample collection to completion of analysis (except mercury)

Mercury - 28 days from sample collection to completion of analysis

On the basis of sample collection dates on the chain-of-custody forms and analytical reports provided by S-Cubed, the analyses were completed within the specified holding time period.

Method Blank Samples

Contamination of the samples contributed by the laboratory conditions or procedures was monitored by the concurrent preparation and analysis of method blank samples. The method blank samples were reported to be free from target analytes, indicating no significant laboratory contamination occurred.

¹Analytical methods were derived from Contract Laboratory Program Statement of Work, March 1990. ²Application of quality assurance criteria was consistent with "National Functional Guidelines for Organic Data Review", December 1990, and "Laboratory Data Validation Functional Guidelines for Evaluating Inorganic Analyses", July 1988.

GC/MS Tuning Performance

To ensure that the data for VOC analyses would be interpreted correctly, each instrument was tuned using bromofluorobenzene (BFB). Analysis of the data reported for the GC/MS instrument tunes indicated criteria were met for all VOC analyses.

Initial Calibration

Initial calibration data were used to demonstrate that each instrument was capable of generating acceptable quantitative data. Criteria for VOC analytes required a mean relative response factor (RRF) greater than or equal to 0.050. Percent relative standard deviations for all analytes were required to be less than or equal to 30.

Initial calibration criteria for TAL metals required successful analysis of the correct number of blanks and standards. All correlation coefficients for atomic absorption analysis were to be at or above the limit of 0.995. Initial calibration verification (ICV) results were required to be within control limits specified in CLP SOW, March 1990.

Table 1 lists the metals parameters that failed correlation coefficient criteria. Associated sample data should be qualified as estimated (J) for positive parameter results and the quantitation limit estimated (UJ) for negative parameter results. The remaining initial calibration results for VOC and metals analyses were within acceptance criteria.

Continuing Calibration

To ensure that each instrument was capable of producing quantitative results over the specified analysis period, routine checks upon the instrument calibration were performed. For VOC analyses, daily response factors were required to be greater than or equal to 0.050. Percent difference between mean RRF and daily RRF for all analyses must be less than or equal to 25.

Continuing calibration criteria for TAL metals required successful analysis of the correct number of instrument blanks and standards. Continuing calibration verification (CCV) results were required to be within control limits specified in CLP SOW, March 1990.

The majority of continuing calibration results for VOC and metals analyses were within acceptance criteria. Table 2 lists the analytes that failed calibration criteria. Associated sample data should be qualified as estimated (J) for positive parameter

results and the detection limit estimated (UJ) for negative parameter results. The continuing calibration verification (89.7%R) result for antimony was just outside the control limits (90 to 110%). Considering the fact that the result was less than one percent from the acceptable range, no qualification of data was required on this basis.

Surrogate Compound Percent Recoveries (Surrogate Recoveries)

Individual sample performance for VOC analyses was monitored using surrogate recoveries. A number of surrogate recoveries were outside the control limits. The samples that should be qualified as estimated (J) for positive results and the detection limit estimated (UJ) for negative results are listed in Table 3. The remainder of the surrogate data were within the control limits.

Internal Standard Summaries

Overall instrument performance for VOC analyses was monitored using internal standard peak area and retention time data. Peak areas were required to fall within +100 percent and -50 percent of the daily calibration sample internal standard peak areas. Sample retention times must fall within a 0.5 minute window from the calibration sample retention times. All internal standard results were within acceptance criteria.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Results - VOC Analyses

To assess the long term accuracy and precision of the analytical method on various matrices, MS/MSD percent recoveries and relative percent difference (RPD) of the recoveries were determined. Percent recoveries listed in Table 4 were outside the control limits. The trichloroethene matrix spike recovery for W-021792RR-208 was reported to be above the upper control limit. The spike concentration for the parameter was significantly below the sample concentration and, thus, could not be distinguished from the sample's analytical signal. Therefore, no qualification of VOC data was required on this basis. The remaining percent recovery and RPD data were within control limits.

Matrix Spike/Laboratory Duplicate (MS/DUP) Results - Metals Analyses

To assess the long term accuracy and precision of the analytical method on various matrices, MS percent recoveries and relative percent differences of duplicate results were determined. Table 5 lists the outlying percent recovery data. The high spike recovery indicates poor laboratory accuracy for the spiked sample and all associated

samples. Results for the spiked sample and associated samples should be qualified as estimated (J) for positive parameter results. The remaining percent recovery and RPD data were within control limits.

Laboratory Control Samples (LCS)

Overall performance of VOC and metals analyses was monitored by means of LCS. As all percent recoveries fell within control limits reported by S-Cubed, the analytical protocols were shown to be able to generate acceptable quantitative data.

ICP Interference Check Sample (ICS)

Measurement of inter-elemental interferences for TAL metals analytes analyzed by ICP was checked for by means of an ICP ICS. As all percent recoveries fell within specified control limits, no significant inter-elemental interferences were observed.

ICP Serial Dilution Results

Matrix interferences were monitored by means of ICP serial dilution analyses. As the parameters demonstrated adequate precision, the ICP analytical protocols were shown to be able to generate acceptable quantitative data.

Field QA/QC

The field QA/QC for this sampling event included one trip blank and two sets of field duplicate samples.

To evaluate the possibility of contamination arising from sample transport, the environment and/or shipping, a trip blank was submitted to the laboratory for VOC analysis. The trip blank yielded a positive concentration of methylene chloride (2.0 μ g/l). The associated method blank was reported to be free of methylene chloride. Several project samples were reported to contain low positive concentrations of methylene chloride. Since none of the investigative samples contained high concentrations of methylene chloride, cross contamination during shipment was unlikely. Positive sample results for methylene chloride were likely due to laboratory error. As a result, none of the investigative sample data should be qualified based on trip blank results.

Overall precision for the sampling event was monitored using two field duplicate sample sets (see Tables 6A and 6B). The overall level of precision was found to be acceptable despite the fact that many results were previously qualified as estimated. A number of the field duplicate sets yielded a positive result in one sample and a

negative result in the other sample. In all cases, the positive result was reported to be near the detection limit. Considering the potential for variability in measurement of field and laboratory precision, particularly near the detection limit, the associated field duplicate data should remain unqualified. Relative percent difference (RPD) values were calculated for unqualified positive parameter results. The RPD values ranged from zero to 18 and were considered acceptable.

Overall Assessment

The data were found to exhibit acceptable levels of accuracy and precision, and may be used with the qualifications noted.

RL/kk Enc. cc: Steve Day Bob Martin

OUTLYING CORRELATION COEFFICIENT RESULTS METALS ANALYSIS MARATHON ELECTRIC MANUFACTURING SITE **FEBRUARY 1992 SAMPLING EVENT**

<u>Parameter</u>	Correlation <u>Coefficient</u>	<u>Qualifier</u> ¹	Associated Samples
Arsenic	0.94607	J/UJ	W-021792RR-206
Selenium	0.98668	J/UJ	W-021792RR-207
Thallium	0.98497	J/UJ	W-021792RR-208
Lead	0.98572	J/UJ	W-021792RR-209
			W-021792RR-210

W-021892RR-213

W-021892RR-212

¹Sample data should be qualified as:

J - The associated value is an estimated quantity for detected analytes. UJ - The analyte was checked for, but not detected. The associated value is an estimate.

OUTLYING CONTINUING CALIBRATION DATA MARATHON ELECTRIC MANUFACTURING SITE FEBRUARY 1992 SAMPLING EVENT

Date/ <u>Time</u>	<u>Analysis</u>	Analyte	<u>RRF</u> ¹	<u>%D</u> 2	Qualifier ³	Associated Samples
2/24	VOC	Acetone	0.216	30.5	NR	VBW2820-1
13:03		· ·	0.210	00.0		LSCW2820
						W-021792RR-204
					·	VBW2820-2
						W-021792RR-200
						W-021792RR-202
2/ 27	voc	Chloromethane	1.562	30.9	NR	VBW2820-4
13:05		Carbon Tetrachloride	0.554	36.3	J/UJ	W-021792RR-207RE
						W-021792RR-201DL
		-				W-021792RR-209DL
						W-021792RR-210DL
						W-021892RR-211DL
				•		W-021892RR-212
						W-021792RR-208
						W-021792RR-217
						W-021892RR-214
						W-021892RR-215
						W-021892RR-213
						VBW2820-5
						W-021792RR-203
	<i>.</i>					W-021792RR-217DL
						W-021792RR-208DL
					•	W-021892RR-214DL
						W-021892RR-215DL
						W-021892RR-213DL
						W-021792RR-204DL
·						W-021792RR-201
	•					W-021792RR-209
						W-021792RR-210
						W-021892RR-215RE
		· ·				W-021892RR-211RE
2/28	VOC	1,2-Dichloroethane-d ₄	1. 796	32.3	J/UJ	VBW2820-6
13:58						W-021792RR-208MS
						W-021792RR-208MS
		•				

57

1 RRF = Mean Relative Response Factor 2 %D = Percent Difference

1

Deta /

3 Sample data should be qualified as:

J - The associated value is an estimated quantity, for detected analytes.

UJ - The analyte was checked for, but not detected. The associated value is an estimate.

NR - No qualification of the data was deemed necessary.

OUTLYING SURROGATE RECOVERIES MARATHON ELECTRIC MANUFACTURING SITE FEBRUARY 1992 SAMPLING EVENT

Sample ID	<u>Analysis</u>	Compound	<u>%R</u> ¹	<u>Limits</u>	Qualifier ²
W-021892-RR-211	VOC	Bromofluorobenzene	82	86-115	J/UJ
W-021892-RR-211	VOC	1,2-Dichloroethane-d ₄	131	76-114	NR
W-021892-RR-211DL	VOC	Bromofluorobenzene	84	86-115	J/UJ
W-021892-RR-211RE	VOC	Bromofluorobenzene	73	86-115	J/UJ
W-021892-RR-215	voc	1,2-dichloroethane-d ₄	116	76-114	J/NR
W-021892-RR-215RE	VOC	1,2-dichloroethane-d ₄	118 ·	76-114	J/NR
W-021892-RR-207	VOC	Bromofluorobenzene	84	86-115	J/UJ
W-021892-RR-207RE	VOC	Toluene-dg	114	88-110	J/NR

UJ - The analyte was checked for, but not detected.

NR - No qualification of the data was deemed necessary.

۳. .

¹%R = Percent Recovery ²Sample data should be qualified as:

J - The associated value is an estimated quantity, for detected analytes.

OUTLYING MS/MSD PERCENT RECOVERIES - VOC ANALYSES MARATHON ELECTRIC MANUFACTURING SITE FEBRUARY 1992 SAMPLING EVENT

Sample ID	<u>Analysis</u>	Parameter	MS%R	MSD%R	%R <u>Limits</u> 1	RPD ²	RPD <u>Limits</u> ³	<u>Qualifier</u> ⁴
W-021792RR-208	VOC	Trichloroethene	494	392	71-120	4	14	NR -

¹%R Limits = Percent recovery control limits established in associated QAPP.

²RPD = Relative Percent Difference

³RPD Limits = Relative Percent Difference Limits

⁴Sample data should be qualified as:

NR - No qualification of the data was deemed necessary.

OUTLYING MATRIX SPIKE RECOVERIES METALS ANALYSIS MARATHON ELECTRIC MANUFACTURING SITE FEBRUARY 1992 SAMPLING EVENT

Spiked Sample	<u>Analysis</u>	Parameter	Instrument ¹	<u>MS %R</u>	<u>%R Limits</u>	Qualifier ²	Associated Samples
W-021792RR-208	Metals	Mercury	CV	182.3	75-125	J/NR	W-021792RR-206 W-021792RR-207
	Metals	Selenium	F	142.3	75-125	J/NR	W-021792RR-208 W-021792RR-209 W-021792RR-210 W-021892RR-212 W-021892RR-213

¹Instrument - Instrument utilized for metals analysis (F = Furnace AA, CV = Cold Vapor AA) ²Sample data should be qualified as:

J - The associated value is an estimated quantity for detected analytes.

NR - No qualification of the data was deemed necessary for non-detect analytes.

TABLE 6A

SUMMARY OF FIELD DUPLICATE DATA FOR SAMPLES W-021792RR-209 AND W-021792RR-210 MARATHON ELECTRIC MANUFACTURING SITE **FEBRUARY 1992 SAMPLING EVENT**

	-	(Concentra	<u>ation (μg/l)</u>		
<u>Parameter</u>	<u>W-021792RR-209</u>	<u>Qualifier</u> ¹	W-021792RR-210	<u>Qualifier</u>	<u>RPD</u> ²
1,2-Dichloroethene	5	NR	5	NR	0
Trichloroethene	140 J	NR	130 J	NR	
Aluminum	115	NR	128	NR	11
Barium	35.0	NR	36.0		3.0
Calcium	20,900	NR	20,700		0.96
Iron	1,240	NR	1,260		1.6
Magnesium	5,540	NR	5,610	NR	1.3
Manganese	291	NR	291	NR	0
Sodium	12,400	NR	12,300		0.81
Zinc	56.0	NR	58.0		3.5
Mercury	ND (<0.20)	NR	0.46		NC ³
Potassium	ND (<1300)	NR	1830	NR	NC
		(Concentra	ition (ug/l)		
Parameter	W-021792RR-209DL	Qualifier	<u>W-021792RR-210DL</u>	<u>Qualifier</u>	<u>RPD</u>
1,2-Dichloroethene	3]	NR	ND (<5)	NR	NC
Trichloroethene	120	NR	100	NR	18
	1,2-Dichloroethene Trichloroethene Aluminum Barium Calcium Iron Magnesium Manganese Sodium Zinc Mercury Potassium Parameter 1,2-Dichloroethene	1,2-Dichloroethene5Trichloroethene140 JAluminum115Barium35.0Calcium20,900Iron1,240Magnesium5,540Manganese291Sodium12,400Zinc56.0MercuryND (<0.20)	ParameterW-021792RR-209Qualifier11,2-Dichloroethene5NRTrichloroethene140 JNRAluminum115NRBarium35.0NRCalcium20,900NRIron1,240NRMagnesium5,540NRSodium12,400NRZinc56.0NRMercuryND (<0.20)	1,2-Dichloroethene 5 NR 5 Trichloroethene 140 J NR 130 J Aluminum 115 NR 130 J Aluminum 115 NR 130 J Aluminum 115 NR 128 Barium 35.0 NR 36.0 Calcium 20,900 NR 20,700 Iron 1,240 NR 1,260 Magnesium 5,540 NR 291 Sodium 12,400 NR 12,300 Zinc 56.0 NR 58.0 Mercury ND (<0.20)	Parameter W-021792RR-209 Qualifier ¹ W-021792RR-210 Qualifier 1,2-Dichloroethene 5 NR 5 NR Trichloroethene 140 J NR 130 J NR Aluminum 115 NR 128 NR Barium 35.0 NR 36.0 NR Calcium 20,900 NR 20,700 NR Iron 1,240 NR 5,610 NR Magnesium 5,540 NR 291 NR Manganese 291 NR 291 NR Sodium 12,400 NR 12,300 NR Zinc 56.0 NR 58.0 NR Potassium ND (<0.20)

¹Sample data should be qualified as:

NR - No additional qualification of the data was deemed necessary. .

²Relative Percent Difference

³NC - Non-calculable

TABLE 6B

SUMMARY OF FIELD DUPLICATE DATA FOR SAMPLES W-021892RR-214 AND W-021892RR-215 MARATHON ELECTRIC MANUFACTURING SITE FEBRUARY 1992 SAMPLING EVENT

		(Concentration (µg/I)					
<u>Analysis</u>	<u>Parameter</u>	W-021892RR-214	<u>Qualifier</u> ¹	<u>W-021892RR-215</u>	Qualifier	<u>RPD</u> ²	
VOC	1,2-Dichloroethene	11	NR	10	NR	9. <u>5</u>	
	Trichloroethene	410 J	NR	380 J	NR		
			(Concentrat				
<u>Analysis</u>	Parameter	W-021892RR-214DL	Qualifier	<u>W-021892RR-215DL</u>	Qualifier	<u>RPD</u>	
VOC	Methylene Chloride	9 J	NR	ND (<10)	NR	NC ³	
	1,2-Dichloroethene	10	NR	8 J	NR		
	Trichloroethene	330	NR	300	NR	9.5	
		•			·		

¹Sample data should be qualified as:

NR - No additional qualification of the data was deemed necessary.

²Relative Percent Difference

 3 NC = Non-calculable

Waterloo File Copy

MEMORANDUM

TO: Ed Roberts

REFERENCE NO. 2115

FROM: Ruth M. Lewis from

DATE: October 2, 1992 Revised from 9/17/92

RE: Data Quality Assessment and Validation for Eighteen Groundwater Samples Collected during the May 1992 Sampling Event at the Wausau, Wisconsin, Site

The following details a data quality assessment and validation for 18 groundwater samples collected on May 11 and 12, 1992, from the Wausau, Wisconsin site. The samples were analyzed for target compound list volatile organic compounds (TCL VOC). All analyses were performed by Maxwell/S-Cubed Division in Sorrento Valley, California¹. The quality assurance criteria were defined in the associated quality assurance project plan (QAPP)².

Holding Time Period

The holding time for the analysis is 14 days from sample collection to completion of analysis. All analyses were completed within the specified holding time period.

Instrument Performance

To ensure that the data for the analyses would be interpreted correctly, each instrument was tuned using bromofluorobenzene (BFB). Analyses of the data reported for the GC/MS instrument tunes indicated criteria were met for all VOC analyses.

Initial Calibration

Initial calibration data were used to demonstrate that each instrument was capable of generating acceptable quantitative data. Criteria for VOC analytes required a mean relative response factor (RRF) greater than or equal to 0.050. Percent relative standard deviations for all analytes were required to be less than or equal to 30. Table 2 lists the analytes that failed initial calibration criteria. Associated sample

 Analytical method derived from Contract Laboratory Program Statement of Work, March 1990.
 Application of quality assurance criteria was consistent with "National Functional Guidelines for Organic Data Review", December 1990 (draft) and June 1991 (revision).

data should be qualified as estimated (J) for positive parameter results and the quantitation limit estimated (UJ) for negative parameter results. The remaining initial calibration results for VOC analyses were within acceptance criteria.

Continuing Calibration

To ensure that each instrument was capable of producing quantitative results over the specified analyses period, routine checks upon the instrument calibration were performed. All analytes were required to have daily response factors greater than or equal to 0.050. Percent difference between mean response factors and daily response factors for all analytes must be less than or equal to 25. Table 3 lists the analytes that failed continuing calibration criteria. Associated sample data should be qualified as estimated (J) for positive parameter results and the quantitation limit estimated (UJ) or unusable (R) for negative parameter results. The remaining continuing calibration results for VOC analyses were within acceptance criteria.

Surrogate Compound Percent Recoveries (Surrogate Recoveries)

Individual sample performance for VOC analyses was monitored using surrogate recoveries. Several surrogate recoveries were outside the control limits. The samples that should be qualified as estimated (J) for positive results and the quantitation limit estimated (UJ) for negative results are listed in Table 4. The remainder of the surrogate data were within the control limits.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Percent Recoveries

To assess the long term accuracy and precision of the analytical method on various matrices, MS/MSD percent recoveries and relative percent difference (RPD) of the recoveries were determined. Sample W051292RR-231 underwent VOC MS/MSD analyses. Percent recoveries and RPD data listed in Table 5 were outside the control limits. As a result, trichloroethene data from W051292-231 should be qualified as estimated (J).

Method Blank Samples

Contamination of the samples contributed by the laboratory conditions or procedures was monitored by the concurrent preparation and analysis of method blank samples. Method blank samples listed in Table 6 yielded detectable

concentrations of target analytes. As a result, associated sample data should be qualified as non-detect (U). The remaining method blank samples were reported to be free from target analytes, indicating no significant laboratory contamination occurred.

Internal Standard Summaries

Overall instrument performance for VOC analyses was monitored using internal standard peak area and retention time data. Peak areas were required to fall within +100 percent and -50 percent of the daily calibration sample internal standard peak area. Sample retention times must fall within a 0.5 minute window from the calibration sample retention times. All internal standard results were within acceptance criteria.

Field QA/QC

The field QA/QC for this sampling event included one trip blank and two sets of field duplicate samples.

To evaluate the possibility of contamination arising from sample transport, the environment and/or shipping, a trip blank was submitted to the laboratory for VOC analysis. The trip blank was reported to be free of target analytes.

Overall precision for the sampling event was monitored using two field duplicate sample sets: W051192-229/W051192-230, W051292RR-231/W0512RR-232. The RPD data was found to be acceptable, indicating an adequate level of precision was achieved.

Diluted Sample Results

A number of investigative samples were diluted and reanalyzed to obtain results within calibration range. Several dilution runs yielded data that was not comparable to the associated undiluted run. In most instances, this was considered acceptable since the original undiluted sample was reported to contain analyte concentrations so far above the calibration range that instrument response was completely non-linear. As expected, the diluted run yielded much higher analyte concentrations. Table 7 lists non-comparable diluted sample results.

Several well samples noted in Table 7 yielded non-comparable data in that much lower results were reported for diluted samples. Positive results from the undiluted samples which were out of calibration range were previously qualified as estimated (J). Diluted sample results should also be qualified as estimated (J) for positive parameter results.

Overall Assessment

The data were found to exhibit acceptable levels of accuracy and precision and may be used with the specific qualifications noted.

Enc. cc: Steve Day RL/jm

SUMMARY OF SAMPLE IDENTIFICATION NUMBERS MARATHON ELECTRIC MANUFACTURING SITE MAY 1992 SAMPLING EVENT

W051192RR-220 W051192RR-221 W051192RR-222 W051192RR-223 W051192RR-224 W051192RR-225 W051192RR-226 W051192RR-227 W051192RR-228 W051192RR-229 W051192RR-230 W051292RR-231 W051292RR-232 W051292RR-233 W051292RR-234 W051292RR-235 W051292RR-236 W051292RR-237 W051292RR-238 TRIP BLANK

OUTLYING INITIAL CALIBRATION DATA MARATHON ELECTRIC MANUFACTURING SITE MAY 1992 SAMPLING EVENT

•	INST*	Date	Parameter	RRF**	<u>%RSD***</u>	Qualifier****	Associated Samples
	HP4	5/18	Carbon Disulfide	2.865	30.5	NR	W051192RR-223
	•		Vinyl Acetate	0.174	32.2	J/UJ	W051192RR-224
		•	Bromoform	0.134	33.0	J/UJ	W051192RR-226
				·			W051192RR-227
							W051192RR-228
							W051192RR-229
•							W051192RR-230
							VBW2948-1
							LCS2948
		• .					VBW2948-2
	VG1	5/22	Styrene	0.022*****	5.33	J/R	W051192RR-222
			· .				W051292RR-231
							W051192RR-221
							W051192RR-225
			:				W051292RR-231MS
							W051292RR-231MSD
		,					W051292RR-232
							W051292RR-234
							W051292RR-235
							W051292RR-237
			•		·		W051192RR-221DL
							W051192RR-224DL

OUTLYING INITIAL CALIBRATION DATA MARATHON ELECTRIC MANUFACTURING SITE MAY 1992 SAMPLING EVENT

2.

INST*	<u>Date</u>	Parameter	RRF**	%RSD***	Qualifier****	Associated Samples
VG1	5/22	Styrene	0.022*****	5.33	J/R	W051192RR-228DL
						W051192RR-229DL
•					1	W051192RR-230DL
		•				W051292RR-236DL
						W051292RR-237DL
						W051192RR-225DL
						VBLK01
				· ·		VBLK02
		·				VBLK03
			· , •			

OUTLYING INITIAL CALIBRATION DATA MARATHON ELECTRIC MANUFACTURING SITE MAY 1992 SAMPLING EVENT

INST*	Date	Parameter	<u>RRF**</u>	<u>%RSD***</u>	Qualifier****	Associated Samples
HP4	5/22	2-Butanone	0.11	40.6	j/Uj	Trip Blank W051192RR-220 W051292RR-233 W051292RR-236 W051292RR-238 VBW2948-3

*INST - Instrument

1

**RRF - Mean Relative Response Factor

***%RSD - Percent Relative Standard Deviation

**** Sample data should be qualified as:

J - The associated value is an estimated quantity for detected analytes.

UJ - The analyte was checked for, but not detected. The associated value is an estimate

R - The data are unusable.

NR - No qualification of the data was deemed necessary.

*****Relative response factor value was reported to be less than the minimum value (0.05) for this compound.

OUTLYING CONTINUING CALIBRATION DATA MARATHON ELECTRIC MANUFACTURING SITE MAY 1992 SAMPLING EVENT

INST*	Date;Time	Parameter	<u>%D**</u>	Qualifier***	Associated Samples
HP4	5/19;1119	Vinyl Acetate	26.3	NR	VBW2948-1 LCS2948
HP4	5/20;1223	Acetone	101.1	J/UJ	VBW2948-2
		Bromoform	30.3	J/UJ	W051192RR-223
		1,2-Dichloroethane-d4	28.2	J/UJ	W051192RR-224
					W051192RR-226
					W051192RR-227
					W051192RR-228
					W051192RR-229
		·			W051192RR-230
VG1	5/23;1200	Acetone	27.4	J/UJ	VBLK01
	•	Vinyl Acetate	37.4	J/UJ	W051192RR-222
		Styrene	4.5 (0.023)****	NR	W051292RR-231
		Bromoform	23.5 (0.039)****	J/R	
HP4	5/23;1451	Acetone	45.7	J/UJ	VBW2948-3
		2-Butanone	25.2	NR	Trip Blank
		Vinyl Acetate	61.9	J/UJ	W051192RR-220
		Bromodichloromethane	29.4	J/UJ	W051292RR-233
		Dibromochloromethane	34.1	J/UJ	W051292RR-236
		Bromoform	56.0	J/UJ	W051292RR-238

OUTLYING CONTINUING CALIBRATION DATA MARATHON ELECTRIC MANUFACTURING SITE MAY 1992 SAMPLING EVENT

INST*	Date;Time	Parameter	<u>%D**</u>	Qualifier***	Associated Samples
VG1	5/25;0721	Styrene	4.5 (0.023)****	J/R	VBLK02 W051192RR-221 W051192RR-225
	•		· .		W051292RR-231MS W051292RR-231MS W051292RR-232
					W051292RR-234 W051292RR-235 W051292RR-237
				,	W051192RR-221DL W051192RR-224DL W051192RR-228DL
					W051192RR-229DL

OUTLYING CONTINUING CALIBRATION DATA MARATHON ELECTRIC MANUFACTURING SITE MAY 1992 SAMPLING EVENT

<u>INST*</u>		Date;Time	Paran	neter	<u>%D**</u>	Qualifier***	Associated Samples
VG1	· .	5/25;1926	Bromo Styre		17.6 (0.042)**** 27.3 (0.028)****	J/UJ J/R	VBLK03 W051192RR-230DL W051292RR-236DL W051292RR-237DL W051192RR-225DL

* INST-Instrument

** %D-Percent Difference

*** Sample result should be qualified as:

J - The associated value is an estimated quantity for detected analytes.

UJ - The analyte was checked for, but not detected. The associated value is an estimate.

NR - No qualification of the data was deemed necessary.

R - The data are unusable.

**** Relative response factor value in parentheses was reported to be less than the minimum value (0.05) for this compound.

OUTLYING SURROGATE RECOVERIES MARATHON ELECTRIC MANUFACTURING SITE MAY 1992 SAMPLING EVENT

<u>Compound</u>	Sample ID	<u>%R</u>	<u>%R Limits</u>	<u>Qualifier*</u>
Bromofluorobenzene	W051192RR-224	76	86-115	J/UJ
1,4-Dichloroethane-d4	W051192RR-228DL	115	76-114	NR
1,4-Dichloroethane-d4	VBLK03	1 32	76-114	J/NR

* Sample result should be qualified as:

J - The associated value is an estimated quantity for detected analytes.

UJ - The analyte was checked for, but not detected.

The associated value is an estimate.

NR - No qualification of the data was deemed necessary.

OUTLYING MATRIX SPIKE PERCENT RECOVERIES MARATHON ELECTRIC MANUFACTURING SITE MAY 1992 SAMPLING EVENT

						RPD	
Parameter	Sample ID	<u>MS %R</u>	MSD %R	<u>%R limits</u>	<u>RPD*</u>	Limits	Qualifier**
•							
Trichloroethene	W051292RR-231	130	96	70-120	27	0-14	J

* RPD-Relative Percent Difference

****** Sample result should be qualified as:

J - The associated value is an estimated quantity for detected analytes.

NON-COMPARABLE SAMPLE DILUTION RESULTS MARATHON ELECTRIC MANUFACTURING SITE MAY 1992 SAMPLING EVENT

<u>Sample ID</u> W051192RR-221	<u>Parameter</u> 1,1,1-Trichloroethane Trichloroethene Toluene	<u>Undil Result (ug/L)</u> <1 74*** <1	<u>Dil Result (ug/L)</u> 12 31 8	RPD* NC	<u>Qualifier**</u> J/UJ J J/UJ
<u>Sample ID</u> W051192RR-224	Parameter Trichloroethene 1,2-Dichloroethene	<u>Undil Result (ug/L)</u> 130*** 40	<u>Dil Result (ug/L)</u> 430 16	<u>RPD</u> - 86	<u>Qualifier</u> NR J
<u>Sample ID</u> W051192RR-229	Parameter Trichloroethene 1,2-Dichloroethene	<u>Undil Result (ug/L)</u> 170*** 8	<u>Dil Result (ug/L)</u> 110 4****	<u>RPD</u> - -	<u>Qualifier</u> J NR
<u>Sample ID</u> W051192RR-230	<u>Parameter</u> Trichloroethene 1,2-Dichloroethene	<u>Undil Result (ug/L)</u> 130*** 7	<u>Dil Result (ug/L)</u> 83 3****	<u>RPD</u> - -	<u>Qualifier</u> J NR
<u>Sample ID</u> W051292RR-236	<u>Parameter</u> Trichloroethene 1,2-Dichloroethene	<u>Undil Result (ug/L)</u> 140*** 50	<u>Dil Result (ug/L)</u> 420 30	<u>RPD</u> - -	<u>Qualifier</u> NR J

* RPD - Relative Percent Difference

** Sample result should be qualified as:

J - The associated value is an estimated quantity for detected analytes.

UJ - The analyte was checked for, but not detected. The associated value is an estimate.

NR - No qualification of the data was deemed necessary.

***Sample result previously qualified as estimated (J) as it was reported to be outside of the calibration range .

****Sample result previously qualified as estimated (J) as it was reported to be below the quantitation limit.

Waterloo File Copy

MEMORANDUM

TO: Ed Roberts

REFERENCE NO. 2115

FROM: Ruth M. Lewis RM

DATE: September 28, 1992

RE: Data Quality Assessment and Validation for Eighteen Groundwater Samples Collected during the August 1992 Sampling Event at the Marathon Electric Manufacturing Site

The following details a data quality assessment and validation for 18 groundwater samples collected on August 3 and 4, 1992, from the Marathon Electric Manufacturing Site in Wausau, Wisconsin. The samples were analyzed for target compound list volatile organic compounds (TCL VOC). All analyses were performed by Maxwell/S-Cubed Division in Sorrento Valley, California¹. The quality assurance criteria were defined in the associated quality assurance project plan (QAPP)².

Holding Time Period

The holding time for the analysis is 14 days from sample collection to completion of analysis. All analyses were completed within the specified holding time period.

Instrument Performance

To ensure that the data for the analyses would be interpreted correctly, each instrument was tuned using bromofluorobenzene (BFB). Analyses of the data reported for the GC/MS instrument tunes indicated criteria were met for all VOC analyses.

Initial Calibration

Initial calibration data were used to demonstrate that each instrument was capable of generating acceptable quantitative data. Criteria for VOC analytes required a mean relative response factor (RRF) greater than or equal to 0.050. Percent relative standard deviations for all analytes were required to be less than or equal to 30. The initial calibration results for VOC analyses were within acceptance criteria.

¹ Analytical method derived from Contract Laboratory Program Statement of Work, March 1990.

² Application of quality assurance criteria was consistent with "National Functional Guidelines for Organic Data Review", December 1990 (draft) and June 1991 (revision).

Continuing Calibration

To ensure that each instrument was capable of producing quantitative results over the specified analyses period, routine checks upon the instrument calibration were performed. All analytes were required to have daily response factors greater than or equal to 0.050. Percent difference between mean response factors and daily response factors for all analytes must be less than or equal to 25. Table 2 lists the analytes that failed continuing calibration criteria. Associated sample data should be qualified as estimated (J) for positive parameter results and the quantitation limit estimated (UJ) for negative parameter results. The remaining continuing calibration results for VOC analyses were within acceptance criteria.

Surrogate Compound Percent Recoveries (Surrogate Recoveries)

Individual sample performance for VOC analyses was monitored using surrogate recoveries. The surrogate data were within the control limits.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Percent Recoveries

To assess the long term accuracy and precision of the analytical method on various matrices, MS/MSD percent recoveries and relative percent difference (RPD) of the recoveries were determined. Sample W080492RR-265 underwent VOC MS/MSD analyses. Percent recoveries and RPD data listed in Table 3 were outside the control limits. As a result, trichloroethen e data from W080492RR-265 should be qualified as estimated (J).

Method Blank Samples

Contamination of the samples contributed by the laboratory conditions or procedures was monitored by the concurrent preparation and analysis of method blank samples. The method blank samples were reported to be free from target analytes, indicating no significant laboratory contamination occurred.

Internal Standard Summaries

Overall instrument performance for VOC analyses was monitored using internal standard peak area and retention time data. Peak areas were required to fall within +100 percent and -50 percent of the daily calibration sample internal standard peak area. Sample retention times must fall within a 0.5 minute window from the calibration sample retention times. All internal standard results were within

Reference No. 2115 Page 3

acceptance criteria.

Field QA/QC

The field QA/QC for this sampling event included one trip blank and two sets of field duplicate samples.

To evaluate the possibility of contamination arising from sample transport, the environment and/or shipping, a trip blank was submitted to the laboratory for VOC analysis. The trip blank sample yielded a positive concentration for carbon disulfide (2 ug/L). The associated method blank sample was reported to be free of carbon disulfide. One investigative sample (W080492RR-267) yielded a positive concentration for carbon disulfide (1 ug/L). The positive parameter results for carbon disulfide in the trip blank and W080492RR-267 were likely due to poor laboratory procedures. As a result, carbon disulfide data for W080492RR-267 should be qualified as non-detect (U).

Overall precision for the sampling event was monitored using two field duplicate sample sets: W080392RR-258/W080392RR-259 and W080492RR-266/W080492RR-267. The RPD data was found to be acceptable, indicating an adequate level of precision was achieved.

Overall Assessment

The data were found to exhibit acceptable levels of accuracy and precision and may be used with the specific qualifications noted.

Enc. cc: Steve Day RL/jm

SUMMARY OF SAMPLE IDENTIFICATION NUMBERS MARATHON ELECTRIC MANUFACTURING SITE AUGUST 1992 SAMPLING EVENT

W080392RR-250 W080392RR-251 W080392RR-252 W080392RR-253 W080392RR-254 W080392RR-255 W080392RR-256 W080392RR-257 W080392RR-258 W080392RR-259 W080392RR-260 W080492RR-261 W080492RR-262 W080492RR-263 W080492RR-264 W080492RR-265 W080492RR-266 W080492RR-267 W080492RR-268 TRIP BLANK

OUTLYING CONTINUING CALIBRATION DATA - VOC ANALYSIS MARATHON ELECTRIC MANUFACTURING SITE AUGUST 1992 SAMPLING EVENT

INST*	Date;Time	Parameter	<u>%D**</u>	Qualifier***	Associated Samples
HP4	8/07;1408	Acetone	31.4	J/UJ	Trip Blank
		Carbon Disulfide	29.8	J/UJ	VBW 3191-1
		1,1-Dichloroethene	28.9	J/UJ	LCS 3191
		2-Butanone	25.1	NR	W080392RR-258
	•		0		W080392RR-259
					W080392RR-260
					W080492RR-261
					W080492RR-262
				· ·	W080492RR-263
					W080492RR-264
					W080492RR-265
					W080492RR-265MS
					W080492RR-267
					W080492RR-268
					VBW 3191-2
				•	W080392RR-250
•					W080392RR-251
		· ·			W080392RR-252
	·			- ,	W080392RR-253
					W080392RR-254
					W080392RR-255

)<

OUTLYING CONTINUING CALIBRATION DATA - VOC ANALYSIS/ MARATHON ELECTRIC MANUFACTURING SITE AUGUST 1992 SAMPLING EVENT

	INST*	Date;Time	Parameter	<u>%D**</u>	Qualifier***	Associated Samples	
	HP4 (Cont'd)					W080392RR-257	
						W080492RR-265MSD	
						W080492RR-266	
	•					W080392RR-258DL	
						W080392RR-259DL	
Xi						W080392RR-260DL	
£1	HP4	8/08;2231	Chloromethane	28.3	J/UJ	VBW-3191-3	
						W080392RR-251DL	
						W080392RR-256	
	•					VBW 3191-2	
						W080392RR-250	
	•				:	W080392RR-251	
		•				W080392RR-252	
•					· . ·	W080392RR-253	
						W080392RR-254	
	,					W080392RR-255	
						W080392RR-257	
	· ·				•	W080492RR-265MSD	
						W080492RR-266	
•						W080392RR-258DL	
						W080392RR-259DL	
	·					W080392RR-260DL	

Page 3 of 3

TABLE 2

OUTLYING CONTINUING CALIBRATION DATA - VOC ANALYSIS MARATHON ELECTRIC MANUFACTURING SITE AUGUST 1992 SAMPLING EVENT

<u>INST*</u>	Date;Time	Parameter	<u>%D**</u>	Qualifier***	Associated Samples
				,	
HP4	8/09;1508	Chloromethane	31.2	J/UJ	VBW 3191-4
					W080392RR-254DL
					W080492RR-265DL
					W080492RR-266DL
·					W080492RR-267DL
					W080392RR-255DL
					VBW-3191-3
		·		· ·	W080392RR-251DL
	•			•	W080392RR-256
					1

* INST-Instrument

Г,

****** %D-Percent Difference

*** Sample result should be qualified as:

J - The associated value is an estimated quantity for detected analytes.

UJ - The analyte was checked for, but not detected. The associated value is an estimate.

NR - No qualification of the data was deemed necessary.

OUTLYING MATRIX SPIKE PERCENT RECOVERIES - VOC ANALYSIS MARATHON ELECTRIC MANUFACTURING SITE AUGUST 1992 SAMPLING EVENT

Parameter	Sample ID	<u>MS %R</u>	MSD %R	<u>%R limits</u>	<u>RPD*</u>	RPD <u>Limits</u>	Qualifier**	·
Trichloroethene	W080492RR-265	1460	1750	70-120	11	0-14	J	

* RPD-Relative Percent Difference

2

** Sample result should be qualified as:

J - The associated value is an estimated quantity for detected analytes.

Waterioo File Copy

MEMORANDUM

TO:	Ed Roberts
EDUN	Ruth M. Lowie and

REFERENCE NO. 2115

DATE: December 14, 1992

RE: Data Quality Assessment and Validation for Nineteen Groundwater Samples Collected during the November 1992 Sampling Event at the Marathon Electric Manufacturing Site

The following details a data quality assessment and validation for 19 groundwater samples collected on November 2 and 3, 1992, from the Marathon Electric Manufacturing Site in Wausau, Wisconsin. The samples were analyzed for target compound list volatile organic compounds (TCL VOC). All analyses were performed by Maxwell/S-Cubed Division in Sorrento Valley, California¹. The quality assurance criteria were defined in the associated quality assurance project plan (QAPP)².

Holding Time Period

The holding time for the analysis is 14 days from sample collection to completion of analysis. All analyses were completed within the specified holding time period.

Instrument Performance

To ensure that the data for the analyses would be interpreted correctly, each instrument was tuned using bromofluorobenzene (BFB). Analyses of the data reported for the GC/MS instrument tunes indicated criteria were met for all VOC analyses.

Method Blank Samples

Contamination of the samples contributed by the laboratory conditions or procedures was monitored by the concurrent preparation and analysis of method blank samples. The five associated method blank samples yielded positive concentrations for methylene chloride. As a result, associated sample data presented in Table 2 should be qualified as non-detect (U).

¹ Analytical method derived from Contract Laboratory Program Statement of Work, March 1990.

² Application of quality assurance criteria was consistent with "National Functional Guidelines for Organic Data Review", December 1990 (draft) and June 1991 (revision).

Reference No. 2115 Page 2

Initial Calibration

Initial calibration data were used to demonstrate that each instrument was capable of generating acceptable quantitative data. Criteria for VOC analytes required a mean relative response factor (RRF) greater than or equal to 0.050. Percent relative standard deviations for all analytes were required to be less than or equal to 30. The initial calibration results for VOC analyses were within acceptance criteria.

Continuing Calibration

To ensure that each instrument was capable of producing quantitative results over the specified analyses period, routine checks upon the instrument calibration were performed. All analytes were required to have daily response factors greater than or equal to 0.050. Percent difference between mean response factors and daily response factors for all analytes must be less than or equal to 25. Table 3 lists the analytes that failed continuing calibration criteria. Associated sample data should be qualified as estimated (J) for positive parameter results and the quantitation limit estimated (UJ) for negative parameter results. The remaining continuing calibration results for VOC analyses were within acceptance criteria.

Surrogate Compound Percent Recoveries (Surrogate Recoveries)

Individual sample performance for VOC analyses was monitored using surrogate recoveries. The surrogate data were within the control limits.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Percent Recoveries

To assess the long term accuracy and precision of the analytical method on various matrices, MS/MSD percent recoveries and relative percent difference (RPD) of the recoveries were determined. Sample W110392RR-254 underwent VOC MS/MSD analyses. The percent recovery and RPD data were within the control limits, indicating an adequate level of accuracy and precision was achieved.

Reference No. 2115 Page 3

Internal Standard Summaries

Overall instrument performance for VOC analyses was monitored using internal standard peak area and retention time data. Peak areas were required to fall within +100 percent and -50 percent of the daily calibration sample internal standard peak area. Sample retention times must fall within a 0.5 minute window from the calibration sample retention times. All internal standard results were within acceptance criteria.

Field QA/QC

The field QA/QC for this sampling event included two sets of field duplicate samples.

Overall precision for the sampling event was monitored using two field duplicate sample sets: W110292RR-249/W110292RR-250 and W110392RR-254/W110392RR-255. The RPD data from both sets was found to be acceptable, indicating an adequate level of precision was achieved.

Overall Assessment

The data were found to exhibit acceptable levels of accuracy and precision and may be used with the specific qualifications noted.

Enc. cc: Steve Day RL/jm

SUMMARY OF SAMPLE IDENTIFICATION NUMBERS MARATHON ELECTRIC MANUFACTURING SITE NOVEMBER 1992 SAMPLING EVENT

W110292RR-240 W110292RR-241 W110292RR-242 W110292RR-243 W110292RR-244 W110292RR-245 W110292RR-246 W110292RR-247 W110292RR-248 W110292RR-249 W110292RR-250 W110392RR-251 W110392RR-252 W110392RR-253 W110392RR-254 W110392RR-255 W110392RR-256 W110392RR-257 W110392RR-258

SUMMARY OF ANALYTES DETECTED IN METHOD BLANKS MARATHON ELECTRIC MANUFACTURING SITE NOVEMBER 1992 SAMPLING EVENT

<u>Blank ID</u>	<u>Analysis</u>	Parameter	Concentration (ug/L)	Associated Samples*
VBW3406-3	VOC	Methylene Chloride	0.5	244dl 248dl
				249d1
				250dl
VBW3406-4	VOC	Methylene Chloride	0.7	241dl 247dl 245dl
VBW3406-5	VOC	Methylene Chloride	0.8	257dl

* Positive sample results reported at a concentration less than 5x the method blank concentration should be qualified as non-detect (U) with the associated value being the quantitation limit.

OUTLYING CONTINUING CALIBRATION DATA - VOC ANALYSIS MARATHON ELECTRIC MANUFACTURING SITE NOVEMBER 1992 EVENT

<u>INST*</u> <u>Date;Time</u> HP4 11/7;2144	<u>Parameter</u> Acetone	<u>%D**</u> 27.4	<u>Qualifier***</u> J/UJ	Associated Samples W110292RR-240
1117 11/7,2177	2-Butanone	31.8	J/UJ	W110292RR-240
	2-Dutanone	51.0 * •)/0)	W110292RR-243
· · · · · · · · · · · · · · · · · · ·				
				W110292RR-244
		·		W110292RR-248
				W110292RR-249
				W110292RR-250
			-	W110392RR-251
				W110392RR-252
				W110392RR-253
				W110392RR-254
				W110392RR-255
				W110292RR-247

•

OUTLYING CONTINUING CALIBRATION DATA - VOC ANALYSIS MARATHON ELECTRIC MANUFACTURING SITE NOVEMBER 1992 EVENT

<u>INST*</u>	Date;Time	Parameter	<u>%D**</u>	<u>Qualifier***</u>	Associated Samples
HP4	11/8;1930	Acetone	53.5	J/UJ	W110392RR-254MS W110392RR-254MSD
•					
					W110292RR-244DL
					W110292RR-248DL
· .					W110292RR-249DL
			•		W110292RR-250DL
					W110392RR-256
•					W110292RR-241
					W110292RR-245
					W110292RR-248
					W110292RR-249
	· · ·				W110292RR-250
					W110392RR-251
					W110392RR-252
					W110392RR-253
					W110392RR-254
					W110392RR-255
					W110292RR-247

. . .

OUTLYING CONTINUING CALIBRATION DATA - VOC ANALYSIS MARATHON ELECTRIC MANUFACTURING SITE NOVEMBER 1992 EVENT

<u>INST*</u>	Date;Time	Parameter	<u>%D**</u>	Qualifier***	Associated Samples
HP4	11/9;1944	trans-1,3-Dichloropropene	28.3	J/UJ	W110392RR-254MS
· .		Bromoform	29.9	J/UJ	W110392RR-254MSD
					W110292RR-244DL
•					W110292RR-248DL
				·	W110292RR-249DL
•					W110292RR-250DL
			•		W110392RR-256
					W110292RR-241
	•				W110292RR-245
					W110292RR-241DL
					W110292RR-247DL
		· .			W110292RR-245DL
. •					W110392RR-258
					W110392RR-257
۰.					W110292RR-246
· · ·		<i>.</i> .			

OUTLYING CONTINUING CALIBRATION DATA - VOC ANALYSIS MARATHON ELECTRIC MANUFACTURING SITE NOVEMBER 1992 EVENT

INST*	Date;Time	Parameter	<u>%D**</u>	Qualifier***	Associated Samples
HP4	11/10;1833	Acetone	27.1	J/UJ	W110392RR-257DL
*****			•		W110392RR-256DL
. •			,		W110292RR-241DL
					W110292RR-247DL
	•				W110292RR-245DL
					W110392RR-258
					W110392RR-257
					W110292RR-246

NOTES:

* INST-Instrument

** %D-Percent D. lerence

*** Sample result should be qualified as:

J - The associated value is an estimated quantity for detected analytes.

UJ - The analyte was checked for, but not detected. The associated value is an estimate.

NR - No qualification of the data was deemed necessary.