OBG

SITE INVESTIGATION / REMEDIAL ACTION OPTION REPORT

C.M. Christiansen Co., Inc. Former Pole Yard Military Creek, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

October 26, 2018

OCTOBER 26, 2018 | PROJECT #2381

Site Investigation / Remedial Action Option Report

Military Creek Phelps, Wisconsin

Prepared for:

C.M. Christiansen Co., Inc. 5501 N. Santa Monica Blvd. Milwaukee, WI 53217

DUSTY L. TAZELAAR

Toxicologist

LAURIE L. PARSONS, PE, PH
Principal Engineer / Hydrologist

TABLE OF CONTENTS

TABLES	ii
FIGURES	ii
APPENDICES	ii
ACRONYMS AND ABBREVIATIONS	iii
EXECUTIVE SUMMARY	iv
1 INTRODUCTION	1
1.1 General Information	1
2 BACKGROUND INFORMATION	2
2.1 Military Creek Sediment Characterization	2
3 METHODS OF INVESTIGATION	3
3.1 Sediment Thickness Measurements	3
3.2 Stream Flow Measurements	3
3.3 Sediment Core Collection	3
4 RESULTS	5
4.1 Sediment Thickness Measurement	5
4.2 Stream Flow Measurements	5
4.3 Sediment Core Sampling	5
4.3.1 Data review	6
4.3.2 Data review results	6
5 SITE INVESTIGATION CONCLUSIONS	9
6 REMEDIAL ACTION OPTIONS	11
6.1 Site Specific Objectives	11
6.2 Identification of Remedial Action Options	11
6.2.1 RAO No. 1 – No Action	12
6.2.2 RAO No. 2 – Institutional Controls	12
6.2.3 RAO No. 3 – Targeted Sediment Removal with Cover Place	ment13
6.3 Evaluation and Recommendation	
REFERENCES	16

MILITARY CREEK – SITE INVESTIGATION / REMEDIAL ACTION OPTION REPORT | TABLE OF CONTENTS

TABLES

Table 1	Sediment Thickness Measurements
Table 2	Stream Flow Measurements
Table 3	Sediment Analytical Results
Table 4	Concentrations of TEQ _{WHO-Fish} in Surface Sediments Relative to WDNR CBSQG-Based Levels of Concern (In Text)
Table 5	Concentrations of TEQ _{WHO-Fish} in Subsurface Sediments Relative to WDNR CBSQG-Based Levels of Concern (In Text)
Table 6	Concentrations of TEQ _{WHO-Fish} in Surface Sediments Relative to Unadjusted SQG-Based Levels of Concern (In Text)
Table 7	Concentrations of TEQ _{WHO-Fish} in Subsurface Sediments Relative to Unadjusted SQG-Based Levels of Concern (In Text)
Table 8	Remedial Action Options Comparison
Table 9	Remedial Action Options Estimated Costs
FIGURES	
Figure 1	Military Creek Site Investigation

APPENDICES

Appendix A	Analytical Laboratory Reports
Appendix B	Remedial Action Options Detailed Cost Estimates
Appendix C	Sediment Core Photos and Logs
Appendix D	Sediment TEQ Calculations

ACRONYMS AND ABBREVIATIONS

CBSQG Consensus Based Sediment Quality Guidelines
CCME Canadian Council of Ministers of the Environment

CMC Co., Inc. CM Christiansen Co., Inc.

CY cubic yard

DGPS differential global positioning system

DRO diesel range organics

dw dry weight

GIS geographic information system

1,2,3,4,6,7,8- 1,2,3,4,6,7,8-heptachlorodibenzo-*p*-dioxin

HpCDD

LCS laboratory control sample

LCSD laboratory control sample duplicate

MEC midpoint effect concentration
NRT Natural Resource Technology, Inc.

MS matrix spike

MSD matrix spike duplicate

OBG O'Brien & Gere Engineers, Inc.
OCDD Octachlorodibenzodioxin

PCC Pearson's correlation coefficient

PCDD/F 2,3,7,8-substituted polychlorinated dibenzo-p-dioxin and polychlorinated

dibenzofuran

PEC probable effect concentration

RAO remedial action options
RPD relative percent difference
SDG sample delivery group
SI site investigation

SQG sediment quality guideline

TCDD 2,3,7,8-tetrachlorodibenzodioxin
TEC threshold effect concentration

TEF toxic equivalency factor

TEQ 2,3,7,8-TCDD toxic equivalency

TEQs_{WH0-Fish} World Health Organization fish-based TEQs

TOC total organic carbon ng/kg nanogram per kilogram

USEPA United States Environmental Protection Agency
WDNR Wisconsin Department of Natural Resources

WHO World Health Organization

wt weight

EXECUTIVE SUMMARY

O'Brien & Gere Engineers, Inc. (OBG), formerly Natural Resource Technology, Inc. (NRT), was retained by CM Christiansen Co., Inc. (CMC Co., Inc.) to perform supplemental sediment characterization of Military Creek, summarize findings in a site investigation (SI) report, and describe applicable remedial alternatives in a remedial action options (RAO) report. Military Creek is adjacent to the CM Christiansen Pole Yard (Site) located on County Highway E, Village of Phelps, Vilas County, Wisconsin. The Site is a non-operational pole dipping facility that underwent a soil remedial action in 1999 and limited sediment investigation in 1992 and 2003. To streamline preparation and review, the SI and RAO reports were combined in this document. Content related to the SI and RAO reports were prepared in accordance with NR 716 and 722. This report was prepared to satisfy Item 9 (Military Creek Investigation Report) and Item 10 (Military Creek Remedial Action Options Report) of the Spill Response Agreement, dated April 17, 1998, between CMC Co., Inc. and the Wisconsin Department of Natural Resources (WDNR). The Site is the subject of a property transfer planned to the Town of Phelps for redevelopment of portions for a recreational path.

Sediment sampling performed by WDNR in 2003 indicated the presence of concentrations of 2,3,7,8-substituted polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) congeners in creek sediments. Since then, ongoing communication between CMC Co., Inc. and WDNR has revolved around an approach for additional characterization that resulted in an August 3, 2016 Military Creek Sediment Sampling Plan. Implementation of the Military Creek Sediment Sampling Plan took place from October 17 to October 21, 2016. It included sediment core collection for laboratory analysis, and field measurements of water depth, sediment thickness, and stream flow.

Water depth, sediment thickness, and stream flow measurements indicated that the culvert beneath County Highway E restricts water flow and sediment transport of Military Creek. Sediment cores were collected from 14 locations starting at the mouth of Military Creek at North Twin Lake and extending upstream of the Site. Sediment quality data were screened via an assessment consistent with the WDNR interim guidance, "Consensus-Based Sediment Quality Guidelines (CBSQG), Recommendations for Use & Application" (WDNR, 2003). A modification to the guidelines was also included related to the methods for normalization of congener-specific concentrations of PCDD/Fs to 2,3,7,8-tetrachlorodibenzodioxin (TCDD) equivalent (TEQ) concentrations. Specifically, concentrations of PCDD/Fs were normalized to concentrations of TEQs using World Health Organization (WHO) toxic equivalency factors (TEFs) for fish (WHO, 1998), rather than United States Environmental Protection Agency (USEPA) TEFs (USEPA, 1989). This allowed for appropriate comparisons to CBSQG criteria, which were also based on WHO TEFs for fish.

For the assessment of Military Creek, a relevant screening comparison for the protection of ecological aquatic life from concentrations of PCDD/Fs in sediment was the comparison of concentrations of WHO fish-based TEQs (TEQs_{WHO-Fish}) in surface sediments to sediment quality guidelines (SQGs). Concentrations of TEQs_{WHO-Fish} in surface sediments were presented in Tables 4 and 6 of this document. Table 4 presented concentrations of TEQs_{WHO-Fish} from sediment core samples as they relate to relative WDNR CBSQG-based levels of concern. The comparison in Table 4 was an appropriate screening-level exercise. In addition, an appropriate remedial action decision-making assessment was presented in Table 6. The assessment in Table 6 presented the same data, but compared concentrations of TEQs_{WHO-Fish} to the same WDNR CBSQG-based levels of concern, but unadjusted by the conservative safety factor of 10 (Unadjusted SQGs). Table 6 demonstrated that one of the 14 surficial sediment samples (SED-03), located directly adjacent to the Site, had concentrations of TEQs_{WHO-Fish} that exceeded a relevant midpoint effect concentration (MEC) and probable effect concentration (PEC). Human risk with present site use scenarios was determined to be minimal due to the submerged nature of the sediment and the limited access and use of Military Creek for recreational purposes.

Three RAOs were evaluated including 1) no action, 2) institutional controls, and 3) targeted sediment removal with cover placement. Option 3 included up to 30 inches of sediment removal through dredging and placement of a 6-inch thick clean cover layer. The no action option was ruled out as not protective for alternate future use scenarios that might increase human contact with sediments. The dredge and cover option was ruled out due to the extremely high total and unit cost for implementation to reduce the de minimis risk that exists at the Site for

MILITARY CREEK - SITE INVESTIGATION / REMEDIAL ACTION OPTION REPORT | EXECUTIVE SUMMARY

invertebrates and fish. The recommended remedial action is the use of institutional controls, which can mitigate potential risks that may result from future use scenarios. Institutional controls are anticipated to include zoning/deed restrictions, access controls as appropriate depending on future use plans, and the installation and maintenance of notification signs. WDNR NR726 Case Closure with residual contamination and geographic information system (GIS) registry would be required. Institutional controls were also anticipated to be protective of human health for the intended recreational path at the Site.

1 INTRODUCTION

OBG was retained by CMC Co., Inc. to perform supplemental sediment characterization of Military Creek, summarize findings in an SI report, and describe applicable remedial alternatives in an RAO report. Military Creek is adjacent to the Site located on County Highway E, Village of Phelps, Vilas County, Wisconsin. The Site is a non-operational pole dipping facility that underwent a soil remedial action in 1999 and limited sediment investigation in 1992 and 2003. To streamline preparation and review, the SI and RAO reports were combined in this document. Content related to the SI and RAO reports were prepared in accordance with NR 716 and 722.

The objective of this report was to present supplemental investigation data and to recommend a remedial action based on evaluated options. The recommended response action was intended to manage environmental issues identified at the Site and eliminate or control potential threats to human health, safety, and welfare and the environment to the extent practicable. This was done so in consideration of the intended future use of the Site, which includes a recreational path to be developed by the Town of Phelps following the transfer of the Site property. This report was prepared to satisfy Item 9 (Military Creek Investigation Report) and Item 10 (Military Creek Remedial Action Options Report) of the Spill Response Agreement, dated April 17, 1998, between CMC Co., Inc. and the WDNR.

1.1 GENERAL INFORMATION

Site Owner: CM Christiansen Co., Inc.

P.O. Box 100 Phelps, WI 54554

Site Contact: Mr. Eric R. Christiansen

(414) 963-9211

Site Location: Lake Street, County Road E

Phelps, WI Vilas County

Southeast ¼ and Southwest ¼ Section 35, T42N, R11E

Consultant: O'Brien & Gere, Inc.

234 West Florida St, 5th Floor Milwaukee, WI 53204 Contact: Mr. Dusty Tazelaar

(517) 803-7095

2 BACKGROUND INFORMATION

Background information, site history, and contaminant types have been described in previous documents submitted to WDNR. Information from these documents was not restated, but was included by reference. Previously prepared documents included the following:

- WDNR (2004). Expanded Site Inspection, CM Christiansen Pole Yard, Village of Phelps, Vilas County, USEPA ID: WID988639035.
- NRT (2000). Remedial Action Documentation Report.
- WDNR (1998). Spill Response Agreement with CM Christiansen Co., Inc.
- NRT (1998). CM Christiansen Co., Inc., Supplemental Evaluation of Military Creek and Revised Work Plan for Screening Level Assessment, Phelps, WI.
- Coleman Engineering Company (1997). Site Investigation Report, CM Christiansen Co., Inc., Pole Treatment Facility.
- WDNR (1995). Final Screening Site Inspection Report for CM Christiansen Co., Inc. Pole Dipping Site.
- WDNR (1993). Preliminary Assessment, USEPA ID# WID998639035.

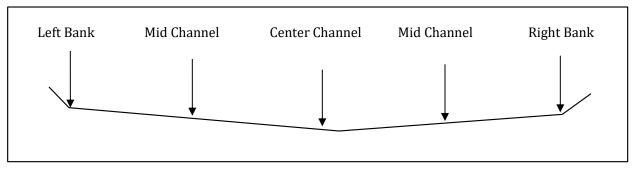
2.1 MILITARY CREEK SEDIMENT CHARACTERIZATION

Sampling performed by WDNR in 2003 indicated the presence of PCDD/F congeners in creek sediments. Since then, ongoing communication between CMC Co., Inc. and WDNR has revolved around an approach for additional characterization. A conceptual investigation approach was submitted to WDNR on December 16, 2015. WDNR provided comments and questions on the investigation approach in a subsequent letter on February 11, 2016. WDNR comments were considered and incorporated into the Military Creek Sediment Sampling Plan dated August 3, 2016. WDNR provided a letter on September 7, 2016 encouraging the implementation of the August 3rd Military Creek Sediment Sampling Plan.

Military Creek sediment sampling took place from October 17 to October 21, 2016. WDNR personnel (Mr. Chris Saari) was on site on October 18, 2016 for observation of sampling activities. Sampling methods and results were described in Sections 3 and 4, respectively.

OBG | OCTOBER 26, 2018

STATUS | 2 OF 16


Military_Creek_2381_SI_RAOR_Final_181026.docx

3 METHODS OF INVESTIGATION

In accordance with the August 3, 2016 Military Creek Sediment Sampling Plan, field activities included sediment thickness measurements and sediment core sampling. The condition of Military Creek was photo-documented. Stream flow measurements were obtained to provide additional characterization information. Military Creek is narrow and shallow with heavy vegetation along its shoreline. These conditions restricted the use of a conventional shallow-draft sampling vessel (e.g., jon boat). Instead, the lower portion (i.e., County Highway E to Twin Lake) was accessed and sampled by foot, and the upper portion (i.e., all locations upstream of County Highway E) was accessed and sampled by kayak. All sampling locations were located and documented using a handheld differential global positioning system (DGPS) with sub-meter accuracy.

3.1 SEDIMENT THICKNESS MEASUREMENTS

Sediment thickness measurements were obtained through manual poling with a 1.5-inch diameter aluminum poling rod marked with 0.1-foot increments. Manual poling was performed along cross-channel transects spaced approximately 100 feet apart from the mouth of North Twin Lake upstream to sediment sample location SED-01. Twenty transects were poled with five poling locations per transect as shown in the schematic below: left bank, center channel, right bank, and two intermediate mid channel locations. The depth to sediment (i.e., water depth) was first measured and recorded using a survey rod with a 6-inch circular disc attached to the bottom. Poling was then performed through manual effort until refusal was encountered. The total penetrated depth of the poling rod at each location was recorded. Poling transects were shown on Figure 1 and data were presented in Table 1.

Example Sediment Thickness Measurement Transect Profile Looking Upstream

3.2 STREAM FLOW MEASUREMENTS

Stream flow measurements were collected along seven of the twenty poling transects using a HACH FH950 Portable Velocity Meter. Velocity measurements were recorded at 0.6 times the total water depth at each sediment thickness poling location of the selected transects. The selected transects collected flow data upstream of the Site, directly upstream of the culvert crossing beneath County Highway E, directly downstream of the culvert crossing beneath County Highway E, and at the mouth of Military Creek with North Twin Lake. Transects selected for stream flow measurements are shown on Figure 1, and velocity data are reported in Table 2.

3.3 SEDIMENT CORE COLLECTION

Actual sediment sample locations were shown in Figure 1 and were generally at the midpoint of the creek unless there were notable features at the sampling location to suggest zones of sediment deposition, such as the inside of a bend. In those instances, the sampling locations were at the area of suspected sediment deposition. Samples were collected by manual coring methods using clear plastic core tubes (2-5/8 inch inside diameter). Cores were pushed or driven with a slide hammer until either the target depth of 30 inches was reached or refusal was encountered.

OBG | OCTOBER 26, 2018

STATUS | 3 OF 16

Military_Creek_2381_SI_RAOR_Final_181026.docx

MILITARY CREEK - SITE INVESTIGATION / REMEDIAL ACTION OPTION REPORT | METHODS OF INVESTIGATION

Collected cores were capped and transported to shore for processing in accordance with the Military Creek Sediment Sampling Plan. Cores were extruded onto clean plastic sheeting, photographed, and divided into three intervals depending on actual core recovery. If present, the top two intervals (i.e., 0 to 6 inches and 6 to 18 inches) were submitted for laboratory testing of diesel range organics (DRO), PCDD/F congeners, particle size, total organic carbon (TOC), and percent solids/percent moisture. Recovered core material from 18 to 30 inches was archived for possible future analysis. Laboratory data were reported on Table 3. Particle size distribution curves were included in Appendix A.

4 RESULTS

4.1 SEDIMENT THICKNESS MEASUREMENT

Sediment thickness measurements were tabulated in Table 1 for transects 1 through 20, which were numbered from downstream to upstream as shown in Figure 1. Transects 1 through 9 were located downstream of County Highway E and had a maximum sediment thickness of 1.3 feet and maximum water depth of 2.3 feet. Particle size curves for sediment from these downstream transects were predominantly sand and gravel. Transects 10 through 20 were located upstream of County Highway E and had a maximum sediment thickness of 5.7 feet and maximum water depth of 6 feet. Particle size curves for these upstream transects were predominantly softer deposits of sand with organics.

Water depth and sediment thickness measurements indicate that the culvert beneath County Highway E restricts water flow and sediment transport of Military Creek. This is supported by deeper water depths and thicker deposits of soft sediment upstream of County Highway E compared to shallower water depths and higher proportion of sand and gravel downstream of County Highway E.

4.2 STREAM FLOW MEASUREMENTS

Stream flow measurements were tabulated in Table 2 for select transects upstream and downstream of County Highway E as shown on Figure 1. Stream flow was greatest at the most downstream transect and decreased with farther upstream transects. This further supports that the crossing of County Highway E acts as a flow control feature for Military Creek.

4.3 SEDIMENT CORE SAMPLING

Sediment cores were collected from 14 locations as shown in Figure 1. Laboratory data were tabulated in Table 3. Sediment chemical concentrations were screened via an assessment consistent with WDNR interim guidance (WDNR, 2003). An additional assessment with a modification to the guidelines for normalization of congener-specific PCDD/Fs concentrations to TEQ concentrations. Per Appendix C of the Interim Guidance, TEFs derived from 1989 USEPA risk guidance were recommended for the normalization of congener-specific PCDD/F concentrations to TEQ concentrations. However, the SQGs in the Interim Guidance were derived based on the protection of aquatic life using TEFs recommended by the WHO in 1998 for exposure to fish (Canadian Council of Ministers of the Environment (CCME), 2002). It is inappropriate to compare concentrations of TEQs in sediments calculated using one set of TEFs to SQGs derived using a different set of TEFs. To facilitate an appropriate comparison of site-specific data to the SQGs, congener-specific concentrations of PCDD/Fs were normalized to TEQs using the WHO 1998 TEFs for fish. Concentrations of TEQs normalized in this manner were referred to as TEQs_{WHO-Fish}.

Per Appendix D of the Interim Guidance, dry weight concentrations of TEQs_{WHO-Fish} were normalized to 1% TOC for comparison with CBSQGs using sample specific TOC values. The Interim Guidance indicated that, "TOC can have its origin either from organic matter from natural sources such as plant materials deposited on sediments or anthropogenic inputs to aquatic systems." Therefore, paired sample-specific TOC and DRO data were subjected to a Pearson's correlation analysis. The correlation analysis indicated that there was a significant positive correlation (p < 0.01). However, the Pearson's correlation coefficient (PCC) (PCC = 0.54) suggested that DRO was not the sole source of TOC. This was consistent with sediment composition characteristics noted during sediment thickness measurements (Table 1), which suggested that organic matter flowing downstream was deposited at and upstream of the culvert. Therefore, it was determined that using sample-specific TOC data for normalization was appropriate.

Concentrations of $TEQs_{WH0-Fish}$ from sediment core samples as they relate to relative levels of concern were presented in Tables 4 and 5. These levels of concern were based on lower and upper effect levels at which toxicity to benthic-dwelling organisms were predicted to be unlikely, the threshold effect concentration (TEC), and probable, the probable effect concentration (PEC) (WDNR, 2003). A concentration midway between the TEC and PEC, the midpoint effect concentration (MEC), was also included in the assessment. Table 4 presented

surface sediment results and Table 5 presented subsurface sediment results. Data in both tables were categorized relative to the WDNR Interim Guidance SQGs derived from CCME for screening purposes (2002). The surficial sediment results presented the relevant screening assessment because the SQGs were derived for concentrations of PCDD/Fs from 'surficial sediments (i.e., top 5 cm)' (CCME, 2002).

Concertrations of TEQs_{WHO-Fish} from sediment core samples as they relate to unadjusted relative levels of concern were presented in Tables 6 and 7. The assessment presented in Tables 6 and 7 was based on the WDNR Interim Guidance SQGs. While the assessment depicted in Tables 4 and 5 was consistent with a screening-level exercise, the levels of concern were derived using a safety factor adjustment. For the purposes of remedial action decision making, that likely yielded an overly conservative assessment. For the modified assessment, relative levels of concern were based on the screening values used to derive the WDNR Interim Guidance SQGs, but unadjusted by the safety factor of 10. The concentrations of TEQs_{WHO-Fish} that make up these unadjusted levels of concern were consistent with screening values presented in NOAAs Screening Quick Reference Tables (SQuiRTs, NOAA 2004) and in a 2010 toxicity assessment for the St. Regis Superfund Site in Minnesota (Integral 2010).

4.3.1 Data review

Analytical data packages underwent review prior to use in data assessment. This was an important step in ensuring that environmental decisions will be "supported by data of the type and quality needed and expected for their intended use" (USEPA, 2002). Review processes were consistent with level 2 data validation and considered the acceptability of the following:

- Sample condition upon receipt
- Hold times and preservation
- Reporting limits
- Laboratory method blank results (< reporting limit)
- Laboratory control sample (LCS)/LCS duplicate (LCSD) (% recovery +/- 20%)
- LCSD relative percent difference (RPD) (+/- 20%)
- Matrix spike (MS)/MS duplicate (MSD) recoveries (% recovery +/-20%)
- MS/MSD RPD (+/-20%)
- Field duplicate (+/- 25%)

4.3.2 Data review results

All PCDD/F, DRO, and TOC data reported were determined to be acceptable for use in this assessment. Some data were qualified with reporting flags, but no data were rejected. For each of three TOC sample delivery groups (SDG), the MS % recovered and the MSD % recovered were outside of the acceptable limits. However, the laboratory method blank was acceptable and the LCS duplicate was acceptable. This suggests that the method was working correctly and the samples were not homogenous with respect to TOC. This is supported by the field duplicate samples that were collected where TOC concentrations differed. Finally, sample times on two sample containers and a sample ID typo on another container were identified in a single SDG, but these typos were documented and corrected in the data files. These discrepancies had no effect on the acceptability of the associated data.

Table 4. Concentrations of TEQ_{WHO-Fish} in Surface Sediments¹ Relative to WDNR CBSQG-based Levels of Concern²

Station/Sample Name	Level 1 Concern Conc. ≤ TEC	Level 2 Concern TEC < Conc. ≤ MEC	Level 3 Concern MEC < Conc. ≤ PEC	Level 4 Concern PEC < Conc.
	All Concentration	ons Reported in ng/kg dr	y wt. at 1% TOC	
SED-01	0.04	-	-	-
SED-101	0.15	-	-	-
SED-102	0.07	-	-	-
SED-02	-	5.33	-	-
SED-03	-	-	-	220.2
SED-04	-	8.23	-	-
SED-05	-	-	20.19	-
SED-06	-	-	11.80	-
SED-103	-	-	13.59	-
SED-104	-	8.21	-	-
SED-105	-	6.40	-	-
SED-106	-	1.59	-	-
SED-107	-	1.70	-	-
SED-108	-	-	<u> </u>	25.21

¹ Surface sediment sample depths were 0-0.5 feet, with the exception of SED-104, which was 0-0.4 feet.

Table 5. Concentrations of TEQ_{WHO-Fish} in Subsurface Sediments¹ Relative to WDNR CBSQG-based Levels of Concern²

Station/Sample Name	Level 1 Concern Conc. ≤ TEC	Level 3 Concern MEC < Conc. ≤ PEC	Level 4 Concern PEC < Conc.	
	All Concentration	ons Reported in ng/kg dr	y wt. at 1% TOC	
SED-01	0.03	-	-	-
SED-101	0.11	-	-	-
SED-102	0.04	-	-	-
SED-02	0.63	-	-	-
SED-03	-	-	-	569.5
SED-04	-	-	-	47.37
SED-05	-	9.12	-	-
SED-06	-	-	-	49.40
SED-103	0.09	-	-	-
SED-104	-	-	-	-
SED-105	0.18	-	-	-
SED-105 duplicate	0.28	-	-	-
SED-106	-	2.27	-	-
SED-107	-	4.20	-	-
SED-108	0.68			
SED-108 duplicate	0.39	-	-	-

¹ Subsurface sediment sample depths ranged from 0.5-0.7 to 0.5-1.5 feet.

 $^{^2}$ TEC = 0.85 ng TEQ_{WHO-Fish}/kg dw at 1% TOC; MEC = 11.2 ng TEQ_{WHO-Fish}/kg dw at 1% TOC; PEC = 21.5 ng TEQ_{WHO-Fish}/kg dw at 1% TOC

 $^{^2}$ TEC = 0.85 ng TEQ_{WHO-Fish}/kg dw at 1% TOC; MEC = 11.2 ng TEQ_{WHO-Fish}/kg dw at 1% TOC; PEC = 21.5 ng TEQ_{WHO-Fish}/kg dw at 1% TOC

Table 6. Concentrations of TEQ_{WHO-Fish} in Surface Sediments¹Relative to Unadjusted SQG-based Levels of Concern²

Station/Sample Name	Level 1 Concern Conc. ≤ TEC	Level 2 Concern TEC < Conc. ≤ MEC	Level 3 Concern MEC < Conc. ≤ PEC	Level 4 Concern PEC < Conc.
	All Concentration	ons Reported in ng/kg di	y wt. at 1% TOC	
SED-01	0.04	-	-	-
SED-101	0.15	-	-	-
SED-102	0.07	-	-	-
SED-02	5.33	-	-	-
SED-03	-	-	-	220.2
SED-04	8.23	-	-	-
SED-05	-	20.19	-	-
SED-06	-	11.80	-	-
SED-103	-	13.59	-	-
SED-104	8.21	-	-	-
SED-105	6.40	-	-	-
SED-106	1.59	-	-	-
SED-107	1.70	-	-	-
SED-108	-	25.21	<u>-</u>	-

¹ Surface sediment sample depths were 0-0.5 feet, with the exception of that of SED-104, which was 0-0.4 feet.

Table 7. Concentrations of TEQ_{WHO-Fish} in Subsurface Sediments¹ Relative to Unadjusted SQG-based Levels of Concern²

Station/Sample Name	Level 1 Concern Conc. ≤ TEC	Level 2 Concern TEC < Conc. ≤ MEC	Level 3 Concern MEC < Conc. ≤ PEC	Level 4 Concern PEC < Conc.
	All Concentration	ons Reported in ng/kg dr	y wt. at 1% TOC	
SED-01	0.03	-	-	-
SED-101	0.11	-	-	-
SED-102	0.04	-	-	-
SED-02	0.63	-	-	-
SED-03	-	-	-	569.5
SED-04	-	47.37	-	-
SED-05	-	9.12	-	-
SED-06	-	49.40	-	-
SED-103	0.09	-	-	-
SED-104	-	-	-	-
SED-105	0.18	-	-	-
SED-105	0.28	-	-	-
SED-106	2.27	-	-	-
SED-107	4.20	-	<u>-</u>	-
SED-108	0.68		-	
SED-108 duplicate	0.39	-	-	-

¹ Subsurface sediment sample depths ranged from 0.5-0.7 to 0.5-1.5 feet.

 $^{^2}$ TEC = 8.5 ng TEQ_{WHO-Fish}/kg dw at 1% TOC; MEC = 112 ng TEQ_{WHO-Fish}/kg dw at 1% TOC; PEC = 215 ng TEQ_{WHO-Fish}/kg dw at 1% TOC

 $^{^2}$ TEC = 8.5 ng TEQ_{WHO-Fish}/kg dw at 1% TOC; MEC = 112 ng TEQ_{WHO-Fish}/kg dw at 1% TOC; PEC = 215 ng TEQ_{WHO-Fish}/kg dw at 1% TOC

5 SITE INVESTIGATION CONCLUSIONS

Sediment quality data were screened via an assessment consistent with WDNR interim guidance by comparing concentrations of TEQs_{WHO-Fish} to CBSQG-based levels of concern. The WDNR Interim Guidance suggested that, "the greatest certainty in predicting absence or presence of sediment toxicity occurs at sediment contaminant concentrations that are lower than the TEC or greater than the PEC values, respectively." Further, the Interim Guidance suggested that, "there is a consistent incremental increase in the incidence of toxicity to sediment-dwelling organisms with increasing chemical concentrations". This is the basis for the calculation of a MEC. While including a MEC does support a qualitative understanding of risk, there is uncertainty in determining whether potential adverse effects occur within the levels of concern bounded with the MEC. Therefore, the greatest risk for potential adverse effects is expected to occur at locations associated with Level 4 Concern, with decreasing incremental risk potential to Level 1 Concern, at which no risk is expected.

For the assessment of Military Creek, a relevant comparison for the protection of aquatic life from concentrations of PCDD/Fs in sediments is the comparison of concentrations of TEQs_{WHO-Fish} in surficial sediment to SQGs for the protection of aquatic life expressed in the same terms (i.e., normalization of congener-specific concentrations of PCDD/Fs to concentrations of TEQ using the WHO 1998 TEFs for fish). The application of a safety factor of 10 used in the WDNR Interim Guidance SQGs was sufficient for screening purposes, but unwarranted for remedial action decision making. Therefore, the most appropriate assessment levels of concern were those that were unadjusted by the safety factor of 10. These were presented as the unadjusted levels of concern. Also, given that the SQGs were derived from surficial sediments (i.e., top 5 cm), the data summarized in Table 6 are the most relevant to the protection of aquatic life. Table 6 demonstrates that only one of the 14 surficial sediment samples (SED-03), which was located directly adjacent to the site, has a concentration of TEQs_{WHO-Fish} that exceeded a relevant level of concern (PEC).

The WDNR CBSQG document states that, "The CBSQGs should not be used on a stand-alone basis to establish cleanup levels or for sediment management decision making (WDNR 2003)." Therefore, historic site-specific sampling data were reviewed and considered in support of this SI/RAOR. The resources listed below were reviewed.

- Dioxin Results from North Twin Lake (WDNR, 1994a)
- Collection of Minnows in Military Creak & North Twin Lake (Caged Fish Study) (WDNR, 1994b)
- Acute and Chronic Toxicity Test Results for Military Creek Sediments (Wisconsin State Laboratory of Hygiene (WSLH), 1995)

In brief, these resources summarized studies of concentrations of dioxins and furan in feral white sucker and walleye (WDNR, 1994a), followed by caged fathead minnow health and survivability (WDNR, 1994b), and finally sediment toxicity acute and chronic tests in *Daphnia* and *Chironomus* (WSLH, 1995).

The North Twin Lake feral fish study was not indicative of risk to white suckers and walleye. In general, most congener-specific dioxin and furan results were below detection limits (non-detects). For the two congeners that were detected, 1,2,3,4,6,7,8-HpCDD and OCDD, the concentrations were apparently similar to those detected in the laboratory method blank. The author of the report stated that, "The good news is that the contamination of Military Creek does not appear to be contaminating feral fish from North Twin Lake with dioxins or furans (WDNR, 1994a)." Further, in the context of human risk, the author indicated that, "...the current fish advisory tolerance level of dioxin equivalents in fillets is 10 parts per trillion (ppt). The whole fish samples of white sucker and walleye contained 0.0156 ppt and 0.0385 ppt dioxin equivalents, respectively. As you can see, this is well below the advisory level. I suspect if we had analyzed fillets, the levels would have been even lower (WDNR, 1994a)."

The Military Creek and North Twin Lake caged fish study was not indicative of risk to fathead minnows. The author of the report indicated that, "In summary, all the minnows looked healthy and in good condition, with the exception of above-normal mortality in North Twin Lake fish cages. It is not known if this is dissolved oxygen or

MILITARY CREEK – SITE INVESTIGATION / REMEDIAL ACTION OPTION REPORT | SITE INVESTIGATION CONCLUSIONS

contaminant related (WDNR 1994b)." Not surprisingly, dioxins and furans were not included in the list of chemical analytes the fathead minnow tissue samples. This was likely due in part to the results of the feral fish study.

In general sediment toxicity acute and chronic tests in invertebrates were not indicative of risk with one exception. Samples were collected from one reference location and four exposed locations for each of the *Ceriodaphnia dubia* 48-hour acute, *Daphnia magna* 48-hour acute, *Daphnia magna* 10-day chronic, and *Chironomus tentans* 10-day chronic tests. Only sediments from a sampling location adjacent to the Site were conclusively toxic using *Daphnia magna* in the 10-day chronic test (WSLH, 1995).

Overall, the feral fish, caged fish, and sediment toxicity studies were in agreement with the assessment summarized in Table 6.

6 REMEDIAL ACTION OPTIONS

The objective of the remedial action options evaluation was to recommend a response action for sediment within Military Creek as required by the WDNR under NR 722. The recommended response action was intended to manage the environmental issues identified in Military Creek and eliminate or control potential threats to human health, safety, and welfare and the environment to the extent practicable. The remedial action options evaluated for Military Creek sediment included: 1) no action; 2) institutional controls; and 3) targeted sediment removal with cover placement.

6.1 SITE SPECIFIC OBJECTIVES

The objectives of evaluated remedial actions, specific to Military Creek, were to accomplish the following:

- Prevent human exposure through direct contact with contaminated sediment.
- Reduce potential wildlife exposure through ingestion of contaminated sediment.
- Reduce potential transport of contaminated sediment in Military Creek to North Twin Lake through sediment transport mechanisms.

Assessed remedial actions capable of achieving site objectives included the following:

- Establishment and enforcement of institutional controls to restrict access or activities that could pose a threat to human health or exacerbate a threat to the environment.
- Removal of contaminated surface sediment from Military Creek through physical excavation and off-site disposal of sediment exhibiting impacts that pose an ecological risk.
- Placement of clean cover material over contaminated sediment to reduce potential human/wildlife contact and sediment transport.

6.2 IDENTIFICATION OF REMEDIAL ACTION OPTIONS

The remedial action technologies considered for evaluation included those that met the following initial screening criteria:

- Documented effectiveness from pilot-scale or full-scale applications.
- Ability to address identified sediment contamination in a timely manner.
- Appropriateness based on the distribution of contaminants.

Considering these screening criteria, applicable administrative and engineering technologies for use in developing remedial action options were institutional controls (i.e., zoning restrictions, notification signs), removal through excavation (i.e., dredging), and covering with clean material (i.e., sand placement). Concentrations of TEQs_{WHO-Fish} in surface sediment exceeded the PEC by approximately 10-fold and were greatest at sediment core location SED-03. The screening also indicated that there was potential risk at an area in North Twin Lake proximal to the mouth of Military Creek, where concentrations of TEQs_{WHO-Fish} in surface sediment samples exceeded the PEC by 1.2-fold. However, this location was not considered to be a necessary focus of remedial action given the relative uncertainties associated with risk. Therefore, for estimating purposes, an area extending from Transect T-13 upstream of SED-03 to T-12 downstream of SED-03 was used to develop and compare remedial action options. Options considered for further evaluation included the following:

- RAO No. 1 No action
- RAO No. 2 Institutional controls
- RAO No. 3 Targeted sediment removal with cover placement, including removal of up to 30 inches of sediment and replacement with 6 inches of clean cover material

Sediment remedial action options were evaluated based on criteria consistent with NR 722.07 including technical feasibility (i.e., short-term effectiveness, long-term effectiveness, implementability), restoration timeframe, economic feasibility, and additional requirements. A comparison of remedial options was presented in Table 8. Estimated remedial option costs were presented in Table 9; detailed cost estimates were included in Appendix B.

6.2.1 RAO No. 1 - No Action

Technology Description:

For completeness, the no action option was considered for comparison with other options. Under the no action option, no remedial work would be performed to address contaminated sediment within Military Creek.

Regulatory Issues:

This option would satisfy requirements stipulated in the 1998 spill agreement between CMC Co., Inc. and WDNR, which allows for evaluation of non-remedial actions.

Technical Feasibility:

This option could be implemented immediately. The short-term effectiveness would be poor since sediment impacts remain in place that present a potential ecological risk. The long-term effectiveness would be satisfactory since natural processes will cover and/or dilute concentrations over time through deposition of clean sediment. The impacted section of Military Creek was small and had little human presence under current site conditions presenting low exposure risk. Under future use conditions (recreational path), the effectiveness of this option would be poor.

<u>Restoration Timeframe</u>: The restoration timeframe was expected to be long. Site investigation data indicated that contaminant concentrations have been persistent over time.

Economic Feasibility:

This option is economically feasible and has no cost to implement.

6.2.2 RAO No. 2 – Institutional Controls

Technology Description:

This option included the implementation of legal requirements designed to protect public health and the environment. These are referred to as institutional controls or continuing obligations, and would be applied to the property even after it is sold. Each subsequent owner would be responsible for maintaining and complying with institutional controls. The following institutional controls were assumed:

- Zoning Restrictions and/or Deed Covenants: Restricts the allowable use for the Site.
- Manage Contaminated Sediment that is Excavated: In the event that sediment needs to be removed, such as for maintenance or replacement (planned or unplanned) of the existing culvert beneath County Highway E, the owner must ensure that proper sampling, management, and disposal will occur. Management and disposal must be in compliance with state and federal laws. By example, if the invert of a replacement culvert was set at a lower elevation, controls would need to be put in place to prevent or reduce the downstream migration of sediment deposits from upstream of the culvert. Such controls may include additional sediment characterization proximal to the culvert.
- Notification of Workers: If any work occurs in contaminated areas, the owner must inform all workers of known contamination and required personal protection equipment.
- Notification of Public: The owner must install and maintain signage describing known contamination, threats to human health, and not to disturb sediment. Signs must be located at locations of public access to Military

Creek, particularly at the interface of the proposed recreational path and the area from transect T13 to transect T12.

Regulatory Issues:

This option would satisfy requirements stipulated in the 1998 spill agreement between CMC Co., Inc. and WDNR. WDNR Case Closure (NR726) with residual contamination and GIS registry listing with continuing obligations was assumed to be required.

Technical Feasibility:

This option could be readily implemented. Completion of the WDNR Case Closure Request was estimated to take approximately 6 months. Following closure approval, signage was estimated to be manufactured and installed within 6 months. The short-term and long-term effectiveness would be administratively satisfactory in providing protectiveness to human health under current and future conditions. The short-term effectiveness to the environment would be poor since sediment impacts remain in place for potential wildlife exposure. The long-term effectiveness to the environment would be satisfactory since natural processes will cover and/or dilute concentrations over time through deposition of clean sediment.

<u>Restoration Timeframe</u>: The restoration timeframe was expected to be long. Site investigation data indicated that contaminant concentrations have been persistent over time.

Economic Feasibility:

The capitol costs to implement this remedial option was estimated at \$38,500. Annual maintenance costs were assumed to maintain and replace site signage. The total unadjusted cost (i.e., no discount factor for present value) including 30 years of annual maintenance was estimated at \$60,500.

6.2.3 RAO No. 3 – Targeted Sediment Removal with Cover Placement

Technology Description:

This option included removing up to 30 inches of sediment and placing a 6-inch thick cover of clean cover material (e.g., sand) from transect T13 to transect T12. This option would remove delineated sediment impacts and place a clean cover material to mitigate potential residual contaminants below the removal interval.

The estimated surface area between transect T13 and T12 is approximately 3,300 ft², which equates to approximately 305 cubic yards (CY) of sediment removal. It was assumed that removed sediments would need to be dewatered on a temporary sediment management pad using a stabilizing agent such as Portland cement. Stabilized sediment would be transported off site for disposal at a licensed non-hazardous disposal facility. Following sediment removal, the exposed sediment surface would be sampled to document residual conditions and 6 inches of clean sand would be placed as a clean substrate for recolonization of benthic organisms.

Supporting work for this option would include the following elements:

- Pre-design sediment sampling.
- Final design or remedial action.
- Permitting, bidding, and contracting to perform remedial action.
- Site preparation, including erosion controls, access tracking pad, access road, sediment management pad, and tree clearing to access Military Creek.
- Documentation sampling of post-dredge sediment surface and of cover material thickness.
- Removal/Disposal of temporary facilities following completion of remedial action.
- Site restoration (e.g., seeding disturbed areas)

Regulatory Issues:

This option would satisfy requirements stipulated in the 1998 spill agreement between CMC Co., Inc. and WDNR. Permits would be required authorizing work in a waterbody. Removed sediment would need to be properly characterized for offsite disposal. It was assumed that WDNR Case Closure (NR726) would be required.

Technical Feasibility:

Sediment removal and cover placement are common remedial actions that could be implemented following final design and permitting. The short-term effectiveness would be satisfactory since impacted sediment would be physically removed from Military Creek; however, this option would destroy any existing benthic habitat in the sediment removal area. The long-term effectiveness would be good since natural processes would deposit clean sediment on the placed cover material to re-establish the benthic habitat. Disruption of the placed cover would be expected to be low due to low flow velocities and the lack of human presence. The short-term and long-term effectiveness would be satisfactory in providing protectiveness to human health under current and future conditions.

Restoration Timeframe:

The restoration timeframe was expected to be relatively short (i.e., less than 5 years) for final design and implementation.

Economic Feasibility:

The capitol costs to implement this remedial option was estimated at \$326,000. No annual operation and maintenance costs were assumed.

6.3 Evaluation and Recommendation

Based on findings presented in the SI section of this report, Military Creek sediments present a low ecological risk potential. An area of potential ecological risk was identified directly adjacent to the site where concentrations of $TEQ_{WHO-Fish}$ in surface sediment exceeded the ecologically-relevant PEC. A review of historical resources that detailed no to low risk in feral and caged fish and sediment toxicity studies in invertebrates supported the assessment detailed in Table 6. In general, the potential for risk to humans was considered minimal given that the contamination was in submerged sediment and that access and recreational use is limited to Military Creek. Further, historic resources indicated that concentrations of dioxin equivalents in fish were well below advisory levels. Recreational use was expected to be limited to small boat use (e.g., canoes and kayaks) and use of a planned recreational path, in and on which users were unlikely to come in contact with the creek sediment.

- RAO No. 1 (no action) was included to provide a comparison with other options. The no action option was ruled out due to concern for alternate future use scenarios that might increase human contact with sediments.
- RAO No. 2 (institutional controls) fit well with the existing and anticipated site use for Military Creek. There is minimal existing human use of Military Creek that would present a risk of contacting impacted sediment. Future uses of Military Creek would need to consider existing conditions and include access controls as appropriate, depending on the future use, including the appropriate documentation and implementation of institutional controls. This option could be implemented in a reasonable timeframe and with reasonable cost.
- RAO No. 3 (targeted sediment removal with cover placement) would be technically acceptable as an appropriate remedial option to address contaminated sediment; however, the economic feasibility would not be appropriate for the small quantity of targeted impacted sediment exhibiting potential ecological risk. On a per cubic yard basis of sediment addressed, RAO No. 3 would mitigate potential risk at a unit cost of \$1,069/CY while RAO No. 2 would mitigate potential risk at a unit cost of approximately \$198/CY. Considering the magnitude of the potential risk compared to the economic cost to implement this option, RAO No. 3 was ruled out of consideration.

MILITARY CREEK - SITE INVESTIGATION / REMEDIAL ACTION OPTION REPORT | REMEDIAL ACTION OPTIONS

Based on data presented in the SI section of this report, the screening of data against SQGs, and the feasibility of identified Remedial Action Options, RAO No. 2 (institutional controls) was the recommended remedial option. The no action option was ruled out as not protective for alternate future use scenarios that might increase human contact with sediments. The dredge and cover option was ruled out due to the extremely high total and unit cost for implementation to reduce the de minimis risk that exists at the Site for invertebrates and fish. The recommended remedial action is the use of institutional controls, which can mitigate potential risks that may result from future use scenarios. Institutional controls are anticipated to include zoning/deed restrictions, access controls as appropriate depending on future use plans, and the installation and maintenance of notification signs. WDNR NR726 Case Closure with residual contamination and geographic information system (GIS) registry would be required. Institutional controls were also anticipated to be protective of human health for the intended recreational path at the Site.

REFERENCES

CCME (2002). Canadian Sediment Quality Guidelines for the Protection of Aquatic Life. Summary Table.

Coleman Engineering Company (1997). Site Investigation Report, CM Christiansen Co., Inc., Pole Treatment Facility.

Integral (2010), Fox Creek Sediment Toxicity Study, Amphipod Survival and Growth. Prepared for International Paper, Integral Consulting Inc.

NOAA (2004). Screening Quick Reference Tables.

NRT (2000). Remedial Action Documentation Report.

NRT (1998). CM Christiansen Co., Inc., Supplemental Evaluation of Military Creek and Revised Work Plan for Screening Level Assessment, Phelps, WI.

WSLH (1995). Acute and Chronic Toxicity Test Results for Military Creek Sediments. Lab No. 95107-112.

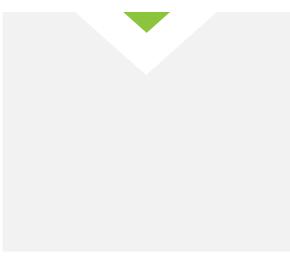
WDNR (2004). *Expanded Site Inspection*, CM Christiansen – Pole Yard, Village of Phelps, Vilas County, USEPA ID: WID988639035.

WDNR (2003). Consensus-Based Sediment Quality Guidelines, Recommendations for Use & Application.

WDNR (1998). Spill Response Agreement with CM Christiansen Co., Inc.

WDNR (1995). Final Screening Site Inspection Report for CM Christiansen Co., Inc. Pole Dipping Site.

WDNR (1994a). *Dioxin Results from North Twin Lake*. File Ref: 3200.


WDNR (1994b). Collection of Minnows in Military Creak & North Twin Lake (Caged Fish Study).

WDNR (1993). Preliminary Assessment, USEPA ID# WID998639035.

USEPA (2002) Guidance on Environmental Data Verification and Data Validation (EPA QA/G-8).

USEPA (1989) Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-Dioxins and -Dibenzofurans (CDDs and CDFs).

WHO (1998). *Toxicity Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs, for Humans and Wildlife,* Martin Van den Berg, Environmental Health Perspectives.

Table 1. Sediment Thickness Measurements

Military Creek Site investigation / Remedial Action Options C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

	Lef	t Bank	Mid-	Channel	C	enter	Mid-	Channel	Rigl	nt Bank	Average	
Transect	Water Depth	Sediment Thickness	Sediment Thickness	Comments								
1	0.4	0.6	0.4	0.7	0.7	0.6	0.7	0.6	0.5	0.6	0.6	Sandy
2	1.2	0.2	1.5	0.1	1.5	0.2	1.3	0.1	1.2	0.3	0.2	Sand with gravel and rocks
3	1.1	0.5	1.3	0.1	1.2	0.4	1.3	0.3	1.3	0.2	0.3	Sandy gravel
4	1.0	0.3	1.6	0.0	1.6	0.0	1.3	0.0	1.2	0.4	0.1	Sand with gravel and rocks
5	1.6	0.2	2.3	0.3	2.3	0.2	1.1	0.4	0.8	0.5	0.3	Sand and gravel. Some organics
6	1.2	1.0	1.9	1.3	2.0	0.5	2.0	1.0	0.5	0.6	0.9	Soft sediment
7	0.5	1.4	1.9	1.0	1.8	1.3	2.0	0.6	0.6	0.7	1.0	Soft sediment
8	2.1	1.0	2.2	0.9	1.7	0.3	1.8	0.5	1.4	0.7	0.7	Soft sediment
9	1.6	0.9	1.7	0.5	1.6	0.2	1.3	0.1	1.4	0.1	0.4	Sandy gravel
10	1.9	0.8	3.7	1.0	3.2	0.3	2.8	1.1	1.2	0.1	0.7	Soft sediment and sand
11	1.2	2.3	1.7	4.4	3.5	0.1	2.0	2.9	0.6	1.0	2.1	Soft sediment
12	1.0	0.9	2.4	1.6	3.0	1.3	3.1	1.3	2.4	2.4	1.5	Soft sediment
13	3.7	5.7	4.9	4.6	5.1	2.7	5.0	3.2	5.2	2.4	3.7	Soft sediment
14	3.6	4.4	4.5	2.7	4.6	3.8	5.1	3.2	4.7	3.4	3.5	Soft sediment
15	3.8	3.1	5.3	2.0	5.1	2.2	5.4	1.4	5.3	0.9	1.9	Soft sediment
16	6.0	3.8	5.7	4.5	5.5	2.0	3.4	3.1	2.8	1.8	3.0	Soft sediment
17	3.7	3.6	4.0	3.9	5.0	3.0	5.7	1.1	4.2	0.3	2.4	Soft sediment
18	5.0	3.8	5.1	3.9	5.3	2.8	5.0	4.7	4.8	4.1	3.9	Soft sediment
19	4.6	2.8	4.5	3.1	5.8	1.2	5.7	1.8	4.9	3.0	2.4	Soft sediment
20	5.9	1.7	6.0	2.4	6.0	2.2	5.5	4.1	5.1	4.1	2.9	Soft sediment

Notes:

1. All measurements are reported in Feet.
2. Transect measurement locations are based on facing upstream.
3. Comments on sediment type are subjective based on sampler feel and visual observation of sediment on poling rod

Table 2. Stream Flow Measurements

Military Creek Site Investigation / Remedial Action Options C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

	Left Bank		Mid-C	Mid-Channel		nter	Mid-C	Mid-Channel		Right Bank	
Transect	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Average Velocity
1	0.43	0.74	0.11	0.96	0.86	1.27	0.83	1.52	0.85	1.42	0.90
2	0.57	1.38	0.61	0.81	0.48	0.81	0.31	0.54	0.73	0.83	0.71
3	0.47	0.63	0.31	0.62	0.28	0.91	0.38	0.85	NM	NM	0.56
9	0.24	0.40	0.45	0.58	0.30	0.45	0.25	0.36	0.21	0.27	0.35
10	0.00	0.00	0.06	0.11	0.17	0.44	0.31	0.33	0.08	0.13	0.16
16	0.01	0.09	0.00	0.04	0.01	0.05	0.02	0.05	0.00	0.01	0.03
18	0.01	0.02	0.04	0.06	0.12	0.17	0.02	0.06	0.03	0.06	0.06

Notes:

- 1. All measurements are reported in feet per second (fps). Velocity measurements were collected for approximately 120 seconds per location
- 2. Transect measurement locations are based on facing upstream.
- 3. NM = no measurement recorded at the location.

Table 3. Sediment Analytical Results

Military Creek Site Investigation / Remedial Action Options
C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin
WDNR BRRTS Activity #02-64-000068

		Field Sample ID:	102016035	102016036	101916027	101916028	101916024	101916025	101916021	101916022	101916018	101916019	101816008	101816009
		Station Name:	SEI	D-01	SEI	D-02	SEI	D-03	SE	D-04	SEI	D-05	SE	D-06
	Sa	ample Depth (feet):	0-0.5	0.5-1.5	0-0.5	0.5-1.5	0-0.5	0.5-1.5	0-0.5	0.5-1.5	0-0.5	0.5-1.5	0-0.5	0.5-1.5
		Sample Date:	10/20/2016	10/20/2016	10/19/2016	10/19/2016	10/19/2016	10/19/2016	10/19/2016	10/19/2016	10/19/2016	10/19/2016	10/18/2016	10/18/2016
GEO	Moisture Content ⁵	(%)	90.3	85.5	91.9	87.2	46.3	55.4	91.4	75.4	35.8	16.9	92	77.3
Organic	Carbon, Total Organic	(mg/kg)	268,000	353,000	317,000	216,000	19,300	30,900	245,000	128,000	19,400	649	350,000	95,900
Organic	Carbon, Total Organic	(%)	26.8	35.3	31.7	21.6	1.93	3.09	24.5	12.8	1.94	0.0649	35	9.59
TEQ	TEQ (EPA-89 TEF) ¹	(ng/Kg)	1.02	0.92	307.8	23.64	781.7	3139.4	360.5	1241.9	73.81	0.78	802.0	1011.7
TEQ	TEQ (EPA-89 TEF) @ 1% TOC	(ng/Kg)	0.04	0.03	9.71	1.09	405.0	1016.0	14.71	97.02	38.05	11.96	22.92	105.5
TEQ	TEQ (WHO-98 TEF) ²	(ng/Kg)	1.11	1.04	168.8	13.55	424.9	1759.7	201.7	606.4	39.18	0.59	413.0	473.7
TEQ	TEQ (WHO-98 TEF) @ 1% TOC	(ng/Kg)	0.04	0.03	5.33	0.63	220.2	569.5	8.23	47.37	20.19	9.12	11.80	49.40
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	3.6 J	1 J	6,500	470	17,000 E	75,000 EDN2	7,800	31,000 DN2	1,600	11	18,000 E	25,000 E
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	< 0.27	< 0.32	47	3.9 J	100	370	48	160	10	< 0.16	110	140
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	< 0.29	< 0.32	260	18 J	740	2,800	340	960	65	0 IJ	690	810
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	< 0.26	< 0.25	100	7.2 J	230	780	110	310	25	0.21 J	220	280
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	< 0.3	< 0.26	11 J	0 IJ	27	89	15 J	42	2.6 J	< 0.08	26 J	33
Dioxin	2,3,7,8-TCDD	(ng/Kg)	< 0.34	< 0.34	< 2.3	< 0.65	2.1	9.3	0.97 J	2.4	0 IJ	< 0.12	2.1 J	2.1 J
Dioxin	OCDD	(ng/Kg)	29 J	6.2 J	72,000 E	5,700	170,000 EDN2	570,000 EDN2	73,000 E	310,000 EDN2	17,000 E	120	190,000 DN2	270,000 EDN2
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	1 J	0.47 J	2,200	150	5700 E	27,000 DN2	2,600	12,000 DN2	580	4.6 J	7,900	11,000 E
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	< 0.32	< 0.24	200	14 J	570	2,500 DN2	210	960 DN2	52	0.38 J	680	920
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	< 0.21	< 0.16	250	17 J	620	2,500	290	890	58	0 IJ	460	300
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	< 0.23	< 0.16	110	9 J	230	1,000	110	360	24	0 IJ	300	400
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	< 0.27	< 0.23	76	5.8 J	250	1,100	110	190	20	< 0.15	200	160
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	< 0.45	< 0.34	29 J	2.2 J	0 P	270	41	76	8	< 0.11	63	67
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	< 0.28	< 0.22	110	8.3 J	280	1,200	130	390	25	0 IJ	300	370
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	< 0.25	< 0.22	67	5.3 J	190	820	93	170	15	0.24 J	130	110
Furan	2,3,7,8-TCDF	(ng/Kg)	1.2 J	1.3 J	7.2 V	1.8 J	15 V	71 V	9.9 V	11 V	1.3 V	< 0.12	9.9 V	5.6 V
Furan	OCDF	(ng/Kg)	2.6 J	0 IJ	8,000	540	18,000 DN2	65,000 DN2	9,600	53,000 DN2	2,300	16	34,000 DN2	49,000 DN2

Qualifiers / Definitions:

- < = Concentration is less than reported limit
- U = Concentration was not detected above the reported limit
- J = Concentration estimated
- L = Analyte recovery in the laboratory control sample was outside qualtity control limits. Results may be biased low
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- EDL = Estimated Detection Limit
- N2 = Value obtained from additional analysis
- V = Result verified by confirmation analysis

ng/Kg = nanograms per kilogram
TEQ = Total 2,3,7,8-TCDD Equivalence

TEF = Toxic Equivalency Factors to 2,3,7,8-TCDD GEO = Geotechnical Property

GEO = Geotechnical Property

Results reported on a dry weight basis

Notes

- 1. TEQs calculated using 1989 USEPA Interim TEF Values
- 2. TEQs calculated using 1998 World Health Organization TEF Values for fish.
- 3. For concentrations reported as non detect, the reported detection limit was used in TEQ calculations.
- 4. For concentrations reported as estimated, the reported estimated value was used in TEQ calculations.
- 5. Sample-specific mositure content of sediment expressed as percent

Table 3. Sediment Analytical Results

Military Creek Site Investigation / Remedial Action Options
C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin
WDNR BRRTS Activity #02-64-000068

		Field Sample ID:	102016032	102016033	102016030	102016031	101816012	101816013	101816011	101816015	101816016	101816017	101716001	101716002
		Station Name:	SED)-101	SED)-102	SED	-103	SED-104		SED-105		SEC	D-106
	Sa	ample Depth (feet):	0-0.5	0.5-1.5	0-0.5	0.5-1.5	0-0.5	0.5-1.5	0-0.4	0-0.5	0.5-1.4	0.5-1.4	0-0.5	0.5-1.4
		Sample Date:	10/20/2016	10/20/2016	10/20/2016	10/20/2016	10/18/2016	10/18/2016	10/18/2016	10/18/2016	10/18/2016	10/18/2016	10/17/2016	10/17/2016
GEO	Moisture Content ⁵	(%)	90.6	87.8	92.2	88.2	28	21.6	24.6	8.6	58.7	38.7	14.5	5.2
Organic	Carbon, Total Organic	(mg/kg)	146,000	165,000	279,000	226,000	17,800	38,300	11,100	5,310	76,100	43,500	2,360	1,610
Organic	Carbon, Total Organic	(%)	14.6	16.5	27.9	22.6	1.78	3.83	1.11	0.531	7.61	4.35	0.236	0.161
TEQ	TEQ (EPA-89 TEF) ¹	(ng/Kg)	2.83	2.14	2.27	0.85	45.40	0.43	14.67	5.38	2.31	1.93	0.40	0.40
TEQ	TEQ (EPA-89 TEF) @ 1% TOC	(ng/Kg)	0.19	0.13	0.08	0.04	25.50	0.11	13.22	10.14	0.30	0.44	1.70	2.49
TEQ	TEQ (WHO-98 TEF) ²	(ng/Kg)	2.17	1.81	1.98	0.94	24.19	0.35	9.12	3.40	1.35	1.20	0.38	0.37
TEQ	TEQ (WHO-98 TEF) @ 1% TOC	(ng/Kg)	0.15	0.11	0.07	0.04	13.59	0.09	8.21	6.40	0.18	0.28	1.59	2.27
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	39	20 J	27	2 J	950	5.8	290	110	45	38	4 J	4.1 J
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	0 IJ	< 0.24	0.55 J	< 0.26	5.3 J	< 0.083	2.8 J	1.1 J	0.4 J	0.41 J	< 0.16	< 0.16
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	2.1 J	0.82 J	1.4 J	< 0.29	39	0.18 J	15	5	1.7 J	1.6 J	0.21 J	0 IJ
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	0.92 J	0.4 J	0.64 J	< 0.26	11	< 0.091	5.8	1.6 J	0.72 J	0.63 J	< 0.17	0.21 J
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	< 0.42	< 0.35	< 0.45	< 0.23	1.5 J	< 0.078	0.73 J	0.32 J	< 0.11	< 0.092	< 0.057	< 0.052
Dioxin	2,3,7,8-TCDD	(ng/Kg)	< 0.41	< 0.6	< 0.36	< 0.28	< 0.16	< 0.083	< 0.11	< 0.091	< 0.2	< 0.12	< 0.095	< 0.1
Dioxin	OCDD	(ng/Kg)	370	230	230	13 J	11,000 E	65	2,500	970	510	360	38	51
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	12 J	7.1 J	10 J	0 IJ	360	2.7 J	100	41	21	15	0 IJ	1.3 J
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	0 IJ	0 IJ	1.1 J	< 0.29	35	0.21 J	9.6	3.7 J	1.6 J	1.2 J	< 0.15	< 0.15
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	1.5 J	0.87 J	1.4 J	0.23 J	35	0 IJ	12	3.4 J	1.3 J	1.2 J	0.16 J	0.13 J
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	0 IJ	0.52 J	0 IJ	< 0.17	17	0.14 J	5 J	1.6 J	0.56 J	0.46 J	< 0.13	0 IJ
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	0.71 J	< 0.26	0.47 J	< 0.16	16	< 0.084	5 J	1.4 J	0.36 J	0.44 J	< 0.16	< 0.072
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	< 0.55	< 0.48	< 0.31	< 0.49	5.4 J	< 0.085	1.9 J	0.61 J	< 0.14	0.18 J	0 IJ	< 0.054
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	1.1 J	< 0.26	0.71 J	< 0.22	6.4	0.17 J	6.3	2.2 J	0.78 J	0 IJ	< 0.13	< 0.086
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	0.73 J	0.65 J	0.62 J	< 0.24	11	< 0.07	4.1 J	1.6 J	0.31 J	0.45 J	0 IJ	0.11 J
Furan	2,3,7,8-TCDF	(ng/Kg)	1.4 J	1.4 J	1.5 J	1.1 J	0.96 J	0.2 J	0.54 J	0.25 J	0.4 J	0.34 J	0.16 J	< 0.12
Furan	OCDF	(ng/Kg)	34 J	27 J	29 J	0 IJ	1,200	9.4 J	310	130	85	57	5.5 J	5.1 J

Qualifiers / Definitions:

- < = Concentration is less than reported limit
- U = Concentration was not detected above the reported limit
- J = Concentration estimated
- L = Analyte recovery in the laboratory control sample was outside qualtity control limits. Results may be biased low
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- EDL = Estimated Detection Limit
- N2 = Value obtained from additional analysis
- V = Result verified by confirmation analysis

ng/Kg = nanograms per kilogram

TEQ = Total 2,3,7,8-TCDD Equivalence
TEF = Toxic Equivalency Factors to 2,3,7,8-TCDD

GEO = Geotechnical Property

Results reported on a dry weight basis

Notes:

- 1. TEQs calculated using 1989 USEPA Interim TEF Values
- 2. TEQs calculated using 1998 World Health Organization TEF Values for fish.
- 3. For concentrations reported as non detect, the reported detection limit was used in TEQ calculations.
- 4. For concentrations reported as estimated, the reported estimated value was used in TEQ calculations.
- 5. Sample-specific mositure content of sediment expressed as percent

Table 3. Sediment Analytical Results

Military Creek Site Investigation / Remedial Action Options C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

		Field Sample ID:	101716003	101716004	101716005	101716006	101716007
		Station Name:	SED)-107		SED-108	
	Sa	mple Depth (feet):	0-0.5	0.5-0.7	0-0.5	0.5-1.4	0.5-1.4
		Sample Date:	10/17/2016	10/17/2016	10/17/2016	10/17/2016	10/17/2016
GEO	Moisture Content ⁵	(%)	17.1	14.8	9	13.1	13.6
Organic	Carbon, Total Organic	(mg/kg)	1,390	1,810	2,960	6,290	16,500
Organic	Carbon, Total Organic	(%)	0.139	0.181	0.296	0.629	1.65
TEQ	TEQ (EPA-89 TEF) ¹	(ng/Kg)	0.24	0.75	29.60	0.40	0.62
TEQ	TEQ (EPA-89 TEF) @ 1% TOC	(ng/Kg)	1.73	4.16	99.99	0.63	0.38
TEQ	TEQ (WHO-98 TEF) ²	(ng/Kg)	0.24	0.76	7.46	0.43	0.65
TEQ	TEQ (WHO-98 TEF) @ 1% TOC	(ng/Kg)	1.70	4.20	25.21	0.68	0.39
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	1.5 J	6.4	880	1.3 J	2.9 J
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	< 0.059	0.27 J	0.48 J	< 0.12	< 0.11
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	< 0.077	0.55 J	14	< 0.12	0 IJ
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	< 0.06	< 0.2	1.4 J	< 0.12	< 0.11
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	< 0.041	< 0.14	< 0.088	< 0.084	< 0.14
Dioxin	2,3,7,8-TCDD	(ng/Kg)	< 0.085	< 0.26	< 0.095	< 0.18	< 0.24
Dioxin	OCDD	(ng/Kg)	11	30	12,000 E	12	28
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	0.7 J	1.4 J	360	0 IJ	1.4 J
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	< 0.14	< 0.34	14	< 0.13	< 0.2
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	< 0.1	0 IJ	2.5 J	< 0.093	0 IJ
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	< 0.088	< 0.17	1.4 J	< 0.073	0.15 J
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	< 0.097	< 0.27	0 IJ	< 0.1	< 0.13
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	< 0.05	< 0.14	0.1 J	< 0.079	< 0.16
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	< 0.077	< 0.19	2.4 J	< 0.069	0.12 J
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	< 0.04	0 IJ	0.27 J	0 IJ	0 IJ
Furan	2,3,7,8-TCDF	(ng/Kg)	0.2 J	< 0.33	0.26 J	0.24 J	< 0.19
Furan	OCDF	(ng/Kg)	1.7 J	0 IJ	2,500	0 IJ	5.8 J

[O:ECK 1/26/17 - C:KJB 1/27/17][U:ECK 5/4/18]

Qualifiers / Definitions:

- < = Concentration is less than reported limit</p>
- U = Concentration was not detected above the reported limit
- J = Concentration estimated
- L = Analyte recovery in the laboratory control sample was outside qualtity control limits. Results may be biased low
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- EDL = Estimated Detection Limit
- N2 = Value obtained from additional analysis
- V = Result verified by confirmation analysis

ng/Kg = nanograms per kilogram

- TEQ = Total 2,3,7,8-TCDD Equivalence
- GEO = Geotechnical Property
- Results reported on a dry weight basis

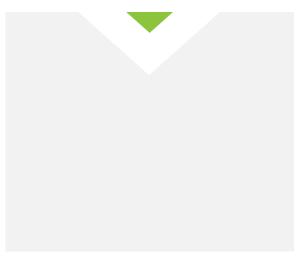
- 1. TEQs calculated using 1989 USEPA Interim TEF Values
- 2. TEQs calculated using 1998 World Health Organization TEF Values for fish.
- TEF = Toxic Equivalency Factors to 2,3,7,8-TCDD 3. For concentrations reported as non detect, the reported detection limit was used in TEQ calculations.
 - 4. For concentrations reported as estimated, the reported estimated value was used in TEQ calculations.
 - 5. Sample-specific mositure content of sediment expressed as percent

Table 8 - Remedial Action Options

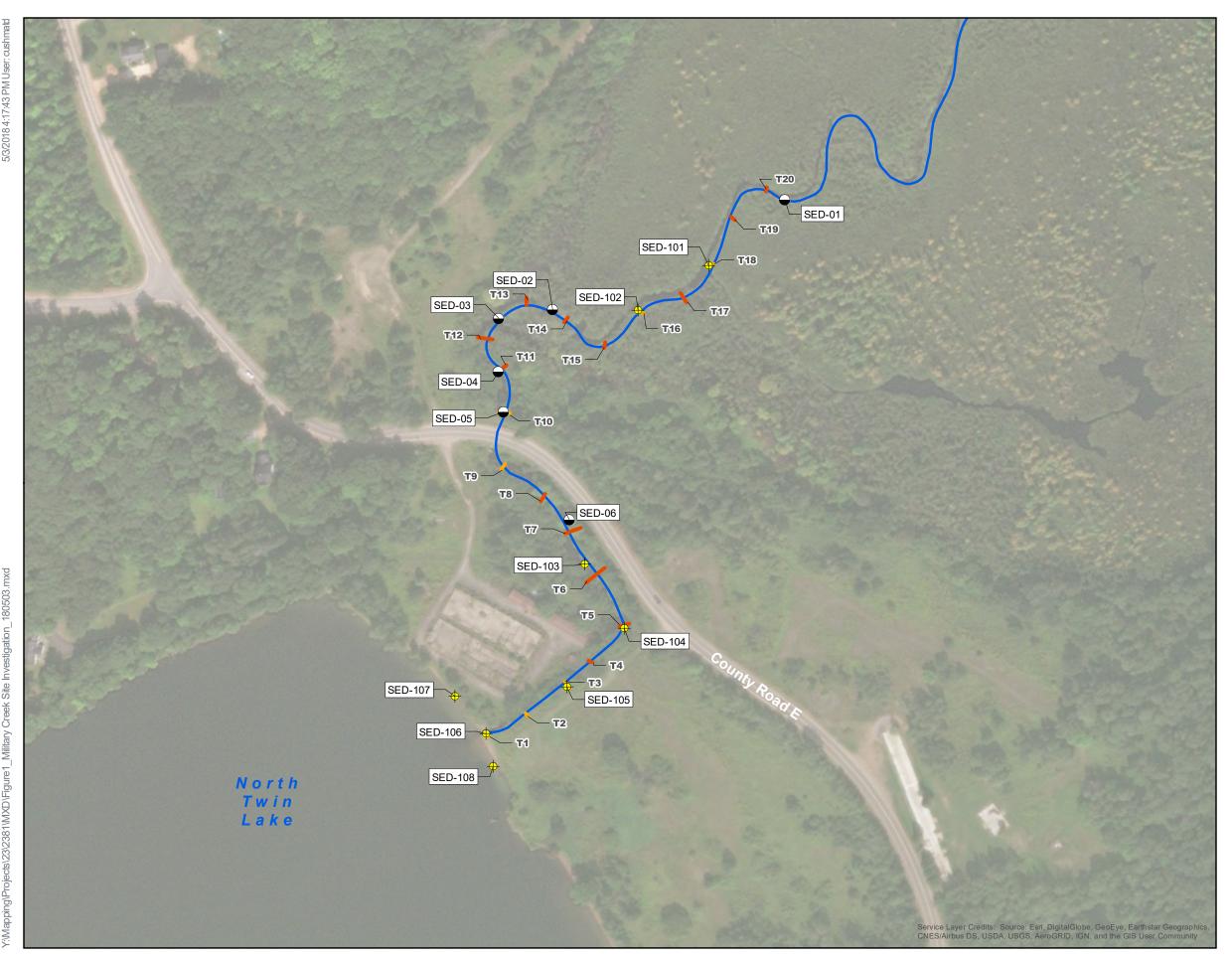
Military Creek Site Investigation / Remedial Action Options C.M.Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

			EFFECTIVENESS		IMPLEME	COST	
Remedial Action Option	Remedial Action Option Description	Ability / Timeframe to Meet site- specific Objectives	Long-term and Short-term Effects	Proven and Reliability	Technical Feasibility	Administrative / Regulatory Feasibility	Relative Cost
No Action	No action taken to reduce, monitor, or control site risks.	Does not reduce potential exposure to or disturbance of contaminated sediment.	 No added risk during short term. Does not provide short-term effectiveness to achieve site-specific objectives. Does provide long-term effectiveness to achieve site-specific objectives through natural clean sediment deposition. 	• Not reliable	• Easily implemented.	Satisfies requirements of 1998 Spill Agreement.	Very Low
Institutional Controls / Continuing Obligations	Zoning Restrictions: Restrict land use within a given area through zoning ordinances. Deed Covenants: Limit activities that would increase risk, and mange further development with legal instruments of property transfer (e.g., deeds, easements, mortgages, leases, WDNR GIS Registry). Fencing/Signs: Controls that are installed to prevent access and/or warn of the presence of site-related contaminants.	Achieves site-specific objectives over short and long- term.	No added risk during short term. Provides short and long-term effectiveness for protection to humans. Provides long-term effectiveness to wildlife through natural clean sediment deposition. Protects existing habitat and biological community. Effective for limiting human access. Requires management of any removed sediment in accordance with state and federal regulations.	Administratively reliable. Physical controls relies on compliance by public. Physical controls need to be maintained to ensure protection of receptors.	Easily implemented. Requires long-term maintenance.	Administratively implementable. Assumed to require WDNR Case Closure (NR726) with residual contamination and GIS registry listing. Satisfies requirements of 1998 Spill Agreement.	Low
30-Inch Sediment Removal with 6-Inch Sand Cover	Sediments are removed by means of mechanical dredging/excavating equipment. Dredged sediments are handled and managed on site to condition sediment (e.g., dewater) for off-site disposal. Six inch sand cover placed to mitigate potential residual concentrations.	Achieves site-specific objectives in short-term.	 Effective at rapidly reducing risk to ecological receptors. Long-term effectiveness for controlling contaminated sediment transport. Moderate potential short term exposure risk to construction worker and public during material handling, processing, and disposal. Short-term disruption to benthic community and aquatic habitat. Contaminated sediments may resuspend and be transported downstream during implementation. 	Proven and reliable strategy for managing contaminated sediments.	 Requires engineering for final design of remedial action, including dredge area design, sediment dewatering and handling, and contact water treatment. Requires development of construction plans, specifications, and contract documents to execute the work. Extensive amounts of shoreline vegetation makes access and implementation difficult. Limited to availability of space for staging and handling of dredge material and water treatment system, if needed. Requires identification and use of appropriate disposal facility, including transportation. 	Requires regulatory agency permitting. Requires appropriate identification and disposal facility including transportation. Satisfies requirements of 1998 Spill Agreement.	High

Table 9 - Remedial Action Options Estimated Costs


Military Creek Site Investigation / Remedial Action Options C.M.Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

Remedial Action Options		Total Capital Cost		Total Present Value of O&M Cost		Total Present Value Cost of Alternative		Total O&M Cost, No Discount Factor		Total Alternative Cost, No Discount Factor	
1 – No Action	\$		\$	-	\$	-	\$	-	\$	-	
2 – Institutional Controls / Continuing Obligations	\$	38,500	\$	9,000	\$	47,500	\$	22,000	\$	60,500	
3 – 30-Inch Dredge and 6-Inch Sand Cover	\$	326,000	\$	-	\$	326,000	\$	-	\$	326,000	


Notes:

- 1. Total Capital Costs include professional services (e.g., design, oversight, project management).
- 2. Present value costs, if applicable, assume a discount rate of 7% over a 30-year analysis period.
- 3. Total Operation & Maintenance (O&M) costs are applied over a 30-year analysis period with no discount factor.

FIGURES


LEGEND

- SEDIMENT CORE LOCATION OCTOBER 2016
- PREVIOUS SEDIMENT SAMPLE

 LOCATION RESAMPLED OCTOBER
 2016
- SEDIMENT THICKNESS POLING TRANSECT
- SEDIMENT THICKNESS POLING
 TRANSECT WITH STREAM VELOCITY

MILITARY CREEK SITE INVESTIGATION

SITE INVESTIGATION /
REMEDIAL ACTION OPTIONS REPORT
PHELPS, VILAS COUNTY, WISCONSIN

APPENDIX B

REMEDIAL ACTION

OPTION DETAILED COST

ESTIMATES

RAO 1 - No Action						Cost Estimate Summary Worksheet
Site: C.M. Christiansen Co. Inc. Former Pole N Phase: Remedial Action Options Evaluation (•				Description: No Action	
DESCRIPTION	QTY	UNIT	UNIT COST	ITEM COST	SUBTOTAL	ASSUMPTIONS/REFERENCES
CAPITAL COSTS						
Total Capital Costs					\$ -	
OPERATIONS AND MAINTENANCE COSTS						
Total Cost of Annual And Periodic Maintena	nce, No Discount Factor				\$ -	
Present Worth of Annual Costs (30 Year An	alysis Period and a 7% Disco	unt Rate)			\$ -	
Present Worth of Periodic Costs (30 Year An	alysis Period and a 7% Disco	unt Rate)			\$ -	
Total Present Worth of Alternative					\$0	

Date: 6/16/17
Estimated By: AMM
Reviewed By: LLP

RAO 2 - Institutional Controls / Continuing Obligations

Cost Estimate Summary Worksheet

Site: C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin Phase: Remedial Action Options Evaluation (-30% to +50%)

Description: Implement site controls through zoning restrictions, deed covenants, and site signage. Option includes completing WDNR NR726 Case Closure with residual contamination and GIS registry

\$28 \$280 \$50 \$495 330,000 \$30,000	\$		Assumes 10 notification signs along Military Creek Material and labor for installation
\$50 \$495 \$30,000 \$30,000	\$		
\$50 \$495 \$30,000 \$30,000	\$		
30,000 \$30,000	\$		Material and labor for installation
	,	775	
	10		
	10		
			Prepare and submit closure package
	\$	30,000	
\$3,078			
\$4,616	.6		
	\$	7,694	
	\$	38,500	
\$500 \$500	00		
\$28 \$28			Assumes 10% of signs need replacement each year
\$50 \$50			Assumes 10% of signs need replacement each year
\$87			. , , , , , , , , , , , , , , , , , , ,
	\$	722	
	\$	22,000	
r)	\$	9,000	
•)		-	
·)	\$		
r		\$	\$ - \$ 47,500

Date: 6/16/17 Estimated By: AMM Reviewed By: LLP

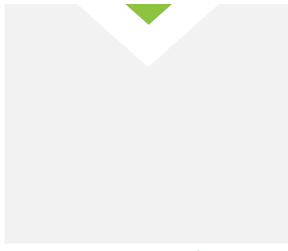
RAO 3 - 30-Inch Dredge & 6-Inch Sand Cover

Cost Estimate Summary Worksheet

Site: C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin **Phase:** Remedial Action Options Evaluation (-30% to +50%)

Description: Dredge sediment characterized as having probable ecological risk for off-site disposal. Dredge to depth of 30 inches and replace with 6 inches of clean sand cover.

DESCRIPTION	QTY	UNIT	UNIT COST	ITEM COST	SUBTOTAL	ASSUMPTIONS/REFERENCES
CAPITAL COSTS						
Site Preparation						
Mob./Demob.	1	LS	\$5,630	\$5,630		Assumed at 3% of Construction Costs
Silt Fence Installation	350	LF	\$2.06	\$721		Assumes 350 ft of silt fence around sediment management pad and along cleared access to Military Creek.
Stabilized Construction Entrance	100	SY	\$16	\$1,586		Assumes a 50 SY stabled construction entrance from County Highway E
Sediment Management Pad	1	LS	\$21,676	\$21,676		Assumes 12" compacted 3/4" aggregate base course under laid by an impermeable 40-mil PVC geomembrane liner
Clearing and Grubbing of Trees/Vegetation	0.02	Acre	\$11,575	\$232		Assumes clearing of trees/vegetation and grubbing of stumps for access to Military Creek.
Access Road	533	SY	\$12.7	\$6,747		Assumes 200 ft long, 20 ft wide, 8" deep gravel access road from County Highway E to sediment management area and 40 ft long from sediment management area to Military Creek
SUBTOTAL				_	\$ 36,5	
Sediment Removal						
Dredging and transfer to sediment management pad.	305	CY	\$70	\$21,400		Assumes 30 inch sediment removal over approximately 3,300 sf. Unit rate based on similar project in central Wisconsin.
Dewatering and Stabilization	305	CY	\$60	\$18,300		Assumes sediment stabilization with cement or similar water binding product. Unit rate based on similar project in central Wisconsin.
Transportation to Landfill	503	Tons	\$16	\$8,200		Assumes disposal at non-hazardous landfill. Unit rate based on average of three similar projects across Wisconsin.
Landfill Disposal	503	Tons	\$38	\$19,100		Assumes disposal at non-hazardous landfill. Unit rate based on average of three similar projects across Wisconsin.
Sand (Material and Delivery)	61	CY	\$30	\$1,800		Unit rate based on similar project in central Wisconsin.
Residual Sand Cover Placement	61	CY	\$90	\$5,500		Unit rate based on similar project in central Wisconsin.
SUBTOTAL					\$ 74,3	00
Sediment Sampling						
Sediment Disposal Characterization	2	EA	\$900	\$1,800		Assumes pre-disposal waste characterization samples.
Pre-Dredge Analysis	10	EA	\$650	\$6,500		Assumes sampling in target area for final design.
Post-Dredge Analysis	10	EA	\$650	\$6,500		Assumes sampling to characterize post-dredge surface.
Pre-dredge Sample Collection	1	LS	\$9,000	\$9,000		Labor to collect pre-dredge surface concentrations.
Post-Dredge Sample Collection	1	LS	\$9,000	\$9,000		Labor to collect post-dredge surface concentrations.
Sand Cover Thickness	1	LS	\$9,000	\$9,000		Labor to collect sand cover thickness data.
	1	Tons	\$0	\$0		
SUBTOTAL				_	\$ 41,8	00


Date: 6/16/17 Estimated By: AMM Reviewed By: LLP

RAO 3 - 30-Inch Dredge & 6-Inch Sand Cover	r		contir	nued			Cost Estimate Summary Workshee			
DESCRIPTION	QTY	UNIT	UNIT COST	ITEM COST	SUBTO	OTAL	ASSUMPTIONS/REFERENCES			
Site Restoration										
Removal/Disposal of Temporary Facilities	731	Ton	\$52	\$38,000			Assumes disposal of sediment management pad and access roads. Unit rate is sum of transportation and disposal from "Sediment Removal"			
Seeding	1,200	SY	\$2	\$2,600	500		Assumes hydroseed of disturbed areas from sediment management pad and access to Military Creek.			
SUBTOTAL				-	\$	40,600	decess to winter y creek.			
Professional Services										
Remedial Engineering Design	1	LS	\$15,463	\$15,500			Assumed at 8% based on USEPA Guide to Developing Feasibility Study Cost Estimates			
Construction Oversight	1	LS	\$11,597	\$11,600			Assumed to be 6% of Remedial Contractor construction costs based on USEPA Guide to Developing Feasibility Study Cost Estimates			
Project Management during Construction	1	LS	\$9,665	\$9,700			Assumed to be 5% of Remedial Contractor construction costs based on USEPA Guide to Developing Feasibility Study Cost Estimates			
WDNR NR726 Case Closure	1	LS	\$30,000	\$30,000			Assumes preparation and submital of closure package			
SUBTOTAL					\$	66,800				
Contingency Bid Estimating Contingency: 10% of Total Capital Costs				\$26,009						
Scope Estimating Contingency: 15% of Total Capital Costs	;			\$39,014						
SUBTOTAL					\$	65,023				
Total Capital Costs					\$ 32	26,000				
OPERATIONS AND MAINTENANCE COSTS										
Annual Operations and Maintenance - Cost Per Year										
SUBTOTAL				-	\$	-	Assumes no O&M costs			
Periodic (Every 5 Years) Operations and Maintenance	- Cost Per Eve	ent								
SUBTOTAL				-	\$	-	Assumes no O&M costs			
Total Cost of Annual And Periodic Maintenance, No Discour	nt Factor				\$	-				
Present Worth of Annual Costs (30 Year Analysis Period an	d a 7% Discou	nt Rate)			\$	-				
Procent Worth of Povindia Costs (20 Year Anglinia Povind on	d a 79/ Discour	nt Bata\			ć					
Present Worth of Periodic Costs (30 Year Analysis Period an	iu a /% Discou	nt Kate)			\$	-				
Total Present Worth of Alternative					\$ 32	26,000				

Date: 6/16/17 Estimated By: AMM Reviewed By: LLP

APPENDIX C
Sediment Core Photos and Logs

Core Number: SED-01 Date of Photo: 10/20/16

Core Number: SED-02 Date of Photo: 10/19/16

Core Number: SED-03 Date of Photo: 10/19/16

Core Number: SED-04 Date of Photo: 10/19/16

Core Number: SED-05 Date of Photo: 10/19/16

Core Number: SED-06 Date of Photo: 10/18/16

Core Number: SED-101 Date of Photo: 10/20/16

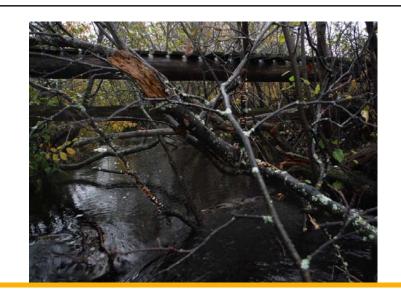
Core Number: SED-102 Date of Photo: 10/20/16

Core Number: SED-103 Date of Photo: 10/18/16

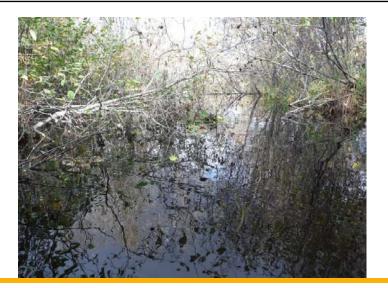
Core Number: SED-104 Date of Photo: 10/18/16

Core Number: SED-105 Date of Photo: 10/18/16

Core Number: SED-106 Date of Photo: 10/17/16

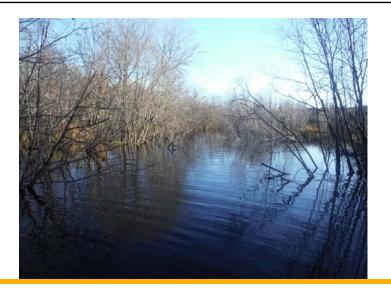

Core Number: SED-107 Date of Photo: 10/17/16

Core Number: SED-108 Date of Photo: 10/17/16



Description: SED-106 Facing Upstream Date of Photo: 10/17/16

Description: Transect T2 Facing Upstream Date of Photo: 10/18/16



Description: Transect T5 Facing Upstream Date of Photo: 10/18/16

Description: Transect T10 at Culvert under County Road E Date of Photo: 10/19/16

Description: Transect T12 Facing Upstream Date of Photo: 10/19/16

Description: Transect T18 Facing Upstream Date of Photo: 10/20/16

Staff Gauge Reading
Time Reading ft

									Time		eadingit
General Informa	tion										
Project Name/Site:			Military Creek	(S	Sampling Equipment:		Pus	sh Core
Project #:			2381					Coordinate System:			
			2					Datum:		,	
								Weather:	Da	vily (cloudy 40c
			Wiskes, Andre	a Salus				River Section/DMU:	1)	
Sample Location	Time	Water	Water Depth	Penetration	Sediment Recovered	%		ample Location		e Location	Sample Notes
	(military)	Elevation ⁽¹⁾	(ft)	(ft)	(ft)	Recovery		(Northing) ⁽²⁾	(Ea	sting) ⁽²⁾	The same of the sa
SED-01	1125		5.7	2,5	1.2	48					
Sample Intervals (in)			Sampl	e Description				Date Processed	Sample	Intervals (in)	COC Sample ID Number
_			1		,		1		TOP	воттом	
0-115	KM		t, 2011		MANUS		Jelina	10150116	2	0.5	102016038
	WRT	d Diece	sis, Ner	y wet	169-9	3),4	con	V.	2.0	1,5	102016036
	1021										
,							-				7 +
	Α						-				
Additional	Comments:		Stream Velocity: DTS:	1- H	2-H	Total					
			Poling Depth:)			
			pillitec		PUSIN	COVE	ON	third atter	npt / f	irct	
		7NO (ut empt	12 had	1 wol	40016	MIC?) ,	, , ,	31	
		and the second s									
Notes: (1) Water Elevation = S (2) Sample coordinates					ased on a minimu	m of 2 staff gaug	ge readings	S.	Λ	1	
n/a: Not Applicable		and boing post	p. 2000000, filleri ap	-F300.01		,			An	drea	V los
COC: Chain of Custody					Sampli	ng/Processir	ng Perso	nnel Signature:	INVI	erica	Janos

Staff Gauge Reading
Time Reading ft

								11110		it	
General Informa	tion										
Project Name/Site:			Military Creel	k		_	Sampling Equipment:		Pu	sh Core	
Project #:			2381			_	Coordinate System:				
						_		#ANO			
Date:						_	Weather:	SUNI	NY LIMOST	14) 50s	
Samplers:	8.	Steve	e Wiskes, Andre	ea Salus		_	River Section/DMU:		1	. 101	_
Sample Location	Time (military)	Water Elevation ⁽¹⁾	Water Depth (ft)	Penetration (ft)	Sediment Recovered (ft)	% Recovery	Sample Location (Northing) ⁽²⁾		le Location esting) ⁽²⁾	Sample Notes	
SED-02	1209		4.4	2.5	1.7	68			42		
Sample Intervals (in)			Samp	le Description			Date Processed	Sample TOP	Intervals (in). BOTTOM	COC Sample ID Number	
0-1.7	DRIA	NOUDO	Silt tr	ara aver	AMICC.	VOVIA	10/19/10	O	0.5	10191(0027	1
0 111	Wet	10-015	Silt tro	MINICH	10.5-	1.0	107.17.0	0.5	1,5	161916023	
			,		Coro			1,5	1.7	101916029	Arch
											-
											-
											1
											1
											1
			Ä								
											-
											1
											1
											1
Additional	Comments:		Stream Velocity:				T	1			_
7.00.00			DTS:					1			
			Poling Depth:	4,0	7-H	Total		-			
	(TWO (t Kept) core se	ond	\		
Notes: (1) Water Elevation = S				ed at end of day, b	ased on a minimu	m of 2 staff gauge re	eadings.	^		0	
(2) Sample coordinates								\mathcal{N}		1	
n/a: Not Applicable COC: Chain of Custody					Sampli	ng/Processing F	Personnel Signature:	De	retrea	- della	
Cost Offair of Oustody					Campii		o.comioi oignataro.				-

Staff Gauge Reading
Time _____ ft

General Informa	tion											
Project Name/Site:			Military Creek	(S	Sampling Equipment:		Pus	sh Core	
Project #:			2381					Coordinate System:				
Task #:			2									
Date:								Weather:				
Samplers:		Steve	Wiskes, Andre	a Salus				River Section/DMU:				
Sample Location	Time (military)	Water Elevation ⁽¹⁾	Water Depth (ft)	Penetration (ft)	Sediment Recovered (ft)	% Recovery		ample Location (Northing) ⁽²⁾		le Location esting) ⁽²⁾	Sample Notes	
SED-03	1035		4,4	2.5	1.6	64				Ly		
Sample Intervals (in)			Sampl	Sample TOP	Intervals (in) BOTTOM	COC Sample ID Number						
0-0,4		nown	Silt, tr	CLEOV	ganics,	Trace	Jand	1919/16	0	0.5	1019160284]
011 0 0	yeny			. 0 1	D 10 0 1 1	Modern		1)	0,5	1,5	1019160745	4/
0.4-0.7		trace	Silf of		tine to		M		1.5	1.0	1019160250	~
0,7-1,0		noun	Sandy			rganic	<					1
0-11-11-0	1118+	·	Jen Jeng	31 17; 1	TACE O	James	9					1
	0											_
												_
												4
												\dashv
												1
												7
]
												⅃
Additional	Comments:		Stream Velocity:					4		8		
			Poling Depth:	1.11	0.2	Total		,	85. Q.			
		FOUR (Ittempt	Simac	e the	First	+0 -	ple would note tourty	mo	re mous		
		necove	ry and	the zno	b. Bed.	ic the	Sami	Die mould n	at st	CIDEMEN		
Notes: (1) Water Elevation = S	Staff Gauge Elev	ration - Staff Gauge	e Reading, Calculate	ed at end of day b	ased on a minimur	n of 2 staff gaud	e readings	ore Fourth	atte	Monte	le o	
(2) Sample coordinate		ed after being post	processed, when ap	oplicable.		3.03			T	170 716	20 2 1///	
n/a: Not Applicable					Sampli	ng/Processin	a Darca	nnel Signature:	H	nelsea	falles	
COC: Chain of Custody					Janipin	19/1 10003311	9 1 0130	inici oigilataie.				_

Staff Gauge Reading
Time Reading ft

General Informa	ition											
Project Name/Site:			Military Creek	(•	S	ampling Equipment:		Pus	sh Core	
Project #:			2381			<u> </u>		Coordinate System:				-
Task #:			2		X	•		Datum:				4
Date:		10/19	/(()					Weather:	most	ly Son	14, 505	_
Samplers:		Steve	Wiskes, Andre	a Salus		4		River Section/DMU:	4) .), -	
								P.,				
Sample Location	Time (military)	Water Elevation ⁽¹⁾	Water Depth (ft)	Penetration (ft)	Sediment Recovered (ft)	% Recovery		mple Location (Northing) ⁽²⁾		Location sting) ⁽²⁾	Sample Notes	
SED-04	0937		1.3	3.5	2.2	58%		-		fet.		
Sample Intervals-(in)			Sampl	le Description				Date Processed	TOP	ntervals (in). BOTTOM	COC Sample ID Number	
0-2.2	UKD	rown s		eorgani		Is, Most	· s -	0-05101111	025	0.5	101916021	
	MOOG	, ver	y wet,	decrea	5×135, WY	etness			0.5	115	101916022	·/\
	decre	ases to	5 pust	wet a	itter to	p 6".		V	1.5	2.2	101916023	A
			,			•						1
												1
												1
												1
												-
												ł
								*				1
												1
	Comments:	Three was v	Stream Velocity: DTS: Poling Depth: Attemption of the Management o	5.9 5.9 H and v	had tra			e, bic water	beria tube	e Third		1
Notes: (1) Water Elevation = \$ (2) Sample coordinate n/a: Not Applicable COC: Chain of Custody	Staff Gauge Elev s will be recorde	ration - Staff Gaug d after being post	e Reading, Calculat processed, when ap	ed at end of day, ba				nnel Signature:	Du	elren	Jelles	
												•

Staff Gauge Reading
Time Reading ft

										——·`	r	
General Informa	ition											
Project Name/Site:			Military Creek	(S	ampling Equipment:		Pu	sh Core	
Project #:	,		2381			_		Coordinate System:				
Task #:			2			_		Datum:				
Date:		18/19/	10			-		Weather:	par	thy JUI	1ny, 40s	
Samplers:		Steve	Wiskes, Andre	a Salus		-		River Section/DMU:	1	/	15	
Sample Location	Time (military)	Water Elevation ⁽¹⁾	Water Depth (ft)	Penetration (ft)	Sediment Recovered (ft)	% Recovery		ample Location (Northing) ⁽²⁾		e Location sting) ⁽²⁾	Sample Notes	
SED-05	0912		4,1	2.5	7.0	80				F		
Sample Intervals (in)			Sampl	e Description		,		Date Processed	Sample TOP	Intervals (in) BOTTOM	COC Sample ID Number	
1-0,2			H, trace		110 ma	Her, W	Pt	10/19/10	0	0.5	101916018	
0.2-2.0		to conf		d, poor	y gra	ded, l	orow	1, 1,	0.5	1,5	101916019	
20 +NS	TYCO	grave	1, mis	+ '				, 1	1.5	2.0	101916020 A	rch
20. 7(10)												
	*											
	×											
Additional	Comments:		Stream Velocity: DTS:		2-H	Tot						
			Poling Depth:	110	0	110		A . 1.	1			
			tempts attempt	Made.	With.	PUSIN	ove,	Sampleke	pt			
Notes: (1) Water Elevation = S	Staff Gauge Flor				ased on a minimu	m of 2 staff gave	ne readings					
(2) Sample coordinate					ascu on a minimu	iii oi z stali yauţ	ge readings	•	1			
n/a: Not Applicable					0"	(D	D	! 0:	1	100/100	. A llers	
COC: Chain of Custody					Sampli	ng/Processii	ng Perso	nnel Signature:		rverce		

Staff Gauge Reading
Time _____ Reading ____ ft

General Informa	tion	ĺ									
Project Name/Site:			Military Creek	(s	Sampling Equipment:		Pus	sh Core
			2381					Coordinate System:			
					SIEGIOUS II.			Datum:			
						•		Weather:	Sun	my, 60	S
			Wiskes, Andre					River Section/DMU:			
		-									
Sample Location	Time (military)	Water Elevation ⁽¹⁾	Water Depth (ft)	Penetration (ft)	Sediment Recovered (ft)	% Recovery		ample Location (Northing) ⁽²⁾		le Location esting) ⁽²⁾	Sample Notes
SED-06	1342		2.7	24	1.8	75				£t	
Sample Intervals (in)			Samp	e Description			,	Date Processed	Sample TOP	Intervals (in) BOTTOM	COC Sample ID Number
0-1.8	prou		It son			itter 6		10/18/10	0	0.5	1018160082
	trace	+Me		trace gr	aver,	ly woo	q 1	1,	1.5	1.5	1018160091 101816010 - arch
	CVUIVO	3 11-)	-11. J ; C	JET					1,5	18	1018/10010 - 11/01
				pol-2 14 2-21 11						<u> </u>	
		18 1/4/20									
ā											
Additional	Comments:		Stream Velocity: DTS: Poling Depth: POUND TO	find 3	ioft Sect	iment,	Hav	nmored pos	ucor	«	
Notes: (1) Water Elevation = S (2) Sample coordinates n/a: Not Applicable COC: Chain of Custody							-	nnel Signature:	A	indred	Sales

Staff Gauge Reading
Time Reading ft

									Time		cading it	
General Informa	ation											
Project Name/Site:			Military Creek	(_	5	Sampling Equipment:		Pu	sh Core	
Project #:			2381			_		Coordinate System:				
Task #:			2			_		Datum:				•
Date:		101	20/11)		_		Weather:	parti	4 (101	sdy, 405	-
Samplers:		Steve	Wiskes, Andre	a Salus		_		River Section/DMU:	ł		J .	
					,							_
Cample I costion	Time	Water	Water Depth	Penetration	Sediment	%	S	ample Location	Sample	e Location	O-maria Nata	
Sample Location	(military)	Elevation ⁽¹⁾	(ft)	(ft)	Recovered (ft)	Recovery		(Northing) ⁽²⁾	(Eas	sting) ⁽²⁾	Sample Notes	
SED-101	1012		5,2	2,5	1.6	(04				\$ †		
Sample Intervals (in)			Sampl	e Description				Date Processed	Sample	Intervals (in)	COC Sample ID Number	1
									TOP	воттом	•	
0-1,le	Broc	HE PU	, trace	Mosd	HID-EKS) VIOLIA		10150/10	0 "	0.5	102016032	
	4111.0	RAMOR	, very	WH ()	120,5)	LININ	Wa	1	0.5	1.60	102016833	AVCU
									7. 3	1, 0	10 23 10059	,
												i
		-										1
												1
										•		
												1
				W 1 W 1 W 1 W 1 W 1								
												ı
Additional	Comments:		Stream Velocity:							¥		
			DTS: Poling Depth:		·			_	-			
		Samp	e coil		DIT'N ?	JUSH	core	lon firs	H			
		attern	27.	•	1			N.		*		
·									è			
Notes: (1) Water Elevation = 5					ased on a minimu	m of 2 staff gau	ge readings	3.	N	() ()	
(2) Sample coordinate n/a: Not Applicable	s will be recorde	ed after being post	processed, when ap	pplicable.					1		1 1/2 1/2	
COC: Chain of Custody	Sampling/Processing Personnel Signature:											

Staff Gauge Reading
Time _____ Reading _____ ft

General Informa	t <mark>ion</mark>		
	Military Creek	Sampling Equipment:	Push Core
Project #:		Coordinate System:	
Task #:	2	Datum:	
Date:		Weather:	MOSTY CLOUDY JOW 405
Samplers:	Steve Wiskes, Andrea Salus	River Section/DMU:	, J
Sample Location	Time Water Water Depth Penetration Recover (ft) (ft)		Sample Location (Easting) ⁽²⁾ Sample Notes
		806	(Editing)
SED-102	0936 5.7 2.5 2		CT
Sample Intervals (in)	Sample Description	Date Processed	Sample Intervals (in) COC Sample ID Number
0-1.1	Brown silt, some organic 1	Katter (Sticks, 10/20/16	0 0.5 102016030
B.	Wood 1, very wet (0,0,5)	ruen wet	1.5 1.5 1070111121
-01.1-1.5		S, trace Sitt,	145 120 107011037 Dr
	(net	<u> </u>	AIUS
			<u> </u>
			1
Additional	Comments: Stream Velocity:		1
	DTS: 1-H 2-1	70101]
	Poling Depth: 2.5 2,	134 core on first attempt	ZI.
	Other Countries to house		<u></u>
			2
Notes: (1) Water Elevation = 5	taff Gauge Elevation - Staff Gauge Reading, Calculated at end of day, based on a	inimum of 2 staff gauge readings.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1	will be recorded after being post processed, when applicable.		
n/a: Not Applicable COC: Chain of Custody	,	mpling/Processing Personnel Signature:	Hushea Jalles
COO. Chair of Custody		inpling. 100000ing 1 0100inioi olgilatare.	

Staff Gauge Reading
Time Reading ft

									ime		eading it
General Informa	ition				¥						
Project Name/Site:			Military Creek					Sampling Equipment:		Pus	h Core
Project #:								Coordinate System:			
Task #:			2	:							
Date:											
Samplers:		Steve	Wiskes, Andre	a Salus				River Section/DMU:			
								R			
Sample Location	Time (military)	Water Elevation ⁽¹⁾	Water Depth (ft)	Penetration (ft)	Sediment Recovered (ft)	% Recovery	s	ample Location (Northing) ⁽²⁾		e Location sting) ⁽²⁾	Sample Notes
SED-103	1245		2.0	2.0	I.Ce	30				£t	
Sample Intervals (in)				e Description		,		Date Processed	Sample TOP	Intervals (in) BOTTOM	COC Sample ID Number
0-0.2	Brow	un, 5		ace fin				10/18/10	0	0,5	101816012
0 2 1 10	2090		materi						0.5	1,5	1018/16013
0,2-1.0	Brow		and t		grave		(P)		1,5	1.6	1018/6014 - Arol
	orga		wood		313F +	D I D	4				
	J			L.			- 10				
					8.						
Additional	Comments:	0	Stream Velocity: DTS:								
			Poling Depth:								
		used	er to	achieu	e vetos	cted	San	hplo on 2	rd a	Hempf.	Used
Notes: (1) Water Elevation = 5 (2) Sample coordinate	Staff Gauge Elev	ation - Staff Gaug	e Reading, Calculate	ed at end of day, ba					\	/	01
n/a: Not Applicable COC: Chain of Custody					Samplii	ng/Processir	ng Perso	onnel Signature:	An	drea.	Salles

	Staff Gauge Rea	ding
Time	Reading	f

General Informa	tion										
Project Name/Site:			Military Creek	C			s	Sampling Equipment:		Pus	sh Core
Project #:			2381					Coordinate System:			
Task #:			2		/			Datum:			
Date:			_					Weather:	SUNY	14,605	
Samplers:		Steve	Wiskes, Andre	a Salus				River Section/DMU:		7,000	
						•					
Sample Location	Time (military)	Water Elevation ⁽¹⁾	Water Depth (ft)	Penetration (ft)	Sediment Recovered (ft)	% Recovery		ample Location (Northing) ⁽²⁾		le Location esting) ⁽²⁾	Sample Notes
SED-104	1133		2.6	1,4	0.4	29				ft	~
Sample Intervals (in)		•		le Description				Date Processed	Sample	Intervals (in)	COC Sample ID Number
0-0.4	Prou	on fi	no to M	rections	amine	d Doo	rui	18/18/110	Ö	0.4	101816011
	gread		d, SOW			HARV CON		10/10/10		· · ·	7-1010011
	Jeins	5 Cea		ace SII	in tox		nd				
	sand	pe con	res coa	rse in	last O	1 (0.3	-0.4				
				ACCIO A LI		- 110					
					1						
Additional	Comments:	Made	Stream Velocity: DTS: Poling Depth: +N Pel (N First +N Pel	Hemp-	attemi	Distan Distan	Cor	e. Sample Distancer	nater Viam	rial	
Notes: (1) Water Elevation = S (2) Sample coordinates n/a: Not Applicable COC: Chain of Custody								nnel Signature:	An	drea	Salvo

Natural Resource Technology

Staff Gauge Reading
Time Reading ft

									Time	R	leading ft	हीं भर
General Informa	tion	1										
Project Name/Site:		•	Military Creek	(Sampli	ing Equipment	•	Pu	sh Core	
			2381			-						
Task #:			2	11	ą	_		Datum				
Date:						_		Weather	: 5UY	my. (1	Os	
Samplers:		Steve	Wiskes, Andre	a Salus	н	_	Rive	r Section/DMU		1)		
					4							
Sample Location	Time (military)	Water Elevation ⁽¹⁾	Water Depth (ft)	Penetration (ft)	Sediment Recovered (ft)	% Recovery		Location hing) ⁽²⁾		le Location asting) ⁽²⁾	Sample Notes	S
SED-105	1017		1,2	1,5	1,4	92				54		
Sample Intervals (in)				e Description			, Da	te Processed	Sample	Intervals (in)	COC Sample ID Nu	ımber
0-0,5	3 noc		re to co	arse sc	ind, so	me gi	avel, 10/1	18/16	0	0.5	1018/16 61:	
Se	Mois				- 1	1	,	1	0.5	1,4	1013160 016	P
8,5-1,4	Broc	unt	ine to c	sara s	and, D	reanic		$\sqrt{}$	0,5	1.4 Duf	101816 017	1012
	MOIS		includi	ngu	0001 2	onus	117/					
	1,1018		· · · · · · · · · · · · · · · · · · ·	<u> </u>								
										(4)		
200								- Air - I - I - I - I - I - I - I - I - I -				
			N1						-			
				11111						-		
Additional	Comments:		Stream Velocity: DTS: Poling Depth:		i							(25)
		Could of	rove pi	Core o	ston co	re this	ucar n	ner wa	1 USEC	d to di	rive core second at	to 30°
Notes: (1) Water Elevation = S (2) Sample coordinates		vation - Staff Gaug ed after being post	e Reading, Calculate processed, when ap	ed at end of day, be oplicable.	ased on a minimu	m of 2 staff gau	ge readings.		A	1	Pin	- 1
n/a: Not Applicable COC: Chain of Custody					Sampli	ng/Processi	ng Personnel S	Signature:		trale	a dalle	0
~			¥	4	,	variables		ered)				

Staff Gauge Reading
Time _____ Reading ____ ft

General Information	tion									
Project Name/Site:		Military Creek	č			9	Sampling Equipment:		Pus	sh Core
		2381					Coordinate System:			
Task #:		, 2					Datum:			
Date:	. 2 1 1 7	/16			•		Weather:	CIOU	de, 60	5
Samplers:		e Wiskes, Andre	a Salus		-		River Section/DMU:		7	
			S-12-11	1	•					
Sample Location	Time Water (military) Elevation ⁽¹⁾	Water Depth (ft)	Penetration (ft)	Sediment Recovered (ft)	% Recovery	S	ample Location (Northing) ⁽²⁾		e Location sting) ⁽²⁾	Sample Notes
SED-106	1344	2.0	1.8	1.4	78				F +	
Sample Intervals (in)		Samp	e Description				Date Processed	Sample TOP	Intervals (in) BOTTOM	COC Sample ID Number
0-1.4		orlun- gr		Mediu			10/17/16	Ò	0.5	101716001
	Coarse 5	and 4	race	gravel,	mois	ł	10/11	0,5	1.4	101714002
		* · · · · · · · · · · · · · · · · · · ·		J						
							416			
				-						
A.S	2000-000									
			-							
Additional		Stream Velocity: DTS: Poling Depth:	0.2	O.Z. Z.H n core. n core.	1.4 for No reco	savel, very	difficult purt	. Mac	li a sal Q I	81
	taff Gauge Elevation - Staff Gau will be recorded after being po						ennel Signature:		ndrea	Selve

Staff Gauge Reading
Time _____ Reading ____ ft

					,						
General Informa											
Project Name/Site:			Military Creek	(6	S	Sampling Equipment:		Pu	sh Core
			2381	-110				Coordinate System:			
			2		a 1			Datum:			
Date:								Weather:	Clo	udey, (0ς
Samplers:		Steve	e Wiskes, Andre	a Salus		9		River Section/DMU:		J	
Sample Location	Time (military)	Water Elevation ⁽¹⁾	Water Depth (ft)	Penetration (ft)	Sediment Recovered (ft)	% Recovery		ample Location (Northing) ⁽²⁾		e Location sting) ⁽²⁾	Sample Notes
SED-107	1319		0.4	0.9	0.7	18				H	
Sample Intervals (in)			Samp	le Description	8			Date Processed	Sample TOP	Intervals (in) BOTTOM	COC Sample ID Number
0-0,7	Brow	n. Door		Led for	re to ce		Sand		0	0.5	101714003.
	is that	some	Vorgan	1es, +r0	icl grai	10, m	15+		0.5	0.7	101714034
					1						
Additional	Comments:		Stream Velocity:						,		
			DTS: Poling Depth:		Sandly	,					
		No. 1		-							
	ANS	Trick N	rade two	to get	ps with	to vet	Iore	with no k	cover	y, on t	urd attempts
Notes: (1) Water Elevation = 5	Staff Gauge Flev	ration - Staff Gaug	e Reading, Calculat	ed at end of day, ba	ased on a minimur	n of 2 staff gaud	ne readings			1	
(2) Sample coordinate							,				\bigcirc \land
n/a: Not Applicable					Compli	na/Drosses:	a Doros	nnol Signaturo	1	relled	Ja VIII
COC: Chain of Custody					Sampili	ig/Processir	ig Perso	nnel Signature:			

Staff Gauge Reading
Time Reading ft

			656									/
General Informa	tion											
Project Name/Site:		-	Military Creek				5	Sampling Equipment:		Pus	sh Core	
Project #:			2381					Coordinate System:			7 10	
Task #:		1	2					Datum:			ŧ	*:-8
Date:		10/17/1	10					Weather:	Clove	dy 100	5	
Samplers:		Steve	Wiskes, Andre	a Salus		×		River Section/DMU:	MC	1 1 00		
		-		li .								
Sample Location	Time (military)	Water Elevation ⁽¹⁾	Water Depth (ft)	Penetration (ft)	Sediment Recovered (ft)	% Recovery	S	ample Location (Northing) ⁽²⁾		le Location esting) ⁽²⁾	Sample No	tes
SED-108	1432	XAM	1.8	7.3	1.4	01				£+		12
Sample Intervals (in)			Sampl	e Description	1			Date Processed	Sample TOP	Intervals (in) BOTTOM	COC Sample ID	
0-14 0.7	Broi			raded	fine		arse		0	0.5	1017160	5 #
	Sano		1 5 M.	to ig	grave	Litra	C.		0,5	1,4	10171600	o co
017-1,4	SAA	ALCS V	Moist -	Det role	IIM-114	0 300	1		(D.5		1017160	07//
011-19	SAA) vaci	Sirgui	perrope	UM-IIP	earo			20.5	1,4)		17.4
					W, K						2 2	
			199		1							
Additional	Comments:		Stream Velocity:									
			DTS: Poling Depth:	0.1	0.	sand by			1			
				1 11	2-H	701					0.1	Air-
		Moved	1 OCKHON O	pprox	6, N.	+ origin	for c	lue to thick	1 kuje	r of lov	ricks along	j tre
Notes: (1) Water Elevation = S (2) Sample coordinate:		Spow or	L ISEE PVIO	SURFACE	afier	MUV -	h124.0	n cove to	reach	netus a	5 07 59	Sneer
Notes: (1) Water Elevation = S	Staff Gauge Elev	vation - Staff Gaug	e Reading, Calculate	ed at end of day, b	ased on a minimu	m of 2 staff gaug	e reading	the cone	2	1		
(2) Sample coordinates n/a: Not Applicable	s will be recorde	ed after being post	processed, when ap	plicable.					A		1.	A
COC: Chain of Custody					Sampli	ng/Processir	ng Perso	onnel Signature:	P	nerrel	i Well	1)
									1			

APPENDIX D
SEDIMENT TEQ
CALCULATIONS

Military Creek Site Investigation / Remedial Action Options C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

		Field Sample ID:			102016035		102016036			
		Station Name:	Toxic			SED	-01			
	Statio	on / Sample Name:	Equivalency Factors	SED-01			SED-01			
	Sa	imple Depth (feet):	WHO 1998 (Fish)	0-0.5	ng TEQ/kg	% contribution	0.5-1.5	ng TEQ/kg	% contribution	
		Sample Date:		10/20/2016			10/20/2016			
GEO	Percent Moisture	(%)		90.3			85.5			
Organic	Carbon, Total Organic	(mg/kg)		268,000			353,000			
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	0.001	3.6	0.0036	0.33	1	0.001	0.10	
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	0.5	0.27	0.135	12.20	0.32	0.16	15.33	
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	0.01	0.29	0.0029	0.26	0.32	0.0032	0.31	
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	0.01	0.26	0.0026	0.23	0.25	0.0025	0.24	
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	1	0.3	0.3	27.10	0.26	0.26	24.92	
Dioxin	2,3,7,8-TCDD	(ng/Kg)	1	0.34	0.34	30.71	0.34	0.34	32.58	
Dioxin	OCDD	(ng/Kg)	0.0001	29	0.0029	0.26	6.2	0.00062	0.06	
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	0.01	1	0.01	0.90	0.47	0.0047	0.45	
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	0.01	0.32	0.0032	0.29	0.24	0.0024	0.23	
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	0.1	0.21	0.021	1.90	0.16	0.016	1.53	
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	0.1	0.23	0.023	2.08	0.16	0.016	1.53	
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	0.1	0.27	0.027	2.44	0.23	0.023	2.20	
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	0.05	0.45	0.0225	2.03	0.34	0.017	1.63	
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	0.1	0.28	0.028	2.53	0.22	0.022	2.11	
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	0.5	0.25	0.125	11.29	0.22	0.11	10.54	
Furan	2,3,7,8-TCDF	(ng/Kg)	0.05	1.2	0.06	5.42	1.3	0.065	6.23	
Furan	OCDF	(ng/Kg)	0.0001	2.6	0.00026	0.02	0.66	0.00007	0.01	
	SUM OF TEQ				1.11			1.04		

Notes

- 1. TEQ = Total 2,3,7,8-TCDD Equivalence
- 2. ng/Kg = nanograms per kilogram
- 3. mg/Kg = miligram per kilogram
- 4. Concentrations reported as Non Detect by the laboratory were replaced with the method detection limit.

Military Creek Site Investigation / Remedial Action Options C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

		Field Sample ID:			101916027			101916028	
		Station Name:	Toxic Equivalency			SED	-02		
	Statio	on / Sample Name:	Factors	SED-02			SED-02		
	Sa	imple Depth (feet):	WHO 1998 (Fish)	0-0.5	ng TEQ/kg	% contribution	0.5-1.5	ng TEQ/kg	% contribution
		Sample Date:		10/19/2016			10/19/2016		
GEO	Percent Moisture	(%)		91.9			87.2		
Organic	Carbon, Total Organic	(mg/kg)		317,000			216,000		
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	0.001	6,500	6.5	3.85	470	0.47	3.47
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	0.5	47	23.5	13.92	3.9	1.95	14.40
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	0.01	260	2.6	1.54	18	0.18	1.33
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	0.01	100	1	0.59	7.2	0.072	0.53
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	1	11	11	6.52	1.1	1.1	8.12
Dioxin	2,3,7,8-TCDD	(ng/Kg)	1	2.3	2.3	1.36	0.65	0.65	4.80
Dioxin	OCDD	(ng/Kg)	0.0001	72,000	7.2	4.27	5,700	0.57	4.21
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	0.01	2,200	22	13.03	150	1.5	11.07
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	0.01	200	2	1.18	14	0.14	1.03
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	0.1	250	25	14.81	17	1.7	12.55
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	0.1	110	11	6.52	9	0.9	6.64
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	0.1	76	7.6	4.50	5.8	0.58	4.28
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	0.05	29	1.45	0.86	2.2	0.11	0.81
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	0.1	110	11	6.52	8.3	0.83	6.13
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	0.5	67	33.5	19.84	5.3	2.65	19.56
Furan	2,3,7,8-TCDF	(ng/Kg)	0.05	7.2	0.36	0.21	1.8	0.09	0.66
Furan	OCDF	(ng/Kg)	0.0001	8,000	0.8	0.47	540	0.054	0.40
	SUM OF TEQ				168.81			13.55	

Notes

1. TEQ = Total 2,3,7,8-TCDD Equivalence

2. ng/Kg = nanograms per kilogram

3. mg/Kg = miligram per kilogram

Military Creek Site Investigation / Remedial Action Options C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

		Field Sample ID:			101916024			101916025	
		Station Name:	Toxic Equivalency			SED	-03		
	Statio	on / Sample Name:	Factors	SED-03			SED-03		
	Sa	imple Depth (feet):	WHO 1998 (Fish)	0-0.5	ng TEQ/kg	% contribution	0.5-1.5	ng TEQ/kg	% contribution
		Sample Date:		10/19/2016			10/19/2016		
GEO	Percent Moisture	(%)		46.3			55.4		
Organic	Carbon, Total Organic	(mg/kg)		19,300			30,900		
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	0.001	17,000	17	4.00	75,000	75	4.26
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	0.5	100	50	11.77	370	185	10.51
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	0.01	740	7.4	1.74	2,800	28	1.59
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	0.01	230	2.3	0.54	780	7.8	0.44
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	1	27	27	6.35	89	89	5.06
Dioxin	2,3,7,8-TCDD	(ng/Kg)	1	2.1	2.1	0.49	9.3	9.3	0.53
Dioxin	OCDD	(ng/Kg)	0.0001	170,000	17	4.00	570,000	57	3.24
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	0.01	5,700	57	13.41	27,000	270	15.34
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	0.01	570	5.7	1.34	2,500	25	1.42
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	0.1	620	62	14.59	2,500	250	14.21
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	0.1	230	23	5.41	1,000	100	5.68
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	0.1	250	25	5.88	1,100	110	6.25
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	0.05	77	3.85	0.91	270	13.5	0.77
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	0.1	280	28	6.59	1,200	120	6.82
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	0.5	190	95	22.36	820	410	23.30
Furan	2,3,7,8-TCDF	(ng/Kg)	0.05	15	0.75	0.18	71	3.55	0.20
Furan	OCDF	(ng/Kg)	0.0001	18,000	1.8	0.42	65,000	6.5	0.37
	SUM OF TEQ				424.90			1759.65	

Notes

1. TEQ = Total 2,3,7,8-TCDD Equivalence

2. ng/Kg = nanograms per kilogram

3. mg/Kg = miligram per kilogram

Military Creek Site Investigation / Remedial Action Options C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

		Field Sample ID:			101916021			101916022	
		Station Name:	Toxic Equivalency			SED	-04		
	Statio	on / Sample Name:	Factors	SED-04			SED-04		
	Sa	mple Depth (feet):	WHO 1998 (Fish)	0-0.5	ng TEQ/kg	% contribution	0.5-1.5	ng TEQ/kg	% contribution
		Sample Date:		10/19/2016			10/19/2016		
GEO	Percent Moisture	(%)		91.4			75.4		
Organic	Carbon, Total Organic	(mg/kg)		245,000			128,000		
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	0.001	7,800	7.8	3.87	31,000	31	5.11
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	0.5	48	24	11.90	160	80	13.19
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	0.01	340	3.4	1.69	960	9.6	1.58
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	0.01	110	1.1	0.55	310	3.1	0.51
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	1	15	15	7.44	42	42	6.93
Dioxin	2,3,7,8-TCDD	(ng/Kg)	1	0.97	0.97	0.48	2.4	2.4	0.40
Dioxin	OCDD	(ng/Kg)	0.0001	73,000	7.3	3.62	310,000	31	5.11
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	0.01	2,600	26	12.89	12,000	120	19.79
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	0.01	210	2.1	1.04	960	9.6	1.58
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	0.1	290	29	14.38	890	89	14.68
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	0.1	110	11	5.45	360	36	5.94
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	0.1	110	11	5.45	190	19	3.13
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	0.05	41	2.05	1.02	76	3.8	0.63
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	0.1	130	13	6.45	390	39	6.43
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	0.5	93	46.5	23.06	170	85	14.02
Furan	2,3,7,8-TCDF	(ng/Kg)	0.05	9.9	0.495	0.25	11	0.55	0.09
Furan	OCDF	(ng/Kg)	0.0001	9,600	0.96	0.48	53,000	5.3	0.87
	SUM OF TEQ				201.68			606.35	

Notes

1. TEQ = Total 2,3,7,8-TCDD Equivalence

2. ng/Kg = nanograms per kilogram

3. mg/Kg = miligram per kilogram

Military Creek Site Investigation / Remedial Action Options C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

		Field Sample ID:			101916018			101916019	
		Station Name:	Toxic Equivalency			SED	-05		
	Statio	on / Sample Name:	Factors	SED-05			SED-05		
	Sa	mple Depth (feet):	WHO 1998 (Fish)	0-0.5	ng TEQ/kg	% contribution	0.5-1.5	ng TEQ/kg	% contribution
		Sample Date:		10/19/2016			10/19/2016		
GEO	Percent Moisture	(%)		35.8			16.9		
Organic	Carbon, Total Organic	(mg/kg)		19,400			649		
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	0.001	1,600	1.6	4.08	11	0.011	1.86
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	0.5	10	5	12.76	0.16	0.08	13.52
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	0.01	65	0.65	1.66	0.47	0.0047	0.79
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	0.01	25	0.25	0.64	0.21	0.0021	0.35
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	1	2.6	2.6	6.64	0.08	0.08	13.52
Dioxin	2,3,7,8-TCDD	(ng/Kg)	1	0.16	0.16	0.41	0.12	0.12	20.28
Dioxin	OCDD	(ng/Kg)	0.0001	17,000	1.7	4.34	120	0.012	2.03
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	0.01	580	5.8	14.81	4.6	0.046	7.77
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	0.01	52	0.52	1.33	0.38	0.0038	0.64
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	0.1	58	5.8	14.81	0.4	0.04	6.76
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	0.1	24	2.4	6.13	0.23	0.023	3.89
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	0.1	20	2	5.11	0.15	0.015	2.54
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	0.05	8	0.4	1.02	0.11	0.0055	0.93
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	0.1	25	2.5	6.38	0.21	0.021	3.55
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	0.5	15	7.5	19.14	0.24	0.12	20.28
Furan	2,3,7,8-TCDF	(ng/Kg)	0.05	1.3	0.065	0.17	0.12	0.006	1.01
Furan	OCDF	(ng/Kg)	0.0001	2,300	0.23	0.59	16	0.0016	0.27
	SUM OF TEQ				39.18			0.59	

Notes

1. TEQ = Total 2,3,7,8-TCDD Equivalence

2. ng/Kg = nanograms per kilogram

3. mg/Kg = miligram per kilogram

Military Creek Site Investigation / Remedial Action Options C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

		Field Sample ID:			101816008			101816009		
		Station Name:	Toxic			SEC	0-06			
	Statio	on / Sample Name:	Equivalency Factors	SED-06			SED-06			
	Sa	mple Depth (feet):	WHO 1998 (Fish)	0-0.5	ng TEQ/kg	% contribution	0.5-1.5	ng TEQ/kg	% contribution	
		Sample Date:		10/18/2016			10/18/2016			
GEO	Percent Moisture	(%)		92			77.3			
Organic	Carbon, Total Organic	(mg/kg)		350,000			95,900			
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	0.001	18,000	18	4.36	25,000	25	5.28	
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	0.5	110	55	13.32	140	70	14.78	
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	0.01	690	6.9	1.67	810	8.1	1.71	
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	0.01	220	2.2	0.53	280	2.8	0.59	
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	1	26	26	6.29	33	33	6.97	
Dioxin	2,3,7,8-TCDD	(ng/Kg)	1	2.1	2.1	0.51	2.1	2.1	0.44	
Dioxin	OCDD	(ng/Kg)	0.0001	190,000	19	4.60	270,000	27	5.70	
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	0.01	7,900	79	19.13	11,000	110	23.22	
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	0.01	680	6.8	1.65	920	9.2	1.94	
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	0.1	460	46	11.14	300	30	6.33	
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	0.1	300	30	7.26	400	40	8.44	
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	0.1	200	20	4.84	160	16	3.38	
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	0.05	63	3.15	0.76	67	3.35	0.71	
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	0.1	300	30	7.26	370	37	7.81	
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	0.5	130	65	15.74	110	55	11 .61	
Furan	2,3,7,8-TCDF	(ng/Kg)	0.05	9.9	0.495	0.12	5.6	0.28	0.06	
Furan	Furan OCDF (ng/kg) 0.0001				3.4	0.82	49,000	4.9	1.03	
	SUM OF TEQ			413.05			473.73			

Notes

1. TEQ = Total 2,3,7,8-TCDD Equivalence

2. ng/Kg = nanograms per kilogram

3. mg/Kg = miligram per kilogram

Military Creek Site Investigation / Remedial Action Options C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

Field Sample ID:			Toxic Equivalency Factors WHO 1998 (Fish)	102016032			102016033		
Station Name:				SED-101					
Station / Sample Name:				SED-101	ng TEQ/kg	% contribution	SED-101	ng TEQ/kg	% contribution
Sample Depth (feet):				0-0.5			0.5-1.5		
Sample Date:				10/20/2016			10/20/2016		
GEO	Percent Moisture	(%)		90.6			87.8		
Organic	Carbon, Total Organic	(mg/kg)		146,000			165,000		
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	0.001	39	0.039	1.80	20	0.02	1.10
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	0.5	0.46	0.23	10.60	0.24	0.12	6.61
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	0.01	2.1	0.021	0.97	0.82	0.0082	0.45
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	0.01	0.92	0.0092	0.42	0.4	0.004	0.22
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	1	0.42	0.42	19.36	0.35	0.35	19.28
Dioxin	2,3,7,8-TCDD	(ng/Kg)	1	0.41	0.41	18.90	0.6	0.6	33.06
Dioxin	OCDD	(ng/Kg)	0.0001	370	0.037	1.71	230	0.023	1.27
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	0.01	12	0.12	5.53	7.1	0.071	3.91
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	0.01	1.3	0.013	0.60	0.6	0.006	0.33
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	0.1	1.5	0.15	6.92	0.87	0.087	4.79
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	0.1	0.73	0.073	3.37	0.52	0.052	2.87
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	0.1	0.71	0.071	3.27	0.26	0.026	1.43
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	0.05	0.55	0.0275	1.27	0.48	0.024	1.32
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	0.1	1.1	0.11	5.07	0.26	0.026	1.43
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	0.5	0.73	0.365	16.83	0.65	0.325	17.91
Furan	2,3,7,8-TCDF	(ng/Kg)	0.05	1.4	0.07	3.23	1.4	0.07	3.86
Furan	OCDF	(ng/Kg)	0.0001	34	0.0034	0.16	27	0.0027	0.15
	SUM OF TEQ			2.17 1.81					

Notes

1. TEQ = Total 2,3,7,8-TCDD Equivalence

2. ng/Kg = nanograms per kilogram

3. mg/Kg = miligram per kilogram

Military Creek Site Investigation / Remedial Action Options C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

		Field Sample ID:			102016030			102016031	
		Station Name:	Toxic Equivalency			SED-	-102		
	Statio	on / Sample Name:	Factors	SED-102			SED-102		
	Sa	mple Depth (feet):	WHO 1998 (Fish)	0-0.5	ng TEQ/kg	% contribution	0.5-1.5	ng TEQ/kg	% contribution
		Sample Date:		10/20/2016			10/20/2016		
GEO	Percent Moisture	(%)		92.2			88.2		
Organic	Carbon, Total Organic	(mg/kg)		279,000			226,000		
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	0.001	27	0.027	1.36	2	0.002	0.21
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	0.5	0.55	0.275	13.89	0.26	0.13	13.88
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	0.01	1.4	0.014	0.71	0.29	0.0029	0.31
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	0.01	0.64	0.0064	0.32	0.26	0.0026	0.28
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	1	0.45	0.45	22.73	0.23	0.23	24.56
Dioxin	2,3,7,8-TCDD	(ng/Kg)	1	0.36	0.36	18.18	0.28	0.28	29.90
Dioxin	OCDD	(ng/Kg)	0.0001	230	0.023	1.16	13	0.0013	0.14
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	0.01	10	0.1	5.05	0.7	0.007	0.75
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	0.01	1.1	0.011	0.56	0.29	0.0029	0.31
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	0.1	1.4	0.14	7.07	0.23	0.023	2.46
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	0.1	0.52	0.052	2.63	0.17	0.017	1.82
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	0.1	0.47	0.047	2.37	0.16	0.016	1.71
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	0.05	0.31	0.0155	0.78	0.49	0.0245	2.62
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	0.1	0.71	0.071	3.59	0.22	0.022	2.35
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	0.5	0.62	0.31	15.66	0.24	0.12	1 2.82
Furan	2,3,7,8-TCDF	(ng/Kg)	0.05	1.5	0.075	3.79	1.1	0.055	5.87
Furan	OCDF	(ng/Kg)	0.0001	29	0.0029	0.15	1.7	0.00017	0.02
	SUM OF TEQ				1.98			0.94	

Notes

- 1. TEQ = Total 2,3,7,8-TCDD Equivalence
- 2. ng/Kg = nanograms per kilogram
- 3. mg/Kg = miligram per kilogram
- 4. Concentrations reported as Non Detect by the laboratory were replaced with the method detection limit.

Military Creek Site Investigation / Remedial Action Options C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

		Field Sample ID:			101816012			101816013	
		Station Name:	Toxic Equivalency			SED-	-103		
	Statio	on / Sample Name:	Factors	SED-103			SED-103		
	Sa	mple Depth (feet):	WHO 1998 (Fish)	0-0.5	ng TEQ/kg	% contribution	0.5-1.5	ng TEQ/kg	% contribution
		Sample Date:		10/18/2016			10/18/2016		
GEO	Percent Moisture	(%)		28			21.6		
Organic	Carbon, Total Organic	(mg/kg)		17,800			38,300		
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	0.001	950	0.95	3.93	5.8	0.0058	1.66
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	0.5	5.3	2.65	10.96	0.083	0.0415	11.85
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	0.01	39	0.39	1.61	0.18	0.0018	0.51
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	0.01	11	0.11	0.45	0.091	0.00091	0.26
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	1	1.5	1.5	6.20	0.078	0.078	22.27
Dioxin	2,3,7,8-TCDD	(ng/Kg)	1	0.16	0.16	0.66	0.083	0.083	23.70
Dioxin	OCDD	(ng/Kg)	0.0001	11,000	1.1	4.55	65	0.0065	1.86
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	0.01	360	3.6	14.88	2.7	0.027	7.71
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	0.01	35	0.35	1.45	0.21	0.0021	0.60
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	0.1	35	3.5	14.47	0.14	0.014	4.00
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	0.1	17	1.7	7.03	0.14	0.014	4.00
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	0.1	16	1.6	6.61	0.084	0.0084	2.40
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	0.05	5.4	0.27	1.12	0.085	0.00425	1.21
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	0.1	6.4	0.64	2.65	0.17	0.017	4.85
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	0.5	11	5.5	22.74	0.07	0.035	9.99
Furan	2,3,7,8-TCDF	(ng/Kg)	0.05	0.96	0.048	0.20	0.2	0.01	2.86
Furan	OCDF	(ng/Kg)	0.0001	1,200	0.12	0.50	9.4	0.00094	0.27
	SUM OF TEQ				24.19			0.35	

Notes

- 1. TEQ = Total 2,3,7,8-TCDD Equivalence
- 2. ng/Kg = nanograms per kilogram
- 3. mg/Kg = miligram per kilogram
- 4. Concentrations reported as Non Detect by the laboratory were replaced with the method detection limit.

Military Creek Site Investigation / Remedial Action Options C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

		5: 116 1 15				
		Field Sample ID:		101816011		
		Station Name:	Toxic Equivalency		SED-104	
	Statio	on / Sample Name:	Factors WHO 1998	SED-104		
	Sa	ample Depth (feet):	(Fish)	0-0.4	ng TEQ/kg	% contribution
		Sample Date:		10/18/2016		
GEO	Percent Moisture	(%)		24.6		
Organic	Carbon, Total Organic	(mg/kg)		11,100		
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	0.001	290	0.29	3.18
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	0.5	2.8	1.4	15.36
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	0.01	15	0.15	1.65
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	0.01	5.8	0.058	0.64
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	1	0.73	0.73	8.01
Dioxin	2,3,7,8-TCDD	(ng/Kg)	1	0.11	0.11	1.21
Dioxin	OCDD	(ng/Kg)	0.0001	2,500	0.25	2.74
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	0.01	100	1	10.97
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	0.01	9.6	0.096	1.05
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	0.1	12	1.2	13.16
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	0.1	5	0.5	5.48
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	0.1	5	0.5	5.48
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	0.05	1.9	0.095	1.04
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	0.1	6.3	0.63	6.91
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	0.5	4.1	2.05	22.49
Furan	2,3,7,8-TCDF	(ng/Kg)	0.05	0.54	0.027	0.30
Furan	OCDF	(ng/Kg)	0.0001	310	0.031	0.34
	SUM OF TEQ				9.12	

Notes

- 1. TEQ = Total 2,3,7,8-TCDD Equivalence
- 2. ng/Kg = nanograms per kilogram
- 3. mg/Kg = miligram per kilogram
- 4. Concentrations reported as Non Detect by the laboratory were replaced with the method detection limit.

Military Creek Site Investigation / Remedial Action Options C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

		Field Sample ID:			101816015			101816016			101816017	
		Station Name:	Toxic					SED-105				
	Statio	on / Sample Name:	Equivalency Factors WHO 1998	SED-105			SED-105			SED-105 Duplicate		
	Sa	imple Depth (feet):	(Fish)	0-0.5	ng TEQ/kg	% contribution	0.5-1.4	ng TEQ/kg	% contribution	0.5-1.4	ng TEQ/kg	% contribution
		Sample Date:		10/18/2016			10/18/2016			10/18/2016		
GEO	Percent Moisture	(%)		8.6			58.7			38.7		
Organic	Carbon, Total Organic	(mg/kg)		5,310			76,100			43,500		
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	0.001	110	0.11	3.24	45	0.045	3.34	38	0.038	3.16
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	0.5	1.1	0.55	16.19	0.4	0.2	14.85	0.41	0.205	17.05
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	0.01	5	0.05	1.47	1.7	0.017	1.26	1.6	0.016	1.33
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	0.01	1.6	0.016	0.47	0.72	0.0072	0.53	0.63	0.0063	0.52
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	1	0.32	0.32	9.42	0.11	0.11	8.17	0.092	0.092	7.65
Dioxin	2,3,7,8-TCDD	(ng/Kg)	1	0.091	0.091	2.68	0.2	0.2	14.85	0.12	0.12	9.98
Dioxin	OCDD	(ng/Kg)	0.0001	970	0.097	2.86	510	0.051	3.79	360	0.036	3.00
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	0.01	41	0.41	12.07	21	0.21	15.59	15	0.15	12.48
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	0.01	3.7	0.037	1.09	1.6	0.016	1.19	1.2	0.012	1.00
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	0.1	3.4	0.34	10.01	1.3	0.13	9.65	1.2	0.12	9.98
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	0.1	1.6	0.16	4.71	0.56	0.056	4.16	0.46	0.046	3.83
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	0.1	1.4	0.14	4.12	0.36	0.036	2.67	0.44	0.044	3.66
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	0.05	0.61	0.0305	0.90	0.14	0.007	0.52	0.18	0.009	0.75
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	0.1	2.2	0.22	6.48	0.78	0.078	5.79	0.6	0.06	4.99
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	0.5	1.6	0.8	23.55	0.31	0.155	11.51	0.45	0.225	18.72
Furan	2,3,7,8-TCDF	(ng/Kg)	0.05	0.25	0.0125	0.37	0.4	0.02	1.49	0.34	0.017	1.41
Furan	OCDF	(ng/Kg)	0.0001	130	0.013	0.38	85	0.0085	0.63	57	0.0057	0.47
	SUM OF TEQ				3.40			1.35			1.20	

Notes

1. TEQ = Total 2,3,7,8-TCDD Equivalence

2. ng/Kg = nanograms per kilogram

3. mg/Kg = miligram per kilogram

Military Creek Site Investigation / Remedial Action Options C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

		Field Sample ID:			101716001			101716002	
		Station Name:	Toxic Equivalency			SED-	-106		
	Statio	on / Sample Name:	Factors	SED-106			SED-106		
	Sa	imple Depth (feet):	WHO 1998 (Fish)	0-0.5	ng TEQ/kg	% contribution	0.5-1.4	ng TEQ/kg	% contribution
		Sample Date:		10/17/2016			10/17/2016		
GEO	Percent Moisture	(%)		14.5			5.2		
Organic	Carbon, Total Organic	(mg/kg)		2,360			1,610		
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	0.001	4	0.004	1.06	4.1	0.0041	1.12
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	0.5	0.16	0.08	21.29	0.16	0.08	21.91
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	0.01	0.21	0.0021	0.56	0.14	0.0014	0.38
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	0.01	0.17	0.0017	0.45	0.21	0.0021	0.58
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	1	0.057	0.057	15.17	0.052	0.052	14.24
Dioxin	2,3,7,8-TCDD	(ng/Kg)	1	0.095	0.095	25.29	0.1	0.1	27.38
Dioxin	OCDD	(ng/Kg)	0.0001	38	0.0038	1.01	51	0.0051	1.40
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	0.01	1.4	0.014	3.73	1.3	0.013	3.56
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	0.01	0.15	0.0015	0.40	0.15	0.0015	0.41
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	0.1	0.16	0.016	4.26	0.13	0.013	3.56
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	0.1	0.13	0.013	3.46	0.13	0.013	3.56
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	0.1	0.16	0.016	4.26	0.072	0.0072	1.97
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	0.05	0.071	0.00355	0.94	0.054	0.0027	0.74
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	0.1	0.13	0.013	3.46	0.086	0.0086	2.35
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	0.5	0.093	0.0465	12.38	0.11	0.055	15.06
Furan	2,3,7,8-TCDF	(ng/Kg)	0.05	0.16	0.008	2.13	0.12	0.006	1.64
Furan	OCDF	(ng/Kg)	0.0001	5.5	0.00055	0.15	5.1	0.00051	0.14
	SUM OF TEQ				0.38			0.37	

Notes

1. TEQ = Total 2,3,7,8-TCDD Equivalence

2. ng/Kg = nanograms per kilogram

3. mg/Kg = miligram per kilogram

Military Creek Site Investigation / Remedial Action Options C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

		Field Sample ID:			101716003			101716004	
		Station Name:	Toxic Equivalency			SED-	-107		
	Statio	on / Sample Name:	Factors	SED-107			SED-107		
	Sa	imple Depth (feet):	WHO 1998 (Fish)	0-0.5	ng TEQ/kg	% contribution	0.5-0.7	ng TEQ/kg	% contribution
		Sample Date:		10/17/2016			10/17/2016		
GEO	Percent Moisture	(%)		17.1			14.8		
Organic	Carbon, Total Organic	(mg/kg)		1,390			1,810		
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	0.001	1.5	0.0015	0.63	6.4	0.0064	0.84
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	0.5	0.059	0.0295	12.46	0.27	0.135	17.74
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	0.01	0.077	0.00077	0.33	0.55	0.0055	0.72
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	0.01	0.06	0.0006	0.25	0.2	0.002	0.26
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	1	0.041	0.041	17.32	0.14	0.14	18.40
Dioxin	2,3,7,8-TCDD	(ng/Kg)	1	0.085	0.085	35.90	0.26	0.26	34.16
Dioxin	OCDD	(ng/Kg)	0.0001	11	0.0011	0.46	30	0.003	0.39
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	0.01	0.7	0.007	2.96	1.4	0.014	1.84
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	0.01	0.14	0.0014	0.59	0.34	0.0034	0.45
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	0.1	0.1	0.01	4.22	0.2	0.02	2.63
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	0.1	0.088	0.0088	3.72	0.17	0.017	2.23
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	0.1	0.097	0.0097	4.10	0.27	0.027	3.55
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	0.05	0.05	0.0025	1.06	0.14	0.007	0.92
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	0.1	0.077	0.0077	3.25	0.19	0.019	2.50
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	0.5	0.04	0.02	8.45	0.17	0.085	11.17
Furan	2,3,7,8-TCDF	(ng/Kg)	0.05	0.2	0.01	4.22	0.33	0.0165	2.17
Furan	OCDF	(ng/Kg)	0.0001	1.7	0.00017	0.07	2.4	0.00024	0.03
	SUM OF TEQ				0.24			0.76	

Notes

1. TEQ = Total 2,3,7,8-TCDD Equivalence

2. ng/Kg = nanograms per kilogram

3. mg/Kg = miligram per kilogram

Military Creek Site Investigation / Remedial Action Options C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin WDNR BRRTS Activity #02-64-000068

		Field Sample ID:			101716005			101716006			101716007	
		Station Name:	Toxic					SED-108				
	Statio	on / Sample Name:	Equivalency Factors WHO 1998	SED-108			SED-108			SED-108 Duplicate		
	Sa	imple Depth (feet):	(Fish)	0-0.5	ng TEQ/kg	% contribution	0.5-1.4	ng TEQ/kg	% contribution	0.5-1.4	ng TEQ/kg	% contribution
		Sample Date:		10/17/2016			10/17/2016			10/17/2016		
GEO	Percent Moisture	(%)		9			13.1			13.6		
Organic	Carbon, Total Organic	(mg/kg)		2,960			6,290			16,500		
Dioxin	1,2,3,4,6,7,8-HpCDD	(ng/Kg)	0.001	880	0.88	11.79	1.3	0.0013	0.30	2.9	0.0029	0.45
Dioxin	1,2,3,4,7,8-HxCDD	(ng/Kg)	0.5	0.48	0.24	3.22	0.12	0.06	13.93	0.11	0.055	8.52
Dioxin	1,2,3,6,7,8-HxCDD	(ng/Kg)	0.01	14	0.14	1.88	0.12	0.0012	0.28	0.16	0.0016	0.25
Dioxin	1,2,3,7,8,9-HxCDD	(ng/Kg)	0.01	1.4	0.014	0.19	0.12	0.0012	0.28	0.11	0.0011	0.17
Dioxin	1,2,3,7,8-PeCDD	(ng/Kg)	1	0.088	0.088	1.18	0.084	0.084	19 .50	0.14	0.14	21.69
Dioxin	2,3,7,8-TCDD	(ng/Kg)	1	0.095	0.095	1.27	0.18	0.18	41.78	0.24	0.24	37.18
Dioxin	OCDD	(ng/Kg)	0.0001	12,000	1.2	16.08	12	0.0012	0.28	28	0.0028	0.43
Furan	1,2,3,4,6,7,8-HpCDF	(ng/Kg)	0.01	360	3.6	48.24	0.6	0.006	1.39	1.4	0.014	2.17
Furan	1,2,3,4,7,8,9-HpCDF	(ng/Kg)	0.01	14	0.14	1.88	0.13	0.0013	0.30	0.2	0.002	0.31
Furan	1,2,3,4,7,8-HxCDF	(ng/Kg)	0.1	2.5	0.25	3.35	0.093	0.0093	2.16	0.18	0.018	2.79
Furan	1,2,3,6,7,8-HxCDF	(ng/Kg)	0.1	1.4	0.14	1.88	0.073	0.0073	1.69	0.15	0.015	2.32
Furan	1,2,3,7,8,9-HxCDF	(ng/Kg)	0.1	0.33	0.033	0.44	0.1	0.01	2.32	0.13	0.013	2.01
Furan	1,2,3,7,8-PeCDF	(ng/Kg)	0.05	0.1	0.005	0.07	0.079	0.00395	0.92	0.16	0.008	1.24
Furan	2,3,4,6,7,8-HxCDF	(ng/Kg)	0.1	2.4	0.24	3.22	0.069	0.0069	1.60	0.12	0.012	1.86
Furan	2,3,4,7,8-PeCDF	(ng/Kg)	0.5	0.27	0.135	1.81	0.09	0.045	10.44	0.22	0.11	17.04
Furan	2,3,7,8-TCDF	(ng/Kg)	0.05	0.26	0.013	0.17	0.24	0.012	2.79	0.19	0.0095	1.47
Furan	OCDF	(ng/Kg)	0.0001	2,500	0.25	3.35	1.9	0.00019	0.04	5.8	0.00058	0.09
	SUM OF TEQ				7.46			0.43			0.65	

Notes

1. TEQ = Total 2,3,7,8-TCDD Equivalence

2. ng/Kg = nanograms per kilogram

3. mg/Kg = miligram per kilogram

Sample Control Log
Military Creek Site Investigation
C.M. Christiansen Co. Inc. Former Pole Yard, Phelps, Wisconsin
WDNR BRRTS Activity #02-64-000068

Unique			Sample	Sample	Sample	
Sample ID	Sample Media	Date	Location	Interval (ft)	Time	Notes
101716001	Sediment	10/17/2016	SED-106	0-0.5	13:44	
101716002	Sediment	10/17/2016	SED-106	0.5-1.4	13:44	
101716003	Sediment	10/17/2016	SED-107	0-0.5	13:19	
101716004	Sediment	10/17/2016	SED-107	0.5-0.7	13:19	
101716005	Sediment	10/17/2016	SED-108	0-0.5	14:32	
101716006	Sediment	10/17/2016	SED-108	0.5-1.4	14:32	
101716007	Sediment	10/17/2016	SED-108	0.5-1.4	14:33	Duplicate
101816008	Sediment	10/18/2016	SED-06	0-0.5	13:42	
101816009	Sediment	10/18/2016	SED-06	0.5-1.5	13:42	
101816010	Sediment	10/18/2016	SED-06	1.5-1.8	13:42	Archived
101816011	Sediment	10/18/2016	SED-104	0-0.4	11:33	
101816012	Sediment	10/18/2016	SED-103	0-0.5	12:45	
101816013	Sediment	10/18/2016	SED-103	0.5-1.5	12:45	
101816014	Sediment	10/18/2016	SED-103	1.5-1.6	12:45	Archived
101816015	Sediment	10/18/2016	SED-105	0-0.5	10:17	
101816016	Sediment	10/18/2016	SED-105	0.5-1.4	10:17	
101816017	Sediment	10/18/2016	SED-105	0.5-1.4	10:18	Duplicate
101916018	Sediment	10/19/2016	SED-05	0-0.5	9:12	
101916019	Sediment	10/19/2016	SED-05	0.5-1.5	9:12	
101916020	Sediment	10/19/2016	SED-05	1.5-2.0	9:12	Archived
101916021	Sediment	10/19/2016	SED-04	0-0.5	9:37	
101916022	Sediment	10/19/2016	SED-04	0.5-1.5	9:37	
101916023	Sediment	10/19/2016	SED-04	1.5-2.2	9:37	Archived
101916024	Sediment	10/19/2016	SED-03	0-0.5	10:35	
101916025	Sediment	10/19/2016	SED-03	0.5-1.5	10:35	
101916026	Sediment	10/19/2016	SED-03	1.5-1.6	10:35	Archived
101916027	Sediment	10/19/2016	SED-02	0-0.5	12:09	
101916028	Sediment	10/19/2016	SED-02	0.5-1.5	12:09	
101916029	Sediment	10/19/2016	SED-02	1.5-1.7	12:09	Archived
102016030	Sediment	10/20/2016	SED-102	0-0.5	9:36	
102016031	Sediment	10/20/2016	SED-102	0.5-1.5	9:36	
102016032	Sediment	10/20/2016	SED-101	0-0.5	10:12	
102016033	Sediment	10/20/2016	SED-101	0.5-1.5	10:12	MS/MSD
102016034	Sediment	10/20/2016	SED-101	1.5-1.6	10:12	Archived
102016035	Sediment	10/20/2016	SED-01	0-0.5	11:25	
102016036	Sediment	10/20/2016	SED-01	0.5-1.5	11:25	

November 07, 2016

Andrea Salus NATURAL RESOURCE TECHNOLOGY 234 W. Florida Street 5th Floor Milwaukee, WI 53204

RE: Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Dear Andrea Salus:

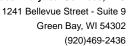
Enclosed are the analytical results for sample(s) received by the laboratory on October 20, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Brian Basten


brian.basten@pacelabs.com

Project Manager

Enclosures

cc: Data Delivery Team, Natural Resources Technologies

CERTIFICATIONS

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064

North Dakota Certification #: R-150

Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157

Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40140496001	101716001	Solid	10/17/16 13:44	10/20/16 09:50
40140496002	101716002	Solid	10/17/16 13:44	10/20/16 09:50
40140496003	101716003	Solid	10/17/16 13:19	10/20/16 09:50
40140496004	101716004	Solid	10/17/16 13:19	10/20/16 09:50
40140496005	101716005	Solid	10/17/16 14:32	10/20/16 09:50
40140496006	101716006	Solid	10/17/16 14:32	10/20/16 09:50
40140496007	101716007	Solid	10/17/16 14:33	10/20/16 09:50
40140496008	101816008	Solid	10/18/16 13:42	10/20/16 09:50
40140496009	101816009	Solid	10/18/16 13:42	10/20/16 09:50
40140496010	101816011	Solid	10/18/16 11:33	10/20/16 09:50
40140496011	101816012	Solid	10/18/16 12:45	10/20/16 09:50
40140496012	101816013	Solid	10/18/16 12:45	10/20/16 09:50
40140496013	101816015	Solid	10/18/16 10:17	10/20/16 09:50
40140496014	101816016	Solid	10/18/16 10:17	10/20/16 09:50
40140496015	101816017	Solid	10/18/16 10:18	10/20/16 09:50

SAMPLE ANALYTE COUNT

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40140496001	101716001	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	АН	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140496002	101716002	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140496003	101716003	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	АН	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
10140496004	101716004	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	АН	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
10140496005	101716005	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	АН	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
0140496006	101716006	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
0140496007	101716007	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	АН	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
0140496008	101816008	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	АН	1	PASI-G
		Lloyd Kahn	TJJ	2	PASI-G
0140496009	101816009	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	АН	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
0140496010	101816011	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
0140496011	101816012	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
10140496012	101816013	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	АН	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140496013	101816015	WI MOD DRO	CAH	1	PASI-G

SAMPLE ANALYTE COUNT

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140496014	101816016	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140496015	101816017	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

Sample: 101716001 Collected: 10/17/16 13:44 Received: 10/20/16 09:50 Matrix: Solid Lab ID: 40140496001

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
WIDRO GCS	Analytical	Method: WI N	MOD DRO P	reparation I	Method:	WI MOD DRO			
Diesel Range Organics	3.3	mg/kg	2.1	0.84	1	10/25/16 09:37	10/26/16 12:18		
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	14.5	%	0.10	0.10	1		10/28/16 13:31		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	d Kahn						
Total Organic Carbon	2360	mg/kg	393	133	1		10/24/16 07:02	7440-44-0	M0,R1
Sample: 101716002 Results reported on a "dry we		40140496002		d: 10/17/10	-			trix: Solid	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
WIDRO GCS	Analytical	Method: WI M	MOD DRO P	reparation I	Method:	WI MOD DRO			
Diesel Range Organics	4.3	mg/kg	1.6	0.63	1	10/25/16 09:37	10/26/16 12:27		
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	5.2	%	0.10	0.10	1		10/28/16 13:31		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	d Kahn						
Total Organic Carbon	1610	mg/kg	298	101	1		10/24/16 07:18	7440-44-0	
Sample: 101716003 Results reported on a "dry we		40140496003 e adjusted fo		d: 10/17/10 pisture, sa i				atrix: Solid	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
WIDRO GCS	Analytical	Method: WI M	OD DRO P	reparation I	Method:	WI MOD DRO			
Diesel Range Organics	2.7	mg/kg	1.8	0.71	1	10/25/16 09:37	10/26/16 12:36		DC
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	17.1	%	0.10	0.10	1		10/28/16 13:31		
TOC via Lloyd Kahn	Analytical	Method: Lloye	d Kahn						

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

Sample: 101716004 Lab ID: 40140496004 Collected: 10/17/16 13:19 Received: 10/20/16 09:50 Matrix: Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
WIDRO GCS	Analytical	Method: WI M	OD DRO P	reparation N	Method:	: WI MOD DRO					
Diesel Range Organics	2.2	mg/kg	1.9	0.75	1	10/25/16 09:37	10/26/16 12:45				
Percent Moisture	Analytical	Method: ASTN	/I D2974-87								
Percent Moisture	14.8	%	0.10	0.10	1		10/28/16 13:31				
TOC via Lloyd Kahn	Analytical	Analytical Method: Lloyd Kahn									
Total Organic Carbon	1810	mg/kg	292	98.9	1		10/24/16 07:41	7440-44-0			
Sample: 101716005 Results reported on a "dry we		40140496005 e adjusted for		d: 10/17/16				trix: Solid			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
WIDRO GCS	Analytical	Method: WI M	OD DRO P	reparation N	Method:	: WI MOD DRO					
Diesel Range Organics	5.0	mg/kg	1.7	0.69	1	10/25/16 09:37	10/26/16 12:53		DC		
Percent Moisture	Analytical	Method: ASTN	/I D2974-87								
Percent Moisture	9.0	%	0.10	0.10	1		10/28/16 13:31				
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn								
Total Organic Carbon	2960	mg/kg	225	76.1	1		10/24/16 07:47	7440-44-0			
Sample: 101716006 Results reported on a "dry we		40140496006 e adjusted for		d: 10/17/16	_			trix: Solid			
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
WIDRO GCS	Analytical	Method: WI M	OD DRO P	reparation N	Method:	: WI MOD DRO					
Diesel Range Organics	11.6	mg/kg	1.7	0.68	1	10/25/16 09:37	10/26/16 13:02		DC		
Percent Moisture	Analytical	Method: ASTN	/I D2974-87								
Percent Moisture	13.1	%	0.10	0.10	1		10/28/16 13:31				
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn								
Total Organic Carbon	6290	mg/kg	452	153	1		10/24/16 07:53	7440 44 0			

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

Sample: 101716007 Lab ID: 40140496007 Collected: 10/17/16 14:33 Received: 10/20/16 09:50 Matrix: Solid

Results reported on a "dry weight"	basis and are	e adjusted for	percent moi	sture, san	nple siz	ze and any diluti	ons.		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI MC	DD DRO Pre	paration N	/lethod:	WI MOD DRO			
Diesel Range Organics	16.9	mg/kg	1.7	0.70	1	10/25/16 09:37	10/26/16 13:1	1	DC
Percent Moisture	Analytical	Method: ASTM	D2974-87						
Percent Moisture	13.6	%	0.10	0.10	1		10/28/16 13:3	1	
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn						
Total Organic Carbon	16500	mg/kg	475	161	1		10/24/16 07:58	8 7440-44-0	
Sample: 101816008 Results reported on a "dry weight"		40140496008	Collected:		_			Matrix: Solid	
,		•		·	•				
Parameters	Results	Units -	LOQ	LOD .	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI MC	DD DRO Pre	paration N	/lethod:	WI MOD DRO			
Diesel Range Organics	111	mg/kg	18.6	7.5	1	10/26/16 15:57	10/27/16 11:10)	DC

		Offits				- Troparca	- Analyzou	——————————————————————————————————————	
WIDRO GCS	Analytical	Method: WI	MOD DRO Pre	eparation N	1ethod	: WI MOD DRO			
Diesel Range Organics	111	mg/kg	18.6	7.5	1	10/26/16 15:57	10/27/16 11:10		DC
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	92.0	%	0.10	0.10	1		10/28/16 13:31		
TOC via Lloyd Kahn	Analytical	Method: Lloy	d Kahn						
Total Organic Carbon	350000	mg/kg	13800	4660	1		10/27/16 05:26	7440-44-0	
Surrogates RSD%	19.3	%			1		10/27/16 05:26		

Sample: 101816009 Lab ID: 40140496009 Collected: 10/18/16 13:42 Received: 10/20/16 09:50 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI I	MOD DRO Pre	eparation M	1ethod	: WI MOD DRO			
Diesel Range Organics	5.4J	mg/kg	8.8	3.6	1	10/26/16 15:57	10/27/16 11:19		D5
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	77.3	%	0.10	0.10	1		10/28/16 13:31		
TOC via Lloyd Kahn	Analytical	Method: Lloy	rd Kahn						
Total Organic Carbon	95900	mg/kg	3050	1030	1		10/27/16 05:50	7440-44-0	P6

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

Sample: 101816011 Lab ID: 40140496010 Collected: 10/18/16 11:33 Received: 10/20/16 09:50 Matrix: Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI M	OD DRO P	reparation N	Method:	: WI MOD DRO			
Diesel Range Organics	15.4	mg/kg	2.7	1.1	1	10/26/16 15:57	10/27/16 11:28		D5,DC
Percent Moisture	Analytical	Method: ASTN	/I D2974-87						
Percent Moisture	24.6	%	0.10	0.10	1		10/28/16 13:31		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn						
Total Organic Carbon	11100	mg/kg	916	310	1		10/27/16 06:07	7440-44-0	
Sample: 101816012 Results reported on a "dry we		40140496011 e adjusted for		d: 10/18/16				ıtrix: Solid	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI M	OD DRO P	reparation N	Method:	: WI MOD DRO			
Diesel Range Organics	2.7J	mg/kg	2.8	1.1	1	10/26/16 15:57	10/27/16 11:37		D5
Percent Moisture	Analytical	Method: ASTN	/I D2974-87						
Percent Moisture	28.0	%	0.10	0.10	1		10/28/16 13:31		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn						
Total Organic Carbon	17800	mg/kg	847	287	1		10/27/16 06:13	7440-44-0	
Sample: 101816013 Results reported on a "dry we		40140496012 e adjusted for		d: 10/18/16	-			trix: Solid	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI M	OD DRO P	reparation N	Method:	: WI MOD DRO			
Diesel Range Organics	4.5	mg/kg	2.6	1.0	1	10/26/16 15:57	10/27/16 11:46		D5
Percent Moisture	Analytical	Method: ASTN	/I D2974-87						
Percent Moisture	21.6	%	0.10	0.10	1		10/28/16 13:31		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn						
Total Organic Carbon	38300	mg/kg	989	335	1		10/27/16 06:20	7440 44 0	

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

Sample: 101816015 Lab ID: 40140496013 Collected: 10/18/16 10:17 Received: 10/20/16 09:50 Matrix: Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual			
WIDRO GCS	Analytical	Method: WI	MOD DRO Pre	eparation N	Method:	WI MOD DRO						
Diesel Range Organics	9.3	mg/kg	2.2	0.88	1	10/26/16 15:57	10/27/16 11:55		D5,DC			
Percent Moisture	Analytical	Method: AST	M D2974-87									
Percent Moisture	8.6	%	0.10	0.10	1		10/28/16 13:32					
TOC via Lloyd Kahn	Analytical	Analytical Method: Lloyd Kahn										
Total Organic Carbon	5310	mg/kg	580	196	1		10/27/16 06:25	7440-44-0				
Sample: 101816016 Results reported on a "dry we		4014049601		: 10/18/16				trix: Solid				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual			
WIDRO GCS	Analytical	Method: WI	MOD DRO Pre	eparation N	Method:	WI MOD DRO						
Diesel Range Organics	21.8	mg/kg	3.6	1.4	1	10/27/16 09:45	11/02/16 12:57		DC			
Percent Moisture	Analytical	Method: AST	M D2974-87									
Percent Moisture	58.7	%	0.10	0.10	1		10/28/16 13:32					
TOC via Lloyd Kahn	Analytical	Method: Lloy	d Kahn									
Total Organic Carbon	76100	mg/kg	9730	3300	1		10/27/16 09:34	7440-44-0				
Sample: 101816017 Results reported on a "dry we		4014049601 e adjusted fo		: 10/18/16				trix: Solid				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual			
WIDRO GCS	Analytical	Method: WI	MOD DRO Pre	eparation N	Method:	WI MOD DRO	-	•				
Diesel Range Organics	18.1	mg/kg	2.6	1.1	1	10/27/16 09:45	11/02/16 13:06		DC			
Percent Moisture	Analytical	Method: AST	M D2974-87									
Percent Moisture	38.7	%	0.10	0.10	1		10/28/16 13:32					
TOC via Lloyd Kahn	Analytical	Method: Lloy	d Kahn									

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

QC Batch: 239173 Analysis Method: WI MOD DRO
QC Batch Method: WI MOD DRO Analysis Description: WIDRO GCS

Associated Lab Samples: 40140496001, 40140496002, 40140496003, 40140496004, 40140496005, 40140496006, 40140496007

METHOD BLANK: 1417077 Matrix: Solid

Associated Lab Samples: 40140496001, 40140496002, 40140496003, 40140496004, 40140496005, 40140496006, 40140496007

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Diesel Range Organics mg/kg <0.80 2.0 10/26/16 10:13

LABORATORY CONTROL SAMPLE & LCSD: 1417079 1417078 Spike LCS LCSD LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits **RPD RPD** Qualifiers Diesel Range Organics mg/kg 40 28.7 32.7 72 82 70-120 13 20

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

QC Batch: 239431 Analysis Method: WI MOD DRO
QC Batch Method: WI MOD DRO Analysis Description: WIDRO GCS

Associated Lab Samples: 40140496008, 40140496009, 40140496010, 40140496011, 40140496012, 40140496013

METHOD BLANK: 1418369 Matrix: Solid

Associated Lab Samples: 40140496008, 40140496009, 40140496010, 40140496011, 40140496012, 40140496013

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Diesel Range Organics mg/kg <0.80 2.0 10/27/16 08:56

LABORATORY CONTROL SAMPLE & LCSD: 1418371 1418370 Spike LCS LCSD LCS LCSD % Rec Max % Rec Parameter Units Conc. Result Result % Rec Limits **RPD RPD** Qualifiers Diesel Range Organics mg/kg 40 28.0 28.4 70 70-120 20

QUALITY CONTROL DATA

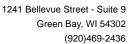
Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

QC Batch: 239502 Analysis Method: WI MOD DRO
QC Batch Method: WI MOD DRO Analysis Description: WIDRO GCS

Associated Lab Samples: 40140496014, 40140496015


METHOD BLANK: 1418769 Matrix: Solid

Associated Lab Samples: 40140496014, 40140496015

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Diesel Range Organics mg/kg <0.80 2.0 11/02/16 12:48

LABORATORY CONTROL SAMPLE & LCSD: 1418771 1418770 Spike LCS LCSD LCS LCSD % Rec Max % Rec Parameter Units Conc. Result Result % Rec Limits **RPD RPD** Qualifiers Diesel Range Organics mg/kg 40 31.2 34.4 78 86 70-120 10 20

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

QC Batch: 239666 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 40140496001, 40140496002, 40140496003, 40140496004, 40140496005, 40140496006, 40140496007,

40140496008, 40140496009, 40140496010, 40140496011, 40140496012, 40140496013, 40140496014,

40140496015

SAMPLE DUPLICATE: 1419913

Date: 11/07/2016 02:29 PM

 Parameter
 Units
 40140520002 Result
 Dup Result
 Max RPD
 RPD
 Qualifiers

 Percent Moisture
 %
 9.6
 9.3
 4
 10

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

QC Batch: 238840 Analysis Method: Lloyd Kahn
QC Batch Method: Lloyd Kahn Analysis Description: Lloyd Kahn TOC

Associated Lab Samples: 40140496001, 40140496002, 40140496003, 40140496004, 40140496005, 40140496006, 40140496007

METHOD BLANK: 1415005 Matrix: Solid

Associated Lab Samples: 40140496001, 40140496002, 40140496003, 40140496004, 40140496005, 40140496006, 40140496007

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Organic Carbon mg/kg <33.9 100 10/24/16 06:14

LABORATORY CONTROL SAMPLE: 1415006

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Total Organic Carbon mg/kg 2000 1980 99 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1415007 1415008

MS MSD 40140496001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual **Total Organic Carbon** 1990 80-120 20 M0,R1 mg/kg 2360 2000 6430 4050 203 85 45

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

QC Batch: 239305 Analysis Method: Lloyd Kahn QC Batch Method: Lloyd Kahn Analysis Description: Lloyd Kahn TOC

40140496008, 40140496009, 40140496010, 40140496011, 40140496012, 40140496013, 40140496014, Associated Lab Samples:

40140496015

METHOD BLANK: 1417707 Matrix: Solid

Associated Lab Samples: 40140496008, 40140496009, 40140496010, 40140496011, 40140496012, 40140496013, 40140496014, 40140496015 Blank Reporting Units Qualifiers Parameter Result Limit Analyzed **Total Organic Carbon** mg/kg <33.9 10/27/16 05:15 LABORATORY CONTROL SAMPLE: 1417708 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Organic Carbon** 99 80-120 2000 1980 mg/kg MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1417710 1417709 MS MSD MSD MS 40140496009 Spike Spike MS MSD % Rec Max Units Result Conc. % Rec % Rec Limits RPD RPD Parameter Conc. Result Result Qual Total Organic Carbon 95900 14900 14900 105000 105000 63 80-120 20 P6 mg/kg 59 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1417711 1417712

MS MSD 40140495001 MS MSD MS MSD Spike Spike % Rec Max % Rec Qual Parameter Units Conc. % Rec Limits RPD RPD Result Conc. Result Result **Total Organic Carbon** mg/kg 19400 6180 6100 20200 24400 13 83 80-120 19 20 M0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

ANALYTE QUALIFIERS

Date: 11/07/2016 02:29 PM

D5	The sample was re-weighed into a new container because the sample weight in the original container exceeded the method specifications.
DC	Chromatographic pattern inconsistent with typical Diesel Fuel.
M0	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
P6	Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the

R1 RPD value was outside control limits.

spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140496

Date: 11/07/2016 02:29 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
40140496001	101716001	WI MOD DRO	239173	WI MOD DRO	239267
10140496002	101716002	WI MOD DRO	239173	WI MOD DRO	239267
0140496003	101716003	WI MOD DRO	239173	WI MOD DRO	239267
0140496004	101716004	WI MOD DRO	239173	WI MOD DRO	239267
0140496005	101716005	WI MOD DRO	239173	WI MOD DRO	239267
0140496006	101716006	WI MOD DRO	239173	WI MOD DRO	239267
0140496007	101716007	WI MOD DRO	239173	WI MOD DRO	239267
0140496008	101816008	WI MOD DRO	239431	WI MOD DRO	239448
0140496009	101816009	WI MOD DRO	239431	WI MOD DRO	239448
0140496010	101816011	WI MOD DRO	239431	WI MOD DRO	239448
0140496011	101816012	WI MOD DRO	239431	WI MOD DRO	239448
0140496012	101816013	WI MOD DRO	239431	WI MOD DRO	239448
0140496013	101816015	WI MOD DRO	239431	WI MOD DRO	239448
0140496014	101816016	WI MOD DRO	239502	WI MOD DRO	239569
0140496015	101816017	WI MOD DRO	239502	WI MOD DRO	239569
0140496001	101716001	ASTM D2974-87	239666		
0140496002	101716002	ASTM D2974-87	239666		
0140496003	101716003	ASTM D2974-87	239666		
0140496004	101716004	ASTM D2974-87	239666		
0140496005	101716005	ASTM D2974-87	239666		
0140496006	101716006	ASTM D2974-87	239666		
0140496007	101716007	ASTM D2974-87	239666		
0140496008	101816008	ASTM D2974-87	239666		
0140496009	101816009	ASTM D2974-87	239666		
0140496010	101816011	ASTM D2974-87	239666		
0140496011	101816012	ASTM D2974-87	239666		
0140496012	101816013	ASTM D2974-87	239666		
0140496013	101816015	ASTM D2974-87	239666		
0140496014	101816016	ASTM D2974-87	239666		
0140496015	101816017	ASTM D2974-87	239666		
0140496001	101716001	Lloyd Kahn	238840		
0140496002	101716002	Lloyd Kahn	238840		
0140496003	101716003	Lloyd Kahn	238840		
0140496004	101716004	Lloyd Kahn	238840		
0140496005	101716005	Lloyd Kahn	238840		
0140496006	101716006	Lloyd Kahn	238840		
0140496007	101716007	Lloyd Kahn	238840		
0140496008	101816008	Lloyd Kahn	239305		
0140496009	101816009	Lloyd Kahn	239305		
0140496010	101816011	Lloyd Kahn	239305		
0140496011	101816012	Lloyd Kahn	239305		
0140496012	101816013	Lloyd Kahn	239305		
0140496013	101816015	Lloyd Kahn	239305		
0140496014	101816016	Lloyd Kahn	239305		
0140496015	101816017	Lloyd Kahn	239305		

10 of 51

coc seals: 936621,936622 Fedex tracking #: 806293223845

40140496

NATURAL RESOURCE TECHNOLOGY, INC. 234 W. FLORIDA STREET, 5th FLOOR MILWAUKEE, WI 53204 TEL: 414.837.3607

h

CHAIN OF CUSTODY # [81716-(

PECAL REQUIREMENTS Send all SAFs & Reports to	LABORATO	RY SAMPLES SUBMIT	TED TO:								CUENTER	O IECT	NAME						Table	-		TAOL NU 1145	==
Company Comp	Pace A	nalytical Servi	ces, Inc.								CLIENTER				^	.I.			PRO				5
Andrew Millspaugh, amillspaugh@naturalrt.com STANDARD PACK STANDARD PACK STANDARD PACK PACK	ADDRESS:				***************************************			*						ary	Cree	:K							
Green Bay, WI 64302 EL EL CANAL Brian. Basten@pacelabs.com Services (GRANATOR) Green Bay, WI 648-2436 FAX Brian. Basten@pacelabs.com Preservatives: Brian. Basten@pacelabs.com Brian. Basten. Brian. Brian. Basten.		ellevue Street	- Suite 9								-									_			
Production Pro															paugl	1@nat	urairt.	com	ــــــــــــــــــــــــــــــــــــــ	0	0025	715	
Second S		Bay, WI 54302	EAV		T E MAI	13					+ (I)	9	. //_	•	di di	\	4650		-(2)	\cap			
URNARGUND TIME		69-2436	FAX.			-	sten@p	acelat	os.com) ATA	TU	10112	ar.	٦ ا	4n	ch	OCL	20	للل	10		
Data Package: Level 2 Preservatives							<u> </u>						Ι			_							
Data Package Level 2		STANDARD	○ 24 HR	○ 48 HR ○ 72 HI	R				i							R	EQUE	:51ED	ANAL	Y 515			
D = NNOs. E = methanol. F = Sodium Bisulfate,	Data Pad	ckage: Level 2			1			C = 1	H.SO		Preservation	n Code		,		Meth	od N	umbe	r and A	nalyte	s		
PECIAL REQUIREMENTS Send all SAFs & Reports to	2 0.0.0	J. 1010			1					Bisulfate,	(pic	k letter)	A	Α	Α	Α	Α						
Please refer to the full List of Analytes for this Sediment project provided by Steve Wiskes. SAMPLE DOC SAMPLE FIELD COMMENTS DATE TIME DATE					G = 2	zinc ace	tate,	H = otl	her		Filtered	(Yor N)	N	I	N	N	N	<u> </u>	<u> </u>				
Please refer to the full List of Analytes for this Sediment project provided by Steve Wiskes. SAMPLE DOC SAMPLE FIELD COMMENTS DATE TIME DATE			arto to	Androw Millenausi	h amili	enave	sh@nct	rold o	om				18)	STM									
Please refer to the full List of Analytes for this Sediment project provided by Steve Wiskes. SAMPLE DOC SAMPLE FIELD COMMENTS DATE TIME DATE	36			· -			gri@riatt	arant.C	UIII				163	487)	gpt		8				•		
1			and	Data data@natu	nant.co	1111							Αd	Siz	Wei	Ē	D D		1		1		
1	Ple	ease refer to the full	List of Analytes for	or this Sediment projec	ct provic	ded by	Steve W	liskes.					0	Grair	D _Z	Kah	N N						
1				,, and Goamer project	J. D. J. J.								5	ster/(2216	fure/	ρίο	3						
1		SAMPLE ID	OC SAMPLE	FIELD COMMENTS		SAMPL	E	14	25	SAMPLE	INTERVAL (ft)	*	7,8-	2, D	Aoist 216)] =	X						
	ABUSE &				DA	TE	TIME	184	A. 30/4	тор	воттом	ON	2,3,	E F F F F F F F F	%0	ρ	₹						
	* (1)	101716001			10/0	ek6	1344	SED	Grab			5	X	X	X	X	X	1-8	Dzaf	a-V	ozaf	1-4000	A 7-40
	70 2				lor	166	1344	SED	Grab			5	X	X	X	X	X		7				
S S T C C C C C C C C C	203 3	10/1/6003			le/c	16	1319	SED	Grab			5	X	X	X	×	X						
		101716004			10/0	166	1319	SED	Grab	<u> </u>		5	Y	X	X	X	X						
	205 5	191716005	:		10/0	16	14.32		Grab			5	X	X	X	X	X			<u></u>			
	20(2 6)	101716006			ldr	116	1432	SED	Grab			5	X	×	X	X	X						$\perp l$
10 0 8 (20)	207 7	[61716007]			Lide	116	1433	SED	Grab			5	X	X	X	X	X						
10 0 8 (0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	M2 8	101811008			10/1	8/11/	1342	SED	Grab			ý	1		1	· · · · · · · · · · · · · · · · · · ·	Ĺ						$\perp \mid \mid$
11 10 18 10 12 12 12 14 15 10 18 10 13 12 15 10 18 10 15 10 18 10 15 10 18 10 15 10 18 10 15 10 18 10 15 10 18 10 15 10 18 10	18 POC				,	<u> </u>	1342	SED	Grab				ano.		antiental								
12 0 8 6 0 5 10 7 SED Grab 10 7 SED Grab 10 7 SED Grab 10 8 10 10 10 10 10 10	JK 5 10	101816011					1 1 100	4	Grab					- Land		anidossa	zionidageno						
13 0 8 0 0 5	21 11	171 17 17 17 17 17 17 17 17 17 17 17 17					7		Grab								area and a second						
14 018 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0) A 12							-	Grab				-										
15 0 8 0 0 1 S X X X X X X X X X X X X X X X X X X	<u> </u>	01816015			00000000		1017		ļ				-					TOTAL MARKET					
including by (Signature) Date: 10/19/16/1500 Received by (Signature) Date: 10/190/16 Time: 950 Inquished by (Signature) Date: Time: 950	() 4	91001616			_				Grab	<u> </u>		Ψ		LL,		Ц.							
Inquished by: (Signature) Office O	000 SEE SEE SEE SEE SEE SEE SEE SEE SEE	101010717		<u> </u>	$\perp \lambda$	/				<u> </u>		S	X	<u>LX</u>	\times	X	X		1		V		$\Box \lor$
inquished by: (Signature) Date: Time:	Reliefluished by (Signature) 10/19/16/1500 Received by (Signature) Date:				20	Mo		Time:	395	5													
inquished by: (Signature) Date: Time:									***************************************	Date:				Time:	<u></u>								

Sample Condition Upon Receipt

Pace Analytical Services, Inc. 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

/ Pace Analytical			<u></u>		04 4040C
Client Name:			Project #:		0140496
Courier: Fed Ex F UPS Client F Pag	e Other:	•			
Tracking #: 8002 9302 3845 8	102 552	56	1590	40140496	
Custody Seal on Cooler/Box Present: yes	_	intact:	Fyes T no		
Custody Seal on Samples Present: Tyes			yes no		
Packing Material: Bubble Wrap Bub					
Thermometer Used	Type of Ice?		Blue Dry None	,	ce, cooling process has begun
Cooler Temperature Uncorr: Corr:		Biolo	gical Tissue is Frozé		
Temp Blank Present: yes no				☐ no	Person examining contents:
Temp should be above freezing to 6°C for all sample expression of the samples should be received ≤ 0°C.	cept Biota.		Comments:		Initials:
Chain of Custody Present:	✓Yes □No	□n/a	1.	.,,,	
Chain of Custody Filled Out:	√ZYes □No	□n/a	2.		
Chain of Custody Relinquished:	ØYes □No	□n/a	3.		
Sampler Name & Signature on COC:	□Yes ZNo	□n/a	4.		
Samples Arrived within Hold Time:	Yes □No	□n/a	5.		
- VOA Samples frozen upon receipt	□Yes □No		Date/Time:		
Short Hold Time Analysis (<72hr):	□Yes No	□n/a			
Rush Turn Around Time Requested:	□Yes ZNo	□n/a	7.		
Sufficient Volume:	✓Yes □No	□n/a	8.		
Correct Containers Used:	ZYes □No	□n/a	9.		
-Pace Containers Used:	√Yes □No	□n/a			
-Pace IR Containers Used:	□Yes □No	D N/A			
Containers Intact:	Yes 🗆 No	□n/a	10.		
Filtered volume received for Dissolved tests	□Yes □No	.DN/A	11.		
Sample Labels match COC:	□Yes ØNo	□N/A	12.004 1-4020gA	time 1329	"10617005"
-Includes date/time/ID/Analysis Matrix:	_5		008 1-402CDA	Atime 1394	allogol AB
All containers needing preservation have been checked. (Non-Compliance noted in 13.)	□Yes □No	ZN/A	13 F HNO3	T H2SO4 T	NaOH NaOH +ZnAct
All containers needing preservation are found to be in			10.		
compliance with EPA recommendation. (HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12)	□Yes □No	ĎN/A			
exceptions: VOA, coliform, TOC, TOX, TOH,			Initial when Lai	b Std #ID of	Date/
O&G, WIDROW, Phenolics, OTHER:	□Yes □/No			eservative	Time:
Headspace in VOA Vials (>6mm):	□Yes □No	ØN/A	14.		
Trip Blank Present:	□Yes □No	DIN/A	15.		
Trip Blank Custody Seals Present	□Yes □No	DINA			
Pace Trip Blank Lot # (if purchased):		/			
Client Notification/ Resolution: Person Contacted:		Date/		ecked, see attache	d form for additional comments
Comments/ Resolution:		. Date/	rime.		
Project Manager Review:	4			Date:	10-20-16
F-GB-C-031-Rev.03 (9April2015) SCUR Form	00	1			D 00

CQM, INC. Engineering – Surveying – Material Testing

TRANSMITTAL

10: Brian	Basten	_	FROM:	Bob Rouse	
Pace	Basten Analytical		-	CQM, INC.	
	· · · · · · · · · · · · · · · · · · ·	_		2679 Continental D	rive
				Green Bay, WI 543	311
			PHONE:	(920) 465-3911	 _
11	1 1 0		DATE:	November 7, 2016	
RE: Lab Test	Result Repor	ts	PROJECT:	No- 40140496	
E ARE SENDING	YOU:			Military Creek	
ATTACHEI		UNDER SEP	ARATE COVE	. VTA	
DRAWING		SPECIFICAT		□ cD	
DOCUMEN		COPY OF LI			
				<u> </u>	
QUANTITY			DESCRI	TION	
2022					
1	Lab Ter	T Result	Reports		
					-
	Chain of	Curredy	Keent		
1	Chain of	Currody	Keeont		
1	Chain of	"Currody	Kecont		
	Chain of	Curredy	Becom		
	Chain of	Currody	Kecont		
	Chain of	Currody	Record		
	Chain of	Curredy	Becom		
IF	Invoice To	be sent 1	laser	ASE NOTIFY US AT ONCE.	
IF	Invoice To	be sent 1	laser	ASE NOTIFY US AT ONCE.	
	Invoice To MATERIAL RECE	Se Sent /	lacer LS LISTED, PLI		
IF REMARKS:	Invoice To MATERIAL RECE	Se Sent /	lacer LS LISTED, PLI	ASE NOTIFY US AT ONCE.	
	Invoice To MATERIAL RECE	Se Sent /	lacer LS LISTED, PLI		
	Invoice To MATERIAL RECE	Se Sent /	lacer LS LISTED, PLI		
	Invoice To MATERIAL RECE	Se Sent /	lacer LS LISTED, PLI		
	Invoice To MATERIAL RECE	Se Sent /	lacer LS LISTED, PLI		
	Invoice To MATERIAL RECE	Se Sent /	lacer LS LISTED, PLI		

CQM, INC.

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GE	NER	AL	DA [*]	TA:

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101716001
Sample No:	40140496-001
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 5/4
Date Sampled:	10/17/16

LABORATORY DATA:

Date Tested:	October 27-31, 2016
Test Performed By:	FRH

24 Hrs. Turn Around:	NO	_	
Washed Gradation:	YES	Dry Weight of Soil (gms):	184.2

	<u> </u>				
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"	0.0	0.0	100.0		
1/2"	12.3	6.7	93.3		
3/8"	12.9	7.0	86.3		
#4	12.3	6.7	79.6		
#10	16.0	8.7	70.9		
#40	117.3	63.7	7.3		
#100	8.7	4.7	2.6		
#200	0.2	0.1	2.4		

REVIEWED BY:	Relent R Rouse
DATE REVIEWED:	11/7/16

Remarks:

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #40 #50 #200 100 100 90 80 Shown Shown Size S 60 Size Than 50 Percent Finer T Finer 30 20 10 0.002 0.02 10 100 0.1 0.01 0.001 Gravel Sand Coarse Fine Coarse Medium Fine Silt Clay 20.4% 8.7% 63.7% 4.8% 0.9% 1.5% Soil Classification: SAND W/GRAVEL, medium grained, yellowish brown (SP) 10/17/16 Location Sampled: 101716001 Elevation or Depth: Date Sampled: 16.8 Sample Number: 40140496-001 Sampled Moisture Content (%): Report No.: 496-1 COM, INC. Sample Source: Military Creek Client: Pace Analytical Atterberg Limits: LL= PL= PI= Munsell Color Code: 10YR 5/4 Project: No. 40140496 Page: 2 11/3/16 Prepared by: Bob J. Peeters Date: Date Received: 10/24/16

Robert R Rouse

Date:

Checked by:

으

Coefficients: Cc=

Cu=

CQM, INC.

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL DATA:

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101716002
Sample No:	40140496-002
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 5/4
Date Sampled:	10/17/16

LABORATORY DATA:

Date Tested:	October 27-31, 2016	
T I.B. (1.B.	ED:	
Test Performed By:	FRH	

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	203.7

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					·
3/4"					
1/2"	0,0	0.0	100.0		
3/8"	1.3	0.6	99.4		
#4	5.4	2.7	96.7		
#10	14,4	7.1	89.6		
#40	167.9	82.4	7.2		
#100	10.2	5.0	2.2		
#200	0.3	0.1	2.1		

REVIEWED BY:	Robert RRouse
DATE REVIEWED:	11/7/16

Remarks:

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #40 #50 #200 #100 100 100 90 80 80 Shown Size Sh 8 60 8 60 60 Than 50 Percent Finer Finer 40 30 30 20 10 -0.2-100 10 1 0.1 0.01 0.001 Gravel Sand Coarse Fine Coarse Medium Fine Silt Clay 3.3% 7.1% 82.4% 5.1% 0.6% 1.5% Soil Classification: SAND, medium grained, a little gravel, yellowish brown (SP) Location Sampled: 101716002 Elevation or Depth: 10/17/16 Date Sampled: Sample Number: 40140496-002 Sampled Moisture Content (%): 8.7 Report No.: 496-2 COM. INC. Sample Source: Military Creek Atterberg Limits: LL= PI= PL= Client: Pace Analytical Munsell Color Code: 10YR 5/4 Project: No. 40140496 Page: 으 Date Received: 10/24/16 11/3/16 Prepared by: Bob J. Peeters Date: Robert R. Roase Coefficients: Cc= Cu= Checked by: Date:

CQM, INC.

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL DATA:

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101716003
Sample No:	40140496-003
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 5/4
Date Sampled:	10/17/16

LABORATORY DATA:

Date Tested:	October 27-31, 2016	
Test Performed By:	FRH	

1		1	
24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	111.1

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"			:		
1"	0.0	0.0	100.0		
3/4"	20.3	18.3	81.7		
1/2"	12.0	10.8	70.9		
3/8"	6.7	6.0	64.9		
#4	5.4	4.9	60.0		
#10	2.1	1.9	58.1		
#40	48.8	43.9	14.2		
#100	13.3	12.0	2.2		
#200	0.4	0.4	1.8		

REVIEWED BY: Role & Roun	Remarks:	
DATE REVIEWED: /// 3//6		

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #40 #50 #200 100 100 90 Shown Shown 9 60 60 60 Size Finer Than 30 10 10 0.1 0.01 0.001 100 Gravel Sand Coarse Fine Coarse Medium Fine Silt Clay 18.3% 21.7% 1.9% 43.9% 12.4% 1.3% 0.5% Soil Classification: SAND W/GRAVEL, medium to fine grained, yellowish brown (SP) Location Sampled: 101716003 Elevation or Depth: Date Sampled: 10/17/16 Sampled Moisture Content (%): 14.0 Report No.: 496-3 Sample Number: 40140496-003 COM, INC. Sample Source: Military Creek

Client: Pace Analytical

askert & Rouse

2

11/3/16

Page:

Date:

Project: No. 40140496

Prepared by: Bob J. Peeters

Checked by:

LL=

Atterberg Limits:

2

으

PL=

10/24/16

Cu=

Munsell Color Code: 10YR 5/4

Coefficients: Cc=

Date Received:

Pl=

CQM, INC.

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENER	AL D	ATA:
--------------	------	------

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101716004
Sample No:	40140496-004
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 3/2
Date Sampled:	10/17/16

LABORATORY DATA:

Date Tested:	October 27-31, 2016
Test Performed By:	FRH

24 Hrs. Turn Around:	NO		
Washed Gradation:		Dry Weight of Soil (gms):	30.8

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"					`
3/8"	0.0	0.0	100.0		
#4	1.9	6.2	93.8		
#10	4.6	14.9	78.9		
#40	15.0	48.7	30.2		
#100	8.0	26.0	4.2		
#200	0.5	1.6	2.6		

REVIEWED BY:	Robert R Rouse	Re	emarks:
DATE REVIEWED:	1 / 4 / 4		

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #10 #40 #50 #200 100 100 90 80 70 Shown 60 Shown Size 5, Size L Lyan 50 Finer Percent Finer 30 30 20 10 0.05 10 0.1 0.01 0.001 100 Gravel Sand Coarse Fine Coarse Medium Fine Clay 6.2% 27.6% 2.1% 0.5% 14.9% 48.7% Soil Classification: SAND, medium to fine to coarse grained, a little gravel, very dark grayish brown (SP) Location Sampled: 101716004 Elevation or Depth: Date Sampled: 10/17/16 Sample Number: 40140496-004 Sampled Moisture Content (%): 17.5 Report No.: 496-4 CQM, INC. Sample Source: Military Creek Atterberg Limits: LL= PL= PI≔ Client: Pace Analytical Munsell Color Code: 10YR 3/2 Project: No. 40140496 Page: Prepared by: Bob J. Peeters Date: 11/3/16 Date Received: 10/24/16 Robert R Rouse Date:

Checked by:

으

Coefficients: Cc=

Cu=

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101716005
Sample No:	40140496-005
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 5/4
Date Sampled:	10/17/16

LABORATORY DATA:

Date Tested:	October 27-31, 2016
Test Performed By:	FRH

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	172.8

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"	0.0	0.0	100.0		
3/4"	40.4	23.4	76.6		
1/2"	16.5	9.5	67.1		
3/8"	4.5	2.6	64.5		11.00.100100000000000000000000000000000
#4	9.7	5.6	58.9		
#10	17.8	10.3	48.6		
#40	43.5	25.2	23.4		
#100	25.0	14.5	8.9		
#200	11.3	6.5	2.4		

REVIEWED BY:	Robert & Rouse
DATE REVIEWED:	11/7/16

Remarks:

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #16 #10 #40 #50 #200 100 100 90 80 70 Shown Shown Size 5, Size Than 50 Percent Finer 1 Finer 30 30 20 10 10 10 0.01 100 0.1 0.001 Gravel Sand Coarse Fine Coarse Medium Fine Clay 17.7% 0.9% 23.4% 10.3% 25.2% 21.0% 1.5% Soil Classification: SAND W/GRAVEL, medium to fine to coarse grained, yellowish brown (SP) Location Sampled: 101716005 Elevation or Depth: Date Sampled: 10/17/16 Sample Number: 40140496-005 Sampled Moisture Content (%): 7.6 Report No.: 496-5 CQM, INC. Sample Source: Military Creek Atterberg Limits: LL= PL= Pl= Client: Pace Analytical Munsell Color Code: 10YR 5/4 Project: No. 40140496 2 Page: Date Received: Prepared by: Bob J. Peeters Date: 11/3/16 10/24/16 Polent R Rouse

Checked by:

Date:

ω

으

Coefficients: Cc=

Cu=

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GE	NE	RAL	_ DA	TA:

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101716006
Sample No:	40140496-006
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 5/6
Date Sampled:	10/17/16

LABORATORY DATA:

Date Tested:	October 27-31, 2016	
Test Performed By:	FRH	

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	100.2

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"	0.0	0.0	100,0		
3/8"	11.1	11.1	88.9		
#4	10.0	10.0	78.9		
#10	8.6	8.6	70.3		
#40	38.8	38.7	31.6		
#100	26.6	26.5	5.1		
#200	2.4	2.4	2.7		

REVIEWED BY: Robert a Rouse	Remarks:	
DATE REVIEWED: ///7//6		

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #16 #10 #40 #50 #200 100 100 90 80 80 70 Shown Shown Size S 60 Size Than 50 Percent Finer 3 Finer 30 30 20 10 0.02 10 0.1 0.01 100 0.001 Gravel Sand Medium Silt Coarse Fine Coarse Fine Clay 28.9% 1.7% 1.0% 21.1% 8.6% 38.7% Soil Classification: SAND W/GRAVEL, medium to fine grained, yellowish brown (SP) Location Sampled: 101716006 Elevation or Depth: Date Sampled: 10/17/16 19.9 496-6 Sample Number: 40140496-006 Sampled Moisture Content (%): Report No.: CQM, INC. Sample Source: Military Creek Atterberg Limits: LL= PL≕ Pl= Client: Pace Analytical Munsell Color Code: 10YR 5/6 Project: No. 40140496 Page: 으 Date Received: 10/24/16 Prepared by: Bob J. Peeters Date: 11/3/16 Robert R. Course Cu≔ Date: Coefficients: Cc= Checked by:

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL DATA	ERAL DATA:
--------------	------------

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101716007
Sample No:	40140496-007
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 4/2
Date Sampled:	10/17/16

LABORATORY DATA:

Date Tested:	October 27-31.2016
Test Performed By:	FRH

24 Hrs. Turn Around: NO
Washed Gradation: YES Dry Weight of Soil (gms): 175.4

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"	0.0	0.0	100.0		
1/2"	5.6	3.2	96.8		
3/8"	8.4	4.8	92.0		
#4	19.5	11.1	80.9		
#10	15.8	9.0	71.9		
#40	73.2	41.7	30.2		
#100	44.5	25.4	4.8		
#200	4.2	2.4	2.4		

REVIEWED BY:	Robert a Roure
DATE REVIEWED:	11/7/16

Remarks:

U.S. Standard Sieve Sizes #10 #40 #50 #200 100 90 80 Size Shown Shown 60 Size Percent Finer Than Percent Finer 30 20 10 0.5 0.02 100 10 0.1 0.01 0.001 Gravel Sand Coarse Fine Coarse Medium Fine Silt Clay 19.1% 27.8% 1.4% 9.0% 41.7% 1.0% Soil Classification: SAND W/GRAVEL, medium to fine grained, dark grayish brown (SP) 10/17/16 Location Sampled: 101716007 Elevation or Depth: Date Sampled: Sample Number: 40140496-007 Sampled Moisture Content (%): 19.4 Report No.: 496-7 COM, INC. Sample Source: Military Creek Atterberg Limits: LL= PL= Pl≔ Client: Pace Analytical Munsell Color Code: 10YR 4/2 Project: No. 40140496 2 Page: Prepared by: Bob J. Peeters 11/3/16 Date: Date Received: 10/24/16 Robert R Pouse

Checked by:

으

Coefficients: Cc=

Cu=

GRAIN SIZE DISTRIBUTION CURVE

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101816008
Sample No:	40140496-008
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/18/16

LABORATORY DATA:

Date Tested:	October 27-31, 2016
Test Performed By:	FRH

24 Hrs. Turn Around:	NO	_	
Washed Gradation:	YES	Dry Weight of Soil (gms):	8.0

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"					
3/8"	0.0	0.0	100.0		
#4	0.2	2.5	97.5		
#10	0.3	3.8	93.7		
#40	3.1	38.8	54.9		
#100	1.7	21.3	33.6		
#200	0.6	7.5	26.1		

REVIEWED BY:	Robert a Rouse
DATE REVIEWED:	11/7/16

Remarks:

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #10 #40 #50 #100 100 100 90 80 70 Shown Size Shown Size 60 60 Percent Finer Than S Finer 30 10 100 10 0.1 0.01 0.001 Gravel Sand Coarse Fine Coarse Medium Fine Silt Clay 2.5% 28.8% 3.8% 38.8% 16.1% 10.0% Soil Classification: SILTY SAND W/ORGANIC FINES, medium to fine grained, black (SM) Location Sampled: 101816008 Elevation or Depth: Date Sampled: 10/18/16 Sample Number: 40140496-008 Sampled Moisture Content (%): 591.3 Report No.: 496-8 COM, INC. Sample Source: Military Creek LL= Pl= Client: Pace Analytical Atterberg Limits: PL= Munsell Color Code: 10YR 2/1 Project: No. 40140496 Page: 2 11/3/16 Date Received: 10/24/16 Prepared by: Bob J. Peeters Date:

Robert R Rouse

Date

Checked by:

3

으

Coefficients: Cc=

Cu=

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

|--|

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101816009
Sample No:	40140496-009
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/18/16

LABORATORY DATA:

Date Tested:	October 27-31, 2016
Test Performed By:	FRH

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	50.9

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	·
3"					
1 1/2"					
1"					
3/4"					
1/2"					
3/8"	0.0	0.0	100.0		
#4	2.1	4.1	95.9		
#10	2.8	5.5	90.4		
#40	18.1	35.6	54.8		
#100	9.7	19.1	35.7		
#200	1.4	2.8	32.9		

REVIEWED BY: Rolet & Bouse	Remarks:
DATE REVIEWED: 11/7/16	

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #16 #10 #40 #50 #200 100 90 90 80 70 Shown Shown Than Size S 60 Size Finer Finer 30 30 20 10 10 0.005 0.02 10 100 0.1 0.01 0.001 Gravel Sand Coarse Coarse Medium Fine Silt Fine Clay 4.1% 5.5% 21.9% 22.4% 35.6% 10.5% Soil Classification: SILTY SAND W/ORGANIC FINES, medium to fine grained, a little gravel, black (SM) Location Sampled: 101816009 Elevation or Depth: Date Sampled: 10/18/16 Sampled Moisture Content (%): Sample Number: 40140496-009 185.5 Report No.: 496-9 Sample Source: Military Creek CQM, INC. Atterberg Limits: LL= PL= PI= Client: Pace Analytical Munsell Color Code: 10YR 2/1 Project: No. 40140496 2 Page: Date Received: 10/24/16 Prepared by: Bob J. Peeters Date: 11/3/16 Robert & Rouse

Checked by:

Date:

Cu=

Coefficients: Cc=

으

	SIE	VE ANALY	SIS OF CC	DARSE TO FINE AGG	REGATES (ASTM D422)
GENERAL	_ DATA:				
		Client	Pace Analyt	inal	
			No. 4014049		
	Locati	on Sampled:		•	
		Sample No:		0	
	Dept	h of Sample:			
	Da	te Received:	10/24/16		
	Sample Des	ignated For:	Soil Classifi	cation	
	Sourc	e of Sample:	Military Cree	ek	
		Color Code:			
		ate Sampled:	10/18/16		
LABORA	TORY DATA	7.			
	,	Data Tantadi	Ootobox 27 f	01 0016	
		Date Tested: erformed By:		31, 2010	
	16311	erionned by.	[1101		
	24 Hrs. "	Turn Around:	NO		
		d Gradation:	YES	Dry Weig	ht of Soil (gms): 68.7
				•	
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"					
3/8"	0.0	0.0	100.0		
#4	8.9	13.0	87.0		
#10	7.9	11.5	75.5		
#40	28.9	42.1	33.4		
#100	15.9	23.1	10.3		

REVIEWED BY:	Robert R Poure
DATE REVIEWED:	11/7/16

0.7

1.0

9.3

#200

Remarks:

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #16 #40 #50 #200 100 100 90 80 Shown Shown Size S 60 Size 50 Finer Percent Finer 30 30 20 10 0.002 10 0.01 0.001 0.1 100 Gravel Sand Coarse Fine Coarse Medium Fine Clay 24.1% 5.8% 3.5% 13.0% 11.5% 42.1% Soil Classification: SAND W/SILT, medium to fine to coarse grained, a little gravel, some organic fines, black (SP-SM) Location Sampled: 101816011 Elevation or Depth: Date Sampled: 10/18/16 Sampled Moisture Content (%): 42.2 496-10 Sample Number: 40140496-010 Report No.: CQM, INC. Sample Source: Military Creek

Client: Pace Analytical

Robert R Rouse

2

11/3/16

Page:

Date:

Date: 1

Project: No. 40140496

Prepared by: Bob J. Peeters

Checked by:

LL=

Atterberg Limits:

으

PL=

10/24/16

Cu=

Munsell Color Code: 10YR 2/1

Coefficients: Cc=

Date Received:

PI=

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL DATA:

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101816012
Sample No:	40140496-011
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munseil Color Code:	10YR 2/1
Date Sampled:	10/18/16

LABORATORY DATA:

Date Tested:	October 27-31, 2016	
Test Performed By:	FRH	 _

		1	
24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	140.1

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"	0.0	0.0	100.0		
3/8"	2.5	1.8	98.2		
#4	14.5	10.3	87.9		
#10	22.9	16.3	71.6		
#40	68.3	48.8	22.8		
#100	21.8	15.6	7.2		
#200	1.7	1.2	6.0		

REVIEWED BY:	Robert & Rosers
DATE REVIEWED:	11/7/16

Remarks:

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #40 #50 #200 100 T 100 90 80 Shown Shown Size S 60 Size Finer Finer Percent l 30 20 10 0.005 0.01 10 0.1 0.001 100 Gravel Sand Medium Silt Coarse Fine Coarse Fine Clay 12.1% 16.8% 4.5% 1.5% 16.3% 48.8% Soil Classification: SAND W/SILT, medium to fine to coarse grained, some organic fines, a little gravel, black (SP-SM) Location Sampled: 101816012 Elevation or Depth: Date Sampled: 10/18/16 Sampled Moisture Content (%): 496-11 35.1 Report No.: Sample Number: 40140496-011 CQM, INC. Sample Source: Military Creek LL= PL= PI= Client: Pace Analytical Atterberg Limits: Munsell Color Code: 10YR 2/1 Project: No. 40140496 Page: 으 Date Received: 10/24/16 Prepared by: Bob J. Peeters Date: 11/4/16 Robert R. Rouse Cu= Checked by: Date: Coefficients: Cc=

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

CEN	ERAL	DATA:
OWN		DAIA.

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101816013
Sample No:	40140496-012
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/18/16

LABORATORY DATA:

Date Tested:	October 27-31, 2016
Test Performed By:	FRH

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	136.6

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"	0.0	0.0	100.0		
3/8"	18.7	13.7	86.3		
#4	24.2	17.7	68.6		
#10	16.7	12.2	56.4		
#40	57.4	42.0	14.4		
#100	15.4	11.3	3.1		
#200	0.6	0.4	2.7		

REVIEWED BY:	Robert a. Down	Remarks:
DATE REVIEWED:	11/7/16	

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #16 #40 #50 #200 100 100 90 80 Size Shown Shown Size 50 Finer 40 30 30 20 10 0.02 100 10 0.1 0.01 0.001 Gravel Sand Coarse Medium Silt Fine Coarse Fine Clay 31.4% 42.0% 11.7% 2.0% 12.2% 0.7% Soil Classification: SAND W/GRAVEL, medium to coarse to fine grained, some organic fines, black (SP) Location Sampled: 101816013 Elevation or Depth: Date Sampled: 10/18/16 Sample Number; 40140496-012 Sampled Moisture Content (%): 31.0 Report No.: 496-12 CQM, INC. Sample Source: Military Creek Atterberg Limits: LL≔ PL≕ PI= Client: Pace Analytical Munsell Color Code: 10YR 2/1 Project: No. 40140496 Page: 으 Date Received: 10/24/16 Prepared by: Bob J. Peeters Date: 11/4/16 Robert R. Rouse Cu= Checked by: Date: Coefficients: Cc=

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL DATA:

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101816015
Sample No:	40140496-013
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/18/16

LABORATORY DATA:

Date Tested:	October 27-31, 2016	
Test Performed By:	FRH	

1			
24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	280.8

0:	101-1-1-1	0/	0/	Duniont On online	
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"	0.0	0.0	100.0		
1"	30.1	10.7	89.3		
3/4"	46.1	16.4	72.9		
1/2"	35.6	12.7	60.2		
3/8"	42.5	15.1	45.1		
#4	30.7	10.9	34.2		
#10	27.7	9.9	24.3		
#40	43.6	15.5	8.8		
#100	19.7	7.0	8.0		
#200	1.0	0.4	1.4		

REVIEWED BY: Robert Rhouse	Remarks:
DATE REVIEWED: 11/7/16	

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #16 3/84 #40 #50 #200 100 _____ 100 90 80 Shown Shown Size S Size Than 50 50 Finer 30 30 20 10 10 100 0.1 0.01 0.001 Gravel Sand Coarse Fine Coarse Medium Fine Clay 27.1% 38.7% 9.9% 15.5% 7.4% 1.4% Soil Classification: GRAVEL W/SAND, some organic fines, black (GP) Location Sampled: 101816015 Elevation or Depth: Date Sampled: 10/18/16 Sample Number: 40140496-013 Sampled Moisture Content (%): 6.6 Report No.: 496-13 COM, INC. Sample Source: Military Creek Atterberg Limits: LL= PL= Pl= Client: Pace Analytical Munsell Color Code: 10YR 2/1 Project: No. 40140496 Page: 으 Date Received: 10/24/16 Prepared by: Bob J. Peeters 11/4/16 Date: Robert R. Rouse Coefficients: Cc= Cu≔ Checked by:

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL DATA:

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101816016
Sample No:	40140496-014
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/18/16

LABORATORY DATA:

Date Tested:	October 27-31, 2016	
Test Performed By:	FRH	

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	91.4

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1 ⁸					
3/4"					
1/2"	0.0	0.0	100.0		
3/8"	2.6	2.8	97.2		
#4	6.1	6.7	90.5		
#10	9.1	10.0	80.5		
#40	48.9	53.5	27.0		
#100	19.5	21.3	5.7		
#200	1.4	1.5	4.2		

REVIEWED BY:	Robert a Rouse
DATE REVIEWED:	11/7/16

Remarks:

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #200 #10 #40 #50 100 90 90 80 Shown Shown Size S 60 Size Percent Finer Than Percent Finer 30 20 20 10 10 100 10 0.1 0.01 0.001 Gravel Sand Coarse Coarse Fine Medium Fine Silt Clay 9.5% 10.0% 53.5% 22.8% 2.2% 2.0% Soil Classification: SAND, medium to fine to coarse grained, some organic fines, a little gravel, black (SP) Location Sampled: 101816016 Elevation or Depth: Date Sampled: 10/18/16 Sample Number: 40140496-014 Sampled Moisture Content (%): 78.8 496-14 Report No.: COM, INC. Sample Source: Military Creek LL= Pl≔ Atterberg Limits: PL= Client: Pace Analytical Munsell Color Code: 10YR 2/1 Project: No. 40140496 Page: 으 Date Received: 10/24/16 Prepared by: Bob J. Peeters Date: 11/4/16 Robert & Rouse Coefficients: Cc= Cu≕ Checked by: Date:

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL DATA

Client:	Pace Analytical
Project:	No. 40140496
Location Sampled:	101816017
Sample No:	40140496-015
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/18/16

LABORATORY DATA:

Date Tested:	October 27-31, 2016
Test Performed By:	FRH

r			
24 Hrs. Turn Around:	NO	_	
Washed Gradation:	YES	Dry Weight of Soil (gms):	

Sieve	Weight	%	%	Project Specification	Source of Specification
				, ,	Gource of Openineation
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"	0.0	0.0	100.0		
3/8"	20.6	16.5	83.5		
#4	4.1	3.3	80.2		
#10	16.7	13.3	66.9		
#40	55.8	44.6	22.3		
#100	20.3	16.2	6.1		
#200	1.0	0.8	5.3		

REVIEWED BY:	Robert a Poure	Remarks:
DATE REVIEWED:	11/7/16	
	.	

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #16 #40 #50 #200 100 100 90 80 Shown Shown Size 8 60 Than Size **Left** 50 Percent Finer 30 30 20 10 10 10 0.01 0.1 0.001 100 Gravel Sand Coarse Fine Coarse Medium Fine Silt Clay 19.8% 13.3% 17.0% 2.8% 2.5% 44.6% Soil Classification: SAND W/SILT AND GRAVEL, medium to fine to coarse grained, some organic fines, black (SP-SM) Location Sampled: 101816017 Elevation or Depth: Date Sampled: 10/18/16 Sampled Moisture Content (%): 51.6 496-15 Sample Number: 40140496-015 Report No.: CQM, INC. Sample Source: Military Creek Atterberg Limits: LL= PL= PI= Client: Pace Analytical Project: No. 40140496 Page: Ŋ Munsell Color Code: 10YR 2/1 으 Date Received: 10/24/16 Prepared by: Bob J. Peeters Date: 11/4/16 Robert R. Rouse Cu= Date: Checked by: Coefficients: Cc=

November 07, 2016

Andrea Salus NATURAL RESOURCE TECHNOLOGY 234 W. Florida Street 5th Floor Milwaukee, WI 53204

RE: Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Dear Andrea Salus:

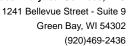
Enclosed are the analytical results for sample(s) received by the laboratory on October 20, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Brian Basten


brian.basten@pacelabs.com

Project Manager

Enclosures

cc: Data Delivery Team, Natural Resources Technologies

CERTIFICATIONS

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064

North Dakota Certification #: R-150

Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40140495001	101916018	Solid	10/19/16 09:12	10/20/16 09:50
40140495002	101916019	Solid	10/19/16 09:12	10/20/16 09:50
40140495003	101916021	Solid	10/19/16 09:37	10/20/16 09:50
40140495004	101916022	Solid	10/19/16 09:37	10/20/16 09:50
40140495005	101916024	Solid	10/19/16 10:35	10/20/16 09:50
40140495006	101916025	Solid	10/19/16 10:35	10/20/16 09:50
40140495007	101916027	Solid	10/19/16 12:09	10/20/16 09:50
40140495008	101916028	Solid	10/19/16 12:09	10/20/16 09:50

SAMPLE ANALYTE COUNT

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

₋ab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10140495001	101916018	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	TEL	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
10140495002	101916019	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	TEL	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
10140495003	101916021	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	TEL	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
10140495004	101916022	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	TEL	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
10140495005	101916024	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	TEL	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
10140495006	101916025	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	TEL	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
10140495007	101916027	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	TEL	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
10140495008	101916028	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	TEL	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G

ANALYTICAL RESULTS

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Date: 11/07/2016 02:27 PM

Sample: 101916018 Collected: 10/19/16 09:12 Received: 10/20/16 09:50 Matrix: Solid Lab ID: 40140495001

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI	MOD DRO Pr	eparation N	Method:	WI MOD DRO			
Diesel Range Organics	4.5	mg/kg	2.2	0.90	1	10/21/16 09:27	10/25/16 13:29		DC,L2
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	35.8	%	0.10	0.10	1		10/28/16 14:51		
TOC via Lloyd Kahn	Analytical	Method: Lloy	d Kahn						
Total Organic Carbon	19400	mg/kg	1280	433	1		10/27/16 06:54	7440-44-0	M0
Sample: 101916019		4014049500		: 10/19/16				trix: Solid	
Results reported on a "dry we Parameters	Results	e adjusted to Units	LOQ	LOD	npie si	Prepared	Analyzed	CAS No.	Qual
						· · · · · ·	- 7 (101)200		
WIDRO GCS		Method: WI N				WI MOD DRO			
Diesel Range Organics	<0.70	mg/kg	1.7	0.70	1	10/21/16 09:27	10/25/16 13:35		L2
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	16.9	%	0.10	0.10	1		10/28/16 14:52		
TOC via Lloyd Kahn	Analytical	Method: Lloy	d Kahn						
Total Organic Carbon	649	mg/kg	120	40.7	1		10/27/16 09:47	7440-44-0	
Sample: 101916021		4014049500		: 10/19/16				trix: Solid	
Results reported on a "dry we	eigin basis and ai	e aujusteu 10	r percent mo	isture, sar	ripie si	ze anu any unuu	ons.		
Parameters	Results	Units	LOQ _	LOD	DF_	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI	MOD DRO Pr	eparation M	Method:	WI MOD DRO			
Diesel Range Organics	<9.3	mg/kg	23.2	9.3	1	10/21/16 09:27	10/25/16 11:50		D5,L2
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	91.4	%	0.10	0.10	1		10/28/16 14:52		
ГОС via Lloyd Kahn	Analytical	Method: Lloy	d Kahn						

ANALYTICAL RESULTS

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Date: 11/07/2016 02:27 PM

Sample: 101916022 Lab ID: 40140495004 Collected: 10/19/16 09:37 Received: 10/20/16 09:50 Matrix: Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI MO	DD DRO Pre	paration N	/lethod:	WI MOD DRO			
Diesel Range Organics	6.5J	mg/kg	8.1	3.3	1	10/21/16 09:27	10/25/16 11:59		D5,DC
Percent Moisture	Analytical	Method: ASTM	D2974-87						
Percent Moisture	75.4	%	0.10	0.10	1		10/28/16 14:52		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn						
Total Organic Carbon	128000	mg/kg	3240	1100	1		10/27/16 07:23	7440-44-0	
Sample: 101916024 Results reported on a "dry weig		40140495005 e adjusted for	Collected:			Received: 10/ze and any diluti		trix: Solid	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI MO	DD DRO Pre	paration N	/lethod:	WI MOD DRO			
Diesel Range Organics	12.8	mg/kg	3.7	1.5	1	10/21/16 09:27	10/25/16 12:08		D5,DC L2
Percent Moisture	Analytical	Method: ASTM	D2974-87						
Percent Moisture	46.3	%	0.10	0.10	1		10/28/16 14:52		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn						
Total Organic Carbon	19300	mg/kg	1320	449	1		10/27/16 07:29	7440-44-0	
Sample: 101916025 Results reported on a "dry weig		40140495006 e adjusted for	Collected:					trix: Solid	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
	Analytical	N A = (11- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		paration N	/lethod:	WI MOD DRO			
WIDRO GCS	Analytical	Methoa: WI M	אום שכ						
	54.8	mg/kg	4.5	1.8	1	10/21/16 09:27	10/25/16 12:17		D5,L2
Diesel Range Organics	54.8		4.5		1	10/21/16 09:27	10/25/16 12:17		D5,L2
Diesel Range Organics Percent Moisture	54.8	mg/kg	4.5		1	10/21/16 09:27	10/25/16 12:17 10/28/16 14:52		D5,L2
	54.8 Analytical 55.4	mg/kg Method: ASTM	4.5 D2974-87 0.10	1.8	·	10/21/16 09:27			D5,L2

ANALYTICAL RESULTS

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Date: 11/07/2016 02:27 PM

Sample: 101916027 Lab ID: 40140495007 Collected: 10/19/16 12:09 Received: 10/20/16 09:50 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI MO	DD DRO Pr	eparation N	lethod:	WI MOD DRO			
Diesel Range Organics	<9.9	mg/kg	24.6	9.9	1	10/21/16 09:27	10/25/16 12:26		D5,L2
Percent Moisture	Analytical	Method: ASTM	D2974-87						
Percent Moisture	91.9	%	0.10	0.10	1		10/28/16 14:52		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn						
Total Organic Carbon	317000	mg/kg	9440	3200	1		10/27/16 07:51	7440-44-0	
Sample: 101916028	Lab ID:	40140495008	Collected	d: 10/19/16	12:09	Received: 10/	/20/16 09:50 Ma	trix: Solid	
Results reported on a "dry w	eight" basis and are	e adjusted for	percent mo	isture, san	nple si	ze and any dilut	ions.		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytica	l Method: WI N	MOD DRO Pr	eparation M	1ethod	: WI MOD DRO			
Diesel Range Organics	8.2J	mg/kg	11.4	4.6	1	10/25/16 09:37	10/26/16 12:09		
Percent Moisture	Analytica	l Method: AST	M D2974-87						
Percent Moisture	87.2	%	0.10	0.10	1		10/28/16 14:52		
TOC via Lloyd Kahn	Analytica	Method: Lloy	d Kahn						
Total Organic Carbon	216000	mg/kg	7620	2580	1		10/27/16 07:58	7440-44-0	

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Date: 11/07/2016 02:27 PM

QC Batch: 238873 Analysis Method: WI MOD DRO
QC Batch Method: WI MOD DRO Analysis Description: WIDRO GCS

Associated Lab Samples: 40140495001, 40140495002, 40140495003, 40140495004, 40140495005, 40140495006, 40140495007

METHOD BLANK: 1415122 Matrix: Solid

Associated Lab Samples: 40140495001, 40140495002, 40140495003, 40140495004, 40140495005, 40140495006, 40140495007

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Diesel Range Organics mg/kg <0.80 2.0 10/25/16 09:27

LABORATORY CONTROL SAMPLE & LCSD: 1415123 1415124 Spike LCS LCSD LCS LCSD % Rec Max % Rec Parameter Units Conc. Result Result % Rec Limits **RPD RPD** Qualifiers Diesel Range Organics mg/kg 40 23.5 26.2 59 70-120 20 L0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Date: 11/07/2016 02:27 PM

QC Batch: 239173 Analysis Method: WI MOD DRO
QC Batch Method: WI MOD DRO Analysis Description: WIDRO GCS

Associated Lab Samples: 40140495008

METHOD BLANK: 1417077 Matrix: Solid

Associated Lab Samples: 40140495008

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Diesel Range Organics mg/kg <0.80 2.0 10/26/16 10:13

LABORATORY CONTROL SAMPLE & LCSD: 1417078 1417079 Spike LCS LCSD LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limits **RPD RPD** Qualifiers Diesel Range Organics mg/kg 40 28.7 32.7 72 82 70-120 13

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

QC Batch: 239683 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 40140495001, 40140495002, 40140495003, 40140495004, 40140495005, 40140495006, 40140495007,

40140495008

SAMPLE DUPLICATE: 1419965

Date: 11/07/2016 02:27 PM

		40140819002	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	18.5	18.9	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Date: 11/07/2016 02:27 PM

QC Batch: 239305 Analysis Method: Lloyd Kahn QC Batch Method: Lloyd Kahn Analysis Description: Lloyd Kahn TOC

40140495001, 40140495002, 40140495003, 40140495004, 40140495005, 40140495006, 40140495007, Associated Lab Samples:

40140495008

METHOD BLANK: 1417707 Matrix: Solid

40140495001, 40140495002, 40140495003, 40140495004, 40140495005, 40140495006, 40140495007, Associated Lab Samples:

40140495008 Blank Reporting Units Qualifiers Parameter Result Limit Analyzed **Total Organic Carbon** mg/kg <33.9 10/27/16 05:15 LABORATORY CONTROL SAMPLE: 1417708 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers **Total Organic Carbon** 1980 99 80-120 2000 mg/kg MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1417710 1417709 MS MSD MSD MS 40140496009 Spike Spike MS MSD % Rec Max Units Result Conc. % Rec % Rec Limits RPD RPD Parameter Conc. Result Result Qual Total Organic Carbon 95900 14900 14900 105000 105000 63 80-120 20 P6 mg/kg 59 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1417711 1417712

MS MSD 40140495001 MS MSD MS MSD Spike Spike % Rec Max Qual Parameter Units Conc. % Rec % Rec Limits RPD RPD Result Conc. Result Result **Total Organic Carbon** mg/kg 19400 6180 6100 20200 24400 13 83 80-120 19 20 M0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

P6

Date: 11/07/2016 02:27 PM

PASI-G Pace Analytical Services - Green Bay

ANALYTE QUALIFIERS

D5	The sample was re-weighed into a new container because the sample weight in the original container exceeded the method specifications.
DC	Chromatographic pattern inconsistent with typical Diesel Fuel.
L0	Analyte recovery in the laboratory control sample (LCS) was outside QC limits.
L2	Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results may be biased low.
MO	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the

spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 2381/2 MILITARY CREEK

Pace Project No.: 40140495

Date: 11/07/2016 02:27 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40140495001	101916018	WI MOD DRO	238873	WI MOD DRO	238927
40140495002	101916019	WI MOD DRO	238873	WI MOD DRO	238927
40140495003	101916021	WI MOD DRO	238873	WI MOD DRO	238927
40140495004	101916022	WI MOD DRO	238873	WI MOD DRO	238927
40140495005	101916024	WI MOD DRO	238873	WI MOD DRO	238927
40140495006	101916025	WI MOD DRO	238873	WI MOD DRO	238927
40140495007	101916027	WI MOD DRO	238873	WI MOD DRO	238927
40140495008	101916028	WI MOD DRO	239173	WI MOD DRO	239267
40140495001	101916018	ASTM D2974-87	239683		
40140495002	101916019	ASTM D2974-87	239683		
40140495003	101916021	ASTM D2974-87	239683		
40140495004	101916022	ASTM D2974-87	239683		
40140495005	101916024	ASTM D2974-87	239683		
40140495006	101916025	ASTM D2974-87	239683		
40140495007	101916027	ASTM D2974-87	239683		
40140495008	101916028	ASTM D2974-87	239683		
40140495001	101916018	Lloyd Kahn	239305		
40140495002	101916019	Lloyd Kahn	239305		
40140495003	101916021	Lloyd Kahn	239305		
40140495004	101916022	Lloyd Kahn	239305		
40140495005	101916024	Lloyd Kahn	239305		
40140495006	101916025	Lloyd Kahn	239305		
40140495007	101916027	Lloyd Kahn	239305		
40140495008	101916028	Lloyd Kahn	239305		

Coc seals: 936623,936624 Feder tracking #:806793223845

NATURAL RESOURCE TECHNOLOGY, INC. 234 W. FLORIDA STREET, 5th FLOOR MILWAUKEE, WI 53204 TEL: 414.837.3607

	١.
Λ	V

CHAIN OF CUSTODY #	101910-1
DATE:	0119/110
PAGE:	of /

LABORATORY SAMPLES SUBMIT		ŧ							CLIENT PF								PROJ	ECT NL	JMBER/	TASK NUMBE
Pace Analytical Serv	rices, inc.					,					Milit	ary (Cree	k				2	381	2
1241 Bellevue Street	t - Suite 9								PROJECT	CONTAC	CT:						QUOTE NO.:			
CITY:									Andrew	Millsp	augh,	amills	paugh	@nat	urairt.	com		00	0257	15
Green Bay, WI 54302									SAMPLER(7/							
TEL:	FAX:		E-MAIL	_		!			#\V	roll	ea	to	ME L	W	Ĩ					
(920) 469-2436 TURNAROUND TIME	<u> </u>			ın.Başı	ten@pa	iceiab	s.com						U 70	•						
STANDARD	() 24 HR	○ 48 HR ○ 72 H	HR											RE	QUES	TED A	NALY	SIS		
Data Package: Level 2				ervatives:	2- 1101	C = 1	1.00		Preservati	on Code				Metho	d Nun	nber a	nd An	alytes	S	
Data I donage. LCVCI Z			A = no D = H		B= HCL, E = methar		1 ₂ S0 ₄ , F = Sodium	Bisulfate,	(pid	k letter)	Α	Α	Α	Α	Α	<u> </u>				
			G = zi	inc acetal	te,	H = oth	ner		Filtered	(Yor N)	N	N	N	N	N		<u> </u>			
SPECIAL REQUIREMENTS		A d. a B Allian a			O4						18)	ML							l	
Send all SAFs & Rep		Andrew Millspaug			wnatur	ant.cc	וווכ				1631B)	e (A	tg		ြစ္တ					
	and	Data data@nat	turairt.coi	m							(EPA	Siz D24	Nei	ء ا	Mod DRO)					
Diagon refer to the fir	Il I ist of Anglista	for this Cadimant assis	oot provid	lad by S	tous Mi	ckec					D (E	orain and	کر	Kahn)	§					
riease relei to the fu	ii List Oi Analyte:	s for this Sediment proje	ect brovia	ied by S	reve vvi	シハピン.					2,3,7,8-TCDD	Hydrometer/Grain Size (ASTM D422, D2216 and D2487)	% Moisture/Dry Weight (D2216)	oyd I	3		-			
SAMPLE ID	QC SAMPLE	FIELD COMMENTS		SAMPLE		140.	200	SAMPLE	INTERVAL (ft)	*	7,8-	rome 2, Dž	Aoist 216)	TOC (Lloyd	WI DRO					
BUSE SAMPLE ID	QC SAWPLE	FIELD COMMENTS	DAT	TE .	TIME	No TRIA	YAR MALE	TOP	воттом	*Con	2,3,	Hyd D42	% N (D2:	μğ	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>					
01/101916018			10/19	166	1912	SED	Grab			5	文	又	X	X	X	1-80	Raga	2-40	roof-	1-40009 B
01 1 101916018			10/19	J		SED SED				5	え し	不	X	X	¥	1-80	zagA	2-40	cog ^A	1-40rcg#
1 101916018 2 101916019 3 3 101916021			10/19				Grab			5	文 十	X T	X	X	X	1-80	zcy ^A	2-40	coff	1-40rcg#
1			10/19		1912 1957	SED	Grab Grab			5	文 上 上	文 	X	X	X	1-80	RagA	2-40	coft-	1-40mg#
1			10/19	(1912 1957	SED SED	Grab Grab Grab			5	ス 	X 	X	X	7	1-80	ecig ^A	2-40	coff	1-40rcg#
1			10/19		1917 1957 1957 1835	SED SED SED	Grab Grab Grab Grab			5	ス 	X 	X	X	7	1-80	ecg ^A	2-40	coof-	1-4prog ^b
1					0917 1957 1957 1835 1836	SED SED SED	Grab Grab Grab Grab			5	メ - 	X 	7	X	X	1-80	zagA	2-40	coft-	1-4preg ^b
2 01916019 3 01916021 4 101916027 5 101916024 6 101916025					0917 1957 1957 1835 1836	SED SED SED SED SED	Grab Grab Grab Grab Grab Grab			5	X + + X	X + + X	X	X	X	1-80	zco ^A	2-40	regit	1-40rcg ^b
2					0917 1957 1957 1835 1836	SED SED SED SED SED	Grab Grab Grab Grab Grab Grab Grab Grab					X 	X + X	X X	X	1-90	zcg ^A	2-40	roght .	1-40rcg#
2					0917 1957 1957 1835 1836	SED SED SED SED SED SED	Grab Grab Grab Grab Grab Grab Grab Grab					X 	X	X X	X X	1-80	zag ^A	2-40	cogh-	1-40rcg#
2					0917 1957 1957 1835 1836	SED SED SED SED SED SED SED SED	Grab Grab Grab Grab Grab Grab Grab Grab					X 	X	X J X	X Y X	1-80	zcg ^A	2-40	cogh-	1-40rcg#
2					0917 1957 1957 1835 1836	SED SED SED SED SED SED SED SED	Grab Grab Grab Grab Grab Grab Grab Grab					X 	X	X	X	1-80	zegA	2-40	ecgh-	1-40rcg#
					0917 1957 1957 1835 1836	SED	Grab Grab Grab Grab Grab Grab Grab Grab				X	X + + X	X	X	X	1-80	zcg ^A	2-40	Cuft-	1-40rcg#
2					0917 1957 1957 1835 1836	SED	Grab Grab Grab Grab Grab Grab Grab Grab					X + + X	X	X J X	X	1-80	zegf	2-40	coft	1-40rcg#
2 0 9 0 9 0 9 0 3 0 9 0 0 0 0 0 0 0 0 0 0 0 0					1917 1957 1957 1035 1035 1209	SED	Grab Grab Grab Grab Grab Grab Grab Grab					X 	X	X J X	X Y	1-80	zcg ^A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
2 0 9 0 9 0 9 0 3 0 9 0 0 0 0 0 0 0 0 0 0 0 0					0917 1957 1957 1835 1836	SED	Grab Grab Grab Grab Grab Grab Grab Grab				X + + X	X + + X	X + X	Date:	J J	\tag{1}	zcg ^A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
2		10/19/16/1		7/16	1917 1957 1957 1035 1035 1209	SED	Grab Grab Grab Grab Grab Grab Grab Grab	pac			X + X + X -	X + - - -	X + X	Date:	201	\tag{1}	zcg ^A	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(Control of the control of the contr	

Sample Condition Upon Receipt

Pace Analytical Services, Inc. 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

ace Analytical WO#: 40140495 Client Name: Courier: Fed Ex T UPS T Client T Page Other: Tracking #: 8002 932 3845 8102 5525 Custody Seal on Cooler/Box Present: yes no Seals intact: Tyes no Custody Seal on Samples Present: Tyes 7 no Seals intact: Ves no Packing Material: Bubble Wrap Bubble Bags | None | Other Thermometer Used Type of ice Wet Blue Dry None Samples on ice, cooling process has begun **Cooler Temperature** Biological Tissue is Frozen: Tyes Uncorr: 100Temp Blank Present: T yes 7 no Person examining contents: Date: Temp should be above freezing to 6°C for all sample except Biota. Initials: Frozen Biota Samples should be received ≤ 0°C. Comments: Chain of Custody Present: ZYes □No □N/A Chain of Custody Filled Out: Yes DNo □N/A ZYes DNo DN/A Chain of Custody Relinquished: Sampler Name 🖇 Signature on COC: □Yes ZNo □N/A Yes DNo Samples Arrived within Hold Time: □N/A - VOA Samples frozen upon receipt ☐Yes ☐No Date/Time: Short Hold Time Analysis (<72hr): ☐Yes ☑No □N/A Rush Turn Around Time Requested: ☐Yes ☑No □N/A Yes No Sufficient Volume: □N/A Correct Containers Used: ✓Yes □No □N/A Yes DNo DN/A -Pace Containers Used: -Pace IR Containers Used: □Yes □No **DN/A** Yes ONO ON/A Containers Intact: 10. □Yes □No DN/A Filtered volume received for Dissolved tests 11. ZYes □No □N/A Sample Labels match COC: -Includes date/time/ID/Analysis Matrix: All containers needing preservation have been checked. THNO3 TH2SO4 TNaOH TNaOH +ZnAct □Yes □No Z/N/A (Non-Compliance noted in 13.) All containers needing preservation are found to be in □Yes □No ∠N/A compliance with EPA recommendation. (HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12) Date/ exceptions: VOA, coliform, TOC, TOX, TOH, Initial when Lab Std #ID of O&G, WIDROW, Phenolics, □Yes □No Time: completed preservative □Yes □No 14 Headspace in VOA Vials (>6mm): Trip Blank Present: □Yes □No ☑N/A 15. ØN/A Trip Blank Custody Seals Present ☐Yes ☐No Pace Trip Blank Lot # (if purchased): Client Notification/ Resolution: If checked, see attached form for additional comments Person Contacted: Date/Time: Comments/ Resolution: 0-20-16 Date: **Project Manager Review:**

CQM, INC.
Engineering – Surveying – Material Testing

TRANSMITTAL

TO: Bria	n Basten FROM:	Bob Rouse
Pace	n Basten FROM: Analytical	CQM, INC.
		2679 Continental Drive
		Green Bay, WI 54311
	PHONE:	(920) 465-3911
	DATE:	November 7,2016
RE: Lab Te	est Result Reports PROJECT:	No- 40140495
TIPE AND CHARACTE	TO YEAR	Military Creek
WE ARE SENDIN		TID YELL
		
DRAWI		∐ CD
DOCUM	ENTS COPY OF LETTER	
QUANTITY	DESCR	RIPTION
4'	11 + 0 1 0	
	Lab Test Result Repor	73
1	Chain of Curroly Recor	d
	,	
	Invoice To be sent later	
	IF MATERIAL RECEIVED IS NOT AS LISTED, PI	LEASE NOTIFY US AT ONCE.
REMARKS:		
	, <u>, , , , , , , , , , , , , , , , , , </u>	
CODY		
COPY TO:		Page 16 of 62

Chain of Custody

Work	order: 40140495	Workorder Name:	2381/2 MILIT	ARY CREE	ΞK			Res	sults	Requ	este	d By:	11/3	2016			
Repor	I Invoice To	Subcor	tract To			STATE OF THE SECOND	1800 (2007)		93109993009		Requ	ested	Analys	S		ASSESS 14.00	314.00 May 11.00 May
Bria 1241	e Analytical n Basten I Bellevue ST, STE 9 en Bay, WI 54302	(CQM	P.O				6 and D2487	/ Hydrometer								
State	of Sample Origin: WI	LOD/LOQ		ľ	Pres	erved Conta	iners	221	/ əz							1	
ltem	Sample ID	Collect Date/Time	Lab ID	Matrix	Unpreserved			D422, D22	Grain Size								LAB USE ONLY
1	101916018	10/19/2016 09:12	40140495001	Solid	1			Х									
2	101916019	10/19/2016 09:12	40140495002	Solid	1			Х								DOLLAR STREET	
3	101916021	10/19/2016 09:37	40140495003	Solid	1			Х									
4	101916022	10/19/2016 09:37	40140495004	Solid	1			Х									
5	101916024	10/19/2016 10:35	40140495005	Solid	1			Х									
6	101916025	10/19/2016 10:35	40140495006	Solid	1			Х									
7	101916027	10/19/2016 12:09	40140495007	Solid	1			Х									
8	101916028	10/19/2016 12:09	40140495008	Solid	1			Х									
9				**													
10																	
11																	
12																	
				, ,										comme	nts		
Transf	ers Refeased By	Date/Tir	ne Received	By///			Date/Tim	e	_								
1	Susarlly	el Pay 1954	16 PA				10/24	10%	1								
2			C														•
3																	
Coole	er Temperature on Reco	eipt <u>°</u> C (Custody Seal	Y or N		Recei	ved on	lce	Υ	or I	V			ample	es Intac	t Y	or N

<u>GENERAL</u>	. DATA:				
		Client:	Pace Analyt	ical	
		Project:	No. 4014049	5	
	Locati	on Sampled:	101916018		
		Sample No:	40140495-00)1	
	Dept	h of Sample:			
	Da	te Received:	10/24/16		
			Soil Classifi		
			Military Cree	ek	
		Color Code:			
LADODAT	ى ORY DATA	ate Sampled:	10/19/16		
LADUNAI	ONT DATE	<u>4.</u>			
	ı	Date Tested:	October 25-2	7 2016	
		erformed By:		1,2070	
	24 Hrs. 1	Turn Around:	NO		
	Washe	d Gradation:	YES	Dry Weig	nt of Soil (gms): 68.8
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					, , , , , , , , , , , , , , , , , , , ,
1/2"					
3/8"	0.0	0.0	100.0		
#4	2.9	4.2	95.8		
#10	1.0	1.5	94.3		
#40	17.3	25.1	69.2		
#100	42.6	61.9	7.3		

REVIEWED BY:	Robert R Rouse
DATE REVIEWED:	11/7/16

Remarks:

U.S. Standard Sieve Sizes #200 #40 #50 100 90 90 80 70 Than Size Shown Percent Finer Than Size Shown 60 Finer Percent 40 30 30 20 10 10 -0.02 10 0.1 100 0.01 0.001 Gravel Sand Coarse Fine Coarse Medium Fine Clay 4.2% 1.5% 65.4% 2.8% 1.0% 25.1% Soil Classification: SAND, fine to medium grained, some organic fines, a little gravel, black (SP) Location Sampled: 101916018 Elevation or Depth: Date Sampled: 10/19/16 Sample Number: 40140495-001 Sampled Moisture Content (%): 49.9 495-1 Report No.: CQM, INC. Sample Source: Military Creek

Client: Pace Analytical
Project: No. 40140495

Prepared by: Bob J. Peeters

Checked by:

2

11/4/16

Page:

Date:

PI=

Atterberg Limits:

으

LL=

PL=

10/24/16

Cu=

Munsell Color Code: 10YR 2/1

Coefficients: Cc=

Date Received:

GRAIN SIZE DISTRIBUTION CURVE

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL DATA:

Client:	Pace Analytical
Project:	No. 40140495
Location Sampled:	101916019
Sample No:	40140495-002
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 6/3
Date Sampled:	10/19/16

LABORATORY DATA:

Date Tested:	October 25-27, 2016	
Test Performed By:	FRH	

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	163.2

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"	0.0	0.0	100.0		
1/2"	10.3	6.3	93.7		
3/8"	1.9	1.2	92.5		
#4	2.5	1.5	91.0		
#10	8.8	5.4	85.6		
#40	64.3	39.4	46.2		
#100	73.1	44.8	1.4		
#200	1.0	0.6	0.8		

REVIEWED BY: Robert Reference	Remarks:	
DATE REVIEWED: 11/7//6		

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #40 #50 #200 #100 100 100 90 80 Shown Shown Size S Size Than 50 Finer Finer Percent I 30 20 10 10 100 0.1 0.01 0.001 Gravel Sand Silt Coarse Fine Coarse Medium Fine Clay 45.4% 0.8% 9.0% 5.4% 39.4% Soil Classification: SAND, fine to medium grained, a little gravel, pale brown (SP) Location Sampled: 101916019 Elevation or Depth: Date Sampled: 10/19/16 Sampled Moisture Content (%): 495-2 Sample Number: 40140495-002 17.0 Report No.: CQM, INC. Sample Source: Military Creek Atterberg Limits: LL= PL≔ Pl≔ Client: Pace Analytical Munsell Color Code: 10YR 6/3 Project: No. 40140495 Page: Ν 으 Date Received: 10/24/16 Prepared by: Bob J. Peeters Date: 11/4/16 62 Robert & Rouse Cu= Checked by: Date: Coefficients: Cc=

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

Client:	Pace Analytical
Project:	No. 40140495
Location Sampled:	101916021
Sample No:	40140495-003
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/19/16

LABORATORY DATA:

Date Tested:	October 25-27, 2016	
Test Performed By:	FRH :	

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	24.8

		T	·		
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"					
3/8"	0.0	0.0	100.0		
#4	1.3	5.2	94.8		
#10	2.1	8.5	86.3		
#40	3.7	14.9	71.4		
#100	2.8	11.3	60.1		
#200	1.8	7.3	52.8		

REVIEWED BY: Robert R Rouse	Remarks:	
DATE REVIEWED: 11/7/16		

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #16 #10 #40 #50 #200 100 100 90 80 Shown Shown Size S. 60 Size **Lyan** 50 Finer 30 30 20 10 + 10 0.02 0.002100 10 0.1 0.01 0.001 Gravel Sand Silt Coarse Fine Coarse Medium Fine Clay 33.8% 5.2% 8.5% 14.9% 18.6% 19.0% Soil Classification: SANDY ORGANIC CLAY, a little gravel, black (OL) Location Sampled: 101916021 Elevation or Depth: Date Sampled: 10/19/16 Sample Number: 40140495-003 Sampled Moisture Content (%): 293.5 Report No.: 495-3 CQM, INC. Sample Source: Military Creek LL= Atterberg Limits: PL= Pl= Client: Pace Analytical Page: Munsell Color Code: 10YR 2/1 Project: No. 40140495 23 으 Date Received: 10/24/16 Prepared by: Bob J. Peeters Date: 11/4/16 62 Robert R Rouse Coefficients: Cc= Cu≕ Checked by: Date:

	SIE	VE ANALY	SIS OF CO	ARSE TO FINE AGG	REGATES (ASTM D422)
CENEDAL	DATA.				
GENERAL	<u> DATA:</u>				
		Client:	Pace Analyt	ical	
			No. 4014049		
	Location	on Sampled:	101916022		
		Sample No:	40140495-00)4	
	Dept	h of Sample:			
	Da	te Received:	10/24/16		
	Sample Des	signated For:	Soil Classifi	cation	
		-	Military Cree	ek	
		Color Code:			
		ate Sampled:	10/19/16		
LABORAT	FORY DATA	<u>4:</u>			
		D-4- T41	0-1-1-105 6		
			October 25-2	27, 2010	
	restre	erformed By:	I'AII		
	24 Hrs 1	Turn Around:	NO		
		d Gradation:		Dry Weigl	nt of Soil (gms): 8.7
				, ,	.0 /
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"		:			
3/4"					
1/2"	0.0	0.0	100.0		
3/8"	0.1	1.1	98.9		
#4	1.3	14.9	84.0		
#10	2.1	24.1	59.9		
#40	2.3	26.4	33.5		
#100	0.9	10.3	23.2		
#200	0.5	5.7	17.5		

REVIEWED BY:	Robert a Roux	Remarks:
DATE REVIEWED:	11/7/16	

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #16 #40 #50 #200 100 77 17 100 90 80 Shown Shown Size S 60 Size Than 50 50 Percent Finer 30 30 20 10 10 0.02 10 0.01 0.001 100 0.1 Gravel Sand Coarse Fine Coarse Medium Fine Silt Clay 16.0% 24.1% 26.4% 16.0% 11.5% 6.0% Soil Classification: SILTY SAND W/ORGANIC FINES AND GRAVEL, medium to coarse to fine grained, black (SM) Location Sampled: 101916022 Elevation or Depth: Date Sampled: 10/19/16 Sampled Moisture Content (%): 735.6 495-4 Sample Number: 40140495-004 Report No.: CQM, INC. Sample Source: Military Creek

Atterberg Limits:

으

62

LL=

PL=

10/24/16

Cu=

Munsell Color Code: 10YR 2/1

Coefficients: Cc=

Date Received:

PI=

Client: Pace Analytical

Bob J. Peeters

Bobert R Rouse

Page:

Date:

Date

11/4/16

Project: No. 40140495

Prepared by:

Checked by:

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL	DATA:
---------	-------

Client:	Pace Analytical
Project:	No. 40140495
Location Sampled:	101916024
Sample No:	40140495-005
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/19/16

LABORATORY DATA:

Date Tested:	October 25-28, 2016
Test Performed By:	FRH

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	46.5

Sieve	Weight	%	%	Project Specification	Source of Specification
Síze	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"	0.0	0.0	100.0		
3/8"	0.1	0.2	99.8		
#4	0.2	0.4	99.4		
#10	1.6	3.4	96.0		
#40	17.6	37.8	58.2		
#100	22.7	48.8	9.4		
#200	2.2	4.7	4.7		

REVIEWED BY: Rolest R Rouse	Remarks:	
DATE REVIEWED: 11/7/16		

U.S. Standard Sieve Sizes #16 #10 #40 #50 #200 100 100 90 80 70 Shown Shown Size 5 60 Size 투 50 Finer 30 20 10 10 100 10 0.1 0.01 0.001 Gravel Sand Coarse Fine Coarse Medium Fine Silt Clay 0.6% 3.4% 37.8% 53.5% 3.7% 1.0% Soil Classification: SAND W/ORGANIC FINES, fine to medium grained, black (SP) Location Sampled: 101916024 Elevation or Depth: Date Sampled: 10/19/16 Sample Number: 40140495-005 Sampled Moisture Content (%): 106.9 Report No.: 495-5 CQM, INC. Sample Source: Military Creek LL= Pi= Atterberg Limits: Client: Pace Analytical Project: No. 40140495 Munsell Color Code: 10YR 2/1 Page: 2 Prepared by: Bob J. Peeters Date Received: 10/24/16 Date: 11/4/16 Robert R Rouse

Checked by:

Date

Cu≕

Coefficients: Cc=

2 으

62

GRAIN SIZE DISTRIBUTION CURVE

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GE	NER	AL	DA	TA:

Client:	Pace Analytical
Project:	No. 40140495
Location Sampled:	101916025
Sample No:	40140495-006
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/19/16

LABORATORY DATA:

Date Tested:	October 25-27, 2016	
Test Performed By:	FRH	

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	87.8

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
f "					
3/4"					
1/2"					
3/8"	0.0	0.0	100.0		
#4	0.4	0.5	99.5		
#10	2.8	3.2	96.3		
#40	28.4	32.3	64.0		
#100	40.1	45.7	18.3		
#200	6.7	7.6	10.7		

REVIEWED BY:	Rolert RRows	Remarks:
DATE REVIEWED:	11/7/16	
	•	

U.S. Standard Sieve Sizes #10 #200 #40 #50 100 90 80 Size Shown Shown 60 Size **Hay** 50 Percent Finer Finer 30 20 10 10 100 0.1 0.01 0.001 Gravel Sand Coarse Fine Coarse Medium Fine Silt Clay 0.5% 3.2% 32.3% 53.3% 8.7% 2.0% Soil Classification: SAND W/SILT, fine to medium grained, some organic fines, black (SP-SM) Location Sampled: 101916025 Elevation or Depth: Date Sampled: 10/19/16 Sample Number: 40140495-006 Sampled Moisture Content (%): 72.0 Report No.: 495-6 COM, INC. Sample Source: Military Creek

PI=

Client: Pace Analytical

Robert R Rouse

Page:

Date:

Date:

11/4/16

Project: No. 40140495

Prepared by: Bob J. Peeters

Checked by:

LL=

PL=
Munsell Color Code: 10YR 2/1

Coefficients: Cc=

10/24/16

Cu=

Date Received:

Atterberg Limits:

으

62

GRAIN SIZE DISTRIBUTION CURVE

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL DATA:	
Client:	Pace Analytical
Project:	No. 40140495
Location Sampled:	101916027
Sample No:	40140495-007
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1

Date Sampled: 10/19/16

LABORATORY DATA:

Date Tested:	October 25-27, 2016
Test Performed By:	FRH

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	9.4

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
-1"					
3/4"					
1/2"					
3/8"	0.0	0.0	100.0		
#4	1.8	19.1	80.9		
#10	2.4	25.5	55.4		
#40	2,5	26.6	28.8		
#100	1.2	12.8	16.0		
#200	0.5	5.3	10.7		

REVIEWED BY:	Robert R Borre	Remarks:
DATE REVIEWED:	11/7/16	
	. •	

U.S. Standard Sieve Sizes #16 #10 #40 #50 #200 100 100 90 80 70 Shown Shown Size S Size #**µau** 50 50 Finer Finer 40 30 30 20 10 + 10 100 10 0.01 0.1 0.001 Gravel Sand Coarse Coarse Medium Silt Fine Fine Clay 19.1% 25.5% 26.6% 18.1% 10.7% Soil Classification: SAND W/SILT AND ORGANIC FINES, medium to coarse to fine grained, black (SP-SM) Location Sampled: 101916027 Elevation or Depth: Date Sampled: 10/19/16 Sample Number: 40140495-007 Sampled Moisture Content (%): 1000.0 Report No.: 495-7 CQM, INC. Sample Source: Military Creek LL= Pl≔ Client: Pace Analytical Atterberg Limits: PL=

Munsell Color Code: 10YR 2/1

Coefficients: Cc=

10/24/16

Cu=

Date Received:

<u>ဒ</u> ဝ

62

Project: No. 40140495

Robert R. Rouse

Prepared by: Bob J. Peeters

Checked by:

Page:

Date:

Date

11/4/16

GRAIN SIZE DISTRIBUTION CURVE

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

|--|

Client:	Pace Analytical
Project:	No. 40140495
Location Sampled:	101916028
Sample No:	40140495-008
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/19/16

LABORATORY DATA:

Date Tested:	October 25-27, 2016	
Test Performed By:	FRH	

24 Hrs. Turn Around:	NO		
Washed Gradation:	YES	Dry Weight of Soil (gms):	13.0

Sieve	Weight	%	%	Project Specification	Source of Specification
	-		-		Godice of Openinoalion
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"	0.0	0.0	100.0		
3/8"	0.8	6.2	93.8		
#4	2.0	15.4	78.4		
#10	2.8	21.5	56.9		
#40	3.3	25.4	31.5		
#100	1.5	11.5	20.0		
#200	0.8	6.2	13.8		

REVIEWED BY:	Robert Rlouse	Remarks:
DATE REVIEWED:	11/7/16	

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #16 #40 #50 #200 100 90 90 80 70 Than Size Shown Percent Finer Than Size Shown 60 Percent Finer 1 30 20 20 10 0.002 10 100 0.1 0.01 0.001 Gravel Sand Coarse Fine Coarse Medium Silt Fine Clay 21.6% 21.5% 17.7% 9.8% 25.4% 4.0% Soil Classification: SILTY SAND W/GRAVEL AND ORGANIC FINES, medium to coarse to fine grained, black (SM) Location Sampled: 101916028 10/19/16 Elevation or Depth: Date Sampled: Sample Number: 40140495-008 Sampled Moisture Content (%): 661.5 495-8 Report No.: CQM, INC. Sample Source: Military Creek Atterberg Limits: LL= Client: Pace Analytical PL= Pl= Munsell Color Code: 10YR 2/1 Project: No. 40140495 Page: 9 Prepared by: Bob J. Peeters 11/4/16 Date Received: 10/24/16 Date: 62 A Rouse Coefficients: Cc= Cu= Checked by: Date:

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Brian Basten **PACE Wisconsin** 1241 Bellevue Street Green Bay WI 54302

REPORT OF LABORATORY ANALYSIS FOR **TCDD**

Report Information:

Pace Project #: 10367095

Sample Receipt Date: 10/21/2016

Client Project #: 40140495

Client Sub PO #: N/A State Cert #: 999407970

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 2,3,7,8-TCDD Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

November 03, 2016

Scott Unze, Project Manager

(612) 607-6383

(612) 607-6444 (fax) scott.unze@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report Prepared Date:

November 3, 2016

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on eight samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) using USEPA Method 1613B. The reporting limits were based on signal-to-noise measurements. Method blank and field sample results presented with reporting limits corresponding to the lowest calibration point and a nominal 10-gram sample amount were included at the end of Appendix A.

The recoveries of the isotopically-labeled TCDD internal standard in the sample extracts ranged from 87-98%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J" and should be regarded as estimates. In one case, due to the high moisture content of the sample, the estimated detection limit (EDL) was above the standard reporting limit; therefore, the EDL was provided and flagged "A" on the results table in Appendix A.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show that 2,3,7,8-TCDD was not detected, indicating that the sample processing steps were free of background levels of this congener.

Laboratory spike samples were also prepared using clean reference matrix that had been fortified with native standard materials. The recoveries of the spiked native TCDD ranged from 80-83% with a relative percent difference of 3.7%. These results were within the target ranges for the method. Matrix spikes were not prepared with the sample batch.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Mississippi	MN00064
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	NE-OS-18-06
Arizona	AZ0014	Nevada	MN_00064_200
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New York (NEL	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Oklahoma	D9922
Georgia (DNR)	959	Oregon (ELAP)	MN200001-005
Guam	959	Oregon (OREL	MN300001-001
Hawaii	SLD	Pennsylvania	68-00563
Idaho	MN00064	Puerto Rico	MN00064
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennessee	TN02818
Iowa	368	Texas	T104704192-08
Kansas	E-10167	Utah (NELAP)	MN00064
Kentucky	90062	Virginia	00251
Louisiana	03086	Washington	C755
Maine	2007029	West Virginia #	9952C
Maryland	322	West Virginia D	382
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

Chain of Custo	dy
----------------	----

Pace Analytical*

"www.poolebs.com
10347095

Wor	korder	der: 40140495 Workorder Name:2381/2 MILITARY CREEK Ow					Owne	r Re	ceive	d Da	te:	10/20/2	2016 F	Resuit	s Requ	ıested	By:	11/3/2016		
Repo	rt To			Subcontrac			e de la			300 (S)				Requ	ested A	nalysis	1952.8			
Pace 1241 Suite	l Bellevu ≩9	n cal Green Bay ue Street M 54302	Pace Analytical Minnesota 1700 Elm Street SE Suite 200 Minneapolis, MN 55414 Phone (612)607-1700						i com	aine s		3								
Item	Sampi		Sample Type	Collect Date/Filme	Lab ID:	Matrik	Lhpreserved				1,6318.7	A ULCOL								LAB USE ONLY
1	1019160	18	PS	10/19/2016 09:12	40140495001	Solid	1				X		TT							001
2	1019160	19	PS	10/19/2016 09:12	40140495002	Solid	1				X		T					П		ひひて
3	1019160	21	PS	10/19/2016 09:37	40140495003	Solid	1			П	X							П		003
4	1019160	22	P\$	10/19/2016 09:37	40140495004	Solid	1				Х									204
5	1019160	124	PS	10/19/2016 10:35	40140495005	Solid	1				Х					П				025
6	1019160	25	PS .	10/19/2016 10:35	40140495006	Solid	1				Х		T							206
7	1019160	27	PS	10/19/2016 12:09	40140495007	Solid	1				x		\Box							007
8	1019160	28	PS	10/19/2016 12:09	40140495008	Solid	1		\mathbf{I}		Х									009
SEMI!		the organization		提供的抵抗的			图像:			1		* *	學學時			, Co	mments		i ince	學者(學為學科)
Tran	sfers	Released By		Date/Time	Received B					Date/										;
1		BURREN POR	<u>. </u>	10/2011/e /		1-10	Tel	2		10/2	1169	34)								
2		1										4								
3										<u>L</u>		نرِل							7	
Coo	poler Temperature on Receipt 6.7 °C Custody Seal Y or N Received on Ice Y or N Samples Intact Y or N																			

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

This chain of custody is considered complete as is since this information is available in the owner laboratory.

Document Name: Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17 Document Revised: 02Aug2016
Page 1 of 2
Issuing Authority:
Pace Minnesota Quality Office

Sample Condition Client Name: Upon Receipt Client Name:			Project	# W0#: 10367095
Commercial Pace SpeeDee	USPS Other:		Client	10367095
Custody Seal on Cooler/Box Present?	, S	eals Int	act? 🖞	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Bags	None	. 🗆	∜ Other:_	Temp Blank?
hermometer 151401163		of Ice:	₫we	t Blue None Samples on ice, cooling process has begi
cooler Temp Read (°C): Cooler Temp Coremp should be above freezing to 6°C	rected (°C): or: +	. 7 R, AZ, C/	A, FL, GA, ∐Yes	Biological Tissue Frozen? Yes No Prozen e and Initials of Person Examining Contents: Did samples originate from a foreign source (internationally, Prozent) including Hawaii and Puerto Rico)? Q-338) and include with SCUR/COC paperwork.
			(COMMENTS:
Chain of Custody Present?	Yes	□No	□N/A	1.
hain of Custody Filled Out?	4 √Yes	□No	□N/A	2.
Chain of Custody Relinguished?	Yes	□No	□N/A	3.
ampler Name and/or Signature on COC?	□Yes	□No	ĬŽÍN/A	4.
amples Arrived within Hold Time?	Yes	□No	□N/A	5.
hort Hold Time Analysis (<72 hr)?	Yes	޶No	□N/A	6.
ush Turn Around Time Requested?	Yes	No	□N/A	7.
ufficient Volume?	Yes	□No	□N/A	8.
orrect Containers Used?	Paryes	□No	□N/A	9.
-Pace Containers Used?	Ĩ₹∏Ŷes	□No	□n/a	
ontainers Intact?	Alyes	□No	□N/A	10.
iltered Volume Received for Dissolved Tests?	Yes	□No	A/MED	11. Note if sediment is visible in the dissolved container
ample Labels Match COC?	Yes	□No	□N/A	12.
-Includes Date/Time/ID/Analysis Matrix:				-
hecked? Ill containers needing preservation are found to be in ompliance with EPA recommendation?	∏Yes	∐No	ĮN/A	13. □HNO₃ □H₂SO₄ □NaOH □HCl Sample#
HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) xceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC	□Yes □Yes	□No	ETN/A	Initial when Lot # of added completed: preservative:
eadspace in VOA Vlals (>6mm)?	Yes	□No	ZIN/A	completed: preservative: 14.
rip Blank Present?	☐Yes	□No	Pan/A	15.
rip Blank Custody Seals Present?	∐Yes	□No	IN/A IN/A	
ace Trip Blank Lot # (if purchased):			,	
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? Yes No
erson Contacted:				Date/Time:
omments/Resolution:				
Project Manager Review: Scatt	-Unae			Date: 10/24/16 is form will be sent to the North Carolina DEHNR Certification Office (I.e. of

hold, incorrect preservative, out of temp, incorrect containers).

Solid

NA

Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Matrix

Dilution

Client's Sample ID 101916018 Lab Sample ID 40140495001 Filename F161031A_09 Injected By BAL

Total Amount Extracted 15.0 g 35.8 % Moisture

Dry Weight Extracted 9.63 g Collected 10/19/2016 09:12 10/21/2016 09:30 ICAL ID F161011 Received CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID 10/31/2016 06:34

BLANK-52542 Analyzed **Native** Conc **EMPC** RL Internal na's **Percent** Recovery Isomers ng/Kg ng/Kg ng/Kg **Standards** Added 2,3,7,8-TCDD ND 1.0 2,3,7,8-TCDD-13C 2.00 95 Recovery Standard 1,2,3,4-TCDD-13C 2.00 NA Cleanup Standard 2,3,7,8-TCDD-37Cl4 0.20 83

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable RL = Reporting Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916019
Lab Sample ID 40140495002
Filename F161031A_10
Injected By BAL
Total Amount Extracted 12.8 g
% Moisture 16.9

Dry Weight Extracted 10.6 g
ICAL ID F161011
CCal Filename(s) F161030B_16
Method Blank ID BLANK-52542

12.8 g 16.9 10.6 g F161011 F161030R 16 Matrix Solid Dilution NA

Collected 10/19/2016 09:12 Received 10/21/2016 09:30 Extracted 10/26/2016 15:55 Analyzed 10/31/2016 07:23

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Ci4	0.20	74

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID	101916021
Lab Sample İD	40140495003
Filename	F161030B_09
Injected By	BAL
Total Amount Extracted	20.4 g
% Moisture	91.4
Dry Weight Extracted	1.75 a

DIY WEIGHT EXITACTED	1.70 g
ICAL ID	F161Õ11
CCal Filename(s)	F161030B_01
Method Blank ID	BLANK-52542

20.4 g	
91.4	
l.75 g	
-161011	
-161030B_01	

Matrix	Solid
Dilution	NA

Collected	10/19/2016	09:37
Received	10/21/2016	09:30
Extracted	10/26/2016	15:55
Analyzed	10/30/2016	17:33

				7 111017200 10700	10/00/2010 17:00	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
			Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	78	

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

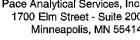
Client - PACE Wisconsin

Client's Sample ID 101916022 Lab Sample ID 40140495004 Filename F161030B_10

Injected By BAL Total Amount Extracted 20.0 g Matrix Solid % Moisture 75.4 Dilution NA 4.92 g Collected

Dry Weight Extracted 10/19/2016 09:37 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 18:22

Native Conc **EMPC** RL Internal ng's Percent Isomers ng/Kg ng/Kg ng/Kg **Standards** Added Recovery 2,3,7,8-TCDD 2.4 2,3,7,8-TCDD-13C 2.00 1.0 95 Recovery Standard 1,2,3,4-TCDD-13C 2.00 NA Cleanup Standard 2,3,7,8-TCDD-37Cl4 0.20 82


Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable RL = Reporting Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916024 Lab Sample ID 40140495005 Filename F161030B_11 Injected By BAL **Total Amount Extracted** 15.9 g % Moisture 46.3

<u> 'ace Analytical'</u>

8.54 g Dry Weight Extracted ICAL ID F161011 CCal Filename(s) F161030B_01

Method Blank ID BLANK-52542 Matrix Solid Dilution NA

Collected Received Extracted

10/19/2016 10:35 10/21/2016 09:30 10/26/2016 15:55

Analyzed 10/30/2016 19:11 **Native EMPC** Conc RL Internal ng's Percent **Isomers** ng/Kg ng/Kg **Standards** Added Recovery ng/Kg 2,3,7,8-TCDD 2.1 1.0 2,3,7,8-TCDD-13C 2.00 90 Recovery Standard 1,2,3,4-TCDD-13C 2.00 NA Cleanup Standard 2,3,7,8-TCDD-37CI4 0.20 77

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916025 Lab Sample ID 40140495006 Filename F161030B_12 Injected By BAL **Total Amount Extracted** 13.5 g % Moisture 55.4 Dry Weight Extracted 6.02 g ICAL ID F161011

ICAL ID F161011
CCal Filename(s) F161030B_01
Method Blank ID BLANK-52542

Matrix Solid Dilution NA

Collected 10/19/2016 10:35 Received 10/21/2016 09:30 Extracted 10/26/2016 15:55 Analyzed 10/30/2016 20:00

Native Conc **EMPC** RL Internal ng's Percent ng/Kg Isomers ng/Kg ng/Kg **Standards** Added Recovery 2,3,7,8-TCDD 9.3 1.0 2,3,7,8-TCDD-13C 2.00 90 Recovery Standard 1,2,3,4-TCDD-13C 2.00 NA Cleanup Standard 2,3,7,8-TCDD-37Cl4 0.20 75

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367095

1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916027 Lab Sample ID 40140495007 Filename F161030B_13 Injected By

<u> Pace Analytical</u>

BAL Total Amount Extracted 20.4 g Solid Matrix % Moisture 91.9 Dilution NA

Dry Weight Extracted 1.65 g Collected 10/19/2016 12:09 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B 01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 20:48

Native Conc **EMPC** RL Internal na's **Percent Isomers** ng/Kg ng/Kg ng/Kg **Standards** Added Recovery 2,3,7,8-TCDD ND 2.3 A 2,3,7,8-TCDD-13C 2.00 89 Recovery Standard 1,2,3,4-TCDD-13C 2.00 NA Cleanup Standard 2,3,7,8-TCDD-37Cl4 0.20 76

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable RL = Reporting Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

A = Reporting Limit based on signal to noise

R = Recovery outside target range

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10367095

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916028 Lab Sample ID 40140495008 Filename F161030B_14 Injected By BAL **Total Amount Extracted** 17.5 g

% Moisture 87.2 Dry Weight Extracted 2.24 g

ICAL ID F161011 CCal Filename(s) F161030B 01

Method Blank ID BLANK-52542 Matrix Solid

Dilution NA Collected 10/19/2016 12:09 Received 10/21/2016 09:30 10/26/2016 15:55 Extracted

Analyzed 10/30/2016 21:37

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD ND		1.0	2,3,7,8-TCDD-13C	2.00	98	
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	86

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Blank Analysis Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID

CCal Filename(s)

BLANK-52542 F161030B_04 10.1 g

F161011 F161030B_01 Matrix Dilution

Extracted

Analyzed

Solid NA

10/26/2016 15:55 10/30/2016 13:30

Injected By BAL.

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD ND		1.0	2,3,7,8-TCDD-13C	2.00	87	
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	. NA
			Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	76	

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X =%D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916018

 Lab Sample ID
 40140495001

 Filename
 F161031A_09

 Injected By
 BAL

Total Amount Extracted 15.0 g Matrix Solid % Moisture 35.8 Dilution NA

9.63 g Dry Weight Extracted Collected 10/19/2016 09:12 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 06:34

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD		0.16	0.12 N	2,3,7,8-TCDD-13C	2.00	95
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	83

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range E = Exceeds calibration range

I = Interference present

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916019
Lab Sample ID 40140495002
Filename F161031A_10
Injected By BAL

Total Amount Extracted 12.8 g Matrix % Moisture 16.9 Dilution

10.6 g Dry Weight Extracted Collected 10/19/2016 09:12 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 07:23

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	ND		0.14	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	74

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916021

 Lab Sample ID
 40140495003

 Filename
 F161030B_09

 Injected By
 BAL

Total Amount Extracted 20.4 g Matrix Solid % Moisture 91.4 Dilution NA

1.75 g Dry Weight Extracted Collected 10/19/2016 09:37 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 17:33

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	0.97		0.63 J	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	78

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916022

 Lab Sample ID
 40140495004

 Filename
 F161030B_10

 Injected By
 BAL

Total Amount Extracted 20.0 g Matrix Solid % Moisture 75.4 Dilution NA

4.92 g Dry Weight Extracted Collected 10/19/2016 09:37 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 18:22

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	2.4		0.50	2,3,7,8-TCDD-13C	2.00	95
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	82

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916024

 Lab Sample ID
 40140495005

 Filename
 F161030B_11

Injected By BAL
Total Amount Extracted 15.9

Total Amount Extracted 15.9 g Matrix Solid % Moisture 46.3 Dilution NA

8.54 g Dry Weight Extracted Collected 10/19/2016 10:35 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 19:11

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	2.1		0.69	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	77

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916025

 Lab Sample ID
 40140495006

 Filename
 F161030B_12

 Injected By
 BAL

Total Amount Extracted 13.5 g Matrix Solid % Moisture 55.4 Dilution NA

6.02 g Dry Weight Extracted Collected 10/19/2016 10:35 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 20:00

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	9.3		0.86	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	75

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916027

 Lab Sample ID
 40140495007

 Filename
 F161030B_13

 Injected By
 BAL

Total Amount Extracted 20.4 g Matrix Solid % Moisture 91.9 Dilution NA

Dry Weight Extracted 1.65 g Collected 10/19/2016 12:09 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 20:48

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	ND		2.3	2,3,7,8-TCDD-13C	2.00	89
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	76

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Matrix

Solid

 Client's Sample ID
 101916028

 Lab Sample ID
 40140495008

 Filename
 F161030B_14

 Injected By
 BAL

Total Amount Extracted 17.5 g
% Moisture 87.2

Dilution NA Dry Weight Extracted Collected 2.24 g 10/19/2016 12:09 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 21:37

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	ND		0.65	2,3,7,8-TCDD-13C	2.00	98
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	86

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Blank Analysis Results

Lab Sample ID Filename Total Amount Extracted

Total Amount Extracted ICAL ID CCal Filename(s)

BLANK-52542 F161030B_04 10.1 g F161011 F161030B_01 Matrix Solid
Dilution NA
Extracted 10/26

Extracted 10/26/2016 15:55 Analyzed 10/30/2016 13:30

Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDD	ND		0.13	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	76

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Laboratory Control Spike Results

Lab Sample ID

Filename

Total Amount Extracted
ICAL ID

CCal Filename

Method Blank ID

LCS-52543

F161030B_02

10.1 g

F161011

F161030B_01

BLANK-52542

F161030B_02 Matrix Solid
10.1 g Dilution NA
F161011 Extracted 10/26/2016 15:55
F161030B_01 Analyzed 10/30/2016 11:54
BLANK-52542 Injected By BAL

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDD	10	8.3	7.3	14.6	83
2,3,7,8-TCDD-37Cl4	10	8.1	3.7	15.8	81
2,3,7,8-TCDD-13C	100	94	25.0	141.0	94

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL) Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{* =} See Discussion

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCSD-52544
Filename F161030B_03
Total Amount Extracted 10.1 g
ICAL ID F161011
CCal Filename F161030B_01

 10.1 g
 Dilution
 NA

 F161011
 Extracted
 10/26/2016 15:55

 F161030B_01
 Analyzed
 10/30/2016 12:41

 BLANK-52542
 Injected By
 BAL

Matrix

Solid

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDD	10	8.0	7.3	14.6	80
2,3,7,8-TCDD-37Cl4	10	7.7	3.7	15.8	77
2,3,7,8-TCDD-13C	100	88	25.0	141.0	88

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL) Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

Method Blank ID

^{* =} See Discussion

Method 1613B

Spike Recovery Relative Percent Difference (RPD) Results

Client PACE Wisconsin

 Spike 1 ID
 LCS-52543
 Spike 2 ID
 LCSD-52544

 Spike 1 Filename
 F161030B_02
 Spike 2 Filename
 F161030B_03

 Compound
 Spike 1 %REC
 Spike 2 %RPD

 2,3,7,8-TCDD
 83
 80
 3.7

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

November 09, 2016

Andrea Salus NATURAL RESOURCE TECHNOLOGY 234 W. Florida Street 5th Floor Milwaukee, WI 53204

RE: Project: 2381 MILITARY CREEK Pace Project No.: 40140634

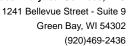
Dear Andrea Salus:

Enclosed are the analytical results for sample(s) received by the laboratory on October 21, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Some analyses have been subcontracted outside of the Pace Network. The subcontracted laboratory report has been attached.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Brian Basten brian.basten@pacelabs.com

Project Manager

Enclosures

cc: Data Delivery Team, Natural Resources Technologies

CERTIFICATIONS

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064

North Dakota Certification #: R-150

Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

(920)469-2436

SAMPLE SUMMARY

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40140634001	102016030	Solid	10/20/16 09:36	10/21/16 12:18
40140634002	102016031	Solid	10/20/16 09:36	10/21/16 12:18
40140634003	102016032	Solid	10/20/16 10:12	10/21/16 12:18
40140634004	102016033	Solid	10/20/16 10:12	10/21/16 12:18
40140634005	102016035	Solid	10/20/16 11:25	10/21/16 12:18
40140634006	102016036	Solid	10/20/16 11:25	10/21/16 12:18

SAMPLE ANALYTE COUNT

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40140634001	102016030	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	2	PASI-G
40140634002	102016031	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140634003	102016032	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	AH	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140634004	102016033	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	АН	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140634005	102016035	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	АН	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G
40140634006	102016036	WI MOD DRO	CAH	1	PASI-G
		ASTM D2974-87	АН	1	PASI-G
		Lloyd Kahn	TJJ	1	PASI-G

ANALYTICAL RESULTS

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

Date: 11/09/2016 10:26 AM

Sample: 102016030 Lab ID: 40140634001 Collected: 10/20/16 09:36 Received: 10/21/16 12:18 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ _	LOD	DF	Prepared	Analyzed	CAS No.	Qua
WIDRO GCS	Analytical	Method: WI MO	DD DRO Pre	eparation N	Method:	WI MOD DRO			
Diesel Range Organics	32.8	mg/kg	23.9	9.6	1	10/27/16 09:45	11/02/16 13:15		DC
Percent Moisture	Analytical	Method: ASTM	D2974-87						
Percent Moisture	92.2	%	0.10	0.10	1		10/28/16 14:27		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn						
Total Organic Carbon Surrogates	279000	mg/kg	9510	3220	1		10/27/16 08:15	7440-44-0	
RSD%	10.7	%			1		10/27/16 08:15		
Sample: 102016031	Lab ID:	40140634002	Collected	: 10/20/16	6 09:36	Received: 10/	21/16 12:18 Ma	trix: Solid	
Results reported on a "dry we	eight" basis and are	e adjusted for	percent moi	isture, sar	mple siz	ze and any diluti	ons.		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
WIDRO GCS	Analytical	Method: WI MO	OD DRO Pre	eparation N	Method:	WI MOD DRO			
Diesel Range Organics	27.8	mg/kg	17.0	6.8	1	10/27/16 09:45	11/02/16 13:24		D5,D0
Percent Moisture	Analytical	Method: ASTM	D2974-87						
Percent Moisture	88.2	%	0.10	0.10	1		10/28/16 14:27		
ΓΟC via Lloyd Kahn	Analytical	Method: Lloyd	Kahn						
Total Organic Carbon	226000	mg/kg	6130	2080	1		10/27/16 08:39	7440-44-0	
	l ah ID:	40140634003	0-1111	10/20/16	6 10:12	Received: 10/		trix: Solid	
•									
•					mple siz	ze and any diluti	ons.		
•					mple siz	ze and any diluti Prepared	Analyzed	CAS No.	Qua
Sample: 102016032 Results reported on a "dry we Parameters WIDRO GCS	eight" basis and ard	e adjusted for	LOQ	LOD	DF	Prepared		CAS No.	Qua
Parameters WIDRO GCS	eight" basis and ard	e adjusted for definition of the definition of t	LOQ	LOD	DF	Prepared		CAS No.	Qua
Parameters WIDRO GCS Diesel Range Organics	Results Analytical	Units Method: WI MO	LOQ DD DRO Pre	LOD Loparation N	DF Method:	Prepared WI MOD DRO	Analyzed	CAS No.	Qua
Parameters WIDRO GCS Diesel Range Organics Percent Moisture	Results Analytical	Units Method: WI Mo	LOQ DD DRO Pre	LOD Loparation N	DF Method:	Prepared WI MOD DRO	Analyzed	CAS No.	Qua
Results reported on a "dry we	Results Analytical Analytical 90.6	Units Method: WI Momg/kg Method: ASTM	LOQ DD DRO Pre 15.5 D2974-87 0.10	LOD	DF Method:	Prepared WI MOD DRO	Analyzed 11/02/16 13:33	CAS No.	Qua

ANALYTICAL RESULTS

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

Date: 11/09/2016 10:26 AM

Sample: 102016033 Lab ID: 40140634004 Collected: 10/20/16 10:12 Received: 10/21/16 12:18 Matrix: Solid

Parameters	Results	Units	LOQ _	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI M	10D DRO Pre	eparation N	Method:	WI MOD DRO			
Diesel Range Organics	11.0J	mg/kg	13.6	5.5	1	10/27/16 09:45	11/02/16 13:42		
Percent Moisture	Analytical	Method: ASTI	M D2974-87						
Percent Moisture	87.8	%	0.10	0.10	1		10/28/16 14:27		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	d Kahn						
Total Organic Carbon	165000	mg/kg	6670	2260	1		10/27/16 08:51	7440-44-0	P6
Sample: 102016035 Results reported on a "dry we		4014063400		: 10/20/16				atrix: Solid	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI M	10D DRO Pre	eparation N	Method:	WI MOD DRO			
Diesel Range Organics	18.0	mg/kg	14.9	6.0	1	10/27/16 09:45	11/02/16 13:50		DC
Percent Moisture	Analytical	Method: ASTI	M D2974-87						
Percent Moisture	90.3	%	0.10	0.10	1		10/28/16 14:28		
TOC via Lloyd Kahn	Analytical	Method: Lloyd	d Kahn						
Total Organic Carbon	268000	mg/kg	9760	3310	1		10/27/16 09:21	7440-44-0	
Sample: 102016036 Results reported on a "dry we		40140634000 e adjusted fo		: 10/20/16		Received: 10/		trix: Solid	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI M	IOD DRO Pre	eparation N	Method:	WI MOD DRO		•	
Diesel Range Organics	48.7	mg/kg	11.1	4.5	1	10/27/16 09:45	11/02/16 13:59		DC
Percent Moisture	Analytical	Method: ASTI	M D2974-87						
Percent Moisture	85.5	%	0.10	0.10	1		10/28/16 14:28		
ГОС via Lloyd Kahn	Analytical	Method: Lloyd	d Kahn						

(920)469-2436

QUALITY CONTROL DATA

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

Date: 11/09/2016 10:26 AM

QC Batch: 239502 Analysis Method: WI MOD DRO
QC Batch Method: WI MOD DRO Analysis Description: WIDRO GCS

Associated Lab Samples: 40140634001, 40140634002, 40140634003, 40140634004, 40140634005, 40140634006

METHOD BLANK: 1418769 Matrix: Solid

Associated Lab Samples: 40140634001, 40140634002, 40140634003, 40140634004, 40140634005, 40140634006

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Diesel Range Organics mg/kg <0.80 2.0 11/02/16 12:48

LABORATORY CONTROL SAMPLE &	LCSD: 1418770		14	418771						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Diesel Range Organics	mg/kg	40	31.2	34.4	78	86	70-120	10	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436

QUALITY CONTROL DATA

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

QC Batch: 239678 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture
Associated Lab Samples: 40140634001, 40140634002, 40140634003, 40140634004, 40140634005, 40140634006

SAMPLE DUPLICATE: 1419958

Date: 11/09/2016 10:26 AM

40140520028 Dup Max Parameter Units Result Result **RPD** RPD Qualifiers 4.1 % Percent Moisture 4.4 6 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

Date: 11/09/2016 10:26 AM

QC Batch: 239306 Analysis Method: Lloyd Kahn
QC Batch Method: Lloyd Kahn Analysis Description: Lloyd Kahn TOC

Associated Lab Samples: 40140634001, 40140634002, 40140634003, 40140634004, 40140634005, 40140634006

METHOD BLANK: 1417713 Matrix: Solid

Associated Lab Samples: 40140634001, 40140634002, 40140634003, 40140634004, 40140634005, 40140634006

Blank Reporting

ParameterUnitsResultLimitAnalyzedQualifiersTotal Organic Carbonmg/kg<33.9</td>10010/27/16 08:03

LABORATORY CONTROL SAMPLE: 1417714

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Total Organic Carbon mg/kg 2000 2050 103 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1417715 1417716

MS MSD 40140634004 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual **Total Organic Carbon** 32600 207000 230000 80-120 20 P6 165000 33600 125 197 10 mg/kg

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

ANALYTE QUALIFIERS

Date: 11/09/2016 10:26 AM

D5 The sample was re-weighed into a new container because the sample weight in the original container exceeded the method specifications.

DC Chromatographic pattern inconsistent with typical Diesel Fuel.

P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the

spike level.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 2381 MILITARY CREEK

Pace Project No.: 40140634

Date: 11/09/2016 10:26 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40140634001	102016030	WI MOD DRO	239502	WI MOD DRO	239569
40140634002	102016031	WI MOD DRO	239502	WI MOD DRO	239569
40140634003	102016032	WI MOD DRO	239502	WI MOD DRO	239569
40140634004	102016033	WI MOD DRO	239502	WI MOD DRO	239569
40140634005	102016035	WI MOD DRO	239502	WI MOD DRO	239569
40140634006	102016036	WI MOD DRO	239502	WI MOD DRO	239569
40140634001	102016030	ASTM D2974-87	239678		
40140634002	102016031	ASTM D2974-87	239678		
40140634003	102016032	ASTM D2974-87	239678		
40140634004	102016033	ASTM D2974-87	239678		
40140634005	102016035	ASTM D2974-87	239678		
40140634006	102016036	ASTM D2974-87	239678		
40140634001	102016030	Lloyd Kahn	239306		
40140634002	102016031	Lloyd Kahn	239306		
40140634003	102016032	Lloyd Kahn	239306		
40140634004	102016033	Lloyd Kahn	239306		
40140634005	102016035	Lloyd Kahn	239306		
40140634006	102016036	Lloyd Kahn	239306		

		Contract Contract Contract and Contract Contract														. 9
(Please Print Cle									UPPER					Page 1	of 6
Company Name:	NaturalRi	esurce Tec	hnologi	ر کر ا	ace An	ah <i>r</i> tir	al®			MN: 6		1700	WI: 920-469-2436		Yours.	2/1 20 20 of
Branch/Location:		skee, W		/-		pacelabs.					7	ı		1	401406	
Project Contact:	Andrew										4		Quote #:			Pag
Phone:	414-83	37-352	231 _		HAIR		C	<u>US</u>	<u>ro</u>	DY			Mail To Contact:	Accai	ints Pau	1ab (0.
Project Number:	2381				ICL C=H2SO4	D=HNO:	ation Cod 3 E=DI	Water F	=Methan	ol G=Na	аОН		Mail To Company:	NR-		<i>!</i>
Project Name:	Militar	y Creek		Sodium Bisult	ate Solution	I=Sodiui	m Thiosulf	fate J=	Other				Mail To Address:	234	W. Florid	last,
Project State:	TWI	J		TERED? 'ES/NO)	YIN X	N	N	N	N					5 th F	1001, MII	wankee
Sampled By (Prin	": Andrea	i Salus		ERVATION CODE)*	Pick Letter X	A	A	A	A				Invoice To Contact:			
Sampled By (Sigr	n): Anelre	a Salu	1		-		bydronut		ď				Invoice To Company:	CAV	$M \cap A$	}
PO #:		Reg	ulatory gram:		Ž		No.		monstu,				Invoice To Address:	200	- 1-	. 0
Data Package		MSD	Matrix Cod		Regu		5		N S						abou	12
(billable) EPA Le	vol III	our sample A = Air B = Bic illable) C = Ch		er inking Water ound Water					_				Invoice To Phone:		-	
☐ EPA Le	vel IV NOT	needed on S = So	SW = Su WW = W	rface Water aste Water	Analyses	2	S U	B	本					LABC	OMMENTS	T n
PACE LAB#	CLIENT FIE	101 - 011	COLLECTION DATE TIME	MATRIX	* A	101	Grain siz	0 120	3				CLIENT COMMENTS	1	Use Only)	Profile #
00/10	270110 02	50 1		6 Sed	X	文	文	又	Ĭ		4021	AI	-80290A 2-1		1-4020	CAT
002 10	201603		1 093				Ħ		1		11		J. J.	73	1) —
903 17	201603	2	1012			+/	TT	\parallel								
M14 10	201602		1012			11	ff		†				MSMSD			
	201603		1175			11	TT^-		1				71911131			
7	201403		1123			一支	V		X		1		4			
W F I'O	20,000					#=	 ^ `		\rightarrow					7	= 4/	_
						 	<u> </u>	7								
				1				and the second s	and the second second second							
						KI-	7	Π)							
	**************************************			74	[3]	14		1								
	,			- " ` ` 		<u> </u>										
	round Time Reques		Reinquished E	200	Celu	r 129	ite/Time:		715	Received	By:	Sol	Date/Time:	2111	PACE Pr	oject No.
•	subject to approva ate Needed:	l/surcharge)	Relinquished E		our,		CIII ite/Time:	0 1	815	Received	III	18M	Date/Time:	2///4/5	18 4014	10634
Transmit Prelim R	Rush Results by (comple									(-		Receipt Temp =	ROT :
Email #1: Q/Y Email #2: C/C/	HILSDOUG IN	anatural	Relinquished B	y:		Da	ite/Time:			Received	Ву:		Date/Time:		Sample R	eceipt pH
Telephone:	CORE LEGION	CLITICOVI)	Relinquished E	y:		Da	ite/Time:	,		Received	Ву:		Date/Time:		OK / Ad	
Fax:	lee on HOLD are subtract		Polinguished S			ν.	to/Time:			Received	Bv:		Data/Time-		<u>Cooler Cu</u> Present / ⋈	ot Present
The state of the s	les on HOLD are subject pricing and release of liab		Relinquished B	у.		Da	ite/Time:			received	оу;	***************************************	Date/Time:		Intact / N	
															Version 6.0 06/14/06	

Sample Condition Upon Receipt

Pace Analytical Services, Inc. 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

Pace Analytical,	osasta ji parte bebel L	users euro Purelle Alemae • • • • • • • • • • • • • • • • • • •		Green Bay, WI 543
Client Name: \sqrt{RT}		Project #:	MO# : 4	40140634
Courier: Fed Ex F UPS Client F Pac	e Other:			
Tracking #:		······································	40140634	
Custody Seal on Cooler/Box Present: ☐ yes	▼no Seals inta	ct: T yes T no		
Custody Seal on Samples Present: 🦵 yes 🕏	no Seals inta	ct: T yes T no		
Packing Material: ☐ Bubble,Wrap (🎾 Bubl	ole Bags T No	one Cother		
Thermometer Used	Type of Ice: W	et Blue Dry None	Samples or	ice, cooling process has begun
Cooler Temperature Uncorr	Bio	ological Tissue is Fro	ozeń: 「 yes	
Temp Blank Present: Tyes T			☐ no	Person examining contents:
Temp should be above freezing to 6°C for all sample exc	ept Biota.	0		Date: 10-2776
Frozen Biota Samples should be received ≤ 0°C.		Comments:		
Chain of Custody Present:	Yes No N	I/A 1.		
Chain of Custody Filled Out:	ØYes □No □N	I/A 2.		
Chain of Custody Relinquished:	es ONo ON	I/A 3.		
Sampler Name & Signature on COC:	DYes □No □N	I/A 4.		
Samples Arrived within Hold Time:	DYes □No □N	I/A 5.		
- VOA Samples frozen upon receipt	☐Yes ☐No	Date/Time:	•	
Short Hold Time Analysis (<72hr):	□Yes □No □N	I/A 6.		
Rush Turn Around Time Requested:		WA 7.		
Sufficient Volume:	7	//A 8.		
Correct Containers Used:	/ ,	I/A 9.		
-Pace Containers Used:	DYes ONO ON			
-Pace IR Containers Used:	☐Yes ☐No ☑N	I/A		
Containers Intact:	ZYes No N	I/A 10.		
Filtered volume received for Dissolved tests	□Yes □No ØN	I/A 11.		
Sample Labels match COC:	Yes DNo DN	I/A 12.		
-Includes date/time/ID/Analysis Matrix:	<u> </u>			
All containers needing preservation have been checked.	□Yes □No □	HNO3	B F H2SO4 I	NaOH NaOH +ZnAct
(Non-Compliance noted in 13.) All containers needing preservation are found to be in		13.	·	
compliance with EPA recommendation.	□Yes □No □/N	VA		
(HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12) exceptions: VOA, coliform, TOC, TOX, TOH,		Initial when	Lab Std #ID of	Date/
O&G, WIDROW, Phenolics, OTHER:	□Yes ØNo	completed	preservative	Time:
Headspace in VOA Vials (>6mm):	□Yes □No	I/A 14.		
Trip Blank Present:	□Yes □No □	I/A 15.		
Trip Blank Custody Seals Present	□Yes □No □N	I/A		
Pace Trip Blank Lot # (if purchased):	_ /			
Client Notification/ Resolution:	7	. If	checked, see attach	ned form for additional comments
Person Contacted:	Dat	te/Time:		
Comments/ Resolution: 10 USIU	2D NOTO	me receiv	ect 10	D-Z1-/16My
Desired Manager Production	00			16 011 11
Project Manager Review:			Date:	10-24-16

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Brian Basten **PACE Wisconsin** 1241 Bellevue Street Green Bay WI 54302

> **REPORT OF LABORATORY** ANALYSIS FOR TCDD/TCDF

Report Information:

Pace Project #: 10367411

Sample Receipt Date: 10/25/2016

Client Project #: 40140634

Client Sub PO #: N/A State Cert #: 999407970

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

November 04, 2016

Carolynne Trout, Project Manager

(612) 607-6351 (612) 607-6444 (fax)

Carolynne.Trout@pacelabs.com

yne haut

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

Report Prepared Date:

November 4, 2016

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on six samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) and 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF) using USEPA Method 1613B. The reporting limits were based on signal-to-noise measurements. Method blank and field sample results presented with reporting limits corresponding to the lowest calibration points and a nominal 10-gram sample amount were included in Appendix A.

The recoveries of the isotopically-labeled TCDD/TCDF internal standards in the sample extracts ranged from 67-91%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J", and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show that 2,3,7,8-TCDD and 2,3,7,8-TCDF were not detected.

A laboratory spike sample was also prepared using clean reference matrix that had been fortified with native standards. The recoveries of the native compounds ranged from 88-102%. These results were within the target ranges for the method. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Mississippi	MN00064
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	NE-OS-18-06
Arizona	AZ0014	Nevada	MN_00064_200
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New York (NEL	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Oklahoma	D9922
Georgia (DNR)	959	Oregon (ELAP)	MN200001-005
Guam	959	Oregon (OREL	MN300001-001
Hawaii	SLD	Pennsylvania	68-00563
Idaho	MN00064	Puerto Rico	MN00064
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennessee	TN02818
Iowa	368	Texas	T104704192-08
Kansas	E-10167	Utah (NELAP)	MN00064
Kentucky	90062	Virginia	00251
Louisiana	03086	Washington	C755
Maine	2007029	West Virginia #	9952C
Maryland	322	West Virginia D	382
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

Chain of Custody

10367411

Wor	korde	r: 40140634	Workorder Name: 2381 MILITARY CREEK							Owner Received Date: 10/21/2016 Results Requested By:						y: 11/4/2016											
Repo	rt To	的是多少的技術的政治的	(1987) 建等		E P	ubcontra	ct To	推动器 监	在补加的		Car.	"	9.18	選問	型框			15.64	Req	uesté	d An	alysi		in Carrie	i de	1.0	建筑各种企业工程 。
Pace 1241 Suite	Bellev 9	n ical Green Bay ue Street WI 54302	Pace Analytical Minnesota 1700 Elm Street SE Suite 200 Minneapolis, MN 55414 Phone (612)607-1700											DD and TCDF													
L											Pres	prved	Cont	ainer	S TOTAL	ᄓ				1	1	ļ			l		
Item	Samp	i i i i i i i i i i i i i i i i i i i	San Typ	NO. 1	Collec Date/T	A Property of the second	Lab	ND.	Matrix	Unpreserved						1631B T											LAB USE ONLY
1	1020160	030	PS	2-51-52-51-1-1	10/20/2	2016 09:36	(47 13 34 c)	r to har while and with	Solid	1 1	十	_				x	$\neg \uparrow$	_	╅	t	H	╁	-	十	十	 	<u> </u>
2	1020160	031	PS			016 09:36	+		Solid	1	t	t				$\frac{\hat{x}}{ x }$	-†		+-	t	H	t^{-}	t	t^-	 	\vdash	
3	102016	032	PS				╄	10634003	Solid	1	╁	1		-1		X	\neg	1	+-	╈	H	T	╁┈	\dagger	┢		<u>در</u> 3
4	1020160	033	RQ			016 10:12	—		Solid	1	╁┈	\top	-			х		\dashv	╅	╁	1		-	 	 	Н	พฯ
5	1020160	035	PS			016 11:25	 		Solid	1	╁	1		_		X		十	+-	\vdash	t	1		\vdash	1	Н	w 5-
6	1020160	036	PS		10/20/2	016 11:25	4014	10634006	Solid	1	十					x	寸		┪-	1	1	T			\vdash		106
32.0) (A) (A)					ar a Bive		-14 H-13 T.		Na.,				, 1	1200	門門的	130				32	C	omn	nents	i dan		
Trans	sfers	Released By	· 		0	ate/Time		Received B	y /	ー つ				Date	Лim	e									_		
1		CI VOD OHAN			1	JUNE	700		TIL	a	re	10	-24	- 4	, 1	120	1										
2						-6											1										
3																	L_			•							
Coo	ler Ter	nperature on Re	eceipt 🤄	2.8	°C	Cus	stody	Seal 💍	or N			R	ece	ived	on	Ice	8	or	N _			S	am	ples	Inta	ict }	Oor N

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

Document Name:

Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17 Document Revised: 02Aug2016 Page 1 of 2 Issuing Authority:

Pace Minnesota Quality Office Sample Condition Client Name: Project #: MO#:1036741 **Upon Receipt** Pace 63 Courier: Fed Ex USPS UPS Client Other: walter Commercial SpeeDee Pace Tracking Number: Optional: Proj. Due Date: Proj. Name: Yes No Seals intact? No Custody Seal on Cooler/Box Present? Bubble Bags Packing Material: Bubble Wrap None Temp Blank? Yes No Other Thermometer P 151401163 □B88A912167504 Blue Samples on ice, cooling process has begun Used: B88A0143310098 **151401164** Cooler Temp Read (°C): Cooler Temp Corrected (°C): Biological Tissue Frozen? Yes No Date and Initials of Person Examining Contents: 10-25-16 AT Correction Factor: 10.2 Temp should be above freezing to 6°C USDA Regulated Soil (N/A, water sample) USDA Regulated Soil (N/A, water sample)

Did samples originate in a quarantine zone within the United States: AL, AR, AZ, CA, FL, GA, ID, LA.

Yes ZiNo Old samples originate from a foreign source (internationally, Yes including Hawaii and Puerto Rico)? if Yes to either question, fill out a Regulated Soll Checklist (F-MN-Q-338) and include with SCUR/COC paperwork. Chain of Custody Present? Yes □N/A Chain of Custody Filled Out? □No □N/A Chain of Custody Relinquished? □N/A Sampler Name and/or Signature on COC? □N/A Samples Arrived within Hold Time? □N/A Short Hold Time Analysis (<72 hr)? □N/A Rush Turn Around Time Requested? □N/A 7. Sufficient Volume? **⊠**Yes □N/A **☑**Yes □No Correct Containers Used? □N/A -Pace Containers Used? □N/A Containers Intact? No □N/A □N/A Filtered Volume Received for Dissolved Tests? □No 11. Note if sediment is visible in the dissolved container ☐ Yes Sample Läbels Match COC? **Z**Yes □No □N/A 12. -Includes Date/Time/ID/Analysis Matrix: All containers needing acid/base preservation have been ☐HNO₃ H2SO4 □NaOH **☑**N/A checked? Yes All containers needing preservation are found to be in Sample # compliance with EPA recommendation? (HNO3, H2SO4, HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) □Yes Exceptions: VOA, Coliform, TOC, Oil and Grease, initial when Lot # of added DRO/8015 (water) DOC Yes DN/A completed: preservative: Headspace in VOA Vials (>6mm)? ∐Yes 14. Trip Blank Present? □Yes ∏No **Z**N/A Trip Blank Custody Seals Present? □No ZN/A Yes Pace Trip Blank Lot # (if purchased): CLIENT NOTIFICATION/RESOLUTION Field Data Required? Yes No Person Contacted: Date/Time: Comments/Resolution:

Scott Unge Project Manager Review: Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).

10/25/16

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID Lab Sample ID Filename Injected By

102016030 40140634001 Y161102B_02

Total Amount Extracted
% Moisture

SMT 29.3 g 92.2 2.29 g Y160816A

Matrix Dilution Collected

Solid NA

Dry Weight Extracted 2.29
ICAL ID Y16
CCal Filename(s) Y16
Method Blank ID BLA

Y160816A Received Y161102A_18 Extracted BLANK-52586 Analyzed 10/20/2016 09:36 10/25/2016 11:20 10/28/2016 19:00 11/02/2016 18:19

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		1.0	2,3,7,8-TCDF-13C	2.00	75
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	91
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	85

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration
RL = Reporting Limit

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No..... 10367411

Minneapolis, MN 55414

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID Lab Sample ID Filename

P<u>ace Analytic</u>al

102016031 40140634002 Y161102B_03

Injected By **Total Amount Extracted**

SMT 18.1 g 88.2 2.14 g

Matrix Dilution

Solid NA

Dry Weight Extracted IÇAL ID

Y160816A Y161102A_18 Collected Received Extracted 10/20/2016 09:36 10/25/2016 11:20 10/28/2016 19:00

CCal Filename(s) Method Blank ID

% Moisture

BLANK-52586

Analyzed

11/02/2016 19:00

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		1.0	2,3,7,8-TCDF-13C	2.00	72
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	84

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10367411

1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID Lab Sample ID Filename

<u> Pace Analytical</u>

102016032 40140634003 Y161102B_04

Injected By

SMT

Total Amount Extracted % Moisture

24.6 g 90.6

Matrix Dilution Solid NA

Dry Weight Extracted ICAL ID

2.31 g Y160816A Y161102A_18 Collected Received Extracted 10/20/2016 10:12 10/25/2016 11:20 10/28/2016 19:00

CCal Filename(s) Method Blank ID

BLANK-52586

Analyzed

11/02/2016 19:41

Modriod Blank IB				7 11 10 2 1 1 1 7 0 2	,2010 10.41	10 10.11			
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery			
2,3,7,8-TCDF	ND		1.0	2,3,7,8-TCDF-13C	2.00	69			
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	83			
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA			
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	80			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

NA = Not Applicable NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID Lab Sample ID Filename Injected By

102016033 40140634004 Y161102B_05

Total Amount Extracted % Moisture

Dry Weight Extracted

CCal Filename(s)

ICAL ID

SMT 18.3 g 87.8 2.23 g Y160816A Y161102A_18

Matrix Dilution Collected

Received

Solid NA

10/20/2016 10:12 10/25/2016 11:20 10/28/2016 19:00

Extracted Analyzed 11/02/2016 20:22

Method Blank ID Native Isomers	BLANK-52586			Analyzed	11/02/2016 20:22	
	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		1.0	2,3,7,8-TCDF-13C	2.00	67
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	79
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
		•		Cleanup Standard 2,3,7,8-TCDD-37C	l4 0.20	75

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No....10367411

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016035
Lab Sample ID 40140634005
Filename Y161102B_06
Injected By SMT
Total Amount Extracted 23.3 g
% Moisture 90.3

% Moisture 90.3

Dry Weight Extracted 2.26 g
ICAL ID Y160816A

ICAL ID Y160816A CCal Filename(s) Y161102A_18 Method Blank ID BLANK-52586 Matrix Dilution

Solid NA

Collected 10/20/2016 11:25 Received 10/25/2016 11:20 Extracted 10/28/2016 19:00 Analyzed 11/02/2016 21:04

Welliod Blank ID	DLA	11111-02000		Allalyzeu	11/02/2010 21:04	
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		1.0	2,3,7,8-TCDF-13C	2.00	72
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	1 0.20	84

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected

NA = Not Applicable NC = Not Calculated


Results reported on a total weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016036 Lab Sample ID 40140634006 Filename Y161102B_07 Injected By SMT

Total Amount Extracted 15.2 g Matrix Solid % Moisture Dilution NA 85.5 2.20 g Dry Weight Extracted Collected

10/20/2016 11:25 **ICAL ID** Received Y160816A 10/25/2016 11:20 10/28/2016 19:00 CCal Filename(s) Y161102A_18 Extracted Method Blank ID BLANK-52586 Analyzed 11/02/2016 21:45

				•		
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		1.0	2,3,7,8-TCDF-13C	2.00	72
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	86
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	82

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Tel: 612-607-1700

Fax: 612-607-6444

Method 1613B Blank Analysis Results

Lab Sample ID Filename

Total Amount Extracted

ICAL ID

CCal Filename(s)

BLANK-52586 U161101B_12

U161025

20.2 g U161101B_03 Matrix

Dilution

Extracted Analyzed

Solid

NA

10/28/2016 19:00 11/01/2016 23:24

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		1.0	2,3,7,8-TCDF-13C	2.00	75
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	96
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	86

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X =%D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016030 Lab Sample ID 40140634001 Filename Y161102B_02 Injected By SMT

Total Amount Extracted 29.3 g Matrix Solid % Moisture 92.2 Dilution NA

2.29 g Dry Weight Extracted Collected 10/20/2016 09:36 ICAL ID Y160816A Received 10/25/2016 11:20 CCal Filename(s) Y161102A_18 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 11/02/2016 18:19

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.099		0.046 J	2,3,7,8-TCDF-13C	2.00	75
2,3,7,8-TCDD	ND		0.032	2,3,7,8-TCDD-13C	2.00	91
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	85

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016031 Lab Sample ID 40140634002 Filename Y161102B_03 Injected By SMT

Total Amount Extracted 18.1 g Matrix Solid % Moisture 88.2 Dilution NA

2.14 g Dry Weight Extracted Collected 10/20/2016 09:36 ICAL ID Y160816A Received 10/25/2016 11:20 CCal Filename(s) Y161102A_18 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 11/02/2016 19:00

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.11		0.052 J	2,3,7,8-TCDF-13C	2.00	72
2,3,7,8-TCDD	ND		0.061	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	84

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 102016032

 Lab Sample ID
 40140634003

 Filename
 Y161102B_04

 Injected By
 SMT

Total Amount Extracted 24.6 g Matrix Solid % Moisture 90.6 Dilution NA

Dry Weight Extracted 2.31 g Collected 10/20/2016 10:12 ICAL ID Y160816A Received 10/25/2016 11:20 CCal Filename(s) Y161102A_18 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 11/02/2016 19:41

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF		0.071	0.038 N	2,3,7,8-TCDF-13C	2.00	69
2,3,7,8-TCDD	ND		0.032	2,3,7,8-TCDD-13C	2.00	83
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	80

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016033 Lab Sample ID 40140634004 Filename Y161102B_05 Injected By SMT

Total Amount Extracted 18.3 g Matrix Solid % Moisture 87.8 Dilution NA

2.23 g Dry Weight Extracted Collected 10/20/2016 10:12 ICAL ID Y160816A Received 10/25/2016 11:20 CCal Filename(s) Y161102A_18 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 11/02/2016 20:22

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.16		0.062 J	2,3,7,8-TCDF-13C	2.00	67
2,3,7,8-TCDD	ND		0.088	2,3,7,8-TCDD-13C	2.00	79
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	75

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016035 Lab Sample ID 40140634005 Filename Y161102B_06 Injected By SMT

Total Amount Extracted 23.3 g Matrix Solid % Moisture 90.3 Dilution NA

2.26 g Dry Weight Extracted Collected 10/20/2016 11:25 ICAL ID Y160816A Received 10/25/2016 11:20 CCal Filename(s) Y161102A_18 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 11/02/2016 21:04

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.13		0.038 J	2,3,7,8-TCDF-13C	2.00	72
2,3,7,8-TCDD	ND		0.039	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	84

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016036 Lab Sample ID 40140634006 Filename Y161102B_07 Injected By SMT

Total Amount Extracted 15.2 g Matrix Solid % Moisture 85.5 Dilution NA

2.20 g Dry Weight Extracted Collected 10/20/2016 11:25 ICAL ID Y160816A Received 10/25/2016 11:20 CCal Filename(s) Y161102A_18 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 11/02/2016 21:45

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.24		0.095 J	2,3,7,8-TCDF-13C	2.00	72
2,3,7,8-TCDD	ND		0.094	2,3,7,8-TCDD-13C	2.00	86
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	82

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Blank Analysis Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID CCal Filename(s) BLANK-52586 U161101B_12 20.2 g U161025 U161101B_03 Matrix Dilution Extracted

Analyzed

NA 10/28/2016 19:00 11/01/2016 23:24

Solid

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		0.033	2,3,7,8-TCDF-13C	2.00	75
2,3,7,8-TCDD	ND		0.054	2,3,7,8-TCDD-13C	2.00	96
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	86

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Laboratory Control Spike Results

Lab Sample ID L
Filename U
Total Amount Extracted ICAL ID L

ICAL ID CCal Filename Method Blank ID LCS-52587 U161101B_08 20.0 g U161025

U161025 U161101B_03 BLANK-52586 Matrix Solid Dilution NA

Extracted 10/28/2016 19:00 Analyzed 11/01/2016 20:19

Injected By SMT

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF	10	10	8.0	14.7	102
2,3,7,8-TCDD	10	8.8	7.3	14.6	88
2,3,7,8-TCDD-37Cl4	10	8.8	3.7	15.8	88
2,3,7,8-TCDF-13C	100	72	26.0	126.0	72
2,3,7,8-TCDD-13C	100	92	25.0	141.0	92

Cs = Concentration Spiked (ng/mL)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

^{* =} See Discussion

CQM, INC.
Engineering – Surveying – Material Testing

TRANSMITTAL

Pag	/ O T T T T		FROM:	(Bob Rouse	
$-\mu\alpha$ L	e Analy	Tical		CQM, INC.	
				2679 Continental Drive	
				Green Bay, WI 54311	
			PHONE:	(920) 465-3911	
			DATE:	November 8, 2016	_
RE: <u>Lab 7</u>	Est Result	Reports	PROJECT:	No-40140634	
HE ATEST CONSTRA	DIO YIOYY			Military Creek	
Æ ARE SENDI		TATOER		,	
X ATTAG			SEPARATE COVE		
	MENTS		CATIONS · F LETTER		
	ATTM I D	COFT O	L LEI IEK		-
QUANTITY			DESCRI	PTION	
1	111	T 0.	+ Reports		1
<u> </u>	Lag.	jest peru	t peports		-
· · · · · · · · · · · · · · · · · · ·			1 0	A	-
	~ /	/ / /	11 7.1		
	Chain	of cust	oly Jecon	<u>{</u>	
	Chain	of Custi	Ny Gecore	<u>{</u>	_
	Chain	of Cust.	ody Becom		
	Chain	of Cust.	ody Becore		
	Chain	of Cust.	ody Vecori		
	Chain	of Cust.	ody becom		
	Invoice	for project	To follow so		
	Invoice	for project	To follow so		
REMARKS	Invoice	for project	To follow so		
REMARKS:	Invoice	for project	To follow so		
REMARKS:	Invoice	for project	To follow so		
REMARKS:	Invoice	for project	To follow so		
REMARKS:	Invoice	for project	To follow so		
REMARKS:	Invoice	for project	To follow so		
REMARKS:	Invoice	for project	To follow so		

CQM, INC.

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL	<u>DATA:</u>				
		Client:	Pace Analyt	ical	
			No. 4014063		
	Location	on Sampled:			
			40140634-00	01	
	Depti	n of Sample:			
	Da	te Received:	10/24/16		
	Sample Des	ignated For:	Soil Classifi	ication	
	Source	e of Sample:	Military Cree	ek	
		Color Code:			
		ate Sampled:	10/20/16		
_ABORAT	ORY DATA	<u>4:</u>			
	,	Data Tantad:	October 25-2	7 0016	
		erformed By:		27, 2010	
	10311	ononned by.	1		
	24 Hrs.]	Turn Around:	NO]	
		d Gradation:	YES	Dry Weig	ht of Soil (gms): 8.5
				, ,	
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3°					
1 1/2"					
1"					
3/4"					
1/2"					
3/8"	0.0	0.0	100.0		
#4	0.5	5.9	94.1		
#10	1.1	12.9	81.2		
#40	2.3	27.1	54.1		
#100	1.5	17.6	36.5		
#200	0.7	8.2	28.3		

REVIEWED BY:	Rolente	Lolouse
DATE REVIEWED:	///	8/16

Remarks:

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #40 #50 #200 100 100 90 80 80 Percent Finer Than Size Shown 5 5 9 9 Percent Finer Than Size Shown 30 30 20 10 0.005 0.002 10 0.1 100 0.01 0.001 Gravel Sand Medium Silt Coarse Fine Coarse Fine Clay 5.9% 12.9% 25.8% 11.3% 17.0% 27.1% Soil Classification: CLAYEY SAND W/ORGANIC FINES, medium to fine to coarse grained, a little gravel, black (SC) 10/20/16 Location Sampled: 102016030 Elevation or Depth: Date Sampled: Sample Number: 40140634-001 Sampled Moisture Content (%): 969.4 Report No.: 634-1 COM, INC. Sample Source: Military Creek Atterberg Limits: LL= PI≔ Client: Pace Analytical PL= 39 of Munsell Color Code: 10YR 2/1 Project: No. 40140634 Page: 2 Prepared by: Bob J. Peeters 11/7/16 Date Received: 10/24/16 Date: 49 Robert R Rouse Date: Coefficients: Cc= Cu= Checked by:

CQM, INC.

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAI	_DATA:				
		Client:	Pace Analyt	ical	
			No. 4014063		
	Locati	on Sampled:			
			40140634-00	02	
	Dept	h of Sample:			
	Da	te Received:	10/24/16		
	Sample Des	ignated For:	Soil Classifi	ication	
	Sourc	e of Sample:	Military Cred	ek	
	Munsell	Color Code:	10YR 2/1		
		ate Sampled:	10/20/16		
LABORA	TORY DATA	<u> 4:</u>			
			October 25-2	27, 2016	
	Test P	erformed By:	FRH		
				1	
		Furn Around:		D. Weinl	-1 -4 0-11 ()
	vvasne	d Gradation:	YES	Dry weigi	nt of Soil (gms): 11.9
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1"					
3/4"					
1/2"					
3/8"	0.0	0.0	100.0		
#4	1.5	12.6	87.4		
#10	2.3	19.3	68.1		
#40	3.2	26.9	41.2		
#100	1.9	16.0	25.2		
	0.9	7.6	17.6		

Remarks:

DATE REVIEWED:

REVIEWED BY: Rolect & Rocks

ATE REVIEWED: 11/8/16

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #200 #40 #50 100 100 90 90 80 70 Finer Than Size Shown Than Size Shown Percent Finer 30 30 20 10 10 0.005 10 100 0.1 0.01 0.001 Gravel Sand Silt Coarse Fine Coarse Medium Fine Clay 12.6% 19.3% 23.6% 8.6% 9.0% 26.9% Soil Classification: SILTY SAND W/ORGANIC FINES, medium to fine to coarse grained, a little gravel ,black (SM) 10/20/16 Location Sampled: 102016031 Elevation or Depth: Date Sampled: Sampled Moisture Content (%): 796.6 634-2 Sample Number: 40140634-002 Report No.: COM, INC. Sample Source: Military Creek Client: Pace Analytical LL= PI= Atterberg Limits: PL= Project: No. 40140634 Munsell Color Code: 10YR 2/1 Page: 으 11/7/16 Date Received: 10/24/16 Prepared by: Bob J. Peeters Date: 19 arbert L Rouse Coefficients: Cc= Cu= Checked by: Date:

CQM, INC.

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

Client:	Pace Analytical
Project:	No. 40140634
Location Sampled:	102016032
Sample No:	40140634-003
Depth of Sample:	
Date Received:	10/24/16
Sample Designated For:	Soil Classification
Source of Sample:	Military Creek
Munsell Color Code:	10YR 2/1
Date Sampled:	10/20/16

LABORATORY DATA:

Washed Gradation:

YES

Date Tested:	October 25-27, 2016	
Test Performed By:	FRH	
24 Hrs. Turn Around:	NO	

Dry Weight of Soil (gms):

9.1

Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"		·			
1 1/2"					
1"					
3/4"					
1/2"					
3/8"	0.0	0.0	100.0		
#4	0.6	6.6	93.4		
#10	2.3	25.3	68.1		
#40	2.5	27.5	40.6		
#100	1,1	12.1	28.5		
#200	0.4	4.4	04.4		

REVIEWED BY: Nober	- R Rouse	Remarks:	
DATE REVIEWED:	8/16		

U.S. Standard Sieve Sizes #40 #50 #200 100 100 90 80 70 r Than Size Shown Percent Finer Than Size Shown 60 Percent Finer i 30 30 20 20 10 10 0.005 0.002 10 100 0.1 0.01 0.001 Gravel Sand Coarse Fine Coarse Medium Fine Silt Clay 6.6% 25.3% 27.5% 16.5% 11.1% 13.0% Soil Classification: CLAYEY SAND W/ORGANIC FINES, medium to coarse to fine grained, a little gravel, black (SC) Location Sampled: 102016032 Elevation or Depth: Date Sampled: 10/20/16 978.0 Sample Number: 40140634-003 Sampled Moisture Content (%): 634-3 Report No.: CQM, INC. Sample Source: Military Creek Atterberg Limits: LL= PL≕ PI= Client: Pace Analytical Munsell Color Code: 10YR 2/1 Project: No. 40140634 Page: 2 Date Received: 10/24/16 Prepared by: Bob J. Peeters Date: 11/7/16

Robert R Rouse

Checked by:

<u>Q</u>

49

Coefficients: Cc=

Cu=

GRAIN SIZE DISTRIBUTION CURVE

CQM, INC.

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

		Client:	Pace Analyt	ical	
			No. 4014063		
			102016033		
		Sample No:	40140634-00)4	
	Depti	h of Sample:			Official and the second
	Da	te Received:	10/24/16		
	Sample Des	signated For:	Soil Classifi	cation	
	Source	e of Sample:	Military Cred	ek	
		Color Code:			
		ate Sampled: -	10/20/16		
LABOHA	TORY DATA	<u>4:</u>			
	,	Data Tastada	0-1-105	27.0010	
		erformed By:	October 25-2	27, 2016	
	Testre	епоппес ву.	1111		
	24 Hrs 1	Furn Around:	МО		
		d Gradation:	YES	Dry Weight	t of Soil (gms): 9.7
				1, //an	, +, + + + (g)
Sieve	Weight	%	%	Project Specification	Source of Specification
Size	Retained	Retained	Passing	% Passing by Weight	
3"					
1 1/2"					
1 ^u					
3/4"					
1/2"	0.0	0.0	100.0		
3/8"	1.1	11.3	88.7		
#4	2.2	22.7	66.0		
#10	1.5	15.5	50.5		A STATE OF THE STA
#40	1.9	19.6	30.9		
#100	0.9	9.3	21.6		
	0.4	4.1	17.5		
#200					

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #30 #10 #40 #50 3/8" 100 90 90 80 70 r Than Size Shown Size Shown Percent Finer 9 30 20 10 0.02 -0:002 10 0.1 0.01 0.001 100 Sand Gravel Silt Clay Coarse Fine Coarse Medium Fine 15.5% 19.6% 13.4% 8.0% 9.5% 34.0% Soil Classification: SILTY SAND W/ORGANIC FINES AND GRAVEL, medium to coarse to fine grained, black (SM) Elevation or Depth: Date Sampled: 10/20/16 Location Sampled: 102016033 Sample Number: 40140634-004 Sampled Moisture Content (%): 813.4 Report No.: 634-4 COM, INC. Sample Source: Military Creek Client: Pace Analytical Atterberg Limits: LL= PI= PL= Munsell Color Code: 10YR 2/1 Project: No. 40140634 2 Page: 으 Prepared by: Bob J. Peeters 11/7/16 Date Received: 10/24/16 Date: 49 Robert R Rouse Date: Coefficients: Cc= Cu= Checked by

CQM, INC.

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAI	_DATA:						
		Client:	Pace Analyt	iical			
			No. 4014063				
	Locati	on Sampled:	102016035				
		Sample No:	40140634-00	05			
	Dept	h of Sample:					
	Da	te Received:	10/24/16				
	Sample Des	ignated For:	Soil Classif	ication			
	Source	e of Sample:	Military Cre	ek			
		Color Code:					
		ate Sampled:	10/20/16				
<u>-ABUHA</u>	TORY DATA	<u>4:</u>					
	I	Date Tested:	October 25-2				
		erformed By:		FRH			
				_			
	24 Hrs. 7	Furn Around:	NO				
Washed Gradation:			YES	Dry Weight	of Soil (gms): 10.6		
Sieve	Weight	%	%	Project Specification	Source of Specification		
Size	Retained	Retained	Passing	% Passing by Weight			
3"							
1 1/2"							
1"							
3/4"							
1/2"							
3/8"	0.0	0.0	100.0				
#4	1.7	16.0	84.0				
#10	2.6	24.5	59.5				
#40	3.4	32.1	27.4				
#100	1.4	13.2	14.2				
#200	0.5	4.7	9.5				

Remarks:

REVIEWED BY: Asbert A Rouse

DATE REVIEWED: ///8/16

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #16 #10 #40 #50 #200 100 100 90 90 80 70 Size Shown Percent Finer Than Size Shown 60 30 30 20 10 10 0.005 0.01 10 0.1 0.001 100 Gravel Sand Coarse Medium Fine Silt Clay Fine Coarse 16.0% 24.5% 32.1% 17.9% 4.0% 5.5% Soil Classification: SAND W/SILT AND ORGANIC FINES AND GRAVEL, medium to coarse to fine grained, black (SP-SM) Location Sampled: 102016035 Elevation or Depth: Date Sampled: 10/20/16 786.8 Sampled Moisture Content (%): 634-5 Sample Number: 40140634-005 Report No.: CQM, INC. Sample Source: Military Creek Atterberg Limits: LL= PL= PI= Client: Pace Analytical Project: No. 40140634 Munsell Color Code: 10YR 2/1 Page: 으 11/7/16 Date Received: 10/24/16 Prepared by: Bob J. Peeters Date: 49 abert R Rouse Cu= Checked by: Date: Coefficients: Cc=

CQM, INC.

SIEVE ANALYSIS OF COARSE TO FINE AGGREGATES (ASTM D422)

GENERAL	_DATA:					
		Client:	Pace Analyt	ical		
			No. 4014063			
	Locati	on Sampled:				
		Sample No:	40140634-00	06		
	Dept	h of Sample:				
	Da	te Received:	10/24/16			
	Sample Des	ignated For:	Soil Classifi	ication		
	Sourc	e of Sample:	Military Cree	ek		
		Color Code:				
		ate Sampled:	10/20/16			
LABORA1	TORY DATA	7:				
			October 25-28, 2016			
	Test P	erformed By:	FRH			
	0411	A	NO	1		
		Furn Around:	NO YES	Dn. Woigh	nt of Soil (gms): 14.5	
	wasne	d Gradation:	123	Dry weigi	it of Soil (girls). 14.5	
Sieve	Weight	%	%	Project Specification	Source of Specification	
Size	Retained	Retained	Passing	% Passing by Weight		
3"						
1 1/2"						
1"						
3/4"						
1/2"	0.0	0.0	100.0			
3/8"	4.0	27.6	72,4			
#4	3.2	22.1	50.3			
#10	2.6	17.9	32.4			
#40	2.0	13.8	18.6			
#100	0.5	3.4	15.2			
	0.2	1.4	13.8			

Remarks:

11/8/2016 TLS G-634-006

REVIEWED BY: Robert Alouse
DATE REVIEWED: 11/8/16

GRAIN SIZE DISTRIBUTION CURVE U.S. Standard Sieve Sizes #40 #50 #200 100 100 90 90 80 70 r Than Size Shown Percent Finer Than Size Shown 60 Percent Finer 1 30 30 20 10 10 TIII d.od 0.002 100 10 0.1 0.01 0.001 Gravei Sand Coarse Fine Coarse Medium Fine Silt Clay 49.7% 17.9% 13.8% 4.8% 9.8% 4.0% Soil Classification: SILTY SAND W/GRAVEL AND ORGANIC FINES, coarse to medium grained, black (SM) Location Sampled: 102016036 Elevation or Depth: Date Sampled: 10/20/16 602.8 Sample Number: 40140634-006 Sampled Moisture Content (%): 634-6 Report No.: CQM, INC. Sample Source: Military Creek LL= Atterberg Limits: PL= PI= Client: Pace Analytical Munsell Color Code: 10YR 2/1 Project: No. 40140634 Page: 2 으 Date Received: 10/24/16 Prepared by: Bob J. Peeters Date: 11/7/16 49 Robert R Rouse Cu= Date: Coefficients: Co= Checked by:

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Brian Basten **PACE Wisconsin** 1241 Bellevue Street Green Bay WI 54302

> **REPORT OF LABORATORY** ANALYSIS FOR TCDD/TCDF

Report Information:

Pace Project #: 10367095

Sample Receipt Date: 10/21/2016

Client Project #: 40140495

Client Sub PO #: N/A State Cert #: 999407970

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

November 11, 2016 Nathan Boberg, Project Manager

(612) 607-6444 (fax) nathan.boberg@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

November 11, 2016

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on eight samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) and 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF) using USEPA Method 1613B. The reporting limits were based on signal-to-noise measurements. Method blank and field sample results presented with reporting limits corresponding to the lowest calibration points and a nominal 10-gram sample amount were included at the end of Appendix A. This report was revised to include results for 2,3,7,8-TCDF.

The recoveries of the isotopically-labeled TCDD/TCDF internal standards in the sample extracts ranged from 68-98%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J" and should be regarded as estimates. In sample 101916027, due to the high moisture content, the estimated detection limit (EDL) values were above the standard reporting limits; therefore, the EDLs were provided and flagged "A" on the results table in Appendix A. The values reported for 2,3,7,8-TCDF that were above the lowest calibration point were verified by second column confirmation analyses and flagged "V".

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show that 2,3,7,8-TCDD and 2,3,7,8-TCDF were not detected, indicating that the sample processing steps were free of background levels of these congeners.

Laboratory spike samples were also prepared using clean reference matrix that had been fortified with native standard materials. The recoveries of the native compounds ranged from 80-109% with relative percent differences of 3.7%. These results were within the target ranges for the method. Matrix spikes were not prepared with the sample batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Mississippi	MN00064
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	NE-OS-18-06
Arizona	AZ0014	Nevada	MN_00064_200
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New York (NEL	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Oklahoma	D9922
Georgia (DNR)	959	Oregon (ELAP)	MN200001-005
Guam	959	Oregon (OREL	MN300001-001
Hawaii	SLD	Pennsylvania	68-00563
Idaho	MN00064	Puerto Rico	MN00064
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennessee	TN02818
Iowa	368	Texas	T104704192-08
Kansas	E-10167	Utah (NELAP)	MN00064
Kentucky	90062	Virginia	00251
Louisiana	03086	Washington	C755
Maine	2007029	West Virginia #	9952C
Maryland	322	West Virginia D	382
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

Chain of Custody

Pace Analytical www.pacelabs.com

Workorder: 40140495 Work			Norkorder Name:2381/2 MILITARY CREEK				O	Owner Received Date: 10/20/201			2016 I	6 Results Requested By: 11/3/2016							
Repo	rt To			Subcontr	et to	ALC: The						and a	Requ	ested A	nalysi	S			
Pace 1241 Suite	Bellevi 9	n cal Green Bay ue Street NI 54302	Pace Analytical Minnesota 1700 Elm Street SE Suite 200 Minneapolis, MN 55414 Phone (612)607-1700				eserved :	contai	ners (378 TCDD									
ltem	Sampl	e ID .	Sample Type	Collect Date/time	Lab ID	Matrix	Lhpreserved				1631B 2								LAB USE ONLY
1	1019160	18	PS	10/19/2016 09:12	2 40140495001	Solid	1				X					\Box			<i>0</i> 0(
2	1019160	119	PS	10/19/2016 09:1:	40140495002	Solid	1				X								200
3	1019160	21	PS	10/19/2016 09:3	7 40140495003	Solid	1				X								003
4	1019160	22	PS	10/19/2016 09:3	7 40140495004	Solid	1				X					Γ_{-}			204
5	1019160	24	PS	10/19/2016 10:3	40140495005	Solid	1				X								025
6	1019160	25	PS	10/19/2016 10:3	40140495006	Solid	1				X						$\neg \Gamma$		206
7	1019160	27	P\$	10/19/2016 12:0	9 40140495007	Solid	1				Х				T^{-}				AO 7
8	1019160	28	PS	10/19/2016 12:0	9 40140495008	Solid	1				X								009
				Date/Time			er e	2		ate/Tim))				onime	nts		<i>→</i>
Cooler Temperature on Receipt 67°C Custody Seal Y or N Received on Ice Y or N Samples Intack Y									Y or N										

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

This chain of custody is considered complete as is since this information is available in the owner laboratory.

Document Name: Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17

Document Revised: 02Aug2016 Page 1 of 2 Issuing Authority: Pace Minnesota Quality Office

Sample Condition Upon Receipt Client Name:			Project	* WO#: 10367095
Courler: Fed Ex	☐USPS ☐Other:		Client	
Tracking Number:				10367095
Custody Seal on Cooler/Box Present? Yes No	,	Seals Int	tact? 🖞	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Dubble Bags	∏Nor	e 🗌	Other:	Temp Blank? Yes No
Thermometer 151401163 □ B88A91216750 Used: □ 151401164 □ □ B88A01433100	(VE	ie of Ice: سے	_ Haw	et Blue None Samples on Ice, cooling process has beg
Cooler Temp Read (°C): 6.5 Cooler Temp Co): <u>Qu</u>	<u>/</u>	Biological Tissue Frozen? Yes No No
emp should be above freezing to 6°C Correction Fact (SDA Regulated Soil (N/A, water sample)	or:	7	Da	te and Initials of Person Examining Contents: <u> </u>
id samples originate in a quarantine zone within the United IS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?			Yeś	ID, LA. Did samples originate from a foreign source (internationally, ☐No including Hawaii and Puerto Rico)? ☐Yes ☐Yes —Q-338) and include with SCUR/COC paperwork.
				. COMMENTS:
Chain of Custody Present?	Yes	□No	□n/a	1.
Chain of Custody Filled Out?	√∏Yes	□No	□N/A	2.
Chain of Custody Relinquished?	Yes	□No	□N/A	3.
ampler Name and/or Signature on COC?	Yes	□No	ŽĮN/A	4.
amples Arrived within Hold Time?	A TYes	□No	□N/A	5.
hort Hold Time Analysis (<72 hr)?	☐Yes	No	□N/A	6.
Rush Turn Around Time Requested?	Yes	<u>M</u> No	□N/A	7.
ufficient Volume?	∑Yes	□No	□N/A	8.
Correct Containers Used?	₹ Yes	□No	∐N/A	9.
-Pace Containers Used?	₹¶Yes	□No	□N/A	
Containers Intact?	Yes	□No	∏N/A	10.
iltered Volume Received for Dissolved Tests?	∐Yes	□No	Ľ¥N/A	11. Note if sediment is visible in the dissolved container
Sample Labels Match COC?	≹ÇİYes	□No	□n/a	12.
-Includes Date/Time/ID/Analysis Matrix: All containers needing acid/base preservation have been			·····	
thecked? All containers needing preservation are found to be in	∏Yes	∏No	₩/A	13. ☐HNO₃ ☐H₂SO₄ ☐NaOH ☐HCI Sample #
ompliance with EPA recommendation? HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) xceptions: VOA, Coliform, TOC, Oil and Grease,	□Yes	□No	₩.A	Initial when Lot # of added
PRO/8015 (water) DOC	Yes	□No	IN/A	completed: preservative:
eadspace in VOA Vials (>6mm)?	Yes	□No	₽Ñ/A	14.
rip Blank Present? rip Blank Custody Seals Present?	∐Yes	∏No	<u>™</u> ΩÑ/A	15.
rip Blank Custody Seals Present? lace Trip Blank Lot # (if purchased):	∐Yes	∐No	™ N/A	
		_		Elold Date transland? Dva Da-
CLIENT NOTIFICATION/RESOLUTION erson Contacted:				Field Data Required? Yes No
erson Contacted: Ornments/Resolution:				Date/Time:

hold, incorrect preservative, out of temp, incorrect containers).

Method 1613B Blank Analysis Results

Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s)

Native

Isomers

2,3,7,8-TCDF

2,3,7,8-TCDD

BLANK-52542 F161030B_04 10.1 g

F161011 F161030B_01

EMPC

ng/Kg

Matrix Dilution Extracted

2,3,7,8-TCDD-13C

n NA ed 10/2

Analyzed 10/30/ Injected By BAL

Solid NA

10/26/2016 15:55 10/30/2016 13:30

2.00

87

Internal	ng's	Percent		
Standards	Added	Recovery		
2,3,7,8-TCDF-13C	2.00	74		

Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	76
Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA

RL

ng/Kg

1.0

1.0

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

Conc

ng/Kg

ND

ND

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916018 Lab Sample ID 40140495001 Filename F161031A_09 Injected By BAL **Total Amount Extracted** 15.0 g % Moisture 35.8

Dry Weight Extracted 9.63 g ICAL ID F161011 CCal Filename(s) F161030B 16 Method Blank ID BLANK-52542

Solid Matrix Dilution NA Collected Received

Analyzed

10/19/2016 09:12 10/21/2016 09:30

10/26/2016 15:55 Extracted 10/31/2016 06:34

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	1.3		1.0 V	2,3,7,8-TCDF-13C	2.00	79
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	95
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
	•			Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	83

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916019 Lab Sample ID 40140495002 Filename F161031A_10 Injected By BAL

<u> ace Analytical</u>

Total Amount Extracted 12.8 g % Moisture 16.9 Dry Weight Extracted 10.6 g ICAL ID F161011

CCal Filename(s) F161030B 16 Method Blank ID BLANK-52542

Solid Matrix Dilution NA

Collected 10/19/2016 09:12 Received 10/21/2016 09:30 10/26/2016 15:55 Extracted Analyzed 10/31/2016 07:23

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		1.0	2,3,7,8-TCDF-13C	2.00	68
2,3,7,8-TCDD	ND		1.0	,	2.00	
2,3,7,6-1000	ND	41 4 0 to rector	1.0	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	74

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916021 Lab Sample ID 40140495003 Filename F161030B_09 Injected By BAL

Total Amount Extracted 20.4 g Matrix % Moisture Dilution 91.4 Dry Weight Extracted 1.75 g Collected

10/19/2016 09:37 10/21/2016 09:30 ICAL ID Received F161011 CCal Filename(s) 10/26/2016 15:55 Extracted F161030B 01 Method Blank ID BLANK-52542 Analyzed 10/30/2016 17:33

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	9.9		1.0 V	2,3,7,8-TCDF-13C	2.00	78
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	78

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected

NA = Not Applicable

Solid

NA

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

RL = Reporting Limit

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical[™]

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916022

Lab Sample ID 40140495004

Filename F161030B_10

Injected By BAL

Tatal Amount Extracted 20.0 c.

Total Amount Extracted 20.0 g
% Moisture 75.4

Dry Weight Extracted 4.92 g
ICAL ID F161011

 ICAL ID
 F161011

 CCal Filename(s)
 F161030B_01

 Method Blank ID
 BLANK-52542

Matrix Solid Dilution NA

Collected 10/19/2016 09:37
Received 10/21/2016 09:30
Extracted 10/26/2016 15:55
Analyzed 10/30/2016 18:22

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	11.0	~ = ==	1.0 V	2,3,7,8-TCDF-13C	2.00	80
2,3,7,8-TCDD	2.4		1.0	2,3,7,8-TCDD-13C	2.00	95
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	82

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

RL = Reporting Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916024
Lab Sample ID 40140495005
Filename F161030B_11
Injected By BAL
Total Amount Extracted 15.9 g

Total Amount Extracted15.9 gMatrixSolid% Moisture46.3DilutionNADry Weight Extracted8.54 gCollected10/19

 Dry Weight Extracted
 8.54 g
 Collected
 10/19/2016
 10:35

 ICAL ID
 F161011
 Received
 10/21/2016
 09:30

 CCal Filename(s)
 F161030B_01
 Extracted
 10/26/2016
 15:55

 Method Blank ID
 BLANK-52542
 Analyzed
 10/30/2016
 19:11

			~			
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	15.0		1.0 V	2,3,7,8-TCDF-13C	2.00	77
2,3,7,8-TCDD	2.1	er no e-valeo	1.0	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard	0.00	77
				2,3,7,8-TCDD-37Cl4	0.20	77

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916025

 Lab Sample ID
 40140495006

 Filename
 F161030B_12

 Injected By
 BAL

Total Amount Extracted 13.5 g Matrix Solid % Moisture 55.4 Dilution NA Dry Weight Extracted 6.02 g Collected 10/19

 Dry Weight Extracted
 6.02 g
 Collected
 10/19/2016
 10:35

 ICAL ID
 F161011
 Received
 10/21/2016
 09:30

 CCal Filename(s)
 F161030B_01
 Extracted
 10/26/2016
 15:55

 Method Blank ID
 BLANK-52542
 Analyzed
 10/30/2016
 20:00

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	71.0	WM-Ha	1.0 V	2,3,7,8-TCDF-13C	2.00	75
2,3,7,8-TCDD	9.3		1.0	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	75

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367095

Pace Analytical™

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID Lab Sample ID Filename Injected By

101916027 40140495007 F161030B_13

Total Amount Extracted % Moisture

Method Blank ID

BAL 20.4 g 91.9

Matrix Solid Dilution NA

Solid NA

Dry Weight Extracted ICAL ID CCal Filename(s)

1.65 g F161011 F161030B_01 BLANK-52542 Collected Received Extracted Analyzed

10/19/2016 12:09 10/21/2016 09:30 10/26/2016 15:55 10/30/2016 20:48

				7			
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery	
2,3,7,8-TCDF	7.2	William to the	1.8 AV	2,3,7,8-TCDF-13C	2.00	75	
2,3,7,8-TCDD	ND	40 TH 50 40 44	2.3 A	2,3,7,8-TCDD-13C	2.00	89	
			•	Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA	
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	4 0.20	76	

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

A = Reporting Limit based on signal to noise

R = Recovery outside target range E = Exceeds calibration range

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916028

 Lab Sample ID
 40140495008

 Filename
 F161030B_14

 Injected By
 BAL

 Total Amount Futracted
 47.5 mg/s

Total Amount Extracted 17.5 g
% Moisture 87.2
Dry Weight Extracted 2.24 g
ICAL ID F161011
CCal Filename(s) F161030B_01
Method Blank ID BLANK-52542

 Matrix
 Solid

 Dilution
 NA

 Collected
 10/19/2016 12:09

 Received
 10/21/2016 09:30

 Extracted
 10/26/2016 15:55

 Analyzed
 10/30/2016 21:37

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	1.8		1.0 J	2,3,7,8-TCDF-13C	2.00	79
2,3,7,8-TCDD	ND		1.0	2,3,7,8-TCDD-13C	2.00	. 98
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	86

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

RL = Reporting Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367095

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X =%D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916018

 Lab Sample ID
 40140495001

 Filename
 F161031A_09

 Injected By
 BAL

Total Amount Extracted 15.0 g Matrix Solid % Moisture 35.8 Dilution NA

9.63 g Dry Weight Extracted Collected 10/19/2016 09:12 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 06:34

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	1.3		0.16 V	2,3,7,8-TCDF-13C	2.00	79
2,3,7,8-TCDD		0.16	0.12 JJ	2,3,7,8-TCDD-13C	2.00	95
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	83

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

I = Interference present

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916019 Lab Sample ID 40140495002 Filename F161031A_10 Injected By BAL

Total Amount Extracted 12.8 g Matrix Solid % Moisture 16.9 Dilution NA

10.6 g Dry Weight Extracted Collected 10/19/2016 09:12 F161011 ICAL ID Received 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 07:23

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		0.13	2,3,7,8-TCDF-13C	2.00	68
2,3,7,8-TCDD	ND		0.14	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	74

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916021

 Lab Sample ID
 40140495003

 Filename
 F161030B_09

 Injected By
 BAL

Total Amount Extracted 20.4 g Matrix Solid % Moisture 91.4 Dilution NA

1.75 g Dry Weight Extracted Collected 10/19/2016 09:37 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 17:33

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	9.90		0.43 V	2,3,7,8-TCDF-13C	2.00	78
2,3,7,8-TCDD	0.97		0.63 J	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	78

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration
NA = Not Applicable
EDL = Estimated Detection Limit
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916022 Lab Sample ID 40140495004 Filename F161030B_10 Injected By BAL

Total Amount Extracted 20.0 g Matrix Solid % Moisture 75.4 Dilution NA

4.92 g Dry Weight Extracted Collected 10/19/2016 09:37 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 18:22

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	11.0		0.65 V	2,3,7,8-TCDF-13C	2.00	80
2,3,7,8-TCDD	2.4		0.50	2,3,7,8-TCDD-13C	2.00	95
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	82

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Matrix

Dilution

Solid

NA

 Client's Sample ID
 101916024

 Lab Sample ID
 40140495005

 Filename
 F161030B_11

 Injected By
 BAL

Total Amount Extracted 15.9 g % Moisture 46.3

8.54 g Dry Weight Extracted Collected 10/19/2016 10:35 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 19:11

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	15.0		0.44 V	2,3,7,8-TCDF-13C	2.00	77
2,3,7,8-TCDD	2.1		0.69	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	77

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected
EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable
EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916025 Lab Sample ID 40140495006 Filename F161030B_12 Injected By BAL

Total Amount Extracted Matrix Solid 13.5 g % Moisture 55.4 Dilution NA

6.02 g Dry Weight Extracted Collected 10/19/2016 10:35 ICÁL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 20:00

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	71.0		0.67 V	2,3,7,8-TCDF-13C	2.00	75
2,3,7,8-TCDD	9.3		0.86	2,3,7,8-TCDD-13C	2.00	90
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	75

NC = Not Calculated

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916027

 Lab Sample ID
 40140495007

 Filename
 F161030B_13

 Injected By
 BAL

Total Amount Extracted 20.4 g Matrix Solid % Moisture 91.9 Dilution NA

Dry Weight Extracted 1.65 g Collected 10/19/2016 12:09 ICÁL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 20:48

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	7.2		1.8 V	2,3,7,8-TCDF-13C	2.00	75
2,3,7,8-TCDD	ND		2.3	2,3,7,8-TCDD-13C	2.00	89
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	76

ND = Not Detected

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916028

 Lab Sample ID
 40140495008

 Filename
 F161030B_14

 Injected By
 BAL

Total Amount Extracted 17.5 g Matrix Solid % Moisture 87.2 Dilution NA

2.24 g Dry Weight Extracted Collected 10/19/2016 12:09 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 21:37

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	1.8		0.72 J	2,3,7,8-TCDF-13C	2.00	79
2,3,7,8-TCDD	ND		0.65	2,3,7,8-TCDD-13C	2.00	98
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	86

ND = Not Detected

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

EMPC = Estimated Maximum Possible Concentration NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Blank Analysis Results

Lab Sample ID Filename **Total Amount Extracted ICAL ID**

F161030B_04 10.1 g F161011 CCal Filename(s) F161030B_01

BLANK-52542

Matrix Solid Dilution NA Extracted

10/26/2016 15:55 Analyzed 10/30/2016 13:30

Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	ND		0.079	2,3,7,8-TCDF-13C	2.00	74
2,3,7,8-TCDD	ND		0.130	2,3,7,8-TCDD-13C	2.00	87
				Recovery Standard 1,2,3,4-TCDD-13C	2.00	NA
				Cleanup Standard 2,3,7,8-TCDD-37Cl4	0.20	76

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

R = Recovery outside target range

E = Exceeds calibration range

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCS-52543 Filename F161030B 02 **Total Amount Extracted** 10.1 g ICAL ID F161011 CCal Filename Method Blank ID

F161030B 01 BLANK-52542

Solid Matrix Dilution NA

Extracted 10/26/2016 15:55 Analyzed 10/30/2016 11:54

Injected By **BAL**

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF	10	11	8.0	14.7	105
2,3,7,8-TCDD	10	8.3	7.3	14.6	83
2,3,7,8-TCDD-37Cl4	10	8.1	3.7	15.8	81
2,3,7,8-TCDF-13C	100	81	26.0	126.0	81
2,3,7,8-TCDD-13C	100	94	25.0	141.0	94

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

* = See Discussion

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCSD-52544 Filename F161030B 03 **Total Amount Extracted** 10.1 g ICAL ID F161011 CCal Filename

F161030B 01 BLANK-52542

Solid Matrix Dilution NA

10/26/2016 15:55 Extracted Analyzed 10/30/2016 12:41

Injected By **BAL**

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.	
2,3,7,8-TCDF	10	11	8.0	14.7	109	
2,3,7,8-TCDD	10	8.0	7.3	14.6	80	
2,3,7,8-TCDD-37Cl4	10	7.7	3.7	15.8	77	
2,3,7,8-TCDF-13C	100	73	26.0	126.0	73	
2,3,7,8-TCDD-13C	100	88	25.0	141.0	88	

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

Method Blank ID

^{* =} See Discussion

Method 1613B

Spike Recovery Relative Percent Difference (RPD) Results

Client **PACE Wisconsin**

Spike 1 ID LCS-52543 Spike 2 ID LCSD-52544 Spike 1 Filename F161030B_02 Spike 2 Filename F161030B_03

Compound	Spike 1 %REC	Spike 2 %REC	%RPD	
2,3,7,8-TCDF	105	109	3.7	
2,3,7,8-TCDD	83	80	3.7	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Brian Basten **PACE Wisconsin** 1241 Bellevue Street Suite 9 Green Bay WI 54302

> **REPORT OF LABORATORY ANALYSIS FOR** PCDD/PCDF

Report Information:

Pace Project #: 10367411

Sample Receipt Date: 10/25/2016

Client Project #: 40140634

Client Sub PO #: N/A State Cert #: 999407970

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

lyne haut

Carolynne Trout, Project Manager

(612) 607-6351

(612) 607-6444 (fax)

Carolynne.Trout@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

December 22, 2016

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on six samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzo-furans (PCDFs) using USEPA Method 1613B. The reporting limits were based on signal-to-noise measurements. Estimated Maximum Possible Concentrations (EMPCs) were treated as positives in the toxic equivalence calculations. Method blank and field sample results presented with reporting limits set to correspond to the lowest calibration points and a nominal 10-gram sample amount were included at the end of Appendix A. This report was revised to provide results for all tetra through octa-chlorinated PCDDs and PCDFs.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 52-97%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J" and should be regarded as estimates.

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank to contain trace levels of selected congeners. These levels were below the calibration range of the method. The concentrations reported for the affected congeners in the field samples were higher than the corresponding blank concentrations by one or more orders of magnitude. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

A laboratory spike sample was also prepared using clean reference matrix that had been fortified with native standards. The recoveries of the native compounds ranged from 88-124%. These results were within the target ranges for the method. Matrix spikes were prepared with the sample batch using sample material from a separate project; results from these analyses will be provided upon request.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Mississippi	MN00064
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	NE-OS-18-06
Arizona	AZ0014	Nevada	MN_00064_200
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New York (NEL	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Oklahoma	D9922
Georgia (DNR)	959	Oregon (ELAP)	MN200001-005
Guam	959	Oregon (OREL	MN300001-001
Hawaii	SLD	Pennsylvania	68-00563
Idaho	MN00064	Puerto Rico	MN00064
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennessee	TN02818
Iowa	368	Texas	T104704192-08
Kansas	E-10167	Utah (NELAP)	MN00064
Kentucky	90062	Virginia	00251
Louisiana	03086	Washington	C755
Maine	2007029	West Virginia #	9952C
Maryland	322	West Virginia D	382
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367411

Appendix A

Sample Management

Chain of Custody

10367411

Pace Analytical *

Workorder: 40140634 Workorder Name: 2381 MILITARY CREEK						0	Owner Received Date: 10/21/2016 Results Requested By: 11/4/201					11/4/2016								
Repo	rt To			Subcontrac	tio system		a da		1238.7				- ≥ Red	wester	Anal	ysis :	4000	it desir	a desir di	
Pace 1241 Suite	Bellevi	n cal Green Bay ue Street M 54302	Pace Analytical Minnesota 1700 Elm Street SE Suite 200 Minneapolis, MN 55414 Phone (612)607-1700					served.	Contaiñ		CDD and TCDF									
Item	Sampl	eD	Sample Type	Collect - Date/Time	Lab'iĎ	Matrix	Lhpreserved				1631B T									LAB USE ONLY
1	1020160	30	PS	10/20/2016 09:36	40140634001	Solid	1				Х									6 I
2	1020160	131	PS	10/20/2016 09:36	40140634002	Solid	1			1	Х			T_{-}						್ಷಾರಿ
3	1020160	132	PS	10/20/2016 10:12	40140634003	Solid	1				X									<i>₩</i> 3
4	1020160)33	RQS	10/20/2016 10:12	40140634004	Solid	1				Х							<u> </u>		w 4
5	1020160	35	PS	10/20/2016 11:25	40140634005	Solid	1				X			1_						~ <u>~</u>
6	1020160		PS	10/20/2016 11:25	40140634006	Solid	1 1				X	1 1 1 2 2 2 2 2								166
	共和分 型	•					四、 秦州	river i			**************************************				PER C	Cor	nment	S e gy		
Trans	sters	Released By		Date/Time	Received B		7			te/Tim										
1		allega		10/30/16	100	(N)	L 19TC	ا ع	-25-4	ا ب	120									
2						·														
3		<u> </u>	— v3 r2	,		<u> </u>		_				()								
Coo	ler Ter	nperature on Recei	pt	°C Cus	tody Seal 💍	or N	•	R	eceive	ed o <u>n</u>	Ice	Ø) or	· N			Sai	mples	inta	ict 🛭	or <u>N</u>

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

This chain of custody is considered complete as is since this information is available in the owner laboratory.

Document Name: Sample Condition Upon Receipt Form

Document Revised: 02Aug2016
Page 1 of 2
Issuing Authority:

Document No.: F-MN-L-213-rev.17 Pace Minnesota Quality Office Sample Condition **Client Name:** Project #: MO#:10367411 **Upon Receipt** Pace 613 Courier: UPS USP\$ □Client Dother: Walto Commercial Pace SpeeDee Tracking Number: Optional: Proj. Due Date: Proj. Name: Yes Seals Intact? No Custody Seal on Cooler/Box Present? Bubble Bags Packing Material: Bubble Wrap Temp Blank? Yes □No Other Thermometer 7 151401163 B88A912167504 ☑Wet Blue None Samples on Ice, cooling process has begun Used: **151401164** B88A0143310098 3.6 Cooler Temp Read (°C): Biological Tissue Frozen? Yes No Cooler Temp Corrected (°C): Correction Factor: 12.2 Temp should be above freezing to 6°C Date and Initials of Person Examining Contents: 10-25-16 AT USDA Regulated Soil (N/A, water sample) Did samples originate in a quarantine zone within the United States: AL, AR, AZ, CA, FL, GA, ID, LA, Did samples originate from a foreign source (internationally, ZNo MS, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)? Yes including Hawail and Puerto Rico)? ZNo if Yes to either question, fill out a Regulated Soil Checklist (F-MN-Q-338) and include with SCUR/COC paperwork. COMMENTS: Chain of Custody Present? Yes □No □N/A 1. Chain of Custody Filled Out? **⊿**Yes □No □N/A Chain of Custody Relinquished? ✓ Yes □No 3, □N/A Sampler Name and/or Signature on COC? ÆNo □N/A 4. Samples Arrived within Hold Time? □No □N/A 5. Short Hold Time Analysis (<72 hr)? **⊠**No Yes □N/A 6. ZNo Rush Turn Around Time Requested? ☐|Yes □N/A 7. Sufficient Volume? **☑**Yes □No □N/A 8, Correct Containers Used?" **⊠**Yes □No □N/A 9. -Pace Containers Used? □No □N/A Containers Intact? ∏No □N/A 10. Filtered Volume Received for Dissolved Tests? □N/A Yes □No. 11. Note if sediment is visible in the dissolved container Sample Labels Match COC? **Z**Yes □No □N/A 12. -Includes Date/Time/ID/Analysis Matrix: All containers needing acid/base preservation have been ☐HNO₃ ☐H₂SO₄ □NaOH 13. checked? Yes □No Øn/a All containers needing preservation are found to be in Sample # compliance with EPA recommendation? (HNO3, H2SO4, HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) Yes □No Exceptions: VOA, Coliform, TOC, Oil and Grease, Initial when Lot # of added DRO/8015 (water) DOC □Yes □No completed: preservative: Headspace in VOA Vials (>5mm)? Yes □ No 14. Trip Blank Present? 15. ☐ Yes [⊒Ñ/A Trip Blank Custody Seals Present? □No **☑**N/A Yes Pace Trip Blank Lot # (if purchased):

CLIENT NOTIFICATION/RESO	LUTION			Field Data Requ	uired? 🔲 Yes 🔲 No
Person Contacted:		Date	/Time:		
Comments/Resolution:					
					, , , , , , , , , , , , , , , , , , , ,
Project Manager Review:	Scott Una.		Date:	10/25/16	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).

Method 1613B Blank Analysis Results

Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52586 U161101B_12 20.2 g

U161025 U161101B_03 Matrix Dilution

Solid NA

Extracted Analyzed

10/28/2016 19:00 11/01/2016 23:24

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 96 73
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDD-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	73 91 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,6-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	72 70 77 85 83
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	71 85 93
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		5.0 5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	101 88 NA
Total HxCDF	ND		5.0	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.00 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND ND		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No....10367411

Solid

NA

ace Analytica

Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Matrix

Dilution

Client's Sample ID 102016030 Lab Sample ID 40140634001 Filename U161201A_04 Injected By SMT

29.3 g Total Amount Extracted % Moisture 92.2

2.29 g Dry Weight Extracted Collected 10/20/2016 09:36 ICAL ID U161025 Received 10/25/2016 11:20 CCal Filename(s) U161130B_15 Extracted 10/28/2016 19:00 Method Blank ID 12/01/2016 20:01 BLANK-52586 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.5 3.8		1.0 J 1.0 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	83 97 85
2,3,7,8-TCDD Total TCDD	ND 1.0		1.0 1.0 J	1,2,3,7,6-FeGDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	84 97 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	Difference of the second	5.0 5.0 5.0	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	75 82 84 86
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	69 70 82
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND ND 8.3		5.0 5.0 5.0 5.0 5.0 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 4.00 2.00 2.00	85 79 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	100
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	10.0 ND 35.0		5.0 J 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.79 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	27.0 44.0	*****	5.0 5.0			
OCDF OCDD	29.0 230.0		10.0 J 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

REPORT OF LABORATORY ANALYSIS

Report No....10367411 This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical[™]

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 102016031

 Lab Sample ID
 40140634002

 Filename
 U161201A_05

 Injected By
 SMT

Total Amount Extracted 18.1 g
% Moisture 88.2
Dry Weight Extracted 2.14 g

 Dry Weight Extracted
 2.14 g

 ICAL ID
 U161025

 CCal Filename(s)
 U161130B_15

 Method Blank ID
 BLANK-52586

Matrix Solid Dilution NA

Collected 10/20/2016 09:36 Received 10/25/2016 11:20 Extracted 10/28/2016 19:00 Analyzed 12/01/2016 20:47

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.1 1.1	100 had the cap has	1.0 J 1.0 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00 2.00	78 92 82
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	80 93 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	B	5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	79 74 57 84 76
1,2,3,7,8-PeCDD Total PeCDD	ND ND	The web dark for man	5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 69 79
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		5.0 5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	82 80 NA
Total HxCDF	ND	= 3 3 →	5.0	1,2,3,7,8,9-HxCDD-13C	2.00	NA os
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	96
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.13 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND 13.0		10.0 10.0 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367411

Pace Analytical[™]

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016032 Lab Sample ID 40140634003 Filename U161201A_06 Injected By SMT

Total Amount Extracted 24.6 g Matrix Solid % Moisture 90.6 Dilution NA

Dry Weight Extracted 2.31 g Collected 10/20/2016 10:12 U161025 ICAL ID Received 10/25/2016 11:20 CCal Filename(s) U161130B 15 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 12/01/2016 21:33

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.4 9.9		1.0 J 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 90 80
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	78 92 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	76 71 54 81 77
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	60 65 77
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		5.0 5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	77 79 73 NA
Total HxCDF	9.1		5.0 J	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37CI4	0.20	92
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	12.0 ND 42.0	*****	5.0 J 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 1.0 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	39.0 64.0		5.0 5.0			
OCDF OCDD	34.0 370.0		10.0 J 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

NC = Not Applicable

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No....10367411

<u> Pace Analytical</u>

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016033 Lab Sample ID 40140634004 Filename U161201A_07 Injected By SMT 18.3 g **Total Amount Extracted**

% Moisture 87.8 2.23 g Dry Weight Extracted ICAL ID U161025

CCal Filename(s) U161130B_15 Method Blank ID **BLANK-52586** Matrix Solid Dilution NA

Collected 10/20/2016 10:12 Received 10/25/2016 11:20 Extracted 10/28/2016 19:00 12/01/2016 22:20 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.4 2.6		1.0 J 1.0 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 84 77
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	74 87 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 68 52 75 78
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	59 62 73
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND	 	5.0 5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	75 71 NA
Total HxCDF	5.3	**************************************	5.0 J	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	7.1 ND 24.0		5.0 J 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.67 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	20.0 35.0		5.0 J 5.0			
OCDF OCDD	27.0 230.0		10.0 J 10.0	•		

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable NC = Not Calculated

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10367411

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID Lab Sample ID Filename

<u> ace Analytical</u>

102016035 40140634005

Injected By **Total Amount Extracted** U161201A_08 SMT 23.3 g

% Moisture Dry Weight Extracted 90.3 2.26 g U161025 Matrix Dilution Solid NA

ICAL ID CCal Filename(s) Method Blank ID

U161130B 15 BLANK-52586 Collected Received Extracted Analyzed

10/20/2016 11:25 10/25/2016 11:20 10/28/2016 19:00 12/01/2016 23:06

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.2 2.3	******	1.0 J 1.0 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	79 93 84
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	81 94
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	82 75 59 85 74
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	65 66 78
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		5.0 5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	76 81 75 NA
Total HxCDF	ND		5.0	1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	99
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND	# 64 W. W.	5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.14 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND 29.0	4m 200 6m 6m 5m	10.0 10.0 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No....10367411

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 102016036 Lab Sample ID 40140634006 Filename U161201A_09 Injected By SMT

Total Amount Extracted 15.2 g Matrix Solid % Moisture 85.5 Dilution NA

Dry Weight Extracted 2.20 g Collected 10/20/2016 11:25 ICAL ID U161025 Received 10/25/2016 11:20 CCal Filename(s) U161130B_15 Extracted 10/28/2016 19:00 Method Blank ID 12/01/2016 23:52 BLANK-52586 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.3 2.4		1.0 J 1.0 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	78 92 81
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	79 92 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	79 74 62 82 80
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	68 64 73
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		5.0 5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	77 62 NA
Total HxCDF	ND		5.0	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	92
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.13 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND ND		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

RL = Reporting Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X =%D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 102016030

 Lab Sample ID
 40140634001

 Filename
 U161201A_04

 Injected By
 SMT

Total Amount Extracted 29.3 g Matrix Solid % Moisture 92.2 Dilution NA

2.29 g Dry Weight Extracted Collected 10/20/2016 09:36 U161025 ICAL ID Received 10/25/2016 11:20 CCal Filename(s) U161130B_15 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 12/01/2016 20:01

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.50 6.20		0.32 J 0.32	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	83 97 85
2,3,7,8-TCDD Total TCDD	ND 1.00		0.36 0.36 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	84 97 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.62 5.20		0.31 0.23 J 0.27 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	75 82 84 86
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.45 0.45	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	69 70 82
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.40 0.71	0.52 	0.38 J 0.38 J 0.30 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	85 79
1,2,3,7,8,9-HxCDF Total HxCDF	0.47 16.00		0.35 J 0.35 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.55 1.40 0.64 7.80		0.21 J 0.27 J 0.26 J 0.25 J	2,3,7,8-TCDD-37Cl4	0.20	100
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	10.00 1.10 36.00	 	0.28 J 0.47 J 0.38	Total 2,3,7,8-TCDD Equivalence: 1.7 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	27.00 44.00		0.37 0.37			
OCDF OCDD	29.00 230.00		0.23 J 0.27			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Matrix

Dilution

Solid

NA

Client's Sample ID 102016031 Lab Sample ID 40140634002 Filename U161201A_05 Injected By SMT

Total Amount Extracted 18.1 g
% Moisture 88.2

2.14 g Dry Weight Extracted Collected 10/20/2016 09:36 U161025 ICAL ID Received 10/25/2016 11:20 CCal Filename(s) U161130B_15 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 12/01/2016 20:47

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.10 1.80		0.29 J 0.29 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	78 92 82
2,3,7,8-TCDD Total TCDD	ND ND		0.28 0.28	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	80 93 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.91		0.49 0.24 0.36 J	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	74 57 84 76
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.23 0.23	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 69 79
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.23 ND ND		0.18 J 0.17 0.22	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	82 80
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.23		0.16 0.18 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 0.85	 	0.26 0.29 0.26 0.27 J	2,3,7,8-TCDD-37Cl4	0.20	96
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	 ND 1.30	0.70 	0.25 JJ 0.29 0.27 J	Total 2,3,7,8-TCDD Equivalence: 0.18 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	2.00 4.10		0.33 J 0.33 J			
OCDF OCDD	13.00	1.70 	0.42 J 0.57 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 102016032

 Lab Sample ID
 40140634003

 Filename
 U161201A_06

 Injected By
 SMT

Total Amount Extracted 24.6 g Matrix Solid % Moisture 90.6 Dilution NA

Dry Weight Extracted 2.31 g Collected 10/20/2016 10:12 U161025 ICAL ID Received 10/25/2016 11:20 CCal Filename(s) U161130B_15 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 12/01/2016 21:33

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.40 10.00		0.33 J 0.33	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 90 80
2,3,7,8-TCDD Total TCDD	ND ND		0.41 0.41	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	78 92 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.73 2.20		0.55 0.31 J 0.43 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	71 54 81
1,2,3,7,8-PeCDD Total PeCDD	ND 1.00		0.42 0.42 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	77 60 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.50 1.10	0.73	0.32 J 0.25 J 0.27 J	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	77 79 73
1,2,3,7,8,9-HxCDF Total HxCDF	0.71 18.00		0.27 J 0.28 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.10 0.92 10.00	0.46 	0.24 J 0.37 J 0.24 J 0.28 J	2,3,7,8-TCDD-37Cl4	0.20	92
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	12.00 42.00	1.30 	0.19 J 0.35 J 0.27	Total 2,3,7,8-TCDD Equivalence: 2.2 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	39.00 64.00		0.48 0.48			
OCDF OCDD	34.00 370.00		0.36 J 0.51			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

EDL = Estimated Detection Limit

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 102016033

 Lab Sample ID
 40140634004

 Filename
 U161201A_07

 Injected By
 SMT

Total Amount Extracted 18.3 g Matrix Solid % Moisture 87.8 Dilution NA

2.23 g Dry Weight Extracted Collected 10/20/2016 10:12 U161025 ICAL ID Received 10/25/2016 11:20 CCal Filename(s) U161130B_15 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 12/01/2016 22:20

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.40 3.20		0.28 J 0.28 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	72 84 77
2,3,7,8-TCDD Total TCDD	ND 0.99		0.60 0.60 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	74 87 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.65 4.10		0.48 0.22 J 0.35 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	68 52 75 78
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.35 0.35	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	76 59 62 73
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.87 0.52 ND		0.37 J 0.30 J 0.26	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	75 71
1,2,3,7,8,9-HxCDF Total HxCDF	ND 10.00		0.26 0.30 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.82 0.40 4.50		0.24 0.29 J 0.36 J 0.30 J	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	7.10 24.00	0.60 	0.21 J 0.32 J 0.26	Total 2,3,7,8-TCDD Equivalence: 1.3 ng/Kg (Lower-bound - Using ITE Factoria)	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	20.00 35.00		0.29 J 0.29			
OCDF OCDD	27.00 230.00		0.49 J 0.53			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 102016035

 Lab Sample ID
 40140634005

 Filename
 U161201A_08

 Injected By
 SMT

Total Amount Extracted 23.3 g Matrix Solid % Moisture 90.3 Dilution NA

2.26 g Dry Weight Extracted Collected 10/20/2016 11:25 U161025 ICAL ID Received 10/25/2016 11:20 CCal Filename(s) U161130B_15 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 12/01/2016 23:06

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.2 3.6		0.30 J 0.30 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	79 93 84
2,3,7,8-TCDD Total TCDD	ND ND		0.34 0.34	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	81 94 82
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.45 0.25 0.35	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	75 59 85 74
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.30 0.30	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	65 66 78
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		0.21 0.23 0.28 0.27	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	81 75 NA
Total HxCDF	ND		0.25	1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.27 0.29 0.26 0.27	2,3,7,8-TCDD-37Cl4	0.20	99
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.0 ND 2.8		0.25 J 0.32 0.28 J	Total 2,3,7,8-TCDD Equivalence: 0.19 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	3.6 6.5		0.33 J 0.33 J			
OCDF OCDD	2.6 29.0		0.47 J 0.38 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 102016036

 Lab Sample ID
 40140634006

 Filename
 U161201A_09

 Injected By
 SMT

Total Amount Extracted 15.2 g Matrix Solid % Moisture 85.5 Dilution NA

2.20 g Dry Weight Extracted Collected 10/20/2016 11:25 U161025 ICAL ID Received 10/25/2016 11:20 CCal Filename(s) U161130B_15 Extracted 10/28/2016 19:00 Method Blank ID BLANK-52586 Analyzed 12/01/2016 23:52

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.30 3.60		0.27 J 0.27 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	78 92 81
2,3,7,8-TCDD Total TCDD	ND 0.52		0.34 0.34 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	79 92 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.34 0.22 0.28	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	74 62 82
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.26 0.26	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	80 68 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.16 0.16 0.22	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	73 77 62
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.23 0.19	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.32 0.32 0.25 0.30	2,3,7,8-TCDD-37Cl4	0.20	92
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.47 ND 0.47		0.21 J 0.24 0.22 J	Total 2,3,7,8-TCDD Equivalence: 0.16 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.00 2.40		0.29 J 0.29 J			
OCDF OCDD	6.20	0.66	0.52 J 0.92 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Blank Analysis Results

Lab Sample ID Filename Total Amount Extracted

ICAL ID

CCal Filename(s)

BLANK-52586 U161101B_12 20.2 g U161025

U161101B_03

Matrix Dilution Extracted

Analyzed

NA 10/28/2016 19:00 11/01/2016 23:24

Solid

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.033 0.033	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 96 73
2,3,7,8-TCDD Total TCDD	ND ND		0.054 0.054	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	73 91 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.067 0.036 0.051	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	70 77 85 83
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.053 0.053	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	71 85 93
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.031 0.030 0.028	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	101 88
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.025 0.029	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.038 0.034 0.024 0.032	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.027 ND 0.027		0.021 J 0.024 0.023 J	Total 2,3,7,8-TCDD Equivalence: 0.0010 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.057 0.057		0.019 J 0.019 J			
OCDF OCDD	ND 	0.17	0.051 0.047 JJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCS-52587
Filename U161101B_08
Total Amount Extracted 20.0 g
ICAL ID U161025

CCal Filename U161101B_03 Method Blank ID BLANK-52586 Matrix Solid
Dilution NA
Extracted 10/28

Extracted 10/28/2016 19:00 Analyzed 11/01/2016 20:19

Injected By SMT

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 100 100	10 8.8 51 55 50 55 53 53 53 53 62 59 56 51 100 110	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 61.0 69.0 70.0 170.0	102 88 101 110 99 110 106 107 107 106 124 117 112 102 101 101 101
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 1,2,3,7,8-PeCDF-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	10 100 100 100 100 100 100 100 100 100	8.8 72 92 74 71 87 71 72 75 83 85 68 84 90 100 170	3.1 22.0 20.0 21.0 13.0 21.0 19.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	88 72 92 74 71 87 71 72 75 83 85 68 84 90 101 84

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

* = See Discussion

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Brian Basten **PACE Wisconsin** 1241 Bellevue Street Suite 9 Green Bay WI 54302

> **REPORT OF LABORATORY ANALYSIS FOR** PCDD/PCDF

Report Information:

Pace Project #: 10367095

Sample Receipt Date: 10/21/2016

Client Project #: 40140495

Client Sub PO #: N/A State Cert #: 999407970

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

lyne haut

Carolynne Trout, Project Manager

(612) 607-6351 (612) 607-6444 (fax)

Carolynne.Trout@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

December 29, 2016

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on eight samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) using USEPA Method 1613B. The reporting limits were based on signal-to-noise measurements. Estimated Maximum Possible Concentrations (EMPCs) were treated as positives in the toxic equivalence calculations. Method blank and field sample results presented with reporting limits set to correspond to the lowest calibration points and a nominal 10-gram sample amount were included at the end of Appendix A. "Revision 1" of this report was prepared to include results for 2,3,7,8-TCDF. The current revision was prepared to provide results for all tetra through octa-chlorinated PCDDs and PCDFs.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 48-98%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained or "P" where polychlorinated diphenyl ethers were present. Concentrations below the calibration range were flagged "J" and should be regarded as estimates. Concentrations above the calibration range were flagged "E" and should also be regarded as estimates. Values obtained from analyses of diluted extracts were flagged "D". Values obtained from separate analyses were flagged "N2". In sample 101916027, due to the high moisture content, the estimated detection limit (EDL) values were above the standard reporting limits; therefore, the EDLs were provided and flagged "A" on the results table in Appendix A. The values reported for 2,3,7,8-TCDF that were above the lowest calibration point were verified by second column confirmation analyses and flagged "V".

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show that PCDDs and PCDFs were not detected. These results indicate that the sample processing steps did not contribute significantly to the levels reported for the field samples.

Laboratory spike samples were also prepared using clean reference matrix that had been fortified with native standard materials. The recoveries of the native compounds ranged from 80-120% with relative percent differences of 0.9-5.8%. These results were within the target ranges for the method. Matrix spikes were not prepared with the sample batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Mississippi	MN00064
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	NE-OS-18-06
Arizona	AZ0014	Nevada	MN_00064_200
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New York (NEL	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Oklahoma	D9922
Georgia (DNR)	959	Oregon (ELAP)	MN200001-005
Guam	959	Oregon (OREL	MN300001-001
Hawaii	SLD	Pennsylvania	68-00563
Idaho	MN00064	Puerto Rico	MN00064
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennessee	TN02818
Iowa	368	Texas	T104704192-08
Kansas	E-10167	Utah (NELAP)	MN00064
Kentucky	90062	Virginia	00251
Louisiana	03086	Washington	C755
Maine	2007029	West Virginia #	9952C
Maryland	322	West Virginia D	382
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367095

Appendix A

Sample Management

Chain of Custody

Pace Analytical "
10347095

Wor	korder	: 40140495 W or	korder N	lame:2381/2 M	IILITARY CRE	EK			Owner Received Date: 10/20/2016 Results Requested By: 11/				11/3/2016								
Repo	rt To			Subcontrac	tilo en en en en		V1.(8)				ee gr		VIII (S.)	Re	veste	dAna	lysis :	HEALE	建筑 处	12.14	建设建筑设施
Pace 1241 Suite	Bellevi 9	n cal Green Bay ue Street M 54302		1700 E Suite 2 Minne	Analytical Minne Elm Street SE 200 apolis, MN 554 (612)607-1700	14		reserve	nos 6	L ainei		2378 TCDD									
Item	Sampl	elD (1975)	Sample Type	为2000000000000000000000000000000000000	Lab ID	Matrix	Unpreserved					1631B 2									LAB USE ONLY
1	1019160	18	PS	10/19/2016 09:12	40140495001	Solid	1					X									<i>∞</i> (
2	1019160	19	PS	10/19/2016 09:12	40140495002	Solid	1					X									002
3	1019160	21	PS	10/19/2016 09:37	40140495003	Solid	1					x			Т						003
4	1019160	22	PS	10/19/2016 09:37	40140495004	Solid	1					X									204
5	1019160	24	PS	10/19/2016 10:35	40140495005	Solid	1					X									005
6	1019160	25	PS	10/19/2016 10:35	40140495006	Solid	1					X							\prod		006
7	1019160	27	P\$	10/19/2016 12:09	40140495007	Solid	1					X							IT		d07
8	1019160	28	PS	10/19/2016 12:09	40140495008	Solid	1		L.			Х									009
MAKE.							100				1,425	20					Cor	nments		15	
Trans	sters	Released By		Date/Time	Received B	У 🤝				Date											
1		BU STEEN 900C		NO JOURNAL	$ \phi\rangle$	1-10	Ties	2		10/2	1116	934)								
2)																			
3							•			<u> </u>											
Coo	ler Ten	nperature on Receipt	<u>(67)</u>	°C Cus	tody Seal <u>/ Y</u>	or N	<u> </u>		Rece	eived	on	lce/	<u>Υ οι</u>	N			Sa	nples	Intac	<u>Cy</u>	or N

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

This chain of custody is considered complete as is since this information is available in the owner laboratory.

Pace Analytical*

Document Name: Sample Condition Upon Receipt Form

Document No.: F-MN-1-213-rev.17 Document Revised: 02Aug2016 Page 1 of 2

Issuing Authority: Pace Minnesota Quality Office

Sample Condition Upon Receipt Client Name:		Project	# WO#:10367095
Courier: Fed Ex UPS Commercial Pace Spec		Client	10367095
Custody Seal on Cooler/Box Present? Yes	□No Se	als Intact? 🍴	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap	ble Bags None	Other:	Temp Blank? Yes No
	912167504 Type o	of ice: HWe	et Blue None Samples on ice, cooling process has begu
Cooler Temp Read (°C): Cooler Temp Should be above freezing to 6°C Correct SDA Regulated Soil (N/A, water sample) id samples originate in a quarantine zone within the 1S, NC, NM, NY, OK, OR, SC, TN, TX or VA (check materials)	e United States: AL, AR, ps)?	7 Da , AZ, CA, FL, GA, □Yes	Biological Tissue Frozen? Yes No NA te and initials of Person Examining Contents: ID, LA. Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? Yes No-Q-338) and include with SCUR/COC paperwork.
The state of the s	THE DESCRIPTION OF THE PERSON OF	TICOMISC (1 11111	COMMENTS:
Chain of Custody Present?	* Tyes	□no □n/a	1.
Chain of Custody Filled Out?	<u> </u>	□No □N/A	2.
Chain of Custody Relinquished?	3/	□No □N/A	3.
ampler Name and/or Signature on COC?		□No ĎĺŃ/A	
amples Arrived within Hold Time?	b	□No □N/A	5.
hort Hold Time Analysis (<72 hr)?		ĎNo □N/A	6.
ush Turn Around Time Requested?		Ño □N/A	7.
ufficient Volume?		□No □N/A	8.
orrect Containers Used?	***************************************	□No □N/A	9,
-Pace Containers Used?	<u>.</u> .	□No □N/A	
ontainers Intact?	Δ.	□No □N/A	10.
iltered Valume Received for Dissolved Tests?		□no ĎÑ/A	11. Note if sediment is visible in the dissolved container
ample Labels Match COC?	A -	□N₀ □N/A	12.
-Includes Date/Time/ID/Analysis Matrix: All containers needing acid/base preservation have	<u>- 70 </u>		
the containers needing actor base preservation have thecked? All containers needing preservation are found to be compliance with EPA recommendation?	∐Yes [□no Ūn/A	13. ☐HNO₃ ☐H₂SO₄ ☐NaOH ☐HCI Sample #
HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH >9 Sulfide, NaOH>12 Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC		AND OND	Initial when Lot # of added completed: preservative:
leadspace in VOA Vials (>6mm)?		□NO BNA	14.
rip Blank Present?		□No □N/A	15,
rip Blank Custody Seals Present?		□no B iva	
ace Trip Blank Lot # (if purchased):			
CLIENT NOTIFICATION/RESOLUTION			Field Data Required? Yes No
erson Contacted:			Date/Time:
'a	V-1		
Project Manager Review:	Scott Unge		Date: 10/24/16 his form will be sent to the North Carolina DEHNR Certification Office (i.e. or

hold, incorrect preservative, out of temp, incorrect containers).

Method 1613B Blank Analysis Results

Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52542 F161030B_04 10.1 g

F161011 F161030B_01 Matrix Dilution

Solid NA

Extracted Analyzed 10/26/2016 15:55 10/30/2016 13:30

Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00 2.00	74 87 78
2,3,7,8-TCDD Total TCDD	ND ND	*****	1.0 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	71 80
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	78 82 83 83 75
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	68 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		5.0 5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	62 77 50 NA
Total HxCDF	ND		5.0	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.00 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND ND		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367095

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916018

Lab Sample ID 40140495001

Filename F161031A_09

Injected By BAL

Tetal Amount Extracted 15 0 c

Total Amount Extracted 15.0 g Matrix Solid % Moisture 35.8 Dilution NA

Dry Weight Extracted 9.63 g Collected 10/19/2016 09:12 10/21/2016 09:30 ICAL ID F161011 Received CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID **BLANK-52542** 10/31/2016 06:34 Analyzed

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.3 18.0		1.0 V 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	79 95 74
2,3,7,8-TCDD Total TCDD	ND 2.7		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	69 81 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	8.0 15.0 210.0		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	76 85 86 84 78
1,2,3,7,8-PeCDD Total PeCDD	ND 15.0		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	79 71 75
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	58.0 24.0 25.0 20.0		5.0 5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	95 66 NA
Total HxCDF	970.0		5.0	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	10.0 65.0 25.0 310.0		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	580.0 52.0 2500.0		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 72 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	1600.0 2700.0	****	5.0 5.0			
OCDF OCDD	2300.0 17000.0		10.0 10.0 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

Report No.....10367095

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916019 Lab Sample ID 40140495002 Filename F161031A_10 Injected By BAL **Total Amount Extracted** 12.8 g Matrix Solid % Moisture 16.9 Dilution NA Collected 10/19/2016 09:12 Dry Weight Extracted 10.6 g 10/21/2016 09:30 ICAL ID F161011 Received CCal Filename(s) Extracted 10/26/2016 15:55 F161030B_16 Method Blank ID **BLANK-52542** Analyzed 10/31/2016 07:23

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	68 87 68
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	63 74 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,6,7,8-HXCDF-13C 1,2,3,6,7,8-HXCDF-13C 2,3,4,6,7,8-HXCDF-13C 1,2,3,7,8,9-HXCDF-13C 1,2,3,4,7,8-HXCDD-13C	2.00 2.00 2.00 2.00 2.00	72 74 73 72
1,2,3,7,8-PeCDD Total PeCDD	ND ND	and the har days	5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	67 61 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		5.0 5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	78 48 NA
Total HxCDF	ND		5.0	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND 13		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.25 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	11 20		5.0 5.0			
OCDF OCDD	16 120		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

<u> Pace Analytical</u>

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No....10367095

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916021 Lab Sample ID 40140495003 Filename F161030B_09 Injected By BAL

<u> Pace Analytical</u>

Total Amount Extracted 20.4 g Matrix Solid % Moisture 91.4 Dilution NA

Dry Weight Extracted Collected 10/19/2016 09:37 1.75 g ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 17:33

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	9.9 89.0	42 \$4 \$4 \$4 \$4	1.0 V 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00	78 90 76
2,3,7,8-TCDD Total TCDD	ND 12.0		1.0 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	73 79
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	41.0 93.0 1100.0		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	78 78 81 82 74
1,2,3,7,8-PeCDD Total PeCDD	15.0 96.0		5.0 J 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00	69 63 68
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	290.0 110.0 130.0		5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	81 62
1,2,3,7,8,9-HxCDF Total HxCDF	110.0 4800.0		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	48.0 340.0 110.0 1400.0		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2600.0 210.0 11000.0		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 360 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	7800.0 13000.0		5.0 5.0			
OCDF OCDD	9600.0 73000.0		10.0 10.0 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

shall not be reproduced, except in full,

Report No.....10367095

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916022
Lab Sample ID 40140495004
Filename F161030B_10
Injected By BAL
Total Amount Extracted 20.0 g
% Moisture 75.4
Dry Weight Extracted 4.92 g

ICAL ID F161011

CCal Filename(s) F161030B_01

Method Blank ID BLANK-52542

Matrix Solid Dilution NA

Collected 10/19/2016 09:37
Received 10/21/2016 09:30
Extracted 10/26/2016 15:55
Analyzed 10/30/2016 18:22

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	11.0 240.0		1.0 V 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00 2.00	80 95 79
2,3,7,8-TCDD Total TCDD	2.4 53.0		1.0 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	74 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	76.0 170.0 2700.0	waren Maren	5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	87 79 84 82 81
1,2,3,7,8-PeCDD Total PeCDD	42.0 380.0		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	72 71 DN2
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	890.0 360.0 390.0 190.0		5.0 5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	82 DN2 86 DN2 85 DN2 NA
Total HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	15000.0 160.0 960.0 310.0		5.0 E 5.0 5.0 5.0	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.00 0.20	NA 82
Total HxCDD	4700.0	en en en en	5.0	7 / 10 0 7 0 7000		
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	12000.0 960.0 58000.0		5.0 DN2 5.0 DN2 5.0 DN2	Programme Progra	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	31000.0 54000.0		5.0 DN2 5.0 DN2			
OCDF OCDD	53000.0 310000.0		10.0 DN2 10.0 EDN			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No....10367095

Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916024 Lab Sample ID 40140495005 Filename F161030B_11 Injected By BAL **Total Amount Extracted** 15.9 g Solid Matrix % Moisture 46.3 NA Dilution Dry Weight Extracted Collected 10/19/2016 10:35 8.54 a ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B 01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 19:11

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	15.0 300.0	# ## ## ## ## ## ## ## ## ## ## ## ## #	1.0 V 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00 2.00	77 90 78
2,3,7,8-TCDD Total TCDD	2.1 95.0	\$10.000 And Table 1945	1.0 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	74 83
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	190.0 2400.0	77 	5.0 P 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00 2.00	85 81 84 87 79
1,2,3,7,8-PeCDD Total PeCDD	27.0 380.0		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	79 71 71 76
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	620.0 230.0 280.0 250.0		5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	94 93 DN2
Total HxCDF	10000.0		5.0 5.0 E	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	100.0 740.0 230.0 3400.0		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37CI4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	5700.0 570.0 24000.0		5.0 E 5.0 5.0 E	Total 2,3,7,8-TCDD Equivalence: 780 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	17000.0 27000.0		5.0 E 5.0 E			
OCDF OCDD	18000.0 170000.0	\$10 mm mi mm mb	10.0 DN2 10.0 EDI			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected

RL = Reporting Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367095

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916025 Lab Sample ID 40140495006 F161030B_12 Filename Injected By BAL **Total Amount Extracted** Solid 13.5 g Matrix % Moisture Dilution NA 55.4 Dry Weight Extracted Collected 10/19/2016 10:35 6.02 q ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 20:00

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg)	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	71.0 1600.0	Market and the final	1.0 1.0	V	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 90 74
2,3,7,8-TCDD Total TCDD	9.3 490.0		1.0 1.0		2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	72 81 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	270.0 820.0 11000.0	 	5.0 5.0 5.0		1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	77 80 80 78
1,2,3,7,8-PeCDD Total PeCDD	89.0 1900.0		5.0 5.0		1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	69 70 DN2 87 DN2
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2500.0 1000.0 1200.0	 	5.0 5.0 5.0		1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	93 DN2 96 DN2
1,2,3,7,8,9-HxCDF Total HxCDF	1100.0 47000.0		5.0 5.0	Ε	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	370.0 2800.0 780.0 13000.0		5.0 5.0 5.0 5.0	E	2,3,7,8-TCDD-37Cl4	0.20	75
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	27000.0 2500.0 120000.0		5.0 5.0 5.0	DN2 DN2 EDN2	Total 2,3,7,8-TCDD Equivalence: 3200 ng/Kg 2(Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	75000.0 120000.0	*****	5.0 5.0	EDN2			
OCDF OCDD	65000.0 570000.0		10.0 10.0	DN2 EDN2	2		

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No....10367095

1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

<u> ace Analytical</u> Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916027 Lab Sample ID 40140495007 Filename F161030B_13 Injected By BAL

Total Amount Extracted 20.4 g Matrix Solid % Moisture 91.9 Dilution NA

1.65 g Dry Weight Extracted Collected 10/19/2016 12:09 F161011 ICAL ID Received 10/21/2016 09:30 Extracted 10/26/2016 15:55 CCal Filename(s) F161030B_01 Method Blank ID **BLANK-52542** Analyzed 10/30/2016 20:48

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	7.2 120.0		1.80 AV 1.8	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 89 77
2,3,7,8-TCDD Total TCDD	ND 26.0	الله الله الله الله الله الله الله الله	2.30 A 2.3	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	74 82 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	29.0 67.0 880.0	400 to the ser ser	5.0 J 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	76 80 81 82 77
1,2,3,7,8-PeCDD Total PeCDD	11.0 140.0		5.0 J 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	71 66 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	250.0 110.0 110.0		5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	86 65
1,2,3,7,8,9-HxCDF Total HxCDF	76.0 3600.0		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	47.0 260.0 100.0 1400.0		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2200.0 200.0 9100.0		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 310 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	6500.0 11000.0		5.0 5.0			
OCDF OCDD	8000.0 72000.0	*****	10.0 10.0 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

A = Reporting Limit based on signal to noise

E = Exceeds calibration range

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No..... 10367095

Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916028 Lab Sample ID 40140495008 Filename F161030B_14 Injected By BAL **Total Amount Extracted** 17.5 g Matrix Solid % Moisture 87.2 Dilution NA Dry Weight Extracted 2.24 g Collected 10/19/2016 12:09 ICAL ID F161011 Received

 ICAL ID
 F161011
 Received
 10/21/2016 09:30

 CCal Filename(s)
 F161030B_01
 Extracted
 10/26/2016 15:55

 Method Blank ID
 BLANK-52542
 Analyzed
 10/30/2016 21:37

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.8 13.0		1.0 J 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00 2.00	79 98 82
2,3,7,8-TCDD Total TCDD	ND 2.2		1.0 1.0 J	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	77 87 83
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 5.3 61.0		5.0 5.0 J 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	84 85 86 83
1,2,3,7,8-PeCDD Total PeCDD	ND 8.2		5.0 5.0 J	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	72 69 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	17.0 9.0 8.3 5.8		5.0 J 5.0 J 5.0 J 5.0 J	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00 2.00	89 58
Total HxCDF	300.0		5.0	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 18.0 7.2 100.0	;	5.0 5.0 J 5.0 J 5.0	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	150.0 14.0 640.0		5.0 5.0 J 5.0	Total 2,3,7,8-TCDD Equivalence: 22 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	470.0 810.0		5.0 5.0			
OCDF OCDD	540.0 5700.0		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10367095

RL = Reporting Limit

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X =%D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916018
Lab Sample ID 40140495001
Filename F161031A_09
Injected By BAL

Total Amount Extracted 15.0 g Matrix % Moisture 35.8 Dilution

9.63 g Dry Weight Extracted Collected 10/19/2016 09:12 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 06:34

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.3 18.0		0.160 V 0.160	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	79 95 74
2,3,7,8-TCDD Total TCDD	3.8	0.16	0.120 J 0.120	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	69 81 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	8.0 15.0 220.0		0.200 0.160 0.180	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	85 86 84 78
1,2,3,7,8-PeCDD Total PeCDD	2.6 21.0		0.110 J 0.110	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	79 71 75
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	58.0 24.0 25.0		0.500 0.460 0.460	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	95 66
1,2,3,7,8,9-HxCDF Total HxCDF	20.0 970.0		0.490 0.480	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	10.0 65.0 25.0 310.0		0.600 0.690 0.540 0.610	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	580.0 52.0 2500.0	 	0.160 0.130 0.150	Total 2,3,7,8-TCDD Equivalence: 73 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	1600.0 2700.0		0.084 0.084			
OCDF OCDD	2300.0 17000.0		0.140 0.150 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable NC = Not Calculated

EDL = Estimated Detection Limit

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

I = Interference present

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916019
Lab Sample ID 40140495002
Filename F161031A_10
Injected By BAL
Total Amount Extracted 12.8 g
% Moisture 16.9

% Moisture 16.9

Dry Weight Extracted 10.6 g

ICAL ID F161011

CCal Filename(s) F161030B 16

CCal Filename(s) F161030B_16 Method Blank ID BLANK-52542 Matrix Solid Dilution NA

Analyzed

Collected 10/19/2016 09:12 Received 10/21/2016 09:30 Extracted 10/26/2016 15:55

10/31/2016 07:23

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.120 0.120	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	68 87 68
2,3,7,8-TCDD Total TCDD	ND ND		0.120 0.120	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	63 74 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.24 0.24	 	0.110 0.076 J 0.094 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	72 74 73 72
1,2,3,7,8-PeCDD Total PeCDD	ND 0.18		0.080 0.080 J	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	67 61 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF		0.40 0.23 0.21	0.110 JJ 0.130 JJ 0.100 JJ	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	78 48
1,2,3,7,8,9-HxCDF Total HxCDF	ND 5.80		0.150 0.120 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.21 1.50	0.47 	0.160 0.130	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	4.60 0.38 18.00	 	0.120 J 0.170 J 0.150	Total 2,3,7,8-TCDD Equivalence: 0.57 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	11.00 20.00		0.240 0.240			
OCDF OCDD	16.00 120.00		0.240 0.390			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916021

 Lab Sample ID
 40140495003

 Filename
 F161030B_09

 Injected By
 BAL

Total Amount Extracted 20.4 g
% Moisture 91.4

Dry Weight Extracted 1.75 g
ICAL ID F161011
CCal Filename(s) F161030B_01
Method Blank ID BLANK-52542

Matrix Solid Dilution NA

Collected 10/19/2016 09:37 Received 10/21/2016 09:30 Extracted 10/26/2016 15:55 Analyzed 10/30/2016 17:33

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	9.90 89.00		0.46 V 0.46	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	78 90 76
2,3,7,8-TCDD Total TCDD	0.97 13.00		0.62 J 0.62	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	73 79 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	41.00 93.00 1100.00		0.22 0.27 0.24	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	78 81 82
1,2,3,7,8-PeCDD Total PeCDD	15.00 99.00		0.33 J 0.33	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	74 69 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	290.00 110.00 130.00		1.50 1.40 1.40	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	68 81 62
1,2,3,7,8,9-HxCDF Total HxCDF	110.00 4800.00		1.60 1.50	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	48.00 340.00 110.00 1400.00	 	2.30 1.40 1.40 1.70	2,3,7,8-TCDD-37Cl4	0.20	78
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2600.00 210.00 11000.00		0.25 0.39 0.32	Total 2,3,7,8-TCDD Equivalence: 360 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	7800.00 13000.00		0.30 0.30			
OCDF OCDD	9600.00 73000.00		0.75 0.31 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Matrix

Solid

NA

Client's Sample ID 101916022 Lab Sample ID 40140495004 Filename F161030B_10

Injected By BAL **Total Amount Extracted** 20.0 g % Moisture 75.4

Dilution Dry Weight Extracted Collected 4.92 g 10/19/2016 09:37 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID Analyzed BLANK-52542 10/30/2016 18:22

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	11.0 240.0		0.650 V 0.650	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	80 95 79
2,3,7,8-TCDD Total TCDD	2.4 54.0		0.500 0.500	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	74 81 87
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	76.0 170.0 2700.0		0.290 0.120 0.210	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	79 84 82 81
1,2,3,7,8-PeCDD Total PeCDD	42.0 380.0		0.083 0.083	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	72 71 DN2 82 DN2
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	890.0 360.0 390.0 190.0	 	1.400 2.100 1.000 1.700	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	86 DN2 85 DN2 NA
Total HxCDF	15000.0		1.500 E	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	160.0 960.0 310.0 4700.0	 	1.900 1.700 1.800 1.800	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	12000.0 960.0 58000.0	 	0.300 DN2 0.440 DN2 0.370 DN2	Total 2,3,7,8-TCDD Equivalence: 1200 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	31000.0 54000.0		0.630 DN2 0.630 DN2			
OCDF OCDD	53000.0 310000.0		0.700 DN2 1.200 EDN2	2		

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916024

 Lab Sample ID
 40140495005

 Filename
 F161030B_11

 Injected By
 BAL

Total Amount Extracted 15.9 g Matrix Solid % Moisture 46.3 Dilution NA

Dry Weight Extracted Collected 8.54 g 10/19/2016 10:35 Received ICAL ID F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID Analyzed BLANK-52542 10/30/2016 19:11

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	15.0 300.0		0.440 V 0.440	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	77 90 78
2,3,7,8-TCDD Total TCDD	2.1 96.0		0.370 0.370	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	74 83 85
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	190.0 2400.0	77 	0.170 P 0.150 0.160	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	81 84 87 79
1,2,3,7,8-PeCDD Total PeCDD	27.0 390.0		0.110 0.110	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	71 71 71 76
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	620.0 230.0 280.0		0.680 0.880 0.880	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	94 93 DN2
1,2,3,7,8,9-HxCDF Total HxCDF	250.0 10000.0		0.980 0.850 E	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	100.0 740.0 230.0 3400.0		1.100 1.200 1.100 1.100	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	5700.0 570.0 24000.0	 	0.073 E 0.097 0.085 E	Total 2,3,7,8-TCDD Equivalence: 780 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	17000.0 27000.0		0.250 E 0.250 E			
OCDF OCDD	18000.0 170000.0		1.300 DN2 1.400 EDN			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

P = PCDE Interference

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916025

 Lab Sample ID
 40140495006

 Filename
 F161030B_12

 Injected By
 BAL

Total Amount Extracted 13.5 g Matrix
% Moisture 55.4 Dilution

6.02 g Dry Weight Extracted Collected 10/19/2016 10:35 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID Analyzed BLANK-52542 10/30/2016 20:00

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	71.0 1600.0		0.67 V 0.67	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 90 74
2,3,7,8-TCDD Total TCDD	9.3 490.0		0.86 0.86	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	72 81 81
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	270.0 820.0 11000.0		0.44 0.35 0.39	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	77 80 80 78
1,2,3,7,8-PeCDD Total PeCDD	89.0 1900.0		0.17 0.17	1,2,3,4,7,6-FIXEDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	76 69 70 DN2 87 DN2
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	2500.0 1000.0 1200.0 1100.0	 	3.20 3.30 2.70 4.40	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	93 DN2 96 DN2 NA
Total HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	47000.0 370.0 2800.0 780.0 13000.0	 	3.40 E 0.26 0.29 0.26 0.27 E	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.00 0.20	NA 75
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	27000.0 2500.0 120000.0	 	2.30 DN2 3.70 DN2 3.00 EDN2	Total 2,3,7,8-TCDD Equivalence: 3200 ng/Kg 2 (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	75000.0 120000.0		2.80 EDN: 2.80 EDN:			
OCDF OCDD	65000.0 570000.0		2.60 DN2 3.80 EDN2	2		

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101916027

 Lab Sample ID
 40140495007

 Filename
 F161030B_13

 Injected By
 BAL

Total Amount Extracted 20.4 g Matrix Solid % Moisture 91.9 Dilution NA

Dry Weight Extracted 1.65 g Collected 10/19/2016 12:09 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 20:48

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	7.2 120.0		1.80 V 1.80	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 89 77
2,3,7,8-TCDD Total TCDD	ND 26.0		2.30 2.30	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	74 82 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	29.0 67.0 890.0		0.48 J 0.61 0.54	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	80 81 82
1,2,3,7,8-PeCDD Total PeCDD	11.0 140.0		1.00 J 1.00	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	77 71 66 72
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	250.0 110.0 110.0		2.50 1.80 1.80	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	86 65
1,2,3,7,8,9-HxCDF Total HxCDF	76.0 3600.0		1.80 1.90	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	47.0 260.0 100.0 1400.0		2.80 1.80 1.80 2.10	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	2200.0 200.0 9100.0		1.10 1.80 1.40	Total 2,3,7,8-TCDD Equivalence: 310 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	6500.0 11000.0		1.90 1.90			
OCDF OCDD	8000.0 72000.0		1.30 3.00 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101916028 Lab Sample ID 40140495008 Filename F161030B_14 Injected By BAL

Total Amount Extracted 17.5 g Matrix Solid % Moisture 87.2 Dilution NA

2.24 g Dry Weight Extracted Collected 10/19/2016 12:09 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_01 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/30/2016 21:37

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	1.8 14.0		0.72 J 0.72	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	79 98 82
2,3,7,8-TCDD Total TCDD	ND 2.2		0.65 0.65 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	77 87 83
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	2.2 5.3 68.0	 	0.35 J 0.22 J 0.29	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	84 85 86 83
1,2,3,7,8-PeCDD Total PeCDD	9.6	1.1	0.61 J 0.61 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	72 69 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	17.0 9.0 8.3		1.00 J 1.00 J 0.64 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	89 58
1,2,3,7,8,9-HxCDF Total HxCDF	5.8 300.0		1.30 J 1.00	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	3.9 18.0 7.2 110.0		1.40 J 1.00 J 0.70 J 1.00	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	150.0 14.0 640.0		0.77 0.66 J 0.72	Total 2,3,7,8-TCDD Equivalence: 23 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	470.0 810.0		1.30 1.30			
OCDF OCDD	540.0 5700.0		1.20 2.10			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Blank Analysis Results

Lab Sample ID
Filename
Total Amount Extracted

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52542 F161030B_04 10.1 g

F161011 F161030B_01 Matrix Solid Dilution NA

Extracted 10/26/2016 15:55 Analyzed 10/30/2016 13:30

Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.079 0.079	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 87 78
2,3,7,8-TCDD Total TCDD	ND ND		0.130 0.130	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	71 80 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	 	0.049 0.033 0.041	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	82 83 83 75
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.059 0.059	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	68 64 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND ND ND		0.035 0.032 0.043 0.058 0.042	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 4.00 2.00 2.00	77 50 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	0.057 0.067 0.083 0.069	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.037 0.056 0.047	Total 2,3,7,8-TCDD Equivalence: 0.00024 ng/Kg (Lower-bound - Using ITE F		
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.062 0.062			
OCDF OCDD	ND 	0.24	0.140 0.150 JJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCS-52543 Filename F161030B 02 **Total Amount Extracted** 10.1 g ICAL ID F161011

CCal Filename F161030B 01

Method Blank ID BLANK-52542

Solid Matrix Dilution NA

10/26/2016 15:55 Extracted Analyzed 10/30/2016 11:54

Injected By **BAL**

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 50 100 100	11 8.3 57 60 50 60 56 53 52 59 58 58 52 48 45 110 100	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 61.0 69.0 70.0 170.0	105 83 115 120 100 119 112 106 104 118 115 117 103 96 91 109 101
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 1,2,3,7,8-PeCDF-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	10 100 100 100 100 100 100 100 100 100	8.1 81 94 86 81 92 80 90 89 91 77 76 68 69 81 110	3.1 22.0 20.0 21.0 13.0 21.0 19.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	81 81 94 86 81 92 80 90 89 91 77 76 68 69 81 55

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{* =} See Discussion

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCSD-52544 Filename F161030B 03 **Total Amount Extracted** 10.1 g ICAL ID F161011

CCal Filename F161030B 01

Method Blank ID BLANK-52542

Solid Matrix Dilution NA

10/26/2016 15:55 Extracted Analyzed 10/30/2016 12:41

Injected By **BAL**

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 50 100 100	11 8.0 55 59 49 57 55 53 49 57 59 58 51 47 45 110	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 61.0 69.0 70.0 170.0	109 80 110 118 98 114 110 105 99 115 117 116 102 94 90 110 107
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	10 100 100 100 100 100 100 100 100 100	7.7 73 88 77 74 81 75 79 81 67 70 61 62 73 98	3.1 22.0 20.0 21.0 13.0 21.0 19.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	77 73 88 77 74 81 75 79 79 81 67 70 61 62 73 49

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{* =} See Discussion

Method 1613B

Spike Recovery Relative Percent Difference (RPD) Results

Client PACE Wisconsin

 Spike 1 ID
 LCS-52543
 Spike 2 ID
 LCSD-52544

 Spike 1 Filename
 F161030B_02
 Spike 2 Filename
 F161030B_03

Compound	Spike 1 %REC	Spike 2 %REC	%RPD	
2,3,7,8-TCDF	105	109	3.7	
2,3,7,8-TCDD	83	80	3.7	
1,2,3,7,8-PeCDF	115	110	4.4	
2,3,4,7,8-PeCDF	120	118	1.7	
1,2,3,7,8-PeCDD	100	98	2.0	
1,2,3,4,7,8-HxCDF	119	114	4.3	
1,2,3,6,7,8-HxCDF	112	110	1.8	
2,3,4,6,7,8-HxCDF	106	105	0.9	
1,2,3,7,8,9-HxCDF	104	99	4.9	
1,2,3,4,7,8-HxCDD	118	115	2.6	
1,2,3,6,7,8-HxCDD	115	117	1.7	
1,2,3,7,8,9-HxCDD	117	116	0.9	
1,2,3,4,6,7,8-HpCDF	103	102	1.0	
1,2,3,4,7,8,9-HpCDF	96	94	2.1	
1,2,3,4,6,7,8-HpCDD	91	90	1.1	
OCDF ' '	109	110	0.9	
OCDD	101	107	5.8	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

Report Prepared for:

Brian Basten **PACE Wisconsin** 1241 Bellevue Street Suite 9 Green Bay WI 54302

> **REPORT OF LABORATORY ANALYSIS FOR** PCDD/PCDF

Report Information:

Pace Project #: 10367089

Sample Receipt Date: 10/21/2016

Client Project #: 40140496

Client Sub PO #: N/A State Cert #: 999407970

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PCDD/PCDF Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Scott Unze, your Pace Project Manager.

This report has been reviewed by:

lyne haut

Carolynne Trout, Project Manager

(612) 607-6351 (612) 607-6444 (fax)

Carolynne.Trout@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

The results relate only to the samples included in this report.

January 5, 2017

Pace Analytical Services, Inc.

1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700

Fax: 612.607.6444

DISCUSSION

This report presents the results from the analyses performed on fifteen samples submitted by a representative of Pace Analytical Services, Inc. The samples were analyzed for the presence or absence of polychlorodibenzo-p-dioxins (PCDDs) and polychlorodibenzo-furans (PCDFs) using USEPA Method 1613B. The reporting limits were based on signal-to-noise measurements. Estimated Maximum Possible Concentrations (EMPCs) were treated as positives in the toxic equivalence calculations. Method blank and field sample results presented with reporting limits set to correspond to the lowest calibration points and a nominal 10-gram sample amount were included at the end of Appendix A. "Revision 1" of this report was prepared to include results for 2,3,7,8-TCDF. The current revision was prepared to provide results for all tetra through octa-chlorinated PCDDs and PCDFs.

The recoveries of the isotopically-labeled PCDD/PCDF internal standards in the sample extracts ranged from 49-96%. All of the labeled standard recoveries obtained for this project were within the target ranges specified in Method 1613B. Also, since the quantification of the native 2,3,7,8-substituted congeners was based on isotope dilution, the data were automatically corrected for recovery and accurate values were obtained.

Values were flagged "I" where incorrect isotope ratios were obtained. Concentrations below the calibration range were flagged "J" and should be regarded as estimates. Concentrations above the calibration range were flagged "E" and should also be regarded as estimates. Values obtained from analyses of diluted extracts were flagged "D". Values obtained from separate analyses were flagged "N2". The values reported for 2,3,7,8-TCDF that were above the lowest calibration point were verified by second column confirmation analyses and flagged "V".

A laboratory method blank was prepared and analyzed with each sample batch as part of our routine quality control procedures. The results show two of the three blanks to contain trace levels of selected congeners. These levels were below the calibration range for the method. Sample levels similar to the corresponding blank levels were flagged "B" on the results tables and may be, at least partially, attributed to the background. It should be noted that levels less than ten times the background are not generally considered to be statistically different from the background.

Laboratory and matrix spike samples were also prepared using clean sand or sample matrix that had been fortified with native standard materials. The recoveries of the native compounds generally ranged from 80-127% with relative percent differences (RPDs) of 0.3-32.4%. The background-subtracted recovery values obtained for 1,2,3,4,6,7,8-HpCDF, HpCDD, OCDF, and OCDD in the matrix spike and/or matrix spike duplicate were outside the target ranges. Also, the RPD values obtained for 1,2,3,4,6,7,8-HpCDF, HpCDD, and OCDD in the matrix spike analyses were above the 20% target upper limit. These deviations may be due to the levels of the affected congeners in the sample material and/or sample inhomogeneity. Matrix spikes were prepared with one of the 10/26/2016 extraction batches using sample material from a separate project; results from these analyses will be provided upon request. Matrix spikes were not prepared with the remaining 10/26/2016 sample batch.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Mississippi	MN00064
Alabama	40770	Montana	92
Alaska	MN00064	Nebraska	NE-OS-18-06
Arizona	AZ0014	Nevada	MN_00064_200
Arkansas	88-0680	New Jersey (NE	MN002
California	01155CA	New York (NEL	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Dakota	R-036
EPA Region 8	8TMS-Q	Ohio	4150
Florida (NELAP	E87605	Oklahoma	D9922
Georgia (DNR)	959	Oregon (ELAP)	MN200001-005
Guam	959	Oregon (OREL	MN300001-001
Hawaii	SLD	Pennsylvania	68-00563
Idaho	MN00064	Puerto Rico	MN00064
Illinois	200012	Saipan	MP0003
Indiana	C-MN-01	South Carolina	74003001
Indiana	C-MN-01	Tennessee	TN02818
Iowa	368	Texas	T104704192-08
Kansas	E-10167	Utah (NELAP)	MN00064
Kentucky	90062	Virginia	00251
Louisiana	03086	Washington	C755
Maine	2007029	West Virginia #	9952C
Maryland	322	West Virginia D	382
Michigan	9909	Wisconsin	999407970
Minnesota	027-053-137	Wyoming	8TMS-Q

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

Chain of Custody

Workorder: 40140496 Workorder Name: 2381/2 MILITARY CREEK Owner Received Date: 10/20/2016 Results Requested By: 11/3/2016 Report To: Requested Analysis Brian Basten Pace Analytical Minnesota Pace Analytical Green Bay 1700 Elm Street SE 1241 Bellevue Street Suite 200 Suite 9 Minneapolis, MN 55414 Green Bay, WI 54302 Phone (612)607-1700 2378 TCDD Preserved Containers 1631B Sample Collect Chpres Sample ID Type Date/Time Lab ID Matrix LAB USE ONLY 001 101716001 10/17/2016 13:44 40140496001 1 Solid X 101716002 PS 10/17/2016 13:44 40140496002 Solid 1 002 Х 101716003 PS 10/17/2016 13:19 40140496003 Solid 1 CD3 X 10/17/2016 13:19 1. 101716004 PS 40140496004 Solid **ക**4 005 101716005 10/17/2016 14:32 40140496005 Solid 1 101716006 P\$ 10/17/2016 14:32 40140496006 Solid 1 006 PS 10/17/2016 14:33 40140496007 1 Х (0) 101716007 Solid PS 10/18/2016 13:42 40140496008 1 Х 101816008 Solid へのく $\overline{\mathsf{x}}$ 1 101816009 PS 10/18/2016 13:42 40140496009 Solid X 101816011 PS 10/18/2016 11:33 40140496010 Solid 1 010 Х 11 101816012 P\$ 10/18/2016 12:45 40140496011 Solid 1 1 12 101816013 PS 10/18/2016 12:45 40140496012 Solid 13 101816015 PS 10/18/2016 10:17 40140496013 Solid 1 Х 14 101816016 PS 10/18/2016 10:17 40140496014 Solid 1

10/18/2016 10:18 40140496015

Solid

101816017

10367089

					Comments	
Transfers	Released By	Date/Time	Received By	Date/Time		
1	W 8000 000	S OVIGOROL	to & Noteco	id=111.93)		
2)				•	
3						
Cooler Te	mperature on Receipt <u> ಭ</u> ೌ೦	Custod	y Seal CY or N F	Received on Ice Or	N Samples Intact Y	or N

^{***}In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

This chain of custody is considered complete as is since this information is available in the owner laboratory.

Document Name: Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.17 Document Revised: 02Aug2016 Page 1 of 2 Issuing Authority:

Pace Minnesota Quality Office

Upon Receipt Pace GB	<u>-</u>			# W0#:10367089
ourier: Fed Ex UPS	USPS		llient	
Commercial Pace SpeeDee	Other:_			10367089
Fracking Number:	 			
Custody Seal on Cooler/Box Present?		Seals Int	١	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: Bubble Wrap Bubble Bag	s 🗌 Non	e 🔲	Other:	Temp Blank? Yes No
hermometer ∰ 151401163 ☐ B88A912167 Used: ☐ 151401164 ☐ B88A014331	140	e of ice:	, ₽wa	t Blue None Samples on ice, cooling process has beg
cooler Temp Read (°C): 6.5 Cooler Temp C	A '	: 21		Biological Tissue Frozen? Yes No
emp should be above freezing to 6°C Correction Fa SDA Regulated Soil(ictor:	77	Da	te and Initials of Person Examining Contents: <u> </u>
d samples originate in a quarantine zone within the Unite	d States: AL, A	AR, AZ, CA	A, FL, GA,	
S, NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?		Ab a abili	Yes	No including Hawaii and Puerto Rico)? Yes
if Yes to either question, fill out a K	egulated Soli	Cneckiis	ST {F-IVIIV	Q-33'8) and include with SCUR/COC paperwork. COMMENTS:
Chain of Custody Present?	Yes	□No	□N/A	1.
Chain of Custody Filled Out?	ď∐Yes	□No	□N/A	2.
Chain of Custody Relinquished?	Yes	□No	□N/A	3.
ampler Name and/or Signature on COC?	Yes	□No	϶N/A	4.
amples Arrived within Hold Time?	Yes	□Np	□N/A	5.
hort Hold Time Analysis (<72 hr)?	∏Yes	No	□N/A	6.
ush Turn Around Time Requested?	□Yes	No	□N/A	7.
ufficient Volume?	¥yes	□No	□N/A	8.
orrect Containers Used?	Yes	□No	□N/A	9.
-Pace Containers Used?	₹¶Yes	□No	□N/A	
ontainers Intact?	Yes	□No	□N/A	10.
iltered Volume Received for Dissolved Tests?	Yes	□No	N/A	11. Note if sediment is visible in the dissolved container
ample Labels Match COC?	\tilde{	No	[]N/A_	_12,
-Includes Date/Time/ID/Analysis Matrix:	<u> </u>			
All containers needing acid/base preservation have been hecked?	∐Yes	∐No	ATIN/A	13. ☐HNO₃ ☐H₂SO₄ ☐NaOH ☐HCI
Il containers needing preservation are found to be in			+mm	Sample #
ompliance with EPA recommendation? HNO3, H2SO4, HCK2; NaOH >9 Sulfide, NaOH>12 Cyanide	Yes	□No	EN/A	
xceptions: VOA, Coliform, TOC, Oil and Grease,	7 10163	_		Initial when Lot # of added
RO/8015 (water) DOC	Yes	□No	N/A	completed: preservative:
eadspace in VOA Vials (>6mm)?	☐Yes	□No	PAN/A	14.
rip Blank Present? rip Blank Custody Seals Present?	∐Yes ∐Yes	□No	ǶÑ/A ǶÑ/A	15.
ace Trip Blank Lot # (if purchased):				
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? ☐ Yes ☐ No
erson Contacted:				Date/Time:
Comments/Resolution:			_	
	. 1			
Project Manager Review:	n <u> </u>			Date: 10/21/16

Method 1613B Blank Analysis Results

Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52534 U161029A_02 20.6 g

U161025 U161028B_16 Matrix Dilution Solid NA

Extracted Analyzed

10/26/2016 15:55 10/29/2016 06:54

Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 92 77
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	78 85 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	77 78 86
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	72 71 70 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	81 64
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND	AP 50-50 0-	5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND	 	5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	100
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.00 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND ND		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Revision 2

Method 1613B Blank Analysis Results

Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52542 F161030B_04 10.1 g

F161011 F161030B_01 Matrix Dilution Solid NA

Extracted Analyzed

10/26/2016 15:55 10/30/2016 13:30

Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 87 78
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	76 71 80 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	78 82 83 83 75
1,2,3,7,8-PeCDD Total PeCDD	ND ND	in a server	5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	68 64 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		5.0 5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	77 50 NA
Total HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND ND		5.0 5.0 5.0 5.0 5.0	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.00 0.20	NA 76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.00 ng/Kg (Lower-bound - Using ITE F	actors)	· · · · .
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND ND		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Blank Analysis Results

Lab Sample ID Filename

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52558 U161101B_15 20.4 g

U161025 U161101B_03 Matrix Dilution Solid NA

Extracted Analyzed 10/27/2016 16:25 11/02/2016 01:42

Injected By SMT

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 92 85
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	80 99
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	76 74 78 78 84
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,4,7,6-HXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	70 75 79
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF Total HxCDF	ND ND ND ND ND		5.0 5.0 5.0 5.0 5.0	1,2,3,4,7,5,9-11pcb1 -13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00 4.00 2.00 2.00	90 75 NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.00 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND ND		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

RL = Reporting Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical[™]

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716001 Lab Sample ID 40140496001 Filename F161031A_02 Injected By BAL **Total Amount Extracted** 12.1 g Matrix Solid % Moisture 14.5 Dilution NA Dry Weight Extracted 10.3 g Collected 10/17/2016 13:44 ICAL ID F161011 10/21/2016 09:30 Received CCal Filename(s) Extracted 10/26/2016 15:55 F161030B 16 Method Blank ID BLANK-52542 Analyzed 10/31/2016 00:52

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	73 88 72
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	68 78 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	400 400 to 100 to the 200 to me to the set to to to	5.0 5.0 5.0	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	75 76 79
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	72 68 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	67 78 49
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5,0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.038 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND 38		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716002 Lab Sample ID 40140496002 Filename F161031A_03 Injected By BAL **Total Amount Extracted** 12.4 g Matrix Solid % Moisture 5.2 Dilution NA Dry Weight Extracted 11.8 g Collected 10/17/2016 13:44 **ICAL ID** F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B 16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 01:41

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 82 66
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	62 71 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	71 71 72
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 65 62 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	76 49
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	72
1,2,3,4,6,7,8-HpCDF	ND		5.0	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND	44 440 to 100 to 100	5.0 5.0	Equivalence: 0.051 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND	an april 200 day day	5.0 5.0			
OCDF OCDD	ND 51		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716003 Lab Sample ID 40140496003 Filename F161031A_04 Injected By BAL **Total Amount Extracted** 12.2 g Matrix Solid % Moisture 17.1 Dilution NA Dry Weight Extracted Collected 10.1 g 10/17/2016 13:19 ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B 16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 02:30

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 90 74
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	68 81 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,6,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	79 78 78 78 75
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	70 68 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	83 50
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND	****	5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.011 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND 11		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected

RL = Reporting Limit

NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612-607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716004 Lab Sample ID 40140496004 Filename F161031A_05 Injected By BAL **Total Amount Extracted** 12.4 g Matrix Solid % Moisture 14.8 Dilution NA Dry Weight Extracted 10.6 g Collected 10/17/2016 13:19 ICAL ID 10/21/2016 09:30 F161011 Received CCal Filename(s) 10/26/2016 15:55 F161030B 16 Extracted Method Blank ID BLANK-52542 Analyzed 10/31/2016 03:19

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	65 77 66
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	62 75 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 72 70 69
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	61 60 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	77 49
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total-HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	65
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND	 	5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.093 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	6.4 6.4		5.0 5.0			
OCDF OCDD	ND 30.0	Relative as we	10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ace Analytical

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No....10367089

RL = Reporting Limit

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

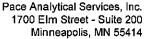
Client's Sample ID 101716005 Lab Sample ID 40140496005 Filename F161031A_06 Injected By BAL 12.5 g **Total Amount Extracted** Matrix Solid % Moisture 9.0 Dilution NA Dry Weight Extracted Collected 10/17/2016 14:32 11.4 g ICAL ID F161011 Received 10/21/2016 09:30 CCal Filename(s) Extracted 10/26/2016 15:55 F161030B 16 Method Blank ID BLANK-52542 Analyzed 10/31/2016 04:08

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	64 77 66
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	63 71 67
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 23		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	68 68 69 63
1,2,3,7,8-PeCDD Total PeCDD	ND 20		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	64 59 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	77 60
1,2,3,7,8,9-HxCDF Total HxCDF	ND 320		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	ND 14 ND		5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	67
Total HxCDD	150		5.0			
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	360 14 1800		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 28 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	880 1400		5.0 5.0			
OCDF OCDD	2500 12000		10.0 10.0 ⋿			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit


NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716006 Lab Sample ID 40140496006 Filename F161031A_07 Injected By BAL **Total Amount Extracted** 12.3 g Matrix Solid % Moisture 13.1 Dilution NA 10.7 g Dry Weight Extracted Collected 10/17/2016 14:32 **ICAL ID** F161011 Received 10/21/2016 09:30 CCal Filename(s) F161030B 16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 04:56

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND	=====	1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	66 81 67
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	64 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	**************************************	5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	67 72 72 74
1,2,3,7,8-PeCDD Total PeCDD	ND ND	######	5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	67 66 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	63 78 50
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	69
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND	 	5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.012 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND 12		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

<u> ^gace Analytical</u>

ND = Not Detected NA = Not Applicable

RL = Reporting Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

Report No....10367089 This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

10/31/2016 05:45

1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Analyzed

Client's Sample ID 101716007 Lab Sample ID 40140496007 Filename F161031A 08 Injected By BAL **Total Amount Extracted** 12.3 g Solid Matrix % Moisture 13.6 Dilution NA Dry Weight Extracted Collected 10/17/2016 14:33 10.6 g ICAL ID 10/21/2016 09:30 F161011 Received CCal Filename(s) F161030B 16 Extracted 10/26/2016 15:55

BLANK-52534

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	71 88 72
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	68 80 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	## 14 manufa	5.0 5.0 5.0	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	76 80 82 70
1,2,3,7,8-PeCDD Total PeCDD	ND ND	****	5.0 5.0	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	72 64 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND	400 tab tab que san 400 tab tab tab tab 400 tab tab tab tab	5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	84 51
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND	04 MB 04 100 44 MB 04 100 44 MB 04 14 100	5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.028 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		5.0 5.0			
OCDF OCDD	ND 28		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

<u> ace Analytical</u>

Method Blank ID

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No....10367089

RL = Reporting Limit

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816008 Lab Sample ID 40140496008 Filename Y161102A_04 Injected By SMT **Total Amount Extracted** 22.4 g Matrix Solid % Moisture 92.0 NA Dilution Dry Weight Extracted Collected 10/18/2016 14:42 1.79 g ICAL ID Y160816A Received 10/21/2016 09:30 CCal Filename(s) Y161101B_19 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 11/02/2016 07:14

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	9.9 210.0		1.0 V 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 92 72
2,3,7,8-TCDD Total TCDD	2.1 50.0		1.0 J 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	64 80 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	63.0 130.0 1800.0		5.0 5.0 5.0	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	71 76 70 83
1,2,3,7,8-PeCDD Total PeCDD	26.0 290.0	me and all fine of	5.0 J 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 76 82
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	460.0 300.0 300.0		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	96 68 DN2
1,2,3,7,8,9-HxCDF Total HxCDF	200.0 9600.0		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	110.0 690.0 220.0 3400.0		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	7900.0 680.0 34000.0		5.0 5.0 5.0 E	Total 2,3,7,8-TCDD Equivalence: 800 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	18000.0 31000.0		5.0 E 5.0 E			
OCDF OCDD	34000.0 190000.0		10.0 DN2 10.0 DN2	- /		

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816009 Lab Sample ID 40140496009 Filename Y161102A_05 Injected By SMT **Total Amount Extracted** 17.4 g Matrix % Moisture 77.3 Dilution 3.95 g Dry Weight Extracted

 Dry Weight Extracted
 3.95 g
 Collected
 10/18/2016 14:42

 ICAL ID
 Y160816A
 Received
 10/21/2016 09:30

 CCal Filename(s)
 Y161101B_19
 Extracted
 10/27/2016 16:25

 Method Blank ID
 BLANK-52558
 Analyzed
 11/02/2016 07:55

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	5.6 190.0		1.0 V 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00 2.00	67 82
2,3,7,8-TCDD Total TCDD	2.1 52.0		1.0 J 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	57 50 61
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	67.0 110.0 1900.0		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	78 66 69 58 81
1,2,3,7,8-PeCDD Total PeCDD	33.0 360.0	1975 457 458 445 145 1975 1975 145 145 145	5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	63 55
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	300.0 400.0 370.0 160.0		5.0 5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	54 64 79 DN2 NA
Total HxCDF	14000.0	******	5.0 E	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	140.0 810.0 280.0 4700.0		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	11000.0 920.0 49000.0	 	5.0 E 5.0 5.0 E	Total 2,3,7,8-TCDD Equivalence: 1000 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	25000.0 48000.0		5.0 E 5.0 E			
OCDF OCDD	49000.0 270000.0		10.0 DN2 10.0 EDN	2		

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816011

Lab Sample ID 40140496010

Filename U161201A_10

Injected By SMT

Total Amount Extracted 12.7 g

Total Amount Extracted 12.7 g Matrix Solid
% Moisture 24.6 Dilution NA
Dry Weight Extracted 9.58 g Collected 10/18

Dry Weight Extracted Collected 9.58 g 10/18/2016 11:33 ICAL ID U161025 Received 10/21/2016 09:30 CCal Filename(s) U161130B_15 Extracted 10/27/2016 16:25 Method Blank ID **BLANK-52558** Analyzed 12/02/2016 00:38

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 1.1	******	1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 88 78
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	71 83 80
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 42.0		5.0 5.0 5.0	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	71 56 69
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	58 58 57 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	12.0 5.0 6.3		5.0 5.0 J 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	70 63
1,2,3,7,8,9-HxCDF Total HxCDF	5.0 230.0		5.0 J 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 15.0 5.8 81.0		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	90
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	100.0 9.6 420.0		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 12 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	290.0 520.0		5.0 5.0			
OCDF OCDD	310.0 2500.0		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816012 Lab Sample İD 40140496011 Filename U161201A_11 Injected By SMT **Total Amount Extracted** 12.6 g Matrix Solid % Moisture 28.0 Dilution NA 9.07 g Dry Weight Extracted Collected 10/18/2016 12:45 ICAL ID U161025 Received 10/21/2016 09:30 CCal Filename(s) U161130B 15 10/27/2016 16:25 Extracted Method Blank ID BLANK-52558 Analyzed 12/02/2016 01:25

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 9.0		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00 2.00	73 83 82
2,3,7,8-TCDD Total TCDD	ND ND	No des des seus seus	1.0 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00	71 86 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	5.4 11.0 110.0		5.0 J 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	64 70 63
1,2,3,7,8-PeCDD Total PeCDD	ND 6.9		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	80 58 59 66
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	35.0 17.0 6.4		5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	73 74
1,2,3,7,8,9-HxCDF Total HxCDF	16.0 620.0	~	5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.3 39.0 11.0 160.0		5.0 J 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	360.0 35.0 1500.0		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 44 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	950.0 1700.0	*****	5.0 5.0			
OCDF OCDD	1200.0 11000.0		10.0 10.0 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

E = Exceeds calibration range

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816013 Lab Sample ID 40140496012 Filename U161201A_12 Injected By SMT 12.4 g Total Amount Extracted Matrix Solid % Moisture 21.6 Dilution NA Dry Weight Extracted 9.72 g Collected 10/18/2016 12:45 ICAL ID U161025 Received 10/21/2016 09:30 CCal Filename(s) U161130B_15 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 12/02/2016 02:11

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C	2.00 2.00 2.00	70 81 79
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	71 84
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 63 69 67 74
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	62 57 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		5.0 5.0 5.0 5.0	1,2,3,4,7,6,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	67 64 NA
Total HxCDF	ND		5.0	1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37CI4	0.20	83
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND 5.8		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.12 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	5.8 5.8		5.0 5.0			
OCDF OCDD	ND 65.0		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

RL = Reporting Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID Lab Sample ID Filename

<u>ace Analytical</u>

101816015 40140496013 U161201A_13

Injected By **Total Amount Extracted** % Moisture

SMT 12.6 g 8.6

Solid Matrix Dilution NA

Dry Weight Extracted ICAL ID CCal Filename(s)

Method Blank ID

11.5 g U161025 U161130B 15 BLANK-52558

Collected Received Extracted Analyzed

10/18/2016 10:17 10/21/2016 09:30 10/27/2016 16:25 12/02/2016 02:57

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 1.1		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 87 80
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	74 88 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 15.0		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	76 67 72 68 82
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	59 57 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	69 65
1,2,3,7,8,9-HxCDF Total HxCDF	ND 64.0		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 15.0		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	88
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	41.0 ND 160.0		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 2.6 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	110.0 190.0		5.0 5.0			
OCDF OCDD	130.0 970.0		10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816016
Lab Sample ID 40140496014
Filename U161201A_14
Injected By SMT
Total Amount Extracted 15.1 g

<u> ace Analytical</u>

Total Amount Extracted 15.1 g Matrix
% Moisture 58.7 Dilution
Dry Weight Extracted 6.24 g Collected

 Dry Weight Extracted
 6.24 g
 Collected
 10/18/2016
 10:17

 ICAL ID
 U161025
 Received
 10/21/2016
 09:30

 CCal Filename(s)
 U161130B_15
 Extracted
 10/27/2016
 16:25

 Method Blank ID
 BLANK-52558
 Analyzed
 12/02/2016
 03:43

				_		
Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00	80 93
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00	88 78 93
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00 2.00	82 72 80 71
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	88 66 63 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		5.0 5.0 5.0	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	76 75 70
1,2,3,7,8,9-HxCDF Total HxCDF	ND 19	****	5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	94
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	21 ND 77	 	5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 1.3 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	45 80		5.0 5.0			
OCDF OCDD	85 510	~~~~	10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration RL = Reporting Limit

ND = Not Detected NA = Not Applicable

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816017 Lab Sample ID 40140496015 Filename U161201A_15 Injected By SMT **Total Amount Extracted** 13.1 g Solid Matrix % Moisture 38.7 Dilution NA Dry Weight Extracted Collected 10/18/2016 10:18 8.03 gICAL ID U161025 Received 10/21/2016 09:30 CCal Filename(s) U161130B_15 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 12/02/2016 04:30

Native Isomers	Conc ng/Kg	EMPC ng/Kg	RL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		1.0 1.0	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	79 91 87
2,3,7,8-TCDD Total TCDD	ND ND		1.0 1.0	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C	2.00 2.00 2.00 2.00	79 92 83
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND	had did not served. Bell of you are day. See did from the real	5.0 5.0 5.0	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	72 75 74
1,2,3,7,8-PeCDD Total PeCDD	ND ND		5.0 5.0	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	90 66 63 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		5.0 5.0 5.0	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	76 70 NA
Total HxCDF	15		5.0 5.0	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		5.0 5.0 5.0 5.0	2,3,7,8-TCDD-37Cl4	0.20	93
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	15 ND 55		5.0 5.0 5.0	Total 2,3,7,8-TCDD Equivalence: 0.94 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	38 65		5.0 5.0			
OCDF OCDD	57 360	******	10.0 10.0			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration ND = Not Detected NA = Not Applicable

RL = Reporting Limit

NA = Not Applicable
NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interference present
- J = Estimated value
- Nn = Value obtained from additional analysis
- P = PCDE Interference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X =%D Exceeds limits
- Y = Calculated using average of daily RFs
- * = See Discussion

Appendix B

Sample Analysis Summary

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID
Lab Sample ID
40140496001
Filename
Injected By
Total Amount Extracted
Whoisture
Bry Weight Extracted
101716001
40140496001
F161031A_02
BAL
Total Amount Extracted
12.1 g
Matrix
Dilution
Collecter
Collecter

10.3 g Dry Weight Extracted Collected 10/17/2016 13:44 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 00:52

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.16		0.063 J	2,3,7,8-TCDF-13C	2.00	73
Total TCDF	0.66		0.063 J	2,3,7,8-TCDD-13C	2.00	88
				1,2,3,7,8-PeCDF-13C	2.00	72
2,3,7,8-TCDD	ND		0.095	2,3,4,7,8-PeCDF-13C	2.00	68
Total TCDD	0.15		0.095 J	1,2,3,7,8-PeCDD-13C	2.00	<u>78</u>
4 0 0 7 0 D. ODE		0.074	0.000 11	1,2,3,4,7,8-HxCDF-13C	2.00	73
1,2,3,7,8-PeCDF		0.071	0.062 JJ	1,2,3,6,7,8-HxCDF-13C	2.00	75 70
2,3,4,7,8-PeCDF	0.74	0.093	0.043 J	2,3,4,6,7,8-HxCDF-13C	2.00	76 70
Total PeCDF	0.71		0.053 J	1,2,3,7,8,9-HxCDF-13C	2.00	79 70
4 0 0 7 0 DaCDD	ND		0.057	1,2,3,4,7,8-HxCDD-13C	2.00	72
1,2,3,7,8-PeCDD	ND 0.17		0.057	1,2,3,6,7,8-HxCDD-13C	2.00	68
Total PeCDD	0.17		0.057 J	1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00	62 67
1,2,3,4,7,8-HxCDF	0.16		0.140 J	1,2,3,4,6,7,8-HpCDD-13C	2.00	78
1,2,3,6,7,8-HxCDF	ND		0.130	OCDD-13C	4.00	49
2,3,4,6,7,8-HxCDF	ND		0.130	00DD 190	4.00	70
1,2,3,7,8,9-HxCDF	ND		0.160	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	2.50		0.140 J	1,2,3,7,8,9-HxCDD-13C	2.00	NA
rotal rixozi	2.00		0.1.10	1,2,0,1,0,0 1 1.00	2.00	
1,2,3,4,7,8-HxCDD	ND		0.160	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,6,7,8-HxCDD	0.21		0.160 J	,-, ,-		
1,2,3,7,8,9-HxCDD	ND		0.170			
Total HxCDD	0.88		0.160 J			
400407011-005		4 400	0.400 11	T-1-1 0 0 7 0 TODD		
1,2,3,4,6,7,8-HpCDF		1.400	0.120 J	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	ND 4.00		0.150	Equivalence: 0.20 ng/Kg	'aatara\	
Total HpCDF	4.00		0.130 J	(Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD	4.00		0.280 J			
Total HpCDD	7.00		0.280 J			
OCDF	5.50		0.150 J			
OCDD	38.00		0.170			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

EDL = Estimated Detection Limit

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716002 Lab Sample ID 40140496002 Filename F161031A_03 Injected By BAL

Total Amount Extracted 12.4 g Matrix Solid % Moisture 5.2 Dilution NA

11.8 g Dry Weight Extracted Collected 10/17/2016 13:44 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 01:41

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.120 0.120	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 82 66
2,3,7,8-TCDD Total TCDD	ND ND		0.100 0.100	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	62 71 69
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.11 0.11		0.054 0.059 J 0.056 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00	71 71 72 66
1,2,3,7,8-PeCDD Total PeCDD	ND 0.16		0.052 0.052 J	1,2,3,4,7,6-FXCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	65 62 60
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.13 ND	0.13 	0.075 J 0.076 ม 0.086	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	76 49
1,2,3,7,8,9-HxCDF Total HxCDF	ND 1.90		0.072 0.077 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND 0.21 0.53	0.14 	0.160 0.110 JJ 0.140 J 0.140 J	2,3,7,8-TCDD-37Cl4	0.20	72
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.30 ND 4.90		0.110 J 0.150 0.130 J	Total 2,3,7,8-TCDD Equivalence: 0.23 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	4.10 7.50		0.220 J 0.220 J			
OCDF OCDD	5.10 51.00		0.150 J 0.200			

ND = Not Detected

NA = Not Applicable

NC = Not Calculated

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

EDL = Estimated Detection Limit

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716003 Lab Sample ID 40140496003 Filename F161031A_04 Injected By BAL Total Amount Extracted 12.2 g

Total Amount Extracted

12.2 g

Matrix

Solid

Moisture

17.1

Dilution

NA

Dry Weight Extracted

10.1 g

Collected

10/17/2016 13:19

Page 10/21/2016 09:30

 ICÂL ID
 F161011
 Received
 10/21/2016 09:30

 CCal Filename(s)
 F161030B_16
 Extracted
 10/26/2016 15:55

 Method Blank ID
 BLANK-52542
 Analyzed
 10/31/2016 02:30

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20 0.20		0.082 J 0.082 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 90 74
2,3,7,8-TCDD Total TCDD	ND ND		0.085 0.085	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	68 81 73
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND 0.14		0.050 0.040 0.045 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	79 78 78
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.041 0.041	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	75 70 68 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.100 0.088 0.077	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	83 50
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.96		0.097 0.092 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 0.47		0.059 0.077 0.060 0.065 J	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	0.70 ND 2.20		0.098 J 0.140 0.120 J	Total 2,3,7,8-TCDD Equivalence: 0.055 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.50 2.70		0.170 J 0.170 J			
OCDF OCDD	1.70 11.00		0.140 J 0.110			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101716004

 Lab Sample ID
 40140496004

 Filename
 F161031A_05

 Injected By
 BAL

Total Amount Extracted 12.4 g Matrix Solid % Moisture 14.8 Dilution NA

10.6 g Dry Weight Extracted Collected 10/17/2016 13:19 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID BLANK-52542 Analyzed 10/31/2016 03:19

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.33 0.33	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	65 77 66
2,3,7,8-TCDD Total TCDD	ND ND		0.26 0.26	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	62 75 68
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND	0.17 	0.14 0.12 U 0.13	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	73 72 70 69
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.14 0.14	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	61 60 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND	0.20 	0.19 JJ 0.17 0.19	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	77 49
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.88		0.27 0.20 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.27 0.55 ND 1.90		0.20 J 0.19 J 0.20 0.19 J	2,3,7,8-TCDD-37Cl4	0.20	65
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.40 ND 4.40		0.28 J 0.34 0.31 J	Total 2,3,7,8-TCDD Equivalence: 0.30 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	6.40 9.50		0.47 0.47			
OCDF OCDD	30.00	2.40	0.38 JJ 0.26			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

EDL = Estimated Detection Limit

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Matrix

Solid

Client's Sample ID 101716005

Lab Sample ID 40140496005

Filename F161031A_06

Injected By BAL
Total Amount Extracted 12.5 g

 % Moisture
 9.0
 Dilution
 NA

 Dry Weight Extracted
 11.4 g
 Collected
 10/17/2016 14:32

 ICAL ID
 Propried
 10/24/2016 00:30

 ICÂL ID
 F161011
 Received
 10/21/2016 09:30

 CCal Filename(s)
 F161030B_16
 Extracted
 10/26/2016 15:55

 Method Blank ID
 BLANK-52542
 Analyzed
 10/31/2016 04:08

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.26 0.76		0.160 J 0.160 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	64 77 66
2,3,7,8-TCDD Total TCDD	ND 0.20		0.095 0.095 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	63 71 67
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.10 0.27 25.00		0.075 J 0.068 J 0.072	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	68 68 69 63
1,2,3,7,8-PeCDD Total PeCDD	ND 20.00		0.088 0.088	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	64 59 61
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	2.50 1.40 2.40		0.240 J 0.260 J 0.270 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	77 60
1,2,3,7,8,9-HxCDF Total HxCDF	330.00	0.33	0.300 JJ 0.270	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.48 14.00 1.40 150.00		0.250 J 0.260 0.230 J 0.250	2,3,7,8-TCDD-37Cl4	0.20	67
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	360.00 14.00 1800.00		0.770 0.860 0.820	Total 2,3,7,8-TCDD Equivalence: 29 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	880.00 1400.00		0.074 0.074			
OCDF OCDD	2500.00 12000.00		0.120 0.088 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101716006
Lab Sample ID 40140496006
Filename F161031A_07
Injected By BAL
Total Amount Extracted 12.3 g
% Moisture 13.1

Dry Weight Extracted 10.7 g
ICAL ID F161011
CCal Filename(s) F161030B_16
Method Blank ID BLANK-52542

Matrix Solid
Dilution NA
Collected 10/17/20

Collected 10/17/2016 14:32 Received 10/21/2016 09:30 Extracted 10/26/2016 15:55 Analyzed 10/31/2016 04:56

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.24 0.51		0.130 J 0.130 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	66 81 67
2,3,7,8-TCDD Total TCDD	ND 0.57		0.180 0.180 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	64 72 67
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND	0.090	0.079 0.065 JJ 0.072	1,2,3,4,7,8-HXCDF-13C 1,2,3,6,7,8-HXCDF-13C 2,3,4,6,7,8-HXCDF-13C 1,2,3,7,8,9-HXCDF-13C 1,2,3,4,7,8-HXCDD-13C	2.00 2.00 2.00 2.00 2.00	67 72 72 74 67
1,2,3,7,8-PeCDD Total PeCDD	ND 0.59		0.084 0.084 J	1,2,3,4,7,8-113C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 60 63
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND	 	0.093 0.073 0.069 0.100	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 2.00 4.00	78 50 NA
Total HxCDF	0.34		0.085 J	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND 0.78		0.120 0.120 0.120 0.120 J	2,3,7,8-TCDD-37Cl4	0.20	69
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	 ND ND	0.600	0.093 JJ 0.130 0.110	Total 2,3,7,8-TCDD Equivalence: 0.10 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.30 2.50		0.160 J 0.160 J			
OCDF OCDD	12.00	1.900	0.140 IJ 0.320			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101716007

 Lab Sample ID
 40140496007

 Filename
 F161031A_08

 Injected By
 BAL

Total Amount Extracted 12.3 g Matrix Solid % Moisture 13.6 Dilution NA

10.6 g Dry Weight Extracted Collected 10/17/2016 14:33 ICAL ID Received F161011 10/21/2016 09:30 CCal Filename(s) F161030B_16 Extracted 10/26/2016 15:55 Method Blank ID Analyzed 10/31/2016 05:45 BLANK-52534

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND 1.60		0.19 0.19 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	71 88 72
2,3,7,8-TCDD Total TCDD	ND ND		0.24 0.24	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	68 80 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 1.20	0.22 	0.16 0.12	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	76 80 82 70
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.14 0.14	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	72 64 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.15 0.12	0.18 	0.12 J 0.13 J 0.11 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	84 51
1,2,3,7,8,9-HxCDF Total HxCDF	ND 0.26		0.13 0.12 J	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND 0.92	0.16 	0.11 0.13 U 0.11 0.12 J	2,3,7,8-TCDD-37Cl4	0.20	74
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.40 ND 5.70	 	0.13 J 0.20 0.16 J	Total 2,3,7,8-TCDD Equivalence: 0.25 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	2.90 5.40		0.15 J 0.15 J			
OCDF OCDD	5.80 28.00		0.24 J 0.28			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

ND = Not Detected NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

I = Interference present

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101816008

 Lab Sample ID
 40140496008

 Filename
 Y161102A_04

 Injected By
 SMT

Total Amount Extracted 22.4 g Matrix
% Moisture 92.0 Dilution

Dry Weight Extracted 1.79 g Collected 10/18/2016 14:42 Y160816A Received ICAL ID 10/21/2016 09:30 CCal Filename(s) Y161101B_19 Extracted 10/27/2016 16:25 Method Blank ID Analyzed BLANK-52558 11/02/2016 07:14

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	9.9 210.0		0.59 V 0.59	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 92 72
2,3,7,8-TCDD Total TCDD	2.1 51.0		0.76 J 0.76	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	64 80 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	63.0 130.0 1800.0	 	0.63 0.55 0.59	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	71 76 70 83
1,2,3,7,8-PeCDD Total PeCDD	26.0 290.0		0.37 J 0.37	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 76 82
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	460.0 300.0 300.0		2.40 1.40 1.90	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	96 68 DN2
1,2,3,7,8,9-HxCDF Total HxCDF	200.0 9600.0		3.20 2.20	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	110.0 690.0 220.0 3400.0		1.90 1.80 1.60 1.70	2,3,7,8-TCDD-37Cl4	0.20	87
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	7900.0 680.0 34000.0	 	3.90 4.50 4.20 E	Total 2,3,7,8-TCDD Equivalence: 800 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	18000.0 31000.0		0.46 E 0.46 E			
OCDF OCDD	34000.0 190000.0		5.70 DN2 9.40 DN2			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected NA = Not Applicable

EMPC = Estimated Maximum Possible Concentration

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

EDL = Estimated Detection Limit

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Matrix

Dilution

Solid

NA

 Client's Sample ID
 101816009

 Lab Sample ID
 40140496009

 Filename
 Y161102A_05

 Injected By
 SMT

Injected By SMT
Total Amount Extracted 17.4 g
% Moisture 77.3

3.95 g Dry Weight Extracted Collected 10/18/2016 14:42 Y160816A Received ICAL ID 10/21/2016 09:30 CCal Filename(s) Y161101B_19 Extracted 10/27/2016 16:25 Method Blank ID Analyzed BLANK-52558 11/02/2016 07:55

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	5.6 190.0		0.50 V 0.50	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	67 82 57
2,3,7,8-TCDD Total TCDD	2.1 52.0		0.57 J 0.57	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	50 61 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	67.0 110.0 1900.0		0.64 0.29 0.47	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	66 69 58 81
1,2,3,7,8-PeCDD Total PeCDD	33.0 370.0		0.33 0.33	1,2,3,4,7,8-HXCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	63 55 54
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	300.0 400.0 370.0		2.40 1.90 1.70	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	64 79 DN2
1,2,3,7,8,9-HxCDF Total HxCDF	160.0 14000.0		2.20 2.10 E	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	140.0 810.0 280.0 4700.0		1.60 1.40 1.30 1.40	2,3,7,8-TCDD-37Cl4	0.20	77
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	11000.0 920.0 49000.0		3.20 E 3.50 3.40 E	Total 2,3,7,8-TCDD Equivalence: 1000 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	25000.0 48000.0		0.64 E 0.64 E			
OCDF OCDD	49000.0 270000.0		2.20 DN2 3.50 EDN			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

ND = Not Detected

EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable

EDL = Estimated Detection Limit

NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

E = Exceeds calibration range

D = Result obtained from analysis of diluted sample

Nn = Value obtained from additional analysis

V = Result verified by confirmation analysis

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101816011

 Lab Sample ID
 40140496010

 Filename
 U161201A_10

 Injected By
 SMT

Total Amount Extracted 12.7 g Matrix Solid % Moisture 24.6 Dilution NA

9.58 g 10/18/2016 11:33 Dry Weight Extracted Collected U161025 ICAL ID Received 10/21/2016 09:30 CCal Filename(s) U161130B_15 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 12/02/2016 00:38

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.54 5.60		0.120 J 0.120	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 88 78
2,3,7,8-TCDD Total TCDD	ND 0.28		0.110 0.110 BJ	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	71 83 80
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.90 4.10 51.00		0.240 J 0.120 J 0.180	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	71 56 69
1,2,3,7,8-PeCDD Total PeCDD	0.73 6.80		0.110 J 0.110	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00 2.00	58 58 57 64
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	12.00 5.00 6.30		0.081 0.066 J 0.110	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	70 63
1,2,3,7,8,9-HxCDF Total HxCDF	5.00 230.00		0.096 J 0.088	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	2.80 15.00 5.80 87.00		0.240 J 0.190 0.240 0.220	2,3,7,8-TCDD-37Cl4	0.20	90
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	100.00 9.60 420.00		0.250 0.270 0.260	Total 2,3,7,8-TCDD Equivalence: 15 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	290.00 520.00		0.140 0.140			
OCDF OCDD	310.00 2500.00		0.180 0.170			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).ND = Not DetectedEMPC = Estimated Maximum Possible ConcentrationNA = Not ApplicableEDL = Estimated Detection LimitNC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

B = Less than 10x higher than method blank level

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816012 Lab Sample ID 40140496011 Filename U161201A_11 Injected By SMT

Total Amount Extracted 12.6 g Matrix
% Moisture 28.0 Dilution

9.07 g Dry Weight Extracted Collected 10/18/2016 12:45 U161025 ICAL ID Received 10/21/2016 09:30 CCal Filename(s) U161130B_15 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 12/02/2016 01:25

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.96 11.00		0.260 J 0.260	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	73 83 82
2,3,7,8-TCDD Total TCDD	ND 0.80		0.160 0.160 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	71 86 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	5.40 11.00 120.00		0.130 J 0.110 0.120	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	64 70 63
1,2,3,7,8-PeCDD Total PeCDD	1.50 13.00		0.140 J 0.140	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C	2.00 2.00 2.00	80 58 59
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	35.00 17.00 6.40		0.190 0.220 0.180	1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	66 73 74
1,2,3,7,8,9-HxCDF Total HxCDF	16.00 630.00		0.180 0.180 0.190	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	5.30 39.00 11.00 170.00		0.230 J 0.180 0.260 0.220	2,3,7,8-TCDD-37Cl4	0.20	86
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	360.00 35.00 1500.00		0.084 0.130 0.100	Total 2,3,7,8-TCDD Equivalence: 45 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	950.00 1700.00		0.084 0.084			
OCDF OCDD	1200.00 11000.00		0.120 0.160 E			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

E = Exceeds calibration range

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816013 Lab Sample ID 40140496012 Filename U161201A_12 Injected By SMT

12.4 g **Total Amount Extracted** Matrix Solid % Moisture 21.6 Dilution NA

9.72 g Dry Weight Extracted Collected 10/18/2016 12:45 U161025 ICAL ID Received 10/21/2016 09:30 CCal Filename(s) U161130B_15 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 12/02/2016 02:11

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.20		0.082 J	2,3,7,8-TCDF-13C	2.00	70
Total TCDF	0.52		0.082 J	2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00	81 79
2,3,7,8-TCDD	ND		0.083	2,3,4,7,8-PeCDF-13C	2.00	71
Total TCDD	ND		0.083	1,2,3,7,8-PeCDD-13C	2.00	84
1,2,3,7,8-PeCDF	ND		0.085	1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C	2.00 2.00	73 63
2,3,4,7,8-PeCDF	ND		0.070	2,3,4,6,7,8-HxCDF-13C	2.00	69
Total PeCDF	0.34		0.077 J	1,2,3,7,8,9-HxCDF-13C	2.00	67
10070000	ND		0.070	1,2,3,4,7,8-HxCDD-13C	2.00	74
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.078 0.078	1,2,3,6,7,8-HxCDD-13C	2.00 2.00	62 57
Total PeCDD	טאו		0.076	1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00	63
1,2,3,4,7,8-HxCDF		0.14	0.100 JJ	1,2,3,4,6,7,8-HpCDD-13C	2.00	67
1,2,3,6,7,8-HxCDF	0.14		0.092 J	OCDD-13C	4.00	64
2,3,4,6,7,8-HxCDF	0.17		0.062 J			
1,2,3,7,8,9-HxCDF	ND 4.00		0.084	1,2,3,4-TCDD-13C	2.00	NA NA
Total HxCDF	1.80		0.085 J	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD	ND		0.083	2,3,7,8-TCDD-37Cl4	0.20	83
1,2,3,6,7,8-HxCDD	0.18		0.099 J			
1,2,3,7,8,9-HxCDD	ND		0.091			
Total HxCDD	1.50		0.091 J			
1,2,3,4,6,7,8-HpCDF	2.70		0.073 J	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	0.21		0.088 J	Equivalence: 0.24 ng/Kg		
Total HpCDF	8.70		0.081	(Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD	5.80		0.086			
Total HpCDD	9.90		0.086			
OCDF	9.40		0.210 J			
OCDD	65.00		0.180			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

NC = Not Calculated Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

EDL = Estimated Detection Limit

REPORT OF LABORATORY ANALYSIS

ND = Not Detected

NA = Not Applicable

I = Interference present

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

 Client's Sample ID
 101816015

 Lab Sample ID
 40140496013

 Filename
 U161201A_13

 Injected By
 SMT

Total Amount Extracted 12.6 g Matrix Solid % Moisture 8.6 Dilution NA

11.5 g Dry Weight Extracted Collected 10/18/2016 10:17 U161025 ICAL ID Received 10/21/2016 09:30 CCal Filename(s) U161130B_15 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 12/02/2016 02:57

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.25 3.90		0.075 J 0.160	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 87 80
2,3,7,8-TCDD Total TCDD	ND 0.71		0.091 0.091 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	74 88 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	0.61 1.60 22.00		0.110 J 0.091 J 0.098	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	67 72 68
1,2,3,7,8-PeCDD Total PeCDD	0.32 2.10		0.085 J 0.085 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	82 59 57 65
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	3.40 1.60 2.20		0.077 J 0.090 J 0.095 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	69 65
1,2,3,7,8,9-HxCDF Total HxCDF	1.40 73.00		0.079 J 0.086	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.10 5.00 1.60 24.00		0.130 J 0.044 0.043 J 0.073	2,3,7,8-TCDD-37Cl4	0.20	88
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	41.00 3.70 160.00		0.120 0.110 J 0.120	Total 2,3,7,8-TCDD Equivalence: 5.3 ng/Kg (Lower-bound - Using ITE F	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	110.00 190.00		0.093 0.093			
OCDF OCDD	130.00 970.00		0.110 0.170			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).ND = Not DetectedEMPC = Estimated Maximum Possible ConcentrationNA = Not ApplicableEDL = Estimated Detection LimitNC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816016

Lab Sample ID 40140496014

Filename U161201A_14

Injected By SMT

Total Amount Extracted 15.1 g Matrix Solid % Moisture 58.7 Dilution NA

6.24 g Dry Weight Extracted Collected 10/18/2016 10:17 U161025 ICAL ID Received 10/21/2016 09:30 CCal Filename(s) U161130B_15 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 12/02/2016 03:43

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.40 1.90		0.16 J 0.16 J	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	80 93 88
2,3,7,8-TCDD Total TCDD	ND ND		0.20 0.20	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	78 93 82
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND 0.31 4.20		0.14 0.10 J 0.12 J	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	72 80 71 88
1,2,3,7,8-PeCDD Total PeCDD	ND 0.56		0.11 0.11 J	1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	66 63 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.30 0.56 0.78		0.14 J 0.14 J 0.13 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	75 70
1,2,3,7,8,9-HxCDF Total HxCDF	0.36 23.00		0.17 J 0.15	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	0.40 1.70 0.72 10.00		0.21 J 0.18 J 0.28 J 0.22 J	2,3,7,8-TCDD-37Cl4	0.20	94
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	21.00 1.60 78.00	 	0.23 0.26 J 0.25	Total 2,3,7,8-TCDD Equivalence: 2.0 ng/Kg (Lower-bound - Using ITE Fa	actors)	
1,2,3,4,6,7,8-HpCDD Total HpCDD	45.00 80.00		0.11 0.11			
OCDF OCDD	85.00 510.00		0.25 0.42			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers). ND = Not Detected EMPC = Estimated Maximum Possible Concentration NA = Not Applicable

EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures. J = Estimated value

Method 1613B Sample Analysis Results

Client - PACE Wisconsin

Client's Sample ID 101816017 Lab Sample ID 40140496015 Filename U161201A_15 Injected By **SMT**

13.1 g **Total Amount Extracted** Matrix Solid % Moisture 38.7 Dilution NA

8.03 g Dry Weight Extracted Collected 10/18/2016 10:18 U161025 ICAL ID Received 10/21/2016 09:30 CCal Filename(s) U161130B_15 Extracted 10/27/2016 16:25 Method Blank ID BLANK-52558 Analyzed 12/02/2016 04:30

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF	0.34		0.120 J	2,3,7,8-TCDF-13C	2.00	79
Total TCDF	2.10		0.120 J	2,3,7,8-TCDD-13C	2.00	91
				1,2,3,7,8-PeCDF-13C	2.00	87
2,3,7,8-TCDD	ND		0.120	2,3,4,7,8-PeCDF-13C	2.00	79
Total TCDD	ND		0.120	1,2,3,7,8-PeCDD-13C	2.00	92
				1,2,3,4,7,8-HxCDF-13C	2.00	83
1,2,3,7,8-PeCDF	0.18		0.150 J	1,2,3,6,7,8-HxCDF-13C	2.00	72
2,3,4,7,8-PeCDF	0.45		0.099 J	2,3,4,6,7,8-HxCDF-13C	2.00	75
Total PeCDF	6.00		0.120 J	1,2,3,7,8,9-HxCDF-13C	2.00	74
100700000	NE		0.000	1,2,3,4,7,8-HxCDD-13C	2.00	90
1,2,3,7,8-PeCDD	ND		0.092	1,2,3,6,7,8-HxCDD-13C	2.00	66
Total PeCDD	0.89		0.092 J	1,2,3,4,6,7,8-HpCDF-13C	2.00	63
4.0.0.4.7.0.UvCDE	4.00		0.440	1,2,3,4,7,8,9-HpCDF-13C	2.00	71 70
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF	1.20 0.46		0.110 J 0.120 J	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	76 70
2,3,4,6,7,8-HxCDF	0.40	0.60	0.120 J 0.120 J	OCDD-13C	4.00	70
1,2,3,7,8,9-HxCDF	0.44	0.00	0.120 J 0.120 J	1,2,3,4-TCDD-13C	2.00	NA
Total HxCDF	19.00		0.120 3	1,2,3,7,8,9-HxCDD-13C	2.00	NA NA
Total FIXCDI	19.00		0.120	1,2,3,7,0,9-118000-130	2.00	INA
1,2,3,4,7,8-HxCDD	0.41		0.062 J	2,3,7,8-TCDD-37Cl4	0.20	93
1,2,3,6,7,8-HxCDD	1.60		0.075 J	2,0,1,0 1000 01011	0.20	00
1,2,3,7,8,9-HxCDD	0.63		0.092 J			
Total HxCDD	9.90		0.076 J			
1,2,3,4,6,7,8-HpCDF	15.00		0.180	Total 2,3,7,8-TCDD		
1,2,3,4,7,8,9-HpCDF	1.20		0.160 J	Equivalence: 1.8 ng/Kg		
Total HpCDF	56.00		0.170	(Lower-bound - Using ITE F	actors)	
4004070115000	20.00		0.005			
1,2,3,4,6,7,8-HpCDD	38.00 65.00		0.065 0.065			
Total HpCDD	05.00		0.005			
OCDF	57.00		0.170			
OCDD	360.00		0.180			

ND = Not Detected Conc = Concentration (Totals include 2,3,7,8-substituted isomers). EMPC = Estimated Maximum Possible Concentration

NA = Not Applicable EDL = Estimated Detection Limit NC = Not Calculated

Results reported on a dry weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Blank Analysis Results

Lab Sample ID Filename Total Amount Extracted

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52534 U161029A_02 20.6 g U161025

U161028B_16

Matrix Dilution Solid NA

Extracted Analyzed 10/26/2016 15:55 10/29/2016 06:54

Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.054 0.054	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 92 77
2,3,7,8-TCDD Total TCDD	ND ND		0.067 0.067	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	78 85 75
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.055 0.035 0.045	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	77 78 86
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.045 0.045	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	72 71 70 74
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND	 	0.032 0.033 0.033 0.039	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	81 64 NA
Total HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	ND ND ND ND		0.034 0.043 0.039 0.040	1,2,3,7,8,9-HxCDD-13C 2,3,7,8-TCDD-37Cl4	2.00 0.20	NA 100
Total HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND ND		0.041 0.028 0.036 0.032	Total 2,3,7,8-TCDD Equivalence: 0.00073 ng/Kg (Lower-bound - Using ITE F		
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.055 0.055		0.040 J 0.040 J			
OCDF OCDD	ND 0.180		0.074 0.085 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures. J = Estimated value

Method 1613B Blank Analysis Results

Lab Sample ID
Filename
Total Amount Extracted

Total Amount Extracted ICAL ID

CCal Filename(s)

BLANK-52542 F161030B_04 10.1 g

F161011 F161030B_01 Matrix Solid Dilution NA

Extracted 10/26/2016 15:55 Analyzed 10/30/2016 13:30

Injected By BAL

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.079 0.079	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	74 87 78
2,3,7,8-TCDD Total TCDD	ND ND		0.130 0.130	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00	71 80 78
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.049 0.033 0.041	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	82 83 83 75
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.059 0.059	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00	68 64 62
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF	ND ND ND ND		0.035 0.032 0.043 0.058	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C 1,2,3,4-TCDD-13C	2.00 4.00 2.00	77 50 NA
Total HxCDF	ND		0.042	1,2,3,7,8,9-HxCDD-13C	2.00	NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.057 0.067 0.083 0.069	2,3,7,8-TCDD-37Cl4	0.20	76
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.037 0.056 0.047	Total 2,3,7,8-TCDD Equivalence: 0.00024 ng/Kg (Lower-bound - Using ITE F		
1,2,3,4,6,7,8-HpCDD Total HpCDD	ND ND		0.062 0.062			
OCDF OCDD	ND 	0.24	0.140 0.150 JJ			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Blank Analysis Results

Lab Sample ID Filename **Total Amount Extracted**

ICAL ID

CCal Filename(s)

BLANK-52558 U161101B_15 20.4 g

U161025 U161101B_03 Matrix Solid Dilution NA

Extracted 10/27/2016 16:25 Analyzed 11/02/2016 01:42

Injected By **SMT**

Native Isomers	Conc ng/Kg	EMPC ng/Kg	EDL ng/Kg	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	ND ND		0.031 0.031	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 92 85
2,3,7,8-TCDD Total TCDD	ND 0.042		0.033 0.033 J	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	80 99 76
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	ND ND ND		0.039 0.023 0.031	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C	2.00 2.00 2.00 2.00 2.00	74 78 78 84
1,2,3,7,8-PeCDD Total PeCDD	ND ND		0.029 0.029	1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	70 75 79
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	ND ND ND		0.027 0.023 0.021	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 2.00 4.00	90 75
1,2,3,7,8,9-HxCDF Total HxCDF	ND ND		0.026 0.024	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	ND ND ND ND		0.036 0.035 0.037 0.036	2,3,7,8-TCDD-37Cl4	0.20	84
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	ND ND ND		0.036 0.038 0.037	Total 2,3,7,8-TCDD Equivalence: 0.00063 ng/Kg (Lower-bound - Using ITE Fa		
1,2,3,4,6,7,8-HpCDD Total HpCDD	0.076	0.046	0.028 J 0.028 J			
OCDF OCDD	ND 	0.170	0.055 0.061 J			

Conc = Concentration (Totals include 2,3,7,8-substituted isomers).

EMPC = Estimated Maximum Possible Concentration

EDL = Estimated Detection Limit

Results reported on a total weight basis and are valid to no more than 2 significant figures.

J = Estimated value

I = Interference present

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCS-52535 Filename U161028B 01 **Total Amount Extracted** 20.0 g ICAL ID U161025

U161028A_11 CCal Filename

Method Blank ID BLANK-52534

Solid Matrix Dilution NA

10/26/2016 15:55 Extracted Analyzed 10/28/2016 17:37

Injected By **BAL**

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8-HpCDF 0CDF OCDD	10 10 50 50 50 50 50 50 50 50 50 100 100	10 8.7 53 57 48 56 54 52 49 56 58 59 57 51 48 100 110	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 61.0 69.0 70.0 170.0	102 87 106 114 96 111 107 104 97 112 116 118 113 101 97 101 108
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	10 100 100 100 100 100 100 100 100 100	9.0 77 92 77 76 83 76 75 80 90 81 68 74 83 91	3.1 22.0 20.0 21.0 13.0 21.0 19.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	90 77 92 77 76 83 76 75 80 90 81 68 74 83 91 76

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

* = See Discussion

Solid

NA

Tel: 612-607-1700 Fax: 612- 607-6444

Method 1613B Laboratory Control Spike Results

Matrix

Dilution

Lab Sample ID LCS-52543
Filename F161030B_02
Total Amount Extracted 10.1 g
ICAL ID F161011

 ICAL ID
 F161011
 Extracted
 10/26/2016 15:55

 CCal Filename
 F161030B_01
 Analyzed
 10/30/2016 11:54

 Mathed Blank ID
 PI ANK 52542
 Injected Bits
 PA

Method Blank ID BLANK-52542 Injected By BAL

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HyCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 50 50 100 10	11 8.3 57 60 50 60 56 53 52 59 58 58 52 48 45 110	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 61.0 69.0 70.0 170.0	105 83 115 120 100 119 112 106 104 118 115 117 103 96 91
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 0CDD-13C	10 100 100 100 100 100 100 100 100 100	8.1 81 94 86 81 92 80 90 89 91 77 76 68 69 81 110	3.1 22.0 20.0 21.0 13.0 21.0 19.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	81 81 94 86 81 92 80 90 89 91 77 76 68 69 81 55

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{* =} See Discussion

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCS-52559
Filename U161101B_18
Total Amount Extracted 20.1 g
ICAL ID U161025

CCal Filename U161101B_03 Method Blank ID BLANK-52558

g Dilution NA 1025 Extracted 10/27/2016 16:25 1101B_03 Analyzed 11/02/2016 04:01

Injected By SMT

Matrix

Solid

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 0CDF OCDD	10 10 50 50 50 50 50 50 50 50 50 100	9.6 8.5 49 52 48 54 52 49 50 54 57 56 54 50 48 95 110	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 61.0 69.0 70.0 170.0	96 85 97 104 95 107 103 97 101 109 114 112 107 100 97 95 106
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 1,2,3,7,8-PeCDF-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	10 100 100 100 100 100 100 100 100 100	8.1 67 83 77 73 90 70 67 75 76 80 63 75 81 91	3.1 22.0 20.0 21.0 13.0 21.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	81 67 83 77 73 90 70 67 75 76 80 63 75 81 91 78

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{* =} See Discussion

Method 1613B Laboratory Control Spike Results

Lab Sample ID LCSD-52544 Filename F161030B 03 **Total Amount Extracted** 10.1 g ICAL ID F161011

CCal Filename F161030B 01

Method Blank ID BLANK-52542

Solid Matrix Dilution NA

10/26/2016 15:55 Extracted Analyzed 10/30/2016 12:41

Injected By **BAL**

Compound	Cs	Cr	Lower Limit	Upper Limit	% Rec.
2,3,7,8-TCDF 2,3,7,8-TCDD 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDD OCDF OCDD	10 10 50 50 50 50 50 50 50 50 50 100	11 8.0 55 59 49 57 55 53 49 57 59 58 51 47 45 110	7.5 6.7 40.0 34.0 35.0 36.0 42.0 35.0 39.0 35.0 38.0 32.0 41.0 39.0 35.0 63.0 78.0	15.8 15.8 67.0 80.0 71.0 67.0 65.0 78.0 65.0 82.0 67.0 81.0 61.0 69.0 70.0 170.0	109 80 110 118 98 114 110 105 99 115 117 116 102 94 90 110 107
2,3,7,8-TCDD-37Cl4 2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C 2,3,4,7,8-PeCDF-13C 1,2,3,4,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,4,6,7,8-HxCDF-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	10 100 100 100 100 100 100 100 100 100	7.7 73 88 77 74 81 75 79 79 81 67 70 61 62 73 98	3.1 22.0 20.0 21.0 13.0 21.0 19.0 21.0 22.0 17.0 21.0 25.0 21.0 20.0 26.0	19.1 152.0 175.0 192.0 328.0 227.0 202.0 159.0 176.0 205.0 193.0 163.0 158.0 186.0 166.0 397.0	77 73 88 77 74 81 75 79 79 81 67 70 61 62 73 49

Cs = Concentration Spiked (ng/mL)

Cr = Concentration Recovered (ng/mL)

Rec. = Recovery (Expressed as Percent)

Control Limit Reference: Method 1613, Table 6, 10/94 Revision

R = Recovery outside of control limits

Nn = Value obtained from additional analysis

^{* =} See Discussion

Method 1613B

Spike Recovery Relative Percent Difference (RPD) Results

Client PACE Wisconsin

 Spike 1 ID
 LCS-52543
 Spike 2 ID
 LCSD-52544

 Spike 1 Filename
 F161030B_02
 Spike 2 Filename
 F161030B_03

Compound	Spike 1 %REC	Spike 2 %REC	%RPD	
2,3,7,8-TCDF	105	109	3.7	
2,3,7,8-TCDD	83	80	3.7	
1,2,3,7,8-PeCDF	115	110	4.4	
2,3,4,7,8-PeCDF	120	118	1.7	
1,2,3,7,8-PeCDD	100	98	2.0	
1,2,3,4,7,8-HxCDF	119	114	4.3	
1,2,3,6,7,8-HxCDF	112	110	1.8	
2,3,4,6,7,8-HxCDF	106	105	0.9	
1,2,3,7,8,9-HxCDF	104	99	4.9	
1,2,3,4,7,8-HxCDD	118	115	2.6	
1,2,3,6,7,8-HxCDD	115	117	1.7	
1,2,3,7,8,9-HxCDD	117	116	0.9	
1,2,3,4,6,7,8-HpCDF	103	102	1.0	
1,2,3,4,7,8,9-HpCDF	96	94	2.1	
1,2,3,4,6,7,8-HpCDD	91	90	1.1	
OCDF	109	110	0.9	
OCDD	101	107	5.8	

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Method 1613B Spiked Sample Report

Client - PACE Wisconsin

Client's Sample ID Lab Sample ID Filename U161227B_14

Total Amount Extracted ICAL ID

CCal Filename(s) Method Blank ID

101816012-MS 40140496011-MS

12.5 g U161025 U161227A_18

BLANK-52558

Matrix Solid Dilution NA

Extracted 10/27/2016 16:25 Analyzed 12/28/2016 11:22

Injected By BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.19	94	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	75 89 67
2,3,7,8-TCDD Total TCDD	0.20	0.17	84	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	63 74 72
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.00 1.00	0.99 1.09	99 109	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	74 76 73
1,2,3,7,8-PeCDD Total PeCDD	1.00	0.97	97	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	81 68 66 69
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.23 1.12 1.06	123 112 106	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	74 67
1,2,3,7,8,9-HxCDF Total HxCDF	1.00	1.03	103	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 1.00 1.00	1.04 1.41 1.18	104 141 118	2,3,7,8-TCDD-37Cl4	0.20	82
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.00 1.00	3.60 1.24	360 124			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.00	7.92	792			
OCDF OCDD	2.00 2.00	11.43 76.89	572 3845 E			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Method 1613B Spiked Sample Report

Client - PACE Wisconsin

Client's Sample ID Lab Sample ID Filename

Method Blank ID

40140496011-MSD U161227B_15 **Total Amount Extracted** 12.5 g **ICAL ID** U161025 CCal Filename(s) U161227A_18

101816012-MSD

Matrix Solid Dilution NA

Extracted 10/27/2016 16:25 Analyzed 12/28/2016 12:07

Injected By BLANK-52558 BAL

Native Isomers	Qs (ng)	Qm (ng)	% Rec.	Internal Standards	ng's Added	Percent Recovery
2,3,7,8-TCDF Total TCDF	0.20	0.20	98	2,3,7,8-TCDF-13C 2,3,7,8-TCDD-13C 1,2,3,7,8-PeCDF-13C	2.00 2.00 2.00	80 94 74
2,3,7,8-TCDD Total TCDD	0.20	0.17	84	2,3,4,7,8-PeCDF-13C 1,2,3,7,8-PeCDD-13C 1,2,3,4,7,8-HxCDF-13C	2.00 2.00 2.00 2.00	71 83 74
1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF Total PeCDF	1.00 1.00	0.99 1.11	99 111	1,2,3,6,7,8-HxCDF-13C 2,3,4,6,7,8-HxCDF-13C 1,2,3,7,8,9-HxCDF-13C	2.00 2.00 2.00	74 77 71
1,2,3,7,8-PeCDD Total PeCDD	1.00	0.95	95	1,2,3,4,7,8-HxCDD-13C 1,2,3,6,7,8-HxCDD-13C 1,2,3,4,6,7,8-HpCDF-13C 1,2,3,4,7,8,9-HpCDF-13C	2.00 2.00 2.00 2.00	84 70 68 71
1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	1.00 1.00 1.00	1.46 1.16 1.09	146 116 109	1,2,3,4,6,7,8-HpCDD-13C OCDD-13C	2.00 4.00	80 76
1,2,3,7,8,9-HxCDF Total HxCDF	1.00	1.14	114	1,2,3,4-TCDD-13C 1,2,3,7,8,9-HxCDD-13C	2.00 2.00	NA NA
1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD Total HxCDD	1.00 1.00 1.00	1.12 1.43 1.17	112 143 117	2,3,7,8-TCDD-37Cl4	0.20	95
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF Total HpCDF	1.00 1.00	4.99 1.38	499 138			
1,2,3,4,6,7,8-HpCDD Total HpCDD	1.00	9.99	999			
OCDF OCDD	2.00 2.00	13.06 99.99	653 5000 E			

Qs = Quantity Spiked

Qm = Quantity Measured

Rec. = Recovery (Expressed as Percent)

%REC = Percent Recovered

RPD = The difference between the two values divided by the mean value

Method 1613 Spike Sample Results

Client - PACE Wisconsin

MSD Qm

(ng)

0.20

0.17

0.99

1.11

0.95

1.46

1.16

1.09

1.14

1.12

1.43

1.17

4.99

1.38

9.99

13.06

99.99

Client Sample ID Lab Sample ID MS ID

MSD ID

Analyte

2.3.7.8-TCDF

2,3,7,8-TCDD

1.2.3.7.8-PeCDF

2,3,4,7,8-PeCDF

1,2,3,7,8-PeCDD

1,2,3,4,7,8-HxCDF

1,2,3,6,7,8-HxCDF

2,3,4,6,7,8-HxCDF

1,2,3,7,8,9-HxCDF

1,2,3,4,7,8-HxCDD

1,2,3,6,7,8-HxCDD

1,2,3,7,8,9-HxCDD

1,2,3,4,6,7,8-HpCDF

1,2,3,4,7,8,9-HpCDF

1,2,3,4,6,7,8-HpCDD

101816012 40140496011 40140496011-MSD

Sample Conc.

ng/Kg

0.957

0.000

5.382

10.762

1.451

35.154

16.564

6.393

16.348

39.207

10.862

35.455

355.814

950.589

1169.231

11002.369

5.292

Sample Filename MS Filename MSD Filename

MS Qm

(ng)

0.19

0.17

0.99

1.09

0.97

1.23

1.12

1.06

1.03

1.04

1.41

1.18

3.60

1.24

7.92

11.43

76.89

U161201A_11 U161227B_14 U161227B_15

RPD

3.7

0.3

0.6

2.2

2.5

3.0

2.6

9.9

7.5

1.1

0.3

32.4

10.1

23.1

13.3

26.1

17.5

Dry Weights
Sample Amount 9.07 g
MS Amount 9.0 g
MSD Amount 9.0 g

Background Subtracted MS % Rec. MSD % Rec. **RPD** 90 94 3.8 84 84 0.3 95 94 0.6 99 102 2.4 96 2.6 93 91 115 22.9 97 3.5 101 2.7 100 103 89 99 11.4 99 107 7.8 106 108 1.5 108 107 0.3 40 179 127.5 93 106 13.3

144

127

49

200.0

200.0

94.5

0

0

45

Definitions

OCDF

OCDD

MS = Matrix Spike
MSD = Matrix Spike Duplicate
Qm = Quantity Measured
Qs = Quantity Spiked

% Rec. = Percent Recovery RPD = Relative Percent Difference

NA = Not Applicable
NC = Not Calculated

CDD = Chlorinated dibenzo-p-dioxin CDF = Chlorinated dibenzo-p-furan

T = Tetra Pe = Penta Hx = Hexa Hp = Hepta O = Octa

MS/MSD Qs

(ng)

0.20

0.20

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

2.00

2.00