

City of De Pere

DEC 0 6 1995

RECEIVEL

LMD SOLID WASHL

WASTEWATER TREATMENT PLANT

315 Leonard St. • De Pere, Wisconsin 54115-2324 • Phone: (414) 339-4094 • FAX# 339-4048

December 5, 1995

Kathy Erdmann Wisconsin Department of Natural Resources Lake Michigan District Headquarters P.O. Box 10448 Green Bay, WI 54307-0448

Dear Kathy:

Enclosed, please find copies of the reports of results of the most recent sampling at the Better Brite groundwater treatment facility. The untreated samples were taken on 11/10/95, while the samples of the treated discharge were taken on 11/14/95.

If you have any questions or require any additional information, please contact me.

Sincerely,

alled R. Vaurthen of

Albert R. Kardoskee, Jr. Quality Control Supervisor/Chemist

\ERDMANN\95-12-05.WRI

ROBERT E. LEE & ASSOCIATES, INC. Wisconsin Certification NO: 405043870

- CERTIFICATE OF ANALYSIS -

De Pere Wastewater Treatment Plant	Attn: Al Kardoskee
315 Leonard Street	Phone: 414-339-4094
De Pere WI 54115	Fax: 414-339-4048
Project Number: NONE Project Name : BETTER BRITE	Customer Number: 000404 Chain Number : 24217 Report Date : 11/22/1995

SAMPLE_ID	LAB#	COLLECT DATE		MATRIX		
PARAM NAME	RESULT	UNITS	MDL	METHOD	ANALYST	ANALYZED
LANDE GROUNDWATER	95REL022491	11/10/1995		GW		- 24
METAL PREPARATION				SW846-3010	DLB	11/15/1995
TOTAL ZINC ICP	39	UG/L	3	SW846-6010	DLB	11/17/1995
TOTAL CADMIUM ICP	<3	UG/L	. 3	SW846-6010	DLB	11/17/1995
TOTAL CHROMIUM ICP	370000	UG/L	7	SW846-6010	DLB	11/17/1995
				100		
SIXTH GROUNDWATER	95REL022492	11/10/1995		GN		
METAL PREPARATION	,	Str. Here	le	\$W848-3010	DLB	11/15/1995
TOTAL ZINC 1CP	66	UG/L	3	\$W846-6010	DLB	11/17/1995
CYANIDE-TOTÁL	1.01	MG/L	0.001	EPA-335.3	DAW	11/15/1995
TOTAL CADMIUM ICP	<3	UG/L	3	SW846-6010	DLB	11/17/1995
TOTAL CHROMIUM ICP	63000	UG/L	7	SW846-6010	DLB	11/17/1995
		¢	1 d - '	<u>.</u>		
BETTER BRITE UNTREATED	95REL022493	11/10/1995		GW		
METAL PREPARATION		1 1 1 1		SW846-3010	DLB	11/15/1995
TOTAL ZINC ICP	35	UG/L	* 3	SW846-6010	DLB	11/17/1995
CYANIDE-TOTAL	0.757	MG/L	0.001	EPA-335.3	DAW	11/15/1995
TOTAL CADMIUM ICP	<3	UG/L	3	\$W846-6010	DLB	11/17/1995
TOTAL CHROMIUM ICP	120000	UG/L	7	ŚW846-6010	DLB	11/17/1995

Page number 1

ž

ROBERT E. LEE & ASSOCIATES, INC. Wisconsin Certification NO: 405043870

- CERTIFICATE OF ANALYSIS -

De Pere Wastewater Treatment Plant	Attn: Al Kardoskee
315 Leonard Street	Phone: 414-339-4094
De Pere WI 54115	Fax: 414-339-4048
	Customer Number: 000404
Lab Number: 95REL022694	Chain Number: 24218
Sample ID : BETTER BRITE TREATED	Report Date : 11/29/1995
Matrix : WW	Sample Date : 11/14/1995

METHOD	PARAMETER NAME	RESULT	UNITS	MDL	DATE	BY
EPA-335.3 .	CYANIDE-TOTAL	0.389	MG/L	0.001	11/21/1995	DAW
EPA~200.7	TOTAL CADMIUM ICP	<3	UG/L	3	11/28/1995	DLB
EPA-200.7	TOTAL CHROMIUM ICP	4800	UG/L	7	11/28/1995	DLE
EPA-200.7	TOTAL ZINC ICP	9	UG/L	3	11/28/1995	DLE
EPA-200.7	METAL PREPARATION (TOTAL)	COMPLETE			11/20/1995	DLB

.

11

· · · 1

.

· · · ·

. . .

÷

CORRESPONDENCE / MEMORANDUM

DATE: September 14, 1995

FILE REF: 3200

TO: Dave Hantz - WW/2

FROM: Bob Masnado - WR/2

SUBJECT: Projected Surface Water Quality-Based Effluent Limits for the Better Brite Superfund Site in De Pere

The purpose of this memo is to summarize the water quality-based effluent limitations calculated for the proposed 130,000 gallon per day discharge from the Better Brite Superfund site to the Fox River in De Pere. Effluent limitations are calculated for each of the substances requested in a letter dated August 1, 1995 from Brian Keller of Hydro-Search, Inc. to you. Those limitations are calculated using chapters NR 102, 105, 106 and 207 of the Wisconsin Administrative Code and are discussed below. Based on our review, the following recommendations are made on a water quality basis (concentrations rounded to two significant digits):

	Daily	Weekly	Monthly
	Maximum	Average	Average
Substance	(mq/L)	<u>(lbs/day)</u>	<u>(lbs/day)</u>
Aluminum *	2.2		
Antimony	13		
Arsenic *	0.73		
Beryllium	2.3		1.61 #
Cadmium *	0.11		
Chromium (total or +3) *	8.2		
Chromium (+6)	0.028		
Copper *	0.082		
Cyanide @	0.092		
Iron		339 #	
Lead *	1.1		
Nickel *	4.8		
Selenium *	0.12		
Silver *	0.012		
Thallium	1.4		
Zinc *	0.46		
Carbon Tetrachloride	35		
Chloroform	29		
1,2-Dichloroethane	120		
Tetrachloroethylene	13		
1,1,1-Trichloroethane	70		
1,1,2-Trichloroethane	36		
Trichloroethylene	41		

* - These effluent limitations may be reported in the "total recoverable" form if such a test is reasonably available.

@ - The cyanide result may be reported either as "free cyanide" or as "cyanide amenable to chlorination."

- The indicated limitation is based upon the prevention of the significant lowering of water quality as defined in ch. NR 207. As such, it represents the limit which is based upon 1/3 of the available assimilative capacity of the Fox River after subtracting out the existing or permitted loadings from Nicolet Paper and the City of De Pere municipal treatment plant. If the proposed discharge from Better Brite exceeds the indicated limitation, the discharger is required to perform the demonstrations in s. NR 207.04 (1)(d) before the Department can consider increased discharge limitations. Those demonstrations, for a new discharge such as this, involve evaluation of the ability to prevent the significant lowering of water quality in a cost-effective manner using conservation measures, recycling measures, other applicable wastewater treatment process or operational changes, or source reduction measures. If it is found that there are cost effective pollution control alternatives which would prevent the significant lowering of water quality, the limitations are those indicated above. If it is found that these cost-effective alternatives do not exist, the effluent limitations are as follows for the indicated parameters and averaging periods:

Substance	Effluent Limitations
Beryllium	4.83 lbs/day monthly average
Iron	1,105 lbs/day weekly average

The 4.83 lbs/day beryllium limit is, at the proposed discharge rate of 130,000 gpd, equivalent to a concentration greater than the 2.33 mg/L daily maximum limit, so this limit would not be necessary because at the proposed flow, the daily maximum limit would also be protective of human cancer criteria-related concerns.

The above limitations should be compared to any categorical or Best Professional Judgment-type limitations, with the lowest of those limitations being applicable to the proposed discharge.

It is recommended that the set of the above limitations which is deemed appropriate based on the s. NR 207.04 (1)(d) evaluation should be accompanied by a requirement to perform, at a minimum, monthly testing for a period of up to six months following commencement of discharge during the remediation process. Following the conclusion of that sampling period, effluent limitations for individual substances may be removed from the recommended list if those substances are not detected at levels of detection equal to or less than 1/5 the calculated limits for those substances. If the level of detection exceeds 1/5 of the applicable limitation or f the substance is detected in the discharge to surface water, the need for limitations and/or monitoring should be re-evaluated by this Bureau using the procedures in NR 106.

Chemical-Specific Discussion:

The Better Brite Superfund Site is located in the City of De Pere. The proposed discharge is to the Fox River near the Nicolet Paper mill below the De Pere dam. The Fox River is classified as a warmwater sport fish community and is not a public water supply at this location.

Effluent limitations for a discharge to the Fox River from the Better Brite Superfund Site are calculated for each of the substances requested in Brian Keller's letter of August 1, 1995 that have water quality criteria in ch. NR 105, Wis. Adm. Code. That letter also proposed a discharge rate of 130,000 gpd and an effluent hardness of 260 ppm, which is consistent with municipal water supply data (groundwater) available to the Department. In addition, hardness data used in calculating water quality criteria and associated effluent limitations for metals are generated from data available on the Fox River, while background values for toxic substances are calculated using low-level metals data from the Fox River at Wrightstown along with discharge data from nearby facilities with WPDES permits, namely Nicolet Paper and the City of De Pere municipal treatment plant.

The general information used in calculating effluent limitations at this location is summarized below:

_____ EFFLUENT LIMIT CALCULATIONS FOR: Better Brite Superfund Site RECEIVING WATER: Fox River at De Pere RECEIVING WATER INFORMATION: CLASSIFICATION: Warmwater Sport Fish, Non-Public Water Supply RECEIVING WATER FLOWS 4Q3 7Q2 3005 Oave (in cfs): -----____ ____ ____ 754 1570 1330 = 4480 OTHER DISCHARGERS (1994 CALENDAR YEAR MEAN FLOWS): NICOLET PAPER = 2.603 MGD = 4.03 cfs (100% withdrawn from river) De PERE POTW = 5.99 MGD = 9.27 cfs HARDNESS = 182 PPM (from Nicolet Paper evaluation - 3/9/94) PROP. DISCH. RATE EFFLUENT INFORMATION: (mgd) (cfs) ____ ____ 0.13 0.20 EFFLUENT HARDNESS 260 PPM (ESTIMATED) 2= EFFLUENT DILUTION DUE TO ZID not applicable . =

Daily maximum effluent limitations are equal to twice the NR 105 acute toxicity criteria (ATC) where available, pursuant to s. NR 106.06 (2). If, for a given substance, an NR 105 criterion is not available, the daily maximum effluent limitation equals the lowest species mean LC50 value for aquatic species considered among the warmwater sportfish classification. Those limitations are summarized in the following table:

CALCULATION OF EFFLUENT	LIMITA	TIONS BASED	ON ATC	(in ug/L)	
	REF.			MAX.	
	HARD.			FFL.	
SUBSTANCE	or pH	ATC	L	IMIT	
Arsenic		363.80	72'	7.60	
Cadmium	260	53.89	10'	7.78	
Chromium (+3 or TOTAL)	260	4092.45	8184		
Chromium (+6)		14.20	28	8.40	
Copper	260	40.78	83	1.56	
Cyanide		46.20	92	2.40	
Lead	260	570.58	114:	1.16	
Nickel	260	2418.34	483	6.68	
Selenium		58.00	110	6.00	
Silver	260	6.08	1:	2.16	
Zinc		232.01	-	4.02	
EPA Criteria (adjusted	for WI				
Aluminum		1101.50	2203	3.00	
Substances with LC50 Va	lues bu	t no NR 105	ATC:	MAX.	
			1	EFFL.	
			1	LIMIT	
Antimony			1.	3008	
Beryllium			:	2330	
Thallium				1408	
[continued on next	page]				

Substances with LC50) Values	but	no	NR	105	ATC:	MAX. EFFL. LIMIT	
Carbon Tetrachloride Chloroform 1,2-Dichloroethane Tetrachloroethylene 1,1,1-Trichloroethan 1,1,2-Trichloroethan Trichloroethylene	ne						35200 28900 118000 12900 69700 36127 40700	

A specific discharge rate has been proposed for the groundwater remediation, but the typical approach is to calculate weekly and monthly average effluent limitations (in units of pounds per day) based on the available assimilative capacity in the tributary which, based on the definition in s. NR 207.02 (1), is the difference between the applicable water quality criterion for a substance and the existing concentration of that substance in a surface water. Since the proposed discharge rate is very small compared to the river flow plus the hydraulic rate addition from De Pere, the discharge rate from Better Brite has little impact on the calculated weekly and monthly average mass limits. The antidegradation provisions in ch. NR 207 are applicable at Better Brite since this represents a new discharge.

Weekly average limitations based on NR 105 chronic toxicity criteria (CTC) and monthly average limitations based on NR 105 wild and domestic animal criteria (WDAC), human threshold criteria (HTC), and human cancer criteria (HCC), are summarized in the tables beginning on the following page. Those limits are calculated using the following formula:

Assimilative capacity (ug/L) = [((Qs + QDP) X (WQC)) - (Qs X Cs) - (QNP X CNP) - (QDP X CDP)] / (Qs + QDP)

Convert assimilative capacity in ug/L to a mass limit in lbs/day using the quantity (Qs + QDP) and the appropriate conversion factor.

where:

- WQC = Water quality criterion (CTC, WDAC, HTC, or HCC),
- Qs = The applicable streamflow (1/4 of 4Q3 for limits based on CTC, 30Q5 for limits based on WDAC, and mean annual flow for limits based on HTC or HCC),
- Cs = Background concentration in the Fox River,
- QDP = Current average discharge rate from the De Pere treatment plant,
- CDP = Effluent concentration at the De Pere treatment plant,
- QNP = Current average discharge rate from Nicolet Paper, and
- CNP = Effluent concentration at Nicolet Paper.

NOTES: 1) QNP is not included in the first multiplication in the formula (total flow times WQC) because Nicolet Paper's water is withdrawn from the Fox River and returned to the river via the permitted outfall. Nicolet Paper may have a net loading addition of compounds to the river, but not a net flow addition to the river.

2) None of the substances at Better Brite have wild and domestic animal criteria in ch. NR 105, so no table for WDAC-based limits is necessary at this time.

3) None of the substances evaluated at Better Brite are currently limited in the WPDES permits for De Pere or Nicolet Paper. If they were, the limits would be used in place of the effluent concentrations in the above formula because the permittee is theoretically allowed to discharge up to the limit in its permit. Lacking permit limits, only the mean effluent concentrations are used. If a substance is not

RECEIVING WATER	FLOW	(cfs)	= 18	 38.5	(25% of	7Q10)	
									4.7 ~~
			BACKGROUND FOX						1/3 OF
UBSTANCE	HARD.							411 415	411 4 16
UBSTANCE rsenic admium hromium (+3 or TOTAL) hromium (+6) opper ead ickel elenium ilver inc yanide PA Criteria: pop			FOX RIVER	PAPER	PUIW	(ug/L)	(ug/L)	((D/D)	(()))
rsenic		153.00		< 1	< 1.4	153.00	51.00	155.3822	51,79408
admium	173	3.11	0.0156	1.7	2.37	2.95	0.98	2.995302	0.998434
hromium (+3 or TOTAL)	182	88.28	0.264	0.8	45.5	85.88	28.63	87.21598	29.07199
hromium (+6)		9.74		0.8	2.11	9.62	3.21	9.774634	3.258211
opper	182	20.24	1.247	0.014	7.6	18.69	6.23	18.98594	6.328647
ead	182	21.62	0.61	1.7	5.25	20.76	6.92	21.08102	7.027008
ickel	182	109.75		< 15	.84	105.81	35.27	107.4592	35.81974
elenium	400	7.07		< 2	4.4	6.86	2.29	6.970577	2.323526
llver	182	4.01	7 / 5	< 1	0.487	3.99	1.33	4.049248	1.349749
Inc	182	82.3/	5.45	25	24.04	+ 0.45	25.82	/8.65115	20.21/04
yanide PA Cnitonio		4.90		× 10	92 ((101	() 0.05	0.22	0.090152	0.230051
ron		1000				1000 00	777 77	1015 57	338 523/
ron								1015.57	550.5254
						4			
CALCULATION OF	EFFLU	ENT LIN	ITATION	S BASED	ON HTC	(cond	s. in	ug/L)	
RECEIVING WATER									
							4 (7		4 (7
			BACKGROUND FOX	DATA:	DE PERE	ASSIM.	1/3 OF	ASSIM. CAP	1/3 OF CAP
UBSTANCE		нт	RIVER	PAPER	POTU	(ug/L)	(ua/l)	(Lb/d)	(lb/d)
			C RIVER	PAPER		(49/2/			
ntimony		7800		< 50	< 1.4	7800	2600	188265.7	62755.23
admium		82	0.0156	1.7	2.37	81.98	27.33	1978.673	659.5576
hromium (+3 or TOTAL)		9500000	0.264	0.8	45.5	9500000	3166667	2.29E+08	7643265
hromium (+6)		9000		0.8	2.11	9000	3000	217229.5	72409.84
ead		50	0.61	1.7	5.25	49.38	16.46	1191-84	397.28
lckel		460		< 15	84	459.83	153.28	11098.66	3699.554
elenium		170		< 2	4.4	169.99	50.00	4103.007	1367.669
hallium		430		< 1	0.407	430.00	143.33	745 5020	3437.373
Vanida		40000		~ 10	02	70000 8	17777 2	203.3029	3 225+05
1 1-Trichloroethane		33000		< 10	< 1	33000	11000	796508.7	265502.9
ntimony admium hromium (+3 or TOTAL) hromium (+6) ead ickel elenium ilver hallium yanide ,1,1-Trichloroethane									
= Exponent of 10 (1E-	+03 = 1,	,000)							
CALCULATION OF E	FFLUE	NT LIM	TATIONS	BASED	ON HCC	(concs	. in u	g/L)	
	FLOW	 (cfs) :	= 4	 480					
RECEIVING WATER						ASSIM.	1/3 OF	ASSIM	. 1/3 OF
RECEIVING WATER			RACKGROUND						
RECEIVING WATER			BACKGROUND		DE PERE	CAP -	- unr -		
		НС	FOX	NICOLET PAPER	DE PERE POTW	CAP. (ug/L)) (lb/d)
UBSTANCE		нс	FOX C RIVER	NICOLET			(ug/L)	(lb/d)	
UBSTANCE			FOX C RIVER	NICOLET PAPER	POTW	(ug/L)	(ug/L)	(lb/d)	
UBSTANCE .rsenic .eryllium		50 0.2	FOX C RIVER	NICOLET PAPER < 1 < 5	POTW < 1.4 < 6.3	(ug/L) 50.00 0.20	(ug/L) 16.67 0.07	(lb/d) 1206.831 4.827325	402.2771 1.609108
UBSTANCE rsenic eryllium arbon Tetrachloride		50 0.2 31	FOX C RIVER	NICOLET PAPER < 1 < 5 < 10	POTW < 1.4 < 6.3 < 1	(ug/L) 50.00 0.20 31.00	(ug/L) 16.67 0.07 10.33	(lb/d) 1206.831 4.827325 748.2354	402.2771 1.609108 249.4118
UBSTANCE .rsenic eryllium arbon Tetrachloride hloroform		50 0.2 31 87	FOX C RIVER	NICOLET PAPER < 1 < 5 < 10 26	POTW < 1.4 < 6.3 < 1 < 1	(ug/L) 50.00 0.20 31.00 86.98	(ug/L) 16.67 0.07 10.33 28.99	(lb/d) 1206.831 4.827325 748.2354 2099.323	402.2771 1.609108 249.4118 699.7744
UBSTANCE .rsenic eryllium arbon Tetrachloride hloroform ,2-Dichloroethane		50 0.2 31 87 370	FOX C RIVER	NICOLET PAPER < 1 < 5 < 10 26 < 10	POTW < 1.4 < 6.3 < 1 < 1 < 1 < 1	(ug/L) 50.00 0.20 31.00 86.98 370.00	(ug/L) 16.67 0.07 10.33 28.99 123.33	(lb/d) 1206.831 4.827325 748.2354 2099.323 8930.552	402.2771 1.609108 249.4118 699.7744 2976.851
UBSTANCE Irsenic Veryllium Carbon Tetrachloride hloroform ,2-Dichloroethane etrachloroethylene		50 0.2 31 87 370 49	FOX C RIVER	NICOLET PAPER < 1 < 5 < 10 26 < 10 < 10	POTW < 1.4 < 6.3 < 1 < 1 < 1 < 1 < 1 < 1	(ug/L) 50.00 0.20 31.00 86.98 370.00 49.00	(ug/L) 16.67 0.07 10.33 28.99 123.33 16.33	(lb/d) 1206.831 4.827325 748.2354 2099.323 8930.552 1182.695	402.2771 1.609108 249.4118 699.7744 2976.851 394.2316
RECEIVING WATER SUBSTANCE Arsenic Beryllium Carbon Tetrachloride Chloroform 1,2-Dichloroethane Tetrachloroethylene 1,1,2-Trichloroethane richloroethylene		50 0.2 31 87 370	FOX C RIVER	NICOLET PAPER < 1 < 5 < 10 26 < 10	POTW < 1.4 < 6.3 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	(ug/L) 50.00 0.20 31.00 86.98 370.00	(ug/L) 16.67 0.07 10.33 28.99 123.33 16.33 46.67	(lb/d) 1206.831 4.827325 748.2354 2099.323 8930.552	402.2771 1.609108 249.4118 699.7744 2976.851 394.2316 1126.376

detected in those effluents, zero is used as the "background" concentration.

The mass limits based on full assimilative capacity and 1/3 of that capacity (the latter represents the significant lowering of water quality as defined in ch. NR

207), are compared to the daily maximum concentration limits based on ATC using the proposed discharge rate of 130,000 gpd. The mass limits will be relatively constant if a discharge rate other than 130,000 gpd is selected, but this comparison is made to determine if criteria other than ATC are controlling the limits that are applicable to Better Brite. If the weekly or monthly average mass limits are much greater than the daily maximum concentration limits at a flow of 130,000 gpd, only the daily maximum limits are provided at the beginning of this memo. As a result, the only substances for which mass limits are provided are beryllium (limit at 1/3 of assim. capacity = 1.609108 lbs/day = 1.48 mg/L at 0.13 MGD, which is less than the 2.3 mg/L daily max.) and iron (no daily maximum limit is available).

Whole Effluent Toxicity Testing Discussion:

Katherine Freiberg - SW/3

No whole effluent toxicity monitoring is recommended at this time. Typically, acute toxicity test batteries are recommended at a frequency of once each three months upon commencement of discharge unless the applicable receiving water flow is more than 1000 times the effluent flow. In this case, the ratio is under 1000:1, but very close (Effl. Q = 0.13 MGD = 0.201 cfs, 4Q3/4 + QDP = 188.5 cfs + 9.23 cfs = 197.73, and 197.73 / 0.201 = 983.7 : 1). NOTE: If the proposed discharge rate is significantly greater than 0.13 MGD, or if several of the substances requested for evaluation are detected in the groundwater (particularly if they are detected at levels approaching 1/5 of the calculated chemical-specific effluent limitations), acute toxicity test batteries will be recommended.

If there are any questions or comments on the surface water discharge limits, please contact Jim Schmidt at (608) 267-7658 regarding chemical-specific determinations or Bob Masnado at (608) 267-7662 regarding general issues.

jws/wp15/betbrite.sfs/

PREPARED BY: ames W James W. Schmidt

Water Resources Engineer

APPROVED FOR SIGNATURE BY:

Bernie C. Robertson

Water Resources Engineer

cc: Dennis Weisensel / Tim Doelger - LMD Gary Kincaid - Green Bay Area Jim Reyburn - LMD

> RECEIVED DNR SEP 19 1995 LAKE MICH. DIST!

George E. Meyer Secretary 101 South Webster Street Box 7921 Madison, Wisconsin 53707 SUPERFUND/SOLID WASTE FAX 608-267-2768 DIRECT DIAL 608-267-5232 TDD 608-267-6897

April 17, 1995

Harold Aldrich 1025 S. Sixth Street De Pere, WI 54115

SUBJECT: Groundwater test results (basement sump and monitoring well) for 1025 S. Sixth Street, De Pere, Wisconsin

Dear Mr. Aldrich:

The groundwater samples collected from your basement sump (8/25/94) and from the monitoring well, MW-112, in your yard (10/25/94 and 11/16/94) were free of contaminants. The sampling was performed as part of the Superfund remedial investigation of the Better Brite chrome and zinc shop properties.

Test Results (your property)

The groundwater samples were analyzed through the U.S. Environmental Protection Agency's Contract Laboratory Program (CLP) for a wide selection of volatile organic compounds and metals. I have attached a complete list of these parameters for your information (Attachment A).

Basement Sump

None of the volatile organic compounds analyzed for were detected in your basement sump groundwater sample. All of the metals analyzed for are naturally occurring in groundwater, and the metals detected in your basement sump groundwater sample were all in normal concentrations.

Monitoring Well MW-112

Monitoring well MW-112 is approximately 15 feet deep and draws water from the 30-foot thick clay layer found below the ground surface (see Attachment B). None of the volatile organic compounds analyzed for were detected in either of the MW-112 groundwater samples and all of the metals detected in the samples were in normal concentrations.

Please let me know if you are interested in obtaining a copy of the test results submitted by the laboratory and/or a copy of the monitoring well construction report for MW-112. Both are readily available.

Better Brite Update

By sampling all of the monitoring wells on and around the Better Brite chrome and zinc shop properties, we have learned that groundwater samples from the shallowest monitoring wells (15 feet deep) have the highest levels of chromium and groundwater samples from the deepest monitoring wells (60 feet deep) have background levels of chromium. This tells us that the groundwater is generally moving horizontally away from the Better Brite properties without moving deeper into the ground. Fortunately, the nearby De Pere municipal well is cased (closed to groundwater) to 180 feet and does not draw its water from the contaminated clay layer which is just below the ground surface (see Attachment B). This municipal well is tested every six months (as a precaution) and shows no signs of contamination.

We also learned that only four groundwater contaminants occur at levels above state and federal standards. Only one of these four contaminants, chromium, was found to have moved beyond the Better Brite chrome and zinc shop property boundaries. Chromium-contaminated groundwater has not reached the monitoring well in your yard.

Our goals at the Better Brite chrome and zinc properties are to prevent exposure to toxic levels of contaminants and to protect groundwater quality. The information from the well on your property is crucial to deciding what further steps are needed to clean up the site. The Department of Natural Resources appreciates your letting us install the well and collect samples. I will continue to send you sample results and inform you about further action planned for the Better Brite properties. Please feel free to call me at (608) 267-5232 if you have any questions in the meantime. Thanks for your cooperation.

Sincerely,

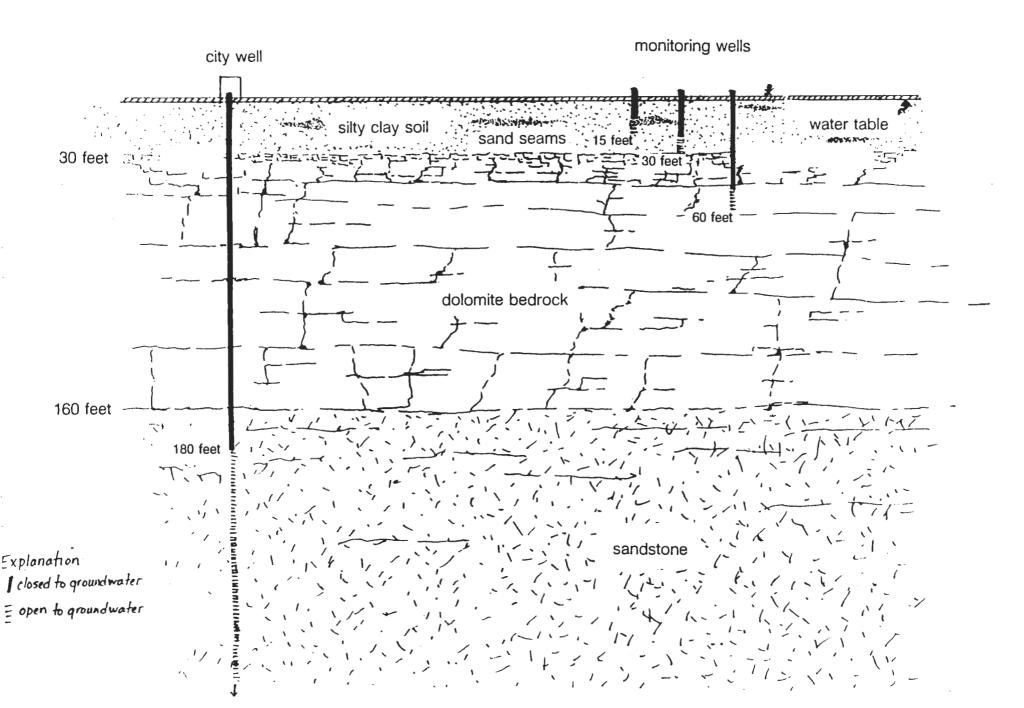
NO7 Katherine S. Freiberg

Superfund Remedial Unit

Noted:

Jane Lamike

Jane Lemcke, Unit Leader Superfund Remedial Unit


Atlachment A

BETTER BRITE REMEDIAL INVESTIGATION - GROUNDWATER ANALYSES TARGET COMPOUND AND TARGET METAL LIST

Volatile Organic Compound chloromethane bromomethane vinyl chloride methylene chloride acetone carbon disulfide 1,1-dichloroethene 1,1-dichloroethane 1,2-dichloroethene (total) chloroethane chloroform 1,2-dichloroethane 2-butanone 1,1,1-trichloroethane carbon tetrachloride bromodichloromethane 1,2-dichloropropane cis-1,3-dichloropropene trichloroethene dibromochloromethane 1,1,2-trichloroethane benzene trans-1,3-dichloropropene bromoform 4-methyl-2-pentanone 2-hexanone tetrachloroethéne 1,1,2,2-tetrachloroethane toluene chlorobenzene ethylbenzene styrene xylene (total)

Metals Others aluminum cyanide total organic carbon antimony arsenic barium beryllium cadmium calcium chromium (hexavalent) chromium (total) cobalt copper iron lead magnesium manganese mercury nickel potassium selenium silver sodium thallium vanadium zinc

SIMPLIFIED REPRESENTATION OF GEOLOGY AND MONITORING WELLS NEAR CHROME AND ZINC SHOPS

101 South Webster Street Box 7921 Madison, Wisconsin 53707 SUPERFUND/SOLID WASTE FAX 608-267-2768 DIRECT DIAL 608-267-5232 TDD 608-267-6897

George E. Meyer Secretary

April 17, 1995

Gerald Rasmussen 320 S. Sixth Street De Pere, WI 54115

SUBJECT: Groundwater test results (basement sump and monitoring well) for 320 S. Sixth Street, De Pere, Wisconsin

Dear Mr. Rasmussen:

The groundwater samples collected from your basement sump (on 8/24/94) and from the monitoring wells in your yard (on 08/30/94 and 10/18/94) were free of contaminants. The sampling was performed as part of the Superfund remedial investigation of the Better Brite chrome and zinc shop properties.

Test Results (your property)

The groundwater samples were analyzed through the U.S. Environmental Protection Agency's Contract Laboratory Program (CLP) for a wide selection of volatile organic compounds and metals. I have attached a complete list of these parameters for your information (Attachment A).

Basement Sump

None of the volatile organic compounds analyzed for were detected in your basement sump groundwater sample. All of the metals analyzed for are naturally occurring in groundwater, and the metals detected in your basement sump groundwater sample were all in normal concentrations.

Monitoring Wells MW-4 and MW-4A

Monitoring wells MW-4 and MW-4A both draw groundwater from the 30-foot thick clay layer found below the ground surface (see Attachment B). None of the volatile organic compounds analyzed for were detected in the groundwater samples from these wells and all of the metals detected in the samples were in normal concentrations.

Please let me know if you are interested in obtaining a copy of the groundwater test results submitted by the laboratory.

Better Brite Update

By sampling all of the monitoring wells on and around the Better Brite chrome and zinc shop properties, we have learned that groundwater samples from the shallowest monitoring wells (15 feet deep) have the highest levels of chromium and groundwater samples from the deepest monitoring wells (60 feet deep) have background levels of chromium. This tells us that the groundwater is generally moving horizontally away from the Better Brite properties without moving deeper into the ground. Fortunately, the nearby De Pere municipal well is cased (closed to groundwater) to 180 feet and does not draw its water from the contaminated clay layer which is just below the ground surface (see Attachment B). This municipal well is tested every six months (as a precaution) and shows no signs of contamination.

We also learned that only four groundwater contaminants occur at levels above state and federal groundwater quality standards. Only one of these four contaminants, chromium, was found to have moved beyond the Better Brite chrome and zinc shop property boundaries.

Our goals at the Better Brite chrome and zinc properties are to prevent exposure to toxic levels of contaminants and to protect groundwater quality. The information from the wellson your property is crucial to deciding what further steps are needed to clean up the site. The Department of Natural Resources appreciates your letting us install the wellsand collect samples. I will continue to send you sample results and inform you about further action planned for the Better Brite properties. Please feel free to call me at (608) 267-5232 if you have any questions in the meantime. Thanks for your cooperation.

Sincerely,

Katherine S. Freiberg Superfund Remedial Unit

Noted: Jane Lemcke

Jane Lemcke, Unit Leader Superfund Remedial Unit

George E. Meyer Secretary 101 South Webster Street Box 7921 Madison, Wisconsin 53707 SUPERFUND/SOLID WASTE FAX 608-267-2768 DIRECT DIAL 608-267-5232 TDD 608-267-6897

April 13, 1995

Marvin and Elaine Konrath 1041 S. Sixth Street De Pere, WI 54115

SUBJECT: Groundwater test results for 1041 S. Sixth Street, De Pere, Wisconsin

Dear Mr. and Mrs. Konrath:

The groundwater samples collected from the monitoring wells on your property met state and federal groundwater quality standards, with the exception of the chromium concentration in MW-109 and zinc concentration in MW-109A. The sampling was performed as part of the Superfund remedial investigation of the Better Brite chrome and zinc shop properties.

Test Results (your property)

The groundwater samples were analyzed through the U.S. Environmental Protection Agency's Contract Laboratory Program (CLP) for a wide selection of volatile organic compounds and metals. I have attached a complete list of these parameters for your information (Attachment A). The test results for all of the groundwater samples collected from the monitoring wells on your property are summarized below.

Well No. (depth)	Sample Date	Contaminant	Concentration [@] (ug/L)
MW-109 (15 feet)	08/94 10/94	chromium (hexavalent) chromium (total) chromium (hexavalent) chromium (total)	6,780 9,570 [*] 2,400 [*] 1,980
MW-109A (24 feet)	08/94 10/94	zinc	525
MW-109B (61 feet)	08/94 10/94	*	
MW-110 (15 feet)	08/94 10/94	carbon disulfide iron	15 315
MW-110A (24 feet)	08/94 10/94	carbon disulfide 	6

Summary of Groundwater Test Results

^eug/L-micrograms per liter (one microgram of contaminant per liter of water=one part of contaminant per billion parts of water) ^{*}It is not possible to have more hexavalent chrome than total chrome; the difference in values reflects the difference in methods used to analyze for each component.

sample analyzed only for hexavalent chromium (could not collect enough water for other analyses)

Carbon disulfide, a common solvent, was the only volatile organic compound detected in any of the groundwater samples collected from your property. We don't know yet if it is coming from the former chrome shop property. It may coming from another source and it is also possible that it is a laboratory contaminant (introduced to the sample at the lab). It goes without saying that the chromium in the groundwater samples collected from MW-109, and zinc in MW-109A, are from the former Better Brite chrome shop.

Please let me know if you are interested in obtaining a copy of the test results submitted by the laboratory and/or copies of the monitoring well construction reports for MW-109, MW-109A, MW-109B, MW-110 and MW-110A. All of this information is readily available.

Better Brite Update

By sampling all of the monitoring wells on and around the Better Brite chrome and zinc shop properties, we have learned that groundwater samples from the shallowest monitoring wells (15 feet deep) have the highest levels of chromium and groundwater samples from the deepest monitoring wells (60 feet deep) have background (normal) levels of chromium. This tells us that the groundwater is generally moving horizontally away from the Better Brite properties without moving deeper into the ground. Fortunately, the nearby De Pere municipal well is cased (closed to groundwater) to 180 feet and does not draw its water from the contaminated clay layer which is just below the ground surface (see Attachment B). This municipal well is tested every six months (as a precaution) and shows no signs of contamination.

We also learned that only four groundwater contaminants occur at levels above state and federal quality standards. Only one of these four contaminants, chromium, was found to have moved beyond the Better Brite chrome and zinc shop property boundaries.

Our goals at the Better Brite chrome and zinc properties are to prevent exposure to toxic levels of contaminants and to protect groundwater quality. The information from the wells on your property is crucial to deciding what further steps are needed to clean up the site. The Department of Natural Resources appreciates your letting us install the wells and collect samples. I will continue to send you sample results and inform you about further action planned for the Better Brite properties. Please feel free to call me at (608) 267-5232 if you have any questions in the meantime. Thanks for your cooperation.

Sincerely,

Kare Freibero

Katherine S. Freiberg Superfund Remedial Unit

Noted:

Aince Fremelic

Jane Lemcke, Unit Leader Superfund Remedial Unit

George E. Meyer Secretary 101 South Webster Street Box 7921 Madison, Wisconsin 53707 SUPERFUND/SOLID WASTE FAX 608-267-2768 DIRECT DIAL 608-267-5232 TDD 608-267-6897

April 13, 1995

Michael Kruse 1011 S. Sixth Street De Pere, WI 54115

SUBJECT: Groundwater test results for 1011 S. Sixth Street, De Pere, Wisconsin

Dear Mr. Kruse:

The groundwater sample from your basement sump, collected on August 24, 1994, met state and federal groundwater quality standards. The sampling was performed as part of the Superfund remedial investigation of the Better Brite chrome and zinc shop properties.

Test Results (your property)

The groundwater sample was analyzed through the U.S. Environmental Protection Agency's Contract Laboratory Program (CLP) for a wide selection of volatile organic compounds and metals. I have attached a complete list of these parameters for your information (Attachment A).

None of the volatile organic compounds analyzed for were detected in your basement sump groundwater sample. All of the metals analyzed for are naturally occurring in groundwater, and the metals detected in your basement sump groundwater sample, with the exception of copper, were all in normal concentrations. Copper was detected in your basement sump sample at 355 micrograms per liter. (One microgram of copper per liter of water is one part of copper per billion parts of water.) This concentration of copper is higher than what we've seen in other groundwater samples, but is still far below the state health-based standard of 1300 micrograms per liter. In addition, this standard applies to groundwater being used for drinking water and the shallow groundwater in your area is not used for drinking water.

Please let me know if you are interested in obtaining a copy of the test results submitted by the laboratory. The information is readily available.

Better Brite Update

By sampling all of the monitoring wells on and around the Better Brite chrome and zinc shop properties, we have learned that groundwater samples from the shallowest monitoring wells (15 feet deep) have the highest levels of chromium and groundwater samples from the deepest monitoring wells (60 feet deep) have background (normal) levels of chromium. This tells us that the groundwater is generally moving horizontally away from the Better Brite properties without moving deeper into the ground. Fortunately, the nearby De Pere municipal well is cased (closed to groundwater) to 180 feet and does not draw its water from the contaminated clay layer which is just below the ground surface (see Attachment B). This municipal well is tested every six months (as a precaution) and shows no signs of contamination.

We also learned that only four groundwater contaminants occur at levels above state and federal groundwater quality standards. Only one of these four contaminants, chromium, was found to have moved beyond the Better Brite chrome and zinc shop property boundaries.

Our goals at the Better Brite chrome and zinc properties are to prevent exposure to toxic levels of contaminants and to protect groundwater quality. I will continue to inform you about further action planned for the Better Brite properties. Please feel free to call me at (608) 267-5232 if you have any guestions in the meantime. Thanks for your cooperation.

Sincerely,

Kole Freiserg Katherine S. Freiberg

Katherine S. Freiberg Superfund Remedial Unit

Noted:

femcke. ane

Jane Lemcke, Unit Leader Superfund Remedial Unit

101 South Webster Street

Madison, Wisconsin 53707

DIRECT DIAL 608-267-5232

TDD 608-267-6897

SUPERFUND/SOLID WASTE FAX 608-267-2768

Box 7921

George E. Meyer Secretary

April 13, 1995

Donald and Shirley Fischer 1031 S. Sixth Street De Pere, WI 54115

> SUBJECT: Groundwater test results for 1031 S. Sixth Street, De Pere, Wisconsin

Dear Mr. and Mrs. Fischer:

The groundwater sample from your basement sump, collected on August 24, 1994, met state and federal groundwater quality standards. The sampling was performed as part of the Superfund remedial investigation of the Better Brite chrome and zinc shop properties.

Test Results (your property)

The groundwater sample was analyzed through the U.S. Environmental Protection Agency's Contract Laboratory Program (CLP) for a wide selection of volatile organic compounds and metals. I have attached a complete list of these parameters for your information (Attachment A). The test results for your basement sump groundwater sample are summarized below.

Contaminant	Sample Concentration ([@] ug/L)	Wisconsin Groundwater Quality Standards (ug/L) (health-based standards)
Chromium	42.1	100
Iron	17,300	*
Lead	37.2	15
Zinc	116	*

emicrograms per liter. One microgram per liter is one part of contaminant per one billion parts of water. *No state/federal health-based standard assigned

None of the volatile organic compounds analyzed for were detected in your basement sump groundwater sample. The chromium and zinc found in your basement sump sample probably originated from the former Better Brite Chrome shop. However, as you can see from the above table, the concentration of chromium in your basement sump sample is below the state health-based standard of 100 micrograms per liter. In addition, this standard applies to groundwater being used for drinking water and the shallow groundwater in your area is not used for drinking water. Although the concentration of lead in your basement sump sample is above the state's groundwater quality standard, it is normal for your area and is probably naturally occurring. The iron in your basement sump sample most likely came from the sump itself.

Please let me know if you are interested in obtaining a copy of the test results submitted by the laboratory. The information is readily available.

Better Brite Update

By sampling all of the monitoring wells on and around the Better Brite chrome and zinc shop properties, we have learned that groundwater samples from the shallowest monitoring wells (15 feet deep) have the highest levels of chromium and groundwater samples from the deepest monitoring wells (60 feet deep) have background (normal) levels of chromium. This tells us that the groundwater is generally moving horizontally away from the Better Brite properties without moving deeper into the ground. Fortunately, the nearby De Pere municipal well is cased (closed to groundwater) to 180 feet and does not draw its water from the contaminated clay layer which is just below the ground surface (see Attachment B). This municipal well is tested every six months (as a precaution) and shows no signs of contamination.

We also learned that only four groundwater contaminants occur at levels above state and federal groundwater quality standards. Only one of these four contaminants, chromium, was found to have moved beyond the Better Brite chrome and zinc shop property boundaries.

Our goals at the Better Brite chrome and zinc properties are to prevent exposure to toxic levels of contaminants and to protect groundwater quality. I will continue to inform you about further action planned for the Better Brite properties. Please feel free to call me at (608) 267-5232 if you have any questions in the meantime. Thanks for your cooperation.

Sincerely,

Katherine S. Freiberg^D Superfund Remedial Unit

Noted: ne Kincke

Jane Lemcke, Unit Leader Superfund Remedial Unit

101 South Webster Street Box 7921 Madison, Wisconein 53707 SUPERFUND/SOLID WASTE FAX 608-267-2768 DIRECT DIAL 608-267-5232 TDD 608-267-6897

George E. Meyer Secretary

April 13, 1995

Milfred Manning 614 N. Erie Street De Pere, WI 54115

SUBJECT: Groundwater test results for 1109 S. Sixth Street, De Pere, Wisconsin

Dear Mr. Manning:

The groundwater samples collected from the monitoring wells MW-108, MW-108A, and MW-108B, which are located on your mother's property, met state and federal quality standards. The sampling was performed as part of the Superfund remedial investigation of the Better Brite chrome and zinc shop properties.

Test Results (your property).

The groundwater samples were analyzed through the U.S. Environmental Protection Agency's Contract Laboratory Program (CLP) for a wide selection of volatile organic compounds and metals. I have attached a complete list of these parameters for your information (Attachment A). The test results for all of the groundwater samples collected from the monitoring wells on your mother's property are summarized below.

Well No. (depth)	Sample Date	Contaminant	Concentration [@] (mg/L)
MW-108 (16 feet)	08/94 10/94	carbon disulfide	.007
MW-108A (33 feet)	08/94 10/94		
MW-108B (62 feet)	08/94 10/94	• ••• ••	•••

Summary of Groundwater Test Results

^emg/L - milligrams per liter (one milligram of contaminant per liter of water=one part of contaminant per million parts of water)

'sample analyzed only for hexavalent chromium (could not collect enough water for other analyses)

"no sample collected - monitoring well was dry

Carbon disulfide is a common solvent. We don't know yet if it is coming from the former chrome shop property; it is possible that it is coming from another source. I did not include any metals in the table because all of the metals detected in these groundwater samples were in normal concentrations (all of the metals analyzed for are naturally occurring in groundwater).

Please let me know if you are interested in obtaining a copy of the test results submitted by the laboratory and/or copies of the monitoring well construction reports for MW-108, MW-108A, and MW-108B. All of this information is readily available.

Better Brite Update

By sampling all of the monitoring wells on and around the Better Brite chrome and zinc shop properties, we have learned that groundwater samples from the shallowest monitoring wells (15 feet deep) have the highest levels of chromium and groundwater samples from the deepest monitoring wells (60 feet deep) have background (normal) levels of chromium. This tells us that the groundwater is generally moving horizontally away from the Better Brite properties without moving deeper into the ground. Fortunately, the nearby De Pere municipal well is cased (closed to groundwater) to 180 feet and does not draw its water from the contaminated clay layer which is just below the ground surface (see Attachment B). This municipal well is tested every six months (as a precaution) and shows no signs of contamination.

We also learned that only four groundwater contaminants occur at levels above state and federal quality standards. Only one of these four contaminants, chromium, was found to have moved beyond the Better Brite chrome and zinc shop property boundaries. Chromium-contaminated groundwater has not reached any of the monitoring wells in your mother's yard.

Our goals at the Better Brite chrome and zinc properties are to prevent exposure to toxic levels of contaminants and to protect groundwater quality. The information from the wells on your mother's property is crucial to deciding what further steps are needed to clean up the site. The Department of Natural Resources appreciates your letting us install the wells and collect samples. I will continue to send you sample results and inform you about further action planned for the Better Brite properties. Please feel free to call me at (608) 267-5232 if you have any questions in the meantime. Thanks for your cooperation.

Sincerely,

Kate Freising

Katherine S. Freiberg Superfund Remedial Unit

Noted:

fore for the

Jane Lemcke, Unit Leader Superfund Remedial Unit

cc:	Bruce Urben - LMD
	David Linear - US EPA

101 South Webster Street Box 7921 Madison, Wisconsin 53707 SUPERFUND/SOLID WASTE FAX 608-267-2768 DIRECT DIAL 608-267-5232 TDD 608-267-6897

George E. Meyer Secretary

April 13, 1995

Thomas Hendricks 1103 S. Sixth Street De Pere, WI 54115

SUBJECT: Groundwater test results for 1103 S. Sixth Street, De Pere, Wisconsin

Dear Mr. Hendricks:

Both of the groundwater samples from the monitoring well in your yard (MW-111), collected on August 30, 1994, and October 25, 1994, were free of contaminants. The sampling was performed as part of the Superfund remedial investigation of the Better Brite chrome and zinc shop properties.

Test Results (your property)

The groundwater samples were analyzed through the U.S. Environmental Protection Agency's Contract Laboratory Program (CLP) for a wide selection of volatile organic compounds and metals. I have attached a complete list of these parameters for your information (Attachment A).

Monitoring well MW-111 is approximately 15 feet deep and draws water from the 30-foot thick clay layer found below the ground surface (see Attachment B). None of the volatile compounds analyzed for were detected in either of the groundwater samples. All of the metals analyzed for are naturally occurring in groundwater, and the metals detected in your groundwater samples were all in normal concentrations.

Please let me know if you are interested in obtaining a copy of the test results submitted by the laboratory and/or a copy of the monitoring well construction report for MW-111. Both are readily available.

Better Brite Update

By sampling all of the monitoring wells on and around the Better Brite chrome and zinc shop properties, we have learned that groundwater samples from the shallowest monitoring wells (15 feet deep) have the highest levels of chromium and groundwater samples from the deepest monitoring wells (60 feet deep) have background levels of chromium. This tells us that the groundwater is generally moving horizontally away from the Better Brite properties without moving deeper into the ground. Fortunately, the nearby De Pere municipal well is cased (closed to groundwater) to 180 feet and does not draw its water from the contaminated clay layer which is just below the ground surface (see Attachment B). This municipal well is tested every six months (as a precaution) and shows no signs of contamination.

We also learned that only four groundwater contaminants occur at levels above state and federal groundwater quality standards. Only one of these four contaminants, chromium, was found to have moved beyond the Better Brite chrome and zinc shop property boundaries. Chromium-contaminated groundwater has not reached the monitoring well in your yard.

Our goals at the Better Brite chrome and zinc properties are to prevent exposure to toxic levels of contaminants and to protect groundwater quality. The information from the well on your property is crucial to deciding what further steps are needed to clean up the site. The Department of Natural Resources appreciates your letting us install the well and collect samples. I will continue to send you sample results and inform you about further action planned for the Better Brite properties. Please feel free to call me at (608) 267-5232 if you have any questions in the meantime. Thanks for your cooperation.

Sincerely, Kate Freise

Katherine S. Freiberg

Noted:

mcke Fane O

Jane Lemcke, Unit Leader Superfund Remedial Unit

George E. Meyer Secretary

April 13, 1995

Nicholas Colling 529 Lande Street De Pere, WI 54115

SUBJECT: Groundwater test results for 529 Lande Street, De Pere, Wisconsin

Dear Mr. Colling:

The groundwater sample from your basement sump, collected on August 26, 1994, was free of contaminants. The sampling was performed as part of the Superfund remedial investigation of the Better Brite chrome and zinc shop properties.

Test Results (your property)

The groundwater samples were analyzed through the U.S. Environmental Protection Agency's Contract Laboratory Program (CLP) for a wide selection of volatile organic compounds and metals. I have attached a complete list of these parameters for your information (Attachment A).

None of the volatile organic compounds analyzed for were detected in your basement sump groundwater sample. All of the metals analyzed for are naturally occurring in groundwater, and the metals detected in your basement sump groundwater sample were all in normal concentrations.

Please let me know if you are interested in obtaining a copy of the test results submitted by the laboratory. The information is readily available.

Better Brite Update

By sampling all of the monitoring wells on and around the Better Brite chrome and zinc shop properties, we have learned that groundwater samples from the shallowest monitoring wells (15 feet deep) have the highest levels of chromium and groundwater samples from the deepest monitoring wells (60 feet deep) have background levels of chromium. This tells us that the groundwater is generally moving horizontally away from the Better Brite properties without moving deeper into the ground. Fortunately, the nearby De Pere municipal well is cased (closed to groundwater) to 180 feet and does not draw its water from the contaminated clay layer which is just below the ground surface (see Attachment B). This municipal well is tested every six months (as a precaution) and shows no signs of contamination.

We also learned that only four groundwater contaminants occur at levels above state and federal groundwater quality standards. Only one of these four contaminants, chromium, was found to have moved beyond the Better Brite chrome and zinc shop property boundaries.

Our goals at the Better Brite chrome and zinc properties are to prevent exposure to toxic levels of contaminants and to protect groundwater quality. I will continue to inform you about further action

101 South Webster Street Box 7921 Madison, Wisconsin 53707 SUPERFUND/SOLID WASTE FAX 608-267-2768 DIRECT DIAL 608-267-5232 TDD 608-267-6897 planned for the Better Brite properties. Please feel free to call me at (608) 267-5232 if you have any questions in the meantime. Thanks for your cooperation.

Sincerely,

for Trail Katherine S. Freiberg

Superfund Remedial Unit

Noted: Jane Femcke

Jane Lemcke, Unit Leader Superfund Remedial Unit

George E. Meyer Secretary 101 South Webster Street Box 7921 Madison, Wisconsin 53707 SUPERFUND/SOLID WASTE FAX 608-267-2768 DIRECT DIAL 608-267-5232 TDD 608-267-6897

April 13, 1995

Watermolen Enterprises 2129 S. Oneida Street Green Bay, WI 54304

SUBJECT: Groundwater test results for 1030 S. Sixth Street, De Pere, Wisconsin

Dear Mr. Watermolen:

The groundwater sample from the basement sump at 1030 S. Sixth Street, collected on August 24, 1994, was free of contaminants. The sampling was performed as part of the Superfund remedial investigation of the Better Brite chrome and zinc shop properties.

Test Results (your property)

The groundwater sample was analyzed through the U.S. Environmental Protection Agency's Contract Laboratory Program (CLP) for a wide selection of volatile organic compounds and metals. I have attached a complete list of these parameters for your information (Attachment A).

None of the volatile organic compounds analyzed for were detected in the basement sump groundwater sample. All of the metals analyzed for are naturally occurring in groundwater, and the metals detected in the basement sump groundwater sample were all in normal concentrations.

Please let me know if you are interested in obtaining a copy of the test results submitted by the laboratory. The information is readily available.

Better Brite Update

By sampling all of the monitoring wells on and around the Better Brite chrome and zinc shop properties, we have learned that groundwater samples from the shallowest monitoring wells (15 feet deep) have the highest levels of chromium and groundwater samples from the deepest monitoring wells (60 feet deep) have background (normal) levels of chromium. This tells us that the groundwater is generally moving horizontally away from the Better Brite properties without moving deeper into the ground. Fortunately, the nearby De Pere municipal well is cased (closed to groundwater) to 180 feet and does not draw its water from the contaminated clay layer which is just below the ground surface (see Attachment B). This municipal well is tested every six months (as a precaution) and shows no signs of contamination.

We also learned that only four groundwater contaminants occur at levels above state and federal groundwater quality standards. Only one of these four contaminants, chromium, was found to have moved beyond the Better Brite chrome and zinc shop property boundaries.

Our goals at the Better Brite chrome and zinc properties are to prevent exposure to toxic levels of contaminants and to protect groundwater quality. I will continue to inform you about further action

planned for the Better Brite properties. Please feel free to call me at (608) 267-5232 if you have any questions in the meantime. Thanks for your cooperation.

Sincerely,

Late Freiberg.

Katherine S. Freiberg Superfund Remedial Unit

Noted: Jane Benche

Jane Lemcke, Unit Leader Superfund Remedial Unit

cc: Bruce Urben - LMD David Linear - US EPA

....

George E. Meyer Secretary 101 South Webster Street Box 7921 Madison, Wisconsin 53707 SUPERFUND/SOLID WASTE FAX 608-267-2768 DIRECT DIAL 608-267-5232 TDD 608-267-6897

April 13, 1995

Michael Cowen 612 Butler Street De Pere, WI 54115

SUBJECT: Groundwater test results for 612 Butler Street, De Pere, Wisconsin

Dear Mr. Cowen:

The groundwater sample from your basement sump, collected on August 26, 1994, met state and federal groundwater quality standards. The sampling was performed as part of the Superfund remedial investigation of the Better Brite chrome and zinc shop properties.

Test Results (your property)

The groundwater sample was analyzed through the U.S. Environmental Protection Agency's Contract Laboratory Program (CLP) for a wide selection of volatile organic compounds and metals. I have attached a complete list of these parameters for your information (Attachment A).

None of the volatile organic compounds analyzed for were detected in your basement sump groundwater sample. All of the metals analyzed for are naturally occurring in groundwater, and the metals detected in your basement sump groundwater sample were all in normal concentrations.

Please let me know if you are interested in obtaining a copy of the test results submitted by the laboratory. The information is readily available.

Better Brite Update

By sampling all of the monitoring wells on and around the Better Brite chrome and zinc shop properties, we have learned that groundwater samples from the shallowest monitoring wells (15 feet deep) have the highest levels of chromium and groundwater samples from the deepest monitoring wells (60 feet deep) have background (normal) levels of chromium. This tells us that the groundwater is generally moving horizontally away from the Better Brite properties without moving deeper into the ground. Fortunately, the nearby De Pere municipal well is cased (closed to groundwater) to 180 feet and does not draw its water from the contaminated clay layer which is just below the ground surface (see Attachment B). This municipal well is tested every six months (as a precaution) and shows no signs of contamination.

We also learned that only four groundwater contaminants occur at levels above state and federal groundwater quality standards. Only one of these four contaminants, chromium, was found to have moved beyond the Better Brite chrome and zinc shop property boundaries.

Our goals at the Better Brite chrome and zinc properties are to prevent exposure to toxic levels of contaminants and to protect groundwater quality. I will continue to inform you about further action

planned for the Better Brite properties. Please feel free to call me at (608) 267-5232 if you have any questions in the meantime. Thanks for your cooperation.

Sincerely,

e Frencese Katherine S. Freiberg

Superfund Remedial Unit

Noted:

firme Kerneke

Jane Lemcke, Unit Leader Superfund Remedial Unit

101 South Webster Street Box 7921 Madison, Wisconsin 53707 SUPERFUND/SOLID WASTE FAX 608-267-2768 DIRECT DIAL 608-267-5232 TDD 608-267-6897

George E. Meyer Secretary

April 17, 1995

Michael Bonville 3057 Holland Road Green Bay, WI 54303

SUBJECT: Groundwater test results for 310-314 Grant Street, De Pere, Wisconsin

Dear Mr. Bonville:

The groundwater samples from the monitoring wells on your Grant Street Property (MW-4B, MW-8, and MW-8A), collected on October 24, 1995, and November 16, 1995, were all free of contaminants. The sampling was performed as part of the Superfund remedial investigation of the Better Brite chrome and zinc shop properties.

Test Results (your property)

The groundwater samples were analyzed through the U.S. Environmental Protection Agency's Contract Laboratory Program (CLP) for a wide selection of volatile organic compounds and metals. I have attached a complete list of these parameters for your information (Attachment A).

Monitoring well MW-8 and MW-8A both draw water from the 30-foot thick clay layer found below the ground surface (see Attachment B). None of the volatile organic compounds analyzed for were detected in any of the groundwater samples collected from these wells. All of the metals analyzed for are naturally occurring in groundwater and the metals detected in the samples from MW-8 and MW-8A were in normal concentrations.

Monitoring well MW-4B (located in the front drive) draws its water from the dolomite bedrock (see Attachment B). No volatile organic compounds were detected in the samples collected from this monitoring well. All of the metals detected in the samples were in normal concentrations.

For your records, I have enclosed copies of the monitoring well construction reports for the monitoring wells on your property (Attachment C). Please let me know if you are interested in obtaining a copy of the groundwater test results submitted by the laboratory.

Better Brite Update

By sampling all of the monitoring wells on and around the Better Brite chrome and zinc shop properties, we have learned that groundwater samples from the shallowest monitoring wells (15 feet deep) have the highest levels of chromium and groundwater samples from the deepest monitoring wells (60 feet deep) have background levels of chromium. This tells us that the groundwater is generally moving horizontally away from the Better Brite properties without moving deeper into the ground. Fortunately, the nearby De Pere municipal well is cased (closed to groundwater) to 180 feet and does not draw its water from the contaminated clay layer which is just below the ground surface (see Attachment B). This municipal well is tested every six months (as a precaution) and shows no signs of contamination.

We also learned that only four groundwater contaminants occur at levels above state and federal groundwater quality standards. Only one of these four contaminants, chromium, was found to have moved beyond the Better Brite chrome and zinc shop property boundaries. Chromium-contaminated groundwater has not reached any of the monitoring wells on your property.

Our goals at the Better Brite chrome and zinc properties are to prevent exposure to toxic levels of contaminants and to protect groundwater quality. The information from the wellson your property is crucial to deciding what further steps are needed to clean up the site. The Department of Natural Resources appreciates your letting us install the wellsand collect samples. I will continue to send you sample results and inform you about further action planned for the Better Brite properties. Please feel free to call me at (608) 267-5232 if you have any questions in the meantime. Thanks for your cooperation.

Sincerely,

Kosk Freisig

Katherine S. Freiberg Superfund Remedial Unit

Noted:

June Seme

Jane Lemcke, Unit Leader Superfund Remedial Unit

cc: Bruce Urben - LMD (w/o attachments) David Linear - US EPA (w/o attachments) Carl Weber - Director of Public Works, City of De Pere

George E. Meyer Secretary 101 South Webster Street Box 7921 Madison, Wisconsin 53707 SUPERFUND/SOLID WASTE FAX 608-267-2768 DIRECT DIAL 608-267-5232 TDD 608-267-6897

April 17, 1995

Andrews, Peterson, & Associates, Inc. P.O. Box 12812 Green Bay, WI 54307-2812

SUBJECT: Groundwater test results for 601 Grant Street, De Pere, Wisconsin

Dear Mr. Andrews and Mr. Peterson:

The groundwater samples from the monitoring wells on your Grant Street Property (MW-7 and MW-7A), collected on August 24, 1995, and October 18, 1995, were free of contaminants. The sampling was performed as part of the Superfund remedial investigation of the Better Brite chrome and zinc shop properties.

Test Results (your property)

The groundwater samples were analyzed through the U.S. Environmental Protection Agency's Contract Laboratory Program (CLP) for a wide selection of volatile organic compounds and metals. I have attached a complete list of these parameters for your information (Attachment A).

Monitoring wells MW-7 and MW-7A both draw water from the 30-foot thick clay layer found below the ground surface (see Attachment B). None of the volatile organic compounds analyzed for were detected in any of the groundwater samples collected from these wells. All of the metals analyzed for are naturally occurring in groundwater and the metals detected in the samples from MW-7 and MW-7A were in normal concentrations. The concentrations of chromium, iron, and zinc increased slightly between sampling rounds, but were still within normal ranges for groundwater.

For your records, I have enclosed copies of the monitoring well construction reports for the monitoring wells on your property (Attachment C). Please let me know if you are interested in obtaining a copy of the groundwater test results submitted by the laboratory.

Better Brite Update

By sampling all of the monitoring wells on and around the Better Brite chrome and zinc shop properties, we have learned that groundwater samples from the shallowest monitoring wells (15 feet deep) have the highest levels of chromium and groundwater samples from the deepest monitoring wells (60 feet deep) have background levels of chromium. This tells us that the groundwater is generally moving horizontally away from the Better Brite properties without moving deeper into the ground. Fortunately, the nearby De Pere municipal well is cased (closed to groundwater) to 180 feet and does not draw its water from the contaminated clay layer which is just below the ground surface (see Attachment B). This municipal well is tested every six months (as a precaution) and shows no signs of contamination.

We also learned that only four groundwater contaminants occur at levels above state and federal groundwater quality standards. Only one of these four contaminants, chromium, was found to have moved beyond the Better Brite chrome and zinc shop property boundaries.

Our goals at the Better Brite chrome and zinc properties are to prevent exposure to toxic levels of contaminants and to protect groundwater quality. The information from the wellson your property is crucial to deciding what further steps are needed to clean up the site. The Department of Natural Resources appreciates your letting us install the wellsand collect samples. I will continue to send you sample results and inform you about further action planned for the Better Brite properties. Please feel free to call me at (608) 267-5232 if you have any questions in the meantime. Thanks for your cooperation.

Sincerely,

Katherine S. Freiberg Superfund Remedial Unit

Noted:

Jane Semcke

Jane Lemcke, Unit Leader Superfund Remedial Unit

cc: Bruce Urben - LMD (w/o attachments) David Linear - US EPA (w/o attachments)

-> Bruce Urban-LMD

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

101 South Webster Street Box 7921 Madison, Wisconsin 53707 SUPERFUND/SOLID WASTE FAX 608-267-2768 DIRECT DIAL 608-267-5232 TDD 608-267-6897

George E. Meyer Secretary

January 4, 1995

Paul Allen RE/MAX Realty Green Bay, WI 54301 RECEIVED JAN N 6 1995 LMD SOLID WASTE

SUBJECT: Analytical results for soil and basement-chip samples collected at 326 S. Sixth Street, De Pere, Wisconsin

Dear Mr. Allen:

This letter is provided in response to your request for information on soil and basement-chip samples collected at 326 S. Sixth Street (the property) as part of an investigation of the Better Brite Superfund site (Zinc shop).

Contaminated soil removal activities and groundwater collection system modifications were completed by the U.S. Environmental Protection Agency (US EPA), with the cooperation of the Wisconsin Department of Natural Resources (WDNR), in early 1993. These actions are thought to have significantly improved conditions at both of the Better Brite sites.

The enclosed analytical results (Attachment A) are for soil samples collected in April 1993 (postcompletion of the removal activities described above). Soil sample #3 was collected from the front yard of the property (see attached map) and had a chromium concentration of 18.5 mg/kg. To give you an idea of what this concentration means, the <u>natural</u> concentration of chromium in De Pere-area soils is between 10 and 40 mg/kg. (Chromium was detected at a concentration of 20.1 mg/kg in a soil sample collected from a park at the corner of College Avenue and 4th Street.) Attachment B is a copy of a memorandum, dated February 8, 1993, from the Wisconsin Department of Health (WDOH), regarding chromium in soils. In this memorandum, WDOH conservatively states that concentrations of total chromium less than 135 mg/kg are not expected to pose a health threat to people.

In addition to the soil sample, a basement-chip sample was collected from the property and analyzed for chromium, cyanide, and zinc. I have included a copy of the results in the form of a letter addressed to Ms. Anna Mae Dunlap (Attachment C). A basement-chip sample and a basement-sump (groundwater) sample were collected from the home on the neighboring property (320 S. Sixth St.) and analyzed for the same parameters; a copy of the results in the form of a letter addressed to Mr. Gerald Rasmussen is also attached (Attachment D).

For your information, groundwater samples were collected from the monitoring wells located at 320 S. Sixth Street in August 1994, and again in October 1994. These samples were analyzed for volatile organic compounds, metals and cyanide (see Attachment E for a complete list of parameters). I have received the sample results for the August sampling round; none of the compounds or analytes analyzed for were detected.

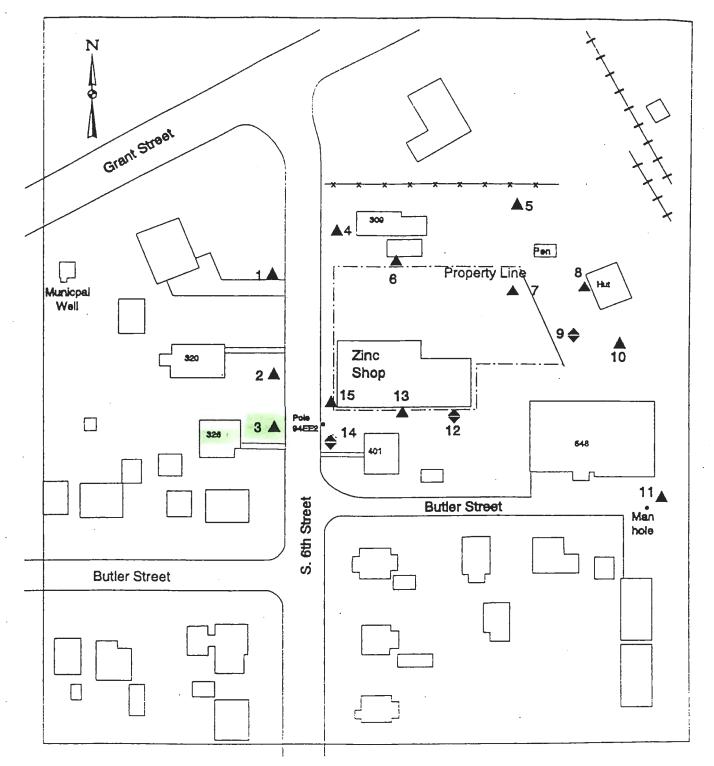
Please note that some amount of industrial-like activity should be expected to take place on the Zinc shop property in conjunction with both the current investigation and future remediation of soil and groundwater. The WDNR will keep the public informed about activities related to the cleanup of the Better Brite Superfund site through direct mailings and public meetings. Also, an Information Repository on the Better Brite sites is maintained at the Brown County Library, De Pere Branch, 380 Main Avenue, De Pere, Wisconsin.

Please feel free to contact me if you have any additional questions. I can be reached at (608) 267-5232 between 8:00 am and 6:00 pm, Monday through Thursday. I hope the information provided is helpful.

Sincerely,

Kale Freiberg

Katherine S. Freiberg Project Manager


Noted:

Jane Lemcke, Unit Leader Superfund Remedial Unit

cc: Bruce Urban

I will back in the office Linuary 24 if you have any additional questions. YSF

ITTIMUS THEFT IT

SAMPLING LOCATIONS BETTER BRITE ZINC

LEGEND

- Shallow (0-6"): Metals & CN
- Shallow (0-6"): Metals & CN & Deep(2.5-3"): Metals, CN & VOA
- Sampled by U.S.EPA, 5/3-4/93 2 Background samples taken off map.

CN = (yanide VOA = volatile organic analys) Zinc Shop Soil Samples: Sample locations and analytical results

. . .

• •

110000

Sample ID ITR/OTR Date:	Location	<u>Parameters</u> Cr/Zn Results (mg/kg)	Comments
SSZ001 MESR47 5/3/93	91' North of SSZ002, 15' West of S. 6th Street curb. Front yard of corner house, SW corner 6th and Grant	CN, Total Metals: 11.9/51.3	
SSZ002 MESR48 5/3/93	Front yard of 320 S. 6th Street, 74' North of SSZ003, 10' off of S. 6th Street curb	CN, Total Metals: 13.5/76.9	
SSZ003 MESR49 5/3/93	Front yard of 326 S. 6th Street, 54' West of telephone pole #94EE2 located in front of 401 S. 6th Street.	CN, Total Metals: 18.5/65.9 1 <i>Crinc</i> Lhromuum	
SSZ004 MESR50 5/3/93	8' West of SW corner of porch at 309 S. 6th Street, 25' North of NW fence post of Zinc property, 15' east of S. 6th Street curb	CN, Total Metals: 24.9/128	
SSZ005 MESR51 5/3/93	71' East off of NE corner of house at 309 S. 6th Street, 33' north of NW corner of rabbit pen, located immediately east of active garden area	CN, Total Metals: 38.8/180	sampled here at owners request
SSZ006 MESR52 5/3/93	<pre>11' ESE off of SW corner of garage at 309 S. 6th Street, 3' north of Zinc property fence.</pre>	CN, Total Metals: 110/1050	Dup. of SSZ901
SSZ007 MESR53 5/3/93	15' south of north fence of Zinc property and 20' west of east fence of Zinc property. Located within Zinc shop area, beneath area that was used to stockpile soils on-site.	CN, Total Metals: 125/219	

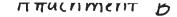
SSZ003 = sample #3 SSZ004 = sample #4 etz. KSF Zinc Shop Soil Samples: Page 2/4

		· · · · · · · · · · · · · · · · · · ·	
Sample ID ITR/OTR Date:	Location	<u>Parameters</u> Cr/Zn Results (mg/kg)	Comments
SSZ008 MESR54 5/3/93	5' west off of NW corner of Merkatoris's quonset hut/garage. Sample taken immediately west of manhole.	CN, Total Metals: 46.4/327	
SSZ009 MESR55 5/3/93	Manhole in west-central portion of North American Van Lines lot north of 548 Butler. Sample taken from west side of manhole.	CN, Total Metals: 48.4/330	
SBZ009 MESR57 ESQ47 5/3/93	Same as SSZ009 2.5-3.0'	CN, Total Metals, VOAs: 26.3/88.0	
SSZ010 MESR56 5/3/93	Manhole in east-central portion of North American Van Lines lot to the north of 548 Butler. Sample taken from the north side of manhole.	CN, Total Metals: 8.6/77.7	MS/MSD
SSZ011 MESR59 5/3/93	Manhole at far east end of Butler Street. Sample taken from east side (lowest in relative elevation) of manhole	CN, Total Metals: 10.1/26.4	
SSZ012 MESR58 5/3/93 Sample IZ	112' east of telephone pole #94EE2, located in front of 401 S. 6th Street, 60' north off of NE corner of 401 S. 6th Street's garage.	CN, Total Metals: 32.3/161	
SBZ012 MESR60 ESQ48 5/3/93	Same as SSZ012 2.5-3.0' deep	CN, Total Metals, VOAs: 200/46.9	Dup. of SSZ902

,

KSF 7/97

Zinc Shop Soil Samples: Page 3/4


Sample ID ITR/OTR Date:	Location	<u>Parameters</u> Cr/Zn Results (mg/kg)	Comments
SSZ013 MESR61 5/3/93 Somily 13	73' east of telephone pole #94EE2 located in front of 401 S. 6th Street, 15' NE off of NE corner of 401 S. 6th Street house.	CN, Total Metals: 127/629	
SSZ014 MESR62 5/3/93 Sample 14	25' SE off of telephone pole #94EE2 located in front of 401 S. 6th Street, 26' west off of NW corner of 401 S. 6th Street house.	CN, Total Metals: 21.7/92.8	
SBZ014 MESR64 ESQ49 5/3/93	Same as SSZ014 2.5-3.0'	CN, Total Metals, VOAs: 26.9/41.5	
SSZ015 MESR63 5/3/93	15' NE off of telephone pole #94EE2, just off of east side of sidewalk located 15' south of entrance curb to Zinc property.	CN, Total Metals: 37.3/853	
SSZ016 MESR83 5/4/93	Park at SE intersection of College Ave. and S. 4th Street. Sample from NW base of large tree just east of seesaw.	CN, Total Metals: 20.1/40.1	bkg sample
SSZ017 MESR84 5/4/93	West DePere High School, at north side of east parking lot, from north base of tree immediately south of the entrance of the walkway	CN, Total Metals: 20.1/60.3	bkg sample, Dup. of SSZ903
SSZ901 MESR65 5/3/93	Same as SSZ006	CN, Total Metals: 93.0/977	Dup. of SSZ006
SSZ902 MESR66 ESQ50 5/3/93	Same as SBZ012 2.5-3.0'	CN, Total Metals, VOAs: 202/51.2	Dup. of SBZ012
SSZ903 MESR28 5/4/93	Same as SSZ017	CN, Total Metals: 21.7/54.2	Dup. of SSZ017

Zinc Shop Soil Samples: Page 4/4

No Volatile Organics were detected in any of the samples analyzed for VOAs.

All samples taken from the surface, 0-6", unless otherwise noted.

ITR = Inorganic Traffic Report OTR = Organic Traffic Report Dup. = Duplicate MS/MSD = Matrix Spike/Matrix Spike Duplicate bkg = Background CN = cyanide VOA = Volatile Organic Analysis

Lominy G. Encinesco. Gaverner

Gerald Whiteken Secretary State of Wisconsin

Department of Health and Social Services

DIVISION OF HEAL

WEST WILSON STRE POBOXIC MADISON WI SJ701-00

MEMORANDUM

DATE: February 8, 1993

TO: Dan Cozza, SACM Project Manager U.S. Environmental Protection Agency - Region 5

FROM: Kenneth Bro, Environmental Engineer KMO. Wisconsin Division of Health

> Louise Fabinski, Senior Regional Representative RTU.S. Agency for Toxic Substances and Disease Registry

BUBJECT: Health evaluation of chromium-contaminated soils at residential property near the Better Brite Chrome and Zinc Shops, De Pere, Wisconsin.

As we explained in our consultation on remediation of soils at this site, total chromium concentrations in surface soils less than 135 milligrams per kilogram (or 135 parts of chromium per million parts of soil) are not expected to pose a health threat to people living in the area.

There are two reasons why this concentration should be sufficiently protective of people's health. First, we assumed that all of the chromium found in the soil is in the hexavalent form. Other forms of chromium (trivalent and metallic) are considerably less toxic than hexavalent chromium. Your November sampling results list the total of all forms of chromium found. Second, in recommending the concentration of 135 mg/kg, we assumed that contamination of at least this concentration would be distributed in unvegetated soils across the site. In fact, most of the areas tested are vegetated. As a result, the airborne dust levels we estimated are likely to be higher than what is actually the case. The amounts of windblown soil we assumed that people would breathe are probably lower than our prudently conservative estimate.

Breathing hexavalent chromium is the pathway by which people are likely to be most sensitive to the chemical's toxic effects. Soil concentrations based on preventing toxic effects caused by other routes of exposure (such as swallowing soils) would be about three times higher than the level we recommended. The level we recommend is based on minimizing the cancer risk to people who over several decades might inhale windblown dust from contaminated soil. Inhaling hexavalent chromium causes lung cancer in workers exposed to high concentrations for several years. At 135 mg/kg of total chromium in surface soil, we would not expect chromium to cause health effects in people living near the site.

co: T. Koehn, WUNR

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Carroll D. Besadny Secretary Lake Michigan District Headquarters 1125 N. Milikary Avenue P.O. Box 10448 Green Bay, WI 54307-0448 TELEPHONE # (414)492-5869 TELEFAX # (414)492-5913

April 7, 1992

File Ref: WIT-560010118. WID-006132088 Brown Co./SFND

Ms. Anna Mae Dunlap 326 South Sixth St. DePere, WI 54115

> Re: Sample Results from 326 S. Sixth St. De Pere, Wisconsin

Dear Ms. Dunlap:

This letter is to advise you of the analytical results obtained from the chip sample collected from your basement on September 17, 1991. The results presented below were recently received from the State Laboratory of Hygiene in Madison. I am pleased to let you know that these results do not indicate a health threat to you nor is it likely that they represent contamination related to the Better Brite Zinc Shop.

Sample BBR-02 (Chip Sample)

Chromium	15. mg/kg
Cyanide	**
Zinc	1700. mg/kg

mg/kg = milligrams/kilogram (parts/million)
** = Insufficient Sample Quantity, No Test Performed

As you would expect there are not any "standards" for basement chip samples, thus, evaluation of these results is based upon comparison to similar samples and to values for normal soils (background) of the area. Chromium and zinc are normal constituents of soil and can also be found in concrete. Chromium values in soils are often observed to be greater than 50 mg/kg and zinc values can be higher. The chromium concentration observed in the collected chip sample does not appear to be elevated and it is essentially the same as normal soils in the area. The value observed for zinc is not thought to represent contamination related to the Better Brite Site either.

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Lake Michigan District Headquarters 1125 N. Mültary Avenue P.O. Box 10448 Green Bay, WI 54307-0448 TELEPHONE # (414)492-5869 TELEFAX # (414)492-5913

Carroll D. Besadny Secretary

April 7, 1992

File Ref: WIT-560010118 WID-006132088 Brown Co./SFND

Mr. Gerald Rasmussen 320 South Sixth St. DePere, WI 54115

> Re: Sample Results from 320 S. Sixth St. DePere, Wisconsin

Dear Mr. Rasmussen:

This letter is to advise you of the analytical results obtained from the samples collected from your basement on September 18, 1991. The results presented below were recently received from the State Laboratory of Hygiene in Madison. I am pleased to let you know that these results do not represent a health threat to you nor is it likely that they represent contamination related to the Better Brite Zinc Shop.

Sample BBR-08	(Sump Water) Chromium Cyanide Zinc	<3. ug/l <0.01 mg/l 14. ug/l
Sample BBR-09	(Chip Sample) Chromium Cyanide Zinc	<5. mg/kg ** 16. mg/kg

As you are aware an additional sample of your sump water was collected on September 30, 1991. Results from this sample were provided to you by letter dated October 22, 1991. For ease of comparison the results of that sample are presented below.

Sample RAS-01	(Sump Water) Chromium Cyanide VOCs	<3. ug/l (<0.003 mg/l) <0.01 mg/l All Less Than Detection Limits	
		(parts/million) (parts/billion)	

mg/kg = milligrams/kilogram (parts/million)

VOLATILE COMPOUNDS	SEMIVOLATII	LE COMPOUNDS	PESTICIDES and PCBs	METALS AND CYANIDE
Acrolein	Rhenol	Aconaphthylono	Alpha-BHC	
Acrylonitrile	bis(2-Chloroethyl)Ether	2,6-Dinitrotoluono	Bota-BHC	Aluminum
Chloromethane	2-Chlorophonol	3-Nitroanilino	Dolta-BHC	Antimony
Bromomethane	1.3-Dichlorobenzene	Aconaphthono	Lindane	Arsonic
Vinyl Chloride	1.4-Dic Vorobenzene	2,4-Dinitrophonol	Heptachlor	Barium
Chloroethane	Benzyi Alaphol	4-Nitropheng	Aldrin	Beryllum
Methylene Chloride	1.2-Dichlorobenzene	Dibonzofuran	Neptachlor Epoxido	Cadmium
Acetone	2-Mothylphonol	2.4-Dinityotoluono	Endosulfan I	Calcium
Carbon Disulfide	bis(2-Chloroisopropyl)Ethor	Diothylehthalato	Dieldrin	Chromium
1,1-Dichloroethene	4-Methylphenol	4-Chybrophenyl Phonyl Ether	4.4-DDE	Cobalt
1.1-Dichlorcethane	N-Nitroso-di-n-propylamino	C Fluprono	Endin S	Copper
1,2-Dichloroethene (total)	Hexachloroothane	A-Nitroanilino	Endosuling	Iron
Chloroform	Nitrobanzana	4,6-Dinitro-2-Mothylphonol	4.4-400	Load
1,2-Dichloroethane	Isophorono	N-Nitrosodlphonylamino(1)	Endosular Sulfato	Magnosium
2-Butanono	2-Nitrophanol	4-Bromophenyl Phenyl Ether	4.4'-D017	Manganoso
1.1.1-Trichloroethane	2,4-Dimothylphonol	Hoxachlorobonzono	Methocychlor	Мөгсигү
Ca:bon Tetrachloride	Bonzoic Acid	Pontachlorophonol	Endrin Ketone	Nickel
Vinyl Acetate	bis(2-Chloroethoxy)Mohane	Phonanthrono	Alphordane	Potassium
Bromodichloromethane	2,4-Dichlorophenol	Anthracono	Ganna-Chlordano	Selenium
1.2-Dichloropropano	1.2.4-Trichlorobentono	DI-n-Butylphthalato	Toppephono	Silver
cis-1,3-Dichloropropene	Naphthalono	Ruoranthene	Aroctor-1010	Sodlum
Trichloroethene	4-Chloroanilln	Pylipino	Akoc or-1221	Thallium
Dibromochloromethane	Hexachlorobunadiono	Buty Benzyl Philatate	toplor-1232	Vanadium
1,1,2-Trichloroethane	4-Chloro-3-Methylphenol	Bonzo(a)Anthracono	Argclor-1242	Zinc
Benzene	2-Methylnaphthalene	bis(2-En yhoxyl)Phthalate	Arpclor-1248	Cyanlde
trans-1,3-Dichloropropene	Hexachlorocyclopentadiene	Chrysono	A oclor-1254	
Bromolorm	2.4.6-Trichtorophenol	Di-n-Octyl Rhthalato	froclor-1260	
4-Mothyl-2-Pontanono	2,4,5-Trichlorophenol	Bonzo(b)Fluorenthené		
2-Hexanone	2-Chloronaphthalone	Benzo(k)Fluoranthene		
Tetrachloroethene	2-Nitoanllino	Benzo(a)Pyrene		
1,1,2,2-Tetrachloroothane	Diplethyl Phthalate	indeno(1,2,3-cd)Pytene		
Toluene		Dibenzo(a,h)Anthracege		
Chlorobenzene		Benzo(g.h.i)Perylene		
Ethyl Benzene				
Styrene	/			
Xylene (total)		N		

ROBERT E. LEE & ASSOCIATES, INC. Wisconsin Certification NO: 405043870

- CERTIFICATE OF ANALYSIS -

To: De Pere Wastewater Treatment Plant 315 Leonard Street De Pere WI 54115 Attn: Al Kardoskee Phone: 414-339-4094 Fax: 414-339-4048

TO

Customer Number: 000404

Lab Number: 94REL000241 Sample ID : 069598/069599 Matrix : LIQUID Chain Number: 2018 Report Date : 01/17/1994 Sample Date : 01/04/1994

KETHOD	PARAMETER NAME	RESULT	b wits	NOL.	DATE	81
EPA 200.7	TOTAL CADHIUM ICP	دلم	UG/L	4	01/12/1994	EVN
EPA 200,7	TOTAL CHRONIUM ICP	595	UG/L	8	01/12/1994	EW
EPA 200.7	TOTAL 21HC	3	US/L	3	01/12/1994	EW
EPA-335.2	CYANIDE-TOTAL	0,067	NG/L	0.004	01/12/1994	DJB

treated water groundwater

- the sample sent for analysis is a composit sample of groundwater from both the chrome shop = Zinc shop. sample is collected from the holding tank prior to treatment.

CORRESPONDENCE MEMORANDUM

STATE OF WISCONSIN

DATE: March 4, 1994

<u>ارا</u>

TO: Paul Kozol - SW/3

Terry Koehn - LMD TKal FROM:

SUBJECT: **Better Brite Project - Pretreatment Plant Operation Analytical Results**

Samples of water are collected from the Better Brite Chrome Shop pretreatment plant basically on a quarterly basis. Results from samples collected September 29 and October 1, 1993 are presented in the table below. These samples represent contaminated water prior to treatment. On-site testing of the treated water (prior to discharge) from each batch continues to be performed.

The analyses were performed by Robert E. Lee & Associates. Results are presented below:

Sample #	Date Sampled	Parameter	Unit		
Zinc-929-CNA (1)	09/29/93	Amenable Cyanide	65	ug/l	
Zinc-929-CN	09/29/93	Total Cyanide	1.821	mg∕l	
Zinc-929-MA	09/29/93	Total Chromium	565,000	ug/l	
Zinc-929-MA	09/29/93	Total Zinc	28	ug/l	
Zinc-929-MA	09/29/93	Total Cadmium	<3	ug/l	
Zinc-929-MB ⁽²⁾	09/29/93	Total Chromium 704,000			
Zinc-929-MB	09/29/93	Total Zinc 46			
Zinc-929-MB 09/29/93 Total Cadmium <3 ug/l					
Lande Street ⁽³⁾	10/01/93	Total Chromium	234,000	ug/l	
Lande Street	10/01/93	Total Zinc	29	ug/l	
Lande Street 10/01/93 Total Cadmium <4 ug/l					
 ⁽¹⁾ Samples Zinc-929-CNA, Zinc-929-CN, Zinc-929-MA and Zinc-929-MB were collected directly from the Zinc Shop Sump ⁽²⁾ Sample Zinc-929-MB is a duplicate of sample Zinc-929-MA ⁽³⁾ Sample, Lande Street, was collected from the Lande Street pretreatment facility and represents a mixture of water from both the Zinc Shop site and from the Chrome Shop site 					

|| represents a mixture of water from both the Zinc Shop site and from the Chrome Shop site

Laboratory analysis sheets are attached. Please contact Mike Kersten from the City of De Pere POTW (414-339-4094) regarding future sampling events. If you have any questions regarding the above please give me a call.

- D. Rossberg LMD - SW cc:
 - U.S. EPA Region V D. Linnear
 - D. Benner City of De Pere
 - w/o att.

ROBERT E. LEE & ASSOCIATES, INC. Wisconsin Certification NO: 405043870

- CERTIFICATE OF ANALYSIS -

To: De Pere Wastewater Treatment Plant 315 Leonard Street De Pere WI 54115 Attn: Al Kardoskee Phone: 414-339-4094 Fax: 414-339-4048

Customer Number: 000404

Lab Number: 94REL000240 Sample ID : 069596/069597 Matrix : LIQUID

Chain Number: 2018 Report Date : 01/17/1994 Sample Date : 01/04/1994

NETHOD	PARAMETER NAME	RESULT	UNITS	MDL	DATE	BY
EPA 200.7	TOTAL CADMIUN ICP	<20	UG/L	20	01/12/1994	EWN
EPA 200.7	TOTAL CHRONIUM ICP	394000	UG/1.	8	01/12/1994	EW
EPA 200.7	TOTAL ZINC	830	UG/L	3	01/14/1994	EWV
EPA-339.2	CYANIDE-TOTAL	0.230	MG/L	6.004	01/12/1994	DJB

untreated ground water

Better Brie Total gallons treated from Jan-March 1994-28,800 # of gallons transforred from Zinc shop -21, 150 # of gallons pumped from chrome shop. 7650 mearneat Studit is 13,900 actual is 13,900 actual father alzigut

HSI SIMON HYDRO-SEARCH

February 25, 1994 (301483158)

Mr. Paul L. Kozol, P.E.

175 N. Corporate Drive Suite 100 Brookfield, WI 53045

Telephone (414)792-1282 Facsimile (414)792-1310

CEIVED

FEB 2 8 1994

D SOUD WASTE

Wisconsin Dept. of Natural Resources Bureau of Solid & Hazardous Waste Management 101 S. Webster St. P.O. Box 7921 Madison, WI 53707-7921

RE: Better Brite Monitor Well Evaluation Results

Dear Paul:

On February 17, 1994, Simon Hydro-Search conducted a monitor well evaluation of the existing wells at the Better Brite Zinc and Chrome Shops. As was discussed at a meeting held with the WDNR later that day, the findings of this evaluation were comparable with the results of the 1991 WDNR evaluation with two notable exceptions. Well B-101A at the Chrome Shop, previously thought to be useable, has been damaged, and is no longer useable and well W-16 is no longer locatable at the Chrome Shop. Other findings are summarized as follows:

Chrome Shop

Bedrock Chrome Shop Piezometers B-101 and B-102 are likely useable to obtain potentiometric data and samples for chemical analysis. The wells are constructed with 15-foot screens so direct comparison with potentiometric elevations from proposed wells will be estimated. Five other wells will be useable for obtaining ground-water elevation data. These include four water table wells (W-5, W-9, B-104A, and B-105B) and one shallow piezometer (W-1). All seven of these wells should be rechecked in spring for surface seal integrity and appropriately repaired based on the results of the check.

The remainder of the locatable wells at the site, including wells W-1A, W-3, W-7, W-8, B-101A, B-102A, and B-103 are not useable primarily due to casing damage and questionable integrity. These wells should be abandoned, however, with the exception of well B-103, the wells are less than 20 feet in depth and do not represent a significant migration pathway for contaminants. Abandonment of these wells could be postponed until a later phase of this project (RD/RA).

Well B-103 may represent a significant vertical migration route for contaminants. The constructed depth is 56.4 feet below ground surface with a 15-foot screened interval. Four inch diameter Schedule 40 steel casing was cement grouted into the top of the bedrock. Surface observations indicate that substantial force may have been applied to the casing potentially damaging the cement grout seal and the casing at depth below grade.

Zinc Shop

Both wells W-1A (a water table well) and W-1 (a shallow piezometer) will likely be useful for obtaining near source water level elevations. Both should be examined for adequate surface sealing and repaired prior to use as necessary.

The flush mount well W-3 or W-3A could not be opened, so no evaluation was completed on the well. The well will be evaluated during other field activities at the site.

The two wells installed by U.S. EPA in 1993 during the IRM activities are assumed to be useful for all aspects of the project. No evaluation was conducted at these wells.

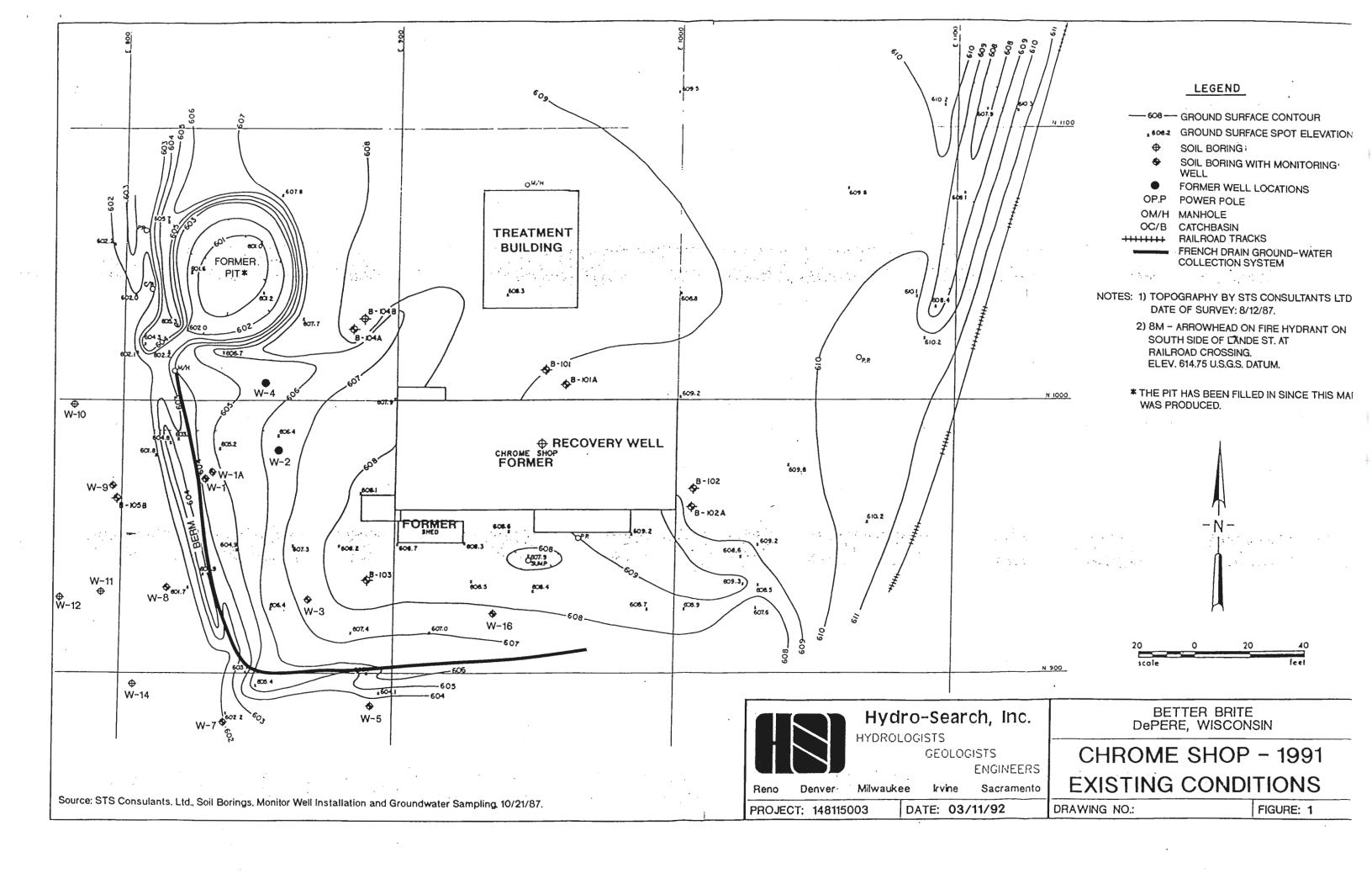
Conclusions

Simon Hydro-Search will use the wells as qualified herein unless otherwise directed by the WDNR. Most wells were not locked and all wells, especially those proposed for use in the RI, should be fitted with lockable caps or protective tops to reduce the risk of damage or tampering. Also, the wells to be used for measuring ground-water elevations should be resurveyed to confirm that casings have not heaved and to provide state plane coordinate locations.

Monitor well evaluation field forms completed during the investigation are attached for your information. Please call if you have any questions or comments.

Sincerely,

SIMON HYDRO-SEARCH


Mark A. Manthey Hydrogeologist

Judy/L./Fassbender

Semior Hydrogeologist

MAM/JLF:jo encl. cc: Terry Koehn, WDNR, Lake Michigan District

HSI SIMON HYDRO-SEARCH

MONITOR WELL INSPECTION FORM

Project Name: WDN2 Beller Bride Project No: 30148 3158				on: Zuc De Pere, Wisconsin inel: M. MAnthey & J. FASSbender		
Well No.: <u><i>W</i>-/</u>		•	Inspection Date: FEDRUARY 17, 1994			
ITEM	YES	NO	N/A	COMMENTS		
Map Location Accurate?	1					
Adequately Visible in Hard-to-Find Area?	×		ļ			
Protective Posts Present? Type?	_	×				
Protective Posts Necessary?		X				
Is Well Painted?	×					
Located in a Dry Area?	×		ļ			
Well Labelled Inside and Outside?				inside only		
Is Well Flushmount?		X		, , , , , , , , , , , , , , , , , , , ,		
Protective Casing Present? Material? Diameter?	x			4" diam STEEL 0356 MAGIER		
Protective Casing Locked? Type of Lock?	×			0356 MAGIER		
Protective Casing Secure in Ground?			X			
Rust Inside Protective Casing Cap?	X					
Evidence of Frost Heave?			×			
Weep Hole at Base of Protective Casing?			<u>x</u> .			
Well Casing Free of Kinks or Bends?		×		Kinked @ - Ground surface 4		
Well Cap Present, Vented?		X		-		
Well Diameter and Material				2" PVC BLACK		
Solvent cement present?			X			
Type of Surface Seal? Is Seal Cracked?	_		×	More than 1/2 of scal Massinics - Ve		
Ground/Seal Sloped to Prevent Ponding?			X			
Well stickup (ft. above grade)				Z.B		
Protective casing stickup (ft. above grade)				- 2.8		
Depth to Water Level (below PVC casing)				17.20		
Measured Well Depth (below PVC casing)				32.72+:28=33.00		
Saturated Thickness (feet)						
Constructed Well Depth (from log):				31.0 plus 2.0 STICKUP		
Thickness of Siltation: (ft.)				NOSIL		
Other:				NOT USEABLE - KINKED		
Zine Shop				Scal was 191' of Benton ite Sterry		

Good depth for (ompurison)

Location: ZINC DE PERCE, WI Project Name: WONR BETTER BRITE Personnel: MARK MANthon & Judy Freebender, Inspection Date: FEtizuary 17, 1994 Project No: 301483158 W-IA Well No.: YES ITEM NO N/A **COMMENTS** X Map Location Accurate? Adequately Visible in Hard-to-Find Area? X X Protective Posts Present? Type? X Protective Posts Necessary? X Is Well Painted? X Located in a Dry Area? inside only Well Labelled Inside and Outside? X Is Well Flushmount? Protective Casing Present? Material? 4" DIAM STEEL Х Diameter? 0356 MASTER X Protective Casing Locked? Type of Lock? X Protective Casing Secure in Ground? Х Rust Inside Protective Casing Cap? Evidence of Frost Heave? × Х. Weep Hole at Base of Protective Casing? STICKS @ B' but will PASS A Well Casing Free of Kinks or Bends? X Well Cap Present, Vented? 2" PVC BLACK Well Diameter and Material $\boldsymbol{\lambda}$ Solvent cement present? Type of Surface Seal? Is Seal Cracked? X X Ground/Seal Sloped to Prevent Ponding? 1.83 >EVEN Well stickup (ft. above grade) Protective casing stickup (ft. above grade) 15.94 Depth to Water Level (below PVC casing) 20.26+,28 = 20.54 Measured Well Depth (below PVC casing) Saturated Thickness (feet) 18.8 bgs. Constructed Well Depth (from log): RUAT BIDUN Gill Thickness of Siltation: (ft.) Seal is not Adequate - prototy of Forvit suitace Seal is Adjustic AT INTERCT AT INTERCT Rossibly of for Z Rossibly of for Z Other: Zinc Shop

MONITOR WELL INSPECTION FORM

MONITOR	R WEL	L INS	PECTI	ON FORM
Project Name: WDNR Betler BRAGE			Locatio	on: DePere, Wisconsin
Project No: <u>301483158</u>			Person	nel: M. MANthey & J FASSONDER
Well No.: <u>W-3</u> 3A	2		Inspect	tion Date: Fetheunizy 17, 1994
ITEM	YES	NO	N/A	COMMENTS
Map Location Accurate?	X			
Adequately Visible in Hard-to-Find Area?	_	X		Tlush mount - under show
Protective Posts Present? Type?		X		
Protective Posts Necessary?		X	ļ	
Is Well Painted?		X		
Located in a Dry Area?			x	
Well Labelled Inside and Outside?			x	
Is Well Flushmount?	X			
Protective Casing Present? Material? Diameter?	x			4" diAMETER STEEL
Protective Casing Locked? Type of Lock?	x -		>	HTYPE Locking WEILCAP - No Keyed
Protective Casing Secure in Ground?			X	
Rust Inside Protective Casing Cap?			N	
Evidence of Frost Heave?			Ń	
Weep Hole at Base of Protective Casing?			1	
Well Casing Free of Kinks or Bends?			X	
Well Cap Present, Vented?			Χ.	-
Well Diameter and Material			×	
Solvent cement present?			×	
Type of Surface Seal? Is Seal Cracked?			Х	
Ground/Seal Sloped to Prevent Ponding?			×	
Well stickup (ft. above grade)				Belowgiade
Protective casing stickup (ft. above grade)				Below grade C Ground SURFACE
Depth to Water Level (below PVC casing)			X	
Measured Well Depth (below PVC casing)			X	1
Saturated Thickness (feet)				
Constructed Well Depth (from log):				
Thickness of Siltation: (ft.)			X	
Other:				
Zincshop				

HSI SIMON HYDRO-SEARCH

Project Name: <u>INDNR BETTERBERGE</u>		-	Locati	on: DePoer Wiexonsin Inel: MARK. MAnthey & Judy Faseber tion Date: FEDRUARY. 17, 1994
Project No: 301483158 Vell No.: 111-1			Inspec	tion Date: FEDRUARY 17, 1994
		<u> </u>		
ITEM	YES	NO	N/A	COMMENTS
Map Location Accurate?				
Adequately Visible in Hard-to-Find Area?	/ /			
Protective Posts Present? Type?		×		
Protective Posts Necessary?	_	× _	. .	
Is Well Painted?		1		
Located in a Dry Area?			×	
Well Labelled Inside and Outside?		 		Partial libble inside only
Is Well Flushmount?		X	<u>`</u>	1
Protective Casing Present? Material? Diameter?	×			STEEL 31/2" DIFIN
Protective Casing Locked? Type of Lock?	R			03.56 MASTER
Protective Casing Secure in Ground?			X	
Rust Inside Protective Casing Cap?	A			
Evidence of Frost Heave?			X	
Weep Hole at Base of Protective Casing?			Å.	
Well Casing Free of Kinks or Bends?			X	·
Well Cap Present, Vented?		×		-
Well Diameter and Material				11/2" PVC white
Solvent cement present?			×	
Type of Surface Seal? Is Seal Cracked?			×	
Ground/Seal Sloped to Prevent Ponding?			A	•
Well stickup (ft. above grade)				2.85
Protective casing stickup (ft. above grade)				2.9
Depth to Water Level (below PVC casing)				9,58
Measured Well Depth (below PVC casing)				27.781:28 -23.06
Saturated Thickness (feet)				
Constructed Well Depth (from log):				27.3' bgs.
Thickness of Siltation: (ft.)	++			grass & conflorso 4 inch brown
Other:				NOTCHECKED FOR KINKS WITH 911
<u>clinomeshop</u>				WAILER due le Small dinincler

HEI SIMON HYDRO-SEARCH

MONITO	R WEL	L INS	PECTI	ION FORM		
Project Name: <u>WDNR BETTER BRI</u> Project No: <u>301483158</u> Well No.: <u>W-14</u>	E	Location: De Perze, Wisconsin Personnel: MARK MANthey # - Judy FAssburd Inspection Date: FEBRUARY 17, 1994				
ITEM	YES	NO	N/A	COMMENTS		
Map Location Accurate?	Ø					
Adequately Visible in Hard-to-Find Area?	V					
Protective Posts Present? Type?		X				
Protective Posts Necessary?		X				
Is Well Painted?		Y				
Located in a Dry Area?			Ø			
Well Labelled Inside and Outside?		A				
Is Well Flushmount?		K				
Protective Casing Present? Material? Diameter?	ø			31/2" STEEL 3056 NOUSANC		
Protective Casing Locked? Type of Lock?	a			3054 Waster		
Protective Casing Secure in Ground?			1			
Rust Inside Protective Casing Cap?	×		<u> </u>			
Evidence of Frost Heave?			R			
Weep Hole at Base of Protective Casing?			× .			
Well Casing Free of Kinks or Bends?		A	~	Inval Kink in Distoper Ground		
Well Cap Present, Vented?		1		· · · · · · · · · · · · · · · · · · ·		
Well Diameter and Material				11/2" white PVC		
Solvent cement present?			X			
Type of Surface Seal? Is Seal Cracked?			x			
Ground/Seal Sloped to Prevent Ponding?			X			
Well stickup (ft. above grade)				2.7'		
Protective casing stickup (ft. above grade)				2.8'		
Depth to Water Level (below PVC casing)				NO WATCH		
Measured Well Depth (below PVC casing)				6.66+,28		
Saturated Thickness (feet)						
Constructed Well Depth (from log):				15.0 BGS.		
Thickness of Siltation: (ft.)				much Rusly Silt		
Other:				Not checked for Kinks with bailer		
Chrome shop				due to SMALL CLIAMETER Well		

HEI SIMON HYDRO-SEARCH Not USAble -

Project No: <u>301483158</u> Well No.: <u>W-3</u>			Personnel: MAKE MANTHER & Judy FASEbe				
Well No.: U-3 Inspection Date: Fetruary 17., 199							
ITEM	YES	NO	N/A	COMMENTS			
Map Location Accurate?	X						
Adequately Visible in Hard-to-Find Area?	X						
Protective Posts Present? Type?		\checkmark					
Protective Posts Necessary?		\times					
Is Well Painted?	_	\times					
Located in a Dry Area?	X						
Well Labelled Inside and Outside?		×					
Is Well Flushmount?	_	R	ļ	But has A Flush mount type CAP			
Protective Casing Present? Material? Diameter?	×			CAP COULD NOT BE 4" diam Removed - HType Flush Mount			
Protective Casing Locked? Type of Lock?		X					
Protective Casing Secure in Ground?				SIGNIFICANT Bend in Protop-Curved			
Rust Inside Protective Casing Cap?			×				
Evidence of Frost Heave?			×				
Weep Hole at Base of Protective Casing?	_		<u>x</u> .				
Well Casing Free of Kinks or Bends?			<u> </u>	Curved - Nesume Bent merde			
Well Cap Present, Vented?			<u>×</u> .	-			
Well Diameter and Material			×				
Solvent cement present?			X				
Type of Surface Seal? Is Seal Cracked?			×				
Ground/Seal Sloped to Prevent Ponding?			×	•			
Well stickup (ft. above grade)			X	· · · · · · · · · · · · · · · · · · ·			
Protective casing stickup (ft. above grade)			x	- 21			
Depth to Water Level (below PVC casing)			×				
Measured Well Depth (below PVC casing)			X	i			
Saturated Thickness (feet)							
Constructed Well Depth (from log):							
Thickness of Siltation: (ft.)							
Other:							
chrome shop							

MONITOR WELL INSPECTION FORM

đ

Project Name: WONR BETIER BRITE Location: DE PERC, WISCONSIN

.

HSJ SIMON HYDRO-SEARCH

MONITOR WELL INSPECTION FORM

Project Name: PERER BR. 1E Project No: Well No .:

301483158
W-5

Location:	D:P?	RE	WI		
Personnel:	Man	trifu	48:	TFAS	5601dER
Inspection	Date:	FED	RUAR	4 17	1994

ITEM	YES	NO	N/A	COMMENTS
Map Location Accurate?	X			
Adequately Visible in Hard-to-Find Area?	\times			
Protective Posts Present? Type?		X		
Protective Posts Necessary?		X		
Is Well Painted?	X			
Located in a Dry Area?	X			
Well Labelled Inside and Outside?		×		
Is Well Flushmount?		_χ		
Protective Casing Present? Material? Diameter?	χ.			STEEL, 31/2"
Protective Casing Locked? Type of Lock?		X		Could be locked if lock was from
Protective Casing Secure in Ground?			x	lonksypod
Rust Inside Protective Casing Cap?	X			l
Evidence of Frost Heave?			×	
Weep Hole at Base of Protective Casing?			Х.	
Well Casing Free of Kinks or Bends?			X	NOT checked with barlendue to small
Well Cap Present, Vented?		X		DiAin
Well Diameter and Material				11/2" PVC
Solvent cement present?			X	
Type of Surface Seal? Is Seal Cracked?			X	
Ground/Seal Sloped to Prevent Ponding?			×	
Well stickup (ft. above grade)				2.0
Protective casing stickup (ft. above grade)				2,3
Depth to Water Level (below PVC casing)				5.23
Measured Well Depth (below PVC casing)				11,38+.28= 11.66
Saturated Thickness (feet)				
Constructed Well Depth (from log):				14.2'bgs.
Thickness of Siltation: (ft.)				MINOV Art of Gilt & EVISENCE Bass
Other:				
Chuoma Shop				

.

Ţ.

. MONITO	R WEL	L INS	PECT	ION FORM			
Project Name: WDNR Betler Fa	ente			on: D. Pier, WI			
Project No: <u>301483158</u>			Personnel: M. Manthey & Trissbordere				
Well No.: <u>W-7</u>		-	Personnel: M. Minishey & Trissecondere Inspection Date: FEbruary 17, 1994				
ITEM	YES	NO	N/A	COMMENTS			
Map Location Accurate?	X						
Adequately Visible in Hard-to-Find Area?	X						
Protective Posts Present? Type?	_	X		on Anglo /Ferret			
Protective Posts Necessary?		×		/			
Is Well Painted?		X		NPIDS NEW /			
Located in a Dry Area?			×	/			
Well Labelled Inside and Outside?				marke only			
Is Well Flushmount?		×		X			
Protective Casing Present? Material? Diameter?	A			31/2" STEEL 0.356 MASTER			
Protective Casing Locked? Type of Lock?	X			0.356 MASTER			
Protective Casing Secure in Ground?			x				
Rust Inside Protective Casing Cap?	X						
Evidence of Frost Heave?			×				
Weep Hole at Base of Protective Casing?			K.				
Well Casing Free of Kinks or Bends?		X	<u> </u>	FEWL logt GUP PORTING Probe would be			
Well Cap Present, Vented?		×					
Well Diameter and Material				11/2" PIC			
Solvent cement present?			X				
Type of Surface Seal? Is Seal Cracked?			,#				
Ground/Seal Sloped to Prevent Ponding?			1				
Well stickup (ft. above grade)				3.0			
Protective casing stickup (ft. above grade)				3.3			
Depth to Water Level (below PVC casing)				Probe would not Pass Kinks			
Measured Well Depth (below PVC casing)				A '			
Saturated Thickness (feet)							
Constructed Well Depth (from log):				S.O'bas			
Thickness of Siltation: (ft.)			X	5.01 bgs			
Other:				U			
Chrome shop							

HSI SIMON HYDRO-SEARCH

NOTUSERUI

MONITO	R WEL	L INS	PECTI	ION FORM
Project Name: WDNiz BETTERB	RITE		Locati	on: <u>De Pere</u> , WI
Project No: 30:483:58			Person	tion Date: FEDRUARY 17, 1994
Well No.: W.B			Inspec	tion Date: <u>FEDRUARY</u> 17, 1994
ITEM	YES	NO	N/A	COMMENTS
Map Location Accurate?	×			
Adequately Visible in Hard-to-Find Area?	X			
Protective Posts Present? Type?		×		
Protective Posts Necessary?		X		
Is Well Painted?		×		
Located in a Dry Area?			×	
Well Labelled Inside and Outside?		X		
Is Well Flushmount?		X		
Protective Casing Present? Material? Diameter?	X			31/2" STEEL NOT LOLE NUR
Protective Casing Locked? Type of Lock?		X		NOTIOLEADER
Protective Casing Secure in Ground?			×	
Rust Inside Protective Casing Cap?	X			
Evidence of Frost Heave?			x	
Weep Hole at Base of Protective Casing?			\mathcal{X}_{i}	
Well Casing Free of Kinks or Bends?	X		~	NOT checked with DAILER due to small Praineter
Well Cap Present, Vented?		X		PiAinetek
Well Diameter and Material				11/2" PVC
Solvent cement present?			X	
Type of Surface Seal? Is Seal Cracked?			<u>y</u>	
Ground/Seal Sloped to Prevent Ponding?			У	
Well stickup (ft. above grade)				1.95
Protective casing stickup (ft. above grade)				2,3
Depth to Water Level (below PVC casing)				NO 110010 Present 3.02+,28=3,63
Measured Well Depth (below PVC casing)				3.02+,28=3.63
Saturated Thickness (feet)				
Constructed Well Depth (from log):				15.6' bgs .
Thickness of Siltation: (ft.)				15.6' 1295 RUNT@ Bay - Not wet
Other:				
chrome shop				

HSJ SIMON HYDRO-SEARCH

NO 050

Project Name: <u>WONR BENER BRITE</u> Project No: <u>301483158</u> Well No.: <u>W-9</u>			Location: DePere, WI Personnel: <u>M MANTHEY</u> + JFAssbender Inspection Date: <u>FEDRUARY</u> 17, 1994		
ITEM	YES	NO	N/A	COMMENTS	
Map Location Accurate?	×				
Adequately Visible in Hard-to-Find Area?	×				
Protective Posts Present? Type?		×			
Protective Posts Necessary?		×			
Is Well Painted?		x			
Located in a Dry Area?			×		
Well Labelled Inside and Outside?		x			
Is Well Flushmount?		x			
Protective Casing Present? Material? Diameter?	X	-		41/2" STEEL ZIZI - Replaced old isola	
Protective Casing Locked? Type of Lock?	×			ZIZI - Replaced old 150k	
Protective Casing Secure in Ground?			×		
Rust Inside Protective Casing Cap?	X				
Evidence of Frost Heave?			x		
Weep Hole at Base of Protective Casing?			x .		
Well Casing Free of Kinks or Bends?			X_	NOT checked with backin dure to Small Diameter	
Well Cap Present, Vented?		X		- Diametee	
Well Diameter and Material				11/2 "PUC	
Solvent cement present?	_		×		
Type of Surface Seal? Is Seal Cracked?			×		
Ground/Seal Sloped to Prevent Ponding?			X		
Well stickup (ft. above grade)				2.15	
Protective casing stickup (ft. above grade)				2.35	
Depth to Water Level (below PVC casing)				7.02	
Measured Well Depth (below PVC casing)				15,93+.28=16.21	
Saturated Thickness (feet)					
Constructed Well Depth (from log):				15.2' bas.	
Thickness of Siltation: (ft.)				NAL NOTED	
Other:					
Chrome shop					

ISI SIMON HYDRO-SEARCH

MONITOR WELL INSPECTION FORM

MONITO	R WEL	L INS	PECTI	ON FORM # 3				
Project Name: WDNR BETTER B2.	E			on: DePere Wisconsin				
Project No: 30x483158 Well No.: 6/0/			Personnel: Witch Mantbey & ludy Fasse Inspection Date: February 17, 199					
			Inspec	tion Date: Fetruary 17, 1994				
ITEM	YES	NO	N/A	COMMENTS				
Map Location Accurate?	X							
Adequately Visible in Hard-to-Find Area?	X		ļ					
Protective Posts Present? Type?	_	ĸ						
Protective Posts Necessary?		X						
Is Well Painted?	X			reeds new print				
Located in a Dry Area?	*	 						
Well Labelled Inside and Outside?				inside only				
Is Well Flushmount?		×		1				
Protective Casing Present? Material? Diameter?	×			6" STEEL Fliptop Sounce Master # 0350				
Protective Casing Locked? Type of Lock?	X			master = 0350				
Protective Casing Secure in Ground?			X					
Rust Inside Protective Casing Cap?	X							
Evidence of Frost Heave?			X					
Weep Hole at Base of Protective Casing?			X ·					
Well Casing Free of Kinks or Bends?	X		~					
Well Cap Present, Vented?		X		-				
Well Diameter and Material				2"PVC BLACK				
Solvent cement present?			×					
Type of Surface Seal? Is Seal Cracked?			×	EXCAUATED EVIDENCE				
Ground/Seal Sloped to Prevent Ponding?			,t:	·				
Well stickup (ft. above grade)				2.45				
Protective casing stickup (ft. above grade)				2.45 2.55				
Depth to Water Level (below PVC casing)				35,18				
Measured Well Depth (below PVC casing)				62,10+,28=62.38				
Saturated Thickness (feet)								
Constructed Well Depth (from log):				60.55 BGS				
Thickness of Siltation: (ft.)				U- Wrgtolid				
Other:				/				
Chrome Shop				· · · · · · · · · · · · · · · · · · ·				

MONITOR	WEL	l ins	PECTI	ON FORM Hy	
Project Name: WDNR BETTER BR	_	Location: DePere Wisconsin			
Project No: 301483158	-	Personnel: MATEMANThey Fi Judy Firschendee			
Well No.: <u>B_101A</u>		-	Inspec	tion Date: FEbruary 17, 1994	
ITEM	YES	NO	N/A	COMMENTS	
Map Location Accurate?	×				
Adequately Visible in Hard-to-Find Area?	x	 	 		
Protective Posts Present? Type?		X		· · · · · · · · · · · · · · · · · · ·	
Protective Posts Necessary?	· · · · ·	X			
Is Well Painted?	X				
Located in a Dry Area?	X				
Well Labelled Inside and Outside?				inside ordy	
Is Well Flushmount?		×			
Protective Casing Present? Material? Diameter?	×0			Y"STEEL	
Protective Casing Locked? Type of Lock?	×			0356 moster	
Protective Casing Secure in Ground?			×		
Rust Inside Protective Casing Cap?	~				
Evidence of Frost Heave?			×		
Weep Hole at Base of Protective Casing?			× .		
Well Casing Free of Kinks or Bends?		X		Kinkeden 9' BTOL	
Well Cap Present, Vented?		X	 	-	
Well Diameter and Material				2" pvc Black	
Solvent cement present?			X		
Type of Surface Seal? Is Seal Cracked?			A		
Ground/Seal Sloped to Prevent Ponding?			×		
Well stickup (ft. above grade)				3.20'	
Protective casing stickup (ft. above grade)		-		3.25	
Depth to Water Level (below PVC casing)				10.04	
Measured Well Depth (below PVC casing)				11.70+,28=11.98	
Saturated Thickness (feet)					
Constructed Well Depth (from log):				19.2 bgs.	
Thickness of Siltation: (ft.)			\swarrow		
Other:					
Clirome Shop					

IS SIMON HYDRO-SEARCH NO

USE

业1

MONITOR WELL INSPECTION FORM

Project Name: WDNR BENGEBRIE Project No: <u>201483158</u> Well No.: <u>B-102</u>

.

Location: De Para , Wisconsin
Personnel: Mizk Marthey & Vidy Fissbende
Inspection Date: TEtrzuARy 17, 1994

ITEM	YES	NO	N/A	COMMENTS
Map Location Accurate?	×			
Adequately Visible in Hard-to-Find Area?	Y			
Protective Posts Present? Type?		×		
Protective Posts Necessary?		X		
Is Well Painted?	X			Neldonew PAnet
Located in a Dry Area?	X			
Well Labelled Inside and Outside?		×		
Is Well Flushmount?		X		
Protective Casing Present? Material? Diameter?	×			STEEL 6"
Protective Casing Locked? Type of Lock?		×		NOT LOCKALL
Protective Casing Secure in Ground?				NOT LOCKALL
Rust Inside Protective Casing Cap?	X			
Evidence of Frost Heave?		×		
Weep Hole at Base of Protective Casing?			Χ.	
Well Casing Free of Kinks or Bends?	A			Protop lorlie like its been lid
Well Cap Present, Vented?			Χ.	-
Well Diameter and Material				2" BLACK PVC
Solvent cement present?			X	
Type of Surface Seal? Is Seal Cracked?			Х	
Ground/Seal Sloped to Prevent Ponding?	. X			•
Well stickup (ft. above grade)				2.00'
Protective casing stickup (ft. above grade)				2.301
STEEL Depth to Water Level (below PVC casing)				52.80'
Measured Well Depth (below PVC casing)				64.7 +, 28 = 64.98'
Saturated Thickness (feet)				
Constructed Well Depth (from log):				63' bgs Brown riving control
Thickness of Siltation: (ft.)				NONE Felt - Brown Multiplanta
Other:				
Chroine Shop				

di

...

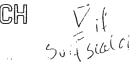
.

Project No: <u>301483058</u> Well No.: <u>B-102 A</u>		Personnel: MARK MANthey & Judy 7A5560 Inspection Date: FEDRUFICH 17, 1994			
Map Location Accurate?	×				
Adequately Visible in Hard-to-Find Area?	×			-	
Protective Posts Present? Type?		×			
Protective Posts Necessary?			×		
Is Well Painted?	×				
Located in a Dry Area?	X				
Well Labelled Inside and Outside?		X			
Is Well Flushmount?		_ X			
Protective Casing Present? Material? Diameter?	X			STEEL 4" w/ Hing- Ind - No lid p.c.	
Protective Casing Locked? Type of Lock?		X			
Protective Casing Secure in Ground?			×		
Rust Inside Protective Casing Cap?		X			
Evidence of Frost Heave?			x		
Weep Hole at Base of Protective Casing?			χ.		
Well Casing Free of Kinks or Bends?		X		Kinked @ Ground Surface BAIER will not	
Well Cap Present, Vented?		X		-	
Well Diameter and Material				2" PVC BLACK	
Solvent cement present?			X		
Type of Surface Seal? Is Seal Cracked?		i 	X		
Ground/Seal Sloped to Prevent Ponding?	. X				
Well stickup (ft. above grade)				2,3	
Protective casing stickup (ft. above grade)				2.4	
Depth to Water Level (below PVC casing)				8,82	
Measured Well Depth (below PVC casing)	_			19,24+,28 = 19.52	
Saturated Thickness (feet)	_				
Constructed Well Depth (from log):	_			19.5' blogs.	
Thickness of Siltation: (ft.)				NOW NOTED	
Other:					
Chrome Shop					

Project Name: <u>WDNR BETIER B</u> Project No: <u>3014&3158</u> Well No.: <u>B-103</u>	erite	- -		on: DEPERE, WISCONSIN nnel: MINZK MANTHEY & Judy Trisebon tion Date: TEDITUARY 17, 1994
ITEM	YES	NO	N/A	COMMENTS
Map Location Accurate?	×			
Adequately Visible in Hard-to-Find Area?	×			
Protective Posts Present? Type?	_	X		
Protective Posts Necessary?		X		
Is Well Painted?		×		
Located in a Dry Area?			X	
Well Labelled Inside and Outside?		×		
Is Well Flushmount?		X		
Protective Casing Present? Material? Diameter?	×			6"STEEL
Protective Casing Locked? Type of Lock?		×		
Protective Casing Secure in Ground?		X		HAnging on double Casing
Rust Inside Protective Casing Cap?	×			
Evidence of Frost Heave?			\times	
Weep Hole at Base of Protective Casing?			X.	
Well Casing Free of Kinks or Bends?		N	~	Kaled P 10' ATOC
Well Cap Present, Vented?		×		-
Well Diameter and Material				z" PVC
Solvent cement present?			×	
Type of Surface Seal? Is Seal Cracked?				NONE
Ground/Seal Sloped to Prevent Ponding?			×	•
Well stickup (ft. above grade)				4.9' - PUC Above Prop
Protective casing stickup (ft. above grade)				4,5
Depth to Water Level (below PVC casing)				19.93
Measured Well Depth (below PVC casing)				57.381+,28 = 57.46
Saturated Thickness (feet)				
Constructed Well Depth (from log):				56.4' bgs.
Thickness of Siltation: (ft.)				Small Anosekt - Rust, Depart
Other:)
chrome shop				

HEI SIMON HYDRO-SEARCH

NO


MONITOR WELL INSPECTION FORM

Map Location Accurate? X Adequately Visible in Hard-to-Find Area? X Protective Posts Present? Type? X	Location: <u>DePere</u> , Wirconsia Personnel: <u>MARK MANILLEY & Judy 745560nd</u> Inspection Date: <u>February</u> 17, 1994 NO N/A <u>COMMENTS</u>
Well No.:D-104AITEMYESMap Location Accurate?Adequately Visible in Hard-to-Find Area?Adequately Visible in Hard-to-Find Area?Protective Posts Present? Type?Protective Posts Necessary?Is Well Painted?Located in a Dry Area?Well Labelled Inside and Outside?Is Well Flushmount?Protective Casing Present? Material?Diameter?Protective Casing Locked? Type of Lock?	Inspection Date: February 17, 1994
ITEMYESNMap Location Accurate?XAdequately Visible in Hard-to-Find Area?XProtective Posts Present? Type?XProtective Posts Necessary?YIs Well Painted?XLocated in a Dry Area?XWell Labelled Inside and Outside?XIs Well Flushmount?XProtective Casing Present? Material?XProtective Casing Locked? Type of Lock?X	
Map Location Accurate? X Adequately Visible in Hard-to-Find Area? X Protective Posts Present? Type? X Protective Posts Necessary? Y Is Well Painted? X Located in a Dry Area? X Well Labelled Inside and Outside? X Is Well Flushmount? X Protective Casing Present? Material? X Protective Casing Locked? Type of Lock? X	NO N/A COMMENTS
Map Location Accurate? Adequately Visible in Hard-to-Find Area? Protective Posts Present? Type? Protective Posts Necessary? Is Well Painted? Located in a Dry Area? Well Labelled Inside and Outside? Is Well Flushmount? Protective Casing Present? Material? M	
Protective Posts Present? Type? × Protective Posts Necessary? > Is Well Painted? × Located in a Dry Area? × Well Labelled Inside and Outside? × Is Well Flushmount? × Protective Casing Present? Material? × Protective Casing Locked? Type of Lock? ×	
Protective Posts Necessary? / Is Well Painted? // Located in a Dry Area? // Well Labelled Inside and Outside? // Is Well Flushmount? // Protective Casing Present? Material? // Diameter? // Protective Casing Locked? Type of Lock? //	
Is Well Painted? M Located in a Dry Area? M Well Labelled Inside and Outside? M Is Well Flushmount? M Protective Casing Present? Material? M Diameter? M Protective Casing Locked? Type of Lock? X	×
Located in a Dry Area? M Well Labelled Inside and Outside? Is Is Well Flushmount? M Protective Casing Present? Material? M Diameter? M Protective Casing Locked? Type of Lock? X	×
Well Labelled Inside and Outside? Is Well Flushmount? Protective Casing Present? Material? Diameter? Protective Casing Locked? Type of Lock?	
Is Well Flushmount? N Protective Casing Present? Material? N Diameter? N Protective Casing Locked? Type of Lock? X	
Protective Casing Present? Material?	Enside only
Diameter? // Protective Casing Locked? Type of Lock? X	2
	Steel 4" STEEL BOSG MASTOR
Protective Casing Secure in Ground?	3056 MASTER
	A 41/2' 35' Piotop SApored
Rust Inside Protective Casing Cap? X	
Evidence of Frost Heave?	X NO SEAL
Weep Hole at Base of Protective Casing?	× .
Well Casing Free of Kinks or Bends?	~
Well Cap Present, Vented?	
Well Diameter and Material	2" BLACK PUC
Solvent cement present?	×
Type of Surface Seal? Is Seal Cracked?	NONE Present
Ground/Seal Sloped to Prevent Ponding?	× .
Well stickup (ft. above grade)	Y,1
Protective casing stickup (ft. above grade)	4.1 Protecting 4.1 CAMING 15 held upby WEII
Depth to Water Level (below PVC casing)	11.89
Measured Well Depth (below PVC casing)	21.84+28 22,12
Saturated Thickness (feet)	
Constructed Well Depth (from log):	20.01 bg.s
Thickness of Siltation: (ft.)	NONE NOTEd
Other:	
Chromu Shep	

HEI SIMON HYDRO-SEARCH I w/ far 3'oz din 1 place service

MONITOR WELL INSPECTION FORM					
Project Name: WDNR BEITER BR	ile		Locatio	on: De Pore Wisconsin	
Project No: <u>301483158</u>			Personnel: M MANLey & JEnsetunder		
Well No.: <u>B-105B</u> Inspection				on Date: 17 18 0124 17, 1994	
ITEM	YES	NO	N/A	COMMENTS	
Map Location Accurate?	X				
Adequately Visible in Hard-to-Find Area?	×		ļ		
Protective Posts Present? Type?		×			
Protective Posts Necessary?		X			
Is Well Painted?	×				
Located in a Dry Area?			X		
Well Labelled Inside and Outside?				inside only	
Is Well Flushmount?		Ø			
Protective Casing Present? Material? Diameter?	×			4" STEEL	
Protective Casing Locked? Type of Lock?	×			0356 master Jooks 1.4 Concrete Surface Scal	
Protective Casing Secure in Ground?			X	Jooks 1.14 Concrete Surface Scal	
Rust Inside Protective Casing Cap?	X				
Evidence of Frost Heave?			X		
Weep Hole at Base of Protective Casing?			χ.		
Well Casing Free of Kinks or Bends?	X		~		
Well Cap Present, Vented?		Xi		-	
Well Diameter and Material				2" PVC Black	
Solvent cement present?			A		
Type of Surface Seal? Is Seal Cracked?		····	X	Comert ?	
Ground/Seal Sloped to Prevent Ponding?	,		, AC		
Well stickup (ft. above grade)				1.7 WAY daming the Protops	
Protective casing stickup (ft. above grade)				2.3'	
Depth to Water Level (below PVC casing)				st. difficult losa 5,56	
Measured Well Depth (below PVC casing)				20,90+:28= 21,18	
Saturated Thickness (feet)					
Constructed Well Depth (from log):				18.8 bas.	
Thickness of Siltation: (ft.)				MINER AMT 4. Silf	
Other:					
Chrome shop					

HSI SIMON HYDRO-SEARCH

Better Brite File

STATE OF WISCONSIN

CORRESPONDENCE MEMORANDUM

DATE: July 22, 1993

TO: Meg Raatz - SW/3

FROM:

Terry Koehn - LMD Thoda

SUBJECT: Private Well Monitoring and Owner Notification

The following information is provided in response to the June 15, 1993 memorandum from M. Giesfeldt regarding monitoring and notification at Superfund sites. Two sites are addressed in this memo; Better Brite (De Pere, WI) and N.W. Mauthe (Appleton, WI).

N.W. Mauthe

I am not aware of any private well sampling in the vicinity of the site nor am I aware of any wells in the immediate area. The City of Appleton obtains its drinking water from a surface water source.

Better Brite

I am aware of only a single private well in the immediate vicinity of the sites. Two sampling events have been completed for the well (1992, 1990). Copies of the notification letters are attached. Additional monitoring is planned. One of De Pere's six municipal wells is located in close proximity to one of the Better brite sites. This well has been sampled on numerous occasions, since around 1986, by the WDNR and U.S. EPA. To my knowledge the City has been notified of the analytical results. The City also samples the well on a regular basis, providing the WDNR with the associated data. I am in the process of collecting and tabulating all of the sample results obtained from the municipal well (Grant Street Well). If needed this tabulation can be provided when completed.

cc: G. Edelstein SW/3 with att. K.Endmann LMD

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Carroll D. Besadny Secretary

January 22, 1992

Lake Michigan District Headquarters Box 10448, 1125 N. Military Avenue Green Bay, Wisconsin 54307-0448 MAIN# 414-492-5800/FAX# 414-492-5913

> File Ref: 3300 WUWN: EC581

Brian & Carol Maes 1026 S. 7th St. De Pere, WI 54115

Dear Mr. & Mrs. Maes:

This letter confirms the November 4, 1991, sampling of your private well located in the SE¹/₄ NW¹/₄ of Section 28, Township of Lawrence, Brown County. Sampling was done to monitor your water quality because you are near the Better Brite Chrome and Zinc Shops Superfund site.

The State Laboratory of Hygiene reports the results as follows:

TESTS	RESULTS	DRINKING WATER STANDARD
Volatile Organic Chemicals	No Detect	••
Inorganic Elements		
Cadmium	No Detect	
Chromium	No Detect	
Cyanide	No Detect	• •
Zinc	20	5,000

* Note: Concentrations are reported in ug/l = micrograms per liter = ppb = parts per billion

All results are within acceptable limits.

Copies of lab results are enclosed for your reference. If you have any questions, feel free to call me at (414) 492-5891.

Sincerely,

÷.

Au Heinen

Liz Heinen, R.S. Water Supply Specialist

LH:cm Enc. cc: Private Water Supply - WS/2 Private Water Supply - LMD VOC File Terry Koehn - SF/LMD Gary Edelstein - SW/3 Al Baeten, Water Superintendent, City of De Pere, 925 S. 6th St., De Pere, WI 54115 Kenneth Bro, Wisc. Dept. of Health, P.O. Box 309, Madison, WI 54307-0309 David Lennear, U.S. EPA - Region 5, 77 W. Jackson Blvd., Chicago, IL 60604

	State Laboratory of Hygiene University of Wisconsin Center for Healt 465 Henry Mall, Madison, WI 5370 R.H. Laessig, Ph.D., Director S.L. Inhor	6 n, M.D., Med		
	Environmental Science Section (608) 262-2797 Organic chemistry (#4 of 3 on 11/19/91, u	DNR LAB		
т	Id: EC581 Point/Well/: Field #:	MAES R	oute: WS40	
	Collection Date: 11/04/91 Time: 14:30 County:			
	From: BRIAN & CAROL MAES, 1026 S. 7TH STREET., D	E PERE		
	Description: KITCHEN HARD WATER TAP			
J	TO: LIZ HEINEN Type: Miscel			
	DNR - LMD Source: Priv	rate		
	GREEN BAY Account number: WS046 Collected by:	SUE BEAUMTER		
	Date Received: 11/05/91 Labslip #: OC001926			
1				
-	test: GCMS VOC SCAN BY HEADSPACE - WATER			
E	BENZENE	<1.0	UG/L	
E	BROMOBENZENE	<4.0	UG/L	
E	BROMODICHLOROMETHANE	<1.0	UG/L	
	BROMOFORM	<5.0	UG/L	
E	BROMOMETHANE	<1.0	UG/L	
0	CARBON DISULFIDE	<5.0	UG/L	
	CARBON DISOLFIDE	<2.0	UG/L	
	CHLOROBENZENE	<2.0	UG/L	
	CHLOROETHANE	<2.0	UG/L	
	2-CHLOROETHYL VINYL ETHER	<4.0	UG/L	
		<1.0		
	CHLOROFORM	<1.0 <1.0	UG/L UG/L	
	D-CHLOROTOLUENE P-CHLOROTOLUENE	<1.0	UG/L	
	DIBROMOMETHANE	<2.0	UG/L	
	DIBROMOCHLOROMETHANE	<2.0	UG/L	
	1,2-DIBROMO-3-CHLOROPROPANE	<7.0	UG/L	
	1,2-DICHLOROBENZENE	<2.0 <2.0	UG/L UG/L	
	1,3-DICHLOROBENZENE	<2.0	UG/L UG/L	
	1,4-DICHLOROBENZENE 1,1-DICHLOROETHANE	<1.0	UG/L	
			0072	
1	1,2-DICHLOROETHANE	<1.0	UG/L	
	1,2-DICHLOROETHYLENE, CIS	<1.0	UG/L	
	1,1-DICHLOROETHYLENE	<1.0	UG/L	
1	1,2-DICHLOROETHYLENE, TRANS	<1.0	UG/L	
1	1,3-DICHLOROPROPANE	<1.0	UG/L	
-	1,1-DICHLOROPROPENE	<2.0	UG/L	
	1,2-DICHLOROPROPANE	<1.0	UG/L	
	2,2-DICHLOROPROPANE	<2.0	UG/L	
	1,3-DICHLOROPROPENE, CIS	<2.5	UG/L	
	1,3-DICHLOROPROPENE, TRANS	<2.5	UG/L	

State Laboratory of Hygiene University of Wisconsin Center for Health S 465 Henry Mall, Madison, WI 53706		
R.H. Laessig, Ph.D., Director S.L. Inhorn,		
Environmental Science Section (608) 262-2797 continuing Labslip # OC001926, Field # MAES		
ETHYLBENZENE	<1.0	UG/L
ETHYLENE DIBROMIDE	<1.0	UG/L
METHYLETHYLKETONE (MEK)	<12.0	UG/L ·
METHYLENE CHLORIDE	<5.0	UG/L
STYRENE	<2.0	UG/L
1,1,1,2-TETRACHLOROETHANE	<3.0	UG/L
1,1,2,2-TETRACHLOROETHANE	<3.0	UG/L
TETRACHLOROETHYLENE	<1.0	UG/L
TETRAHYDROFURAN (THF)	<200.	UG/L
TOLUENE	<1.0	UG/L
1,2,4-TRICHLOROBENZENE	<1.0	UG/L
1,1,1-TRICHLOROETHANE	<1.0	UG/L
1,1,2-TRICHLOROETHANE	<2.0	UG/L
TRICHLOROETHYLENE	<1.0	UG/L
TRICHLOROFLUOROMETHANE	<1.0	UG/L
TRICHLOROTRIFLUOROETHANE	<3.0	UG/L
1,2,3-TRICHLOROPROPANE	<2.0	UG/L
VINYL CHLORIDE	<1.0	UG/L
XYLENES	<2.0	UG/L
METHYL TERTIARY BUTYL ETHER	<10.	UG/L

GCMS PREP : WATER

_ _ _ _ _ _

С

State Laboratory of Hygiene University of Wisconsin Center for Health Sciences 465 Henry Mall, Madison, WI 53706 R.H. Laessig, Ph.D., Director S.L. Inhorn, M.D., Medical Director _____ Environmental Science Section (608) 262-3458 DNR LAB ID 113133790 Inorganic chemistry (#18 of 39 on 01/13/92, unseen) Id: EC581 Point/Well/..: Field #: MACS Route: WS40 Collection Date: 11/04/91 Time: 13:30 County: 05 (Brown) From: BRIAN & CAROL MACS 1026 S. 7TH ST. DEPERE KITCHEN HARD WATER TAP To: HEINEN Type: Miscellaneous Source: Private DNR GREEN BAY Account number: WS001 Collected by: BEAUMIER Date Received: 11/05/91 Labslip #: IC046036 Reported: 01/10/92 CADMIUM, AA FURNACE <0.2 UG/L UG/L CHROMIUM, AA FURNACE <3 <0.01 MG/L CYANIDE ZINC, ICP 20. UG/L

detected between 10 (LOD) and 40 (LOQ) UG/L

NO: KRIAN MINES 1026 5. JTA ST PO BYX 10448 GIEN BAY W. 54307 Depere wz. stils SUBJECT-MESSAGE - Mr. Mars - Edon is the 126 voulte for you will taken 5/1/90. Although lad and zine were detroked the concentrations me well below the durching united STANDARD of 50 ug/l Leso And the NK140 inforcement som dard for Zinc 500 vg/2 Coll me AT 497-4397 REPLY WITH guissione. SIGNED Jim Refue DATE 7-9-9

SENDER RETAIN THIS COPY

SIGNED _____ DATE _____

•

State Laboratory of Hygiene University of Wisconsin Center for Health Sciences 465 Henry Mall, Madison, WI 53706 R.H. Laessig, Ph.D., Director S.L. Inhorn, M.D., Medical Director . _____ _____ Environmental Science Section (608) 262-3458 DNR LAB ID 113133790 Inorganic chemistry (#47 of 84 on 07/02/90, unseen) Point/Well/..: Id: Field #: 1 Route: SW40 Collection Date: 05/01/90 Time: 16:00 County: 05 (Brown) From: BRIAN MAES TAP OFF PRESSURE TANK To: REYBURN DNR Source: Private Well GREEN BAY Account number: WS001 Collected by: REYBURN Account number: WS001 Collected by: REYBURN Date Received: 05/03/90 Labslip #: IA086903 Reported: 06/28/90 <0.2 CADMIUM, AA FURNACE UG/L CHROMIUM, AA FURNACE <3 UG/L LEAD, AA FURNACE 13. UG/L STANDARD ADDITION, AAS SA PB ZINC, ICP 39. UG/L detected between 10 (LOD) and 40 (LOQ) UG/L

, s . . .

CORRESPONDENCE MEMORANDUM

STATE OF WISCONSIN

DATE: May 4, 1993

TO: Gary Edelstein - SW/3

FROM: Terry Koehn - LMD

SUBJECT: Better Brite - Monitoring Well Results

EPA installed two groundwater monitoring wells near the Zinc Shop in January, 1993. The wells are located approximatley 75 feet to the west of the site, west of Sixth Street on property owned by the Rasmussen's (320 S. Sixth St). This location is approximately 170 feet east of the De Pere Grant Street municipal well.

It is my understanding that one of the wells was drilled to bedrock, approximately 30 feet deep (MW-2), and the other to around 15 feet deep (MW-1). At this time I do not have any specific information regarding well construction.

Groundwater samples were obtained by EPA in March, 1993. The samples were analyzed by Robert E. Lee and Assoc. Inc. for VOCs, chromium (total and hexavalent), cyanide and zinc (Job # 1014508). A summary table of the results is attached.

As you will note on the attached both wells indicated an impact for chromium, but not at very high concentrations. The results additionally indicate that the higher chromium concentration was found in the deeper well.

Att: Summary Table & Laboratory Report

cc: K. Bro WDOH M. Noel Hydro-Search (Lab Report also att.) D. Rossberg LMD W. Nied U.S. EPA D. Linnear U.S. EPA with Summary Table att.

Parameter	Well MW1	Well MW2	Units
Chromium (total)	20	160	ug/l
Chromium (hex)	ND	ND	ug/l
Cyanide	ND	0.004	mg/l
Zinc	56	282	ug/l
Benzene	14	ND	ug/l
n-Butylbenzene	12	ND	ug/l
Ethylbenzene	12	ND	ug/l
Naphthalene	18	ND	ug/l
Toluene	73	ND	ug/l
1,2,4-Trimethylbenzene	27	ND	ug/l
1,3,5-Trimethylbenzene	14	ND	ug/l
m,p-Xylene	45	ND	ug/l
o-xylene	22	ND	ug/l

Zinc Shop Groundwater Results - March, 1993

۰

For additional information note laboratory report

ROBERT E. LEE & ASSOCIATES, INC. LABORATORY SERVICES P.O. BOX 2100, 2825 S. WEBSTER AVE. GREEN BAY, WI 54306-2100 TEL NO: (414) 336-6338 FAX NO: (414) 336-9141 Wisconsin Certification No: 405043870

A WAR IN

- *+ mg

EST

....

Client: Riedel Environmental Date Received: 03/03/93 Date of Samples: 03/03/93 Report Date: 03/22/93 Client Project: Better Brite Plating Client Project Number: Z72051/Better Brite REL Job Number:1014508 Batch: 1

THE FOLLOWING DATA HAS BEEN REVIEWED AND MEETS THE QA/QC REQUIREMENTS FOR BLANKS, STANDARDS, DUPLICATE ANALYSES AND SPIKED SAMPLES.

TEST PARAMETER	CHR	OMIUM	CY.	ANIDE	HEXAVALE	NT CHROMIUM	VOLATILE ORG	ANICS LIQUIDS	
MDL WDNR NUMBER ANALYZED BY ANALYTICAL METHOD EXTRACTED/DIGESTED	J.	ug/l 0122 Jung 10 [1]	D.	04 mg/l 00720 Basten 0 [1]	J.	ug/l 121 Jung 96 [1]	Attached ug/l 84085 L. He 8021 [1]		
SAMPLE NAME	RESULT ug/l	DATE	RESULT mg/l	DATE ANALYZED	RESULT ug/l	DATE ANALYZED	RESULT ug/l	DATE ANALYZED	
MW1-2 WEALS B.B.	20	03/17/93	ND	03/15/93	ND	03/04/93	. Attached	03/10/93	
MW2-2 W.	160	03/17/93	0.004	03/15/93	ND	03/04/93	Attached	03/10/93	
X		/							
COMMENTS: ND = COMPOUND NOT DETEC MDL = METHOD DETECTION D = DETECTED BUT BELOW * = MDL CHANGED DUE TO T	LIMIT WITH N MDL	O DILUTION	ANALY (1) TEST (2) METH (3) STAM	TICAL METHO METHODS FOR EV DDS OF CHEMICAL DARD METHODS, F	OK THE EXAMIN	D WASTE, SW-84 WATER AND WAST NATION OF WATER	-6 ES & WASTES, 16	th Ed.	

12 × 34

ROBERT E. LEE & ASSOCIATES, INC. LABORATORY SERVICES P.O. BOX 2100, 2825 S. WEBSTER AVE. GREEN BAY, WI 54306-2100 TEL NO: (414) 336-6338 FAX NO: (414) 336-9141 Wisconsin Certification No: 405043870

1.5

Client: Riedel Environmental Date Received: 03/03/93 Date Received: 03/03/93 Date of Samples: 03/03/93 Report Date: 03/22/93 Client Project: Better Brite Plating Client Project Number: Z72051/Better Brite REL Job Number:1014508 Batch: 1

THE FOLLOWING DATA HAS BEEN REVIEWED AND MEETS THE QA/QC REQUIREMENTS FOR BLANKS, STANDARDS, DUPLICATE ANALYSES AND SPIKED SAMPLES.

and the second s						· . ·		
TEST PARAMETER	ZINC				•			
MDL WDNR NUMBER ANALYZED BY ANALYTICAL METHOD EXTRACTED/DIGESTED	2 ug/l 00275 E. Weic 6010 (1						· · · · · · · · · · · · · · · · · · ·	
SAMPLE NAME		DATE ALYZED		DATE R ALYZED		ATE LYZED	RESULT	DATE ANALYZED
MW1-2	56 03	/15/93				Second States (1993) Second States Second States Second States Second States Second States Second States Second States St		
MW2-2	282 03	/15/93			ال الم الم المراجع الم المراجع المراح المراجع المراجع المراجع المراجع الم المراحع الم المراحع الم المراحع الم الم المراحع الم المراحع الم المراحع الم المراحع الم الم الم الم الم الم الم الم الم الم			
COMMENTS: ND = COMPOUND NOT DETECT MDL = METHOD DETECTION D D = DETECTED BUT BELOW M * = MDL CHANGED DUE TO D ATTEST	IMIT WITH NO DI		[2] METHODS OI [3] STANDARD I	LIMETHODS ODS FOR EVALUATI F CHEMICAL ANALY METHODS, FOR THE	SIS OF WATER E EXAMINATION	AND WASTES		

ROBERT E. LEE & ASSOCIATES, INC.

CLIENT: PROJECT: REL JOB NUMBER: Riedel Environmental Z72051/Better Brite 1014508

NARRATIVE

This set consisted of 2 liquid samples: MW1-2 and MW2-2. The samples were collected and received on March 3, 1993.

The samples were analyzed for volatile organic compounds on March 10, 1993 following SW-846 Method 8021.

The following is a summary of the Quality Control results accompanying this set of samples and a description of any problems encountered during analysis:

1. The method blank contained 2.3 ug/L methylene chloride.

2. Of the twenty-eight duplicate compounds, n-butylbenzene was not within laboratory limits. The data was accepted because the out-of-control situation was caused by an interference

3. The surrogates were within laboratory limits.

4. All of the twenty-eight matrix spike compounds were within laboratory limits.

5. The daily check standard confirmed the initial calibration curve for all reported analytes.

Sheldon Stone Laboratory Manager 03/18/93 lh

ROBERT E LEE & ASSOCIATES, INC. LABORATORY SERVICES

2825 S. WEBSTER AVE. P.O. BOX 2100 GREEN BAY, WIS 54306 TELEPHONE NUMBER: (414) 336 - 6338 WISCONSIN CERTIFICATION NUMBER: 405043870

a the state of the second state	
CLIENT:	Riedel Environmental
DATE SAMPLED:	03/03/93
DATE ANALYZED:	03/10/93
REPORT DATE:	03/11/93 LH
ANALYZED BY:	LH
general second	

MDL

ATTES1

2-HEXANONE SURROGATE RECOVERY (%)

METHOD DETECTION LIMIT

ND = COMPOUND NOT DETECTED

14

METHOD 8021, VOLATILE ORGANIC COMPOUNDS IN WATER BY PURGE AND TRAP CAPILLARY COLUMN GAS CHROMATOGRAPHY WITH PHOTOIONIZATION AND ELECTROLYTIC CONDUCTIVITY DETECTORS IN SERIES.

•....

PROJECT: Better Brite PROJECT NUMBER: Z72051 REL JOB NUMBER: 1014508 SAMPLE: MW1-2 DILUTION: NONE

	MDL	RESULT	· · .		MDL	RESULT
ANALYTE	ug/L	ug/L		ANALYTE	ug/L	ug/L
BENZENE	0.6	14		1,3-DICHLOROPROPANE	3.3	ND
BROMOBENZENE	4.0	ND		2,2-DICHLOROPROPANE	2.2	ND
BROMOCHLOROMETHANE	2.6	ND	يني اليسيدية : مريد الشرقية المريد	1,1-DICHLOROPROPENE	1.9	ND
BROMODICHLOROMETHANE	1.0	ND		cis-1,3-DICHLOROPROPENE	2.4	ND
BROMOFORM	2.2	ND		trans-1,3-DICHLOROPROPENE	2.3	ND
BROMOMETHANE	2.8	ND		ETHYLBENZENE	2.0	12 .
π−BUTYLBENZENE	3.5	12		HEXACHLOROBUTADIENE	1.7	ND
sec-BUTYLBENZENE	3.8	ND		ISOPROPYLBENZENE	` 3.6	ND
tert-BUTYLBENZENE	5.8	ND		p-ISOPROPYLTOLUENE	3.6	ND
CARBON TETRACHLORIDE	1.3	ND		METHYLENE CHLORIDE	· 1.5	ND .
CHLOROBENZENE	3.7	ND		NAPHTHALENE	4.7	18
CHLOROETHANE	2.8	L ND		n-PROPYLBENZENE	3.4	ND
CHLOROFORM	1.7	ND		STYRENE	1.0	ND
CHLOROMETHANE	2.9	ND		1,1,1,2-TETRACHLOROETHANE	4.5	ND
2-CHLOROTOLUENE	2.9	ND ND		1,1,2,2_TETRACHLOROETHANE	2.4	ND
4-CHLOROTOLUENE	.3.7	ND	and the second sec	TETRACHLOROETHENE	1.8	ND
DIBROMOCHLOROMETHANE	F1.2	ND A	e e e e e e e e e e e e e e e e e e e	TOLUENE	5.0	73
1,2-DIBROMO-3-CHLOROPROPANE	2.8	ND		1,2,3-TRICHLOROBENZENE	3.5	ND
1,2-DIBROMOETHANE (EDB)	2.4	• ND		1,2,4-TRICHLOROBENZENE	1.3	ND
DIBROMOMETHANE	1.0	ND		1, 1-TRICHLOROETHANE		ND
1,2-DICHLOROBENZENE	3.0	ND		14.2-TRICHLOROETHANE		ND
1,3-DICHLOROBENZENE	3.5	ND		THICHLOROETHENE	3.1	nD
1,4-DICHLOROBENZENE	3.2	ND A	2. V	TRICHLOROFLUOROMETHANE	1.5	ND
	G7.	\mathbf{ND}			3.0	ND
	H.	ND		A TRIMETHYLBENZENE	3.5	27 4
1,2-DICHLOROETHANE	<u>.</u> 22	ND		13.5-TRIMETHYLBENZENE	3.5	14
1,1-DICHLOROETHENE	ાં ગ	ND	A	VINYLCHLORIDE	2.3	ND
	12.0 2.0	ND		m.p-XYLENE	1.5	45
1,2-DICHLOROPROPANE	27	ND ND		D-XYLENE	1:5) 	22 36 - 24 - 15 - 15 - 15 - 15 - 15 - 15 - 15 - 1
2-BROMO - CHLOROPROPANESUAR	OGATE RECO	YERY (%),				
* 1,4-DICHLOROBUTANE SURROGATE RE	COVERY (%).		SE			

COMPOUND DETECTED BUT BELOW MDL SURROGATE STANDARD PERCENT RECOVERY N/A = COMPOUND NOT ANALYZED CHAPPENS

ROBERT E LEE & ASSOCIATES, INC. LABORATORY SERVICES 2825 S. WEBSTER AVE. P.O. BOX 2100 GREEN BAY, WIS 54306 TELEPHONE NUMBER: (414) 336 - 6338 WISCONSIN CERTIFICATION NUMBER: 405043870

...

· •

~

CLIENT:	Riedel Environmental
DATE SAMPLED:	03/03/93
DATE ANALYZED:	03/10/93
REPORT DATE:	03/11/93 LH
ANALYZED BY:	LH

METHOD 8021, VOLATILE ORGANIC COMPOUNDS IN WATER BY PURGE AND TRAP CAPILLARY COLUMN GAS CHROMATOGRAPHY WITH PHOTOIONIZATION AND ELECTROLYTIC CONDUCTIVITY DETECTORS IN SERIES.

PROJECT:	Better Brite
PROJECT NUMBER:	Z72051
REL JOB NUMBER:	1014508
SAMPLE:	MW2-2
DILUTION:	NONE

	MDL	RESULT			MDL	RESULT
ANALYTE	ug/L	ug/L		ANALYTE	ug/L	ug/L
BENZENE	0.6	ND		1,3-DICHLOROPROPANE	3.3	ND
BROMOBENZENE	4.0	ND		2,2-DICHLOROPROPANE	2.2	ND
BROMOCHLOROMETHANE	2.6	ND		1,1-DICHLOROPROPENE	1.9	ND
BROMODICHLOROMETHANE	1.0	ND		cis-1,3-DICHLOROPROPENE	2.4	ND
BROMOFORM	2.2	ND		trans-1,3-DICHLOROPROPENE	2.3	ND
BROMOMETHANE	2.8	ND		ETHYLBENZENE	2.0	ND
n-BUTYLBENZENE	3.5	ND		HEXACHLOROBUTADIENE	、 1.7	ND
sec-BUTYLBENZENE	3.8	ND		ISOPROPYLBENZENE	` 3.6	ND
tert BUTYLBENZENE	5.8	ND		p-ISOPROPYLTOLUENE	3.6	ND
CARBON TETRACHLORIDE	1.3	ND		METHYLENE CHLORIDE	1.5	ND
CHLOROBENZENE	3.7	ND		NAPHTHALENE	4.7	ND
CHLOROETHANE	2.8	ND		n-PROPYLBENZENE	3.4	ND
CHLOROFORM	1.7	ND		STYRENE	1.0	ND
CHLOROMETHANE	2.9	ND		1,1,1,2-TETRACHLOROETHANE	4.5	ND
2-CHLOROTOLUENE	2.9	- ND		1,1,2,2-TETRACHLOROETHANE	2.4	ND
4-CHLOROTOLUENE	3.7	ND		TETRACHLOROETHENE	1.8	ND
DIBROMOCHLOROMETHANE	1.2	ND	,	TOLUENE	2.0	ND
1,2-DIBROMO-3-CHLOROPROPANE	2.8	ND		1,2,3-TRICHLOROBENZENE	3,5	ND
1,2-DIBROMOETHANE (EDB)	2.4	ND		1,2,4-TRICHLOROBENZENE	1.3	ND
DIBROMOMETHANE	1.0	ND		1,1,1-TRICHLOROETHANE	1.4	ND
1,2-DICHLOROBENZENE	3.0	ND	14	1,1,2-TRICHLOROETHANE	3.1	ND
1,3-DICHLOROBENZENE	3.5	ND		TRICHLOROETHENE	3.1	ND
1,4-DICHLOROBENZENE	3.2	ND in	1. 1 .	TRICHLOROFLUOROMETHANE	1.5	ND
DICHLORODIFLUOROMETHANE	2.7	ND		1,2,3-TRICHLOROPROPANE	3.0	ND
1,1-DICHLOROETHANE	1.7	ND		1,2,4-TRIMETHYLBENZENE	3.5	ND
1,2-DICHLOROETHANE	2.2	ND		1,3,5-TRIMETHYLBENZENE	3.5	ND
1,1-DICHLOROETHENE	1.9	ND		VINYL CHLORIDE	2.3	ND
cis-1,2-DICHLOROETHENE	2.0	ND		m,p-XYLENE	1.5	ND
	- 2.4	ND		o-XYLENE	1.5	ND
1,2-DICHLOROPROPANE		ND		n na Salatin - Adama Angaran Na Na Na Na Na Na Na Na		

118 . 11

137

* 2-BROMO-1-CHLOROPROPANE SURROGATE RECOVERY (%)...... 103

* 1,4-DICHLOROBUTANE SURROGATE RECOVERY (%)

* 2 - HEXANONE SURROGATE RECOVERY (%)

ND = COMPOUND NOT DETECTED MDL = METHOD DETECTION LIMIT

ATTEST

110

11 12 - 24 - 57 12 - 57

D = COMPOUND DETECTED BUT BELOW MDL * SURROGATE STANDARD PERCENT RECOVERY N/A = COMPOUND NOT ANALYZED

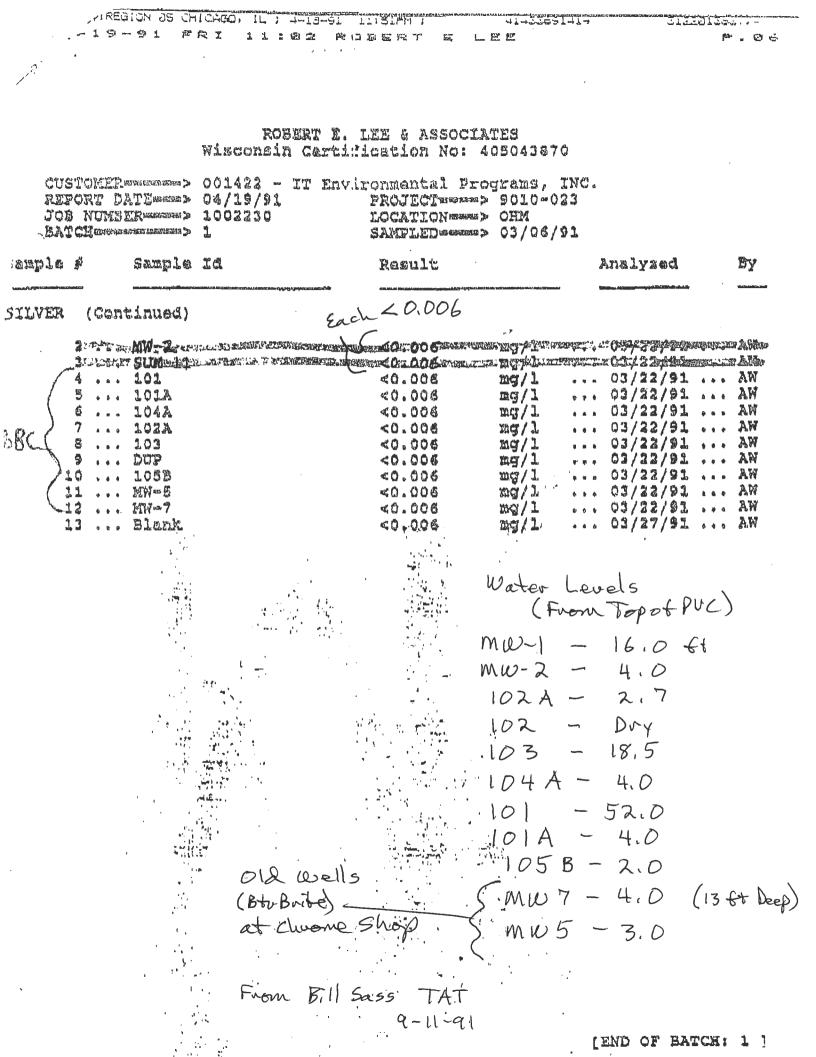
NVIRON		L PROTI			GENCY		: Agus	CHAIN	OF CUS	rod	Y RE	COR	D	^	REGION 5 230 South Dearborn Street Chicago, Illinois 60604
PROJ. 1 ZT20		PROJEC BETT			іте Раі	711/4		n a sea e The sea	NO,		· .	/	Carlier		
SAMPLEF			yan			C HART			OF CON-	「日本の	Jou			and a	REMARKS .
STA. NO.	DATE	TIME	COMP.	GRAB		STATION	LOCATION	с	TAINERS	May	1 23	A A A	P.n		
MW1-2	3/3/33	1330		V	OFF-S	ITE W	CSUAL	cow we	45	3					TURNARDUND TIME: NORMAL
MW2-Z	3/3/13	1425	. · ,	r	OFF-S	ं।TE लिहा	CDEEP V	-eu)	.5	3		1			QA LEVEL IL PROTOCOL
		10.00	<u>:</u>		•. •		ан аланан алан алан алан алан алан алан			ý.					
		;	<u> </u> .	30	48				·						DETECTION LIMITS SHOULD BELOWER
· · · · · · · · · · · · · · · · · · ·			2.7	1	1					ļ					THAN THE DEINKING WATER STANDAQUS.
		1	<u> </u>	- Kah	Harry .	×.									SEND BILL & RESULTS TO:
				26.0	1. E. 1		. .	• •		·					KEVIN NEAL, RES
	· .								5						@) U'S'EPA, BETTER BRITE PLATING
			-	<u>.</u>		. S.K.		-AK-	PR	ŧ S		R1			515 LANDE STREET
			1.1.1	1			type – seit 📕								DEPERE, WI 54115
· · · · ·	· · ·			南	Alter 1	1.1		Sod	um	ffy	4 <i>ril</i>	fid	e	·	PND1 (414)337-9641
			•	1				Nit	nic_	 '	<u> </u>	·			FAX: (414) 337-9650
			<u> </u>	14.5	1874 (* 1465) 1975 - Maria			$\hat{d}_{p,1} = \hat{I}$	1. S. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	.	. ·				PLEASE FILTER THESE SAMPLES AND ADD
		14 St 1		李		為正式推開				1.1				11	PRESERVATIVES .
Relinquist	hed by: 1	(Signature ⊻~,		З	1-1-	Time 1548	Received by	(: (Signeture,		Reli	inquisl	hed by	y: (Sigr	natur e)	Date / Time Received by: (Signature)
Relinquis	hed by: i	(Signature	IJ.		Date /	Time	Received by	: (Signature)	n Pas		nquist M	hed by	1: (Sign	ature)	Date / Time Received by: (Signature)
Relinquist			•		Date /		Received fo	ie Sel	1	3	3/4	e / Tii	me 3:4	Remai	ROBERT E-LEE4 ASSOCIATES 2825 S. WEBSTER AVENUE GREEN BAY, WI 54301
e-me							- Cooldinator		Yellow — Lat	orator	y Pile			Atr	NI SHELDON STONE (414) 336-6338 5- 03409

, (RE31		10000, 1L ; ; R I 1 1 5 ;	छ छ ल।)≌। °∾⊺3~8† 11:		್ಮಾಗ್ರವಿತ್ರ ಗ್ರಾಹಿ	a ar ar ar	ar ai 11 80	P.Ø3
Customer= Report da Job Number Batch=====	TE CANCELLE Rene D	Wisconsin 001422 ~ 04/19/91	IT Environ Pl L	etion No mental : ROJECT**** SCATION**	1 40504387 Programs, 2 Sub 9010-01	INC. 23		
ple #	Sample	a a a a a a a a a a a a a a a a a a a	area and any area a	Result	tamuv21924.0 daaadd ynDaraw Si ^{omet} ad	<u>7</u>	malyzed	Ву
SENIC			AII 20.00	14				
2	NV 2 101 101 101 103 103 DUP 1055 NW-5	BARRING TO SHOW	Contraction of the second s	co. 001.4=			04/08/91 04/08/91 04/08/91 04/08/91 04/08/91 04/08/91 04/08/91	EW EW EW EW EW EW EW
RIUM	1 8.4 41 		,	3554				
3 1 3 1 4 5 6 7 8 10 11 12	NW-1 NW-2 SUM-1 101 101 102 102 103 103 NW-5 MW-7 Slank			6.016 0.070 0.025 0.051 0.051 0.034 0.034 0.034 0.034 0.034 0.035 0.049 0.049 0.049 0.049 0.049 0.049	233/1 233/1 233/1 233/1 233/1 233/1 233/1 233/1 233/1 233/1 233/1 233/1		03/22/91	or Alter
DMIUM					an a			
2 1 3 1 4	KW-2 SUM-11 101 101A 104A		્યુ પ ર સ્ટે	(0),002 (0),002 (0),002 (0,002 (0,002	mg/l mg/l mg/l mg/l mg/l =g/l	• • • • • • • • •	03/22/91	Ana
	5- 	arte la A	•			1 F	[CON	TINUED]

		, ''			
		ROWERT E. LEE & ASSOC sin Certification No:			
REPORT D	ATEmass 04/19/9 ERassam> 1002230	o Location	🚥> 9010-023		
unple #	Sample Id	Result		Analyzed	Ву
LÓMIUM (Co	ntinued)	· · · · ·			
-	102A 103 DUP 105B MW-5 MW-7 Slank	<0.002 0.004 0.004 0.004 0.004 <0.003 <0.003	mg/l mg/l mg/l mg/l mg/l	03/22/91 03/22/91 03/22/91 03/22/91 03/22/91 03/22/91	. AW . AW . AW . AW . AW
Romium	20				
2 3 4	NW-1 MW-2 SUM-11 101 101A 104A 104A 102A 103 DUP 105B MW-5 MW-7 Blank	5.45 73.2 135. 0.01 <0.06 <0.06 0.27 12.0 <0.06 33.3 0.32 6.79 <0.06	mg/l mg/l mg/l mg/l	03/22/91 03/22/91 03/22/91	· · · AN · · · AN · · · AN · · · · · · · · · · · · · · · · · · ·
LAD					
	MW-I MW-2 SUM-11 101 101A 101A 101A 102A 103 DUP 105B MW-5 MW-7	<0.06	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	03/23/91 03/22/91 03/22/91 03/22/91 03/22/91 03/22/91 03/22/91 03/22/91 03/22/91 03/22/91	- AW - AW - AW - AW - AW - AW - AW - AW

7

'w


8 ______

19-91 FRI 11:01 RIBERT E LEK

[CONTINUED]

P . 0 4

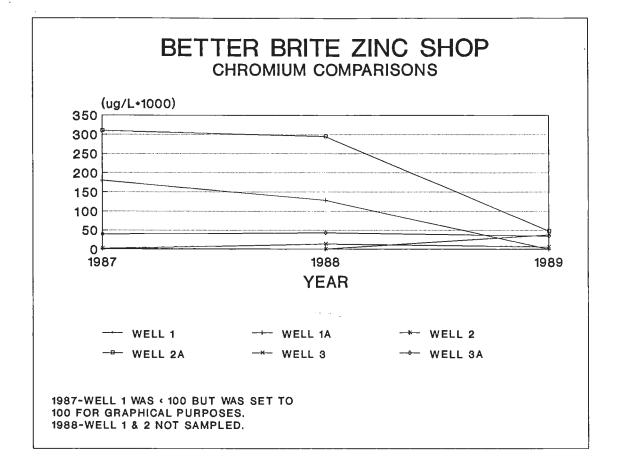
					ROBERT Wisconsin Cer		EE & ASSOC .cation No:		0			
j	rep(Tob	ort Nu	<i>(</i> در (هم		001 <u>422</u> - IT) 04/19/91 1002230			rograms, => 9010-0 => OMM	INC. 23			
mp.		ţ,		Sampla	Iq		Result		2	Analyzed		Вγ
AD	((; on:	tiı	nued)	ne hogydraeth yn Malderen en ar Begenne a synaw ar arwyn ar yn yw ar yn	-	and the state of the		• •	ĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ		-409 Å. (S)
	` 1:	3.	* *	Blank			<0.06	mg/l		03/27/91		лw
RCI	jry											
fire (B	9 9 6 8 9	MW-1 HW-2 SUM-11 101 101 104 102 102 102 105 MW-5 MW-7 BTENK	, , , , , , , , , , , , , , , , , , ,	i ■	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 40.46 <	03/15/91		SWW EWW EWW EWW EWW EWW EW
LE	NIVI	1		2000 - 2000 			N.					
			а́ж- а'ж-	MW-1 SUM-11 101 101A 101A 101A 102A 103 DUP 105B MW-5 MW-7 Blank			<0.003 <0.016 0.005 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	• • •	04/19/91 04/19/91 04/19/91 04/19/91 04/19/91 04/19/91 04/19/91	 a b b b b c d d<	AW AW AW AW AW AW AW AW
UV]		L a		MN		- - 		mg/1		03/32/91	* * *	AN -

State of Wisconsin \setminus department of health and social services

DIVISION OF HEALTH MAIL ADDRESS: 1 WEST WILSON STREET P.O. BOX 309 MADISON, WI 53701-0309

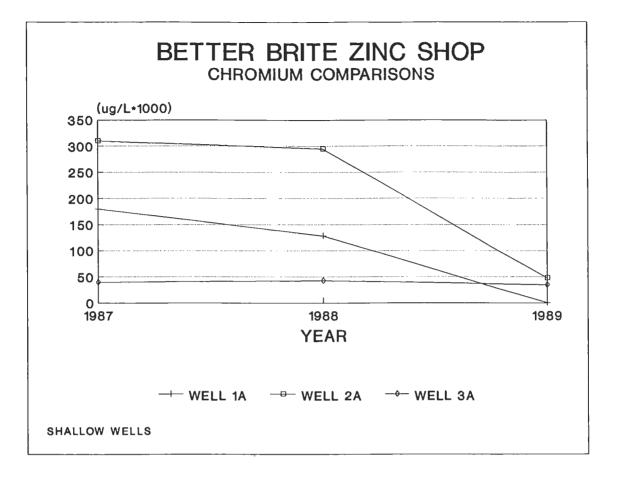
April 4, 1990

Annette Weissbach DNR Lake Michigan District 1125 N. Military Ave., Box 10448 Green Bay WI 54307


Dear Annette:

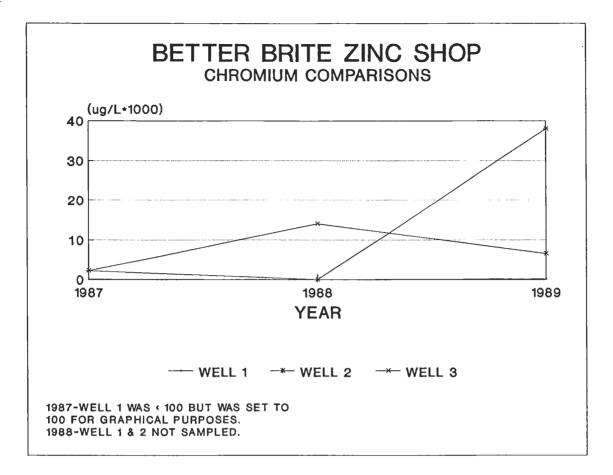
Enclosed are the graphs you requested yesterday.

Thanks for the Better Brite material you had copied and sent to us, and for other help along the way.


Sincerely,

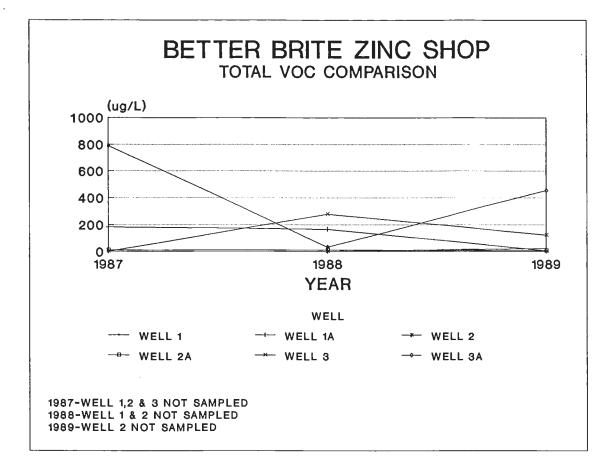
Julie Hayward

BETTER BRITE ZINC SHOP CHROME DATA


	1987	1988	1989
WELL 1 WELL 1A WELL 2 WELL 2A WELL 3 WELL 3A	100 180000 2300 310000 2300 40000	- 128000 - 295000 14000 43000	160 570 38000 48000 6600 35000

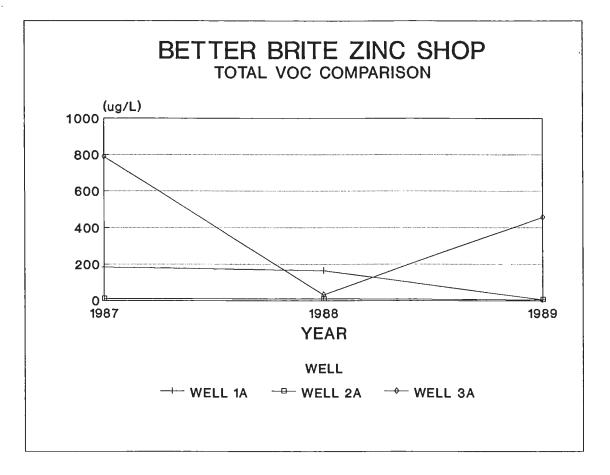
BETTER BRITE ZINC SHOP CHROME DATA

.


	1987	1988	1989
WELL 1A	180000	128000	570
WELL 2A	310000	295000	48000
WELL 3A	40000	43000	35000

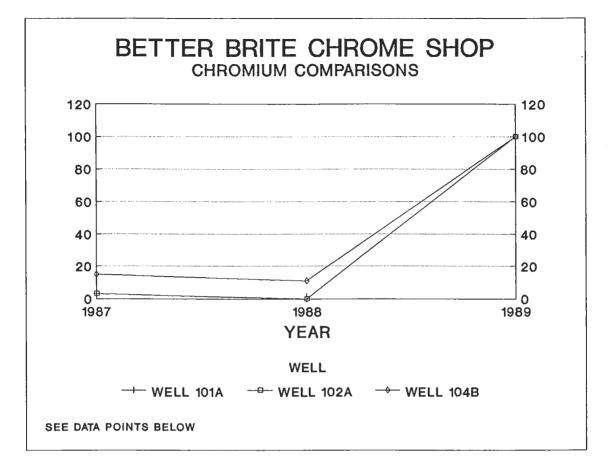
BETTER BRITE ZINC SHOP CHROME DATA

ч • у •


	1987	1988	1989
WELL 1	100	-	160
WELL 2	2300	-	38000
WELL 3	2300	14000	6600

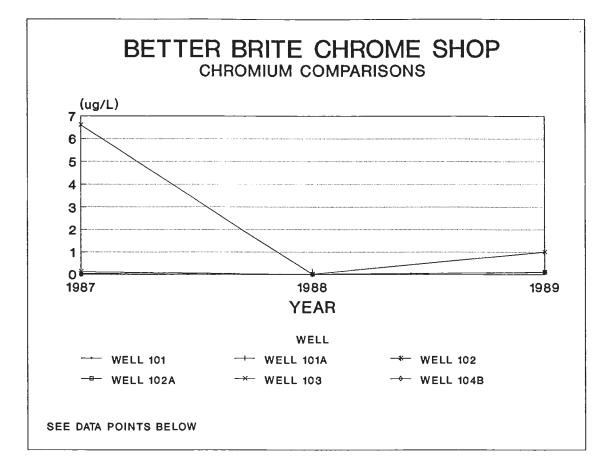
BETTER BRITE ZINC SHOP TOTAL VOC DATA

• •


	1987	1988	1989
WELL 1 WELL 1A WELL 2 WELL 2A WELL 3 WELL 3A	- 183.5 - 10.2 - 789	- 265 - 10 279 31	23.2 5.6 - 5.3 121.8 455.9
WEDD JA	705	51	455.5

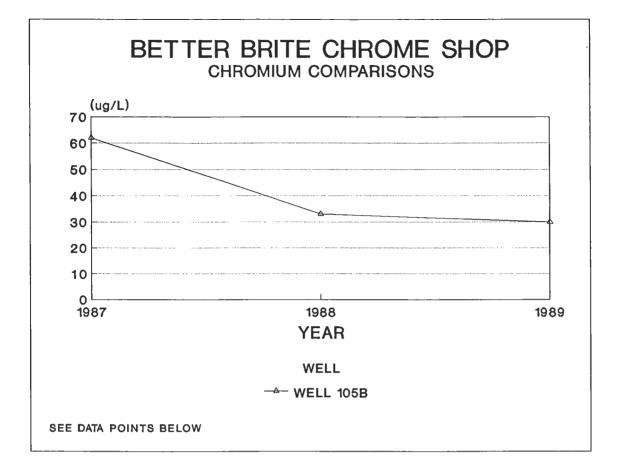
BETTER BRITE ZINC SHOP TOTAL VOC DATA

• •


		1987	1988	1989
WELL	2A	183.5	265	5.6
WELL		10.2	10	5.3
WELL		789	31	455.9

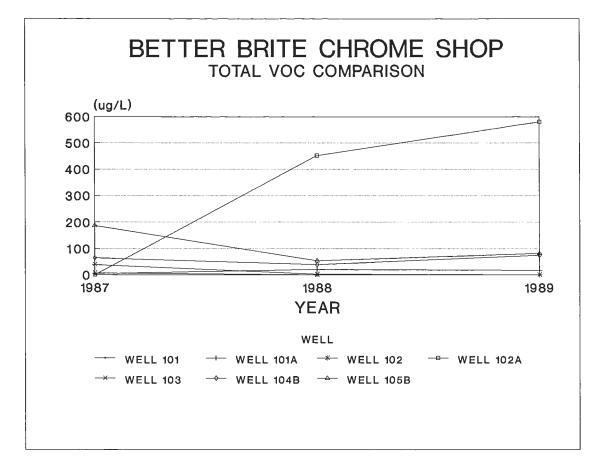
BETTER BRITE CHROME SHOP CHROME DATA

	1987	1988	1989
WELL 101A	<3	-	<100
WELL 102A	<3	-	<100
WELL 104B	15	11	<100

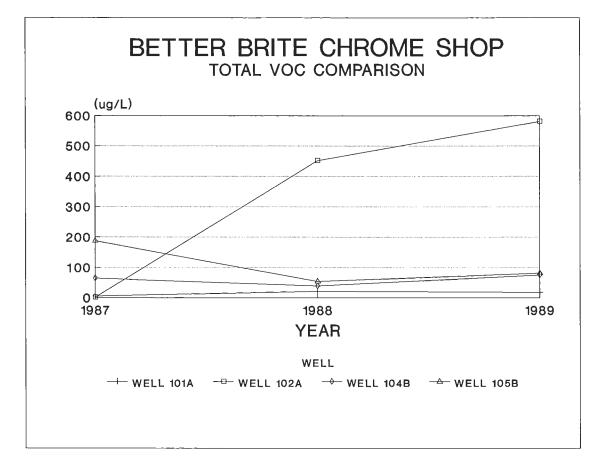

* FOR GRAPHICAL PURPOSES ALL DATA LESS THAN A NUMBER IS ASSUMED TO BE THAT NUMBER.

BETTER BRITE CHROME SHOP CHROME DATA

	1987	1988	1989
WELL 101 WELL 101A WELL 102 WELL 102A WELL 103 WELL 104B	44 <3 120 <3 6600 15	- - 14.7	<100 <100 <100 <100 1000 <100


* FOR GRAPHICAL PURPOSES ALL DATA LESS THAN A NUMBER IS ASSUMED TO BE THAT NUMBER.

BETTER BRITE CHROME SHOP CHROME DATA


	1987	1988	1989
WELL 105B	62000	33000	30000

* FOR GRAPHICAL PURPOSES ALL DATA LESS THAN A NUMBER IS ASSUMED TO BE THAT NUMBER.

BETTER BRITE CHROME SHOP TOTAL VOC DATA

		1987	1988	1989
WELL WELL WELL	101A	- 5.1 39	- 21 3	- 17.2
\mathtt{WELL}	102A	_	452	581
WELL WELL		7.6 64.4	- 39	- 74
WELL	105B	187.4	53	80.9

BETTER BRITE CHROME SHOP TOTAL VOC DATA

'``

	1987	1988	1989
WELL 101A	5.1	21	17.2
WELL 102A	-	452	581
WELL 104B	64.4	39	74
WELL 105B	187.4	53	80.9