

1801 Old Highway 8 Northwest, Suite 114 St. Paul, Minnesota 55112

Telephone: (651) 639-0913 Fax: (651) 639-0923

www.CRAworld.com

April 23, 2013

Reference No. 003978

Ms. Sheri Bianchin

RECEIVED

United States Environmental

BAAV O A 2042

Wisconsin Department of

Protection Agency
West Jackson Blvd (SR-61)

MAY 2 0 2013

Natural Resources

77 West Jackson Blvd. (SR-6J) Chicago, Illinois 60604

DNR - SUPERIORDNR Service Center

1701 North 4th St.

Ms. Erin Endsley

Superior, WI 54880

Dear Ms. Bianchin and Ms. Endsley:

Re:

2012 Annual Monitoring Report

Wausau Water Supply NPL Site

On behalf of the Wausau Water Supply PRP Group, Conestoga-Rovers and Associates (CRA) is pleased to submit this 2012 Annual Monitoring Report for the Wausau Water Supply NPL Site. This Report has been prepared as required by the Groundwater Monitoring Plan.

Please contact me if you have any questions or comments.

Sincerely,

CONESTOGA-ROVERS & ASSOCIATES

Charles Ahrens

CEA/sb/24

Encl.

CC:

Dave Erickson, City of Wausau

Lee Bergmann, Regal Beloit (via email)

Rob Flashinski, Wausau Chemical (via email)

Equal Employment Opportunity Employer

2012 ANNUAL MONITORING REPORT

WAUSAU WATER SUPPLY NPL SITE WAUSAU, WISCONSIN

RECEIVED

MAY 2 0 2013

DNR - SUPERIOR

RE-PRINTED ON

MAY 1 7 2013

2012 ANNUAL MONITORING REPORT

WAUSAU WATER SUPPLY NPL SITE WAUSAU, WISCONSIN

> Conestoga-Rovers & Associates

Prepared by:

1801 Old Highway 8 Northwest, Suite 114 St. Paul, Minnesota 55112

Office: 651-639-0913 Fax: 651-639-0923

APRIL 2013 REF. NO. 003978 (31) This report is printed on recycled paper.

TABLE OF CONTENTS

			<u>r age</u>
	T) ITTD ()		a
1.0		DUCTION	
	1.1	HISTORY	
	1.2	MONITORING BACKGROUND	
	1.3	SITE GEOLOGY	
	1.4	GROUNDWATER CLEANUP STANDARDS	3
2.0	2012 M	IONITORING	4
	2.1	WATER LEVEL MONITORING	4
	2.2	GROUNDWATER SAMPLING	5
	2.3	EXTRACTION WELL EW1 SAMPLING	5
3.0	OPER A	ATION AND MAINTENANCE	7
	3.1	MONITORING WELL INSPECTION	7
	3.2	EW1 OPERATION	7
	3.3	CITY PRODUCTION WELLS	8
	3.4	EAST BANK SOURCE AREA PAVEMENT INSPECTION	8
4.0	EVALU	JATION OF GROUNDWATER DATA	9
	4.1	WEST BANK	9
	4.2	EAST BANK	
	4.3	EW1	
	4.4	HYDRAULIC CAPTURE	
5.0	CONC	LUSIONS AND RECOMMENDATIONS	13
	5.1	CONCLUSIONS	
	5.2	RECOMMENDATIONS	

LIST OF FIGURES (Following Report)

	(Tollowing Report)
FIGURE 1.1	SITE LOCATION
FIGURE 1.2	SITE PLAN
FIGURE 2.1	2012 WATER TABLE CONTOURS
FIGURE 4.1	TOTAL CHLORINATED VOCS IN GROUNDWATER (NOVEMBER 2012)
	<u>LIST OF TABLES</u> (Following Report)
TABLE 2.1	GROUNDWATER ELEVATIONS - 2012
TABLE 2.2	SITE SPECIFIC VOC LIST
TABLE 2.3	GROUNDWATER SAMPLING SUMMARY - NOVEMBER 2012
TABLE 3.1	MONITORING WELL INSPECTION - 2012
TABLE 3.2	EW1 PUMPING RATES - 2012
TABLE 3.3	CITY SUPPLY WELL PUMPING SUMMARY - 2012
TABLE 4.1	MONITORING WELL LABORATORY RESULTS - 2012
TABLE 4.2	EW1 LABORATORY RESULTS - 2012
	LIST OF APPENDICES
APPENDIX A	E24AR WELL LOG
APPENDIX B	LABORATORY REPORTS AND DATA QUALITY VALIDATION MEMORANDA
APPENDIX C	WAUSAU CHEMICAL PAVEMENT INSPECTION REPORT

1.0 INTRODUCTION

Conestoga-Rovers and Associates (CRA) has prepared this 2012 Annual Monitoring Report (Report) for the Wausau Water Supply NPL Site (Site) in Wausau, Wisconsin, on behalf of the Wausau Potential Responsible Party (PRP) Group. This Report presents the results of groundwater and extraction well monitoring at the Site during 2012. This Report also presents operational data for the groundwater remediation systems.

1.1 HISTORY

The Wausau PRP Group initiated remedial action at the Site in the early 1990s in accordance with the September 29, 1990, Record of Decision (ROD) and the Consent Decree (CD) entered with the court on January 24, 1991. The final remedial action at the Site consisted of two soil vapor extraction (SVE) systems to address the source areas and groundwater extraction and treatment, utilizing existing municipal production wells and an extraction well. The Site location is shown on Figure 1.1 and a Site plan is presented on Figure 1.2.

Source area remediation was accomplished by the installation of SVE systems at Marathon Electric (West Bank) and Wausau Chemical (East Bank) in January 1994. The SVE system at Marathon Electric operated until April 1996, when the West Bank source remediation was approved as complete. The East Bank SVE system was modified in 1996 and continued to operate. In January 2001 the East Bank SVE system was shut down while evaluation for final closure occurred. The East Bank source remediation was approved as complete in 2007.

Groundwater remediation is provided through two existing municipal production wells (CW3 and CW6) and one extraction well installed at Marathon Electric (EW1). Air strippers, located at the Wausau water treatment plant, treat water from the municipal supply wells. Water from EW1 is also treated by air stripping (over riprap on the riverbank) before being discharged to the Wisconsin River.

The pumping rates for the three extraction wells were originally defined in the CD. In the Groundwater Flow Model report (CRA, May 1993), CRA established a range of pumping rates that would maintain capture of the groundwater plume. Subsequently, in an August 4, 1995 letter, the United States Environmental Protection Agency (USEPA) approved a pumping configuration range for the three extraction wells. Those pumping rates were:

- CW3: 65 hours per week at 1,200 gallons per minute (gpm) to 100 hours per week at 1,100 gpm
- CW6: 85 hours to 100 hours per week at 1,400 gpm
- EW1: 800 to 900 gpm continuously

Additional groundwater remediation was provided by a groundwater extraction system operated by Wausau Chemical between 1985 and 1996 as an interim remediation measure. The extraction system at Wausau Chemical consisted of a series of shallow wells at the south end of the Wausau Chemical property. Groundwater was treated by air stripping. This system was in addition to the requirements of the ROD or the CD and operation ceased in 1996.

From 1993 through 2000 groundwater monitoring was conducted according to the Monitoring Program Plan (CRA, 1994). The Monitoring Program Plan consisted of a complex system of monthly, quarterly, semiannual, and annual monitoring. In June 2000, the Groundwater Monitoring Plan replaced the Monitoring Program Plan as the approved groundwater monitoring program. The Groundwater Monitoring Plan consists of annual monitoring well sampling and quarterly sampling of EW1.

The Groundwater Monitoring Plan requires an annual report on the activities occurring the previous calendar year. This Report fulfills the requirement for 2012.

1.2 MONITORING BACKGROUND

Groundwater monitoring at this Site is a combination of hydraulic and water quality monitoring designed to verify that the groundwater extraction wells are containing the contaminant plume and that groundwater quality is improving as a result of past source remedial actions and ongoing volatile organic compound (VOC) removal from the aquifer.

Groundwater remediation at the Wausau Site is a long-term process that cannot be readily measured on a short-term basis using water quality data alone. Accordingly, water quality data is measured annually on a long-term basis to show the downward trend of VOC concentrations in groundwater. Because of the time necessary to achieve groundwater remediation, containment of contaminated groundwater is the primary measurable and achievable short-term objective.

For the purpose of evaluation, groundwater monitoring at Wausau has been divided into two areas, the East Bank and the West Bank of the Wisconsin River, corresponding to the two original source areas. The river forms a natural hydraulic division of the Site. There are three active groundwater extraction wells that contain and remove VOC contaminated groundwater. Two of the extraction wells are on the West Bank, (CW6 and EW1) and one is on the East Bank (CW3) (see Figure 1.2).

1.3 SITE GEOLOGY

The Site is underlain by glacial outwash and alluvial sediments that have filled in the preglacial stream valley in which the Wisconsin River now flows. This alluvial aquifer ranges from 0 to 160 feet thick and has an irregular base and lateral boundaries. The relatively impermeable bedrock that underlies the aquifer, and forms its lateral boundaries within the preglacial valley, defines the boundaries of the aquifer. Six production wells in the Site area provide drinking water for the City of Wausau. These wells are screened in the glacial outwash and alluvial sand and gravel deposits that underlie and are adjacent to the Wisconsin River.

1.4 GROUNDWATER CLEANUP STANDARDS

The Groundwater Monitoring Plan was developed to monitor compliance with cleanup standards for the groundwater at the Site. The groundwater cleanup standards for the Site are the United States Environmental Protection Agency (USEPA) maximum drinking water contaminant levels (MCLs). The MCLs for the primary VOC contaminants of concern at the Site are:

•	Trichloroethylene (TCE)	5μg/L
•	Tetrachloroethylene (PCE)	5 μg/L
•	cis-1,2-Dichloroethylene (DCE)	70 μg/L
•	Vinyl chloride	2 μg/L

2.0 **2012 MONITORING**

Groundwater monitoring during 2012, which included water level measurements and water sampling, was conducted in late November in accordance with the Groundwater Monitoring Plan, with the following exceptions:

- As reported in the 2000 Annual Monitoring Report, two monitoring wells (WC2 and W51A) are no longer monitored and they were abandoned in 2000.
- Also, as approved by the USEPA and Wisconsin Department of Natural Resources (WDNR) through the 2002 Annual Monitoring Report, the bis(2-ethylhexyl)phthalate at C4S and W53A was discontinued in 2003.
- With USEPA and WDNR approval, monitoring wells E24 and E24A were abandoned. Monitoring well E24AR was installed as a replacement. The well log for E24AR is provided in Appendix A.
- Due to health and safety issues and lack of proper transportation to the island in the Wisconsin River, as approved by USEPA and WDNR, monitoring well IWD was not sampled in 2012.

Monitoring of the EW1 influent and effluent was conducted in February and June, 2012. Due to additional pump issues and eventual failure, EW1 was not operating for most of the third and fourth quarters and monitoring was not performed during that period.

2.1 WATER LEVEL MONITORING

Table 2.1 presents the groundwater elevation data measured on November 12 and 13, 2012. Water table contours based on these measurements are presented on Figure 2.1. Field staff measured water levels on the East Bank on November 12 while CW-3, the East Bank remediation well, was pumping. West Bank water levels were measured on November 13 while CW-6, the West Bank remediation well was operating. As explained above, EW1 was not operating during the November monitoring event. Water levels in the City production wells were measured with the assistance of City staff.

The West Bank contours are consistent with flow patterns observed in previous years. The West Bank flow patterns are controlled by the operation of City production well CW3. The East Bank contours depict a large cone of influence created by CW6. Under normal pumping conditions, CW10 and CW11 would also show significant drawdown and would augment the cone of influence created by the West Wellfield. However,

4

based on the elevations recorded for those wells, they were not pumping when their water levels were measured. Under natural conditions, groundwater would flow toward and discharge to the Wisconsin River. Under existing conditions however, groundwater flows toward production wells and EW1 when it is operating.

2.2 GROUNDWATER SAMPLING

Annual groundwater sampling was conducted from on November 13 and 14, 2012. Monitoring well samples were analyzed for the Site specific VOC list (see Table 2.2) by EPA Method 8260. A summary of the groundwater sampling event, including field parameter measurements, is presented in Table 2.3.

Groundwater sampling was conducted according to the Quality Assurance Project Plan, (CRA, February 1994) as amended by a June 11, 1999, letter to the USEPA. TestAmerica Laboratories, Inc. in North Canton, Ohio, analyzed all samples. Laboratory results are being submitted electronically in the Region V Electronic Data Deliverable (EDD) format for inclusion in the Region V EPA database. Copies of the Data Quality Validation memoranda for the 2012 data are included in Appendix B.

2.3 EXTRACTION WELL EW1 SAMPLING

The monitoring program for EW1 was designed to measure long-term water quality improvement in the groundwater and to measure the effectiveness of the EW1 groundwater treatment system. These data are also used to monitor the contaminant levels discharged to the Wisconsin River from the treatment system. The discharge concentrations must meet the substantive requirements of the Wisconsin Pollutant Discharge Elimination System (WPDES).

Influent and effluent samples were collected from the EW1 treatment system in February and June, 2012. Due to additional pump problems and eventual failure, the second quarter sample could not be collected until June 13, 2012, and the third and fourth quarter samples were not collected because EW1 was not operating. The influent and effluent samples were analyzed by EPA Method 8260 for the Site specific VOCs (Table 2.2).

The quarterly samples were analyzed by TestAmerica. Laboratory results are being submitted electronically in the Region V EDD format for inclusion in the Region V EPA

database. Copies of the Data Quality Validation memoranda for the 2012 data are included in Appendix B.

3.0 OPERATION AND MAINTENANCE

Operation and maintenance activities reported in this section cover EW1, the City production wells, the groundwater monitoring wells, and the annual inspection of the paved surfaces in the East Bank source area.

3.1 MONITORING WELL INSPECTION

All Site monitoring wells were inspected during the November monitoring round. An inspection form was used to document the following well conditions:

- Total depth
- Well ID
- Casing and grout condition
- Well cap condition
- Lock condition
- Concrete seal condition
- Ground condition (subsidence)

Table 3.1 presents the results of the inspection. The inspection indicated that all wells were in satisfactory condition. Minor maintenance issues will be addressed during the 2013 monitoring event.

3.2 EW1 OPERATION

In 2012, approximately 75,000,000 gallons of water were extracted and treated by the West Bank extraction well (EW1) at RBC Manufacturing (formerly Marathon Electric). The extraction well pumped at an average flow rate of 271 gallons per minute during while it was operating. The pump in EW1 was removed for repairs on July 16, 2012, and did not operate for the remainder of 2012. Table 3.2 summarizes EW1 operational data for 2012, including the number of gallons pumped per month and average flow rates.

3.3 CITY PRODUCTION WELLS

CW3 and CW6 operated as required in 2012 with minimal shutdowns or repairs. Table 3.3 presents 2012 pumping data for the six City wells. While only CW3 and CW6 are part of the remediation system, data for all City wells are presented, consistent with previous reports. The table shows, by month, the number of hours each well was operated, the number of gallons pumped from each well, and the average pumping rate while the pump was operating.

CW3 and CW6 operated on alternate schedules at rates that exceeded the operating requirements established by the USEPA approval letter dated August 4, 1995. CW3 operated for an average of 77.7 hours per week with an average pumping rate of 1,595 gpm, exceeding the requirements of 65 hours per week at 1,200 gpm.

CW6 operated for an average of 89.3 hours per week with an average pumping rate of 1,579 gpm, exceeding the requirement of 85 hours per week at 1,400 gpm.

3.4 EAST BANK SOURCE AREA PAVEMENT INSPECTION

The USEPA and WDNR approved final closure of the East Bank source remediation SVE system in September 2007. A requirement of the closure was an annual inspection of the paved areas surrounding the Wausau Chemical property, as described in the Pavement Cover and Building Maintenance Plan. The purpose of the inspection is to monitor the integrity of the paved areas of the property and make recommendations to minimize rainwater infiltration and prevent direct human contact with soils. In August 2009 the entire pavement area was repaved with new asphalt and the street adjacent to the west side of the property, North River Drive, was repaved by the City of Wausau. Also, an approximately 2,800 square foot addition, with concrete floor and roof, was added to the south end of the building in 2009-2010. Inspections conducted during 2012 found the pavement to be in very good condition. Utility work by the natural gas company was thoroughly patched and all minor cracks were filled. A copy of the pavement inspection report is contained in Appendix C.

4.0 EVALUATION OF GROUNDWATER DATA

The objectives of groundwater monitoring at the Site are to monitor the containment of the contaminant plume and the long-term improvement in groundwater quality.

Table 4.1 presents the laboratory results for monitoring well samples collected in November 2012. The data indicate that, in general, the VOC concentrations are stable or decreasing. Figure 4.1 presents the total chlorinated VOC (CVOC) data and total CVOC concentration contours that illustrate the plume configuration based on the November 2012 data.

4.1 WEST BANK

The primary CVOC found in the West Bank groundwater is trichloroethene (TCE), which was detected at 7 of the 12 West Bank monitoring wells and City well CW6. The degradation product, cis-1,2-dichloroethene (C12DCE), was detected at one location with a low concentration. Vinyl chloride was not detected on the West Bank. Monitoring wells with TCE concentrations greater than the MCL of $5\,\mu\text{g}/\text{L}$ included R2D, R3D, and W53A. The MCL for TCE was also exceeded in the samples from extraction well EW1 (7.1 $\mu\text{g}/\text{L}$ and 9.9 $\mu\text{g}/\text{L}$), but the concentration at CW6 was below the MCL (see Tables 4.1 and 4.2).

In the portion of the plume north of EW1, CVOCs are located in the deeper portion of the aquifer. Wells north of EW1 that exceeded the MCL for TCE included R2D and R3D. In the southern portion of the plume, in the vicinity of the old landfill, CVOCs are located in the shallower portion of the aquifer. MW53A is the only location south of EW1 that exceeded the MCL for TCE. TCE concentrations have fluctuated at MW53A historically, with no clear upward or downward trend. However, concentrations from 2011 and 2012 are higher than historical values. Carbon tetrachloride was detected at MW53A with a concentration of 1.67 μ g/L, which is below the MCL of 5 μ g/L. No other CVOC concentrations exceeded the MCL on the West Bank.

Previous Annual Monitoring Reports have described the migration of a relatively high concentration slug of CVOCs in the area of monitoring wells R2D, R3D, and R4D. The slug of CVOCs originated in the vicinity of R2D and has been slowly moving towards EW1 over the last several years. The total CVOC concentration at monitoring well R3D decreased from 203 μ g/L in 2011 to 20.7 μ g/L in 2012. This decrease may be due to a change in the groundwater flow patterns since EW1 ceased operation. The plume in the

R3D area may have shifted to the north as it is now contained within the capture zone of CW6. When EW1 was operating, the R3D area was near the flow divide between the capture zones of EW1 and CW6. The historical data for R2D, R3D, and R4D are presented below.

Total CVOCs (µg/L)							
<u>Year</u>	<u>R2D</u>	<u>R3D</u>	<u>R4D</u>				
1996	1600	2	540				
1997	720	5	65/65				
1998	320	580	52/58				
1999	110	1200	33				
2000	45	1800	58				
2001	17	1500	13/13				
2002	15	1200	36				
2003	10	980	39/37				
2004	11	899 .	51				
2005	7.5	400	56/57				
2006	8.2	480/500	42				
2007	9.9	280	1.3				
2008	6.5	180	13				
2009	7.2/7.4	92	22.4/23.4				
2010	6.2	195.7	25.7				
2011	11	203.1	27.6				

20.7

In the far north portion of the plume, within the capture area of City well CW6 (see Figure 4.1), the only detected VOC is TCE and the concentrations reported for CW6 and W55 have generally declined since 2000. Concentrations of TCE at both of these wells are below the MCL and are slightly higher than in 2011. This area of the plume appears to be stable with gradually decreasing TCE concentrations.

4.89

The overall areal extent of the contaminant plume did not change significantly relative to 2011.

2012

6.38

4.2 <u>EAST BANK</u>

East Bank well data are presented in Table 4.1. While tetrachloroethene (PCE) was the original contaminant on the East Bank, the presence of TCE, C12DCE, and vinyl chloride at concentrations that are currently equal to or exceed the PCE concentration in many wells indicates an active natural biodegradation process. For example, at E37A the C12DCE concentration was higher than the PCE and TCE concentrations combined.

PCE was detected at 9 of the 12 East Bank monitoring wells in 2012. Four of those nine wells had concentrations that exceeded the MCL of $5\,\mu g/L$. The highest PCE concentration was $41\,\mu g/L$ at E23A. At E37A, the concentrations of PCE and TCE exceeded their respective MCLs. The MCLs for PCE and vinyl chloride were also exceeded at WW6, and the PCE MCL was exceeded at E22A and E23A.

The areal extent of the East Bank contaminant plume remained steady compared to 2011 (see Figure 4.1). Total CVOC concentrations from 2006 through 2012 for key East Bank wells are shown below:

			Total CVOCs (μg/L)					
<u>Well</u>	<u>2006</u>	<u>2007</u>	2008	<u>2009</u>	<u>2010</u>	<u> 2011</u>	<u>2012</u>	
WC3B	18	4.2	1.5	1,460/565.21	1.24	2.26	3.47	
WC5A	8.4	1.8	2.8	12.1	9.86	4.6	1.3	
E24A	3.7	1.1	1	13	20	1.4	3.86^{2}	
E22A	14	10	ND	231.9	5.03	3.2	25.41	
E37A	8.5	34	460	77.35	7.0	140.19	68.06	
E23A	47	130	260	154	30.94	115.7	86.52	
WW6	78	35	12	29.97	46.34	17.6	45.48	
CW3	4.6	4.8	6.4	4.48	4.36	4.03	3.58	
IWD	13	11	4.4	7.3	4.67	5.7	NA	

Significant decreases in CVOC concentrations occurred at E37A, and E23A, while increases were reported for E22A and WW6. These fluctuations are consistent with the

WC3B was resampled on January 12, 2010, to confirm the October, 2009 result.

^{2 2012} sample collected from E24AR

migration of a higher concentration slug that has moved from the WC3B area and through the E37A/E23A area as it migrates toward CW3 and removal.

The 2012 concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) at monitoring well FVD5 were consistent with historical data. The aromatic compounds found in this well are related to the Wausau Energy property and are independent of the Wausau NPL site remediation process.

4.3 EW1

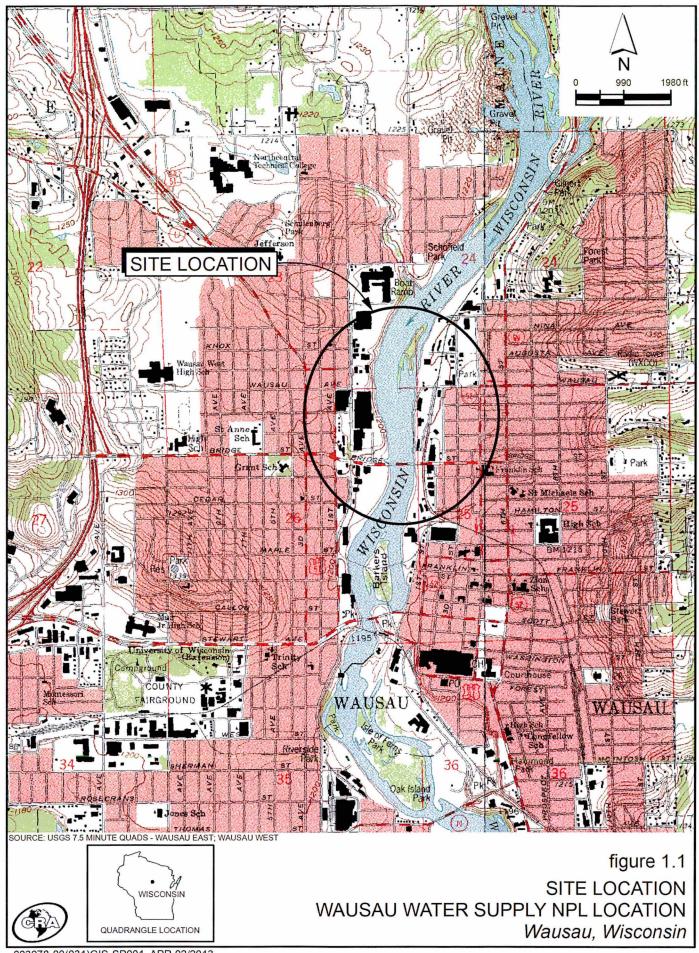
The 2012 influent and effluent laboratory results for EW1 are presented in Table 4.2. The third and fourth quarter 2012 samples were not collected because EW1 was not operating due to the pump removal and repair. Quarterly samples were collected in February and June. TCE was the primary CVOC detected. DCE was also detected in the June sample, but the concentration was less than $1 \mu g/L$.

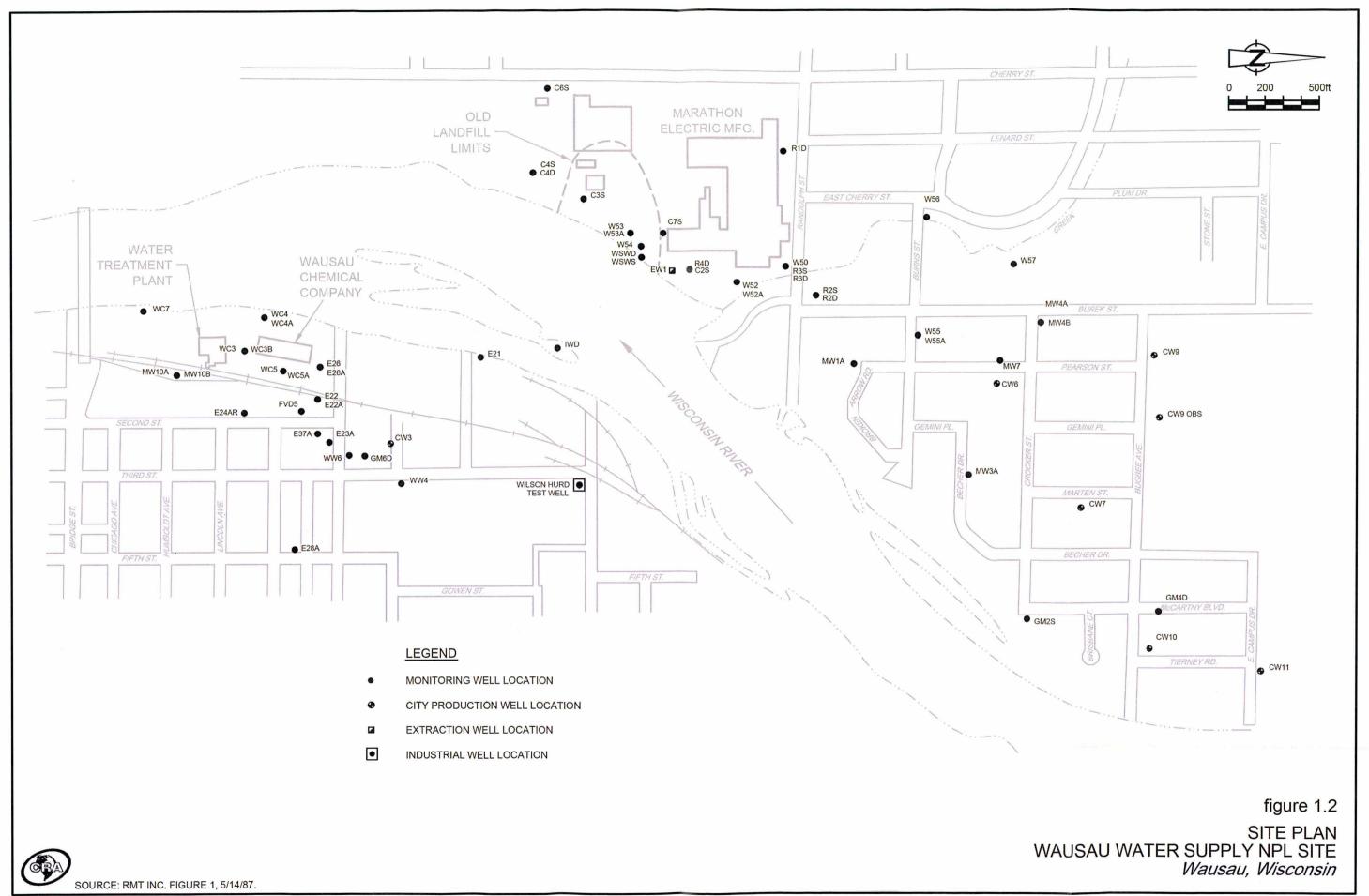
Influent concentrations of TCE increased slightly from 7.1 μ g/L in February to 9.9 μ g/L in June. The effluent concentrations indicate that the EW1 treatment system removes about 50 percent of the CVOCs in the extracted groundwater.

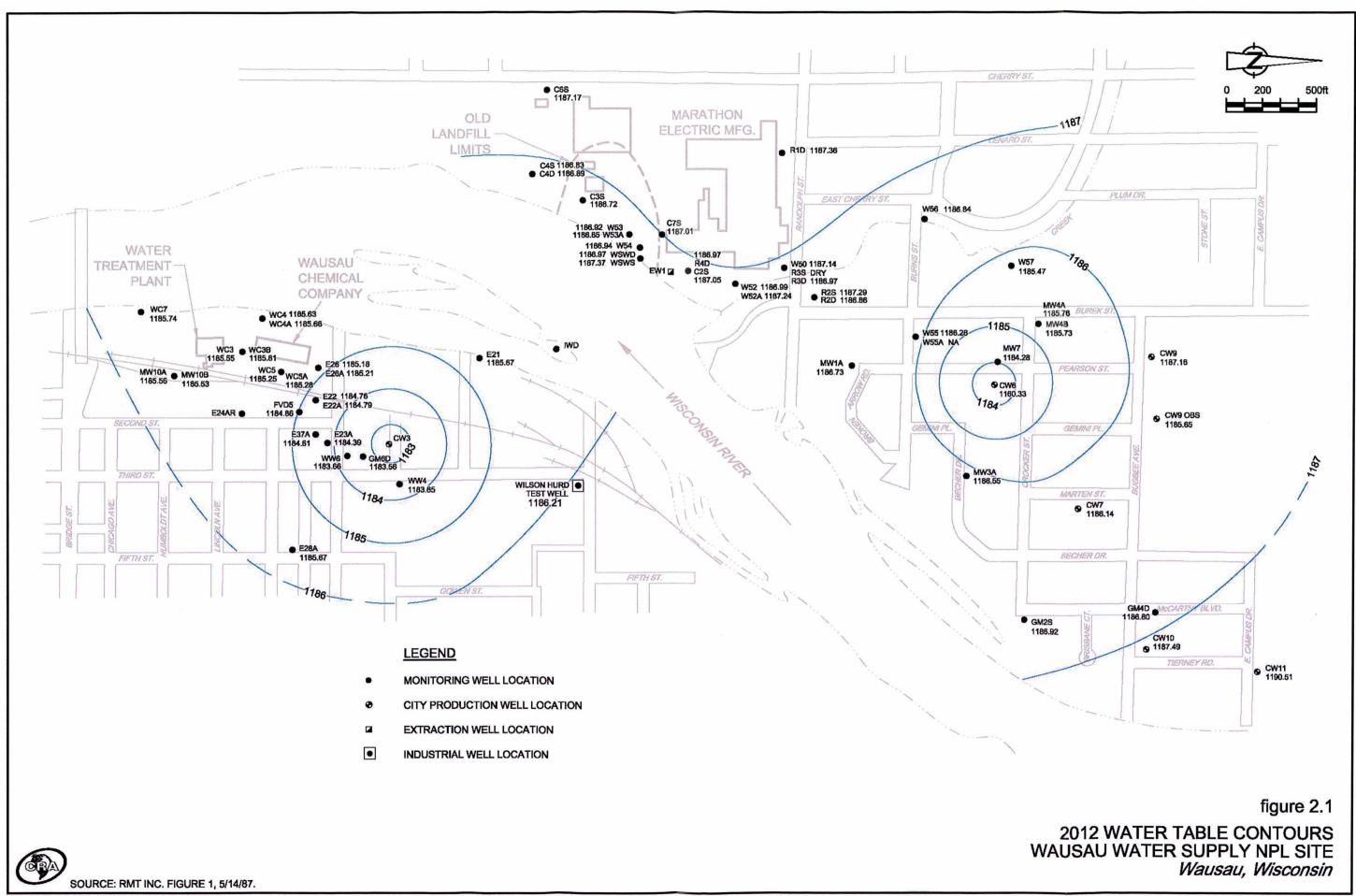
The results of the effluent samples were compared to surface water discharge limits for discharge to the Wisconsin River, as calculated by the WDNR. Those discharge limits were presented in the "Remedial Action Plan, Groundwater Extraction, Treatment, and Discharge System", (CRA, 1990). None of the discharge limits were exceeded during 2012 (see Table 4.2).

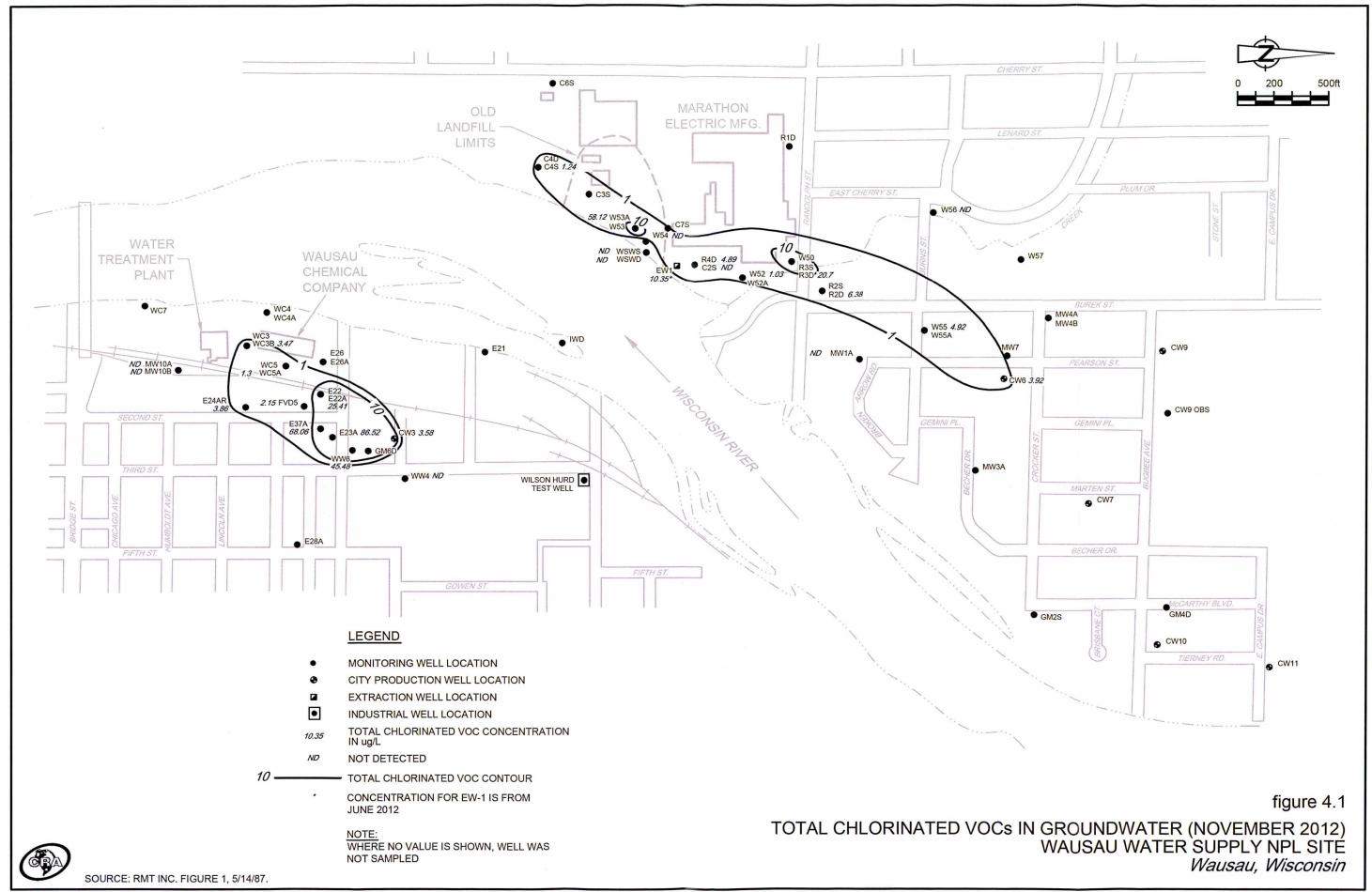
4.4 <u>HYDRAULIC CAPTURE</u>

Hydraulic capture of the contaminant plume is demonstrated by the water table contours illustrated on Figure 2.1. The water table contours indicate that in November groundwater flow at the Site was toward the two operating extraction wells (CW3 and CW6). At nested well locations, the water table elevations for shallow and deep wells were similar, indicating horizontal flow and hydraulic containment of the shallow and deeper portions of the aquifer. Figures 4.1 and 4.2 also demonstrate that hydraulic containment of the contaminant plume was maintained through 2012.


5.0 CONCLUSIONS AND RECOMMENDATIONS


5.1 CONCLUSIONS


- The two City production wells, CW3 and CW6, to capture the CVOC plume as demonstrated by the hydraulic and chemical data. When operating, the RBC Manufacturing (formerly Marathon Electric) extraction well, EW1, provides additional contaminant removal on the south end of the West Bank plume.
- The East Bank CVOC plume exhibited concentration patterns consistent with continued migration of a higher concentration slug toward CW3. The areal extent of the plume was stable. The presence of PCE daughter products provides evidence of natural attenuation of the East Bank plume.
- The CVOC plume on the West Bank remained stable in its areal extent and concentrations were also stable relative to 2011 data, with the exception of W53A, which exhibited an increase.
- Three West Bank monitoring wells (R2D, R3D, and W53A) and EW1 had TCE concentrations greater than the MCL of 5 μ g/L.
- Four East Bank wells had PCE concentrations that exceeded the MCL of 5 μ g/L. One well, WW6, had a vinyl chloride concentration that exceeded the MCL of 2 μ g/L. The MCL for TCE was exceeded at E37A and E23A.
- EW1 removed approximately 75,000,000 gallons of water in 2012 at an average pumping rate of 271 gallons per minute. The well was not operating from July 16, 2012, through the end of the year due to pump failure and repairs.
- The EW1 treatment system removed approximately 50 percent of the CVOCs from the extracted groundwater. The effluent concentrations from the treatment system were far below the established discharge limits.
- The City production wells operated within the requirements established by USEPA.
- The annual inspection of the pavement and building barrier at Wausau Chemical found the pavement to be in good condition. An asphalt patch was required due to gas line construction and minor cracks were also filled.


5.2 **RECOMMENDATIONS**

- Groundwater monitoring in 2013 should continue as described in the Groundwater Monitoring Plan with the minor modifications discussed in previous reports.
- The Group is in the process of preparing a work plan to conduct a hydrogeological study to assess potential effects to the groundwater remedy with EW1 not operating. The goal is to remove EW1 from the groundwater extraction system in order to achieve a more efficient, sustainable, and cost effective remedy. EW1 will remain non-operational pending USEPA approval.

GROUNDWATER ELEVATIONS - 2012 WAUSAU WATER SUPPLY NPL SITE WAUSAU, WISCONSIN

	Reference			Water Table
	Elevation		Water Level	Elevation
East Bank			11/12/2012	11/12/2012
CW3	1202.15		NA	NA
E21	1197.51		11.84	1185.67
E22	1195.47		10.71	1184.76
E22A	1195.88		11.09	1184.79
E23A	1197.61		13.22	1184.39
E24AR	1209.33	(1),(2)	25.60	1183.73
E24	1210.01	(1)	Abandoned	Abandoned
E24A	1211.07	(1)	Abandoned	Abandoned
E26	1199.02	•	13.84	1185.18
E26A	1199.13		13.92	1185.21
E28A	1211.60		25.93	1185.67
E37A	1197.84		13.23	1184.61
FVD5	1198.89		14.03	1184.86
GM6D	1198.57		15.01	1183.56
W. HURD	1200.23		14.02	1186.21
IWD	1192.10		NM	NM
MW10A	1210.67		25.11	1185.56
MW10B	1210.37		24.84	1185.53
WC3	1198.26		12.71	1185.55
WC3B	1196.11	(2)	10.30	1185.81
WC4	1196.74		11.11	1185.63
WC4A	1196.57		10.91	1185.66
WC5	1196.62		11.37	1185.25
WC5A	1196.66		11.38	1185.28
WC7	1196.77		11.03	1185.74
WW4	1200.34	(2)	16.69	1183.65
WW6	1200.53		16.87	1183.66
West Bank			11/13/2012	11/13/2012
EW1	NA		NA	NA
CW6	1220.33		60.00	1160.33
CW7	1224.14		38.00	1186.14
CW9	1226.16		39.00	1187.16
CW9 OBS	1224.24		38.59	1185.65
CW10	1218.49		31.00	1187.49
CW11	1216.51		26.00	1190.51
C2S	1219.05		32.00	1187.05
C3S	1220.58		33.86	1186.72
C4S	1216.70		29.87	1186.83
C4D	1216.16		29.27	1186.89
C6S	1221.58		34.41	1187.17

GROUNDWATER ELEVATIONS - 2012 WAUSAU WATER SUPPLY NPL SITE WAUSAU, WISCONSIN

	Reference Elevation		Water Level	Water Table Elevation
West Bank (•			
C7S	1220.87		33.86	1187.01
GM2S	1211.78		24.86	1186.92
GM4D	1216.35		29.55	1186.80
MW1A	1215.69		28.96	1186.73
MW3A	1220.87		34.32	1186.55
MW4A	1215.48		29.72	1185.76
MW4B	1215.10		29.37	1185.73
MW7	1218.53		34.25	1184.28
R1D	1222.24		34.88	1187.36
R2S	1209.70		22.41	1187.29
R2D	1209.42		22.56	1186.86
R3S	1215.17		Dry	Dry
R3D	1215.42		28.45	1186.97
R4D	1218.90		31.92	1186.98
W50	1215.54		28.40	1187.14
W52	1219.16		32.17	1186.99
W52A	1218.95		31.71	1187.24
W53	1216.67		29.75	1186.92
W53A	1216.90		30.05	1186.85
W54	1216.19		29.25	1186.94
W55	1217.04		30.76	1186.28
W55A	1217.31		NA	NA
W56	1200.01		13.17	1186.84
W57	1201.76	(2)	16.29	1185.47
WSWS	1193.04		5.67	1187.37
WSWD	1193.02		6.05	1186.97

Notes:

Elevations relative to National Geodetic Vertical Datum

 $^{^{(1)}}$ Wells E24 and E24A were abandoned in 2012, replaced by the installation of E24AR in 2012

⁽²⁾ Reference elevation resurveyed in 2012

TABLE 2.2

SITE SPECIFIC VOC LIST WAUSAU WATER SUPPLY NPL SITE WAUSAU, WISCONSIN

Acetone

Benzene

Carbon tetrachloride

Chloroform

1,1-Dichloroethene

cis-1,2-Dichloroethene

Ethylbenzene

Methylene chloride

Tetrachloroethene

Toluene

1,1,2-Trichloroethane

Trichloroethene

Vinyl chloride

Xylenes

TABLE 2.3

GROUNDWATER SAMPLING SUMMARY - NOVEMBER 2012 WAUSAU WATER SUPPLY NPL SITE WAUSAU, WISCONSIN

Well	рН	Conductivity (us/cm)	Temperature (°C)	Water Clarity	Gallons Removed	Sample ID Number	QA/QC
East Bank CW3	6.81	318	9.8	Clear	Grab	W-121113-NE-01	
FVD 5	6.58	346	13.3	Slightly Cloudy	3.0	W-121113-NE-07	
E37A	6.83	437	15.1	Cloudy	6.0	W-121113-NE-09	
E22A	6.48	487	13.8	Cloudy	5.3	W-121113-NE-08	
E23A	6.91	498	13.3	Cloudy	3.8	W-121113-NE-10	
WW6	6.94	233	11.4	Clear	12.0	W-121113-NE-13	
WW4	6.37	599	10.8	Clear	12.0	W-121113-NE-06	
W.C5A	6.96	214	12.7	Slightly Cloudy	6.0	W-121113-NE-14	
WC3B WC3B	7.12	154	12.7	Slightly Cloudy	<i>7</i> .5	W-121113-NE-11 W-121113-NE-12	FB
MW-10B	6.64	219	11.6	Clear	8.0	W-121113-NE-05	
MW-10A	7.13	159	10.9	Clear	27.0	W-121113-NE-04	
E24AR E24AR	6.80	206	14.2	Clear	8.0	W-121113-NE-02 W-121113-NE-03	DUP
IWD	7.01	141	12.4	Clear	4.0	W-111101-NE-23	
West Bank R3D R3D	6.57	318	9.3	Clear	54.0	W-121113-NE-19 W-121113-NE-20	DUP
C4S	6.49	1312	11.8	Clear	4.0	W-121113-NE-21	MS/MSD
R4D	6.53	640	12.0	Slightly Cloudy	20.0	W-121113-NE-17	MS/MSD
C2S	6.69	650	13.8	Slightly Cloudy	3.0	W-121113-NE-11	,
W53A	7.32	727	13.2	Slightly Cloudy	6.0	W-121113-NE-15	
W54	7.40	198	11.8	Slightly Cloudy	18.0	W-121113-NE-16	

TABLE 2.3

GROUNDWATER SAMPLING SUMMARY - NOVEMBER 2012 WAUSAU WATER SUPPLY NPL SITE WAUSAU, WISCONSIN

Well	рН	Conductivity (us/cm)	Temperature (°C)	Water Clarity	Gallons Removed	Sample ID Number	QA/QC
West Bank WSWD	(cont'd) 7.32	172	12.0	Slightly Cloudy	5.0	W-121118-NE-28	
CW6	7.66	212	10.4	Clear	Grab	W-121114-NE-30	
W56 W56	6.97	748	9.9	Clear	27.0	W-121113-NE-24 W-121113-NE-25	RB
W55	7.69	164	11.3	Slightly Cloudy	9.0	W-121114-NE-29	
MW-1A	8.19	169	11.3	Cloudy	20.0	W-121114-NE-31	
R2D R2D.	7.23	148	11.1	Slightly Cloudy	18.0	W-121114-NE-27 W-1211114-NE-26	FB
W52 W52	7.39	165	11.0	Slightly Cloudy	15.0	W-121113-NE-22 W-121113-NE-22	DUP

MONITORING WELL INSPECTION SUMMARY WAUSAU WATER SUPPLY NPL SITE WAUSAU, WISCONSIN

Date recorded: November 13, 2012

Recorded by: Nick Evans, Nick Coady

	T	,	r	· ·	T	<u> </u>	1	1	
	Total Depth	Well ID						1	
	from	Visible or	Casing &	Well Cap					
	TOC/Stickup	Tag	Grout	Condition		Concrete Seal	Ground Condition	Flush	
Well Name	(ft.)	Attached?	Condition	(inner/outer)	Lock Condition	Condition	(subsidence?)	Mount?	Comments
East Bank									
CW3									
E21	132.9/2.3	Yes	Okay	None/ Okay	Okay	Okay	Okay		
E22	90.40/-0.6	Yes	Okay	Okay/ Okay	Okay	Okay	Okay	FM	
E22A	22.1/0.3	Yes	Okay	Okay/ Okay	Okay	Okay	Okay	FM	
E23A	21.00/-0.5	Yes	Okay	Okay/ Okay	Okay	Okay	Okay	FM	
E24AR	33.99/-0.4	Yes	Okay	Okay/Okay	Okay	Okay	Okay	FM	New Well
E24	NA		~~~~						Abandoned
E24A	NA								Abandoned
E26	94.70/2.70	Yes	Okay	Okay/ Okay	Okay	Okay	Okay		
E26A	26.00/2.70	Yes	Okay	Okay/ Okay	Okay	Okay	Okay		
E28A	35.1/-0.3	Yes	Okay	Okay/ Okay	Okay	Okay	Okay	FM	
E37A	25.4/-0.5	Yes	Okay	Okay/ Okay	Okay	Okay	Okay	FM	
FVD5	22.6/1.7	Yes	Okay	None/ Okay	Okay	Okay	Okay		
GM6D	109.4/-0.4	Yes	Okay	Okay/ see note	Okay	Okay	Okay	FM	
W. HURD	102.1/1.4	Yes	Okay	NA/ Okay	Okay	Okay	Okay		
IWD	NM								
MW10A	80.8/2.5	Yes	Okay	None/ Okay	Okay	Okay	Okay		
MW10B	40.7/2.9	Yes	Okay	None/ Okay	Okay	Okay	Okay		
WC3	164.1/2.1	Yes	Okay	Okay/ Okay	Okay	Okay	Okay		
WC3B	22.2/-0.3	Yes	Okay	Okay/ Okay	Okay	Okay	Okay	FM	
WC4	55.80/1.7	Yes	Okay	None/ Okay	Okay	Okay	Okay		
WC4A	20.7/1.6	Yes	Okay	Okay/ Okay	Okay	Okay	Okay		
WC5	55.8/1.7	Yes	Okay	None/ Okay	Okay	Okay	Okay		
WC5A	16.1/1.5	Yes	Okay	None/ Okay	Okay	Okay	Okay		
WC7	55.0/1.6	Yes	Okay	None/ Okay	Okay	Okay	Okay	ĺ	
WW4	34.9/-0.3	Yes	Okay	Okay/ Okay	Okay	Okay	Okay	FM	
WW6	40.1/1.5	Yes	Okay	None/ Okay	Okay	Okay	Okay		

MONITORING WELL INSPECTION SUMMARY WAUSAU WATER SUPPLY NPL SITE WAUSAU, WISCONSIN

Date recorded: November 13, 2012

Recorded by: Nick Evans, Nick Coady

	T			Т	· · · · · · · · · · · · · · · · · · ·		,		
	Total Depth	Well ID							
	from	Visible or	Casing &	Well Cap					
	TOC/Stickup	Tag	Grout	Condition		Concrete Seal	Ground Condition	Flush	
Well Name	(ft.)	Attached?	Condition	(inner/outer)	Lock Condition	Condition	(subsidence?)	Mount?	Comments
West Bank									
EW1									
CW6									
CW7									
CW9									
CW9 OBS	103.0/2.4	No	see note	see note	none	Okay	Okay		Inner casing preventing outer top from seating
CW10									<u> </u>
C2S	36.1/2.9	Yes	Okay	BP/ Okay	Okay	Okay	Okay		
C3S	40.7/3.2	Yes	Okay	Okay/ Okay	Okay	Okay	Okay		
C4S	35.1/3.1	Yes	Okay	Okay/ Okay	Okay	Okay	Okay		
C4D	100/2.9	Yes	Okay	Okay/ Okay	Okay	Okay	Okay		
C6S	41.4/2.5	Yes	Okay	None/ Okay	Okay	Okay	Okay	İ	
C7S	40.15/2.7	Yes	Okay	Okay/ Okay	Okay	Okay	Okay		
GM2S	34.5/-0.5	Yes	Okay	Okay/ see note	Okay	Okay	Okay	FM	Standing water inside vault needs new gasket
GM4D	54.1/1.6	Yes	Okay	None/ Okay	Okay	Okay	Okay		
MW1A	126.1/1.6	Yes	Okay	BP - Okay/ Okay	Okay	Okay	Okay		
MW3A	74.5/-0.3	Yes	Okay	Okay/ Okay	Okay	Okay	Okay	FM	
MW4A	100.1/-0.2	Yes	Okay	Okay/ Okay	Okay	Okay	Okay	FM	
MW4B	58.66/-0.4	Yes	Okay	Okay/ Okay	Okay	Okay	Okay	FM	
MW7	44.2/-0.4	Yes	Okay	Okay/ Okay	Okay	Okay	Okay	FM	
R1D	125.1/2.1	Yes	Okay	None/Okay	Okay	Okay	Okay		
R25	30.7/1.4	Yes	Okay	Okay/ Okay	Okay	Okay	Okay		
R2D	124.8/1.8	Yes	Okay	BP - Okay/ Okay	Okay	Okay	Okay	1	
R3S	26.8/2.6	Yes	Okay	Okay/ Okay	Okay	Okay	Okay	<u> </u>	
R3D	139.2/2.6	Yes	Okay	Okay/ Okay	Okay	Okay	Okay	†	
R4D	124.8/2.9	Yes	Okay	BP - Okay/ Okay	Okay	Okay	Okay		
W50	85.3/2.5	Yes	Okay	None/Okay	Okay	Okay	Okay.		
W52	116.2/2.5	Yes	Okay	BP - Okay/ Okay	Okay	Okay	Okay	İ	
W52A	38.2/2.5	Yes	Okay	Okay/ Okay	Okay	Okay	Okay		·-
W53	124.6/-0.6	Yes	Okay	BP/ Okay	Okay	Okay	Okay	FM	
W53A	36.2/-0.45	Yes	Okay	BP - Okay/Okay	Okay	Okay	Okay	FM	
W54	59.9/-0.2	Yes	Okay	Okay/ Okay	Okay	Okay	Okay	FM	

MONITORING WELL INSPECTION SUMMARY WAUSAU WATER SUPPLY NPL SITE WAUSAU, WISCONSIN

Date recorded: November 13, 2012

Recorded by: Nick Evans, Nick Coady

Well Name	Total Depth from TOC/Stickup (ft.)	Well ID Visible or Tag Attached?	Casing & Grout Condition	Well Cap Condition (inner/outer)	Lock Condition	Concrete Seal Condition	Ground Condition (subsidence?)	Flush Mount?	Comments
West Bank (cont	'd)								
W55	115.2/-0.9	Yes	Okay	BP-Okay/ Okay	Okay	Okay	Okay	FM	Old style flush mount, dirt in hole
W55A	NA	Yes	see note	BP-Okay/ Poor	Okay	Okay	Okay	FM	Old style flush mount, cap stuck on
W56	66.9/1.4	Yes	see note	Okay/ Okay	Okay	Okay	Okay	FM	<u> </u>
W57	74.8/-0.2	Yes	Okay	Okay/ Okay	Okay	Okay	Okay	FM	
WSWS	15.7/3.9	Yes	Okay	None/ Okay	Okay	Okay	Okay		
WSWD	140.8/2.8	Yes	Okay	BP-Okay/ Okay	Okay	Okay	Okay		

Notes:

BP - well contains a dedicated bladder pump

TABLE 3.2

EXTRACTION WELL EW1 PUMPING RATES 2012 WAUSAU WATER SUPPLY NPL SITE WAUSAU, WISCONSIN

	Elapsed Time			Average Flow
Date	(minutes)	Meter Reading	Total Flow (gallons)	Rate (gpm)
01/06/12		563,211,000		
02/02/12	38,712	580,777,000	17,566,000	454
03/02/12	41,733	596,972,000	16,195,000	388
04/02/12	44,744	610,066,000	13,094,000	293
05/04/12	46,181	619,496,915	9,430,915	204
05/25/12	30,140	626,196,915	6,700,000	222
07/02/12	54,477	635,098,915	8,902,000	163
07/16/12	20,591	638,260,915	3,162,000	154
	Total Gallons 2012	75,049,915	Average Flow 2012	271

Notes:

1st quarter - EW-1 was down for a total of 75 minutes for maintenance.
 2nd quarter - EW-1 was down for a total of 60 minutes for maintenance.
 3rd quarter - System shut down after July 16, 2012 for pump repair.
 No operation for the remainder of the quarter.

4th quarter - No operation this quarter.

WAUSAU WATER SUPPLY WELL PUMPING SUMMARY WAUSAU WATER SUPPLY NPL SITE WAUSAU, WISCONSIN

Hours indica		City Well	City Well	City Well	City Well	City Well	City Well
hours pump	_	#3	#6	#7	#9	#10	#11
month - Gall		"3	"0	",	" >	11 10	"**
indicates mil							
	Hours	338.9	400.3	284.1	54.4	279.7	54.7
January	Gallons	30.982	37.587	37.228	2.977	49.14	9.539
	gpm	1524	1565	2184	912	2928	2906
	Hours	315	375.2	306.8	193.1	306.4	0
February	Gallons	27.428	34.421	35.1	10.494	55.97	0
	gpm	1451	1529	1907	. 906	3044	
	Hours	337.1	401.6	342.8	210.1	289.4	56.7
March	Gallons	32.162	36.272	38.94	11.809	56.895	9.886
	gpm	1590	1505	1893	937	3277	2906
	Hours	267.5	440.1	279.7	215.2	188.4	162.6
April	Gallons	25.83	39.487	34.367	12.177	35.685	28.1
_	gpm	1609	1495	2048	943	3157	2880
	Hours	310.5	426.6	279.2	212.8	224.2	295.4
May	Gallons	28.935	37.92	34.433	12.781	42.291	51.152
	gpm	1553	1481	2055	1001	3144	2886
	Hours	363.9	349.7	361.2	311.8	186.3	290.6
June	Gallons	34.243	32.181	42.97	18.629	34.33	51.301
	gpm	1568	1534	1983	996	3071	2942
<u> </u>	Hours	315	424.6	430.4	338	220.9	333.4
July	Gallons	30.684	41.631	49.399	18.913	41.65	56.458
	gp <u>m</u>	1623	1634	1913	933	3142	2822
	Hours	381.5	357.9	346.7	305.6	252.4	259. <i>7</i>
August	Gallons	36.702	35.092	39.78	16.486	45.896	44.37
	gpm	1603	1634	1912	899	3031	2848
	Hours	360.9	354.6	322.7	274.6	214.2	233.2
September	Gallons	35.276	35.092	37.143	14.841	40.474	40.691
_	gpm	1629	1649	1918	901	3149	2908
	Hours	315.2	420.2	139.4	102.1	197.9	148.4
October	Gallons	29.697	41.531	16.382	5.549	38.82	25.751
	gpm	1570	1647	1959	906	3269	2892
	Hours	373.8	311.62	190.1	42.5	66	57.8
November	Gallons	39.374	31.321	22.217	1.746	11.397	9.968
	gpm	1 7 56	1675	1948	685	2878	2874
	Hours	359	380.7	182.2	27.8	60.2	93.2
December	Gallons	35.265	37.37	22.506	1.511	12.106	16.591
	gpm	1637	1636	2059	906	3352	2967
Average gpn	n:	1595	1579	1974	932	3115	2886

SUMMARY OF NOVEMBER 2012 LABORATORY RESULTS WAUSAU WATER SUPPLY NPL SITE WAUSAU, WISCONSIN

Location	Date	MCL	T/S · Acetone	7/8 Senzene	高 200 Ethylbenzene	ng/L	Toom Xylenes (total)	sənəlkx-dəm 0000 L	n Noor Sylene	සි පී Chloroform (Trichloromethane)	୍ରି ଦ Carbon tetrachloride	୍ଥି ଦ Methylene chloride	ë ∽ 1,1-Dichloroethene	୍ଦି ଦ 1,1,2-Trichloroethane	हैं G Tetrachloroethene	हैं 5 Trichloroethene	S S cis-1,2-Dichloroethene	S vinyl chloride	है Total Chlorinated VOCs
West Bank			,														-		
CW6	11/14/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	3.92	< 1.0	< 1.0	3.92
C2S	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	ND
C4S	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.24	< 1.0	< 1.0	1.24
MW1A	11/14/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	ND
R2D	11/14/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	6.38	< 1.0	< 1.0	6.38
R3D	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	20.6	< 1.0	< 1.0	20.6
R3D	11/13/2012	D	< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	20.7	< 1.0	< 1.0	20.7
R4D	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	4.89	< 1.0	< 1.0	4.89
W52	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	ND
W52	11/13/2012	D	< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.03	< 1.0	< 1.0	1.03
W53A	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.67	< 1.0	< 1.0	< 1.0	< 1.0	54.2	2.25	< 1.0	58.12
W54	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	ND
W55	11/14/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	4.92	< 1.0	< 1.0	4.92
W56	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	ND
WSWD	11/14/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	ND

TABLE 4.1 Page 2 of 2

SUMMARY OF NOVEMBER 2012 LABORATORY RESULTS WAUSAU WATER SUPPLY NPL SITE WAUSAU, WISCONSIN

Location	Date	MCL	7 . Acetone	onzene 2 Benzene	n 0 Ethylbenzene 7 0 Ethylbenzene	n8/L 1000 Toluene	R Month (1991)	10000 m&p-Xylenes	ng/L 10000 -Xylene	සී පී Chloroform (Trichloromethane)	ಕ್ಷ ೧ Carbon tetrachloride	ಕ್ಷ ೧ Methylene chloride	្គី 1,1-Dichloroethene	हैं ज 1,1,2-Trichloroethane	ू ऽ Tetrachloroethene	हैं G Trichloroethene	🛱 & cis-1,2-Dichloroethene	n S Vinyl chloride	ক্ল Total Chlorinated VOCs
East Bank																			
CW3	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.48	< 1.0	1.10	< 1.0	3.58
E22A	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	17.9	< 1.0	7.51	< 1.0	25.41
E23A	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	41.0	7.80	35.8	1.92	86.52
E24AR	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.84	< 1.0	1.02	< 1.0	3.86
E24AR	11/13/2012	D	< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.72	< 1.0	< 1.0	< 1.0	2.72
E37A	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	22.8	6.87	36.7	1.69	68.06
FVD5	11/13/2012		< 10	20.0	190	11.2	380	277	104	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.15	< 1.0	< 1.0	< 1.0	2.15
MW10A	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	ND
MW10B	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	ND
WC3B	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	3.47	< 1.0	< 1.0	< 1.0	3.47
WC5A	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.30	< 1.0	< 1.0	< 1.0	1.3
WW4	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	ND
WW6	11/13/2012		< 10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	7.67	3.30	31.3	3.21	45.48

Notes:

Units - ug/L

MCL - Maximum Contaminant Levels for drinking water published by the United States Environmental Protection Agency

VOCs - Volatile organic compounds

D - Duplicate Sample

J - Estimated value, below the reporting limit

ND - All VOCs were less than the reporting limit.

- Shaded values exceed the MCL.

TABLE 4.2 Page 1 of 1

EW1 LABORATORY RESULTS - 2012 WAUSAU WATER SUPPLY NPL SITE WAUSAU, WISCONSIN

	MCL	Acetone	c Benzene	o Ethylbenzene	1,000 Toluene	000 Xylenes (total) Carbon tetrachloride		08 (c) Chloroform	✓ 1,1-Dichloroethene	51 Methylene chloride	ы 1,1,2-Trichloroethane	ч Tetrachloroethene	ч Trichloroethene	S cis-1,2-Dichloroethene	⊳ Vinyl chloride
Location	Date														
							•								
Influent	02/02/12	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	7.1	< 1	< 1
Influent	06/13/12	< 10	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	9.9	0.45 J	< 1
						1									
Effluent	02/02/12	< 10	< 1	< 1	< 1	< 1	< 1	0.67 J	< 1	< 1	< 1	< 1	2.9	< 1	< 1
Effluent	06/13/12	< 10	< 1	< 1	< 1	< 1	< 1	0.63 J	< 1	< 1	< 1	< 1	4.0	0.26 J	< 1
Surface W	ater Discharge	Limit						29,000					41,000	none	

Notes:

Units - ug/L

MCL - USEPA Maximum Contaminant Level for drinking water.

J - Estimated value, below the reporting limit and above the detection limit

(1) MCL for total trihalomethanes

Influent and effluent samples collected in 1st and 2nd quarters 2012

APPENDIX A

E24AR WELL LOG

STRATIGRAPHIC AND INSTRUMENTATION LOG (OVERBURDEN)

Page 1 of 1

PROJECT NAME: Wausau Water Supply NPL Site

PROJECT NUMBER: 3978

CLIENT: PRP Group

LOCATION: Wausau, Wisconsin

HOLE DESIGNATION: E24AR

DATE COMPLETED: August 16, 2012

DRILLING METHOD: Rotosonic FIELD PERSONNEL: R. Field

SAMPLE **DEPTH** DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS Monitoring Well ft BGS ft BGS (PPM) INTERVAL NUMBER € REC PID (Topsoil, silty, with sand, trace gravel, brown, 1.10 dry to moist - 2 FILL, mixed sand and gravel, with silt, light 0 4.0 1 reddish brown, dry 4.00 SP-SAND, with gravel, fine grained, trace silt, light reddish brown, moist 6 5.0 0 2 9.00 GC-Gravel and Cobbles, clayey, cobble and 10 10.00 2" PVC gravel fragments, whitish pink, slow drilling, the Casing sample is hot to the touch, dry to moist 11.50 12 SP-SAND, with gravel and cobbles, fine to 3 5.0 0 medium grained, dark reddish brown, moist 14 GC-Gravel and Cobbles, clayey, gravel and cobble fragments, whitish pink, slow drilling, Bentonite moist Chips 16 17 00 SP-SAND, gravelly, fine to medium grained, 5.0 0 4 17.80 18 light reddish brown, moist 19.00 GC-Gravel and Cobbles, clayey, gravel and 19.50 20 6" Diameter cobble fragments, whitish pink, slow drilling, Borehole -22 SP-SAND, gravelly, fine to medium grained, light reddish brown, moist to saturated -24 -with gravel -26 Sand 5 7.0 0 28 28.00 SP-SAND, fine to medium grained, trace silt, light reddish brown, saturated -30 2" PVC Screen -32 -34 34.00 SM-SAND, with silt, with gravel, fine grained, 35.00 dark reddish brown, saturated **WELL DETAILS** -36 END OF BOREHOLE @ 35.0ft BGS Screened Interval: 9/17/12 24.50 to 34.50ft BGS -38 Length: 10ft Diameter: 2in 5 40 Slot Size: #10 Material: PVC 42 Seal: 2.00 to 21.50ft BGS ₽ Material: Bentonite Chips **⊢44** Sand Pack: 003978.GPJ 21.50 to 35.00ft BGS Material: Sand -46 48 **ERBURDEN** NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO CURRENT ELEVATION TABLE

APPENDIX B

LABORATORY REPORTS AND DATA QUALITY VALIDATION MEMORANDA

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica North Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

TestAmerica Job ID: 240-8258-1 Client Project/Site: 3978, Wausau

For:

Conestoga-Rovers & Associates, Inc. 1801 Old Highway 8 NW Suite 114 St. Paul, Minnesota 55112

Attn: Mr. Grant Anderson

Authorized for release by: 2/13/2012 9:34:28 AM

Denise Heckler
Project Manager II
denise.heckler@testamericainc.com

lenuse DHeckler

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
	7
•	8
Surrogate Summary	11
QC Sample Results	12
	13
Lab Chronicle	14
Certification Summary	15
Chain of Custody	16
Receipt Checklists	19

Definitions/Glossary

Client: Conestoga-Rovers & Associates, Inc.

Toxicity Equivalent Quotient (Dioxin)

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-8258-1

Qualifiers

GC/MS	VOA
-------	-----

Qualifier	Qualifier Description
Ū	Indicates the analyte was analyzed for but not detected.
1	Begult is long than the BL but greater then or equal to the MDL and the concentration is an approximate value

Glossary

TEQ

Ciossaiy	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
❖	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL ·	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

Case Narrative

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-8258-1

Job ID: 240-8258-1

Laboratory: TestAmerica North Canton

Narrative

CASE NARRATIVE

Client: Conestoga-Rovers & Associates, Inc.

Project: 3978, Wausau

Report Number: 240-8258-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

RECEIPT

The samples were received on 02/03/2012; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 2.0 C.

VOLATILE ORGANIC COMPOUNDS (GC-MS).

Samples 02022012-01 (240-8258-1), 02022012-02 (240-8258-2) and TRIP BLANK (240-8258-3) were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 02/09/2012.

No difficulties were encountered during the VOCs analyses.

All quality control parameters were within the acceptance limits.

Method Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-8258-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL NC

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NC = TestAmerica North Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-8258-1

Lab Sample ID	Client Sample ID)	Matrix	Collected	Received
240-8258-1	02022012-01	Effluent	Water	02/02/12 10:10	02/03/12 09:20
240-8258-2	02022012-02	Influent	Water	02/02/12 10:15	02/03/12 09:20
240-8258-3	TRIP BLANK		Water	02/02/12 00:00	02/03/12 09:20

Detection Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-8258-1

Lab	Sample	ID:	240-8258-1

Client Sample ID: 02022012-01																																	·····								L	_at	Sample	D: 240-8258-1
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type																																			
Chloroform	0.67	J	1.0	0.16	ug/L	1	_	8260B	Total/NA																																			
Trichloroethene	2.9		1.0	0.17	ug/L	1		8260B	Total/NA																																			

Client Sample ID: 02022012-02		Lab Sample i	D: 240-8258-2	
Γ	5 " 4 "°	 	 	

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Trichloroethene	7.1		1.0	0.17	ug/L	1	_	8260B	Total/NA

Client Sample ID: TRIP BLANK Lab Sample ID: 240-8258-									
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	2.0	J	10	1.1	ug/L	1		8260B	Total/NA

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-8258-1

Client Sample ID: 02022012-01 Lab Sample ID: 240-8258-1

Date Collected: 02/02/12 10:10 Date Received: 02/03/12 09:20 Effluent Matri

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.27	ug/L			02/09/12 16:45	1
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			02/09/12 16:45	1
Acetone	10	U	10	1.1	ug/L			02/09/12 16:45	1
Benzene	1.0	Ū	1.0	0.13	ug/L			02/09/12 16:45	1
Carbon tetrachloride	1.0	U	1.0	0.13	ug/L			02/09/12 16:45	1
Chloroform	0.67	J	1.0	0.16	ug/L			02/09/12 16:45	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.17	ug/L			02/09/12 16:45	1
Ethylbenzene	1.0	U	1.0	0.17	ug/L			02/09/12 16:45	1
Methylene Chloride	1.0	U	1.0	0.33	ug/L			02/09/12 16:45	1
Tetrachloroethene	1.0	U .	1.0	0.29	ug/L			02/09/12 16:45	1
Toluene	1.0	U	1.0	0.13	ug/L			02/09/12 16:45	1
Trichloroethene	2.9		1.0	0.17	ug/L			02/09/12 16:45	1
Vinyl chloride	1.0	U	1.0	0.22	ug/L			02/09/12 16:45	1
Xylenes, Total	1.0	U	1.0	0.28	ug/L			02/09/12 16:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		63 - 129			-		02/09/12 16:45	
4-Bromofluorobenzene (Surr)	88		66 - 117					02/09/12 16:45	1
Toluene-d8 (Surr)	99		74 - 115					02/09/12 16:45	1
Dibromofluoromethane (Surr)	90		75 _ 121					02/09/12 16:45	1

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-8258-1

Client Sample ID: 02022012-02

Date Collected: 02/02/12 10:15

Influent

Lab Sample ID: 240-8258-2

Matrix: Water

Date Received: 02/03/12 09:20

Analyte	Result	Qualifier	RL.	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.27	ug/L			02/09/12 17:08	1
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			02/09/12 17:08	1
Acetone	10	U	10	1.1	ug/L			02/09/12 17:08	1
Benzene	1.0	Ü	1.0	0.13	ug/L			02/09/12 17:08	1
Carbon tetrachloride	1.0	U	1.0	0.13	ug/L			02/09/12 17:08	1
Chloroform	1.0	U	1.0	. 0.16	ug/L			02/09/12 17:08	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.17	ug/L			02/09/12 17:08	1
Ethylbenzene	1.0	U	1.0	0.17	ug/L			02/09/12 17:08	1
Methylene Chloride	1.0	U	1.0	0.33	ug/L			02/09/12 17:08	1
Tetrachloroethene	1.0	Ū	1.0	0.29	ug/L			02/09/12 17:08	1
Toluene	1.0	U	1.0	0.13	ug/L			02/09/12 17:08	1
Trichloroethene	7.1		1.0	0.17	ug/L			02/09/12 17:08	1
Vinyl chloride	1.0	Ü	1.0	0.22	ug/L			02/09/12 17:08	1
Xylenes, Total	1.0	U	1.0	0.28	ug/L			02/09/12 17:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		63 - 129			_		02/09/12 17:08	1
4-Bromofluorobenzene (Surr)	88		66 - 117					02/09/12 17:08	1
Toluene-d8 (Surr)	. 98		74 - 115					02/09/12 17:08	1
Dibromofluoromethane (Surr)	92		75 - 121					02/09/12 17:08	1

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-8258-1

Lab Sample ID: 240-8258-3

Matrix: Water

Client Sample ID: TRIP BLANK

Date Collected: 02/02/12 00:00 Date Received: 02/03/12 09:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.27	ug/L			02/09/12 17:30	1
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			02/09/12 17:30	1
Acetone	2.0	J	10	1.1	ug/L			02/09/12 17:30	1
Benzene	1.0	Ü	1.0	0.13	ug/L			02/09/12 17:30	1
Carbon tetrachloride	1.0	U	1.0	0.13	ug/L			02/09/12 17:30	1
Chloroform	1.0	U	1.0	0.16	ug/L			02/09/12 17:30	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.17	ug/L			02/09/12 17:30	1
Ethylbenzene	1.0	U	1.0	0.17	ug/L			02/09/12 17:30	1
Methylene Chloride	1.0	U	1.0	0.33	ug/L			02/09/12 17:30	1
Tetrachloroethene	1.0	Ü	1.0	0.29	ug/L			02/09/12 17:30	1
Toluene	1.0	υ	1.0	0.13	ug/L			02/09/12 17:30	1
Trichloroethene	1.0	υ	1.0	0.17	ug/L			02/09/12 17:30	1
Vinyl chloride	1.0	U	1.0	0.22	ug/L			02/09/12 17:30	1
Xylenes, Total	1.0	U	1.0	0.28	ug/L			02/09/12 17:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89		63 - 129			_		02/09/12 17:30	1
4-Bromofluorobenzene (Surr)	84	,	66 - 117					02/09/12 17:30	1
Toluene-d8 (Surr)	98		74 - 115					02/09/12 17:30	1
Dibromofluoromethane (Surr)	91		75 - 121					02/09/12 17:30	1

Surrogate Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-8258-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)					
		12DÇE	BFB	TOL	DBFM		
Lab Sample ID	Client Sample ID	(63-129)	(66-117)	(74-115)	(75-121)		
240-8258-1	02022012-01	89	88	99	90		
240-8258-2	02022012-02	93	88	98	92		
240-8258-3	TRIP BLANK	89	84	98	91		
LCS 240-33269/4	Lab Control Sample	86	106	102	89		
MB 240-33269/5	Method Blank	84	95	99	87		

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

QC Sample Results

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-8258-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-33269/5

Matrix: Water

Analysis Batch: 33269

Client Sample ID: Method Blank Prep Type: Total/NA

	МВ	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.27	ug/L			02/09/12 09:55	1
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			02/09/12 09:55	1
Acetone	10	U	10	1.1	ug/L			02/09/12 09:55	1
Benzene	1.0	Ü	1.0	0.13	ug/L			02/09/12 09:55	1
Carbon tetrachloride	1.0	U	1.0	0.13	ug/L			02/09/12 09:55	1
Chloroform	1.0	U	1.0	0.16	ug/L			02/09/12 09:55	1
cis-1,2-Dichloroethene	1.0	Ü	1.0	0.17	ug/L			02/09/12 09:55	1
Ethylbenzene	1.0	U	1.0	0.17	ug/L			02/09/12 09:55	1
Methylene Chloride	1.0	U	1.0	0.33	ug/L			02/09/12 09:55	1
Tetrachloroethene	1.0	Ü	1.0	0.29	ug/L			02/09/12 09:55	1
Toluene	1.0	U	1.0	0.13	ug/L			02/09/12 09:55	1
Trichloroethene	1.0	U	1.0	0.17	ug/L			02/09/12 09:55	1
Vinyl chloride	1.0		1.0	0.22	ug/L			02/09/12 09:55	1
Xylenes, Total	1.0	U	1.0	0.28	ug/L			02/09/12 09:55	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fa	C
1,2-Dichloroethane-d4 (Surr)	84		63 - 129		02/09/12 09:55		1
4-Bromofluorobenzene (Surr)	95		66 - 117		02/09/12 09:55		1
Toluene-d8 (Surr)	99		74 - 115		02/09/12 09:55		1
Dibromofluoromethane (Surr)	87		75 - 121	 	02/09/12 09:55		1

Lab Sample ID: LCS 240-33269/4

Matrix: Water

Analysis Batch: 33269

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier %Rec Limits Unit 1,1,2-Trichloroethane 10.0 9.95 ug/L 100 80 _ 112 10.0 101 78 _ 131 1,1-Dichloroethene 10.1 ug/L Acetone 20.0 20.0 ug/L 100 43 _ 136 10.0 9.19 92 83 - 112 Benzene ug/L Carbon tetrachloride 10.0 9.97 ug/L 100 66 - 128 10.0 9.86 ug/L 99 79 - 117 Chloroform cis-1,2-Dichloroethene 10.0 9.08 ug/L 91 80 - 113 10.0 9.78 98 83 - 112 Ethylbenzene ug/L m-Xylene & p-Xylene 20.0 19.1 ug/L 96 83 - 113 Methylene Chloride ug/L 104 66 - 131 10.0 10.4 o-Xylene 10.0 9.26 ug/L 93 83 - 113 Tetrachloroethene 10.0 9.51 ug/L 95 79 - 114 84 - 111 Toluene 10.0 10.2 ug/L 102 Trichloroethene 10.0 8.85 ug/L 89 76 _ 117 10.0 8.60 86 53 - 127 Vinyl chloride ug/L

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	86		63 - 129
4-Bromofluorobenzene (Suπ)	106		66 - 117
Toluene-d8 (Surr)	102		74 - 115
Dibromofluoromethane (Surr)	89		75 - 121

QC Association Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-8258-1

GC/MS VOA

Analysis Batch: 33269

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-8258-1	02022012-01	Total/NA	Water	8260B	
240-8258-2	02022012-02	Total/NA	Water	8260B	
240-8258-3	TRIP BLANK	Total/NA	Water	8260B	
LCS 240-33269/4	Lab Control Sample	Total/NA	Water	8260B	*****
MB 240-33269/5	Method Blank	Total/NA	Water	8260B	

TestAmerica North Canton 2/13/2012

Lab Chronicle

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-8258-1

Client Sample ID: 02022012-01

Date Collected: 02/02/12 10:10 Date Received: 02/03/12 09:20 Lab Sample ID: 240-8258-1

Matrix: Water

Matrix: Water

Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Total/NA Analysis 8260B 33269 02/09/12 16:45 LE TAL NC

Dilution

Factor

Run

Batch

33269

02/09/12 17:08

Number

Client Sample ID: 02022012-02

Batch

Туре

Analysis

Batch

Method

8260B

Date Collected: 02/02/12 10:15

Date Received: 02/03/12 09:20

Prep Type

Total/NA

Lab Sample ID: 240-8258-2

Prepared
or Analyst Lab

Client Sample ID: TRIP BLANK

Date Collected: 02/02/12 00:00

Date Received: 02/03/12 09:20

Lab Sample ID: 240-8258-3

TAL NC

Matrix: Water

Batch Batch Dilution Batch Prepared or Analyzed Prep Type Method Factor Number Type Run Analyst Lab TAL NC Total/NA Analysis 8260B 33269 02/09/12 17:30 LE

Laboratory References:

TAL NC = TestAmerica North Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Certification Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-8258-1

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica North Canton	ACLASS	DoD ELAP		ADE-1437
TestAmerica North Canton	California	NELAC	9	01144CA
TestAmerica North Canton	Connecticut	State Program	1	PH-0590
TestAmerica North Canton	Florida	NELAC	4	E87225
TestAmerica North Canton	Georgia	Georgia EPD	4	N/A
TestAmerica North Canton	Illinois	NELAC	5	200004
TestAmerica North Canton	Kansas	NELAC	7	E-10336
TestAmerica North Canton	Kentucky	State Program	4	58
TestAmerica North Canton	Minnesota	NELAC	5	039-999-348
TestAmerica North Canton	Nevada	State Program	9	OH-000482008A
TestAmerica North Canton	New Jersey	NELAC	2	OH001
TestAmerica North Canton	New York	NELAC	2	10975
TestAmerica North Canton	Ohio	OVAP	5	CL0024
TestAmerica North Canton	Pennsylvania	NELAC	3	68-00340
TestAmerica North Canton	USDA	USDA		P330-11-00328
TestAmerica North Canton	Virginia	NELAC Secondary AB	3	460175
TestAmerica North Canton	Washington	State Program	10	C971
TestAmerica North Canton	West Virginia	West Virginia DEP	3	210
TestAmerica North Canton	Wisconsin	State Program	5	999518190

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

TestAmerica North Canton 2/13/2012

Ghain of Custody Record TestAmerica Laboratory location: Regulatory program: ■ NPDES Client Contact TestAmerica Laboratories, Inc. Site Contact: Client Project Manager: Lab Contact: Lee Bergmann Telephone: COCs 715675 8104 Analysis Turnaround Time lee.bergmanne (in BUS days) Analyses regalbeloit.com 2 weeks Ś Project Number: lob/SDG/No 2 days PO# Matrix Containers & Preservatives Sample Specific Notes / NaOH 11N03 ZnAc/ NaOH Special Instructions: . Ā Sample Date | Sample Time Sample Identification 02022012-01 2.2.12 Effluent 10:10A NG NG Effluent 02022012-01 10:104 10:100 NG Effluent 02022012-01 NG 02022012-02 10:15A NG 02027012-02 10:154 NB 02027012-02 10:154 Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Flammable Skin Irritant Poison B Unknown Return to Client Disposal By Lab Special Instructions/QC Requirements & Comments: RBC Manuf Date/Time: Received by: Company: Date/Time: 02.02.12 Received by: Date/Time: Company: Relinquished by: Received in Laboratory by: Date/Time: Date/Time:

©2008, TestAmerica Laborstories, Inc. 'All rights reserved.
TestAmerica & Design ™ ore trademarks of TestAmerica Embaratories, Inc.

2/13/2012

23-(2 928 TAL 0018-1 (04/10)

TALL

TestAmerica Cooler Receipt Form/Narrative	Lot Number:	8258
North Canton Facility	•	
Client Project	By:	
Cooler Received on 2-3-12 Opened on 72-73-12		(Signature)
FedEX UPS DHL FAS Stetson Client Drop Off TestAmerica Courier	Other	
TestAmerica Cooler # Multiple Coolers Foam Box Clien	of Coolen Other	
1. Were custody seals on the outside of the cooler(s)? (Yes) No	Intact? (Yes No	NA
If YES, QuantityQuantity Unsalvageable		
Were custody seals on the outside of cooler(s) signed and dated?	Yes No	NA
Were custody seals on the bottle(s)?	Yes to	
If YES, are there any exceptions?		e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la co
2. Shippers' packing slip attached to the cooler(s)?	Yes No	
3. Did custody papers accompany the sample(s)? Yes No R	elinguished by client	?⊁es No
4. Were the custody papers signed in the appropriate place?	Yes) No	
5 Packing material used: Bubble Wrap Foam None Other		
6. Cooler temperature upon receipt 2.0 °C See back of form for	or multiple coolers/te	mps
METHOD: (R) Other		
COOLANT: Wet Ice Blue Ice Dry Ice Water None		
7. Did all bottles arrive in good condition (Unbroken)?	(Yes No	
8. Could all bottle labels be reconciled with the COC?	₹ES No	
9. Were sample(s) at the correct pH upon receipt?	Yes No	(NA)
10. Were correct bottle(s) used for the test(s) indicated?	Xes No	
11. Were air bubbles >6 mm in any VOA vials?	Yes ONo	NA
12. Sufficient quantity received to perform indicated analyses?	(es No	
13. Was a trip blank present in the cooler(s)? (Yes) No Were VOAs on	the COC? (Yes) N	o
Contacted PM Date by	via Verbal Voice	Mail Other
Concerning Date by		
Concerning 14. CHAIN OF CUSTODY	The street with	
The following discrepancies occurred:		
		A STATE OF THE STA
Recid (x40 TB nef a	m 101	May be a subjection
Lector 10 10 not	OF COC DUIL	105
The state of the s		1
15. SAMPLE CONDITION		
Sample(s) were received after the		
Sample(s)		n a broken container.
	n bubble >6 mm in d	liameter. (Notify PM)
16. SAMPLE PRESERVATION		
	vere further preserve	
Receiving to meet recommended pH level(s). Nitric Acid Lot# 110410-HNO3; St	ilituric Acid Lot# U4191	1-H ₂ SO ₄ , Sodium
Hydroxide Lot# 121809 -NaOH; Hydrochloric Acid Lot# 041911-HCl; Sodium Hydro (CH₃COO)₂ZN/NaOH. What time was preservative added to sample(s)?	xiuo ariu ziric Acetate t	-0th 100100-
		Date Initials
Client ID pH		-ute militais
1 · · · · · · · · · · · · · · · · · · ·		-

Client ID	/ <u>H</u> q	<u>Date</u>	<u>Initia</u>
Client ID			
		·	
	-		
			· ·
		 	<u> </u>
		 	
			
		 	
		 	
·	·		
			
			
			ļ
			ļ
		·	
			· ·
Cooler#	Temp. °C	Method	Coolar
		· · · · · · · · · · · · · · · · · · ·	7 4 4 7 7 7
		<u> </u>	
· .			

Login Sample Receipt Checklist

Client: Conestoga-Rovers & Associates, Inc.

Job Number: 240-8258-1

Login Number: 8258

List Source: TestAmerica North Canton

List Number: 1 Creator: Sutek, Nick

nswer /A rue	Comment
rue	
riio	
ue	
rue	·
rue	
rue	2.0
rue	
ue	
rue	
rue	
rue	
ue	
/ A	
	rue rue rue rue rue rue rue rue rue rue

1801 Old Highway 8 NW, Suite #114 St. Paul, Minnesota 55112

Telephone: (651) 639-0913 Fax

www.CRAworld.com

Fax: (651) 639-0923

MEMORANDUM

To:

Chuck Ahrens, CRA

REF. No.:

003978-10

FROM:

Grant Anderson/sb/15

DATE:

February 16, 2012

ISO 9001

CC:

Analytical Data File

RE:

Data Quality Assessment

February 2, 2012 Sampling Event

Wausau Superfund Site - Wausau, Wisconsin

The following details a data quality assessment for water samples collected February 2, 2012, at the Wausau Superfund Site in Wausau, Wisconsin. The samples identified as 02022012-01 (Effluent) and 02022012-02 (Influent) were analyzed for Site list volatile organic compounds (VOCs)¹. The analyses were performed by TestAmerica Laboratories, Inc. (TestAmerica) in North Canton, Ohio. The quality assurance criteria were defined by the quality assurance project plan (QAPP)².

HOLDING TIME PERIOD

The holding time period for VOC analyses is 14 days from sample collection to completion of analyses. On the basis of the sample collection date on the chain-of-custody form and analysis dates on the analytical report provided by TestAmerica, the analyses were completed within the specified holding time period.

SURROGATE COMPOUND PERCENT RECOVERIES (SURROGATE RECOVERIES)

Individual sample performance for VOC analyses was monitored using surrogate recoveries. The surrogate recoveries were within acceptance criteria, indicating that individual sample performance was adequate.

METHOD BLANK SAMPLE

Contamination of samples contributed by laboratory conditions or procedures was monitored by the concurrent preparation and analysis of a method blank sample. The method blank sample was reported to

VOC Method 8260B was derived from "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition, November 1986 and updates.

Application of quality assurance criteria was consistent with "National Functional Guidelines for Organic Data Review", October 1999.

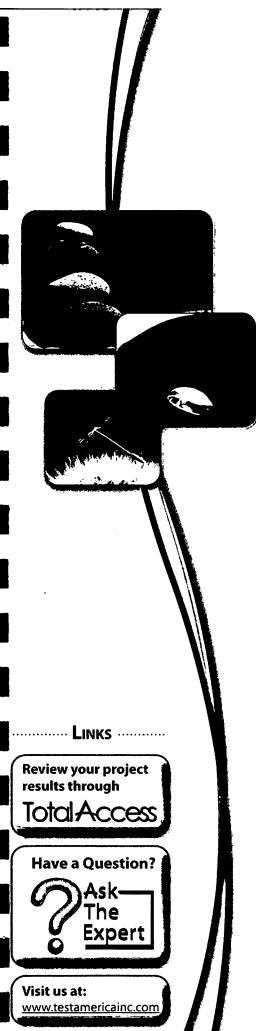
be free from detectable concentrations of target analytes, indicating that laboratory contamination was unlikely.

LABORATORY CONTROL SAMPLE/LABORATORY CONTROL SAMPLE DUPLICATE (LCS/LCSD)

Overall performance of the analyses was monitored by means of LCS/LCSD data. The LCS recovery and RPD data for the analyses were within control limits criteria, indicating that overall performance was adequate.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) RESULTS

To assess the long-term accuracy and precision of the analytical method on various matrices, matrix spike percent recoveries and relative percent difference (RPD) of the spike recoveries were determined for the analyses. Since the MS/MSD spike sample data were derived from a non-project sample, no evaluation of accuracy or precision was made based on the MS/MSD data.


FIELD QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) SAMPLES

The field QA/QC associated with the sampling event consisted of a trip blank sample.

To evaluate the possibility of contamination arising from sample transport, the environment, and/or shipping, a trip blank sample was submitted to the laboratory for VOC analysis. The trip blank yielded a detection of acetone (2.0 ug/l). However, the associated samples were reported to be free from detectable concentrations of acetone; therefore, no qualification of data was necessary based on trip blank contamination.

OVERALL ASSESSMENT

The data were found to exhibit acceptable levels of accuracy and precision and may be used without qualification.

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

TestAmerica Job ID: 240-12309-1 Client Project/Site: 3978, Wausau

For:

Conestoga-Rovers & Associates, Inc. 1801 Old Highway 8 NW Suite 114 St. Paul, Minnesota 55112

Attn: Mr. Grant Anderson

Authorized for release by: 6/22/2012 9:22:03 AM

Denise Heckler Project Manager II denise.heckler@testamericainc.com

Jenuse DHeckler

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
	4
Method Summary	5
	6
	7
·	8
Surrogate Summary	11
QC Sample Results	12
	14
Lab Chronicle	15
Certification Summary	16
Chain of Custody	17
	20

Definitions/Glossary

Client: Conestoga-Rovers & Associates, Inc.

TestAmerica Job ID: 240-12309-1

Client: Conest	oga-Rovers & Associates, Inc.	TestAmerica Job ID: 240-12309-1	_
Project/Site: 39	378, Wausau		()
Qualifiers			I
GC/MS VOA			Ī
Qualifier	Qualifier Description		1
υ	Indicates the analyte was analyzed for but not detected.		Γ
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.		Ľ
*	LCS or LCSD exceeds the control limits		• " •
F	MS or MSD exceeds the control limits		11
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		[/
\(\phi \)	Listed under the "D" column to designate that the result is reported on a dry weight basis		Ē
%R	Percent Recovery		1
CNF	Contains no Free Liquid		
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample		5
EDL	Estimated Detection Limit		
EPA	United States Environmental Protection Agency		•
MDL	Method Detection Limit		_
ML	Minimum Level (Dioxin)		- [4
ND	Not detected at the reporting limit (or MDL or EDL if shown)		
PQL	Practical Quantitation Limit		14
QC	Quality Control		Ľ
RL	Reporting Limit		16
RPD	Relative Percent Difference, a measure of the relative difference between two points		l
TEF	Toxicity Equivalent Factor (Dioxin)		T
TEQ	Toxicity Equivalent Quotient (Dioxin)		L

Case Narrative

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-12309-1

Job ID: 240-12309-1

Laboratory: TestAmerica Canton

Narrative

CASE NARRATIVE

Client: Conestoga-Rovers & Associates, Inc.

Project: 3978, Wausau

Report Number: 240-12309-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

TestAmerica North Canton attests to the validity of the laboratory data generated by TestAmerica facilities reported herein. All analyses performed by TestAmerica facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. TestAmerica's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

All solid sample results are reported on an "as received" basis unless otherwise indicated by the presence of a % solids value in the method header.

This laboratory report is confidential and is intended for the sole use of TestAmerica and its client.

RECEIPT

The samples were received on 06/14/2012; the samples arrived in good condition, properly preserved and on ice. The temperature of the cooler at receipt was 0.8 C.

VOLATILE ORGANIC COMPOUNDS (GC-MS)

Samples 061312-01 INFLUENT (240-12309-1), 061312-02 EFFLUENT (240-12309-2) and TRIP BLANK (240-12309-3) were analyzed for volatile organic compounds (GC-MS) in accordance with EPA SW-846 Method 8260B. The samples were analyzed on 06/21/2012.

The laboratory control sample (LCS) for batch 48209 exceeded control limits for Tetrachloroethene. This analyte was biased high in the LCS and was not detected in the associated samples; therefore, the data have been reported.

No other difficulties were encountered during the VOCs analyses.

All other quality control parameters were within the acceptance limits.

Method Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-12309-1

[]

 Method
 Method Description
 Protocol
 Laboratory

 8260B
 Volatile Organic Compounds (GC/MS)
 SW846
 TAL NC

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL NC = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

Sample Summary

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-12309-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
240-12309-1	061312-01 INFLUENT	Water	06/13/12 13:00	06/14/12 09:00
240-12309-2	061312-02 EFFLUENT	Water	06/13/12 13:10	06/14/12 09:00
240-12309-3	TRIP BLANK	Water	06/13/12 00:00	06/14/12 09:00

Detection Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-12309-1

いた。

13. **C** C

Client Sample ID: 061312-01 INFLUENT	Lab Sample ID: 240-12309-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	0.45	J	1.0	0.17	ug/L	1		8260B	Total/NA
Trichloroethene	9.9		1.0	0.17	ug/L	1		8260B	Total/NA

Client Sample ID: 061312-02 EFFLUENT Lab Sample ID: 240-12309-2

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloroform	0.63 J	1.0	0.16	ug/L	1		8260B	Total/NA
cis-1,2-Dichloroethene	0.26 J	1.0	0.17	ug/L	1		8260B	Total/NA
Trichloroethene	4.0	1.0	0.17	ug/L	1		8260B	Total/NA

Client	Sample ID: TRIP BLANK	Lab Sample ID: 240-12309-3
		· · · · · · · · · · · · · · · · · · ·

No Detections

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-12309-1

Lab Sample ID: 240-12309-1

Matrix: Water

Client Sample ID: 061312-01 INFLUENT

Date Collected: 06/13/12 13:00 Date Received: 06/14/12 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.27	ug/L			06/21/12 06:05	1
1,1-Dichloroethene	1.0	U	1.0	0.19	ug/L			06/21/12 06:05	1
Acetone	10	U	10	1.1	ug/L			06/21/12 06:05	1
Benzene	1.0	Ü	1.0	0.13	ug/L			06/21/12 06:05	1
Carbon tetrachloride	1.0	U	1.0	0.13	ug/L			06/21/12 06:05	1
Chloroform	1.0	U	1.0	0.16	ug/L			06/21/12 06:05	1
cis-1,2-Dichloroethene	0.45	J	1.0	0.17	ug/L			06/21/12 06:05	1
Ethylbenzene	1.0	U	1.0	0.17	ug/L			06/21/12 06:05	1
Methylene Chloride	1.0	U	1.0	0.33	ug/L			06/21/12 06:05	1
Tetrachloroethene	1.0	Ü *	1.0	0.29	ug/L			06/21/12 06:05	1
Toluene	1.0	U	1.0	0.13	ug/L			06/21/12 06:05	1
Trichloroethene	9.9		1.0	0.17	ug/L			06/21/12 06:05	1
Vinyl chloride	1.0	Ū	1.0	0.22	ug/L			06/21/12 06:05	1
Xylenes, Total	1.0	U	1.0	0.28	ug/L			06/21/12 06:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	91		63 - 129			_		06/21/12 06:05	1
4-Bromofluorobenzene (Surr)	78		66 - 117					06/21/12 06:05	1
Toluene-d8 (Surr)	101		74 - 115					06/21/12 06:05	1
Dibromofluoromethane (Surr)	100		75 - 121					06/21/12 06:05	

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-12309-1

Lab Sample ID: 240-12309-2

Matrix: Water

Client Sample ID: 061312-02 EFFLUENT

Date Collected: 06/13/12 13:10 Date Received: 06/14/12 09:00

Method: 8260B - Volatile Organic Compounds (GC/MS) MDL Unit Result Qualifier RL Dil Fac Analyte Prepared Analyzed 1.0 U 1.0 1,1,2-Trichloroethane 0.27 ug/L 06/21/12 05:22 1,1-Dichloroethene 1.0 U 1.0 0.19 ug/L 06/21/12 05:22 Acetone 10 U 10 1.1 ug/L 06/21/12 05:22 Benzene 1.0 U 1.0 0.13 ug/L 06/21/12 05:22 Carbon tetrachloride 1.0 U 1.0 0.13 ug/L 06/21/12 05:22 0.16 ug/L 1.0 06/21/12 05:22 Chloroform 0.63 J 1.0 06/21/12 05:22 cis-1,2-Dichloroethene 0.26 J 0.17 ug/L 1.0 U Ethylbenzene 1.0 0.17 ug/L 06/21/12 05:22 Methylene Chloride 1.0 U 1.0 0.33 ug/L 06/21/12 05:22 Tetrachloroethene 1.0 U 1.0 0.29 ug/L 06/21/12 05:22 Toluene 1.0 U 1.0 0.13 ug/L 06/21/12 05:22 1 1.0 06/21/12 05:22 Trichloroethene 4.0 0.17 ug/L 1 1.0 Vinyl chloride 1.0 · U 0.22 ug/L 06/21/12 05:22 0.28 ug/L Xylenes, Total 1.0 U 1.0 06/21/12 05:22 1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fa	С
1,2-Dichloroethane-d4 (Surr)	90		63 - 129	-		06/21/12 05:22		ĩ
4-Bromofluorobenzene (Surr)	79		66 - 117			06/21/12 05:22		1
 Toluene-d8 (Surr)	100		74 - 115			06/21/12 05:22		1
Dibromofluoromethane (Surr)	100		75 - 121			06/21/12 05:22		1

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-12309-1

Lab Sample ID: 240-12309-3

Matrix: Water

Client Sample ID: TRIP BLANK

Date Collected: 06/13/12 00:00 Date Received: 06/14/12 09:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	Ū	1.0	0.27	ug/L		,	06/21/12 05:43	
1,1-Dichloroethene	1.0	U .	1.0	0.19	ug/L			06/21/12 05:43	*(
Acetone	10	U	10	1.1	ug/L			06/21/12 05:43	•
Benzene	1.0	U	1.0	0.13	ug/L			06/21/12 05:43	
Carbon tetrachloride	1.0	U	1.0	0.13	ug/L			06/21/12 05:43	*.
Chloroform	1.0	U	1.0	0.16	ug/L			06/21/12 05:43	*(
cis-1,2-Dichloroethene	1.0	Ü	1.0	0.17	ug/L			06/21/12 05:43	
Ethylbenzene	1.0	U	1.0	0.17	ug/L			06/21/12 05:43	1
Methylene Chloride	1.0	U	1.0	0.33	ug/L			06/21/12 05:43	٦
Tetrachloroethene	1.0	υ .	1.0	0.29	ug/L			06/21/12 05:43	1
Toluene	1.0	U	1.0	0.13	ug/L			06/21/12 05:43	1
Trichloroethene	1.0	U ,	1.0	0.17	ug/L			06/21/12 05:43	1
Vinyl chloride	1.0	Ü	1.0	0.22	ug/Ļ			06/21/12 05:43	 1
Xylenes, Total	1.0	U	1.0	0.28	ug/L			06/21/12 05:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
,2-Dichloroethane-d4 (Surr)	91		63 - 129			-		06/21/12 05:43	
-Bromofluorobenzene (Surr)	80		66 - 117					06/21/12 05:43	1
oluene-d8 (Surr)	100		74 - 115					06/21/12 05:43	;
Dibromofluoromethane (Surr)	102		75 - 121					06/21/12 05:43	

Surrogate Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-12309-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

•			(Acceptance Limits)			
		12DCE	BFB	TOL	DBFM	
Lab Sample ID	Client Sample ID	(63-129)	(66-117)	(74-115)	(75-121)	
240-12309-1	061312-01 INFLUENT	91	78	101	100	
240-12309-2	061312-02 EFFLUENT	90	79	100	100	•
.240-12309-2 MS	061312-02 EFFLUENT	91	85	99	103	
240-12309-2 MSD	061312-02 EFFLUENT	91	87	102	99	
240-12309-3	TRIP BLANK	91	80	100	102	
LCS 240-48209/4	Lab Control Sample	91	90	104	101	
MB 240-48209/5	Method Blank	89	82	100	100	

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TOL = Toluene-d8 (Surr)

DBFM = Dibromofluoromethane (Surr)

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 240-48209/5 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 48209

	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	1.0	U	1.0	0.27	ug/L			06/20/12 22:58	1
1,1-Dichloroethene	1.0	u	1.0	0.19	ug/L			06/20/12 22:58	1
Acetone	10	U	10	1.1	ug/L			06/20/12 22:58	1
Benzene	1.0	Ü	1.0	0.13	ug/L			06/20/12 22:58	1
Carbon tetrachloride	1.0	U	1.0	0.13	ug/L			06/20/12 22:58	1
Chloroform	1.0	U	1.0	0.16	ug/L			06/20/12 22:58	1
cis-1,2-Dichloroethene	1.0	U	1.0	0.17	ug/L			06/20/12 22:58	1
Ethylbenzene	1.0	U	1.0	0.17	ug/L			06/20/12 22:58	1
Methylene Chloride	1.0	U	1.0	0.33	ug/L			06/20/12 22:58	1
Tetrachloroethene	1.0	Ü	1.0	0.29	ug/L			06/20/12 22:58	1
Toluene	1.0	U	1.0	0.13	ug/L			06/20/12 22:58	1

1.0 U MB MB

1.0 U

1.0 U

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	89	63 - 129		06/20/12 22:58	1
4-Bromofluorobenzene (Surr)	82	66 - 117		06/20/12 22:58	1
Toluene-d8 (Surr)	100	74 - 115		06/20/12 22:58	1
Dibromofluoromethane (Surr)	100	75 - 121		06/20/12 22:58	1

1.0

1.0

1.0

0.17 ug/L

0.22 ug/L

0.28 ug/L

Lab Sample ID: LCS 240-48209/4

Matrix: Water

Trichloroethene

Vinyl chloride

Xylenes, Total

Analysis Batch: 48209

Client Sample ID: Lab Control Sample Prep Type: Total/NA

06/20/12 22:58

06/20/12 22:58

06/20/12 22:58

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2-Trichloroethane	10.0	10.3		ug/L		103	80 _ 112	
1,1-Dichloroethene	10.0	11.1		ug/L		111	78 ₋ 131	
Acetone	20.0	18.3		ug/L		92	43 ₋ 136	
Benzene	10.0	10.4		ug/L		104	83 _ 112	
Carbon tetrachloride	10.0	9.79		ug/L		98	66 _ 128	
Chloroform	10.0	10.0		ug/L		100	79 ₋ 117	
cis-1,2-Dichloroethene	10.0	10.7		ug/L		107	80 - 113	********
Ethylbenzene	10.0	9.58		ug/L		96	83 - 112	
m-Xylene & p-Xylene	, 20.0	19.9		ug/L		100	83 - 113	
Methylene Chloride	10.0	11.3		ug/L		113	66 - 131	
o-Xylene	10.0	9.82		ug/L		98	83 - 113	
Tetrachloroethene	10.0	11.8	*	ug/L		118	79 - 114	
Toluene	10.0	10.2		ug/L		102	84 - 111	
Trichloroethene	10.0	11.7		ug/L		117	76 ₋ 117	
Vinyl chloride	10.0	9.92		ug/L		99	53 _ 127	
100 100								

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91	***************************************	63 - 129
4-Bromofluorobenzene (Surr)	90		66 - 117
Toluene-d8 (Surr)	104		74 - 115
Dibromofluoromethane (Surr)	101		75 - 121

QC Sample Results

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-12309-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

85

99

103

Lab Sample ID: 240-12309-2 MS

Matrix: Water

Analysis Batch: 48209

Client Sample ID: 061312-02 EFFLUENT

Prep Type: Total/NA

Allalysis Dalcil. 40209										
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2-Trichloroethane	1.0	U	10.0	9.76		ug/L		98	75 _ 115	
1,1-Dichloroethene	1.0	U	10.0	11.7		ug/L		117	74 ₋ 135	
Acetone	10	U	20.0	16.8		ug/L		84	33 _ 145	
Benzene	1.0	Ü	10.0	10.6		ug/L		106	72 - 121	
Carbon tetrachloride	1.0	U	10.0	10.3		ug/L		103	59 _ 129	
Chloroform	0.63	J	10.0	10.6		ug/L		100	76 ₋ 118	
cis-1,2-Dichloroethene	0.26	j	10.0	10.5		ug/L		102	70 - 120	
Ethylbenzene	1.0	U	10.0	9.69		ug/L		97	75 ₋ 116	
m-Xylene & p-Xylene	1.0		20.0	20.2		ug/L		101	75 ₋ 117	
Methylene Chloride	1.0	Ü	10.0	10.3		ug/L		103	63 _ 128	
o-Xylene	1.0		10.0	9.65		ug/L		97	76 ₋ 116	
Tetrachloroethene	1.0	U*	10.0	12.3	F	ug/L		123	70 ₋ 117	
Toluene	1.0	Ü	10.0	10.1		ug/L		101	78 - 114	
Trichloroethene	4.0		10.0	15.7		ug/L		117	66 - 120	
Vinyl chloride	1.0	U	10.0	9.97		ug/L		100	49 - 130	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits			•				
1,2-Dichloroethane-d4 (Surr)	91		63 - 129						•	

66 - 117

74 - 115

75 - 121

Lab Sample ID: 240-12309-2 MSD

Matrix: Water

Toluene-d8 (Surr)

Analysis Batch: 48209

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: 061312-02 EFFLUENT Prep Type: Total/NA

Allalysis Datell. 40203	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,1,2-Trichloroethane	1.0	U	10.0	10.1		ug/L		101	75 ₋ 115	3	30
1,1-Dichloroethene	1.0	U	10.0	11.0		ug/L		110	74 ₋ 135	6	30
Acetone	10	U	20.0	16.5		ug/L		83	33 _ 145	2	30
Benzene	1.0	Ü	10.0	10.1		ug/L		101	72 _ 121	5	30
Carbon tetrachloride	1.0	U	10.0	10.1		ug/L		101	59 ₋ 129	2	30
Chloroform	0.63	J	10.0	9.89		ug/L		93	76 _ 118	7	30
cis-1,2-Dichloroethene	0.26	.j	10.0	10.3		ug/L		100	70 - 120	2	30
Ethylbenzene	1.0	U	10.0	9.66		ug/L		97	75 - 116	. 0	30
m-Xylene & p-Xylene .	1.0		20.0	19.6		ug/L		98	75 - 117	3	30
Methylene Chloride	1.0	Ū	10.0	9.61		ug/L		96	63 - 128	7	30
o-Xylene	1.0		10.0	9.41		ug/L		94	76 ₋ 116	3	30
Tetrachloroethene	1.0	U *	10.0	12.6	F	ug/L		126	70 - 117	2	30
Toluene	1.0	Ü	10.0	9.96		ug/L		100	78 - 114	1	30 °
Trichloroethene	4.0		10.0	15.4		ug/L		114	66 - 120	2	30
Vinyl chloride	1.0	U	10.0	9.26		ug/L		93	49 - 130	7	30

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		63 - 129
4-Bromofluorobenzene (Surr)	87		66 - 117
Toluene-d8 (Surr)	102		74 - 115
Dibromofluoromethane (Sum)			75 121

QC Association Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-12309-1

GC/MS VOA

Analysis Batch: 48209

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-12309-1	061312-01 INFLUENT	. Total/NA	Water	8260B	
240-12309-2	061312-02 EFFLUENT	Total/NA	Water	8260B	
240-12309-2 MS	061312-02 EFFLUENT	Total/NA	Water	8260B	
240-12309-2 MSD	061312-02 EFFLUENT	Total/NA	Water	8260B	
240-12309-3	TRIP BLANK	Total/NA	Water	8260B	
CS 240-48209/4	Lab Control Sample	Total/NA	Water	8260B	
IB 240-48209/5	Method Blank	Total/NA	Water	8260B	

Lab Chronicle

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-12309-1

Lab Sample ID: 240-12309-1

Client Sample ID: 061312-01 INFLUENT Date Collected: 06/13/12 13:00

Date Received: 06/14/12 09:00

Matrix: Water

Batch **Prep Type** Type Total/NA Analysis

Batch Method 8260B

Dilution Factor

Run

Run

Run

Batch Number 48209

Prepared or Analyzed 06/21/12 06:05

Analyst RQ

Lab TAL NC

Client Sample ID: 061312-02 EFFLUENT

Туре

Batch

Туре

Analysis

Analysis

Date Collected: 06/13/12 13:10

Matrix: Water

Lab Sample ID: 240-12309-2

Date Received: 06/14/12 09:00

Batch Batch

Method

8260B

Dilution Factor

Batch Number 48209

Prepared or Analyzed 06/21/12 05:22

Analyst

RQ

l ab

TAL NC

Client Sample ID: TRIP BLANK

Date Collected: 06/13/12 00:00

Date Received: 06/14/12 09:00

Lab Sample ID: 240-12309-3

Matrix: Water

,1

?

Prep Type Total/NA

Prep Type

Total/NA

Batch

Method: 8260B

Dilution Factor

Batch Number 48209

Prepared or Analyzed 06/21/12 05:43

Analyst RQ

Lab TAL NC

Laboratory References:

TAL NC = TestAmerica Canton, 4101 Shuffel Street NW, North Canton, OH 44720, TEL (330)497-9396

TestAmerica Canton 6/22/2012

Certification Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-12309-1

Laboratory	Authority	Program	EPA Region	Certification ID
TestAmerica Canton	California	NELAC	9	. 01144CA
TestAmerica Canton	Connecticut	State Program	1	PH-0590
TestAmerica Canton	Florida	NELAC	4	E87225
TestAmerica Canton	Georgia	State Program	4	N/A
TestAmerica Canton	Illinois	NELAC	5	200004
TestAmerica Canton	Kansas	NELAC	7	E-10336
TestAmerica Canton	Kentucky	State Program	4	58
TestAmerica Canton	L-A-B	DoD ELAP		L2315
TestAmerica Canton	Minnesota	NELAC	5	039-999-348
TestAmerica Canton	Nevada	State Program	9	OH-000482008A
TestAmerica Canton	New Jersey	NELAC	2	OH001
TestAmerica Canton	New York	NELAC	2	10975
TestAmerica Canton	Ohio VAP	State Program	5	CL0024
TestAmerica Canton	Pennsylvania	NELAC	3	68-00340
TestAmerica Canton	USDA	Federal		P330-11-00328
TestAmerica Canton	Virginia	NELAC	3	460175
TestAmerica Canton	Washington	State Program	10	C971
TestAmerica Canton	West Virginia DEP	State Program	3	210
TestAmerica Canton	Wisconsin	State Program	5	999518190

Accreditation may not be offered or required for all methods and analytes reported in this package. Please contact your project manager for the laboratory's current list of certified methods and analytes.

62006, TestAmerica Laboratories, Inc. | All rights reserved.

YestAmerica & Dasion " are trademarks of TestAmerica Caboratories, Inc.

Chain	of	Custody	Record
Ciimiii	01	Custous	TITLE

TestAmerica
THE LEADER IN ENVIRONMENTAL TESTING

	· Cham of Caston, 110001	-
	A\4- C. 1	•
SestAmerica Laboratory location:	North Canton	

•	Client Contact					-,																7		America Laboratories, Inc.
Company Name: RBC Mani	ufacturing Corp	Client Project A	ianager: Bergr	Ϋ́	\n/	<u> </u>		Site Co			3e	Æį	77¢	} nr	`	1	Lab Contact:					,	CC	040954
Address: 100 E. Ray City/State/Zip:	•	Telephone: Telephone: 715.675.8							_		Telepuone:						of cocs							
City/State/Zip: WAUSOU	WI 54401	lee. bergmanne regal belor the							Dyrna Blis	round rest	Pione			Analyses							A D	k bota kabi		
Phone: 116.675		TAT if different for							frum bo	low				4							15:	alichenieni :		
Project Name: EW-/		Method of Ship		arrier:						2 weel				4.	000'5					.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T		
Project Number:		Shipping/Track	ing No:								_	2 days	1		S/X	Craff C	>						10	espiona:
PO#	•				. Mi	iris	() + i	3/48	. Co	ntaine	os So Pr	eser 12	tives	(32), 3), (43), 18 (٦į.) E								
Sac	pple Identification .	Sample Date	Sample Time	ηγ	Aqueuns . Sediment	Solid	Other	H25O4	IINO3	нсі	HOEN	ZuAc/ NaOH	Unpires	Other:	paising	Colliposi	Project						floor	Sample Specific Notes / Special Instructions:
061312-0		06-13-12	1:00pm						·	~					'n	G	· /							Influent
061312-0	1		1:00pm		<u>; </u>					~					N	G	<u>-</u>						floor	
061312-0	1		1:00fm		7					سد					N	Ġ	-						\downarrow	
061312-0	2		1:10pm		r					~					N	G						<u> </u>	1	Effluent
061312-0	7		1:10pm	Ц	7					<u>~</u>					N	G							\perp	
061312-0	7	1	1:10pm							~					N	G	<i>i</i>						\downarrow	
			,										<u> </u>							1.			\downarrow	
Trip blan	nK				_ _									ļ					\perp	_			+	
				Ц	_										\bot	_			\perp	_		_	\downarrow	
					\perp											ل							1	
Possible Hazard Identi	Flammable Skir	Irritant [Poison B			Un	known		mple D					Dis			are retained longer Arc			ı) 	-	_ Month	18	<u></u>
opecial Instructions/QC R	equirements & Comments:																							
Relinquished by	Bergmann	Company: RBC MAY	ref.		Date/Ti	me:	3.12	٦.	: /^-	····	Recei	ved by						C	ompany	y:		- ,	D	ate/Fime:
Relinquished by:		Company:	1011		Date/Ti			. ب	TOP		Recei	ved by	/ :					C	ompany	y:			D	ate/Time:
Relinquished by:		Company:			Date/Ti	me:					Recei	ived to	Labo	ratory I	by:	<u> </u>			ompany	y:				pate/Time: 0-14-12 908

TAL 0018-1 (04/10)

TestAmerica North Canton Sample Receipt Form/Narrative Login #: 2309
Client RBC Site Name By:
Cooler Received on 6-14.12 Opened on 614.12 (Signature) FedEx: 1st Grd Exp UPS FAS Stetson Client Drop Off TestAmerica Courier Other FestAmerica Cooler # Foam Box Client Cooler Box Other Packing material used: Bubble Wrap Foam Plastic Bag None Other COOLANT: Wet Ice Blue Ice Dry Ice Water- None
I. Cooler temperature upon receipt IR GUN# 1 (CF 0°C) Observed Sample Temp °C Corrected Sample Temp °C IR GUN# 4G (CF -1°C) Observed Sample Temp °C Corrected Sample Temp °C Multiple IR GUN# 5G (CF -1°C) Observed Sample Temp °C Corrected Sample Temp °C on Back
2. Were custody seals on the outside of the cooler(s)? If Yes Quantity Yes No A-Were custody seals on the outside of the cooler(s) signed & dated? Yes No A-Were custody seals on the bottle(s)? Yes Wes No A-Were custody seals on the bottle(s)? Yes No A-Were custody seals on the bottle(s)? Yes No No A-Did custody papers accompany the sample(s)? No No No A-Did custody papers relinquished & signed in the appropriate place? No No No No A-Did all bottles arrive in good condition (Unbroken)? No No No No No No No No No No No No No
13. Was a trip blank present in the cooler(s)? Contacted PM Date by via Verbal Voice Mail Other
Concerning 14. CHAIN OF CUSTODY & SAMPLE DISCREPANCIES
5. SAMPLE CONDITION Sample(s) were received after the recommended holding time had expired.
AMAZONO : WEIG TEGETYEN ATTECT THE TECONITIONIEN HOLD HAND EX OUTER.

	16. SAMPLE PRESERVATION		
mple(s)	were further preserved	in Sample Receiv	ing to meet
commended pH level(s). Nitric Acid Lot# 110410-HNO3; Sulfuric Acid Lot# 041911-H2SO4;	Sodium Hydroxide	Lot# 121809 -
aOH; Hydrochloric Ac	d Lot# 041911-HCl; Sodium Hydroxide and Zinc Acetate Lot# 100108-	(CH3COO)2ZN/N	aOH. What
me was preservative ad	pH	D=4=	Teriticals
Client ID	DI	Date	<u>Initials</u>
			 -
			
		<u> </u>	ļ
			L
	•		
		 	
		 	L
			
		<u> </u>	
			· · · · · · · · · · · · · · · · · · ·
		<u> </u>	
		 	· · · · · · · · · · · · · · · · · · ·
			
			
	•		
		TD #	G- 1
Cooler #	Observed Sample Temp. °C Corrected Sample Temp. °C	IR#	Coolant
•			
, <u></u>			
		<u> </u>	
		 	

Login Sample Receipt Checklist

Client: Conestoga-Rovers & Associates, Inc.

Job Number: 240-12309-1

List Source: TestAmerica Canton

Login Number: 12309

List Number: 1 Creator: Sutek, Nick

N1/A	
N/A	
True	
True	
True	
True	
True	
True	
True	
True	
True	
True	
True	
True	
True	•
True	
N/A	
	True True True True True True True True

Page 20 of 20

1801 Old Highway 8 NW, Suite #114 St. Paul, Minnesota 55112

Telephone: (651) 639-0913

www.CRAworld.com

Fax: (651) 639-0923

MEMORANDUM

To:

Chuck Ahrens, CRA

REF. NO.:

003978-10

FROM:

Ruth Mickle/sb/1 (

DATE:

July 9, 2012

ISO 9001

CC:

Analytical Data File

RE:

Data Quality Assessment June 13, 2012 Sampling Event Wausau Superfund Site Wausau, Wisconsin

The following details a data quality assessment for water samples collected June 16, 2012, at the Wausau Superfund Site in Wausau, Wisconsin. The samples identified as 061312-01 (Influent) and 061312-02 (Effluent) were analyzed for Site list volatile organic compounds (VOCs)¹. The analyses were performed by TestAmerica Laboratories, Inc. (TestAmerica) in North Canton, Ohio. The quality assurance criteria were defined by the quality assurance project plan (QAPP)².

HOLDING TIME PERIOD

The holding time period for VOC analyses is 14 days from sample collection to completion of analyses. On the basis of the sample collection date on the chain-of-custody form and analysis dates on the analytical report provided by TestAmerica, the analyses were completed within the specified holding time period.

SURROGATE COMPOUND PERCENT RECOVERIES (SURROGATE RECOVERIES)

Individual sample performance for VOC analyses was monitored using surrogate recoveries. The surrogate recoveries were within acceptance criteria, indicating that individual sample performance was adequate.

VOC Method 8260B was derived from "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, Third Edition, November 1986 and updates.

Application of quality assurance criteria was consistent with "National Functional Guidelines for Organic Data Review", October 1999. REGISTERED COMPANY

METHOD BLANK SAMPLE

Contamination of samples contributed by laboratory conditions or procedures was monitored by the concurrent preparation and analysis of a method blank sample. The method blank sample was reported to be free from detectable concentrations of target analytes, indicating that laboratory contamination was unlikely.

LABORATORY CONTROL SAMPLE (LCS)

Overall performance of the analyses was monitored by means of LCS data. The LCS recovery data for the analyses were within acceptance criteria, indicating that overall performance was adequate.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) RESULTS

To assess the long-term accuracy and precision of the analytical method on various matrices, matrix spike percent recoveries and relative percent difference (RPD) of the spike recoveries were determined for the analyses. The MS/MSD spike sample data were within acceptance criteria.

FIELD QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) SAMPLES

The field QA/QC associated with the sampling event consisted of a trip blank sample.

To evaluate the possibility of contamination arising from sample transport, the environment, and/or shipping, a trip blank sample was submitted to the laboratory for VOC analysis. The trip blank was free of target analytes, indicating that contamination was unlikely during sample transport.

OVERALL ASSESSMENT

The data were found to exhibit acceptable levels of accuracy and precision and may be used without qualification.

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

TestAmerica Job ID: 240-17778-1 Client Project/Site: 3978, Wausau

For:

Conestoga-Rovers & Associates, Inc. 1801 Old Highway 8 NW Suite 114 St. Paul, Minnesota 55112

Attn: Mr. Grant Anderson

Authorized for release by: 12/4/2012 4:32:00 PM

Denise Heckler
Project Manager II
denise.heckler@testamericainc.com

Jenuse DHeckler

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	5
Sample Summary	6
Detection Summary	7
Client Sample Results	11
Surrogate Summary	43
QC Sample Results	45
QC Association Summary	52
Lab Chronicle	57
Certification Summary	65
Chain of Custody	66

Definitions/Glossary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Qualifiers

Qualifier	Qualifier Description
C9	Calibration Verification recovery was outside the method control limits for this analyte . The LCS for this analyte met CCV acceptance
	criteria, and was used to validate the batch.
H2	Initial analysis within holding time. Reanalysis verification was past holding time.
M1	The MS and/or MSD were outside control limits.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
*	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDA	Minimum detectable activity
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Case Narrative

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Job ID: 240-17778-1

Laboratory: TestAmerica Canton

Narrative

Job Narrative 240-17778-1

Comments

No additional comments.

Receipt

The samples were received on 11/17/2012 9:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.2° C.

No analytical or quality issues were noted.

Method Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

 Method
 Method Description
 Protocol
 Laboratory

 SW 8260B
 Volatile Organic Compounds
 TAL CF

 SW 9041A
 VOC Preservation Check
 TAL CF

Protocol References:

Laboratory References:

TAL CF = TestAmerica Cedar Falls, 704 Enterprise Drive, Cedar Falls, IA 50613, TEL 800-750-2401

4.

Sample Summary

TestAmerica Job ID: 240-17778-1

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 3978, Wausau

Lab Sample ID	Client Sample ID	Matrix _.	Collected	Received
240-17778-1	W-121113-NE-01 CW3	Water	11/13/12 07:47	11/17/12 09:40
240-17778-2	W-121113-NE-02 E24AR	Water	11/13/12 08:40	11/17/12 09:40
240-17778-3	W-121113-NE-03 E24AR (dup)	Water	11/13/12 08:42	11/17/12 09:40
240-17778-4	W-121113-NE-04 MW10A	Water	11/13/12 09:15	11/17/12 09:40
240-17778-5	W-121113-NE-05 MW10B	Water	11/13/12 09:28	11/17/12 09:40
240-17778-6	W-121113-NE-06 WW4	Water	11/13/12 10:03	11/17/12 09:40
240-17778-7	W-121113-NE-07 FVD5	Water	11/13/12 08:48	11/17/12 09:40
240-17778-8	W-121113-NE-08 E22A	Water	11/13/12 09:10	11/17/12 09:40
240-17778-9	W-121113-NE-09 E37A	Water	11/13/12 09:42	11/17/12 09:40
240-17778-10	W-121113-NE-10 E23A	Water	11/13/12 10:02	11/17/12 09:40
240-17778-11	W-121113-NE-11 ° F.B. (WC3B)	Water	11/13/12 11:30	11/17/12 09:40
240-17778-12	W-121113-NE-12 WC3B	Water	11/13/12 12:08	11/17/12 09:40
240-17778-13	W-121113-NE-13 WW6	Water	11/13/12 10:39	11/17/12 09:40
240-17778-14	W-121113-NE-14 WC5A	Water	11/13/12 11:11	11/17/12 09:40
240-17778-15	W-121113-NE-15 W53A	Water	11/13/12 13:39	11/17/12 09:40
240-17778-16	W-121113-NE-16 W54	Water	11/13/12 14:44	11/17/12 09:40
240-17778-17	W-121113-NE-17 R4D	Water ·	11/13/12 16:17	11/17/12 09:40
240-17778-18	W-121113-NE-18 C2S	Water	11/13/12 16:56	11/17/12 09:40
240-17778-19	W-121113-NE-19 R3D	Water	11/13/12 14:28	11/17/12 09:40
240-17778-20	W-121113-NE-20 R3D (dup)	Water	11/13/12 14:29	11/17/12 09:40
240-17778-21	W-121113-NE-21 C4S	Water	11/13/12 15:09	11/17/12 09:40
240-17778-22	W-121113-NE-22 w52	Water	11/13/12 18:10	11/17/12 09:40
240-17778-23	W-121113-NE-23 w52 (dup)	Water	11/13/12 18:11	11/17/12 09:40
240-17778-24	W-121113-NE-24 R.B (W56)	Water	11/13/12 16:25	11/17/12 09:40
240-17778-25	W-121113-NE-25 W56	Water	11/13/12 16:44	11/17/12 09:40
240-17778-26	W-121114-NE-26 F.B. (R2D)	Water	11/14/12 08:20	11/17/12 09:40
240-17778-27	W-121114-NE-27 R2D	Water	11/14/12 09:27	11/17/12 09:40
240-17778-28	W-121114-NE-28 WSWD	Water	11/14/12 11:05	11/17/12 09:40
240-17778-29	W-121114-NE-29 w55	Water	11/14/12 12:22	11/17/12 09:40
240-17778-30	W-121114-NE-30 CW6	Water	11/14/12 09:00	11/17/12 09:40
240-17778-31	W-121114-NE-31 MW1A	Water	11/14/12 14:02	11/17/12 09:40
240-17778-32	TRIP BLANKS	Water	11/13/12 00:00	11/17/12 09:40

Client: Conestoga-Rovers & Associates, Inc.

Client Sample ID: W-121113-NE-10

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-1211	13-NE-01					La	b Sample ID	: 240-17778
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	1.10		1.00		ug/L	1.00	SW 8260B	Totai
Tetrachloroethene	2.48		1.00		ug/L	1.00	SW 8260B	Total
Client Sample ID: W-1211	13-NE-02					La	b Sample ID): 240-17778
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	1.02		1.00		ug/L	1.00	SW 8260B	Total
Tetrachloroethene	2.84		1.00		ug/L	1.00	SW 8260B	Total
Client Sample ID: W-1211	13-NE-03					La	b Sample ID): 240-177 78
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Tetrachloroethene	2.72		1.00		ug/L	1.00	SW 8260B	Total
Client Sample ID: W-1211	13-NE-04					La	b Sample ID	: 240-1777
No Detections								
Client Sample ID: W-1211	13-NE-05					La	b Sample ID	: 240-1777
No Detections								
Client Sample ID: W-1211 No Detections	13-NE-06					La	b Sample ID	: 240-1777
No Detections							b Sample ID	
No Detections Client Sample ID: W-1211	13-NE-07	Qualifier	RL	MDL	Unit		b Sample ID	: 240-1777
No Detections	13-NE-07	Qualifier	RL 1.00	MDL		La	b Sample ID	
No Detections Client Sample ID: W-1211 Analyte	13-NE-07	Qualifier		MDL	Unit ug/L ug/L	La Dil Fac	b Sample ID	: 240-17778 Prep Type
No Detections Client Sample ID: W-1211 Analyte Benzene	13-NE-07 Result 20.0	Qualifier	1.00	MDL	ug/L	Dil Fac	b Sample ID Method SW 8260B	Prep Type Total
No Detections Client Sample ID: W-1211 Analyte Benzene Ethylbenzene	13-NE-07 Result 20.0 190	Qualifier	1.00 1.00	MDL	ug/L ug/L	Dil Fac 1.00	b Sample ID Method SW 8260B SW 8260B	Prep Type Total Total
No Detections Client Sample ID: W-1211 Analyte Benzene Ethylbenzene Tetrachloroethene	13-NE-07 Result 20.0 190 2.15	Qualifier	1.00 1.00 1.00	MDL	ug/L ug/L ug/L	Dil Fac 1.00 1.00 1.00	b Sample ID Method SW 8260B SW 8260B SW 8260B	Prep Type Total Total Total
No Detections Client Sample ID: W-1211 Analyte Benzene Ethylbenzene Tetrachloroethene Toluene	Result 20.0 190 2.15	Qualifier	1.00 1.00 1.00 1.00	MDL	ug/L ug/L ug/L ug/L	Dil Fac 1.00 1.00 1.00 1.00	b Sample ID Method SW 8260B SW 8260B SW 8260B SW 8260B	Prep Type Total Total Total Total
No Detections Client Sample ID: W-1211 Analyte Benzene Ethylbenzene Tetrachloroethene Toluene Xylenes, total	Result 20.0 190 2.15 11.2 380	Qualifier	1.00 1.00 1.00 1.00 1.00	MDL	ug/L ug/L ug/L ug/L ug/L	Dil Fac 1.00 1.00 1.00 1.00 1.00	b Sample ID Method SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B	Prep Type Total Total Total Total Total Total
No Detections Client Sample ID: W-1211 Analyte Benzene Ethylbenzene Tetrachloroethene Toluene Xylenes, total m,p-Xylene o-Xylene	Result 20.0 190 2.15 11.2 380 277 104	Qualifier	1.00 1.00 1.00 1.00 1.00 1.00	MDL	ug/L ug/L ug/L ug/L ug/L ug/L	Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Method SW 8260B	Prep Type Total Total Total Total Total Total Total Total
No Detections Client Sample ID: W-1211 Analyte Benzene Ethylbenzene Tetrachloroethene Toluene Xylenes, total m,p-Xylene o-Xylene	Result 20.0 190 2.15 11.2 380 277 104	Qualifier	1.00 1.00 1.00 1.00 1.00 1.00	MDL	ug/L ug/L ug/L ug/L ug/L ug/L	Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Lal	b Sample ID Method SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B	Prep Type Total Total Total Total Total Total Total Total
No Detections Client Sample ID: W-1211 Analyte Benzene Ethylbenzene Tetrachloroethene Toluene Xylenes, total m,p-Xylene o-Xylene Client Sample ID: W-1211	Result 20.0 190 2.15 11.2 380 277 104		1.00 1.00 1.00 1.00 1.00 1.00		ug/L ug/L ug/L ug/L ug/L ug/L	Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Lal	b Sample ID Method SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B	Prep Type Total Total Total Total Total Total Total Total Total Total Total
Client Sample ID: W-1211 Analyte Benzene Ethylbenzene Tetrachloroethene Toluene Xylenes, total m,p-Xylene o-Xylene Client Sample ID: W-1211	Result 20.0 190 2.15 11.2 380 277 104 13-NE-08		1.00 1.00 1.00 1.00 1.00 1.00		ug/L ug/L ug/L ug/L ug/L ug/L	Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 Lal	b Sample ID Method SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B	Prep Type Total Total Total Total Total Total Total Total Total Total Total Total Total Total
No Detections Client Sample ID: W-1211 Analyte Benzene Ethylbenzene Tetrachloroethene Toluene Xylenes, total m.p-Xylene o-Xylene Client Sample ID: W-1211 Analyte cis-1,2-Dichloroethene	Result 20.0 190 2.15 11.2 380 277 104 13-NE-08 Result 7.51 17.9		1.00 1.00 1.00 1.00 1.00 1.00 1.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	b Sample ID Method SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B	Prep Type Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total
No Detections Client Sample ID: W-1211 Analyte Benzene Ethylbenzene Tetrachloroethene Toluene Xylenes, total m,p-Xylene o-Xylene Client Sample ID: W-1211 Analyte cis-1,2-Dichloroethene Tetrachloroethene	Result 20.0 190 2.15 11.2 380 277 104 13-NE-08 Result 7.51 17.9 13-NE-09		1.00 1.00 1.00 1.00 1.00 1.00 1.00		ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	b Sample ID Method SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B	Prep Type Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total
No Detections Client Sample ID: W-1211 Analyte Benzene Ethylbenzene Tetrachloroethene Toluene Xylenes, total m,p-Xylene o-Xylene Client Sample ID: W-1211 Analyte cis-1,2-Dichloroethene Tetrachloroethene Client Sample ID: W-1211	Result 20.0 190 2.15 11.2 380 277 104 13-NE-08 Result 7.51 17.9 13-NE-09	Qualifier	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Lal Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	b Sample ID Method SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B	Prep Type Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total
No Detections Client Sample ID: W-1211 Analyte Benzene Ethylbenzene Tetrachloroethene Toluene Xylenes, total m,p-Xylene o-Xylene Client Sample ID: W-1211 Analyte cis-1,2-Dichloroethene Tetrachloroethene Tetrachloroethene Client Sample ID: W-1211	Result 20.0 190 2.15 11.2 380 277 104 13-NE-08 Result 7.51 17.9 13-NE-09	Qualifier	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Lal Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	b Sample ID Method SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B	Prep Type Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Prep Type Total Total Total Total Total
No Detections Client Sample ID: W-1211 Analyte Benzene Ethylbenzene Tetrachloroethene Toluene Xylenes, total m,p-Xylene o-Xylene Client Sample ID: W-1211 Analyte cis-1,2-Dichloroethene Tetrachloroethene Client Sample ID: W-1211	Result 20.0 190 2.15 11.2 380 277 104 13-NE-08 Result 7.51 17.9 13-NE-09	Qualifier	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	MDL	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Dil Fac 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.	b Sample ID Method SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B SW 8260B b Sample ID Method SW 8260B b Sample ID Method SW 8260B	Prep Type Total Total Total Total Total Total Total Total Total Total Total Total Total Total Total Prep Type Total Total Total Total

TestAmerica Canton

Lab Sample ID: 240-17778-10

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-	NE-10 (Cont	inued)				Lal	b S	ample ID:	240-17778-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	35.8		1.00		ug/L	1.00		SW 8260B	Total
Tetrachloroethene	41.0		1.00		ug/L	1.00		SW 8260B	Total
Trichloroethene	7.80		1.00		ug/L	1.00		SW 8260B	Total
Vinyl chloride	1.92	*****	1.00		ug/L	1.00		SW 8260B	Total
Client Sample ID: W-121113-	NE-11					Lal	b S	ample ID:	240-17778-1
No Detections									
Client Sample ID: W-121113-	NE-12					Lal	b S	ample ID: 2	240-17778-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	3.47		1.00		ug/L	1.00	_	SW 8260B	Total
Client Sample ID: W-121113-	NE-13					Lal	b S	ample ID: 2	240-17778-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	31.3		1.00		ug/L	1.00	_	SW 8260B	Total
Tetrachloroethene	7.67		1.00		ug/L	1.00		SW 8260B	Total
Trichloroethene	3.30		1.00		ug/L	1.00		SW 8260B	Total
Vinyl chloride -	3.21		1.00		ug/L	1.00		SW 8260B	Total
Client Sample ID: W-121113-	NE-14					Lal	o S	ample ID: 2	240-17778-1
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	1.30		1.00		ug/L	1.00	_	SW 8260B	Total
						1 -1	o S	ample ID: 2	2/0_17778_1
Client Sample ID: W-121113-	NE-15					Lai		!	240-17770-1
Client Sample ID: W-121113- - Analyte		Qualifier	RL	MDL	Unit			Method .	Prep Type
_		Qualifier	RL 1.00	MDL	Unit ug/L				
- Analyte	Result	Qualifier		MDL		Dil Fac		Method .	Ргер Туре
Analyte Carbon Tetrachloride	Result 1.67	Qualifier	1.00	MDL	ug/L	Dil Fac 1.00		Method . SW 8260B	Prep Type Total
Analyte Carbon Tetrachloride cis-1,2-Dichloroethene Trichloroethene	Result 1.67 2.25 54.2	Qualifier	1.00	MDL	ug/L ug/L	Dil Fac 1.00 1.00 1.00	<u>D</u>	Method . SW 8260B SW 8260B SW 8260B	Prep Type Total Total Total
Analyte Carbon Tetrachloride cis-1,2-Dichloroethene Trichloroethene	Result 1.67 2.25 54.2	Qualifier	1.00	MDL	ug/L ug/L	Dil Fac 1.00 1.00 1.00	<u>D</u>	Method . SW 8260B SW 8260B SW 8260B	Prep Type Total Total
Analyte Carbon Tetrachloride cis-1,2-Dichloroethene Trichloroethene Client Sample ID: W-121113- No Detections	Result 1.67 2.25 54.2 NE-16	Qualifier	1.00	MDL .	ug/L ug/L	Dil Fac 1.00 1.00 1.00	<u> </u>	Method . SW 8260B SW 8260B SW 8260B	Prep Type Total Total Total
Analyte Carbon Tetrachloride cis-1,2-Dichloroethene Trichloroethene Client Sample ID: W-121113- No Detections	Result 1.67 2.25 54.2 NE-16	Qualifier	1.00	MDL	ug/L ug/L ug/L	Dil Fac 1.00 1.00 1.00 Lal	D S	Method . SW 8260B SW 8260B SW 8260B	Prep Type Total Total Total Total
Analyte Carbon Tetrachloride cis-1,2-Dichloroethene Trichloroethene Client Sample ID: W-121113- No Detections Client Sample ID: W-121113-	Result 1.67 2.25 54.2 NE-16		1.00 1.00 1.00		ug/L ug/L ug/L	Dil Fac 1.00 1.00 1.00 Lal	D S	Method SW 8260B SW 8260B SW 8260B	Prep Type Total Total Total 240-17778-1
Analyte Carbon Tetrachloride cis-1,2-Dichloroethene Trichloroethene Client Sample ID: W-121113- No Detections Client Sample ID: W-121113- Analyte Trichloroethene	Result 1.67 2.25 54.2 NE-16 NE-17 Result 4.89		1.00 1.00 1.00		ug/L ug/L ug/L	Dil Fac 1.00 1.00 1.00 Lal Lal Dil Fac 1.00	D S	Method . SW 8260B SW 8260B SW 8260B ample ID: 2 Method SW 8260B	Prep Type Total Total Total 240-17778-1 Prep Type Total
Analyte Carbon Tetrachloride cis-1,2-Dichloroethene Trichloroethene Client Sample ID: W-121113- No Detections Client Sample ID: W-121113- Analyte Trichloroethene	Result 1.67 2.25 54.2 NE-16 NE-17 Result 4.89		1.00 1.00 1.00		ug/L ug/L ug/L	Dil Fac 1.00 1.00 1.00 Lal Lal Dil Fac 1.00	D S	Method . SW 8260B SW 8260B SW 8260B ample ID: 2 Method SW 8260B	Prep Type Total Total Total 240-17778-1 Prep Type Total
Analyte Carbon Tetrachloride cis-1,2-Dichloroethene Trichloroethene Client Sample ID: W-121113- No Detections Client Sample ID: W-121113- Analyte Trichloroethene Client Sample ID: W-121113- Analyte Trichloroethene Client Sample ID: W-121113-	Result 1.67 2.25 54.2 NE-16 NE-17 Result 4.89		1.00 1.00 1.00		ug/L ug/L ug/L	Dil Fac 1.00 1.00 Lal Dil Fac 1.00 Lal Lal Dil Fac 1.00 Lal	D S	Method SW 8260B SW 8260B SW 8260B ample ID: 2 Method SW 8260B ample ID: 2	Prep Type Total Total 240-17778-1 Prep Type Total 240-17778-1
Carbon Tetrachloride cis-1,2-Dichloroethene Trichloroethene Client Sample ID: W-121113- No Detections Client Sample ID: W-121113- Analyte Trichloroethene Client Sample ID: W-121113-	Result 1.67 2.25 54.2 NE-16 NE-17 Result 4.89 NE-18		1.00 1.00 1.00		ug/L ug/L ug/L	Dil Fac 1.00 1.00 1.00 Lal Dil Fac 1.00 Lal Lal	D S	Method SW 8260B SW 8260B SW 8260B ample ID: 2 Method SW 8260B ample ID: 2	Prep Type Total Total Total 240-17778-1 Prep Type

; <u>.</u>	Detec	HION Sum	mai y		Те	stAmerica Job	ID: 240-17778-1
					Lab	Sample ID:	240-17778-20
Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
20.7		1.00		ug/L	1.00	SW 8260B	Total
					Lab	Sample ID:	240-17778-21
Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
1.24		1.00		ug/L	1.00	SW 8260B	Total
					Lab	Sample ID:	240-17778-22
				•			
					Lab	Sample ID:	240-17778-23
Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Ргер Туре
1.03	<u> </u>	1.00		ug/L	1.00	SW 8260B	Total
					Lab	Sample ID:	240-17778-24
					Lab	Sample ID:	240-17778-25
		•			Lab	Sample ID:	240-17778-26
		-			Lab	Sample ID:	240-17778-26
						-	240-17778-26 240-17778-27
Result	Qualifier	RL	MDL	Unit	Lab	-	240-17778-27
Result 6.38	Qualifier	RL 1.00	MDL	Unit ug/L	Lab	Sample ID:	
	Qualifier		MDL		Lab Dil Fac 1.00	Sample ID: Method SW 8260B	240-17778-27 Prep Type
	Qualifier		MDL		Lab Dil Fac 1.00	Sample ID: Method SW 8260B	240-17778-27 Prep Type Total
	Qualifier		MDL		Lab Dil Fac 1.00 Lab	Sample ID: Method SW 8260B Sample ID:	240-17778-27 Prep Type Total
6.38	Qualifier	1.00	MDL	ug/L	Lab Dil Fac 1.00 Lab	Sample ID: Method SW 8260B Sample ID:	240-17778-27 Prep Type Total 240-17778-28
6.38				ug/L	Lab Dil Fac 1.00 Lab	Sample ID: Method SW 8260B Sample ID: Sample ID:	240-17778-27 Prep Type Total 240-17778-28
6.38		1.00		ug/L	Lab Dil Fac 1.00 Lab Dil Fac 1.00	Sample ID: Method SW 8260B Sample ID: Sample ID: Method SW 8260B	240-17778-27 Prep Type Total 240-17778-28 240-17778-29 Prep Type
6.38 Result 4.92		1.00		Unit ug/L	Lab Dil Fac Lab Dil Fac 1.00 Lab Lab And And And And And And And And And And	Sample ID: Method SW 8260B Sample ID: Sample ID: Method SW 8260B	240-17778-27 Prep Type Total 240-17778-28 240-17778-29 Prep Type Total
6.38 Result 4.92	Qualifier	RL 1.00	MDL	Unit ug/L	Lab Dil Fac Lab Dil Fac 1.00 Lab Lab And And And And And And And And And And	Sample ID: Method SW 8260B Sample ID: Sample ID: Method SW 8260B Sample ID:	240-17778-27 Prep Type Total 240-17778-28 240-17778-29 Prep Type Total 240-17778-30
Result 4.92	Qualifier	RL 1.00	MDL	Unit ug/L	Lab Dil Fac 1.00 Lab Dil Fac 1.00 Lab Dil Fac 1.00	Sample ID: Method SW 8260B Sample ID: Method SW 8260B Sample ID: Method SW 8260B	240-17778-27 Prep Type Total 240-17778-28 240-17778-29 Prep Type Total 240-17778-30 Prep Type
Result 4.92	Qualifier	RL 1.00	MDL	Unit ug/L	Lab Dil Fac 1.00 Lab Dil Fac 1.00 Lab Dil Fac 1.00	Sample ID: Method SW 8260B Sample ID: Method SW 8260B Sample ID: Method SW 8260B	240-17778-27 Prep Type Total 240-17778-28 240-17778-29 Prep Type Total 240-17778-30 Prep Type Total
	Result Result	Result Qualifier 20.7 Result Qualifier 1.24 Result Qualifier	Result Qualifier RL 20.7 1.00 Result Qualifier RL 1.24 1.00 Result Qualifier RL	Result Qualifier RL MDL 20.7 1.00 Result Qualifier RL MDL 1.24 1.00 Result Qualifier RL MDL	Result Qualifier RL MDL Unit ug/L Result Qualifier RL MDL Unit ug/L 1.24 1.00 Unit ug/L Result Qualifier RL MDL Unit ug/L	Result Qualifier RL MDL Unit Dil Fac 20.7 1.00 ug/L 1.00 Lab Result Qualifier RL MDL Unit Dil Fac 1.24 1.00 ug/L 1.00 Lab Result Qualifier RL MDL Unit Dil Fac 1.00 ug/L 1.00 Lab Result Qualifier RL MDL Unit Dil Fac 1.00 Lab	Columbia

Client: Conestoga-Rovers & Associates, Inc. Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: TRIP BLANKS (Continued)	Lab Sample ID: 240-17778-32

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Methylene Chloride	1.80 H2	1.00	ug/L	1.00	SW 8260B	Total

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-01

Date Collected: 11/13/12 07:47 Date Received: 11/17/12 09:40 CW3

Lab Sample ID: 240-17778-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10.0		ug/L		11/26/12 00:00	11/26/12 12:37	1.00
Benzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:37	1.00
Carbon Tetrachloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:37	1.00
Chloroform	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:37	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:37	1.00
cis-1,2-Dichloroethene	1.10		1.00		ug/L		11/26/12 00:00	11/26/12 12:37	1.00
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:37	1.00
Methylene Chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:37	1.00
Tetrachloroethene	2.48		1.00		ug/L		11/26/12 00:00	11/26/12 12:37	1.00
Toluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:37	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:37	1.00
Trichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:37	1.00
Vinyl chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:37	1.00
Xylenes, total	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:37	1.00
m,p-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:37	1.00
o-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:37	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	103		75 _ 120				11/26/12 00:00	11/26/12 12:37	1.00
Toluene-d8	109		80 - 120				11/26/12 00:00	11/26/12 12:37	1.00
4-Bromofluorobenzene	100		75 - 110				11/26/12 00:00 ·	11/26/12 12:37	1.00
Method: SW 9041A - VOC Pi	reservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Date Collected: 11/13/12 08:40 Matrix: Water

Date Received: 11/17/12 09:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	ND		10.0		ug/L		11/26/12 00:00	11/26/12 13:02	1.0
Benzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:02	1.0
Carbon Tetrachloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:02	1.0
Chloroform	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:02	1.0
1,1-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:02	1.0
cis-1,2-Dichloroethene	1.02		1.00		ug/L		11/26/12 00:00	11/26/12 13:02	1.0
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:02	1.0
Methylene Chloride	· ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:02	1.0
Tetrachloroethene ·	2.84		1.00		ug/L		11/26/12 00:00	11/26/12 13:02	1.0
Toluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:02	1.0
1,1,2-Trichloroethane	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:02	1.0
Trichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:02	1.0
Vinyl chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:02	1.0
Xylenes, total	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:02	1.0
m,p-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:02	1.0
o-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:02	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	106		75 - 120		,		11/26/12 00:00	11/26/12 13:02	1.0
Toluene-d8	107		80 - 120				11/26/12 00:00	11/26/12 13:02	1.0
4-Bromofluorobenzene	101		75 - 110				11/26/12 00:00	11/26/12 13:02	1.0
Method: SW 9041A - VOC Pr	eservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
рН	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.0

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-03 Lab Sample ID: 240-17778-3

Date Collected: 11/13/12 08:42 E24AR (dup) Matrix: Water

Date Received: 11/17/12 09:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10.0		ug/L		11/26/12 00:00	11/26/12 13:27	1.00
Benzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:27	1.00
Carbon Tetrachloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:27	1.00
Chloroform	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:27	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:27	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:27	1.00
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:27	1.00
Methylene Chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:27	1.00
Tetrachloroethene	2.72		1.00		ug/L		11/26/12 00:00	11/26/12 13:27	1.00
Toluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:27	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:27	1.00
Trichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:27	1.00
Vinyl chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:27	1.00
Xylenes, total	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:27	1.00
m,p-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:27	1.00
o-Xylene	ND	• • • • • • • • • • • • • • • • • • • •	1.00		ug/L		11/26/12 00:00	11/26/12 13:27	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	108		75 - 120				11/26/12 00:00	11/26/12 13:27	1.00
Toluene-d 8	108		80 - 120				11/26/12 00:00	11/26/12 13:27	1.00
1-Bromofluorobenzene	99		75 - 110				11/26/12 00:00	11/26/12 13:27	1.00
Method: SW 9041A - VOC Pro	eservation Check								
		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-04

Date Collected: 11/13/12 09:15 Date Received: 11/17/12 09:40 MW10A

Lab Sample ID: 240-17778-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	ND		10.0		ug/L		11/26/12 00:00	11/26/12 13:52	1.6
Benzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:52	1.
Carbon Tetrachloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:52	1.
Chloroform	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:52	1.
1,1-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:52	1.
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:52	1.
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:52	1.
Methylene Chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:52	1.
Tetrachloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:52	1.
Toluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:52	1.
1,1,2-Trichloroethane	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:52	1.
Trichloroethene	ND	•	1.00		ug/L		11/26/12 00:00	11/26/12 13:52	1.
Vinyl chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:52	1.
Xylenes, total	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:52	1.
m,p-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:52	1.
o-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 13:52	1.0
Surrogate ·	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Dibromofluorometh a ne	108		75 - 120				11/26/12 00:00	11/26/12 13:52	1.
Toluene-d8	108		80 - 120				11/26/12 00:00	11/26/12 13:52	1.
4-Bromofluorobenzene	100		75 - 110				11/26/12 00:00	11/26/12 13:52	1.
Method: SW 9041A - VOC P	reservation Check								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
pH	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-05

Date Collected: 11/13/12 09:28

MW10B

Lab Sample ID: 240-17778-5

Matrix: Water

Result ND ND ND ND ND ND ND ND	Qualifier	10.0 1.00 1.00	MDL	Unit ug/L	D	Prepared	Analyzed	Dil Fac
ND ND ND ND		1.00		ug/L				
ND ND ND						11/26/12 00:00	11/26/12 14:17	1.00
ND ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:17	1.00
ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:17	1.00
		1.00		ug/L		11/26/12 00:00	11/26/12 14:17	1.00
ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:17	1.00
IND		1.00		ug/L		11/26/12 00:00	11/26/12 14:17	1.00
ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:17	1.00
ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:17	1.00
ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:17	1.00
ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:17	1.00
ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:17	1.00
ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:17	1.00
ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:17	1.00
ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:17	1.00
ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:17	1.00
ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:17	1.00
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
104		75 - 120				11/26/12 00:00	11/26/12 14:17	1.00
109		80 - 120				11/26/12 00:00	11/26/12 14:17	1.00
102		75 - 110				11/26/12 00:00	11/26/12 14:17	1.00
ation Check								
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	ND ND ND %Recovery 104 109 102 ation Check Result	ND ND ND WRecovery 104 109 102	ND 1.00 ND 1.00 ND 1.00 **Recovery Qualifier Limits 104 75 - 120 109 80 - 120 102 75 - 110 ation Check Result Qualifier RL	ND 1.00 ND 1.00 ND 1.00 **Recovery Qualifier Limits 104 75 - 120 109 80 - 120 102 75 - 110 ation Check Result Qualifier RL MDL	ND 1.00 ug/L ND 1.00 ug/L ND 1.00 ug/L **Recovery Qualifier Limits 104 75 - 120 109 80 - 120 102 75 - 110 ation Check Result Qualifier RL MDL Unit	ND 1.00 ug/L ND 1.00 ug/L ND 1.00 ug/L ND 1.00 ug/L **Recovery Qualifier Limits 104 75 - 120 109 80 - 120 102 75 - 110 ation Check	ND 1.00 ug/L 11/26/12 00:00 ND 1.00 ug/L 11/26/12 00:00 ND 1.00 ug/L 11/26/12 00:00 **Recovery Qualifier Limits **Prepared* 104 75 - 120 11/26/12 00:00 109 80 - 120 11/26/12 00:00 102 75 - 110 11/26/12 00:00 ation Check	ND 1.00 ug/L 11/26/12 00:00 11/26/12 14:17 ND 1.00 ug/L 11/26/12 00:00 11/26/12 14:17 ND 1.00 ug/L 11/26/12 00:00 11/26/12 14:17 **Recovery Qualifier Limits Prepared Analyzed 104 75 - 120 11/26/12 00:00 11/26/12 14:17 109 80 - 120 11/26/12 00:00 11/26/12 14:17 102 75 - 110 11/26/12 00:00 11/26/12 14:17

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Lab Sample ID: 240-17778-6

Client Sample ID: W-121113-NE-06 WW4 Date Collected: 11/13/12 10:03 Matrix: Water

Date Received: 11/17/12 09:40

Analyte :	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10.0		ug/L		11/26/12 00:00	11/26/12 14:42	1.00
Benzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:42	1.00
Carbon Tetrachloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:42	1.00
Chloroform	ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:42	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:42	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:42	1.00
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:42	1.00
Methylene Chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:42	1.00
Tetrachloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:42	1.00
Toluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:42	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:42	1.00
Trichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:42	1.00
Vinyl chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:42	1.00
Xylenes, total	ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:42	1.00
m,p-Xylene	ND		_ 1.00	•	ug/L		11/26/12 00:00	11/26/12 14:42	1.00
o-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 14:42	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	107		75 - 120				11/26/12 00:00	11/26/12 14:42	1.00
Toluene-d8	106		80 - 120				11/26/12 00:00	11/26/12 14:42	1.00
4-Bromofiuorobenzene	97		75 - 110				11/26/12 00:00	11/26/12 14:42	1.00
Method: SW 9041A - VOC P	reservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	ND		2.00		units	— –	11/27/12 16:19	11/27/12 16:25	1.00

FVD5

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Lab Sample ID: 240-17778-7

Matrix: Water

Client Sample ID: W-121113-NE-07

Date Collected: 11/13/12 08:48 Date Received: 11/17/12 09:40

Is

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10.0	*	ug/L		11/26/12 00:00	11/26/12 15:07	1.00
Benzene	20.0		1.00		ug/L		11/26/12 00:00	11/26/12 15:07	1.00
Carbon Tetrachloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:07	1.00
Chloroform	ND	· · · · · · · · · · · · · · · · · · ·	1.00		ug/L		11/26/12 00:00	11/26/12 15:07	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:07	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:07	1.00
Ethylbenzene	190		1.00		ug/L		11/26/12 00:00	11/26/12 15:07	1.00
Methylene Chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:07	1.00
Tetrachloroethene	2.15		1.00		ug/L		11/26/12 00:00	11/26/12 15:07	1.00
Toluene	11.2		1.00		ug/L		11/26/12 00:00	11/26/12 15:07	1.00
1,1,2-Trichloroethane	ND	•	1.00		ug/L		11/26/12 00:00	11/26/12 15:07	1.00
Trichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:07	1.00
Vinyl chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:07	1.00
Xylenes, total	380		1.00		ug/L		11/26/12 00:00	11/26/12 15:07	1.00
m,p-Xylene	277		1.00		ug/L		11/26/12 00:00	11/26/12 15:07	1.00
o-Xylene	104		1.00		ug/L		11/26/12 00:00	11/26/12 15:07	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	106		75 - 120				11/26/12 00:00	11/26/12 15:07	1.00
Toluene-d8	108		80 - 120				11/26/12 00:00	11/26/12 15:07	1.00
4-Bromofluorobenzene	98		75 - 110				11/26/12 00:00	11/26/12 15:07	1.00
- Method: SW 9041A - VOC Pi	reservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-08

Date Collected: 11/13/12 09:10 Date Received: 11/17/12 09:40 E22A

Lab Sample ID: 240-17778-8

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	ND		10.0		ug/L		11/26/12 00:00	11/26/12 15:32	1.0
Benzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:32	1.0
Carbon Tetrachloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:32	1.0
Chloroform	ND		1.00	********	ug/L		11/26/12 00:00	11/26/12 15:32	1.0
1,1-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:32	1.0
cis-1,2-Dichloroethene	7.51		1.00		ug/L		11/26/12 00:00	11/26/12 15:32	1.0
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:32	1.0
Methylene Chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:32	1.0
Tetrachloroethene	17.9		1.00		ug/L		11/26/12 00:00	11/26/12 15:32	1.0
Toluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:32	1.0
1,1,2-Trichloroethane	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:32	1.0
Trichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:32	1.0
Vinyl chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:32	1.0
Xylenes, total	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:32	1.0
m,p-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:32	1.0
o-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:32	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	104		75 - 120				11/26/12 00:00	11/26/12 15:32	1.0
Toluene-d8	108		80 - 120				11/26/12 00:00	11/26/12 15:32	1.0
4-Bromofluorobenzene	102		75 - 110				11/26/12 00:00	11/26/12 15:32	1.0
Method: SW 9041A - VOC Pr	eservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
pH	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.0

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Lab Sample ID: 240-17778-9

Client Sample ID: W-121113-NE-09

Date Collected: 11/13/12 09:42 Date Received: 11/17/12 09:40 E37A

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10.0		ug/L		11/26/12 00:00	11/26/12 15:58	1.00
Benzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:58	1.00
Carbon Tetrachloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:58	1.00
Chloroform	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:58	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:58	1.00
cis-1,2-Dichloroethene	36.7		1.00		ug/L		11/26/12 00:00	11/26/12 15:58	1.00
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:58	1.00
Methylene Chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:58	1.00
Tetrachloroethene	22.8		1.00		ug/L		11/26/12 00:00	11/26/12 15:58	1.00
Toluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:58	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:58	1.00
Trichloroethene	6.87		1.00		ug/L		11/26/12 00:00	11/26/12 15:58	1.00
Vinyl chloride	1.69		1.00		ug/L		11/26/12 00:00	11/26/12 15:58	1.00
Xylenes, total	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:58	1.00
m,p-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:58	1.00
o-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 15:58	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	108		75 - 120				11/26/12 00:00	11/26/12 15:58	1.00
Toluene-d8	107		80 - 120				11/26/12 00:00	11/26/12 15:58	1.00
4-Bromofluorobenzene	102		75 - 110				11/26/12 00:00	11/26/12 15:58	1.00
Method: SW 9041A - VOC Pro	eservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-10

Date Collected: 11/13/12 10:02 Date Received: 11/17/12 09:40 E23A

Lab Sample ID: 240-17778-10

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Acetone	ND		10.0		ug/L		11/26/12 00:00	11/26/12 16:23	1.00
Benzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:23	1.00
Carbon Tetrachloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:23	1.00
Chloroform	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:23	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:23	1.00
cis-1,2-Dichloroethene	35.8		1.00		ug/L		11/26/12 00:00	11/26/12 16:23	1.00
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:23	1.00
Methylene Chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:23	1.00
Tetrachloroethene	41.0		1.00		ug/L		11/26/12 00:00	11/26/12 16:23	1.00
Toluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:23	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:23	1.00
Trichloroethene	7.80		1.00		ug/L		11/26/12 00:00	11/26/12 16:23	1.00
Vinyl chloride	1.92		1.00		ug/L		11/26/12 00:00	11/26/12 16:23	1.00
Xylenes, total	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:23	1.00
m,p-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:23	1.00
o-Xylene	ND ND	* * * * * * * * * * * * * * * * * * * *	1.00		ug/L		11/26/12 00:00	11/26/12 16:23	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	108		75 - 120				11/26/12 00:00	11/26/12 16:23	1.00
Toluene-d8	106		80 - 120				11/26/12 00:00	11/26/12 16:23	1.00
4-Bromofluorobenzene	100		75 - 110				11/26/12 00:00	11/26/12 16:23	1.00
Method: SW 9041A - VOC Pr	reservation Check				•				
Analyte		Qualifier	RL	MDL	Unit	D	Prepared ,	Analyzed	Dil Fac
Н	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-11

Date Collected: 11/13/12 11:30 Date Received: 11/17/12 09:40 F.B. (WC3B)

Lab Sample ID: 240-17778-11

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10.0		ug/L		11/26/12 00:00	11/26/12 16:48	1.00
Benzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:48	1.00
Carbon Tetrachloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:48	1.00
Chloroform	ND.		1.00	******	ug/L		11/26/12 00:00	11/26/12 16:48	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:48	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:48	1.00
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:48	1.00
Methylene Chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:48	1.00
Tetrachloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:48	1.00
Toluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:48	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:48	1.00
Trichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:48	1.00
Vinyl chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:48	1.00
Xylenes, total	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:48	1.00
m,p-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:48	1.00
o-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 16:48	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	104		75 - 120				11/26/12 00:00	11/26/12 16:48	1.00
Toluene-d8	109		80 - 120				11/26/12 00:00	11/26/12 16:48	1.00
4-Bromofluorobenzene	101		75 - 110				11/26/12 00:00	11/26/12 16:48	1.00
Method: SW 9041A - VOC Preservatio	n Check							•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-12

Date Collected: 11/13/12 12:08 Date Received: 11/17/12 09:40 WC3B

Lab Sample ID: 240-17778-12

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Acetone	ND		10.0		ug/L		11/26/12 00:00	11/26/12 17:13	1.
Benzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:13	1.
Carbon Tetrachloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:13	1.
Chloroform	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:13	1.
1,1-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:13	1.
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:13	1.
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:13	1.
Methylene Chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:13	1.0
Tetrachloroethene	3.47		1.00		ug/L		11/26/12 00:00	11/26/12 17:13	1.0
Toluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:13	1.0
1,1,2-Trichloroethane	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:13	1.
Trichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:13	1.0
Vinyl chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:13	1.6
Xylenes, total	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:13	1.0
m,p-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:13	1.0
o-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:13	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
Dibromofluoromethane	108		75 - 120				11/26/12 00:00	11/26/12 17:13	1.
Toluene-d8	108		80 - 120				11/26/12 00:00	11/26/12 17:13	1.
4-Bromofluorobenzene	100		75 - 110				11/26/12 00:00	11/26/12 17:13	1.
Method: SW 9041A - VOC Pr	reservation Check								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
ьН	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-13

Date Collected: 11/13/12 10:39

WW6

Lab Sample ID: 240-17778-13

Matrix: Water

Method: SW 8260B - Volatile Analyte	•	I ds Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND ND		10.0		ug/L		11/26/12 00:00	11/26/12 17:38	1.00
Benzene	· ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:38	1.00
Carbon Tetrachloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:38	1.00
Chloroform	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:38	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:38	1.00
cis-1,2-Dichloroethene	31.3		1.00		ug/L		11/26/12 00:00	11/26/12 17:38	1.00
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:38	1.00
Methylene Chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:38	1.00
Tetrachloroethene	7.67		1.00		ug/L		11/26/12 00:00	11/26/12 17:38	1.00
Toluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:38	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:38	1.00
Trichloroethene	3.30		1.00		ug/L		11/26/12 00:00	11/26/12 17:38	1.00
Vinyl chloride	3.21		1.00		ug/L		11/26/12 00:00	11/26/12 17:38	1.00
Xylenes, total	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:38	1.00
m,p-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 17:38	1.00
o-Xylene	ND	• • • • • • • • • • • • •	1.00		ug/L		11/26/12 00:00	11/26/12 17:38	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	107		75 - 120				11/26/12 00:00	11/26/12 17:38	1.00
Toluene-d8	108		80 - 120				11/26/12 00:00	11/26/12 17:38	1.00
4-Bromofluorobenzene	98		75 - 110				11/26/12 00:00	11/26/12 17:38	1.00
Method: SW 9041A - VOC P	reservation Check								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-14

Date Collected: 11/13/12 11:11 Date Received: 11/17/12 09:40 WC5A

Lab Sample ID: 240-17778-14

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	ND		10.0		ug/L		11/26/12 00:00	11/26/12 18:03	1.00
Benzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:03	1.00
Carbon Tetrachloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:03	1.00
Chloroform	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:03	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:03	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:03	1.00
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:03	1.00
Methylene Chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:03	1.00
Tetrachloroethene	1.30		1.00		ug/L		11/26/12 00:00	11/26/12 18:03	1.00
Toluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:03	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:03	1.00
Trichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:03	1.00
Vinyl chlonde	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:03	1.00
Xylenes, total	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:03	1.00
m,p-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:03	1.00
o-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:03	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	108		75 - 120				11/26/12 00:00	11/26/12 18:03	1.00
Toluene-d8	107		80 - 120				11/26/12 00:00	11/26/12 18:03	1.00
4-Bromofluorobenzene	100		75 - 110				11/26/12 00:00	11/26/12 18:03	1.00
Method: SW 9041A - VOC P	reservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-15

Date Collected: 11/13/12 13:39 Date Received: 11/17/12 09:40 W53A

Lab Sample ID: 240-17778-15

Matrix: Water

TANK I

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10.0		ug/L		11/26/12 00:00	11/26/12 18:28	1.00
Benzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:28	1.00
Carbon Tetrachloride	1.67		1.00		ug/L		11/26/12 00:00	11/26/12 18:28	1.00
Chloroform	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:28	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:28	1.00
cis-1,2-Dichloroethene	2.25		1.00		ug/L		11/26/12 00:00	11/26/12 18:28	1.00
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:28	1.00
Methylene Chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:28	1.00
Tetrachloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:28	1.00
Toluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:28	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:28	1.00
Trichloroethene	54.2		1.00		ug/L		11/26/12 00:00	11/26/12 18:28	1.00
Vinyl chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:28	1.00
Xylenes, total	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:28	1.00
m,p-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:28	1.00
o-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 18:28	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	108		75 - 120			`	11/26/12 00:00	11/26/12 18:28	1.00
Toluene-d8	108		80 - 120				11/26/12 00:00	11/26/12 18:28	1.00
4-Bromofluorobenzene	99		75 - 110				11/26/12 00:00	11/26/12 18:28	1.00
Method: SW 9041A - VOC Pi	reservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-16

Date Collected: 11/13/12 14:44 Date Received: 11/17/12 09:40 W54

Lab Sample ID: 240-17778-16

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyze d	Dil Fa
Acetone	ND		10.0		ug/L		11/27/12 00:00	11/27/12 12:47	1.00
Benzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 12:47	1.00
Carbon Tetrachloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 12:47	1.00
Chloroform	ND		1.00		ug/L		11/27/12 00:00	11/27/12 12:47	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 12:47	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 12:47	1.00
Ethylbenzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 12:47	1.00
Methylene Chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 12:47	1.00
Tetrachloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 12:47	1.00
Toluene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 12:47	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/27/12 00:00	11/27/12 12:47	1.00
Trichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 12:47	1.00
Vinyl chloride	ND	C9	1.00		ug/L		11/27/12 00:00	11/27/12 12:47	1.00
Cylenes, total	ND		1.00		ug/L		11/27/12 00:00	11/27/12 12:47	1.00
m,p-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 12:47	1.00
p-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 12:47	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	104		75 - 120				11/27/12 00:00	11/27/12 12:47	1.00
Foluene-d8	110		80 - 120				11/27/12 00:00	11/27/12 12:47	1.00
1-Bromofluorobenzene	100		75 - 110				11/27/12 00:00	11/27/12 12:47	1.00
Method: SW 9041A - VOC Pi	reservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ьН	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-17

Date Collected: 11/13/12 16:17 Date Received: 11/17/12 09:40 R4D

Lab Sample ID: 240-17778-17

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10.0		ug/L		11/26/12 00:00	11/26/12 12:11	1.00
Benzene	. ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:11	1.00
Carbon Tetrachloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:11	1.00
Chloroform	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:11	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:11	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:11	1.00
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:11	1.00
Methylene Chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:11	1.00
Tetrachloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:11	1.00
Toluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:11	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:11	1.00
Trichloroethene	4.89		1.00		ug/L		11/26/12 00:00	11/26/12 12:11	1.00
Vinyl chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:11	1.00
Xylenes, total	· ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:11	1.00
m,p-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:11	1.00
o-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 12:11	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	106	•	75 - 120				11/26/12 00:00	11/26/12 12:11	1.00
Toluene-d8	109		80 - 120				11/26/12 00:00	11/26/12 12:11	1.00
4-Bromofluorobenzene	101		75 - 110				11/26/12 00:00	11/26/12 12:11	1.00
Method: SW 9041A - VOC Pi	reservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	ND ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

TestAmerica Canton

Page 27 of 69

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-18

Date Collected: 11/13/12 16:56 Date Received: 11/17/12 09:40

C2S

Lab Sample ID: 240-17778-18

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit .	D	Prepared	Analyzed	Dil Fac
Acetone .	ND		10.0		ug/L		11/26/12 00:00	11/26/12 19:18	1.00
Benzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:18	1.00
Carbon Tetrachloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:18	1.0
Chloroform	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:18	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:18	1.0
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:18	1.0
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:18	1.0
Methylene Chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:18	1.0
Tetrachloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:18	1.0
oluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:18	1.0
,1,2-Trichloroethane	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:18	1.0
richloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:18	1.0
/inyl chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:18	1,00
(ylenes, total	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:18	1.00
n,p-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:18	1.00
o-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:18	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
ibromofluoromethane	107		75 - 120				11/26/12 00:00	11/26/12 19:18	1.00
oluene-d8	107		80 - 120				11/26/12 00:00	11/26/12 19:18	1.00
-Bromofluorobenzene	98		75 - 110				11/26/12 00:00	11/26/12 19:18	1.00
Nethod: SW 9041A - VOC P	reservation Check								
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
н	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Matrix: Water

Lab Sample ID: 240-17778-19

Client Sample ID: W-121113-NE-19

Date Collected: 11/13/12 14:28

R3D

Date Received: 11/17/12 09:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ΝĎ		10.0		ug/L		11/26/12 00:00	11/26/12 19:43	1.00
Benzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:43	1.00
Carbon Tetrachloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:43	1.00
Chloroform	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:43	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:43	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:43	1.00
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:43	1.00
Methylene Chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:43	1.00
Tetrachloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:43	1.00
Toluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:43	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:43	1.00
Trichloroethene	20.6		1.00		ug/L		11/26/12 00:00	11/26/12 19:43	1.00
Vinyl chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:43	1.00
Xylenes, total	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:43	1.00
m,p-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:43	1.00
o-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 19:43	1.00
Surrogate	%Recovery	Qualifier	Limits	·			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	106		75 - 120				11/26/12 00:00	11/26/12 19:43	1.00
Toluene-d8	111		80 - 120				11/26/12 00:00	11/26/12 19:43	1.00
4-Bromofluorobenzene	101		75 - 110				11/26/12 00:00	11/26/12 19:43	1.00
- Method: SW 9041A - VOC P	reservation Check								
Analyte	Result	Qualifier	RL	MDL.	Unit	D	Prepared	Analyzed	Dil Fac
pH	ND ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-20

Date Collected: 11/13/12 14:29 Date Received: 11/17/12 09:40 R3D (dup)

Lab Sample ID: 240-17778-20

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	ND		10.0		ug/L		11/26/12 00:00	11/26/12 20:08	1.0
Benzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 20:08	1.0
Carbon Tetrachloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 20:08	1.0
Chloroform	ND		1.00		ug/L		11/26/12 00:00	11/26/12 20:08	1.0
1,1-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 20:08	1.0
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 20:08	1.0
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 20:08	1.0
Methylene Chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 20:08	1.0
Tetrachloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 20:08	1.0
Toluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 20:08	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/26/12 00:00	11/26/12 20:08	1.00
Trichloroethene	20.7		1.00		ug/L		11/26/12 00:00	11/26/12 20:08	1.00
Vinyl chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 20:08	1.00
Xylenes, total	ND		1.00		ug/L		11/26/12 00:00	11/26/12 20:08	1.0
m,p-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 20:08	1.0
o-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 20:08	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	103		75 - 120				11/26/12 00:00	11/26/12 20:08	1.0
Toluene-d8	113		80 - 120				11/26/12 00:00	11/26/12 20:08	1.0
4-Bromofluorobenzene	101		75 - 110				11/26/12 00:00	11/26/12 20:08	1.0
Method: SW 9041A - VOC Pr	eservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	DII Fa
эН	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

Client: Conestoga-Rovers & Associates, Inc.

Client Sample ID: W-121113-NE-21

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Lab Sample ID: 240-17778-21 C4S

Matrix: Water

Date Collected: 11/13/12 15:09 Date Received: 11/17/12 09:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10.0		ug/L		11/27/12 00:00	11/27/12 13:12	1.00
Benzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:12	1.00
Carbon Tetrachloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:12	1.00
Chloroform	ND		1.00	*******	ug/L		11/27/12 00:00	11/27/12 13:12	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:12	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:12	1.00
Ethylbenzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:12	1.00
Methylene Chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:12	1.00
Tetrachloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:12	1.00
Toluene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:12	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:12	1.00
Trichloroethene	1.24		1.00		ug/L		11/27/12 00:00	11/27/12 13:12	1.00
Vinyl chloride	ND	C9	1.00		ug/L		11/27/12 00:00	11/27/12 13:12	1.00
Xylenes, total	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:12	1.00
m,p-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:12	1.00
o-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:12	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	103		75 - 120				11/27/12 00:00	11/27/12 13:12	1.00
Toluene-d8	107		80 - 120				11/27/12 00:00	11/27/12 13:12	1.00
4-Bromofluorobenzene	101		75 - 110				11/27/12 00:00	11/27/12 13:12	1.00
· Method: SW 9041A - VOC Pr	reservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-22

Date Collected: 11/13/12 18:10 Date Received: 11/17/12 09:40 W52

Lab Sample ID: 240-17778-22

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	ND	-	10.0		ug/L		11/27/12 00:00	11/27/12 13:37	1.0
Benzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:37	1.0
Carbon Tetrachloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:37	1.0
Chloroform	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:37	1.0
1,1-Dichloroethene	ND		1.00		ug/L ·		11/27/12 00:00	11/27/12 13:37	1.0
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:37	1.0
Ethylbenzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:37	1.0
Methylene Chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:37	1.0
Tetrachloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:37	1.0
Toluene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:37	1.0
1,1,2-Trichloroethane	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:37	1.0
Trichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:37	1.0
Vinyl chloride	ND	C9	1.00		ug/L		11/27/12 00:00	11/27/12 13:37	1.0
Xylenes, total	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:37	1.0
m,p-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:37	1.0
o-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 13:37	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	107		75 - 120				11/27/12 00:00	11/27/12 13:37	1.0
Toluene-d8	107		80 - 120				11/27/12 00:00	11/27/12 13:37	1.0
4-Bromofluorobenzene	98		75 - 110				11/27/12 00:00	11/27/12 13:37	1.0
Method: SW 9041A - VOC Pre	servation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
oH	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.0

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-23

Date Collected: 11/13/12 18:11

W52 (dup)

Lab Sample ID: 240-17778-23

Method: SW 8260B - Volatile	-	nds Qualifier	RL	MDL	11mia	D	Prepared	Analyzed	Dil Fac
Analyte Acetone	ND		10.0	MUL	ug/L	_	11/27/12 00:00	11/27/12 01:32	1.00
Benzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:32	1.00
Carbon Tetrachloride	ND	C9	1.00		ug/L		11/27/12 00:00	11/27/12 01:32	1.00
Chloroform	ND		1.00		ug/L ug/L		11/27/12 00:00	11/27/12 01:32	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:32	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:32	1.00
Ethylbenzene	ND		1.00		 ug/L		11/27/12 00:00	11/27/12 01:32	1.00
Methylene Chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:32	1.00
Tetrachloroethene	ND ND		1.00		-		11/27/12 00:00	11/27/12 01:32	1.00
	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:32	1.00
Toluene	ND ND				ug/L		11/27/12 00:00	11/27/12 01:32	1.00
1,1,2-Trichloroethane			1.00		ug/L				
Trichloroethene	1.03		1.00		ug/L		11/27/12 00:00	11/27/12 01:32	1.00
Vinyl chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:32	1.00
Xylenes, total	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:32	1.00
m,p-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:32	1.00
o-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:32	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	110		75 - 120				11/27/12 00:00	11/27/12 01:32	1.00
Toluene-d8	109		80 - 120				11/27/12 00:00	11/27/12 01:32	1.00
4-Bromofluorobenzene	99		75 - 110				11/27/12 00:00	11/27/12 01:32	1.00
Method: SW 9041A - VOC P	reservation Check								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-24

Date Collected: 11/13/12 16:25 Date Received: 11/17/12 09:40 R.B (W56)

Lab Sample ID: 240-17778-24

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	ND		10.0		ug/L		11/27/12 00:00	11/27/12 01:56	1.00
Benzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:56	1.00
Carbon Tetrachloride	ND	C9	1.00		ug/L		11/27/12 00:00	11/27/12 01:56	1.00
Chloroform	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:56	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:56	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:56	1.00
Ethylbenzene	ND		1.00	· · · · · · · - · · ·	ug/L		11/27/12 00:00	11/27/12 01:56	1.00
Methylene Chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:56	1.00
Tetrachloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:56	1.00
Toluene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:56	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:56	1.00
Trichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:56	1.00
Vinyl chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:56	1.00
Xylenes, total	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:56	1.00
m,p-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:56	1.00
o-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 01:56	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	108	- · · · · · · · · · · · · · · · · · · ·	75 - 120				11/27/12 00:00	11/27/12 01:56	1.0
Toluene-d8	110		80 - 120				11/27/12 00:00	11/27/12 01:56	1.0
4-Bromofluorobenzene	96		75 - 110				11/27/12 00:00	11/27/12 01:56	1.0
Method: SW 9041A - VOC P	reservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
pH	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.0

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

Date Collected: 11/13/12 16:44

Date Received: 11/17/12 09:40

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-25

W56

Lab Sample ID: 240-17778-25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10.0		ug/L		11/27/12 00:00	11/27/12 02:21	1.00
Benzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:21	1.00
Carbon Tetrachloride	ND	C9	1.00		ug/L		11/27/12 00:00	11/27/12 02:21	1.00
Chloroform	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:21	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:21	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:21	1.00
Ethylbenzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:21	1.00
Methylene Chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:21	1.00
Tetrachloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:21	1.00
Toluene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:21	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:21	1.00
Trichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:21	1.00
Vinyl chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:21	1.00
Xylenes, total	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:21	1.00
m,p-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:21	1.00
o-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:21	1.00
Surrogate	%Recovery	Qualifier	Limits			•	Prepared	Analyzed	Dil Fac.
Dibromofluoromethane	109		75 - 120				11/27/12 00:00	11/27/12 02:21	1.00
Toluene-d8	111		80 - 120				11/27/12 00:00	11/27/12 02:21	1.00
4-Bromofluorobenzene	97		75 - 110				11/27/12 00:00	11/27/12 02:21	1.00
Method: SW 9041A - VOC Pr	eservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Lab Sample ID: 240-17778-26 Client Sample ID: W-121114-NE-26 F.B. (R2D)

Date Collected: 11/14/12 08:20 Date Received: 11/17/12 09:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	ND		10.0		ug/L		11/27/12 00:00	11/27/12 02:46	1.0
Benzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:46	1.0
Carbon Tetrachloride	ND	C9	1.00		ug/L		11/27/12 00:00	11/27/12 02:46	1.0
Chloroform	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:46	1.0
1,1-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:46	1.0
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:46	1.0
Ethylbenzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:46	1.0
Methylene Chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:46	1.0
Tetrachloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:46	1.0
Toluene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:46	1.0
1,1,2-Trichloroethane	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:46	1.0
Trichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:46	1.0
Vinyl chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:46	1.0
Xylenes, total	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:46	1.0
m,p-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:46	1.0
o-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 02:46	1.0
Surrogate	%Recovery	Q ualifie r	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	106		75 - 120				11/27/12 00:00	11/27/12 02:46	1.0
Toluene-d8	111		80 - 120				11/27/12 00:00	11/27/12 02:46	1.0
4-Bromofluorobenzene	97		75 - 110				11/27/12 00:00	11/27/12 02:46	1.0
Method: SW 9041A - VOC P	reservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
рН	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.0

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121114-NE-27

R2D

Lab Sample ID: 240-17778-27

Date Collected: 11/14/12 09:27 Date Received: 11/17/12 09:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10.0		ug/L		11/27/12 00:00	11/27/12 03:11	1.00
Benzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:11	1.00
Carbon Tetrachloride	ND	C9	1.00		ug/L		11/27/12 00:00	11/27/12 03:11	1.00
Chloroform	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:11	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:11	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:11	1.00
Ethylbenzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:11	1.00
Methylene Chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:11	1.00
Tetrachloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:11	1.00
Toluene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:11	1.00
1,1,2-Trichloroethane	ND		1.00	•	ug/L		11/27/12 00:00	11/27/12 03:11	1.00
Trichloroethene	6.38		1.00		ug/L		11/27/12 00:00	11/27/12 03:11	1.00
Vinyl chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:11	1.00
Xylenes, total	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:11	1.00
m,p-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:11	1.00
o-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:11	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluorometh a ne	110		75 - 120				11/27/12 00:00	11/27/12 03:11	1.00
Toluene-d8	112		80 - 120				11/27/12 00:00	11/27/12 03:11	1.00
4-Bromofluorobenzene	88		75 - 110				11/27/12 00:00	11/27/12 03:11	1.00
Method: SW 9041A - VOC P	reservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH ·	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Date Collected: 11/14/12 11:05 Matrix: Water
Date Received: 11/17/12 09:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	ND		10.0		ug/L		11/27/12 00:00	11/27/12 03:35	1.0
Benzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:35	1.0
Carbon Tetrachloride	ND	C9	1.00		ug/L		11/27/12 00:00	11/27/12 03:35	1.0
Chloroform	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:35	1.0
1,1-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:35	1.0
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:35	1.0
Ethylbenzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:35	1.0
Methylene Chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:35	1.0
Tetrachloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:35	1.0
Toluene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:35	1.0
1,1,2-Trichloroethane	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:35	1.0
Trichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:35	1.0
Vinyl chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:35	1.0
Xylenes, total	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:35	1.0
m,p-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:35	1.0
o-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 03:35	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	108		75 - 120				11/27/12 00:00	11/27/12 03:35	1.0
Toluene-d8	110		80 - 120				11/27/12 00:00	11/27/12 03:35	1.0
4-Bromofluorobenzene	98		75 - 110				11/27/12 00:00	11/27/12 03:35	1.0
Method: SW 9041A - VOC P	reservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
pH	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.0

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121114-NE-29

W55

Lab Sample ID: 240-17778-29

Matrix: Water

Date Collected: 11/14/12 12:22 Date Received: 11/17/12 09:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10.0		ug/L		11/27/12 00:00	11/27/12 04:00	1.00
Benzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:00	1.00
Carbon Tetrachloride	ND	C9	1.00		ug/L		11/27/12 00:00	11/27/12 04:00	1.00
Chloroform	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:00	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:00	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:00	1.00
Ethylbenzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:00	1.00
Methylene Chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:00	1.00
Tetrachloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:00	1.00
Toluene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:00	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:00	1.00
Trichloroethene	4.92		1.00		ug/L		11/27/12 00:00	11/27/12 04:00	1.00
Vinyl chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:00	1.00
Xylenes, total	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:00	1.00
m,p-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:00	1.00
o-Xylene	ND	• • • • • • • • • • • • • • • • • • • •	1.00		ug/L		11/27/12 00:00	11/27/12 04:00	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	105		75 - 120				11/27/12 00:00	11/27/12 04:00	1.00
Toluene-d8	110		80 - 120				11/27/12 00:00	11/27/12 04:00	1.00
4-Bromofluorobenzene	98		75 - 110				11/27/12 00:00	11/27/12 04:00	1.00
Method: SW 9041A - VOC Pr	eservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121114-NE-30

Date Collected: 11/14/12 09:00 Date Received: 11/17/12 09:40 CW6

Lab Sample ID: 240-17778-30

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Acetone	ND		10.0		ug/L		11/27/12 00:00	11/27/12 14:03	1.0
Benzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 14:03	1.
Carbon Tetrachloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 14:03	1.0
Chloroform	ND		1.00		ug/L		11/27/12 00:00	11/27/12 14:03	1.0
1,1-Dichloroethene	· ND		1.00		ug/L		11/27/12 00:00	11/27/12 14:03	1.0
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 14:03	1.0
Ethylbenzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 14:03	1.0
Methylene Chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 14:03	1.0
Tetrachloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 14:03	1.0
Toluene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 14:03	1.0
1,1,2-Trichloroethane	ND		1.00		ug/L		11/27/12 00:00	11/27/12 14:03	1.0
Trichloroethene	3.92		1.00		ug/L		11/27/12 00:00	11/27/12 14:03	1.0
Vinyl chloride	ND	C9	1.00		ug/L		11/27/12 00:00	11/27/12 14:03	1.0
Xylenes, total	ND		1.00		ug/L		11/27/12 00:00	11/27/12 14:03	1.0
m,p-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 14:03	1.0
o-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 14:03	1.0
Surrogate	%Recovery	Quaiifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	106		75 - 120				11/27/12 00:00	11/27/12 14:03	1.0
Toluene-d8	108		80 - 120				11/27/12 00:00	11/27/12 14:03	1.0
I-Bromofluorobenzene	98		75 - 110				11/27/12 00:00	11/27/12 14:03	1.0
Method: SW 9041A - VOC Pr	eservation Check			•					
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
ж	ND ND		2.00		units		11/27/12 16:19		• '

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121114-NE-31

Date Collected: 11/14/12 14:02 Date Received: 11/17/12 09:40 MW1A

Lab Sample ID: 240-17778-31

Analyte	Result	Qualifier ·	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		10.0		ug/L		11/27/12 00:00	11/27/12 04:49	1.00
Benzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:49	1.00
Carbon Tetrachloride	ND	C9	1.00		ug/L		11/27/12 00:00	11/27/12 04:49	1.00
Chloroform	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:49	1.00
1,1-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:49	1.00
cis-1,2-Dichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:49	1.00
Ethylbenzene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:49	1.00
Methylene Chloride	. ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:49	1.00
Tetrachloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:49	1.00
Toluene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:49	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:49	1.00
Trichloroethene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:49	1.00
Vinyl chloride	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:49	1.00
Xylenes, total	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:49	1.00
m,p-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:49	1.00
o-Xylene	ND		1.00		ug/L		11/27/12 00:00	11/27/12 04:49	1.00
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Dibromofluoromethane	108		75 - 120				11/27/12 00:00	11/27/12 04:49	1.00
Toluene-d8	110		80 - 120				11/27/12 00:00	11/27/12 04:49	1.00
4-Bromofluorobenzene	97		75 - 110				11/27/12 00:00	11/27/12 04:49	1.00
Method: SW 9041A - VOC Pi	reservation Check								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
pH	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.00

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: TRIP BLANKS

Date Collected: 11/13/12 00:00 Date Received: 11/17/12 09:40 Lab Sample ID: 240-17778-32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acetone	ND	H2	10.0		ug/L		11/27/12 00:00	11/27/12 14:28	1.0
Benzene	ND	H2	1.00		ug/L		11/27/12 00:00	11/27/12 14:28	1.0
Carbon Tetrachloride	ND	H2	1.00		ug/L		11/27/12 00:00	11/27/12 14:28	1.0
Chloroform	ND	H2	1.00		ug/L		11/27/12 00:00	11/27/12 14:28	1.0
1,1-Dichloroethene	ND	H2	1.00		ug/L		11/27/12 00:00	11/27/12 14:28	1.0
cis-1,2-Dichloroethene	ND	H2	1.00		ug/L		11/27/12 00:00	11/27/12 14:28	1.0
Ethylbenzene	ND	H2	1.00		ug/L		11/27/12 00:00	11/27/12 14:28	1.0
Methylene Chloride	1.80	H2	1.00		ug/L		11/27/12 00:00	11/27/12 14:28	1.0
Tetrachloroethene	ND	H2	1.00		ug/L		11/27/12 00:00	11/27/12 14:28	1.0
Toluene	ND	H2	1.00		ug/L		11/27/12 00:00	11/27/12 14:28	1.0
1,1,2-Trichloroethane	ND	H2	1.00		ug/L		11/27/12 00:00	11/27/12 14:28	1.0
Trichloroethene	ND	H2	1.00		ug/L		11/27/12 00:00	11/27/12 14:28	1.0
Vinyl chloride	ND	H2 C9	1.00		ug/L		11/27/12 00:00	11/27/12 14:28	1.0
Xylenes, total	ND	H2	1.00		ug/L		11/27/12 00:00	11/27/12 14:28	1.0
m,p-Xylene	ND	H2	1.00		ug/L		11/27/12 00:00	11/27/12 14:28	1.0
o-Xylene	ND	H2	1.00		ug/L		11/27/12 00:00	11/27/12 14:28	1.0
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Dibromofluoromethane	107	H2	75 - 120				11/27/12 00:00	11/27/12 14:28	1.0
Toluene-d8	107	H2	80 - 120				11/27/12 00:00	11/27/12 14:28	1.0
4-Bromofluorobenzene	101	H2	[^] 75 ₋ 110				11/27/12 00:00	11/27/12 14:28	1.0
Method: SW 9041A - VOC P	reservation Check				•				
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
pH	ND		2.00		units		11/27/12 16:19	11/27/12 16:25	1.0

Surrogate Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Method: SW 8260B - Volatile Organic Compounds

Matrix: Water Prep Type: Total

,		DBFM	Toluene-d8	Percent Surrogate Recovery (Acceptance Limits) BFB	
Lab Sample ID	Client Sample ID	(75-120)	(80-120)	(75-110)	
240-17778-1	W-121113-NE-01	103	109	100	
240-17778-2	W-121113-NE-02	106	107	101	
240-17778-3	W-121113-NE-03	108	108	99	
240-17778-4	W-121113-NE-04	108	108	100	
240-17778-5	W-121113-NE-05	104	109	102	
240-17778-6	W-121113-NE-06	107	106	97	
240-17778-7	W-121113-NE-07	106	108	98	
240-17778-8	W-121113-NE-08	104	108	102	
240-17778-9	W-121113-NE-09	108	107	102	
240-17778-10	W-121113-NE-10	108	106	100	
240-17778-11	W-121113-NE-11	104	109	101	
240-17778-12	W-121113-NE-12	108	108	100	
240-17778-13	W-121113-NE-13	107	108	98	
240-17778-14	W-121113-NE-14	108	107	100	
240-17778-15	W-121113-NE-15	108	108	99	
240-17778-16	W-121113-NE-16	104	110	100	
240-17778-17	W-121113-NE-17	106	109	101	
240-17778-18	W-121113-NE-18	107	107	98	
240-17778-19	W-121113-NE-19	106	111	101	
240-17778-20	W-121113-NE-20	103	113	101	
240-17778-21	W-121113-NE-21	103	107	101	
240-17778-22	W-121113-NE-22	107	107	98	
240-17778-23	W-121113-NE-23	110	109	99	
240-17778-24	W-121113-NE-24	108	110	96	
240-17778-25	W-121113-NE-25	109	111	97	
240-17778-26	W-121114-NE-26	106	111	97	
240-17778-27	W-121114-NE-27	110	112	88	
240-17778-28	W-121114-NE-28	108	110	98	
240-17778-29	W-121114-NE-29	105	110	98	
240-17778-30	W-121114-NE-30	106	108	98	
240-17778-31	W-121114-NE-31	108	110	97	
240-17778-32	TRIP BLANKS	107 H2	107 H2	101 H2	

DBFM = Dibromofluoromethane

Toluene-d8 = Toluene-d8

BFB = 4-Bromofluorobenzene

Method: SW 8260B - Volatile Organic Compounds

Matrix: Water - NonPotable Prep Type: Total

				Percent Sur	ogate Recovery (Acceptance Limits)
		DBFM	Toluene-d8	BFB	
Lab Sample ID	Client Sample ID	(75-120)	(80-120)	(75-110)	
12K1219-BLK1	Method Blank	· 102	108	102	
12K1220-BLK1	Method Blank	109	110	97	
12K1266-BLK1	Method Blank	107	107	100	

Surrogate Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

Toluene-d8 = Toluene-d8 BFB = 4-Bromofluorobenzene

Method: SW 8260B - Volatile Organic Compounds

Matrix: Water - NonPotable

Prep Type: Total

TestAmerica Job ID: 240-17778-1

	•	DBFM	Toluene-d8	BFB	·
Lab Sample ID	Client Sample ID	(75-120)	(80-120)	(80-120)	
12K1219-BS1	Lab Control Sample	109	108	102	
12K1219-MS1	240-17778-17	108	108	101	
12K1219-MSD1	240-17778-17	106	108	99	
12K1220-BS1	Lab Control Sample	109	108	94	
12K1220-MS1	240-17778-21	109	111	96	
12K1220-MSD1	240-17778-21	114	111	99	
12K1266-BS1	Lab Control Sample	109	108	103	
12K1266-BSD1	Lab Control Sample Dup	109	109	102	

Surrogate Legend

DBFM = Dibromofluoromethane

Toluene-d8 = Toluene-d8

BFB = 4-Bromofluorobenzene

Method: SW 8260B - Volatile Organic Compounds

Matrix: Water Prep Type: Total

Percent Surrogate Recovery (Acceptance Limits)

DBFM Toluene-d8 BFB

Lab Sample ID Client Sample ID

240-17778-21 W-121113-NE-21

Surrogate Legend

DBFM = Dibromofluoromethane

Toluene-d8 = Toluene-d8

BFB = 4-Bromofluorobenzene

TestAmerica Canton

Page 44 of 69 12/4/2012

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Method: SW 8260B - Volatile Organic Compounds

Lab Sample ID: 12K1219-BLK1 Matrix: Water - NonPotable Analysis Batch: 12K1219 Client Sample ID: Method Blank Prep Type: Total

Prep Batch: 12K1219_P

	Blank	Blank							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	ND		. 10.0		ug/L		11/26/12 00:00	11/26/12 10:06	1.00
Benzene	ND		0.500		ug/L		11/26/12 00:00	11/26/12 10:06	1.00
Carbon Tetrachloride	ND		2.00		ug/L		11/26/12 00:00	11/26/12 10:06	1.00
Chloroform	ND		1.00		ug/L		11/26/12 00:00	11/26/12 10:06	1.00
1,1-Dichloroethene	ND		2.00		ug/L		11/26/12 00:00	11/26/12 10:06	1.00
trans-1,2-Dichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 10:06	1.00
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 10:06	1.00
Methylene Chloride	ND		5.00		ug/L		11/26/12 00:00	11/26/12 10:06	1.00
Tetrachloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 10:06	1.00
Toluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 10:06	1.00
1,1,2-Trichloroethane	ND		1.00		ug/L		11/26/12 00:00	11/26/12 10:06	1.00
Trichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 10:06	1.00
Vinyl chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 10:06	1.00
Xylenes, total	ND		3.00		ug/L		11/26/12 00:00	11/26/12 10:06	1.00
m,p-Xylene	ND		2.00		ug/L		11/26/12 00:00	11/26/12 10:06	1.00
o-Xylene	ND		1,00		ug/L		11/26/12 00:00	11/26/12 10:06	1.00

	Blank	Blank				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	102		75 - 120	11/26/12 00:00	11/26/12 10:06	1.00
Toluene-d8	108		80 - 120	11/26/12 00:00	11/26/12 10:06	1.00
4-Bromofluorohenzene	102		75 110	11/26/12 00:00	11/26/12 10:06	1 00

Lab Sample ID: 12K1219-BS1 Matrix: Water - NonPotable

Analysis Batch: 12K1219

Client Sample ID: Lab Control Sample Prep Type: Total

Prep Batch: 12K1219_P

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	20.0	16.3		ug/L		81	60 . 150	
Benzene	20.0	17.6		ug/L		88	70 ₋ 130	
Carbon Tetrachloride	20.0	20.9		ug/L		105	55 . 130	
Chloroform	20.0	17.7		ug/L		88	70 ₋ 125	
1,1-Dichloroethene	20.0	16.7		ug/L		84	60 _ 135	
trans-1,2-Dichloroethene	20.0	18.1		ug/L		90	60 ₋ 145	
Ethylbenzene	20.0	19.9		ug/L		100	70 _ 130	
Methylene Chloride	20.0	16.9		ug/L		84	55 ₋ 145	
Tetrachloroethene	20.0	20.4		ug/L		102	70 _ 135	
Toluene	20.0	19.6		ug/L		98	70 - 135	
1,1,2-Trichloroethane	20.0	16.9		ug/L		85	75 ₋ 125	
Trichloroethene	20.0	18.6		ug/L		93	70 ₋ 130	
Vinyl chloride	20.0	16.7		ug/L		83	45 ₋ 135	
Xylenes, total	60.0	57.4		ug/L		96	70 _ 130	
m,p-Xylene	40.0	38.1		ug/L		95	70 ₋ 135	
o-Xylene	20.0	19.4		ug/L		97	70 ₋ 130	

	LCS	LCS		
Surrogate	%Recovery	Qualifier	Limits	
Dibromofluoromethane	109		75 - 120	
Toluene-d8	108		80 - 120	

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Method: SW 8260B - Volatile Organic Compounds (Continued)

Lab Sample ID: 12K1219-BS1 Matrix: Water - NonPotable

Analysis Batch: 12K1219

Client Sample ID: Lab Control Sample

Prep Type: Total

Prep Batch: 12K1219_P

LCS LCS

Surrogate %Recovery Qualifier Limits 102 80 - 120 4-Bromofluorobenzene

Lab Sample ID: 12K1219-MS1

Matrix: Water - NonPotable Analysis Batch: 12K1219

Client Sample ID: 240-17778-17

Prep Type: Total

Prep Batch: 12K1219_P

runanyono Banonin i Biti Bit									
	Sample	Sample	Spike	Matrix Spike	Matrix Spil	ke			%Rec.
Analyte	Result	Qualifier	Added	` Result	Qualifier	Unit	D	%Rec	Limits
Acetone	ND		20.0	10.8		ug/L		54	45 - 150
Benzene	ND		20.0	19.9		ug/L		100	50 _ 130
Carbon Tetrachloride	0.0300		20.0	24.7		ug/L		123	35 _ 130
Chloroform	ND		20.0	20.4		ug/L		102	55 ₋ 125
1,1-Dichloroethene	ND		20.0	21.0		ug/L		105	35 _ 135
trans-1,2-Dichloroethene	0.0400		20.0	20.3		ug/L		101	45 _ 145
Ethylbenzene	0.0100		20.0	22.4		ug/L		112	45 ₋ 135
Methylene Chloride	0.0400		20.0	19.0		ug/L		95	45 _ 145
Tetrachloroethene	ND		20.0	23.1		ug/L		116	40 ₋ 135
Toluene	0.0100		20.0	21.4		ug/L		107	45 - 135
1,1,2-Trichloroethane	ND		20.0	18.2		ug/L		91	60 - 130
Trichloroethene	4.89		20.0	26.6		ug/L		109	50 - 130
Vinyl chloride	ND		20.0	12.0		ug/L		60	30 - 135
Xylenes, total	ND		60.0	63.9		ug/L		107	40 - 135
m,p-Xylene	ND		40.0	42.9		ug/L		107	40 - 135
o-Xylene	ND		20.0	21.0		ug/L		105	40 - 135

	Matrix Spike	Matrix Spike	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane	108		75 _ 120
Toluene-d8	108		80 - 120
4-Bromofluorobenzene	101		80 - 120

Lab Sample ID: 12K1219-MSD1 Client Sample ID: 240-17778-17 Matrix: Water - NonPotable Prep Type: Total

Pren Batch: 12K1219 P

Analysis Batch: 12K1219									•	h: 12K1219_P	
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spil	ke Duţ			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	ND		20.0	10.5		ug/L		52	45 - 150	3	35
Benzene	ND		20.0	20.0		ug/L		100	50 - 130	0.3	20
Carbon Tetrachloride	0.0300		20.0	24.5		ug/L		122	35 _ 130	0.8	20
Chloroform	ND		20.0	21.1	•	ug/L		105	55 - 125	3	15
1,1-Dichloroethene	ND	•	20.0	20.0		ug/L		100	35 - 135	5	30
trans-1,2-Dichloroethene	0.0400		20.0	20.5		ug/L		102	45 - 145	1	35
Ethylbenzene	0.0100		20.0	22.3		ug/L		111	45 - 135	0.8	20
Methylene Chloride	0.0400		20.0	19.4		ug/L		97	45 - 145	2	30
Tetrachloroethene	ND		20.0	23.3		ug/L		117	40 - 135	0.9	20
Toluene	0.0100		20.0	21.6		ug/L		108	45 _ 135	1	20
1,1,2-Trichloroethane	ND		20.0	19.4		ug/L		97	60 - 130	6	15
Trichloroethene	4.89		20.0	26.8		ug/L		110	50 - 130	0.6	20
Vinyl chloride	ND		20.0	12.2		ug/L		61	30 _ 135	2	20
Xylenes, total	ND		60.0	65.2		ug/L		109	40 _ 135	2	20

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Method: SW 8260B - Volatile Organic Compounds (Continued)

Lab Sample ID: 12K1219-MSD1 Client Sample ID: 240-17778-17

Matrix: Water - NonPotable Prep Type: Total

Analysis Batch: 12K1219

%Rec. Spike Itrix Spike Dup Matrix Spike Dut Sample Sample Limits Result Qualifier Added Result Qualifier %Rec Limit Analyte 40.0 109 40 - 135 20 ND 43.5 ug/L m,p-Xylene 40 _ 135 20 ND 108 ż o-Xylene 20.0 21.7 ug/L

Matrix Spike Dup Matrix Spike Dup

Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane	106		75 - 120
Toluene-d8	108		80 - 120
4-Bromofluorobenzene	99		80 ₋ 120

Lab Sample ID: 12K1220-BLK1 Matrix: Water - NonPotable

Analysis Batch: 12K1220

Client Sample ID: Method Blank

Prep Type: Total Prep Batch: 12K1220_P

Prep Type: Total Prep Batch: 12K1219_P

	Blank	Blank								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acetone	ND		10.0		ug/L		11/26/12 00:00	11/26/12 22:38	1.00	
Benzene	ND		0.500		ug/L		11/26/12 00:00	11/26/12 22:38	1.00	
Carbon Tetrachloride	ND	C9	2.00		ug/L		11/26/12 00:00	11/26/12 22:38	1.00	
Chloroform	ND		1.00		ug/L		11/26/12 00:00	11/26/12 22:38	1.00	
1,1-Dichloroethene	ND		2.00		ug/L		11/26/12 00:00	11/26/12 22:38	1.00	
trans-1,2-Dichloroethene	ND		1.00	•	ug/L		11/26/12 00:00	11/26/12 22:38	1.00	
Ethylbenzene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 22:38	1.00	
Methylene Chloride	ND		5.00		ug/L		11/26/12 00:00	11/26/12 22:38	1.00	
Tetrachloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 22:38	1.00	
Toluene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 22:38	1.00	
1,1,2-Trichloroethane	ND		1.00		. ug/L		11/26/12 00:00	11/26/12 22:38	1.00	
Trichloroethene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 22:38	1.00	
Vinyl chloride	ND		1.00		ug/L		11/26/12 00:00	11/26/12 22:38	1.00	
Xylenes, total	ND		3.00		ug/L		11/26/12 00:00	11/26/12 22:38	1.00	
m,p-Xylene	ND		2.00		ug/L		11/26/12 00:00	11/26/12 22:38	1.00	
o-Xylene	ND		1.00		ug/L		11/26/12 00:00	11/26/12 22:38	1.00	

Blank	Blank

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	109		75 _ 120	11/26/12 00:00	11/26/12 22:38	1.00
Toluene-d8	110		80 - 120	11/26/12 00:00	11/26/12 22:38	1.00
4-Bromofluorobenzene	97		75 ₋ 110	11/26/12 00:00	11/26/12 22:38	1.00

Lab Sample ID: 12K1220-BS1 Matrix: Water - NonPotable

(1220-BS1 Client Sample ID: Lab Control Sample Prep Type: Total

Analysis Batch: 12K1220 Prep Batch: 12K1220_P

	Spike	LCS	LCS				%Rec.	
Analyte ·	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	20.0	12.5		ug/L		63	60 - 150	
Benzene	20.0	18.6		ug/L		93	70 - 130	
Carbon Tetrachloride	20.0	23.9	C9	ug/L		120	55 - 130	
Chloroform	20.0	19.8		ug/L		99	70 - 125	
1,1-Dichloroethene	20.0	20.4		ug/L		102	60 - 135	
trans-1,2-Dichloroethene	20.0	19.6		ug/L		98	60 - 145	
Ethylbenzene	20.0	20.6		ug/L		103	70 - 130	
Methylene Chloride	20.0	18.3	•	ug/L		92	55 ₋ 145	

TestAmerica Job ID: 240-17778-1

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

Method: SW 8260B - Volatile Organic Compounds (Continued)

 Lab Sample ID: 12K1220-BS1
 Client Sample ID: Lab Control Sample

 Matrix: Water - NonPotable
 Prep Type: Total

 Analysis Batch: 12K1220
 Spike
 LCS
 LCS
 Kec.

 Analyte
 Added
 Result
 Qualifier
 Unit
 D
 %Rec
 Limits

 Tetrachloroethene
 20.0
 22.0
 ug/L
 110
 70 - 135

	Opike	LUJ	LUJ				MINEC.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Tetrachloroethene	20.0	22.0		ug/L		110	70 _ 135	
Toluene	20.0	20.4		ug/L		102	70 _ 135	
1,1,2-Trichloroethane	20.0	16.5		ug/L		82	75 _ 125	
Trichloroethene	20.0	19.7		ug/L		99	70 _ 130	
Vinyl chloride	20.0	17.5		ug/L		87	45 - 135	
Xylenes, total	60.0	56.8		ug/L		95	70 - 130	
m,p-Xylene	40.0	37.5		ug/L		94	70 _ 135	
o-Xylene	20.0	19.3		ug/L		96	70 - 130	

 Surrogate
 %Recovery
 Qualifier
 Limits

 Dibromofluoromethane
 109
 75 - 120

 Toluene-d8
 108
 80 - 120

 4-Bromofluorobenzene
 94
 80 - 120

Lab Sample ID: 12K1220-MS1 Client Sample ID: 240-17778-21

Matrix: Water - NonPotable Prep Type: Total Analysis Batch: 12K1220 Prep Batch: 12K1220_P

•	Sample	Sample	Spike	Matrix Spike	Matrix Spi	ke			%Rec.	_
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	ND		20.0	8.96	M1	ug/L		45	45 - 150	
Benzene	ND		20.0	16.3		ug/L		82	50 - 130	
Carbon Tetrachloride \	0.240		20.0	20.6	C9	ug/L		102	35 _ 130	
Chloroform	0.130		20.0	17.2		ug/L		86	55 - 125	
1,1-Dichloroethene	ND		20.0	18.1		ug/L		90	35 _ 135	
trans-1,2-Dichloroethene	ND		20.0	16.5		ug/L		83	45 ₋ 145	
Ethylbenzene	0.0400	*	20.0	18.6		ug/L		93	45 _ 135	
Methylene Chloride	ND		20.0	15.9		ug/L		79	45 _ 145	
Tetrachloroethene	ND		20.0	19.4		ug/L		97	40 _ 135	
Toluene	0.0100		20.0	18.3		ug/L		91	45 _ 135	
1,1,2-Trichloroethane	ND		20.0	15.4		ug/L		77	60 _ 130	
Trichloroethene	1.29		20.0	19.0		ug/L		88	50 ₋ 130	
Vinyl chloride	ND		20.0	17.5		ug/L		88	30 . 135	
Xylenes, total	ND		60.0	52.8		ug/L		88	40 _ 135	
m,p-Xylene	ND		40.0	35.0		ug/L		88	40 _ 135	
o-Xylene	ND		20.0	17.8		ug/L		89	40 _ 135	

	Matrix Spike	Matrix Spike	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane	109		75 - 120
Toluene-d8	111		80 - 120
4-Bromofluorobenzene	96		80 - 120

Lab Sample ID: 12K1220-MSD1

Matrix: Water - NonPotable

Client Sample ID: 240-17778-21

Prep Type: Total

Analysis Batch: 12K1220

Analysis Batch: 12K1220									Prep Batc	.h: 12K1	220_P
	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spik	.e Duţ			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acetone	ND		20.0	7.46	M1	ug/L		37	45 - 150	18	35
Benzene	ND		20.0	16.6		ug/L		83	50 ₋ 130	1	20

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

Analysis Batch: 12K1220

TestAmerica Job ID: 240-17778-1

Method: SW 8260B - Volatile Organic Compounds (Continued)

Lab Sample ID: 12K1220-MSD1 Matrix: Water - NonPotable Client Sample ID: 240-17778-21

Prep Type: Total

Prep Batch: 12K1220_P

	Sample	Sample	Spike	ıtrix Spike Dup	Matrix Spi	ke Duţ			%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Carbon Tetrachloride	0.240		20.0	21.1	C9	ug/L		104	35 - 130	2	20
Chloroform	0.130		20.0	17.3		ug/L		86	55 _ 125	0.2	15
1,1-Dichloroethene	ND		20.0	17.8		ug/L		89	35 _ 135	2	30
trans-1,2-Dichloroethene	ND		20.0	17.6		ug/L		88	45 _ 145	6	35
Ethylbenzene	0.0400		20.0	18.5		ug/L		92	45 - 135	0.9	20
Methylene Chloride	ND		20.0	15.7		ug/L		79	45 - 145	0.9	30
Tetrachloroethene	ND		20.0	20.4		ug/L		102	40 _ 135	5	20
Toluene	0.0100		20.0	18.3		ug/L		91	45 - 135	0.2	20
1,1,2-Trichloroethane	ND.		20.0	15.3		ug/L		76	60 - 130	1	15
Trichloroethene	1.29		20.0	18.7		ug/L		87	50 - 130	2	20
Vinyl chloride	ND		20.0	17.2		ug/L		86	30 - 135	2	20
Xylenes, total	ND		60.0	52.2		ug/L		87	40 - 135	1	20
m,p-Xylene	ND		40.0	34.6		ug/L		87	40 - 135	1	20
o-Xylene	ND		20.0	17.6		ug/L		88	40 _ 135	1	20

Matrix Spike Dup Matrix Spike Dup

Surrogate	%Recovery Qual	ifier Limits
Dibromofluoromethane	114	75 - 120
Toluene-d8	111	80 - 120
4-Bromofluorobenzene	99	80 - 120

Lab Sample ID: 12K1266-BLK1 Matrix: Water - NonPotable Analysis Batch: 12K1266 Client Sample ID: Method Blank

Prep Type: Total Prep Batch: 12K1266_P

Blank Blank Dil Fac RL MDL Unit D Analyte Result Qualifier Prepared Analyzed Acetone ND 10.0 ug/L 11/27/12 00:00 11/27/12 11:04 1.00 ND 0.500 11/27/12 00:00 11/27/12 11:04 1.00 Benzene ug/L 1.00 Carbon Tetrachloride ND 2.00 ug/L 11/27/12 00:00 11/27/12 11:04 ug/L 11/27/12 11:04 1.00 Chloroform ND 1.00 11/27/12 00:00 1,1-Dichloroethene ND 2.00 ug/L 11/27/12 00:00 11/27/12 11:04 1.00 trans-1,2-Dichloroethene ND 1.00 ug/L 11/27/12 00:00 11/27/12 11:04 1.00 Ethylbenzene ND 1.00 ug/L 11/27/12 00:00 11/27/12 11:04 1.00 1.00 Methylene Chloride ND 5.00 ug/L 11/27/12 00:00 11/27/12 11:04 1.00 ND 1.00 11/27/12 00:00 11/27/12 11:04 Tetrachloroethene ug/L 11/27/12 11:04 1.00 Toluene ND 1.00 11/27/12 00:00 ug/L 1,1,2-Trichloroethane ND 1.00 ug/L 11/27/12 00:00 11/27/12 11:04 1.00 11/27/12 11:04 1.00 Trichloroethene ND 1.00 ug/L 11/27/12 00:00 ND C9 1.00 11/27/12 00:00 11/27/12 11:04 1.00 Vinyl chloride ug/L 11/27/12 00:00 11/27/12 11:04 1.00 Xylenes, total ND 3.00 ug/L ND 2.00 ug/L 11/27/12 00:00 11/27/12 11:04 1.00 m,p-Xylene o-Xylene ND 1.00 ug/L 11/27/12 00:00 11/27/12 11:04 1.00

Blank	Blan

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane	107		75 _ 120	11/27/12 00:00	11/27/12 11:04	1.00
Toluene-d8	107		80 - 120	11/27/12 00:00	11/27/12 11:04	1.00
4-Bromofluorobenzene	100		75 - 110	11/27/12 00:00	11/27/12 11:04	1.00

TestAmerica Canton

Page 49 of 69

12/4/2012

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

Method: SW 8260B - Volatile Organic Compounds (Continued)

Lab Sample ID: 12K1266-BS1

Matrix: Water - NonPotable

Analysis Batch: 12K1266

Client Sample ID: Lab Control Sample
Prep Type: Total
Prep Batch: 12K1266_P

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	20.0	14.8		ug/L		74	60 - 150	
Benzene	20.0	16.6		ug/L		83	70 - 130	
Carbon Tetrachloride	20.0	17.7		ug/L		88	55 ₋ 130	
Chloroform	20.0	17.8		ug/L		89	70 _ 125	
1,1-Dichloroethene	20.0	14.4		ug/L		72	60 - 135 .	
trans-1,2-Dichloroethene	20.0	16.3		ug/L		82	60 - 145	
Ethylbenzene	20.0	18.3		ug/L		92	70 - 130	
Methylene Chloride	20.0	16.2		ug/L		81	55 - 145	
Tetrachloroethene	20.0	18.9		ug/L		95	70 - 135	
Toluene	20.0	17.9		ug/L		90	70 ₋ 135	
1,1,2-Trichloroethane	20.0	16.8		ug/L		84	75 - 125	
Trichloroethene	20.0	17.4		ug/L		87	70 _ 130	
Vinyl chloride	20.0	15.0	C9	- ug/L		75	45 - 135	
Xylenes, total	60.0	53.8		ug/L		90	70 ₋ 130	
m,p-Xylene	40.0	36.0		ug/L		90	70 ₋ 135	
o-Xylene	20.0	17.8		ug/L		89	70 _ 130	

 Surrogate
 %Recovery
 Qualifier
 Limits

 Dibromofluoromethane
 109
 75 - 120

 Toluene-d8
 108
 80 - 120

 4-Bromofluorobenzene
 103
 80 - 120

Lab Sample ID: 12K1266-BSD1 Client Sample ID: Lab Control Sample Dup Matrix: Water - NonPotable Prep Type: Total

Prep Batch: 12K1266_P Analysis Batch: 12K1266 RPD Spike LCS Dup LCS Dup %Rec. Analyte Added Result Qualifier Unit %Rec Limits Limit 20.0 14.9 74 60 _ 150 0.8 20 Acetone ug/L Benzene 20.0 17.2 ug/L 86 70 _ 130 4 25 Carbon Tetrachloride 20.0 19.0 ug/L 95 55 _ 130 25 20.0 90 70 - 125 2 Chloroform 18.1 ug/L 15 1.1-Dichloroethene 20.0 16.1 ug/L 80 60 _ 135 11 20 trans-1,2-Dichloroethene 20.0 16.9 ug/L 84 60 - 145 15 Ethylbenzene 20.0 19.2 ug/L 96 70 - 130 35 20.0 16.4 0.7 Methylene Chloride ug/L 82 55 - 145 20 97 70 - 135 Tetrachloroethene 20.0 19.5 ug/L 3 15 Toluene 20.0 19.1 ug/L 95 70 - 135 6 30 1,1,2-Trichloroethane 20.0 16.3 ug/L 81 75 - 125 3 15 Trichloroethene 20.0 18.0 ug/L 90 70 - 130 3 20 Vinyl chloride 20.0 16.6 C9 ug/L 83 45 - 135 10 20 55.6 93 60.0 ug/L 70 - 130 3 35 Xylenes, total m,p-Xylene 40.0 37.3 ug/L 93 70 - 135 20.0 18.3 91 70 - 130 ż ug/L o-Xylene

	LCS Dup LC	;S Dup	
Surrogate	%Recovery Qu	ıalifier	Limits
Dibromofluoromethane	109		75 - 120
Toluene-d8	109		80 - 120

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Method: SW 8260B - Volatile Organic Compounds (Continued)

Lab Sample ID: 12K1266-BSD1 Matrix: Water - NonPotable

Analysis Batch: 12K1266

Client Sample ID: Lab Control Sample Dup

Prep Type: Total Prep Batch: 12K1266_P

LCS Dup LCS Dup

%Recovery Qualifier

Limits

4-Bromofluorobenzene

Surrogate

102

80 - 120

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

GCMS Volatiles

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12K1219-BLK1	Method Blank	Total	Water -	SW 8260B	12K1219_P
			NonPotable		
12K1219-BS1	Lab Control Sample	Total	Water -	SW 8260B	12K1219_P
			NonPotable	-11	
12K1219-MS1	240-17778-17	Total	Water -	SW 8260B	12K1219_P
40/4040 14004	040 47770 47		NonPotable	CIAL GOCOD	40/44040
12K1219-MSD1	240-17778-17	Total	Water -	SW 8260B	12K1219_P
240-17778-1	W-121113-NE-01	Total	NonPotable Water	SW 8260B	12K1219_P
240-17778-2	W-121113-NE-01 W-121113-NE-02	Total	Water	SW 8260B	12K1219_P
					
240-17778-3	W-121113-NE-03	Total	Water	SW 8260B	12K1219_P
240-17778-4	W-121113-NE-04	Total	Water	SW 8260B	12K1219_P
240-17778-5	W-121113-NE-05	Total	Water	SW 8260B	12K1219_P
240-17778-6	W-121113-NE-06	Total	Water	SW 8260B	12K1219_P
240-17778-7	W-121113-NE-07	Total	Water	SW 8260B	12K1219_P
240-17778-8	W-121113-NE-08	Total	Water	SW 8260B	12K1219_P
240-17778-9	W-121113-NE-09	Total	Water	SW 8260B	12K1219_P
240-17778-10	W-121113-NE-10	Total	Water	SW 8260B	12K1219_P
240-17778-11	W-121113-NE-11	Total	Water	SW 8260B	12K1219_P
240-17778-12	W-121113-NE-12	Total	Water	SW 8260B	12K1219_P
240-17778-13	W-121113-NE-13	Total	Water	SW 8260B	12K1219_P
240-17778-14	W-121113-NE-14	Total	Water	SW 8260B	12K1219_P
240-17778-15	W-121113-NE-15	Total	Water	SW 8260B	12K1219_P
240-17778-17	W-121113-NE-17	Total	Water	SW 8260B	12K1219_P
240-17778-18	W-121113-NE-18	Total	Water	SW 8260B	12K1219 P
240-17778-19	W-121113-NE-19	Total	Water	SW 8260B	12K1219_P
240-17778-20	W-121113-NE-19 W-121113-NE-20	Total	Water	SW 8260B	12K1219_P

Analysis Batch: 12K1220

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12K1220-BLK1	Method Blank	Total	Water -	SW 8260B	12K1220_P
			NonPotable		
12K1220-BS1	Lab Control Sample	Total	Water -	SW 8260B	12K1220_P
			NonPotable		
12K1220-MS1	240-17778-21	Total	Water -	SW 8260B	12K1220_P
			NonPotable		
12K1220-MSD1	240-17778-21	Total	Water -	SW 8260B	12K1220_P
			NonPotable		
240-17778-23	W-121113-NE-23	Total	* Water	SW 8260B	12K1220_P
240-17778-24	W-121113-NE-24	Total	Water	SW 8260B	12K1220_P
240-17778-25	W-121113-NE-25	Total	Water	SW 8260B	12K1220_P
240-17778-26	W-121114-NE-26	Total	Water	SW 8260B	12K1220_P
240-17778-27	W-121114-NE-27	Total	Water	SW 8260B	12K1220_P
240-17778-28	W-121114-NE-28	Total	Water	SW 8260B	12K1220_F
240-17778-29	W-121114-NE-29	Total	Water	SW 8260B	12K1220_F
240-17778-31	W-121114-NE-31	Total	Water	SW 8260B	12K1220 I

Analysis Batch: 12K1246

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-17778-1	W-121113-NE-01	Total	Water	SW 9041A	12K1246_P
240-17778-2	W-121113-NE-02	Total	Water	SW 9041A	12K1246_P
240-17778-3	W-121113-NE-03	Total	Water	SW 9041A	12K1246_P
240-17778-4	W-121113-NE-04	Total	Water	SW 9041A	12K1246_P

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

GCMS Volatiles (Continued)

240-17778-5 W-121113-NE-05 Total Water SW 9041A 12K1246_P 240-17778-6 W-121113-NE-06 Total Water SW 9041A 12K1246_P 240-17778-7 W-121113-NE-08 Total Water SW 9041A 12K1246_P 240-17778-8 W-121113-NE-09 Total Water SW 9041A 12K1246_P 240-17778-10 W-121113-NE-10 Total Water SW 9041A 12K1246_P 240-17778-11 W-121113-NE-11 Total Water SW 9041A 12K1246_P 240-17778-13 W-121113-NE-12 Total Water SW 9041A 12K1246_P 240-17778-13 W-121113-NE-13 Total Water SW 9041A 12K1246_P 240-17778-13 W-121113-NE-13 Total Water SW 9041A 12K1246_P 240-17778-14 W-121113-NE-15 Total Water SW 9041A 12K1246_P 240-17778-15 W-121113-NE-16 Total Water SW 9041A 12K1246_P 240-17778-16 W-121113-NE-16 <th>Lab Sample ID</th> <th>Client Sample ID</th> <th>Prep Type</th> <th>Matrix</th> <th>Method</th> <th>Prep Batch</th>	Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-17778-7 W-121113-NE-07 Total Water SW 9041A 12K1246_P 240-17778-8 W-121113-NE-08 Total Water SW 9041A 12K1246_P 240-17778-9 W-121113-NE-09 Total Water SW 9041A 12K1246_P 240-17778-10 W-121113-NE-11 Total Water SW 9041A 12K1246_P 240-17778-11 W-121113-NE-12 Total Water SW 9041A 12K1246_P 240-17778-12 W-121113-NE-13 Total Water SW 9041A 12K1246_P 240-17778-13 W-121113-NE-13 Total Water SW 9041A 12K1246_P 240-17778-14 W-121113-NE-13 Total Water SW 9041A 12K1246_P 240-17778-15 W-121113-NE-15 Total Water SW 9041A 12K1246_P 240-17778-16 W-121113-NE-16 Total Water SW 9041A 12K1246_P 240-17778-17 W-121113-NE-17 Total Water SW 9041A 12K1246_P 240-17778-18 W-121113-NE-19 </td <td>240-17778-5</td> <td>W-121113-NE-05</td> <td>Total</td> <td>Water</td> <td>SW 9041A</td> <td>12K1246_P</td>	240-17778-5	W-121113-NE-05	Total	Water	SW 9041A	12K1246_P
240-17778-8 W-121113-NE-08 Total Water SW 9041A 12K1246_P 240-17778-9 W-121113-NE-09 Total Water SW 9041A 12K1246_P 240-17778-10 W-121113-NE-10 Total Water SW 9041A 12K1246_P 240-17778-11 W-121113-NE-11 Total Water SW 9041A 12K1246_P 240-17778-12 W-121113-NE-13 Total Water SW 9041A 12K1246_P 240-17778-13 W-121113-NE-13 Total Water SW 9041A 12K1246_P 240-17778-14 W-121113-NE-15 Total Water SW 9041A 12K1246_P 240-17778-15 W-121113-NE-15 Total Water SW 9041A 12K1246_P 240-17778-16 W-121113-NE-15 Total Water SW 9041A 12K1246_P 240-17778-17 W-121113-NE-19 Total Water SW 9041A 12K1246_P 240-17778-18 W-121113-NE-19 Total Water SW 9041A 12K1246_P 240-17778-19 W-121113-NE-20<	240-17778-6	W-121113-NE-06	Total	Water	SW 9041A	12K1246_P
240-17778-9 W-121113-NE-09 Total Water SW 9041A 12K1246_P 240-17778-10 W-121113-NE-10 Total Water SW 9041A 12K1246_P 240-17778-11 W-121113-NE-12 Total Water SW 9041A 12K1246_P 240-17778-12 W-121113-NE-12 Total Water SW 9041A 12K1246_P 240-17778-13 W-121113-NE-13 Total Water SW 9041A 12K1246_P 240-17778-14 W-121113-NE-15 Total Water SW 9041A 12K1246_P 240-17778-15 W-121113-NE-15 Total Water SW 9041A 12K1246_P 240-17778-16 W-121113-NE-16 Total Water SW 9041A 12K1246_P 240-17778-18 W-121113-NE-17 Total Water SW 9041A 12K1246_P 240-17778-18 W-121113-NE-18 Total Water SW 9041A 12K1246_P 240-17778-19 W-121113-NE-19 Total Water SW 9041A 12K1246_P 240-17778-20 W-121113-NE-22	240-17778-7	W-121113-NE-07	Total	Water	SW 9041A	12K1246_P
240-17778-10 W121113-NE-10 Total Water SW 9041A 12K1246_P 240-17778-11 W-121113-NE-11 Total Water SW 9041A 12K1246_P 240-17778-12 W-121113-NE-12 Total Water SW 9041A 12K1246_P 240-17778-13 W-121113-NE-13 Total Water SW 9041A 12K1246_P 240-17778-14 W-121113-NE-14 Total Water SW 9041A 12K1246_P 240-17778-15 W-121113-NE-15 Total Water SW 9041A 12K1246_P 240-17778-16 W-121113-NE-16 Total Water SW 9041A 12K1246_P 240-17778-17 W-121113-NE-17 Total Water SW 9041A 12K1246_P 240-17778-18 W-121113-NE-18 Total Water SW 9041A 12K1246_P 240-17778-19 W-121113-NE-19 Total Water SW 9041A 12K1246_P 240-17778-20 W-121113-NE-20 Total Water SW 9041A 12K1246_P 240-17778-21 W-121113-NE-21	240-17778-8	W-121113-NE-08	Total	Water	SW 9041A	12K1246_P
240-17778-11 W-121113-NE-11 Total Water SW 9041A 12K1246_P 240-17778-12 W-121113-NE-12 Total Water SW 9041A 12K1246_P 240-17778-13 W-121113-NE-13 Total Water SW 9041A 12K1246_P 240-17778-14 W-121113-NE-15 Total Water SW 9041A 12K1246_P 240-17778-15 W-121113-NE-15 Total Water SW 9041A 12K1246_P 240-17778-16 W-121113-NE-16 Total Water SW 9041A 12K1246_P 240-17778-17 W-121113-NE-17 Total Water SW 9041A 12K1246_P 240-17778-18 W-121113-NE-18 Total Water SW 9041A 12K1246_P 240-17778-19 W-121113-NE-19 Total Water SW 9041A 12K1246_P 240-17778-20 W-121113-NE-20 Total Water SW 9041A 12K1246_P 240-17778-21 W-121113-NE-22 Total Water SW 9041A 12K1246_P 240-17778-23 W-121113-NE-2	240-17778-9	W-121113-NE-09	Total	Water	SW 9041A	12K1246_P
240-17778-12 W-121113-NE-12 Total Water SW 9041A 12K1246_P 240-17778-13 W-121113-NE-13 Total Water SW 9041A 12K1246_P 240-17778-14 W-121113-NE-14 Total Water SW 9041A 12K1246_P 240-17778-15 W-121113-NE-15 Total Water SW 9041A 12K1246_P 240-17778-16 W-121113-NE-16 Total Water SW 9041A 12K1246_P 240-17778-17 W-121113-NE-17 Total Water SW 9041A 12K1246_P 240-17778-18 W-121113-NE-18 Total Water SW 9041A 12K1246_P 240-17778-19 W-121113-NE-19 Total Water SW 9041A 12K1246_P 240-17778-20 W-121113-NE-20 Total Water SW 9041A 12K1246_P 240-17778-21 W-121113-NE-21 Total Water SW 9041A 12K1246_P 240-17778-22 W-121113-NE-23 Total Water SW 9041A 12K1246_P 240-17778-23 W-121113-NE-2	240-17778-10	W-121113-NE-10	Total	Water	SW 9041A	12K1246_P
240-17778-13 W-121113-NE-13 Total Water SW 9041A 12K1246_P 240-17778-14 W-121113-NE-14 Total Water SW 9041A 12K1246_P 240-17778-15 W-121113-NE-15 Total Water SW 9041A 12K1246_P 240-17778-16 W-121113-NE-16 Total Water SW 9041A 12K1246_P 240-17778-17 W-121113-NE-17 Total Water SW 9041A 12K1246_P 240-17778-18 W-121113-NE-18 Total Water SW 9041A 12K1246_P 240-17778-19 W-121113-NE-19 Total Water SW 9041A 12K1246_P 240-17778-20 W-121113-NE-20 Total Water SW 9041A 12K1246_P 240-17778-21 W-121113-NE-22 Total Water SW 9041A 12K1246_P 240-17778-23 W-121113-NE-23 Total Water SW 9041A 12K1246_P 240-17778-24 W-121113-NE-25 Total Water SW 9041A 12K1246_P 240-17778-26 W-121113-NE-2	240-17778-11	W-121113-NE-11	Total	Water	SW 9041A	12K1246_P
240-17778-14 W-121113-NE-14 Total Water SW 9041A 12K1246_P 240-17778-15 W-121113-NE-15 Total Water SW 9041A 12K1246_P 240-17778-16 W-121113-NE-16 Total Water SW 9041A 12K1246_P 240-17778-17 W-121113-NE-17 Total Water SW 9041A 12K1246_P 240-17778-18 W-121113-NE-18 Total Water SW 9041A 12K1246_P 240-17778-19 W-121113-NE-19 Total Water SW 9041A 12K1246_P 240-17778-20 W-121113-NE-20 Total Water SW 9041A 12K1246_P 240-17778-21 W-121113-NE-21 Total Water SW 9041A 12K1246_P 240-17778-22 W-121113-NE-22 Total Water SW 9041A 12K1246_P 240-17778-23 W-121113-NE-23 Total Water SW 9041A 12K1246_P 240-17778-24 W-121113-NE-25 Total Water SW 9041A 12K1246_P 240-17778-25 W-121114-NE-2	240-17778-12	W-121113-NE-12	Total	Water	SW 9041A	12K1246_P
240-17778-15 W-121113-NE-15 Total Water SW 9041A 12K1246_P 240-17778-16 W-121113-NE-16 Total Water SW 9041A 12K1246_P 240-17778-17 W-121113-NE-17 Total Water SW 9041A 12K1246_P 240-17778-18 W-121113-NE-18 Total Water SW 9041A 12K1246_P 240-17778-19 W-121113-NE-19 Total Water SW 9041A 12K1246_P 240-17778-20 W-121113-NE-20 Total Water SW 9041A 12K1246_P 240-17778-21 W-121113-NE-21 Total Water SW 9041A 12K1246_P 240-17778-22 W-121113-NE-22 Total Water SW 9041A 12K1246_P 240-17778-23 W-121113-NE-23 Total Water SW 9041A 12K1246_P 240-17778-24 W-121113-NE-23 Total Water SW 9041A 12K1246_P 240-17778-25 W-121113-NE-25 Total Water SW 9041A 12K1246_P 240-17778-26 W-121114-NE-2	240-17778-13	W-121113-NE-13	Total	Water	SW 9041A	12K1246_P
240-17778-16 W-121113-NE-16 Total Water SW 9041A 12K1246_P 240-17778-17 W-121113-NE-17 Total Water SW 9041A 12K1246_P 240-17778-18 W-121113-NE-18 Total Water SW 9041A 12K1246_P 240-17778-19 W-121113-NE-19 Total Water SW 9041A 12K1246_P 240-17778-20 W-121113-NE-20 Total Water SW 9041A 12K1246_P 240-17778-21 W-121113-NE-21 Total Water SW 9041A 12K1246_P 240-17778-22 W-121113-NE-22 Total Water SW 9041A 12K1246_P 240-17778-23 W-121113-NE-23 Total Water SW 9041A 12K1246_P 240-17778-24 W-121113-NE-25 Total Water SW 9041A 12K1246_P 240-17778-25 W-121113-NE-25 Total Water SW 9041A 12K1246_P 240-17778-26 W-121114-NE-26 Total Water SW 9041A 12K1246_P 240-17778-28 W-121114-NE-2	240-17778-14	W-121113-NE-14	Total	Water	SW 9041A	12K1246_P
240-17778-17 W-121113-NE-17 Total Water SW 9041A 12K1246_P 240-17778-18 W-121113-NE-18 Total Water SW 9041A 12K1246_P 240-17778-19 W-121113-NE-19 Total Water SW 9041A 12K1246_P 240-17778-20 W-121113-NE-20 Total Water SW 9041A 12K1246_P 240-17778-21 W-121113-NE-21 Total Water SW 9041A 12K1246_P 240-17778-22 W-121113-NE-22 Total Water SW 9041A 12K1246_P 240-17778-23 W-121113-NE-23 Total Water SW 9041A 12K1246_P 240-17778-24 W-121113-NE-24 Total Water SW 9041A 12K1246_P 240-17778-25 W-121113-NE-25 Total Water SW 9041A 12K1246_P 240-17778-26 W-121114-NE-26 Total Water SW 9041A 12K1246_P 240-17778-28 W-121114-NE-28 Total Water SW 9041A 12K1246_P 240-17778-30 W-121114-NE-29 Total Water SW 9041A 12K1246_P <td< td=""><td>240-17778-15</td><td>W-121113-NE-15</td><td>Total</td><td>Water</td><td>SW 9041A</td><td>12K1246_P</td></td<>	240-17778-15	W-121113-NE-15	Total	Water	SW 9041A	12K1246_P
240-17778-18 W-121113-NE-18 Total Water SW 9041A 12K1246_P 240-17778-19 W-121113-NE-19 Total Water SW 9041A 12K1246_P 240-17778-20 W-121113-NE-20 Total Water SW 9041A 12K1246_P 240-17778-21 W-121113-NE-21 Total Water SW 9041A 12K1246_P 240-17778-22 W-121113-NE-22 Total Water SW 9041A 12K1246_P 240-17778-23 W-121113-NE-23 Total Water SW 9041A 12K1246_P 240-17778-24 W-121113-NE-25 Total Water SW 9041A 12K1246_P 240-17778-25 W-121113-NE-25 Total Water SW 9041A 12K1246_P 240-17778-26 W-121114-NE-26 Total Water SW 9041A 12K1246_P 240-17778-27 W-121114-NE-27 Total Water SW 9041A 12K1246_P 240-17778-28 W-121114-NE-28 Total Water SW 9041A 12K1246_P 240-17778-29 W-121114-NE-29 Total Water SW 9041A 12K1246_P <td< td=""><td>240-17778-16</td><td>W-121113-NE-16</td><td>Total</td><td>Water</td><td>SW 9041A</td><td>12K1246_P</td></td<>	240-17778-16	W-121113-NE-16	Total	Water	SW 9041A	12K1246_P
240-17778-19 W-121113-NE-19 Total Water SW 9041A 12K1246_P 240-17778-20 W-121113-NE-20 Total Water SW 9041A 12K1246_P 240-17778-21 W-121113-NE-21 Total Water SW 9041A 12K1246_P 240-17778-22 W-121113-NE-22 Total Water SW 9041A 12K1246_P 240-17778-23 W-121113-NE-23 Total Water SW 9041A 12K1246_P 240-17778-24 W-121113-NE-24 Total Water SW 9041A 12K1246_P 240-17778-25 W-121113-NE-25 Total Water SW 9041A 12K1246_P 240-17778-26 W-121114-NE-26 Total Water SW 9041A 12K1246_P 240-17778-27 W-121114-NE-27 Total Water SW 9041A 12K1246_P 240-17778-28 W-121114-NE-28 Total Water SW 9041A 12K1246_P 240-17778-29 W-121114-NE-29 Total Water SW 9041A 12K1246_P 240-17778-30 W-121114-NE-3	240-17778-17	W-121113-NE-17	Total	Water	SW 9041A	12K1246_P
240-17778-20 W-121113-NE-20 Total Water SW 9041A 12K1246_P 240-17778-21 W-121113-NE-21 Total Water SW 9041A 12K1246_P 240-17778-22 W-121113-NE-22 Total Water SW 9041A 12K1246_P 240-17778-23 W-121113-NE-23 Total Water SW 9041A 12K1246_P 240-17778-24 W-121113-NE-24 Total Water SW 9041A 12K1246_P 240-17778-25 W-121113-NE-25 Total Water SW 9041A 12K1246_P 240-17778-26 W-121114-NE-26 Total Water SW 9041A 12K1246_P 240-17778-27 W-121114-NE-27 Total Water SW 9041A 12K1246_P 240-17778-28 W-121114-NE-28 Total Water SW 9041A 12K1246_P 240-17778-29 W-121114-NE-29 Total Water SW 9041A 12K1246_P 240-17778-30 W-121114-NE-30 Total Water SW 9041A 12K1246_P 240-17778-31 W-121114-NE-31 Total Water SW 9041A 12K1246_P <td>240-17778-18</td> <td>W-121113-NE-18</td> <td>Total</td> <td>Water</td> <td>SW 9041A</td> <td>12K1246_P</td>	240-17778-18	W-121113-NE-18	Total	Water	SW 9041A	12K1246_P
240-17778-21 W-121113-NE-21 Total Water SW 9041A 12K1246_P 240-17778-22 W-121113-NE-22 Total Water SW 9041A 12K1246_P 240-17778-23 W-121113-NE-23 Total Water SW 9041A 12K1246_P 240-17778-24 W-121113-NE-24 Total Water SW 9041A 12K1246_P 240-17778-25 W-121113-NE-25 Total Water SW 9041A 12K1246_P 240-17778-26 W-121114-NE-26 Total Water SW 9041A 12K1246_P 240-17778-27 W-121114-NE-27 Total Water SW 9041A 12K1246_P 240-17778-28 W-121114-NE-28 Total Water SW 9041A 12K1246_P 240-17778-29 W-121114-NE-29 Total Water SW 9041A 12K1246_P 240-17778-30 W-121114-NE-30 Total Water SW 9041A 12K1246_P 240-17778-31 W-121114-NE-31 Total Water SW 9041A 12K1246_P	240-17778-19	W-121113-NE-19	Total	Water	SW 9041A	12K1246_P
240-17778-22 W-121113-NE-22 Total Water SW 9041A 12K1246_P 240-17778-23 W-121113-NE-23 Total Water SW 9041A 12K1246_P 240-17778-24 W-121113-NE-24 Total Water SW 9041A 12K1246_P 240-17778-25 W-121113-NE-25 Total Water SW 9041A 12K1246_P 240-17778-26 W-121114-NE-26 Total Water SW 9041A 12K1246_P 240-17778-27 W-121114-NE-27 Total Water SW 9041A 12K1246_P 240-17778-28 W-121114-NE-28 Total Water SW 9041A 12K1246_P 240-17778-30 W-121114-NE-30 Total Water SW 9041A 12K1246_P 240-17778-31 W-121114-NE-31 Total Water SW 9041A 12K1246_P	240-17778-20	W-121113-NE-20	Total	Water	SW 9041A	12K1246_P
240-17778-23 W-121113-NE-23 Total Water SW 9041A 12K1246_P 240-17778-24 W-121113-NE-24 Total Water SW 9041A 12K1246_P 240-17778-25 W-121113-NE-25 Total Water SW 9041A 12K1246_P 240-17778-26 W-121114-NE-26 Total Water SW 9041A 12K1246_P 240-17778-27 W-121114-NE-27 Total Water SW 9041A 12K1246_P 240-17778-28 W-121114-NE-28 Total Water SW 9041A 12K1246_P 240-17778-29 W-121114-NE-29 Total Water SW 9041A 12K1246_P 240-17778-30 W-121114-NE-30 Total Water SW 9041A 12K1246_P 240-17778-31 W-121114-NE-31 Total Water SW 9041A 12K1246_P	240-17778-21	W-121113-NE-21	Total	Water	SW 9041A	12K1246_P
240-17778-24 W-121113-NE-24 Total Water SW 9041A 12K1246_P 240-17778-25 W-121113-NE-25 Total Water SW 9041A 12K1246_P 240-17778-26 W-121114-NE-26 Total Water SW 9041A 12K1246_P 240-17778-27 W-121114-NE-27 Total Water SW 9041A 12K1246_P 240-17778-28 W-121114-NE-28 Total Water SW 9041A 12K1246_P 240-17778-29 W-121114-NE-29 Total Water SW 9041A 12K1246_P 240-17778-30 W-121114-NE-30 Total Water SW 9041A 12K1246_P 240-17778-31 W-121114-NE-31 Total Water SW 9041A 12K1246_P	240-17778-22	W-121113-NE-22	Total	Water	SW 9041A	12K1246_P
240-17778-25 W-121113-NE-25 Total Water SW 9041A 12K1246_P 240-17778-26 W-121114-NE-26 Total Water SW 9041A 12K1246_P 240-17778-27 W-121114-NE-27 Total Water SW 9041A 12K1246_P 240-17778-28 W-121114-NE-28 Total Water SW 9041A 12K1246_P 240-17778-29 W-121114-NE-29 Total Water SW 9041A 12K1246_P 240-17778-30 W-121114-NE-30 Total Water SW 9041A 12K1246_P 240-17778-31 W-121114-NE-31 Total Water SW 9041A 12K1246_P	240-17778-23	W-121113-NE-23	Total	Water	SW 9041A	12K1246_P
240-17778-26 W-121114-NE-26 Total Water SW 9041A 12K1246_P 240-17778-27 W-121114-NE-27 Total Water SW 9041A 12K1246_P 240-17778-28 W-121114-NE-28 Total Water SW 9041A 12K1246_P 240-17778-29 W-121114-NE-29 Total Water SW 9041A 12K1246_P 240-17778-30 W-121114-NE-30 Total Water SW 9041A 12K1246_P 240-17778-31 W-121114-NE-31 Total Water SW 9041A 12K1246_P	240-17778-24	W-121113-NE-24	Total	Water	SW 9041A	12K1246_P
240-17778-27 W-121114-NE-27 Total Water SW 9041A 12K1246_P 240-17778-28 W-121114-NE-28 Total Water SW 9041A 12K1246_P 240-17778-29 W-121114-NE-29 Total Water SW 9041A 12K1246_P 240-17778-30 W-121114-NE-30 Total Water SW 9041A 12K1246_P 240-17778-31 W-121114-NE-31 Total Water SW 9041A 12K1246_P	240-17778-25	W-121113-NE-25	Total	Water	SW 9041A	12K1246_P
240-17778-28 W-121114-NE-28 Total Water SW 9041A 12K1246_P 240-17778-29 W-121114-NE-29 Total Water SW 9041A 12K1246_P 240-17778-30 W-121114-NE-30 Total Water SW 9041A 12K1246_P 240-17778-31 W-121114-NE-31 Total Water SW 9041A 12K1246_P	240-17778-26	W-121114-NE-26	Total	Water	SW 9041A	12K1246_P
240-17778-29 W-121114-NE-29 Total Water SW 9041A 12K1246_P 240-17778-30 W-121114-NE-30 Total Water SW 9041A 12K1246_P 240-17778-31 W-121114-NE-31 Total Water SW 9041A 12K1246_P	240-17778-27	W-121114-NE-27	Total	Water	SW 9041A	12K1246_P
240-17778-30 W-121114-NE-30 Total Water SW 9041A 12K1246_P 240-17778-31 W-121114-NE-31 Total Water SW 9041A 12K1246_P	240-17778-28	W-121114-NE-28	Total	Water	SW 9041A	12K1246_P
240-17778-31 W-121114-NE-31 Total Water SW 9041A 12K1246_P	240-17778-29	W-121114-NE-29	Total	Water	SW 9041A	12K1246_P
-	240-17778-30	W-121114-NE-30	Total	Water	SW 9041A	12K1246_P
240-17778-32 TRIP BLANKS Total Water SW 9041A 12K1246_P	240-17778-31	W-121114-NE-31	Total	Water	SW 9041A	12K1246_P
	240-17778-32	TRIP BLANKS	Total	Water	SW 9041A	12K1246_P

Analysis Batch: 12K1266

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12K1266-BLK1	Method Blank	Total .	Water -	SW 8260B	12K1266_P
			NonPotable	•	
12K1266-BS1	Lab Control Sample	Total	Water -	SW 8260B	12K1266_P
			NonPotable		
12K1266-BSD1	Lab Control Sample Dup	Total	Water -	SW 8260B	12K1266_P
			NonPotable		
240-17778-16	W-121113-NE-16	Total	Water	SW 8260B	12K1266_P
240-17778-21	W-121113-NE-21	Total	Water	SW 8260B	12K1266_P
240-17778-22	W-121113-NE-22	Total	Water	SW 8260B	12K1266_P
240-17778-30	W-121114-NE-30	Total	Water	SW 8260B	12K1266_P
240-17778-32	TRIP BLANKS	Total	Water	SW 8260B	12K1266_P

Prep Batch: 12K1219_P

					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12K1219-BLK1	Method Blank	Total	Water -	SW 5030B	
			NonPotable		
12K1219-BS1	Lab Control Sample	Total	Water -	SW 5030B	
			NonPotable		
12K1219-MS1	240-17778-17	Total	Water -	SW 5030B	
			NonPotable		

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

GCMS Volatiles (Continued)

Prep Batch: 12K1219_P (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12K1219-MSD1	240-17778-17	Total	Water -	SW 5030B	
			NonPotable		
240-17778-1	W-121113-NE-01	Total	Water	SW 5030B	
240-17778-2	W-121113-NE-02	Total	Water	SW 5030B	
240-17778-3	W-121113-NE-03	Total	Water	SW 5030B	
240-17778-4	W-121113-NE-04	Total	Water	SW 5030B	
240-17778-5	W-121113-NE-05	Total	Water	SW 5030B	
240-17778-6	W-121113-NE-06	Total	Water	SW 5030B	
240-17778-7	W-121113-NE-07	Total	Water	SW 5030B	
240-17778-8	W-121113-NE-08	Total	Water	SW 5030B	
240-17778-9	W-121113-NE-09	Total	Water	SW 5030B	
240-17778-10	W-121113-NE-10	Total	Water	SW 5030B	
240-17778-11	W-121113-NE-11	Total	Water	SW 5030B	
240-17778-12	W-121113-NE-12	Total	Water	SW 5030B	
240-17778-13	W-121113-NE-13	Total	Water	SW 5030B	
240-17778-14	W-121113-NE-14	Total	Water	SW 5030B	
240-17778-15	W-121113-NE-15	Total	Water	SW 5030B	
240-17778-17	W-121113-NE-17	Total	Water	SW 5030B	
240-17778-18	W-121113-NE-18	Total	Water	SW 5030B	
240-17778-19	W-121113-NE-19	Total	Water	SW 5030B	
240-17778-20	W-121113-NE-20	Total	Water	SW 5030B	

Prep Batch: 12K1220_P

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
12K1220-BLK1	Method Blank	Total	Water -	SW 5030B	
			NonPotable		
12K1220-BS1	Lab Control Sample	Total	Water -	SW 5030B	
			NonPotable		
12K1220-MS1	240-17778-21	Total	Water -	SW 5030B	
			NonPotable		
12K1220-MSD1	240-17778-21	Total	Water -	SW 5030B	
			NonPotable		
240-17778-23	W-121113-NE-23	Total	· Water	SW 5030B	
240-17778-24	W-121113-NE-24	Total	Water	SW 5030B	
240-17778-25	W-121113-NE-25	Total	Water	SW 5030B	
240-17778-26	W-121114-NE-26	Total	Water	SW 5030B	
240-17778-27	W-121114-NE-27	Total	Water	SW 5030B	
240-17778-28	W-121114-NE-28	Total	Water	SW 5030B	
240-17778-29	W-121114-NE-29	Total	Water	SW 5030B	
240-17778-31	W-121114-NE-31	Total	Water	SW 5030B	

Prep Batch: 12K1246_P

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-17778-1	W-121113-NE-01	Total	Water	Default Prep	
	•			VOC	
240-17778-2	W-121113-NE-02	Total	Water	Default Prep	
				VOC	
240-17778-3	W-121113-NE-03	Total	Water	Default Prep	
				voc	
240-17778-4	W-121113-NE-04	Total	Water	Default Prep	
				voc	
240-17778-5	W-121113-NE-05	Total	Water	Default Prep	
				voc	

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

GCMS Volatiles (Continued)

Prep Batch: 12K1246_P (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-17778-6	W-121113-NE-06	Total	Water	Default Prep VOC	
240-17778-7	W-121113-NE-07	Total	Water	Default Prep VOC	
240-17778-8	W-121113-NE-08	Total	Water	Default Prep VOC	
240-17778-9	W-121113-NE-09	Total	Water	Default Prep VOC	
240-17778-10	W-121113-NE-10	Total	Water	Default Prep VOC	
40-17778-11	W-121113-NE-11	Total	Water	Default Prep VOC	
40-17778-12	W-121113-NE-12	Total	Water	Default Prep VOC	
40-17778-13	W-121113-NE-13	Total	Water	Default Prep	
40-17778-14	W-121113-NE-14	· Total	Water	VOC Default Prep	
40-17778-15	W-121113-NE-15	Total	Water	VOC Default Prep	
40-17778-16	W-121113-NE-16	Total	Water	VOC Default Prep	
40-17778-17	W-121113-NE-17	Total	Water	VOC Default Prep	
40-17778-18	W-121113-NE-18	Total	Water	VOC Default Prep	
40-17778-19	W-121113-NE-19	Total	Water	VOC Default Prep	
40-17778-20	W-121113-NE-20	Total	Water	VOC Default Prep	
40-17778-21	W-121113-NE-21	Total	Water	VOC Default Prep	
40-17778-22	W-121113-NE-22	Total	Water	VOC Default Prep	
40-17778-23	W-121113-NE-23	Total	Water	VOC Default Prep	
40-17778-24	W-121113-NE-24	Total	Water	VOC Default Prep	
40-17778-25	W-121113-NE-25	Total	Water	VOC Default Prep	
40-17778-26	W-121114-NE-26	Total	Water	VOC Default Prep	
40-17778-27	W-121114-NE-27	Total	Water	VOC Default Prep	
40-17778-28	W-121114-NE-28	Total	Water	VOC Default Prep	
40-17778-29	W-121114-NE-29	Total	Water	VOC Default Prep	
40-17778-30	W-121114-NE-30	Total	Water	VOC Default Prep	
40-17778-31	W-121114-NE-31	Total	Water	VOC Default Prep	
40-17778-32	TRIP BLANKS	Total	Water	VOC Default Prep	
				VOC	

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

GCMS Volatiles (Continued)

Prep Batch: 12K1266_P

ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
2K1266-BLK1	Method Blank	Total	Water -	SW 5030B	
•			NonPotable		
2K1266-BS1	Lab Control Sample	Total	Water -	SW 5030B	
			NonPotable		
2K1266-BSD1	Lab Control Sample Dup	Total	Water -	SW 5030B	
			NonPotable		
10-17778-16	W-121113-NE-16	Total	Water	SW 5030B	
10-17778-21	W-121113-NE-21	Total	Water	SW 5030B	
40-17778-22	W-121113-NE-22	Total	Water	SW 5030B	
40-17778-30	W-121114-NE-30	Total	Water	SW 5030B	
40-17778-32	TRIP BLANKS	Total	Water	SW 5030B	

Analysis Batch: 12K1220

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
240-17778-21	W-121113-NE-21	Total	Water	SW 8260B	

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-01

Date Collected: 11/13/12 07:47

Date Received: 11/17/12 09:40

Lab Sample ID: 240-17778-1

Matrix: Water

3

1

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1219_P	11/26/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1219	11/26/12 12:37	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Client Sample ID: W-121113-NE-02

Date Collected: 11/13/12 08:40

Date Received: 11/17/12 09:40

Lab Sample ID: 240-17778-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1219_P	11/26/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1219	11/26/12 13:02	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	тсн	TAL CF
Total -	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Client Sample ID: W-121113-NE-03

Date Collected: 11/13/12 08:42

Date Received: 11/17/12 09:40

Lab Sample ID: 240-17778-3

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1219_P	11/26/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1219	11/26/12 13:27	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Client Sample ID: W-121113-NE-04

Date Collected: 11/13/12 09:15

Date Received: 11/17/12 09:40

Lab Sample	ID: 240-17778-4
	Matrix: Water

Batch Batch Dilution Batch Prepared Method Prep Type Type Run Factor Number or Analyzed Analyst Lab Total Prep SW 5030B 1.00 12K1219 P 11/26/12 00:00 TAL CF SJN SW 8260B Total **Analysis** 1.00 12K1219 11/26/12 13:52 SJN TAL CF 1.00 Total Prep Default Prep VOC 12K1246 P 11/27/12 16:19 TCH TAL CF Total SW 9041A 1.00 12K1246 11/27/12 16:25 TAL CF Analysis TCH

Client Sample ID: W-121113-NE-05

Date Collected: 11/13/12 09:28

Date Received: 11/17/12 09:40

Lab Sample ID: 240-17778-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number ,	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1219_P	11/26/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1219	11/26/12 14:17	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-05

Date Collected: 11/13/12 09:28 Date Received: 11/17/12 09:40 Lab Sample ID: 240-17778-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Client Sample ID: W-121113-NE-06

Date Collected: 11/13/12 10:03 Date Received: 11/17/12 09:40 Lab Sample ID: 240-17778-6

Matrix: Water

•	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1219_P	11/26/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1219	11/26/12 14:42	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Client Sample ID: W-121113-NE-07

Date Collected: 11/13/12 08:48

08:48

Date Received: 11/17/12 09:40

Lab Sample ID: 240-17778-7 Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1219_P	11/26/12 00:00	NLS	TAL CF
Total	Analysis	SW 8260B		1.00	12K1219	11/26/12 15:07	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Client Sample ID: W-121113-NE-08

Date Collected: 11/13/12 09:10

Date Received: 11/17/12 09:40

Lab Sample ID: 240-17778-8

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1219_P	11/26/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1219	11/26/12 15:32	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Client Sample ID: W-121113-NE-09

Date Collected: 11/13/12 09:42

Date Received: 11/17/12 09:40

Lab Sample ID: 240-17778-9

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1219_P	11/26/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1219	11/26/12 15:58	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Client: Conestoga-Rovers & Associates, Inc.

Client Sample ID: W-121113-NE-10

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Lab Sample ID: 240-17778-10

. Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Date Collected: 11/13/12 10:02 Date Received: 11/17/12 09:40

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1219_P	11/26/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1219	11/26/12 16:23	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Client Sample ID: W-121113-NE-11 Lab Sample ID: 240-17778-11

Date Collected: 11/13/12 11:30 Date Received: 11/17/12 09:40

Batch Dilution Batch Prepared Batch Prep Type Method Factor Number or Analyzed Analyst Туре Run Lab Total SW 5030B 12K1219 P 11/26/12 00:00 SJN TAL CF Prep 1.00 Total **Analysis** SW 8260B 1.00 12K1219 11/26/12 16:48 SJN TAL CF Default Prep VOC 11/27/12 16:19 TCH TAL CF 1.00 12K1246 P Total Prep Total Analysis SW 9041A 1.00 12K1246 11/27/12 16:25 TCH TAL CF

Client Sample ID: W-121113-NE-12 Lab Sample ID: 240-17778-12

Date Collected: 11/13/12 12:08 Date Received: 11/17/12 09:40

Batch Batch Dilution Batch Prepared Prep Type Method Factor Number or Analyzed Analyst Lab Type Run TAL CF Prep SW 5030B Total 1.00 12K1219_P 11/26/12 00:00 SJN SW 8260B 1.00 12K1219 11/26/12 17:13 SJN TAL CF Total Analysis Total Prep **Default Prep VOC** 1.00 12K1246_P 11/27/12 16:19 TCH TAL CF SW 9041A 11/27/12 16:25 TCH TAL CF Total Analysis 1.00 12K1246

Client Sample ID: W-121113-NE-13 Lab Sample ID: 240-17778-13

Date Collected: 11/13/12 10:39 Date Received: 11/17/12 09:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Ruņ	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1219_P	11/26/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1219	11/26/12 17:38	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Client Sample ID: W-121113-NE-14 Lab Sample ID: 240-17778-14

Date Collected: 11/13/12 11:11 Date Received: 11/17/12 09:40

-	Batch	Batch		Dilution	Batch	Prepared		ė.
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B	·-	1.00	12K1219_P	11/26/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1219	11/26/12 18:03	NLS	TAL CF
Total	Prep	Default Prep VOC		. 1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-14

Date Collected: 11/13/12 11:11 Date Received: 11/17/12 09:40 Lab Sample ID: 240-17778-14

Matrix: Water

l		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total ,	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Client Sample ID: W-121113-NE-15

Date Collected: 11/13/12 13:39 Date Received: 11/17/12 09:40 Lab Sample ID: 240-17778-15

Matrix: Water

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1219_P	11/26/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1219	11/26/12 18:28	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	тсн	TAL CF

Client Sample ID: W-121113-NE-16

Date Collected: 11/13/12 14:44

Date Received: 11/17/12 09:40

Lab Sample ID: 240-17778-16

Matrix: Water

		·			•	•		
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B	_	1.00	12K1266_P	11/27/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1266	11/27/12 12:47	SJN	TAL CF
Total	Ргер	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF
Total ·	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Client Sample ID: W-121113-NE-17

Date Collected: 11/13/12 16:17

Date Received: 11/17/12 09:40

Lab Sample ID: 240-17778-17

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1219_P	11/26/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1219	11/26/12 12:11	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Client Sample ID: W-121113-NE-18

Date Collected: 11/13/12 16:56

Date Received: 11/17/12 09:40

Lab Sample ID: 240-17778-18

Matrix: Water

Γ	Batch	Batch		Dilution	Batch	Prepared	•	
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1219_P	11/26/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1219	11/26/12 19:18	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	тсн	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Lab Sample ID: 240-17778-19

Matrix: Water

Client Sample ID: W-121113-NE-19

Date Collected: 11/13/12 14:28 Date Received: 11/17/12 09:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1219_P	11/26/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1219	11/26/12 19:43	NLS	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	тсн	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Client Sample ID: W-121113-NE-20

Date Collected: 11/13/12 14:29 Date Received: 11/17/12 09:40 Lab Sample ID: 240-17778-20

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1219_P	11/26/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1219	11/26/12 20:08	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	тсн	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	тсн	TAL CF

Client Sample ID: W-121113-NE-21

Date Collected: 11/13/12 15:09 Date Received: 11/17/12 09:40 Lab Sample ID: 240-17778-21

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1266_P	11/27/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1266	11/27/12 13:12	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	тсн	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF
Total	Analysis	SW 8260B		1.00	12K1220	11/26/12 23:27		TAL CF

Client Sample ID: W-121113-NE-22

Date Collected: 11/13/12 18:10

Date Received: 11/17/12 09:40

Lab Sample ID: 240-177`	78-22
-------------------------	-------

Lab Sample ID: 240-17778-23

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1266_P	11/27/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1266	11/27/12 13:37	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	тсн	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	тсн	TAL CF

Client Sample ID: W-121113-NE-23

Date Collected: 11/13/12 18:11

Date Received: 11/17/12 09:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1220_P	11/27/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1220	11/27/12 01:32	SJN	TAL CF

TestAmerica Canton

Page 61 of 69

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Client Sample ID: W-121113-NE-23

Date Collected: 11/13/12 18:11 Date Received: 11/17/12 09:40 Lab Sample ID: 240-17778-23

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Client Sample ID: W-121113-NE-24

Date Collected: 11/13/12 16:25 Date Received: 11/17/12 09:40 Lab Sample ID: 240-17778-24

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1220_P	11/27/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1220	11/27/12 01:56	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	тсн	TAL CF

Client Sample ID: W-121113-NE-25

Date Collected: 11/13/12 16:44 Date Received: 11/17/12 09:40 Lab Sample ID: 240-17778-25

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1220_P	11/27/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1220	11/27/12 02:21	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	тсн	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Client Sample ID: W-121114-NE-26

Date Collected: 11/14/12 08:20

Date Received: 11/17/12 09:40

Lab Sample ID: 240-17778-26

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1220_P	11/27/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1220	11/27/12 02:46	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	тсн	TAL CF

Client Sample ID: W-121114-NE-27

Date Collected: 11/14/12 09:27

Date Received: 11/17/12 09:40

Lab Sample ID: 240-17778-27

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1220_P	11/27/12 00:00	SJN .	TAL CF
Total	Analysis	SW 8260B		1.00	12K1220	11/27/12 03:11	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

TestAmerica Job ID: 240-17778-1

等日 三语

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

Client Sample ID: W-121114-NE-28 Lab Sample ID: 240-17778-28

Date Collected: 11/14/12 11:05 Date Received: 11/17/12 09:40

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Ргер	SW 5030B		1.00	12K1220_P	11/27/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1220	11/27/12 03:35	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	тсн	TAL CF

Lab Sample ID: 240-17778-29 Client Sample ID: W-121114-NE-29

Date Collected: 11/14/12 12:22 Date Received: 11/17/12 09:40

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1220_P	11/27/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1220	11/27/12 04:00	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	тсн	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	тсн	TAL CF

Client Sample ID: W-121114-NE-30 Lab Sample ID: 240-17778-30

Date Collected: 11/14/12 09:00 Date Received: 11/17/12 09:40

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1266_P	11/27/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1266	11/27/12 14:03	SJN	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF
Total 	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Client Sample ID: W-121114-NE-31 Lab Sample ID: 240-17778-31

Date Collected: 11/14/12 14:02 Date Received: 11/17/12 09:40

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Prep	SW 5030B		1.00	12K1220_P	11/27/12 00:00	SJN	TAL CF
Total	Analysis	SW 8260B		1.00	12K1220	11/27/12 04:49	NLS	TAL CF
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	тсн	TAL CF
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	тсн	TAL CF

Client Sample ID: TRIP BLANKS Lab Sample ID: 240-17778-32

Date Collected: 11/13/12 00:00 Date Received: 11/17/12 09:40

	Batch	Batch		Dilution	Batch	Prepared			
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total	Prep	SW 5030B		1.00	12K1266_P	11/27/12 00:00	NLS	TAL CF	
Total	Analysis	SW 8260B		1.00	12K1266	11/27/12 14:28	SJN	TAL CF	
Total	Prep	Default Prep VOC		1.00	12K1246_P	11/27/12 16:19	TCH	TAL CF	

TestAmerica Canton

Lab Chronicle

Client: Conestoga-Rovers & Associates, Inc.

Client Sample ID: TRIP BLANKS

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Lab Sample ID: 240-17778-32

Julipie ID. 240-17770-32

Matrix: Water

Date Collected: 11/13/12 00:00 Date Received: 11/17/12 09:40

	Batch	Batch	•	Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total	Analysis	SW 9041A		1.00	12K1246	11/27/12 16:25	TCH	TAL CF

Laboratory References:

TAL CF = TestAmerica Cedar Falls, 704 Enterprise Drive, Cedar Falls, IA 50613, TEL 800-750-2401

Certification Summary

Client: Conestoga-Rovers & Associates, Inc.

Project/Site: 3978, Wausau

TestAmerica Job ID: 240-17778-1

Laboratory: TestAmerica Canton

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
California	NELAC	9	01144CA	06-30-13
Connecticut	State Program	1	PH-0590	12-31-13
Florida	NELAC	4	E87225	06-30-13
Georgia	State Program	4	N/A	06-30-13
Illinois	NELAC	5	200004	07-31-13
Kansas	NELAC	7	E-10336	01-31-13
Kentucky	State Program	4	58	06-30-13
L-A-B	DoD ELAP		L2315	02-28-13
Minnesota	NELAC	5	039-999-348	12-31-12
Nevada	State Program	9	OH-000482008A	07-31-13
New Jersey	NELAC	2	OH001	06-30-13
New York	NELAC	2	10975	04-01-13
Ohio VAP	State Program	5	CL0024	01-19-14
Pennsylvania	NELAC	3	68-00340	08-31-13
Texas	NELAC	6		08-03-13
USDA	Federal	· · · · · · · · · · · · · · · · · · ·	P330-11-00328	08-26-14
Virginia	NELAC	3	460175	09-14-13
Washington	State Program	10	C971	01-12-13
West Virginia DEP	State Program	3	210	12-31-12
Wisconsin	State Program	5	999518190	08-31-13

Laboratory: TestAmerica Cedar Falls

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
AIHA - LAP	IHLAP		101044	11-01-14
Illinois	NELAC	5	200024	11-29-12
lowa	State Program	7	7	12-01-13
Kansas	NELAC	7	E-10341	01-31-13
Minnesota	NELAC	5	019-999-319	12-31-13
North Dakota	State Program	8	R-186	09-29-13
Oregon	NELAC	10	IA100001	09-29-13
Wisconsin	State Program	5	999917270	08-31-13

CHAIN OF CUSTODY RECORD

		ANTOTO	O A DOU	EDO 0			SHIPPED TO (La	bora	tory Name):		R	ĘFE	REI	NCE	NU	IMBI	ER:		
(34. PG	al A	ASSOCIATI NN ON (3	: 5	TAN:		nton	·				00	3	9.	78	Š		
SA SIG	MPLER'S NATURE	3	Z5	7)	PRINTEC _ NAME	Nick Even	j	ners		£/		//	//	//	/			REMARK	٠
SEQ. No.	DATE	TIME			SAM	PLE No.			No. of Containers	QR CENT						//			NEWARK	
	1/13/12	747	る	IL i	113-N	E-01		[J	003	Y										
		હ્રપ	1			07		lacksquare	1 3	15								<u>ا</u>	· , , , , ,	
		842		}		07		+	3	15		_	<u> </u>	\vdash				Mean	Contact	· ·
-		915	-+			<u> </u>		+	3	5	\vdash			\vdash		\dashv	-	(B)	at Ander GSI G3°	
		1683	$\overline{}$	$\overline{}$		06		-	3	X X	\vdash	\dashv				\dashv	+	~/ ~/	व्याप प्र	
		હયક		1		6-			حي	1 12			i i						3001 90	3 0 1
		910				08			3	1 X			Ì							
	942				09			3	X											
<i></i>				10		$\perp \downarrow$	72				<u> </u>				_ _		_			
		1130				11		+ +	7	X			-		\dashv		-			
	-	1208			1	13		+	3	Image: Second content							-			
		<i>1039</i> 1111	-		1	19		$\forall t$	3	Y		+	-		-	\dashv	\dashv			
		1339			1	is		††	7	文					1	\neg				
		ापपप				10	· ·	\Box	3	X					Ī					
	V	1617	7		V	¥ 1	1 MG/MSD	1	9	X										
:		٦	TOTAL	NUME	BER OF C	ONTAIN	ERS				Н	EALTH	1/CH	ΙÊΜΙ	CAL	·ΗΑ	ZAR	RDS		
REI	INQUIS	HED BY		>4			DATE: (1)[6](- TIME: 1600	7	RECEI	/ED BY:									ATE: TIME:	
REI	INQUIS	HED BY	:				DATE:		RECEI	/ED BY:			İ					D	ATE:	
2-							_ TIME:		D										ГІМЕ:	
REI	RELINQUISHED BY:						DATE:		RECEI	/ED BY:								D	ATE:	
3_						<u>.</u>	_ TIME:		3	<u>,</u>			<u> </u>						ГІМЕ:	
MET	METHOD OF SHIPMENT: Feltranty Du							৶৸	WAY B						1					
							SAMPLE TEAM:			RECEIVED FOR LABORATORY BY:				•						
Yello Pink	Yellow —Receiving Laboratory Copy —Shipper Copy				Сору	N-Eury Lame			ce Hul Necra 22339				9							
L .	nk —Shipper Copy oldenrod —Sampler Copy					-	N.Cond	<u> </u>		DATE	<u>[[] [</u>	<u>' </u>	≯ ⊤	IME:		96	/ 0			

CI	HAIN OF CUSTO	DY RECORD		
CONESTOGA-ROVERS & ASSOCIATES St. Paul MN 656 639 2913	HIPPED TO (Laboratory)	•	REFERENCE NUMBER:	
SAMPLER'S PRINTED NAME:	Nock Evan	ainers (1)		REMARKS
No. DATE TIME SAMPLE No.	TYPE	28 25/3/		
143/12 1656 W-121113-NE-18 1428 1429 1509 21 1810 23 1625 24 1625 24 1644 25 1644 27 1612 620 W-121114-NE-26 1222 1600 31 1402 31 700 31 700 31 700 31 700 31 700 31 700 31 700 31 700 31 700 31 700 31 700 31 700 31 700 31 700 700 700 700 700 700 700 700 700 70	1 5 6 7 8	3 X X 3 X 3 X 3 X 3 X 3 X 3 X 3 X 3 X 3	Deax Count w/ Grant as 65 1	Anderson question
TOTAL NUMBER OF CONTAINER		HEA	ALTH/CHEMICAL HAZARDS	
RELINQUISHED BY: ① RELINQUISHED BY: ②	DATE: 11617 F	RECEIVED BY: RECEIVED BY: RECEIVED BY:	DATE TIME DATE TIME	
RELINQUISHED BY:	DATE: F	RECEIVED BY:	DATE TIME	
METHOD OF SHIPMENT: Followork aux		VAY BILL No.		
White —Fully Executed Copy Yellow —Receiving Laboratory Copy Pink —Shipper Copy Goldenrod —Sampler Copy —	MPLE TEAM: N Good y	_ lan	OR LABORATORY BY: NO CRA 2	22353

DATE 11/17/12 TIME: 0940

1001 (D) APR 28/97(NF) REV. 0 (F-15)

TestAmerica Canton Sample Receipt	Form/Narrative	Login # :	7778
Client CRA	Site Name <u>0039</u> 7	-8 By: LO	ence Haden a
Cooler Received on 1117 12	Opened on //-/9-/2		(Signature)
FedEx: 1st Grd (Exp) UPS FAS St	etson Client Drop Off TestAm	erica Courier Other	
TestAmerica Cooler # K 8 7 9 Fo	am Box Client Cooler Box		
Packing material used: Anbble Wra			
COOLANT: Wet Ice Blu	e Ice Dry Ice Water Non	e	
1. Cooler temperature upon receipt			00
IR GUN# 1 (CF -2 °C) Observed		ected Sample Temp.	
IR GUN# 4G (CF 0 °C) Observed		ected Sample Tempected Sample Temp.	-
IR GUN# 5G (CF 0°C) Observed IR GUN# 8 (CF 0°C) Observed	d Sample Temp. Corr		
2. Were custody seals on the outside of t			_ ~
-Were custody seals on the outside of		(es) No. NA	
-Were custody seals on the bottle(s)?		Yes (No)	•
3. Shippers' packing slip attached to the		(Yes No	
4. Did custody papers accompany the sa		(Yes) No	
5. Were the custody papers relinquished	& signed in the appropriate place?	Yes No	
6. Did all bottles arrive in good condition	•	(Yes) No	
7. Could all bottle labels be reconciled w		Yes No	
8. Were correct bottle(s) used for the tes	• •	(Yes) No	
9. Sufficient quantity received to perform		Yes No NA)
10. Were sample(s) at the correct pH upon 11. Were VOAs on the COC?	i receipt?	Yes No	1
11. Were vOAs on the COC? 12. Were air bubbles >6 mm in any VOA	viale?	Yes (No)NA	
13. Was a trip blank present in the cooler		Yes No	
	•		
Contacted PM Date	by	via Verbal Voice Mail	Other
Concerning			
14. CHAIN OF CUSTODY & SAMPL	E DISCREPANCIES		
,			
		18	
		•	
<u> </u>			
			:
15. SAMPLE CONDITION			
Sample(s)		commended holding time h	
Sample(s)		were received in a brok	
Sample(s)	were received with	n bubble >6 mm in diamete	r. (Notify PM)

	16. SAMPL	E PRESERVATION		
Sample(s) recommended pH level(s	s). Nitric Acid Lot# 031512-HNO3; S id Lot# 041911-HCl; Sodium Hydrox	0 1	in Sample Recei Sodium Hydroxid	ving to meet le Lot# 121809 -
time was preservative ad	id Low 041911-nCi; Sodium Hydrox ded to sample(s)?	cide and Zinc Acetate Lot# 100108-((CH3COO)2ZN/I	NaOH. What
<u>Client ID</u>	doc to dumpro(o).	p <u>H</u>	Date	Talkinta
		<u>pri</u>	Date	<u>Initials</u>
		-16		
			 	
			-	
			-	
	·			
				1
			<u> </u>	
			ļ	
				-
			 	
`				
				,
				
			<u> </u>	
			<u> </u>	
Cooler#	Observed Sample Temp. °C	Corrected Sample Temp. °C	IR#	Coolant
			· [
· · · · · · · · · · · · · · · · · · ·				

1801 Old Highway 8 NW, Suite #114 St. Paul, Minnesota 55112

Telephone: (651) 639-0913

Fax: (651) 639-0923

www.CRAworld.com

MEMORANDUM

To:

Chuck Ahrens, CRA

REF. No.:

003978

FROM:

Ruth Mickle/sb/2

DATE:

January 15, 2013

RE:

Analytical Results and QA/QC Verification

Groundwater Sampling Program

Wausau Superfund Site Wausau, Wisconsin November 2012

INTRODUCTION

Monitoring well water samples were collected in support of the groundwater monitoring program at the Wausau Superfund Site during November 13-14, 2012. Samples were submitted to TestAmerica Laboratories, Inc. (TestAmerica) located in Canton, Ohio for Site list volatile organic compound (VOC) analyses. A sample collection and analysis summary is presented in Table 1. A summary of the analytical methodology is presented in Table 2.

Standard CRA report deliverables were reported by the laboratory. The final results and supporting quality assurance/quality control (QA/QC) data were assessed. Evaluation of the data was based on information obtained from the chain of custody forms, finished report forms, method blank data, duplicate data, laboratory control samples (LCS), and matrix spikes; and field QA/QC samples. The QA/QC criteria by which the data have been assessed are outlined in the respective method and the following documents:

- i) "Remedial Design/Remedial Action Quality Assurance Project Plan (QAPP), Wausau Superfund Site";
 November 1995, Conestoga-Rovers & Associates, Report 7.
- ii) "USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review," October 1999, United States Environmental Protection Agency (USEPA) 540/R 99/008.
- iii) "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review," February 1994, USEPA 540/R 94/013.

Items ii) and iii) will subsequently be referred to as the "Guidelines".

SAMPLE HOLDING TIME AND PRESERVATION

The sample holding time criteria for the analyses are summarized in Table 2. Sample chain of custody documents and the analytical report were used to determine sample holding times. All samples were prepared and analyzed within the required holding times.

All shipped samples were properly preserved and delivered on ice and stored by the laboratory at the required temperature (0-6°C).

LABORATORY METHOD BLANK ANALYSES

The purpose of assessing the results of laboratory method blank analyses is to determine the existence and magnitude of sample contamination introduced during analysis. Laboratory method blanks are prepared from a certified analyte-free matrix and analyzed with the samples.

For this study, laboratory method blanks were analyzed at a minimum frequency of one per analytical batch. All VOC method blank results were non-detect.

SURROGATE SPIKE RECOVERIES

In accordance with the methods employed, all samples, blanks, and QA/QC samples analyzed for VOCs are spiked with surrogate compounds prior to sample analysis. Surrogate recoveries provide a means to evaluate the effects of individual sample matrices on analytical efficiency.

All surrogate recoveries were acceptable, indicating good analytical efficiency.

LABORATORY CONTROL SAMPLE ANALYSES

LCS analyses serve as a monitor of the overall performance of all steps in the analysis, including the sample preparation. LCS were analyzed using the same sample preparation, analytical methods, and QA/QC procedures employed for the investigative samples. The laboratory established the organic LCS control limits internally.

All LCS recoveries were within the established control limits, indicating acceptable overall laboratory performance.

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD) ANALYSES

To evaluate the effects of sample matrices on the preparation, measurement procedures, and accuracy of a particular analysis, samples are spiked in duplicate with a known concentration of the analytes of concern and analyzed as MS/MSD samples. The relative percent difference (RPD) between the MS and MSD is used to assess analytical precision. The laboratory established the organic MS/MSD control limits internally.

MS/MSD analyses were performed as specified in Table 1.

All recoveries and RPDs were acceptable, demonstrating good analytical accuracy and precision.

FIELD QA/QC

The field QA/QC samples consisted of one trip blank, two field blanks, one rinsate blank and three field duplicate sample sets.

Trip Blank Sample Analysis

To evaluate contamination from sample collection, transportation, storage, and analytical activities, one trip blank was collected and submitted to the laboratory for VOC analysis. The trip bank was non-detect with the exception of a low concentration of methylene chloride. All associated sample results were non-detect and were not impacted by the indicated contamination.

Field Blank Sample Analysis

To assess ambient conditions at the site, two field blanks were submitted for analysis, as identified in Table 1. All results were non-detect for the compounds of interest.

Rinsate Blank Sample Analysis

To assess sampling conditions at the site, one rinsate blank was submitted for analysis, as identified in Table 1. All results were non-detect for the compounds of interest.

Field Duplicate Sample Analysis

To assess the analytical and sampling protocol precision, field duplicate samples were collected and submitted "blind" to the laboratory, as specified in Table 1. The RPDs associated with these duplicate samples must be less than 50 percent for water samples. If the reported concentration in either the investigative sample or its duplicate is less than five times the RL, the evaluation criteria is one times the RL value for water samples.

The field duplicate results were within acceptable agreement, demonstrating good sampling and analytical precision.

ANALYTE REPORTING

The laboratory reported detected results down to the laboratory's method detection limit (MDL) for each analyte. Positive analyte detections less than the practical quantitation limit (PQL) but greater than the method detection limit (MDL) were qualified as estimated (J) unless qualified otherwise in this memorandum. Non-detect results were presented as non-detect at the PQL.

CONCLUSION

Based on this assessment, the data produced by TA were found to exhibit acceptable levels of accuracy and precision based on the provided information and may be used without qualification.

TABLE 1

SAMPLE COLLECTION AND ANALYSIS SUMMARY GROUNDWATER SAMPLING - NOVEMBER 13 & 14, 2012 WAUSAU SUPERFUND SITE WAUSAU, WISCONSIN

						Analysis/ Parameters	
Sample Identification	Location	Matrix	QC Samples	Collection Date (mm/dd/yyyy)	Collection Time (hr:min)	VOC	
TA Lot #240-17778-1							
TRIP BLANKS	Lab	water		11/13/2012	11/13/2012	x	
W-121113-NE-01	CW3	water		11/13/2012	7:47:00 AM	x	
W-121113-NE-02	E24AR	water		11/13/2012	8:40:00 AM	x	
W-121113-NE-03	E24AR	water	DUP(-02)	11/13/2012	8:42:00 AM	x	
W-121113-NE-04	MW10A	water		11/13/2012	9:15:00 AM	x	
W-121113-NE-05	MW10B	water	,	11/13/2012	9:28:00 AM	х.	
W-121113-NE-06	WW4	water		11/13/2012	10:03:00 AM	x	
W-121113-NE-07	FVD5	water		11/13/2012	8:48:00 AM	x	
W-121113-NE-08	E22A	water		11/13/2012	9:10:00 AM	x	
W-121113-NE-09	E37A	water		11/13/2012	9.42:00 AM	x	
W-121113-NE-10	E23A	water		11/13/2012	10:02:00 AM	x	
W-121113-NE-11	WC3B	water	Field Blank	11/13/2012	11:30:00 AM	x	
W-121113-NE-12	WC3B	water		11/13/2012	12:08:00 PM	x	
W-121113-NE-13	WW6	water		11/13/2012	10:39:00 AM	x	
W-121113-NE-14	WC5A	water		11/13/2012	11:11:00 AM	x	
W-121113-NE-15	W53A	water		11/13/2012	1:39:00 PM	x	
W-121113-NE-16	W54	water		11/13/2012	2:44:00 PM	x	
W-121113-NE-17	R4D	water	MS/MSD	11/13/2012	4:17:00 PM	x	
W-121113-NE-18	C2S	water		11/13/2012	4:56:00 PM	x	
W-121113-NE-19	R3D	water		11/13/2012	2:28:00 PM	x	
W-121113-NE-20	R3D	water	DUP(-19)	11/13/2012	2:29:00 PM	x	
W-121113-NE-21	C4S	water	MS/MSD	. 11/13/2012	3:09:00 PM	x	
W-121113-NE-22	W52	water		11/13/2012	6:10:00 PM	x	
W-121113-NE-23	W52	water	DUP(-22)	11/13/2012	6:11:00 PM	x	
W-121113-NE-24	W56	water	Rinsate Blank	11/13/2012	4:25:00 PM	x	
W-121113-NE-25	W56	water		11/13/2012	4:44:00 PM	x	
W-121114-NE-26	R2D	water	Field Blank	11/14/2012	8:20:00 AM	x	
W-121114-NE-27	R2D	water		11/14/2012	9:27:00 AM	x	
W-121114-NE-28	WSWD	water		11/14/2012	11:05:00 AM	x	
W-121114-NE-29	W55	water		11/14/2012	12:22:00 PM	x	
W-121114-NE-30	CW6	water		11/14/2012	9:00:00 AM	x	
W-121114-NE-31	MW1A	water		11/14/2012	2:02:00 PM	x	

Notes:

DUP-Field Duplicate Sample of sample in parenthesis MS/MSD-Matrix Spike/Matrix Spike Duplicate QC-Quality Control
VOC - Volatile Organic Compounds

TABLE 2 Page 1 of 1

SUMMARY OF ANALYTICAL METHOD, HOLDING TIME PERIOD, AND PRESERVATIVES GROUNDWATER SAMPLING - NOVEMBER 13 & 14, 2012 WAUSAU SUPERFUND SITE WAUSAU, WISCONSIN

Parameter	Method ¹	Matrix	Holding Time	Preservation
VOC	SW8260B	water	- 14 days from sample collection to completion of analysis	pH<2, Iced, 4 ± 2° C

Notes:

SW-846 - "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", SW-846, 3rd Edition, and Promulgated updates, November 19: VOC - Volatile Organic Compounds

¹ Method References:

APPENDIX C

WAUSAU CHEMICAL PAVEMENT INSPECTION REPORT

TABLE 1

PAVEMENT BARRIER INSPECTION LOG WAUSAU CHEMCIAL CORP.

Inspection Date	Inspector	Condition of Cap	Recommendations	Have Recommendations From Previous Inspection Been Implemented?
7/2/2012	Rob Flashinski	Overall condition is very good. Recent work by the gas company has been patched thoroughly. All existing cracks have been filled.	None	None existed.
		8	TVOTO	Tronc existed.
				_
		·		
		,		