CORRESPONDENCE/MEMORANDUM

DATE:

March 21, 1994

TO:

Connie Antonuk - NCD

FROM:

Charlene Kharae

SUBJECT:

C. M. Christiansen Data Summaries

Attached are the data summary tables for organic and inorganic analyses along with the notes on qualifiers. The sediment samples were also analyzed for dioxins and furans. I have not made a thorough review of the dioxins/furans data, however, my preliminary inspection of the package indicates that dioxins/furans contamination is present in the sediment samples. I will try to complete the data summary tables for dioxins/furans in sediment samples by next week. If you have any questions regarding these data summaries, please do not hesitate to call me at (608)267-0543.

cak

Attachments

SDL

CROL contrad Required Quad Hollen Lind.

CORRESPONDENCE/MEMORANDUM -

DATE:

January 20, 1994

TO:

Amy Parkinson - SW/3

FROM:

Charlene Khazae (S

SUBJECT:

C. M. Christensen Residential Well Data

Attached are data summary tables for the organic and inorganic data for the residential wells for the site listed above. I have provided a list of all organic target compounds analyzed for and the Contract Required Quantitation Limits. There were no volatile organic compounds detected in the residential wells. No PCB/Pesticides were detected in the samples, however, it should be noted that the undetected values for Heptachlor and 4,4'-DDT have been qualified as "R", unusable, because of laboratory QC problems. Only the detected compounds are included on the semivolatile organic compound summary table.

All inorganic target analytes are listed on the inorganic summary table.

I have highlighted all US EPA (drinking water) and NR 140 exceedances and will explain all qualifiers for organic and inorganic data.

Please provide me with copies of all well owner notification letters for our records. If you have any questions regarding this summary, please do not hesitate to call me.

cak

Attachments

C. M. CHRISTIANSEN

Cana # 20007	THODCANIC ANALYSIS OF DESIDENTIAL USILS	9/30/93
Case # 20907	INORGANIC ANALYSIS OF RESIDENTIAL WELLS	9/30/93

Sample Description	LOW	LOW	Background	1		Dup of S07
Sample Location ID	WATER	WATER	s09	\$06	S07	\$08
	CRDL	IDL				
Traffic Report No.	(ug/l)	(ug/l)	MEQM56	MEQM53	MEQM54	MEQM55
executations i	********* 80.0	31.0	31.0 U	======================================	======================================	31.0 U
Antimony		48.0	48.0 U	1 48.0 U	i 48.0 U	1 48.0 U
Arsenic	5.0	1.0	1.0 U	1.0 U	1 1.0 U	1.0 U
Barium	20.0	1 1.0	5.1 B	1.00 4.1 B	6.6 B	7.0 B
ium l	5.0	1.0	1.0 U	1.00	l 1.0 U	1 1.0 U
Cadmium	0.5	0.1	0.10 U	i 0.10 U	l 0.10 U	0.10 U
Calcium	1000.0	43.0	20900	1 25700	1 28800	29200.0
Chromium	10.0	10.0	10.0 U	10.0 U	l 10.0 U	10.0 U
Cobalt	10.0	10.0	10.0 U	10.0 U	10.0 U	10.0 U
Copper	10.0	5.0	5.0 U	1 5.0 U	1 5.0 U	5.0 U
Iron	100.0	9.0	277	104	438	405
Lead	2.0	1.0	1.6 B	່ 1.0 ປ	6.4	4.6 S
Magnesium	1000.0	44.0	6850	9230	12200	12400
Manganese	10.0	2.0	2.0 U	2.0 U	24.3 J	12.8 J
Mercury	0.2	0.2	0.20 U	0.20 U	0.20 U	0.20 U
Nickel	20.0	16.0	16.0 U	16.0 U	16.0 U	16.0 U
Potassium	2000.0	593.0	965 B	727 B	960 B	593 U
Selenium	2.0	2.0	2.0 U	2.0 U	2.0 U	2.0 U
Silver	5.0	4.0	4.0 U	4.0 U	4.0 U	4.0 U
Sodium	1000.0	72.0	3180	3590	3590	3560
* itium	2.0	2.0	2.0 U	2.0 U	2.0 U	2.0 U
Variadium	10.0	7.0	7.0 U	7.0 U	7.0 U	7.0 U
Zinc	20.0	9.0	88.0	9.0 U	55.3	50.7

CRDL-Contract Required Detection Limit

IDL-Instrument Detection Limit

U-Undetected

B-The concentration is > than the IDL but < the CRDL.

S-The reported value was determined by the Method of Standard Addition.

J-The associated value is an estimated quantity. In the case of the Manganese values above, because of poor field precision.

C. M. CHRISTIANSEN

LE ANALYSI	S OF RESI	DEN	TIAL WE	LLS	3	9	7/30/93
	Bkgrd S09		s06		s07	 	Dup \$07 \$08
WATER	ERT86	 	ERT83	1	ERT84		ERT85
(ug/l)	0	•	0	1	0	١	0
 	7.0	1	7.0	1	7.0	1	7.0
2.0	0.4 J	 			0.4 J	 	
	 LOW WATER CRQL (ug/l) 					S09 S06 S07 LOW	

CRQL-Contract Required Quantitation Limit

J-The associated value is an estimated quantity. In all cases above, this is because the values are < the CRQL and cannot be quantified with confidence.

C. M. CHRISTIANSEN Case # 20907 - Notes on Organic Qualifiers

General Information

Six monitoring well samples, seven soils, and six sediment samples were collected for the complete Target Compound List Analyses (TCL) of volatile organic compounds (VOCs), semivolatile organic compounds, and PCB/pesticides. An additional aqueous sample was analyzed for VOCs only. Data summary tables presented will include only the detected target compounds.

Field QC

Monitoring Wells:

Water sample S02 (ERA38) was the background sample.

S05 (ERT80) and S03 (ERA39) were field duplicates.

The field rinsate sample was R01 (ERT81).

The trip blank, analyzed for VOCs only, was R02 (ERT82).

Soils:

The background soil sample was S18 (ERT96).

Soil sample S19 (ERT97) was the field duplicate of S13 (ERT91).

Sediments:

The sediment background sample was S20 (ERT98).

S25 (EHH94) was the field duplicate of S22 (EHH91).

VOCs

Monitoring Wells

Laboratory instruments must be initially calibrated using a series of standards of known concentrations. This calibration is checked throughout the analysis by using one standard of known concentrations. If the compounds of this standard are not detected within appropriate ranges of the true values, all samples associated with the standard are flagged as estimated for the compounds outside the QC limits. Positive results are estimated (J) and non-detected results are estimated (UJ) for the following compounds due to calibration outliers:

Chloroethane; 2-Butanone; and 2-Hexanone for S05 (ERT80), R01 (ERT81), and R02 (ERT82)

Acetone for all monitoring well samples.

There were two laboratory method blanks associated with the monitoring well samples. Neither contained target compounds, however, both were found to contain the tentatively identified compound (TIC) Carbon dioxide. Where this TIC appears in the field samples, it has been deemed undetected (U) by the validator if the concentration in the sample is less than 5 times the concentration in the associated blank.

Soils

Positive results are estimated (J) and non-detected results are estimated (UJ) for the following compounds due to calibration outliers:

2-Butanone; 4-Methyl-2-pentanone; and 2-Hexanone for S13 (ERT91), S18 (ERT96), S15 (ERT93), S19 (ERT97), and S14 (ERT92)

Acetone; 2-Butanone; 4-Methyl-2-pentanone; and 2-Hexanone for S12 (ERT90)

Chloromethane; Vinyl chloride; and Chloroethane for S11 (ERT89).

There were three low level and one medium level volatile laboratory method blanks associated with the soil samples. The medium level blank was free from contamination. One of the low level blanks contained no target compounds but one TIC, a second blank contained the common laboratory contaminants Methylene chloride and Acetone and two TICs, while a third blank contained Methylene chloride and one TIC. The presence of the common lab contaminants in the field samples has been qualified as undetected (U) when the sample concentration is less than 10 times the concentration in the associated blank. Likewise, the presence of the TICs in the samples are qualified as undetected (U) when the sample concentration is less than 5 times the concentration in the associated blank.

The surrogate recovery in the medium level sample S11 (ERT89) was low outside the QC limits. There were no detected compounds in this sample, therefore the undetected compounds are qualified as estimated (UJ).

Sediments

Positive results are estimated (J) and non-detected results are estimated (UJ) for the following compounds due to calibration outliers:

Chloromethane; Acetone; 1,2-Dichloroethene (total); 4-Methyl-2-pentanone; and 2-Hexanone for S21 (ERT99)

2-Butanone for all sediment samples.

There were two low level volatile laboratory method blanks associated with the sediment samples. One blank contained Tetrachloroethene. The second blank contained Tetrachloroethene, Chloroform, and the common lab contaminants Methylene chloride and Acetone. The presence of the common lab contaminants is qualified as undetected (U) when the sample concentration is less than 10 times the concentration in the associated blank. Likewise, the presence of Chloroform and Tetrachloroethene is qualified as undetected when the sample concentration is less than 5 times the concentration in the associated blank.

One of the internal standards in sediment sample S23 (EHH92) was low outside the QC limits. All compounds associated with this standard are qualified as estimated (UJ). These compounds are: 2-Hexanone; 4-Methyl-2-pentanone; Tetrachloroethene; 1,1,2,2-Tetrachlorethane; Toluene; Chlorobenzene; Ethylbenzene; Styrene; and Xylene (total).

Semivolatiles

Monitoring Wells

There was one low level semivolatile method blank associated with the monitoring wells which contained no target compounds but 5 TICs. The presence of these TICs in the field samples is qualified as undetected (U) when the sample concentration is less than 5 times the concentration in the associated blank.

The semivolatile surrogates were within the QC limits for all samples except the diluted sample S02 (ERA38DL). Positive results are estimated (J) and undetected results are estimated (UJ) for this diluted sample only.

Positive results for Pentachlorophenol in the unspiked sample S01 (ERA37) should be considered estimated (J) because the matrix spike and matrix spike duplicate for this compound were both high outside the QC limits.

Soils

All soils were analyzed at medium level for semivolatiles. In addition, some of the samples were run at different dilution factors because results for some of the target compounds exceeded the linear range of the instrument. Data tables presented combine the results from multiple runs.

Positive results are estimated (J) and non-detected results are estimated (UJ) for the following compounds due to calibration outliers:

- 4-Chloroaniline for S15 (ERT93), S18 (ERT96), S19 (ERT97), and diluted sample S12 (ERT90DL)
- 4-Chloroaniline; 3-Nitroaniline; 4-Nitrophenol; and 4-Nitroaniline for diluted samples S11 (ERT89DL) and S13 (ERT91DL).

There was one medium level semivolatile method blank associated with the soil samples which contained no target compounds but did contain 4 TICs. The presence of these TICs in the samples is qualified as undetected when the sample concentration is less than 5 times the concentration in the associated blank.

Surrogate recovery for diluted sample S11 (ERT89DL) were reported as zero %, therefore all detected compounds in this sample are qualified as estimated (J) and undetected compound results are unusable (R).

Sample S11 (ERT89) was used for the matrix spike/matrix spike duplicate (MS/MSD) audit. Recovery was low outside the QC limits for 4-Chloro-3-methylphenol. Recovery was high outside the QC limits for Acenaphthene; 2,4-Dinitrotoluene; Pentachlorophenol; and Pyrene. Both the MS and MSD reported zero % recovery for 4-Nitrophenol. In addition, the relative percent difference value for 1,4-Dichlorobenzene; 4-Chloro-3-methylphenol; and Acenaphthene were outside the QC limits. The presence of all these compounds except 4-Nitrophenol, in the unspiked sample S11 (ERT89) should be qualified as estimated (J) and non-detects as (UJ). The presence of 4-Nitrophenol in the unspiked sample is estimated (J), however, results from the undiluted, unspiked sample were not used for this report.

Internal standards were within control limits for all samples except the undiluted sample S11 (ERT89) and its MS/MSD samples, which are not being presented for this report.

<u>Sediments</u>

Positive results are estimated (J) and non-detected results are estimated (UJ) for the following compounds due to calibration outliers:

- 2-Nitroaniline; 3-Nitroaniline; 4-Nitrophenol; 4-Nitroaniline;
- 4,6-Dinitro-2-methylphenol; Carbazole; and 3,3'Dichlorobenzidine for sediment samples S22 (EHH91), S23 (EHH92), S24 (EHH93), and S25 (EHH94)
- 2,2'-Oxybis(1-chl-propane); Hexachlorocyclopentadiene; 4-Nitrophenol;
- 4-Nitroaniline; 4,6-Dinitro-2-methylphenol; Carbazole; and

3,3'-Dichlorobenzidine for samples S20 (ERT98) and S21 (ERT99).

There was one semivolatile laboratory method blank associated with the sediment samples. This blank contained the common lab contaminants Di-n-butylphthalate and bis-(2-Ethylhexyl)phthalate and 14 TICs. The presence of the phthalate esters in the field samples has been qualified as undetected (U) when the sample concentration is less than 10 times the concentration in the associated blank. Likewise, the TICs that may have appeared in the sediment samples have been qualified as undetected when the concentration is less than 5 times the concentration in the blank.

The recoveries of 4-Nitrophenol were high in both the MS and MSD. The recoveries of N-Nitroso-di-n-propylamine; 1,2,4-Trichlorobenzene; 4-Chloro-3-Methylphenol; Acenaphthlene; and 2,4-Dinitrophenol were high in the MS. The relative percent difference for N-Nitroso-di-n-proylamine; 1,4-Dichlorobenzene; 1,2,4-Trichlorobenzene; and Pyrene exceeded the QC limits. The results of the above mentioned compounds in the unspiked sample S23 (EHH92) are estimated (J) for positive results and estimated (UJ) for non-detected results.

PCB/PESTICIDES

Monitoring Wells

Surrogate recoveries were low outside the QC limits in samples S02 (ERA38), S03 (ERA39), S04 (ERT79), and S05 (ERT80). Positive results for all PCB/Pesticide compounds in these samples are estimated (J) and non-detected compound results are estimated (UJ).

Soils

A number of the soil samples were analyzed at two different dilution factors because some of the compound results exceeded the linear range of the instrument. Sample results presented in the tables reflect both dilution factors where applicable.

The retention times for a number of compounds in the performance evaluation mixture were outside the prescribed limits. Subsequently, detected target compounds in samples S14 (ERT92), S15 (ERT93), S18 (ERT96), diluted sample S18 (ERT96DL), and S19 (ERT97) are qualified as "presumptively present" (NJ), and non-detects as estimated (UJ). All positive results for Endrin in these samples is estimated (J). If Endrin is not detected, but Endrin aldehyde and/or Endrin keytone are detected, then the quantitation limit for Endrin is qualified as unusable (R). All positive results for Endrin keytone are qualified as presumptively present (NJ).

Due to calibration outliers, all detected compounds are estimated (J) and non-detected compounds are estimated (UJ) for samples S11 (ERT89), diluted sample S11 (ERT89DL), S12 (ERT90), diluted sample S12 (ERT90DL), and S13 (ERT91).

There was one laboratory PCB/Pesticide method blank associated with the soil samples which contained 9 target compounds: alpha-BHC; delta-BHC; Aldrin; Endosulphan I; Endrin; 4,4'-DDD; Endosulphan Sulphate; Endrin keytone; and gamma-Chlordane. The presence of these compounds in the field samples is qualified as undetected (U) when the sample concentration is less than 5 times the concentration of the associated blank. The high number of TCL contaminants in the lab blank may be indicative of an analytical problem within the lab.

High surrogate recoveries may be an indication of a high bias due to co-eluting interferences, therefore associated detected compounds are qualified as estimated (J) for samples S11 (ERT89), diluted sample S11 (ERT89DL), S12 (ERT90), diluted sample S12 (ERT90DL), S13 (ERT91), S14 (ERT92), S15 (ERT93), and S19 (ERT97). Low surrogate recoveries may be an indication of a low bias, therefore detected target compounds should be qualified as estimated (J) and non-detects as estimated (UJ) in sample S18 (ERT96). Because of the reported zero % recovery of surrogates in the diluted sample S18 (ERT96DL), detected target compounds are estimated (J) and non-detected compound results are unusable (R).

Sediments

All attempts at completing the final calibration check as required by the Contract Laboratory Program failed due to excessive degradation of DDT and Endrin. The lab ran all six sediment samples three times, each on a different instrument, with similar results. This would indicate that the problems were inherent to the samples and not instrument specific. The data presented are considered representative for site conditions and should be used only with professional judgement.

Surrogate recoveries were outside the QC limits for all sediment samples. Detected compound results are flagged as estimated (J) and non-detected results are estimated (UJ).

The recoveries were low for gamma-BHC in both the MS and the MSD. There was also a low recovery of 4,4'-DDT in the MSD. The relative percent difference for 4,4'-DDT exceeded the QC limits. Detected results in the unspiked sample S23 (ERT92) are qualified as estimated (J) and non-detected results are estimated (UJ).

C. M. CHRISTIANSEN	Case # 20	907	V	LAT	LE ANALY	YSIS	OF MON	110	RING WEL	.LS	S	9,	/28/93
	1	BKGRD		i		Du	up \$03			1	Rinsate	T	rip Blk
Sample Location ID	LOW	s02	S01	1	s03	9	s05	1	s04	İ	R01	1	R02
Traffic Report No.	WATER CRQL (ug/l)	ERA38	ERA37	'	ERA39	8	ERT80	1	ERT79		ERT81	1	ERT82
Number of TIC's		0	9		0	1	0	İ	1	j	0	l	0
Methylene Chloride	10.0	======================================	====== 	==== 		==== 		:== 		=== 	0.7 J	===: 	1 J
Acetone	10.0	İ	1					1		ı	26 J	1	27
Car Disulfide	10.0	1	ļ			1				ĺ	1 J		-
2-numenone	10.0	1	8 J	i		İ				l		-	1
Xylene (total)	10.0		2 J	1		ı		ĺ		ĺ		İ	1
	=======	=======	======	===:		====	======	==	======	==		==:	======

C. M. CHRISTIANSEN	Case # 2090	7 SEMIV	OLATILE A	NAL	YSISS OF	MONITORI	NG	WELLS	9	9/30/93
Sample Description Sample Location ID		Bkgrd S02 *	 s01	1	s03	Dup \$03	1	s04	1	Rinsate RO1
Traffic Report No.	LOW WATER CRQL	ERA38	ERA37	1	ERA39	ERT80	۔۔ ا	ERT79	 	ERT81
Number of TIC's	(ug/l)	7	20	1	3	4	1	3	١	2
рн	1	7.0	7.0	1	7.0	7.0	1	7.0	1	7.0
1, ichlorobenzene	10.0	0.4 J	1				 	0.5 J	1	
Nap. malene	10.0		15				1		1	1
2-Methylnaphthalene	10.0		51	1		1	1		1	1
Acenapthene	10.0		3 J	1		1	1		1	1
Dibenzofuran	10.0		3 J	1		1	1		1	1
Fluorene	10.0		3 J	1		1	1		1	1
Pentachlorophenol	25.0		12 J	ĺ			1		1	1
bis(2-ethylhexyl)phthalate	10.0	1200 JD x5		Ì	33	71	1		ĺ	2 J

^{*} Sample results reflect more than one dilution factor.

C. M. CHRISTIANSEN	Case # 20907	PCB/PESTI	CIDE ANALYSI	S OF MONITOR	ING WELLS	9/30/93	
Sample Description	1	Bkgrd			Dup \$03		
Sample Location ID	LOW VALUE	s02	\$01	\$03	s05	\$04	s05
Traffic Report No.	CRQL	ERA38	ERA37	ERA39	ERT80	ERT79	ERT81
рĦ	(ug/l) 	7.0	7.0	7.0	7.0	7.0	7.0
alpha-BHC	0.05			0.0052 PJ	0.0041 PJ	0.0049 PJ	0.0020 PJ
gamma-Chlordane	0.05	 	0.0064 PJ	<u> </u>	<u> </u>	<u> </u>	

r. Park

VOLATILE ANALYSIS	1	- 1	TIC's	Loca	tion	П	TIC's	Location	П	TIC's	Location	П	TIC's	Location	11	TIC's	Location
OF SOIL	1	- 1	10	\$18	8	11	10	S12	- 11	10	s13	11	10	S19	11	10	\$14
1	1	. 1						• • • • • • • • • • • • • • • • • • • •									
C. M. CHRISTIANSEN	1	- 1	pH	Traf	fic Rpt	#	рн	Traffic Rp	t #	рН	Traffic Rpt	#	рН	Traffic Rpt	#	рН	Traffic Rpt #
1	1	1	1	ER	T96	11		ERT90	11		ERT91	- 11		ERT97	11		ERT92
Case # 20907	1	1															
1	LOW	- 1	% Soli	d Desci	ription	11	% Solid	Description	n	% Solid	Description	11	% Solid	Description	11	% Solid	Description
9/30/93	501	L	80	Back	kground	11	80	1	11	92	1	11	89	Dup of S13	- 11	78	1 1
1	CRQ	L															
1	(ug/	Kg)	correct	ed Sa	ample	c	orrected	Sample	- 11	correcte	d Sample	0	orrected	d Sample	c	orrected	Sample
	1	0	CRQL	Conc	entratio	nH	CRQL	Concentrat	ion	CRQL	Concentration	on	CRQL	Concentrati	on	CRQL	Concentration
Methylene Chloride	l 10	.0	12.	 5	3 1	11		 	 	10.9	32	 	11.2	41	11	12.8	35
Acetone	•	.0	•		34	H	12.5	1 160 E	u II	10.9		ii.	11.2	()	ii	12.8	150
2-Butanone	:	.0		i		ii	12.5		::			ii	11.2		ii	12.8	5 J
1======================================															=====	======	

VOLATILE ANALYSIS	TIC's Location
OF SOIL	10 \$15
1	
C. M. CHRISTIANSEN	pH Traffic Rpt #
1	ERT93
Case # 20907	
1	LOW % Solid Description
9/30/93	SOIL 78
	CRQL
	(ug/Kg) corrected Sample
	CRQL Concentration
 Methylene Chloride	10.0 12.8 24
Acetone	10.0 12.8 130
2-Butanone	10.0 12.8 4 J

Page 2 of 2

VOLATILE ANALYSIS	TIC's Location
OF SOIL	10 S11
C. M. CHRISTIANSEN	pH Traffic Rpt #
	ERT89
Case # 20907	
	MEDIUM % Solid Description
9/30/93	SOIL 45
	CRQL
	(ug/Kg) corrected Sample
	CRQL Concentration
****************	FEE#225#22522222222222222222222
Methylene Chloride	1200
Acetone	1200
2-Butanone	1200
*****	**************

																	- 1
SEMIVOLATILE ANALYSIS OF SOIL		TIC	C's	Location S18	11	TIC's	Location S11	11	TIC's 20	Location S12 *	 	TIC's 20	Location S13 *	11	TIC's 20	Location S19	
C. M. CHRISTIANSEN	 	 pH		Traffic Rpt #	!!	pH	Traffic Rpt #	!!	K	Traffic Rpt	#		Traffic Rpt #	 []	рН 4.8	Traffic Rpt #	#
	 	4.		ERT96	 	4.2 	ERT89DL	 	4.8 	ERT90 Description	 	4.6	ERT91 Description	 		Description	
 9/30/93 	SOIL	79		Description Background	'	45	Description Diluted		80			92	 	'	89	Dup of \$13	
	(ug/Kg) 			Sample Concentration	• •	crected		c	orrected CRQL	Sample		orrected	Sample Concentration		rrected CRQL	Sample Concentration	ו ו
Acenapthene	======== 10000			 	: 		1	 	12500	1900 J	====	10870	 1100 J	11	11236	====================================	: j
Fluorene N-Nitrosodiphenylamine (1)	10000 10000	•		i ·			İ	ii II	12500	 42000	ii II	10870	 29000	ii II	11236 11236	360 J 19000	1
Pentachlorophenol Phenanthrene	25000 _~ 10000	•	1646	11000 J	• •	555556 2222222	87000000 Dx1000J 2100000 Dx1000J	ji [.] II	1562500	3000000 Dx5	0 0	1358700	1,400,000 Dx50	11 11	11236	 690 J	-
Fluoranthene	10000 10000	•							12500 12500	1200 J 6900 J		10870 10870	26000 21000	 	11236 11236	22000 16000	
Benzo(a)anthracene Chrysene	10000 10000	•		 	 		1	 	12500 12500	770 J 2100 J		10870 10870	6800 J	 	11236 11236	2600 J 6000 J	1
bis(2-ethylhexyl)phthalate Benzo(b)fluoranthene	10000 10000	•		 	 		1	 	12500	1500 J 	11	10870 10870	3000 J	 	11236 11236	490 J 2400 J	
Benzo(k)fluoranthene	10000 ======	 		 =======	 ===:		 	 ===		 =======	 ====	10870	2500 J 		11236	2000 J =======	 -

-high

SEMIVOLATILE ANALYSIS OF SOIL	 	 	TIC's 2	Location S14	*		TIC's	Location S15
	į	ij						
C. M. CHRISTIANSEN	1		рН 4.5	Traffic ERT92	Rpt	#	рН 4.4	Traffic Rpt # ERT93
Case # 20907		ij.			- -			
9/30/93	MEDIUM	11	% Solid 78	Descript	on	11	% Solid 78	Description
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	CRQL	-		I 				
	(ug/Kg)	110	corrected				orrected	d Sample
	 	11	CRQL	Concentra	atio	on	CRQL	Concentration
Acenapthene	10000	11	,	1		11		1
Fluorene	10000	11		Ι.		11		Î
N-Witrosodiphenylamine (1)	10000	11	12821	18000		11		1
Pentachlorophenol \	25000	11	1602564	2300000	Dx	50	32051	36000
Phenanthrene	10000	11				11		1
Fluoranthene	10000	11	12821	9000	J	11	12821	11000 J
Pyrene	10000	П	12821	17000		Ш	12821	19000
Benzo(a)anthracene	10000	11		1		11		1
Chrysene	10000	11	12821	5700	J	11	12821	6000 J
bis(2-ethylhexyl)phthalate	10000	11	12821	14000		11		1
Benzo(b)fluoranthene	10000	11	12821	3300	J	11	12821	2100 J
Benzo(k)fluoranthene	10000	11		1		11	12821	1200 J
	======	==:			===		======	

^{*} Sample results and corrected CRQLs reflect more than one dilution factor.

PCB/PESTICIDE ANALYSIS	1 1	TIC's	Location	T	IC's	Location	11	TIC's	Locatio	n	11	TIC's	Location	- 1	TIC's	Location
OF SOIL	i i	i	S18	ii		S11 *	İİ		s12	*	11		S13	1	l	S19
i	i i															
C. M. CHRISTIANSEN	i i	I pH	Traffic Rpt	¥	Н	Traffic Rpt #	11	рН	Traffic	Rpt #	11	рН	Traffic R	pt #	pH	Traffic Rpt #
i	i i	4.0	ERT96		4.2	ERT89	ii	4.8	ERT90		II	4.6	ERT91	1	4.8	ERT97
Case # 20907	i i															
i	LOW	% Solid	Description	% :	Solid	Description	11	% Solid	Descrip	tion	11 :	% Solid	Descripti	on	% Solid	Description
9/30/93	SOIL	79	Background	::	45		ii	80	i		ii	92	i	i	89	Dup of S13
i	CRQL															
i		corrected	Sample	cor	rected	Sample	Hc	orrected	Samp	le	110	orrected	Sample	- 1	corrected	Sample
i (T		•	Concentration			Concentration	ii		Concent	ration	ii	CRQL	Concentra	tion	CRQL	Concentration
	 	========				====================================	===			======	===			=====		
alpha-BHC	1.7	1	1	П		1 .	11	21	7.	8 BJP	11		1	- 1	1	1
beta-BHC	1.7	İ	i i	11 3	37778	4600 BPJDx10000	II	210	73	0 PDx100	11	185	140	JP		I
delta-BHC	1.7	Ì	i	ÍÌ	3778	4600 BPJ	11	21	17	O BPJ	11		I	1	1	l
gamma-BHC (Lindane)	1.7	İ	į .	II		ĺ	11		1		11		1	- 1	191	9.0 JPN
Heptachlor	1.7	l	i	11		1	11		1		11	185	11	JP	1	1
Aldrin	1.7		1	П	3778	13000 BP	11	21	29	0 BPJ	11		1	1	1	1
Heptachlor epoxide	1.7	22	1.4 JPN	11			11	21	18	0 PJ	11	185	400	PJ	191	110 JPN
Endosulfan I	1.7	1	1	11			11	21	22	0 BPJ	11	185	370	BJ	191	84 BJNP
Dieldrin	3.3	1	1	11	7333	1800 JP	11	41	21	0 PJ	11		1	1	371	48 JPN
4,4'-DDE	3.3	1	1	11		l	11	41	20	0 PJ	П	359	58	JP	1	l
Endrin	3.3	1	1	11	7333	4900 BJP	11		1		11		1	1	1	1
4,4'-DDD	3.3		1	11	7333	18000 BP	11	41	19	0 BPJ	11		1	1	l	l
Endosulfan sulphate	3.3	1	I	11	7333	3000 BJP	11		1		11		~	1	1	
4,4'-DDT	3.3	1	1	11			11	41	22	0 PJ	11	359	200		371	86 JPN
Methoxychlor	17.0		1	11			11	213	66	0 PJ	11	1848	58	JP	1	1
Er keytone	3.3	1	1	11	7333	4400 BJP	11	41	29	O BJ	11		1	1	l	1
Endrin aldehyde	3.3	1	1	11		1	11	41	19	O PJ	11		1	1		I
alpha-Chlordane	1.7	1	1	11			11	21	15	0 PJ	11		1	- 1	1	ļ
gamma-Chlordane	1.7	1	1	11	3778	1 7800 BJ	11	21	I 15	0 BPJ	11		1	- 1	1	1
19	1 1.7	1	1	11	3110	1 1000 83	11	21	, , ,	0 51 0	11		•		•	•

rest

Page 2 of 2

PCB/PESTICIDE ANALYSIS		TIC's	Location	TIC's	Location
OF SOIL			S14	11	S15
C. M. CHRISTIANSEN		pH 4.5	Traffic Rpt # ERT92	pH 4.4	Traffic Rpt # ERT93
Case # 20907	i i	j		· · · · · · · · · · · · · · · · · · ·	
	LOW	% Solid	Description	% Solid	Description
9/30/93	SOIL	78		78	
	CRQL				
	(ug/Kg)	corrected	Sample	corrected	Sample
	 ========	CRQL	Concentration	CRQL	Concentration
alpha-BHC	1.7	1	l	11	
beta-BHC	1.7	218	320 PNJ	218	69 JPN
delta-BHC	1.7	i	İ	ij	
gamma-BHC (Lindane)	1.7	Ì		i i	İ
Heptachlor	1.7	j	İ	İ	Ì
Aldrin	1.7	İ	l	218	410 BPNJ
Heptachlor epoxide	1.7	218	160 JPN	218	680 PNJ
Endosulfan I	1.7	1		218	840 BNJ
Dieldrin	3.3	1		423	570 PNJ
4,4'-DDE	3.3	423	480 PNJ		
Endrin	3.3	423	500 BPNJ	423	340 BJN
4,4'-DDD	3.3	423	390 BJPN		
Endosulfan sulphate	3.3	423	510 BPNJ		
4,4'-DDT	3.3	1	1	423	330 JPN
Methexychlor	17.0	1	l		
Er keytone	3.3	1		423	170 BJPN
Endrin aldehyde	3.3	423	490 PNJ		
alpha-Chlordane	1.7	218	240 PNJ		<u> </u>
gamma-Chlordane	1.7	218	810 BNJ	11 218	1 1100 BPNJ

Note - All soil samples for PCB/Pesticide analysis have been diluted.

^{*} Sample results and corrected CRQLs reflect more than one dilution factor.

VOLATILE ANALYSIS	1	Ĥ	TIC's	Location	П	TIC's	Location	11	TIC's	Location	П	TIC's	Location	П	TIC's	Location
OF SEDIMENT	1	11	0	S20	11	0	S21	- 11	0	S22	11	0	S25	11	0	\$23
1	1	11-														•
C. M. CHRISTIANSEN	1	11	pН	Traffic Rpt	#	рН	Traffic Rp	#	pН	Traffic Rpt	#	рН	Traffic Rpt	#	рН	Traffic Rpt #
	1	11		ERT98	11		ERT99	11		EHH91	11		EHH94	11		EHH92
Case # 20907	1	11-														
1	LOW	11	% Solid	Description	- 11	% Solid	Description	- 11	% Solid	Description	11	% Solid	Description	11	% Solid	Description
9/30/93	SOIL	11	10	Background	- 11	35	1	11	53	1	11	54	Dup of S22	11	46	
	CRQL	11-														
	(ug/Kg)) c	orrected	Sample	110	corrected	d Sample	110	corrected	Sample	c	orrecte	d Sample	110	orrected	d Sample
	1	11	CRQL	Concentrati	on	CRQL	Concentrat	on	CRQL	Concentration	on	CRQL	Concentration	on	CRQL	Concentration
		====	======		====			====			====	======		====	======	
Methylene Chloride	10.0	11	100	180 B	11			- 11			. 11			11		
Acetone	10.0	11	100	660 B	- 11	28.6	300 J) [[18.9	95_B	11	18.5	90 B	11	21.7	96 B
2-Butanone	10.0	11			11	28.6	83 J	11	18.9	13 J	11			11		
Tetrachloroethene	10.0	11	100	52 JB	11	28.6	1 12 JE	- 11			11		1	11		1
					/			11								
Toluene	10.0	ii		i	′ ii		i	ii		İ	ii		i	İİ		i i

VOLATILE ANALYSIS	TIC's Location
OF SEDIMENT	0 s24
C. M. CHRISTIANSEN	pH Traffic Rpt #
	ЕНН93
Case # 20907	[[]
\$	LOW % Solid Description
9/30/93	SOIL 18
	CRQL
	(ug/Kg) corrected Sample
	CRQL Concentration
=======================================	
Methylene Chloride	10.0
Acetone	10.0 55.6 (230 B)
2-Butanone	10.0
	10.0 55.6 (70 B)
Toluene	10.0 55.6 15 J
=======================================	

								<mark>-</mark>							
SEMIVOLATILE ANALYSIS	1	TIC's	Location	11	TIC's	Location	11	TIC's	Location	П	TIC's	Location	П	TIC's	Location
OF SEDIMENT	1	20	S20	II	8	s21	İÌ	0	S22	İİ	21	s25	İÌ	0	s23
1	İ														
C. M. CHRISTIANSEN	İ	р Н	Traffic Rpt	#	рН	Traffic Rpt	#	pН	Traffic Rpt #	#	рН	Traffic Rpt #	#	рН	Traffic Rpt #
1	i i	6.6	ERT98	ΪĪ	7.3	ERT99	ii	6.9	EHH91	ii	7.2	EHH94	ii	6.7	EHH92
Case # 20907	i i		· 						· 						
	LOW	% Solid	Description	11	% Solid	Description	11	% Solid	Description	П	% Solid	Description	11	% Solid	Description
9/30/93	SOIL	10	Background	ii	35	i .	ii.	53	1	ii	54	Dup of S22	ii	46	
	CRQL	i	·			<mark>-</mark>									i
i	(ug/Kg)	corrected	Sample	110	corrected	Sample	Ho	corrected	Sample	c	orrected	Sample	c	orrected	Sample
17.	i	CRQL	Concentratio	9.00		Concentratio			Concentration	ii	CRQL	Concentration	ii	CRQL	Concentration
				====		==========	====		==========	===	======	===========	===	======	=======================================
4-Methylphenol	330	3300	320 J	11	943	200 J	11		1	11		-	П	717	150 J
Naphthalene	330	3300	390 J	II	943	76 J	- ii		1	II		ĺ	II	717	98 J
2-Methylnaphthalene	330	1	1	П			H	623	120 J	II	611	120 J	11	717	48 J
Fluorene	330		1	11			II	623	98 J	11	611	85 J	11	717	43 J
Pentachlorophenol	800	1	1	11	2286	1400 J	II	1509	1300 J	11	1481	1600 س	11	1739	70 J
Phenanthrene	330	3300	270 J	11	943	320 J	İİ	623	640	II	611	560 J	II	717	230 J
Anthracene	330	3300	300 J	Ш	943	67 J	H	623	56 J	II	611	72 J	II	717	43 J
Fluoranthene	330	Ì	İ	İİ	943	590 J	ΪÏ	623	220 J	ii	611	240 J	İİ	717	390 J
Pyrene	330	3300	190 J	II	943	630 J	II	623	370 J	II	611	340 J	II	717	350 J
Benzo(a)anthracene	330	1	1	II	943	290 J	-ii	623	110 J	İİ	611	100 J	İİ	717	100 J
Chrysene	330	1	Ì	Ш	943	390 J	- i i	623	200 J	İİ	611	230 J	II	717	290 J
Benzo(b)fluoranthene	330	1	I	П	943	540 J	II	623	98 J	11	611	180 J	11	717	290 J
Benzo(k)fluoranthene	330	1	Î	11		İ	ii	623	160 J	II		ĺ	II		į i
Benzo(a)Pyrene	330	3300	480 J	П	943	270 J	H	623	150 J	11	611	170 J	II	717	180 J
Ideno(1,2,3-cd)pyrene	330	1	1	II	943	210 J	H	623	95 J	İİ	611	72 J	II	717	100 J
Bg g,h,i)perylene	330	1	Î	İİ	943	230 J	ii	623	170 J	II	611	80 J	İİ	717	180 J
***************************************			:=========	====	=======	==========	====		==========	===	======	===========	===	======	====================================

Page 2 of 2

SEMIVOLATILE ANALYSIS	1 1	TIC's	Location
OF SEDIMENT	į į	19	S24
C. M. CHRISTIANSEN		 pH	Traffic Rpt #
	i i	6.4	EHH93
Case # 20907	i i	j	
	LOW	% Solid	Description
9/30/93	SOIL	18	
	CRQL		
	(ug/Kg)	corrected	Sample
		CRQL	Concentration
4-Methylphenol	330	======================================	
Naphthalene	330	İ	İ
2-Methylnaphthalene	330	ĺ	İ
Fluorene	330	Ì	
Pentachlorophenol	800	1	
Phenanthrene	330	1	
Anthracene	330	1	
Fluoranthene	330	1	
Pyrene	330	İ	
Benzo(a)anthracene	330	Ì	Ì
Chrysene	330		İ
Benzo(b)fluoranthene	330	1	
Benzo(k)fluoranthene	330		1
Benzo(a)Pyrene	330	1833	120 J
Ideno(1,2,3-cd)pyrene	330	1833	130 J
Bg,h,i)perylene	330	1833	190 J

																		·	
PCB/PESTICIDE ANALYSIS		11	TIC's	Location	П	TIC's	Locatio	n	11	TIC's	Locati	on	11	TIC's	Loca	ition	11	TIC's	Location
OF SEDIMENT	1	11		S20 +	- 11		S21	+	Ħ		S22	*	II		S2	5 +	- II		s23 +
	1	11-				· ·													
. M. CHRISTIANSEN	1	11	pН	Traffic Rpt	#	рĦ	Traffic	Rpt #	#	pН	Traffi	c Rpt	#	рН	Traf	fic Rpt	#	РH	Traffic Rp
	1	Π	6.6	ERT98	- 11	7.3	ERT99		11	6.9	EHH9	1	11	7.2	EH	H94	- 11	6.7	EHH92
ase # 20907		11-									· 				·				
	LOW	11:	% Solid	Description	11	% Solid	Descrip	tion	11	% Solid	Descri	ption	11 7	Solid	Desc	ription	۱۱ م	% Solid	Descriptio
/30/93	SOIL		10	Background	1	35	1		П	53			11	54	Dup	of \$22	2	46	1
	CRQL	11-																	
	(ug/Kg)	110	orrected	Sample	0	corrected	d Samp	le	c	orrected	Sam	ple	co	orrected	il s	ample	- 11	correcte	d Sample
		11	CRQL	Concentrati	on	CRQL	Concent	ration	1	CRQL	Concen	tratio	n	CRQL	Conc	entrati	ion	CRQL	Concentrat
***************************************		===:	======		=====	======	-======	=====	===		======	=====	=====		=====			======	
inai in	3.3	11		1	- 11				\prod		1		11	6.1	1	7.2 PJ			1
,4'-DDT	3.3	11		1	- 11				11	6.2	6	.9 PJ	Ш	6.1	1	9.6 PJ			1
indrin aldehyde	3.3	11		1	11	9.4	9.	3 PJ	11	6.2	7	.8 J	Π	6.1	1	11 PJ			1

PCB/PESTICIDE ANALYSIS	I	11	TIC's	Location
OF SEDIMENT		11		\$24 *
1	1	11		
C. M. CHRISTIANSEN	1		pН	Traffic Rpt #
1		11	6.4	Енн93
Case # 20907	1	11		
	LOW		% Solid	Description
9/30/93	SOIL	П	18	1
1	CRQL	11.		
1	(ug/Kg)	corrected	Sample
	1	11	CROL	Concentration
Endrin	====== 3.3	: 		
4,4'-DDT	3.3	ii		Ì
Endrin aldehyde	3.3	ii	18.3	26 PJ
	======	===:		=======================================

^{*} Sample was reanalyzed due to laboratory QC problems; no PCB/Pesticides were detected in the reanalyzed sample.

⁺ Sample was rerun at a higher dilution factor because of laboratory QC problems; no PCB/Pesticides were detected in diluted sample.

DATA QUALIFIER DEFINITIONS (ORGANIC)

- U -The material was analyzed for, but not detected. The associated numerical value is the sample quantitation limit.
- J -The associated numerical value is an estimated quantity.
- R -The data are unusable (compound may or may not be present). Resampling and reanalysis is necessary for verification.
- N -Presumtive evidence of presence of material.
- NJ -Presumtive evidence of the presence of the material at an estimated quantity.
- UJ Le material was analyzed for, but was not detected. The sample quantitation limit is an estimated quantity.
- D -The sample has been diluted.
- E -The concentration of the compound has exceeded the linear range of the instrument.
- X -In the pesticide fraction, denotes manually entered data.
- P -This is a lab generated qualifier that essentially means "estimated". An example of when this is used is for pesticides that are run on a dual column and the two values do not agree within 25%. As with all PCB/Pesticide data, the lower of the two values is reported, but qualified as estimated (P).

C. M. CHRISTIANSEN Case # 20907 - Notes on Inorganic Qualifiers

General Information

Six monitoring well samples, seven soil samples, and six sediment samples were collected for the complete Target Analyte List (TAL) low level analysis of metals.

Field QC

Monitoring Wells:

The background monitoring well was S02 (MEQM48).

Samples S03 (MEQM49) and S05 (MEQM51) were labeled as field duplicates.

R01 (MEQM52) was a field rinsate.

Soils:

Soil sample S18 (MEQM66) was a background sample.

Sample S19 (MEQM67) was the field duplicate of S13 (MEQM61).

Sediments:

The background sediment sample was S20 (MEQM68).

Sediment field duplicates were S22 (MEQM70) and S25 (MEQM73).

Monitoring Wells

The validator's narrative indicates that all inorganic QC audits were within required limits for all monitoring well samples.

Soils

The laboratory duplicates for Aluminum, Iron, and Manganese were outside the QC limits, therefore results for these analytes are estimated (J) due to poor precision.

For the matrix spike audit, the recovery for Antimony was 45.8% and the recovery for Manganese was 136.7%. All Sb data are estimated (UJ) due to a possible elevation of the detection limit. All Mn data are estimated (J) due to a high bias.

Sediments

The matrix spike recovery for Antimony was low outside the QC limits. In addition, the laboratory prep blank and the continuing calibration blank were both found to contain Antimony. The Sb results on S22 (MEQM70) is estimated (J) due to low bias and contamination. The remaining Sb results are estimated (UJ) due to a possible elevation of the detection limit.

The serial dilution audit for Zinc was outside the control limits, therefore, all Zn data are estimated (J) due to interference.

Two continuing calibration blanks were found to contain Beryllium. All Be data except S24 (MEQM72) are estimated (J) due to contamination.

Sample Description	LOW	LOW	Background	1	1	DUP of SO3	1	lRinsate
Sample Location ID	WATER	•	Iso2	 so1	 so3	so5	 S04	RO1
	CRDL	IDL						
Traffic Report No.		(ug/l)	 MEQM48	MEQM47	MEQM49	MEQM51	MEQM50	MEQM52
aluminum	200	74.0	 74.0 U	74.0 U	81.4 B	74.0 U	86.1 B	84.6 B
Antimony	60	20.0	20.0 U	20.0 U	31.0 B	20.0 U	20.0 U	20.0 U
Arsenic	10	3.0	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U
Barium	200	8.0	39.3 B	100 B	666	35.8 B	35.7 B	8.0 U
Beryllium	5	1.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ca Taum	5	2.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Caurum	5000	240.0	28100	47500	111000	15100	14900	240 U
Chromium	10	5.0	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U	4.0 U
Cobalt	50	4.0	5.0 U	5.0 U	10.5 B	5.0 U	5.0 U	5.0 U
Copper	25	2.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Iron	100	5.0	30.0 B	593	30200	19.8 B	27.3 B	5.0 U
Lead	3	2.0	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Magnesium	5000	173.0	10000	17100	11600	5190	5110	173 U
Manganese	15	1.0	57.1	1170	8290	219	217	1.0 U
Mercury	0.2	0.2	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U	0.20 U
Nickel	40	11.0	11.0 U	11.0 U	11.0 U	11.0 U	11.0 ປ	11.0 U
Potassium	5000	827.0	1590 B	2320 B	15700	1630 B	1700 в	427 U
Selenium	5	4.0	4.0 U	4.0 U	6.0	4-0 U	4.0 U	4.0 U
Silver	10	3.0	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U	3.0 U
Sodium	5000	216.0	45200	5520	12400	3390 B	3380 B	437 B
Thallium	10	4.0	10.2	4.0 U	5.8 B	4.0 U	4.0 U	4.0 U
Vanadium	50	3.0	3.0 U	3.0 U	6.9 B	3.0 U	3.0 U	3.0 U
Z:	20	3.0	4.4 B	3.1 B	4.8 B	4.2 B	6.1 B] 3.0 U

C. M. CHRISTIANSEN		C	ase # 20	907		INORGANIC	ANALYSIS OF	SOI	L 				Page 1 of 2
* .	LOW	L		Traffic Rpt MEQM66		Location S11	Traffic Rpt MEQM59		Location S12	Traffic Rpt # MEQM60	# L		Traffic Rpt # MEQM61
	SOIL CRDL (mg/Kg)	 -	% Solid 82.1	 Background		% Solid 48.2	•	11	% Solid 79.6	•	 	% Solid 92.6	•
Analyte		c	crected	sample concentratio		CRDL	sample concentrati		CRDL	sample concentration	::	crected	sample concentration
Aluntoum	40	11	48.7	13500 J*	П	83.0	4330 J*	11	50.3	9280 J*	11	43.2	6570 J*
Ar ony	12		14.6	~	11	24.9		N	15.1	5.0 UJN	11	13.0	4.3 UJN
Arsenic	2	11	2.4	3.5	11	4.1	[5.1	11	2.5		Π	2.2	3.2
Barium	40		48.7	95.1	11	83.0	21.9 B	11	50.3	69.3	11	43.2	31.5 B
Beryllium	1	3 323	1.2	0.35 B	11	2.1		11	1.3		11	1.1	0.22 U
Cadmium	1		1.2	(0.49 U	11	2.1	0.83 U		1.3		11	1.1	0.43 U
Calcium	1000	• •	1218.0	1470	11	2074.7		П	1256.3	. (11	1079.9	2020
Chromium	2	3.33	2.4	23.8	11	4.1	12.4	11	2.5	15.9	11	2.2	14.7
Cobalt	10		12.2	7.1 B	11	20.7	2.1 B	11	12.6	6.0 B	П	10.8	
Copper	5		6.1		11	10.4	. \	11	6.3			5.4	21.9
Iron	20	11	24.4	16000 1*	11	41.5	14700 J*	11	25.1	. /	11	21.6	11200 J*
Lead	1	• •	1.2	5.1 *	11	2.1	20.7	11	1.3	13.8 *	11	1.1	3.5
Magnesium	1000	11	1218.0	2720	11	2074.7		П	1256.3		11	1079.9	The state of the s
Manganese	3	11	. 3.7	503 JN*	11	6.2	64.5 JN	*	3.8	134 JN*	11	3.2	134 JN*
Mercury	0.2	• •	0.2	0.12 0	11	0.4	0.21 0	11	0.3	0.13 U	11	0.2	0.11 0
Nickel	8		9.7		11	16.6		11	10.1		11	8.6	
Potassium	1000		1218.0		11	2074.7		Ш	1256.3		11	1079.9	
S ₁ fum	1		1.2	•	П	2.1		- !!	1.3		11	1.1	
Silver	2		2.4		11	4.1		Ш	2.5	•	11	2.2	•
Sodium	1000		1218.0		Ш	2074.7		Ш	1256.3		11	1079.9	· ·
Thallium	2		2.4	0.97 U	11	4.1		11	2.5		11	2.2	
Vanadium	10	11	12.2		11	20.7	9.0 B	11	12.6	23.9	11	10.8	•
Zinc	4	11	4.9	43.5	11	8.3	19.9	11	5.0	40.4	11	4.3	45.8

C. M. CHRISTIANSEN		Case # 209	907]	NORGANIC	ANALYSIS OF S	103	L	Page 2 of 2
			Traffic Rpt # MEQM67			Traffic Rpt # MEQM62	٠.		Traffic Rpt # MEQM63
g .	120000	% Solid 88.8	DUP of S13		% Solid 70.5	•	11	% Solid 75.9	•
 Analyte		corrected	sample concentration	: :		sample concentration	• •		sample concentration
Aluminum	40	45.0	6470 *J	11	56.7	11200 J*	11	52.7	11900 *J
Ar ony	12	13.5	4.5 UNJ	11	17.0	5.7 UJN	11	15.8	5.3 UNJ
Arsenic	2	2.3	3.5	İİ	2.8	2.6 B	II	2.6	2.8
Barium	40	45.0	25.7 B	II	56.7	94	II	52.7	49.7 B
Beryllium	1	1.1	0.23 U	İİ	1.4	0.28 U	II	1.3	0.26 U
Cadmium	1	1.1	0.45 U	İİ	1.4	(0.57 U	ii	1.3	0.53
Calcium	1000	1126.1		İİ	1418.4	2060	ii	1317.5	2330
Chromium	2	2.3	(15.9)	İİ	2.8	22.7	ii	2.6	19.3
Cobalt	10	11.3	5.1 B	İİ	14.2	6.9 B	ii	13.2	7.3 B
Copper	5	5.6	27.8	İİ	7.1	21.5	İİ	6.6	22.6
Iron	20	22.5	10300 *J	İİ	28.4	13000 J*	II	26.4	14100 J*
Lead	1	1.1	5.3 *	İİ	1.4	32.7 *	ii	1.3	28.8 *
Magnesium	1000	1126.1		ii	1418.4	2980	ii	1317.5	3240
Manganese	3	3.4	124 N*J	İİ	4.3	139 JN*	II	4.0	180 JN*
Mercury	0.2	0.2	0.11 0	İİ	0.3	0.14 U	ii	0.3	ر 0.13 پر
Nickel	8	9.0	11.8	İİ	11.3	16.6	ii	10.5	14.2
Potassium	1000	1126.1	382 B	ii	1418.4	846 B	ii	1317.5	684 B
Sr ium	1	1.1	0.90 U*	ii	1.4	1.1 U*	ii	1.3	1.1 ∪*
Siver	2	ē.		ii	2.8	1.0 B	ii	2.6	0.79 U
Sodium	1000	•		ii	1418.4	146 B	ii	1317.5	
Thallium	2	2.3	0.90 U	ii	2.8	1.1 U	ii	2.6	•
Vanadium	10			ii	14.2		ii	13.2	The second second
Zinc	4	•		ii	5.7		ii	5.3	
	.========			===		===========	==	=======	============

.

C. M. CHRISTIANSEN		Case # 20	907	INORGANIC	ANALYSIS OF SI	EDIMENT	Page 1 of 2
[:	Traffic Rpt # MEQM68				Traffic Rpt # MEQM70
		% Solid	1 11	% Solid	ı	% Solid	ı
	CRDL				5	50.4	
	(mg/Kg)						I
i		corrected	sample	corrected	sample	corrected	sample
Analyte			concentration		concentration		concentration
 A'inum	40	412.4	======================================	111.4	======================================	 79.4	======================================
A ony		123.7		33.4	1 9.1 UJN	23.8	
Arsenic	2	20.6	4.5 B)	5.6	(3.4 B)	11 4.0	(1.8 B)
Barium	40	412.4	29.5 B	111.4	110	79.4	
Beryllium	1	10.3	0.70 BJ	2.8	0.42 BJ	2.0	0.24 BJ
Cadmium	1	10.3	7.0 U	2.8	1.8 U	2.0	(1.3 U)
Calcium	1000	10309.3	6040 B	2785.5		1984.1	2440
Chromium	2	20.6	[41.5]	5.6	33.7)	4.0	16.0
Cobalt	10	103.1	6.8 U	27.9	9.1 B	19.8	4.5 B
Copper	5	51.5	[13.3 B	13.9	25.8	9.9	13.7
Iron	20	206.2	3760	55.7	17500	39.7	9180
Lead	1	10.3	20.2	2.8	46.3	2.0	13.3
Magnesium	1000	10309.3	1030 B	2785.5	3870	1984.1	2080
Manganese	3	30.9	198	8.4	254	6.0	129
Mercury	0.2	2.1	0.94 U	0.6	0.28 U	0.4	0.20 U
Nickel	8	82.5	16.4 B	22.3	20.9 B	15.9	8.5 B
Potassium	1000	10309.3	522 U	2785.5	756 B	1984.1	290 B
S um	1	10.3	2.3 U	2.8	0.71 B	2.0	0.70 B
Siver	2	20.6	4.7 U	5.6	1.2 U	4.0	0.91 U
Sodium	1000	10309.3	617 B	2785.5	206 B	1984.1	146 B
Thallium	2	20.6	2.1 U	5.6	0.55 U	4.0	0.39 U
Vanadium	10	103.1	27.2 U	27.9	56.5	19.8	29.2
Zinc 	4	41.2	89.6 JE*	11.1	91.4 JE*	7.9	240 JE*

			907	INUKGANIC	ANALYSIS OF	SEDIMENT	Page 2 of 2
		•	Traffic Rpt # MEQM73		Traffic Rpt MEQM71	# Location S24	Traffic Rpt # MEQM72
 	SOIL CRDL	% Solid 61.4	 DUP of S22	% Solid 41.2	•	% Solid 16.5	
 Analyte	(mg/Kg)	corrected CRDL	sample concentration		sample concentratio	correcte	d sample concentration
African I	40	65.1	5200	97.1	======================================	242.4	. 1860
Ai ony	12	:			8.2 UNJ	11	
Arsenic	2			4.9	2.1 B		
Barium	. 40		1 41.5 B	97.1	89.8 B	11 242.4	
Beryllium	1	V-1			0.17 BJ	6.1	
Cadmium	1				1.7 U	6.1	
Calcium	1000	•		2427.2		6060.6	
Chromium	2	3.3	14.3	4.9	15.8	12.1	(7.1 B)
Cobalt	10	16.3			4.1 B	60.6	4.0 U
Copper	5	8.1	12.8	12.1	13.2]] 30.3	16.9 B
Iron	20		8390	48.5	7520	121.2	6810
Lead	1	1.6	13.6	2.4	23.8	[] 6.1	j 31.1
Magnesium	1000	1628.7	1990	2427.2	1810 B	6060.6	1640 B
Manganese	3	4.9	121	7.3	159	18.2	707
Mercury	0.2	0.3	0.16 0	0.5	0.24 U	1.2	0.58
Nickel	8	13.0	9.0 B	19.4	8.9 B	48.5	7.30
Potassium	1000	1628.7	315 B	2427.2	241 B	6060.6	485 B
S um	1	1.6	0.36 U	2.4	0.58 B	6.1	1.3 U
Silver	2	3.3	0.71 U	4.9	1.1 U	12.1	2.8 U
Sodium	1000	1628.7	114 B -	2427.2	163 B	6060.6	407 B
Thallium	2	3.3	0.33 U	4.9	0.49 U	12.1	1.2 U
Vanadium	10	16.3	26.2	24.3	24.0 B	60.6	15.8 U
Zinc	4	6.5	179 JE*	9.7	53.9 JE*	24.2	109 JE*

DATA QUALIFIER DEFINITIONS (INORGANIC):

- U -The material was analyzed for, but none was detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.
- J -The associated value is an estimated quantity.
- ? The data are unusable. (Note: Analyte may or may not be present.)
- -The material was analyzed for, but was not detected. The associated value is an estimate and may be inaccurate or imprecise.
- B -The concentration is greater than the instrument detection limit (IDL) but less than the contract required detection limit (CRDL).
- S -The reported value was determined by the Method of Standard Addition (MSA).
- * -Duplicate analysis was not within control limits.
- W -Post-digestion spike for Furnace AA analysis is out of control limits (85-115%), while sample absorbance is less than 50% of spike absorbance.
- E -The reported value is estimated because of the presence of interference.
- N -Spiked sample recovery not within control limits.
- + -Correlation coefficient for the MSA is less than 0.995.

-Duplicate injection precision not met.

farticle size

farticle size

for the compatant of the publishment of