

April 7, 2025

Project/File: 193709334

Attention: Ms. Karen Compoli

Hydrogeologist Wisconsin Department of Natural Resources Green Bay Service Center 2984 Shawano Avenue Green Bay, I 54313-6727

Dear Ms. Karen Compoli,

Reference: Response to WDNR Review of Site Investigation Report Addendum

Chilton Plating Co. Inc, 420 East Main Street, Chilton, WI

WDNR BRRTS #02-08-000040

FID #: 408026300

On November 25, 2024, Stantec Consulting Services, Inc. (Stantec) submitted a *Site Investigation Report Addendum* (Stantec, 2024) to the Wisconsin Department of Natural Resources (WDNR) for Chilton Plating Co. Inc located at 420 East Main Street, Chilton Wisconsin and adjacent parcels (the Property). The locations of the Property relative to regional topography are illustrated on **Figure 1**. In email correspondence dated January 7, 2025, the WDNR responded with a request for cumulative groundwater data tables and figures for the Property summarizing groundwater analytical exceedances to date. In response, Stantec prepared this letter which includes cumulative groundwater data tables and figures as requested. Please use this information to complete the Site Investigation Report Addendum review. This letter was prepared on behalf of Calumet County under the United States (U.S.) Environmental Protection Agency (EPA) Brownfield Assessment Cooperative Agreement No. BF-00E02494.

A detailed discussion regarding Site Description/Background, Previous Environmental Investigations at the Property, Methods used in Stantec (2024), and Results of Stantec (2024) soil and groundwater sampling conducted at the Property were previously submitted as part of Stantec (2024). Therefore, this letter serves as documentation of the submittal of cumulative groundwater data tables and figures in support of moving BRRTS Case No. 02-08-000040 towards case closure following WDNR review and concurrence with the recommendations made in Stantec (2024).

WNDR Comments (January 7, 2025) and Stantec Responses

Comments provided by WDNR are listed below in bold bullet points and responses by Stantec are indented and italicized below:

- <u>Cumulative Groundwater Data Tables:</u> Provide groundwater data tables showing all samples taken to date for the existing wells at the property.
 - Stantec requested historic groundwater data from the Sigma Group, Inc. (Sigma) that was included in the Sigma (2022) Site Investigation Report Addendum dated March 21, 2022.

A cumulative data table of groundwater data that incorporates data summarized in Sigma (2022) and Stantec (2024) for detected constituents sampled from the existing well network at the Property is attached as Table 1.

- <u>Groundwater Quality Maps:</u> Provide updated groundwater quality maps to reflect the data collected in March of 2024.
 - o Figure 1 is attached illustrated the existing well network at the Property. Figures 2a and 2b illustrate shallow groundwater quality at the Property in 2024 for volatile organic compounds (VOCs) and dissolved Resource Conservation and Recovery Act (RCRA) metals, respectively. Figures 2c and 2d illustrate the extent of per- and polyfluoroalkyl substances (PFAS) compounds and dissolved hexavalent chromium in groundwater at the Property in 2024 compared to the proposed Wisconsin Department of Health Services (WDHS) groundwater quality standards.

Thank you for your continued assistance with this project. We look forward to working with you as remediation activities associated with this Project move forward. Please do not hesitate to contact me with any questions related to this request.

Thank you,

Stantec Consulting Services Inc.

Jiyan Hatami M.S.

Hydrogeologic Specialist Phone: (262) 278-9154

Email: jiyan.hatami@stantec.com

Harris Byers Ph.D.

Sr. Brownfields Project Manager Phone: (414) 581-6476

Havis I. Byers

Email: harris.byers@stantec.com

ATTACHMENTS:

Tables

Table 1: Historic Summary of Detected Constituents in Groundwater

Figures

Figure 1: Site Investigation Project Area and Existing Well Network

Figure 2a: 2024 Shallow Groundwater Quality – VOCs

Figure 2b: 2024 Shallow Groundwater Quality – Dissolved RCRA Metals

Figure 2c: 2024 Shallow Groundwater Quality – PFAS Compounds Compared to Proposed

Groundwater Quality Standards

Figure 2d: 2024 Shallow Groundwater Quality – Dissolved Hexavalent Chromium Compared to

Proposed Groundwater Quality Standards

Figure 2e: 2024 Groundwater Quality – Piezometers

ATTACHMENTS

TABLE

											Sample ID an	d Sample Date						
	Detected Constituents	Units	NR 140, WAC ES	NR 140, WAC PAL				SMW-1				1			SMW-2			
					06/16/15	03/22/18	06/26/18	10/12/18	01/27/21	05/13/21	03/21/24	06/16/15	03/22/18	06/26/18	10/12/18	01/27/21	05/13/21	03/21/24
	Arsenic, Dissolved	μg/L	10	1.0					<8.3	<13.2	0.33 J					<8.3	<13.2	<0.23
	Barium, Dissolved	µg/L	2,000	400					82.5	80.7	97					48.8	35.8	31
	Cadmium, Dissolved	μg/L	5	0.5					<1.3	<1.3	<0.17					<1.3	<1.3	< 0.17
	Chromium, Dissolved	μg/L	100	10					<2.5	<2.5	4.6 J					<2.5	15.3	10
	Copper, Dissolved	μg/L	1,300	130					4.4 J	2.8 J						<3.4	<2.5	
Metals, Dissolved	Lead, Dissolved	μg/L	15	1.5	< 0.7	1.4	<0.8		<5.9	<6.4	<0.19	< 0.7	< 0.9			<5.9	<6.4	< 0.19
	Manganese, Dissolved	μg/L	300	60					126	245						2.4 J	<1.1	
	Nickel, Dissolved	μg/L	100	20					6.6 J	3.7 J						<2.6	<3.0	
	Silver, Dissolved	μg/L	50	10					4.8 J		<0.12					<3.2		<0.12
	Zinc, Dissolved	μg/L	5,000	2,500					<11.6	<2.9						<11.6	<2.9	
	Benzo[a]anthracene	μg/L	NS	NS							< 0.047							<0.045
	Benzo[a]pyrene	μg/L	0.2	0.02							<0.081							<0.078
	Benzo[b]fluoranthene	μg/L	0.2	0.02							<0.066							<0.064
	Benzo[g,h,i]perylene	µg/L	NS NG	NS							<0.31							<0.30
	Benzo[k]fluoranthene	μg/L	NS 0.3	NS 0.03							<0.053							< 0.051
PAHs	Chrysene Dibenz(a.h)anthracene	μg/L μg/L	0.2 NS	0.02 NS							<0.056 <0.042							<0.054 <0.042
1 (211)	Fluoranthene	µg/L µg/L	400	80							<0.042							<0.36
	Fluorene	µg/L	400	80							<0.20							<0.19
	Indeno[1,2,3-cd]pyrene	µg/L	NS	NS							<0.061							< 0.059
	Methylnaphthalene, 2-	µg/L	NS	NS							< 0.054							<0.052
	Phenanthrene	μg/L	NS	NS							<0.25							< 0.24
	Pyrene	μg/L	250	50							< 0.35							< 0.34
	1,1,1-Trichloroethane	μg/L	200	40	<0.84	< 0.33	< 0.33	< 0.33	<0.24	<0.30	<0.38	<0.84	< 0.33	< 0.33	< 0.33	< 0.24	<0.30	< 0.38
	1,1-Dichloroethene	μg/L	7	0.7	<0.65	< 0.42	< 0.42	< 0.42	< 0.24	<0.58	<0.39	< 0.65	< 0.42	< 0.42	< 0.42	<0.24	<0.58	< 0.39
	1,2,4-Trimethylbenzene	μg/L	NS	NS	<1.6	<0.8	<0.8	<0.8	<0.84	< 0.45	<0.36	<1.6	<0.8	<0.8	<0.8	<0.84	< 0.45	< 0.36
	1,2-Dichloroethane	μg/L	5	0.5	< 0.54	0.46 J	<0.25	<0.25	<0.28	<0.29	< 0.39	< 0.54	<0.25	< 0.25	<0.25	<0.28	<0.29	< 0.39
	1,3,5-Trimethylbenzene	μg/L	NS	NS	<1.5	<0.63	<0.63	<0.63	<0.87	<0.36	<0.25	<1.5	<0.63	<0.63	<0.63	<0.87	<0.36	<0.25
	1,3-Dichlorobenzene	μg/L	600	60	<0.52	<0.85	< 0.85	<0.85	< 0.63	<0.35	<0.40	<0.52	<0.85	<0.85	<0.85	<0.63	<0.35	0.63 J
	1,4-Dichlorobenzene	µg/L	75	15	< 0.49	<0.7	<0.7	<0.7	<0.94	<0.89	<0.36	<0.49	<0.7	<0.7	<0.7	<0.94	<0.89	<0.36
	Benzene Bromodichloromethane	μg/L μg/L	5 0.6	0.5 0.06	<0.44 <0.46	<0.22 <0.33	<0.22 <0.33	<0.22 <0.33	<0.25 <0.36	<0.30 <0.42	<0.15 <0.37	<0.44 <0.46	<0.22 <0.33	<0.22 <0.33	<0.22 <0.33	<0.25 <0.36	<0.30 <0.42	<0.15 <0.37
	Bromoform	µg/L	4.4	0.44	<0.46	<0.33	<0.45	<0.45	<4.0	<3.8	<0.37	<0.46	<0.35	<0.45	<0.45	<4.0	<3.8	<0.48
	Chlorobenzene	µg/L	NS	NS	<0.46	<0.26	<0.26	<0.26	<0.71	<0.86	<0.39	<0.46	<0.26	<0.26	<0.26	<0.71	<0.86	< 0.39
	Chloroform	µg/L	6	0.6	<0.43	<0.26	<0.26	<0.26	<1.3	<1.2	<0.37	<0.43	<0.26	<0.26	<0.26	<1.3	<1.2	< 0.37
	Chloromethane	µg/L	30	3	<1.9	< 0.54	1.17 J	<0.54	<2.2	<1.6	<0.32	<1.9	<0.54	<0.54	<0.54	<2.2	<1.6	<0.32
	cis-1,2-Dichloroethene	μg/L	70	7	55	34	18.3	1.66	19.4	11.6	22	2.4	3.5	0.93 J	3.5	2.5	1.6	1.1
	Ethylbenzene	μg/L	700	140	< 0.71	<0.26	<0.26	<0.26	< 0.32	< 0.33	<0.18	< 0.71	<0.26	<0.26	<0.26	< 0.32	< 0.33	< 0.18
VOCs	Hexachlorobutadiene	μg/L	NS	NS	<2.2	<1.34	<1.34	<1.34	<1.5	<2.7	< 0.45	<2.2	<1.34	<1.34	<1.34	<1.5	<2.7	< 0.45
	Isopropylbenzene	μg/L	NS	NS	<0.82	<0.78	<0.78	<0.78	<1.7	<1.0	< 0.39	< 0.82	<0.78	<0.78	< 0.78	<1.7	<1.0	< 0.39
	Methyl tert-butyl ether	μg/L	60	12	114	53	20.7	3.4	55	28.3	6.2	<1.1	<0.28	<0.28	<0.28	<1.2	<1.1	< 0.39
	Methylene Chloride	μg/L	5	0.5	<1.3	<1.32	<1.32	<1.32	<0.58	<0.32	3.0 J B	<1.3	<1.32	<1.32	<1.32	<0.58	< 0.32	3.3 J B
	Napthalene	μg/L	100	10	<1.6	<2.1	<2.1	<2.1	<1.2	<1.1	<0.34	<1.6	<2.1	<2.1	<2.1	<1.2	<1.1	<0.34
	n-Butylbenzene	µg/L	NS NC	NS NC	<1.0	<0.71	<0.71	< 0.71	<0.71	<0.86	<0.39	<1.0	<0.71	<0.71	<0.71	<0.71	<0.86	< 0.39
	N-Propylbenzene	μg/L	NS NS	NS NS	<0.77	< 0.61	<0.61	<0.61	< 0.81	<0.35	<0.41	<0.77	<0.61	< 0.61	<0.61	<0.81	<0.35	< 0.41
	p-isopropyltoluene sec-Butylbenzene	μg/L μg/L	NS NS	NS NS	<1.1 <1.2	<0.24	<0.24	<0.24 <0.79	<0.80 <0.85	<1.0 <0.42	<0.36	<1.1 <1.2	<0.24	<0.24	<0.24	<0.80	<0.42	<0.36
	Tetrachloroethene	μg/L μg/L	5	0.5	< 1.2 8.9	<0.79	3.8	0.55 J	5.1	<0.42 1.9	3.9	<0.74	<0.79	<0.79	<.38	<0.85	<0.42	<0.40
	Toluene	μg/L	800	160	<0.44	<0.19	<0.19	<0.19	<0.27	<0.29	<0.15	<0.44	<0.19	<0.19	<0.19	<0.27	<0.29	<0.15
	trans-1,2-Dichloroethene	µg/L	100	20	9.1	4.9	3.3	<0.34	3.3	2.2	5.7	<0.54	0.49 J	<0.34	0.47 J	0.76 J	< 0.53	< 0.35
	Trichloroethene	μg/L	5	0.5	53	25.8	24.1	2.22	20.6	11.4	30	20.6	3.02	2.43	2.24	8.4	2.0	3.8
	Trimethylbenzene, Total	μg/L	480	96	<3.1	<1.43	<1.43	<1.43	<1.71	<1.82		<3.1	<1.43	<1.43	<1.43	<1.71	<1.82	<0.61
	Vinyl chloride	μg/L	0.2	0.02	12.6	2.96	3.3	0.21 J	3.7	1.9	5.2	<0.17	<0.2	<0.2	<0.2	< 0.17	<0.17	<0.20
	Xylenes, Total	μg/L	2,000	400	<3.1	<0.72	<0.72	<0.72	< 0.73	<0.73	<0.22	<3.1	<0.72	<0.72	<0.72	< 0.73	< 0.73	<0.22
	1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)	ng/L	NS	NS					33	16	5.7					97	<7.9	<2.4
	Perfluorobutanesulfonic acid (PFBS)	ng/L	2000*	200*					7	7.4	10					12	8.8	6.2
	Perfluorobutanoic acid (PFBA)	ng/L	NS	NS					13	13	15					30	26	5.5
	Perfluoroheptane Sulfonate (PFHpS)	ng/L	NS NC	NS NC					10	7	8.1					4.3	9.7	2.9
	Perfluoroheptanoic Acid (PFHpA) Perfluoroheyanosulfonic acid (PEHyS)	ng/L	NS 10*	NS 1*					9.4	8.1	11					18 31	19 19	2.1 7.7
PFAS	Perfluorohexanesulfonic acid (PFHxS) Perfluorohexanoic acid (PFHxA)	ng/L ng/L	NS	NS					23 19	22 16	29 20					39	36	4.6
	Perfluorononanoic acid (PFNA)	ng/L	10*	1*					1.4 J	1.0 J	0.95 J					<4.0	0.77 J	0.51 J
	Perfluorooctane Sulfonate (PFOS)	ng/L	4*	0.4*					380	480	640					150	1,200	320
	Perfluoro-n-Octanoic acid (PFOA)	ng/L	4*	0.4*					10	8.4	9.7					19	1,200	2.8
	Perfluoropentanesulfonic acid (PFPeS)	ng/L	NS	NS					2.6 J	2.1 J	4.7					6.5	4.6	1.4 J
	Perfluoropentanoic Acid (PFPeA)	ng/L	NS	NS					31	26	26					20	37	6.3
	Chromium, Hexavalent, Dissolved	μg/L	0.07**	0.007**	<3.0	<2.0	<10		<73	<73		<3.0	<2.0	<10		<73	<73	17 B
										< 6.9		2.80 J		<2.41		< 6.9		
General Chemistry	Cyanide, lotai	μg/L	NS	NS	<3.0	<2.41	3.17 J		<6.9	< 0.9		2.6U J	<2.41	<2.41		₹0.9	8.0 J	

Page 1 of 11 4/4/2025

									Samp	le ID and Sampl	e Date				
	Detected Constituents	Units	NR 140, WAC ES	NR 140, WAC PAL				SMW-3					SM	W-4	
					06/16/15	03/22/18	06/26/18	10/12/18	01/27/21	05/13/21	03/21/24	06/16/15	03/22/18	06/26/18	10/12/18
	Arsenic, Dissolved	μg/L	10	1.0					<8.3	<13.2	2.1				
	Barium, Dissolved	μg/L	2,000	400					85.4	92.7	97				
	Cadmium, Dissolved	μg/L	5	0.5					<1.3	<1.3	<0.17				
	Chromium, Dissolved Copper, Dissolved	μg/L μg/L	100	10 130					<2.5 <3.4	3.6 J 15.6	<1.1				
Metals, Dissolved	Lead, Dissolved	μg/L	15	1.5					< 5.9	<6.4	<0.19				
	Manganese, Dissolved	µg/L	300	60					320	334					
	Nickel, Dissolved	μg/L	100	20					<2.6	6.4 J					
	Silver, Dissolved	μg/L	50	10					3.8 J		<0.12				
	Zinc, Dissolved	μg/L	5,000	2,500					<11.6	8.4 J					
	Benzo[a]anthracene	μg/L	NS	NS							<0.048				
	Benzo[a]pyrene	μg/L	0.2	0.02							<0.083				
	Benzo[b]fluoranthene	μg/L	0.2	0.02							<0.068				
	Benzo[g,h,i]perylene	μg/L	NS	NS							<0.31				
	Benzo[k]fluoranthene Chrysene	μg/L μg/L	NS 0.2	NS 0.02							<0.054 <0.057				
PAHs	Dibenz(a,h)anthracene	μg/L μg/L	NS	NS							<0.037				
17415	Fluoranthene	μg/L μg/L	400	80							<0.38				
	Fluorene	μg/L	400	80							<0.20				
	Indeno[1,2,3-cd]pyrene	μg/L	NS	NS							< 0.063				
	Methylnaphthalene, 2-	μg/L	NS	NS							< 0.055				
	Phenanthrene	μg/L	NS	NS							<0.25				
	Pyrene	μg/L	250	50							<0.36				
	1,1-Trichloroethane 1,1-Dichloroethene	μg/L	200	40 0.7	<8.4 <6.5	<3.3 <4.2	<3.3 <4.2	<3.3 <4.2	<2.4 <2.4	<3.0 <5.8	<0.38 <0.39	<0.84 <0.65	<0.33 <0.42	<0.33 <0.42	<0.33 <0.42
	1,1-Dichloroethene 1,2,4-Trimethylbenzene	μg/L μg/L	NS	NS	<0.5 <16	<4.2 <8.0	<4.2 <8.0	<4.2 <8.0	< 2.4	<5.8 <4.5	<0.39	<0.65 127	<0.42 54	<0.42 76	<0.42 100
	1,2-Dichloroethane	μg/L μg/L	5	0.5	<5.4	<2.5	<2.5	<2.5	<2.8	<2.9	<0.39	< 0.54	<0.25	<0.25	<0.25
	1,3,5-Trimethylbenzene	µg/L	NS	NS NS	<15	<6.3	<6.3	<6.3	<8.7	<3.6	<0.25	32	4.7	5.4	11.2
	1,3-Dichlorobenzene	μg/L	600	60	<5.2	<8.5	<8.5	<8.5	<6.3	<3.5	0.42 J	< 0.52	<0.85	<0.85	< 0.85
	1,4-Dichlorobenzene	μg/L	75	15	<4.9	<7.0	<7.0	<7.0	< 9.4	<8.9	< 0.36	< 0.49	< 0.7	< 0.7	< 0.7
	Benzene	μg/L	5	0.5	<4.4	<2.2	<2.2	<2.2	<2.5	<3.0	0.16 J	10.9	0.67 J	1.05	0.88
	Bromodichloromethane	μg/L	0.6	0.06	<4.6	<3.3	<3.3	<3.3	<3.6	<4.2	< 0.37	< 0.46	<0.33	<0.33	< 0.33
	Bromoform	μg/L	4.4	0.44	<4.6	<4.5	<4.5	<4.5	<39.7	<38	<0.48	<0.46	<0.45	<0.45	<0.45
	Chlorobenzene Chloroform	μg/L μg/L	NS 6	NS 0.6	<4.6 <4.3	<2.6 <2.6	<2.6 <2.6	<2.6 <2.6	<7.1 <12.7	<8.6 <11.8	<0.39 0.45 J	<0.46 <0.43	<0.26 <0.26	<0.26 <0.26	<0.26 <0.26
	Chloromethane	μg/L	30	3	<19	<5.4	6.7 J	<5.4	<21.9	<16.4	<0.32	<1.9	<0.54	<0.54	<0.26
	cis-1,2-Dichloroethene	µg/L	70	7	<4.5	<3.7	<3.7	<3.7	<2.7	<4.7	< 0.41	< 0.45	<0.37	<0.37	< 0.37
	Ethylbenzene	μg/L	700	140	<7.1	<2.6	<2.6	<2.6	<3.2	<3.3	<0.18	15	4.1	6.1	5.0
VOCs	Hexachlorobutadiene	μg/L	NS	NS	<22	<13.4	<13.4	<13.4	<14.6	<27.4	< 0.45	<2.2	<1.34	<1.34	<1.34
	Isopropylbenzene	μg/L	NS	NS	<8.2	<7.8	<7.8	<7.8	<16.9	<10	<0.39	20.8	14	20.1	19.5
	Methyl tert-butyl ether	μg/L	60	12	420	540	510	890	782	558	110	<1.1	<0.28	<0.28	<0.28
	Methylene Chloride	μg/L	5	0.5	<13	<13.2	<13.2	<13.2	<5.8	<3.2	3.4 J B	<1.3	<1.32	<1.32	<1.32
	Napthalene n-Butylbenzene	μg/L μg/L	100 NS	10 NS	<16 <10	<21 <7.1	<21 <7.1	<21 <7.1	<11.8 <7.1	<11.3 <8.6	<0.34 <0.39	30.3 9.0	7.8 5.0	7.6 7.8	10.8 8.6
	N-Propylbenzene	μg/L μg/L	NS	NS NS	<7.7	<6.1	<6.1	<6.1	<8.1	<3.5	<0.41	37	25.5	42	41
	p-Isopropyltoluene	μg/L	NS	NS	<11	<2.4	<2.4	<2.4	<8.0	<10.4	<0.36	1.35 J	0.24 J	0.48 J	0.37 J
	sec-Butylbenzene	μg/L	NS	NS	<12	<7.9	<7.9	<7.9	<8.5	<4.2	<0.40	12.3	12.9	16.6	17.9
	Tetrachloroethene	μg/L	5	0.5	<7.4	<3.8	<3.8	<3.8	<3.3	<4.1	< 0.37	< 0.74	<0.38	<0.38	<0.38
	Toluene	μg/L	800	160	<4.4	<1.9	<1.9	<1.9	<2.7	<2.9	<0.15	1.76	0.28 J	0.36 J	0.46 J
	trans-1,2-Dichloroethene	μg/L	100	20	< 5.4	<3.4	<3.4	<3.4	<4.6	<5.3	<0.35	< 0.54	<0.34	<0.34	<0.34
	Trichloroethene Trimethyllenzone Total	μg/L	5	0.5 96	<4.7	<3.0	< 3.0	<3.0	< 2.6	<3.2	<0.16	< 0.47	<0.3 58.7	< 0.3	<0.3 111.2
	Trimethylbenzene, Total Vinyl chloride	μg/L μg/L	0.2	0.02	<31 <1.7	<14.3 <2.0	<14.3 <2.0	<14.3 <2.0	<17.1 <1.7	<8.1 <1.7	<0.61 <0.20	159 <0.17	58.7 <0.2	81.4 <0.2	<0.2
	Xylenes, Total	μg/L μg/L	2,000	400	<31	<7.2	<7.2	<7.2	<7.3	<10.5	<0.22	198.05	13.1	25.24	32.55 J
	1H,1H,2H,Perfluorooctane sulfonic acid (6:2 FTS)	ng/L	NS NS	NS							<2.3				
	Perfluorobutanesulfonic acid (PFBS)	ng/L	2000*	200*							<0.18				
	Perfluorobutanoic acid (PFBA)	ng/L	NS	NS							<2.2				
	Perfluoroheptane Sulfonate (PFHpS)	ng/L	NS	NS							<0.17				
	Perfluoroheptanoic Acid (PFHpA)	ng/L	NS 10*	NS 1*							<0.23				
PFAS	Perfluorohexanesulfonic acid (PFHxS) Perfluorohexanoic acid (PFHxA)	ng/L ng/L	10* NS	1* NS							0.66 J <0.53				
	Perfluorononanoic acid (PFNA)	ng/L	10*	1*							<0.55				
	Perfluorooctane Sulfonate (PFOS)	ng/L	4*	0.4*							1.3 J				
	Perfluoro-n-Octanoic acid (PFOA)	ng/L	4*	0.4*							<0.78				
	Perfluoropentanesulfonic acid (PFPeS)	ng/L	NS	NS							<0.27				
	Perfluoropentanoic Acid (PFPeA)	ng/L	NS	NS							< 0.45				
	Chromium, Hexavalent, Dissolved	μg/L	0.07**	0.007**					<73	<37					
General Chemistry	Cyanide, Total	μg/L	NS	NS					< 6.9	< 6.9					
Contra Charmany	Cyanide, Amenable	μg/L	200	40											

											Sample ID a	nd Sample Date						
	Detected Constituents	Units	NR 140, WAC ES	NR 140, WAC PAL				SN	1W-5					SMW-6			SMW-7	
					06/16/15	03/22/18	06/26/18	10/12/18	01/27/21	05/13/21	03/21/24	3/21/2024 DUP	01/27/21	05/13/21	03/21/24	01/27/21	05/13/21	03/21/24
	Arsenic, Dissolved	μg/L	10	1.0					<8.3	<13.2	0.30 J	0.32 J	<8.3	<13.2	0.24 J	<8.3	<13.2	0.56 J
	Barium, Dissolved	μg/L	2,000	400					28.3	40.6	30	31	98.2	95.1	85	113	58.5	47
	Cadmium, Dissolved	μg/L	5	0.5					<1.3	<1.3	0.89	0.79	<1.3	<1.3	< 0.17	<1.3	<1.3	< 0.17
	Chromium, Dissolved	μg/L	100	10					<2.5	238	2.5 J	2.6 J	<2.5	<2.5	<1.1	<2.5	<2.5	<1.1
Metals, Dissolved	Copper, Dissolved	μg/L	1,300	130 1.5		<0.9			<3.4 <5.9	6.0 J			<3.4	<2.5		<3.4	<2.5	
	Lead, Dissolved Manganese, Dissolved	μg/L μg/L	15 300	60	<0.7	<0.9	<0.9		<5.9 4.6 J	<6.4 <1.1	<0.19	<0.19	<5.9 712	<6.4 517	<0.19	<5.9 231	<6.4 119	<0.19
	Nickel, Dissolved	µg/L	100	20					20	73.8			2.7 J	<3.0		4.6 J	<3.0	
	Silver, Dissolved	μg/L	50	10					<3.2		<0.12	<0.12	<3.2		<0.12	<3.2		<0.12
	Zinc, Dissolved	μg/L	5,000	2,500					11.6 J	21.9 J			<11.6	<2.9		<11.6	<2.9	
	Benzo[a]anthracene	μg/L	NS	NS							< 0.051	< 0.048			< 0.047			0.18
	Benzo[a]pyrene	μg/L	0.2	0.02							< 0.089	< 0.084			<0.082			0.11 J
	Benzo[b]fluoranthene	μg/L	0.2	0.02							< 0.073	< 0.069			<0.067			0.14 J
	Benzo[g,h,i]perylene	μg/L	NS	NS							< 0.34	< 0.32			< 0.31			< 0.31
	Benzo[k]fluoranthene	μg/L	NS	NS							<0.058	< 0.054			<0.053			0.13 J
DALIs	Chrysene	μg/L	0.2	0.02							<0.062	< 0.058			<0.056			0.13 J
PAHs	Dibenz(a,h)anthracene Fluoranthene	μg/L μg/L	NS 400	NS 80							<0.046 <0.41	<0.043 <0.39			<0.042 <0.37			0.12 J <0.37
	Fluorene	µg/L	400	80							<0.22	<0.21			<0.20			<0.20
	Indeno[1,2,3-cd]pyrene	µg/L	NS	NS							<0.068	<0.064			<0.062			0.14 J
	Methylnaphthalene, 2-	μg/L	NS	NS							< 0.059	< 0.055			<0.054			< 0.053
	Phenanthrene	μg/L	NS	NS							<0.27	<0.26			<0.25			<0.25
	Pyrene	μg/L	250	50							<0.39	<0.36			<0.35			< 0.35
	1,1,1-Trichloroethane	μg/L	200	40	<0.84	<3.3	< 0.33	<0.33	<0.24	<3.0	<0.38	<0.38	<0.24	<0.30	<0.38	<0.24	<0.30	<0.38
	1,1-Dichloroethene 1,2,4-Trimethylbenzene	μg/L μg/L	7 NS	0.7 NS	<0.65 <1.6	<4.2 <8.0	<0.42 <0.8	<0.42 <0.8	0.67J <0.84	<5.8 <4.5	0.73 J <0.36	0.89 J <0.36	<0.24 <0.84	<0.58 <0.45	<0.39 <0.36	<0.24 <0.84	<0.58 <0.45	<0.39 <0.36
	1,2,4-mmetryibenzene 1,2-Dichloroethane	μg/L	5	0.5	<0.54	<2.5	<0.25	<0.25	<0.28	<2.9	<0.39	<0.39	<0.28	<0.29	<0.39	<0.28	<0.29	<0.39
	1,3,5-Trimethylbenzene	µg/L	NS	NS	<1.5	<6.3	< 0.63	<0.63	<0.87	<3.6	<0.25	<0.25	<0.87	< 0.36	<0.25	<0.87	<0.36	<0.25
	1,3-Dichlorobenzene	μg/L	600	60	< 0.52	<8.5	<0.85	<0.85	< 0.63	<3.5	<0.40	< 0.40	<0.63	< 0.35	<0.40	<0.63	< 0.35	<0.40
	1,4-Dichlorobenzene	μg/L	75	15	< 0.49	<7.0	< 0.7	< 0.7	< 0.94	<8.9	< 0.36	< 0.36	< 0.94	< 0.89	< 0.36	< 0.94	<0.89	< 0.36
	Benzene	μg/L	5	0.5	< 0.44	<2.2	<0.22	<0.22	<0.25	<3.0	<0.15	<0.15	<0.25	< 0.30	<0.15	<0.25	<0.30	<0.15
	Bromodichloromethane	μg/L	0.6	0.06	< 0.46	<3.3	<0.33	<0.33	<0.36	<4.2	<0.37	< 0.37	<0.36	< 0.42	<0.37	<0.36	<0.42	< 0.37
	Bromoform	μg/L	4.4	0.44	<0.46	<4.5	<0.45	<0.45	<4.0	<38	<0.48	<0.48	<4.0	<3.8	<0.48	<4.0	<3.8	<0.48
	Chlorobenzene Chloroform	μg/L μg/L	NS 6	NS 0.6	<0.46 <0.43	<2.6 <2.6	<0.26 <0.26	<0.26 <0.26	<0.71 <1.3	<8.6 <11.8	<0.39 <0.37	<0.39 <0.37	<0.71 <1.3	<0.86 <1.2	<0.39 <0.37	<0.71 <1.3	<0.86 <1.2	<0.39 <0.37
	Chloromethane	µg/L	30	3	<1.9	<5.4	<0.54	<0.54	<2.2	<16.4	<0.32	<0.32	<2.2	<1.6	<0.32	<2.2	<1.6	<0.32
	cis-1,2-Dichloroethene	µg/L	70	7	98	151	53	38	140	126	160	160	0.40 J	< 0.47	0.59 J	11.3	5.3	17
	Ethylbenzene	μg/L	700	140	< 0.71	<2.6	< 0.26	<0.26	< 0.32	<3.3	<0.18	<0.18	< 0.32	< 0.33	<0.18	< 0.32	< 0.33	<0.18
VOCs	Hexachlorobutadiene	μg/L	NS	NS	<2.2	<13.4	<1.34	<1.34	<1.5	<27.4	< 0.45	<0.45	<1.5	<2.7	<0.45	<1.5	<2.7	< 0.45
	Isopropylbenzene	μg/L	NS	NS	< 0.82	<7.8	<0.78	<0.78	<1.7	<10	< 0.39	< 0.39	<1.7	<1.0	< 0.39	<1.7	<1.0	< 0.39
	Methyl tert-butyl ether	μg/L	60	12	<1.1	<2.8	<0.28	<0.28	<1.2	<11.3	<0.39	<0.39	21.1	19.9	9.9	4.7	<1.1	<0.39
	Methylene Chloride Napthalene	μg/L	5 100	0.5	<1.3 <1.6	<13.2 <21	<1.32 <2.1	<1.32 <2.1	<0.58 <1.2	<3.2 <11.3	3.2 J B <0.34	3.2 J B <0.34	<0.58 <1.2	<0.32 <1.1	3.3 J B <0.34	<0.58 <1.2	<0.32 <1.1	3.0 J B <0.34
	n-Butylbenzene	μg/L μg/L	NS	NS NS	<1.0	<7.1	<0.71	<0.71	<0.71	<8.6	<0.34	<0.39	<0.71	<0.86	<0.34	<0.71	<0.86	<0.34
	N-Propylbenzene	µg/L	NS NS	NS	<0.77	<6.1	<0.61	<0.61	<0.81	<3.5	< 0.41	<0.41	<0.81	< 0.35	<0.41	<0.81	<0.35	< 0.41
	p-Isopropyltoluene	μg/L	NS	NS	<1.1	<2.4	< 0.24	< 0.24	<0.80	<10.4	< 0.36	< 0.36	<0.80	<1.0	< 0.36	<0.80	<1.0	< 0.36
	sec-Butylbenzene	μg/L	NS	NS	<1.2	< 7.9	< 0.79	< 0.79	<0.85	<4.2	< 0.40	< 0.40	<0.85	< 0.42	<0.40	<0.85	< 0.42	< 0.40
	Tetrachloroethene	μg/L	5	0.5	44	22.9	36	37	26.5	27.9	23	23	<0.33	< 0.41	< 0.37	0.53 J	1.4	0.90 J
	Toluene	μg/L	800	160	<0.44	<1.9	<0.19	<0.19	<0.27	<2.9	<0.15	< 0.15	<0.27	<0.29	<0.15	<0.27	<0.29	<0.15
	trans-1,2-Dichloroethene	μg/L	100 5	20 0.5	25.4	91 480	14.3	10.1	146	112	200	190	<0.46	< 0.53	<0.35	2.3	0.85 J	2.2
	Trichloroethene Trimethylbenzene, Total	μg/L μg/L	480	96	<3.1	<14.3	<1.43	<1.43	<1.71	<8.1	<0.61	<0.61	<0.26 <1.71	<0.32 <1.82	0.37 J <0.61	<1.71	<1.82	<0.61
	Vinyl chloride	µg/L µg/L	0.2	0.02	<0.17	<2.0	<0.2	<0.2	0.69 J	<1.7	<0.01	<0.20	<0.17	<0.17	<0.20	<0.17	<0.17	<0.01
	Xylenes, Total	μg/L	2,000	400	<3.1	<7.2	<0.72	<0.72	<0.73	<10.5	<0.22	<0.22	<0.73	<0.73	<0.22	<0.73	<0.73	<0.22
	1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)	ng/L	NS	NS					<7.1	61	5.7	4.1 J			<2.5			<2.3
	Perfluorobutanesulfonic acid (PFBS)	ng/L	2000*	200*					2.6 J	92	11	9.1			<0.20			2.0
	Perfluorobutanoic acid (PFBA)	ng/L	NS	NS					6.8	150	18	18			<2.4			3.4 J
	Perfluoroheptane Sulfonate (PFHpS)	ng/L	NS	NS NC					16	13 J	16	17			<0.19			1.0 J
	Perfluoroheptanoic Acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS)	ng/L ng/L	NS 10*	NS 1*					2.7 J 12	120 64	15 27	13 25			<0.25 1.4 J			2.6 5.2
PFAS	Perfluoronexanesuironic acid (PFHxs) Perfluoronexanoic acid (PFHxA)	ng/L ng/L	NS	NS					5.1	270	27	25			< 0.57			3.0
	Perfluorononanoic acid (PFNA)	ng/L	10*	1*					<3.5	<20	0.88 J	0.67 J			<0.27			< 0.25
	Perfluorooctane Sulfonate (PFOS)	ng/L	4*	0.4*					1,700	1,300	1,900	2,400			1.6 J			45
	Perfluoro-n-Octanoic acid (PFOA)	ng/L	4*	0.4*					5.7	26	15	13			<0.83			2.3
	Perfluoropentanesulfonic acid (PFPeS)	ng/L	NS	NS					1.4 J	17 J	3.5	3.5			<0.29			0.69 J
	Perfluoropentanoic Acid (PFPeA)	ng/L	NS	NS					5.8	340	47	48			<0.48			3.3
0 10:	Chromium, Hexavalent, Dissolved	μg/L	0.07**	0.007**	214	<2.0	20 J	20 J	<73	210	7.0 J B	8.3 J B	<73	<180		<73	<73	
General Chemistry	Cyanide, Total	μg/L	NS 200	NS 40	18.7	8.11	35.3	33.5	12 J	78	21		<6.9	<6.9		<6.9	<6.9	
	Cyanide, Amenable	μg/L	200	40							16							

Table 1 - Historic Summary of Detected Constituents in Groundwater Former Chilton Plating Co. BRRTS No. 02-080000040 (Open ERP)

												Sample ID and	d Sample Date							
	Detected Constituents	Units	NR 140, WAC ES	NR 140, WAC PAL	01/27/21	SPZ-1	02/21/24	07/07/00	10/2//00	02/01/04	12/21/04	10/05/05	11/0//12	MW-2/CPMW02		0//2//10	10/12/10	01/07/01	05 /12 /21	02/21/24
	Arsenic, Dissolved	μg/L	10	1.0	01/27/21 <8.3	05/13/21 <13.2	03/21/24	07/07/92	10/26/99	03/01/04	12/21/04	10/25/05	11/06/13	06/06/15	03/22/18	06/26/18	10/12/18	01/27/21 <8.3	05/13/21 <13.2	03/21/24 0.29 J
	Barium, Dissolved	µg/L	2,000	400	223	249	250											79.7	78	95
	Cadmium, Dissolved	μg/L	5	0.5	<1.3	<1.3	< 0.17											<1.3	<1.3	0.18 J
	Chromium, Dissolved	μg/L	100	10	<2.5	<2.5	<1.1		36	<1.6	67.6	61.8						66.3	79.2	82
Metals, Dissolved	Copper, Dissolved	μg/L	1,300	130	<3.4	<2.5												<3.4	<2.5	
ivietais, Dissolved	Lead, Dissolved	μg/L	15	1.5	<5.9	<6.4	0.21 J						<0.7	<0.7	<0.9			<5.9	<6.4	<0.19
	Manganese, Dissolved Nickel, Dissolved	μg/L	300 100	60	<2.6	<3.0		1/0	210	201	227	212	68.3					1.9 J	<1.1	
	Silver, Dissolved	μg/L μg/L	50	10	<2.6 3.6 J	<3.0	<0.12	100	310	291		213						<3.2	NA	<0.12
	Zinc, Dissolved	µg/L	5,000	2,500			10.12	<10	<10		4.0									VO.12
	Benzo[a]anthracene	μg/L	NS	NS	<11.6	<2.9	<0.048	< 10	<10	<5.0	4.0	4.3						<11.6	<2.9	<0.049
	Benzo[a]pyrene	μg/L	0.2	0.02			<0.084													<0.085
	Benzo[b]fluoranthene	μg/L	0.2	0.02			<0.069													<0.069
	Benzo[g,h,i]perylene	μg/L	NS	NS			< 0.32													< 0.32
	Benzo[k]fluoranthene	μg/L	NS	NS			< 0.054													< 0.055
	Chrysene	μg/L	0.2	0.02			<0.058													<0.058
PAHs	Dibenz(a,h)anthracene	μg/L	NS 400	NS			<0.043													<0.044
	Fluoranthene	μg/L	400 400	80 80			<0.39 <0.21													<0.39 <0.21
	Fluorene Indeno[1,2,3-cd]pyrene	μg/L μg/L	NS NS	NS			<0.21													<0.21
	Methylnaphthalene, 2-	μg/L	NS	NS NS			<0.055													<0.056
	Phenanthrene	μg/L	NS	NS			<0.26													<0.26
	Pyrene	μg/L	250	50			< 0.36													< 0.37
	1,1,1-Trichloroethane	μg/L	200	40	<0.24	< 0.30	<0.38						< 0.33	<0.84	< 0.33	< 0.33	<0.33	<0.24	< 0.30	<0.38
	1,1-Dichloroethene	μg/L	7	0.7	<0.24	<0.58	< 0.39		<0.15	<0.5	<0.5	<0.5	<0.3	<0.65	<0.42	< 0.42	<0.42	<0.24	<0.58	< 0.39
	1,2,4-Trimethylbenzene	μg/L	NS	NS	<0.84	< 0.45	<0.36						<2.2	<1.6	<0.8	<0.8	<0.8	<0.84	< 0.45	<0.36
	1,2-Dichloroethane	μg/L	5 NS	0.5	<0.28 <0.87	<0.29 <0.36	<0.39 <0.25		<0.15	<0.4	<0.5	<0.4	<0.41	<0.54 <1.5	<0.25 <0.63	<0.25 <0.63	<0.25 <0.63	<0.28 <0.87	<0.29 <0.36	<0.39 <0.25
	1,3,5-Trimethylbenzene 1.3-Dichlorobenzene	μg/L μg/L	600	NS 60	<0.63	<0.35	<0.25						<0.28	<0.52	<0.85	<0.85	<0.85	<0.63	< 0.35	<0.25 0.67 J
	1,4-Dichlorobenzene	µg/L	75	15	< 0.94	< 0.89	<0.36						<0.3	< 0.49	<0.7	<0.7	<0.7	<0.94	< 0.89	<0.36
	Benzene	μg/L	5	0.5	< 0.25	< 0.30	< 0.15						<0.24	< 0.44	<0.22	<0.22	<0.22	< 0.25	< 0.30	< 0.15
	Bromodichloromethane	μg/L	0.6	0.06	< 0.36	< 0.42	< 0.37		< 0.13	< 0.83	<0.83	< 0.3	< 0.37	< 0.46	< 0.33	< 0.33	< 0.33	< 0.36	< 0.42	< 0.37
	Bromoform	μg/L	4.4	0.44	<4.0	<3.8	<0.48			< 0.44	< 0.44	< 0.44	< 0.35	< 0.46	< 0.45	< 0.45	< 0.45	<4.0	<3.8	<0.48
	Chlorobenzene	μg/L	NS .	NS	<0.71	<0.86	<0.39		<0.15	<0.7	<0.7	<0.7	<0.24	<0.46	<0.26	<0.26	<0.26	<0.71	<0.86	<0.39
	Chloroform	μg/L	6 30	0.6	<1.3	<1.2 <1.6	<0.37 <0.32		<0.14	<0.4	<0.4	<0.2	<0.28	<0.43 <1.9	<0.26 <0.54	<0.26 <0.54	<0.26 <0.54	<1.3	<1.2 <1.6	<0.37 <0.32
	Chloromethane cis-1,2-Dichloroethene	μg/L μg/L	70	3 7	<2.2 1.0	1.0	0.84 J		7.98	<0.4	22.5	58.7	<0.81 22.6	21.9	35	20.6	1.59	<2.2 13.3	6.0	19
	Ethylbenzene	μg/L	700	140	<0.32	<0.33	<0.18				22.3	36.7	< 0.55	<0.71	<0.26	<0.26	<0.26	<0.32	<0.33	<0.18
VOCs	Hexachlorobutadiene	μg/L	NS	NS	<1.5	<2.7	< 0.45						<1.5	<2.2	<1.34	<1.34	<1.34	<1.5	<2.7	< 0.45
	Isopropylbenzene	μg/L	NS	NS	<1.7	<1.0	< 0.39						< 0.3	<0.82	<0.78	<0.78	<0.78	<1.7	<1.0	< 0.39
	Methyl tert-butyl ether	μg/L	60	12	3.5 J	3.3 J	1.9		< 0.3	<0.3	<0.3	<0.3	< 0.23	<1.1	12.5	<0.28	<0.28	1.5 J	<1.1	< 0.39
	Methylene Chloride	μg/L	5	0.5	<0.58	< 0.32	3.2 J B		< 0.39	<0.5	<0.5	<0.3	<0.5	<1.3	<1.32	<1.32	<1.32	<0.58	<0.32	3.3 JB
	Napthalene	μg/L	100	10	<1.2	<1.1	<0.34						<0.023	<1.6	<2.1	<2.1	<2.1	<1.2	<1.1	<0.34
	n-Butylbenzene N-Propylbenzene	μg/L μg/L	NS NS	NS NS	<0.71 <0.81	<0.86 <0.35	<0.39 <0.41						<0.35 <0.25	<1.0 <0.77	<0.71 <0.61	<0.71 <0.61	<0.71 <0.61	<0.71 <0.81	<0.86 <0.35	<0.39 <0.41
	p-Isopropyltoluene	μg/L	NS NS	NS NS	<0.80	<1.0	<0.36						<0.23	<1.1	<0.24	<0.24	<0.24	<0.80	<1.0	<0.36
	sec-Butylbenzene	μg/L	NS	NS	<0.85	<0.42	< 0.40		<0.15	< 0.4	< 0.4	< 0.4	<0.33	<1.2	< 0.79	<0.79	< 0.79	< 0.85	< 0.42	< 0.40
	Tetrachloroethene	μg/L	5	0.5	< 0.33	< 0.41	< 0.37		4.57	2.46	3.77	5.77	1.35	1.56 J	1.18 J	2.08	<0.19	2.1	2.3	5.3
	Toluene	μg/L	800	160	<0.27	<0.29	<0.15					<0.3	< 0.69	<0.44	<0.19	<0.19	<0.19	<0.27	<0.29	<0.15
	trans-1,2-Dichloroethene	μg/L	100	20	<0.46	< 0.53	< 0.35		0.867	<0.39	0.521	2.37	0.53 J	<0.54	1.83	0.61 J	<0.34	0.54 J	< 0.53	0.60 J
	Trichloroethene	μg/L	5	0.5	0.48 J	< 0.32	<0.16	23	3.55	<0.5	57.6	172	62	76	41	42	3.8	27.6	27.8	33
	Trimethylbenzene, Total Vinyl chloride	μg/L μg/L	0.2	96 0.02	<1.71 <0.17	<1.82 <0.17	<0.61 <0.20		0.122	<0.4	<0.2	<0.2	<3.6 <0.18	<3.1	<1.43 <0.2	<1.43 <0.2	<1.43 <0.2	<1.71 <0.17	<1.82 <0.17	<0.61 <0.20
	Virgi Chionde Xvlenes, Total	μg/L μα/L	2.000	400	<0.17	<0.17	<0.20			<0.4	<0.2	<0.62	<1.32	<3.1	<0.72	<0.72	<0.72	<0.17	<0.17	<0.20
	1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)	ng/L	NS	NS			<2.3											2.8 J	24 J	<2.3
	Perfluorobutanesulfonic acid (PFBS)	ng/L	2000*	200*			0.83 J											3.7	8.4 J	12
	Perfluorobutanoic acid (PFBA)	ng/L	NS	NS			<2.2											12	52	21
	Perfluoroheptane Sulfonate (PFHpS)	ng/L	NS	NS			<0.18											3.7	6.5 J	7.0
	Perfluoroheptanoic Acid (PFHpA)	ng/L	NS 10*	NS 1*			<0.23 <0.53											8.7	25 17 J **	9.0
PFAS	Perfluorohexanesulfonic acid (PFHxS) Perfluorohexanoic acid (PFHxA)	ng/L ng/L	10* NS	1* NS			<0.53											12	64	24 25
	Perfluorononanoic acid (PFNA)	ng/L	10*	1*			<0.25											<3.5	<19	0.70 J
	Perfluorooctane Sulfonate (PFOS)	ng/L	4*	0.4*			1.5 J											950	860	830
	Perfluoro-n-Octanoic acid (PFOA)	ng/L	4*	0.4*			<0.79											4.6	12 J **	9.1
	Perfluoropentanesulfonic acid (PFPeS)	ng/L	NS	NS			<0.28											1.4 J	2.9 J	4.4
	Perfluoropentanoic Acid (PFPeA)	ng/L	NS	NS			<0.46											11	96	30
0	Chromium, Hexavalent, Dissolved	μg/L	0.07**	0.007**	<37	<37	16 B						62.7	82	42	80	20 J	59	80	89 B
General Chemistry	Cyanide, Total	μg/L	NS	NS 40	<6.9	<6.9		5.0						10.4	<2.41	7.15 J	13	<6.9	7.6 J	
	Cyanide, Amenable	μg/L	200	40																

See notes on last page

Page 4 of 11

Table 1 - Historic Summary of Detected Constituents in Groundwater Former Chilton Plating Co. BRRTS No. 02-080000040 (Open ERP)

											Samp	ple ID and Samp	le Date						
	Detected Constituents	Units	NR 140, WAC ES	NR 140, WAC PAL								MW-3/CPMW0	3						
					07/07/92	10/26/99	03/01/04	12/21/04	10/25/05	11/06/13	06/06/15	03/22/18	06/26/18	10/12/18	01/27/21	1/27/2021 DUP	05/13/21	5/13/2021 DUP	03/21/24
	Arsenic, Dissolved	μg/L	10	1.0						1.1 J					<8.3		<13.2		0.84 J
	Barium, Dissolved	μg/L	2,000	400						88.2					86.9		72.2		69
	Cadmium, Dissolved	μg/L	5	0.5						<0.5					<1.3		<1.3		<0.17
	Chromium, Dissolved	μg/L	100	10		<1.1	<1.6	13.2	16.2						65.8		78.8		68
Metals, Dissolved	Copper, Dissolved	μg/L	1,300	130											3.6 J		<2.5		
	Lead, Dissolved Manganese. Dissolved	μg/L μg/L	15 300	1.5						<0.7	<0.7	<0.9			<5.9 44.9		<6.4 68.6		<0.19
	Nickel, Dissolved	µg/L µg/L	100	20	120	68	53.3	26.4	32.1						17.9		17.3		
	Silver, Dissolved	µg/L	50	10						<10.3					<3.2		NA NA		<0.12
	Zinc, Dissolved	μg/L	5,000	2,500	<10	<0.010	<5.0	2.6	2.4						<11.6		<2.9		
	Benzo[a]anthracene	µg/L	NS	NS				2.0	2.7	<0.025									< 0.047
	Benzo[a]pyrene	μg/L	0.2	0.02						<0.018									<0.082
	Benzo[b]fluoranthene	μg/L	0.2	0.02						< 0.02									< 0.067
	Benzo[g,h,i]perylene	μg/L	NS	NS						< 0.023									< 0.31
	Benzo[k]fluoranthene	μg/L	NS	NS						<0.027									< 0.053
0.411	Chrysene	μg/L	0.2	0.02						<0.018									<0.057
PAHs	Dibenz(a,h)anthracene	μg/L μg/L	NS 400	NS 80						<0.023 <0.026									<0.042 <0.38
	Fluoranthene Fluorene	μg/L μg/L	400	80						<0.026									<0.38
	Indeno[1,2,3-cd]pyrene	µg/L	NS NS	NS						<0.027									<0.062
	Methylnaphthalene, 2-	µg/L	NS	NS						<0.016									<0.054
	Phenanthrene	μg/L	NS	NS						<0.018									<0.25
	Pyrene	μg/L	250	50						<0.025									< 0.35
	1,1,1-Trichloroethane	μg/L	200	40						< 0.33	<8.4	<3.3	<3.3	< 0.33	<2.4		<3.0	<0.30	<0.38
	1,1-Dichloroethene	μg/L	7	0.7		<0.15	1.14	<10	<10	<0.4	<6.5	<4.2	<4.2	<0.42	<2.4		<5.8	<0.58	1.8
	1,2,4-Trimethylbenzene 1,2-Dichloroethane	μg/L μg/L	NS 5	NS 0.5		<3.0	<0.4	<8.0	<8.0	<2.2 <0.41	<16 <5.4	<8.0 <2.5	<8.0 <2.5	<0.8 <0.25	<8.4 <2.8		<4.5 <2.9	<0.45 <0.29	<0.36 <0.39
	1.3.5-Trimethylbenzene	µg/L	NS	NS						<1.4	<15	<6.3	<6.3	<0.63	<8.7		<3.6	<0.36	<0.25
	1.3-Dichlorobenzene	ua/L	600	60						<0.28	<5.2	<8.5	<8.5	< 0.85	<6.3		<3.5	< 0.35	<0.40
	1,4-Dichlorobenzene	μg/L	75	15						<0.3	<4.9	<7.0	<7.0	<0.7	<9.4		<8.9	<0.89	<0.36
	Benzene	μg/L	5	0.5						<0.24	< 4.4	<2.2	<2.2	<0.22	<2.5		<3.0	< 0.30	< 0.15
	Bromodichloromethane	μg/L	0.6	0.06		< 0.13	<0.83	<16.6	<6.0	< 0.37	<4.6	<3.3	<3.3	< 0.33	<3.6		<4.2	< 0.42	< 0.37
	Bromoform	μg/L	4.4	0.44			<0.44	<8.8	<8.8	< 0.35	<4.6	<4.5	<4.5	< 0.45	<39.7		<38	<3.8	<0.48
	Chlorobenzene	μg/L	NS	NS		<3.0	<0.7	<14	<14	<0.24	<4.6	<2.6	<2.6	<0.26	<7.1		<8.6	<0.86	<0.39
	Chloroform Chloromethane	μg/L μg/L	6 30	0.6		<0.14	<0.4	<8.0	<4.0	<0.28 <0.81	<4.3 <19	<2.6 <5.4	<2.6 <5.4	<0.26 <0.54	<12.7 <21.9		<11.8 <16.4	<1.2 <1.6	<0.37 <0.32
	cis-1,2-Dichloroethene	µg/L	70	7		296	477	345	495	15.5	303	210	330	18.9	234		271	6.0	330
	Ethylbenzene	µg/L	700	140						< 0.55	<7.1	<2.6	<2.6	<0.26	<3.2		<3.3	< 0.33	<0.18
VOCs	Hexachlorobutadiene	μg/L	NS	NS						<1.5	<22	<13.4	<13.4	<1.34	<14.6		<27.4	<2.7	< 0.45
	Isopropylbenzene	μg/L	NS	NS						< 0.3	<8.2	<7.8	<7.8	<0.78	<16.9		<10	<1.0	< 0.39
	Methyl tert-butyl ether	μg/L	60	12		<6.0	< 0.3	<6.0	<6.0	2.12	106	52	27.4	2.75	61.8		66	<1.1	< 0.39
	Methylene Chloride	μg/L	5	0.5		<7.8	<0.5	<10	<6.0	<0.5	<13	<13.2	<13.2	<1.32	<5.8		<3.2	<0.32	3.0 J B
	Napthalene	μg/L	100	10						<0.023	<16	<21	<21	<2.1	<11.8		<11.3	<1.1	<0.34
	n-Butylbenzene N-Propylbenzene	μg/L μg/L	NS NS	NS NS						<0.35 <0.25	<10 <7.7	<7.1 <6.1	<7.1 <6.1	<0.71 <0.61	<7.1 <8.1		<8.6 <3.5	<0.86 <0.35	<0.39 <0.41
	p-Isopropyltoluene	µg/L ua/L	NS NS	NS NS						<0.25	<1.7	<2.4	<2.4	<0.24	<8.0		<10.4	<1.0	<0.41
	sec-Butylbenzene	µg/L	NS	NS NS		<3.0	<0.4	<8.0	<8.0	<0.33	<12	<7.9	<7.9	<0.79	<8.5		<4.2	<0.42	<0.40
	Tetrachloroethene	μg/L	5	0.5		4.59	2.67	<9.0	<9.0	<0.33	<7.4	<3.8	<3.8	<0.19	<3.3		<4.1	<0.41	<0.37
	Toluene	μg/L	800	160					<0.3	<0.69	<4.4	<1.9	<1.9	< 0.19	<2.7		<2.9	<0.29	<0.15
	trans-1,2-Dichloroethene	μg/L	100	20		28.8	43	45.5	76.3	2.6	61	85	95	6.7	118		122	<0.53	200
	Trichloroethene	μg/L	5	0.5	84	46.2	42.7	109	181	49	770	760	1,110	83	759		758	<0.32	500
	Trimethylbenzene, Total	μg/L	0.2	96 0.02		17	26.4	<4.0	7 34	<3.6 <0.18	<31 8.4	<14.3 <2.0	<14.3	<1.43	<17.1		<8.1 4.6.J	<1.82 <0.17	<0.61
	Vinyl chloride Xvlenes. Total	μg/L ua/L	2.000	400			26.4	<4.0	<12.4	<0.18	<31	<2.0 <7.2	<7.2	<0.72	4.3 J <7.3		4.6 J <10.5	<0.17	<0.22
	1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)	ng/L	NS	NS NS											27	2.2 J	72 S		120
	Perfluorobutanesulfonic acid (PFBS)	ng/L	2000*	200*											23	3.1 J	34		22
	Perfluorobutanoic acid (PFBA)	ng/L	NS	NS											21	12	28		29
	Perfluoroheptane Sulfonate (PFHpS)	ng/L	NS	NS											16	4	20		26
	Perfluoroheptanoic Acid (PFHpA)	ng/L	NS	NS											12	3.8	18 J		24
PFAS	Perfluorohexanesulfonic acid (PFHxS)	ng/L	10*	1*											35	8.1	45		53
	Perfluoronexanoic acid (PFHxA) Perfluoronexanoic acid (PFNA)	ng/L	NS 10*	NS 1*											33 <3.6	12	49 <19		56 0.70
	Perfluorononanoic acid (PFNA) Perfluorooctane Sulfonate (PFOS)	ng/L ng/L	10 [^]	0.4*											<3.6 760	<3.5 850	< 19 1,100 S		0.70 1,500
	Perfluoro-n-Octanoic acid (PFOA)	ng/L	4*	0.4*											15	4.1	23		25
	Perfluoropentanesulfonic acid (PFPeS)	ng/L	NS	NS NS											6	1.2 J	8.3 J		7.7
	Perfluoropentanoic Acid (PFPeA)	ng/L	NS	NS											43	11	65		98
	Chromium, Hexavalent, Dissolved	μg/L	0.07**	0.007**						293	263	206	60	<10	58		87		78 B
General Chemistry	Cyanide, Total	μg/L	NS	NS	15						2.11 J	<2.41	<2.41		<6.9		8.0 J		
	Cyanide, Amenable	μg/L	200	40															

See notes on last page

Page 5 of 11 4/4/2025

											Sample ID an	nd Sample Date						
	Detected Constituents	Units	NR 140, WAC ES	NR 140, WAC PAL							MW-4A/0	CPMW04A						
					07/07/92	10/26/99	03/01/04	12/21/04	10/25/05	11/06/13	06/06/15	03/22/18	06/26/18	10/12/18	01/27/21	1/27/2021 DUP	05/13/21	03/21/24
	Arsenic, Dissolved	μg/L	10	1.0						<0.6					<8.3		<13.2	0.29 J
	Barium, Dissolved Cadmium, Dissolved	μg/L μg/L	2,000 5	400 0.5						34.7 <0.5					54.8 <1.3		55.4 <1.3	62 <0.17
	Chromium, Dissolved	µg/L	100	10		<1.1	<1.6	5.3	5.5						5.4 J		2.6 J	2.1 J
	Copper, Dissolved	μg/L	1,300	130											<3.4		<2.5	
Metals, Dissolved	Lead, Dissolved	μg/L	15	1.5						<0.7	< 0.7	<0.9			<5.9		<6.4	<0.19
	Manganese, Dissolved	μg/L	300	60						385					2.4 J		<1.1	
	Nickel, Dissolved Silver, Dissolved	μg/L μg/L	100 50	20 10	2.4	4	<3.0	1.3	5.5	<10.3					3.9 J <3.2		<3.0	<0.12
	Zinc, Dissolved	μg/L	5,000	2,500	<10	<10	<5.0	2.5	4.6						<11.6		<2.9	
	Benzo[a]anthracene	µg/L	NS	NS	<10		<5.0	2.5	4.0	0.051 J					<11.0		<2.9	<0.047
	Benzo[a]pyrene	μg/L	0.2	0.02						0.029 J								<0.082
	Benzo[b]fluoranthene	μg/L	0.2	0.02						0.073								< 0.067
	Benzo[g,h,i]perylene	μg/L	NS	NS						0.029 J								<0.31
	Benzo[k]fluoranthene Chrysene	μg/L μg/L	NS 0.2	NS 0.02						0.031 J 0.044 J								<0.053 <0.056
PAHs	Dibenz(a,h)anthracene	µg/L	NS	NS						<0.023								<0.036
	Fluoranthene	μg/L	400	80						<0.026								<0.38
	Fluorene	μg/L	400	80						<0.02								<0.20
	Indeno[1,2,3-cd]pyrene	μg/L	NS	NS						<0.027							***	<0.062
	Methylnaphthalene, 2- Phenanthrene	μg/L μg/L	NS NS	NS NS						<0.016 <0.018								<0.054 <0.25
	Pyrene	µg/L	250	50						<0.016								<0.35
	1,1,1-Trichloroethane	μg/L	200	40						< 0.33	<0.84	< 0.33	< 0.33	< 0.33	<0.24	<0.24	<0.30	<0.38
	1,1-Dichloroethene	μg/L	7	0.7		<0.15	<0.5	<0.5	< 0.5	< 0.40	<0.65	< 0.42	< 0.42	< 0.42	<0.24	<0.24	<0.58	<0.39
	1,2,4-Trimethylbenzene	μg/L	NS	NS 0.5						<2.2	<1.6	<0.8	<0.8	<0.8	<0.84	<0.84	<0.45	<0.36
	1,2-Dichloroethane 1,3,5-Trimethylbenzene	μg/L μg/L	5 NS	0.5 NS		<1.5	<0.4	<0.4	0.583	<0.41 <1.4	<0.54 <1.5	<0.25 <0.63	0.26 J <0.63	<0.25 <0.63	<0.28 <0.87	<0.28 <0.87	<0.29 <0.36	<0.39 <0.25
	1.3-Dichlorobenzene	µg/L	600	60						<0.28	<0.52	< 0.85	<0.85	<0.85	<0.63	<0.63	<0.35	0.81 J
	1,4-Dichlorobenzene	μg/L	75	15						<0.3	< 0.49	<0.7	<0.7	<0.7	<0.94	<0.94	<0.89	<0.36
	Benzene	μg/L	5	0.5						<0.24	< 0.44	<0.22	<0.22	<0.22	<0.25	<0.25	< 0.30	<0.15
	Bromodichloromethane	μg/L	0.6	0.06		<0.13	<0.83	< 0.83	< 0.3	<0.37	<0.46	<0.33	< 0.33	<0.33	<0.36	<0.36	<0.42	<0.37
	Bromoform Chlorobenzene	μg/L μg/L	4.4 NS	0.44 NS		<1.5	<0.44 <0.7	<0.44 <0.7	<0.44 <0.7	<0.35 <0.24	<0.46 <0.46	<0.45 <0.26	<0.45 <0.26	<0.45 <0.26	<4.0 <0.71	<4.0 <0.71	<3.8	<0.48
	Chloroform	µg/L	6	0.6		<0.14	<0.4	<0.4	<0.2	<0.28	< 0.43	<0.26	<0.26	<0.26	<1.3	<1.3	<1.2	<0.37
	Chloromethane	μg/L	30	3						<0.81	<1.9	< 0.54	0.72 J	< 0.54	<2.2	<2.2	<1.6	0.97 J B
	cis-1,2-Dichloroethene	μg/L	70	7		8.66	3.65	2.56	13.3	<0.38	6.2	6.5	4.2	<0.37	2.4	2.1	<0.47	4.0
VOCs	Ethylbenzene	μg/L	700	140						<0.55	<0.71	< 0.26	<0.26	<0.26	<0.32	<0.32	<0.33	<0.18 <0.45
VOCS	Hexachlorobutadiene Isopropylbenzene	μg/L μg/L	NS NS	NS NS						<1.5 <0.3	<2.2 <0.82	<1.34 <0.78	<1.34 <0.78	<1.34 <0.78	<1.5 <1.7	<1.5 <1.7	<2.7 <1.0	<0.45
	Methyl tert-butyl ether	µg/L	60	12		6.35	1.28	11.7	23.3	<0.23	20.4	16.4	11.6	<0.28	9.3	9.9	<1.1	15
	Methylene Chloride	μg/L	5	0.5		3.97	<0.5	<0.5	< 0.3	<0.5	<1.3	<1.32	<1.32	<1.32	<0.58	<0.58	< 0.32	3.4 J B
	Napthalene	μg/L	100	10						<0.023	<1.6	<2.1	<2.1	<2.1	<1.2	<1.2	<1.1	<0.34
	n-Butylbenzene N-Propylbenzene	μg/L μg/L	NS NS	NS NS						<0.35 <0.25	<1.0 <0.77	<0.71 <0.61	<0.71 <0.61	<0.71 <0.61	<0.71 <0.81	<0.71 <0.81	<0.86 <0.35	<0.39 <0.41
	p-Isopropyltoluene	µg/L	NS NS	NS						<0.31	<1.1	<0.24	<0.24	<0.24	<0.80	<0.80	<1.0	<0.36
	sec-Butylbenzene	μg/L	NS	NS		<1.5	< 0.4	< 0.4	< 0.4	<0.33	<1.2	<0.79	<0.79	<0.79	<0.85	<0.85	<0.42	<0.40
	Tetrachloroethene	μg/L	5	0.5		37.1	16.9	11.8	15	3.5	47	25.4	12.3	<0.19	7.7	7.4	0.70 J	5.0
	Toluene	μg/L	800	160			 0.471	0.411	< 0.3	18.8	<0.44	<0.19	<0.19	<0.19	<0.27	<0.27	<0.29	<0.15
	trans-1,2-Dichloroethene Trichloroethene	μg/L μg/L	100 5	20 0.5	204	<1.5 40.4	0.471	0.411	1.08	<0.35 <0.33	0.58 J	0.84 J 16.4	0.78 J	<0.34 <0.3	0.46 J	0.80 J 8.9	<0.53 0.95 J	< 0.35
	Trimethylbenzene, Total	μg/L	480	96	204	40.4	24.7	20.0		<3.6	<3.1	<1.43	<1.43	<1.43	<1.71	<1.71	<1.82	<0.61
	Vinyl chloride	μg/L	0.2	0.02		<1.1	< 0.4	<0.2	< 0.2	<0.18	<0.17	<0.2	<0.2	<0.2	<0.17	<0.17	< 0.17	<0.20
	Xylenes, Total	μg/L	2,000	400					0.75	<1.32	<3.1	<0.72	<0.72	<0.72	<0.73	< 0.73	<0.73	<0.22
	1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)	ng/L	NS 2000*	NS 200*														2.6 J
	Perfluorobutanesulfonic acid (PFBS) Perfluorobutanoic acid (PFBA)	ng/L ng/L	2000° NS	200^ NS														5.4 15
	Perfluoroheptane Sulfonate (PFHpS)	ng/L	NS NS	NS														17
	Perfluoroheptanoic Acid (PFHpA)	ng/L	NS	NS													***	15
PFAS	Perfluorohexanesulfonic acid (PFHxS)	ng/L	10*	1*														34
	Perfluorohexanoic acid (PFHxA)	ng/L	NS 10*	NS 1*														24
	Perfluorononanoic acid (PFNA) Perfluorooctane Sulfonate (PFOS)	ng/L ng/L	10* 4*	1* 0.4*														1.5 J 1,800
	Perfluoro-n-Octanoic acid (PFOA)	ng/L	4*	0.4*														11
	Perfluoropentanesulfonic acid (PFPeS)	ng/L	NS	NS														4.6
	Perfluoropentanoic Acid (PFPeA)	ng/L	NS	NS													***	30
0	Chromium, Hexavalent, Dissolved	μg/L	0.07**	0.007**	45					5.6 J	<3.0	37	10 J	<10	<7.3		<7.3	
General Chemistry	Cyanide, Total	μg/L	NS 200	NS 40	45						<1.31	<2.41			<6.9		7.3 J	
See notes on last pa	Cyanide, Amenable	μg/L	200	40														

Page 6 of 11

April Apri											Samp	le ID and Sample	e Date					
## All Carlot 1.5 1.		Detected Constituents	Units	NR 140, WAC ES	NR 140, WAC PAL							CPPZ104						
MAN. Traver MAN.						07/07/92	10/26/99	03/01/04	12/21/04	10/25/05	11/06/13	06/06/15	03/22/18	06/26/18	10/12/18	01/27/21	05/13/21	03/21/24
Depart Property 197														ļ	1		<13.2	0.68 J
Print Prin				,											.		224	220
Process																		<0.17 1.2 J B
### Miles (Marches) Marches (Marches) Marc														ł				
Margin M	Discolved													l				1.2
Miles Mile																	46.5	1.2
For Carried Add Sp		3							1.8								<3.0	
Procedure of the content of the co	Silve	ver, Dissolved				•					<10.3							<0.12
Procedure of the content of the co	7inc	nc Dissolved		5,000	2 500	-10	<10	<5.0	1/10	12.6						-11.6	-20	
March Marc					-												<u> </u>	< 0.047
Property Company Com																		<0.082
## PATENTIAL STATE OF THE PATENTIAL STATE OF						1								ł				< 0.067
April														l				< 0.31
Part		10 1, 3									< 0.027							< 0.053
Augusting 1,000	Chr	nrysene		0.2	0.02						<0.018							< 0.057
Fourtier 1,000 1	AHs Dib	benz(a,h)anthracene	μg/L	NS	NS						< 0.023							< 0.042
Interest (2) Analogous 197	Fluc	uoranthene	μg/L	400	80						<0.026							<0.38
West in the control of the control	Fluc	uorene	μg/L	400	80													<0.20
Part		213																<0.062
Parce		, ,																< 0.054
1 Microscoreme																		<0.25
The contention																		< 0.35
Definition Continue Continu	-7-7	,,		200													<0.30	<0.38
Commentered				7					<0.5								<0.58	<0.39
125 Franciscontende																	<0.45	<0.36
Afficientements																		<0.39
Architectorelesses																		<0.25
Personal Procedure																		<0.40 <0.36
Normalite contents						4												<0.36
Bornelame																	<0.42	<0.13
Procedure 1974 165 185																	<3.8	<0.48
Chiestorian																	<0.86	< 0.39
Chlorimerhane																	<1.2	<0.37
Emplemente				30													<1.6	1.2 J B
No.	cis-	s-1,2-Dichloroethene	μg/L	70	7		1.57	1.67	< 0.4	< 0.4	< 0.38	2.01	1.76	0.68 J	0.94 J	1.0	0.95 J	1.2
September 190 180 180 110	Ethy	hylbenzene	μg/L	700	140						< 0.55	< 0.71	<0.26	<0.26	<0.26	< 0.32	< 0.33	< 0.18
Meltyle let Duly effect Page Pa	OCs Hex	exachlorobutadiene	μg/L	NS	NS						<1.5	<2.2	<1.34	<1.34	<1.34	<1.5	<2.7	< 0.45
Mothyrine Chloride	Isop	propylbenzene	μg/L	NS	NS						< 0.3	<0.82	<0.78	< 0.78	< 0.78	<1.7	<1.0	< 0.39
Northelene	Met	ethyl tert-butyl ether	μg/L	60	12		1.9	0.784	2.95	0.967	< 0.23	7.4	4.5	<0.28	3.9	3.7 J	3.7 J	1.8
F.Buylbensene	Met	ethylene Chloride	μg/L		0.5		< 0.390	<0.5	<0.5	<0.3		<1.3	<1.32	<1.32	<1.32	<0.58	< 0.32	3.4 J B
N-Propythermene		design of the second se			,												<1.1	< 0.34
Propropytiouene		3															<0.86	<0.39
Sec. Butylbenzene				* 10													< 0.35	<0.41
Etrachioroethene		1 12					0.15	0.4	0.4								<1.0	<0.36
Formation 1971 1800 16		,				1												<0.40 0.67 J
Eans-1.2 Dichloroethene				Ü														<0.15
Fichloroethene																	< 0.53	< 0.15
Firmethylbenzene, Total Light Li						12											1.0	1.0
Virylichoride																	<1.82	<0.61
Expense Total Expense Total Expense Total Expense Total Expense Total Expense Total Expense Expens		2															<0.17	<0.20
1H,1H,2H,2H-Perfluorooctane sulfonic acid (62 FTS)																	<0.73	<0.22
Perfluorobutanic acid (PFBS)					NS													<2.5
PERFLUORONEQUED (PFHpS) ng/L NS NS	Peri	erfluorobutanesulfonic acid (PFBS)	ng/L	2000*	200*													0.80 J I
PEFILOROPHE PLANCIA CACID (PFTIPA) ng/L NS NS <	Peri	erfluorobutanoic acid (PFBA)	ng/L	NS	NS													<2.4
PFAS Perfluorohexanesulfonic acid (PFHxS) ng/L 10* 1*		The state of the s																<0.19
Perfluorohexanoic acid (PFHAA) ng/L NS NS																		<0.25
Perfluorohexanoic acid (PFHAX) ng/L NS NS .	FAS -				· ·													0.85 J
Perfluorooctane Sulfonate (PFOS) ng/L 4* 0.4* <	Peri	· /																< 0.57
Perfluoro-n-Octanoic acid (PFOA) ng/L 4* 0.4* <											1			1	1			<0.27
Perfluoropentanesulfonic acid (PFPeS) ng/L NS NS		, ,	J											l				<0.51
Perfluoropentanoic Acid (PFPeA) ng/L NS NS											+			1	1			<0.84 *+
Chromium, Hexavalent, Dissolved μg/L 0.07** 0.007** <2.6 <3.0 <2.0 <10 <7.3 <7.											.				.			<0.30
														-				<0.48
Octional characteristics popular																		
	, ,										1				1		<6.9	

Page 7 of 11 4/4/2025

										Sample ID and	d Sample Date					
	Detected Constituents	Units	NR 140, WAC ES	NR 140, WAC PAL						CPP.	Z105					
					10/26/99	03/01/04	12/21/04	10/25/05	11/06/13	06/06/15	03/22/18	06/26/18	10/12/18	01/27/21	05/13/21	03/21/24
	Arsenic, Dissolved	μg/L	10	1.0					<0.6					10.4 J	<13.2	0.28 J
	Barium, Dissolved	μg/L	2,000	400					80.6					87.2	89.6	74
	Cadmium, Dissolved	μg/L	5	0.5			2.2		<0.5					<1.3	<1.3	<0.17
	Chromium, Dissolved Copper, Dissolved	μg/L	100 1,300	10 130	<11	<1.6	2.2	2.5						<2.5 <3.4	<2.5 <2.5	<1.1
Metals, Dissolved	Lead, Dissolved	μg/L μg/L	1,300	1.5					<0.7	<0.7	<0.9			<5.9	<6.4	<0.19
	Manganese, Dissolved	µg/L	300	60										506	527	
	Nickel, Dissolved	µg/L	100	20	5.0	5.5	2.7	5.1						2.9 J	<3.0	
	Silver, Dissolved	μg/L	50	10					<10.3					<3.2		< 0.12
	Zinc, Dissolved	μg/L	5,000	2,500	<10	<5.0	<2.0	<2.0						<11.6	<2.9	
	Benzo[a]anthracene	µg/L	NS	NS					0.081							< 0.044
	Benzo[a]pyrene	μg/L	0.2	0.02					0.042 J							< 0.076
	Benzo[b]fluoranthene	μg/L	0.2	0.02					0.075							< 0.062
	Benzo[g,h,i]perylene	μg/L	NS	NS					0.049 J							<0.29
	Benzo[k]fluoranthene	μg/L	NS	NS					0.057 J							<0.049
DALIO	Chrysene	μg/L	0.2	0.02					0.06		***					< 0.053
PAHs	Dibenz(a,h)anthracene Fluoranthene	μg/L μg/L	NS 400	NS 80					0.04 J 0.043 J							<0.039 <0.35
	Fluoranthene Fluorene	μg/L μg/L	400	80					0.043 3							<0.35
	Indeno[1,2,3-cd]pyrene	µg/L	NS	NS					0.052 J							<0.058
	Methylnaphthalene, 2-	µg/L	NS	NS					0.029 J							<0.050
	Phenanthrene	μg/L	NS	NS					0.032 J							< 0.23
	Pyrene	μg/L	250	50					0.04 J							< 0.33
_ 	1,1,1-Trichloroethane	μg/L	200	40					< 0.33	<0.84	< 0.33	<0.33	< 0.33	<0.24	<0.30	<0.38
	1,1-Dichloroethene	μg/L	7	0.7	<0.15	<0.5	<0.5	<0.5	<0.4	<0.65	<0.42	<0.42	<0.42	<0.24	<0.58	< 0.39
	1,2,4-Trimethylbenzene	μg/L	NS	NS 0.5	0.15				<2.2	<1.6	<0.8	<0.8	<0.8	<0.84	<0.45	< 0.36
	1,2-Dichloroethane 1,3,5-Trimethylbenzene	μg/L μg/L	5 NS	0.5 NS	<0.15	<0.4	<0.4	<0.4	<0.41 <1.4	<0.54 <1.5	<0.25 <0.63	<0.25 <0.63	<0.25 <0.63	<0.28 <0.87	<0.29 <0.36	<0.39 <0.25
	1,3-Dichlorobenzene	μg/L μg/L	600	60					<0.28	<0.52	<0.85	<0.85	<0.85	< 0.63	<0.35	<0.25
	1,4-Dichlorobenzene	µg/L	75	15					<0.3	< 0.49	<0.7	<0.03	<0.7	< 0.94	<0.89	<0.36
	Benzene	µg/L	5	0.5					<0.24	< 0.44	<0.22	<0.22	<0.22	<0.25	<0.30	<0.15
	Bromodichloromethane	μg/L	0.6	0.06	< 0.13	<0.83	<0.83	< 0.3	< 0.37	< 0.46	< 0.33	< 0.33	< 0.33	< 0.36	< 0.42	< 0.37
	Bromoform	μg/L	4.4	0.44		< 0.44	< 0.44	< 0.44	< 0.35	<0.46	<0.45	< 0.45	< 0.45	<4.0	<3.8	<0.48
	Chlorobenzene	μg/L	NS	NS	<0.15	< 0.7	< 0.7	< 0.7	<0.24	< 0.46	<0.26	<0.26	<0.26	< 0.71	<0.86	< 0.39
	Chloroform	μg/L	6	0.6	< 0.14	<0.4	< 0.4	<0.2	<0.28	<0.43	<0.26	<0.26	<0.26	<1.3	<1.2	< 0.37
	Chloromethane	μg/L	30	3					<0.81	<1.9	< 0.54	<0.54	<0.54	<2.2	<1.6	< 0.32
	cis-1,2-Dichloroethene Ethylbenzene	μg/L μg/L	70 700	7 140	2.69	<0.4	<0.4	<0.4	<0.38 <0.55	<0.45 <0.71	<0.37 <0.26	<0.37 <0.26	<.037 <0.26	<0.27 <0.32	<0.47 <0.33	<0.41 <0.18
VOCs	Hexachlorobutadiene	µg/L µg/L	NS	NS					<1.5	<2.2	<1.34	<1.34	<1.34	<1.5	<2.7	< 0.45
.000	Isopropylbenzene	µg/L	NS	NS					<0.3	<0.82	<0.78	<0.78	<0.78	<1.7	<1.0	<0.39
	Methyl tert-butyl ether	μg/L	60	12	< 0.3	< 0.3	< 0.3	<0.3	<0.23	<1.1	<0.28	<0.28	<0.28	<1.2	<1.1	< 0.39
	Methylene Chloride	μg/L	5	0.5	< 3.9	<0.5	<0.5	< 0.3	<0.5	<1.3	<1.32	<1.34	<1.32	<0.58	< 0.32	3.2 J B
	Napthalene	μg/L	100	10					0.024 J	<1.6	<2.1	<2.1	<2.1	<1.2	<1.1	< 0.34
	n-Butylbenzene	μg/L	NS	NS					< 0.35	<1.0	<0.71	<0.71	<0.71	< 0.71	<0.86	< 0.39
	N-Propylbenzene	μg/L	NS	NS					<0.25	<0.77	<0.61	<0.61	<0.61	<0.81	<0.35	<0.41
	p-Isopropyltoluene	μg/L	NS NC	NS NS					<0.31	<1.1	<0.24	<0.24	<0.24	<0.80	<1.0	< 0.36
	sec-Butylbenzene Tetrachloroethene	μg/L μg/L	NS 5	NS 0.5	<0.15 <0.15	<0.4 <0.45	<0.4 <0.45	<0.4 <0.45	<0.33 <0.33	<1.2 <0.74	<0.79 <0.38	<0.79 <0.38	<0.79 0.60 J	<0.85 <0.33	<0.42 <0.41	<0.40 <0.37
	Toluene	µg/L µg/L	800	160	<0.15	<0.45	<0.45	<0.45	1.74 J	<0.74	<0.36	<0.19	<0.19	<0.33	<0.41	<0.37
	trans-1,2-Dichloroethene	µg/L	100	20	<0.15	< 0.39	<0.39	<0.39	< 0.35	<0.54	<0.34	<0.34	<0.34	<0.46	<0.53	<0.15
	Trichloroethene	µg/L	5	0.5	1.12	<0.5	<0.5	<0.5	<0.33	<0.47	<0.3	<0.3	<0.3	<0.26	<0.32	0.34 J
	Trimethylbenzene, Total	μg/L	480	96					<3.6	<3.1	<1.43	<1.43	<1.43	<1.71	<1.82	<0.61
	Vinyl chloride	μg/L	0.2	0.02	<0.11	< 0.4	< 0.4	<0.2	<0.18	<0.17	<0.2	<0.2	<0.2	<0.17	<0.17	<0.20
	Xylenes, Total	μg/L	2,000	400				<0.62	<1.32	<3.1	<0.72	<0.72	<0.72	< 0.73	<0.73	<0.22
	1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)	ng/L	NS 2000*	NS 200*							***					<2.3
	Perfluorobutanesulfonic acid (PFBS) Perfluorobutanoic acid (PFBA)	ng/L ng/L	2000* NS	200* NS												0.57 J <2.2
	Perfluorobutanoic acid (PFBA) Perfluoroheptane Sulfonate (PFHpS)	ng/L	NS NS	NS NS												<0.17
	Perfluoroheptanoic Acid (PFHpA)	ng/L	NS	NS NS												<0.17
DEAG	Perfluorohexanesulfonic acid (PFHxS)	ng/L	10*	1*												0.54 J
PFAS	Perfluorohexanoic acid (PFHxA)	ng/L	NS	NS												<0.53
	Perfluorononanoic acid (PFNA)	ng/L	10*	1*												<0.25
	Perfluorooctane Sulfonate (PFOS)	ng/L	4*	0.4*												0.71 J
	Perfluoro-n-Octanoic acid (PFOA)	ng/L	4*	0.4*												<0.78
	Perfluoropentanesulfonic acid (PFPeS)	ng/L	NS	NS												<0.28
	Perfluoropentanoic Acid (PFPeA)	ng/L	NS 0.07**	NS 0.007**												< 0.45
	Chromium, Hexavalent, Dissolved	μg/L	0.07**	0.007**					<2.6	<3.0	<2.0	<10		<7.3	14 J	
General Chemistry		µg/L	NS	NS						<1.31	<2.41	<2.41		< 6.9	< 6.9	

Table 1 - Historic Summary of Detected Constituents in Groundwater Former Chilton Plating Co. BRRTS No. 02-080000040 (Open ERP)

		1 7								Sample ID and	d Sample Date					
	Detected Constituents	Units	NR 140, WAC ES	NR 140, WAC PAL						GSM\	W103					
					10/26/99	03/01/04	12/21/04	10/25/05	11/06/13	06/06/15	03/22/18	06/26/18	10/12/18	01/27/21	05/13/21	03/21/24
	Arsenic, Dissolved	μg/L	10	1.0										<8.3	<13.2	0.40 J
	Barium, Dissolved	μg/L	2,000	400										262	243	230
	Cadmium, Dissolved	μg/L	5	0.5										<1.3	<1.3	< 0.17
	Chromium, Dissolved	μg/L	100	10	<11									<2.5	<2.5	<1.1
	Copper, Dissolved	μg/L	1,300	130										<3.4	3.5 J	
Metals, Dissolved	Lead, Dissolved	μg/L	15	1.5		Damaged	Damaged	Damaged	2.9	<0.7	< 0.9			< 5.9	< 6.4	< 0.19
	Manganese, Dissolved	μg/L	300	60					2,190					361	329	
	Nickel, Dissolved	μg/L	100	20	4.0									<2.6	<3.0	
	Silver, Dissolved	μg/L	50	10										3.8 J		<0.12
	Zinc, Dissolved	μg/L	5,000	2,500	<10									<11.6	<2.9	
	Benzo[a]anthracene	μg/L	NS	NS												< 0.046
	Benzo[a]pyrene	μg/L	0.2	0.02		1										<0.080
	Benzo[b]fluoranthene	μg/L	0.2	0.02												< 0.065
	Benzo[g,h,i]perylene	μg/L	NS	NS												< 0.30
	Benzo[k]fluoranthene	μg/L	NS	NS												< 0.052
	Chrysene	μg/L	0.2	0.02												< 0.055
PAHs	Dibenz(a,h)anthracene	μg/L	NS	NS		Damaged	Damaged	Damaged								< 0.041
	Fluoranthene	μg/L	400	80												< 0.37
	Fluorene	μg/L	400	80												<0.20
	Indeno[1,2,3-cd]pyrene	μg/L	NS	NS												< 0.060
	Methylnaphthalene, 2-	μg/L	NS	NS]										< 0.053
	Phenanthrene	μg/L	NS	NS												< 0.24
	Pyrene	μg/L	250	50												< 0.34
	1,1,1-Trichloroethane	μg/L	200	40					< 0.33	<0.84	< 0.33	< 0.33	< 0.33	< 0.24	< 0.30	< 0.38
	1,1-Dichloroethene	μg/L	7	0.7	< 0.15				< 0.3	< 0.65	< 0.42	< 0.42	< 0.42	< 0.24	<0.58	< 0.39
	1,2,4-Trimethylbenzene	μg/L	NS	NS					<2.2	<1.6	<0.8	<0.8	<0.8	< 0.84	< 0.45	< 0.36
	1,2-Dichloroethane	μg/L	5	0.5	<1.5				< 0.41	< 0.54	<0.25	< 0.25	< 0.25	<0.28	<0.29	< 0.39
	1,3,5-Trimethylbenzene	μg/L	NS	NS					<1.4	<1.5	< 0.63	< 0.63	< 0.63	< 0.87	< 0.36	< 0.25
	1,3-Dichlorobenzene	μg/L	600	60					<0.28	<0.52	< 0.85	<0.85	< 0.85	< 0.63	< 0.35	< 0.40
	1,4-Dichlorobenzene	μg/L	75	15					< 0.3	< 0.49	< 0.7	<0.7	< 0.7	< 0.94	< 0.89	< 0.36
	Benzene	μg/L	5	0.5					< 0.24	< 0.44	< 0.22	<0.22	<0.22	< 0.25	< 0.30	< 0.15
	Bromodichloromethane	μg/L	0.6	0.06	< 0.13				< 0.37	<0.46	< 0.33	< 0.33	< 0.33	< 0.36	< 0.42	< 0.37
	Bromoform	μg/L	4.4	0.44					< 0.35	<0.46	< 0.45	< 0.45	< 0.45	<4.0	<3.8	< 0.48
	Chlorobenzene	μg/L	NS	NS	<1.5				< 0.24	< 0.46	<0.26	<0.26	<0.26	< 0.71	<0.86	< 0.39
	Chloroform	μg/L	6	0.6	< 0.14				<0.28	< 0.43	<0.26	<0.26	<0.26	<1.3	<1.2	< 0.37
	Chloromethane	μg/L	30	3					<0.81	<1.9	< 0.54	< 0.54	< 0.54	<2.2	<1.6	< 0.32
	cis-1,2-Dichloroethene	μg/L	70	7	93.7				1.53	1.99	0.94 J	1.1 J	1.04 J	0.97 J	0.94 J	0.96 J
	Ethylbenzene	μg/L	700	140					<0.55	< 0.71	<0.26	<0.26	<0.26	< 0.32	< 0.33	<0.18
VOCs	Hexachlorobutadiene	μg/L	NS	NS		Damaged	Damaged	Damaged	<1.5	<2.2	<1.34	<1.34	<1.34	<1.5	<2.7	< 0.45
	Isopropylbenzene	μg/L	NS	NS					< 0.3	<0.82	<0.78	<0.78	< 0.78	<1.7	<1.0	< 0.39
	Methyl tert-butyl ether	μg/L	60	12	9.5				9.5	13.8	6.3	3.4	2.97	2.7 J	3.2 J	2.4
	Methylene Chloride	μg/L	5	0.5	<3.9				<0.5	<1.3	<1.32	<1.32	<1.32	<0.58	< 0.32	3.2 J B
	Napthalene	μg/L	100	10					0.029 J	<1.6	<2.1	<2.1	<2.1	<1.2	<1.1	< 0.34
	n-Butylbenzene	μg/L	NS	NS					< 0.35	<1.0	< 0.71	< 0.71	< 0.71	< 0.71	<0.86	< 0.39
	N-Propylbenzene	μg/L	NS	NS]			<0.25	<0.77	<0.61	<0.61	< 0.61	<0.81	< 0.35	< 0.41
	p-IsopropyItoluene	μg/L	NS	NS					< 0.31	<1.1	<0.24	<0.24	< 0.24	<0.80	<1.0	< 0.36
	sec-Butylbenzene	μg/L	NS	NS	<1.5]			< 0.33	<1.2	< 0.79	< 0.79	< 0.79	< 0.85	< 0.42	< 0.40
	Tetrachloroethene	μg/L	5	0.5	8.94				0.48 J	0.96 J	<0.38	<0.38	< 0.19	< 0.33	<0.41	0.46 J
	Toluene	μg/L	800	160]			<0.69	< 0.44	< 0.19	<0.19	< 0.19	<0.27	<0.29	<0.15
	trans-1,2-Dichloroethene	μg/L	100	20	<1.5]			<0.35	<0.54	< 0.34	< 0.34	< 0.34	<0.46	<0.53	< 0.35
	Trichloroethene	μg/L	5	0.5	101				0.55 J	3.6	<0.3	<0.3	< 0.3	<0.26	< 0.32	0.33 J
	Trimethylbenzene, Total	μg/L	480	96					<3.6	<3.1	<1.43	<1.43	<1.43	<1.71	<1.82	<0.61
	Vinyl chloride	μg/L	0.2	0.02	12				<0.18	<0.17	<0.2	<0.2	<0.2	< 0.17	<0.17	<0.20
	Xylenes, Total	μg/L	2,000	400					<1.32	<3.1	< 0.72	< 0.72	<0.72	< 0.73	< 0.73	<0.22
	1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)	ng/L	NS	NS												<2.4
	Perfluorobutanesulfonic acid (PFBS)	ng/L	2000*	200*]										0.72 J
	Perfluorobutanoic acid (PFBA)	ng/L	NS	NS]										<2.3
	Perfluoroheptane Sulfonate (PFHpS)	ng/L	NS	NS]										< 0.19
	Perfluoroheptanoic Acid (PFHpA)	ng/L	NS	NS]										<0.24
PFAS	Perfluorohexanesulfonic acid (PFHxS)	ng/L	10*	1*		Damaged	Damaged	Damaged								1.1 J
rTM3	Perfluorohexanoic acid (PFHxA)	ng/L	NS	NS		Damageu	Damageu	Damageu								<0.57
	Perfluorononanoic acid (PFNA)	ng/L	10*	1*]										<0.26
	Perfluorooctane Sulfonate (PFOS)	ng/L	4*	0.4*												5.4
	Perfluoro-n-Octanoic acid (PFOA)	ng/L	4*	0.4*]										< 0.83
	Perfluoropentanesulfonic acid (PFPeS)	ng/L	NS	NS												<0.29
	Perfluoropentanoic Acid (PFPeA)	ng/L	NS	NS												<0.48
	Chromium, Hexavalent, Dissolved	μg/L	0.07**	0.007**				-	<2.6	<3.0	<2.0	<10		<37	<7.3	
Canaral Chamiatra	Cyanide, Total	μg/L	NS	NS		Damaged	Damaged	Damaged		2.58 J	<2.41	<2.41		< 6.9	<6.9	
General Chemistry	Gyarrias, rotar															

Table 1 - Historic Summary of Detected Constituents in Groundwater Former Chilton Plating Co. BRRTS No. 02-080000040 (Open ERP)

												Sample ID an	d Sample Date							
	Detected Constituents	Units	NR 140, WAC ES	NR 140, WAC PAL						GSP	Z103							CCM	IVV-104	
					10/26/99	03/01/04	12/21/04	10/25/05	11/06/13	06/06/15	03/22/18	06/26/18	10/12/18	01/27/21	05/13/21	03/21/24	10/26/99	03/01/04	12/21/04	10/25/05
	Arsenic, Dissolved	μg/L	10	1.0					<0.6					<8.3	<13.2	<0.23				
	Barium, Dissolved	μg/L	2,000	400					195					178	181	160				
	Cadmium, Dissolved Chromium, Dissolved	μg/L μg/L	5 100	0.5	<1.1	<1.6	3.5	2.2	<0.5					<1.3 <2.5	<1.3 <2.5	<0.17 <1.1	<1.1	<1.6	1.6	2.8
	Copper, Dissolved	μg/L	1,300	130			3.3							3.6 J	2.9 J		×1.1	<1.0	1.0	2.0
Metals, Dissolved	Lead, Dissolved	µg/L	15	1.5					< 0.7	< 0.7	< 0.9			<5.9	<6.4	< 0.19				
	Manganese, Dissolved	μg/L	300	60										596	585					
	Nickel, Dissolved	μg/L	100	20	9.0	10.7	8.4	6.5						4.6 J	5.2 J		4.0	3.5	2.9	10
	Silver, Dissolved	μg/L	50	10					<10.3					<3.2		<0.12				
	Zinc, Dissolved	μg/L	5,000	2,500	<10	< 5.0	2.7	<2.0						<11.6	<2.9		<10	<5.0	<2.0	2.7
	Benzo[a]anthracene	μg/L	NS	NS					0.037 J							<0.046				
	Benzo[a]pyrene	μg/L	0.2	0.02					<0.018							<0.080				
	Benzo[b]fluoranthene	μg/L	0.2	0.02					0.036 J							<0.065				
	Benzo[g,h,i]perylene Benzo[k]fluoranthene	μg/L μg/L	NS NS	NS NS					<0.023 <0.027							<0.30 <0.052				
	Chrysene	μg/L μg/L	0.2	0.02					0.027							<0.052				
PAHs	Dibenz(a,h)anthracene	µg/L	NS	NS					<0.023							<0.041				
	Fluoranthene	μg/L	400	80					0.03 J							<0.37				
	Fluorene	μg/L	400	80					<0.02							<0.20				
	Indeno[1,2,3-cd]pyrene	μg/L	NS	NS					<0.027							<0.060				
	Methylnaphthalene, 2-	μg/L	NS	NS					< 0.016							< 0.053				
	Phenanthrene	μg/L	NS	NS FO					0.028 J							<0.24				
	Pyrene 1.1.1 Trichloroothano	μg/L	250	50					<0.025		 -0.22	 -0.22	 -0.22		<0.20	<0.34				
	1,1,1-Trichloroethane 1.1-Dichloroethene	μg/L μg/L	200 7	40 0.7	<0.15	<0.5	<0.5	<0.5	<0.33 <0.4	<0.84 <0.65	<0.33 <0.42	<0.33 <0.42	<0.33 <0.42	<0.24 <0.24	<0.30 <0.58	<0.38 <0.39	<0.15	<0.5		<0.5
	1,2,4-Trimethylbenzene	μg/L μg/L	NS	NS	<0.15	<0.5	<0.5	<0.5	<2.2	<1.6	<0.42	<0.42	<0.42	<0.24	<0.45	<0.39	<0.15	<0.5		<0.5
	1,2-Dichloroethane	μg/L	5	0.5	0.198	< 0.4	< 0.4	< 0.4	< 0.41	< 0.54	<0.25	<0.25	<0.25	<0.28	<0.29	< 0.39	< 0.15	< 0.4		< 0.4
	1,3,5-Trimethylbenzene	μg/L	NS	NS					<1.4	<1.5	< 0.63	< 0.63	< 0.63	< 0.87	<0.36	< 0.25				
	1,3-Dichlorobenzene	μg/L	600	60					<0.28	< 0.52	<0.85	< 0.85	< 0.85	< 0.63	< 0.35	< 0.40				
	1,4-Dichlorobenzene	μg/L	75	15					<0.3	< 0.49	< 0.7	< 0.7	<0.7	< 0.94	< 0.89	< 0.36				
	Benzene	μg/L	5	0.5					<0.24	< 0.44	<0.22	<0.22	<0.22	<0.25	< 0.30	<0.15				
	Bromodichloromethane	μg/L	0.6	0.06	<0.13	<0.83	<0.83	<0.3	<0.37	<0.46	<0.33	<0.33	<0.33	<0.36	<0.42	< 0.37	<0.13	<0.83		<0.3
	Bromoform Chlore hannen	μg/L	4.4 N.C	0.44	<0.15	<0.44	<0.44 <0.7	<0.44	< 0.35	<0.46 <0.46	<0.45 <0.26	<0.45	<0.45 <0.26	<4.0 <0.71	<3.8	<0.48	<0.15	<0.44 <0.7		<0.44
	Chlorobenzene Chloroform	μg/L μg/L	NS 6	NS 0.6	<0.15	<0.7	<0.7	<0.7	<0.24 <0.28	<0.43	<0.26	<0.26 <0.26	<0.26	<1.3	<1.2	<0.37	<0.13	<0.7		<0.7
	Chloromethane	µg/L	30	3					<0.81	<1.9	<0.54	<0.54	< 0.54	<2.2	<1.6	<0.32				
	cis-1,2-Dichloroethene	μg/L	70	7	0.809	0.45	< 0.4	< 0.4	<0.38	< 0.45	< 0.37	< 0.37	< 0.37	<0.27	< 0.47	< 0.41	< 0.15	< 0.4		< 0.4
	Ethylbenzene	μg/L	700	140					< 0.55	< 0.71	<0.26	<0.26	<0.26	< 0.32	< 0.33	<0				
VOCs	Hexachlorobutadiene	μg/L	NS	NS					<1.5	<2.2	<1.34	<1.34	<1.34	<1.5	<2.7	18				
	Isopropylbenzene	μg/L	NS	NS					< 0.3	<0.82	<0.78	<0.78	<0.78	<1.7	<1.0	< 0.39				
	Methyl tert-butyl ether	μg/L	60	12	3.61	8.37	2.66	2.28	0.26 J	<1.1	<0.28	<0.28	<0.28	<1.2	<1.1	<0.39	2.32	6.37		2.78
	Methylene Chloride Napthalene	μg/L μg/L	5 100	0.5 10	<0.39	<0.5	<0.5	<0.3	<0.5 <0.023	<1.3 <1.6	<1.32 <2.1	<1.32 <2.1	<1.32 <2.1	<0.58 <1.2	<0.32 <1.1	3.0 J B <0.34	<0.39	<0.5		<0.3
	n-Butylbenzene	μg/L	NS NS	NS NS					<0.023	<1.0	<0.71	<0.71	<0.71	<0.71	<0.86	<0.39				
	N-Propylbenzene	µg/L	NS	NS					<0.25	<0.77	<0.61	<0.61	<0.61	<0.81	< 0.35	< 0.41				
	p-Isopropyltoluene	μg/L	NS	NS					< 0.31	<1.1	<0.24	< 0.24	< 0.24	<0.80	<1.0	< 0.36				
	sec-Butylbenzene	μg/L	NS	NS	<0.15	< 0.4	<0.4	< 0.4	< 0.33	<1.2	<0.79	<0.79	< 0.79	<0.85	<0.42	<0.40	<0.15	< 0.4		< 0.4
	Tetrachloroethene	μg/L	5	0.5	0.356	<0.45	< 0.45	< 0.45	< 0.33	< 0.74	<0.38	<0.38	<0.19	< 0.33	< 0.41	< 0.37	<0.15	<0.45		< 0.45
	Toluene	μg/L	800	160				<0.3	<0.69	<0.44	<0.19	<0.19	<0.19	<0.27	<0.29	<0.15	0.15	0.20		<0.3
	trans-1,2-Dichloroethene	μg/L	100	20	< 0.15	< 0.39	<0.39	<0.39	< 0.35	< 0.54	<0.34	<0.34	<0.34	<0.46	< 0.53	<0.35	<0.15	< 0.39		<0.39
	Trichloroethene Trimethylbenzene, Total	μg/L μg/L	5 480	0.5 96	0.754	<0.5	<0.5	<0.5	<0.33 <3.6	<0.47 <3.1	<0.3 <1.43	<0.3 <1.43	<0.3 <1.43	<0.26 <1.71	<0.32 <1.82	<0.16 <0.61	<0.4	<0.5		<0.5
	Vinyl chloride	μg/L	0.2	0.02	<0.11	<0.4	<0.2	<0.2	<0.18	<0.17	<0.2	<0.2	<0.2	<0.17	<0.17	<0.20	<0.11	<0.4		<0.2
	Xylenes, Total	μg/L	2,000	400				<0.62	<0.69	<3.1	<0.72	<0.72	<0.72	<0.73	<0.73	<0.22				<0.62
	1H,1H,2H,Perfluorooctane sulfonic acid (6:2 FTS)	ng/L	NS	NS												<2.3				
	Perfluorobutanesulfonic acid (PFBS)	ng/L	2000*	200*												0.45 J				
	Perfluorobutanoic acid (PFBA)	ng/L	NS	NS												<2.2				
	Perfluoroheptane Sulfonate (PFHpS)	ng/L	NS	NS												<0.18				
	Perfluoroheptanoic Acid (PFHpA)	ng/L	NS 10*	NS 1*												<0.23				
PFAS	Perfluorohexanesulfonic acid (PFHxS)	ng/L	10* NS	1* NS												<0.53 <0.54				
	Perfluorohexanoic acid (PFHxA) Perfluorononanoic acid (PFNA)	ng/L ng/L	NS 10*	NS 1*												<0.54				
	Perfluorooctane Sulfonate (PFOS)	ng/L	4*	0.4*												<0.25				
	Perfluoro-n-Octanoic acid (PFOA)	ng/L	4*	0.4*												<0.80 *+				
	Perfluoropentanesulfonic acid (PFPeS)	ng/L	NS	NS												<0.28				
	Perfluoropentanoic Acid (PFPeA)	ng/L	NS	NS												<0.46				
	Chromium, Hexavalent, Dissolved	μg/L	0.07**	0.007**					<2.6	<3.0	<2.0	<10	<10	<7.3	<7.3					
General Chemistry		μg/L	NS	NS						1.74 J	<2.41	<2.41		<6.9	<6.9					
	Cyanide, Amenable	μg/L	200	40																

See notes on last page

Page 10 of 11 4/4/2025

Table 1 - Historic Summary of Detected Constituents in Groundwater Former Chilton Plating Co. BRRTS No. 02-080000040 (Open ERP)

	Detected Constituents	Units	NR 140, WAC ES	NR 140, WAC PAL		*	d Sample Date	
	beleeted constituents	Offics	NIC 140, WAC ES	NIC 140, WACTAL	10/26/99	03/01/04	Z-104 12/21/04	10/25/0
	Arsenic, Dissolved	μg/L	10	1.0			12/21/04	10/25/0
	Barium, Dissolved	μg/L	2,000	400				
	Cadmium, Dissolved	μg/L	5	0.5				
	Chromium, Dissolved	μg/L	100	10	<1.1	<1.6	2.4	1.9
Metals, Dissolved	Copper, Dissolved	μg/L	1,300	130				
victais, bissoivea	Lead, Dissolved	μg/L	15	1.5				
	Manganese, Dissolved Nickel, Dissolved	μg/L μg/L	300 100	60 20	4.00	6.1	4.6	4.7
	Silver, Dissolved	μg/L	50	10	4.00		4.0	4.7
	Zinc, Dissolved		5,000	2,500				
	Benzo[a]anthracene	μg/L μg/L	NS	NS	11	<5.0	<2.0	<2.0
	Benzo[a]pyrene	μg/L	0.2	0.02				
	Benzo[b]fluoranthene	µg/L	0.2	0.02				
	Benzo[g,h,i]perylene	µg/L	NS	NS NS				
	Benzo[k]fluoranthene	µg/L	NS	NS				
	Chrysene	μg/L	0.2	0.02				
PAHs	Dibenz(a,h)anthracene	μg/L	NS	NS				
	Fluoranthene	μg/L	400	80				
	Fluorene	μg/L	400	80				
	Indeno[1,2,3-cd]pyrene	μg/L	NS	NS				
	Methylnaphthalene, 2-	μg/L	NS	NS				
	Phenanthrene	μg/L	NS	NS				
	Pyrene	μg/L	250	50				
	1,1,1-Trichloroethane	μg/L	200	40				
	1,1-Dichloroethene	μg/L	7	0.7	<0.15	<0.5	<0.5	<0.5
	1,2,4-Trimethylbenzene	μg/L	NS 5	NS 0.F				
	1,2-Dichloroethane	μg/L	NS	0.5 NS	<0.15	<0.4	<0.4	<0.4
	1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	µg/L µg/L	600	60				
	1,4-Dichlorobenzene	μg/L	75	15				
	Benzene	μg/L	5	0.5				
	Bromodichloromethane	µg/L	0.6	0.06	<0.13	<0.83	<0.83	<0.3
	Bromoform	µg/L	4.4	0.44		< 0.44	<0.44	<0.4
	Chlorobenzene	µg/L	NS	NS	<0.15	<0.7	< 0.7	<0.7
	Chloroform	μg/L	6	0.6	< 0.14	< 0.4	< 0.4	< 0.2
	Chloromethane	μg/L	30	3				
	cis-1,2-Dichloroethene	μg/L	70	7	< 0.15	< 0.4	< 0.4	< 0.4
	Ethylbenzene	μg/L	700	140				
VOCs	Hexachlorobutadiene	μg/L	NS	NS				
	Isopropylbenzene	μg/L	NS	NS				
	Methyl tert-butyl ether	μg/L	60	12	3.76	1.88	1.91	3.82
	Methylene Chloride	μg/L	5	0.5	<0.39	<0.5	<0.5	< 0.3
	Napthalene	μg/L	100	10 NG				
	n-Butylbenzene	μg/L	NS NS	NS NS				
	N-Propylbenzene p-Isopropyltoluene	μg/L μg/L	NS NS	NS NS				
	sec-Butylbenzene	μg/L	NS NS	NS NS	<0.15	<0.4	<0.4	<0.4
	Tetrachloroethene	μg/L	5	0.5	<0.15	<0.45	<0.45	<0.4
	Toluene	µg/L	800	160				<0.3
	trans-1,2-Dichloroethene	μg/L	100	20	<0.15	< 0.39	< 0.39	<0.3
	Trichloroethene	μg/L	5	0.5	0.465	<0.5	<0.5	<0.5
	Trimethylbenzene, Total	μg/L	480	96				
	Vinyl chloride	μg/L	0.2	0.02	<0.11	< 0.4	<0.2	<0.2
	Xylenes, Total	μg/L	2,000	400				<0.6
	1H,1H,2H,2H-Perfluorooctane sulfonic acid (6:2 FTS)	ng/L	NS	NS				
	Perfluorobutanesulfonic acid (PFBS)	ng/L	2000*	200*				
	Perfluorobutanoic acid (PFBA)	ng/L	NS	NS				
	Perfluoroheptane Sulfonate (PFHpS)	ng/L	NS NC	NS NC				
	Perfluoroheptanoic Acid (PFHpA)	ng/L	NS 10*	NS 1*				
PFAS	Perfluorohexanesulfonic acid (PFHxS) Perfluorohexanoic acid (PFHxA)	ng/L ng/L	10* NS	NS				
	Perfluoronexanoic acid (PFNA) Perfluorononanoic acid (PFNA)	ng/L	10*	1*				
	Perfluorooctane Sulfonate (PFOS)	ng/L	4*	0.4*				
	Perfluoro-n-Octanoic acid (PFOA)	ng/L	4*	0.4*				
	Perfluoropentanesulfonic acid (PFPeS)	ng/L	NS NS	NS				
	Perfluoropentanoic Acid (PFPeA)	ng/L	NS	NS				
	Chromium, Hexavalent, Dissolved	μg/L	0.07**	0.007**				
neral Chemistry	Cyanide, Total	µg/L	NS	NS				
	Cyanide, Amenable	µg/L	200	40				

Notes:

Wisconsin Department of Natural Resources (WDNR) NR 140 Wisconsin Administrativ table updated October 2024

<xxx = compound not detected at a detection limit of xx

NS = no standard established by WAC ND = constituent not detected

XX = exceeds NR 140, WAC prevention action limit (PAL)

XX = exceeds NR 140, WAC enforcement standard (ES)

PAHs = polynuclear aromatic hydrocarbons

VOCs = volatile organic compounds

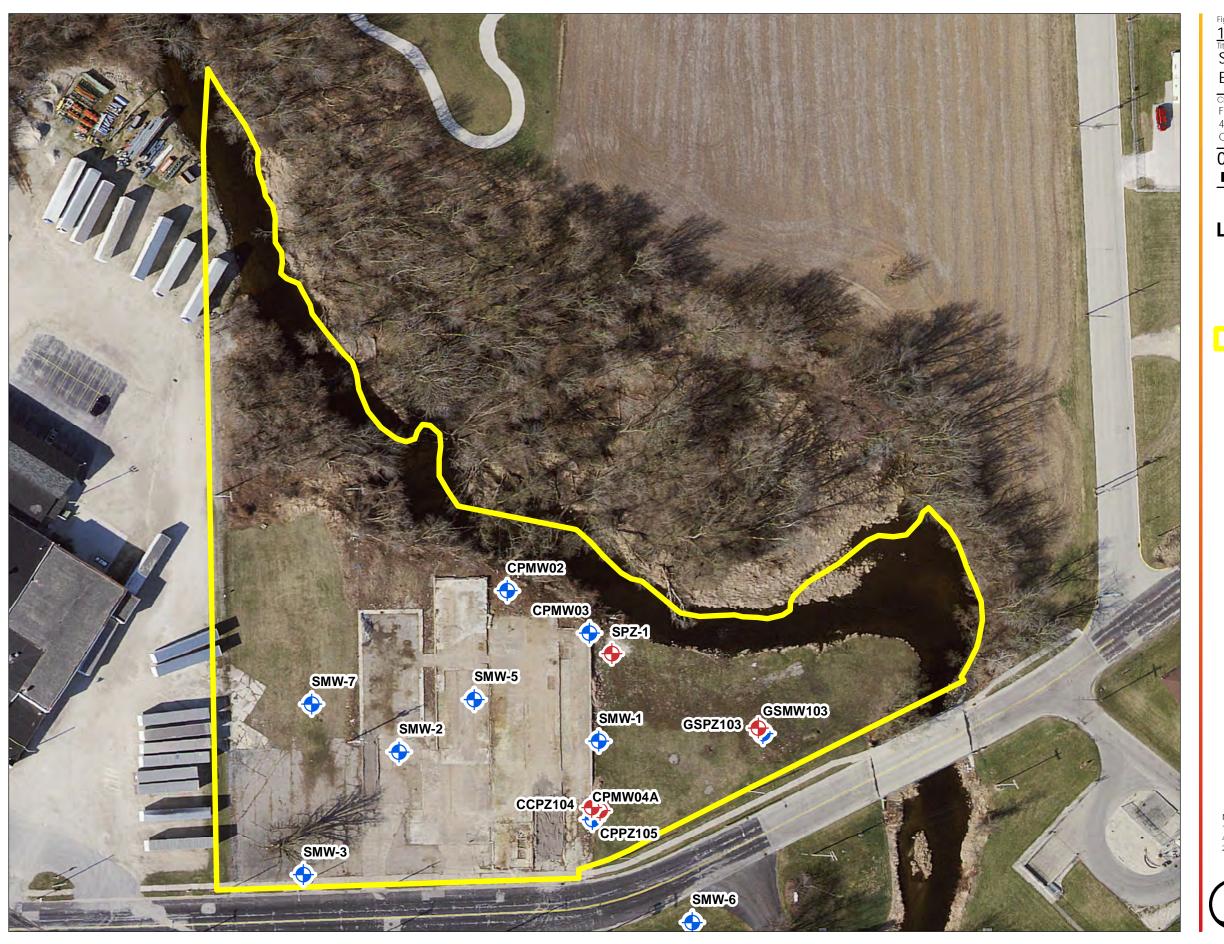
PFAS = Per- and polyfluoroalkyl substances

- = Not analyzed for constituent class

μg/L = micrograms per liter

μg/L = micrograms per liter
ng/L = nanograms per liter
* = WDNR NR 140 WAC Standards for PFAS are currently only proposed and have not been officially established. As of February 7, 2025, the DNR has begun rulemaking to promulgate standards that reflect the WDH's January 2025 (revised 2/7/2025) recommendations for six types of PFAS. This rulemaking is following the U.S. Environmental Protection Agency finalizing federal drinking water standards for six PFAS: PFOA, PFOS, PFNA, PFIKS, HFPO-DA (GenX chemicals) and PFBS in April 2024. The DNR is in the early stage of the rule development and anticipates presenting the scope statement to the Natural Resources Board for approval in the spring of 2025.

- J = Compound detected between limit of detection and limit of quantification
- B = Compound was found in the blank and sample
- ^ Instrument related quality control (QC) is outside acceptance limits
 F1 = Matrix spike (MS) and/or matrix spike duplicate (MSD) recovery exceeds control limits.
- F2 = MS/MSD relative percent difference (RPD) exceeds control limits
- ** = Proposed Cycle 10Wisconsin Department of Health Services groundwater quality standard


Summary of Cycle 12 Recommendations

Substance	Recommended Enforcement Standard	Recommended Preventive Action Limit
Perfluorooctanoic acid (PFOA)	4 ng/L	0.4 ng/L
Perfluorooctanesulfonic acid (PFOS)	4 ng/L	0.4 ng/L
Perfluorononanoic acid (PFNA)	10 ng/L	1 ng/L
Perfluorohexanesulfonic acid (PFHxS)	10 ng/L	1 ng/L
Hexafluoropropylene oxide dimer acid (HFPO-DA; GenX) ^[N]	10 ng/L	1 ng/L
Perfluorobutanesulfonic acid (PFBS)	2,000 ng/L	200 ng/L

Units are nanograms per liter (ng/L)

FIGURES

Site Investigation Project Area and **Existing Well Network**

Client/Project
Former Chilton Plating Investigation Area
415-420 East Main Street

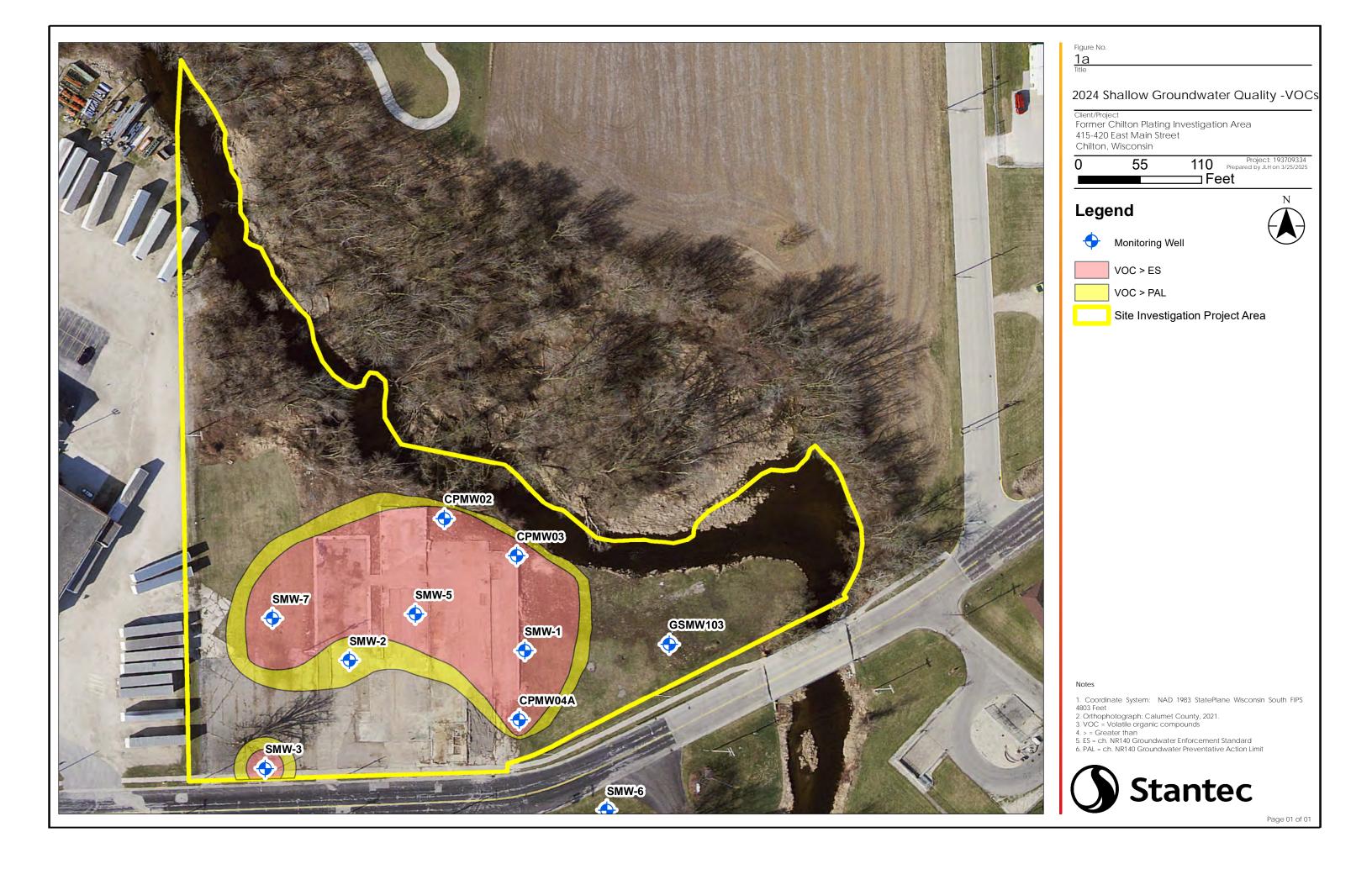
Chilton, Wisconsin

Project: 193709334 Prepared by JLH on 4/4/2025 110 ⊐ Feet

Legend

Monitoring Well (10)

Piezometer (4)



Site Investigation Project Area

1. Coordinate System: NAD 1983 StatePlane Wisconsin South FIPS 4803 Feet
2. Orthophotograph: Calumet County, 2021.

Page 01 of 01

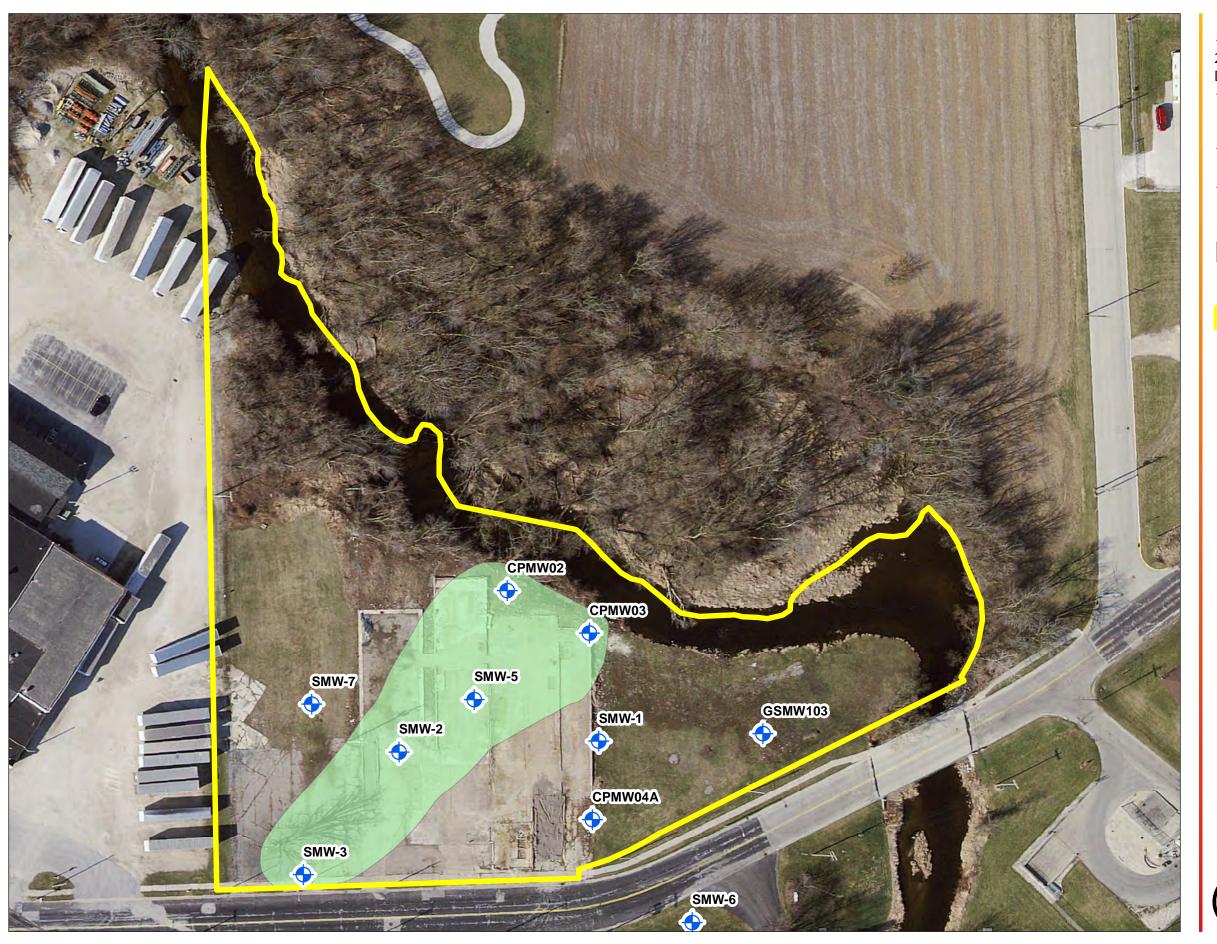
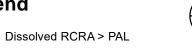


Figure No.


2024 Shallow Groundwater Quality -Dissolved RCRA Metals

Client/Project
Former Chilton Plating Investigation Area
415-420 East Main Street

Chilton, Wisconsin

Project: 193709334
Prepared by JLH on 3/25/2025 ⊐ Feet

Legend

Monitoring Well

Site Investigation Project Area

- Coordinate System: NAD 1983 StatePlane Wisconsin South FIPS 4803 Feet
 Orthophotograph: Calumet County, 2021.
 RCRA = Resource Conservation and Recovery Act

- 4. > = Greater than
 6. PAL = ch. NR140 Groundwater Preventative Action Limit

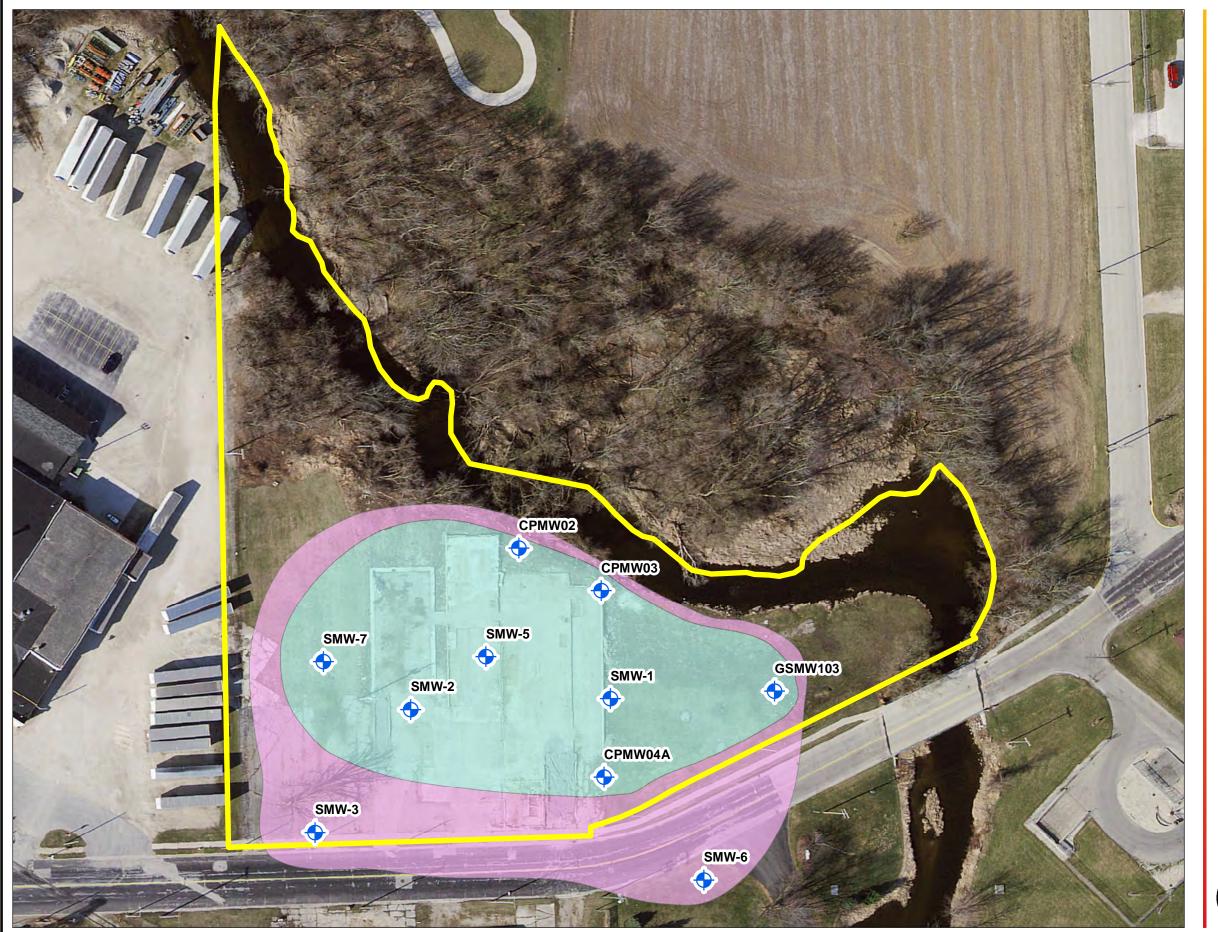


Figure No.

2024 Shallow Groundwater Quality -PFAS Compounds Compared to Proposed Groundwater Quality Standards

⊐ Feet

Former Chilton Plating Investigation Area 415-420 East Main Street

Chilton, Wisconsin

Project: 193709334 Prepared by JLH on 3/25/2025 110

Legend

PFAS Compounds > Proposed ES

PFAS Compounds > Proposed PAL

Monitoring Well

Site Investigation Project Area

- Coordinate System: NAD 1983 StatePlane Wisconsin South FIPS 4803 Feet
- 4803 Feet
 2. Orthophotograph: Calumet County, 2021.
 3. PFAS = Per- and polyfluoroalkyl substances
 4. ES = ch. NR140 Enforcement Standard
 5. PAL = ch. NR140 Preventative Action Limit

- 6. Proposed ES and PAL values for PFAS substances obtained from the Wisconsin Department of Health Services Cycle 12 recommendations for PFAS groundwater quality standards.

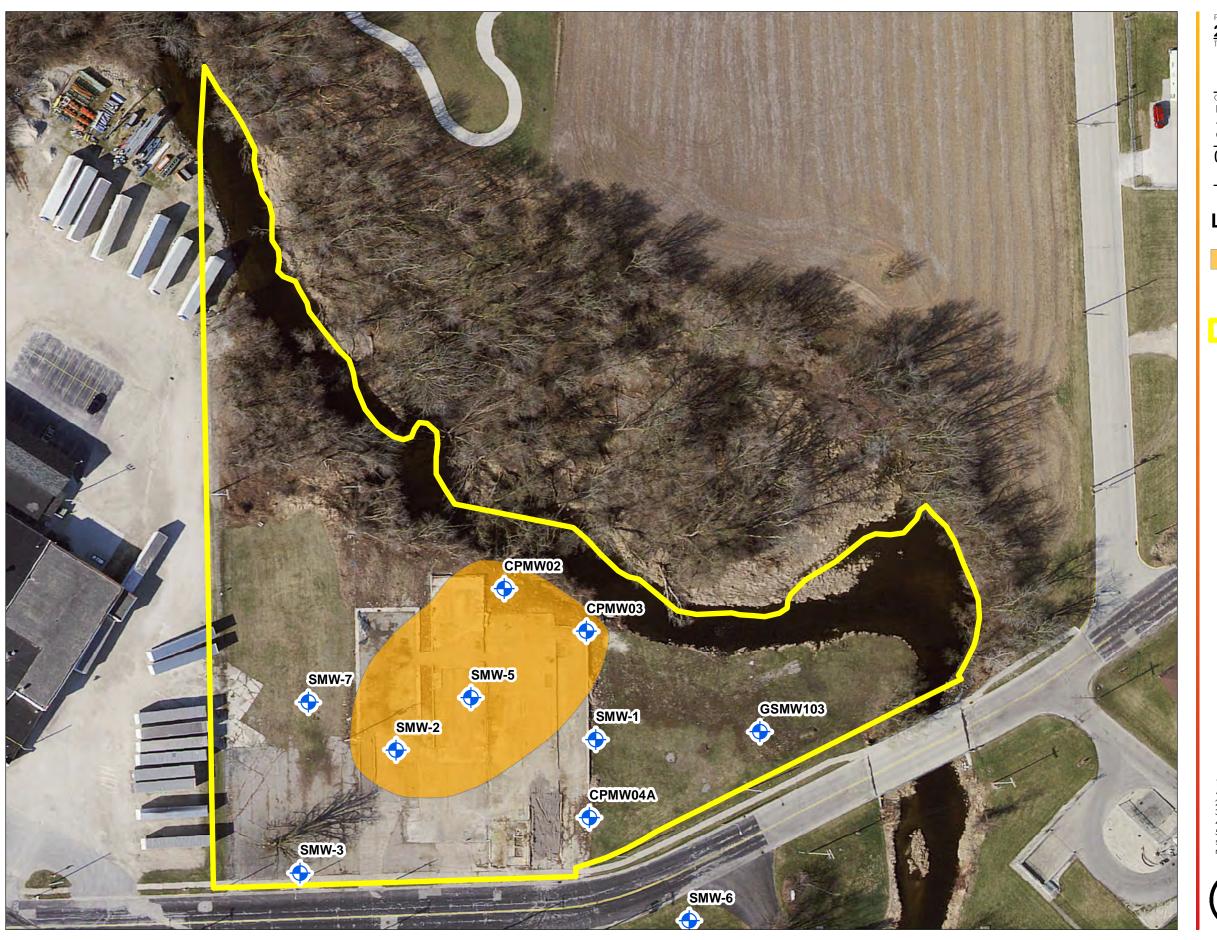


Figure No.

<u>2d</u>

2024 Shallow Groundwater Quality -Dissolved Hexavalent Chromium Compared to Proposed Groundwater Quality Standards

Former Chilton Plating Investigation Area 415-420 East Main Street

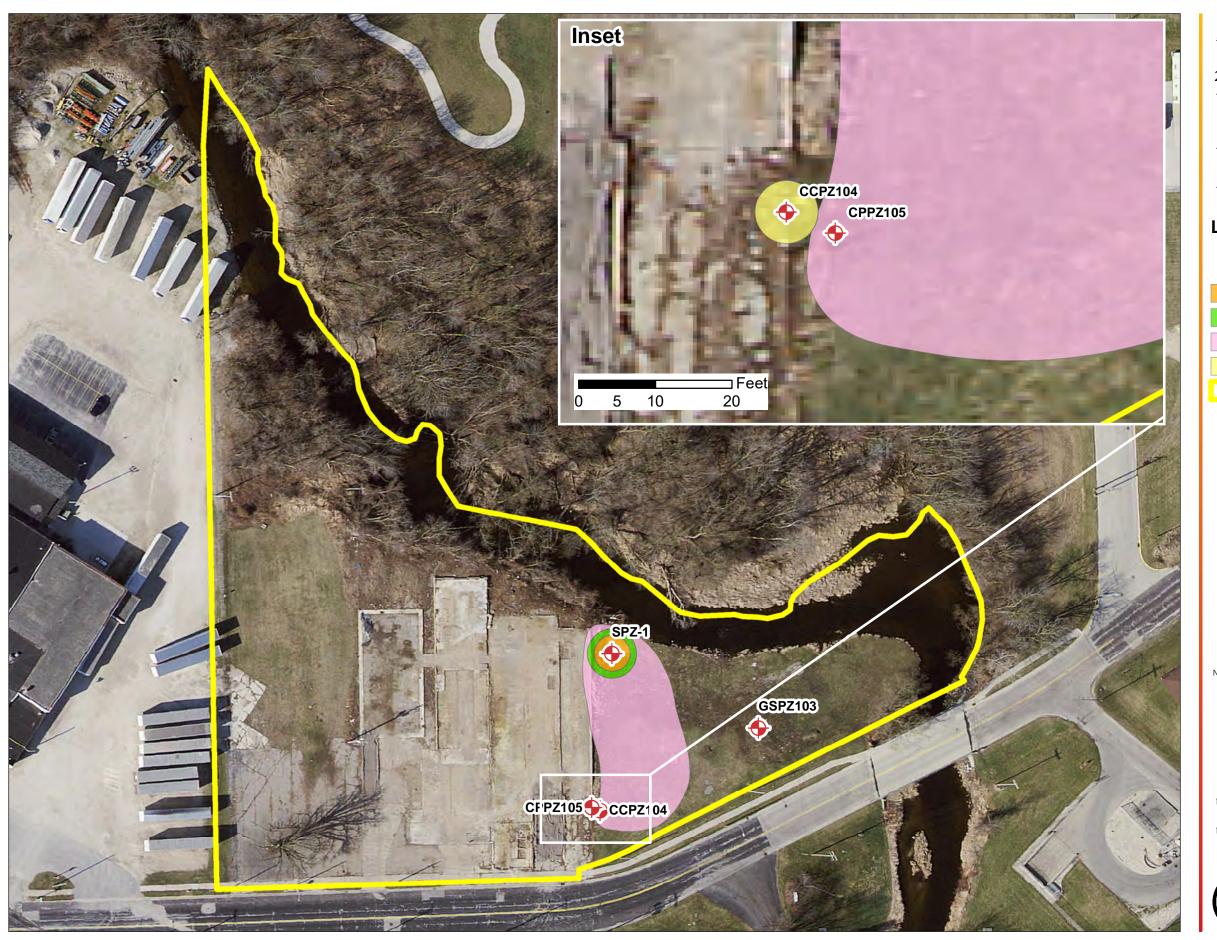
Chilton, Wisconsin

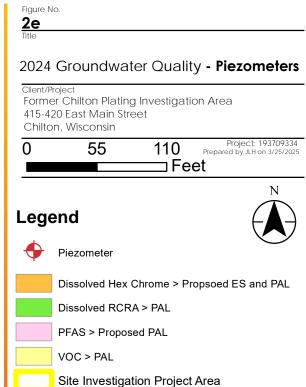
Project: 193709334 Prepared by JLH on 3/25/2025 110 ⊐ Feet

Legend

Dissolved Hexavelent Chromium > Proposed ES and PAL

Monitoring Well




Site Investigation Project Area

- Coordinate System: NAD 1983 StatePlane Wisconsin South FIPS 4803 Feet
 Orthophotograph: Calumet County, 2021.
 ES = ch. NR140 Enforcement Standard
 PAL = ch. NR140 Preventative Action Limit

- 5. Proposed dissolved hexavalent chromium groundwater quality standards per Wisconsin Department of Health Services Cycle 10 recommendations.

- Coordinate System: NAD 1983 StatePlane Wisconsin South FIPS 4803 Feet
- 2. Orthophotograph: Calumet County, 2021.
- 2. Orthophotograph: Calumet County, 2021.
 3. VOC = Volatile organic compounds
 4. RCRA = Resource Conservation and Recovery Act
 5. PFAS = Per- and polyfluoroalkyl substances
 6. Hex chrome = Dissolved hexavalent chromium

- Nex chrome = Dissolved nexavalent chromium
 S = Greater than
 Es = ch. NR140 Groundwater Enforcement Standard
 PAL = ch. NR140 Groundwater Preventative Action Limit
 Proposed dissolved hexavalent chromium groundwater quality standards per Wisconsin Department of Health Services Cycle 10
- 11. Proposed ES and PAL values for PFAS substances obtained from the Wisconsin Department of Health Services Cycle 12 recommendations for PFAS groundwater quality standards.

