OBG

SITE INVESTIGATION / REMEDIAL ACTION OPTION REPORT

C.M. Christiansen Co. Inc. Former Pole Yard Military Creek, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

August 4, 2017

AUGUST 4, 2017 | NRT PROJECT #2381

Site Investigation / Remedial Action Option Report

Military Creek Phelps, Wisconsin

Prepared for:

C.M. Christiansen Co., Inc. 5501 N. Santa Monica Blvd. Milwaukee, WI 53217

ANDREW M. MILLSPAUGH, PE Environmental Engineer

OBG

LAURIE L. PARSONS, PE, PH
Principal Engineer / Hydrogeologist

Haun Harsons

TABLE OF CONTENTS

TABLE	ES	ii
FIGUR	ES	ii
APPEN	NDICES	ii
ACRO	NYMS AND ABBREVIATIONS	iii
EXECU	JTIVE SUMMARY	iv
1 IN'	TRODUCTION	1
1.1	general information	1
2 BA	ACKGROUND INFORMATION	2
2.1	military creek sediment characterization	2
3 MI	ETHODS OF INVESTIGATION	3
3.1	Sediment thickness measurements	3
3.2	stream flow measurements	3
3.3	sediment core collection	3
4 RE	ESULTS	5
4.1	sediment thickness measurement	5
4.2	stream flow measurements	5
4.3	Sediment core sampling	5
5 SI	TE INVESTIGATION CONCLUSIONS	9
5 re	medial action options	10
5.1	site specific objectives	10
5.2	identification of remedial action options	10
5.2	2.1 RAO No. 1 – No Action	11
5.2	2.2 RAO No. 2 – Institutional Controls	11
5.2	2.3 RAO No. 3 – 30 Inch Dredge and Cover Placement	12
5.3	Evaluation and Recommendation	13
REFER	RENCES	14

MILITARY CREEK – SITE INVESTIGATION / REMEDIAL ACTION OPTION REPORT | TABLE OF CONTENTS

TABLES

Table 1	Sediment Thickness Measurements
Table 2	Stream Flow Measurements
Table 3	Sediment Analytical Results
Table 4	Concentrations of TEQ _{WHO-Fish} in Surface Sediments Relative to WDNR CBSQG-Based Levels of Concern (In Text)
Table 5	Concentrations of TEQ _{WHO-Fish} in Subsurface Sediments Relative to WDNR CBSQG-Based Levels of Concern (In Text)
Table 6	Concentrations of TEQ _{WHO-Fish} in Surface Sediments Relative to Alternative SQG-Based Levels of Concern (In Text)
Table 7	Concentrations of TEQ _{WHO-Fish} in Subsurface Sediments Relative to Alternative SQG-Based Levels of Concern (In Text)
Table 8	Remedial Action Options Comparison
Table 9	Remedial Action Options Estimated Costs
FIGURES	

APPENDICES

Figure 1

Appendix A	Analytical Laboratory Reports
Appendix B	Remedial Action Options Detailed Cost Estimates
Appendix C	Photo Log

Military Creek Site Investigation

ACRONYMS AND ABBREVIATIONS

AET apparent effects threshold
AhR aryl hydrocarbon receptor
bgs below ground surface

CBSQG Consensus Based Sediment Quality Guidelines
CCME Canadian Council of Ministers of the Environment

CMC C.M. Christiansen Company, Inc.
DGPS differential global positioning system

DRO diesel range organics

MEC midpoint effect concentration

NOAA National Oceanic and Atmospheric Administration

NOAEC no observed adverse effect concentration

NRT Natural Resource Technology, Inc., an OBG Company

PCDD/F polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran

PEC probable effect concentration

RAO remedial action options

SI site investigation

SQG sediment quality guideline

SQuiRTs Screening Quick Reference Tables TEC threshold effect concentration

TEF toxic equivalency factor

TEQ 2,3,7,8-TCDD Toxic equivalency
TPH total petroleum hydrocarbons
ug/Kg micrograms per kilogram
ug/L micrograms per liter

USEPA United States Environmental Protection Agency
WDNR Wisconsin Department of Natural Resources

WHO World Health Organization

EXECUTIVE SUMMARY

Natural Resource Technology, Inc., an OBG Company (NRT) was retained by C.M. Christiansen Company, Inc. (CMC) to perform supplemental sediment characterization of Military Creek, summarize findings in a Site Investigation (SI) Report, and describe applicable remedial alternatives in a Remedial Action Options (RAO) Report. Military Creek is adjacent to the C.M. Christiansen Pole Yard (Site) located on County Highway E, Village of Phelps, Vilas County, Wisconsin. The Site is a non-operational pole dipping facility that underwent a soil remedial action in 1999 and limited sediment investigation in 1992 and 2003. To streamline preparation and review, the SI and RAO Reports are combined in this document. Content related to the SI and RAO reports were prepared in accordance with NR 716 and 722. This report is prepared to satisfy Item 9 (Military Creek Investigation Report) and Item 10 (Military Creek Remedial Action Options Report) of the Spill Response Agreement, dated April 17, 1998, between CMC and the Wisconsin Department of Natural Resources (WDNR).

Sediment sampling performed by WDNR in 2003 indicated the presence of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzo-furan (PCDD/F) congeners. Since then, ongoing communication between CMC and WDNR has revolved around an approach for additional characterization that resulted in an August 3, 2016 Military Creek Sediment Sampling Plan. Implementation of the Military Creek Sediment Sampling Plan took place from October 17 to October 21, 2016, which included sediment core collection for laboratory analysis, and field measurements of water depth, sediment thickness, and stream flow.

Water depth, sediment thickness, and stream flow measurements indicate that the culvert beneath County Highway E restricts water flow and sediment transport of Military Creek. Sediment cores were collected from 14 locations starting at the mouth of military creek with North Twin Lake and extending upstream past the Site. Laboratory data were subjected to assessment recommendations consistent with the WDNR interim guidance, "Consensus-Based Sediment Quality Guidelines (CBSQG), Recommendations for Use & Application" (December, 2003). A modification to the guidelines was also included related to the methods for normalization of congener-specific concentrations of PCDD/Fs to 2,3,7,8-TCDD equivalent (TEQ) concentrations.

For the assessment of Military Creek, a relevant comparison for the protection of aquatic life from sediment concentrations of PCDD/Fs is the comparison of concentrations of surficial sediment $TEQ_{WHO\text{-}Fish}$ to SQGs for the protection of aquatic life expressed in the same terms (i.e., normalization of congener-specific concentrations of PCDD/Fs to concentrations of TEQ using the WHO 1998 TEFs for fish). Further, the application of a safety factor of 10 was determined to be unwarranted, given that invertebrates do not have an active aryl hydrocarbon receptor, which is key in the primary mechanism of toxicity for PCDD/Fs. Application of the safety factor to SQGs is overly conservative relative to literature threshold values. Given that the SQGs were derived from surficial sediments (i.e., top 5 cm), the data summarized in Table 6 of this report are the most relevant to the protection of aquatic life. Table 6 demonstrates that only one of the 14 surficial sediment samples (SED-03), located directly adjacent to the Site, has concentrations of $TEQ_{WH0\text{-}Fish}$ concentrations exceeding a relevant MEC and PEC. Human risk is minimal due to the submerged nature of the sediment and the restricted access and limited use of Military Creek for recreational purposes.

Three Remedial Action Options were evaluated including 1) No Action, 2) Institutional Controls, and 3) Up to 30 inches of sediment removal through dredging and placement of a 6-inch thick clean cover layer. The No Action option was ruled out since other evaluated options were technically and economically feasible to implement. The Dredge and Cover option was ruled out due to the extremely high total and unit cost for implementation to mitigate risk that could effectively be mitigated with anotheroption. The recommended remedial action is the use of Institutional Controls, which can mitigate identified risk at an economically feasible cost. Institutional controls are anticipated to include zoning/deed restrictions and the installation and maintenance of notification signs; WDNR NR726 Case Closure with residual contamination and GIS registry would be required.

1 INTRODUCTION

Natural Resource Technology, Inc., an OBG Company (NRT) was retained by C.M. Christiansen Company, Inc. (CMC) to perform supplemental sediment characterization of Military Creek, summarize findings in a Site Investigation (SI) Report, and describe applicable remedial alternatives in a Remedial Action Options (RAO) Report. Military Creek is adjacent to the C.M. Christiansen Pole Yard (Site) located on County Highway E, Village of Phelps, Vilas County, Wisconsin. The Site is a non-operational pole dipping facility that underwent a soil remedial action in 1999 and limited sediment investigation in 1992 and 2003. To streamline preparation and review, the SI and RAO Reports are combined in this document. Content related to the SI and RAO reports were prepared in accordance with NR 716 and 722.

The objective of this report is to present supplemental investigation data and to recommend a remedial action based on evaluated options. The recommended response action is intended to manage environmental issues identified at the site and eliminate or control potential threats to human health, safety, and welfare and the environment to the extent practicable. This report is prepared to satisfy Item 9 (Military Creek Investigation Report) and Item 10 (Military Creek Remedial Action Options Report) of the Spill Response Agreement, dated April 17, 1998, between CMC and the Wisconsin Department of Natural Resources (WDNR).

1.1 GENERAL INFORMATION

Site Owner: C.M. Christiansen Company, Inc.

P.O. Box 100 Phelps, WI 54554

Site Contact: Mr. Eric R. Christiansen

(414) 963-9211

Site Location: Lake Street, County Road E

Phelps, WI Vilas County

Southeast ¼ and Southwest ¼ Section 35, T42N, R11E

Consultant: Natural Resource Technology, Inc.

234 West Florida St, 5th Floor

Milwaukee, WI 53204

Contact: Mr. Andrew M. Millspaugh, P.E.

(414) 837-3607

2 BACKGROUND INFORMATION

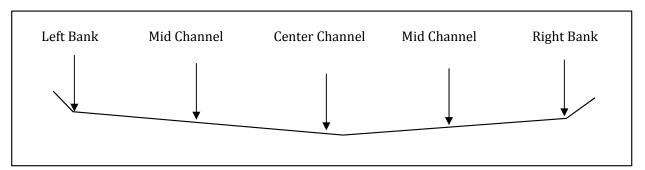
Background information, site history, and contaminant types have been described in several previous documents submitted to WDNR. Information from these documents is not restated, but is included by reference. Previously prepared documents include the following:

- WDNR (2004). Expanded Site Inspection, C.M. Christiansen Pole Yard, Village of Phelps, Vilas County, USEPA ID: WID988639035.
- NRT (2000). Remedial Action Documentation Report.
- WDNR (1998). Spill Response Agreement with C.M. Christiansen Company, Inc.
- NRT (1998). C.M. Christiansen Company, Inc., Supplemental Evaluation of Military Creek and Revised Work Plan for Screening Level Assessment, Phelps, WI.
- Coleman Engineering Company (1997). Site Investigation Report, CM Christiansen Co., Pole Treatment Facility.
- WDNR (1995). Final Screening Site Inspection Report for C.M. Christiansen Company Pole Dipping Site.
- WDNR (1993). Preliminary Assessment, USEPA ID# WID998639035.

2.1 MILITARY CREEK SEDIMENT CHARACTERIZATION

Sediment sampling performed by WDNR in 2003 indicated the presence of polychlorinated dibenzo-*p*-dioxin and polychlorinated dibenzofuran (PCDD/F) congeners. Since then, ongoing communication between CMC and WDNR has revolved around an approach for additional characterization. A conceptual investigation approach was submitted to WDNR on December 16, 2015. WDNR provided comments and questions on the investigation approach in a subsequent letter on February 11, 2016. WDNR comments were considered and incorporated into the Military Creek Sediment Sampling Plan dated August 3, 2016. WDNR provided a letter on September 7, 2016 encouraging the implementation of the August 3rd Military Creek Sediment Sampling Plan.

Military Creek sediment sampling took place from October 17 to October 21, 2016. WDNR personnel (Mr. Chris Saari) was on site on October 18, 2016 for observation of sampling activities. Sampling methods and results are described in Sections 3 and 4, respectively.



3 METHODS OF INVESTIGATION

In accordance with the August 3, 2016 Military Creek Sediment Sampling Plan, field activities included sediment thickness measurements and sediment core sampling. In addition, the condition of Military Creek was photodocumented and stream flow measurements were obtained to provide additional characterization information. Military Creek is narrow and shallow with heavy vegetation along its shoreline. These conditions restricted the use of a conventional shallow-draft sampling vessel (e.g., jon boat). Instead, the lower portion (i.e., County Highway E to Twin Lake) was accessed and sampled by foot, and the upper portion (i.e., all locations upstream of County Highway E) was accessed and sampled by kayak. All sampling locations were located and documented using a handheld differential global positioning system (DGPS) with sub-meter accuracy.

3.1 SEDIMENT THICKNESS MEASUREMENTS

Sediment thickness measurements were obtained through manual poling with a 1.5-inch diameter aluminum poling rod marked with 0.1-foot increments. Manual poling was performed along cross-channel transects spaced approximately 100 feet apart from the mouth of North Twin Lake upstream to sediment sample location SED-01. Twenty transects were poled with five poling locations per transect as shown in the schematic below: left bank, center channel, right bank, and two intermediate mid channel locations. The depth to sediment (i.e., water depth) was first measured and recorded using a survey rod with a 6-inch circular disc attached to the bottom. Poling was then performed through manual effort until refusal was encountered. The total penetrated depth of the poling rod at each location was recorded. Poling transects are shown on Figure 1 and data are presented in Table 1.

Example Sediment Thickness Measurement Transect Profile Looking Upstream

3.2 STREAM FLOW MEASUREMENTS

Stream flow measurements were collected along seven of the twenty poling transects using a HACH FH950 Portable Velocity Meter. Velocity measurements were recorded at 0.6 times the total water depth at each sediment thickness poling location of the selected transects. The selected transects collected flow data upstream of the site, directly upstream of the culvert crossing beneath County Highway E, directly downstream of the culvert crossing beneath County Highway E, and at the mouth of Military Creek with North Twin Lake. Transects selected for stream flow measurements are shown on Figure 1, and velocity data are reported in Table 2.

3.3 SEDIMENT CORE COLLECTION

Actual sediment sample locations are shown on Figure 1 and were generally at the midpoint of Military Creek. Samples were collected by manual coring methods using clear plastic core tubes (2-5/8 inch inside diameter). Cores were pushed or driven with a slide hammer until either the target depth of 30 inches was reached or refusal was encountered.

Collected cores were capped and transported to shore for processing in accordance with the Military Creek Sediment Sampling Plan. Cores were extruded onto clean plastic sheeting, photographed, and divided into three intervals depending on actual core recovery. If present, the top two intervals (i.e., 0 to 6 inches and 6 to 18

MILITARY CREEK - SITE INVESTIGATION / REMEDIAL ACTION OPTION REPORT | METHODS

inches) were submitted for laboratory testing of Diesel Range Organics (DRO), 2,3,7,8-substituted dioxins and furans (i.e., list of 17 congeners), particle size, total organic carbon, and percent solids. Recovered core material from 18 to 30 inches was archived for possible future analysis. Laboratory data are reported on Table 3. Particle size distribution curves are included in Appendix A.

4 RESULTS

4.1 SEDIMENT THICKNESS MEASUREMENT

Sediment thickness measurements are tabulated in Table 1 for transects 1 through 20, which are numbered from downstream to upstream as shown on Figure 1. Transects 1 through 9 were located downstream of County Highway E and had a maximum sediment thickness of 1.3 feet and maximum water depth of 2.3 feet. Particle size curves for sediment from these downstream transects were predominantly sand and gravel. Transects 10 through 20 were located upstream of County Highway E and had a maximum sediment thickness of 5.7 feet and maximum water depth of 6 feet. Particle size curves for these upstream transects were predominantly softer deposits of sand with organics.

Water depth and sediment thickness measurements indicate that the culvert beneath County Highway E restricts water flow and sediment transport of Military Creek. This is supported by deeper water depths and thicker deposits of soft sediment upstream of County Highway E compared to shallower water depths and higher proportion of sand and gravel downstream of County Highway E.

4.2 STREAM FLOW MEASUREMENTS

Stream flow measurements are tabulated in Table 2 for select transects upstream and downstream of County Highway E as shown on Figure 1. Stream flow was highest at the most downstream transect and decreased with farther upstream transects. This further supports that the crossing of County Highway E acts as a flow control feature for Military Creek.

4.3 SEDIMENT CORE SAMPLING

Sediment cores were collected from 14 locations as shown on Figure 1. Laboratory data are tabulated in Table 3. Laboratory data were subjected to assessment recommendations consistent with the WDNR interim guidance, "Consensus-Based Sediment Quality Guidelines (CBSQG), Recommendations for Use & Application" (December, 2003). A modification to the guidelines was also included in this assessment related to the methods for normalization of congener-specific concentrations of PCDD/Fs to 2,3,7,8-TCDD equivalent (TEQ) concentrations. Per Appendix C of the Interim Guidance, toxic equivalency factors (TEF) derived from 1989 USEPA guidance for human exposure risk assessments are recommended for the normalization of congener-specific concentrations of PCDD/F to concentrations of TEQ. However, the sediment quality guidelines (SQG) in the Interim Guidance were derived based on the protection of aquatic life using TEFs recommended by the World Health Organization (WHO) in 1998 for exposure to fish (CCME, 2002). It is inappropriate to compare TEQs calculated using one set of TEFs to SQGs derived using a different set of TEFs. To facilitate an appropriate comparison of site-specific data to the SQGs, congener-specific concentrations of PCDD/Fs were normalized to TEQ using the WHO 1998 TEFs for fish. Concentrations of TEQ normalized in this manner are referred to as TEQ_{WHO-Fish}.

Concentrations of TEQ_{WHO-Fish} from sediment core samples as they relate to relative levels of concern are presented in Tables 4 and 5. Table 4 presents surface sediment results and Table 5 presents subsurface sediment results. Data in both tables are categorized relative to the WDNR Interim Guidance SQGs derived from CCME (2002). The surficial sediment results present the relevant assessment because the SQGs were derived for concentrations of PCDD/Fs from 'surficial sediments (i.e., top 5 cm)' (CCME, 2002).

2381 SI RAOR Final 170804.docx

Table 4. Concentrations of TEQ_{WHO-Fish} in Surface Sediments¹ Relative to WDNR CBSQG-based Levels of Concern²

Station/Sample Name	Level 1 Concern Conc. ≤ TEC	Level 2 Concern TEC < Conc. ≤ MEC	Level 3 Concern MEC < Conc. ≤ PEC	Level 4 Concern PEC < Conc.
	All Concentration	ons Reported in ng/kg dr	y wt. at 1% TOC	
SED-01	0.04	-	-	-
SED-101	0.15	-	-	-
SED-102	0.07	-	-	-
SED-02	-	5.33	-	-
SED-03	-	-	-	220.2
SED-04	-	8.23	-	-
SED-05	-	-	20.19	-
SED-06	-	-	11.80	-
SED-103	-	-	13.59	-
SED-104	-	8.21	-	-
SED-105	-	6.40	-	-
SED-106		1.59		
SED-107	-	1.70	-	-
SED-108	-	-	-	25.21

¹ Surface sediment sample depths were 0-0.5 feet, with the exception of SED-104, which was 0-0.4 feet.

Table 5. Concentrations of TEQ_{WHO-Fish} in Subsurface Sediments¹ Relative to WDNR CBSQG-based Levels of Concern²

Station/Sample Name	Level 1 Concern Conc. ≤ TEC	Level 2 Concern TEC < Conc. ≤ MEC	Level 3 Concern MEC < Conc. ≤ PEC	Level 4 Concern PEC < Conc.
	All Concentration	ons Reported in ng/kg dr	y wt. at 1% TOC	
SED-01	0.03	-	-	-
SED-101	0.11	-	-	-
SED-102	0.04	-	-	-
SED-02	0.63	-	-	-
SED-03	-	-	-	569.5
SED-04	-	-	-	47.37
SED-05	-	9.12	-	-
SED-06	-	-	-	49.40
SED-103	0.09	-	-	-
SED-104	-	-	-	-
SED-105	0.18	-	-	-
SED-105 duplicate	0.28	-	-	-
SED-106	-	2.27	-	-
SED-107	-	4.20	-	-
SED-108	0.68	-	-	-
SED-108 duplicate	0.39	-	- -	-

¹ Subsurface sediment sample depths ranged from 0.5-0.7 to 0.5-1.5 feet.

 $^{^2}$ TEC = 0.85 ng TEQ_{WHO-Fish}/kg dw at 1% TOC; MEC = 11.2 ng TEQ_{WHO-Fish}/kg dw at 1% TOC; PEC = 21.5 ng TEQ_{WHO-Fish}/kg dw at 1% TOC

 $^{^2}$ TEC = 0.85 ng TEQ_{WHO-Fish}/kg dw at 1% TOC; MEC = 11.2 ng TEQ_{WHO-Fish}/kg dw at 1% TOC; PEC = 21.5 ng TEQ_{WHO-Fish}/kg dw at 1% TOC

MILITARY CREEK - SITE INVESTIGATION / REMEDIAL ACTION OPTION REPORT | RESULTS

A modified assessment approach is presented in Tables 5 and 6 to account for SQGs used in the WDNR Interim Guidance that were derived using a safety factor of 10 to adjust for uncertainties (CCME, 2002), which potentially yielded an overly conservative assessment. For the modified assessment, relative levels of concern were based on screening values from two sources: (1) those used to derive the SQGs, but unadjusted by the safety factor of 10; and (2) those detailed in work to create and analyze freshwater sediment quality values in Washington State (Cubbage et al. 1997). The Washington State screening values include an Apparent Effects Threshold (AET) value, which is roughly equivalent to a PEC, that was included in NOAAs Screening Quick Reference Tables (SQuiRTs NOAA 2004).

Further, a 2010 toxicity assessment of benthic invertebrates for the St. Regis Superfund Site in Minnesota suggested (Integral 2010) suggested that, "[PCDD/Fs] are generally considered to have very low toxicity to benthic macroinvertebrates (USEPA 2008), consistent with the relatively high no-effect exposure levels reported by Barber et al. (1998) and West et al. (1997)." The no observed adverse effect concentration (NOAEC) for 2,3,7,8-TCDD in sediment was 25,000 ng/kg dry weight in the Barber et al. (1998) study. For West et al. (1997), no adverse effects were observed for invertebrates dosed with concentrations of 2,3,7,8-TCDD at 300,000 ng/kg dry weight in food. The apparent low toxicity to benthic invertebrates is due in part to the fact that invertebrates do not have an active aryl hydrocarbon receptor (AhR), which is key in the primary mechanism of toxicity for PCDD/Fs. Finally, the SQGs were developed principally for the protection of benthic organisms, which generally relies on the use of the most sensitive bioassay outcome, further demonstrating the conservative nature of SQGs. Table 6 presents surface sediment results and Table 7 presents subsurface sediments results categorized relative to less conservative guidelines applied at other sites.

Table 6 Concentrations of TEQ_{WHO-Fish} in Surface Sediments¹Relative to Alternative SQG-based Levels of Concern²

Station/Sample Name	Level 1 Concern Conc. ≤ TEC	Level 2 Concern TEC < Conc. ≤ MEC	Level 3 Concern MEC < Conc. ≤ PEC	Level 4 Concern PEC < Conc.
	All Concentration	ons Reported in ng/kg dr	ry wt. at 1% TOC	
SED-01	0.04	-	-	-
SED-101	0.15	-	-	-
SED-102	0.07	-	-	-
SED-02	5.33	-	-	-
SED-03	-	-	-	220.2
SED-04	8.23	-	-	-
SED-05	-	20.19	=	-
SED-06	-	11.80	-	-
SED-103	-	13.59	=	-
SED-104	8.21	-	-	-
SED-105	6.40	-	=	-
SED-106	1.59	-	-	-
SED-107	1.70	-	-	-
SED-108	-	25.21	=	-

¹ Surface sediment sample depths were 0-0.5 feet, with the exception of that of SED-104, which was 0-0.4 feet.

Table 7 Concentrations of TEQ_{WHO-Fish} in Subsurface Sediments¹ Relative to Alternative SQG-based Levels of Concern²

Station/Sample Name	Level 1 Concern Conc. ≤ TEC	Level 2 Concern TEC < Conc. ≤ MEC	Level 3 Concern MEC < Conc. ≤ PEC	Level 4 Concern PEC < Conc.
	All Concentration	ons Reported in ng/kg dr	y wt. at 1% TOC	
SED-01	0.03	-	-	-
SED-101	0.11	-	-	-
SED-102	0.04	-	-	-
SED-02	0.63	-	-	-
SED-03	-	-	-	569.5
SED-04	-	47.37	-	-
SED-05	-	9.12	-	-
SED-06	-	49.40	-	-
SED-103	0.09	-	-	-
SED-104	-	-	-	-
SED-105	0.18	-	-	-
SED-105	0.28	-	-	-
SED-106	2.27	-	-	-
SED-107	4.20	-	-	-
SED-108	0.68	-	-	-
SED-108 duplicate	0.39	-	-	-

¹ Subsurface sediment sample depths ranged from 0.5-0.7 to 0.5-1.5 feet.

 $^{^2}$ TEC = 8.5 ng TEQ_{WHO-Fish}/kg dw at 1% TOC; MEC = 112 ng TEQ_{WHO-Fish}/kg dw at 1% TOC; PEC = 215 ng TEQ_{WHO-Fish}/kg dw at 1% TOC

 $^{^2}$ TEC = 8.5 ng TEQ_{WHO-Fish}/kg dw at 1% TOC; MEC = 112 ng TEQ_{WHO-Fish}/kg dw at 1% TOC; PEC = 215 ng TEQ_{WHO-Fish}/kg dw at 1% TOC

5 SITE INVESTIGATION CONCLUSIONS

The risk extent for adverse effects to aquatic life in Military Creek was characterized by considering the relative occurrences of sediment sample concentrations among the levels of concern. The WDNR Interim Guidance suggests that, "the greatest certainty in predicting absence or presence of sediment toxicity occurs at sediment contaminant concentrations that are lower than the TEC or greater than the PEC values, respectively." Further, the Interim Guidance suggests that, "there is a consistent incremental increase in the incidence of toxicity to sediment-dwelling organisms with increasing chemical concentrations". This is the basis for the calculation of a midpoint effect concentration (MEC). While including an MEC does support a qualitative understanding of risk, there is uncertainty in determining whether potential adverse effects occur within the levels of concern bounded with the MEC. Therefore, the greatest risk for potential adverse effects is expected to occur at locations associated with Level 4 Concern, with decreasing incremental risk potential to Level 1 Concern, in which no risk is expected.

For the assessment of Military Creek, a relevant comparison for the protection of aquatic life from sediment concentrations of PCDD/Fs is the comparison of concentrations of surficial sediment $TEQ_{WHO-Fish}$ to SQGs for the protection of aquatic life expressed in the same terms (i.e., normalization of congener-specific concentrations of PCDD/Fs to concentrations of TEQ using the WHO 1998 TEFs for fish). Further, the application of a safety factor of 10 was determined to be unwarranted, given that invertebrates do not have an active aryl hydrocarbon receptor, which is key in the primary mechanism of toxicity for PCDD/Fs. Application of the safety factor to SQGs also appears overly conservative relative to literature threshold values. Given that the SQGs were derived from surficial sediments (i.e., top 5 cm), the data summarized in Table 6 are the most relevant to the protection of aquatic life. Table 6 demonstrates that only one of the 14 surficial sediment samples (SED-03), located directly adjacent to the site, has concentrations of $TEQ_{WHO-Fish}$ concentrations exceeding a relevant MEC and PEC.

5 REMEDIAL ACTION OPTIONS

The objective of the remedial action options evaluation is to recommend a response action for sediment within Military Creek as required by the WDNR under NR 722. The recommended response action is intended to manage the environmental issues identified in Military Creek and eliminate or control potential threats to human health, safety, and welfare and the environment to the extent practicable. The remedial action options evaluated for Military Creek sediment include: 1) No action; 2) Institutional controls; and 3) targeted sediment removal with cover placement.

5.1 SITE SPECIFIC OBJECTIVES

The objectives of for evaluated remedial actions, specific to Military Creek, are to accomplish the following:

- Prevent human exposure through direct contact with contaminated sediment.
- Reduce potential exposure to wildlife through ingestion of contaminated sediment.
- Reduce potential transport of contaminated sediment in Military Creek to North Twin Lake through sediment transport mechanisms.

Remedial actions capable of achieving site objectives include the following:

- Establishment and enforcement of Institutional Controls to restrict access or activities that could pose a
 threat to human health or exacerbate a threat to the environment.
- Removal of contaminated surface sediment from Military Creek through physical excavation and off-site disposal of sediment exhibiting impacts that pose an ecological risk.
- Placement of clean cover material over contaminated sediment to reduce potential human/wildlife contact and sediment transport.

5.2 IDENTIFICATION OF REMEDIAL ACTION OPTIONS

The remedial action technologies considered for evaluation include those that meet the following initial screening criteria:

- Documented effectiveness from pilot-scale or full-scale applications.
- Ability to address identified sediment contamination in a timely manner.
- Appropriateness based on the distribution of contaminants.

Considering these screening criteria, applicable administrative and engineering technologies for use in developing remedial action options are institutional controls (i.e., zoning restrictions, notification signs), removal through excavation (i.e., dredging), and covering with clean material (i.e., sand placement). As described in the SI portion of this report, sediment contamination exhibiting potential ecological risk is concentrated in an area surrounding sediment core locations SED-03. For estimating purposes, an area extending from Transect T-13 upstream of SED-03 to T-12 downstream of SED-03 was used to develop and compare remedial action options. Options considered for further evaluation include the following:

- RAO No. 1 No Action
- RAO No. 2 Institutional Controls
- RAO No. 3 Remove up to 30 inches of sediment and replace with 6 inches of clean cover material

Sediment remedial action options are evaluated based on criteria consistent with NR 722.07 including technical feasibility (i.e., short-term effectiveness, long-term effectiveness, implementability), restoration timeframe, economic feasibility, and additional requirements. A comparison of remedial options is presented in Table 8. Estimated remedial option costs are presented in Table 9; detailed cost estimates are included in Appendix B.

5.2.1 RAO No. 1 – No Action

Technology Description:

For completeness, the No Action option is considered for comparison with other options. Under the No Action option, no remedial work is performed to address contaminated sediment within Military Creek.

Regulatory Issues:

This option satisfies requirements stipulated in the 1998 spill agreement between CMC and WDNR, which allows for evaluation of non-remedial actions.

Technical Feasibility:

This option can be implemented immediately. The short-term effectiveness is poor since sediment impacts remain in place that present a potential ecological risk. The long-term effectiveness is satisfactory since natural processes will cover and/or dilute concentrations over time through deposition of clean sediment. The impacted section of Military Creek is small and has little human presence under current site conditions presenting low exposure risk.

<u>Restoration Timeframe</u>: The restoration timeframe is expected to be long. Site investigation data indicate that contaminant concentrations are persistent over time.

Economic Feasibility:

This option is economically feasible and has no cost to implement.

5.2.2 RAO No. 2 – Institutional Controls

Technology Description:

This option includes the implementation of legal requirements designed to protect public health and the environment. These are referred to as Institutional Controls or Continuing Obligations, and are applied to the property even after it is sold. Each subsequent owner is responsible for maintaining and complying with Institutional Controls. The following institutional controls are assumed:

- 1. **Zoning Restrictions and/or Deed Covenants:** Restricts the allowable use for the site.
- 2. Manage Contaminated Sediment that is Excavated: In the event that sediment needs to be removed, such as for maintenance of the existing culvert beneath CH-E, the owner must ensure proper sampling, management, and disposal occurs. Management and disposal must be in compliance with state and federal laws.
- **3. Notification of Workers:** If any work occurs in contaminated areas, the owner must inform all workers of known contamination and required personal protection equipment.
- **4. Notification of Public:** The owner must install and maintain signage describing known contamination, threats to human health, and not to disturb sediment. Signs must be located at locations of public access to Military Creek.

Regulatory Issues:

OBG | AUGUST 4, 2017

This option satisfies requirements stipulated in the 1998 spill agreement between CMC and WDNR. WDNR Case Closure (NR726) with residual contamination and GIS registry listing with Continuing Obligations is assumed to be required.

Technical Feasibility:

This option can be readily implemented. Completion of the WDNR Case Closure Request is estimated to take approximately 6 months. Following closure approval, signage is estimated to be manufactured and installed within 6 months. The short-term and long-term effectiveness are administratively satisfactory in providing protectiveness to human health. The short-term effectiveness to the environment is poor since sediment impacts remain in place for potential wildlife exposure. The long-term effectiveness to the environment is satisfactory since natural processes will cover and/or dilute concentrations over time through deposition of clean sediment.

<u>Restoration Timeframe</u>: The restoration timeframe is expected to be long. Site investigation data indicate that contaminant concentrations are persistent over time.

Economic Feasibility:

The capitol costs to implement this remedial option is estimated at \$38,500. Annual maintenance costs are assumed to maintain and replace site signage. The total unadjusted cost (i.e., no discount factor for present value) including 30 years of annual maintenance is estimated at \$60,500.

5.2.3 RAO No. 3 – 30 Inch Dredge and Cover Placement

Technology Description:

This option includes removing up to 30 inches of sediment and placing a 6-inch thick cover of clean cover material (e.g., sand) from transect T13 to transect T12. This option removes delineated sediment impacts and places a clean cover material to mitigate potential residual contaminants below the removal interval.

The estimated surface area between transect T13 and T12 is approximately 3,300 ft², which equates to approximately 305 cubic yards (CY) of sediment removal. Removed sediment is assumed to be dewatered on a temporary sediment management pad using a stabilizing agent such as Portland cement. Stabilized sediment will be transported off site for disposal at a licensed non-hazardous disposal facility. Following sediment removal, the exposed sediment surface will be sampled to document residual conditions and 6 inches of clean sand will be placed as a clean substrate for recolonization of benthic organisms.

Supporting work for this option include the following elements:

- Pre-design sediment sampling.
- Final design or remedial action.
- Permitting, bidding, and contracting to perform remedial action.
- Site preparation, including erosion controls, access tracking pad, access road, sediment management pad, and tree clearing to access Military Creek.
- Documentation sampling of post-dredge sediment surface and of cover material thickness.
- Removal/Disposal of temporary facilities following completion of remedial action.
- Site restoration (e.g., seeding disturbed areas)

Regulatory Issues:

This option satisfies requirements stipulated in the 1998 spill agreement between CMC and WDNR. Permits will be required authorizing work in a waterbody. Removed sediment must be properly characterized for offsite disposal. WDNR Case Closure (NR726) is assumed to be required.

Technical Feasibility:

Sediment removal and cover placement are common remedial actions that can be implemented following final design and permitting. The short-term effectiveness is satisfactory since impacted sediment is physically removed from Military Creek; however, this option completely destroys any existing benthic habitat in the sediment removal area. The long-term effectiveness is good since natural processes will deposit clean sediment on the placed cover material to re-establish the benthic habitat. Disruption of the placed cover is expected to be low due to low flow velocities and the lack of human presence.

Restoration Timeframe:

The restoration timeframe is expected to be relatively short (i.e., less than 5 years) for final design and implementation.

Economic Feasibility:

The capitol costs to implement this remedial option is estimated at \$326,000. No annual operation and maintenance costs are assumed.

5.3 EVALUATION AND RECOMMENDATION

Based on findings presented in the SI section of this report, Military Creek sediment presents a low ecological and human risk potential. An area of potential ecological risk exists directly adjacent to the site where surface sediment $TEQ_{WHO-Fish}$ concentrations slightly exceed the PEC listed in the WDNR Interim Guidance; however, actual risk associated with PCDD/Fs to benthic organisms is minimal as described in the SI section. The potential for risk to humans is small due to the location of contamination in submerged sediment and the nature of Military Creek that restricts access and recreational use of the creek. Recreational use is expected to be limited to small boat use (e.g., canoes and kayaks) where users are unlikely to come in contact with the creek sediment.

- RAO No. 1 (No Action) is included to provide a comparison with other options. Other identified options can be reasonably implemented so the No Action option is ruled out of consideration.
- RAO No. 2 (Institutional Controls) fits well with the existing and anticipated site use for Military Creek. There is minimal existing human use of Military Creek that would present a risk of coming into contact with impacted sediment. Future users of Military Creek can be controlled through the appropriate documentation and implementation of institutional controls. This option can be implemented at a reasonable timeframe and cost.
- RAO No. 3 (30-Inch Dredge and Cover Placement) is technically acceptable as an appropriate remedial option to address contaminated sediment; however, the economic feasibility is not appropriate for the small quantity of targeted impacted sediment exhibiting potential ecological risk. On a per cubic yard basis of sediment addressed, RAO No. 3 mitigates potential risk at a unit cost of \$1,069/CY while RAO No. 2 mitigates potential risk at a unit cost of approximately \$198/CY. Considering the magnitude of the potential risk compared to the economic cost to implement this option, RAO No. 3 is ruled out of consideration.

Based on data presented in the SI section of this report, the evaluation of data related to human and ecological risk, and the feasibility of identified Remedial Action Options, RAO No. 2 (Institutional Controls) is the recommended remedial option.

REFERENCES

- Barber, T. R., Chappie, D. J., Fuchsman, P. C., & Finley, B. L. (1998). *Using a Spiked Sediment Bioassay to Establish a No Effect Concentration for Dioxin Exposure to the Amphipod Ampelisca Abdita*, Environmental Toxicology and Chemistry, 17(3), p. 420-424.
- CCME (2002). Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Summary Table.
- Coleman Engineering Company (1997). Site Investigation Report, CM Christiansen Co., Pole Treatment Facility.
- Cubbage, Jim, David Batts, and Scott Breidenbach, (1997). *Creation and Analysis of Freshwater Sediment Quality Values in Washington State*, Environmental Investigations and Laboratory Services Program, Washington State Department of Ecology.
- Integral (2010), Fox Creek Sediment Toxicity Study, Amphipod Survival and Growth. Prepared for International Paper, Integral Consulting Inc.
- NOAA (2004). Screening Quick Reference Tables.
- NRT (2000). Remedial Action Documentation Report.
- NRT (1998). C.M. Christiansen Company, Inc., Supplemental Evaluation of Military Creek and Revised Work Plan for Screening Level Assessment, Phelps, WI.
- WDNR (2004). *Expanded Site Inspection,* C.M. Christiansen Pole Yard, Village of Phelps, Vilas County, USEPA ID: WID988639035.
- WDNR (2003). Consensus-Based Sediment Quality Guidelines, Recommendations for Use & Application.
- WDNR (1998). Spill Response Agreement with C.M. Christiansen Company, Inc.
- WDNR (1995). Final Screening Site Inspection Report for C.M. Christiansen Company Pole Dipping Site.
- WDNR (1993). Preliminary Assessment, USEPA ID# WID998639035
- USEPA (2010). Recommended Toxicity Equivalence Factors (TEFs) for Human Health Risk Assessments of 2,3,7,8-Tetrachlorodibenzo-p-dioxin and Dioxin-Like Compounds.
- USEPA (2008). Framework for Application of the Toxicity Equivalence Methodology for Polychlorinated Dioxins, Furans, and Biphenyls in Ecological Risk Assessment, EPA 100jR-08/004, U.S. Environmental Protection Agency, Office of the Science Advisor, Washington, D.C.
- USEPA (1989) Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-Dioxins and -Dibenzofurans (CDDs and CDFs).
- West, C. W., Ankley, G. T., Nichols, J. W., Elonen, G., E., & Nessa, D. E., (1997). *Toxicity and Biozccumulation of 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin in Long Term Tests with the Freshwater Benthic Invertebrates Chironomus Tentans and Lumbriculus Variegatus,* Environmental Toxicology and Chemistry, 16(6), p. 1287-1294.
- WHO (1998). *Toxicity Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs, for Humans and Wildlife,* Martin Van den Berg, Environmental Health Perspectives, December 1998.

TABLES

OBG

Table 1. Sediment Thickness Measurements
Military Creek Site investigation / Remedial Action Options
C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin
WDNR BRRTS Activity #02-64-000068

	Lef	t Bank	Mid-0	Channel	С	enter	Mid-	Channel	Righ	nt Bank	Average	
Transect	Water	Sediment	Sediment	Comments								
	Depth	Thickness	Thickness									
1	0.4	0.6	0.4	0.7	0.7	0.6	0.7	0.6	0.5	0.6	0.6	Sandy
2	1.2	0.2	1.5	0.1	1.5	0.2	1.3	0.1	1.2	0.3	0.2	Sand with gravel and rocks
3	1.1	0.5	1.3	0.1	1.2	0.4	1.3	0.3	1.3	0.2	0.3	Sandy gravel
4	1.0	0.3	1.6	0.0	1.6	0.0	1.3	0.0	1.2	0.4	0.1	Sand with gravel and rocks
5	1.6	0.2	2.3	0.3	2.3	0.2	1.1	0.4	8.0	0.5	0.3	Sand and gravel. Some organics
6	1.2	1.0	1.9	1.3	2.0	0.5	2.0	1.0	0.5	0.6	0.9	Soft sediment
7	0.5	1.4	1.9	1.0	1.8	1.3	2.0	0.6	0.6	0.7	1.0	Soft sediment
8	2.1	1.0	2.2	0.9	1.7	0.3	1.8	0.5	1.4	0.7	0.7	Soft sediment
9	1.6	0.9	1.7	0.5	1.6	0.2	1.3	0.1	1.4	0.1	0.4	Sandy gravel
10	1.9	0.8	3.7	1.0	3.2	0.3	2.8	1.1	1.2	0.1	0.7	Soft sediment and sand
11	1.2	2.3	1.7	4.4	3.5	0.1	2.0	2.9	0.6	1.0	2.1	Soft sediment
12	1.0	0.9	2.4	1.6	3.0	1.3	3.1	1.3	2.4	2.4	1.5	Soft sediment
13	3.7	5.7	4.9	4.6	5.1	2.7	5.0	3.2	5.2	2.4	3.7	Soft sediment
14	3.6	4.4	4.5	2.7	4.6	3.8	5.1	3.2	4.7	3.4	3.5	Soft sediment
15	3.8	3.1	5.3	2.0	5.1	2.2	5.4	1.4	5.3	0.9	1.9	Soft sediment
16	6.0	3.8	5.7	4.5	5.5	2.0	3.4	3.1	2.8	1.8	3.0	Soft sediment
17	3.7	3.6	4.0	3.9	5.0	3.0	5.7	1.1	4.2	0.3	2.4	Soft sediment
18	5.0	3.8	5.1	3.9	5.3	2.8	5.0	4.7	4.8	4.1	3.9	Soft sediment
19	4.6	2.8	4.5	3.1	5.8	1.2	5.7	1.8	4.9	3.0	2.4	Soft sediment
20	5.9	1.7	6.0	2.4	6.0	2.2	5.5	4.1	5.1	4.1	2.9	Soft sediment

Notes:

Table 1. Sediment Thickness Page 1 of 1

^{1.} All measurements are reported in Feet.

^{2.} Transect measurement locations are based on facing upstream.

^{3.} Comments on sediment type are subjective based on sampler feel and visual observation of sediment on poling rod.

Table 2. Stream Flow Measurements
Military Creek Site Investigation / Remedial Action Options
C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin
WDNR BRRTS Activity #02-64-000068

	Left Bank		Mid-Channel		Center		Mid-Channel		Right	Bank	Averege
Transect	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Average Velocity
1	0.43	0.74	0.11	0.96	0.86	1.27	0.83	1.52	0.85	1.42	0.90
2	0.57	1.38	0.61	0.81	0.48	0.81	0.31	0.54	0.73	0.83	0.71
3	0.47	0.63	0.31	0.62	0.28	0.91	0.38	0.85	NM	NM	0.56
9	0.24	0.40	0.45	0.58	0.30	0.45	0.25	0.36	0.21	0.27	0.35
10	0.00	0.00	0.06	0.11	0.17	0.44	0.31	0.33	0.08	0.13	0.16
16	0.01	0.09	0.00	0.04	0.01	0.05	0.02	0.05	0.00	0.01	0.03
18	0.01	0.02	0.04	0.06	0.12	0.17	0.02	0.06	0.03	0.06	0.06

Notes:

- 1. All measurements are reported in feet per second (fps). Velocity measurements were collected for approximately 120 seconds per location.
- 2. Transect measurement locations are based on facing upstream.
- 3. NM = no measurement recorded at the location.

	Field Sample I			102016036	101916027	101916028	101916024	101916025	101916021	101916022	101916018	101916019	101816008	101816009
		Station Name:	SEI	D-01	SEI	SED-02		SED-03		D-04	SEI	D-05	SEI	D-06
	Sample Depth (fee		0-0.5	0.5-1.5	0-0.5	0.5-1.5	0-0.5	0.5-1.5	0-0.5	0.5-1.5	0-0.5	0.5-1.5	0-0.5	0.5-1.5
		Sample Date:	10/20/2016	10/20/2016	10/19/2016	10/19/2016	10/19/2016	10/19/2016	10/19/2016	10/19/2016	10/19/2016	10/19/2016	10/18/2016	10/18/2016
050	Danaant Maistura	(0/)	00.0	05.5	04.0	07.0	40.0	FF 4	04.4	75.4	25.0	40.0	00	77.0
GEO	Percent Moisture	(%)	90.3	85.5	91.9	87.2	46.3	55.4	91.4	75.4	35.8	16.9	92	77.3
Organic	Carbon, Total Organic	(mg/kg)	268,000	353,000	317,000	216,000	19,300	30,900	245,000	128,000	19,400	649	350,000	95,900
Organic	Carbon, Total Organic	(%)	26.8	35.3	31.7	21.6	1.93	3.09	24.5	12.8	1.94	0.0649	35	9.59
PHC	Diesel Range Organics	(mg/kg)	18	48.7	< 9.9 UL	8.2 J	12.8 L	54.8 L	< 9.3 UL	6.5 JL	4.5 L	< 0.70 UL	111	5.4 J
TEQ	TEQ (EPA-89 TEF) ¹	(ngEQ/Kg)	1.02	0.92	307.8	23.64	781.7	3139.4	360.5	1241.9	73.81	0.78	802.0	1011.7
TEQ	TEQ (EPA-89 TEF) @ 1% TOC	(ngEQ/Kg)	0.04	0.03	9.71	1.09	405.0	1016.0	14.71	97.02	38.05	11.96	22.92	105.5
TEQ	TEQ (WHO-98 TEF) ²	(ngEQ/Kg)	1.11	1.04	168.8	13.55	424.9	1759.7	201.7	606.4	39.18	0.59	413.0	473.7
TEQ	TEQ (WHO-98 TEF) @ 1% TOC	(ngEQ/Kg)	0.04	0.03	5.33	0.63	220.2	569.5	8.23	47.37	20.19	9.12	11.80	49.40
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	3.6 J	1 J	6,500	470	17,000 E	75,000 EDN2	7,800	31,000 DN2	1,600	11	18,000 E	25,000 E
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	< 0.27	< 0.32	47	3.9 J	100	370	48	160	10	< 0.16	110	140
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	< 0.29	< 0.32	260	18 J	740	2,800	340	960	65	0 IJ	690	810
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	< 0.29	< 0.32	100	7.2 J	230	780	110	310	25	0.21 J	220	280
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	< 0.3	< 0.26	11 J	0 IJ	27	89	15 J	42	2.6 J	< 0.08	26 J	33
	2,3,7,8-TCDD		< 0.34	< 0.26	< 2.3	< 0.65	2.1	9.3	0.97 J	2.4	0 IJ	< 0.08	20 J 2.1 J	2.1 J
Dioxin Dioxin	OCDD	(ng/Kg)	29 J	6.2 J	72,000 E	5,700	170,000 EDN2	9.3 570,000 EDN2	73,000 E	310,000 EDN2	17,000 E	120	190,000 DN2	2.1 J 270,000 EDN2
DIOXIII	OCDD	(ng/Kg)	293	6.2 J	72,000 E	5,700	170,000 EDIN2	570,000 EDIN2	73,000 E	310,000 EDIN2	17,000 E	120	190,000 DN2	270,000 EDIN2
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	1 J	0.47 J	2,200	150	5700 E	27,000 DN2	2,600	12,000 DN2	580	4.6 J	7,900	11,000 E
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	< 0.32	< 0.24	200	14 J	570	2,500 DN2	210	960 DN2	52	0.38 J	680	920
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	< 0.21	< 0.16	250	17 J	620	2,500	290	890	58	0 IJ	460	300
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	< 0.23	< 0.16	110	9 J	230	1,000	110	360	24	0 IJ	300	400
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	< 0.27	< 0.23	76	5.8 J	250	1,100	110	190	20	< 0.15	200	160
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	< 0.45	< 0.34	29 J	2.2 J	0 P	270	41	76	8	< 0.11	63	67
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	< 0.28	< 0.22	110	8.3 J	280	1,200	130	390	25	0 IJ	300	370
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	< 0.25	< 0.22	67	5.3 J	190	820	93	170	15	0.24 J	130	110
Furan	2,3,7,8-TCDF	(ng/Kg)	1.2 J	1.3 J	7.2 V	1.8 J	15 V	71 V	9.9 V	11 V	1.3 V	< 0.12	9.9 V	5.6 V
Furan	OCDF	(ng/Kg)	2.6 J	0 IJ	8,000	540	18,000 DN2	65,000 DN2	9,600	53,000 DN2	2,300	16	34,000 DN2	49,000 DN2

Qualifiers / Definitions:

< = Concentration is less than reported limit

ng/Kg = nanograms per kilogram

TEQ = Total 2,3,7,8-TCDD Equivalence

TEF = Toxic Equivalency Factors to 2,3,7,8-TCDD

J = Concentration estimated

D = Result obtained from analysis of diluted sample

E = Exceeds calibration range EDL = Estimated Detection Limit

EMPC = Estimated Maximum Possible Concentration

GEO = Geotechnical Property

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

Notes:

- 1. TEQs calculated using 1989 USEPA Interim TEF Values
- 2. TEQs calculated using 1998 World Health Organization TEF Values for fish.
- 3. For concentrations reported as non detect, the reported detection limit was used in TEQ calculations.
- 4. For concentrations reported as estimated, the reported estimated value was used in TEQ calculations.

Table 3. Sediment Analytical Results
Military Creek Site Investigation / Remedial Action Options
C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin
WDNR BRRTS Activity #02-64-000068

	F	ield Sample ID:	102016032	102016033	102016030	102016031	101816012	101816013	101816011	101816015	101816016	101816017	101716001	101716002
		Station Name:	SED	-101	SED-102		SED-103		SED-104		SED-105		SED	-106
	San	nple Depth (feet):	0-0.5	0.5-1.5	0-0.5	0.5-1.5	0-0.5	0.5-1.5	0-0.4	0-0.5	0.5-1.4	0.5-1.4	0-0.5	0.5-1.4
	Sample Date:		10/20/2016	10/20/2016	10/20/2016	10/20/2016	10/18/2016	10/18/2016	10/18/2016	10/18/2016	10/18/2016	10/18/2016	10/17/2016	10/17/2016
050	D (M:)	(0()	20.0	07.0	20.0	20.0		24.0	04.0	0.0	50.7	00.7	445	5.0
GEO	Percent Moisture	(%)	90.6	87.8	92.2	88.2	28	21.6	24.6	8.6	58.7	38.7	14.5	5.2
Organic	Carbon, Total Organic	(mg/kg)	146,000	165,000	279,000	226,000	17,800	38,300	11,100	5,310	76,100	43,500	2,360	1,610
Organic	Carbon, Total Organic	(%)	14.6	16.5	27.9	22.6	1.78	3.83	1.11	0.531	7.61	4.35	0.236	0.161
PHC	Diesel Range Organics	(mg/kg)	7.7 J	11.0 J	32.8	27.8	2.7 J	4.5	15.4	9.3	21.8	18.1	3.3	4.3
TEQ	TEQ (EPA-89 TEF) ¹	(ngEQ/Kg)	2.83	2.14	2.27	0.85	45.40	0.43	14.67	5.38	2.31	1.93	0.40	0.40
TEQ	TEQ (EPA-89 TEF) @ 1% TOC	(ngEQ/Kg)	0.19	0.13	0.08	0.04	25.50	0.11	13.22	10.14	0.30	0.44	1.70	2.49
TEQ	TEQ (WHO-98 TEF) ²	(ngEQ/Kg)	2.17	1.81	1.98	0.94	24.19	0.35	9.12	3.40	1.35	1.20	0.38	0.37
TEQ	TEQ (WHO-98 TEF) @ 1% TOC	(ngEQ/Kg)	0.15	0.11	0.07	0.04	13.59	0.09	8.21	6.40	0.18	0.28	1.59	2.27
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	39	20 J	27	2 J	950	5.8	290	110	45	38	4 J	4.1 J
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	0 IJ	< 0.24	0.55 J	< 0.26	5.3 J	< 0.083	2.8 J	1.1 J	0.4 J	0.41 J	< 0.16	< 0.16
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	2.1 J	0.82 J	1.4 J	< 0.29	39	0.18 J	15	5	1.7 J	1.6 J	0.21 J	0 IJ
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	0.92 J	0.4 J	0.64 J	< 0.26	11	< 0.091	5.8	1.6 J	0.72 J	0.63 J	< 0.17	0.21 J
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	< 0.42	< 0.35	< 0.45	< 0.23	1.5 J	< 0.078	0.73 J	0.32 J	< 0.11	< 0.092	< 0.057	< 0.052
Dioxin	2,3,7,8-TCDD	(ng/Kg)	< 0.41	< 0.6	< 0.36	< 0.28	< 0.16	< 0.083	< 0.11	< 0.091	< 0.2	< 0.12	< 0.095	< 0.1
Dioxin	OCDD	(ng/Kg)	370	230	230	13 J	11,000 E	65	2,500	970	510	360	38	51
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	12 J	7.1 J	10 J	0 IJ	360	2.7 J	100	41	21	15	0 IJ	1.3 J
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	0 IJ	0 IJ	1.1 J	< 0.29	35	0.21 J	9.6	3.7 J	1.6 J	1.2 J	< 0.15	< 0.15
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	1.5 J	0.87 J	1.4 J	0.23 J	35	0 IJ	12	3.4 J	1.3 J	1.2 J	0.16 J	0.13 J
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	0 IJ	0.52 J	0 IJ	< 0.17	17	0.14 J	5 J	1.6 J	0.56 J	0.46 J	< 0.13	0 IJ
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	0.71 J	< 0.26	0.47 J	< 0.16	16	< 0.084	5 J	1.4 J	0.36 J	0.44 J	< 0.16	< 0.072
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	< 0.55	< 0.48	< 0.31	< 0.49	5.4 J	< 0.085	1.9 J	0.61 J	< 0.14	0.18 J	0 IJ	< 0.054
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	1.1 J	< 0.26	0.71 J	< 0.22	6.4	0.17 J	6.3	2.2 J	0.78 J	0 IJ	< 0.13	< 0.086
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	0.73 J	0.65 J	0.62 J	< 0.24	11	< 0.07	4.1 J	1.6 J	0.31 J	0.45 J	0 IJ	0.11 J
Furan	2,3,7,8-TCDF	(ng/Kg)	1.4 J	1.4 J	1.5 J	1.1 J	0.96 J	0.2 J	0.54 J	0.25 J	0.4 J	0.34 J	0.16 J	< 0.12
Furan	OCDF	(ng/Kg)	34 J	27 J	29 J	0 IJ	1,200	9.4 J	310	130	85	57	5.5 J	5.1 J

Qualifiers / Definitions:

< = Concentration is less than reported limit ng/Kg = nanograms per kilogram

TEQ = Total 2,3,7,8-TCDD Equivalence

TEF = Toxic Equivalency Factors to 2,3,7,8-TCDD

J = Concentration estimated

D = Result obtained from analysis of diluted sample

E = Exceeds calibration range

EDL = Estimated Detection Limit

EMPC = Estimated Maximum Possible Concentration

GEO = Geotechnical Property

Notes:

- 1. TEQs calculated using 1989 USEPA Interim TEF Values
- 2. TEQs calculated using 1998 World Health Organization TEF Values for fish.
- 3. For concentrations reported as non detect, the reported detection limit was used in TEQ calculations.
- 4. For concentrations reported as estimated, the reported estimated value was used in TEQ calculations.

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

Table 3. Sediment Analytical Results
Military Creek Site Investigation / Remedial Action Options
C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin
WDNR BRRTS Activity #02-64-000068

	F	ield Sample ID:	101716003	101716004	101716005	101716006	101716007
		Station Name:	SED	-107		SED-108	
	San	nple Depth (feet):	0-0.5	0.5-0.7	0-0.5	0.5-1.4	0.5-1.4
		Sample Date:	10/17/2016	10/17/2016	10/17/2016	10/17/2016	10/17/2016
CEO	Davaget Maistrine	(0/)	47.4	44.0	0	40.4	40.0
GEO	Percent Moisture	(%)	17.1	14.8	9	13.1	13.6
Organic	Carbon, Total Organic	(mg/kg)	1,390	1,810	2,960	6,290	16,500
Organic	Carbon, Total Organic	(%)	0.139	0.181	0.296	0.629	1.65
PHC	Diesel Range Organics	(mg/kg)	2.7	2.2	5	11.6	16.9
TEQ	TEQ (EPA-89 TEF) ¹	(ngEQ/Kg)	0.24	0.75	29.60	0.40	0.62
TEQ	TEQ (EPA-89 TEF) @ 1% TOC	(ngEQ/Kg)	1.73	4.16	99.99	0.63	0.38
TEQ	TEQ (WHO-98 TEF) ²	(ngEQ/Kg)	0.24	0.76	7.46	0.43	0.65
TEQ	TEQ (WHO-98 TEF) @ 1% TOC	(ngEQ/Kg)	1.70	4.20	25.21	0.68	0.39
		, ,,,					
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	1.5 J	6.4	880	1.3 J	2.9 J
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	< 0.059	0.27 J	0.48 J	< 0.12	< 0.11
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	< 0.077	0.55 J	14	< 0.12	0 IJ
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	< 0.06	< 0.2	1.4 J	< 0.12	< 0.11
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	< 0.041	< 0.14	< 0.088	< 0.084	< 0.14
Dioxin	2,3,7,8-TCDD	(ng/Kg)	< 0.085	< 0.26	< 0.095	< 0.18	< 0.24
Dioxin	OCDD	(ng/Kg)	11	30	12,000 E	12	28
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	0.7 J	1.4 J	360	0 IJ	1.4 J
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	< 0.14	< 0.34	14	< 0.13	< 0.2
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	< 0.1	0 IJ	2.5 J	< 0.093	0 IJ
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	< 0.088	< 0.17	1.4 J	< 0.073	0.15 J
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	< 0.097	< 0.27	0 IJ	< 0.1	< 0.13
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	< 0.05	< 0.14	0.1 J	< 0.079	< 0.16
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	< 0.077	< 0.19	2.4 J	< 0.069	0.12 J
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	< 0.04	0 IJ	0.27 J	0 IJ	0 IJ
Furan	2,3,7,8-TCDF (ng/Kg)		0.2 J	< 0.33	0.26 J	0.24 J	< 0.19
Furan	OCDF	(ng/Kg)	1.7 J	0 IJ	2,500	0 IJ	5.8 J /26/17 - C:KJB 1/27/17]

[O:ECK 1/26/17 - C:KJB 1/27/17]

Qualifiers / Definitions:

< = Concentration is less than reported limit ng/Kg = nanograms per kilogram

TEQ = Total 2,3,7,8-TCDD Equivalence

TEF = Toxic Equivalency Factors to 2,3,7,8-TCDD

J = Concentration estimated

D = Result obtained from analysis of diluted sample

E = Exceeds calibration range

EDL = Estimated Detection Limit

EMPC = Estimated Maximum Possible Concentration

GEO = Geotechnical Property

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

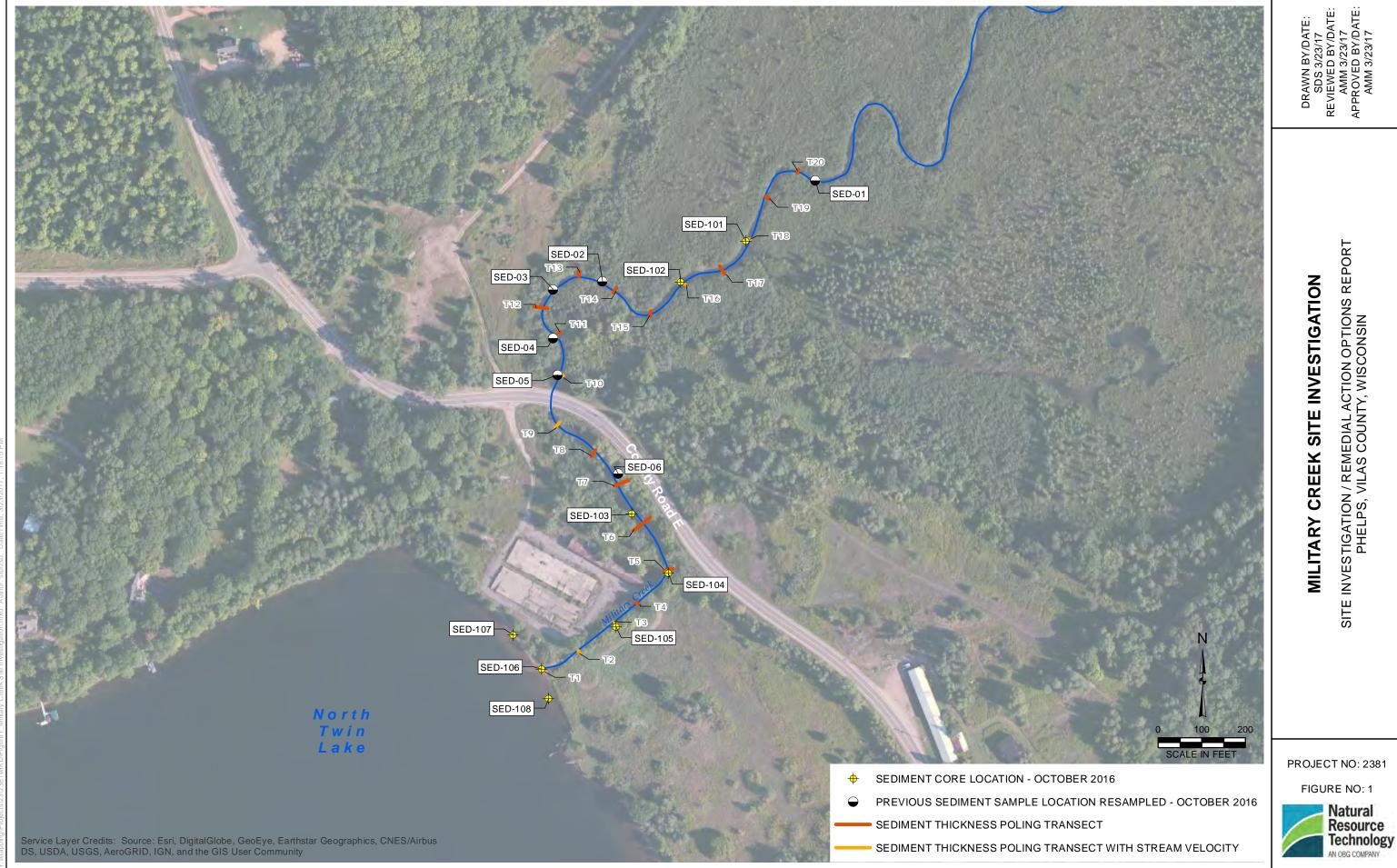
Notes:

- 1. TEQs calculated using 1989 USEPA Interim TEF Values
- 2. TEQs calculated using 1998 World Health Organization TEF Values for fish.
- 3. For concentrations reported as non detect, the reported detection limit was used in TEQ calculations.
- 4. For concentrations reported as estimated, the reported estimated value was used in TEQ calculations.

Table 8 - Remedial Action Options
Military Creek Site Investigation / Remedial Action Options
C.M.Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin
WDNR BRRTS Activity #02-64-000068

			EFFECTIVENESS	IMPLEME	COST		
Remedial Action Option	Remedial Action Option Description	Ability / Timeframe to Meet Site Specific Objectives	Long-term and Short-term Effects	Proven and Reliability	Technical Feasibility	Administrative / Regulatory Feasibility	Relative Cost
No Action	No action taken to reduce, monitor, or control site risks.	Does not reduce potential exposure to or disturbance of contaminated sediment.	 No added risk during short term. Does not provide short-term effectiveness to achieve site-specific objectives. Does provide long-term effectiveness to achieve site-specific objectives through natural clean sediment deposition. 	◆ Not reliable	Easily implemented.	Satisfies requirements of 1998 Spill Agreement.	Very Low
Institutional Controls / Continuing Obligations	Zoning Restrictions: Restrict land use within a given area through zoning ordinances. Deed Covenants: Limit activities that would increase risk, and mange further development with legal instruments of property transfer (e.g., deeds, easements, mortgages, leases, WDNR GIS Registry). Fencing/Signs: Controls that are installed to prevent access and/or warn of the presence of site-related contaminants.	Acheives site specific objectives over short and long-term.	No added risk during short term. Provides short and long-term effectiveness for protection to humans. Provides long-term effectiveness to wildlife through natural clean sediment deposition. Protects existing habitat and biological community. Effective for limiting human access. Requires management of any removed sediment in accordance with state and federal regulations.	Administratively reliable. Physical controls relies on compliance by public. Physical controls need to be maintained to ensure protection of receptors.	Easily implemented. Requires long-term maintenance.	Administratively implementable. Assumed to require WDNR Case Closure (NR726) with residual contamination and GIS registry listing. Satisfies requirements of 1998 Spill Agreement.	Low
30-Inch Sediment Removal with 6-Inch Sand Cover	Sediments are removed by means of mechanical dredging/excavating equipment. Dredged sediments are handled and managed on site to condition sediment (e.g., dewater) for off-site disposal. Six inch sand cover placed to mitigate potential residual concentrations.	Acheives site specific objectives in short-term.	Effective at rapidly reducing risk to ecological receptors. Long-term effectiveness for controlling contaminated sediment transport. Moderate potential short term exposure risk to construction worker and public during material handling, processing, and disposal. Short-term disruption to benthic community and aquatic habitat. Contaminated sediments may resuspend and be transported downstream during implementation.	Proven and reliable strategy for managing contaminated sediments.	Requires engineering for final design of remedial action, including dredge area design, sediment dewatering and handling, and contact water treatment. Requires development of construction plans, specifications, and contract documents to execute the work. Extensive amounts of shoreline vegetation makes access and implementation difficult. Limited to availability of space for staging and handling of dredge material and water treatment system, if needed. Requires identification and use of appropriate disposal facility, including transportation.	Requires regulatory agency permitting. Requires appropriate identification and disposal facility including transportation. Satisfies requirements of 1998 Spill Agreement.	High

Table 9 - Summary of Remedial Options Cost
Military Creek Site INvestigation / Remedial Action Options
C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin
WDNR BRRTS Activity #02-64-000068


Remedial Action Options		Total Capital Cost		Total Present Value of O&M Cost ⁴		Total Present Value Cost of Alternative		Total O&M Cost, No Discount Factor		Total Alternative Cost, No Discount Factor	
1 – No Action	\$		\$	-	\$	-	\$	-	\$	-	
2 – Institutional Controls / Continuing Obligations	\$	38,500	\$	9,000	\$	47,500	\$	22,000	\$	60,500	
3 – 30-Inch Dredge and 6-Inch Sand Cover	\$	326,000	\$	-	\$	326,000	\$	-	\$	326,000	

Notes:

- 1. Total Capital Costs include professional services (e.g., design, oversight, project management)
- 2. Present value costs, if applicable, assume a discount rate of 7% over a 30 year analysis period.
- 3. Total Operation & Maintenance (O&M) costs are applied over a 30 year analysis period with no discount factor.

FIGURES

OBG

APPENDIX A ANALYTICAL LAB REPORTS

Sample Control Log
Military Creek Site Investigation
C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin
WDNR BRRTS Activity #02-64-000068

Unique			Sample	Sample	Sample	
Sample ID	Sample Media	Date	Location	Interval (ft)	Time	Notes
101716001	Sediment	10/17/2016	SED-106	0-0.5	13:44	
101716002	Sediment	10/17/2016	SED-106	0.5-1.4	13:44	
101716003	Sediment	10/17/2016	SED-107	0-0.5	13:19	
101716004	Sediment	10/17/2016	SED-107	0.5-0.7	13:19	
101716005	Sediment	10/17/2016	SED-108	0-0.5	14:32	
101716006	Sediment	10/17/2016	SED-108	0.5-1.4	14:32	
101716007	Sediment	10/17/2016	SED-108	0.5-1.4	14:33	Duplicate
101816008	Sediment	10/18/2016	SED-06	0-0.5	13:42	
101816009	Sediment	10/18/2016	SED-06	0.5-1.5	13:42	
101816010	Sediment	10/18/2016	SED-06	1.5-1.8	13:42	Archived
101816011	Sediment	10/18/2016	SED-104	0-0.4	11:33	
101816012	Sediment	10/18/2016	SED-103	0-0.5	12:45	
101816013	Sediment	10/18/2016	SED-103	0.5-1.5	12:45	
101816014	Sediment	10/18/2016	SED-103	1.5-1.6	12:45	Archived
101816015	Sediment	10/18/2016	SED-105	0-0.5	10:17	
101816016	Sediment	10/18/2016	SED-105	0.5-1.4	10:17	
101816017	Sediment	10/18/2016	SED-105	0.5-1.4	10:18	Duplicate
101916018	Sediment	10/19/2016	SED-05	0-0.5	9:12	
101916019	Sediment	10/19/2016	SED-05	0.5-1.5	9:12	
101916020	Sediment	10/19/2016	SED-05	1.5-2.0	9:12	Archived
101916021	Sediment	10/19/2016	SED-04	0-0.5	9:37	
101916022	Sediment	10/19/2016	SED-04	0.5-1.5	9:37	
101916023	Sediment	10/19/2016	SED-04	1.5-2.2	9:37	Archived
101916024	Sediment	10/19/2016	SED-03	0-0.5	10:35	
101916025	Sediment	10/19/2016	SED-03	0.5-1.5	10:35	
101916026	Sediment	10/19/2016	SED-03	1.5-1.6	10:35	Archived
101916027	Sediment	10/19/2016	SED-02	0-0.5	12:09	
101916028	Sediment	10/19/2016	SED-02	0.5-1.5	12:09	
101916029	Sediment	10/19/2016	SED-02	1.5-1.7	12:09	Archived
102016030	Sediment	10/20/2016	SED-102	0-0.5	9:36	
102016031	Sediment	10/20/2016	SED-102	0.5-1.5	9:36	
102016032	Sediment	10/20/2016	SED-101	0-0.5	10:12	
102016033	Sediment	10/20/2016	SED-101	0.5-1.5	10:12	MS/MSD
102016034	Sediment	10/20/2016	SED-101	1.5-1.6	10:12	Archived
102016035	Sediment	10/20/2016	SED-01	0-0.5	11:25	
102016036	Sediment	10/20/2016	SED-01	0.5-1.5	11:25	

November 07, 2016

Andrea Salus NATURAL RESOURCE TECHNOLOGY 234 W. Florida Street 5th Floor Milwaukee, WI 53204

RE: Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Dear Andrea Salus:

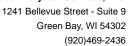
Enclosed are the analytical results for sample(s) received by the laboratory on October 20, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Brian Basten


brian.basten@pacelabs.com

Project Manager

Enclosures

cc: Data Delivery Team, Natural Resources Technologies

CERTIFICATIONS

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064

North Dakota Certification #: R-150

Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40140496001	101716001	Solid	10/17/16 13:44	10/20/16 09:50
40140496002	101716002	Solid	10/17/16 13:44	10/20/16 09:50
40140496003	101716003	Solid	10/17/16 13:19	10/20/16 09:50
40140496004	101716004	Solid	10/17/16 13:19	10/20/16 09:50
40140496005	101716005	Solid	10/17/16 14:32	10/20/16 09:50
40140496006	101716006	Solid	10/17/16 14:32	10/20/16 09:50
40140496007	101716007	Solid	10/17/16 14:33	10/20/16 09:50
40140496008	101816008	Solid	10/18/16 13:42	10/20/16 09:50
40140496009	101816009	Solid	10/18/16 13:42	10/20/16 09:50
40140496010	101816011	Solid	10/18/16 11:33	10/20/16 09:50
40140496011	101816012	Solid	10/18/16 12:45	10/20/16 09:50
40140496012	101816013	Solid	10/18/16 12:45	10/20/16 09:50
40140496013	101816015	Solid	10/18/16 10:17	10/20/16 09:50
40140496014	101816016	Solid	10/18/16 10:17	10/20/16 09:50
40140496015	101816017	Solid	10/18/16 10:18	10/20/16 09:50

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40140496001	101716001	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140496002	101716002	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140496003	101716003	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140496004	101716004	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140496005	101716005	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140496006	101716006	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140496007	101716007	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
0140496008	101816008	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	2	PASI-G
0140496009	101816009	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
0140496010	101816011	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
0140496011	101816012	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	АН	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
10140496012	101816013	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	АН	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140496013	101816015	WI MOD DRO	CAH	1	PASI-G

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SAMPLE ANALYTE COUNT

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140496014	101816016	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140496015	101816017	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

Sample: 101716001 Collected: 10/17/16 13:44 Received: 10/20/16 09:50 Matrix: Solid Lab ID: 40140496001

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
WIDRO GCS	Analytical	Method: WI M	OD DRO P	reparation N	Method:	WI MOD DRO					
Diesel Range Organics	3.3	mg/kg	2.1	0.84	1	10/25/16 09:37	10/26/16 12:18				
Percent Moisture	Analytical	Method: ASTN	Л D2974-87								
Percent Moisture	14.5	%	0.10	0.10	1		10/28/16 13:31				
TOC via Lloyd Kahn	Analytical	Analytical Method: Lloyd Kahn									
Total Organic Carbon	2360	mg/kg	393	133	1		10/24/16 07:02	7440-44-0	M0,R1		
Sample: 101716002 Results reported on a "dry we		40140496002 e adjusted for		d: 10/17/16				atrix: Solid			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
WIDRO GCS	Analytical	Method: WI M	OD DRO P	reparation N	Method:	WI MOD DRO					
Diesel Range Organics	4.3	mg/kg	1.6	0.63	1	10/25/16 09:37	10/26/16 12:27				
Percent Moisture	Analytical	Method: ASTN	Л D2974-87								
Percent Moisture	5.2	%	0.10	0.10	1		10/28/16 13:31				
TOC via Lloyd Kahn	Analytical	Method: Lloyd	l Kahn								
Total Organic Carbon	1610	mg/kg	298	101	1		10/24/16 07:18	7440-44-0			
Sample: 101716003 Results reported on a "dry we		40140496003 e adjusted for		d: 10/17/16				atrix: Solid			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
WIDRO GCS	Analytical	Method: WI M	OD DRO P	reparation N	Method:	WI MOD DRO		•			
Diesel Range Organics	2.7	mg/kg	1.8	0.71	1	10/25/16 09:37	10/26/16 12:36		DC		
Percent Moisture	Analytical	Method: ASTN	И D2974-87								
Percent Moisture	17.1	%	0.10	0.10	1		10/28/16 13:31				
TOC via Lloyd Kahn	Analytical	Method: Lloyd	l Kahn								
Total Organic Carbon	1390	mg/kg	268	90.9	1		10/24/16 07:24	7440-44-0			

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

Sample: 101716004 Lab ID: 40140496004 Collected: 10/17/16 13:19 Received: 10/20/16 09:50 Matrix: Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual			
WIDRO GCS	Analytical	Method: WI M	OD DRO P	reparation N	Method:	: WI MOD DRO						
Diesel Range Organics	2.2	mg/kg	1.9	0.75	1	10/25/16 09:37	10/26/16 12:45					
Percent Moisture	Analytical	Method: ASTN	/I D2974-87									
Percent Moisture	14.8	%	0.10	0.10	1		10/28/16 13:31					
TOC via Lloyd Kahn	Analytical	Analytical Method: Lloyd Kahn										
Total Organic Carbon	1810	mg/kg	292	98.9	1		10/24/16 07:41	7440-44-0				
Sample: 101716005 Results reported on a "dry we		40140496005 e adjusted for		d: 10/17/16				trix: Solid				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual			
WIDRO GCS	Analytical	Method: WI M	OD DRO P	reparation N	Method:	: WI MOD DRO						
Diesel Range Organics	5.0	mg/kg	1.7	0.69	1	10/25/16 09:37	10/26/16 12:53		DC			
Percent Moisture	Analytical	Method: ASTN	/I D2974-87									
Percent Moisture	9.0	%	0.10	0.10	1		10/28/16 13:31					
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn									
Total Organic Carbon	2960	mg/kg	225	76.1	1		10/24/16 07:47	7440-44-0				
Sample: 101716006 Results reported on a "dry we		40140496006 e adjusted for		d: 10/17/16	_			trix: Solid				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual			
WIDRO GCS	Analytical	Method: WI M	OD DRO P	reparation N	Method:	: WI MOD DRO						
Diesel Range Organics	11.6	mg/kg	1.7	0.68	1	10/25/16 09:37	10/26/16 13:02		DC			
Percent Moisture	Analytical	Method: ASTN	/I D2974-87									
Percent Moisture	13.1	%	0.10	0.10	1		10/28/16 13:31					
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn									
Total Organic Carbon	6290	mg/kg	452	153	1		10/24/16 07:53	7440 44 0				

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Total Organic Carbon

Date: 11/07/2016 02:29 PM

95900

mg/kg

Sample: 101716007 Collected: 10/17/16 14:33 Received: 10/20/16 09:50 Matrix: Solid Lab ID: 40140496007

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua	
WIDRO GCS	Analytical	Method: WI M	OD DRO Pi	eparation I	Method:	WI MOD DRO				
Diesel Range Organics	16.9	mg/kg	1.7	0.70	1	10/25/16 09:37	10/26/16 13:11		DC	
Percent Moisture	Analytical	Method: ASTN	/I D2974-87							
Percent Moisture	13.6	%	0.10	0.10	1		10/28/16 13:31			
TOC via Lloyd Kahn	Analytical	Analytical Method: Lloyd Kahn								
Total Organic Carbon	16500	mg/kg	475	161	1		10/24/16 07:58	7440-44-0		
Sample: 101816008	Lab ID:	40140496008	Collected	d: 10/18/10	6 13:42	Received: 10/	20/16 09:50 Ma	atrix: Solid		
Results reported on a "dry we	eight" basis and are	e adjusted for	percent mo	oisture, sai	mple si	ze and any diluti	ons.			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua	
WIDRO GCS	Analytical	Method: WI M	OD DRO Pi	eparation I	Method:	WI MOD DRO				
Diesel Range Organics	111	mg/kg	18.6	7.5	1	10/26/16 15:57	10/27/16 11:10		DC	
Percent Moisture	Analytical	Method: ASTN	/I D2974-87							
Percent Moisture	92.0	%	0.10	0.10	1		10/28/16 13:31			
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn							
Total Organic Carbon	350000	mg/kg	13800	4660	1		10/27/16 05:26	7440-44-0		
Surrogates RSD%	19.3	%			1		10/27/16 05:26			
Sample: 101816009	Lab ID:	40140496009	Collected	d: 10/18/10	6 13:42	Received: 10/	20/16 09:50 Ma	atrix: Solid		
Results reported on a "dry wo	eight" basis and are	e adjusted for	percent mo	oisture, sai	mple si	ze and any diluti	ons.			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua	
WIDRO GCS	Analytical	Method: WI M	OD DRO Pi	eparation I	Method:	WI MOD DRO				
Diesel Range Organics	5.4J	mg/kg	8.8	3.6	1	10/26/16 15:57	10/27/16 11:19		D5	
Percent Moisture	Analytical	Method: ASTN	/I D2974-87							
	77.0	0/	0.40	0.10	1		10/28/16 13:31			
Percent Moisture	77.3	%	0.10	0.10	ı		10/20/10 13.31			

REPORT OF LABORATORY ANALYSIS

3050

1030

P6

10/27/16 05:50 7440-44-0

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

Sample: 101816011 Lab ID: 40140496010 Collected: 10/18/16 11:33 Received: 10/20/16 09:50 Matrix: Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI M	OD DRO P	reparation N	Method:	: WI MOD DRO			
Diesel Range Organics	15.4	mg/kg	2.7	1.1	1	10/26/16 15:57	10/27/16 11:28		D5,DC
Percent Moisture	Analytical	Method: ASTN	/I D2974-87						
Percent Moisture	24.6	%	0.10	0.10	1		10/28/16 13:31		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn						
Total Organic Carbon	11100	mg/kg	916	310	1		10/27/16 06:07	7440-44-0	
Sample: 101816012 Results reported on a "dry we		40140496011 e adjusted for		d: 10/18/16				ıtrix: Solid	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI M	OD DRO P	reparation N	Method:	: WI MOD DRO			
Diesel Range Organics	2.7J	mg/kg	2.8	1.1	1	10/26/16 15:57	10/27/16 11:37		D5
Percent Moisture	Analytical	Method: ASTN	/I D2974-87						
Percent Moisture	28.0	%	0.10	0.10	1		10/28/16 13:31		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn						
Total Organic Carbon	17800	mg/kg	847	287	1		10/27/16 06:13	7440-44-0	
Sample: 101816013 Results reported on a "dry we		40140496012 e adjusted for		d: 10/18/16	-			trix: Solid	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI M	OD DRO P	reparation N	Method:	: WI MOD DRO			
Diesel Range Organics	4.5	mg/kg	2.6	1.0	1	10/26/16 15:57	10/27/16 11:46		D5
Percent Moisture	Analytical	Method: ASTN	/I D2974-87						
Percent Moisture	21.6	%	0.10	0.10	1		10/28/16 13:31		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn						
Total Organic Carbon	38300	mg/kg	989	335	1		10/27/16 06:20	7440 44 0	

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

Sample: 101816015 Lab ID: 40140496013 Collected: 10/18/16 10:17 Received: 10/20/16 09:50 Matrix: Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI	MOD DRO Pr	eparation N	Method	: WI MOD DRO			
Diesel Range Organics	9.3	mg/kg	2.2	0.88	1	10/26/16 15:57	10/27/16 11:55		D5,DC
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	8.6	%	0.10	0.10	1		10/28/16 13:32		
TOC via Lloyd Kahn	Analytical	Method: Lloy	d Kahn						
Total Organic Carbon	5310	mg/kg	580	196	1		10/27/16 06:25	7440-44-0	
Sample: 101816016		4014049601		d: 10/18/16				trix: Solid	
Results reported on a "dry we	eight" basis and ar	e adjusted fo	r percent mo	isture, sai	mple si	ze and any diluti	ons.		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
WIDRO GCS	Analytical	Method: WI	MOD DRO Pr	eparation N	Method	: WI MOD DRO			
Diesel Range Organics	21.8	mg/kg	3.6	1.4	1	10/27/16 09:45	11/02/16 12:57		DC
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	58.7	%	0.10	0.10	1		10/28/16 13:32		
TOC via Lloyd Kahn	Analytical	Method: Lloy	d Kahn						
Total Organic Carbon	76100	mg/kg	9730	3300	1		10/27/16 09:34	7440-44-0	
Sample: 101816017 Results reported on a "dry we		4014049601		d: 10/18/16				trix: Solid	
		-	-			-			_
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI	MOD DRO Pr	eparation N	Method	: WI MOD DRO			
Diesel Range Organics	18.1	mg/kg	2.6	1.1	1	10/27/16 09:45	11/02/16 13:06		DC
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	38.7	%	0.10	0.10	1		10/28/16 13:32		
TOC via Lloyd Kahn	Analytical	Method: Lloy	d Kahn						
Total Organic Carbon	43500	mg/kg	2770	937	1		10/27/16 09:41	7440-44-0	

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

QC Batch: 239173 Analysis Method: WI MOD DRO
QC Batch Method: WI MOD DRO Analysis Description: WIDRO GCS

Associated Lab Samples: 40140496001, 40140496002, 40140496003, 40140496004, 40140496005, 40140496006, 40140496007

METHOD BLANK: 1417077 Matrix: Solid

Associated Lab Samples: 40140496001, 40140496002, 40140496003, 40140496004, 40140496005, 40140496006, 40140496007

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Diesel Range Organics mg/kg <0.80 2.0 10/26/16 10:13

LABORATORY CONTROL SAMPLE &	LCSD: 1417078		14	417079						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Diesel Range Organics	mg/kg	40	28.7	32.7	72	82	70-120	13	20	

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

QC Batch: 239431 Analysis Method: WI MOD DRO
QC Batch Method: WI MOD DRO Analysis Description: WIDRO GCS

Associated Lab Samples: 40140496008, 40140496009, 40140496010, 40140496011, 40140496012, 40140496013

METHOD BLANK: 1418369 Matrix: Solid

Associated Lab Samples: 40140496008, 40140496009, 40140496010, 40140496011, 40140496012, 40140496013

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Diesel Range Organics mg/kg <0.80 2.0 10/27/16 08:56

LABORATORY CONTROL SAMPLE &	LCSD: 1418370		14	118371						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Diesel Range Organics	mg/kg	40	28.0	28.4	70	71	70-120	1	20	

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

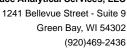
Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

QC Batch: 239502 Analysis Method: WI MOD DRO
QC Batch Method: WI MOD DRO Analysis Description: WIDRO GCS

Associated Lab Samples: 40140496014, 40140496015

METHOD BLANK: 1418769 Matrix: Solid


Associated Lab Samples: 40140496014, 40140496015

Blank Reporting
Parameter Units Result Limit

Parameter Units Result Limit Analyzed Qualifiers

Diesel Range Organics mg/kg <0.80 2.0 11/02/16 12:48

LABORATORY CONTROL SAMPLE & LCSD: 1418770 1418771 Spike LCS LCSD LCS LCSD % Rec Max % Rec Parameter Units Conc. Result Result % Rec Limits **RPD RPD** Qualifiers Diesel Range Organics mg/kg 40 31.2 34.4 78 86 70-120 10 20

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

QC Batch: 239666 Analysis Method: ASTM D2974-87

Units

%

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

40140496001, 40140496002, 40140496003, 40140496004, 40140496005, 40140496006, 40140496007, Associated Lab Samples:

40140496008, 40140496009, 40140496010, 40140496011, 40140496012, 40140496013, 40140496014,

40140496015

SAMPLE DUPLICATE: 1419913

Percent Moisture

Date: 11/07/2016 02:29 PM

Parameter

40140520002 Dup Max RPD RPD Qualifiers Result Result 9.6 9.3 10

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

QC Batch: 238840 Analysis Method: Lloyd Kahn
QC Batch Method: Lloyd Kahn Analysis Description: Lloyd Kahn TOC

Associated Lab Samples: 40140496001, 40140496002, 40140496003, 40140496004, 40140496005, 40140496006, 40140496007

METHOD BLANK: 1415005 Matrix: Solid

Associated Lab Samples: 40140496001, 40140496002, 40140496003, 40140496004, 40140496005, 40140496006, 40140496007

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Organic Carbon mg/kg <33.9 100 10/24/16 06:14

LABORATORY CONTROL SAMPLE: 1415006

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Total Organic Carbon mg/kg 2000 1980 99 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1415007 1415008

MS MSD 40140496001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual **Total Organic Carbon** 1990 4050 80-120 20 M0,R1 mg/kg 2360 2000 6430 203 85 45

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

QC Batch: 239305 Analysis Method: Lloyd Kahn QC Batch Method: Lloyd Kahn Analysis Description: Lloyd Kahn TOC

40140496008, 40140496009, 40140496010, 40140496011, 40140496012, 40140496013, 40140496014, Associated Lab Samples:

40140496015

METHOD BLANK: 1417707 Matrix: Solid

Associated Lab Samples: 40140496008, 40140496009, 40140496010, 40140496011, 40140496012, 40140496013, 40140496014,

40140496015 Blank Reporting Units Qualifiers Parameter Result Limit Analyzed **Total Organic Carbon** mg/kg <33.9 10/27/16 05:15 LABORATORY CONTROL SAMPLE: 1417708 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Organic Carbon** 99 80-120 2000 1980 mg/kg MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1417710 1417709 MS MSD MSD MS 40140496009 Spike Spike MS MSD % Rec Max Units Result Conc. % Rec % Rec Limits RPD RPD Parameter Conc. Result Result Qual Total Organic Carbon 95900 14900 14900 105000 105000 63 80-120 20 P6 mg/kg 59

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1417711 1417712 MS MSD 40140495001 MS MSD MS MSD Spike Spike % Rec Max % Rec Qual Parameter Units Conc. % Rec Limits RPD RPD Result Conc. Result Result Total Organic Carbon mg/kg 19400 6180 6100 20200 24400 13 83 80-120 19 20 M0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

ANALYTE QUALIFIERS

Date: 11/07/2016 02:29 PM

D5	The sample was re-weighed into a new container because the sample weight in the original container exceeded the method specifications.
DC	Chromatographic pattern inconsistent with typical Diesel Fuel.
M0	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
P6	Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the

R1 RPD value was outside control limits.

spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
10140496001	101716001	WI MOD DRO	239173	WI MOD DRO	239267
0140496002	101716002	WI MOD DRO	239173	WI MOD DRO	239267
0140496003	101716003	WI MOD DRO	239173	WI MOD DRO	239267
0140496004	101716004	WI MOD DRO	239173	WI MOD DRO	239267
0140496005	101716005	WI MOD DRO	239173	WI MOD DRO	239267
0140496006	101716006	WI MOD DRO	239173	WI MOD DRO	239267
0140496007	101716007	WI MOD DRO	239173	WI MOD DRO	239267
0140496008	101816008	WI MOD DRO	239431	WI MOD DRO	239448
0140496009	101816009	WI MOD DRO	239431	WI MOD DRO	239448
0140496010	101816011	WI MOD DRO	239431	WI MOD DRO	239448
0140496011	101816012	WI MOD DRO	239431	WI MOD DRO	239448
0140496012	101816013	WI MOD DRO	239431	WI MOD DRO	239448
0140496013	101816015	WI MOD DRO	239431	WI MOD DRO	239448
0140496014	101816016	WI MOD DRO	239502	WI MOD DRO	239569
0140496015	101816017	WI MOD DRO	239502	WI MOD DRO	239569
0140496001	101716001	ASTM D2974-87	239666		
0140496002	101716002	ASTM D2974-87	239666		
0140496003	101716003	ASTM D2974-87	239666		
0140496004	101716004	ASTM D2974-87	239666		
0140496005	101716005	ASTM D2974-87	239666		
0140496006	101716006	ASTM D2974-87	239666		
0140496007	101716007	ASTM D2974-87	239666		
0140496008	101816008	ASTM D2974-87	239666		
0140496009	101816009	ASTM D2974-87	239666		
0140496010	101816011	ASTM D2974-87	239666		
0140496011	101816012	ASTM D2974-87	239666		
0140496012	101816013	ASTM D2974-87	239666		
0140496013	101816015	ASTM D2974-87	239666		
0140496014	101816016	ASTM D2974-87	239666		
0140496015	101816017	ASTM D2974-87	239666		
0140496001	101716001	Lloyd Kahn	238840		
0140496002	101716002	Lloyd Kahn	238840		
0140496003	101716003	Lloyd Kahn	238840		
0140496004	101716004	Lloyd Kahn	238840		
0140496005	101716005	Lloyd Kahn	238840		
0140496006	101716006	Lloyd Kahn	238840		
0140496007	101716007	Lloyd Kahn	238840		
0140496008	101816008	Lloyd Kahn	239305		
0140496009	101816009	Lloyd Kahn	239305		
0140496010	101816011	Lloyd Kahn	239305		
0140496011	101816012	Lloyd Kahn	239305		
0140496012	101816013	Lloyd Kahn	239305		
0140496013	101816015	Lloyd Kahn	239305		
0140496014	101816016	Lloyd Kahn	239305		
0140496015	101816017	Lloyd Kahn	239305		

NATURAL RESOURCE TECHNOLOGY, INC. 234 W. FLORIDA STREET, 5th FLOOR MILWAUKEE, WI 53204 TEL: 414.837.3607

Coc seads: 936621, 936622

Fedex tracking # : 8010295223845

0627572557

CHAIN OF CUSTODY #

PAGE:

잌

401404

telinquished by: (Signature SPECIAL REQUIREMENTS Data Package: Level 2 Green Bay, WI 54302 LABORATORY SAMPLES SUBMITTED TO: 1241 Bellevue Street - Suite 9 Pace Analytical Services, Inc. (920) 469-2436 Please refer to the full List of Analytes for this Sediment project provided by Steve Wiskes Send all SAFs & Reports to 10171600 10/1/box 2009)[130] 017/000 Social Lid 0176005 0131100 0171600 13/60 STANDARD SAMPLE ID FAX ○24 HR OC SAMPLE ○48 HR Data Andrew Millspaugh, amillspaugh@naturalrt.com FIELD COMMENTS data@naturalrt.com 5 O 72 HR 15/14/6 1319 10/17/16 1432 CAMILO IN 33 SED A = none, $D = HNO_3$, E-MAIL 12/2 Off 18 G = zinc acetate, Brian.Basten@pacelabs.com Preservatives: 1 SAMPLE 16 1432 SED B= HCL, C= , E= methanol, Received by: (Signature TIME NA SED H = other $C = H_2SO_4$ F = Sodium Bisulfate, Grab SAMPLE INTERVAL (ft) ᅙ 200 CLIENT PROJECT NAME BOTTOM PROJECT CONTACT Andrew Millspaugh, amillspaugh@naturairt.com Preservation Code Filtered (Yor N (pick letter) Military Creek z Hydrometer/Grain Size (ASTM D422, D2216 and D2487) Α z % Moisture/Dry Weight z Α D2216) 1000116 そろろる OC (Lloyd Kahn) z > Method Number and Analytes REQUESTED ANALYSIS VI DRO (WI Mod DRO) z PROJECT NUMBER/TASK NUMBER: d-4200 00025715 2381 / 2 QUOTE NO. 1-40200

E,

Page 19 of 51

Sample Condition Upon Receipt

Pace Analytical Services, Inc. 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

Pace Analytical Project #: 40140496 Client Name: Courier: Fed Ex T UPS T Client T Page Other: 9333 3845 8102 5525 2590 Custody Seal on Cooler/Box Present: yes no Seals intact: yes no Custody Seal on Samples Present: yes no Seals intact: Tyes no Packing Material: Bubble Wrap Bubble Bags | None | Other Thermometer Used Type of ice! Wet Blue Dry None Samples on ice, cooling process has begun **Cooler Temperature** Biological Tissue is Frozen: Tyes Temp Blank Present: 「yes √ no Person examining contents: Temp should be above freezing to 6°C for all sample except Biota. OIAOII0Frozen Biota Samples should be received ≤ 0°C. Comments: Initials: Chain of Custody Present: □No □N/A Chain of Custody Filled Out: Yes □No □N/A Chain of Custody Relinquished: ØYes □No □N/A Sampler Name & Signature on COC: □Yes ZNo □N/A Samples Arrived within Hold Time: Yes □No □N/A 5. - VOA Samples frozen upon receipt □Yes □No Date/Time: Short Hold Time Analysis (<72hr): □Yes No. □N/A 6. Rush Turn Around Time Requested: □Yes ☑No □N/A Sufficient Volume: ZYes □No □N/A 8 Correct Containers Used: ZYes □No □N/A 9. ∕∐Yes □No -Pace Containers Used: □N/A -Pace IR Containers Used: □Yes □No ₽Ñ/A Containers Intact: □n/a ØYes □No Filtered volume received for Dissolved tests □Yes □No .☑N/A 12.004 1-40zgg + tyme 1329 005 1-40zag A 1-462 A 1 008 1-40zcg A 1-462 A 1 Sample Labels match COC: □Yes ☑No -Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked. (Non-Compliance noted in 13.) THNO3 TH2SO4 TNaOH TNaOH +ZnAct □Yes □No All containers needing preservation are found to be in compliance with EPA recommendation. □Yes □No DN/A (HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12) exceptions: VOA, coliform, TOC, TOX, TOH, Initial when Lab Std #ID of Date/ O&G, WIDROW, Phenolics, □Yes □No completed preservative Time: Headspace in VOA Vials (>6mm): □Yes □No ØN/A 14. Trip Blank Present: ØN/A □Yes □No 15. Trip Blank Custody Seals Present □Yes □No □ZN/A Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: If checked, see attached form for additional comments Person Contacted: Date/Time: Comments/ Resolution: Project Manager Review: Date:

CQM, INC.
Engineering – Surveying – Material Testing

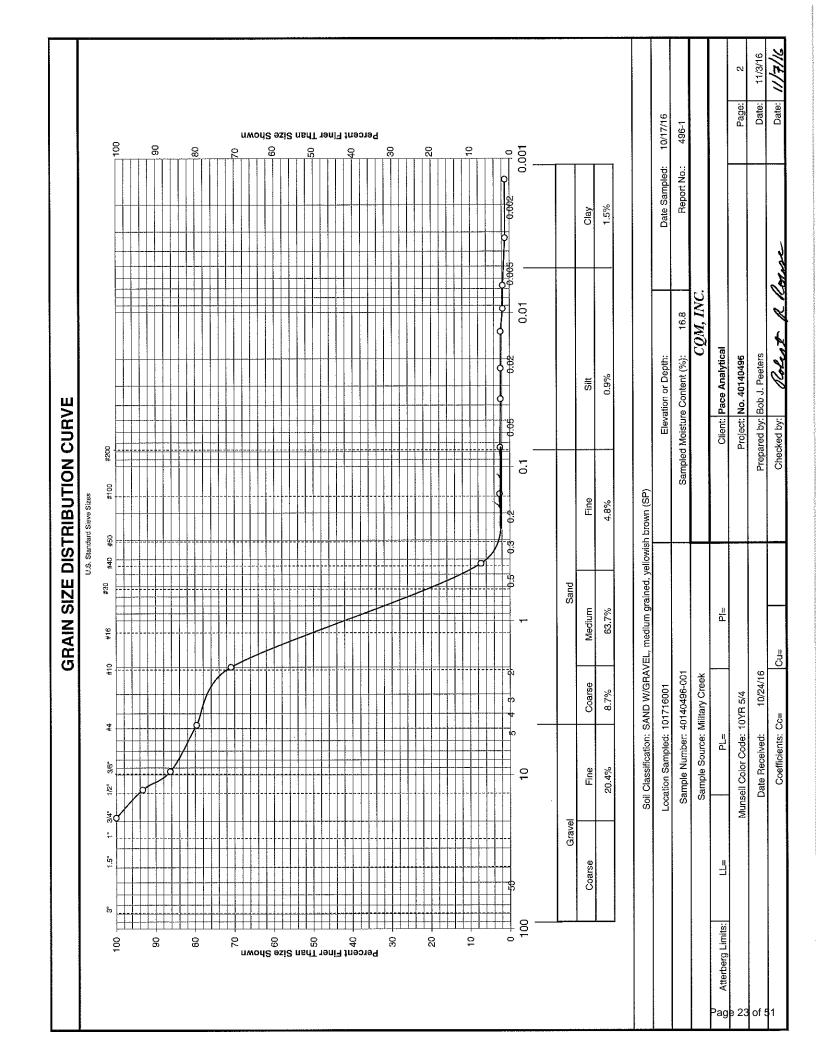
TRANSMITTAL

FROM: Bob Rouse COM, INC. 2679 Continental Drive Green Bay, WI 54311 PHONE: (920) 465-3911 DATE: November 7, 2016 OJECT: No-40140496 Military Creek ATE COVER VIA IS CD DESCRIPTION Lyorts
Green Bay, WI 54311 PHONE: (920) 465-3911 DATE: November 7, 2016 OJECT: No-40140 496 Military Creek ATE COVER VIA IS CD ER DESCRIPTION
PHONE: (920) 465-3911 DATE: November 7, 2016 OJECT: No-40140 496 Military Creek ATE COVER VIA IS CD ER DESCRIPTION
DATE: November 7, 2016 OJECT: No-40140496 Military Creek ATE COVER VIA IS CD ER DESCRIPTION
OJECT: No-40140496 Military Creek ATE COVER VIA IS CD ER DESCRIPTION
ATE COVER VIA IS CD ER DESCRIPTION
ATE COVER VIA IS CD ER DESCRIPTION
ATE COVER VIA IS CD ER DESCRIPTION
DESCRIPTION
DESCRIPTION
DESCRIPTION
iports
/
econ
STED, PLEASE NOTIFY US AT ONCE.
<u> </u>

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GEN	ERAL	DATA:

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101716001
Sample No:	40140496-001
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 5/4
Date Sampled:	10/17/16


LABORATORY DATA:

Date Tested:	October 27-31, 2016
Test Performed By:	FRH

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	184.2

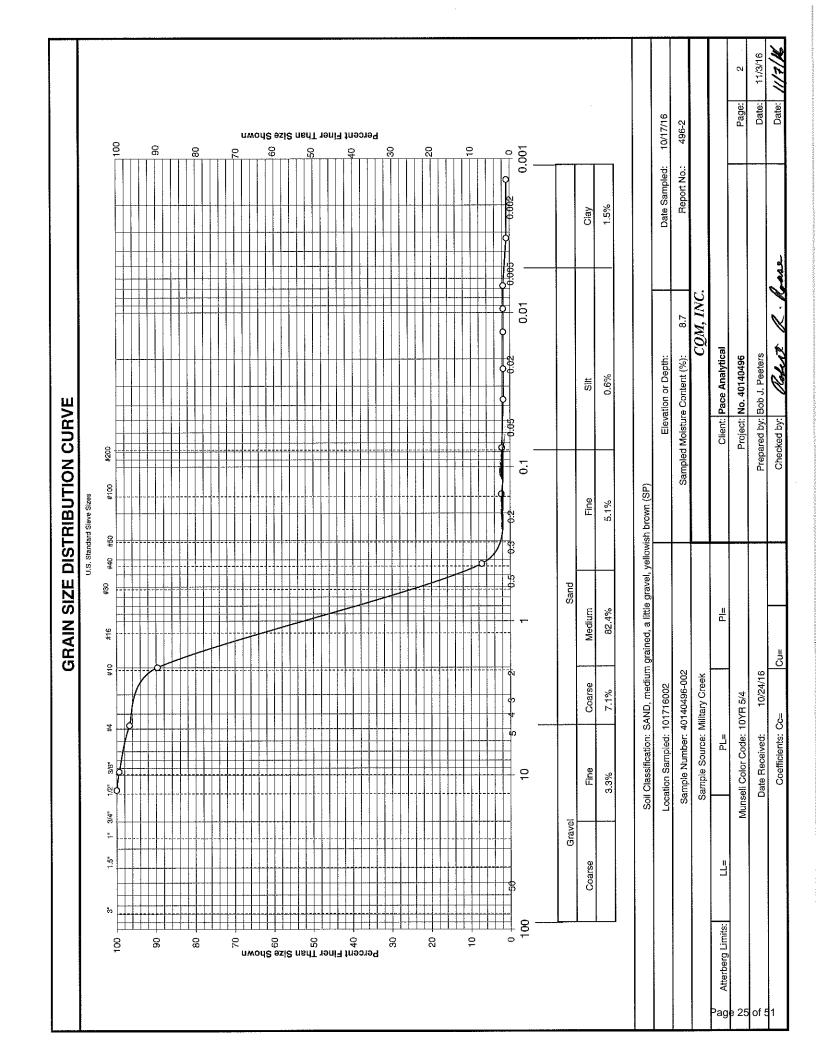
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"	0.0	0.0	100.0		
1/2"	12.3	6.7	93,3		
3/8"	12.9	7.0	86.3		
#4	12.3	6.7	79.6		
#10	16.0	8.7	70.9		
#40	117.3	63.7	7.3		
#100	8.7	4.7	2.6		
#200	0.2	0.1	2.4		

REVIEWED BY:	Relet R Rouse
DATE REVIEWED:	11/7/16

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL DATA:

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101716002
Sample No:	40140496-002
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 5/4
Date Sampled:	10/17/16


LABORATORY DATA:

Date Tested:	October 27-31, 2016
Test Performed By:	FRH

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	203.7

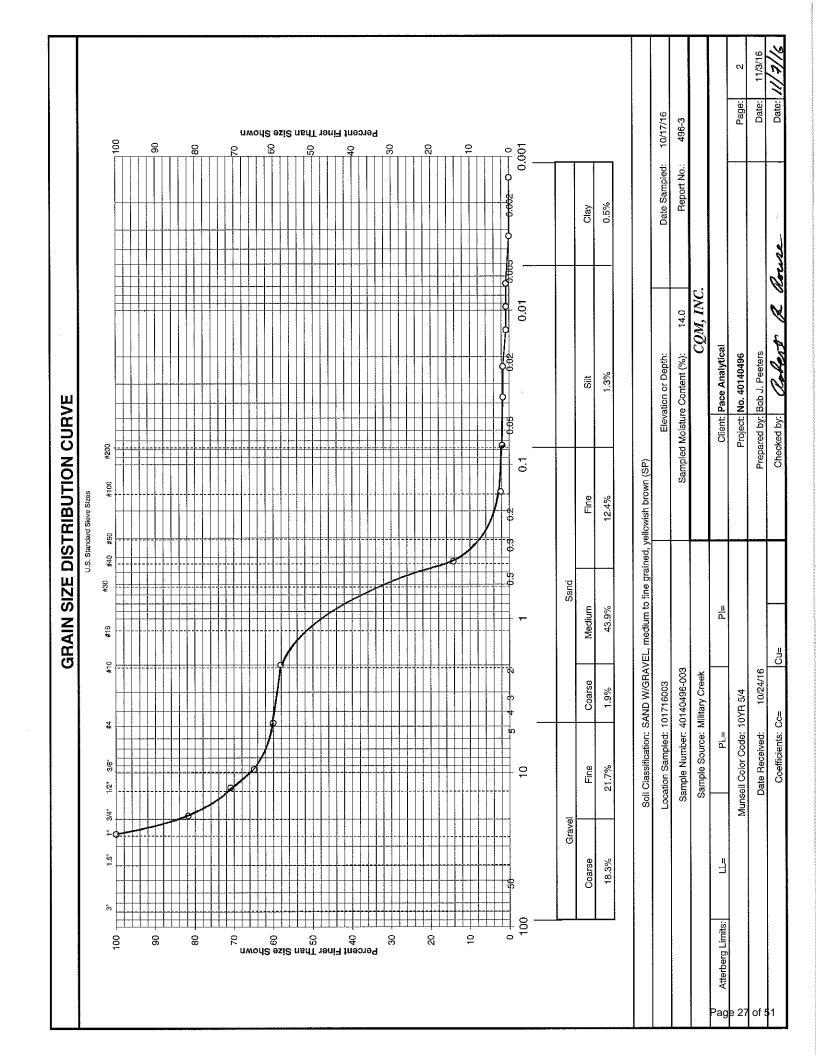
Sieve	Weight	%	%	Project Specification	Source of Specification
	-	1		· ·	ocurse of opcomedaem
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"	0,0	0.0	100.0		
3/8"	1.3	0.6	99.4		
#4	5.4	2.7	96.7		A MATERIAL PROPERTY.
#10	14.4	7.1	89.6		
#40	167.9	82.4	7.2		
#100	10.2	5.0	2.2		
#200	0.3	0.1	2.1		

REVIEWED BY:	Robert RRouse
DATE REVIEWED:	11/7/16

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERA	L DATA:
---------------	---------

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101716003
Sample No:	40140496-003
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 5/4
Date Sampled:	10/17/16


LABORATORY DATA:

Date Tested:	October 27-31, 2016	
Test Performed By:	FRH	

1		1
24 Hrs. Turn Around:	NO	
Washed Gradation:	YES	Dry Weight of Soil (gms):

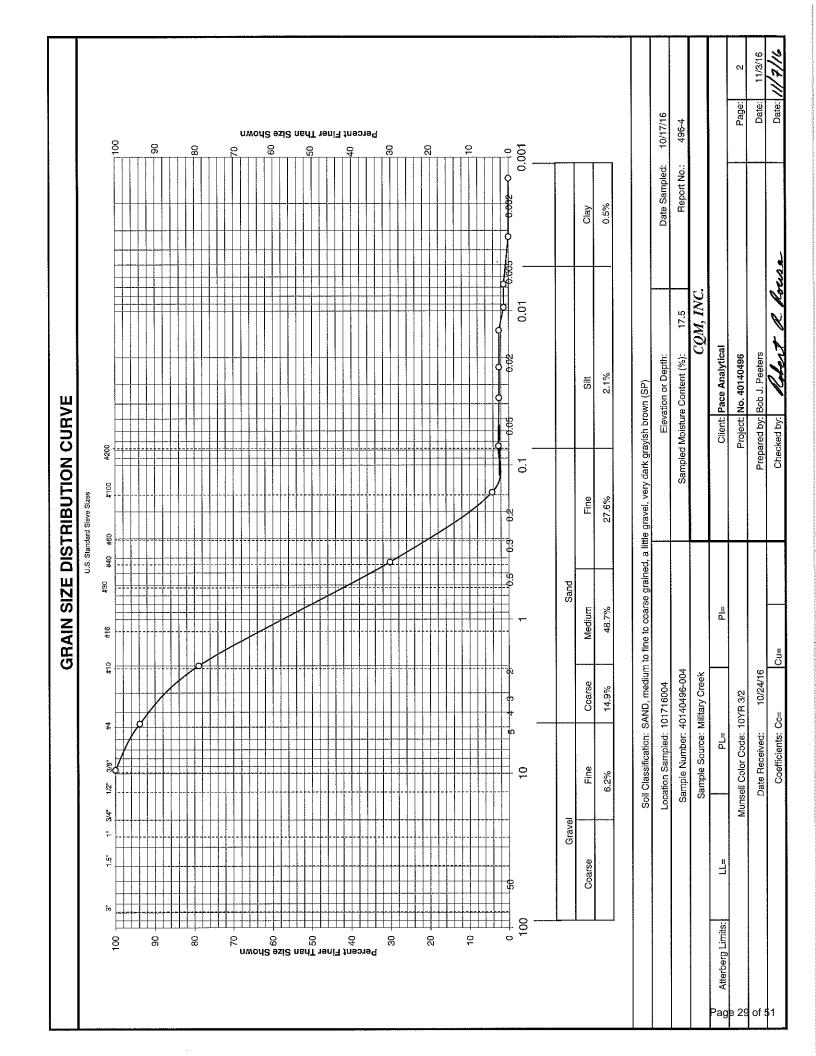
Sieve	Weight	%	%	Project Specification	Source of Specification
Síze	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"	0.0	0.0	100.0		
3/4"	20.3	18.3	81.7		
1/2"	12.0	10.8	70.9		
3/8"	6.7	6.0	64.9		
#4	5.4	4.9	60.0		
#10	2.1	1.9	58.1		
#40	48.8	43.9	14.2		
#100	13.3	12.0	2.2		
#200	0.4	0.4	1.8		

REVIEWED BY:	Robert Rouse	Remarks:
DATE REVIEWED:	11/3/16	
	-	

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GEI	NERAL	DATA	:

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101716004
Sample No:	40140496-004
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 3/2
Date Sampled:	10/17/16


LABORATORY DATA:

Date Tested:	October 27-31, 2016
Test Performed By:	FRH

	• •	1	
24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	30.8

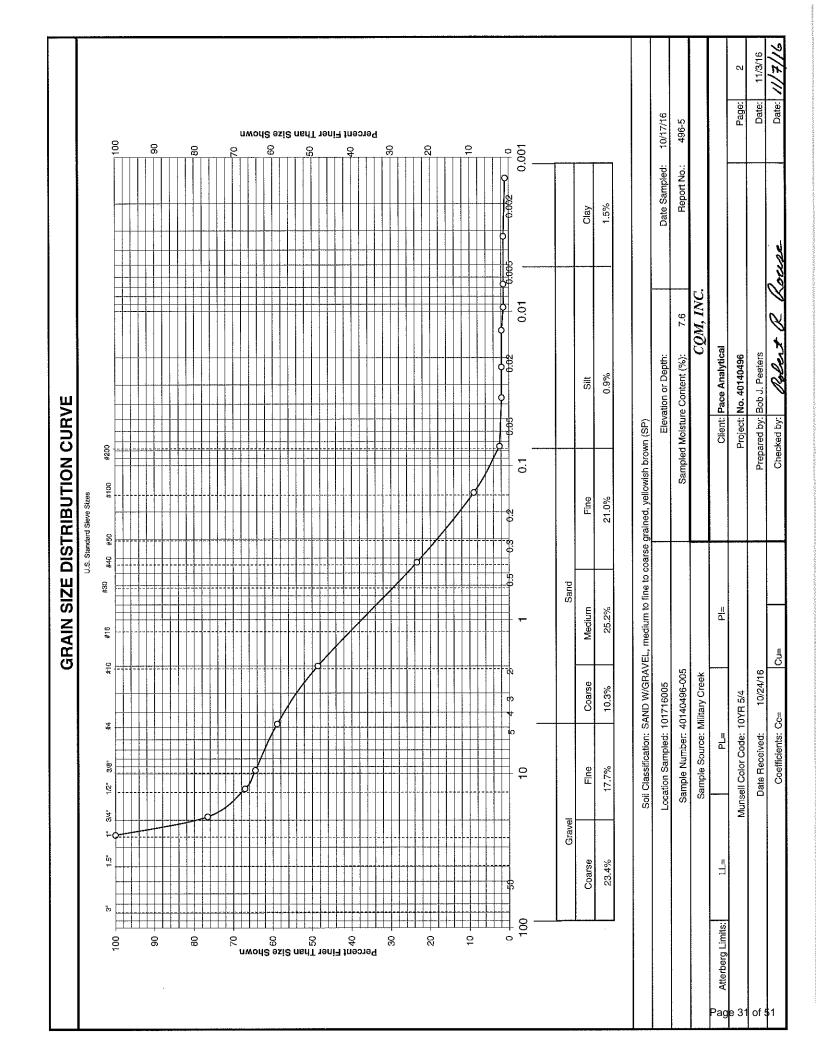
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"				•	
1/2"					
3/8"	0.0	0,0	100.0		
#4	1.9	6.2	93.8		
#10	4.6	14.9	78.9		
#40	15.0	48.7	30.2		
#100	8.0	26.0	4.2		
#200	0.5	1.6	2.6		

Robert R Rouse
11/7/16

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL DA	TA:
-------------------	-----

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101716005
Sample No:	40140496-005
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 5/4
Date Sampled:	10/17/16


LABORATORY DATA:

Date Tested:	October 27-31, 2016
Test Performed By:	FRH

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	172.8

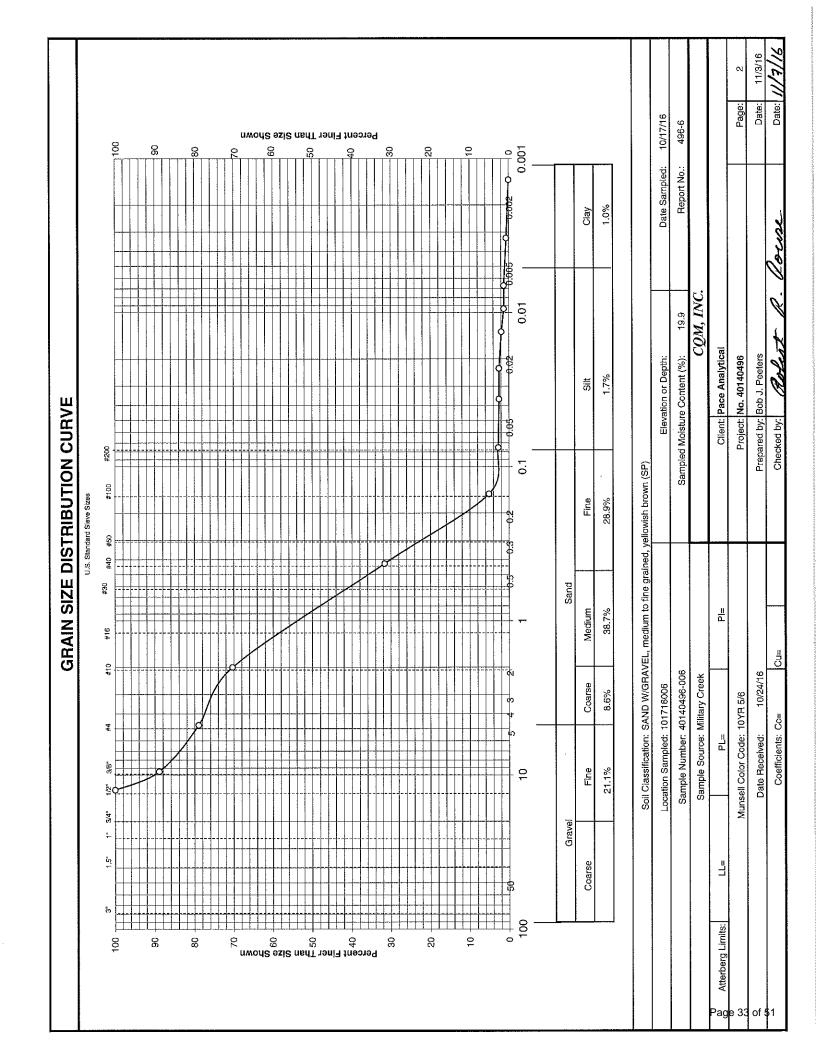
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
111	0.0	0.0	100.0		
3/4"	40.4	23.4	76.6		
1/2"	16.5	9.5	67.1		
3/8"	4.5	2.6	64.5		
#4	9.7	5.6	58.9		
#10	17.8	10.3	48.6		
#40	43.5	25.2	23.4		
#100	25.0	14.5	8.9		
#200	11.3	6.5	2.4		

REVIEWED BY:	Potent & Rouse
DATE REVIEWED:	11/7/16

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GE	NF	RΔ	. 1	٦Δ	ТΔ	٠

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101716006
Sample No:	40140496-006
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 5/6
Date Sampled:	10/17/16


LABORATORY DATA:

Date Tested:	October 27-31, 2016
Test Performed By:	FRH

		1	
24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	ìo

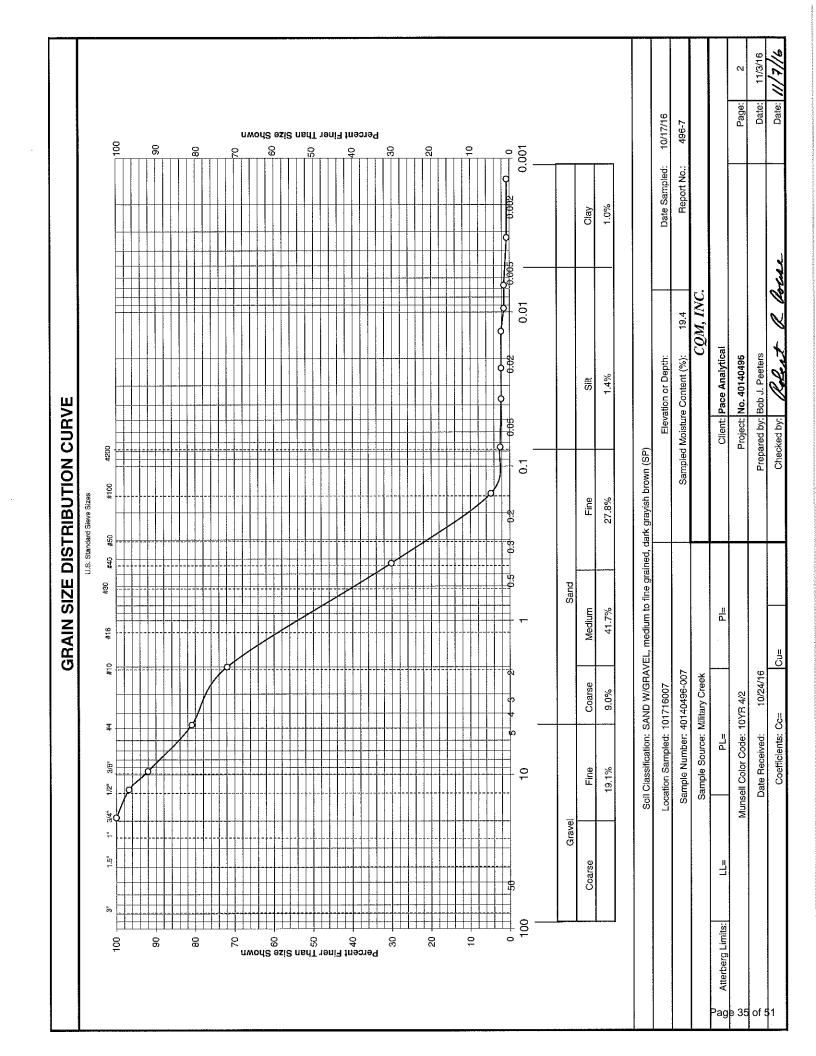
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"	0.0	0.0	100.0		
3/8"	11.1	11.1	88.9		
#4	10.0	10.0	78.9		
#10	8.6	8.6	70.3		
#40	38.8	38.7	31.6		
#100	26.6	26.5	5.1		
#200	2.4	2.4	2.7		

REVIEWED BY: Robert a Rouse	Remarks:	
DATE REVIEWED: 11/7/16		

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GEN	ERAL	DATA:

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101716007
Sample No:	40140496-007
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 4/2
Date Sampled:	10/17/16


LABORATORY DATA:

Date Tested:	October 27-31.2016
Test Performed By:	FRH
'	

24 Hrs. Turn Around:	NO	*	
Washed Gradation:	YES	Dry Weight of Soil (gms):	175.4

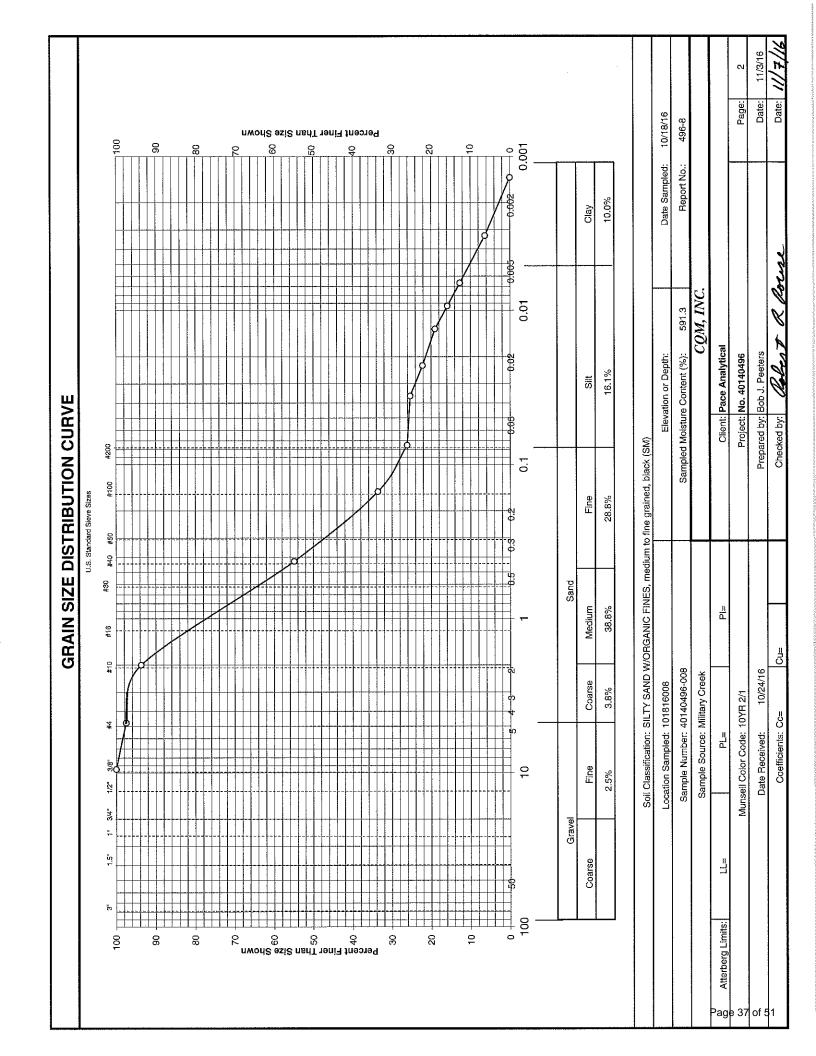
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"	0.0	0.0	100.0		
1/2"	5.6	3.2	96,8		
3/8"	8.4	4.8	92.0		
#4	19.5	11.1	80.9		
#10	15.8	9.0	71.9		
#40	73.2	41.7	30.2		
#100	44.5	25.4	4.8		
#200	4.2	2.4	2.4		

REVIEWED BY: Robert R Rown	Remarks:
DATE REVIEWED: 11/7/16	

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL	DATA:
---------	-------

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101816008
Sample No:	40140496-008
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/18/16


LABORATORY DATA:

Date Tested:	October 27-31, 2016
Test Performed By:	FRH

24 Hrs. Turn Around:	NO	_	
Washed Gradation:	YES	Dry Weight of Soil (gms):	8.0

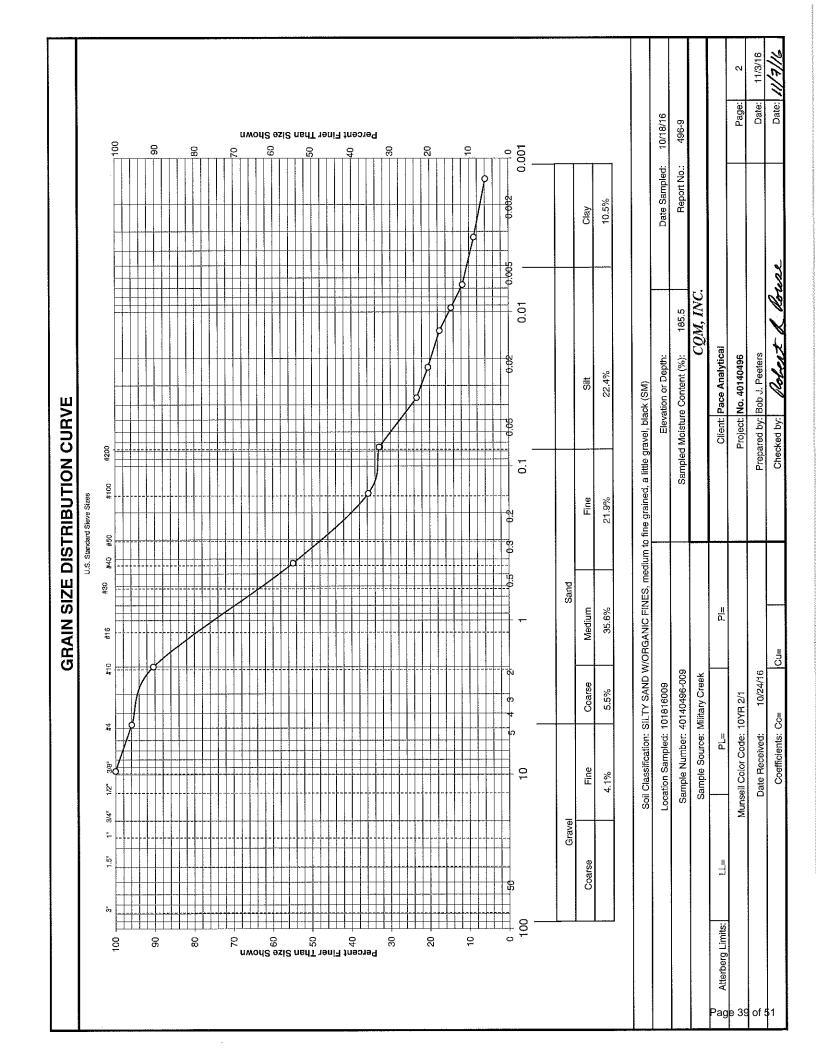
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"					
3/8"	0.0	0.0	100.0		
#4	0.2	2.5	97.5		
#10	0.3	3.8	93.7		
#40	3.1	38.8	54.9		
#100	1.7	21.3	33.6		
#200	0.6	7.5	26.1		

REVIEWED BY:	Robert a Rosese
DATE REVIEWED:	11/7/16

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

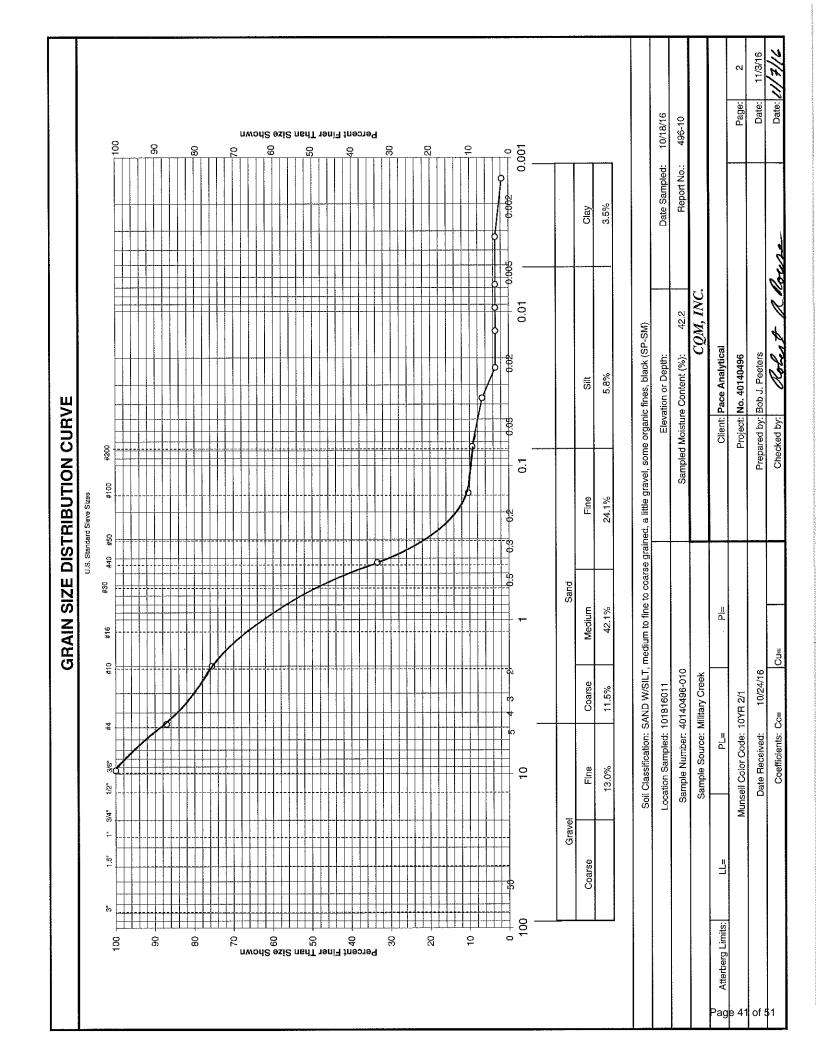
G	A I	_	٨	\neg	Λ	T	Λ	_

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101816009
Sample No:	40140496-009
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/18/16


LABORATORY DATA:

Date Tested:	October 27-31, 2016
Test Performed By:	FRH

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	50.9


	·				
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"					
3/8"	0.0	0.0	100.0		
#4	2.1	4.1	95.9		
#10	2.8	5.5	90.4		
#40	18.1	35.6	54.8		
#100	9.7	19.1	35.7		
#200	1,4	2.8	32.9		

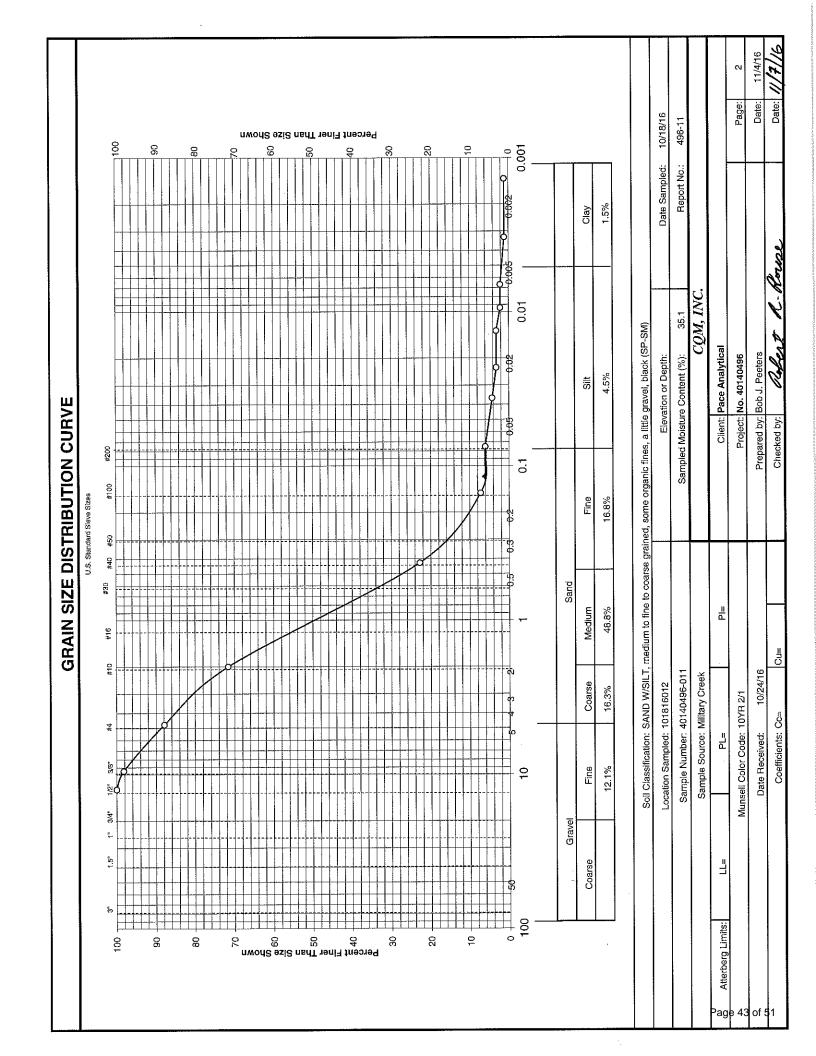
REVIEWED BY:	Robert & Pouse
DATE REVIEWED:	11/7/16

GENERAL	DATA:				
		Client:	Pace Analyti	cal	
			No. 40140496		
	Locati	on Sampled:			
		Sample No:	40140496-010		
	Dept	n of Sample:			
	Da	te Received:	10/24/16		
	Sample Des	ignated For:	Soil Classifi	cation	"
	Source	e of Sample:	Military Cree	ek	
	Munsell	Color Code:	10YR 2/1		
	D	ate Sampled:	10/18/16		
LABORAT	ORY DATA	<u>7:</u>			
Date Tested:			October 27-31, 2016		
	Test Pe	erformed By:	FRH		
				1	
24 Hrs. Turn Around:			NO		
	Washe	d Gradation:	YES	Dry Weig	ht of Soil (gms): 68.7
Sieve	Weight	%	%	Project Specification	Source of Specificat
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"	·				
3/8"	0.0	0.0	100.0		
#4	8.9	13.0	87.0		
#10	7.9	11.5	75.5		
#40	28.9	42.1	33.4		
#100	15.9	23.1	10.3		
11100	10.5	20,1	10.0		<u> </u>

REVIEWED BY:	Robert R Poure
DATE REVIEWED:	11/7/16
	•

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101816012
Sample No:	40140496-011
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munseil Color Code:	10YR 2/1
Date Sampled:	10/18/16


LABORATORY DATA:

Date Tested:	October 27-31, 2016
Test Performed By:	FRH

Γ			
24 Hrs. Turn Around:	NO	_	
Washed Gradation:	YES	Dry Weight of Soil (gms):	140.1

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"	0.0	0.0	100.0		
3/8"	2.5	1.8	98.2		
#4	14.5	10.3	87.9		
#10	22.9	16.3	71.6		
#40	68.3	48.8	22.8		
#100	21.8	15.6	7.2		
#200	1.7	1.2	6.0		

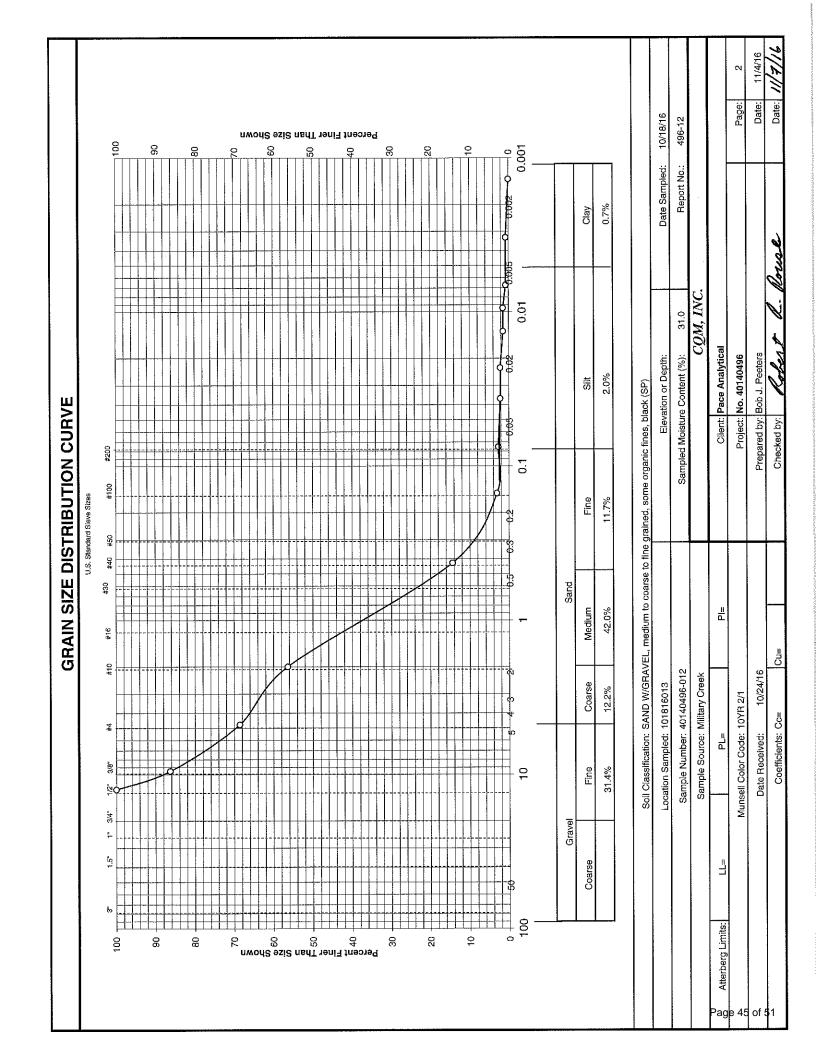
12. 44	
REVIEWED BY: Robert & Rouse	Remarks:
DATE REVIEWED: 11/7/16	

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENI	ERAL	DATA:

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101816013
Sample No:	40140496-012
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/18/16

LABORATORY DATA:


Date Tested:	October 27-31, 2016
Test Performed By:	FRH

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms): 136.6	

				•	
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1""					
3/4"					
1/2"	0.0	0.0	100.0		
3/8"	18.7	13.7	86.3		
#4	24.2	17.7	68.6		
#10	16.7	12.2	56.4		
#40	57.4	42.0	14.4		
#100	15.4	11.3	3.1		
#200	0.6	0.4	2.7		

REVIEWED BY:	Robert a. Rouse
DATE REVIEWED:	11/7/16

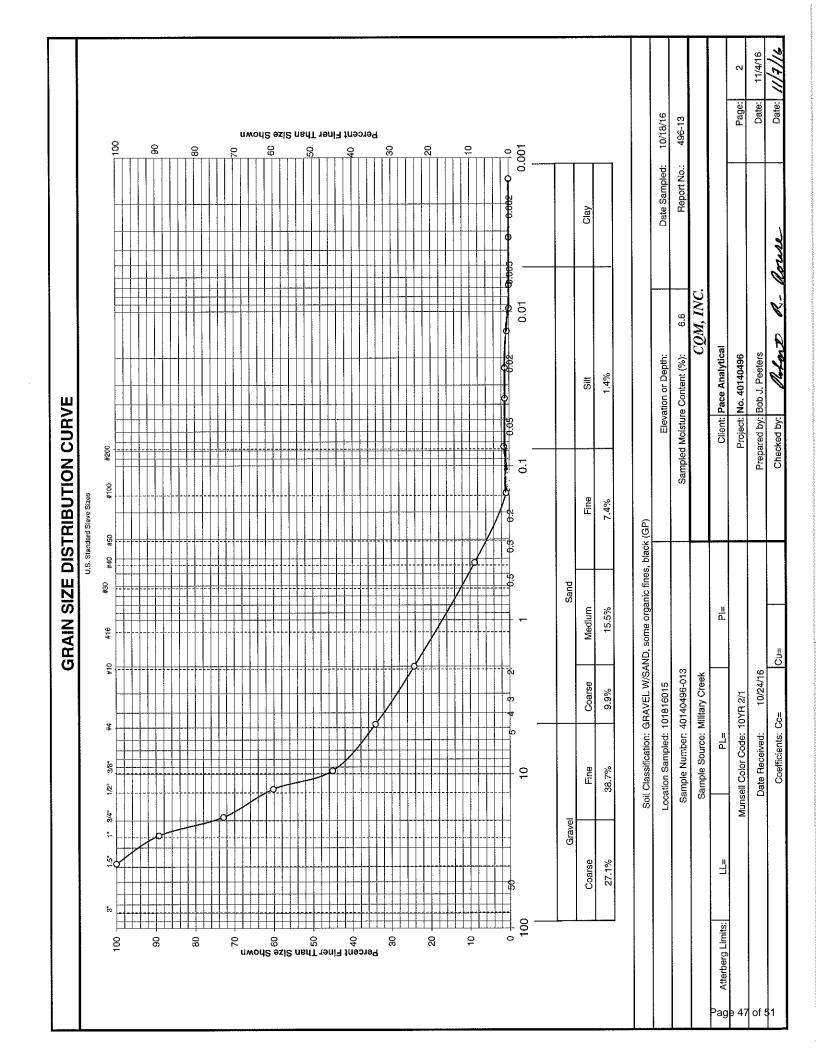
Remarks:

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL DATA:

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101816015
Sample No:	40140496-013
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/18/16

LABORATORY DATA:


Date Tested:	October 27-31, 2016
Test Performed By:	FRH

1		1	
24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	280.8

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"	0.0	0.0	100.0		
1"	30.1	10.7	89.3		
3/4"	46.1	16.4	72.9		
1/2"	35.6	12.7	60.2		
3/8"	42.5	15.1	45.1		
#4	30.7	10.9	34.2		
#10	27.7	9.9	24.3		
#40	43.6	15.5	8.8		
#100	19.7	7.0	0.8		
#200	1.0	0.4	1.4		

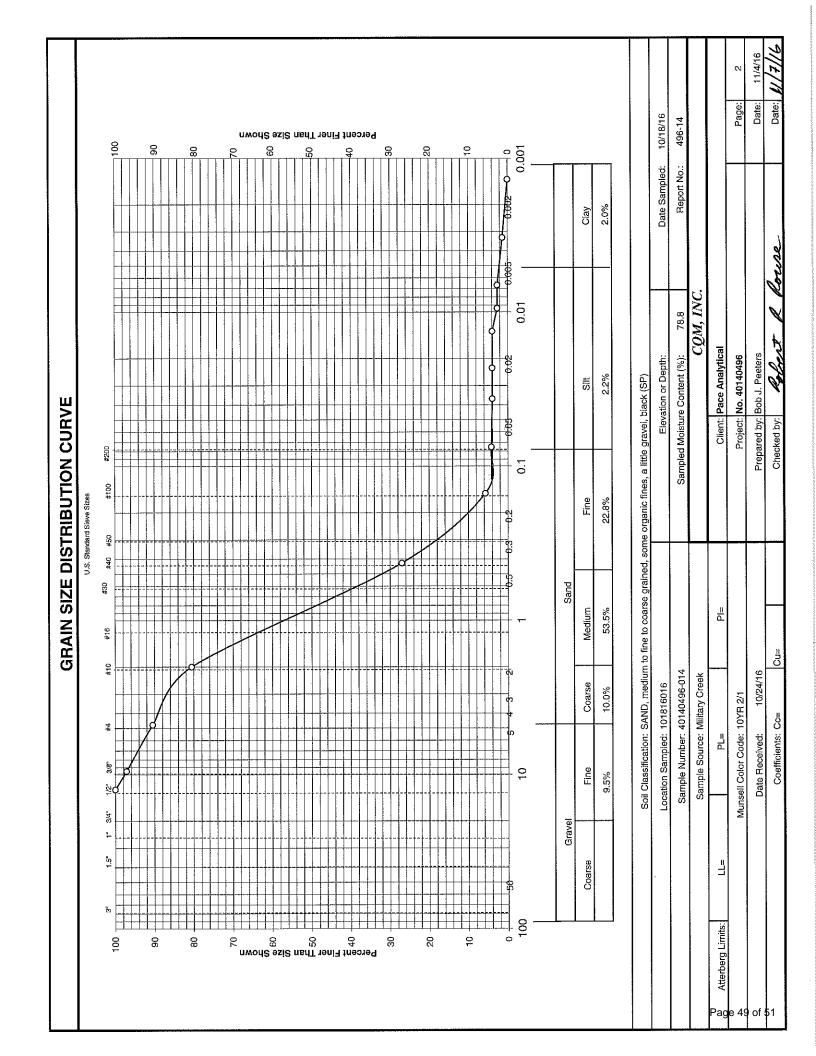
REVIEWED BY:	Robert R Rouse
DATE REVIEWED:	11/7/16

Remarks:

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL	DATA:
----------------	-------

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101816016
Sample No:	40140496-014
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/18/16


LABORATORY DATA:

Date Tested:	October 27-31, 2016	
Test Performed By:	FRH	

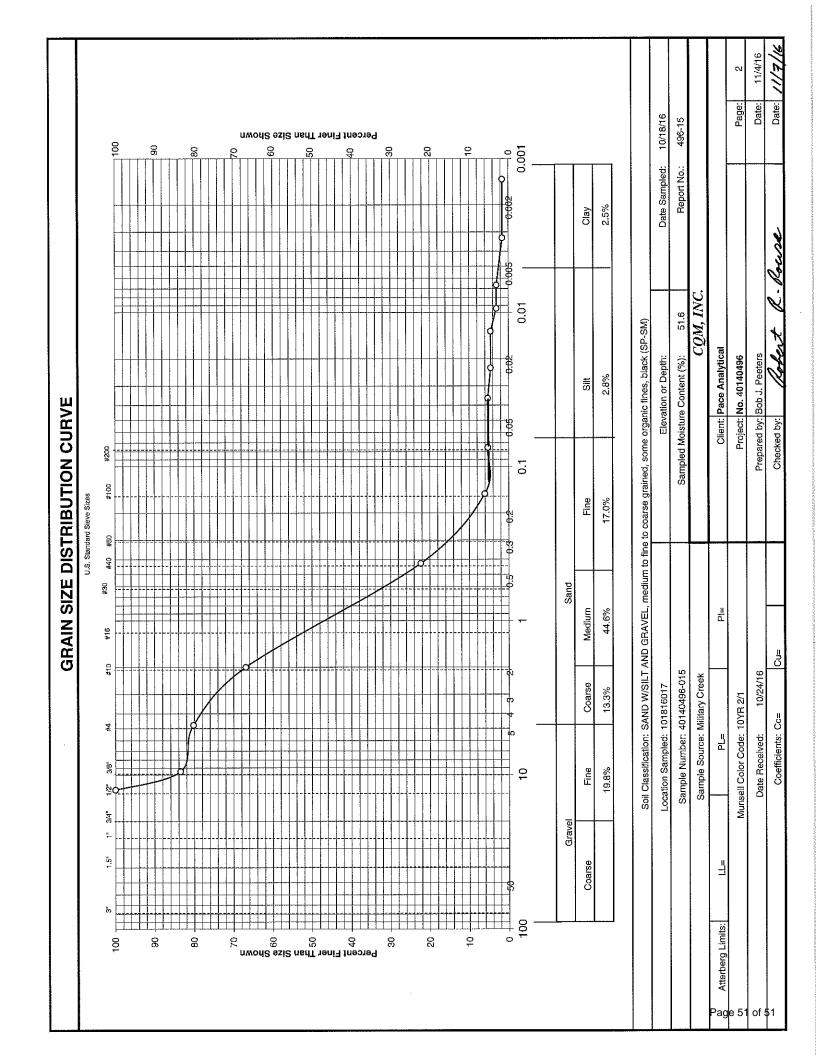
24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	91.4

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"	0.0	0.0	100.0		
3/8"	2.6	2.8	97.2		
#4	6.1	6.7	90.5		
#10	9.1	10.0	80.5		
#40	48.9	53.5	27.0		
#100	19.5	21.3	5.7		
#200	1.4	1.5	4.2		

REVIEWED BY: Rolest a Roc	Remarks:	
DATE REVIEWED: 11/7/16		
-		

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101816017
Sample No:	40140496-015
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/18/16


LABORATORY DATA:

Date Tested:	October 27-31, 2016
Test Performed By:	FRH

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	125.1

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"	0.0	0.0	100.0		
3/8"	20.6	16.5	83.5		
#4	4.1	3.3	80.2		
#10	16.7	13.3	66,9		
#40	55.8	44.6	22.3		
#100	20.3	16.2	6.1		
#200	1.0	0.8	5.3		

REVIEWED BY:	Robert a Poure	Remarks:
DATE REVIEWED:	11/2/11	
	•	

November 07, 2016

Andrea Salus NATURAL RESOURCE TECHNOLOGY 234 W. Florida Street 5th Floor Milwaukee, WI 53204

RE: Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Dear Andrea Salus:

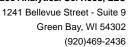
Enclosed are the analytical results for sample(s) received by the laboratory on October 20, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Brian Basten


brian.basten@pacelabs.com

Project Manager

Enclosures

cc: Data Delivery Team, Natural Resources Technologies

CERTIFICATIONS

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064

North Dakota Certification #: R-150

Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

(920)469-2436

SAMPLE SUMMARY

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40140495001	101916018	Solid	10/19/16 09:12	10/20/16 09:50
40140495002	101916019	Solid	10/19/16 09:12	10/20/16 09:50
40140495003	101916021	Solid	10/19/16 09:37	10/20/16 09:50
40140495004	101916022	Solid	10/19/16 09:37	10/20/16 09:50
40140495005	101916024	Solid	10/19/16 10:35	10/20/16 09:50
40140495006	101916025	Solid	10/19/16 10:35	10/20/16 09:50
40140495007	101916027	Solid	10/19/16 12:09	10/20/16 09:50
40140495008	101916028	Solid	10/19/16 12:09	10/20/16 09:50

SAMPLE ANALYTE COUNT

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

₋ab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10140495001	101916018	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	TEL	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
10140495002	101916019	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	TEL	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
10140495003	101916021	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	TEL	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
10140495004	101916022	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	TEL	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
10140495005	101916024	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	TEL	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
10140495006	101916025	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	TEL	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
10140495007	101916027	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	TEL	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
10140495008	101916028	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	TEL	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G

ANALYTICAL RESULTS

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Date: 11/07/2016 02:27 PM

Sample: 101916018 Collected: 10/19/16 09:12 Received: 10/20/16 09:50 Matrix: Solid Lab ID: 40140495001

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI	MOD DRO Pr	eparation I	Method:	WI MOD DRO			
Diesel Range Organics	4.5	mg/kg	2.2	0.90	1	10/21/16 09:27	10/25/16 13:29		DC,L2
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	35.8	%	0.10	0.10	1		10/28/16 14:51		
TOC via Lloyd Kahn	Analytical	Method: Lloy	d Kahn						
Total Organic Carbon	19400	mg/kg	1280	433	1		10/27/16 06:54	7440-44-0	M0
Sample: 101916019		4014049500		l: 10/19/10				trix: Solid	
Results reported on a "dry we	eignt" basis and ar	e adjusted to	r percent mo	isture, sai	mpie si	ze and any diluti	ons.		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI	MOD DRO Pr	eparation I	Method:	WI MOD DRO			
Diesel Range Organics	<0.70	mg/kg	1.7	0.70	1	10/21/16 09:27	10/25/16 13:35		L2
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	16.9	%	0.10	0.10	1		10/28/16 14:52		
TOC via Lloyd Kahn	Analytical	Method: Lloy	d Kahn						
Total Organic Carbon	649	mg/kg	120	40.7	1		10/27/16 09:47	7440-44-0	
Sample: 101916021 Results reported on a "dry we		4014049500		l: 10/19/10				trix: Solid	
		•	•		•				
Parameters	Results -	Units	LOQ _	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI	MOD DRO Pr	eparation I	Method:	WI MOD DRO			
Diesel Range Organics	<9.3	mg/kg	23.2	9.3	1	10/21/16 09:27	10/25/16 11:50		D5,L2
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	91.4	%	0.10	0.10	1		10/28/16 14:52		
TOC via Lloyd Kahn	Analytical	Method: Lloy	d Kahn						

ANALYTICAL RESULTS

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Date: 11/07/2016 02:27 PM

Sample: 101916022 Lab ID: 40140495004 Collected: 10/19/16 09:37 Received: 10/20/16 09:50 Matrix: Solid

Results reported on a "dry we	eight" basis and ar	e adjusted fo	or percent m	oisture, sai	mple si	ize and any diluti	ions.		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI I	MOD DRO P	reparation I	Method	: WI MOD DRO			
Diesel Range Organics	6.5J	mg/kg	8.1	3.3	1	10/21/16 09:27	10/25/16 11:59		D5,DC, L2
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	75.4	%	0.10	0.10	1		10/28/16 14:52		
TOC via Lloyd Kahn	Analytical	Method: Lloy	d Kahn						
Total Organic Carbon	128000	mg/kg	3240	1100	1		10/27/16 07:23	7440-44-0	
Sample: 101916024 Results reported on a "dry we		4014049500 e adjusted fo		d: 10/19/10 oisture, sai				trix: Solid	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI I	MOD DRO P	reparation I	Method	: WI MOD DRO			
Diesel Range Organics	12.8	mg/kg	3.7	1.5	1	10/21/16 09:27	10/25/16 12:08		D5,DC, L2
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	46.3	%	0.10	0.10	1		10/28/16 14:52		
TOC via Lloyd Kahn	Analytical	Method: Lloy	d Kahn						
Total Organic Carbon	19300	mg/kg	1320	449	1		10/27/16 07:29	7440-44-0	
Sample: 101916025 Results reported on a "dry we		4014049500 e adjusted fo		d: 10/19/10 oisture, sai				trix: Solid	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI I	MOD DRO P	reparation I	Method	: WI MOD DRO			
Diesel Range Organics	54.8	mg/kg	4.5	1.8	1	10/21/16 09:27	10/25/16 12:17		D5,L2
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	55.4	%	0.10	0.10	1		10/28/16 14:52		
TOC via Lloyd Kahn	Analytical	Method: Lloy	rd Kahn						
Total Organic Carbon	30900	mg/kg	1460	494	1		10/27/16 07:35	7440-44-0	

ANALYTICAL RESULTS

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Date: 11/07/2016 02:27 PM

Sample: 101916027 Lab ID: 40140495007 Collected: 10/19/16 12:09 Received: 10/20/16 09:50 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI MC	DD DRO Pr	eparation M	ethod:	WI MOD DRO			
Diesel Range Organics	<9.9	mg/kg	24.6	9.9	1	10/21/16 09:27	10/25/16 12:26		D5,L2
Percent Moisture	Analytical	Method: ASTM	D2974-87						
Percent Moisture	91.9	%	0.10	0.10	1		10/28/16 14:52		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn						
Total Organic Carbon	317000	mg/kg	9440	3200	1		10/27/16 07:51	7440-44-0	
Sample: 101916028	Lab ID:	40140495008	Collected	l: 10/19/16	12:09	Received: 10/	20/16 09:50 Ma	trix: Solid	
Results reported on a "dry w	eight" basis and are	e adjusted for p	percent mo	isture, sam	ıple si	ze and any diluti	ons.		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytica	ıl Method: WI N	MOD DRO Pr	eparation N	/lethod	: WI MOD DRO			
Diesel Range Organics	8.2J	mg/kg	11.4	4.6	1	10/25/16 09:37	10/26/16 12:09		
Percent Moisture	Analytical Method: ASTM D2974-87								
Percent Moisture	87.2	%	0.10	0.10	1		10/28/16 14:52		
TOC via Lloyd Kahn	Analytical Method: Lloyd Kahn								
Total Organic Carbon	216000	mg/kg	7620	2580	1		10/27/16 07:58	7440-44-0	

(920)469-2436

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Date: 11/07/2016 02:27 PM

QC Batch: 238873 Analysis Method: WI MOD DRO
QC Batch Method: WI MOD DRO Analysis Description: WIDRO GCS

Associated Lab Samples: 40140495001, 40140495002, 40140495003, 40140495004, 40140495005, 40140495006, 40140495007

METHOD BLANK: 1415122 Matrix: Solid

Associated Lab Samples: 40140495001, 40140495002, 40140495003, 40140495004, 40140495005, 40140495006, 40140495007

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Diesel Range Organics mg/kg <0.80 2.0 10/25/16 09:27

LABORATORY CONTROL SAMPLE & LCSD: 1415123 1415124 Spike LCS LCSD LCS LCSD % Rec Max % Rec Parameter Units Conc. Result Result % Rec Limits **RPD RPD** Qualifiers Diesel Range Organics mg/kg 40 23.5 26.2 59 70-120 20 L0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Date: 11/07/2016 02:27 PM

QC Batch: 239173 Analysis Method: WI MOD DRO
QC Batch Method: WI MOD DRO Analysis Description: WIDRO GCS

Associated Lab Samples: 40140495008

METHOD BLANK: 1417077 Matrix: Solid

Associated Lab Samples: 40140495008

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Diesel Range Organics mg/kg <0.80 2.0 10/26/16 10:13

LABORATORY CONTROL SAMPLE &		14	117079							
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD	Qualifiers
										Qualiford
Diesel Range Organics	mg/kg	40	28.7	32.7	72	82	70-120	13	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

QC Batch: 239683 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 40140495001, 40140495002, 40140495003, 40140495004, 40140495005, 40140495006, 40140495007,

40140495008

SAMPLE DUPLICATE: 1419965

Date: 11/07/2016 02:27 PM

40140819002 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers 18.5 % 2 Percent Moisture 18.9 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

QC Batch: 239305 Analysis Method: Lloyd Kahn
QC Batch Method: Lloyd Kahn Analysis Description: Lloyd Kahn TOC

Units

mg/kg

Associated Lab Samples: 40140495001, 40140495002, 40140495003, 40140495004, 40140495005, 40140495006, 40140495007,

40140495008

METHOD BLANK: 1417707 Matrix: Solid

Associated Lab Samples: 40140495001, 40140495002, 40140495003, 40140495004, 40140495005, 40140495006, 40140495007,

40140495008

ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersTotal Organic Carbonmg/kg<33.9</td>10010/27/16 05:15

Spike

Conc.

2000

LABORATORY CONTROL SAMPLE: 1417708

Parameter

Total Organic Carbon

Date: 11/07/2016 02:27 PM

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1417710 1417709 MS MSD MS MSD MS 40140496009 Spike Spike MSD % Rec Max Result Parameter Units Conc. % Rec % Rec Limits RPD RPD Conc. Result Result Qual Total Organic Carbon 95900 14900 14900 105000 105000 63 59 80-120 20 P6 mg/kg

LCS

Result

1980

LCS

% Rec

99

% Rec

Limits

80-120

Qualifiers

MATRIX SPIKE & MATRIX SPI	IKE DUPLICA	TE: 14177	11		1417712							
			MS	MSD								
	40	0140495001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Total Organic Carbon	mg/kg	19400	6180	6100	20200	24400	13	83	80-120	19	20	MO

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

spike level.

LABORATORIES

Date: 11/07/2016 02:27 PM

PASI-G Pace Analytical Services - Green Bay

ANALYTE QUALIFIERS

D5	The sample was re-weighed into a new container because the sample weight in the original container exceeded the method specifications.
DC	Chromatographic pattern inconsistent with typical Diesel Fuel.
L0	Analyte recovery in the laboratory control sample (LCS) was outside QC limits.
L2	Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results may be biased low.
MO	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
P6	Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Date: 11/07/2016 02:27 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40140495001	101916018	WI MOD DRO	238873	WI MOD DRO	238927
40140495002	101916019	WI MOD DRO	238873	WI MOD DRO	238927
40140495003	101916021	WI MOD DRO	238873	WI MOD DRO	238927
10140495004	101916022	WI MOD DRO	238873	WI MOD DRO	238927
10140495005	101916024	WI MOD DRO	238873	WI MOD DRO	238927
10140495006	101916025	WI MOD DRO	238873	WI MOD DRO	238927
10140495007	101916027	WI MOD DRO	238873	WI MOD DRO	238927
40140495008	101916028	WI MOD DRO	239173	WI MOD DRO	239267
10140495001	101916018	ASTM D2974-87	239683		
0140495002	101916019	ASTM D2974-87	239683		
0140495003	101916021	ASTM D2974-87	239683		
0140495004	101916022	ASTM D2974-87	239683		
10140495005	101916024	ASTM D2974-87	239683		
10140495006	101916025	ASTM D2974-87	239683		
10140495007	101916027	ASTM D2974-87	239683		
10140495008	101916028	ASTM D2974-87	239683		
0140495001	101916018	Lloyd Kahn	239305		
0140495002	101916019	Lloyd Kahn	239305		
0140495003	101916021	Lloyd Kahn	239305		
10140495004	101916022	Lloyd Kahn	239305		
0140495005	101916024	Lloyd Kahn	239305		
10140495006	101916025	Lloyd Kahn	239305		
10140495007	101916027	Lloyd Kahn	239305		
10140495008	101916028	Lloyd Kahn	239305		

Coc seals: 936623, 936624 Feder tracking #: 806293223845

NATURAL RESOURCE TECHNOLOGY, INC. 234 W. FLORIDA STREET, 5th FLOOR MILWAUKEE, WI 53204 TEL: 414.837.3607

 \geq

DAGE	DATE:	HAIN OF CUSTODY #
Milooga _k e		0 4
⊋, ~	1/10	0,
- Section		

Page 14 of 62

Sample Condition Upon Receipt

Pace Analytical

Pace Analytical Services, Inc. 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

Client Name:		Project #: ^r	WO# : 4	10140495
Custody Seal on Cooler/Box Present: yes Custody Seal on Samples Present: ves	no Seals intac	2590 ct: Fyes Fno		
Packing Material: Bubble Wrap Bub	ble Bags T No	ne T Other		
Thermometer Used NA	Type of Ice: We	Blue Dry None	Samples or	ice, cooling process has begun
Cooler Temperature Uncorr: PDI ICorr:		logical Tissue is Fro	zen: T ves	rice, cooming process has begun
Temp Blank Present: yes 7 no			r no [Doron everining and the
Temp should be above freezing to 6°C for all sample exc Frozen Biota Samples should be received ≤ 0°C.	cept Biota.	Comments:		Person examining contents: Date: 1000000000000000000000000000000000000
Chain of Custody Present:	Yes DNo DN/			
Chain of Custody Filled Out:		A 2.		· · · · · · · · · · · · · · · · · · ·
Chain of Custody Relinquished:	Yes ONO ON/			
Sampler Name & Signature on COC:	□Yes ☑No □N/		·	
Samples Arrived within Hold Time:	Yes No N/			
- VOA Samples frozen upon receipt	☐Yes ☐No	Date/Time:		
Short Hold Time Analysis (<72hr):	□Yes ☑No □N/			
Rush Turn Around Time Requested:	□Yes ☑No □N/			
Sufficient Volume:	Yes □No □N/			
Correct Containers Used:	ZYes □No □N/			
-Pace Containers Used:	Yes □No □N/			·
-Pace IR Containers Used:	□Yes □No ☑N//	á	. 4	,
Containers Intact:	Yes No No	A 10.		
Filtered volume received for Dissolved tests	□Yes □No ☑N//	A 11.		
Sample Labels match COC:	Yes □No □N/	A 12.		
-Includes date/time/ID/Analysis Matrix:	5			
All containers needing preservation have been checked. (Non-Compliance noted in 13.) All containers needing preservation are found to be in	□Yes □No ØN/A	13. T HNO3	F H2SO4 F	NaOH NaOH +ZnAct
compliance with EPA recommendation. (HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12)	□Yes □No ∠N/A	A.		į.
exceptions: VOA, coliform, TOC, TOX, TOH, O&G, WIDROW, Phenolics, OTHER:	□Yes □No	1	ab Std #ID of reservative	Date/ Time:
Headspace in VOA Vials (>6mm):	□Yes □No ☑N/A	14.		
Trip Blank Present:	□Yes □No ØN/A	15.		
Trip Blank Custody Seals Present	□Yes □No ŪN/A			
Pace Trip Blank Lot # (if purchased):	/	·		
Client Notification/ Resolution: Person Contacted: Comments/ Resolution:	Date.	If ch	ecked, see attache	ed form for additional comments
	BA			
Project Manager Review:			Date:	10-20-16

CQM, INC. Engineering – Surveying – Material Testing

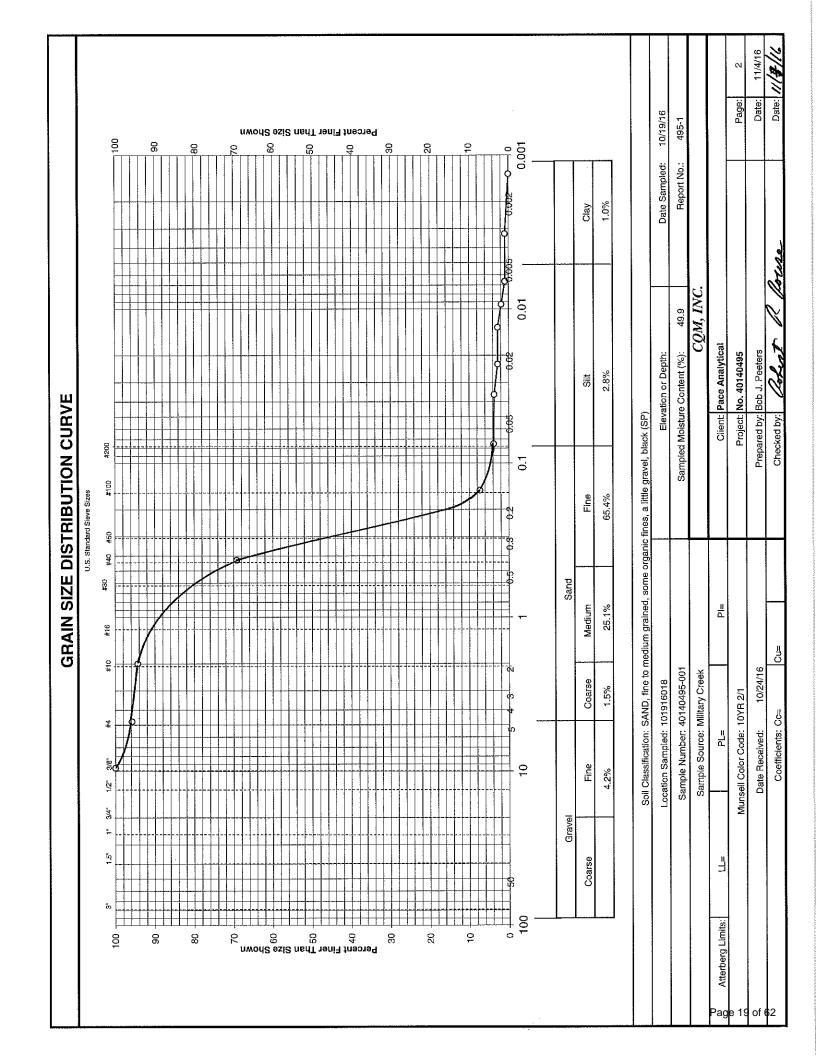
TRANSMITTAL

TO: Brian Basten NROM: Bab Rouse COM, INC. 2679 Continental Drive Green Bay, WI 54311 PHONE: (920) 465-3911 DATE: November J, 2016 RE: Leb Test Rends Reports PROJECT: No. 40140995 WE ARE SENDING YOU: ATTACHED UNDER SEPARATE COVER VIA DRAWINGS SECRETCATIONS CD DOCUMENTS COPY OF LETTER QUANTITY DESCRIPTION 1 Lab Test Result Reports I Chain of Curtody Record FMATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS: COPY TO:	TO: Brian	Basten FROM: Bob Rouse
PHONE: (920) 465-3911 PHONE: (920) 465-3911 DATE: November 7 Wilb RE: Leb Test Rankt Reports PROJECT: No. 4014-0495 WE ARE SENDING YOU: ATTACHED UNDER SEPARATE COVER VIA DRAWINGS SPECIFICATIONS CD DOCUMENTS COPY OF LETTER QUANTITY DESCRIPTION Lab Test Result Reports I Chain of Custody Record Tovince to be Lent Later IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:	Pace	Analytical COM, INC.
PHONE: (920) 465-3911 DATE: November 7, 2016 RE: Let Test Rendt Reports PROJECT: No. 40140495 WE ARE SENDING YOU: ATTACHED UNDER SEPARATE COVER VIA DRAWINGS SPECIFICATIONS CD DOCUMENTS COPY OF LETTER QUANTITY DESCRIPTION Lab Test Result Reports I Chain of Custody Record I MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		
DATE: November 7, 2016 RE: Leb Test Rendt Reports PROJECT: No. 40140495 WE ARE SENDING YOU: ATTACHED UNDER SEPARATE COVER VIA DAWINGS SPECIFICATIONS CD DOCUMENTS COPY OF LETTER QUANTITY DESCRIPTION Lab Test Result Reports 1 Chain of Curtoly Record Finding to be cent later If MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		Green Bay, WI 54311
RE: Leb Test Knult Keparts PROJECT: No. 40140495 WE ARE SENDING YOU: ATTACHED UNDER SEPARATE COVER VIA DRAWINGS SPECIFICATIONS CD DOCUMIENTS COPY OF LETTER QUANTITY DESCRIPTION Lab Test Result Reports I Chain of Curtoly Record JANGERO TO be CENT LACK IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		
RE: Leb Test Knult Keparts PROJECT: No. 40140495 WE ARE SENDING YOU: ATTACHED UNDER SEPARATE COVER VIA DRAWINGS SPECIFICATIONS CD DOCUMIENTS COPY OF LETTER QUANTITY DESCRIPTION Lab Test Result Reports I Chain of Curtoly Record JANGERO TO be CENT LACK IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		DATE: November 7, 2016
WE ARE SENDING YOU: ATTACHED	RE: Leb Te	It Result Reports PROJECT: No. 40140495
ATTACHED UNDER SEPARATE COVER VIA DRAWINGS SPECIFICATIONS CD DOCUMENTS COPY OF LETTER QUANTITY DESCRIPTION 1 Lab Test Result Reports 1 Chain of Custody Record If MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		
DRAWINGS SPECIFICATIONS CD DOCUMENTS COPY OF LETTER QUANTITY DESCRIPTION Lab Test Result Reports 1 Chain of Custody Record Triving to be cent later If MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTHY US AT ONCE. REMARKS:	WE ARE SENDIN	G YOU:
DOCUMENTS COPY OF LETTER QUANTITY DESCRIPTION 1 Lab Test Result Reports 1 Chain of Curtoly Record Invoice Tobe Sent Later IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:	▼ ATTACH	ED UNDER SEPARATE COVER VIA
QUANTITY DESCRIPTION 1 Lab Test Result Reports 1 Chain of Curtoly Record Invince to be cent later IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:	DRAWIN	GS SPECIFICATIONS CD
QUANTITY DESCRIPTION 1 Lab Test Result Reports 1 Chain of Custody Record Invince to be sent later IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:	DOCUME	
1 Chain of Custody Record Invince to be sent later IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		
1 Chain of Custody Record Invince to be sent later IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		
I Chain of Custody Record Invoice to be sent later IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:	QUANTITY	DESCRIPTION
I Chain of Custody Record Invoice to be sent later IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:	4	
Invoice To be sent later IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		Lab Test Nesult Reports
Invoice To be sent later IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		
Invoice To be sent later IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		
Invoice To be sent later IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		
Invoice To be sent later IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:	1	
IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		Chain of Custody Record
IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		
IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		
IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		
IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		
IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		
IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		
IF MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE. REMARKS:		Tadica Tolo co T Land
REMARKS:		
	J	F MATERIAL RECEIVED IS NOT AS LISTED, PLEASE NOTIFY US AT ONCE.
COPY TO:	REMARKS:	
COPY TO:		
COPY TO:	·	
COPY TO:		
THE PROPERTY OF THE PROPERTY O	COPY TO:	Page 16 of 6

Workorder: 40140495

Pace Analytical Results Requested By: 11/3/2016 Requested Analysis 2381/2 MILITARY CREEK Subcontract To Workorder Name:

LAB USE ONLY Z Samples Intact Y or Comments Received on Ice Y or N Grain Size / Hydrometer D422, D2216 and D2487 × × × × × \times × × Date/Time Preserved Containers peweseidun P.O. Z Custody Seal Y or Matrix Solid Solid Solid Solid Solid Solid Solid Solid Received By 40140495003 40140495004 40140495005 40140495006 40140495002 40140495007 40140495008 40140495001 19/4/10 AC CQM Date/Time 10/19/2016 09:12 10/19/2016 10:35 10/19/2016 10:35 10/19/2016 09:12 10/19/2016 09:37 10/19/2016 09:37 10/19/2016 12:09 10/19/2016 12:09 Date/Time ပွ Collect WI LOD/LOQ Cooler Temperature on Receipt 1241 Bellevue ST, STE 9 Green Bay, WI 54302 NOON State of Sample Origin: Refeased By Pace Analytical Report / Invoice To Sample ID Brian Basten 101916018 101916019 101916022 101916025 101916028 101916024 101916027 101916021 Transfers Item 9 12 Ę ç, 9 œ


FMT-ALL-C-002rev.00 24March2009

Page 1 of 1

CENEDA	DATA-						
GENERAL	<u>. DATA:</u>						
		Client:	Pace Analyt	ical			
		Project:	No. 4014049	95			
	Location	on Sampled:	101916018				
		Sample No:	40140495-00	01			
	Dept	h of Sample:					
	Da	te Received:	10/24/16				
	Sample Des	signated For:	Soil Classifi	ication			
		e of Sample:		ek			
		Color Code:					
		ate Sampled:	10/19/16				
LABOHAI	TORY DATA	<u>7:</u>					
		D-4- T 41.	0-1-105 (27 0010			
		erformed By:	October 25-27, 2016				
	restri	enonneu by.	11111				
	24 Hrs 1	Furn Around:	NO				
		d Gradation:	YES	Dry Wein	ht of Soil (gms): 68.8		
				.	(3)		
Sieve	Weight	%	%	Project Specification	Source of Specification		
Size	Retained	Retained	Passing	% Passing by Weight			
3"							
1 1/2"							
1"							
3/4"							
1/2"							
3/8"	0.0	0.0	100.0				
#4	2.9	4.2	95.8				
#10	1.0	1.5	94.3				
#40	17.3	25.1	69.2				
#100	42.6	61.9	7.3				
	T						

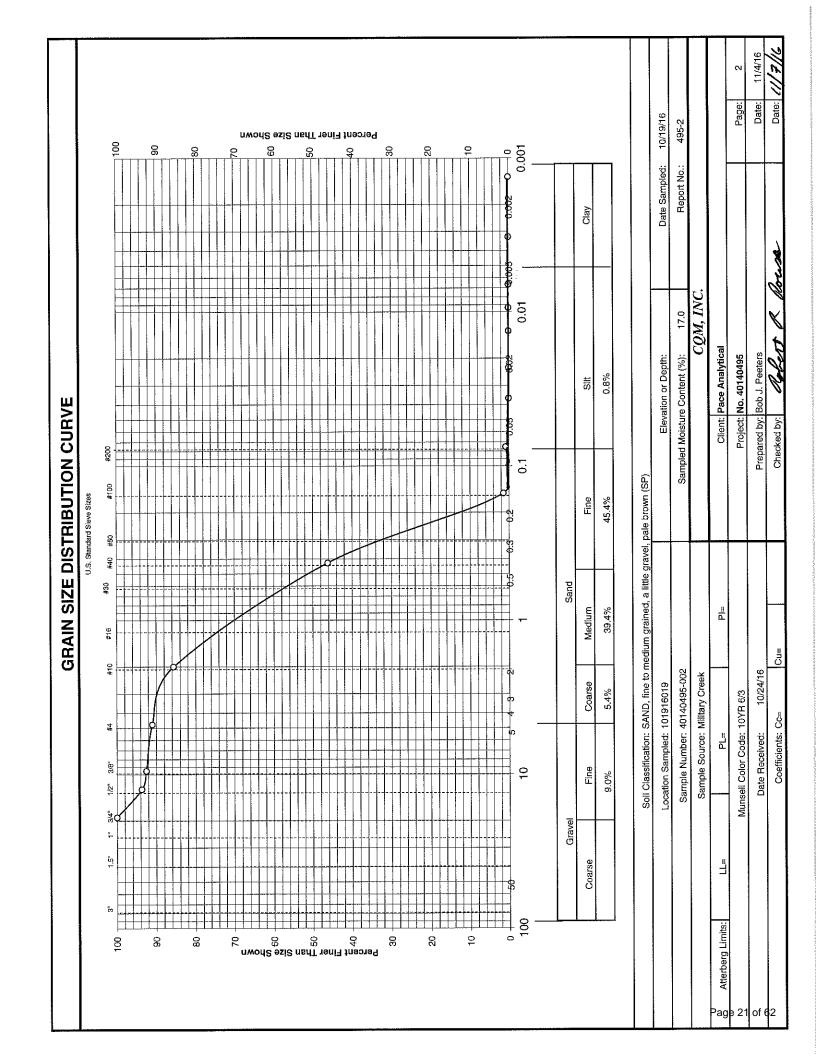
REVIEWED BY:	Robert Rouse
DATE REVIEWED:	11/7/16

Remarks:

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GE	ΝE	RΔ	ΙГ	١Δ٠	ТΔ٠

Client:	Pace Analytical
Project:	No. 40140495
Location Sampled:	101916019
Sample No:	40140495-002
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 6/3
Date Sampled:	10/19/16


LABORATORY DATA:

Date Tested:	October 25-27, 2016	
Test Performed By:	FRH	

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	163.2

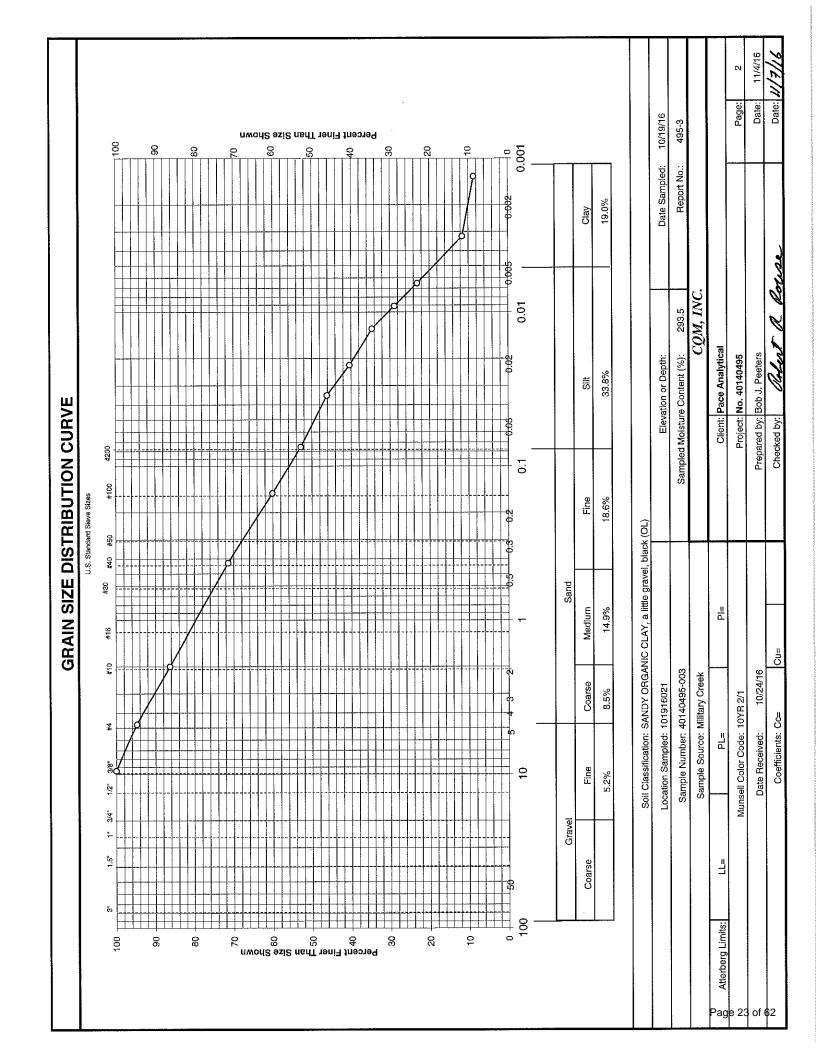
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"	0.0	0.0	100.0		
1/2"	10.3	6.3	93.7		
3/8"	1.9	1.2	92.5		
#4	2.5	1.5	91.0		
#10	8.8	5.4	85.6		
#40	64.3	39.4	46.2		
#100	73.1	44.8	1.4		
#200	1.0	0.6	0.8		

REVIEWED BY: Robert Reforme	Remarks:	
DATE REVIEWED: /// 7//6		

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GEN	ER/	AL D	<u> </u>	'A:

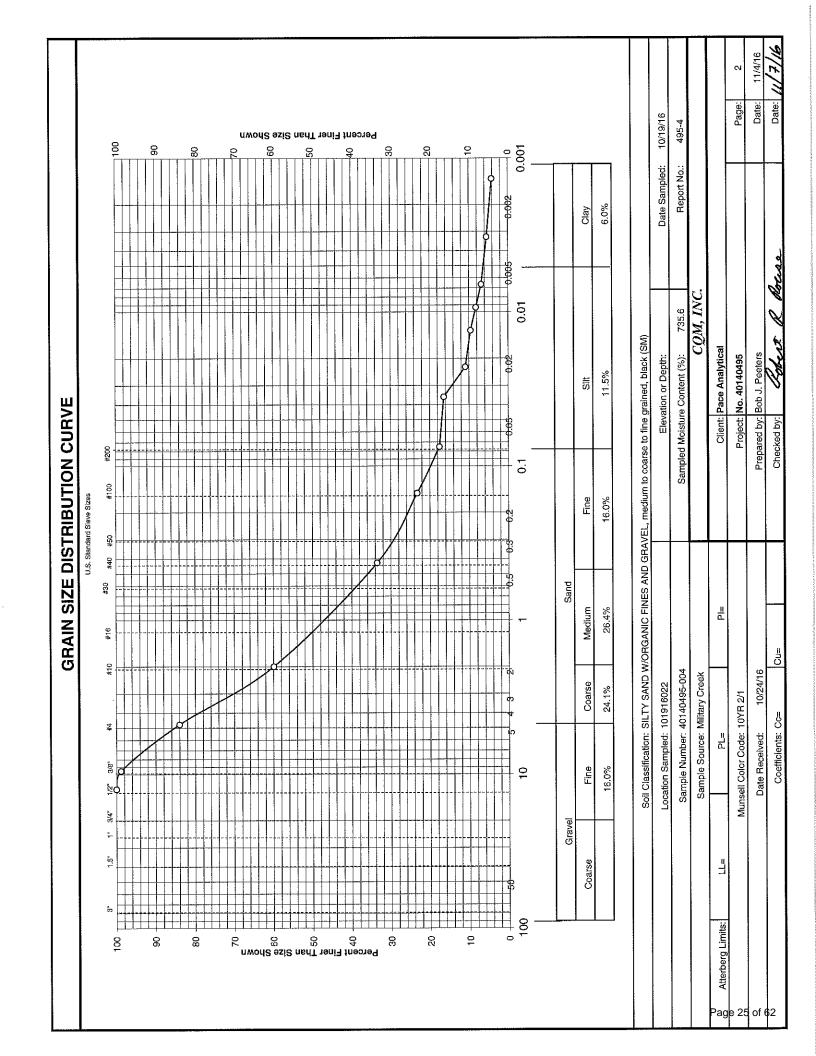
Client:	Pace Analytical
Project:	No. 40140495
Location Sampled:	101916021
Sample No:	40140495-003
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munseil Color Code:	10YR 2/1
Date Sampled:	10/19/16


LABORATORY DATA:

Date Tested:	October 25-27, 2016		
Test Performed By:	FKH :	 	

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	24.8

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1 ¹¹					
3/4"					
1/2"					
3/8"	0.0	0.0	100.0		
#4	1.3	5.2	94.8		
#10	2.1	8.5	86.3		
#40	3.7	14.9	71.4		
#100	2.8	11.3	60.1		
#200	1.8	7.3	52.8		


REVIEWED BY: Robert R Rouse	Remarks:	
DATE REVIEWED: 11/7/16		
		•

			, , , , , , , , , , , , , , , , , , , 		
GENERAL	. DATA:				
		Client:	Pace Analyt	ical	
		Project:	No. 4014049	95	
	Location	on Sampled:	101916022		
		Sample No:	40140495-00)4	
	Dept	h of Sample:			
	Da	te Received:	10/24/16		
	Sample Des	signated For:	Soil Classifi	cation	
	Sourc	e of Sample:	Military Cre	ek	
		Color Code:			
		ate Sampled:	10/19/16		
_ABORAT	ORY DATA	<u>4:</u>			
		.	5 . I		
			October 25-27, 2016		
	rest Pe	erformed By:	FRIT		
	24 Hrs. 1	Furn Around:	NO		
		d Gradation:	YES	Dry Weig	ht of Soil (gms): 8.7
			1		
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"	0.0	0.0	100.0		
3/8"	0.1	1.1	98.9		
#4	1.3	14.9	84.0		
#10	2.1	24,1	59.9		
#40	2.3	26.4	33.5		
#100	0.9	10.3	23.2		

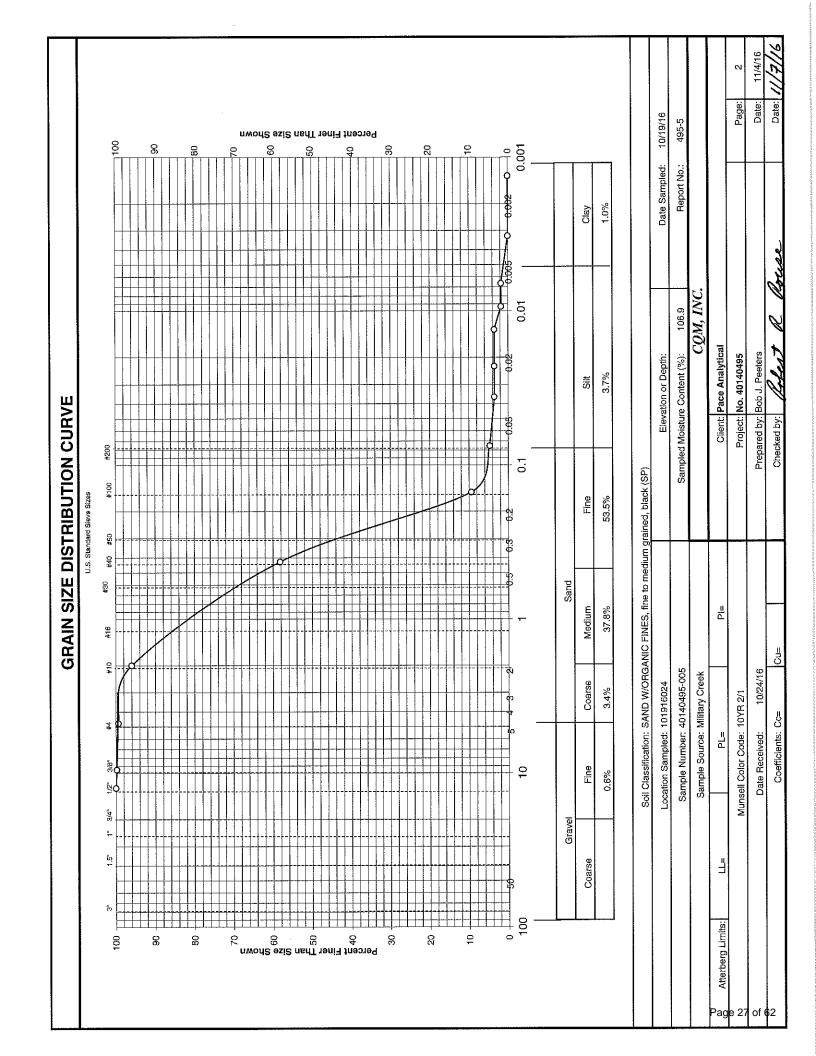
REVIEWED BY:	Robert alour
DATE REVIEWED:	11/7/16

Remarks:

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL	DATA:
----------------	-------

Client:	Pace Analytical
Project:	No. 40140495
Location Sampled:	101916024
Sample No:	40140495-005
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/19/16


LABORATORY DATA:

Date Tested:	October 25-28, 2016
Test Performed By:	FRH

24 Hrs. Turn Around:	NO		
Washed Gradation:		Dry Weight of Soil (gms):	46.5

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"	0.0	0.0	100.0		
3/8"	0.1	0.2	99.8		
#4	0.2	0.4	99.4		
#10	1.6	3.4	96.0		
#40	17.6	37.8	58.2		
#100	22.7	48.8	9.4		
#200	2.2	4.7	4.7		

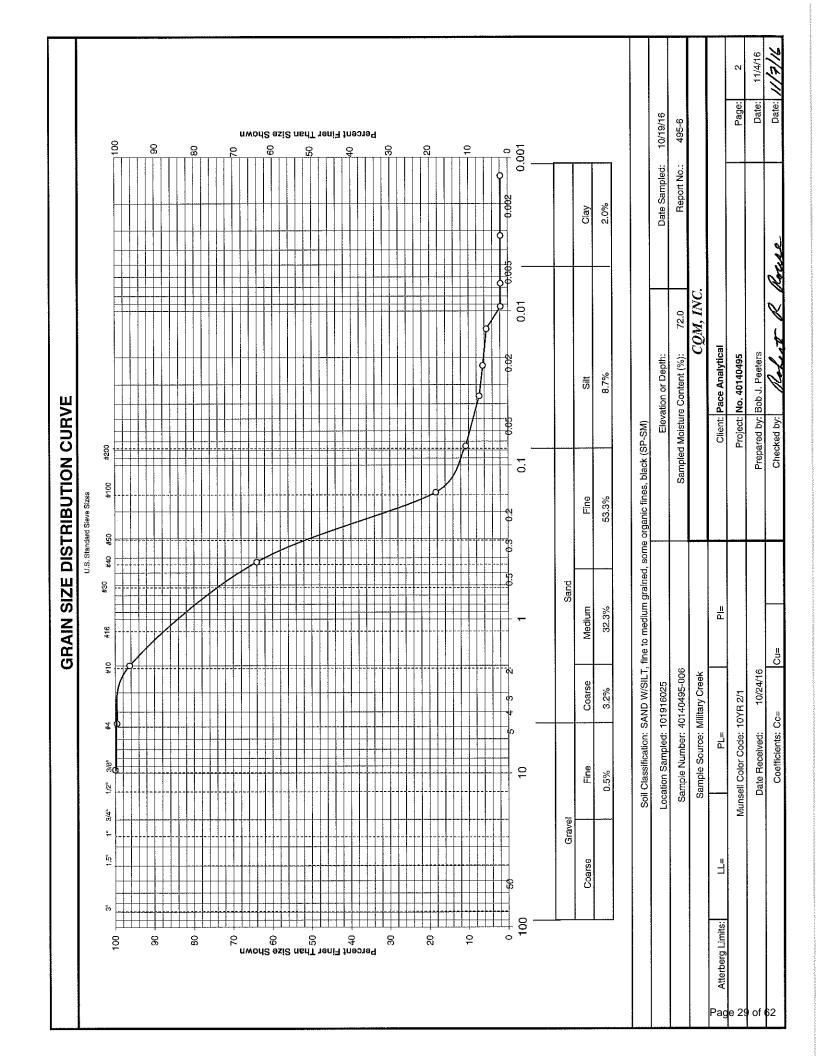
REVIEWED BY: Rolest R Rouse	Remarks:
DATE REVIEWED: 11/7/16	

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERA	L DATA:
---------------	---------

Client:	Pace Analytical
Project:	No. 40140495
Location Sampled:	101916025
Sample No:	40140495-006
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/19/16

LABORATORY DATA:


Date Tested:	October 25-27, 2016	
Test Performed By:	FRH	_

24 Hrs. Turn Around:	NO	_	
Washed Gradation:	YES	Dry Weight of Soil (gms):	87.8

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"					
3/8"	0.0	0.0	100.0		
#4	0.4	0.5	99.5		
#10	2.8	3.2	96.3		
#40	28.4	32.3	64.0		
#100	40.1	45.7	18.3		
#200	6.7	7.6	10.7		

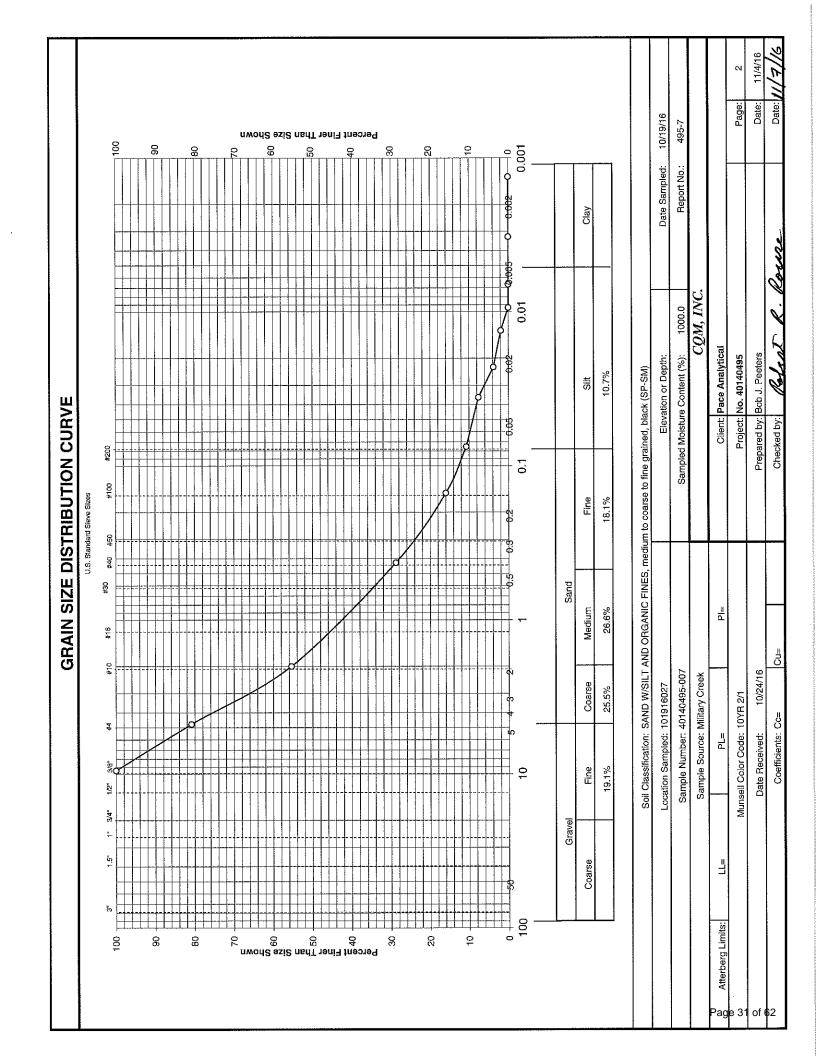
REVIEWED BY:	Robert R Ross
DATE REVIEWED:	11/7/16

Remarks:

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GEN	ERAL.	DATA:	•
ULI		VAIA.	d

Client:	Pace Analytical
Project:	No. 40140495
Location Sampled:	101916027
Sample No:	40140495-007
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/19/16


LABORATORY DATA:

Date Tested:	October 25-27, 2016
Test Performed By:	FRH

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	9.4

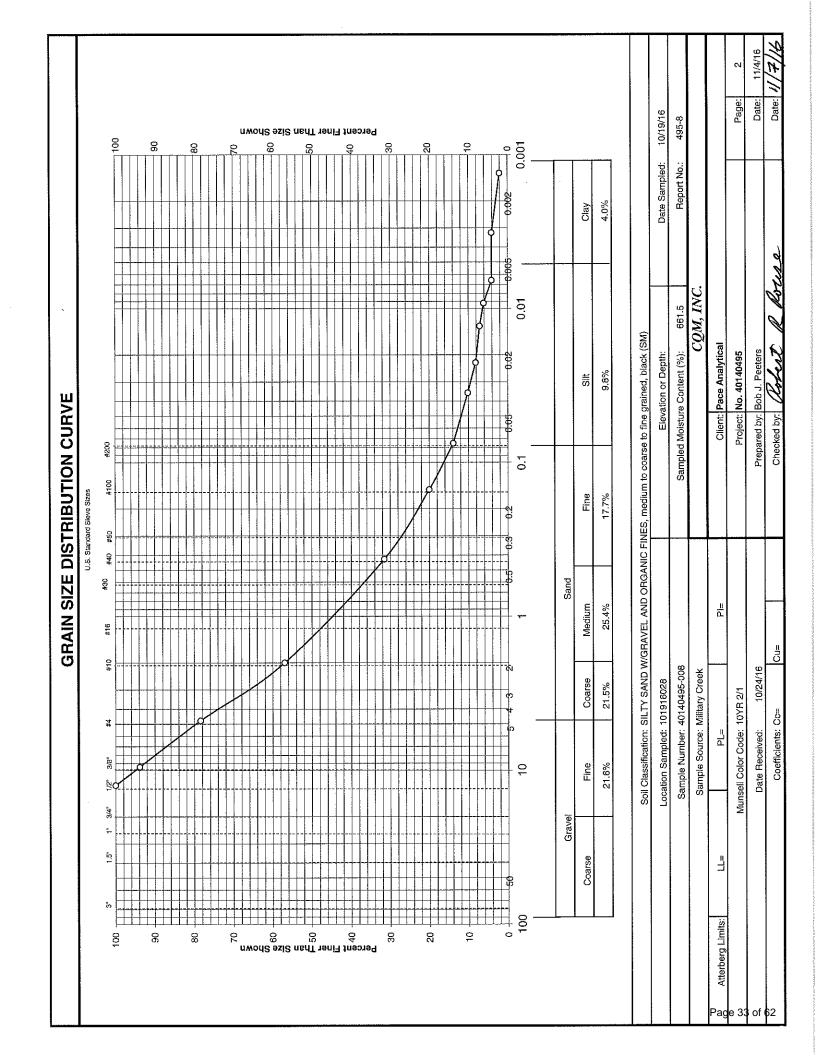
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"		·			
1 1/2"					
1"					
3/4"					
1/2"					
3/8"	0.0	0.0	100.0		
#4	1.8	19.1	80.9		
#10	2.4	25.5	55.4		
#40	2.5	26.6	28.8		
#100	1.2	12.8	16.0		
#200	0.5	5.3	10.7		

REVIEWED BY:	Robert R Borre	Remarks:
DATE REVIEWED:	11/7/16	

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERALI	D/	٩T	A:
-----------------	----	----	----

Client:	Pace Analytical
Project:	No. 40140495
Location Sampled:	101916028
Sample No:	40140495-008
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/19/16


LABORATORY DATA:

Date Tested:	October 25-27, 2016
Test Performed By:	FRH

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soll (gms):	13.0

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"	0.0	0.0	100.0		
3/8"	0.8	6.2	93.8		
#4	2.0	15.4	78.4		
#10	2.8	21.5	56.9		
#40	3.3	25.4	31.5		
#100	1.5	11.5	20.0		
#200	0.8	6.2	13.8		

REVIEWED BY:	Robert Rlouse	Remarks
DATE REVIEWED:	11/7/16	

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Brian Basten **PACE Wisconsin** 1241 Bellevue Street Green Bay WI 54302

REPORT OF LABORATORY ANALYSIS FOR **TCDD**

Report Information:

Pace Project #: 10367095

Sample Receipt Date: 10/21/2016

Client Project #: 40140495

Client Sub PO #: N/A State Cert #: 999407970

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 2,3,7,8-TCDD Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

November 03, 2016

Scott Unze, Project Manager

(612) 607-6383

(612) 607-6444 (fax)

scott.unze@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report Prepared Date:

November 3, 2016

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on eight samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) using USEPA Method 1613B. The reporting limits were based on signal-to-noise measurements. Method blank and field sample results presented with reporting limits corresponding to the lowest calibration point and a nominal 10-gram sample amount were included at the end of Appendix A.

The recoveries of the isotopically-labeled TCDD internal standard in the sample extracts ranged from 87-98%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J" and should be regarded as estimates. In one case, due to the high moisture content of the sample, the estimated detection limit (EDL) was above the standard reporting limit; therefore, the EDL was provided and flagged "A" on the results table in Appendix A.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show that 2,3,7,8-TCDD was not detected, indicating that the sample processing steps were free of background levels of this congener.

Laboratory spike samples were also prepared using clean reference matrix that had been fortified with native standard materials. The recoveries of the spiked native TCDD ranged from 80-83% with a relative percent difference of 3.7%. These results were within the target ranges for the method. Matrix spikes were not prepared with the sample batch.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Mississippi	MN00064
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	NE-OS-18-06
Arizona	AZ0014	Nevada	MN_00064_200
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New York (NEL	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Oklahoma	D9922
Georgia (DNR)	959	Oregon (ELAP)	MN200001-005
Guam	959	Oregon (OREL	MN300001-001
Hawaii	SLD	Pennsylvania	68-00563
Idaho	MN00064	Puerto Rico	MN00064
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennessee	TN02818
Iowa	368	Texas	T104704192-08
Kansas	E-10167	Utah (NELAP)	MN00064
Kentucky	90062	Virginia	00251
Louisiana	03086	Washington	C755
Maine	2007029	West Virginia #	9952C
Maryland	322	West Virginia D	382
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

Chain of Custody

Pace Analytical

Subcerinted The Pace Analytical Minnesotra Troo Email Minnesotra Troo														
1700 Pace Arelytical Minnesote 1700 Phone (\$12)607-1700 Minneapolis, MN 56414 Phone (\$12)607-1700 Minneapolis, MN 5 Phone (\$12)607-1700 Phone (\$12)607-1700		经过程的自动程度	Subcontract		を記述は明確	SALES COLORS				Requies	ted Analysis			
Pirone (612)607-1700	an Basten ze Analytical Green Bay if Bellevue Street te 9		Pace Ar 1700 Ell Suite 20 Minnear	nalytical Minnesom Street SE 30 30 30 Street SE	otta 1				<u> </u>					
197016 10:35 40140495001 Solid 1	en Bay, Wi 54302		Phone (612)607-1700	_			8 LCDD						
19/2016 09:12 40140495002 Solid 1	and ideal	Sample	9	0		pevieseridhJ	Committee	Entre	-				5	B USE ONLY
19/2016 09:12 40140495002 Solid 1	101916018	PS	10/19/2016 09:12		Solid	1		×					2)Q
19/2016 09:37 40140495004 Solid 1 X X X X X X X X X X X X X X X X X X	101916019	PS			Solid	1		×					2	202
19/2016 10:35 40140495005 Solid 1	101916021	PS			Solid	1		×						Ş
19/2016 10:35 40140495005 Solid 1 X X X X X X X X X X X X X X X X X X	101916022	S			Solid	1		×						too.
19/2016 10:35 40140495007 Solid 1	101916024	PS	10/19/2016 10:35		Solid	1		×						25
19/2016 12:09 40140495007 Solid 1	101916025	PS	10/19/2016 10:35		Solid	1		×					S	90
19/2016 12:09 40140496008 Solid 1	101916027	PS	10/19/2016 12:09		Solid	-		×					~	27
Date-Time Received By Continents Date-Time Received By Date-Time Date-Time	101916028	PS	10/19/2016 12:09		Pilox	-		×					0	20
Date-Time Received By Data-Time 10/20/11s Inch		推翻到四年间的第一条				新华学学						omments		
Custody Seal Yor N Received on Ice Y or N Samples Intack Yor			Date/Time	Received By			Date/TI	The last						
Custody Seal Y Yor N Samples Infact Y Ar	CHI LEBERS	-026	MINOSION P	N > N	1	60	lichil	(25 %)	_					
Custody Seal Y Yor N Received on Ice Y Ar N Samples Infact Y Ar)			•							
Custody Seal Y or N Received on Ice Y or N Samples Infact Y or				_					6				1	
	oler Temperature on	Receipt 67		Seal Y			Received o	•		z	S	amples Int	>	Z
		en Bay, Wi 54302 en Bay, Wi 54302 Sample D Sample D 101916021 101916022 101916022 101916026 101916026 101916027 101916028 ARRES Released By Refers Released By ARRES	en Bay, Wi 54302 en Bay, Wi 54302 101916018 101916021 101916021 101916022 101916026 101916026 101916027 10191602	9 1 Bay, Wi 54302 Sample Collect Sample Collect 101916018 Sample Collect 101916021 10192016 101916021 101916021 101916021 101916026 10192016 101916026 10192016 101916028 Released By Part Innihitative Collect 101916026 PS 101192016 1019	Minneapolis, MN 5641 Phone (612)607-1700 (c) Fine (c) Fine (c) Fine (c) Fine (c) Fine (c) Fine (d) Fi	Minneapolis, MN 55414 Phone (612)607-1700 Phone (612)607-1700 Collection	Minneapolis, MN 55414 Phone (612)607-1700 Coustody Seal (Yor N 100 10	Minneapolis, MN 55414 Phone (612)607-1700 Phone (612)607-1700	Minneapolis, MN 55414 Phone (612)607-1700 Phon	Minneapolis, MN 55414 Phone (612)607-1700 Phone (612)607-1700	Minneapolis, MN 55414 Phone (612)607-1700 Phone (612)607-170	Minneapolis, MN 55414 Phone (612)607-1700 Phone (612)607-170	Minneapolis, MN 55414 Phone (612)607-1700 Phone (612)607-170	Minneapolis, MN 55414 Phone (612)607-1700 Phone (612)607-170

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

Document Name: Sample Condition Upon Receipt Form Document No.:

Document No.: F-MN-L-213-rev-17 Document Revised: 02Aug2016
Page 1 of 2
Issuing Authority:
Pace Minnesota Quality Office

Sample Condition Upon Receipt Pace GB			Projec	# W0#:10367095
Courier: Fed Ex UPS	USPS		Client	
Commercial Pace SpeeDee	Other:_			
Tracking Number:				10367095
Custody Seal on Cooler/Box Present? Yes	No S	ieals Int	tact? 1	Yes No Optional: Proj. Due Date: Proj. Name:
. Packing Material: Bubble Wrap Bubble Ba	gs None	· 🗆	Other:	Temp Blank? Yes No
Thermometer 151401163		of Ice:	₫w	et Blue None Samples on ice, cooling process has begun
Cooler Temp Read (°C): 6.5 Cooler Temp (10	7	Biological Tissue Frozen? Tyes The Tim/A
Temp should be above freezing to 6°C Correction F	actor:		Da	te and Initials of Person Examining Contents: 20 10/21/
USDA Regulated Soil (N/A, water sample)				
Did samples originate in a quarantine zone within the Unite MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?	ed States: AL, A	R, AZ, C	A, FL, GA, Tiyes	ID, IA. Dld samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)?
	legulated Soil	Checkli		-Q-338) and include with SCUR/COC paperwork.
				COMMENTS:
Chain of Custody Present?	Yes	□No	□N/A	1.
Chain of Custody Filled Out?	₫ [Yes	□No	□N/A	2.
Chain of Custody Relinguished?	Yes	□No	□n/a	3.
Sampler Name and/or Signature on COC?	□Yes	□No	ÀN/A	4.
Samples Arrived within Hold Time?	Alyes	□No	□N/A	5.
Short Hold Time Analysis (<72 hr)?	∐Yes	No	□N/A	6.
Rush Turn Around Time Requested?	∐Yes	No	□N/A	7.
Sufficient Volume?	∑ Yes	□No	□N/A	8.
Correct Containers Used?	₽ 7es	□No	□n/a	9.
-Pace Containers Used?	<u>A</u> ∏Yes	□No	□n/A	
Cointainers Intact?	A Yes	□No	□N/A	10.
Filtered Volume Received for Dissolved Tests?	∐Yes	□No	DH¶/A	11. Note if sediment is visible in the dissolved container
Sample Labels Match COC?	A A Yes	□No	□N/A	12.
-Includes Date/Time/ID/Analysis Matrix:				
All containers needing acid/base preservation have been checked?		 1	4	13. ☐HNO₃ ☐H₂SO₄ ☐NaOH ☐HCI
All containers needing preservation are found to be in	∐Yes	□No	₽N/A	Sample #
compliance with EPA recommendation?			r	,
(HNO ₅ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide Exceptions: VOA, Coliform, TOC, Oil and Grease,	e) 🔲 Yes	□No	A\M	Initial when Lot # of added
DRO/8015 (water) DOC	∐Yes	□No	N/A	Initial when Lot # of added completed: preservative:
Headspace in VOA Vials (>6mm)?	∐Yes	□No	ĎÑ/A	14.
Trip Blank Present?	∐Yes	□No	P3N/A	15.
Trip Blank Custody Seals Present?	∐Yes	□No	MN/A	
Pace Trip Blank Lot # (if purchased):				
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
Person Contacted:				Date/Time:
Comments/Resolution:	-			
			···	
Project Manager Review:	t Unre			Date: 10/24/16
ote: Whenever there is a discrepancy affecting North Carolina	compliance sar	nples, a	copy of th	is form will be sent to the North Carolina DEHNR Certification Office (I.e out

hold, incorrect preservative, out of temp, incorrect containers).

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916018 Lab Sample ID 40140495001 Filename F161031A_09 Injected By BAL

Total Amount Extracted 15.0 g % Moisture 35.8

Dry Weight Extracted 9.63 g ICÁL ID F161011 CCal Filename(s) F161030B 16 Method Blank ID

BLANK-52542

Solid Matrix Dilution

Collected Received Extracted Analyzed

10/19/2016 09:12

10/21/2016 09:30 10/26/2016 15:55 10/31/2016 06:34

ou.ou Blank IB	 ,	020 12		, and y zod	01,2010 00.01	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	95
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	83

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916019 Lab Sample ID 40140495002 Filename F161031A_10 Injected By BAL **Total Amount Extracted** 12.8 g % Moisture 16.9

Dry Weight Extracted 10.6 g ICAL ID F161011 F161030B_16 CCal Filename(s)

Method Blank ID BLANK-52542 Matrix Solid Dilution NA

Collected Received Extracted

Analyzed

10/19/2016 09:12

10/21/2016 09:30 10/26/2016 15:55 10/31/2016 07:23

				, maryzou 10/0	.,20.0 020	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	74

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916021 Lab Sample ID 40140495003 Filename F161030B_09 Injected By BAL **Total Amount Extracted** 20.4 g % Moisture 91.4

Dry Weight Extracted 1.75 g ICAL ID F161011 CCal Filename(s) F161030B_01

Method Blank ID BLANK-52542

Solid Matrix

Dilution NA Collected Received

Extracted

Analyzed

10/19/2016 09:37 10/21/2016 09:30 10/26/2016 15:55 10/30/2016 17:33

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	78

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID Lab Sample ID Filename 101916022 40140495004 F161030B_10

Injected By

BAL

Total Amount Extracted % Moisture

20.0 g 75.4 4.92 g Matrix Dilution Solid NA

Dry Weight Extracted ICAL ID

F161011 F161030B_01 Collected Received Extracted 10/19/2016 09:37 10/21/2016 09:30 10/26/2016 15:55

CCal Filename(s) Method Blank ID

BLANK-52542

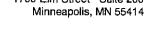
Analyzed

10/30/2016 18:22

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	2.4		1.0	2,3,7,8-TCDD-13C	2.00	95
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	82

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected


EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

RL = Reporting Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. R = Recovery outside target range

E = Exceeds calibration range

<u> ace Analytical</u>

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916024 Lab Sample ID 40140495005 Filename F161030B_11 Injected By BAL Total Amount Extracted 15.9 g

Solid Matrix % Moisture 46.3 Dilution NA Dry Weight Extracted 8.54 g Collected 10/19/2016 10:35

ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 19:11

Native Conc **EMPC** RL Internal **Percent** ng's Isomers ng/Kg ng/Kg ng/Kg **Standards** Added Recovery 2,3,7,8-TCDD 2.1 1.0 2,3,7,8-TCDD-13C 2.00 90 Recovery Standard 1,2,3,4-TCDD-13C 2.00 NA Cleanup Standard 2,3,7,8-TCDD-37Cl4 0.20 77

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable RL = Reporting Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No....10367095

Page 44 of 62

Report No.....10367095_1613B

Page 11 of 29

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID
Lab Sample ID
Filename
Injected By
Total Amount Extracted
Dry Weight Extracted
IO1916025
40140495006
F161030B_12
BAL
T3.5 g
55.4
Dry Weight Extracted
IO2 g
ICAL ID
F161011

ICAL ID F161011

CCal Filename(s) F161030B_01

Method Blank ID BLANK-52542

Matrix Dilution Collected

Solid NA

Collected 10/19/2016 10:35 Received 10/21/2016 09:30 Extracted 10/26/2016 15:55 Analyzed 10/30/2016 20:00

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	9.3		1.0	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	75

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

1700 Elm Street - Suite 200 Minneapolis, MN 55414

Tel: 612-607-1700

Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID Lab Sample ID Filename

<u>ace Analytical</u>

101916027 40140495007 F161030B_13

Injected By **Total Amount Extracted** BAL 20.4 g

91.9

Matrix Dilution Collected Solid NA

% Moisture Dry Weight Extracted **ICAL ID** CCal Filename(s)

Method Blank ID

1.65 g F161011 F161030B 01 BLANK-52542

Received Extracted Analyzed

10/19/2016 12:09 10/21/2016 09:30 10/26/2016 15:55 10/30/2016 20:48

monroa piarin ib		1111 OLO 12		/ way zou	10/00/2010 20:40	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	ND		2.3 A	2,3,7,8-TCDD-13C	2.00	89
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl	4 0.20	76

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

A = Reporting Limit based on signal to noise

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

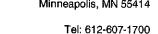
Client - PACE Wisconsin

Client's Sample ID 101916028 Lab Sample ID 40140495008 Filename F161030B_14 Injected By BAL

Total Amount Extracted 17.5 g Solid Matrix % Moisture 87.2 Dilution NΑ Dry Weight Extracted 2.24 q Collected

10/19/2016 12:09 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B 01 Extracted 10/26/2016 15:55 10/30/2016 21:37 Method Blank ID BLANK-52542 Analyzed

Native Conc **EMPC** RL Internal ng's **Percent** Isomers ng/Kg ng/Kg ng/Kg Standards Added Recovery 2,3,7,8-TCDD ND 1.0 2,3,7,8-TCDD-13C 2.00 98 Recovery Standard 1,2,3,4-TCDD-13C 2.00 NA Cleanup Standard 2,3,7,8-TCDD-37CI4 0.20 86


Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable RL = Reporting Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Fax: 612- 607-6444

Method 1613B Blank Analysis Results

Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52542 F161030B_04

10.1 g F161011 F161030B_01 Matrix

Dilution

Extracted Analyzed Solid NA

10/26/2016 15:55 10/30/2016 13:30

Injected By

BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	76

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X =%D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916018

 Lab Sample ID
 40140495001

 Filename
 F161031A_09

 Injected By
 BAL

Total Amount Extracted 15.0 g Matrix Solid % Moisture 35.8 Dilution NA

9.63 g Dry Weight Extracted Collected 10/19/2016 09:12 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 06:34

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD		0.16	0.12 N	2,3,7,8-TCDD-13C	2.00	95
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	83

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range E = Exceeds calibration range

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916019

Lab Sample ID 40140495002

Filename F161031A_10

Injected By BAL

Total Amount Extracted 12.8 g Matrix Solid % Moisture 16.9 Dilution NA

10.6 g Dry Weight Extracted Collected 10/19/2016 09:12 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID Analyzed 10/31/2016 07:23 BLANK-52542

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	ND		0.14	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	74

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916021

 Lab Sample ID
 40140495003

 Filename
 F161030B_09

Injected By BAL
Total Amount Extracted 20.4 g
% Moisture 91.4

Dry Weight Extracted 1.75 g
ICAL ID F161011
CCal Filename(s) F161030B_01
Method Blank ID BLANK-52542

Matrix Solid Dilution NA

NA NA 0/10/2016 00

Collected 10/19/2016 09:37 Received 10/21/2016 09:30 Extracted 10/26/2016 15:55 Analyzed 10/30/2016 17:33

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	0.97		0.63 J	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	78

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected
NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916022

 Lab Sample ID
 40140495004

 Filename
 F161030B_10

 Injected By
 BAL

Total Amount Extracted 20.0 g Matrix
% Moisture 75.4 Dilution

4.92 g Dry Weight Extracted Collected 10/19/2016 09:37 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 18:22

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	2.4		0.50	2,3,7,8-TCDD-13C	2.00	95
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	82

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916024

 Lab Sample ID
 40140495005

 Filename
 F161030B_11

Injected By BAL
Total Amount Extracted 15.9

Total Amount Extracted 15.9 g Matrix Solid % Moisture 46.3 Dilution NA

8.54 g Dry Weight Extracted Collected 10/19/2016 10:35 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 19:11

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	2.1		0.69	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	77

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916025

 Lab Sample ID
 40140495006

 Filename
 F161030B_12

 Injected By
 BAL

Total Amount Extracted 13.5 g Matrix Solid % Moisture 55.4 Dilution NA

6.02 g Dry Weight Extracted Collected 10/19/2016 10:35 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 20:00

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	9.3		0.86	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	75

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916027

 Lab Sample ID
 40140495007

 Filename
 F161030B_13

 Injected By
 BAL

Total Amount Extracted 20.4 g Matrix % Moisture 91.9 Dilution

Dry Weight Extracted 1.65 g Collected 10/19/2016 12:09 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 20:48

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	ND		2.3	2,3,7,8-TCDD-13C	2.00	89
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	76

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916028 Lab Sample ID 40140495008 Filename F161030B_14 Injected By BAL

17.5 g **Total Amount Extracted** % Moisture 87.2

Dry Weight Extracted 2.24 g ICAL ID F161011 CCal Filename(s) F161030B_01 BLANK-52542 Matrix Solid Dilution NA Collected 10/19/2016 12:09 Received 10/21/2016 09:30 Extracted 10/26/2016 15:55 Analyzed 10/30/2016 21:37

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	ND		0.65	2,3,7,8-TCDD-13C	2.00	98
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	86

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method Blank ID

Method 1613B Blank Analysis Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID CCal Filename(s) BLANK-52542 F161030B_04 10.1 g F161011 F161030B_01 Matrix Dilution Extracted Solid NA 10/26/2016 15:55

Analyzed 10/30/2016 13:30 Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	ND		0.13	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	76

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Laboratory Control Spike Results

Lab Sample ID

Filename

Total Amount Extracted
ICAL ID

CCal Filename

Method Blank ID

LCS-52543

F161030B_02

10.1 g

F161011

F161030B_01

BLANK-52542

F161030B_02 Matrix Solid
10.1 g Dilution NA
F161011 Extracted 10/26/2016 15:55
F161030B_01 Analyzed 10/30/2016 11:54
BLANK-52542 Injected By BAL

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDD	10	8.3	7.3	14.6	83
2,3,7,8-TCDD-37Cl4	10	8.1	3.7	15.8	81
2,3,7,8-TCDD-13C	100	94	25.0	141.0	94

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL) Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{* =} See Discussion

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCSD-52544 Filename F161030B 03 **Total Amount Extracted** 10.1 g ICAL ID F161011 CCal Filename F161030B 01

Method Blank ID BLANK-52542

Solid Matrix Dilution NA

10/26/2016 15:55 Extracted Analyzed 10/30/2016 12:41

Injected By **BAL**

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDD	10	8.0	7.3	14.6	80
2,3,7,8-TCDD-37Cl4	10	7.7	3.7	15.8	77
2,3,7,8-TCDD-13C	100	88	25.0	141.0	88

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL) Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{* =} See Discussion

Method 1613B

Spike Recovery Relative Percent Difference (RPD) Results

Client PACE Wisconsin

 Spike 1 ID
 LCS-52543
 Spike 2 ID
 LCSD-52544

 Spike 1 Filename
 F161030B_02
 Spike 2 Filename
 F161030B_03

 Compound
 Spike 1 %REC
 Spike 2 %RPD

 2,3,7,8-TCDD
 83
 80
 3.7

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

November 09, 2016

Andrea Salus NATURAL RESOURCE TECHNOLOGY 234 W. Florida Street 5th Floor Milwaukee, WI 53204

RE: Project: 2381 MILITARY CREEK Pace Project No.: 40140634

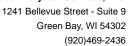
Dear Andrea Salus:

Enclosed are the analytical results for sample(s) received by the laboratory on October 21, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Brian Basten brian.basten@pacelabs.com

Project Manager

Enclosures

cc: Data Delivery Team, Natural Resources Technologies

CERTIFICATIONS

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064

North Dakota Certification #: R-150

Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

(920)469-2436

SAMPLE SUMMARY

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40140634001	102016030	Solid	10/20/16 09:36	10/21/16 12:18
40140634002	102016031	Solid	10/20/16 09:36	10/21/16 12:18
40140634003	102016032	Solid	10/20/16 10:12	10/21/16 12:18
40140634004	102016033	Solid	10/20/16 10:12	10/21/16 12:18
40140634005	102016035	Solid	10/20/16 11:25	10/21/16 12:18
40140634006	102016036	Solid	10/20/16 11:25	10/21/16 12:18

SAMPLE ANALYTE COUNT

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40140634001	102016030	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	2	PASI-G
40140634002	102016031	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140634003	102016032	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140634004	102016033	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140634005	102016035	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	АН	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140634006	102016036	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	АН	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G

ANALYTICAL RESULTS

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

Date: 11/09/2016 10:26 AM

Sample: 102016030 Lab ID: 40140634001 Collected: 10/20/16 09:36 Received: 10/21/16 12:18 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
WIDRO GCS	Analytical	Method: WI MO	OD DRO Pre	paration I	Method:	WI MOD DRO			
Diesel Range Organics	32.8	mg/kg	23.9	9.6	1	10/27/16 09:45	11/02/16 13:15		DC
Percent Moisture	Analytical	Method: ASTM	D2974-87						
Percent Moisture	92.2	%	0.10	0.10	1		10/28/16 14:27		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn						
Total Organic Carbon Surrogates	279000	mg/kg	9510	3220	1		10/27/16 08:15	7440-44-0	
RSD%	10.7	%			1		10/27/16 08:15		
Sample: 102016031	Lab ID:	40140634002	Collected	10/20/10	6 09:36	Received: 10/	21/16 12:18 Ma	atrix: Solid	
Results reported on a "dry we	eight" basis and are	e adjusted for	percent moi	sture, sai	mple si	ze and any diluti	ons.		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
WIDRO GCS	Analytical	Method: WI MO	OD DRO Pre	paration I	Method:	WI MOD DRO			
Diesel Range Organics	27.8	mg/kg	17.0	6.8	1	10/27/16 09:45	11/02/16 13:24		D5,D0
Percent Moisture	Analytical	Method: ASTM	D2974-87						
Percent Moisture	88.2	%	0.10	0.10	1		10/28/16 14:27		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn						
Total Organic Carbon	226000	mg/kg	6130	2080	1		10/27/16 08:39	7440-44-0	
Sample: 102016032 Results reported on a "dry we		40140634003 e adjusted for	Collected:		-			atrix: Solid	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
WIDRO GCS	Analytical	Method: WI MO	DD DRO Pre	paration I	Method:	WI MOD DRO			
Diesel Range Organics	7.7J	mg/kg	15.5	6.2	1	10/27/16 09:45	11/02/16 13:33		
Percent Moisture	Analytical	Method: ASTM	D2974-87						
Percent Moisture	90.6	%	0.10	0.10	1		10/28/16 14:27		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn						

ANALYTICAL RESULTS

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

Date: 11/09/2016 10:26 AM

Sample: 102016033 Lab ID: 40140634004 Collected: 10/20/16 10:12 Received: 10/21/16 12:18 Matrix: Solid

Parameters	Results	Units	LOQ _	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI M	10D DRO Pre	eparation N	Method:	WI MOD DRO			
Diesel Range Organics	11.0J	mg/kg	13.6	5.5	1	10/27/16 09:45	11/02/16 13:42		
Percent Moisture	Analytical	Method: ASTI	M D2974-87						
Percent Moisture	87.8	%	0.10	0.10	1		10/28/16 14:27		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	d Kahn						
Total Organic Carbon	165000	mg/kg	6670	2260	1		10/27/16 08:51	7440-44-0	P6
Sample: 102016035 Results reported on a "dry we		4014063400		: 10/20/16				atrix: Solid	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI M	10D DRO Pre	eparation N	Method:	WI MOD DRO			
Diesel Range Organics	18.0	mg/kg	14.9	6.0	1	10/27/16 09:45	11/02/16 13:50		DC
Percent Moisture	Analytical	Method: ASTI	M D2974-87						
Percent Moisture	90.3	%	0.10	0.10	1		10/28/16 14:28		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	d Kahn						
Total Organic Carbon	268000	mg/kg	9760	3310	1		10/27/16 09:21	7440-44-0	
Sample: 102016036 Results reported on a "dry we		40140634000 e adjusted fo		: 10/20/16		Received: 10/		trix: Solid	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI M	IOD DRO Pre	eparation N	Method:	WI MOD DRO		•	
Diesel Range Organics	48.7	mg/kg	11.1	4.5	1	10/27/16 09:45	11/02/16 13:59		DC
Percent Moisture	Analytical	Method: ASTI	M D2974-87						
Percent Moisture	85.5	%	0.10	0.10	1		10/28/16 14:28		
ГОС via Lloyd Kahn	Analytical	Method: Lloyd	d Kahn						

(920)469-2436

QUALITY CONTROL DATA

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

Date: 11/09/2016 10:26 AM

QC Batch: 239502 Analysis Method: WI MOD DRO
QC Batch Method: WI MOD DRO Analysis Description: WIDRO GCS

Associated Lab Samples: 40140634001, 40140634002, 40140634003, 40140634004, 40140634005, 40140634006

METHOD BLANK: 1418769 Matrix: Solid

Associated Lab Samples: 40140634001, 40140634002, 40140634003, 40140634004, 40140634005, 40140634006

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Diesel Range Organics mg/kg <0.80 2.0 11/02/16 12:48

LABORATORY CONTROL SAMPLE &	LCSD: 1418770		14	118771						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Diesel Range Organics	mg/kg	40	31.2	34.4	78	86	70-120	10	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

QC Batch: 239678 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture
Associated Lab Samples: 40140634001, 40140634002, 40140634003, 40140634004, 40140634005, 40140634006

SAMPLE DUPLICATE: 1419958

Date: 11/09/2016 10:26 AM

		40140520028	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture		4.1	4.4	6	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

2381 MILITARY CREEK Project:

Pace Project No.: 40140634

Date: 11/09/2016 10:26 AM

QC Batch: 239306 Analysis Method: Lloyd Kahn QC Batch Method: Lloyd Kahn Analysis Description: Lloyd Kahn TOC

Associated Lab Samples: 40140634001, 40140634002, 40140634003, 40140634004, 40140634005, 40140634006

METHOD BLANK: 1417713 Matrix: Solid

Associated Lab Samples: 40140634001, 40140634002, 40140634003, 40140634004, 40140634005, 40140634006

> Blank Reporting

Parameter Result Limit Qualifiers Units Analyzed <33.9 100 10/27/16 08:03

Total Organic Carbon mg/kg

LABORATORY CONTROL SAMPLE: 1417714

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Total Organic Carbon mg/kg 2000 2050 103 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1417716 1417715

MS MSD 40140634004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual **Total Organic Carbon** 32600 207000 230000 80-120 20 P6 165000 33600 125 197 10 mg/kg

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

ANALYTE QUALIFIERS

Date: 11/09/2016 10:26 AM

D5 The sample was re-weighed into a new container because the sample weight in the original container exceeded the method specifications.

DC Chromatographic pattern inconsistent with typical Diesel Fuel.

P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the

spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

Date: 11/09/2016 10:26 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40140634001	102016030	WI MOD DRO	239502	WI MOD DRO	239569
40140634002	102016031	WI MOD DRO	239502	WI MOD DRO	239569
40140634003	102016032	WI MOD DRO	239502	WI MOD DRO	239569
40140634004	102016033	WI MOD DRO	239502	WI MOD DRO	239569
40140634005	102016035	WI MOD DRO	239502	WI MOD DRO	239569
40140634006	102016036	WI MOD DRO	239502	WI MOD DRO	239569
40140634001	102016030	ASTM D2974-87	239678		
40140634002	102016031	ASTM D2974-87	239678		
40140634003	102016032	ASTM D2974-87	239678		
40140634004	102016033	ASTM D2974-87	239678		
40140634005	102016035	ASTM D2974-87	239678		
40140634006	102016036	ASTM D2974-87	239678		
40140634001	102016030	Lloyd Kahn	239306		
40140634002	102016031	Lloyd Kahn	239306		
40140634003	102016032	Lloyd Kahn	239306		
40140634004	102016033	Lloyd Kahn	239306		
40140634005	102016035	Lloyd Kahn	239306		
40140634006	102016036	Lloyd Kahn	239306		

Intact / Not Intact Version 6.0 06/14/06	oder inne.	Neceived by.	Date inte.		Reinquisned by:	Samples on HOLD are subject to special pricing and release of liability	spe(
Cooler Custody Seal							Fax:
OK / Adjusted	Date/Time:	Received By:	Date/Time:		Relinquished By:		e.
Sample Receipt pH	Core Inne.	Toolers and	Card and		COM	OCTOO SECTIONS	Email #2:
Receipt Temp = ROLL'S	Data/Time:	Deceived By:	Detections:		Dolin Britania	Its by (complete what you want):	Transmit Prel
4014	Date/Time:	Received By:	e:		Relinquished By:	Date Needed:	
PACE Project No.	2////	Received By:	10/21/16 1218	Saly	Relinquished By	Jrnaround Time Requested - Prelims TAT subject to approval/surcharge)	Rush Tur
					1		
			0110				
			And the second s				
	And the second s						
			٠.				<u> </u>
1	4	4	XXXX	X	1125	102016036	900
					1175	102016035	200
	MSMSD				1012	102816033	1004
					1312	122016032	803
						102016031	2000
4 1-402CGAT	80290 A 2-40299	1-4020 A 1	XXXX	X	6	1070110000	100
	S		Gr D dr	1	- €		PACE LAB #
LAB COMMENTS Profile #	CLIENT LAB		ain 121		WW = Waste Water WP = Wipe	EPA Level IV NOT needed on S = Soil S	☐ EPA
	Invoice To Phone:		size 0 H/	XI/			☐ EPA
C 500 X			,		Matrix Codes W = Water	MS/MSD	Data Packas
	Invoice To Address:		dron Visti	este	kory m:	2381/2.0 Regulatory	PO#:
IMA (A.)	Invoice To Company:			d		Ans	Sampled By (Sign):
	Invoice To Contact:		マダメ	C Ed	PRESERVATION (CODE)*	(Print): Andrea Salus	Sampled By (Print):
5th 100/ 100/11/00/140	5 京・		てててて		FILTERED? (YES/NO)		Project State:
w.Floridast,	Mail To Address: 234		l=Sodium Thiosulfate J=Other		H=Sodium Bisulfate Solution	· Military Creek	Project Name:
+	Mail To Company: V/2	nol G≃NaOH	<u>ē</u>	\$Q4 _ 1.4	A=None B=	ber: 2381	Project Number:
Accounts Payable	Mail To Contact: +		STO	HAIN	8/		Phone:
Paç	Quote #:	4			Jaly /	ΑM	Project Contact:
40140634 12		1V	acai.	Face Analytical		Milwewkee	Branch/Location:
•	612-607-1700 WI: 920-469-2436	MN: 612-607-1700			Technologia	Notural Recourse	Company Name:
Page 1 of 9	EGION	UPPER MIDWEST REGION				(Please Print Clearly)	
P							

Sample Condition Upon Receipt

Pace Analytical Services, Inc. 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

ace Analytical Project #: WO#:40140634 Client Name: Courier: Fed Ex F UPS Client F Pace Other: Tracking #: Custody Seal on Cooler/Box Present: ☐ yes 💢 no Seals intact: ☐ yes ☐ no Custody Seal on Samples Present: Tyes pro Seals intact: yes no Packing Material: | Bubble Wrap | Bubble Bags | None | Other Thermometer Used Type of ice: Wet Blue Dry None Samples on ice, cooling process has begun Cooler Temperature Biological Tissue is Frozen: Tyes Temp Blank Present: T yes Knó □ no Person examining contents: 10-Temp should be above freezing to 6°C for all sample except Biota. Date: Frozen Biota Samples should be received ≤ 0°C. Initials: Comments: Chain of Custody Present: ZYes □No □N/A Chain of Custody Filled Out: ZÍYes □No □N/A Chain of Custody Relinquished: ☐ es ☐ No □N/A Sampler Name & Signature on COC: ☐Yes ☐No □N/A Samples Arrived within Hold Time: ØYes □No □N/A - VOA Samples frozen upon receipt □Yes □No Date/Time: Short Hold Time Analysis (<72hr): □Yes □No □N/A 6. Rush Turn Around Time Requested: □Yes ZNo □N/A Sufficient Volume: Yes No NA Correct Containers Used: ZYes □No □N/A 9. ØYes □No -Pace Containers Used: □n/a -Pace IR Containers Used: □Yes □No ØN/A Containers Intact: ZYes □No □N/A 10. Filtered volume received for Dissolved tests □Yes □No ZN/A Sample Labels match COC: ZYes □No □N/A 12. -Includes date/time/ID/Analysis Matrix. All containers needing preservation have been checked. T HNO3 T H2SO4 T NaOH T NaOH +ZnAct (Non-Compliance noted in 13.) ☐Yes ☐No ZN/A 13. All containers needing preservation are found to be in compliance with EPA recommendation. □Yes □No (HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12) exceptions: VOA, coliform, TOC, TOX, TOH. Initial when Lab Std #ID of Date/ O&G, WIDROW, Phenolics, □Yes ØNo OTHER: completed preservative Time: Headspace in VOA Vials (>6mm): □Yes □No 14. Trip Blank Present: Z/N/A □Yes □No 15. Trip Blank Custody Seals Present □Yes □No ĎN/A Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: If checked, see attached form for additional comments Person Contacted: Date/Time: Comments/ Resolution: **Project Manager Review:** 10-24-Date:

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Brian Basten **PACE Wisconsin** 1241 Bellevue Street Green Bay WI 54302

> **REPORT OF LABORATORY** ANALYSIS FOR TCDD/TCDF

Report Information:

Pace Project #: 10367411

Sample Receipt Date: 10/25/2016

Client Project #: 40140634

Client Sub PO #: N/A State Cert #: 999407970

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

November 04, 2016

Carolynne Trout, Project Manager (612) 607-6351

(612) 607-6444 (fax)

Carolynne.Trout@pacelabs.com

yne haut

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report Prepared Date:

November 4, 2016

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on six samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) and 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF) using USEPA Method 1613B. The reporting limits were based on signal-to-noise measurements. Method blank and field sample results presented with reporting limits corresponding to the lowest calibration points and a nominal 10-gram sample amount were included in Appendix A.

The recoveries of the isotopically-labeled TCDD/TCDF internal standards in the sample extracts ranged from 67-91%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J", and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show that 2,3,7,8-TCDD and 2,3,7,8-TCDF were not detected.

A laboratory spike sample was also prepared using clean reference matrix that had been fortified with native standards. The recoveries of the native compounds ranged from 88-102%. These results were within the target ranges for the method. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Mississippi	MN00064
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	NE-OS-18-06
Arizona	AZ0014	Nevada	MN_00064_200
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New York (NEL	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Oklahoma	D9922
Georgia (DNR)	959	Oregon (ELAP)	MN200001-005
Guam	959	Oregon (OREL	MN300001-001
Hawaii	SLD	Pennsylvania	68-00563
Idaho	MN00064	Puerto Rico	MN00064
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennessee	TN02818
Iowa	368	Texas	T104704192-08
Kansas	E-10167	Utah (NELAP)	MN00064
Kentucky	90062	Virginia	00251
Louisiana	03086	Washington	C755
Maine	2007029	West Virginia #	9952C
Maryland	322	West Virginia D	382
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

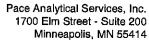
This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

Chain of Custody .

	の は、 サイヤーの できない	Supplification	では、一般のでは、			温度を対す	國國 医胃炎		Regu	Requested Analysis	Weis	* 10 mm と見います	· · · · · · · · · · · · · · · · · · ·	
Brian Basten Pace Analytical Green Bay 1241 Bellevue Street Suite 9 Green Bay, WI 54302		Pace Al 1700 El Suite 20 Minneal Phone (nalytical Minne Im Street SE 30 polis, MN 554 (612)607-1700	sota [4			I LCDE						received. A Additional	
		:			Preserv	ed Contain	1					<u>.</u>		
Series D	Sample Co Type Day	Caracter and Caracter	Labip	Matrix	bavieseidalJ		T 81691						LAB USE (Ž
102016030	PS 10/	/20/2016 09:36	40140634001	Solid	-		×						-5	
102016031	PS 10/	720/2016 09:36	40140634002	Solid	-		×						6	
102016032	PS 10/	20/2016 10:12	40140634003	Solid	-		×						73	
102016033	RGS 10/	20/2016 10:12	40140634004	Solid	-		×			-			3	
102016035	PS 10/		40140634005	Solid	-		×						٠ 3	
5036	PS 10/	20/2016 11:25	40140634006	Solld	-		×						90,	
いていることでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ			治 雅山 建 精多		小配数编辑			に設定を受			Comment	2		
*		Date/Time	Received By	00		Ö	nte/Time							3
CIVIDAN		11/12/2011	Op.	S	PAC	22.00	ļ	ΙΛ						
								_						
														
er Temperature on Receipt	グジ				_	Receive	ad on lea	So.	2	-	Samulae	intant		1
Suite 12412 Suite Greer Greer Face Coole 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Pace Analytical Green Bay 1241 Bellevue Street Suite 9 Green Bay, WI 54302 Item Sample ID 102016030 102016033 102016033 102016038	ay, WI 54302 sy, WI 54302 sy, WI 54302 sometime i.D. Samile imple i.D. Samile Sam	Sample: Collectives	Sample: Collectives	1700 Elm Street SE Suite 200 Minneapolis, MN 55414	Suife 200 Minneapolis, MN 55414	1700 Elm Street SE Suite 200	1700 Elm Street SE Suite 200	Table Suffice State St	1700 Elm Street SE Suite 200	Top Suffice 200	100 Em Street SE 100 Em Stre	1700 Em Street SE	1700 Em Suries Continue 1200 Em Suries Continuents 1700 Em Suries Co


***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

Document Name: Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17 Document Revised: 02Aug2016
Page 1 of 2
Issuing Authority:
Pace Minnesota Quality Office

Sample Condition Client Name:		Projec	** (IOH · 10067411
Upon Receipt Pace 63			'* WO#:10367411
	USPS	- Client	
	Other: walf		
Tracking Number:			10367411
			Continued Deci Due Dates Deci Name
Custody Seal on Cooler/Box Present? Yes No	Seals in	tact?	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Bags	None	Other:_	Temp Blank? Yes No
Thermometer ☐ 151401163 ☐ 888A912167504 Used: ☐ 151401164 ☐ 888A014331009		₽w	et Blue None Samples on ice, cooling process has begun
Cooler Temp Read (°C): 3.4 Cooler Temp Corr		8_	Biological Tissue Frozen? Yes No No
Temp should be above freezing to 6°C Correction Factor	r: 10.2	Da	te and Initials of Person Examining Contents: 10-25-16 AT
USDA Regulated Soil (N/A, water sample) Did samples originate in a quarantine zone within the United St	tatec: Al AR A7 C	A EI (6A	ID 10 / Did complete existingto from a fewriter and the contraction of
MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?		. Yes	No including Hawaii and Puerto Rico)?
if Yes to either question, fill out a Regu	lated Soll Checkli	st (F-MN	-Q-338) and include with SCUR/COC paperwork.
			COMMENTS:
Chain of Custody Present?	Yes □No	□N/A	1.
Chain of Custody Filled Out?	_ ☑Yes ☐No	□N/A	2.
Chain of Custody Relinquished?	ØYes □No	□n/a	3r
Sampler Name and/or Signature on COC?	Yes ZNo_	□N/A	4.
Samples Arrived within Hold Time?	Yes No	□N/A	5.
Short Hold Time Analysis (<72 hr)?	☐Yes ZNo	□N/A	6.
Rush Turn Around Time Requested?	Yes ☑No	□N/A	7.
Sufficient Volume?	☑Yes ☐No	□N/A	8.
Correct Containers Used?	☑Yes □No	∏N/A	9.
-Pace Containers Used?	☑Yes □Na	N/A	
Containers Intact?	ZYes □No	_ □N/A	10.
Filtered Volume Received for Dissolved Tests?	□Yes □No	□ N/A	11. Note if sediment is visible in the dissolved container
Sample Labels Match COC?	ZYes □No	□n/a	12.
-Includes Date/Time/ID/Analysis Matrix:		•	
All containers needing acid/base preservation have been		_/	13. □HNO₃ □H₂SO₄ □NaOH □HCI
checked? All containers needing preservation are found to be in	∏Yes ∏No	∠ N/A	Sample #
compliance with EPA recommendation?		. ,	Sample #
∴(HNO₃, H₂SO₄, HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) Exceptions: VOA, Coliform, TOC, Oil and Grease,	∐Yes ∐No.	ØN/A	
DRO/8015 (water) DOC #	∐Yes ∏No	⊠ N/A	Initial when Lot # of added completed: preservative:
Headspace in VOA Vials (>6mm)?	☐Yes ☐No	□/N/A	14.
Trip Blank Present?	□Yes □No	D2N/A	15.
Trip Blank Custody Seals Present?	Yes □No	ZIN/A	
Pace Trip Blank Lot # (if purchased):			
CLIENT NOTIFICATION/RESOLUTION			Field Data Required? Yes No
Person Contacted:			Date/Time:
Comments/Resolution:			
Project Manager Review:Scatt	Unze	-	Date: 10/25/16
Note: Whenever there is a discrepancy affecting North Carolina com nold, incorrect preservative, out of temp, incorrect containers).	ipliance samples, a	copy of th	is form will be sent to the North Carolina DEHNR Certification Office (i.e. out of

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID Lab Sample ID Filename Injected By

102016030 40140634001 Y161102B_02 SMT

Total Amount Extracted % Moisture

29.3 g 92.2 Matrix Dilution Collected

Solid NA

Dry Weight Extracted ICAL ID CCal Filename(s)

Method Blank ID

2.29 g Y160816A Y161102A_18 BLANK-52586

Received Extracted Analyzed 10/20/2016 09:36 10/25/2016 11:20 10/28/2016 19:00 11/02/2016 18:19

		02000		, many zou i	1702/2010 10:13	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		1.0	2,3,7,8-TCDF-13C	2.00	75
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	91
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	85

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

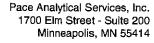
EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected

NA = Not Applicable NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range


E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No..... 10367411

Page 20 of 49

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID Lab Sample ID Filename 102016031 40140634002 Y161102B_03

Injected By Total Amount Extracted % Moisture SMT 18.1 g 88.2 2.14 a

Matrix Dilution Collected Solid NA

Dry Weight Extracted ICAL ID CCal Filename(s) Method Blank ID

2.14 g Y160816A Y161102A_18 BLANK-52586 Collected Received Extracted Analyzed 10/20/2016 09:36 10/25/2016 11:20 10/28/2016 19:00 11/02/2016 19:00

				,	, 02,20.0	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		1.0	2,3,7,8-TCDF-13C	2.00	72
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	84

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

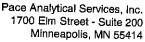
EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected

NA = Not Applicable NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range


E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No....10367411

Page 21 of 49

Minneapolis, MN 55414 Tel: 612-607-1700

Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016032 Lab Sample ID 40140634003 Filename Y161102B_04 Injected By SMT **Total Amount Extracted** 24.6 g % Moisture 90.6 Dry Weight Extracted

2.31 g **ICAL ID** Y160816A CCal Filename(s) Y161102A_18 Method Blank ID BLANK-52586 Matrix Solid Dilution NA Collected

10/20/2016 10:12 Received 10/25/2016 11:20 Extracted 10/28/2016 19:00

Analyzed 11/02/2016 19:41 **Native** Conc **EMPC** RL Internal Percent ng's Isomers ng/Kg ng/Kg ng/Kg **Standards** Added Recovery 2,3,7,8-TCDF ND 1.0 2,3,7,8-TCDF-13C 2.00 69 2,3,7,8-TCDD ND 1.0 2,3,7,8-TCDD-13C 2.00 83 Recovery Standard 1,2,3,4-TCDD-13C 2.00 NA Cleanup Standard 2,3,7,8-TCDD-37Cl4 0.20 80

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

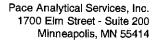
EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.


R = Recovery outside target range

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No....10367411 Page 22 of 49

Page 9 of 23

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID Lab Sample ID Filename Injected By **Total Amount Extracted**

102016033 40140634004 Y161102B 05 **SMT**

% Moisture Dry Weight Extracted ICAL ID

CCal Filename(s)

18.3 g 87.8 2.23 g Y160816A Y161102A_18 BLANK-52586 Matrix Dilution

Solid NA

Collected Received Extracted Analyzed

10/20/2016 10:12 10/25/2016 11:20 10/28/2016 19:00

Method Blank ID	BLA	NK-52586		Analyzed	11/02/2016 20:22	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		1.0	2,3,7,8-TCDF-13C	2.00	67
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	79
				Recovery Standard		NA
				Cleanup Standard 2,3,7,8-TCDD-37C	l4 0.20	75

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10367411

Page 23 of 49

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016035
Lab Sample ID 40140634005
Filename Y161102B_06
Injected By SMT
Total Amount Extracted 23.3 g
% Moisture 90.3
Dry Weight Extracted 2.26 g
ICAL ID Y160816A

ICAL ID Y160816A CCal Filename(s) Y161102A_18 Method Blank ID BLANK-52586 Matrix Dilution Collected Received

Extracted

Solid NA

10/20/2016 11:25 10/25/2016 11:20 10/28/2016 19:00 11/02/2016 21:04

Method Blank ID	BLA	NK-52586		Analyzed	11/02/2016 21:04	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		1.0	2,3,7,8-TCDF-13C	2.00	72
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C		NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl	14 0.20	84

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

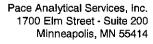
ND = Not Detected

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

NA = Not Applicable NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range


E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No....10367411

Page 24 of 49

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 102016036

 Lab Sample ID
 40140634006

 Filename
 Y161102B_07

 Injected By
 SMT

Total Amount Extracted 15.2 g Matrix Solid
% Moisture 85.5 Dilution NA
Dry Weight Extracted 2.20 g Collected 10/20/2016 11:25

 ICAL ID
 Y160816A
 Received
 10/25/2016
 11:20

 CCal Filename(s)
 Y161102A_18
 Extracted
 10/28/2016
 19:00

 Method Blank ID
 BLANK-52586
 Analyzed
 11/02/2016
 21:45

			-			
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		1.0	2,3,7,8-TCDF-13C	2.00	72
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	86
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	82

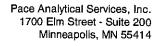
Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected
NA = Not Applicable
NC = Not Calculated

RL = Reporting Limit NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.


R = Recovery outside target range

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No....10367411

Method 1613B Blank Analysis Results

Lab Sample ID
Filename

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52586 U161101B_12 20.2 g

U161025 U161101B_03 Matrix Dilution

Extracted Analyzed Solid NA

10/28/2016 19:00 11/01/2016 23:24

Injected By SMT

						*
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		1.0	2,3,7,8-TCDF-13C	2.00	75
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	96
·				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	86

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No....10367411

Page 26 of 49

Page 13 of 23

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X =%D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016030 Lab Sample ID 40140634001 Filename Y161102B_02 Injected By SMT

Total Amount Extracted 29.3 g Matrix Solid % Moisture 92.2 Dilution NA

2.29 g Dry Weight Extracted Collected 10/20/2016 09:36 ICAL ID Y160816A Received 10/25/2016 11:20 CCal Filename(s) Y161102A_18 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 11/02/2016 18:19

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.099		0.046 J	2,3,7,8-TCDF-13C	2.00	75
2,3,7,8-TCDD	ND		0.032	2,3,7,8-TCDD-13C	2.00	91
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	85

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Matrix

Dilution

Solid

NA

Client's Sample ID 102016031 Lab Sample ID 40140634002 Filename Y161102B_03 Injected By SMT

Total Amount Extracted 18.1 g
% Moisture 88.2

2.14 g Dry Weight Extracted Collected 10/20/2016 09:36 ICAL ID Y160816A Received 10/25/2016 11:20 CCal Filename(s) Y161102A_18 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 11/02/2016 19:00

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.11		0.052 J	2,3,7,8-TCDF-13C	2.00	72
2,3,7,8-TCDD	ND		0.061	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	84

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 102016032

 Lab Sample ID
 40140634003

 Filename
 Y161102B_04

 Injected By
 SMT

Total Amount Extracted 24.6 g Matrix Solid % Moisture 90.6 Dilution NA

Dry Weight Extracted 2.31 g Collected 10/20/2016 10:12 ICAL ID Y160816A Received 10/25/2016 11:20 CCal Filename(s) Y161102A_18 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 11/02/2016 19:41

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF		0.071	0.038 IJ	2,3,7,8-TCDF-13C	2.00	69
2,3,7,8-TCDD	ND		0.032	2,3,7,8-TCDD-13C	2.00	83
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	80

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 102016033

 Lab Sample ID
 40140634004

 Filename
 Y161102B_05

 Injected By
 SMT

Total Amount Extracted 18.3 g Matrix Solid % Moisture 87.8 Dilution NA

2.23 g Dry Weight Extracted Collected 10/20/2016 10:12 ICAL ID Y160816A Received 10/25/2016 11:20 CCal Filename(s) Y161102A_18 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 11/02/2016 20:22

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.16		0.062 J	2,3,7,8-TCDF-13C	2.00	67
2,3,7,8-TCDD	ND		0.088	2,3,7,8-TCDD-13C	2.00	79
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	75

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Matrix

Solid

Client's Sample ID 102016035 Lab Sample ID 40140634005 Filename Y161102B_06 Injected By SMT

Total Amount Extracted 23.3 g
% Moisture 90.3

Dilution NA 2.26 g Dry Weight Extracted Collected 10/20/2016 11:25 ICAL ID Y160816A Received 10/25/2016 11:20 CCal Filename(s) Y161102A_18 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 11/02/2016 21:04

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.13		0.038 J	2,3,7,8-TCDF-13C	2.00	72
2,3,7,8-TCDD	ND		0.039	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	84

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016036 Lab Sample ID 40140634006 Filename Y161102B_07 Injected By SMT

Total Amount Extracted 15.2 g Matrix Solid % Moisture 85.5 Dilution NA

2.20 g Dry Weight Extracted Collected 10/20/2016 11:25 ICAL ID Y160816A Received 10/25/2016 11:20 CCal Filename(s) Y161102A_18 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 11/02/2016 21:45

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.24		0.095 J	2,3,7,8-TCDF-13C	2.00	72
2,3,7,8-TCDD	ND		0.094	2,3,7,8-TCDD-13C	2.00	86
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	82

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Blank Analysis Results

Lab Sample ID Filename Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52586 U161101B_12 20.2 g U161025 U161101B_03 Matrix Solid
Dilution NA
Extracted 10/28

Analyzed

NA 10/28/2016 19:00 11/01/2016 23:24

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		0.033	2,3,7,8-TCDF-13C	2.00	75
2,3,7,8-TCDD	ND		0.054	2,3,7,8-TCDD-13C	2.00	96
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	86

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCS-52587 Filename U161101B 08 **Total Amount Extracted** 20.0 g ICAL ID U161025 CCal Filename Method Blank ID

U161101B 03 BLANK-52586

Solid Matrix Dilution NA

Extracted 10/28/2016 19:00 Analyzed 11/01/2016 20:19

Injected By SMT

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.	_
2,3,7,8-TCDF	10	10	8.0	14.7	102	
2,3,7,8-TCDD	10	8.8	7.3	14.6	88	
2,3,7,8-TCDD-37Cl4	10	8.8	3.7	15.8	88	
2,3,7,8-TCDF-13C	100	72	26.0	126.0	72	
2,3,7,8-TCDD-13C	100	92	25.0	141.0	92	

Cs = Concentration Spiked (ng/mL)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

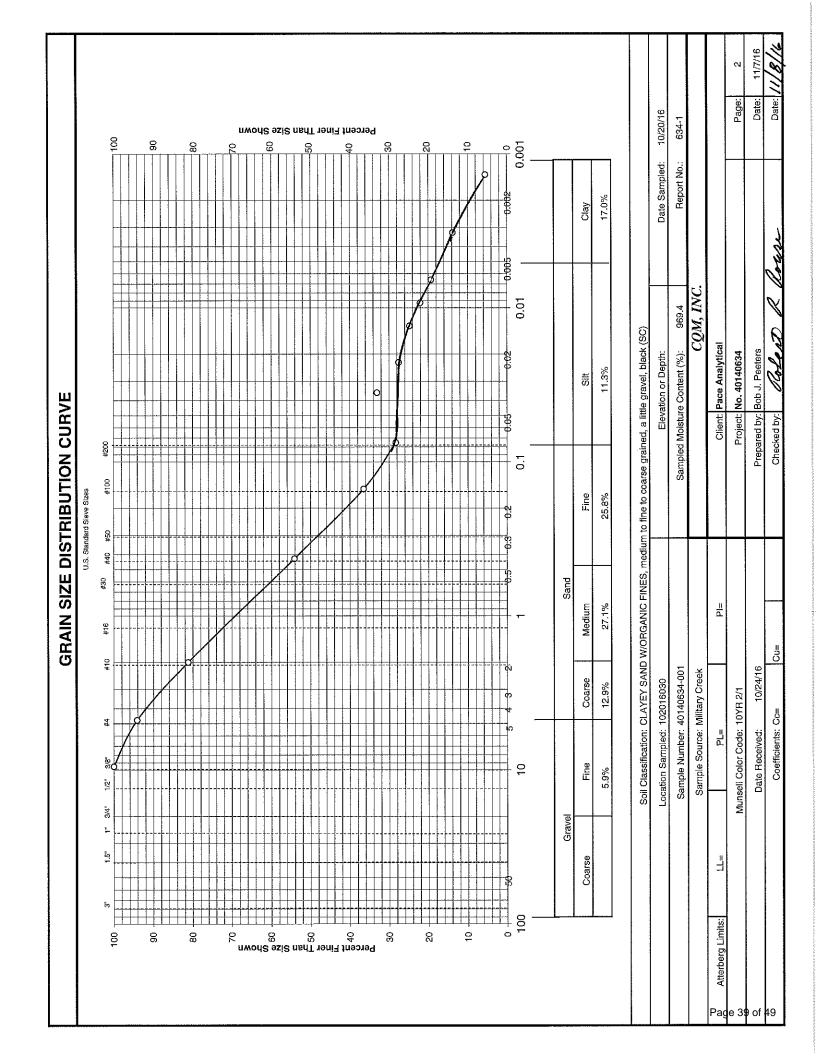
Nn = Value obtained from additional analysis

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

^{* =} See Discussion

CQM, INC.
Engineering – Surveying – Material Testing

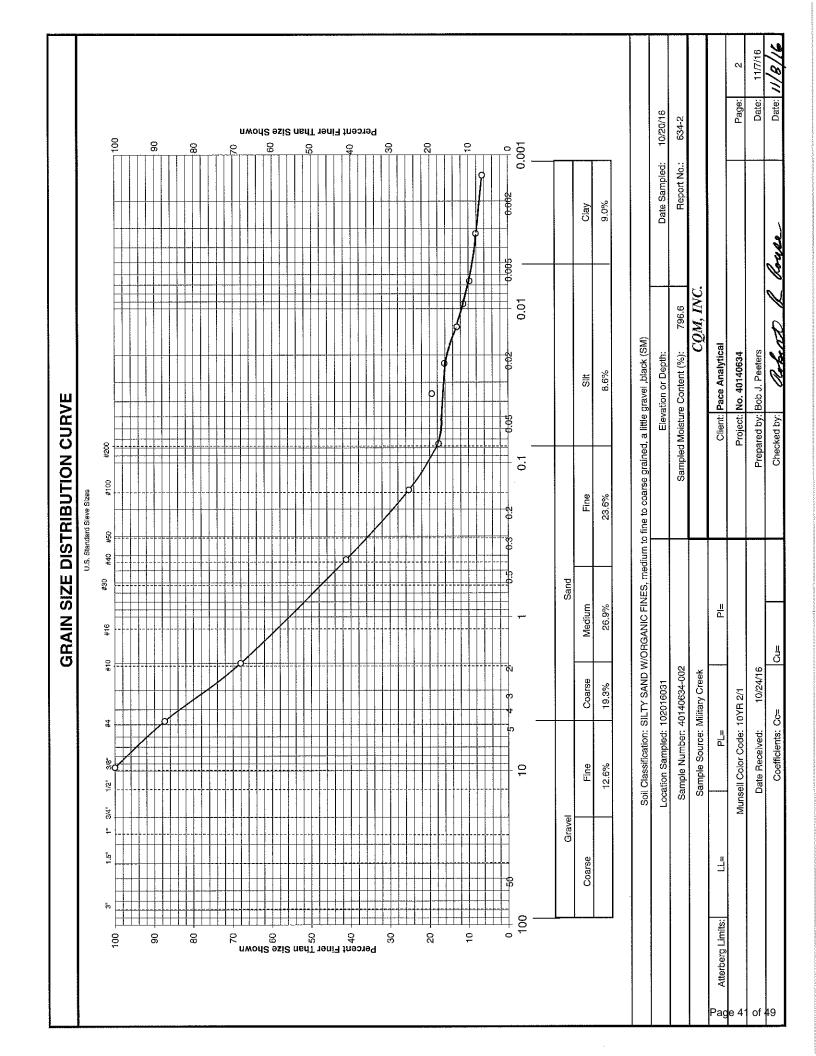

TRANSMITTAL

<i></i>			_ FROM: _	(BOB Rouse
race	Analytic	al	_	CQM, INC.
	· · · · · · · · · · · · · · · · · · ·			2679 Continental Drive
				Green Bay, WI 54311
			_ PHONE: _	(920) 465-3911
			_ DATE: _	November 8, 2016
RE: Lab Tes	7 Result Reg	POVIS	_ PROJECT: _	No-40140634
E ARE SENDING	C WOLL			Military Creek
ATTACH	_	TIMID (,
DRAWIN		7	SEPARATE COVER	
DOCUME		SPECIFIC		∐ CD
	WID [] COLLOR	LETTER	
QUANTITY			DESCRIP	PTION
1	117	- 0 . 1	1, 0	
	Las les	T Resul	+ Reports	
		1		
1	01.	10	ly Record	
		t Usta	du Herard	P l
	chain o	***************************************	7 0000	
	Chain o		7 0000	
	Chain o	,	7 0 0000	
	Chain o		7 () 5 ()	
	Chain		7 0 000	
	Chain		7 0 000	
	Chain D			
	Invoice for	project	To follow so	
I	Invoice for	project	To follow so	
I	Invoice for	project	To follow so	
	Invoice for	project	To follow so	
I REMARKS:	Invoice for	project	To follow so	
	Invoice for	project	To follow so	
	Invoice for	project	To follow so	
	Invoice for	project	To follow so	
	Invoice for	project	To follow so	
	Invoice for	project	To follow so	
	Invoice for	project	To follow so	

GENERAL	DATA:				
		Client:	Pace Analyt	ical	
			No. 4014063		
	Location	on Sampled:	102016030		
		Sample No:	40140634-00	01	
	Depti	h of Sample:			
	Da	te Received:	10/24/16		
	Sample Des	signated For:	Soil Classifi	ication	
		e of Sample:		ek	
		Color Code:			
		ate Sampled:	10/20/16		
LABOHA	TORY DATA	<u>4:</u>			
		Data Tastasi	O-t-h 05 (77 0045	
		Date Tested: erformed By:		27, 2016	
	1651 11	anomieu by.	<u>rnn</u>		
	24 Hrs 1	Furn Around:	NO	1	
		d Gradation:	YES	Dry Weig	ht of Soil (gms): 8.5
			<u> </u>		
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3°					
1 1/2"					
1"					····
3/4"					
1/2"					
3/8"	0.0	0.0	100.0		
#4	0.5	5.9	94.1		****************
#10	1.1	12.9	81.2		
#40	2.3	27.1	54.1		
#100	1.5	17.6	36.5		
# 1 U U					

		_
REVIEWED BY:	Rolent a Rouse	
	VICE CONTRACTOR	•
DATE REVIEWED:	11/8/16	
	7	Ī

Remarks:

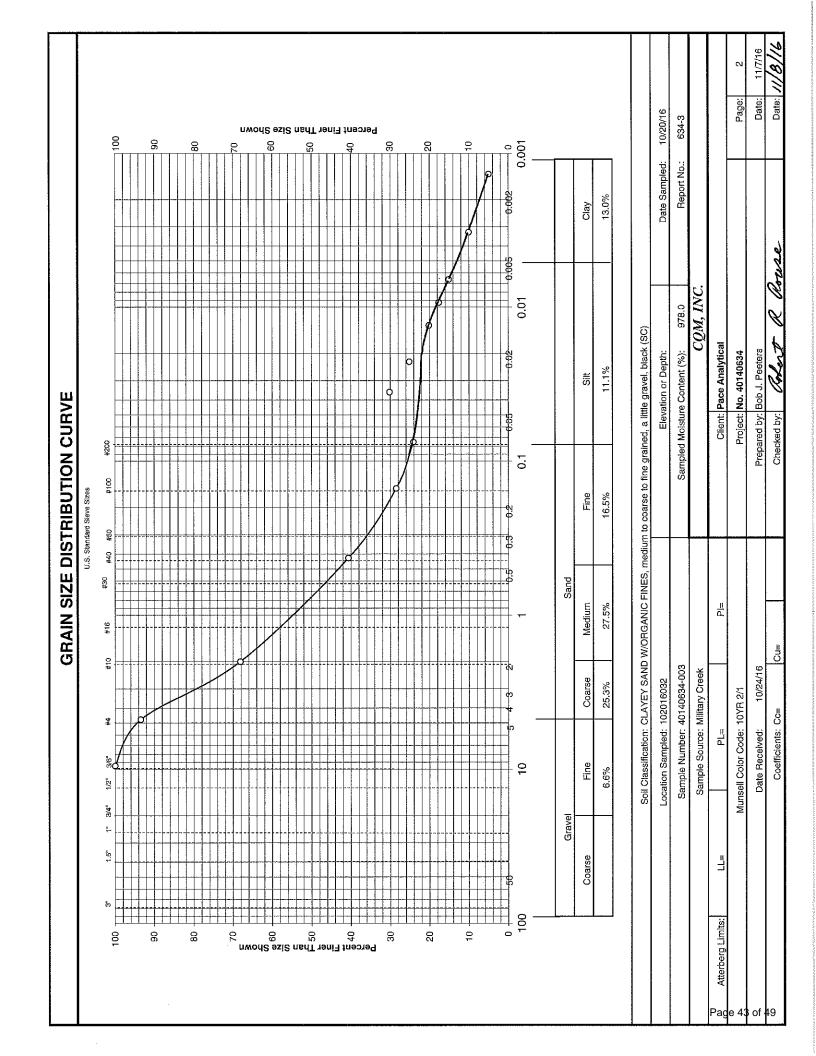

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL	_DATA:				
		Client:	Pace Analyt	ical	
			No. 4014063		
	Locati	on Sampled:			
		Sample No:	40140634-00)2	
	Dept	h of Sample:			
	Da	te Received:	10/24/16		
	Sample Des	signated For:	Soil Classifi	cation	
	Source	e of Sample:	Military Cred	ek	
	Munsell	Color Code:	10YR 2/1		
	D	ate Sampled:	10/20/16		
LABORAT	TORY DATA	<u>4:</u>			•
			October 25-2	27, 2016	
	Test Po	erformed By:	FRH		
				1	
		Furn Around:	NO		
	Washe	d Gradation:	YES] Dry Weig	nt of Soil (gms): 11.9
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"					
3/8"	0.0	0.0	100.0		
#4	1.5	12.6	87.4		
#10	2.3	19.3	68.1		
#40	3.2	26.9	41.2		
#100	1.9	16.0	25.2		
	1		1	1	

REVIEWED BY: After A Pouse

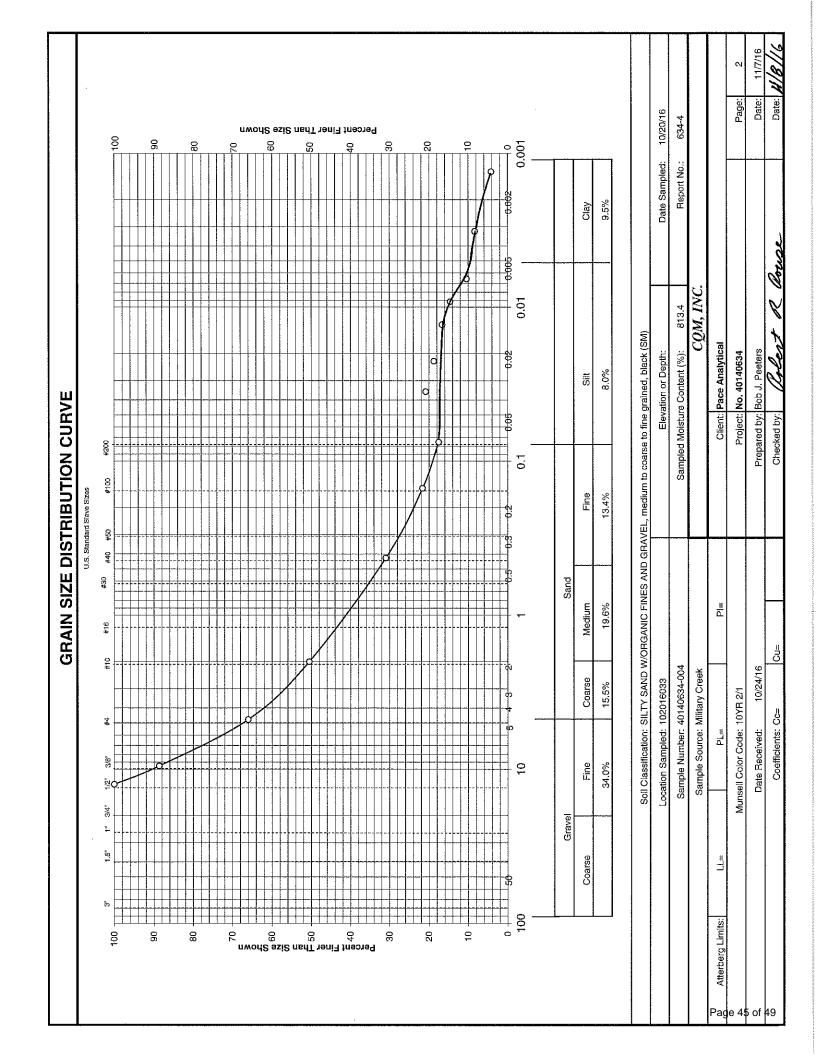
DATE REVIEWED: 11/8/16

Remarks:



SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

<u>GENERAL</u>	. DATA:				
		Client:	Pace Analyti	ical	
		Project:	No. 4014063	4	
	Location	on Sampled:	102016032		
		Sample No:	40140634-00	03	
	Deptl	n of Sample:			
	Dat	te Received:	10/24/16		
			Soil Classifi		
			Military Cree	ek	
		Color Code:			
		ate Sampled:	10/20/16		
LABORAI	ORY DATA	7:			
	1	Data Tastadi	October 25-2	27 2016	
		erformed By:		27, 2016	
) est re	зпоппесь ву.	лги		
	24 Hrs. 1	Furn Around:	NO		
		d Gradation:	YES	Dry Weigh	nt of Soil (gms): 9.1
				, ,	
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					a Landa Maria Mari
3/4"					10011 100
1/2"					
3/8"	0.0	0.0	100.0		
#4	0.6	6.6	93.4		
#10	2.3	25.3	68.1		- Advanced to the control of the con
#40	2.5	27.5	40.6		
×400	1,1	12.1	28.5		
#100	1.1	1211			

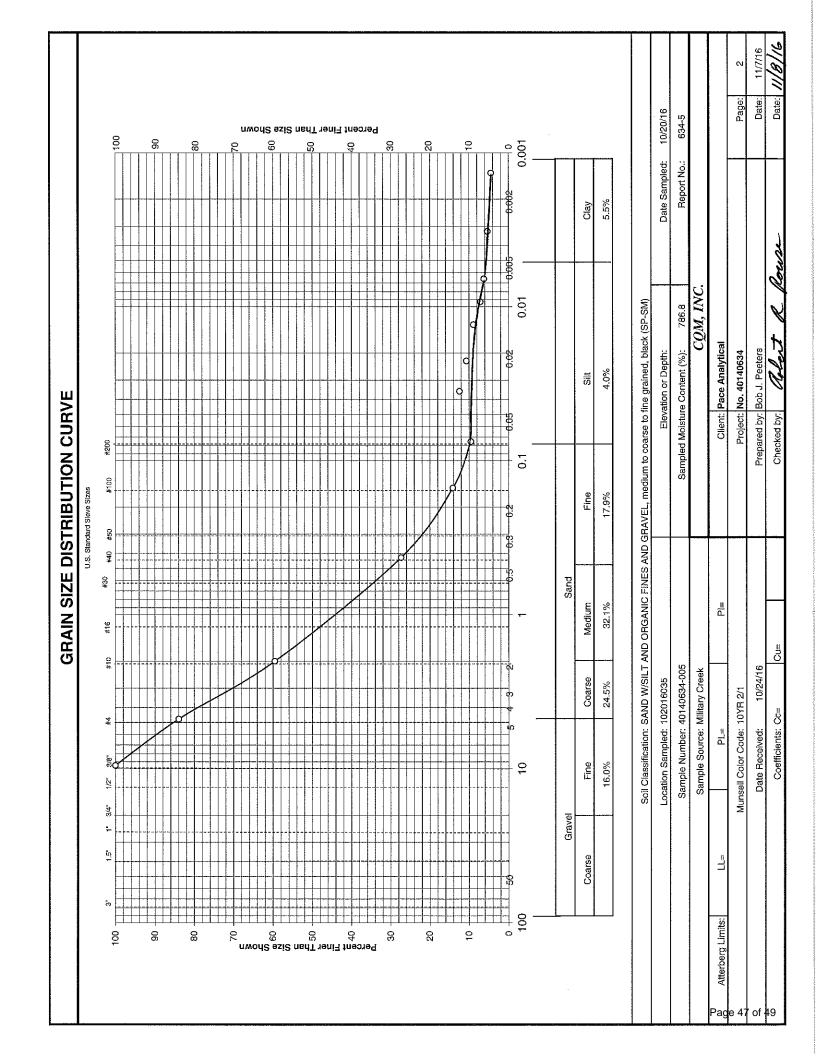

REVIEWED BY:	Robert R Pouce
DATE REVIEWED:	11/8/16

Remarks:

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

		Client	Pace Analyt	ical		Ţ
			No. 4014063			-
	Locati	on Sampled:				1
			40140634-00)4		1
	Dept	h of Sample:]
	Da	te Received:	10/24/16]
	Sample Des	signated For:	Soil Classifi	cation		
	Sourc	e of Sample:	Military Cree	ek		_
	Munsell	Color Code:	10YR 2/1			_
		ate Sampled:	10/20/16]
LABORA	TORY DATA	<u>A:</u>				_
	;	Date Tested:	October 25-2	27, 2016		
	Test P	erformed By:	FRH			
				1		
	24 Hrs. ⁻	Furn Around:	NO		E	٦
	Washe	ed Gradation:	YES	Dry Weigh	nt of Soil (gms): 9.7	_
	1		T	I I		
Sieve	Weight	%	%	Project Specification	Source of Specifica	ıtion
Size	Retained	Retained	Passing	% Passing by Weight	· · · · · · · · · · · · · · · · · · ·	
3"	1					
1 1/2"	1					
1 ^u						**************************************
3/4"						
1/2"	0.0	0.0	100.0			
3/8"	1.1	11.3	88.7			
#4	2.2	22.7	66.0		and the same of th	
#10	1.5	15.5	50.5			
#40	1.9	19.6	30.9			
#100	0.9	9.3	21.6			
#200	0.4	4.1	17.5			

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

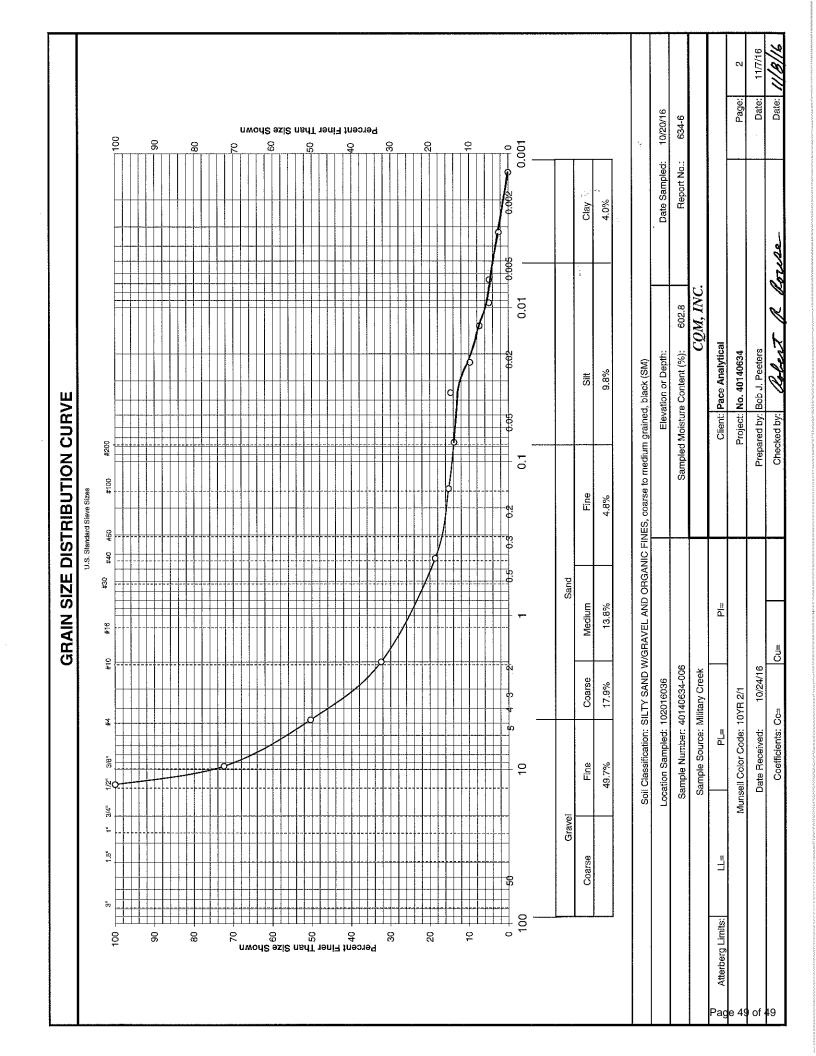

<u>GENERAI</u>	_DATA:				
		Oliania	Daga Analys		
			Pace Analyt		
	Locati	on Sampled:	No. 4014063	7	
	Local		40140634-00	 D5	
	Dept	h of Sample:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		te Received:	10/24/16		
	Sample Des	signated For:	Soil Classifi	ication	
	Sourc	e of Sample:	Military Cree	ek .	
	Munsell	Color Code:	10YR 2/1		
	D	ate Sampled:	10/20/16		
LABORA	TORY DATA	<u>4:</u>			
			Γ.		-
			October 25-2	27, 2016	
	Test P	erformed By:	FRH		
				1	
		Turn Around:	NO		
	wasne	d Gradation:	YES] Dry Weigi	ht of Soil (gms): 10.6
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"					
3/8"	0.0	0.0	100.0		
#4	1.7	16.0	84.0		
#10	2.6	24.5	59.5		
#40	3.4	32.1	27.4		
#100	1.4	13.2	14.2		
#200	0.5	4.7	9.5		

Remarks:

11/8/2016 TLS G-634-005

REVIEWED BY: Asbert A Rouse

DATE REVIEWED: ///8/16



SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL	. DATA:				
		Client:	Pace Analyt	ical	
			No. 4014063		
	Locati	on Sampled:			
			40140634-00	D6	
	Dept	h of Sample:			
	Da	te Received:	10/24/16		
	Sample Des	signated For:	Soil Classifi	ication	
	Sourc	e of Sample:	Military Cre	ek	
		Color Code:			
		ate Sampled:	10/20/16		
LABORAT	ORY DATA	<u>4:</u>			
		Date Tested:		28, 2016	
	Test P	erformed By:	FRH		
				1	
		Furn Around:	NO NO	-	. (0.11)
	Wasne	d Gradation:	YES	Dry Weigr	nt of Soil (gms): 14.5
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"	0.0	0.0	100.0		
3/8"	4.0	27.6	72,4		
#4	3.2	22.1	50.3		
#10	2.6	17.9	32.4		
#40	2.0	13.8	18.6		
#100	0.5	3.4	15.2		

Remarks:

REVIEWED BY: Robert Adocument DATE REVIEWED: 11/8/16

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Brian Basten **PACE Wisconsin** 1241 Bellevue Street Green Bay WI 54302

> **REPORT OF LABORATORY** ANALYSIS FOR TCDD/TCDF

Report Information:

Pace Project #: 10367095

Sample Receipt Date: 10/21/2016

Client Project #: 40140495

Client Sub PO #: N/A State Cert #: 999407970

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

November 11, 2016 Nathan Boberg, Project Manager

(612) 607-6444 (fax) nathan.boberg@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

November 11, 2016

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on eight samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) and 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF) using USEPA Method 1613B. The reporting limits were based on signal-to-noise measurements. Method blank and field sample results presented with reporting limits corresponding to the lowest calibration points and a nominal 10-gram sample amount were included at the end of Appendix A. This report was revised to include results for 2,3,7,8-TCDF.

The recoveries of the isotopically-labeled TCDD/TCDF internal standards in the sample extracts ranged from 68-98%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J" and should be regarded as estimates. In sample 101916027, due to the high moisture content, the estimated detection limit (EDL) values were above the standard reporting limits; therefore, the EDLs were provided and flagged "A" on the results table in Appendix A. The values reported for 2,3,7,8-TCDF that were above the lowest calibration point were verified by second column confirmation analyses and flagged "V".

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show that 2,3,7,8-TCDD and 2,3,7,8-TCDF were not detected, indicating that the sample processing steps were free of background levels of these congeners.

Laboratory spike samples were also prepared using clean reference matrix that had been fortified with native standard materials. The recoveries of the native compounds ranged from 80-109% with relative percent differences of 3.7%. These results were within the target ranges for the method. Matrix spikes were not prepared with the sample batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Mississippi	MN00064
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	NE-OS-18-06
Arizona	AZ0014	Nevada	MN_00064_200
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New York (NEL	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Oklahoma	D9922
Georgia (DNR)	959	Oregon (ELAP)	MN200001-005
Guam	959	Oregon (OREL	MN300001-001
Hawaii	SLD	Pennsylvania	68-00563
Idaho	MN00064	Puerto Rico	MN00064
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennessee	TN02818
Iowa	368	Texas	T104704192-08
Kansas	E-10167	Utah (NELAP)	MN00064
Kentucky	90062	Virginia	00251
Louisiana	03086	Washington	C755
Maine	2007029	West Virginia #	9952C
Maryland	322	West Virginia D	382
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367095

Appendix A

Sample Management

Chain of Custody

Worko	Workorder: 40140495	Workorder	Workorder Name: 2381/2 MILITARY CREEK	ILITARY CRE	EK		Owner Re	Owner Received Date:	10/20/20	16 Results	10/20/2016 Results Requested By:	y: 11/3/2016
Report To		位于新心体和心理是对	Subcontract To	- A. W 1911	医动脉管	连接数		林里 曾经学的邮件	Reques	Requested Analysis		建筑器以下的
Brian Basten Pace Analytic 1241 Bellevu Suite 9	Brian Basten Pace Analytical Green Bay 1241 Bellevue Street Suite 9		Pace Anal 1700 Elm Suite 200 Minneapol	Pace Analytical Minnesota 1700 Elm Street SE Suite 200 Minneapolis, MN 55414	sota 14							
Green	Green Bay, WI 54302	·	Phone	(612)607-1700	ľ							
	SampleID	Sample	Sample: Collect Wypo: Dare/Time:	ab ID.	Matrix	beneselqii G	Preserved Contrainers	1631B 237				LAB USE ONLY
	101916018	PS		40140495001	Solid	 -		×				18
2 10	101916019	PS	10/19/2016 09:12	40140495002	Solid			×				200
3 10	101916021	PS	10/19/2016 09:37 40140495003	40140495003	Solid	1		×				500
4 10	101916022	PS	10/19/2016 09:37	40140495004	Solid	1		X				to
5 10	101916024	PS	10/19/2016 10:35 40140495005	40140495005	Pilos	1		×				255
9 10	101916025	PS	10/19/2016 10:35 40140495006	40140495006	Solid	1		×				98
7 10	101916027	PS	10/19/2016 12:09 40140495007	40140495007	Solid	1		×				70%
8 10	101916028	PS	10/19/2016 12:09 40140495008	40140495008	Solid	1		X				800
是是是										00	Comments	
Transfers	s Released By		Date/Time	Received By			Date	Date/Time			·	
-	14 LEBES - 908.	Pee	MADVILLE PERTY	1	CTG	20	रिन्निर्मि	025 W				
2)								
က				(1			<u> </u>				4
Cooler	Cooler Temperature on Receipt 6.7 °C	leceipt 6.7	Custody	Seal	Y or N		Received on Ice	7	ór N	Sa	Samples Intack	Y or N
)				

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

Document Name: Sample Condition Upon Receipt Form

Document No.:
F-MN-L-213-rev.17 Pace I

Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority: Pace Minnesota Quality Office

Courler:	Sample Condition Upon Receipt Client Name:			Projec	" WO#: 10367095
Course Pace SpeeDee Other: 10367955		USPS		Client	
Tracking Number: Custody Seal on Cooler/Box Present? Output Seal on Cooler Temp Read (*C): Output Seal on Seal Seal Seal Seal Seal Seal Seal Seal	Commercial Pace SpeeDee	_			
Packing Material: Bubble Wrap Blabe Bags None Other: Temp Blank? Ives No Thermometer 151401156 BagsA012167504 BagsA01216704 BagsA012167504 BagsA0121	Tracking Number:				10367095
Thermometer Used: 151401163	Custody Seal on Cooler/Box Present?	lo	Seals In	tact? 1	Yes No Optional: Proj. Due Date: Proj. Name:
Used:	Packing Material: Bubble Wrap Debubble Bags	s []Nor	e [Other:_	Temp Biank? Yes No
Cooler Temp Read (*C):		100	e of Ice:	₽₩	et □Blue □None □Samples on ice, cooling process has begu
emp should be above freezing to 6°C Correction Factor:	_ / _): 19.	7 `	Biological Tissue Frozen? Tyes TNo TINTA
SISDA Regulated Soil (emp should be above freezing to 6°C Correction Fac				
Sync, NM, NY, OK, OR, SC, TN, TX or VA (check maps) Yes ZNo including Hawali and Puerto Rico? Yes ZNo Including Hawali and Puerto Rico? Yes ZNo Including Hawali and Puerto Rico? Yes ZNo	SDA Regulated Soil (N/A, water sample)				
If Yes to either question, fill out a Regulated Soll Checklist (F-MN-Q-338) and include with SCUR/COC paperwork. COMMENTS: Chain of Custody Present? Chain of Custody Relinquished? Chain o		States: AL,	4K, AZ, C		
Chain of Custody Present? Chain of Custody Filled Out? Chain of Custody Relinquished? Tyes No N/A 2. Chain of Custody Relinquished? Tyes No N/A 3. Sampler Name and/or Signature on COC? Yes No N/A 3. Sampler Name and/or Signature on COC? Yes No N/A 4. Sampler Name and/or Signature on COC? Yes No N/A 5. Short Hold Time Analysis (<72 hr)? Rush Turn Around Time Requested? Yes No N/A 7. Sufficient Volume? Correct Containers Used? Pres No N/A 8. Correct Containers Used? Pres No N/A 9. Prace Containers Used? Pres No N/A 10. Prace Containers Used? Pres No N/A 11. Note if sediment is visible in the dissolved container intext? Includes Date/Time/ID/Analysis Matrix: All containers needing acid/base preservation have been thecked? All containers needing acid/base preservation have been thecked? All containers needing preservation are found to be in compliance with EPA recommendation? HNO, 14,50,, Hd<2, NaOH > 3. Sample # Initial when Lot # of added completed: preservative: leadapace in VOA Visis (Semm)? Yes No NiA 14. Type No NiA 15. Initial when Lot # of added completed: preservative: leadapace in VOA Visis (Semm)? Yes No NiA 14. Type No NiA 15. Type No NiA 14. Type No NiA 15. Type No NiA 14. Type NiA		gulated Sol	Checkl	st (F-MN	
Chain of Custody Rilled Out? Chain of Custody Relinquished? Sampler Name and/or Signature on COC? Yes No N/A 3. Sampler Name and/or Signature on COC? Yes No N/A 5. Sampler Name Analysis (<72 hr)? Yes No N/A 5. Short Hold Time Analysis (<72 hr)? Yes No N/A 6. Rush Turn Around Time Requested? Yes No N/A 7. Sufficient Volume? Surfactortainers Used? Pace Containers Used? Pace Containers Used? Pace Containers Used? Pace Containers Used? Pace (No N/A 10. Siltered Volume Received for Dissolved Tests? Yes No N/A 10. Siltered Volume Received for Dissolved Tests? Yes No N/A 12. Siltered Volume Received for Dissolved Tests? Yes No N/A 12. Siltered Volume Received for Dissolved Tests? Yes No N/A 13. Siltered Volume Received for Dissolved Tests? Yes No N/A 12. Siltered Volume Received for Dissolved Tests? Yes No N/A 13. Simple Labels Match COC? Includes Date/Time/ID/Analysis Matrix: Siltered Volume Received for Dissolved Tests? Yes No N/A 12. Sample Hand Test No N/A 13. Sample Hand Test No N/A 14. Sample Hand Test No N/A 15. Simple Hand Test No N/A 15. Tip Blank Present? Yes No N/A 15. Field Data Required? Yes No Date/Time: Date/Time:					. COMMENTS:
Chain of Custody Relinquished? Yes	Chain of Custody Present?	₹¶Yes	∐No	□N/A	1.
Sampler Name and/or Signature on COC? Yes No No A Samples Arrived within Hold Time? Yes No No No Short Hold Time Analysis (<72 hr)? Yes No No No Short Hold Time Requested? Yes No No No Pace Containers Used? Yes No No Pace Containers Used? Yes No No Pace Containers Intact? Yes N	Chain of Custody Filled Out?	∰Yes	□No	□N/A	2.
Simples Arrived within Hold Time? Short Hold Time Analysis (<72 hr)? Rush Turn Around Time Requested? Sufficient Volume? Sufficient Volume? Surves No No N/A Survest Containers Used? Pace No	Chain of Custody Relinquished?	Yes	□No	□N/A	3.
Short Hold Time Analysis (<72 hr)? Rush Turn Around Time Requested? Rush Turn Around Time Required? Rush Turn Around Turn Arou	Sampler Name and/or Signature on COC?	Yes	□No	ZIN/A	4.
Sufficient Volume? Sufficient Volume Received? Sufficient Volume Received for Dissolved Tests? Sufficient Volume Received for Dissolved Tests? Sufficient Volume Received For Dissolved For Dis	Samples Arrived within Hold Time?	Yes	□No	□N/A	5.
Sufficient Volume? Surves No N/A 8. Sorrect Containers Used? Pace Containers Used? Pace Containers Used? Pace Containers Intact? Surves No N/A 10. Sittered Volume Received for Dissolved Tests?	hort Hold Time Analysis (<72 hr)?	☐Yes	No	□N/A	6.
Containers Used? -Pace Containers Used? -Pace Containers Used? -Pace Containers Used? -Pace Containers Intact?	Rush Turn Around Time Requested?	Yes	No	□N/A	7.
Pace Containers Used? No	ufficient Volume?	¥Yes	□No	□N/A	8.
-Pace Containers Used? No	Correct Containers Used?	Yes	□No	□N/A	9.
iltered Volume Received for Dissolved Tests? Yes	-Pace Containers Used?		□No	□N/A	
iltered Volume Received for Dissolved Tests? Yes	ontainers Intact?	A lyes	□No	□N/A	10.
-Includes Date/Time/ID/Analysis Matrix: -Includes Date/Time/ID/Analysis Matri	iltered Volume Received for Dissolved Tests?			-	11. Note if sediment is visible in the dissolved container
-includes Date/Time/ID/Analysis Matrix: All containers needing acid/base preservation have been hecked? All containers needing preservation are found to be in ompliance with EPA recommendation? HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) RCO/8015 (water) DOC PYes No No NA/A Pip Blank Present? PYes No No NA/A Tip Blank Custody Seals Present? CLIENT NOTIFICATION/RESOLUTION PYes No Date/Time: PYes No Date/Time:					******
All containers needing acid/base preservation have been hecked? Yes	-Includes Date/Time/ID/Analysis Matrix:	_ -			
All containers needing preservation are found to be in compliance with EPA recommendation? HNO3, H2SO4, HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)	All containers needing acid/base preservation have been			Δ	13 Fluxo Fluxo Fluxo
ompliance with EPA recommendation? HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) xceptions: VOA, Coliform, TOC, Oil and Grease, RO/8015 [water) DOC Yes		∏Yes	□No	Ū N/A	
Initial when Lot # of added preservative: completed: completed: preservative: completed: preservative: completed: preservative: completed: completed: preservative: completed: completed: preservative: completed: completed: completed: preservative: completed: com				_	Sample # .
PRO/8015 (water) DOC Yes No No No No No No No N	HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)	□Yes	□No	E-N/A	
Peadspace in VOA Vials (>6mm)?	xceptions: VOA, Coliform, TOC, Oil and Grease, PRO/8015 (water) DOC	["]var	Date	Nikira	
rip Blank Present? Yes No No 15. rip Blank Custody Seals Present? Yes No No No No No No No N					
rip Blank Custody Seals Present?					
CLIENT NOTIFICATION/RESOLUTION CLIENT NOTIFICATION/RESOLUTION Pried Data Required? Yes No Posterime:	-			7	13.
erson Contacted: Date/Time:					
erson Contacted: Date/Time:	CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
Omerant-/Paralletter					Date #27 -
	Comments/Donalistics.				
				, ,, -,,	

hold, incorrect preservative, out of temp, incorrect containers).

Method 1613B Blank Analysis Results

Lab Sample ID
Filename
Total Amount Extractor

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52542 F161030B_04 10.1 g

F161011 F161030B_01 Matrix Dilution Extracted

Extracted
Analyzed

Solid NA

10/26/2016 15:55 10/30/2016 13:30

Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		1.0	2,3,7,8-TCDF-13C	2.00	74
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	76

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367095

Pace Analytical[™]

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916018
Lab Sample ID 40140495001
Filename F161031A_09
Injected By BAL
Total Amount Extracted 15.0 g
% Moisture 35.8

% Moisture 35.8

Dry Weight Extracted 9.63 g

ICAL ID F161011

CCal Filename(s) F161030B_16
Method Blank ID BLANK-52542

Matrix Solid Dilution NA

Collected 10/19/2016 09:12 Received 10/21/2016 09:30 Extracted 10/26/2016 15:55 Analyzed 10/31/2016 06:34

=				·		
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	1.3		1.0 V	2,3,7,8-TCDF-13C	2.00	79
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	95
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl	4 0.20	83

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

Pace Analytical[™]

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916019

 Lab Sample ID
 40140495002

 Filename
 F161031A_10

 Injected By
 BAL

 Total Amount Extracted
 12.8 g

% Moisture 16.9

Dry Weight Extracted 10.6 g

ICAL ID F161011

CCal Filename(s) F161030B 16

CCal Filename(s) F161030B_16 Method Blank ID BLANK-52542 Matrix Solid Dilution NA

Collected 10/19/2016 09:12 Received 10/21/2016 09:30 Extracted 10/26/2016 15:55 Analyzed 10/31/2016 07:23

			,			
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		1.0	2,3,7,8-TCDF-13C	2.00	68
2,3,7,8-TCDD	ND	*******	1.0	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	74

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916021
Lab Sample ID 40140495003
Filename F161030B_09
Injected By BAL
Total Amount Extracted 20.4 g

 % Moisture
 91.4

 Dry Weight Extracted
 1.75 g

 ICAL ID
 F161011

 CCal Filename(s)
 F161030B_01

 Method Blank ID
 BLANK-52542

 Matrix
 Solid

 Dilution
 NA

 Collected
 10/19/2016 09:37

 Received
 10/21/2016 09:30

 Extracted
 10/26/2016 15:55

10/30/2016 17:33

0.20

78

Native EMPC RL Percent Conc Internal ng's Isomers **Standards** Added Recovery ng/Kg ng/Kg ng/Kg 2,3,7,8-TCDF 9.9 1.0 V 2,3,7,8-TCDF-13C 2.00 78 2,3,7,8-TCDD ND 1.0 2,3,7,8-TCDD-13C 2.00 90 Recovery Standard 1,2,3,4-TCDD-13C 2.00 NA

Analyzed

Cleanup Standard 2,3,7,8-TCDD-37Cl4

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367095

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916022

 Lab Sample ID
 40140495004

 Filename
 F161030B_10

 Injected By
 BAL

 Total Amount Extracted
 20.0 g

 % Moisture
 75.4

 Dry Weight Extracted
 4.92 g

 Dry Weight Extracted
 4.92 g

 ICAL ID
 F161011

 CCal Filename(s)
 F161030B_01

 Method Blank ID
 BLANK-52542

Matrix Solid Dilution NA

NA 10/19/2016 09:37

Collected 10/19/2016 09:37
Received 10/21/2016 09:30
Extracted 10/26/2016 15:55
Analyzed 10/30/2016 18:22

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	11.0	~===	1.0 V	2,3,7,8-TCDF-13C	2.00	80
2,3,7,8-TCDD	2.4		1.0	2,3,7,8-TCDD-13C	2.00	95
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	82

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916024 Lab Sample ID 40140495005 Filename F161030B 11 Injected By BAL Matrix Total Amount Extracted Solid 15.9 g Dilution NA % Moisture 46.3 Dry Weight Extracted Collected 10/19/2016 10:35 8.54 g ICAL ID F161011 Received

| Collected | 10/19/2016 | 10.35 | 10.

				-		
Native Isomers	Conc ng/Kg	EMPC ng/Kg	R L ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	15.0		1.0 V	2,3,7,8-TCDF-13C	2.00	77
2,3,7,8-TCDD	2.1	er romane	1.0	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	77

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

Pace Analytical[™]

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916025
Lab Sample ID 40140495006
Filename F161030B_12
Injected By BAL
Total Amount Extracted 13.5 g
% Moisture 55.4

 % Moisture
 55.4

 Dry Weight Extracted
 6.02 g

 ICAL ID
 F161011

 CCal Filename(s)
 F161030B_01

 Method Blank ID
 BLANK-52542

Matrix Solid Dilution NA

Dilution NA
Collected 10/19/2016 10:35
Received 10/21/2016 09:30
Extracted 10/26/2016 15:55
Analyzed 10/30/2016 20:00

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	71.0	46 h² na h-bad	1.0 V	2,3,7,8-TCDF-13C	2.00	75
2,3,7,8-TCDD	9.3		1.0	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	75

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

RL = Reporting Limit

NA = Not Applicable
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367095

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916027 Lab Sample ID 40140495007 Filename F161030B_13 Injected By BAL 20.4 g Total Amount Extracted % Moisture 91.9

1.65 g Dry Weight Extracted ICAL ID F161011 CCal Filename(s) F161030B_01 Method Blank ID

BLANK-52542

Matrix Solid Dilution NA

Collected 10/19/2016 12:09 10/21/2016 09:30 Received 10/26/2016 15:55 Extracted Analyzed 10/30/2016 20:48

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	7.2	THE PROTOCOL SECTION SECTION	1.8 AV	2,3,7,8-TCDF-13C	2.00	75
2,3,7,8-TCDD	ND	*****	2.3 A	2,3,7,8-TCDD-13C	2.00	89
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	76

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

NC = Not Calculated

A = Reporting Limit based on signal to noise

R = Recovery outside target range

E = Exceeds calibration range

RL = Reporting Limit

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

Report No.....10367095

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916028

 Lab Sample ID
 40140495008

 Filename
 F161030B_14

 Injected By
 BAL

Total Amount Extracted 17.5 g
% Moisture 87.2
Dry Weight Extracted 2.24 g
ICAL ID F161011

ICAL ID F161011

CCal Filename(s) F161030B_01

Method Blank ID BLANK-52542

Matrix Solid Dilution NA

Collected 10/19/2016 12:09
Received 10/21/2016 09:30
Extracted 10/26/2016 15:55
Analyzed 10/30/2016 21:37

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	1.8		1.0 J	2,3,7,8-TCDF-13C	2.00	79
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	. 98
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	86

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X =%D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916018

 Lab Sample ID
 40140495001

 Filename
 F161031A_09

 Injected By
 BAL

Total Amount Extracted 15.0 g Matrix Solid % Moisture 35.8 Dilution NA

9.63 g Dry Weight Extracted Collected 10/19/2016 09:12 F161011 ICAL ID Received 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 06:34

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	1.3		0.16 V	2,3,7,8-TCDF-13C	2.00	79
2,3,7,8-TCDD		0.16	0.12 JJ	2,3,7,8-TCDD-13C	2.00	95
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	83

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

I = Interference present

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916019 Lab Sample ID 40140495002 Filename F161031A_10 Injected By BAL

Total Amount Extracted 12.8 g
% Moisture 16.9

Dry Weight Extracted 10.6 g
ICAL ID F161011
CCal Filename(s) F161030B_16
Method Blank ID BLANK-52542

Matrix Solid Dilution NA

Collected 10/19/2016 09:12 Received 10/21/2016 09:30 Extracted 10/26/2016 15:55 Analyzed 10/31/2016 07:23

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		0.13	2,3,7,8-TCDF-13C	2.00	68
2,3,7,8-TCDD	ND		0.14	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	74

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916021

 Lab Sample ID
 40140495003

 Filename
 F161030B_09

 Injected By
 BAL

Total Amount Extracted 20.4 g Matrix Solid % Moisture 91.4 Dilution NA

1.75 g Dry Weight Extracted Collected 10/19/2016 09:37 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 17:33

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	9.90		0.43 V	2,3,7,8-TCDF-13C	2.00	78
2,3,7,8-TCDD	0.97		0.63 J	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	78

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916022

 Lab Sample ID
 40140495004

 Filename
 F161030B_10

 Injected By
 BAL

Total Amount Extracted 20.0 g Matrix Solid % Moisture 75.4 Dilution NA

4.92 g Dry Weight Extracted Collected 10/19/2016 09:37 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 18:22

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	11.0		0.65 V	2,3,7,8-TCDF-13C	2.00	80
2,3,7,8-TCDD	2.4		0.50	2,3,7,8-TCDD-13C	2.00	95
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	82

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Matrix

Dilution

Solid

NA

Client's Sample ID 101916024 Lab Sample ID 40140495005 Filename F161030B_11 Injected By BAL

15.9 g **Total Amount Extracted** % Moisture 46.3

8.54 g Dry Weight Extracted Collected 10/19/2016 10:35 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 19:11

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	15.0		0.44 V	2,3,7,8-TCDF-13C	2.00	77
2,3,7,8-TCDD	2.1		0.69	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	77

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

NC = Not Calculated

R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916025

 Lab Sample ID
 40140495006

 Filename
 F161030B_12

 Injected By
 BAL

Total Amount Extracted 13.5 g Matrix Solid % Moisture 55.4 Dilution NA

6.02 g Dry Weight Extracted Collected 10/19/2016 10:35 ICÁL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 20:00

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	71.0		0.67 V	2,3,7,8-TCDF-13C	2.00	75
2,3,7,8-TCDD	9.3		0.86	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	75

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916027

 Lab Sample ID
 40140495007

 Filename
 F161030B_13

 Injected By
 BAL

Total Amount Extracted 20.4 g Matrix Solid % Moisture 91.9 Dilution NA

Dry Weight Extracted 1.65 g Collected 10/19/2016 12:09 ICÁL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 20:48

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	7.2		1.8 V	2,3,7,8-TCDF-13C	2.00	75
2,3,7,8-TCDD	ND		2.3	2,3,7,8-TCDD-13C	2.00	89
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	76

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Matrix

Dilution

Solid

NA

 Client's Sample ID
 101916028

 Lab Sample ID
 40140495008

 Filename
 F161030B_14

 Injected By
 BAL

Total Amount Extracted 17.5 g
% Moisture 87.2

2.24 g Dry Weight Extracted Collected 10/19/2016 12:09 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 21:37

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	1.8		0.72 J	2,3,7,8-TCDF-13C	2.00	79
2,3,7,8-TCDD	ND		0.65	2,3,7,8-TCDD-13C	2.00	98
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	86

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Applicable

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Blank Analysis Results

Lab Sample ID Filename Total Amount Extracted ICAL ID

CCal Filename(s)

F161030B_04 d 10.1 g F161011 F161030B_01

BLANK-52542

Matrix Solid
Dilution NA
Extracted 10/26

Extracted 10/26/2016 15:55 Analyzed 10/30/2016 13:30

Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		0.079	2,3,7,8-TCDF-13C	2.00	74
2,3,7,8-TCDD	ND		0.130	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	76

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCS-52543 Filename F161030B 02 **Total Amount Extracted** 10.1 g ICAL ID F161011 CCal Filename F161030B 01 Method Blank ID BLANK-52542

Solid Matrix Dilution NA Extracted Analyzed 10/30/2016 11:54

10/26/2016 15:55

Injected By **BAL**

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF	10	11	8.0	14.7	105
2,3,7,8-TCDD	10	8.3	7.3	14.6	83
2,3,7,8-TCDD-37Cl4	10	8.1	3.7	15.8	81
2,3,7,8-TCDF-13C	100	81	26.0	126.0	81
2,3,7,8-TCDD-13C	100	94	25.0	141.0	94

Cs = Concentration Spiked (ng/mL)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

^{* =} See Discussion

Method 1613B Laboratory Control Spike Results

Lab Sample ID

Filename

Total Amount Extracted
ICAL ID

CCal Filename

Method Blank ID

LCSD-52544

F161030B_03

10.1 g
F161011

F161030B_01

BLANK-52542

Matrix Solid
Dilution NA
Extracted 10/26/2016 15:55
Analyzed 10/30/2016 12:41
Injected By BAL

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF	10	11	8.0	14.7	109
2,3,7,8-TCDD	10	8.0	7.3	14.6	80
2,3,7,8-TCDD-37Cl4	10	7.7	3.7	15.8	77
2,3,7,8-TCDF-13C	100	73	26.0	126.0	73
2,3,7,8-TCDD-13C	100	88	25.0	141.0	88

Cs = Concentration Spiked (ng/mL)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

^{* =} See Discussion

Method 1613B

Spike Recovery Relative Percent Difference (RPD) Results

Client **PACE Wisconsin**

Spike 1 ID LCS-52543 Spike 2 ID LCSD-52544 Spike 1 Filename F161030B_02 Spike 2 Filename F161030B_03

Compound	Spike 1 %REC	Spike 2 %REC	%RPD	
2,3,7,8-TCDF	105	109	3.7	
2,3,7,8-TCDD	83	80	3.7	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Brian Basten **PACE Wisconsin** 1241 Bellevue Street Suite 9 Green Bay WI 54302

> **REPORT OF LABORATORY ANALYSIS FOR** PCDD/PCDF

Report Information:

Pace Project #: 10367411

Sample Receipt Date: 10/25/2016

Client Project #: 40140634

Client Sub PO #: N/A State Cert #: 999407970

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

lyne haut

Carolynne Trout, Project Manager

(612) 607-6351 (612) 607-6444 (fax)

Carolynne.Trout@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

December 22, 2016

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on six samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzo-furans (PCDFs) using USEPA Method 1613B. The reporting limits were based on signal-to-noise measurements. Estimated Maximum Possible Concentrations (EMPCs) were treated as positives in the toxic equivalence calculations. Method blank and field sample results presented with reporting limits set to correspond to the lowest calibration points and a nominal 10-gram sample amount were included at the end of Appendix A. This report was revised to provide results for all tetra through octa-chlorinated PCDDs and PCDFs.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 52-97%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These levels were below the calibration range of the method. The concentrations reported for the affected congeners in the field samples were higher than the corresponding blank concentrations by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

A laboratory spike sample was also prepared using clean reference matrix that had been fortified with native standards. The recoveries of the native compounds ranged from 88-124%. These results were within the target ranges for the method. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Mississippi	MN00064
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	NE-OS-18-06
Arizona	AZ0014	Nevada	MN_00064_200
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New York (NEL	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Oklahoma	D9922
Georgia (DNR)	959	Oregon (ELAP)	MN200001-005
Guam	959	Oregon (OREL	MN300001-001
Hawaii	SLD	Pennsylvania	68-00563
Idaho	MN00064	Puerto Rico	MN00064
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennessee	TN02818
Iowa	368	Texas	T104704192-08
Kansas	E-10167	Utah (NELAP)	MN00064
Kentucky	90062	Virginia	00251
Louisiana	03086	Washington	C755
Maine	2007029	West Virginia #	9952C
Maryland	322	West Virginia D	382
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367411

Appendix A

Sample Management

Chain of Custody

Pace Analytical"

Brian Basten Pace Analytical Green Bay 1241 Bellevue Street Suite 9 Green Bay, WI 54302 Item Sainpfe ID 102016030 2 102016031 3 102016035 5 102016035 6 102016036		Pace Analytical Mint 1700 Elm Street SE Suite 200 Minneapolis, MN 55	contract to Pace Analytical Minnesota 1700 Elm Street SE	da		語書語表	STATE OF STREET	人名英格兰人姓氏	Requeste	Requested/Analysis		在我在第一条次開放時
Brian Basten Pace Analytical Green Bay 1241 Bellevue Street Suite 9 Green Bay, WI 54302 Item Sample ID 1 102016030 2 102016031 3 102016033 5 102016035 6 102016036		Pace Ana 1700 Elm Suite 200 Minneapt	ulytical Minneson Street SE	哲			CONTRACTOR OF THE PARTY OF THE					
Sample ID 102016030 102016031 102016032 102016033 102016035 102016035 102016036 102016036			oure 200 Minneapolis, MN 55414 Phone (612)607-1700				AUOT bas C					
Sample ID 102016030 102016031 102016033 102016035 102016035 102016035 102016036 102016036	The state of the s	The state of the s			Preserve	Preserved Containers	26					
	Sample: Collect Type Date/Tir	Sample Collect Type Date/Time		Pevieseidun	004		L & 1 E 9 I	······································				LAB USE ONLY
	PS	10/20/2016 09:36 40140634001	_	Solid 1			×					ب. اد
	PS	10/20/2016 09:36 40	40140634002 S	Solid 1			×					- 1
	PS	10/20/2016 10:12 40	40140634003 S	Solid 1			×					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	ROS	10/20/2016 10:12 40	40140634004 S	Solid 1			×					2 3
	Sd	10/20/2016 11:25 40140634005		Solid 1			×					ا ا ا
	Sd	10/20/2016 11:25 40	40140634006 S	Solid 1			×					106
	建设的基础				多数學學到			Thought the		Comments		
Transfers Released By		Date/Time	Received By	7		Date/	Date/Time					
1 COUNTARY		00C)91/156[[][-	人なです	l.	30.25.16	32:					
2		,				-						
m									•			
Cooler Temperature on Receipt	25	°C Custody	Seal 🔇	or N		Received on Ice (A) or	on Ice	Oor N		Samples Intact Xor	tact No	2

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

Document Name: Sample Condition Upon Receipt Form Document No.:

Document No.: F-MN-L-213-rev.17 Document Revised: 02Aug2016 Page 1 of 2 Issuing Authority: Pace Minnesota Quality Office

Sample Condition Upon Receipt Client Name:		Projec	"" WO#:10367411
Pace 63		_	
Courier:	□USPS [Client	
Commercial Pace SpeeDee	Other: Lucal	710	10367411
Tracking Number:		_	
Custody Seal on Cooler/Box Present? Yes N	o Seals	Intact? [Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Bags	None [Other:	Temp Blank? ☑Yes ☐No
Thermometer 7 151401163	I VOE OT ICE	e: 🔁 🗸	et Blue None Samples on Ice, cooling process has begun
Cooler Temp Read (°C): 3 4 Cooler Temp Co	rrected (°C):	3.8	Biological Tissue Frozen? Yes No No N/A
Temp should be above freezing to 6°C Correction Fac	tor: +0.2	Da	te and Initials of Person Examining Contents: 10-25-16 MT
USDA Regulated Soil (\bigcap N/A, water sample) Did samples originate in a quarantine zone within the United	States Al AD A7	CA EL GA	ID 10 / Did complete originate from a family angular distance to
MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?		☐Yes	No including Hawaii and Puerto Rico)?
if Yes to either question, fill out a Re	gulated Soll Check	klist (F-MN	-Q-338) and include with SCUR/COC paperwork.
			COMMENTS:
Chain of Custody Present?	ZYes □N	o □N/A	1.
Chain of Custody Filled Out?	☑Yes □N	D □N/A	2.
Chain of Custody Relinquished?	✓Yes □No	o □N/A	3 _r
Sampler Name and/or Signature on COC?	Yes ZNo	D □N/A	4.
Samples Arrived within Hold Time?	Yes ON	D □N/A	5.
Short Hold Time Analysis (<72 hr)?	☐Yes ☑No	D □N/A	6.
Rush Turn Around Time Requested?	□Yes ☑No	⊇ □N/A	7.
Sufficient Volume?	Øres □No	D □N/A	8,
Correct Containers Used?	ØYes □No	□N/A	9.
-Pace Containers Used?	Zyes □No	DN/A	
Containers Intact?	ZYes □No		10.
Filtered Volume Received for Dissolved Tests?	☐Yes ☐No		11. Note if sediment is visible in the dissolved container
Sample Labels Match COC?	ZYes □No		12.
-Includes Date/Time/ID/Analysis Matrix: 5L	۱۹۵۰ کیر	. 1144	
All containers needing acid/base preservation have been	-		
checked?	∐Yes □No	√ZN/A	13.
All containers needing preservation are found to be in compliance with EPA recommendation?			Sample #
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)	∐Yes □No		,
Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC		-/-	Initial when Lot # of added
Headspace in VOA Vials (>5mm)?	Yes No	· · · · · · · · · · · · · · · · · · ·	completed: preservative:
Trip Blank Present?	Yes No		14.
Trip Blank Custody Seals Present?	□Yes □No	-/	15.
Pace Trip Blank Lot # (if purchased):	□.te3 □M0	E_IN/A	
CLIENT NOTIFICATION/RESOLUTION			Field Data Required? ☐Yes ☐No
Bores Contratado			·
Comments/Resolution:			Date/Time:
Project Manager Review: Scraff	Unzo		Date: 10/25/16
Note: Whenever there is a discrepancy affecting North Carolina co	ompliance samples,	a copy of th	is form will be sent to the North Carolina DEHNR Certification Office (i.e. out of

Method 1613B Blank Analysis Results

Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52586 U161101B 12 20.2 g U161025

U161101B_03

Matrix Dilution Solid NA

Extracted Analyzed

10/28/2016 19:00 11/01/2016 23:24

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 96 73
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	1,2,3,7,8-PECDF-13C 2,3,4,7,8-PECDF-13C 1,2,3,7,8-PECDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	73 73 91 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	70 77 85 83
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	71 85 93
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	101 88
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.00 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND ND	P	10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No....10367411 Page 7 of 23

Solid

NA

Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016030

Lab Sample ID 40140634001

Filename U161201A_04

Injected By SMT

Tatal Amount Futurated

Total Amount Extracted 29.3 g Matrix % Moisture 92.2 Dilution Dry Weight Extracted 2.29 g Collected

 Dry Weight Extracted
 2.29 g
 Collected
 10/20/2016 09:36

 ICAL ID
 U161025
 Received
 10/25/2016 11:20

 CCal Filename(s)
 U161130B_15
 Extracted
 10/28/2016 19:00

 Method Blank ID
 BLANK-52586
 Analyzed
 12/01/2016 20:01

Native Isomers	Conc ng/Kg	EMPC ng/Kg	R L ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.5 3.8		1.0 J 1.0 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	83 97 85
2,3,7,8-TCDD Total TCDD	ND 1.0		1.0 1.0 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	84 97 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	Min Ark has also fass	5.0 5.0 5.0	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	75 82 84 86
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	69 70 82
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	85 79
1,2,3,7,8,9-HxCDF Total HxCDF	ND 8.3		5.0 5.0 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	100
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	10.0 ND 35.0		5.0 J 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.79 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	27.0 44.0		5.0 5.0			
OCDF OCDD	29.0 230.0		10.0 J 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367411_1613B

Revision 1

Report No.....10367411

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016031
Lab Sample ID 40140634002
Filename U161201A_05
Injected By SMT
Total Amount Extracted 18.1 g

% Moisture 88.2

Dry Weight Extracted 2.14 g

ICAL ID U161025

 ICAL ID
 U161025

 CCal Filename(s)
 U161130B_15

 Method Blank ID
 BLANK-52586

Matrix Solid Dilution NA

Collected 10/20/2016 09:36 Received 10/25/2016 11:20 Extracted 10/28/2016 19:00 Analyzed 12/01/2016 20:47

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.1 1.1	100 to 0 to 000 to 0000	1.0 J 1.0 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00 2.00	78 92 82
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	80 93 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	79 74 57 84 76
1,2,3,7,8-PeCDD Total PeCDD	ND ND	Mile with Said Say was	5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	66 69 79
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		5.0 5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	82 80 NA
Total HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND ND		5.0 5.0 5.0 5.0 5.0	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.00 0.20	NA 96
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.13 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND 13.0		10.0 10.0 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable NC = Not Calculated

EMPC = Estimated Maximum Possible Concentration
RL = Reporting Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No....10367411

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016032 Lab Sample ID 40140634003 Filename U161201A_06 Injected By SMT

<u> ace Analytical</u>

Total Amount Extracted 24.6 g Matrix Solid % Moisture 90.6 Dilution NA

2.31 g Dry Weight Extracted Collected 10/20/2016 10:12 **ICAL ID** U161025 Received 10/25/2016 11:20 CCal Filename(s) Extracted 10/28/2016 19:00 U161130B_15 Method Blank ID BLANK-52586 Analyzed 12/01/2016 21:33

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.4 9.9		1.0 J 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00 2.00	75 90 80
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	78 92 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	76 71 54 81 77
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	60 65 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND		5.0 5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	79 73 NA
Total HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	9.1 ND ND ND ND		5.0 J 5.0 5.0 5.0 5.0	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.00 0.20	NA 92
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	12.0 ND 42.0	 	5.0 J 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 1.0 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	39.0 64.0		5.0 5.0			
OCDF OCDD	34.0 370.0		10.0 J 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10367411

Tel: 612-607-1700

Fax: 612- 607-6444

<u> ace Analytical</u>

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016033 Lab Sample ID 40140634004 Filename U161201A_07 Injected By SMT 18.3 g Total Amount Extracted

% Moisture 87.8 2.23 g Dry Weight Extracted **ICAL ID** U161025 CCal Filename(s) U161130B_15 Method Blank ID BLANK-52586 Matrix Solid Dilution NA Collected Received

10/20/2016 10:12 10/25/2016 11:20

Extracted 10/28/2016 19:00 Analyzed 12/01/2016 22:20

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.4 2.6		1.0 J 1.0 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	72 84
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	77 74 87
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	Market and	5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 68 52 75 78
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	76 59 62 73
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND	 	5.0 5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	75 75 71 NA
Total HxCDF 1,2,3,4,7,8-HxCDD	5.3 ND	The state of the s	5.0 J 5.0	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.00 0.20	NA 83
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND		5.0 5.0 5.0 5.0	2,0,1,0-1000-0104	0.20	03
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	7.1 ND 24.0		5.0 J 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.67 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	20.0 35.0		5.0 J 5.0			
OCDF OCDD	27.0 230.0	- ga 10 pa	10.0 J 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected

RL = Reporting Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

REPORT OF LABORATORY ANALYSIS

without the written consent of Pace Analytical Services, Inc.

Report No....10367411 This report shall not be reproduced, except in full,

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016035
Lab Sample ID 40140634005
Filename U161201A_08
Injected By SMT
Total Amount Extracted 23.3 g
% Moisture 90.3

Method Blank ID

<u> ^zace Analytical</u>

 % Moisture
 90.3

 Dry Weight Extracted
 2.26 g

 ICAL ID
 U161025

 CCal Filename(s)
 U161130B_15

 23.3 g
 Matrix
 Solid

 90.3
 Dilution
 NA

 2.26 g
 Collected
 10/20/2016 11:25

 U161025
 Received
 10/25/2016 11:20

 U161130B_15
 Extracted
 10/28/2016 19:00

 BLANK-52586
 Analyzed
 12/01/2016 23:06

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.2 2.3	# # # # # # # # # # # # # # # # # # #	1.0 J 1.0 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	79 93 84
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	81 94 82
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	62 75 59 85 74
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	65 66 78
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	81 75
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	99
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND	49 to 100	5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.14 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND 29.0	600 day 600 day	10.0 10.0 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No....10367411

Pace Analytical[™]

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016036 Lab Sample ID 40140634006 Filename U161201A_09 Injected By SMT

Total Amount Extracted 15.2 g Matrix Solid
% Moisture 85.5 Dilution NA

Pre Weight Extracted 2.20 g

Dry Weight Extracted Collected 10/20/2016 11:25 2.20 g ICAL ID U161025 Received 10/25/2016 11:20 CCal Filename(s) U161130B 15 10/28/2016 19:00 Extracted Method Blank ID BLANK-52586 Analyzed 12/01/2016 23:52

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.3 2.4		1.0 J 1.0 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00 2.00	78 92 81
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	79 92 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	79 74 62 82 80
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	68 64 73
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		5.0 5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00 2.00	77 62 NA
Total HxCDF	ND		5.0	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	92
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.13 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND	and two year way to a	5.0 5.0			
OCDF OCDD	ND ND		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

REPORT OF LABORATORY ANALYSIS

RL = Reporting Limit

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X =%D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 102016030

 Lab Sample ID
 40140634001

 Filename
 U161201A_04

 Injected By
 SMT

Total Amount Extracted 29.3 g Matrix Solid % Moisture 92.2 Dilution NA

2.29 g Dry Weight Extracted Collected 10/20/2016 09:36 U161025 ICAL ID Received 10/25/2016 11:20 CCal Filename(s) U161130B_15 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 12/01/2016 20:01

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.50 6.20		0.32 J 0.32	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	83 97 85
2,3,7,8-TCDD Total TCDD	ND 1.00		0.36 0.36 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	84 97 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.62 5.20		0.31 0.23 J 0.27 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	75 82 84
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.45 0.45	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	86 69 70 82
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.40 0.71	0.52	0.38 J 0.38 J 0.30 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	85 79
1,2,3,7,8,9-HxCDF Total HxCDF	0.47 16.00		0.35 J 0.35 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.55 1.40 0.64 7.80		0.21 J 0.27 J 0.26 J 0.25 J	2,3,7,8-TCDD-37Cl4	0.20	100
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	10.00 1.10 36.00	 	0.28 J 0.47 J 0.38	Total 2,3,7,8-TCDD Equivalence: 1.7 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	27.00 44.00		0.37 0.37			
OCDF OCDD	29.00 230.00		0.23 J 0.27			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 102016031

 Lab Sample ID
 40140634002

 Filename
 U161201A_05

 Injected By
 SMT

Total Amount Extracted 18.1 g Matrix Solid % Moisture 88.2 Dilution NA

2.14 g Dry Weight Extracted Collected 10/20/2016 09:36 U161025 ICAL ID Received 10/25/2016 11:20 CCal Filename(s) U161130B_15 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 12/01/2016 20:47

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.10 1.80		0.29 J 0.29 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	78 92 82
2,3,7,8-TCDD Total TCDD	ND ND		0.28 0.28	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	80 93 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.91		0.49 0.24 0.36 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	74 57 84 76
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.23 0.23	1,2,3,4,7,6-FXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 69 79
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.23 ND ND		0.18 J 0.17 0.22	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	82 80
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.23		0.16 0.18 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 0.85		0.26 0.29 0.26 0.27 J	2,3,7,8-TCDD-37Cl4	0.20	96
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND 1.30	0.70 	0.25 J 0.29 0.27 J	Total 2,3,7,8-TCDD Equivalence: 0.18 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	2.00 4.10		0.33 J 0.33 J			
OCDF OCDD	 13.00	1.70	0.42 J 0.57 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Matrix

Dilution

Solid

NA

Client's Sample ID 102016032
Lab Sample ID 40140634003
Filename U161201A_06
Injected By SMT

Total Amount Extracted 24.6 g
% Moisture 90.6

Dry Weight Extracted 2.31 g Collected 10/20/2016 10:12 U161025 ICAL ID Received 10/25/2016 11:20 CCal Filename(s) U161130B_15 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 12/01/2016 21:33

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.40 10.00		0.33 J 0.33	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 90 80
2,3,7,8-TCDD Total TCDD	ND ND		0.41 0.41	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	78 92 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.73 2.20		0.55 0.31 J 0.43 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	71 54 81 77
1,2,3,7,8-PeCDD Total PeCDD	ND 1.00		0.42 0.42 J	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	60 65 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.50 1.10	0.73 	0.32 J 0.25 J 0.27 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	79 73
1,2,3,7,8,9-HxCDF Total HxCDF	0.71 18.00		0.27 J 0.28 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.10 0.92 10.00	0.46 	0.24 J 0.37 J 0.24 J 0.28 J	2,3,7,8-TCDD-37Cl4	0.20	92
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	12.00 42.00	1.30	0.19 J 0.35 J 0.27	Total 2,3,7,8-TCDD Equivalence: 2.2 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	39.00 64.00		0.48 0.48			
OCDF OCDD	34.00 370.00		0.36 J 0.51			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 102016033

 Lab Sample ID
 40140634004

 Filename
 U161201A_07

 Injected By
 SMT

Total Amount Extracted 18.3 g Matrix Solid % Moisture 87.8 Dilution NA

2.23 g Dry Weight Extracted Collected 10/20/2016 10:12 U161025 ICAL ID Received 10/25/2016 11:20 CCal Filename(s) U161130B_15 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 12/01/2016 22:20

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.40 3.20		0.28 J 0.28 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 84 77
2,3,7,8-TCDD Total TCDD	ND 0.99		0.60 0.60 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	74 87 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.65 4.10		0.48 0.22 J 0.35 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	68 52 75
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.35 0.35	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	78 59 62 73
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.87 0.52 ND		0.37 J 0.30 J 0.26	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	75 75 71
1,2,3,7,8,9-HxCDF Total HxCDF	ND 10.00		0.26 0.30 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.82 0.40 4.50	 	0.24 0.29 J 0.36 J 0.30 J	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	7.10 24.00	0.60 	0.21 J 0.32 J 0.26	Total 2,3,7,8-TCDD Equivalence: 1.3 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	20.00 35.00		0.29 J 0.29			
OCDF OCDD	27.00 230.00		0.49 J 0.53			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 102016035

 Lab Sample ID
 40140634005

 Filename
 U161201A_08

 Injected By
 SMT

Total Amount Extracted 23.3 g Matrix Solid % Moisture 90.3 Dilution NA

2.26 g Dry Weight Extracted Collected 10/20/2016 11:25 U161025 ICAL ID Received 10/25/2016 11:20 CCal Filename(s) U161130B_15 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 12/01/2016 23:06

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.2 3.6		0.30 J 0.30 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	79 93 84
2,3,7,8-TCDD Total TCDD	ND ND		0.34 0.34	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	81 94 82
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	0.45 0.25 0.35	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	75 59 85 74
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.30 0.30	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	65 66 78
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.21 0.23 0.28	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	81 75
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.27 0.25	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.27 0.29 0.26 0.27	2,3,7,8-TCDD-37Cl4	0.20	99
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 ND 2.8	 	0.25 J 0.32 0.28 J	Total 2,3,7,8-TCDD Equivalence: 0.19 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	3.6 6.5		0.33 J 0.33 J			
OCDF OCDD	2.6 29.0		0.47 J 0.38 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 102016036

 Lab Sample ID
 40140634006

 Filename
 U161201A_09

 Injected By
 SMT

Total Amount Extracted 15.2 g Matrix Solid % Moisture 85.5 Dilution NA

2.20 g Dry Weight Extracted Collected 10/20/2016 11:25 U161025 ICAL ID Received 10/25/2016 11:20 CCal Filename(s) U161130B_15 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 12/01/2016 23:52

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.30 3.60		0.27 J 0.27 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	78 92 81
2,3,7,8-TCDD Total TCDD	ND 0.52		0.34 0.34 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	79 92 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.34 0.22 0.28	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	74 62 82 80
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.26 0.26	1,2,3,4,7,8-1 XCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	68 64 73
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND	 	0.16 0.16 0.22 0.23	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	77 62 NA
Total HxCDF	ND		0.19	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.32 0.32 0.25 0.30	2,3,7,8-TCDD-37Cl4	0.20	92
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.47 ND 0.47		0.21 J 0.24 0.22 J	Total 2,3,7,8-TCDD Equivalence: 0.16 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.00 2.40		0.29 J 0.29 J			
OCDF OCDD	 6.20	0.66	0.52 J 0.92 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Blank Analysis Results

Lab Sample ID
Filename
Total Amount Extracted

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52586 U161101B_12 20.2 g U161025

U161025 U161101B_03 Matrix Solid Dilution NA

Extracted 10/28/2016 19:00 Analyzed 11/01/2016 23:24

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.033 0.033	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 96 73
2,3,7,8-TCDD Total TCDD	ND ND		0.054 0.054	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	73 91 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.067 0.036 0.051	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	70 77 85 83
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.053 0.053	1,2,3,4,7,8-113C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	71 85 93
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.031 0.030 0.028	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	101 88
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.025 0.029	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.038 0.034 0.024 0.032	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.027 ND 0.027	 	0.021 J 0.024 0.023 J	Total 2,3,7,8-TCDD Equivalence: 0.0010 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.057 0.057		0.019 J 0.019 J			
OCDF OCDD	ND 	0.17	0.051 0.047 JJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCS-52587 Filename U161101B 08 **Total Amount Extracted** 20.0 g ICAL ID U161025

CCal Filename U161101B 03

Method Blank ID BLANK-52586

Solid Matrix Dilution NA

10/28/2016 19:00 Extracted Analyzed 11/01/2016 20:19

Injected By SMT

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 50 50 100	10 8.8 51 55 50 55 53 53 53 53 62 59 56 51 100 110	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 69.0 70.0 170.0	102 88 101 110 99 110 106 107 107 106 124 117 112 102 101 101 101
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	10 100 100 100 100 100 100 100 100 100	8.8 72 92 74 71 87 71 72 75 83 85 68 84 90 100 170	3.1 22.0 20.0 21.0 13.0 21.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	88 72 92 74 71 87 71 72 75 83 85 68 84 90 101 84

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{* =} See Discussion

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Brian Basten **PACE Wisconsin** 1241 Bellevue Street Suite 9 Green Bay WI 54302

> **REPORT OF LABORATORY ANALYSIS FOR** PCDD/PCDF

Report Information:

Pace Project #: 10367095

Sample Receipt Date: 10/21/2016

Client Project #: 40140495

Client Sub PO #: N/A State Cert #: 999407970

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

lyne haut

Carolynne Trout, Project Manager

(612) 607-6351 (612) 607-6444 (fax)

Carolynne.Trout@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

December 29, 2016

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on eight samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzo-furans (PCDFs) using USEPA Method 1613B. The reporting limits were based on signal-to-noise measurements. Estimated Maximum Possible Concentrations (EMPCs) were treated as positives in the toxic equivalence calculations. Method blank and field sample results presented with reporting limits set to correspond to the lowest calibration points and a nominal 10-gram sample amount were included at the end of Appendix A. "Revision 1" of this report was prepared to include results for 2,3,7,8-TCDF. The current revision was prepared to provide results for all tetra through octa-chlorinated PCDDs and PCDFs.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 48-98%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present. Concentrations below the calibration range were flagged "J" and should be regarded as estimates. Concentrations above the calibration range were flagged "E" and should also be regarded as estimates. Values obtained from analyses of diluted extracts were flagged "D". Values obtained from separate analyses were flagged "N2". In sample 101916027, due to the high moisture content, the estimated detection limit (EDL) values were above the standard reporting limits; therefore, the EDLs were provided and flagged "A" on the results table in Appendix A. The values reported for 2,3,7,8-TCDF that were above the lowest calibration point were verified by second column confirmation analyses and flagged "V".

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show that PCDDs and PCDFs were not detected. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

Laboratory spike samples were also prepared using clean reference matrix that had been fortified with native standard materials. The recoveries of the native compounds ranged from 80-120% with relative percent differences of 0.9-5.8%. These results were within the target ranges for the method. Matrix spikes were not prepared with the sample batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Mississippi	MN00064
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	NE-OS-18-06
Arizona	AZ0014	Nevada	MN_00064_200
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New York (NEL	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Oklahoma	D9922
Georgia (DNR)	959	Oregon (ELAP)	MN200001-005
Guam	959	Oregon (OREL	MN300001-001
Hawaii	SLD	Pennsylvania	68-00563
Idaho	MN00064	Puerto Rico	MN00064
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennessee	TN02818
Iowa	368	Texas	T104704192-08
Kansas	E-10167	Utah (NELAP)	MN00064
Kentucky	90062	Virginia	00251
Louisiana	03086	Washington	C755
Maine	2007029	West Virginia #	9952C
Maryland	322	West Virginia D	382
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367095

Appendix A

Sample Management

Pace Analytical"
"www.pecstar.com
10347095

Νo	Workorder: 40140495	Workorder	Workorder Name:2381/2 MILITA	ITARY CREEK	X :	O	Owner Received Date:	d Date:	10/20/201	6 Results	/ 10/20/2016 Results Requested By:	y: 11/3/2016
Rep	Report To		Subcontract To						Request	Requested Analysis	对于"多种"的"一种"的"一种"的"一种"的"一种"的"一种"的"一种"的"一种"的"一	
Brian Br Pace Ar 1241 Be Suite 9 Green F	Brian Basten Pace Analytical Green Bay 1241 Bellevue Street Suite 9 Green Bay WI 54302		Pace Analyti 1700 Elm St Suite 200 Minneapolis,	Pace Analytical Minnesota 1700 Elm Street SE Suite 200 Minneapolis, MN 55414 Phone (642)207	sofia .							
				0011-100(2)		Preserved Containers.	378 TCDI	700101	·			
, Ja	Sample ID	Sample Type	Collect Cate/Time	a de la companya de l	Pevieseudy							LAB USE ONLY
-	101916018	PS	10/19/2016 09:12 40140495001		Solid 1		×					/@
2	101916019	8	10/19/2016 09:12 40140495002		Solid 1		×					200
60	101916021	82	10/19/2016 09:37 40140495003		Solid 1		×					803
4	101916022	PS	10/19/2016 09:37 40140495004		Solid 1		×					to
2	101916024	S	10/19/2016 10:35 40140495005		Solid		×	,				500
9	101916025	S	10/19/2016 10:35 40140495006		Solid 1		×					900
7	101916027	S	10/19/2016 12:09 40140495007		Solid 1		×					200
œ	101916028	PS	10/19/2016 12:09 40140495008		Solid 1		×					898
										Com	Comments	The state of the s
Transfers	ifers Released By		Date/Time	Received By	(Date/Time					
- (1/200 VOR	36	Call Allogion	Z	1860	6	12/1/1/29	क्षि				
4 69								(A
ပ္ပ	Cooler Temperature on Receipt	eipt 6.7 °C	°C Custody Seal	ly Seal Y	or N	Rec	Received on Ice	Y	Z	Sam	Samples Intac	Z

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

Document Name: Sample Condition Upon Receipt Form

Document No.: F-MN-1-213-rev.17 Document Revised: 02Aug2016
Page 1 of 2
Issuing Authority:
Pace Minnesota Quality Office

Sample Condition Upon Receipt Client Name: Pace GB			Projec	'* WO#: 10367095
Courier: Fed Ex UPS	Cuese		eltas t	
Commercial Pace Spee	☐USPS Dee ☐Other:		Client	
Tracking Number:	beeother:			10367095
Custody Seal on Cooler/Box Present? Yes	□No	Seals In	tact? 🏻 🗓	Yes No Optional: Proj. Due Date: Proj. Name:
.Packing Material: Bubble Wrap Bubb	ole Bags Nor	ie 🗀	Other:	Temp Blank? Yes No
	912167504 0143310098	e of Ice:	- Am	et 🔲 Blue 🔲 None 🔲 Samples on ice, cooling process has begun
Cooler Temp Read (°C): 6.5 Cooler T	emp Corrected (°C	1:0		Biological Tissue Frozen? Yes No NA
Temp should be above freezing to 6°C Correct USDA Regulated Soil (N/A, water sample)	tion Factor:	72	Da	te and Initials of Person Examining Contents: W 16/21/
Did samples originate in a quarantine zone within the MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check map	os)?'		Yes	ID, LA. Did samples originate from a foreign source (internationally, including Hawali and Puerto Rico)? Yes PNo-Q-338) and include with SCUR/COC paperwork.
			·	COMMENTS:
Chain of Custody Present?	YYes	□No	□n/a	1.
Chain of Custody Filled Out?	∰Yes	□No	□n/A	2.
Chain of Custody Relinquished?	Yes	No	□N/A	3.
Sampler Name and/or Signature on COC?	∏Yes	□No	ŽĮ N/A	4.
Samples Arrived within Hold Time?	A Yes	□No	□N/A	5.
Short Hold Time Analysis (<72 hr)?	∐Yes	Ď∏No	N/A	6.
Rush Turn Around Time Requested?	∐Yes	No	□n/A.	7.
Sufficient Volume?	¥Yes	□No	□N/A	8.
Correct Containers Used?	₽ 7Yes	□No	□n/A	9.
-Pace Containers Used?	<u>P</u> ∏Yes	□No	□N/A	
Containers Intact?	Yes	□No	∐N/A	10.
Filtered Volume Received for Dissolved Tests?	∐Yes	□No	Ď∄Ñ/A	11. Note if sediment is visible in the dissolved container
Sample Labels Match COC?	Yes	□N□	□n/A	12.
-Includes Date/Time/ID/Analysis Matrix:	<u> </u>			- -
All containers needing acid/base preservation have			A	13. ☐HNO₃ ☐H₂SO₄ ☐NaOH ☐HCI
checked? All containers needing preservation are found to be	∐Yes in	□No	MNA	Sample #
compliance with EPA recommendation?			ç	
(HNO₃, H₂SO₄, HCl<2; NaOH >9 Sulfide, NaOH>12 C Exceptions: VOA, Coliform, TOC, Oil and Grease,	yanide) []Yes	□No	₹ N/A	loitial when Lot # of added
DRO/8015 (water) DOC		□No	<u>N</u> N/A	completed: preservative:
leadspace in VOA Vials (>6mm)?	Yes	□Np	PN/A	14.
Trip Blank Present?	☐Yes	□No	ĬŽŅ/A	15.
Frip Blank Custody Seals Present?	□Yes	□No	™N/A	
Pace Trip Blank Lot # (If purchased):				
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
Person Contacted:				Date/Time:
Comments/Resolution:	······································			
			•••••	
Project Manager Paul	44.77			10/04/46
Project Manager Review: ote: Whenever there is a discrepancy affecting North Ca	cott Unge	males a	copy of th	Date: 10/24/16 is form will be sent to the North Carolina DEHNR Certification Office (I.e. out

hold, incorrect preservative, out of temp, incorrect containers).

<u> ace Analytical</u>

Method 1613B Blank Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID CCal Filename(s) BLANK-52542 F161030B_04 10.1 g F161011

F161030B_01

Matrix Dilution Solid NA

Extracted Analyzed

10/26/2016 15:55 10/30/2016 13:30

Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 87 78
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	71 80 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	82 83 83 75
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	68 64 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	77 50
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.00 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND ND	to a reco	10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916018

Lab Sample ID 40140495001

Filename F161031A_09

Injected By BAL

Tatal Amount Futurated 15 0 5

Total Amount Extracted 15.0 g Matrix Solid % Moisture 35.8 Dilution NA Dry Weight Extracted 9.63 g Collected 10/19

 Dry Weight Extracted
 9.63 g
 Collected
 10/19/2016
 09:12

 ICAL ID
 F161011
 Received
 10/21/2016
 09:30

 CCal Filename(s)
 F161030B_16
 Extracted
 10/26/2016
 15:55

 Method Blank ID
 BLANK-52542
 Analyzed
 10/31/2016
 06:34

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.3 18.0		1.0 V 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	79 95 74
2,3,7,8-TCDD Total TCDD	ND 2.7		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	69 81 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	8.0 15.0 210.0		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	76 85 86 84 78
1,2,3,7,8-PeCDD Total PeCDD	ND 15.0		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	79 71 75
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	58.0 24.0 25.0 20.0		5.0 5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	95 66 NA
Total HxCDF 1,2,3,4,7,8-HxCDD	970.0 10.0		5.0 5.0	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.00 0.20	NA 83
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	65.0 25.0 310.0		5.0 5.0 5.0			
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	580.0 52.0 2500.0		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 72 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	1600.0 2700.0	****	5.0 5.0			
OCDF OCDD	2300.0 17000.0		10.0 10.0 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

RL = Reporting Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916019 Lab Sample ID 40140495002 Filename F161031A_10 Injected By BAL **Total Amount Extracted** 12.8 g Matrix Solid % Moisture 16.9 Dilution NA 10.6 g Dry Weight Extracted Collected 10/19/2016 09:12 F161011 ICAL ID Received 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 07:23

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00	68 87 68
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	63 74 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 72 74 73 72
1,2,3,7,8-PeCDD Total PeCDD	ND ND	and the fact of the	5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	67 61 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	78 48
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND 13		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.25 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	11 20		5.0 5.0			
OCDF OCDD	16 120		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

Pace Analytical[™]

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916021

 Lab Sample ID
 40140495003

 Filename
 F161030B_09

 Injected By
 BAL

 Total Amount Extracted
 20.4 g

 % Moisture
 91.4

 Dry Weight Extracted
 1.75 g

 Dry Weight Extracted
 1.75 g

 ICAL ID
 F161011

 CCal Filename(s)
 F161030B_01

 Method Blank ID
 BLANK-52542

Matrix Solid
Dilution NA
Collected 10/19/

Received

Extracted

Analyzed

10/19/2016 09:37 10/21/2016 09:30 10/26/2016 15:55

10/30/2016 17:33

Native Conc **EMPC** RL internal ng's Percent Isomers ng/Kg ng/Kg Standards Added Recovery ng/Kg 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 2,3,7,8-TCDF 9.9 1.0 V 2.00 78 Total TCDF 2.00 89.0 1.0 90 2.00 ,2,3,7,8-PeCDF-13C 76 2,3,7,8-TCDD ND 2,3,4,7,8-PeCDF-13C 2.00 73 1.0 Total TCDD 79 12.0 1.0 1,2,3,7,8-PeCDD-13C 2.00 1,2,3,4,7,8-HxCDF-13C 2.00 78 1,2,3,7,8-PeCDF 5.0 41.0 1,2,3,6,7,8-HxCDF-13C 2.0078 2,3,4,7,8-PeCDF 93.0 5.0 2.00 81 2,3,4,6,7,8-HxCDF-13C Total PeCDF 1100.0 5.0 1,2,3,7,8,9-HxCDF-13C 2.00 82 2.00 74 1,2,3,4,7,8-HxCDD-13C 1,2,3,7,8-PeCDD 15.0 5.0 2.00 69 1,2,3,6,7,8-HxCDD-13C Total PeCDD 96.0 5.0 1,2,3,4,6,7,8-HpCDF-13C 2.00 63 2.00 1,2,3,4,7,8,9-HpCDF-13C 68 1,2,3,4,6,7,8-HpCDD-13C 1,2,3,4,7,8-HxCDF 290.0 5.0 2.00 81 1,2,3,6,7,8-HxCDF 110.0 5.0 62 OCDD-13C 4.00 2,3,4,6,7,8-HxCDF 130.0 5.0 1,2,3,7,8,9-HxCDF 110.0 5.0 1,2,3,4-TCDD-13C 2.00 NA Total HxCDF 5.0 4800.0 1,2,3,7,8,9-HxCDD-13C 2.00 NA 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 48.0 5.0 2,3,7,8-TCDD-37Cl4 0.20 78 340.0 5.0 1,2,3,7,8,9-HxCDD 110.0 5.0 Total HxCDD 1400.0 5.0 1,2,3,4,6,7,8-HpCDF 2600.0 5.0 Total 2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF 210.0 5.0 Equivalence: 360 ng/Kg Total HpCDF 11000.0 5.0 (Lower-bound - Using ITE Factors) 1,2,3,4,6,7,8-HpCDD 7800.0 5.0 Total HpCDD 13000.0 5.0 **OCDF** 9600.0 10.0 OCDD 73000.0 10.0 Ε

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected

RL = Reporting Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916022 Lab Sample ID 40140495004 Filename F161030B__10 Injected By BAL Total Amount Extracted 20.0 g % Moisture 75.4 4.92 g Dry Weight Extracted

ICAL ID F161011 CCal Filename(s) F161030B_01 Method Blank ID BLANK-52542 Matrix Solid Dilution NA

Collected 10/19/2016 09:37 Received 10/21/2016 09:30 10/26/2016 15:55 Extracted Analyzed 10/30/2016 18:22

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	11.0 240.0		1.0 V 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	80 95 79
2,3,7,8-TCDD Total TCDD	2.4 53.0		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	79 74 81 87
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	76.0 170.0 2700.0		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	84 82 81
1,2,3,7,8-PeCDD Total PeCDD	42.0 380.0		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	72 71 DN2 82 DN2
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	890.0 360.0 390.0 190.0		5.0 5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	86 DN2 85 DN2 NA
Total HxCDF	15000.0		5.0 E	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	160.0 960.0 310.0 4700.0	50 60 60 in w 50 60 60 in w 50 70 60 60 in	5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	12000.0 960.0 58000.0	and the 190-up lays	5.0 DN 5.0 DN 5.0 DN	2 Equivalence: 1200 ng/Kg	Factors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	31000.0 54000.0		5.0 DN 5.0 DN			
OCDF OCDD	53000.0 310000.0		10.0 DN 10.0 ED			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

Pace Analytical[™]

Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916024 Lab Sample ID 40140495005 Filename F161030B 11 Injected By BAL **Total Amount Extracted** 15.9 g Matrix Solid % Moisture 46.3 Dilution NA 8.54 g Dry Weight Extracted Collected 10/19/2016 10:35 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B 01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 19:11

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	15.0 300.0	24 pt	1.0 V 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	77 90 78
2,3,7,8-TCDD Total TCDD	2.1 95.0	gain dell' duel Bar mage Mills dans diper sper	1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	74 83 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	190.0 2400.0	77 	5.0 P 5.0 5.0	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	81 84 87 79
1,2,3,7,8-PeCDD Totał PeCDD	27.0 380.0		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	71 71 71 76
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	620.0 230.0 280.0		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	94 93 DN2
1,2,3,7,8,9-HxCDF Total HxCDF	250.0 10000.0		5.0 5.0 E	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	100.0 740.0 230.0 3400.0		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	5700.0 570.0 24000.0		5.0 E 5.0 5.0 E	Total 2,3,7,8-TCDD Equivalence: 780 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	17000.0 27000.0		5.0 E 5.0 E			•
OCDF OCDD	18000.0 170000.0		10.0 DN 10.0 ED	N2 DN2		

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected

RL = Reporting Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

10/30/2016 20:00

Pace Analytical[™]

Method Blank ID

Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Analyzed

Client's Sample ID 101916025 Lab Sample ID 40140495006 Filename F161030B 12 Injected By BAL 13.5 g Total Amount Extracted Matrix Solid % Moisture 55.4 Dilution NA 6.02 g Dry Weight Extracted Collected 10/19/2016 10:35 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) Extracted 10/26/2016 15:55 F161030B_01

BLANK-52542

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	9	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	71.0 1600.0		1.0 1.0	V	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 90 74
2,3,7,8-TCDD Total TCDD	9.3 490.0		1.0 1.0		1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	72 81 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	270.0 820.0 11000.0	 	5.0 5.0 5.0		1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HXCDF-13C 2,3,4,6,7,8-HXCDF-13C 1,2,3,7,8,9-HXCDF-13C 1,2,3,4,7,8-HXCDD-13C	2.00 2.00 2.00 2.00 2.00	77 80 80 78
1,2,3,7,8-PeCDD Total PeCDD	89.0 1900.0	******	5.0 5.0		1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	69 70 DN2 87 DN2
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2500.0 1000.0 1200.0		5.0 5.0 5.0		1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	93 DN2 96 DN2
1,2,3,7,8,9-HxCDF Total HxCDF	1100.0 47000.0		5.0 5.0	E	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	370.0 2800.0 780.0 13000.0		5.0 5.0 5.0 5.0	E	2,3,7,8-TCDD-37Cl4	0.20	75
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	27000.0 2500.0 120000.0		5.0 5.0 5.0	DN2 DN2 EDN2	Total 2,3,7,8-TCDD Equivalence: 3200 ng/Kg 2 (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	75000.0 120000.0		5.0 5.0	EDN2			
OCDF OCDD	65000.0 570000.0		10.0 10.0	DN2 EDN2	2		

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367095_1613B

Revision 2

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916027 Lab Sample ID 40140495007 Filename F161030B_13 Injected By BAL**Total Amount Extracted** 20.4 g Matrix Solid % Moisture 91.9 Dilution NA Dry Weight Extracted 1.65 g Collected

 Dry Weight Extracted
 1.65 g
 Collected
 10/19/2016 12:09

 ICAL ID
 F161011
 Received
 10/21/2016 09:30

 CCal Filename(s)
 F161030B_01
 Extracted
 10/26/2016 15:55

 Method Blank ID
 BLANK-52542
 Analyzed
 10/30/2016 20:48

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	7.2 120.0		1.80 AV 1.8	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	75 89
2,3,7,8-TCDD Total TCDD	ND 26.0	Mill did he hay day.	2.30 A 2.3	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	77 74 82
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	29.0 67.0 880.0	die hit hit var err die hit hat var arr die hit hat var arr	5.0 J 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	78 80 81 82
1,2,3,7,8-PeCDD Total PeCDD	11.0 140.0		5.0 J 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	77 71 66 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	250.0 110.0 110.0		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	86 65
1,2,3,7,8,9-HxCDF Total HxCDF	76.0 3600.0		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	47.0 260.0 100.0 1400.0		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2200.0 200.0 9100.0		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 310 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	6500.0 11000.0		5.0 5.0			
OCDF OCDD	8000.0 72000.0	the tip day you have	10.0 10.0 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

RL = Reporting Limit

NC = Not Applicable

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

A = Reporting Limit based on signal to noise

E = Exceeds calibration range

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

Pace Analytical[™]

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916028 Lab Sample ID 40140495008 Filename F161030B_14 Injected By **Total Amount Extracted** 17.5 g Matrix Solid % Moisture 87.2 Dilution NA Dry Weight Extracted 2.24 g Collected 10/19/2016 12:09 10/21/2016 09:30 ICAL ID F161011 Received CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 BLANK-52542 Method Blank ID Analyzed 10/30/2016 21:37

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.8 13.0		1.0 J 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	79 98 82
2,3,7,8-TCDD Total TCDD	ND 2.2		1.0 1.0 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	77 87 83
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 5.3 61.0		5.0 5.0 J 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	84 85 86 83
1,2,3,7,8-PeCDD Total PeCDD	ND 8.2		5.0 5.0 J	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	72 69 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	17.0 9.0 8.3 5.8		5.0 J 5.0 J 5.0 J 5.0 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	89 58 NA
Total HxCDF	300.0		5.0	1,2,3,7,8,9-HxCDD-13C	2.00	ŇÁ
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 18.0 7.2 100.0	;	5.0 5.0 J 5.0 J 5.0	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	150.0 14.0 640.0		5.0 5.0 J 5.0	Total 2,3,7,8-TCDD Equivalence: 22 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	470.0 810.0		5.0 5.0			
OCDF OCDD	540.0 5700.0		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X =%D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Matrix

Dilution

Solid

NA

Client's Sample ID 101916018
Lab Sample ID 40140495001
Filename F161031A_09
Injected By BAL

Total Amount Extracted 15.0 g
% Moisture 35.8

9.63 g Dry Weight Extracted Collected 10/19/2016 09:12 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 06:34

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.3 18.0		0.160 V 0.160	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	79 95 74
2,3,7,8-TCDD Total TCDD	3.8	0.16	0.120 J 0.120	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	69 81 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	8.0 15.0 220.0		0.200 0.160 0.180	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	85 86 84 78
1,2,3,7,8-PeCDD Total PeCDD	2.6 21.0		0.110 J 0.110	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	79 71 75
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	58.0 24.0 25.0		0.500 0.460 0.460	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	95 66
1,2,3,7,8,9-HxCDF Total HxCDF	20.0 970.0		0.490 0.480	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	10.0 65.0 25.0 310.0		0.600 0.690 0.540 0.610	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	580.0 52.0 2500.0		0.160 0.130 0.150	Total 2,3,7,8-TCDD Equivalence: 73 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	1600.0 2700.0		0.084 0.084			
OCDF OCDD	2300.0 17000.0		0.140 0.150 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

I = Interference present

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916019

Lab Sample ID 40140495002

Filename F161031A_10

Injected By BAL

Total Amount Extracted 12.8 g

Total Amount Extracted 12.8 g Matrix Solid % Moisture 16.9 Dilution NA

10.6 g Dry Weight Extracted Collected 10/19/2016 09:12 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 07:23

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.120 0.120	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	68 87 68
2,3,7,8-TCDD Total TCDD	ND ND		0.120 0.120	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	63 74 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.24 0.24		0.110 0.076 J 0.094 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	72 74 73
1,2,3,7,8-PeCDD Total PeCDD	ND 0.18		0.080 0.080 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	72 67 61 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF		0.40 0.23 0.21	0.110 JJ 0.130 JJ 0.100 JJ	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	78 48
1,2,3,7,8,9-HxCDF Total HxCDF	ND 5.80		0.150 0.120 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.21 1.50	0.47 	0.160 0.130 J 0.130 J 0.140 J	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	4.60 0.38 18.00		0.120 J 0.170 J 0.150	Total 2,3,7,8-TCDD Equivalence: 0.57 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	11.00 20.00		0.240 0.240			
OCDF OCDD	16.00 120.00		0.240 0.390			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916021

 Lab Sample ID
 40140495003

 Filename
 F161030B_09

 Injected By
 BAL

Total Amount Extracted 20.4 g Matrix Solid % Moisture 91.4 Dilution NA

1.75 g Dry Weight Extracted Collected 10/19/2016 09:37 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 17:33

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	9.90 89.00		0.46 V 0.46	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	78 90
2,3,7,8-TCDD	0.97		0.62 J	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C	2.00 2.00	76 73
Total TCDD	13.00		0.62	1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00	79 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	41.00 93.00		0.22 0.27	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C	2.00 2.00	78 81
Total PeCDF	1100.00		0.24	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00	82 74
1,2,3,7,8-PeCDD Total PeCDD	15.00 99.00		0.33 J 0.33	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00	69 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	290.00 110.00		1.50 1.40	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	68 81 62
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	130.00 110.00 4800.00		1.40 1.60 1.50	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	48.00 340.00 110.00 1400.00	 	2.30 1.40 1.40 1.70	2,3,7,8-TCDD-37Cl4	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2600.00 210.00 11000.00		0.25 0.39 0.32	Total 2,3,7,8-TCDD Equivalence: 360 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	7800.00 13000.00		0.30 0.30			
OCDF OCDD	9600.00 73000.00		0.75 0.31 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916022

 Lab Sample ID
 40140495004

 Filename
 F161030B_10

 Injected By
 BAL

Total Amount Extracted 20.0 g Matrix Solid % Moisture 75.4 Dilution NA

Dry Weight Extracted Collected 4.92 g 10/19/2016 09:37 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID Analyzed BLANK-52542 10/30/2016 18:22

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	11.0 240.0		0.650 V 0.650	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	80 95 79
2,3,7,8-TCDD Total TCDD	2.4 54.0		0.500 0.500	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	74 81 87
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	76.0 170.0 2700.0		0.290 0.120 0.210	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	79 84 82 81
1,2,3,7,8-PeCDD Total PeCDD	42.0 380.0		0.083 0.083	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	72 71 DN2 82 DN2
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	890.0 360.0 390.0 190.0 15000.0		1.400 2.100 1.000 1.700 1.500 E	1,2,3,4,6,7,8-HpCDD-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 4.00 2.00 2.00	86 DN2 85 DN2 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	160.0 960.0 310.0 4700.0	 	1.900 1.700 1.800 1.800	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	12000.0 960.0 58000.0		0.300 DN2 0.440 DN2 0.370 DN2	Total 2,3,7,8-TCDD Equivalence: 1200 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	31000.0 54000.0		0.630 DN2 0.630 DN2			
OCDF OCDD	53000.0 310000.0		0.700 DN2 1.200 EDN2	2		

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916024

 Lab Sample ID
 40140495005

 Filename
 F161030B_11

 Injected By
 PAI

Injected By
Total Amount Extracted
% Moisture

BAL
15.9 g
Matrix
Dilution

Dry Weight Extracted Collected 8.54 g 10/19/2016 10:35 Received ICAL ID F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID Analyzed BLANK-52542 10/30/2016 19:11

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	15.0 300.0		0.440 V 0.440	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	77 90 78
2,3,7,8-TCDD Total TCDD	2.1 96.0		0.370 0.370	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	74 83 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	190.0 2400.0	77 	0.170 P 0.150 0.160	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	81 84 87 79
1,2,3,7,8-PeCDD Total PeCDD	27.0 390.0		0.110 0.110	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	71 71 71 76
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	620.0 230.0 280.0		0.680 0.880 0.880	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	94 93 DN2
1,2,3,7,8,9-HxCDF Total HxCDF	250.0 10000.0		0.980 0.850 E	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	100.0 740.0 230.0 3400.0		1.100 1.200 1.100 1.100	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	5700.0 570.0 24000.0		0.073 E 0.097 0.085 E	Total 2,3,7,8-TCDD Equivalence: 780 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	17000.0 27000.0		0.250 E 0.250 E			
OCDF OCDD	18000.0 170000.0		1.300 DN2 1.400 EDN			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916025

 Lab Sample ID
 40140495006

 Filename
 F161030B_12

 Injected By
 BAL

Total Amount Extracted 13.5 g Matrix Solid % Moisture 55.4 Dilution NA

6.02 g Dry Weight Extracted Collected 10/19/2016 10:35 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID Analyzed BLANK-52542 10/30/2016 20:00

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	71.0 1600.0		0.67 V 0.67	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 90 74
2,3,7,8-TCDD Total TCDD	9.3 490.0		0.86 0.86	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	72 81 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	270.0 820.0 11000.0		0.44 0.35 0.39	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	77 80 80 78
1,2,3,7,8-PeCDD Total PeCDD	89.0 1900.0		0.17 0.17	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	76 69 70 DN: 87 DN:
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2500.0 1000.0 1200.0	 	3.20 3.30 2.70	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	93 DN2 96 DN2
1,2,3,7,8,9-HxCDF Total HxCDF	1100.0 47000.0		4.40 3.40 E	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	370.0 2800.0 780.0 13000.0		0.26 0.29 0.26 0.27 E	2,3,7,8-TCDD-37Cl4	0.20	75
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	27000.0 2500.0 120000.0		2.30 DN2 3.70 DN2 3.00 EDN		actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	75000.0 120000.0		2.80 EDN 2.80 EDN			
OCDF OCDD	65000.0 570000.0		2.60 DN2 3.80 EDN			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916027

 Lab Sample ID
 40140495007

 Filename
 F161030B_13

 Injected By
 BAL

Total Amount Extracted 20.4 g Matrix Solid % Moisture 91.9 Dilution NA

Dry Weight Extracted 1.65 g Collected 10/19/2016 12:09 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 20:48

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	7.2 120.0		1.80 V 1.80	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	75 89
TOTAL TODE	120.0		1.00	1,2,3,7,8-PeCDF-13C	2.00	77
2,3,7,8-TCDD	ND		2.30	2,3,4,7,8-PeCDF-13C	2.00	74
Total TCDD	26.0		2.30	1,2,3,7,8-PeCDD-13C	2.00	82
				1,2,3,4,7,8-HxCDF-13C	2.00	78
1,2,3,7,8-PeCDF	29.0		0.48 J	1,2,3,6,7,8-HxCDF-13C	2.00	80
2,3,4,7,8-PeCDF	67.0		0.61	2,3,4,6,7,8-HxCDF-13C	2.00	81
Total PeCDF	890.0		0.54	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00	82 77
1,2,3,7,8-PeCDD	11.0		1.00 J	1,2,3,4,7,8-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C	2.00	77 71
Total PeCDD	140.0		1.00	1,2,3,4,6,7,8-HpCDF-13C	2.00	66
10101110022			1.00	1,2,3,4,7,8,9-HpCDF-13C	2.00	72
1,2,3,4,7,8-HxCDF	250.0		2.50	1,2,3,4,6,7,8-HpCDD-13C	2.00	86
1,2,3,6,7,8-HxCDF	110.0		1.80	OCDD-13C	4.00	65
2,3,4,6,7,8-HxCDF	110.0		1.80			
1,2,3,7,8,9-HxCDF	76.0		1.80	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	3600.0		1.90	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD	47.0		2.80	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,6,7,8-HxCDD	260.0		1.80	2,0,7,0 1000 07011	0.20	70
1,2,3,7,8,9-HxCDD	100.0		1.80			
Total HxCDD	1400.0		2.10			
1 2 2 4 6 7 0 HaCDE	2200.0		1.10	Total 2.2.7.9 TCDD		
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	200.0		1.10	Total 2,3,7,8-TCDD Equivalence: 310 ng/Kg		
Total HpCDF	9100.0		1.40	(Lower-bound - Using ITE F	actors)	
Τοιαι Γιροδί	3100.0		1.40	(Lower board Osing ITE 1	actors)	
1,2,3,4,6,7,8-HpCDD	6500.0		1.90			
Total HpCDD	11000.0		1.90			
OCDF	8000.0		1.30			
OCDD	72000.0		3.00 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916028

 Lab Sample ID
 40140495008

 Filename
 F161030B_14

 Injected By
 BAL

Total Amount Extracted 17.5 g Matrix Solid % Moisture 87.2 Dilution NA

2.24 g Dry Weight Extracted Collected 10/19/2016 12:09 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 21:37

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.8 14.0		0.72 J 0.72	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	79 98 82
2,3,7,8-TCDD Total TCDD	ND 2.2		0.65 0.65 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	77 87 83
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	2.2 5.3 68.0		0.35 J 0.22 J 0.29	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	84 85 86 83
1,2,3,7,8-PeCDD Total PeCDD	9.6	1.1	0.61 J 0.61 J	1,2,3,4,7,8-11,CDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	72 69 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	17.0 9.0 8.3 5.8	 	1.00 J 1.00 J 0.64 J 1.30 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	89 58 NA
Total HxCDF	300.0		1.00	1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	3.9 18.0 7.2 110.0		1.40 J 1.00 J 0.70 J 1.00	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	150.0 14.0 640.0	 	0.77 0.66 J 0.72	Total 2,3,7,8-TCDD Equivalence: 23 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	470.0 810.0		1.30 1.30			
OCDF OCDD	540.0 5700.0		1.20 2.10			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Blank Analysis Results

Lab Sample ID
Filename
Total Amount Extracted

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52542 F161030B_04 10.1 g

F161011 F161030B_01 Matrix Solid Dilution NA

Extracted 10/26/2016 15:55 Analyzed 10/30/2016 13:30

Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.079 0.079	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 87 78
2,3,7,8-TCDD Total TCDD	ND ND		0.130 0.130	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	71 80 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	0.049 0.033 0.041	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	82 83 83 75
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.059 0.059	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	68 64 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND ND ND	 	0.035 0.032 0.043 0.058 0.042	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 4.00 2.00 2.00	77 50 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.057 0.067 0.083 0.069	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.037 0.056 0.047	Total 2,3,7,8-TCDD Equivalence: 0.00024 ng/Kg (Lower-bound - Using ITE F		
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.062 0.062			
OCDF OCDD	ND 	0.24	0.140 0.150 IJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Laboratory Control Spike Results

Matrix

Dilution

Lab Sample ID LCS-52543
Filename F161030B_02
Total Amount Extracted IO.1 g
ICAL ID F161011

 ICAL ID
 F161011
 Extracted
 10/26/2016 15:55

 CCal Filename
 F161030B_01
 Analyzed
 10/30/2016 11:54

Method Blank ID BLANK-52542 Injected By BAL

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 50 50 100 10	11 8.3 57 60 50 60 56 53 52 59 58 58 52 48 45 110	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 61.0 69.0 70.0 170.0	105 83 115 120 100 119 112 106 104 118 115 117 103 96 91 109
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HyCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 0CDD-13C	100 100 100 100 100 100 100 100 100 100	8.1 81 94 86 81 92 80 90 89 91 77 76 68 69 81 110	3.1 22.0 20.0 21.0 13.0 21.0 19.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	81 81 94 86 81 92 80 90 89 91 77 76 68 69 81

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{* =} See Discussion

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Laboratory Control Spike Results

Matrix

Dilution

Lab Sample ID LCSD-52544 Filename F161030B 03 **Total Amount Extracted** 10.1 g ICAL ID F161011

10/26/2016 15:55 Extracted CCal Filename Analyzed 10/30/2016 12:41 F161030B 01

Injected By Method Blank ID BLANK-52542 **BAL**

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 50 100 100	11 8.0 55 59 49 57 55 53 49 57 59 58 51 47 45 110 110	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 69.0 70.0 170.0	109 80 110 118 98 114 110 105 99 115 117 116 102 94 90 110 107
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	10 100 100 100 100 100 100 100 100 100	7.7 73 88 77 74 81 75 79 79 81 67 70 61 62 73 98	3.1 22.0 20.0 21.0 13.0 21.0 19.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	77 73 88 77 74 81 75 79 79 81 67 70 61 62 73 49

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{* =} See Discussion

Method 1613B

Spike Recovery Relative Percent Difference (RPD) Results

Client PACE Wisconsin

 Spike 1 ID
 LCS-52543
 Spike 2 ID
 LCSD-52544

 Spike 1 Filename
 F161030B_02
 Spike 2 Filename
 F161030B_03

Compound	Spike 1 %REC	Spike 2 %REC	%RPD	
2,3,7,8-TCDF	105	109	3.7	
2,3,7,8-TCDD	83	80	3.7	
1,2,3,7,8-PeCDF	115	110	4.4	
2,3,4,7,8-PeCDF	120	118	1.7	
1,2,3,7,8-PeCDD	100	98	2.0	
1,2,3,4,7,8-HxCDF	119	114	4.3	
1,2,3,6,7,8-HxCDF	112	110	1.8	
2,3,4,6,7,8-HxCDF	106	105	0.9	
1,2,3,7,8,9-HxCDF	104	99	4.9	
1,2,3,4,7,8-HxCDD	118	115	2.6	
1,2,3,6,7,8-HxCDD	115	117	1.7	
1,2,3,7,8,9-HxCDD	117	116	0.9	
1,2,3,4,6,7,8-HpCDF	103	102	1.0	
1,2,3,4,7,8,9-HpCDF	96	94	2.1	
1,2,3,4,6,7,8-HpCDD	91	90	1.1	
OCDF	109	110	0.9	
OCDD	101	107	5.8	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Brian Basten **PACE Wisconsin** 1241 Bellevue Street Suite 9 Green Bay WI 54302

> **REPORT OF LABORATORY ANALYSIS FOR** PCDD/PCDF

Report Information:

Pace Project #: 10367089

Sample Receipt Date: 10/21/2016

Client Project #: 40140496

Client Sub PO #: N/A State Cert #: 999407970

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

lyne haut

Carolynne Trout, Project Manager

(612) 607-6351 (612) 607-6444 (fax)

Carolynne.Trout@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

January 5, 2017

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on fifteen samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using USEPA Method 1613B. The reporting limits were based on signal-to-noise measurements. Estimated Maximum Possible Concentrations (EMPCs) were treated as positives in the toxic equivalence calculations. Method blank and field sample results presented with reporting limits set to correspond to the lowest calibration points and a nominal 10-gram sample amount were included at the end of Appendix A. "Revision 1" of this report was prepared to include results for 2,3,7,8-TCDF. The current revision was prepared to provide results for all tetra through octa-chlorinated PCDDs and PCDFs.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 49-96%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J" and should be regarded as estimates. Concentrations above the calibration range were flagged "E" and should also be regarded as estimates. Values obtained from analyses of diluted extracts were flagged "D". Values obtained from separate analyses were flagged "N2". The values reported for 2,3,7,8-TCDF that were above the lowest calibration point were verified by second column confirmation analyses and flagged "V".

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show two of the three blanks to contain trace levels of selected congeners. These levels were below the calibration range for the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results tables and may be, at least partially, attributed to the background. It should be noted that levels less than ten times the background are not generally considered to be statistically different from the background.

Laboratory and matrix spike samples were also prepared using clean sand or sample matrix that had been fortified with native standard materials. The recoveries of the native compounds generally ranged from 80-127% with relative percent differences (RPDs) of 0.3-32.4%. The background-subtracted recovery values obtained for 1,2,3,4,6,7,8-HpCDF, HpCDD, OCDF, and OCDD in the matrix spike and/or matrix spike duplicate were outside the target ranges. Also, the RPD values obtained for 1,2,3,4,6,7,8-HpCDF, HpCDD, and OCDD in the matrix spike analyses were above the 20% target upper limit. These deviations may be due to the levels of the affected congeners in the sample material and/or sample inhomogeneity. Matrix spikes were prepared with one of the 10/26/2016 extraction batches using sample material from a separate project; results from these analyses will be provided upon request. Matrix spikes were not prepared with the remaining 10/26/2016 sample batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Mississippi	MN00064
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	NE-OS-18-06
Arizona	AZ0014	Nevada	MN_00064_200
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New York (NEL	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Oklahoma	D9922
Georgia (DNR)	959	Oregon (ELAP)	MN200001-005
Guam	959	Oregon (OREL	MN300001-001
Hawaii	SLD	Pennsylvania	68-00563
Idaho	MN00064	Puerto Rico	MN00064
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennessee	TN02818
Iowa	368	Texas	T104704192-08
Kansas	E-10167	Utah (NELAP)	MN00064
Kentucky	90062	Virginia	00251
Louisiana	03086	Washington	C755
Maine	2007029	West Virginia #	9952C
Maryland	322	West Virginia D	382
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

ਰ
Õ
Ţ
S
<u>()</u>
_
ሗ
0
_
.=
a
کّ
\overline{c}
J

\$	r: 40140496	rkorder	Workorder Name: 2381/2 MILIT	ILITARY CREEK	픴			Š	۶. چ	ceive	Owner Received Date:	<u></u>	10/2	0/201	16 Re	STITES	Red	10/20/2016 Results Requested By:	By:	11/3/2016	
8	Reporter	温度が延迟さ	Subcontract To	£10									R	duest	Requested Analysis	Aysis		图 起	湯温を	人可是的 是	₹.
Brie Pac 124	Brian Basten Pace Analytical Green Bay 1241 Bellevue Street		Pace A 1700 E Suite 2	Pace Analytical Minnesota 1700 Elm Street SE Suite 200	sota					<u>.</u>					·						1
Suil	Suite 9 Green Bay, WI 54302		Minne: Phone	Minneapolis, MN 55414 Phone (612)607-1700	4						DD										
				<u>-</u> . 	نگنا	Pre	Serve	Preserved Confainers	aire	15	878 TC										
Le	Sample ID	Sample Collect Vie Date/Tim	9.	Ol deal	Matrix	bevieserqnJ				II	1631B 2									LAB USE ONLY	
	101716001	PS	10/17/2016 13:44 40140496001	40140496001	Solid	-					×			-			-			B	Т
7	101716002	PS	10/17/2016 13:44	40140496002	Solid	-	<u> </u>			Ė	×						-		<u> </u>	804	Т
က	101716003	PS	10/17/2016 13:19	40140496003	Solid	1	\vdash				×			_			_			803	Γ.
4	101716004	PS	10/17/2016 13:19	40140496004	Sofid	+					×			_			·			ħ8	I
£	101716005	PS	10/17/2016 14:32	40140496005	Solid					_	×									8 1	Γ
و	101716006	S	10/17/2016 14:32	40140496006	Solid	-					×						_			000	1
_	101716007	PS	10/17/2016 14:33	40140496007	Solid	-					×									8	т
œ	101816008	PS	10/18/2016 13:42	40140496008	Solid	-					×									800	<u> </u>
6	101816009	28	10/18/2016 13:42	40140496009	Solid	T-					×									200	
9	101815011	S	10/18/2016 11:33	40140496010	Solid	1					×			_	_		_		_	010	_
Ξ	101816012	8	10/18/2016 12:45	40140496011	Solid	1	_				×									30	
72	101816013	82	10/18/2016 12:45	40140496012	Solid	-	_				×						_			ゆう	Ι
1 3	101816015	PS	10/18/2016 10:17	40140496013	Solid	1	_	_		_	×						_		-	613	·····
4	101816016	8	10/18/2016 10:17	40140496014	Solid	-					×									÷ €	
15	101816017	S.	10/18/2016 10:18 40140496015		Solid	1					×									r E	1

Page 1 of 2

FMT-ALL-C-002rev.00 24March2009

10367089

\$1216121	rased by	Date/Time	Received By	Date/Time			
2 4	M Same Date	CAROTHO 16	o Maso	126.4/14.92			
3 Cooler Te	3 Cooler Temperature on Receipt されい	C Custody Seal	C or N	Received on Ice	Z	Samples Intact(Y)	2
This ch.	***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.	ocation/name of th	f the sampling site, sampler's name and signature m this information is available in the owner laboratory.	e and signature may r owner laboratory.	of be provided o		
Thursday, O.	Thursday, October 20, 2016 4:11:07 PM				ENT. ALL C. 003mm, 00 24Mmsst 2000	00 24March2000	Page 2 of 2

Document Revised: 02Aug2016 Document Name: Page 1 of 2 Issuing Authority: Pace Minnesota Quality Office Sample Condition Upon Receipt Form Document No.: F-MN-L-213-rev.17

Sample Condition Upon Receipt Client Name:			Projec	# W0#:10367089
tace 68			_	MOH . TOOO! DOO
Courier: Fed Ex UPS	USPS		Client	
Commercial Pace SpeeDee	Other:			
Tracking Number:	···			10007000
Custody Seal on Cooler/Box Present? Yes No	o	Seals in:	tact? (Yes No Optional: Proj. Due Date: Proj. Name:
Packing Waterial: Bubble Wrap Bubble Bags	□Nor	ie 🗌	Other:	Temp Blank? ☐ Yes ☐ No
Thermometer		e of Ice:	_ E‡™	t Blue None Samples on ice, cooling process has begun
Cooler Temp Read (°C): 6.5 Cooler Temp Co.	rrected (°C	1: 0,		Biological Tissue Frozen? Yes No ANA
emp should be above freezing to 6°C Correction Faction Correction Correction Faction Regulated Soil (N/A, water sample)	tor: ±c	<u>-7</u>	Da	te and Initials of Person Examining Contents: <u> </u>
id samples originate in a quarantine zone within the United	States: AL.	AR, AZ, C	A. FL. GA.	ID, LA. Did samples originate from a foreign source (internationally,
IS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?			Yes	Mo including Hawaii and Puerto Rico}? ☐ Yes ☐ No
If Yes to either question, fill out a Reg	ulated Sol	i Checkli	st (F-MN	Q-338) and include with SCUR/COC paperwork.
	9/			COMMENTS:
Chain of Custody Present?	Yes	□No	□N/A	1.
Chain of Custody Filled Out?	Yes	□No	□N/A	2.
Chain of Custody Relinquished?	Yes	□No	□N/A	3.
Sampler Name and/or Signature on COC?	Yes	□No	Ż ĮN/A	4.
Samples Arrived within Hold Time?	AYes	□Np	□N/A	5.
Short Hold Time Analysis (<72 hr)?	Yes	No	□N/A	6.
Rush Turn Around Time Requested?	□Yes	No	□N/A	7.
ufficient Volume?	¥yes	□No	□N/A	8.
Correct Containers Used?	≥ Yes	□No	□n/a	9.
-Pace Containers Used?	≧ ¶Yes	□No	□N/A	
Containers Intact?	−∰Yes	□No	□N/A	10.
litered Volume Received for Dissolved Tests?	Yes	□No	Ď y n√A	11. Note if sediment is visible in the dissolved container
Sample Labels Match COC? -Includes Date/Time/ID/Analysis Matrix:		No		
All containers needing acid/base preservation have been			A	13. □HNO₃ □H₂SO₄ □NaOH □HCl
hecked? All containers needing preservation are found to be in	☐Yes	□No	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
ompliance with EPA recommendation?	•			Sample #
HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)	□Yes	□No	EM/A	
xceptions: VOA, Coliform, TOC, Oil and Grease, PRO/8015 (water) DOC	□Yes	□No	N/A	Initial when Lot # of added completed: preservative:
leadspace in VOA Vials (>6mm)?	□Yes	□No	EN/A	14.
rip Blank Present?	□Yes	□No	⊡¶N/A	15.
rip Blank Custody Seals Present?	□Yes	□No	ES(N/A	
ace Trip Blank Lot # (if purchased):	w,			·
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
Person Contacted:	**** 1-2			Date/Time:
Comments/Resolution:				
Nia				
Project Manager Review:	\		• • • • • • • • • • • • • • • • • • • •	Date: 10/21/16

Method 1613B Blank Analysis Results

Lab Sample ID
Filename
Total Amount Extracted

Total Amount Extracted ICAL ID CCal Filename(s)

BLANK-52534 U161029A_02 20.6 g U161025 U161028B_16 Matrix
Dilution
Extracted

Solid NA

Extracted Analyzed 10/26/2016 15:55 10/29/2016 06:54

Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 92 77
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	77 78 85 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	77 78 86
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	72 71 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND	to the section of the	5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	74 81 64
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND	AN TO THE USE OF	5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	100
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.00 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND	***************************************	5.0 5.0			
OCDF OCDD	ND ND		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Blank Analysis Results

Lab Sample ID
Filename

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52542 F161030B_04 10.1 g

F161011 F161030B_01 Matrix Dilution Solid NA

Extracted Analyzed

10/26/2016 15:55 10/30/2016 13:30

Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 87 78
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	76 71 80 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	78 82 83 83 75
1,2,3,7,8-PeCDD Total PeCDD	ND ND	de la maria	5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	68 64 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND ND		5.0 5.0 5.0 5.0 5.0	1,2,3,4,7,6,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 4.00 2.00 2.00	77 50 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0:00 ng/Kg (Lower-bound - Using ITE F	actors)	· · · _.
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND ND		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Blank Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s)

BLANK-52558 U161101B_15

20.4 g U161025

U161101B_03

Matrix Dilution Solid NA

Extracted Analyzed

10/27/2016 16:25 11/02/2016 01:42

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00 2.00	75 92
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	85 80 99
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	76 74 78 78
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	84 70 75 79
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND ND		5.0 5.0 5.0 5.0 5.0	1,2,3,4,7,6,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 4.00 2.00 2.00	90 75 NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	NA 84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.00 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND ND		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical[™]

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716001 Lab Sample ID 40140496001 Filename F161031A_02 Injected By BAL **Total Amount Extracted** Solid 12.1 g Matrix % Moisture NA Dilution 14.5 Dry Weight Extracted Collected 10/17/2016 13:44 10.3 g ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B 16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 00:52

Native Isomers	Conc ng/Kg	EMPC ng/Kg	R L ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	73 88 72
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	68 78 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	er ve der bestelle der het det ser unt	5.0 5.0 5.0	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HXCDF-13C 2,3,4,6,7,8-HXCDF-13C 1,2,3,7,8,9-HXCDF-13C	2.00 2.00 2.00 2.00	75 75 76 79
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	72 68 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND	be let	5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	67 78 49
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		5.0 5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	ND ND ND		5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	76
Total HxCDD	- ND		5.0			
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.038 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND 38		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716002 Lab Sample ID 40140496002 Filename F161031A_03 Injected By BAL **Total Amount Extracted** 12.4 g Matrix Solid % Moisture 5.2 Dilution NA Dry Weight Extracted 11.8 g Collected 10/17/2016 13:44 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B 16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 01:41

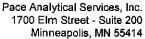
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	67 82
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	66 62 71
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF	ND ND		5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C	2.00 2.00 2.00	69 71 71
Total PeCDF 1,2,3,7,8-PeCDD Total PeCDD	ND ND ND		5.0 5.0 5.0	1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	72 66 65 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	ND ND		5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 2.00 4.00	60 76 49
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND		5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	72
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF	ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD		
Total HpCDF	ND	400 and just have	5.0	Equivalence: 0.051 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND 51		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable


RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716003 Lab Sample ID 40140496003 Filename F161031A_04 Injected By BAL **Total Amount Extracted** 12.2 g Matrix Solid % Moisture 17.1 Dilution NA Dry Weight Extracted 10.1 g Collected 10/17/2016 13:19 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B 16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 02:30

Native Isomers	Conc пg/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 90 74
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	68 81 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 79 78 78 75
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	70 68 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,6,3-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	83 50
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND	*****	5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	77 °
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.011 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND 11		10.0 10.0			

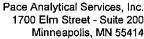
Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

<u> ace Analytical</u>

RL = Reporting Limit

ND = Not Detected


NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716004 Lab Sample ID 40140496004 Filename F161031A_05 Injected By BAL **Total Amount Extracted** 12.4 g Matrix Solid % Moisture Dilution 14.8 NA Dry Weight Extracted Collected 10.6 g 10/17/2016 13:19 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B 16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 03:19

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	65 77 66
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	62 75 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	73 72 70
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	69 61 60 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C 0CDD-13C	2.00 2.00 4.00	77 49
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total-HxCDD	ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	65
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.093 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	6.4 6.4		5.0 5.0			
OCDF OCDD	ND 30.0		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable NC = Not Calculated

RL = Reporting Limit

<u> ^gace Analytical</u>

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716005 Lab Sample ID 40140496005 Filename F161031A_06 Injected By BAL Total Amount Extracted 12.5 g Matrix Solid % Moisture 9.0 Dilution NA Dry Weight Extracted 11.4 g 10/17/2016 14:32 Collected ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 04:08

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00 2.00	64 77
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	66 63 71
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 23		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	67 68 68 69
1,2,3,7,8-PeCDD Total PeCDD	ND 20		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	63 64 59 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	77 60
1,2,3,7,8,9-HxCDF Total HxCDF	ND 320		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	ND 14 ND		5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	67
Total HxCDD 1,2,3,4,6,7,8-HpCDF	150 360		5.0 5.0	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF Total HpCDF	14 1800		5.0 5.0	Equivalence: 28 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	880 1400		5.0 5.0		•	
OCDF OCDD	2500 12000		10.0 10.0 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716006 Lab Sample ID 40140496006 Filename F161031A_07 Injected By BAL **Total Amount Extracted** 12.3 g Matrix Solid % Moisture 13.1 Dilution NA Dry Weight Extracted 10.7 g Collected 10/17/2016 14:32 **ICAL ID** F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 10/31/2016 04:56 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	66 81 67
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	64 72 67
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	72 72 72 74 67
1,2,3,7,8-PeCDD Total PeCDD	ND ND	## ** ** ** 	5.0 5.0	1,2,3,4,7,8-11,000-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 60 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	78 50
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	69
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND	 	5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.012 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND 12		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367089_1613B

RL = Reporting Limit

Revision 2

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

10/31/2016 05:45

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716007 Lab Sample ID 40140496007 Filename F161031A 08 Injected By BAL **Total Amount Extracted** 12.3 g Matrix Solid % Moisture 13.6 Dilution NA Dry Weight Extracted Collected 10.6 g 10/17/2016 14:33 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55

BLANK-52534

Native **EMPC** Percent Conc RL Internal ng's ng/Ka Isomers ng/Kg ng/Kg Standards Added Recovery 2,3,7,8-TCDF-13C 2,3,7,8-TCDF 1.0 2.00 ND 71 Total TCDF ND 1.0 2,3,7,8-TCDD-13C 2.00 88 1,2,3,7,8-PeCDF-13C 2.00 72 2,3,4,7,8-PeCDF-13C 2,3,7,8-TCDD 2.00 68 ND 1.0 Total TCDD ND 1.0 1,2,3,7,8-PeCDD-13C 2.00 80 78 1,2,3,4,7,8-HxCDF-13C 2.00 1,2,3,7,8-PeCDF ND 5.0 76 2.00 1,2,3,6,7,8-HxCDF-13C 2,3,4,7,8-PeCDF ND 5.0 80 2,3,4,6,7,8-HxCDF-13C 2.00 Total PeCDF 2.00 82 ND 5.0 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 70 2.00 72 1,2,3,7,8-PeCDD 2.00 ND 5.0 1,2,3,6,7,8-HxCDD-13C Total PeCDD 2.00 ND 1,2,3,4,6,7,8-HpCDF-13C 64 5.0 1,2,3,4,7,8,9-HpCDF-13C 2.00 69 1,2,3,4,6,7,8-HpCDD-13C 1,2,3,4,7,8-HxCDF ND 5.0 2.00 84 1,2,3,6,7,8-HxCDF ND 5.0 OCDD-13C 4.00 51 2,3,4,6,7,8-HxCDF ND 5.0 1,2,3,7,8,9-HxCDF ND 5.0 1,2,3,4-TCDD-13C 2.00 NA Total HxCDF ND 5.0 1,2,3,7,8,9-HxCDD-13C 2.00 NA 1,2,3,4,7,8-HxCDD ND 5.0 0.20 74 2,3,7,8-TCDD-37CI4 1,2,3,6,7,8-HxCDD ND 5.0 1,2,3,7,8,9-HxCDD ND 5.0 Total HxCDD ND 5.0 1,2,3,4,6,7,8-HpCDF ND 5.0 Total 2,3,7,8-TCDD 1,2,3,4,7,8,9-HpCDF ND 5.0 Equivalence: 0.028 ng/Kg Total HpCDF ND 5.0 (Lower-bound - Using ITE Factors) 1,2,3,4,6,7,8-HpCDD 5.0 ND Total HpCDD ND 5.0 **OCDF** ND 10.0 OCDD 28 10.0

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

<u> Pace Analytical</u>

Method Blank ID

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Analyzed

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No....10367089

RL = Reporting Limit

Pace Analytical™

Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816008 Lab Sample ID 40140496008 Filename Y161102A_04 Injected By SMT **Total Amount Extracted** 22.4 g Matrix Solid % Moisture 92.0 Dilution NA Dry Weight Extracted 1.79 g Collected 10/18/2016 14:42 ICAL ID Y160816A Received 10/21/2016 09:30 CCal Filename(s) Y161101B 19 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 11/02/2016 07:14

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	9.9 210.0		1.0 V 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	75 92
2,3,7,8-TCDD Total TCDD	2.1 50.0		1.0 J 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	72 64 80
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	63.0 130.0 1800.0		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	78 71 76 70 83
1,2,3,7,8-PeCDD Total PeCDD	26.0 290.0		5.0 J 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 76 82
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	460.0 300.0 300.0		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	96 68 DN2
1,2,3,7,8,9-HxCDF Total HxCDF	200.0 9600.0		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	110.0 690.0 220.0 3400.0	 	5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	7900.0 680.0 34000.0		5.0 5.0 5.0 E	Total 2,3,7,8-TCDD Equivalence: 800 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	18000.0 31000.0	7274 7274	5.0 E 5.0 E			
OCDF OCDD	34000.0 190000.0		10.0 DN2 10.0 DN2			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816009 Lab Sample ID 40140496009 Filename Y161102A_05 Injected By SMT 17.4 g Total Amount Extracted Matrix Solid % Moisture 77.3 Dilution NA 3.95 g Dry Weight Extracted Collected 10/18/2016 14:42 ICAL ID Y160816A Received 10/21/2016 09:30 CCal Filename(s) Y161101B_19 Extracted 10/27/2016 16:25 Method Blank ID **BLANK-52558** Analyzed 11/02/2016 07:55

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	5.6 190.0		1.0 V 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00 2.00	67 82
2,3,7,8-TCDD Total TCDD	2.1 52.0		1.0 J 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	57 50 61
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	67.0 110.0 1900.0		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	78 66 69 58 81
1,2,3,7,8-PeCDD Total PeCDD	33.0 360.0	20 00 00 ±00	5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	63 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	300.0 400.0 370.0 160.0		5.0 5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00 2.00	54 64 79 DN2 NA
Total HxCDF	14000.0	60 to ou on an	5.0 E	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	140.0 810.0 280.0 4700.0		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	11000.0 920.0 49000.0		5.0 E 5.0 5.0 E	Total 2,3,7,8-TCDD Equivalence: 1000 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	25000.0 48000.0		5.0 E 5.0 E			
OCDF OCDD	49000.0 270000.0		10.0 DN2 10.0 EDN			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367089_1613B

Revision 2

Page 19 of 53

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816011

Lab Sample ID 40140496010

Filename U161201A_10

Injected By SMT

Total Amount Extracted 13.7 cm

Total Amount Extracted 12.7 g Matrix Solid
% Moisture 24.6 Dilution NA

9.58 g Dry Weight Extracted Collected 10/18/2016 11:33 **ICAL ID** U161025 Received 10/21/2016 09:30 CCal Filename(s) U161130B 15 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 12/02/2016 00:38

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 1.1	*****	1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 88 78
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	76 71 83 80
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 42.0		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	56 69 58
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	58 57 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	12.0 5.0 6.3	 	5.0 5.0 J 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	70 63
1,2,3,7,8,9-HxCDF Total HxCDF	5.0 230.0		5.0 J 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 15.0 5.8 81.0		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	90
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	100.0 9.6 420.0		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 12 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	290.0 520.0		5.0 5.0			
OCDF OCDD	310.0 2500.0		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816012 Lab Sample ID 40140496011 Filename U161201A_11 Injected By SMT 12.6 g **Total Amount Extracted** Matrix Solid % Moisture 28.0 Dilution NA Dry Weight Extracted Collected 10/18/2016 12:45 9.07 g **ICAL ID** U161025 Received 10/21/2016 09:30 CCal Filename(s) U161130B_15 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 12/02/2016 01:25 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 9.0		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	73 83
2,3,7,8-TCDD Total TCDD	ND ND	Not the law war war	1.0 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	82 71 86
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	5.4 11.0 110.0		5.0 J 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	75 64 70 63 80
1,2,3,7,8-PeCDD Total PeCDD	ND 6.9		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00	58 59
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	35.0 17.0 6.4		5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	66 73 74
1,2,3,7,8,9-HxCDF Total HxCDF	16.0 620.0	*****	5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.3 39.0 11.0 160.0		5.0 J 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	360.0 35.0 1500.0		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 44 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	950.0 1700.0	*****	5.0 5.0			
OCDF OCDD	1200.0 11000.0		10.0 10.0 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

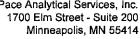
Client - PACE Wisconsin

Client's Sample ID 101816013 Lab Sample ID 40140496012 Filename U161201A_12 Injected By SMT 12.4 g Total Amount Extracted Matrix Solid % Moisture 21.6 Dilution NA Dry Weight Extracted 9.72 g Collected 10/18/2016 12:45 10/21/2016 09:30 ICAL ID U161025 Received CCal Filename(s) U161130B_15 Extracted 10/27/2016 16:25 Method Blank ID **BLANK-52558** Analyzed 12/02/2016 02:11

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	70 81 79
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	71 84 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	63 69 67 74
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	62 57 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		5.0 5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	67 64 NA
Total HxCDF	ND		5.0	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37CI4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND 5.8		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.12 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	5.8 5.8		5.0 5.0			
OCDF OCDD	ND 65.0		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable


RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

<u> ace Analytical</u> Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816015 Lab Sample ID 40140496013 Filename U161201A_13 Injected By SMT Total Amount Extracted 12.6 g

Matrix Solid % Moisture 8.6 Dilution NA 11.5 g Dry Weight Extracted Collected

10/18/2016 10:17 ICAL ID U161025 Received 10/21/2016 09:30 CCal Filename(s) U161130B 15 Extracted 10/27/2016 16:25 Method Blank (D BLANK-52558 Analyzed 12/02/2016 02:57

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 1.1	# W + 12 4	1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 87 80
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	74 88 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 15.0		5.0 5.0 5.0	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	67 72 68
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	82 59 57 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	69 65
1,2,3,7,8,9-HxCDF Total HxCDF	ND 64.0		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 15.0	00 00 00 00 00 00 00 00 00 00 00 00 00	5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	88
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	41.0 ND 160.0		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 2.6 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	110.0 190.0		5.0 5.0			
OCDF OCDD	130.0 970.0		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816016 Lab Sample ID 40140496014 Filename U161201A_14 Injected By SMT Total Amount Extracted 15.1 g Matrix Solid % Moisture 58.7 Dilution NA 6.24 g Dry Weight Extracted Collected 10/18/2016 10:17 ICAL ID U161025 Received 10/21/2016 09:30 CCal Filename(s) U161130B 15 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 12/02/2016 03:43

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND	and size and size and	1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	80 93 88
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	78 93 82
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	72 80 71
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	88 66 63 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,6,9-11pobl -13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	75 70
1,2,3,7,8,9-HxCDF Total HxCDF	ND 19	~~~	5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	94
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	21 ND 77	 	5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 1.3 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	45 80		5.0 5.0			
OCDF OCDD	85 510	*****	10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816017 Lab Sample ID 40140496015 Filename U161201A_15 Injected By SMT Total Amount Extracted 13.1 g Matrix Solid % Moisture 38.7 Dilution NA 8.03 g Dry Weight Extracted Collected 10/18/2016 10:18 ICAL ID U161025 Received 10/21/2016 09:30 CCal Filename(s) U161130B_15 Extracted 10/27/2016 16:25 BLANK-52558 Method Blank ID Analyzed 12/02/2016 04:30

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	79 91 87
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	79 92 83
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	to the sal on the Real Property and the Should have been said	5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	72 75 74
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	90 66 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	ND ND		5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	71 76 70
2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND 15		5.0 5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	93
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	15 ND 55		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.94 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	38 65		5.0 5.0			
OCDF OCDD	57 360	*****	10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

RL = Reporting Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X =%D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716001 Lab Sample ID 40140496001 Filename F161031A_02 Injected By BAL 12.1 g **Total Amount Extracted** Matrix Solid % Moisture 14.5 Dilution NA 10.3 g Dry Weight Extracted Collected 10/17/2016 13:44 ICAL ID Received F161011

10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 00:52

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.16		0.063 J	2,3,7,8-TCDF-13C	2.00	73
Total TCDF	0.66		0.063 J	2,3,7,8-TCDD-13C	2.00	88
				1,2,3,7,8-PeCDF-13C	2.00	72
2,3,7,8-TCDD	ND		0.095	2,3,4,7,8-PeCDF-13C	2.00	68
Total TCDD	0.15		0.095 J	1,2,3,7,8-PeCDD-13C	2.00	<u>78</u>
4 0 0 7 0 D. ODE		0.074	0.000 11	1,2,3,4,7,8-HxCDF-13C	2.00	73
1,2,3,7,8-PeCDF		0.071	0.062 JJ	1,2,3,6,7,8-HxCDF-13C	2.00	75 70
2,3,4,7,8-PeCDF	0.74	0.093	0.043 JJ	2,3,4,6,7,8-HxCDF-13C	2.00	76 70
Total PeCDF	0.71		0.053 J	1,2,3,7,8,9-HxCDF-13C	2.00	79 70
4 0 0 7 0 DaCDD	ND		0.057	1,2,3,4,7,8-HxCDD-13C	2.00	72 68
1,2,3,7,8-PeCDD Total PeCDD	ND 0.17		0.057	1,2,3,6,7,8-HxCDD-13C	2.00	68 62
Total PeCDD	0.17		0.057 J	1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00	62 67
1,2,3,4,7,8-HxCDF	0.16		0.140 J	1,2,3,4,6,7,8-HpCDD-13C	2.00	78
1,2,3,6,7,8-HxCDF	ND		0.130	OCDD-13C	4.00	70 49
2,3,4,6,7,8-HxCDF	ND		0.130	0000 100	4.00	70
1,2,3,7,8,9-HxCDF	ND		0.160	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	2.50		0.140 J	1,2,3,7,8,9-HxCDD-13C	2.00	NA
rotal rixozi	2.00		01110	1,2,0,1,0,0 1 1.00	2.00	
1,2,3,4,7,8-HxCDD	ND		0.160	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,6,7,8-HxCDD	0.21		0.160 J	,-, ,-		
1,2,3,7,8,9-HxCDD	ND		0.170			
Total HxCDD	0.88		0.160 J			
400407011-005		4 400	0.400 11	T-1-1 0 0 7 0 TODD		
1,2,3,4,6,7,8-HpCDF		1.400	0.120 J	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	ND 4.00		0.150	Equivalence: 0.20 ng/Kg	ootoro)	
Total HpCDF	4.00		0.130 J	(Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD	4.00		0.280 J			
Total HpCDD	7.00		0.280 J			
·						
OCDF	5.50		0.150 J			
OCDD	38.00		0.170			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101716002

 Lab Sample ID
 40140496002

 Filename
 F161031A_03

 Injected By
 BAL

Total Amount Extracted 12.4 g Matrix Solid % Moisture 5.2 Dilution NA

11.8 g Dry Weight Extracted Collected 10/17/2016 13:44 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 01:41

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.120 0.120	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 82 66
2,3,7,8-TCDD Total TCDD	ND ND		0.100 0.100	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	62 71 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.11 0.11		0.054 0.059 J 0.056 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	71 71 72 66
1,2,3,7,8-PeCDD Total PeCDD	ND 0.16		0.052 0.052 J	1,2,3,4,7,8-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	65 62 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.13 ND	0.13 	0.075 J 0.076 J 0.086	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	76 49
1,2,3,7,8,9-HxCDF Total HxCDF	ND 1.90		0.072 0.077 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.21 0.53	0.14 	0.160 0.110 JJ 0.140 J 0.140 J	2,3,7,8-TCDD-37Cl4	0.20	72
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.30 ND 4.90		0.110 J 0.150 0.130 J	Total 2,3,7,8-TCDD Equivalence: 0.23 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	4.10 7.50		0.220 J 0.220 J			
OCDF OCDD	5.10 51.00		0.150 J 0.200			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716003 Lab Sample ID 40140496003 Filename F161031A_04 Injected By BAL Total Amount Extracted 12.2 g

Total Amount Extracted12.2 gMatrixSolid% Moisture17.1DilutionNADry Weight Extracted10.1 gCollected10/17

 Dry Weight Extracted
 10.1 g
 Collected
 10/17/2016 13:19

 ICAL ID
 F161011
 Received
 10/21/2016 09:30

 CCal Filename(s)
 F161030B_16
 Extracted
 10/26/2016 15:55

 Method Blank ID
 BLANK-52542
 Analyzed
 10/31/2016 02:30

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20 0.20		0.082 J 0.082 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 90 74
2,3,7,8-TCDD Total TCDD	ND ND		0.085 0.085	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	68 81 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.14		0.050 0.040 0.045 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	79 78 78 78 75
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.041 0.041	1,2,3,4,7,8-113C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	70 68 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND ND		0.100 0.088 0.077 0.097	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	83 50 NA
1,2,3,7,8,9-HxCDF Total HxCDF	0.96		0.097 0.092 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 0.47		0.059 0.077 0.060 0.065 J	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.70 ND 2.20		0.098 J 0.140 0.120 J	Total 2,3,7,8-TCDD Equivalence: 0.055 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.50 2.70		0.170 J 0.170 J			
OCDF OCDD	1.70 11.00		0.140 J 0.110			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

EDL = Estimated Detection Limit NC = Not Calculated Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

J = Estimated value

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716004 Lab Sample ID 40140496004 Filename F161031A_05 Injected By BAL 12.4 g **Total Amount Extracted**

% Moisture 14.8 10.6 g Dry Weight Extracted ICAL ID F161011 CCal Filename(s) F161030B_16

Method Blank ID BLANK-52542 Matrix Solid Dilution NA

Collected 10/17/2016 13:19 Received 10/21/2016 09:30 Extracted 10/26/2016 15:55 Analyzed 10/31/2016 03:19

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.33 0.33	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	65 77 66
2,3,7,8-TCDD Total TCDD	ND ND		0.26 0.26	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	62 75 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND	0.17 	0.14 0.12 JJ 0.13	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 72 70 69
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.14 0.14	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	61 60 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND	0.20 	0.19 JJ 0.17 0.19 0.27	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	77 49
1,2,3,7,8,9-HxCDF Total HxCDF	0.88		0.27 0.20 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.27 0.55 ND 1.90		0.20 J 0.19 J 0.20 0.19 J	2,3,7,8-TCDD-37Cl4	0.20	65
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.40 ND 4.40		0.28 J 0.34 0.31 J	Total 2,3,7,8-TCDD Equivalence: 0.30 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	6.40 9.50		0.47 0.47			
OCDF OCDD	30.00	2.40	0.38 J 0.26			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716005

Lab Sample ID 40140496005

Filename F161031A_06

Injected By BAL
Total Amount Extracted 12.5 g
% Moisture 9.0

Dry Weight Extracted 11.4 g
ICAL ID F161011
CCal Filename(s) F161030B_16
Method Blank ID BLANK-52542

Matrix Solid Dilution NA

Collected 10/17/2016 14:32 Received 10/21/2016 09:30 Extracted 10/26/2016 15:55 Analyzed 10/31/2016 04:08

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.26 0.76		0.160 J 0.160 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	64 77 66
2,3,7,8-TCDD Total TCDD	ND 0.20		0.095 0.095 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	63 71 67
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.10 0.27 25.00		0.075 J 0.068 J 0.072	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	68 68 69 63
1,2,3,7,8-PeCDD Total PeCDD	ND 20.00		0.088 0.088	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	63 64 59 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.50 1.40 2.40		0.240 J 0.260 J 0.270 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	77 60
1,2,3,7,8,9-HxCDF Total HxCDF	330.00	0.33	0.300 JJ 0.270	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.48 14.00 1.40 150.00		0.250 J 0.260 0.230 J 0.250	2,3,7,8-TCDD-37Cl4	0.20	67
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	360.00 14.00 1800.00		0.770 0.860 0.820	Total 2,3,7,8-TCDD Equivalence: 29 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	880.00 1400.00		0.074 0.074			
OCDF OCDD	2500.00 12000.00		0.120 0.088 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716006
Lab Sample ID 40140496006
Filename F161031A_07
Injected By BAL
Total Amount Extracted 12.3 g

Total Amount Extracted 12.3 g Matrix Solid % Moisture 13.1 Dilution NA Dry Weight Extracted 10.7 g Collected 10/17

 Dry Weight Extracted
 10.7 g
 Collected
 10/17/2016 14:32

 ICAL ID
 F161011
 Received
 10/21/2016 09:30

 CCal Filename(s)
 F161030B_16
 Extracted
 10/26/2016 15:55

 Method Blank ID
 BLANK-52542
 Analyzed
 10/31/2016 04:56

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.24 0.51		0.130 J 0.130 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	66 81 67
2,3,7,8-TCDD Total TCDD	ND 0.57		0.180 0.180 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	64 72 67
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND	0.090	0.079 0.065 U 0.072	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	72 72 74 67
1,2,3,7,8-PeCDD Total PeCDD	ND 0.59		0.084 0.084 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 60 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND	 	0.093 0.073 0.069 0.100	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	78 50 NA
Total HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.34 ND ND ND 0.78		0.085 J 0.120 0.120 0.120 0.120 J	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.00 0.20	NA 69
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND	0.600	0.093 JJ 0.130 0.110	Total 2,3,7,8-TCDD Equivalence: 0.10 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.30 2.50		0.160 J 0.160 J			
OCDF OCDD	 12.00	1.900	0.140 JJ 0.320			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101716007

 Lab Sample ID
 40140496007

 Filename
 F161031A_08

 Injected By
 BAL

Total Amount Extracted 12.3 g Matrix Solid % Moisture 13.6 Dilution NA

10.6 g Dry Weight Extracted Collected 10/17/2016 14:33 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID Analyzed 10/31/2016 05:45 BLANK-52534

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 1.60		0.19 0.19 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	71 88 72
2,3,7,8-TCDD Total TCDD	ND ND		0.24 0.24	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	68 80 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 1.20	0.22	0.16 0.12	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	76 80 82 70
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.14 0.14	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	72 64 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.15 0.12	0.18 	0.12 J 0.13 J 0.11 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	84 51
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.26		0.13 0.12 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND 0.92	0.16 	0.11 0.13 U 0.11 0.12 J	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.40 ND 5.70	 	0.13 J 0.20 0.16 J	Total 2,3,7,8-TCDD Equivalence: 0.25 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	2.90 5.40		0.15 J 0.15 J			
OCDF OCDD	5.80 28.00		0.24 J 0.28			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101816008

 Lab Sample ID
 40140496008

 Filename
 Y161102A_04

 Injected By
 SMT

Total Amount Extracted 22.4 g Matrix Solid % Moisture 92.0 Dilution NA

Dry Weight Extracted 1.79 g Collected 10/18/2016 14:42 Y160816A Received ICAL ID 10/21/2016 09:30 CCal Filename(s) Y161101B_19 Extracted 10/27/2016 16:25 Method Blank ID Analyzed BLANK-52558 11/02/2016 07:14

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	9.9 210.0		0.59 V 0.59	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 92 72
2,3,7,8-TCDD Total TCDD	2.1 51.0		0.76 J 0.76	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	64 80 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	63.0 130.0 1800.0		0.63 0.55 0.59	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	71 76 70 83
1,2,3,7,8-PeCDD Total PeCDD	26.0 290.0		0.37 J 0.37	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 76 82
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	460.0 300.0 300.0 200.0	 	2.40 1.40 1.90 3.20	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	96 68 DN2 NA
Total HxCDF	9600.0		2.20	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	110.0 690.0 220.0 3400.0	 	1.90 1.80 1.60 1.70	2,3,7,8-TCDD-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	7900.0 680.0 34000.0		3.90 4.50 4.20 E	Total 2,3,7,8-TCDD Equivalence: 800 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	18000.0 31000.0		0.46 E 0.46 E			
OCDF OCDD	34000.0 190000.0		5.70 DN2 9.40 DN2			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816009 Lab Sample ID 40140496009 Filename Y161102A_05 Injected By **SMT**

17.4 g **Total Amount Extracted** Matrix Solid % Moisture 77.3 Dilution NA

3.95 g Dry Weight Extracted Collected 10/18/2016 14:42 Y160816A Received ICAL ID 10/21/2016 09:30 CCal Filename(s) Y161101B_19 Extracted 10/27/2016 16:25 Method Blank ID Analyzed BLANK-52558 11/02/2016 07:55

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	5.6 190.0		0.50 V 0.50	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 82 57
2,3,7,8-TCDD Total TCDD	2.1 52.0		0.57 J 0.57	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	50 61 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	67.0 110.0 1900.0	 	0.64 0.29 0.47	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	66 69 58 81
1,2,3,7,8-PeCDD Total PeCDD	33.0 370.0		0.33 0.33	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	63 55 54
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	300.0 400.0 370.0		2.40 1.90 1.70	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	64 79 DN2
1,2,3,7,8,9-HxCDF Total HxCDF	160.0 14000.0		2.20 2.10 E	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	140.0 810.0 280.0 4700.0		1.60 1.40 1.30 1.40	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	11000.0 920.0 49000.0	 	3.20 E 3.50 3.40 E	Total 2,3,7,8-TCDD Equivalence: 1000 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	25000.0 48000.0		0.64 E 0.64 E			
OCDF OCDD	49000.0 270000.0		2.20 DN2 3.50 EDN			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101816011

 Lab Sample ID
 40140496010

 Filename
 U161201A_10

 Injected By
 SMT

Total Amount Extracted 12.7 g Matrix Solid % Moisture 24.6 Dilution NA

9.58 g 10/18/2016 11:33 Dry Weight Extracted Collected U161025 ICAL ID Received 10/21/2016 09:30 CCal Filename(s) U161130B_15 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 12/02/2016 00:38

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.54 5.60		0.120 J 0.120	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 88 78
2,3,7,8-TCDD Total TCDD	ND 0.28		0.110 0.110 BJ	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	71 83 80
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.90 4.10 51.00		0.240 J 0.120 J 0.180	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	71 56 69
1,2,3,7,8-PeCDD Total PeCDD	0.73 6.80		0.110 J 0.110	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	58 58 57 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	12.00 5.00 6.30		0.081 0.066 J 0.110	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	70 63
1,2,3,7,8,9-HxCDF Total HxCDF	5.00 230.00		0.096 J 0.088	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.80 15.00 5.80 87.00		0.240 J 0.190 0.240 0.220	2,3,7,8-TCDD-37Cl4	0.20	90
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	100.00 9.60 420.00		0.250 0.270 0.260	Total 2,3,7,8-TCDD Equivalence: 15 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	290.00 520.00		0.140 0.140			
OCDF OCDD	310.00 2500.00		0.180 0.170			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).ND = Not DetectedEMPC = Estimated Maximum Possible ConcentrationNA = Not ApplicableEDL = Estimated Detection LimitNC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816012 Lab Sample ID 40140496011 Filename U161201A_11 Injected By **SMT**

12.6 g **Total Amount Extracted** Matrix Solid % Moisture 28.0 Dilution NA

9.07 g Dry Weight Extracted Collected 10/18/2016 12:45 U161025 ICAL ID Received 10/21/2016 09:30 CCal Filename(s) U161130B_15 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 12/02/2016 01:25

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.96 11.00		0.260 J 0.260	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	73 83 82
2,3,7,8-TCDD Total TCDD	ND 0.80		0.160 0.160 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	71 86 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	5.40 11.00 120.00		0.130 J 0.110 0.120	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	64 70 63
1,2,3,7,8-PeCDD Total PeCDD	1.50 13.00		0.140 J 0.140	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	80 58 59
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	35.00 17.00 6.40		0.190 0.220 0.180	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	66 73 74
1,2,3,7,8,9-HxCDF Total HxCDF	16.00 630.00		0.180 0.180 0.190	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.30 39.00 11.00 170.00		0.230 J 0.180 0.260 0.220	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	360.00 35.00 1500.00		0.084 0.130 0.100	Total 2,3,7,8-TCDD Equivalence: 45 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	950.00 1700.00		0.084 0.084			
OCDF OCDD	1200.00 11000.00		0.120 0.160 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

NC = Not Calculated

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816013 Lab Sample ID 40140496012 Filename U161201A_12 Injected By SMT

Total Amount Extracted 12.4 g Matrix Solid % Moisture 21.6 Dilution NA

9.72 g Dry Weight Extracted Collected 10/18/2016 12:45 U161025 ICAL ID Received 10/21/2016 09:30 CCal Filename(s) U161130B_15 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 12/02/2016 02:11

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20 0.52		0.082 J 0.082 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	70 81 79
2,3,7,8-TCDD Total TCDD	ND ND		0.083 0.083	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	71 84 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.34		0.085 0.070 0.077 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	63 69 67
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.078 0.078	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	74 62 57
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.14 0.17	0.14 	0.100 J 0.092 J 0.062 J	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	63 67 64
1,2,3,7,8,9-HxCDF Total HxCDF	ND 1.80		0.084 0.085 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.18 ND 1.50		0.083 0.099 J 0.091 0.091 J	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2.70 0.21 8.70		0.073 J 0.088 J 0.081	Total 2,3,7,8-TCDD Equivalence: 0.24 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	5.80 9.90		0.086 0.086			
OCDF OCDD	9.40 65.00		0.210 J 0.180			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816015 Lab Sample ID 40140496013 Filename U161201A_13 Injected By SMT

Total Amount Extracted 12.6 g Matrix Solid % Moisture 8.6 Dilution NA

11.5 g Dry Weight Extracted Collected 10/18/2016 10:17 U161025 ICAL ID Received 10/21/2016 09:30 CCal Filename(s) U161130B_15 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 12/02/2016 02:57

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.25 3.90		0.075 J 0.160	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 87 80
2,3,7,8-TCDD Total TCDD	ND 0.71		0.091 0.091 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	74 88 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.61 1.60 22.00		0.110 J 0.091 J 0.098	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	67 72 68
1,2,3,7,8-PeCDD Total PeCDD	0.32 2.10		0.085 J 0.085 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	82 59 57 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	3.40 1.60 2.20		0.077 J 0.090 J 0.095 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	69 65
1,2,3,7,8,9-HxCDF Total HxCDF	1.40 73.00		0.079 J 0.086	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.10 5.00 1.60 24.00		0.130 J 0.044 0.043 J 0.073	2,3,7,8-TCDD-37Cl4	0.20	88
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	41.00 3.70 160.00		0.120 0.110 J 0.120	Total 2,3,7,8-TCDD Equivalence: 5.3 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	110.00 190.00		0.093 0.093			
OCDF OCDD	130.00 970.00		0.110 0.170			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).ND = Not DetectedEMPC = Estimated Maximum Possible ConcentrationNA = Not ApplicableEDL = Estimated Detection LimitNC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816016 Lab Sample ID 40140496014 Filename U161201A_14 Injected By **SMT**

Total Amount Extracted 15.1 g Matrix Solid % Moisture 58.7 Dilution NA

6.24 g Dry Weight Extracted Collected 10/18/2016 10:17 U161025 ICAL ID Received 10/21/2016 09:30 CCal Filename(s) U161130B_15 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 12/02/2016 03:43

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.40 1.90		0.16 J 0.16 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	80 93 88
2,3,7,8-TCDD Total TCDD	ND ND		0.20 0.20	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	78 93 82
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.31 4.20		0.14 0.10 J 0.12 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	72 80 71 88
1,2,3,7,8-PeCDD Total PeCDD	ND 0.56		0.11 0.11 J	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 63 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.30 0.56 0.78		0.14 J 0.14 J 0.13 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	75 70
1,2,3,7,8,9-HxCDF Total HxCDF	0.36 23.00		0.17 J 0.15	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.40 1.70 0.72 10.00		0.21 J 0.18 J 0.28 J 0.22 J	2,3,7,8-TCDD-37Cl4	0.20	94
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	21.00 1.60 78.00	 	0.23 0.26 J 0.25	Total 2,3,7,8-TCDD Equivalence: 2.0 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	45.00 80.00		0.11 0.11			
OCDF OCDD	85.00 510.00		0.25 0.42			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816017 Lab Sample ID 40140496015 Filename U161201A_15 Injected By SMT

Total Amount Extracted 13.1 g Matrix Solid % Moisture 38.7 Dilution NA

8.03 g Dry Weight Extracted Collected 10/18/2016 10:18 U161025 ICAL ID Received 10/21/2016 09:30 CCal Filename(s) U161130B_15 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 12/02/2016 04:30

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.34 2.10		0.120 J 0.120 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	79 91 87
2,3,7,8-TCDD Total TCDD	ND ND		0.120 0.120	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	79 92 83
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.18 0.45 6.00		0.150 J 0.099 J 0.120 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	72 75 74 90
1,2,3,7,8-PeCDD Total PeCDD	ND 0.89		0.092 0.092 J	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 63 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.20 0.46 	 0.60	0.110 J 0.120 J 0.120 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	76 70
1,2,3,7,8,9-HxCDF Total HxCDF	0.44 19.00		0.120 J 0.120	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.41 1.60 0.63 9.90		0.062 J 0.075 J 0.092 J 0.076 J	2,3,7,8-TCDD-37Cl4	0.20	93
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	15.00 1.20 56.00	 	0.180 0.160 J 0.170	Total 2,3,7,8-TCDD Equivalence: 1.8 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	38.00 65.00		0.065 0.065			
OCDF OCDD	57.00 360.00		0.170 0.180			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Blank Analysis Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID

CCal Filename(s)

BLANK-52534 U161029A_02 20.6 g U161025

U161028B_16

Matrix Solid
Dilution NA

Extracted 10/26/2016 15:55 Analyzed 10/29/2016 06:54

Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.054 0.054	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 92 77
2,3,7,8-TCDD Total TCDD	ND ND		0.067 0.067	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	78 85 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.055 0.035 0.045	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	77 78 86 72
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.045 0.045	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	71 70 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.032 0.033 0.033	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	81 64
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.039 0.034	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.043 0.039 0.040 0.041	2,3,7,8-TCDD-37Cl4	0.20	100
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.028 0.036 0.032	Total 2,3,7,8-TCDD Equivalence: 0.00073 ng/Kg (Lower-bound - Using ITE F	l actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.055 0.055		0.040 J 0.040 J			
OCDF OCDD	ND 0.180		0.074 0.085 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures. J = Estimated value

Method 1613B Blank Analysis Results

Lab Sample ID
Filename
Total Amount Extracted

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52542 F161030B_04 10.1 g

F161011 F161030B_01 Matrix Solid Dilution NA

Extracted 10/26/2016 15:55 Analyzed 10/30/2016 13:30

Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.079 0.079	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 87 78
2,3,7,8-TCDD Total TCDD	ND ND		0.130 0.130	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	71 80 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.049 0.033 0.041	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	82 83 83 75
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.059 0.059	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	68 64 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND ND ND	 	0.035 0.032 0.043 0.058 0.042	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 4.00 2.00 2.00	77 50 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.057 0.067 0.083 0.069	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.037 0.056 0.047	Total 2,3,7,8-TCDD Equivalence: 0.00024 ng/Kg (Lower-bound - Using ITE F		
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.062 0.062			
OCDF OCDD	ND 	0.24	0.140 0.150 JJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Blank Analysis Results

Lab Sample ID Filename **Total Amount Extracted**

ICAL ID

CCal Filename(s)

BLANK-52558

U161101B_15 20.4 g U161025 U161101B_03 Matrix Solid Dilution NA

Extracted 10/27/2016 16:25 Analyzed 11/02/2016 01:42

Injected By **SMT**

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.031 0.031	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 92 85
2,3,7,8-TCDD Total TCDD	ND 0.042		0.033 0.033 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	80 99 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.039 0.023 0.031	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	74 78 78 84
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.029 0.029	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	70 75 79
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND	 	0.027 0.023 0.021 0.026	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	90 75 NA
Total HxCDF	ND		0.024	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.036 0.035 0.037 0.036	2,3,7,8-TCDD-37Cl4	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.036 0.038 0.037	Total 2,3,7,8-TCDD Equivalence: 0.00063 ng/Kg (Lower-bound - Using ITE Fa		
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.076	0.046	0.028 J 0.028 J			
OCDF OCDD	ND 	0.170	0.055 0.061 JJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCS-52535 Filename U161028B 01 **Total Amount Extracted** 20.0 g ICAL ID U161025

U161028A_11 CCal Filename

Method Blank ID BLANK-52534

Solid Matrix Dilution NA

10/26/2016 15:55 Extracted Analyzed 10/28/2016 17:37

Injected By **BAL**

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 50 100 100	10 8.7 53 57 48 56 54 52 49 56 58 59 57 51 48 100 110	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 61.0 69.0 70.0 170.0	102 87 106 114 96 111 107 104 97 112 116 118 113 101 97 101
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 1,2,3,7,8-PeCDF-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 0CDD-13C	10 100 100 100 100 100 100 100 100 100	9.0 77 92 77 76 83 76 75 80 90 81 68 74 83 91	3.1 22.0 20.0 21.0 13.0 21.0 19.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	90 77 92 77 76 83 76 75 80 90 81 68 74 83 91 76

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{* =} See Discussion

Solid

10/26/2016 15:55

10/30/2016 11:54

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Laboratory Control Spike Results

Matrix

Dilution

Lab Sample ID LCS-52543
Filename F161030B_02
Total Amount Extracted 10.1 g
ICAL ID F161011

ICAL ID F161011 Extracted
CCal Filename F161030B_01 Analyzed
Method Plank ID Plank I

Method Blank ID BLANK-52542 Injected By BAL

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HyCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 50 100 100	11 8.3 57 60 50 60 56 53 52 59 58 58 52 48 45 110 100	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 61.0 69.0 70.0 170.0	105 83 115 120 100 119 112 106 104 118 115 117 103 96 91
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 0CDD-13C	10 100 100 100 100 100 100 100 100 100	8.1 81 94 86 81 92 80 90 89 91 77 76 68 69 81 110	3.1 22.0 20.0 21.0 13.0 21.0 19.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	81 81 94 86 81 92 80 90 89 91 77 76 68 69 81 55

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{* =} See Discussion

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCS-52559
Filename U161101B_18
Total Amount Extracted 20.1 g
ICAL ID U161025

CCal Filename U161101B_03 Method Blank ID BLANK-52558

 101B_18
 Matrix
 Solid

 g
 Dilution
 NA

 025
 Extracted
 10/27

 104B_02
 Applies of the second sec

Extracted 10/27/2016 16:25 Analyzed 11/02/2016 04:01

Injected By SMT

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF	10	9.6	7.5	15.8	96
2,3,7,8-TCDD	10	8.5	6.7	15.8	85
1,2,3,7,8-PeCDF	50 50	49 52	40.0 34.0	67.0 80.0	97 104
2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD	50 50	32 48	34.0 35.0	71.0	95
1,2,3,4,7,8-HxCDF	50 50	54	36.0	67.0	107
1,2,3,6,7,8-HxCDF	50	52	42.0	65.0	103
2,3,4,6,7,8-HxCDF	50	49	35.0	78.0	97
1,2,3,7,8,9-HxCDF	50	50	39.0	65.0	101
1,2,3,4,7,8-HxCDD	50	54	35.0	82.0	109
1,2,3,6,7,8-HxCDD	50	57	38.0	67.0	114
1,2,3,7,8,9-HxCDD	50	56	32.0	81.0	112
1,2,3,4,6,7,8-HpCDF	50	54	41.0	61.0	107
1,2,3,4,7,8,9-HpCDF	50	50	39.0	69.0	100
1,2,3,4,6,7,8-HpCDD	50	48	35.0	70.0	97
OCDF	100	95	63.0	170.0	95
OCDD	100	110	78.0	144.0	106
2,3,7,8-TCDD-37Cl4	10	8.1	3.1	19.1	81
2,3,7,8-TCDF-13C	100	67	22.0	152.0	67
2,3,7,8-TCDD-13C	100	83	20.0	175.0	83
1,2,3,7,8-PeCDF-13C	100	77	21.0	192.0	77
2,3,4,7,8-PeCDF-13C	100	73	13.0	328.0	73
1,2,3,7,8-PeCDD-13C	100	90	21.0	227.0	90
1,2,3,4,7,8-HxCDF-13C	100	70 67	19.0	202.0	70
1,2,3,6,7,8-HxCDF-13C	100 100	67 75	21.0 22.0	159.0 176.0	67 75
2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	100	75 76	22.0 17.0	205.0	75 76
1,2,3,4,7,8-HxCDD-13C	100	80	21.0	193.0	80
1,2,3,6,7,8-HxCDD-13C	100	63	25.0	163.0	63
1,2,3,4,6,7,8-HpCDF-13C	100	75	21.0	158.0	75
1,2,3,4,7,8,9-HpCDF-13C	100	81	20.0	186.0	81
1,2,3,4,6,7,8-HpCDD-13C	100	91	26.0	166.0	91
OCDD-13C	200	160	26.0	397.0	78

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

* = See Discussion

Solid

10/26/2016 15:55

10/30/2016 12:41

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Laboratory Control Spike Results

Matrix

Dilution

Extracted

Analyzed

Lab Sample ID LCSD-52544
Filename F161030B_03
Total Amount Extracted 10.1 g
ICAL ID F161011

CCal Filename F161030B_01

Method Blank ID BLANK-52542 Injected By BAL

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 50 100 100	11 8.0 55 59 49 57 55 53 49 57 59 58 51 47 45 110	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 69.0 70.0 170.0	109 80 110 118 98 114 110 105 99 115 117 116 102 94 90 110 107
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 1,2,3,7,8-PeCDF-13C 1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 0CDD-13C	10 100 100 100 100 100 100 100 100 100	7.7 73 88 77 74 81 75 79 81 67 70 61 62 73 98	3.1 22.0 20.0 21.0 13.0 21.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	77 73 88 77 74 81 75 79 79 81 67 70 61 62 73 49

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{* =} See Discussion

Method 1613B

Spike Recovery Relative Percent Difference (RPD) Results

Client PACE Wisconsin

 Spike 1 ID
 LCS-52543
 Spike 2 ID
 LCSD-52544

 Spike 1 Filename
 F161030B_02
 Spike 2 Filename
 F161030B_03

Compound	Spike 1 %REC	Spike 2 %REC	%RPD	
2,3,7,8-TCDF	105	109	3.7	
2,3,7,8-TCDD	83	80	3.7	
1,2,3,7,8-PeCDF	115	110	4.4	
2,3,4,7,8-PeCDF	120	118	1.7	
1,2,3,7,8-PeCDD	100	98	2.0	
1,2,3,4,7,8-HxCDF	119	114	4.3	
1,2,3,6,7,8-HxCDF	112	110	1.8	
2,3,4,6,7,8-HxCDF	106	105	0.9	
1,2,3,7,8,9-HxCDF	104	99	4.9	
1,2,3,4,7,8-HxCDD	118	115	2.6	
1,2,3,6,7,8-HxCDD	115	117	1.7	
1,2,3,7,8,9-HxCDD	117	116	0.9	
1,2,3,4,6,7,8-HpCDF	103	102	1.0	
1,2,3,4,7,8,9-HpCDF	96	94	2.1	
1,2,3,4,6,7,8-HpCDD	91	90	1.1	
OCDF	109	110	0.9	
OCDD	101	107	5.8	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Method 1613B Spiked Sample Report

Client - PACE Wisconsin

Client's Sample ID 101816012-MS Lab Sample ID Filename **Total Amount Extracted**

ICAL ID

CCal Filename(s)

Method Blank ID

40140496011-MS U161227B_14 12.5 g U161025

Matrix Solid Dilution NA Extracted

10/27/2016 16:25 12/28/2016 11:22

U161227A_18 BLANK-52558 Analyzed Injected By BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.19	94	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 89 67
2,3,7,8-TCDD Total TCDD	0.20	0.17	84	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	63 74 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.00 1.00	0.99 1.09	99 109	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	74 76 73 81
1,2,3,7,8-PeCDD Total PeCDD	1.00	0.97	97	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	68 66 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.23 1.12 1.06	123 112 106	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	74 67
1,2,3,7,8,9-HxCDF Total HxCDF	1.00	1.03	103	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 1.00 1.00	1.04 1.41 1.18	104 141 118	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.00 1.00	3.60 1.24	360 124			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.00	7.92	792			
OCDF OCDD	2.00 2.00	11.43 76.89	572 3845 E			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Method 1613B Spiked Sample Report

Client - PACE Wisconsin

Client's Sample ID Lab Sample ID Filename Total Amount Extracted

40140496011-MSD U161227B_15 12.5 g U161025 U161227A_18

BLANK-52558

101816012-MSD

Matrix Solid
Dilution NA

Extracted 10/27/2016 16:25 Analyzed 12/28/2016 12:07

CCal Filename(s) Method Blank ID

ICAL ID

Injected By BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.20	98	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	80 94 74
2,3,7,8-TCDD Total TCDD	0.20	0.17	84	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	71 83 74
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.00 1.00	0.99 1.11	99 111	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	74 77 71
1,2,3,7,8-PeCDD Total PeCDD	1.00	0.95	95	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	84 70 68 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.46 1.16 1.09	146 116 109	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	80 76
1,2,3,7,8,9-HxCDF Total HxCDF	1.00	1.14	114	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 1.00 1.00	1.12 1.43 1.17	112 143 117	2,3,7,8-TCDD-37Cl4	0.20	95
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.00 1.00	4.99 1.38	499 138			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.00	9.99	999			
OCDF OCDD	2.00 2.00	13.06 99.99	653 5000 E			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Method 1613 Spike Sample Results

Client - PACE Wisconsin

Client Sample ID Lab Sample ID MS ID

MSD ID

101816012 40140496011 40140496011-MSD

Sample Filename MS Filename MSD Filename U161201A_11 U161227B_14 U161227B_15 Dry Weights
Sample Amount 9.07 g
MS Amount 9.0 g
MSD Amount 9.0 g

	Sample Conc. MS/MSD Qs MS Qm MSD Qm Background Subtra						und Subtracted	
Analyte	ng/Kg	(ng)	(ng)	(ng)	RPD	MS % Rec.	MSD % Rec.	RPD
2,3,7,8-TCDF	0.957	0.20	0.19	0.20	3.7	90	94	3.8
2,3,7,8-TCDD	0.000	0.20	0.17	0.17	0.3	84	84	0.3
1,2,3,7,8-PeCDF	5.382	1.00	0.99	0.99	0.6	95	94	0.6
2,3,4,7,8-PeCDF	10.762	1.00	1.09	1.11	2.2	99	102	2.4
1,2,3,7,8-PeCDD	1.451	1.00	0.97	0.95	2.5	96	93	2.6
1,2,3,4,7,8-HxCDF	35.154	1.00	1.23	1.46	17.5	91	115	22.9
1,2,3,6,7,8-HxCDF	16.564	1.00	1.12	1.16	3.0	97	101	3.5
2,3,4,6,7,8-HxCDF	6.393	1.00	1.06	1.09	2.6	100	103	2.7
1,2,3,7,8,9-HxCDF	16.348	1.00	1.03	1.14	9.9	89	99	11.4
1,2,3,4,7,8-HxCDD	5.292	1.00	1.04	1.12	7.5	99	107	7.8
1,2,3,6,7,8-HxCDD	39.207	1.00	1.41	1.43	1.1	106	108	1.5
1,2,3,7,8,9-HxCDD	10.862	1.00	1.18	1.17	0.3	108	107	0.3
1,2,3,4,6,7,8-HpCDF	355.814	1.00	3.60	4.99	32.4	40	179	127.5
1,2,3,4,7,8,9-HpCDF	35.455	1.00	1.24	1.38	10.1	93	106	13.3
1,2,3,4,6,7,8-HpCDD	950.589	1.00	7.92	9.99	23.1	0	144	200.0
OCDF	1169.231	2.00	11.43	13.06	13.3	45	127	94.5
OCDD	11002.369	2.00	76.89	99.99	26.1	0	49	200.0

Definitions

MS = Matrix Spike MSD = Matrix Spike Duplicate Qm = Quantity Measured

Qs = Quantity Spiked % Rec. = Percent Recovery RPD = Relative Percent Difference

NA = Not Applicable
NC = Not Calculated

CDD = Chlorinated dibenzo-p-dioxin CDF = Chlorinated dibenzo-p-furan

T = Tetra
Pe = Penta
Hx = Hexa
Hp = Hepta
O = Octa

APPENDIX B REMEDIAL ACTION OPTION DETAILED COST ESTIMATES

RAO 1 - No Action Site: C.M. Christiansen Co. Inc. Forme Phase: Remedial Action Options Evalu		sin			Description: No Action	Cost Estimate Summary Worksheet
DESCRIPTION	QТY	UNIT	UNIT COST	ITEM COST	SUBTOTAL	ASSUMPTIONS/REFERENCES
CAPITAL COSTS						
Total Capital Costs					\$ -	
OPERATIONS AND MAINTENANG	CE COSTS					
Total Cost of Annual And Periodic M	Iaintenance, No Discount I	actor			\$ -	
Present Worth of Annual Costs (30 Y	Year Analysis Period and a	7% Disc	ount Rate)		\$ -	
Present Worth of Periodic Costs (30	Year Analysis Period and a	7% Disc	count Rate)		\$ -	
Total Present Worth of Alternative					\$0	

RAO 2 - Institutional Controls / Continuing Obl	igati	ions					Cost Estimate Summary Worksheet
Site: C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wis Phase: Remedial Action Options Evaluation (-30% to +50%)	sconsi	n			De	scription:	Implement site controls through zoning restrictions, deed covenants, and site signage. Option includes completing WDNR NR726 Case Closure with residual contamination and GIS registry listing.
DESCRIPTION QTY		UNIT	UNIT COST	ITEM COST	SUI	BTOTAL	ASSUMPTIONS/REFERENCES
CAPITAL COSTS							
Sign Installation							
Sign Fabrication	10		\$28	\$280			Assumes 10 notification signs along Military Creek
Sign Installation	10	Each	\$50	\$495			Material and labor for installation
SUBTOTAL					\$	775	
Professional Services							
WDNR NR726 Case Closure	1	LS	\$30,000	\$30,000			Prepare and submit closure package
SUBTOTAL					\$	30,000	
Contingency							
Bid Estimating Contingency: 10% of Total Capital Costs				\$3,078			
Scope Estimating Contingency: 15% of Total Capital Costs				\$4,616			-
SUBTOTAL					\$	7,694	
Total Capital Costs					\$	38,500	
OPERATIONS AND MAINTENANCE COSTS							
Annual Operations and Maintenance - Cost Per Year							
Inspect Signs	1	LS	\$500	\$500			
Replacment Signs	1	Each	\$28	\$28			Assumes 10% of signs need replacement each year
Labor to Install Signs	1	Eah	\$50	\$50			Assumes 10% of signs need replacement each year
Scope Estimating Contingency: 15% of Total Capital Costs				\$87			_
SUBTOTAL					\$	722	
Total Cost of Annual And Periodic Maintenance (30 Year P	eriod	and No	Discount Fact	tor)	\$	22,000	
Present Worth of Annual Costs (30 Year Analysis Period an	ıd a 7	% Disco	ount Rate)		\$	9,000	
Present Worth of Periodic Costs (30 Year Analysis Period a	nd a 7	/% Disc	ount Rate)		\$	-	
Total Present Worth of Alternative					\$	47,500	
Total I resent worth of Alternative					Ф	47,500	

Date: 6/16/17 Estimated By: AMM Reviewed By: LLP

RAO 3 - 30-Inch Dredge & 6-Inch Sand Cover

Site: C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin

Phase: Remedial Action Options Evaluation (-30% to +50%)

Cost Estimate Summary Worksheet

Description: Dredge sediment characterized as having probable ecological risk for off-site disposal. Dredge to depth of 30 inches and replace with 6 inches of clean sand cover.

DESCRIPTION	QTY	UNIT	UNIT COST	ITEM COST	SUBTOTAL	ASSUMPTIONS/REFERENCES
CAPITAL COSTS						
Site Preparation						
Mob./Demob.	1	LS	\$5,630	\$5,630		Assumed at 3% of Construction Costs
Silt Fence Installation	350	LF	\$2.06	\$721		Assumes 350 ft of silt fence around sediment management pad and along cleared access to Military Creek.
Stabilized Construction Entrance	100	SY	\$16	\$1,586		Assumes a 50 SY stabled construction entrance from County Highway E
Sediment Management Pad	1	LS	\$21,676	\$21,676		Assumes 12" compacted 3/4" aggregate base course under laid by an impermeable 40-mil PVC geomembrane liner
Clearing and Grubbing of Trees/Vegetation	0.02	Acre	\$11,575	\$232		Assumes clearing of trees/vegetation and grubbing of stumps for access to Military Creek.
Access Road	533	SY	\$12.7	\$6,747		Assumes 200 ft long, 20 ft wide, 8" deep gravel access road from County Highway E to sediment management area and 40 ft long from sediment management area to Military Creek
SUBTOTAL				•	\$ 36,591	
Sediment Removal						
Dredging and transfer to sediment management pad.	305	CY	\$70	\$21,400		Assumes 30 inch sediment removal over approximately 3,300 sf. Unit rate based on similar project in central Wisconsin.
Dewatering and Stabilization	305	CY	\$60	\$18,300		Assumes sediment stabilization with cement or similar water binding product. Unit rate based on similar project in central Wisconsin.
Transportation to Landfill	503	Tons	\$16	\$8,200		Assumes disposal at non-hazardous landfill. Unit rate based on average of three similar projects across Wisconsin.
Landfill Disposal	503	Tons	\$38	\$19,100		Assumes disposal at non-hazardous landfill. Unit rate based on average of three similar projects across Wisconsin.
Sand (Material and Delivery)	61	CY	\$30	\$1,800		Unit rate based on similar project in central Wisconsin.
Residual Sand Cover Placement	61	CY	\$90	\$5,500		Unit rate based on similar project in central Wisconsin.
SUBTOTAL				•	\$ 74,300	
Sediment Sampling						
Sediment Disposal Characterization	2	EA	\$900	\$1,800		Assumes pre-disposal waste characterization samples.
Pre-Dredge Analysis	10	EA	\$650	\$6,500		Assumes sampling in target area for final design.
Post-Dredge Analysis	10	EA	\$650	\$6,500		Assumes sampling to characterize post-dredge surface.
Pre-dredge Sample Collection	1	LS	\$9,000	\$9,000		Labor to collect pre-dredge surface concentrations.
Post-Dredge Sample Collection	1	LS	\$9,000	\$9,000		Labor to collect post-dredge surface concentrations.
Sand Cover Thickness	1	LS	\$9,000	\$9,000		Labor to collect sand cover thickness data.
	1	Tons	\$0	\$0		_
SUBTOTAL				•	\$ 41,800	

Date: 6/16/17

Estimated By: AMM Reviewed By: LLP

Site Restoration Removal/Disposal of Temporary Facilities	731	Ton	\$52	\$38,000	Assumes disposal of sediment management pad and access roads. Unit rate is sum of transportation and disposal from "Sediment Removal"
Seeding	1,200	SY	\$2	\$2,600	Assumes hydroseed of disturbed areas from sediment management pad and access to Military Creek.
SUBTOTAL				\$	40,600
Professional Services Remedial Engineering Design	1	LS	\$15,463	\$15,500	Assumed at 8% based on USEPA Guide to Developing Feasibility
Construction Oversight	1	LS	\$11,597	\$11,600	Study Cost Estimates Assumed to be 6% of Remedial Contractor construction costs based on USEPA Guide to Developing Feasibility Study Cost Estimates
Project Management during Construction	1	LS	\$9,665	\$9,700	Assumed to be 5% of Remedial Contractor construction costs based on USEPA Guide to Developing Feasibility Study Cost Estimates
WDNR NR726 Case Closure	1	LS	\$30,000	\$30,000	Assumes preparation and submital of closure package
SUBTOTAL				\$	66,800
Contingency Bid Estimating Contingency: 10% of Total Capital Costs Scope Estimating Contingency: 15% of Total Capital Costs SUBTOTAL				\$26,009 \$39,014 \$	65,023
Total Capital Costs				\$	326,000
OPERATIONS AND MAINTENANCE COSTS Annual Operations and Maintenance - Cost Per Year SUBTOTAL				*	- Assumes no O&M costs
Periodic (Every 5 Years) Operations and Maintenance - Co SUBTOTAL	ost Per Ev	ent		\$	- Assumes no O&M costs
Total Cost of Annual And Periodic Maintenance, No Discoun	t Factor			\$	-
Present Worth of Annual Costs (30 Year Analysis Period and	l a 7% Dis	scount R	ate)	\$	-
Present Worth of Periodic Costs (30 Year Analysis Period an	d a 7% Di	scount R	ate)	\$	-
Total Present Worth of Alternative				\$	326,000

Date: 6/16/17 Estimated By: AMM Reviewed By: LLP

APPENDIX C Photo Log

Photo Number: 1 Date of Photo: 10/17/16

Description: SED-106 Facing Upstream

Photo Number: 1 Date of Photo: 10/17/16 Description: SED-106, Sand with Gravel

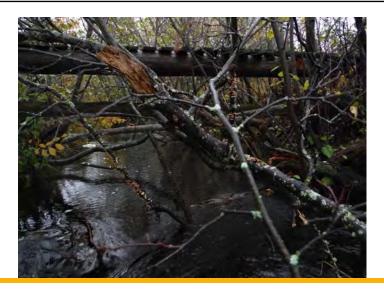


Photo Number: 1 Date of Photo: 10/18/16

Description: Transect T2 Facing Upstream

Photo Number: 1 Date of Photo: 10/18/16 Description: Transect T5 Facing Upstream

Photo Number: 1 Date of Photo: 10/18/16

Description: SED-103, Sand with Silt

Photo Number: 1 Date of Photo: 10/19/16

Description: Transect T10 at Culvert under County Road E

Photo Number: 1 Date of Photo: 10/19/16

Description: SED-05, Fine to Medium Sand

Photo Number: 1 Date of Photo: 10/19/16

Description: Transect T12 Facing Upstream

Photo Number: 1 Date of Photo: 10/17/16

Description: SED-03, Sand with Organic Fines

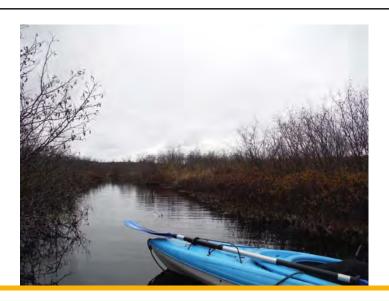


Photo Number: 1 Date of Photo: 10/20/16

Description: Transect T18 Facing Upstream

