

December 4, 1998 (1313)

Ms. Margaret M. Graefe Wisconsin Department of Natural Resources Southeast Region Headquarters 2300 N. Dr. Martin Luther King Jr. Drive PO Box 12436 Milwaukee, Wisconsin 53177

RE: Transmittal, Feasibility Study Work Plan Campmarina, Former Coal Gas Facility Wisconsin Public Service Corporation Sheboygan, Wisconsin

Dear Ms. Graefe:

On behalf of the Wisconsin Public Service Corporation (WPS), enclosed is one copy of the Feasibility Study Work Plan for the Campmarina, Former Coal Gas Facility located in Sheboygan, Wisconsin. Field activities are scheduled for this month and the results will be used to prepare a Feasibility Study (FS). The FS will address land based (soil and groundwater) remedial recommendations and is scheduled for completion and submittal to the WDNR during the Spring of 1999.

If you have any questions or if you require additional copies for your files, please contact Ms. Connie Lawniczak of WPS at (920) 433-1176.

Sincerely,

NATURAL RESOURCE TECHNOLOGY

Roy E. Wittenberg, P.E. Senior Engineer

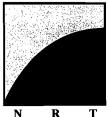
Enclosure: Feasibility Study Work Plan (1 copy)

cc: Ms. Connie Lawniczak, WPS (1 copy) Mr. Bob Peterson, City of Sheboygan (1 copy) Mr. Mark Thimke, Foley & Lardner, (1 copy)

[feasibility study/1313 WDNR 98.12.4.trnsltr]

aurie J. Parsons, P.E

Project Manager


WISCONSIN PUBLIC SERVICE CORPORATION SHEBOYGAN, WI

FEASIBILITY STUDY WORK PLAN

CAMPMARINA, FORMER COAL GAS FACILITY WISCONSIN PUBLIC SERVICE CORPORATION SHEBOYGAN, WISCONSIN

PROJECT NO. 1313

FEASIBILITY STUDY WORK PLAN **CAMPMARINA, FORMER COAL GAS FACILITY** WISCONSIN PUBLIC SERVICE CORPORATION SHEBOYGAN, WISCONSIN

Project No: 1313

Prepared For:

Wisconsin Public Service Corporation 700 N. Adams Street Green Bay, WI 54307

Prepared By:

Natural Resource Technology, Inc. 23713 W. Paul Road, Suite D Pewaukee, WI 53072

Senior Engineer "I, Roy E. Wittenberg, hereby certify that I am a registered professional engineer in the State of Wisconsin, registered in accordance with the requirements of ch. A-E 4, Wis. Adm. Code; that this document has been prepared in accordance with the Rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the mountain wallingpared in compliance with all applicable equivations in the second to a second the second to a second 726, Wis. Adm. Code."

JULIE A. ZIMDARS E-31,452 GERMANTOWN Julie A. Zimdars Environmental Engin

"I. Julie A. Zimdars, hereby worth, that I am a registered professional engineer in the State of Wiscowin, weispred in accordance with the requirements of ch. A-E 4, Wis. Admillioner, that this bocument has been prepared in accordance with the Rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code."

WI

oepkest!

Rebecca J. Koe Hydrogeologisť

"I, Rebecca J. Koepke, hereby certify that I am a hydrogeologist as that term is defined in s. NR 712.03 (1), Wis. Adm. Code, and that, to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code."

23713 W. Paul Road • Pewaukee, WI 53072 • (414) 523-9000 • Fax (414) 523-9001

6-9nel9 Ytets bns AtleeH	9.9
S-3nageneM stseW B-3nageneS bna dtlaan	6.5
S-4.2 Quality Control Samples	
S-9sisylanA yatory Analysis	
Laboratory Quality Assurance	4.8
r-8noitsnimstnoJ-seorJ	6.3
Equipment Decontanimation noitenimations from the former of the properties of the pr	2.9
1-6. Prosedures Procedures C-1. P-9	1.0
	•
I-9 3DNAAUSSA YTIJAI	פי0 סר
1-9 3ONARUSSA YTIJAI	
r-ð	
r-ð	5.0 FE
6-4	9.0 FE
r-ð	9.0 FE
A-5. Groundreine Weil and Piezometer Installation	9.0 FE
 4.3.2 Geotechnical Borings and Testing 4.5.4. 5.9.1 Treatability 4.5.3 Soil Treatability 6.4. 6.4. 6.4. 6.5.1 7.6. 7.6. 	9.0 FE
 4.3.2 Geotechnical Borings and Testing 4.5.4. 5.9.1 Treatability 4.5.3 Soil Treatability 6.4. 6.4. 6.4. 6.5.1 7.6. 7.6. 	9.0 FE
 4.3.3 Soil Treatability	9.0 FE
 4.3.2 Geotechnical Borings and Testing 4.5.4. 5.9.1 Treatability 4.5.3 Soil Treatability 6.4. 6.4. 6.4. 6.5.1 7.6. 7.6. 	9.4 FE

TABLES

Figure 3

Figure 2

Figure 1

Table 1 Soil and Groundwater Sampling Locations and Parameters

Investigation Plan

Site Location Map

Site Plan

APPENDICES

NRT Standard Practices Manual Table of Contents	:) xibnəqqA
Phase I, II, and Off-Site Investigation	:8 xibnəqqA
Laboratory Analytical Data	
April 4, 1996 Soil Boring Logs, Borehole abandonment Forms and	:A xibnəqqA

PLATE

in the second second

Keekingtad hardenasta

Level A read

Personal Providence

Construction of the second

in the second second

Considered a

ŝ

qeM əse8 f əselq

Isni nsiq xvork plan final

EXECUTIVE SUMMARY

f: f

This Feasibility Study Work Plan (Work Plan) has been prepared for the Wisconsin Public Service Corporation (WPS) to address feasibility study data collection objectives at the former coal gas facility located at Campmarina in Sheboygan, Wisconsin. Data collection objectives were established on the basis of the recommendations contained in the 1996 Phase II Environmental Site Investigation Report and off-site investigations performed in 1998. Remedial considerations for addressing manufactured gas plant (MGP) impacted soil and groundwater at the site include targeted excavation of source materials combined with capping and hydraulic containment. Hydraulic containment may include a combination of groundwater recovery with aboveground treatment and the installation of a vertical hydraulic barrier. Implementation of hydraulic containment will likely be proposed to control MGP impacted shallow groundwater flow to the Sheboygan River.

Key data collection objectives include further defining the extent of tar impacts, investigating the northern former gas holders and the vacant land south of the site, developing geotechnical design parameters to preliminarily determine the estimated depth and alignment for possible barrier options and conducting geotechnical strength and stability evaluations of the shallow fill/clay materials and deeper native clay present at the site. Soil treatability evaluations will also be conducted to address off-site treatment and/or disposal capabilities and cost. Off-site treatment is likely as the site has limited space.

The results of the additional investigative activities will be used to prepare a Feasibility Study (FS) in accordance with NR 722. Source control and groundwater remedial alternatives will be developed and evaluated based on effectiveness, practicality and cost.

1 INTRODUCTION

1.1 Overview

~7

ž

Presented in this document is a Feasibility Study Work Plan (Work Plan) for Wisconsin Public Service Corporation's (WPS's) former coal gas facility located at Campmarina in Sheboygan, Wisconsin (Figure 1). Tasks outlined in this work plan specifically address data collection requirements necessary for preparing a Feasibility Study (FS) for a land based remedial program associated with manufactured gas plant (MGP) impacted soil and groundwater. This Work Plan was developed on the basis of recommendations presented in the Phase II Environmental Site Investigation Report, dated June 28, 1996, and the letter report to the City of Sheboygan, dated September 15, 1998, discussing off-site MGP impacts within the Center Avenue right-of-way located directly south of the former coal gas facility.

Incorporated by reference as part of this Work Plan, are applicable requirements of NR 716 and recommended procedures from the Wisconsin Department of Natural Resources (WDNR) publication SW-157-92 entitled "Guidance for Conducting Environmental Response Actions" (March, 1992). The plan is being submitted for WDNR review and approval in substantive conformance with the contract between WPS, the City of Sheboygan and the WDNR dated March 5, 1991 (Contract No. SF-91-04). Field activities are planned for implementation in December 1998.

A land based remedial program will require consideration with respect to the planned future use for the former MGP site and vicinity. The City has developed long term development plans that include a condominium complex, park and river walk. Remedial options to be considered as part of the FS will be evaluated on the basis of a number of parameters including viability, practicality and cost effectiveness with respect to being integrated with the City's long term development plans and mitigating potential direct contact exposure.

¹³¹³ sheb. work plan final

The Work Plan project principals include the following:

Site Owner:	City of Sheboygan 807 Center Avenue Sheboygan, WI 53081 Contact: Mr. Bob Peterson (920) 459-3380
Former MGP Operator:	Wisconsin Public Service Corporation 700 North Adams Street, P. O. Box 19002 Green Bay, WI 54307-9002 Contact: Ms. Connie Lawniczak (920) 433-1140
Site Location (Figure 1):	732 North Water Street Sheboygan, Wisconsin Sheboygan County NW ¼, SW ¼, Section 23, T15N, R23E Refer to Figure 1
Consultant:	Natural Resource Technology, Inc. 23713 West Paul Road Pewaukee, WI 53072 Contact: Mr. Robert Karnauskas/Ms. Laurie Parsons (414) 523-9000

The site is approximately 1.5 acres in size and is bounded on the north by New York Avenue, on the east by North Water Street, on the west by the Sheboygan River, and on the south by Center Street.

1.2 Current Site Conditions

The former MGP is located on property owned by the City of Sheboygan that is a designated recreational vehicle (RV) parking area and boat launch called Campmarina (see Figure 2 and Plate 1). Campmarina is equipped with parking areas, electrical power and potable water for RV use. A docking area is also provided for recreational boat use on the Sheboygan River and access to Lake Michigan. The site is primarily covered with compacted gravel and an access

1313 sheb. work plan final

a interest

 road leads from North Water Street at the north end of the site. No aboveground MGP structures remain.

Property south of Campmarina is also owned or is in the process of being sold by the City of Sheboygan and includes the area within the Center Avenue right-of-way and the property between the right-of-way and the Pennsylvania Avenue Bridge. Future development plans for these properties and Campmarina include the construction of a condominium complex, a river walk and a park. The condominium complex will consist of three buildings to be constructed south of Campmarina at the locations indicated in Figure 2. The river walk will be constructed directly along Campmarina and the future condominium complexes on an approximate 26 foot wide length of river front property to be retained by the City. The proposed park will extend north of the Center Avenue right-of way and will encompass Campmarina and additional properties to the north purchased by the City.

The City has approved sale of the property south of the right-of way to a developer and construction has been initiated for the first (Building No.1) condominium complex (Figure 2). Construction of Building Nos. 1 and 2 are slated for completion by the end of the Summer of 1999. Construction of Building No. 3 is scheduled for the Fall of 1999.

1.3 Previous Investigations

Previous investigations of soil, groundwater, and sediment quality on and adjacent to the former MGP site are summarized below, based upon the following reports and letters:

- Simon Hydro-Search, October 4, 1991. Work Plan, Phase I Site Investigation, Manufactured Gas Plant Site, Sheboygan, Wisconsin, Project No. 453114843.
- Simon Hydro-Search, June 30, 1992. Phase I Environmental Investigation of Manufactured Gas Plant Site, Sheboygan, Wisconsin, Project No. 453114843.
- Simon Hydro-Search, November 11, 1992. Phase II Work Plan Environmental Investigation Manufactured Gas Plant Site, Sheboygan, Wisconsin, Project No. 304533034.

- Natural Resource Technology, Inc., August 31, 1995, Sediment Sampling Work Plan, Former Manufactured Gas Plant Site, Sheboygan II, Wisconsin, Project No: 1060.
- Natural Resource Technology, Inc., June 28, 1996. Phase II Environmental Investigation Report, Former Manufactured Gas Plant Site, North Water Street Sheboygan, Wisconsin, Project No: 1060.
- Natural Resource Technology, Inc., September 15, 1998. Letter Report, Site Evaluation of Sheboygan Property (Center Avenue Right-of-Way) Adjacent to the Former Sheboygan MGP Site, Sheboygan, Wisconsin, Project No: 1313.
- Natural Resource Technology, Inc., November 10, 1998, Sediment Investigation Report, Former Manufactured Gas Plant Site Sheboygan, Wisconsin, Project No: 1183.

Details of these environmental investigations are described below. Investigative soil boring, monitoring well, and piezometer locations are shown on Figure 2 and Plate 1.

1.3.1 Simon Hydro-Search Phase I Environmental Investigation 1991-1992

In August 1990, a City of Sheboygan construction crew discovered a "dark oily material" below the ground surface on the Sheboygan II property during construction of a boat docking facility foundation. SHS reported "the excavation location was near the location of the former MGP tar tanks", it is unclear which tar tanks SHS was referencing. SHS reported that personnel from the City of Sheboygan collected a "worst case" soil sample for analyses of various organic and inorganic parameters. Compounds detected included polynuclear aromatic hydrocarbons (PAHs), benzene, toulene, ethylbenzene and xylene (BETX), total petroleum hydrocarbons (TPH), and total and amenable cyanide. Based on information obtained from the City, other test pit excavations contained "visible contamination" but were not sampled. However, SHS could not reliably determine the locations of these other test pits based on available documentation provided by the City. SHS conducted a Phase I site investigation in 1992 which included soil sampling from thirteen of fifteen test pits, six surface soil grab samples (collected from zero to three inches bgs), and three grab groundwater samples collected from three of the test pits.

- Surface Soil Sampling: Low levels of total PAHs (less than one ppm) were detected in two surface soil samples. Phenol, BETX, and total, amenable, and weak acid dissociable cyanide compounds were not detected in the surface soil samples.
- Test Pit Sampling: A strong "moth ball-like hydrocarbon odor" was encountered at test pit locations near the former tar tanks (TP-107, TP-108, and TP-109) and at test pit locations within the former relief holder location (TP-113 and TP-114). Slight diesel fuel odors were observed in the northern portion of the site (TP-102, TP-103, TP-104, and TP-106). A few soil samples collected from the test pits were collected below the water table and therefore represent groundwater conditions at their respective locations.
- <u>Groundwater Samples</u>: Groundwater grab samples were collected from three test pits (TP-101, TP-107, and TP-110).

Few surface soil impacts were identified. Only PAHs were detected at very low levels in two locations and may have been due to the long-term use of the site for RV parking. Subsurface soil impacts were identified near the former gas holders and tar tanks. Investigation results indicated the presence of both coal tar and petroleum or fuel oil related impacts. Grab groundwater samples collected at the water table exhibited MGP impacts primarily in one sample (TP-707) downgradient (toward the Sheboygan River) of the former tar tanks. The concentration of benzene detected in the groundwater sample collected from TP-701 (1,700 μ g/L) is above the NR 140 ES (5 μ g/L). Cyanide was detected in all groundwater samples; however, the fate of any oxide box wastes associated with the facility was not known following the Phase I investigation. The extent and migration of MGP related impacts on the property were not fully assessed by Phase I data.

1.3.2 Natural Resource Technology, Inc. Phase II Environmental Investigation

The NRT 1996 report summarized site data collected from additional site investigation work performed in 1995. Ten soil borings (SB-701 through SB-710) were advanced to characterize

soil type and quality. Seven water table monitoring wells (MW-701 through MW-707), one piezometer (PZ-701), and one staff gauge were constructed/installed to assess groundwater quality and groundwater flow direction.

MGP related soil impacts above the water table are limited in extent and not highly impacted. No unsaturated source area contributing to groundwater impacts was identified. Soils beneath the site include glacial deposits intermixed with fill material in the upper 6 to 14 feet below ground surface (bgs), and predominately fine grained alluvium deposits below. Ash/cinders, bricks, glass, and wood were also found within the fill. Clay and silt dominate the soils to a depth of approximately 30 feet bgs, with discontinuous units of sand, silty sand, and trace gravel. Tar was encountered at or below the water table predominately in the southern and west-central portions of the site at depths ranging from six to 21 feet bgs. No evidence of blue/black wood chips, indicating the presence of potential purifier wastes, was observed on the site. However, a field reconnaissance of the adjacent off-site property to the south of the site revealed surficial blue wood chips as wells as blue tinted vegetation, including tree trunks and grass, indicating potential cyanide impacts.

Water level elevation measurements collected in 1995 indicated depth to groundwater ranged from 3.6 to 7.9 feet bgs in the shallow wells and between 13.6 and 16.6 feet bgs in piezometer PZ-701. Groundwater flow was generally to the west-southwest, toward the Sheboygan River. Slight horizontal groundwater gradients were calculated for the site and slight downward vertical hydraulic gradients were calculated for the MW-701/PZ-701 well nest. The calculated minimum and maximum values for average linear groundwater flow velocity in shallow groundwater are approximately 3 to 63 feet per year. The higher velocities are representative of monitoring wells constructed in fill with higher hydraulic conductivity than wells set in shallow native silty and clay material. A sheen was present in wells MW-701, MW-702, MW-704, and MW-707. Tar - like material with a sheen was suspended and noted at well MW-706.

BTEX, PAHs, and cyanide are the constituents of concern in the groundwater and shallow impacts extend from the north central portion of the site to the southern extent of the

1313 sheb. work plan final

investigation area and to the Sheboygan River. Migration of impacted groundwater is likely to the west-southwest, in the general direction of groundwater flow. Areas in which shallow groundwater impact concentrations exceed NR 140 ESs extend over the entire site with the exception of the northernmost portion of the site. Benzene concentrations in the water table wells range from 340 μ g/L to 34,000 μ g/L, benzo(a)pyrene concentrations range from 0.66 μ g/L to 83,000 μ g/L, and naphthalene concentrations range from 220 μ g/L to 1,900,000 μ g/L. The most highly impacted groundwater is located in the center of the site at locations MW-701, MW-702, and MW-706. This is the center of the former MGP operation, near the tar tanks, purifier, the smallest of the three gas holders, and one of the plant buildings. Groundwater quality is less highly impacted to the north and south of this area. The area of cyanide impacts in groundwater extends from approximately the center of the investigation area to the southern extent of the site. RCRA metals (arsenic, barium, cadmium, chromium, lead, selenium, and silver) were not detected in concentrations which exceed NR 140 ESs. The southern and eastern extent of groundwater impacts has not been fully evaluated.

1.3.3 Natural Resource Technology, Inc. Sediment Investigation

The 1998 NRT report documents the initial sediment investigation (presence/absence study) conducted on the Sheboygan River in October 1995 and the subsequent detailed field investigation conducted in November 1995 and June 1996 to evaluate the chemical characteristics of sediments adjacent to the former MGP site. The investigations indicated the presence of BTEX and PAHs in the Sheboygan River sediments adjacent to and downstream of the on-land investigation study area.

Numerous sediment boreholes exhibited tar, sheen, or tar odors. Although tar was found in a number of borehole locations, depth to tar observations suggest that there has been little river scour through certain sections of this segment of the river. Total PAH laboratory analytical results indicate the greatest concentrations occur in shallow sediments located within approximately 60 feet of the shoreline. Based on the depth to tar over much of the area, the constituents of concern do not appear to have migrated vertically; rather, the results suggest that

1313 sheb. work plan final

1-7

the constituents of concern may have simply been buried by cleaner sediments deposited since MGP operations have ceased. Laboratory results indicate that BTEX, polychlorinated biphenols (PCBs), metals, cyanide, and phenol are not a concern in the sediments at the site compared with the PAH levels. The investigation results, along with the previous sediment investigations cited herein, indicate that the extent of tar residuals present within Sheboygan River sediments has been determined. Based on these results, NRT recommended an FS for the sediments be prepared.

1.3.4 Natural Resource Technology, Inc., Additional Soil Borings, April 4, 1996

On April 4, 1996, six additional soil borings (SB-711 through SB-716) were advanced and soil samples were collected for analysis of total organic carbon (TOC), total solids, and TCLP benzene. None of the samples analyzed were identified as characteristic for benzene. These borings were also conducted to further assess the extent of tar on the south portion of the former MGP site. Copies of the soil borings logs, borehole abandonment forms, and laboratory analytical reports are included in Appendix A.

1.3.5 Natural Resource Technology, Inc. Off-Site Investigations, 1998

The September 15, 1998 NRT letter report documented results of site investigative activities conducted on the vacant City of Sheboygan property located south of the former MGP site (also referenced as the Center Avenue right-of-way) on July 29, 1998.

The investigation program included the completion of six test pits (TP-701 through TP-706), four soil borings (SB-711 through SB-714), one hand auger boring (HA-701), and one surface soil sample (SS-701) (Plate 1). Field activities were conducted on July 29, 1998 to establish the lateral and vertical extent of MGP related soil impacts on the vacant property that could potentially impact development plans by the City of Sheboygan.

¹³¹³ sheb. work plan final

In general, the site is overlain with layers of fill material that extend to greater than 13 feet bgs (SB-713) in the eastern upper portion of the right-of-way and to groundwater in the lower portions of the river bank (TP-705). The fill materials encountered across the site are not uniform and consist of silty to gravelly sands, sandy silts, and clay and sand. These fill materials contain varying percentages of glass, brick, porcelain occasional traces of slag and other debris or rubbish.

MGP odors and coal tars were observed in test pits and borings TP-701, TP-705, SB-714, and in the river sediment at HA-701. These test pit and boring locations are in the same areas where surface impacts were previously observed and reflect MGP impacted areas. The vertical extent of these impacts appear to extend to groundwater based on the boring and test pit depths.

The investigation results delineated the vertical and lateral extent of MGP impacted soil above groundwater in the vicinity of the right-of-way. Two shallow zones (less than one foot) and one deeper zone of MGP impacted soil were identified within the right-of-way. In addition, these zones do not appear to extend to the property south of the right-of-way that is targeted for the first phase of condominium construction (Building Nos. 1 and 2). However, impacted sediments were identified beneath the river bank within the right-of-way that were not fully delineated and additional investigation was recommended to identify the southern extent.

2.1 Historical Site Use

MGP operations were conducted at the site through 1929 when the facility was decommissioned. However, based on interviews with personnel familiar with the operations, an aboveground manufactured gas relief holder may have been maintained as a storage facility for manufactured gas through the mid 1940's. The site no longer contains any aboveground MGP related structures; however, there are a number of potential remaining underground structures that could affect the scope and direction of the FS. Former structure locations are provided in Figure 2 and Plate 1 These structures could contain residual amounts of coal tar and include the following:

- Underground Gas Holders: Two holders are located in the northern portion of the site. The conditions of these structures are not known, but it is suspected that the walls and bases of the structures may have been intact and during decommissioning, the interiors of the holders were simply backfilled with fill material. Residual coal tar could be present at the bottom of the holders. During completion of test pit TP- 104 as part of the Phase I investigation, reinforced concrete was encountered at a depth of approximately four feet bgs that may have been the edge of the holder foundation.
- Three Tar Tanks: Two are approximately 30 by 8 feet and one is approximately 20 by 5 feet. One of these tanks may been encountered during previous dock construction operations by the City of Sheboygan when black coal tar was first noticed. These tanks are located in the central portion of the site.
- <u>Purifier</u>: This structure is approximately 25 feet in diameter and situated near the river in the central portion of the site.

The foundation for a former aboveground relief holder is visible at the south end of the site and consists of circular concrete pad supported by a shallow foundation footer. In addition, foundations from previous aboveground structures underground utilities may also remain at the site.

2.2 Soil

Soil quality data tables from the previous Phase I and II investigations, the off-site soil investigation and MGP impacted distribution maps from the Phase I and II and off-site investigations are provided in Appendix B. Key subsurface conditions that will be addressed as part of the FS include the following:

- Scattered Oxide Box Wastes: Scattered oxide box wastes consisting primarily of Prussian-blue (cyanide) stained wood chips and oxide box waste impacted vegetation (tree roots) have been identified in the City of Sheboygan vacant property located south of the former MGP site, within the Center Avenue right-ofway. These impacts are primarily at the ground surface and extend to a depth of approximately one foot bgs.
- Fill Materials: These soils are primarily an inconsistent mixture of glacial deposits intermixed with fill material in the upper 6 to 14 feet of soil. Ash/cinders, bricks, concrete, glass, and unstained wood were found within the fill. Based on the previous subsurface investigative data, MGP impacts are limited in extent and there does not appear to be a unsaturated source zone that is providing an on-going contribution to shallow groundwater impacts. Key areas for remedial consideration are located in the central and northern portions of the former MGP site and contain relatively low concentrations of BTEX and PAH compounds.
- Native Soil: Clay and silt dominate native soils to the maximum sampling depth of approximately 30 feet bgs, with discontinuous units of sand, silty sand, and trace gravel. Tar was encountered at or below the water table predominately in the southern and west-central portions of the site at depths ranging from six to 21 feet bgs. Groundwater analytical data from piezometer PZ-701 that is screened within the lower silty clay at a depth of approximately 35 feet does not indicate a presence of MGP residuals. The deeper zone will require further evaluation to define vertical extent of tar impacts observed in the southern and west-central portion of the site.

2.3 Groundwater

Summaries of groundwater level monitoring and groundwater quality data and a groundwater - contour elevation map from the Phase I and II investigations are included in Appendix B. Key groundwater conditions that will be addressed as part of the FS include the following:

- Shallow Groundwater Flow: Shallow groundwater flow in the upper fill materials across the site is generally towards the Sheboygan river. It is suspected that nonhomogenous fill materials that vary in consistency and permeability and subsurface utilities may be influencing local groundwater flow.
- <u>Deep Groundwater Flow:</u> Deep groundwater flow in native sediments has not been fully assessed. Evaluation of the deep aquifer flow geometry (horizontally and vertically) will be needed to assess appropriate remedial options.
- Groundwater Quality: Shallow groundwater is impacted with MGP residuals (BTEX, PAHs and Cyanide) above WDNR enforcement standards (ESs). Off-site migration is primarily to the river and possibly to the south. Initial deeper groundwater quality data from piezometer PZ-701 has indicated the presence of minor MGP residuals consisting of BTEX, PAHs; however, in general, these concentrations have reduced with time.

3.1 Soil

3.1.1 Remedial Considerations

As described previously, the unsaturated soil MGP impacted areas are limited in extent and there does not appear to be an unsaturated source area which contributes to groundwater impacts. The evidence of tar below the water table could warrant removal if the tar is laterally continuous, and if removal would significantly reduce the effort and cost required for long term groundwater remediation. Determination of the limits and extent of any soil to be excavated will require consideration of the practicality, cost effectiveness and relative environmental benefit associated with excavating impacted materials beneath the water table. Coal tar has been identified to a depth of approximately 21 feet bgs. Given the proximity of the site to the river, significant dewatering could be required to facilitate excavation of the deeper MGP impacted materials. Excavation would also require consideration to the long term site development plans for the area and potential ramifications for direct contact exposure.

Components and remedial options to be evaluated as part of the FS include but are not limited to the following:

- Capping over some or all of the former MGP site and off-site to the south. The nature of the cap and locations to be capped will be evaluated in the FS. Capping will reduce contaminant leaching from the unsaturated zone and provide a direct contact separation.
- Excavation of source areas (i.e., tar and heavily impacted soil) and likely off-site treatment or disposal. The feasibility of on-site treatment will be evaluated; however, it is likely that the size of the site would be prohibitive for staging treatment equipment. Possible disposal/treatment strategies to be evaluated include off-site thermal treatment, off-site cement kiln and off-site landfill disposal.

■ Installation of engineering controls near the proposed condominium complexes for MGP impacted sediments previously identified beneath the river bank within the Center Avenue right-of-way to mitigate direct contact exposure to condominium residents.

3.1.2 Objectives

Several data collection objectives for further assessing soil impacts and evaluating remedial alternatives for the site have been identified and include:

- Evaluating the extent of tar impacts, both horizontally and vertically, in several locations at the site including near MW-706, MW-704, SB-701, in the vicinity of the southern relief holder, and off-site, south of TP-705;
- Evaluating the presence of MGP impacts inside the northern former gas holders;
- Evaluating the extent of any MGP impacts south of the Center Avenue right-ofway, in the vicinity of the proposed Building No. 2;
- Evaluating key geotechnical design parameters for the possible construction of a hydraulic barrier wall (see Section 3.2);
- Collecting soil treatability data for use in assessing soil treatment technologies; and,
- Collecting additional data near the proposed condominium complexes to aid in determining the need, type and design of engineering controls.

3.2 Groundwater

3.2.1 Remedial Considerations

The previous investigation results indicate that groundwater to depths greater than 20 feet bgs are impacted above WDNR ESs. Complete removal of coal tar impacted source areas may not be a realistic objective and shallow groundwater treatment and/or control may be warranted on a long term basis. Give the complexities of the subsurface stratigraphy and the presence of stringers of coal tar at depths greater than 14 to 16 feet bgs, the most viable remedial strategy for the site will most likely require a combination of remedial technologies. Remedial options to be evaluated as part of the FS include but are not limited to the following:

- Targeted source removal.
- Installation of a hydraulic barrier wall to further reduce migration of phase separated and dissolved MGP residuals to the river and minimize groundwater extraction by eliminating hydraulic communication of shallow groundwater with the river. Along with the location (shoreline versus inland) and design (length, depth, and alignment), several options for the barrier wall will be evaluated in the FS that will include conventional sheet piling and flexible membrane certain wells.
- Active treatment technologies that will include interceptor trenches and/or groundwater recovery wells for groundwater extraction and aboveground treatment.
- In-situ active treatment technologies such as the application of hydrogen peroxide.
- In-situ passive treatment technologies such as the construction of a reactive barrier wall using activated carbon for treatment or other applicable treatment medium.

3.2.2 Objectives

Several data collection objectives for further assessing groundwater impacts and evaluating remedial alternatives for the site have been identified and include:

- Further defining the vertical extent of groundwater contamination in the southern down-gradient direction of the site;
- Establishing an up-gradient monitoring point, north of MW-706;
- Defining the horizontal extent of groundwater contamination in the northeast direction and possibly the southern direction;
- Collecting data for use in evaluating groundwater treatment technologies; and,
- Evaluating groundwater containment/control alternatives (i.e., extraction wells versus trenches) by assessing groundwater contaminant distributions, hydraulic conductivities, soil types and stratigraphy, and site groundwater elevations.

4 TECHNICAL SCOPE

4.1 Technical Approach and Schedule

The data collection field activities will be performed during Fall/Winter 1998 to collect sufficient and appropriate data for preparation of the FS in the Winter 1999. Preparation of the draft FS report will be completed in the Spring of 1999 for submittal to the WDNR for review. The field activities will be conducted as follows:

- <u>Task 1, Planning, Coordination and Site Preparation</u>: The proposed site activities will be coordinated and planned with the City of Sheboygan and WPSC.
- Task 2, Soil Boring and Monitoring Well Installation: The locations of the borings and wells were determined on the basis of the previous investigation results. The detailed scope of the additional borings and monitoring wells is discussed below.
- Task 3, Groundwater Monitoring and Sampling: Groundwater monitoring and sampling will be conducted on the new and existing wells to update the current data base for evaluation of remedial options.
- <u>Task 4, FS Preparation</u>: The results of the soil and groundwater evaluations and geotechnical testing will be used to identify a comprehensive remedial strategy for the site.

Performance of the site activities will be conducted in accordance with NRT's standard practices manual. A copy of the table of contents for this manual is provided in Appendix C. Copies of the appropriate standard practices manual will be kept on-site thorough completion of the field activities.

4.2 Planning, Coordination and Site Preparation

Planning and coordination and site preparation will include the following:

An underground utility locate will be requested to further delineate underground utilities in the vicinity of Campmarina and the properties located directly south. Underground utility locates will also be reviewed with respect to the construction and/or abandonment of any underground utilities associated with the condominium development.

- Construction plans for the new condominium buildings will be reviewed to assess foundation locations and depths which could affect the proposed soil boring locations.
- Drilling activities will be coordinated with representatives of the City of Sheboygan. Storage and staging areas for materials, drums and roll-off box will be reviewed with and approved by City personnel prior to initiating the field activities.

4.3 Soil Borings

4.3.1 Additional Investigation

Nine additional soil borings will be advanced to further define the extent of MGP coal tar and oils identified at several locations on the former MGP property and off-site to the south in the Center Avenue right-of-way. These borings will also aid in determining potential excavation areas for the FS. The locations where coal tar was previously identified include MW-704, MW-706, SB-701, several borings in the area of the southern former relief holder, and off-site to the south at TP-705. The proposed locations of the borings are shown on Figure 3. Specific activities that will be conducted as part of the additional investigation include the following:

- Three soil borings (SB-732, SB-734 and SB-735) will be extended to a maximum depth of approximately 25 feet bgs. These borings will be used to further define the lateral and vertical extent of coal tar impacts previously identified and obtain data for treatability assessment. Discrete soil samples will be obtained from the identified impacted zones and submitted for laboratory analysis.
- Two borings (SB-731 and SB-733) will be advanced in the two northern gas holders to investigate potential MGP soil and groundwater impacts remaining inside the holders. These borings will extend to a maximum depth of approximately 20 feet bgs or to the bottom of each holder.
- Two shallow (five to seven feet bgs) Geoprobe borings (SB-725 and SB-726) will be advanced to groundwater to further evaluate the potential for MGP impacted river sediments beneath the river bank.
- Up to two soil borings (SB-723 and SB-724) will be advanced to approximately 20 feet bgs within the foundation foot print for Building No. 2. Boring SB-724 will be advanced initially. If there is no indication of any MGP impacts based on

visual, olfactory and photoionization determinations at SB-724, then SB-723 will not be completed.

- Discrete and/or composite soil samples will be collected from each of the borings and analyzed for the parameters indicated in Table 1. Discrete soil samples will be analyzed for BTEX (U.S. EPA 8020), PAHs (U.S. EPA 8270), total lead (U.S. EPA 6010) and total cyanide (U.S. EPA 9010). Composite sample collection and preparation will be conducted on the basis of the compositing strategy outlined in Section 4.3.3.
- Subsurface conditions will be continuously logged to document soil lithology, groundwater conditions, MGP related impacts and any other subsurface features. Soil borings will be completed using either 3 ¼ or 4 ¼ inch hollow stem augers.
- Drill cuttings will be transported to a roll-off box to be located on-site. Borings will be abandoned using either bentonite chips or a cement-bentonite slurry. Cement-bentonite slurry will be used for borings beneath the foundation foot print and within the gravel roadway at Campmarina. Bentonite chips will be acceptable for borings in landscaped areas or non-traffic areas

4.3.2 Geotechnical Borings and Testing

Geotechnical borings are proposed to be advanced along the river bank to establish geotechnical design parameters for the installation of a hydraulic barrier wall A total of four soil borings (GB-727 through GB-730) will be advanced along the river bank as indicated in Figure 3. Geotechnical borings will be performed along the river bank to determine potential key depths for the wall. Based on the soils encountered during drilling of PZ-701, a sand layer exists at 23-27 ft bgs followed by approximately 8 ft of clay. The borings will be performed to assess the continuity and depth of the sand layer and the permeability of the potential clay tie-in unit beneath. In general, borings will be advanced through the unconsolidated strata to approximately 35 feet bgs (a minimum of five feet into the native clay below the sand layer noted at PZ-701).

Specific field activities that will be conducted to complete the geotechnical borings include the following:

■ The field engineer will document classification of soils. The driller will perform standard penetration tests, in accordance with ASTM standard D1586 using a split-spoon sampling device. Soil will be classified by ASTM standards D2487 and D2488 at two foot intervals from surface grade to 28 feet BGS.

1313 sheb. work plan final

- During advancement of each bore hole, one to two thin-walled sampling tubes will be pushed by the driller in accordance with ASTM D1587 at intervals deemed appropriate by the field engineer for geotechnical evaluation of the upper fill and clay materials and the low-permeability clay strata. If the fill or clay is too hard for shelby tubes, then brass or plastic core liners inserted inside the split spoon sampler will be driven to obtain relatively undisturbed samples. Split spoon samples will also be collected and archived for possible further geotechnical testing. If cohesionless granular conditions are encountered in the upper fill materials, thin walled tube sampling will not be conducted and samples from the split spoon will be used for testing.
- Borings will be initially advanced using six or eight inch mud rotary through the fill and into native materials approximately 20 feet bgs. Temporary casing will then be installed to prevent cross-contamination before completing the remainder of the boring to approximately 35 feet bgs.
- Augers will be decontaminated between borings. Drill cuttings will be transported to a roll off box. Drilling mud will be drummed. Borings will be abandoned by grouting the holes with a bentonite chips to ground surface.

Geotechnical laboratory tests will be conducted on both the upper fill and the low permeability native clay strata. These tests will be conducted to evaluate index, permeability and strength properties. The proposed number of tests to be conducted and laboratory test methods are summarized in Table 1. Selection of samples for testing will be conducted following completion of the drilling program and evaluation of the field data. A brief description of each of the tests is provided below:

- Permeability: Soil samples from all four of the boreholes will be evaluated for permeability by ASTM standard D2434 or equivalent to determine the coefficient of permeability. Testing would be conducted using the back pressure triaxial method under fully saturated conditions. Pemeability tests will be performed primarily on the potential key-in unit (silty clay) for the purpose of evaluating vertical migration control.
- Index properties: Approximately, 4 to 6 samples from the fill material and the native clay will be submitted for geotechnical testing to determine the moisture/density. Approximately, 4 to 6 samples will be submitted for grain size distribution analysis, using ASTM methods D2937, D422, D2216 and D4959. Approximately 4 to 6 samples will be submitted to determine the Atterberg Limits in accordance with ASTM method D4318.

Unconsolidated Undrained (UU) Triaxial Testing: Four undisturbed samples from potential key-in units will be submitted for UU testing to assess compressive strength characteristics and cohesion.

4.3.3 Soil Treatability

To assess both on-site and off-site treatability capabilities for the MGP impacted soils at the property, the following activities will be conducted:

- Two composite soil samples from the borings and well installations (SB-734, SB-735, PZ-702 and PZ-703) will be collected from representative contaminated soils for laboratory analysis of BETX (U.S. EPA 8020), PAHs (U.S. EPA 8270), cyanide (U.S. EPA 9010), lead (U.S. EPA 6010), and sulfur (ASTM 0129) as indicated in Table 1. One composite sample will be collected from the upper unsaturated fill material and one will be collected from the lower saturated coal Both composite samples will be analyzed for toxicity tar impacted zone. characteristic leachate procedure (TCLP) benzene and the composite from the lower material will also be analyzed for total sulfur. This information will be used for determining average concentrations of excavated soils and will be given to potential thermal treatment contractors for representative feedstock concentrations. Additional soil samples may also be collected from the split spoon sampling activities and archived pending review by the field engineer for submittal to the laboratory. Determination of which samples to be submitted will be conducted on the basis of the subsurface conditions encountered and field estimated contaminant distribution.
- One composite soil sample will be collected from representative impacted soils in the roll-off box and submitted for laboratory analysis of Waste Management's Protocol B parameters for disposal as a non-hazardous special waste.
- One composite sample (minimum three five gallon containers) will be collected for submittal for off-site cement kiln treatability evaluation and possibly thermal desorption tray testing.

4.4 Monitoring Well and Piezometer Installation

Locations of the proposed monitoring wells and piezometers are shown on Figure 3. Monitoring well MW-708 is proposed as an up-gradient monitoring well, located northeast of MW-706 along North Water Street. Monitoring well MW-709 is proposed as a side-gradient monitoring well,

located north-west of MW-703. Construction of the wells will consist of two inch diameter schedule 40 PVC and 10 foot of screen set to intersect the shallow groundwater table. Piezometers PZ-702 and PZ-703 will be located adjacent to MW-706 and MW-707, respectively. The piezometers will aid in defining the vertical extent of groundwater contamination and establishing vertical gradients. Data collected at PZ-703 will also be used to support the geotechnical evaluation. Piezometers will likely be screened from 30 to 35 ft bgs and permanently cased to 20 feet bgs to prevent cross contamination with MGP impacted materials. Wells will be completed flush with the ground surface and secured with lockable steel traffic load rated well covers. Each well will be developed utilizing dedicated bailers and/or pumps to remove fine-grained particles and establish an effective filter pack around the well.

4.5 Groundwater Monitoring and Sampling

Following installation of the monitoring wells and piezometers, a complete round of groundwater monitoring, sampling and analysis will be conducted on both the existing and new wells and piezometers (12 total). The groundwater monitoring and laboratory analytical data will be used to update the groundwater elevation data and contaminant distribution. These data will be used for developing concentration and trend data and evaluating groundwater containment in the Feasibility Study. Groundwater samples will be analyzed for BTEX (U.S. EPA 8020), PAHs (U.S. EPA 8310) and total, amenable (U.S. EPA 335.1), and dissociable cyanide (M-4500 CNI) as indicated in Table 1.

6.1 Investigation Procedures

Natural Resource Technology, Inc. (NRT) has developed numerous technical Standard Practices to provide documentation of the use of widely recognized protocols and standards in the performance of field operations. The list of Standard Practices and source documents are provided in Appendix C. Copies of the relevant standard portions will be kept on-site throughout the duration of field activities.

6.2 Equipment Decontamination

Equipment decontamination is addressed in NRT Standard Practice 07-04-05. The drilling subcontractor will provide a steam cleaner and a decontamination area will be established on the site for decontamination of the drill rig, augers, and drill stem used for the borings. No oils, greases, or other petroleum based products will be used on any downhole equipment. Sampling equipment (including split spoon samplers, sampling spatulas, etc.) will be cleaned by washing in Alconox detergent followed by triple rinses with distilled water prior to the collection of each sample. If necessary, an isopropyl alcohol rinse will be performed to remove tar or PAH residues. Decontamination wash and alcohol rinsate will be containerized in drums for future treatment and/or disposal.

6.3 Cross-Contamination

Procedures for collecting soil and groundwater samples which minimize the potential for crosscontamination are described in NRT Standard Practice Sections 07-07 and 07-08, respectively. Sampling personnel will wear new sampling gloves between collection of each sample and utilize new bailer draw lines at each well. Care will be exercised to prevent the bailer, draw line, and sampling containers from contact with possible contamination sources. New PVC bailers will be dedicated to each well to prevent cross-contamination between wells.

6.4 Laboratory Quality Assurance

6.4.1 Laboratory Analysis

Analysis of environmental media samples will be performed by a certified laboratory. Analytical parameters for the different media are listed on Table 1.

6.4.2 Quality Control Samples

Quality Control (QC) samples include trip blanks and sample duplicates to evaluate the possible introduction of contamination during the sampling process and to verify reproducibility of results. One trip blank will accompany BTEX sample vials submitted to the laboratory for every shipment of groundwater samples collected for each sampling event. This blank will be prepared and supplied by the laboratory along with the appropriate pre-cleaned sampling containers. The trip blank will be transported to the field and laboratory along with the groundwater samples and will be analyzed for BTEX.

Duplicate samples will be obtained for each 10 or fewer water media samples collected. Duplicate sample identification will be noted in field log books so that the laboratory cannot determine the source of the duplicate. Duplicate samples will be identified with 890 through 899 series identifiers.

Since dedicated bailers and sampling equipment will be used for collection of groundwater samples, field blanks to evaluate equipment decontamination are not necessary. Duplicate samples and trip blanks may not be required for sampling related to discharges to the sanitary sewer.

6.5 Waste Management Plan

The waste management plan will follow NRT Standard Practice 06-07 for the handling and minimization of wastes. Investigative waste will be containerized in a roll-off box and/or drums until disposal arrangements are made. Solid wastes will be disposed at an off-site facility based on the composite soil sample results. Liquid wastes will be disposed through the City of Sheboygan Wastewater Treatment Plant (WWTP) after providing the WWTP with a copy of the groundwater analytical results and receiving WWTP approval.

6.6 Health and Safety Plan

NRT will develop a Health and Safety Plan for personnel working at the site during all field activities. This plan will be a separate document and will be available upon request if review of the document is required. Personnel will read and be familiar with the plan prior to the commencement of field work. NRT will provide subcontractors with a copy of the project Health and Safety Plan and will conduct a briefing on-site prior to commencement of work.

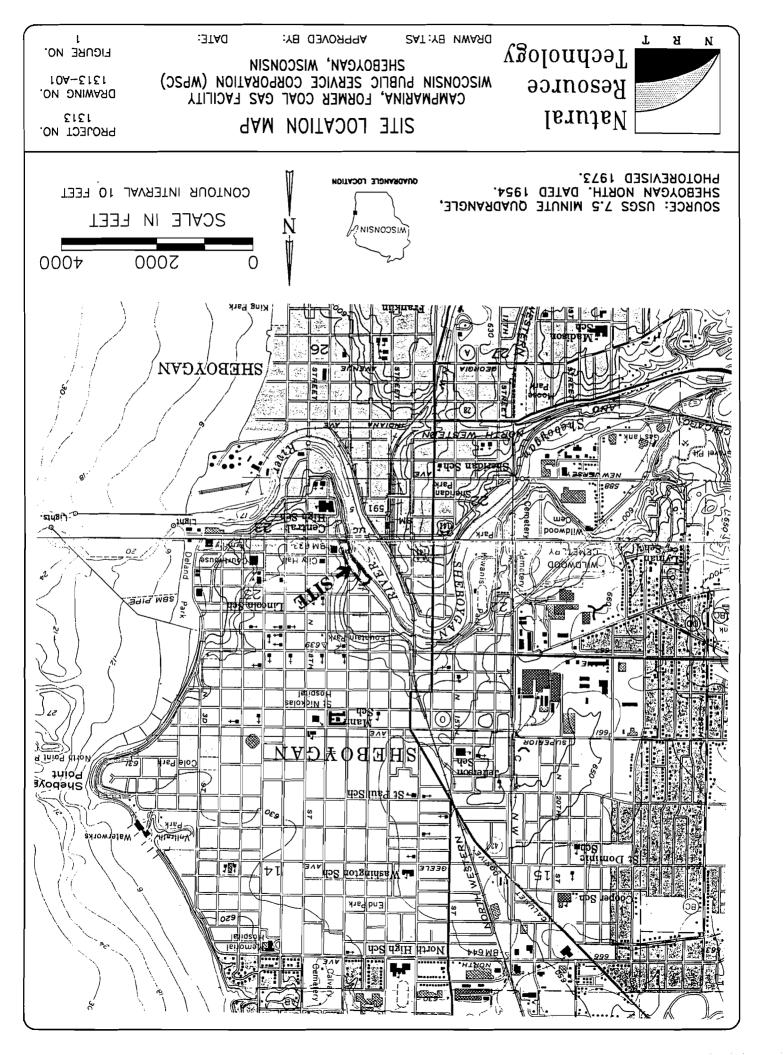
Prior to any subsurface investigative activities, public and private utilities will be located. Diggers Hotline, WPSC, and the City of Sheboygan will be notified to clear the proposed drilling locations. If necessary, boring locations will be relocated as appropriate to avoid encountering utilities.

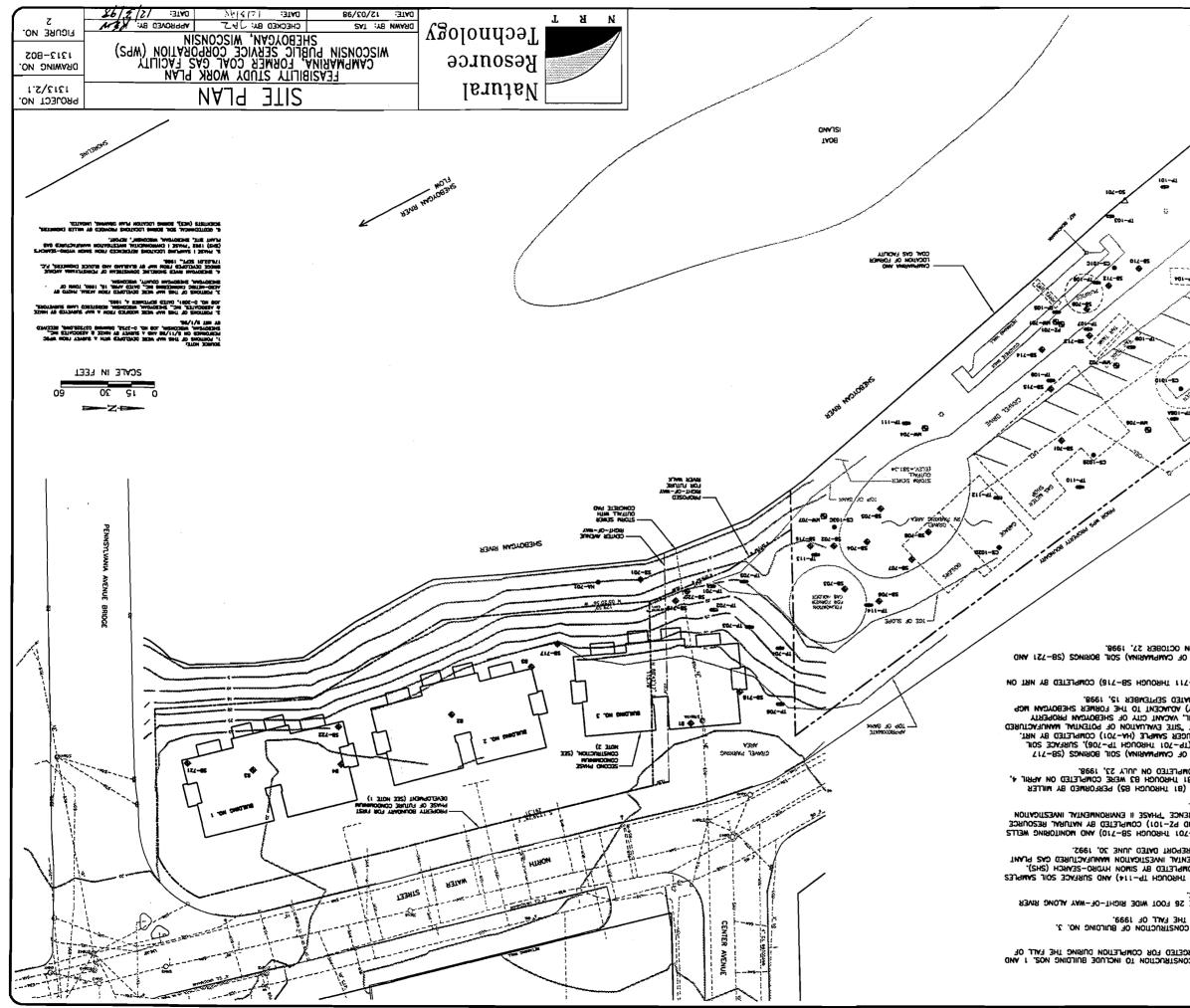
and the second

and the second

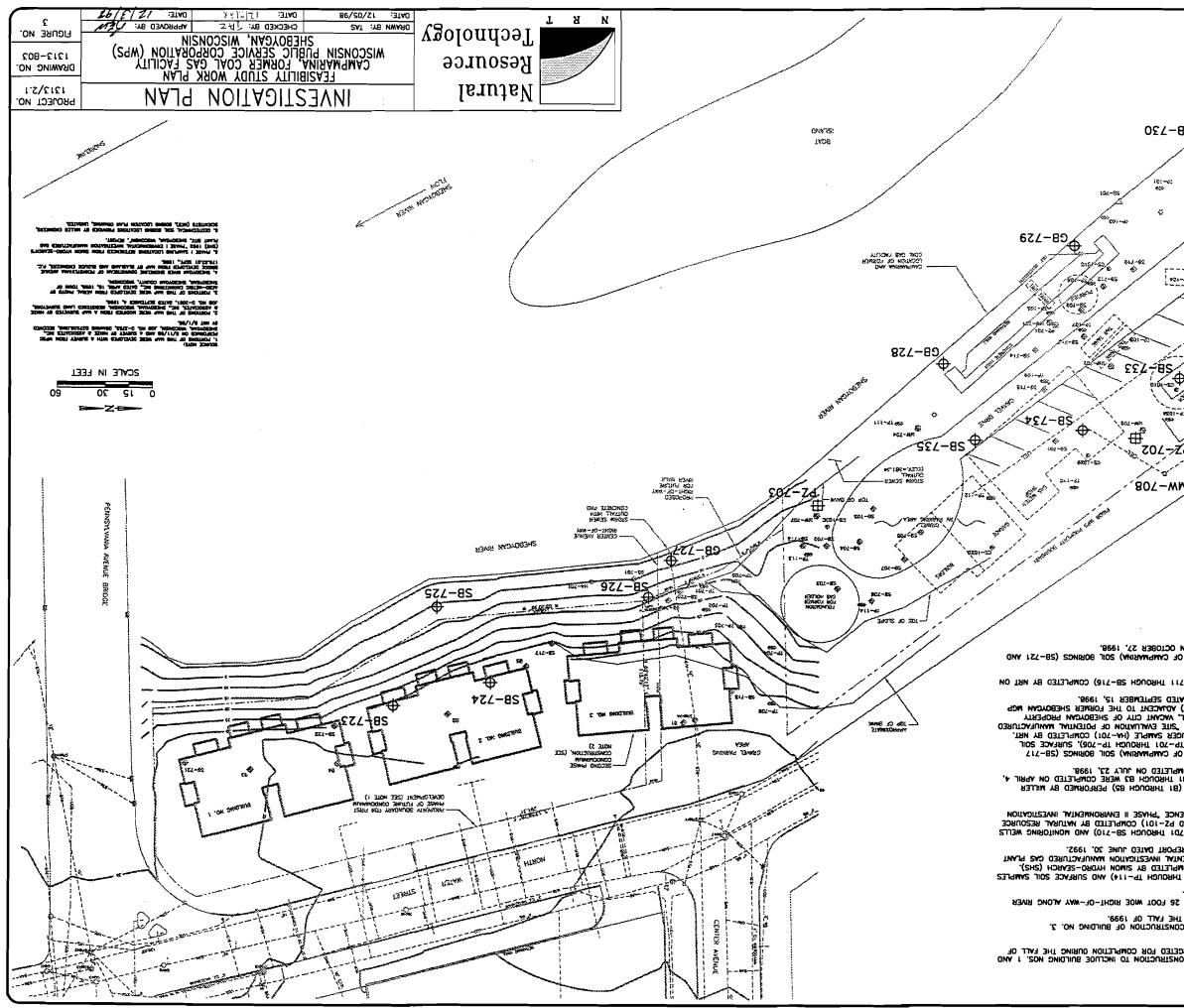
Sector Sector

an an


Annound a


Sec. 1

And a second


المانية. المانية ومحمد ول

EIGURES

	//			
	° /		» [*]	Action of the second
Theore				C
Contraction of the second seco		,	T. S.	
	St -NT			
8101-53 -57	13745 BAIM	11804		
	137815 82			Contraction of
				(marine)
	TELEPHONE PEOESTAL			(contract)
	детерноке иминоге Сис иминоге Замисиза земез иминоге Митея запо-обе лигиоге	800		elenenda Birthereda
	2105/Л СУЦСН ВУСИ-СЛЬВ 1465 2105/Л 25/Л54 УУЛАС СУС 241/1-044 УУЛАС СУС 241/1-044 УУЛАС ПСИЦ БОГЕ 1041 БОГЕ	କ ଦ © ୪୬ ୯୦ ୯୦		
	WAREPANNIN FROPERTY BOUNDARY RICHT-OF-WAY			(
28-722) COMPLETED BY NRT ON 9. OFF-SITE (PROPERTY SOUTH (8. OM-SITE SOIL BORINGS (S8-7	TRADESCEGOTINO EFECTINC ONESHEVD EFECTINC 210577 ZEMES			Sector Sector
тнеоися 50-720), тезт ртб (сас реал (час) ало нало имо имо и кетегоисе игт letter redort (сеитеr avenue right) имрастео Son (сеитеr avenue right) имрастео Son (сеитеr avenue right) сас реало (сеитер и сооко) сас реало (сеитер и сооко)	Samitary Sener Undergeround Cas Approximate Locators Approximate Locator of Prog	NVS		
6. CEOTECHNICAL SOIL BORINGS 1998 AND 84 AND 85 WESE (MES). 81 1998 AND 84 AND 85 WERE COL 7. OFF-SITE (PROPERTY SOUTH ((SHS) SABLEVCE SONF SVINGTE (MBL) SABLEVCE SONF SVINGTE	● c2-1058 ◆ 22-201		Services Services
STE, SHEBOYGAN, WISCONSIN", R CONCLOCK, INC. (NRT), REFERE CONCLOCK, INC.	PIEZOWETER (NRT) HAND AUCER (NRT)	107-29 g		
FRONT FOR FUTURE RIVER WALK. 4. ON-SITE TEST PITS (TP-101 ° (CS-101 THROUGH CS-103) COL REFERENCE "PHASE I ENVIROUMEI	(Mill) Monitoring Welt (2H2) 1E21 du	101-41 وب		() () ()
2. CONSTRUCTION ACTIVITICS THAT 2. SECOND PHASE TO INCLUE C CONSTRUCTION SCHEDULED FOR T 2. CITY TO RETAIN APPROXIMATE	(אנגן) 1521 אנן (אנג) פנסנבכאאוכאר צסור שסאואכ למנג)	18 81 81		<u> </u>
CENERAL NOTES: 1. FIRST PHASE CONDOMINIUM CC 2. CONSTRUCTION ACTINITIES TARC	(Mel) Soif Boging	• 88-111 ГЕСЕИО		.

6	о∠-мм ⊕		
and the contract of the contra	[#]	V A	and the second sec
		<i>p</i>	
WI-92 C			
LEL-BS			
	123415 1514W	hit.	
× + + + + + + + + + + + + + + + + + + +			
	נפרפטאסאיב הבסבצנאיד נפרפטאסאיב העסארוסריב כמיצ ומימאוסריב	0000	
Úd	STANTARY SEWER MANHOLE STORM CATCH BASIN-CURB TYPE STORM CATCH BASIN-CURB TYPE	€ € ©	and the second sec
m∰ m	נאג צאות-סיד אינעיב רוצי איזאיאוד ונאד גסוב איזאיזאיז	\$ \$ \$	
	WATERMAN CENTER AVENUE RICHT-OF-WAY		
	UNDERGROUND ELECTRIC	130 130 #15	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9, OFF-STE (PROPERTY SOUTH O 9, OFF-STE (PROPERTY SOUTH O	стиция земен поекозите сосион об вералите остори об		
APPRIL 4, 1996. B. On-Site Soll Borings (SB-7) Site, Sheboycan, Wisconsin" Dat Site, Anenue Right-Of-Way) Date Neuve Right-Of-Way Date Neuve	(SHS) STUBLICE EVILLE (MRL) STUBLICE EVILLE STUBLICE EVILLE	8201-S2 [©] 22-S24	
 OKF-SITE (PROPERTY SOUTH O REFERENCE NRT LETTER REPORT SAMPLE (SS-720), AND HAND AUD AUD CH (SS	(NKL) HVNO VICEG (NKL) DISCOMELES	102-24 E	
1338 AND 84 AND 83 WERE COM ENCINEERS' SCIENTISTS (MES). 81 6' GEOLECHNICAT SOIL BORINGS (1338) 001 80310C2 (1338) 001 81	זנכז מין אסאדסמאפ אברב (אנז)	101-91 🤓	
TECHNOLOCY, INC. (WRT). REFEREN	(MRT) (MES) CEOTECHNICAL SOIL BORING	18 807-91	
REFERENCE "PHASE I ENVIRONMEN (CS-101 THROUCH CS-103) COM 4. ON-SATE TEST PITS (TP-101 T FROMT FOR FUTURE RIVER MELS.	(NKL) SOIF BOSINC HKL) BSOBOSED BIESONELES	۴۱2∽85 ^年 202-28 [⊕]	
2. SECOND PHASE TO INCLUDE CONSTRUCTION SCHEDULED FOR T	(אוצן) האסהסצבט ואסאונסאואים אצרך	602- M M	
CENERAL NOTES: 2. CONSTRUCTION ACTIVITIES TARG 1999.	201 BOUMIC (MUL) DEGODZEO CEOLECHINICVT (MUL) DEGODZED ZOIT BOUNC	Фc8−230 Ф28−232	<u>قب :</u> ۲
		TECEND	

TABLES

Table 1 - Soil and Groundwater Sampling Locations and Parameters Feasibility Study Work Plan Campmarina, Former Coal Gas Facility

Contraction of the second

Wisconsin Public Service Corporation (WPS)

PP17575.PD

Sheboygan, Wisconsin

percenter a

(

C

٠.

SAMPLING	GLOCATION	NO. & TYPE of SAMPLES FROM EA. LOCATION	PARAMETERS	
SOIL		FROM EA. LOCATION		
<u>SOIL</u> Additional In	wastigation			
	off-site to south	1 D most contam.	BETX, PAHs, Total Lead, Total Cyanide	
	off-site to south	1 D most contam.	BETX, PAHs, Total Lead, Total Cyanide	
	off-site to south	I D most contam.	BETX, PAHs, Total Lead, Total Cyanide	
	off-site to south	1 D most contam.	BETX, PAHs, Total Lead, Total Cyanide	
	n. gas holder	I D most contam.	BETX, PAHs, Total Lead, Total Cyanide	
	up-gradient	1 D most contam.	BETX, PAHs, Total Lead, Total Cyanide	
	n. gas holder	1 D most contam.	BETX, PAHs, Total Lead, Total Cyanide	
Geotechnica	1			
	along river	1 D fill/cl, 1 D lower clay	F.H. Permeability, Triaxial Tests (lower clay only); moisture, bulk density, grain size, Atterburg Lim. (both)	
SB-728	along river	I D fill/cl, I D lower clay	F.H. Permeability, Triaxial Tests (lower clay only); moisture, bulk density, grain size, Atterburg Lim. (both)	
	along river	I D fill/cl, I D lower clay	F.H. Permeability, Triaxial Tests (lower clay only); moisture, bulk density, grain size, Atterburg Lim. (both)	
SB-730	along river	I D fill/ci, I D lower clay	F.H. Permeability, Triaxial Tests (lower clay only); moisture, bulk density, grain size, Atterburg Lim. (both)	
PZ-703	along river	TBD	TBD	
Soil Treatab	<u>ility</u>			
SB-734	betw. MW-706/SB-701	1 D most contam.	BETX, PAHs, Total Lead, Total Cyanide	
SB-735	betw. SB-701/MW-704	1 D most contam.	BETX, PAHs, Total Lead, Total Cyanide, Total Sulfur	
PZ-702	adj. to MW-706	I D most contam.	BETX, PAHs, Total Lead, Total Cyanide, Total Sulfur	
	adj. to MW-707	I D most contam.	BETX, PAHs, Total Lead, Total Cyanide	
	(above borings)	1 C upper fill	BETX, PAHs, Total Lead, Total Cyanide, TCLP Benzene	
Composite 2	(above borings)	I C lower fill/clay	BETX, PAHs, Total Lead, Total Cyanide, TCLP Benzene, Total Sulfur	
Waste Chara			· ·	
Roll-off Box	۲.	1 C ·	Protocol B	
GROUNDW				
	and New Wells	12 wells & 1 dup, D	BETX, PAHs, Total Cyanide, Amenable Cyanide, Diss. Cyanide	
	isp. at Sheb. WWTP)		-BETX, Oil and Grease, Total Sus. Solids, Total Cyanide	1
Jroundwate	r Treatability	I mon. well & I piez., D	Hardness, Total and Diss. Iron, Lead	
Notes:				
D = Discrete	•			
C = Compos				Natu
	le Determined in Field)		Resour
F.H. = Fallin	ig Head	·		echnolo

.

S75535

an neve

P7777 IA C.2

Coxe and

Part

APPENDIX A

Frank and

and the second second

ALC: UNA

8

and the second

APRIL 4, 1996 SOIL BORING LOGS, BOREHOLE ABANDONMENT FORMS AND LABORATORY ANALYTICAL DATA

-acilii	y/Proj	ect N=	me				Licen	se/Pe	rmit/Mo		a Numb	 er	Boring	Numbe	er		Page 1 o
WPSC	- Shel	oygai	n Water	Street Feasibility In									SB-71	, 		_	
Boart	Longy	ear (E		me and name of crew mental Drilling Division o			Date 04/0) Starte	d	Date (04/04		Comple		Drilling I Hydraul		
ONR F	acility	Well N	o. WI	Unique Weil No.	Common Well Na	але	Final Feet		Water	Level	Surfac Feet		ation		Borehol 2.5 inch		
-	l Locai Plane	ion			Feet N Feet E		Lat Long				Local	Grid Lo	cation N S	(if ap		:) □ <i>E</i> □₩	
Count Sheba	y bygan			<u> </u>		DNR C	cunty	Code	Civil To Shebo		ty/ or '	Village		_			
San		_											Soil	Prope	rties		
and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet	And Ge	ock Description ologic Origin For :h Major Unit			NSCS	Graphic Log	Well Diagram	P10/F10	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
871 (0.5)	2		E	0'-1' FILL - SILTY	GRAVEL				^۲ ۲, ۶								
B711 (2)	13		-2	1'-7' EILL - GF	AVEL/SILT/CLAY	no odoi			TIL T								
3711 (4)	10		4	with BRICKS an ODOR	nd white sand, sof	t, wet,		FILL									
8711 (6)	12			no white sand,	trace organics												
:B711 (8)	16		8		nt olive gray (57) ne sand, soft, very			CL									
8711 (10)	22			(5Y 5/2), poor trace fine grav	ND WITH CLAY, of by graded, fine to rel, subround, soft,	medium,		SM									
			12 12	odor. E.O.B @ 11													
			- 14														
			16														
			- 18 -														
			E 20														
			22														
here		tify the	St the	information on this fo	rm is brue and co		o the t	hest n	fanv kn	wiedo							
ignat		1	llii,				Firm		ral Res			ology					

and the second sec

.

State of Wisconsin Department of Natural Resources

. .

: **I**,

All abandonment work shall be performed in accordance with the provisions of Chapters NR 111, NR 112 or 141, Wis. Admin. Code, whichever is applicable. Also, see instructions on back.

(-)				TTN NIAN (F	NUDCC C: "0	
	<u>(1)</u>			ITY NAME	WPSC Site #2	
		Well/Drillhole/Borehole County	Origin	ai Well Owner	(If Known)	\cap
		Location SB-711 Sheboygan	11)1500	NISING LU	BUY SER	LICE (CERPORATION)
			Presen			
[]]						
		<u>NW</u> 1/4 of <u>SW</u> 1/4 of Sec. <u>23</u> : T. <u>15</u> N: R. <u>23</u> W	WP			
Į :	_	(If Applicable)	Street	or Route		
			P.O.	Box	1980	
[```·		Gov't Lot Grid Number				
		Grid Location	City, S	tate, Zip Code	2	
		ft. 🗋 N. 🗋 S.,ft. 🗋 E. 🗌 W.	She	bovgan. Wl	[
		Civil Town Name				plicable) WI Unique Well No.
f i		SHEBOYGAN	SB-			
1 :		Street Address of Well	Reasor	For Abandon	ment	
t i		732 NORTH WATER STREET	Too	t Boring		
		752 NORTH WHTER STREET				
r 3		City, Village	Date o	f Abandonmen	II.	
		Shebovgan	04/0)4/96		
, Lei	W	ELL/DRILLHOLE/BOREHOLE INFORMATION				
	WI	CLL/DRILLHOLE/BOREHOLE INFORMATION	1		01	
	(3)	Original Well/Drillhole/Borehole Construction Completed On	(4) Depth	to Water (Feet) <u>~9'</u>	
	• • •	(Date)04/04/96	Pump	& Piping Rem	oved? 🗌 Y	es 🗌 No 🖾 Not Applicable
		$(Date) ____________________________________$				
- L :) Removed?		
		Monitoring Well Construction Report Available?	Screen	Removed?		es 🗌 No 🖾 Not Applicable
· · ·		□ Water Well		Left in Place?		es 🖾 No
		🖄 Drillhole	If No.	Explain	_N/T	
t		Borehole			1	
			Wee C	cing Cut Off	Below Surface?	Yes No
ſ.						
1		Construction Type:	Did Se	aling Material	Rise to Surface?	🛛 Yes 🗌 No
t i		🖾 Drilled 🛛 Driven (Sandpoint) 🗌 Dug	Did Ma	aterial Settle A	fter 24 Hours?	🗌 Yes 🖾 No
			TE Vee	Wee Hole De	conned?	🗌 Yes 🗌 No
		Other (Specify)	If res,	Was Hole Re	topped:	
Ì			(5) Requir	ed Method of	Placing Sealing N	Material
į		Formation Type:				
ι.				nductor Pipe -		Conductor Pipe - Pumped
		Unconsolidated Formation 🗌 Bedrock		mp Bailer		Other (Explain)
<u> </u>				_		
		Total Well Depth (ft) Casing Diameter (ins.)	(6) Sealing	Materials		For monitoring wells and
Ľ.		(From groundsurface)	🗌 🗌 Ne	at Cement Gro	out	monitoring well boreholes only
				nd-Cement (Co	oncrete) Grout	U
.		Casing Depth (Ft.)		ncrete		Bentonite Pellets
				ay-Sand Slurry	,	' 🗵 Granular Bentonite
: t.,		Was Well Annular Space Grouted? 🔲 Yes 🗌 No 🔲 Unknown		ntonite-Sand S		Bentonite-Cement Grout
			i —		-	
· (·		If Yes, To What Depth? Feet		ipped Bentoni	te	
	(7)				No. Yards,	
	. (*)	Sealing Material Used	From (Ft.)	To (Ft.)	Sacks Sealant	Mix Ratio or Mud Weight
	_				or <u>Volum</u> e	
ſ						
	C	Franular Bentonite	Surface	11.0	.5 Bag	
			<u> </u>	+	,	·
L						
	_					
ſ			1			
j ti	;	· · · ·	<u> </u>	<u> </u>	!	<u> </u>
ſ						
	_		·		·	
ł.,	(8)	Comments				
	(9)	Name of Person or Firm Doing Sealing Work	cioy.	FD	RDNRORCOU	NTY USE ONLY
		• •		Received bis	ierteti	District/Chionty
		Boart Longvear	- 1550	1		
ι		Signature of Person Doing Work Date Signed		<u></u>	<u></u>	
		1-9-96	Revo	wer/hspector	•••••••	
·	•,	Street or Route Telephone Number	1 1888			
			1 10000			
A	:					
	: : -	101 Alderson Street (715) 359-7090	Palic	w-щi Necessa	I <u>Y</u>	
			Fall	w-un Necessa	ī¥	
	: : -	101 Alderson Street(715) 359-7090City, State, Zip Code		w-щi Necessa	Γ <u>γ</u>	
	: .	101 Alderson Street (715) 359-7090		w-щ Necessa	Γγ	

Facill	ty/Proj	ect Nam	e		perfund		0ther		mit/Moi	hitoring	g Numb	er	Boring	Numb	er		Page 1 c
Boring	g Drilleo	I By (Fi	rm na	r Street Feasibility In ame and name of crew mental Drilling Division	chief)		Date 04/0	_	g Starte	d	Date i 04/04	Drilling 1/93	SB-712 Comple	ted	Drilling Hydrau		
		Veff Fla Well No.) I Unique Weil No.	Common Well Na		Final Feet		Water	.evel	Surfac Feet	e Elev MSL	ation		Borehol 2.5 inch		
	l Locat Piane	ion			Feet N Feet E		Lat Long						cation		plicable		
Count Sheba	y oygan					DNR (County	Code	Civil To Shebo		ty/ or	Village	-				
Sar	nple					<u> </u>							Soil	Prope	rties		
and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet	And Ge	ock Description cologic Origin For ch Major Unit			NSCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
8712 (0.5) 8712	4																
(2) 8712	15 6		-2 -4		NDERS/SILTY GR/ , SLIGHT ODOR			FILL									
(4) B712 (6)	o		-6		<u> </u>											,	
8712 (8)	6		- 8	6'-11' <u>SANDY CLAY</u> sand, trace fine gr			ı	CL									
8712 (10)	24		- 10	trace organics	, 10% gravel												
			- 12	E.O.B @ 11	·												
			- 14 - 16														
			- 18			·											
			- 20														
			- 22														
			_											L			
here igna		1.1	the	information on this fo	rm is true and co	orrect t	o the t Firm		f my kn Iral Res			plogy					

State of Wisconsin Department of Natural Resources

All abandonment work shall be performed in accordance with the provisions of Chapters NR 111, NR 112 or 141, Wis. Admin. Code, whichever is applicable. Also, see instructions on back.

(1) GENERAL INFORMATION			ITY NAME	WPSC Site #2	2
Well/Drillhole/Borehole County		Úrigin:	ai Well Owner	r (If Known)	\sim
Location SB-71Z Sheboygan		Wisco	NSIN PU	<u> BLIC DER</u>	WICE CORPORATION
	🛛 E	Presen	Well Owner		
<u>NW</u> 1/4 of <u>SW</u> 1/4 of Sec. <u>Z3</u> : T. <u>15</u> N: F (If Applicable)	<u>. 25 🗆 w</u>	WP	<u>SC</u>		
(If Applicable)			or Route	16.42 3	
Gov't Lot	Grid Number			1980	
Grid Location		City. S	tate. Zip Cod	e	
<u>ft. N. Sft.</u>	🗋 Ę. 🗋 W.	She	boygan. W	I	
		Facility	Well No. an	d/or Name (If Aj	pplicable) WI Unique Well No.
SHEBOYGAN		SB-			
Street Address of Well		Reason	For Abandor	ment	
73-2 NORTH WATER JIL	EE T	Test	Boring		
City, Village		Date of	Abandonmer	nt	
Shebovgan		04/0	4/96		
WELL/DRILLHOLE/BOREHOLE INFORMATION					
(3) Original Well/Drillhole/Borehole Construction Complete	d On	(4) Depth (o Water (Feet	$\frac{5.0}{5.0}$	
(Date) C4/04/96			2 Piping Rem		es 🗌 No 🖄 Not Applicable
		-) Removed?		es 🗌 No 🖾 Not Applicable
Monitoring Well Construction Report	Available?		Removed?		\vec{l} es \square No $\boxed{\boxtimes}$ Not Applicable
] No		Left in Place		$les \square No$
Drillhole			Explain	N/A	
		Was Ca	cing Cut Off	Below Surface?	Yes 🖾 No
Construction Type:	(ſ	-	Rise to Surface?	
	1		-	fter 24 Hours?	
=	Dug				
Other (Specify)		if fes.	Was Hole Re	topped?	Yes No
		(5) Require	d Method of	Placing Sealing I	Material
Formation Type:		🛛 🖾 Coi	nductor Pipe -	Gravity 🗌	Conductor Pipe - Pumped
Unconsolidated Formation 🗌 Bedrock		🗌 🗌 Dui	np Bailer		Other (Explain)
Total Well Depth (ft) Casing Diameter (ins.)		(6) Sealing	Materials		For monitoring wells and
(From groundsurface)			t Cement Gro	out	monitoring well boreholes only
-		San	d-Cement (Co	oncrete) Grout	······································
Casing Depth (Ft.)			crete		Bentonite Pellets
			y-Sand Slurry	,	Granular Bentonite
Was Well Annular Space Grouted? 🗌 Yes 🗌 No	Unknown		tonite-Sand S		Bentonite-Cement Grout
If Yes, To What Depth?	Feet		pped Bentonii	-	
(7)				No. Yards,	
Sealing Material Used		From (Ft.)	To (Ft.)	Sacks Sealant	Mix Ratio or Mud Weight
				or Volume	
Granular Bentonite		Surface	11.0	.5 Bag	
				<u> </u>	
					<u> </u>
					!
(8) Comments					
(9) Name of Person or Firm Doing Scaling Work	<u> </u>	2100		n faith and and	
Bong County Fork		(10)	teceived/Instr		NTY USE ONLY
Boart Longvear Signalment Person Doing Work, Date Signed		Date 1	xecciveuruisp	IGG(CU	CONTRACTOR CONTINUES
Signal The Signed Signal Signed	ài				
	16	Keva	wor/bispector		
prioneprione					
<u>101 Alderson Street</u> (715) 359-709	0	Fellor	v-un Necessa	Γ Υ .	
City, State, Zip Code	ļ		•••••		
Schofield. WI 54476					
	DNR/CO	UNTY			

					6 50	londoaT	SOTU	rai Heso	INJEN			γ	Y//	11	1777	175	$\overline{\nabla}$,
										et to the t Firm	true and corre	si maoj	//// \$iu}.xio	itormation	ui əqti i	11 X00		i herei
															- 55			
																-		
															- 50	-		
															-	-		
															81 -			
																3		
															91 -	-		
																-		
														a <i>a</i> :o: -	-14	-		
													"	0 8.0.3 0	8 8 10 10 11 12	-		
											r onor. Bi, trace gastrop	, <mark>SLIGH1</mark>				-		
									WS	antiy	oarse, predomina	ine to c	r,baben	booujà G			<i></i> 1	(01)
											CLAY gray (57		. FOEO , 1			-	2,	£178S
									כר		. gray (5Y 4/1), I ne gravel, TRAC				8-]	52	(8)
														10.0.12		-		EITBS
						9-		81	(9) 81782									
											Iack and dark gr					-		
								L L	ר זרר			лл	יום באכ וי	NTC	*	-	12	(7) (7) (7)
								ر. لا لا ال			ist.	dyqy wo		```				(7)
								ן די ן		רי.	AVARO YTJIS\ 2	CINDES	. בזרר –	۲ ۱, ۲	-5	-	12	(2) (2)
								ר " קיד הי			^EC	ARÐ YT	TIS – TI	0I. ET] :		3	(S'0) E128S
RQD/	P 2	Plastic Index	Liquid Limit	Con	Str	PIC	Well Diag		uscs						Dep	BIO	Len	and
Rad/	200	Plasticity Index	₩id	Moisture Content	npre: engt	PID/FID	Well Diagram	Graphic Log	S		ajor Unit				oth ir	Blow Counts	Length Att. Recovered	Number and Type
		~			Compressive Strength						c Origin For				Depth in Feet	unts	ed (in)	n I
		seit :	Proper	lio2											-			meS
					-			Koqays		(oqəys
	M]		<i>s</i> _	- adalii	() or V	HO/UM	OT IND	abol	NR County								(tauo)
	3 🗆]	ide 11)	N 🗖	נוס רספ	e lesol			•	Buoj jej	N 199 3 199					uo	Plane Locati	Boring State
	youi sa	youi gra	?		751	ү зәә_			75W				'011					
	- חומהי	loreholi				Surface	Ineve	Water L	Jitet2	lenia .	ambn liaw nomr		YN I	ish supint			ecility i From /	
		y neup (N Bu lling (alqmo		/#0/#0	P	eriete		0/ 40	{ t }			nen bre 9 Millin0 (etre	ουίκουμα	ia) ies	∍∧́Биоҭ)1E08
				Buing		IsdmuN						.îsəvnî	λ <i>ilidi</i> se	iei teet Fe			a¦oı3\\ ∽	

State of Wisconsin Department of Natural Resources

Ł

All abandonment work shall be performed in accordance with the provisions of Chapters NR 111, NR 112 or 141. Wis. Admin. Code, whichever is applicable. Also, see instructions on back.

(1) GENERAL INFORMATION	(2) FACILITY NAME WPSC Site #2
Well/Drillhole/Borehole County	Original Well Owner (K Known)
Location SR-713 Sheboygan	VISCONSIN KIBLIC SERVICE (DEPOPATION) Present Well Owner
$\frac{N\omega}{(\text{If Applicable})} \frac{1/4 \text{ of Sec. } 23 : \text{T. } 5 \text{ N; R. } 23 \text{ W}}{(\text{If Applicable})}$	WPSC
(If Applicable)	Street or Route
Grid Number	P.O. Bux 1990
Grid Location	City, State, Zip Code
ft. N. S., ft. E. W.	Sheboygan. WI
	Facility Well No. and/or Name (If Applicable) WI Unique Well No.
SHEBOYGAN Street Address of Well	SB-713
Street Address of Well	Reason For Abandonment
732 NORTH WATER STREET	Test Boring
City, Village	Date of Abandonment
Shebovgan	04/04/96
WELL/DRILLHOLE/BOREHOLE INFORMATION	
	(4) Depth to Water (Feet) 7.0
(3) Original Well/Drillhole/Borehole Construction Completed On	Pump & Piping Removed? Yes No X Not Applicable
(Date) $C4/C4/9.6$	Liner(s) Removed? \Box Yes \Box No \boxtimes Not Applicable
Monitoring Well Construction Report Available?	Screen Removed? Screen Removed? Yes No Not Applicable
Water Weil Yes No	Casing Left in Place? \Box Yes \boxtimes No
Drillhole	If No, Explain
Borehole	
	Was Casing Cut Off Below Surface? 🛛 🗌 Yes 🎽 No
Construction Type:	Did Sealing Material Rise to Surface? 🛛 🖾 Yes 🔲 No
🗌 🖾 Driven (Sandpoint) 🗌 Dug	Did Material Settle After 24 Hours? 🗌 Yes 🖾 No
Other (Specify)	If Yes, Was Hole Retopped? 🛛 🗌 Yes 🔲 No
	(5) Required Method of Placing Sealing Material
Formation Type:	Conductor Pipe - Gravity Conductor Pipe - Pumped
Unconsolidated Formation 🗌 Bedrock	
	Dump Bailer Cther (Explain)
Total Well Depth (ft) Casing Diameter (ins.)	(6) Sealing Materials For monitoring wells and
(From groundsurface)	Neat Cement Grout monitoring well boreholes only
	Sand-Cement (Concrete) Grout
Casing Depth (Ft.)	Concrete Bentonite Pellets
	🗌 Clay-Sand Slurry ' 🛛 Granular Bentonite
Was Well Annular Space Grouted? 🗌 Yes 🗌 No 🗍 Unknown	Bentonite-Sand Slurry Bentonite-Cement Grout
If Yes, To What Depth? Feet	Chipped Bentonite
(7)	No. Yards,
Sealing Material Used	From (Ft.) To (Ft.) Sacks Sealant Mix Ratio or Mud Weight
	or Volume
Granular Bentonite	Surface 11.0 .5 Bag
; ;	
·	
(8) Comments	
(9) Name of Person or Firm Doing Sealing Work	(10) FOR DNR DR COUNTY USE ONLY
Boart Longvear	Date Received/Inspected
Signature of Person Doing Work Date Signed	
4-9-910	Revorwer/Inspector
Street or Route Telephone Number	
101 Alderson Street (715) 359-7090	Pullow-upt-Necessary
City, State. Zip Code	The second s
-	
Schofield. WI 54476	

	ty/Proj						Licens	e/Per	mit/Mor	nitoring) Numbi	er	Boring		er		Pa
Boring Boart) Drilled	i By (i ear (E	Firm na Invironi	Street Feasibility In me and name of crew mental Drilling Division	chief)		Date 04/04		Starte	d	Date [04/04		SB-71 Comple	ted	Drilling Hydraul		
	acility			Unique Well No.	Common Well N	ame	Final S		Water I	Levei	Surfac		ation		Borehol 2.5 inch		
) Locat Plane	lon			F cc t N F cc t E		Lat Long	•					cation N S		plicable		
Count Sheba	-					DNR C	County	Code	Civil To Sheboy		ty/ or '	Village					
	nple							ļ					Soil	Prope	erties		
SB714 (2) (1) (2) (2) (2) (2) (2) (2) (2) (2				ologic Origin Fo			NSCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200		
	6						ict		۲ <u>ـ</u>								
SB714 (2)	18		2	slightly moist, no o													
SB714 (4)	3	1	4	slightly moist, i predominantly	no odor.			FILL	FF; FF; FF;								
S8714 (8)	14		- 6 -	CINDERS and :	silty sand, moist, r	no odor			F F;								
SB714 (8)	20		8	7'-11' <u>SILTY SAND</u> 4/2), medium to co subround gravel, so	arse, subround, 5-	-10% fine		SM									
SB714 (10)	17		- 10 -				_										
			12 	E.O.8 @ 11													
			- 16 - 1														
			- 18 - 20														
			20														
Ihere		tify th		Information on this fo	rm is true and o		o the h	est o	fanv kny	owledg							
Signa			, //.	UL4			Firm		ral Res			ology					

State of Wisconsin Department of Natural Resources

(]

All abandonment work shall be performed in accordance with the provisions of Chapters NR 111, NR 112 or 141, Wis. Admin. Code, whichever is applicable. Also, see instructions on back.

					WDCC C: 10	
(1)	GENERAL INFORMATION	(_)		ITY NAME	WPSC Site #2	
	Weil/Drillhole/Borehole County		· ·	il Well Owner		Λ
	Location $\exists B - 714$ Shebovgan	10	JISCO	USIN K	BUC D	ERVICE CORPORATIONS
		1	Present	Well Owner		
	NW 1/4 of SW 1/4 of Sec 23 T 15 N.R 23 TW		wo	e c		
		1	WPS			
	(If Applicable)			or Route	100 0	
	Gov't Lot Grid Number	1 F	20,	Box	1980	
	Grid Location	† ·	City, St	tate, Zip Code		
				-		
	<u> </u>	1		ooygan, WI	· · · · · · · · · · · · · · · · · · ·	
	Civil Town Name		Facility	well No. and	/or Name (If Ap	plicable) WI Unique Well No.
	SHEBOYGAN	1	SB-7	714		
	Street Address of Well	<u> </u>		For Abandon	ment	
			Π	Denim		
		<u> </u>		Boring		
	City, Village		Date of	Abandonment		
	Shebovgan		04/0	4/96		
WE	LL/DRILLHOLE/BOREHOLE INFORMATION					
WE.		Len			7.0	
(3)	Original Well/Drillhole/Borehole Construction Completed On	(4)		o Water (Feet)		
	(Date) <u>0404198</u>		Pump &	e Piping Remo	wed? 📙 Y	es 🗌 No 🖾 Not Applicable
			Liner(s)) Removed?	□ Y	es 🗌 No 🖾 Not Applicable
				Removed?		es 🗌 No 🖾 Not Applicable
	Monitoring Well Construction Report Available?				_	
	Water Weil Yes No		-	Left in Place?		es 🖾 No
	🛛 Drillhole		If No. I	Explain	N/A	
	Borehole				1	
	Borenoie		W C-		Below Surface?	Yes No
	Construction Type:]	Did Sea	ling Material	Rise to Surface?	
	Drilled Driven (Sandpoint) Dug		Did Ma	terial Settle At	fter 24 Hours?	🗌 Yes 🖾 No
	Other (Specify)		If Yes	Was Hole Ret	onned?	🗌 Yes 🔲 No
	·	(5)	Require	d Method of F	Placing Sealing N	Aaterial
	Formation Type:			nductor Pipe -		Conductor Pipe - Pumped
	Unconsolidated Formation		_	-	· _	
			🔄 Dui	mp Bailer		Other (Explain)
	Total Well Depth (ft) Casing Diameter (ins.)	(6)	Sealing	Materials		For monitoring wells and
	(From groundsurface)	(<u> </u>		at Cement Gro		monitoring well boreholes only
	(110in groundsurface)		<u> </u>			monitoring wen porenoies only
		ł		d-Cement (Co	ncrete) Grout	
	Casing Depth (Ft.)		Cor	ncrete		Bentonite Pellets
				y-Sand Slurry		🛛 🖂 Granular Bentonite
	Was Well Annular Space Grouted? 🗌 Yes 🗌 No 🗍 Unknown	1	_	tonite-Sand Sl		Bentonite-Cement Grout
			_		•	
	If Yes, To What Depth? Feet		🗀 Chi	pped Bentonite	e	
(7)					No. Yards,	
(1)	Sealing Material Used	Fr	om (Ft.)	To (Ft.)	Sacks Sealant	Mix Ratio or Mud Weight
					or Volume	
			_			
G	ranular Bentonite	SI	urface	11.0	.5 Bag	
		<u> </u>		<u> </u>		<u></u>
			_			<u> </u>
		1				<u>-</u>
		ļ				
		1		<u> </u>		l
(8)	Comments					
(6)						
(9)	Name of Person or Firm Doing Sealing Work		cioy:	FAL	UNR OF COL	NTY USE ONLY
())						District/County
	Boart Longvear		Date.	neceived/uisp	eeieu	CONTRACT CORNEY.
	Signature of Person Doing Work Date Signed					
	1-9-96		Revæ	worthispector		
	Street or Route Telephone Number	-				
		Į –	<u> </u>			
	101 Alderson Street (715) 359-7090	1	1.0110	w-u्रा-Necessar	ž	
	City, State, Zip Code					
	Schofield, WI 54476					
	DNR/CC	UN	ΙY			

Facility/Project Name License/Premit/Annototrig Number Boring Number M350-Shaboygan Mater Street Feasibility Envest. Date Orling Started Date Orling Number Boring Dinted Dy Clim Rame and name of strew chief) Date Orling Started Date Orling Completed Provide Number Boring Dinted Dy Clim Rame and name of strew chief) Date Orling Started Date Orling Completed Provide Number Boring Dinted Dy Clim Rame and name of strew chief) Date Orling Started Date Orling Completed Provide Number Boring Location Feet NSL Lat Locad Grid Location If applicable) E Boring Location Feet NSL Lat Locad Grid Location If applicable) E State Plane Feet NSL Lat Locad Grid Location If applicable) E State Plane Feet NSL Lat Locad Grid Location If applicable) E State Plane Soll/Rock Description And Beoring Environmental Science Name/Starte Soll Properties Start frame Soll Properties Soll Properties Soll Properties Start frame Grid Location If applicable) E Soll Properties Start frame Grid Location If applicable) E Soll Properties Start frame Grid Location If applicable) E Soll Properties		of Wis tment			Resources E E	te To: Solid Waste Emergency Respon lastewater Superfund	nse [] Haz.] Unde] Water] Other	rgroun r Reso	id Tank	S			OIL B orm 44			INFC	RMATION Rev. 5-92
Borting Durined By (Firm name and name of Case chief) Borting Durined By (Firm name and name of Case chief) Borting Completed Date Drilling Started Od/04/09 Date Drilling Completed Drilling Method By drauker Proce DNR Facility Neil No. NT Unique Neil No. Common Neil Name Phan Static Nater Level Barrace Elevation <					 Street Feasibility Inv	vest.		Licen	se/Pe	rmit/Mo	nitoring	g Numb	er			er		Page 1 of 1
Berling Location Feet MSL Feet MSL Estimate Barling Location Feet N Lat Locat Grid Location (If applicable) County Samole M Berling DNR County Code Could Grid Location (If applicable) Samole M Berling DNR County Code Could Grid Location (If applicable) Samole M Berling Berling Berling Berling Berling Samole T T Soil/Rock Description And Geologic Origin For Soil State State Soil Properties Samole T Ethers/State County Code Chill Town/Chily or Village Soil Properties Samole T Ethers/State Soil/Rock Description And Geologic Origin For Soil State Soil State Soil State Samole O'-' ELL-Samonater/State/LowAll State Soil State Soil State Soil State Soil State Samole O'-' ELL-Samonater/State/LowAll State State State State State Samole O'-' ELL-Samonater/State State State State State Samole O'-' ELL-Samonater/State State State State State Samole O'-' ELL-Samonater/Samonat	Borin Boart	g Drille Longy	d By (rear (B	Firm na Environ	ame and name of cre mental Drilling Division	w chief)				g Starte	be			_ · -	eted	-		
State Pane Freet E Lang Image: County Code Image: C	DNR F	acility	Well N	o. WI	Unique Well No.	Common Well Na	ane			: Water	Level			ation				eter
Sheborgan Sheborgan Sample 5 a 3 10 g 10 g a 3 10 g 10 g a 4 10 g 10 g a 4 10 g 10 g a 4 10 g 10 g a 5 10 g 10 g <t< td=""><td></td><td>-</td><td>lion</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Local</td><td>Grid La</td><td></td><td>(If ap</td><td></td><td>□<i>E</i></td><td></td></t<>		-	lion									Local	Grid La		(If ap		□ <i>E</i>	
a a b Self/Rock Description And Geologic Origin For Each Major Unit a a b <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>DNR (</td> <td>County</td> <td>Code</td> <td></td> <td></td> <td>ty/ or</td> <td>Viilage</td> <td></td> <td></td> <td></td> <td></td> <td></td>		-					DNR (County	Code			ty/ or	Viilage					
g A (1000) L (1000) And Beologic Dright For Each Major Unit g (1000)	Sar	·												Soil	Prope	erties		
a b c c c c c c c c c c c c c c c c c c	Q		unts	n Feet									ssive h			~	-	ts
151 3 0 0 FILLSLITY FUNCTIONERS/GRAVEL/SAND/SILT. 121 12 12 12 10 <t< td=""><td>Number and Typ</td><td>Length Recover</td><td>Blow Co</td><td>Depth i</td><td></td><td>-</td><td></td><td></td><td>nscs</td><td></td><td>Well Diagraff</td><td>PID/FI</td><td>Compre Strengt</td><td>Moisture Content</td><td>Liquid</td><td>Plasticit Index</td><td></td><td>RQD/ Commen</td></t<>	Number and Typ	Length Recover	Blow Co	Depth i		-			nscs		Well Diagraff	PID/FI	Compre Strengt	Moisture Content	Liquid	Plasticit Index		RQD/ Commen
Servis 12 12 14 14 14 14 14 14 14 14 14 14		3		=	0'-I' FILL-SILTY	GRAVEL				FT_ F								P
30/13 14 -4 with BRICXS, wet Fill Fill </td <td>SB715</td> <td>12</td> <td></td> <td>- - -</td> <td></td> <td></td> <td>SILT,</td> <td></td> <td></td> <td>FIL F</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	SB715	12		- - -			SILT,			FIL F								
S8715 II II II II III III III III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		14		4		se, dry.			57 11	[T_ [:								
SB715 3 -8 SB715 13 -10 9'-11' CLAYEY SAND, olive (5Y 4/3), poorly graded, predominately medium to coarse, subround, trace time subround gravel, soft, wet, no odor. SC 12 -12 EDB B II' 14 -14 18 -18 20 -22 20 -22 Signature Firm Natural Resource Technology This form is authorized by Chapters 14+147/and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$5000 for each viriad io. Fined not less than \$0 or inpresioned not less than 30 days,				6	with BRICXS.	vet .												
SB715 13 10 9'-11' CLAYEY SAND, olive (5Y 4/3), poorly graded, predommately medium to coarse, subcround, trace time subround gravel, soft, wet, no odor. SC 12 EOB 0 11 11 18 20 20 22 20 22 18 50 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$5,000 of imprisoned not less than \$0 or more than \$5,000 of imprisoned not less than 30 days,	SB715	3		8	SHEEN, ODOR					[_T								
100 Image: subround, trace fine subround gravel, soft, wet, no odor. 12 EOB 9 II' 14 EOB 9 II' 16 Image: subround, trace fine subround gravel, soft, wet, no odor. 18 Image: subround, trace fine subround gravel, soft, wet, no odor. 18 Image: subround, trace fine subround gravel, soft, wet, no odor. 10 Image: subround, trace fine subround gravel, soft, wet, no odor. 14 Image: subround, trace fine subround gravel, soft, wet, no odor. 18 Image: subround, trace fine subround gravel, soft, wet, no odor. 18 Image: subround, trace fine subround gravel, soft, wet, no odor. 20 Image: subround, trace fine subround gravel, soft, wet, no odor. 21 Image: subround, trace fine subround gravel, soft, wet, no odor. 22 Image: subround, trace fine subround gravel, soft, wet, no odor. Signature Firm Natural Resource Technology This form is authorized by Chapters 14#:147 and 182, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$100 or more than \$100 or imprisoned not less than 30 days, the subround graveline.	SB715	13		- 10					sc	1								
Image:	(10)			12	subround, trace fin no odor.			et, 										
I hereby certify thet the information on this form is true and correct to the best of my knowledge. Signature This form is authorized by Chapters 144:147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 or more than \$5,000 for each vioration. Fined not less than \$10 or more than \$5,000 for each vioration. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days,					<u>EOB @ 11'</u>													
I hereby certify the the information on this form is true and correct to the best of my knowledge. Signature Firm Natural Resource Technology This form is authorized by Chapters 14+147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 or more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days,				14 														
Intereduce Intereduce Firm Natural Resource Technology This form is authorized by Chapters 144.147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days,				16 														
Intereby certify that the information on/this form is true and correct to the best of my knowledge. Signature Firm Natural Resource Technology This form is authorized by Chapters 144:147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days,				18														
I hereby certify that the information on/this form is true and correct to the best of my knowledge. Signature Firm Natural Resource Technology This form is authorized by Chapters 144:147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days,				=														
I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature Firm Natural Resource Technology This form is authorized by Chapters 144:147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days,				<u> </u>														
I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature Firm Natural Resource Technology This form is authorized by Chapters 144.147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days.				=														
Signature Firm Natural Resource Technology This form is authorized by Chapters 144.147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days,				_ 22														
Signature Firm Natural Resource Technology This form is authorized by Chapters 144.147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days,																		
This form is authorized by Chapters 144.147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days.			tify the	ef the	information on this for	orm is true and co	rrect t		est of	f my kno	wledg	e.					L	
This form is authorized by Chapters 144.147 and 162, Wis. Stats. Completion of this report is mandatory. Penalties: Forfeit not less than \$10 nor more than \$5,000 for each violation. Fined not less than \$10 or more than \$100 or imprisoned not less than 30 days,	signat	ure	$\overline{\langle}$],,	" A(1)			Firm	Natu	ral Res	ource	Techno	iogy					
or both for each violation. Each day of continued violation is a separate offense, pursuant to ss 144.99 and 162.06, Wis. Stats.	This fo	orm is a 510 nor	uthoriz more t	ed by	Chapters 144.147	d 162, Wis. Stats.	Comp is than	letion o \$10 or	of this more	report than \$1	is man 30 or i	datory. Morisor	Pena ned not	lties: F	orfeit	not les:	5	
	or bot	h for e	ach vie	lation	Each day of contin	ued violation is a	separa	ate off	ense, j	pursuan	t to ss	144.99) and 1	62.06,	Wis. S	itats.		

State of Wisconsin Department of Natural Resources

All abandonment work shall be performed in accordance with the provisions of Chapters NR 111, NR 112 or 141, Wis. Admin. Code, whichever is applicable. Also, see instructions on back.

(1) GENERAL INFORMATION	(2) FACILITY NAME WPSC Site #2
Well/Drillhole/Borehole County	Original Well Owner (If Known)
Location 5B - 715 Shebovgan	WISCONSIN PUBLIC SERVICE CORPORATION
	Present Well Owner
NW 14 of SW 14 of Sec. 23 ; T. 15 N: R. 23 W	WPSC
(If Applicable)	Street or Route
Gov't Lot Grid Number	$P.0. B_{0x}$ 1980
Grid Location	City, State, Zip Code
<u> </u>	Shebovgan, WI
Civil Town Name	Facility Well No. and/or Name (If Applicable) WI Unique Well No.
SHEBOYGAN	SB-715
Street Address of Well	Reason For Abandonment
732 NORTH WATER STREET	Test Boring
City, Village	Date of Abandonment
Shebovgan	04/04/96
WELL/DRILLHOLE/BOREHOLE INFORMATION	
	(4) Depth to Water (Feet) 5.0
(3) Original Well/Drillhole/Borehole Construction Completed On	Pump & Piping Removed? Yes No X Not Applicable
(Date) <u>CH/OH/98</u>	Liner(s) Removed? \Box Yes \Box No \boxtimes Not Applicable
	Screen Removed?
Monitoring Well Construction Report Available?	Casing Left in Place? \Box Yes \square No \square No \square No Applicable
Water Well Yes No	If No, ExplainNA
Drillhole	
Borehole	Was Casing Cut Off Below Surface? Yes No
	Did Sealing Material Rise to Surface?
Construction Type:	Did Sealing Material Rise to Surface: \square Fes \square No Did Material Settle After 24 Hours? \square Yes \square No
Driven (Sandpoint) Dug	
☐ Other (Specify)	If Yes, Was Hole Retopped? Yes No
	(5) Required Method of Placing Sealing Material
Formation Type:	🛛 Conductor Pipe - Gravity 🗌 Conductor Pipe - Pumped
Unconsolidated Formation 🗌 Bedrock	Dump Bailer 🔄 Other (Explain)
Total Well Depth (ft) Casing Diameter (ins.)	(6) Sealing Materials For monitoring wells and
(From groundsurface)	Neat Cement Grout monitoring well boreholes only
-	Sand-Cement (Concrete) Grout
Casing Depth (Ft.)	Concrete Bentonite Pellets
	Clay-Sand Slurry Granular Bentonite
Was Well Annular Space Grouted? 🗌 Yes 🗍 No 🗌 Unknown	Bentonite-Sand Slurry Bentonite-Cement Grout
If Yes. To What Depth? Feet	Chipped Bentonite
(7)	No. Yards,
Sealing Material Used	From (Ft.) To (Ft.) Sacks Sealant Mix Ratio or Mud Weight or Volume
Granular Bentonite	Surface 11.0 .5 Bag
, 	
(8) Comments	
(9) Name of Person or Firm Doing Sealing Work	(10) FOR DNR OR COUNTY USE ONLY
Boart Longvear	Date Received/Inspected. District/County.
Signature of Person Doing Work - Date Signed	
	Reveworthspector
Street or Route Telephone Number	
_101 Alderson Street (715) 359-7090	Fallow-up Necessary
City, State, Zip Code	
<u>Schofield. WI 54476</u>	
DNR/CC	DUNTY
211000	

Coolita					🗆 Wa 🗆 Su	perfund] Water] Other		mit/Mor	ltorio			Paria				Pag
Facilit WPSC				Street Feasibili	ty Inve	st.		Licen	36/161	mu/ Moi	nronut		5	Boring SB-71		51		
Boart	Longy	ear (L		me and name o mental Drilling D				Date 04/0-		Starte	d	Date I 04/04		Comple		Drilling Hydrau		
DNR F	acility	Well N	o. WI	Unique Well No		Common Well 1	Name	Final Feet		Water I	Level	Surfac Feet	e Elev MSL	ation		Borehol 2.5 inch		eter
Boring State		lon				Feet N Feet E		Lat Long	•			Local	Grid La	ication	(if ap		□ <i>E</i>	-
Count: Shebc							DNR C	County	Code	Civil To Shebo		ty/ or	Village					
San	-										-		_	Soil	Prope	rties		
	<u>ت</u> ن	ts	Feet		Soil/Ro	ock Description	า						e v					1
Number and Type	Length Att. Recovered	Blow Counts	Depth in F			ologic Origin Fo h Major Unit	or		nscs	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	
SB718 (.5)	7		F	0'-1' <u>FILL-5</u>						FI F								
SB716 (2)	18		<u> </u>	─ 1'-9' <u>FILL-C</u> slightly mois		RAVEL/SILT. con lor.	mpact,			[⁴ .								
			EI								,		ĺ					
SB716 (4)	23								FILL			ļ]				
58716 (6)	i4		6	WOOD /S soft, we		LAY, dark gray L	(5Y 4/1),	•										
SB716 (8)	6		8	no wood	i, BRICK	IS. SHEEN				FIL FI		ļ						
SB718 (10)	9			graded, pre	dominat	olive (5Y 4/3), j ely coarse, 5% f avel, trace clay,	ine to	t,	SM									
			E 12															
			- 14															
			E 16															
		•																
			- 18															
			Ē															
			20 															
			22										}					
			E															
		tify th	jat the	information, on	this for	mis true and o	correct t		best of	f_my_kni	owledg	je.		L	I			L
Signat <	ure	11	lun	, [] (11	12_		Firm	Natu	ral Res	ource	Techno	ology					
This fo	orm is a	author	ized by	Chapters 144. 5,000 for each	147 and	162, Wis. Stat	ts. Comp	letion	of this	report	is mar	ndatory	. Pena	alties: F	orfeit	not les	s	

State of Wisconsin Department of Natural Resources

i.

All abandonment work shall be performed in accordance with the provisions of Chapters NR 111, NR 112 or 141. Wis. Admin. Code, whichever is applicable. Also, see instructions on back.

				<u></u>		
(1)	GENERAL INFORMATION			TY NAME	WPSC Site #	<u> </u>
	Well/Drillhole/Borehole			. Weil Öwner		\wedge
	Location SB-716 Sheboygan	+U	SCON	JSIN LU	ibuc JEl	WICE (DRPORATION)
		P1	resent	Well Owner		
	<u>NW</u> 1/4 of Sw 1/4 of Sec. 23 : T. 15 N: R. 23		WPS			
	(If Applicable)			Route		
	(II Applicable)				1000	
	Gov't Lot Grid Number		٥.		1980	
	Grid Location	j Ci	ity, Sta	ate, Zip Code	2	
	ft. □ N. □ S.,ft. □ E. □ W.		Shah	ovgan. Wl	•	
	ft N S.,ft E W.	! . Ea	Sileo	Well No. and	dian Nama (IF)	pplicable) WI Unique Well No.
		1 12	acting	-		pplicable) wi Unique well No.
	SHEBOYGAN			56	-716	
	Street Address of Well	R:	eason	For Abandon	ment	
	732 NORTH WATER STREET		Tart	Boring		
	City, Village			Abandonmen		
					L	
	Shebovgan		04/04	1/96		
WE	LL/DRILLHOLE BOREHOLE INFORMATION					
		(4) De	anth to	Water (Feet)~9.	
(2)	Original Well/Drillhole/Borenole Construction Completed On		•			
	(Dare)			Piping Remo		Yes 🗌 No 🛛 Not Applicable
		Li	iner(s)	Removed?		Yes 🗌 No 🖾 Not Applicable
	Monitoring Well Construction Report Available?	1		Removed?		Yes 🗌 No 🛛 Not Applicable
						Yes X No
				.eft in Place?		res 🕰 No
	Drillhole	If	No. E	xpłain	N//t	
	Borehole			_	<u> </u>	
		w	as Cas	ing Cut Off i	Below Surface?	Yes X No
				-		
	Construction Type:	1			Rise to Surface?	
	Drilled Driven (Sandpoint) Dug	Di	id Mate	erial Settle A	fter 24 Hours?	🗌 Yes 🖾 No
	Other (Specify)	If	Yes. V	Vas Hole Ret	opped?	Yes No
		(5) Re	equired	Method of !	Placing Sealing	Material
	Formation Type:	\leq	Cone	iuctor Pipe -	Gravity 🗌	Conductor Pipe - Pumped
	🗵 Unconsolidated Formation 🗌 Bedrock	·		p Bailer		Other (Explain)
	Total Well Depth (ft) Casing Diameter (ins.)	(6) Se	aiing l	Materials		For monitoring wells and
	(From groundsurface)		Near	Cement Gro	ut	monitoring well boreholes only
		ΙĒ	_		ncrete) Grout	
	Casing Denth (Fr.)		-		mercic) Grout	
	Casing Depth (Ft.)	i 🖂	Conc			Bentonite Pellets
		i U	l Clay	-Sand Slurry		🛛 🖾 Granular Bentonite
	Was Well Annular Space Grouted? 🗌 Yes 🗍 No 🗍 Unknown		Bent	onite-Sand Si	iurry	Bentonite-Cement Grout
	If Yes, To What Depth? Feet			ped Bentonit		
				ped Bentonn		
(7)			(Fex)	T- (T-)	No. Yards.	
	Sealing Material Used	From ((FC)	To (Ft.)	Sacks Sealant or Voiume	Mix Ratio or Mud Weight
		<u> </u>			01 Volume	
Gr	anular Bentonite	Surfa	ace	11.0	.5 Bag	
	·			· · · ·		
		1	1			
		ļ				
<u> </u>		<u> </u>	<u> </u>		· · · · ·	
	J					
		1				
(8)	Comments					
(U) 						
(9)	Name of Person or Firm Doing Sealing Work	1	70		DAR OF COL	INTY USE ONLY
.,					ected	
	Boart Longvear	1	vn⊂ x	CCCIVEU/UISD	GG1211	
	Signature of Person Doing Work Date Signed					
	12-7311-4-9-96	. ह	Review	or hoperor		
	Street or Route Telephone Number	-				
				1000		
	<u>101 Alderson Street</u> (715) 359-7090		u110W	-mir.Mecesean	<u> </u>	
	City, State, Zip Code					
	_Schofield, WI 54476					
	DNR/CO	2 \ []] \ []]]]]]]]]]]]]]]	•			
	DNR/CO	нэм і Ү				

HENR No. 128053530

ANALYTICAL AND QUALITY CONTROL REPORT

Ms. Becky Koepke NATURAL RESOURCE TECH, INC 23713 W. Paul Road Pewaukee, WI 53072 04/26/1996

Job No: 96.02915

Enclosed are the Analytical and Quality Control reports for the following samples submitted for analysis:

Sample	Sample Description	Date	Date
Number		Taken	Received
178811	SB-711 (2)(S)	04/04/1996	04/08/1996
178812	SB-712 (8)(S)	04/04/1996	04/08/1996
178813	SB-713 (8)(S)	04/04/1996	04/08/1996
178814	SB-714 (2)(S)	04/04/1996	04/08/1996
178815	SB-714 (8)(S)	04/04/1996	04/08/1996
178816	SB-715 (2)(S)	04/04/1996	04/08/1996
178817	SB-715 (10)(S)	04/04/1996	04/08/1996
178818	SB-716 (2)(S)	04/04/1996	04/08/1996

MASTER FILE COPY PROJECT #_1150-5he CO: ___

The above sample(s) may have a result flag shown on the report. The following are the result flag definitions:

- A = Analyzed/extracted past hold time
- C = Standard outside of control limits
- F = Sample filtered in lab
- H = Late eluting hydrocarbons present
- J = Estimated concentration
- M = Matrix interference
- Q = Result confirmed via re-analysis
- T = Does not match typical pattern
- X = Unidentified compound(s) present

- B = Blank is contaminated
- D = Diluted for analysis
- G = Received past hold time
- I = Improperly handled sample
- L = Common lab solvent and contaminant
- P = Improperly preserved sample
- S = Sediment present
- W = BOD re-set due to missed dilution
- Z = Internal standard outside limits

Brian D. DeJong, Organic Operations Manager Certification No. 128053530

WENR No. 128053530

ANALYTICAL REPORT

Ms. Becky Koepke NATURAL RESOURCE TECH, INC 23713 W. Paul Road Pewaukee, WI 53072

ι.,

04/26/1996 Job No: 96.02915 Sample No: 178811 Account No: 52450 Page 2

JOB DESCRIPTION: #1150-5.1 WPSC Sheboygan II PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-711 (2)(S) Recv'd On Ice

Date Taken: 04/04/1996

ç ·			Reporting	J	Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	67.0	8	n/a	S-5030	04/26/1996	1434
OC	15,500	mg/kg	1,000	E-415.1	04/18/1996	75
CLP ZHE VOLATILE PREP	Complete			S-1311	04/11/1996	123
TCLP-VOLATILES-8240						
CLP-Benzene	<0.020	mg/L	0.020	S-8240	04/16/1996	224
urr: Toluene-d8	90.4	olo	n/a	S-8240	04/16/1996	224
Surr: Bromofluorobenzene	89.6	olo	n/a	S-8240	04/16/1996	224
^c urr: 1,2-Dichloroethane-d4	98.4	90 0	n/a	S-8240	04/16/1996	224

12005053

ANALYTICAL REPORT

Ms. Becky Koepke NATURAL RESOURCE TECH, INC 23713 W. Paul Road Pewaukee, WI 53072

1 :

04/26/1996 Job No: 96.02915 Sample No: 178812 Account No: 52450 Page 3

JOB DESCRIPTION: #1150-5.1 WPSC Sheboygan II PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-712 (8)(S) Recv'd On Ice

Date Taken: 04/04/1996

				Reporting	ſ	Date	Prep/Run
	Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, COC	Total	62.8 25,100	% mg/kg	n/a 1,000	S-5030 E-415.1	04/26/1996 04/18/1996	1434 75

HENR No. 128053530

ANALYTICAL REPORT

Ms. Becky Koepke NATURAL RESOURCE TECH, INC 23713 W. Paul Road Pewaukee, WI 53072

-

1.

1.7

1.1

8 -

έ÷.

S

L.:

ł.

4

04/26/1996 Job No: 96.02915 Sample No: 178813 Account No: 52450 Page 4

JOB DESCRIPTION: #1150-5.1 WPSC Sheboygan II PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-713 (8)(S) Recv'd On Ice

Date Taken: 04/04/1996

				Reporting	г	Date	Prep/Run
:	Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, COC	Total	80.7 62,000	% mg/kg	n/a 1,000	S-5030 E-415.1	04/26/1996 04/18/1996	1434 75

No. 128053530

ANALYTICAL REPORT

Ms. Becky Koepke NATURAL RESOURCE TECH, INC 23713 W. Paul Road Pewaukee, WI 53072 04/26/1996 Job No: 96.02915 Sample No: 178814 Account No: 52450 Page 5

JOB DESCRIPTION: #1150-5.1 WPSC Sheboygan II PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-714 (2)(S) Recv'd On Ice

Date Taken: 04/04/1996

			Reporting	3	Date	Prep/Run
Parameter	Results	units	Limit	Method	Analyzed	Batch
Solids, Total	85.7	8	n/a	S-5030	04/26/1996	1434
DO	13,900	mg/kg	1,000	E-415.1	04/18/1996	75
CLP ZHE VOLATILE PREP	Complete			S-1311	04/11/1996	123
TCLP-VOLATILES-8240						
CLP-Benzene	0.04	mg/L	0.020	S-8240	04/12/1996	222
urr: Toluene-d8	91.8	010	n/a	S-8240	04/12/1996	222
Surr: Bromofluorobenzene	90.0	010	n/a	S-8240	04/12/1996	222
Surr: 1,2-Dichloroethane-d4	100.0	010	n/a	S-8240	04/12/1996	222

WENR-No. 128053530

ANALYTICAL REPORT

Ms. Becky Koepke NATURAL RESOURCE TECH, INC 23713 W. Paul Road Pewaukee, WI 53072 04/26/1996 Job No: 96.02915 Sample No: 178815 Account No: 52450 Page 6

JOB DESCRIPTION: #1150-5.1 WPSC Sheboygan II PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-714 (8)(S) Recv'd On Ice

Date Taken: 04/04/1996

ł.

į.

				Reporting	•	Date	Prep/Run
	Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids,	Total	85.2 5,940	% mg/kg	n/a 1,000	S-5030 E-415.1	04/26/1996 04/18/1996	1434 75

MUNR NO. 128053530

ANALYTICAL REPORT

Ms. Becky Koepke NATURAL RESOURCE TECH, INC 23713 W. Paul Road Pewaukee, WI 53072 04/26/1996 Job No: 96.02915 Sample No: 178816 Account No: 52450 Page 7

JOB DESCRIPTION: #1150-5.1 WPSC Sheboygan II PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-715 (2)(S) Recv'd On Ice

Date Taken: 04/04/1996

1

1 3				Reporting	3	Date	Prep/Run
	Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solid	s, Total	84.5	8	n/a	S-5030	04/26/1996	1434
		15,100	mg/kg	1,000	E-415.1	04/18/1996	75
CLP	ZHE VOLATILE PREP	Complete			S-1311	04/11/1996	123
TCLP-	VOLATILES-8240						
CLP-I	Benzene	<0.020	mg/L	0.020	S-8240	04/12/1996	222
Jurr:	Toluene-d8	90.6	8	n/a	S-8240	04/12/1996	222
Surr:	Bromofluorobenzene	87.0	20	n/a	S-8240	04/12/1996	222
Surr:	1,2-Dichloroethane-d4	98.6	010	n/a	S-8240	04/12/1996	222

TENR No. - 128053530-

ANALYTICAL REPORT

Ms. Becky Koepke NATURAL RESOURCE TECH, INC 23713 W. Paul Road Pewaukee, WI 53072

്രി

i.

04/26/1996 Job No: 96.02915 Sample No: 178817 Account No: 52450 Page 8

JOB DESCRIPTION: #1150-5.1 WPSC Sheboygan II PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-715 (10)(S) Recv'd On Ice

Date Taken: 04/04/1996

	Parameter	Results	Units	Reporting Limit	Method	Date Analyzed	Prep/Run Batch
Solids,		77.0	% mg/kg	n/a 1,000	S-5030 E-415.1	04/26/1996 04/18/1996	1434 75

NDNR NO. 128053530

ANALYTICAL REPORT

Ms. Becky Koepke NATURAL RESOURCE TECH, INC 23713 W. Paul Road Pewaukee, WI 53072 04/26/1996 Job No: 96.02915 Sample No: 178818 Account No: 52450 Page 9

JOB DESCRIPTION: #1150-5.1 WPSC Sheboygan II PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-716 (2)(S) Recv'd On Ice

Date Taken: 04/04/1996

Date Received: 04/08/1996

.

ſ				Reporting	3	Date	Prep/Run
	Parameter	Results	units	Limit	Method	Analyzed	Batch
Solids	, Total	88.3 <5,000	% mg/kg	n/a 1,000	S-5030 E-415.1	04/26/1996 04/18/1996	1434 75
CLP Z	HE VOLATILE PREP	Complete		_,	S-1311	04/11/1996	123
TCLP-V	OLATILES-8240						
CLP-B	lenzene	<0.020	mg/L	0.020	S-8240	04/12/1996	222
Jurr:	Toluene-d8	92.6	olo	n/a	S-8240	04/12/1996	222
Surr:	Bromofluorobenzene	91.4	010	n/a	S-8240	04/12/1996	222
Surr:	1,2-Dichloroethane-d4	98.0	20	n/a	S-8240	04/12/1996	222

NE	NATIONAL ENVIRONMENTAL TESTING, INC.	CHAIN OF CUSTOD COMPANY NATURAL LES ADDRESS 23713 LUEST PHONE (414) 523- COMP PROJECT NAME/LOCATION WI PROJECT NUMBER (150 - C PROJECT MANAGER KOWATC	NUKCE TECHNOLOGY, PAUL POAD FAX (41/4) 523 DSC- SHEBOYGAN S. [- <u>9001</u> INVOICE TO: 0470 E	- 5.1
SAMPLED BY	J. KUEPLE	buna 1, alele	ANALYSES	To assist us in selecting the proper metho	<u>d</u>
(PRIDT NAME)	SIGNA 			Is this work being conducted for regulatory compliance monitoring? Ye Is this work being conducted for regulatory	s No
		# and Type of Containers		enforcement action? Ye Which regulations apply: RCRA NPDES	s No
DATE TIME	SAMPLE ID/DESCRIPTION	MATRIX GRAB GRAB HCI HCI HOO3 HNO3 OTHER			Drinking Water None
	Se JuinVel			COMMENTS	
04/04/96	56-711(2)(5) 5B-712(8)(5)	5 X 2	× ×		
04/04/96	53-713(8)(5)	5X	× ×		
04/04/96-	5B-714(2)(5)	5 X Z	× ×		
×1/21/26	<u>58-714(8(5)</u>	5 X 1			
54/24/96	<u>58-715(2)(5)</u>	<u> </u>			
40496	5B-715(10)(5)	5 X 1 5 X 2			
64/34/1Ce	5B-716(2)5)	<u>s x</u> Z			
			+ + + + + + + + + + + + + + + + + + +		
CONDITION C	DF SAMPLE: BOTTLES INTACT YES FIELD FILTERED? YES /		SENT AND INTACT? YES / NO OF HEADSPACE? YES / NO	TEMPERATURE UPON RECEIPT: /// Bottles supplied by NET? YES NO	Donice VIII
SAMPLE REM		E REMAINDER TO CLIENT VIA TO DISPOSE OF ALL SAMPLE REMAIND	ERS	DATE	1715
RELAIDUISHED B	(11/ 11/08/90 1545	RECEIVED BY:	BELINQUISHED BY:	DATE TIME RECEIVED FOR NET DY. 4/8-3/6 1700	2 4/9/9/10
	, · · · C		U. U. U		\bigcirc $ $
			DJECT MANAGER - YELLOW PT 3 - CUSTOMER		

DNR No. 128053530

ANALYTICAL AND QUALITY CONTROL REPORT

Ms. Becky Koepke NATURAL RESOURCE TECH, INC 23713 W. Paul Road Pewaukee, WI 53072

04/22/1996

Job No: 96.03078

Enclosed are the Analytical and Quality Control reports for the following samples submitted for analysis:

Sample	Sample Description	Date	Date
Number		Taken	Received
179343	SB-712 (2)(S)	04/04/1996	04/11/1996
179344	SB-713 (2)(S)	04/04/1996	04/11/1996

MASTER FILE COPY	π
MASTER FILE COPY PROJECT #_150 - Sheb	-1
CO:	

The above sample(s) may have a result flag shown on the report. The following are the result flag definitions:

- A = Analyzed/extracted past hold time
- C = Standard outside of control limits
- F = Sample filtered in lab
- H = Late eluting hydrocarbons present
- J = Estimated concentration
- M = Matrix interference
- Q = Result confirmed via re-analysis
- T = Does not match typical pattern
- X = Unidentified compound(s) present

- B = Blank is contaminated
- D = Diluted for analysis
- G = Received past hold time
- I = Improperly handled sample
- L = Common lab solvent and contaminant
- P = Improperly preserved sample
- S = Sediment present
- W = BOD re-set due to missed dilution
- Z = Internal standard outside limits

Brian D. DeJong, Organic Operations Manager Certification No. 128053530

DNR No. 128053530-

ANALYTICAL REPORT

Ms. Becky Koepke NATURAL RESOURCE TECH, INC 23713 W. Paul Road Pewaukee, WI 53072 04/22/1996 Job No: 96.03078 Sample No: 179343 Account No: 52450 Page 2

JOB DESCRIPTION: #1150-5.1 WPSC Sheboygan II PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-712 (2)(S) Recv'd On Ice

Date Taken: 04/04/1996

		Reporting		Date	Prep/Run
Results	Units	Limit	Method	Analyzed	Batch
83.1	00	n/a	S-5030	04/16/1996	1429
Complete			S-1311	04/15/1996	125
<0.020	mg/L	0.020	S-8240	04/18/1996	125 226
93.4	8	n/a	S-8240	04/18/1996	125 226
93.8	8	n/a	S-8240	04/18/1996	125 226
97.2	olo	n/a	S-8240	04/18/1996	125 226
	83.1 Complete <0.020 93.4 93.8	83.1 % Complete <0.020 mg/L 93.4 % 93.8 %	Results Units Limit 83.1 % n/a Complete .020 mg/L 0.020 93.4 % n/a 93.8 % n/a	83.1 % n/a S-5030 Complete S-1311 <0.020	Results Units Limit Method Analyzed 83.1 % n/a S-5030 04/16/1996 Complete S-1311 04/15/1996 <0.020

No. 128053530

ANALYTICAL REPORT

Ms. Becky Koepke NATURAL RESOURCE TECH, INC 23713 W. Paul Road Pewaukee, WI 53072 04/22/1996 Job No: 96.03078 Sample No: 179344 Account No: 52450 Page 3

JOB DESCRIPTION: #1150-5.1 WPSC Sheboygan II PROJECT DESCRIPTION: Soil Analysis SAMPLE DESCRIPTION: SB-713 (2)(S) Recv'd On Ice

Date Taken: 04/04/1996

-

5

٤...

Ŀ

			Reporting	Ŧ	Date	Prep/Run
Parameter	Results	Units	Limit	Method	Analyzed	Batch
Solids, Total	89.0	8	n/a	S-5030	04/16/1996	1429
CLP ZHE VOLATILE PREP	Complete			S-1311	04/15/1996	125
TCLP-VOLATILES-8240						
_TCLP-Benzene	<0.020	mg/L	0.020	S-8240	04/18/1996	125 226
Surr: Toluene-d8	91.0	8	n/a	S-8240	04/18/1996	125 226
Surr: Bromofluorobenzene	91.8	용	n/a	S-8240	04/18/1996	125 226
Surr: 1,2-Dichloroethane-d4	95.6	6	n/a	S-8240	04/18/1996	125 226

	CHAIN OF CUSTODY RECORD COMPANY NATURE ADDRESS 23713 WEST PAUL WAY PHONE (414) 523 9000 FAX (414) 523 - 9001 PROJECT NAME/LOCATION (UPSC - SHEBOYOAN IT PROJECT NAME/LOCATION (UPSC - SHEBOYOAN I	REPORT TO: \underline{M} . \underline{M} \underline{M} \underline{F} \underline{F} \underline{F} INVOICE TO: \underline{J} \underline{J} \underline{J} \underline{F} \underline{F} \underline{F} P.O. NO. \underline{J} \underline{J} \underline{F} \underline{F} \underline{F} NET QUOTE NO. \underline{F}
DATE TIME SAMPLE ID/DESCRIPTION $\frac{34}{34} + \frac{56 - 717}{2} + \frac{2}{5} + \frac{53}{713} + \frac{2}{5} + \frac{5}{713} + \frac{5}{5} + \frac{5}{5} + \frac{5}{713} + \frac{5}{5} + \frac{5}{713} + \frac{5}{5} + \frac$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	enforcement action? Yes No Which regulations apply: RCRA NPDES Wastewater UST Drinking Water Other None COMMENTS
		TEMPERATURE UPON RECEIPT: Con minimum Bottles supplied by NET? YES / NO DATE 0915 TIME RECEIVED FOR NET/BY 26 1740

LAPSE I' II AND OFF-SITE INVESTIGATION

VDDENDIX B

Table 2-1

Phase I Soil Analytical Summary WPSC Sheboygan II - North Water Street

Sampling Location	Sampling Depth (feet)	Benzene μg/kg	Ethyl- benzene μg/kg	Toluene μg/kg	Total Xylene μg/kg	Total BETX μg/kg	Arsenic mg/kg	Nickel mg/kg	Cyanide Amen- able mg/kg	Cyanide Disso- ciable mg/kg	Cyanide Total mg/kg
				Surfa	ice Soil S	amples			1. A.	÷.	
CS-101B	0 - 0.25	<100	<100	<100	<100	0	na	na	<2.5	<2.5	<2.5
CS-101C	0 - 0.25	<100	<100	<100	<100	0	na	na	< 0.25	<0.25	<0.25
CS-101D	0 - 0.25	<100	<100	<100	<100	0	na	na	<2.5	<2.5	<2.5
CS-102B	0 - 0.25	<100	<100	<100	<100	0	na	na	<2.5	<2.5	<2.5
CS-102D	0 - 0.25	<100	<100	<100	<100	0	na	na	<2.5	<2.5	<2.5
CS-103C	0 - 0.25	<100	<100	<100	<100	0	па	na	<2.5	<2.5	<2.5
				Test	Pit Soil S	amples					
TP-101	5	<100	<100	<100	<100	0	3.4	14	<0.80	0.65	0.80
TP-102	5	<100	<100	<100	<100	0	0.9	7	< 0.19	<0.25	0.19
TP-103	7	<100	<100	<100	<100	0	0.9	10	<8.5	1.9	8.5
AP-104	6.5	<100	<100	<100	<100	0	na	na	<2.5	<2.5	<2.5
TP-106	5	300	200	<100	<100	500	na	na	<0.83	0.64	0.83
TP-107	2	900	<100	<100	200	1100	na	na	<2.5	<2.5	<2.5
TP-108	5	<100	<100	<100	<100	0	0.5	10	<2.5	<0.25	<2.5
TP-109	5	5500	2200	4600	5100	17400	0.6	11	<3.0	1.1	3.0
TP-110	1.5	<100	<100	100	300 ·	400	2.8	10	0.17	0.92	9.5
TP-111	5	<100	<100	<100	<100	0	na	na	1.03	<2.5	1.8
TP-112	5	<100	<100	<100	<100	0	na	na	<2.5	<2.5	<2.5
TP-113	5	<100	1600	<100	500	2100	1.1	10	2.5	<0.25	<2.5
TP-114	5	<100	<100	<100	<100	0	na	na	<2.5	<2.5	<2.5
		L	NR 720	Residual	Contamir	nant Leve	ls (RCLs)	· .	·		• • •
Protective of G	roundwater	5.5	2900	1500	4100	ns	0.039	ns	ns	ns	ns

ns: A NR 720 RCL has not been established for this parameter.

na: Analysis was not performed.

1.1.1

È.

ά.

a charles

\$

- Color

Carried Street

-

<100: Less than method detection limit of 100 ug/kg.

Notes: 1. Samples exceeding the NR 720 RCL are shaded

2. See Appendix D of the Phase I report (HSI (1), 1992) for a complete list of analytical parameters.

3. Phase I samples were collected by Simon Hydro-Search

PAGE 1 of 3

Table 2-1 Continued...`hase I Soil Analytical Summary

Contract

Sec. And and

1000

(exercised

Sec. 1

Sector Sector

Change (

Con consideration of the second

Sampling Location	Sampling Depth (feet)	Acenaph- thene (mg/kg)	Acenaph- thylene (mg/kg)	Anthra- cene (mg/kg)	Benzo(a) anthra- cene (mg/kg)	Benzo(a) pyrene (mg/kg)	Benzo(b) fluor- anthene (mg/kg)	Benzo(k) fluor- anthene (mg/kg)	Benzo (g,h,i) perylene (mg/kg)	Chrysene (mg/kg)
				Surface	Soil Sampl	es				
CS-101B	0 - 0.25	<0.02	<0.02	<0.01	<0.012	0.031	0.024	0.057	<0.012	<0.024
CS-101C	0 - 0.25	< 0.02	< 0.02	<0.01	<0.012	<0.003	<0.008	< 0.004	<0.012	< 0.024
CS-101D	0 - 0.25	<0.02	<0.02	<0.01	<0.012	<0.003	<0.008	< 0.004	<0.012	< 0.024
CS-102B	0 - 0.25	< 0.02	<0.02	< 0.01	<0.012	<0.003	<0.008	< 0.004	< 0.012	< 0.024
CS-102D	0 - 0.25	< 0.02	<0.02	< 0.01	<0.012	<0.003	<0.008	< 0.004	<0.012	< 0.024
CS-103C	0 - 0.25	< 0.02	<0.02	<0.01	<0.012	0.013	0.019	0.033	<0.012	< 0.024
			Tes	t Pit Soil S	Samples					
TP-101	5	<2.7	<2.7	<2.7	11	11	8.8	10	7	9.9
TP-102	5	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66
TP-103	7	11	<0.66	1.6	3.8	3.5	3.2	3.4	2.1	3.4
TP-104	6.5	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66
TP-106	5	< 0.66	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66
TP-107	5	<6.6	<6.6	<6.6	13	15 -	13	16	14	13
TP-108	5	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	< 0.66	<0.66	<0.66
	5	<6.6	<6.6	<6.6	13	13	11	15	10	13
TP-110	1.5	<3.3	<3.3	<3.3	13	16	7.3	23	12	14
TP-111	5	<0.66	<0.66	<0.66	< 0.66	<0.66	<0.66	<0.66	<0.66	0.7
TP-112	5	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66
TP-113	5	3.1	<1.32	2.7	1.9	1.5	<1.32	<1.32	<1.32	<1.32
TP-114	5	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66	<0.66

ns: A NR 720 RCL has not been established for this parameter.

na: Analysis was not performed.

<100: Less than method detection limit of 100 ug/kg.

Notes: 1. Samples exceeding the NR 720 RCL are shaded.

2. See Appendix D of the Phase I report (HSI (1), 1992) for a complete list of analytical parameters.

3. Phase I samples were collected by Simon Hydro-Search

PAGE 2 of 3

Table 2-1 Continued...Vhase I Soil Analytical Summary

් උ

Ŀ.

Cont and

and second

1000

1

the second

(states

A STATE

Sampling Location	Sampling Depth (fcet)	Dibenzo (a,h) anthracene (mg/kg)	Fluor- anthene (mg/kg)	Fluorene (mg/kg)	Indeno (1,2,3) pyrene (mg/kg)	Naph- thalene (mg/kg)	Phenan- threne (mg/kg)	Pyrene (mg/kg)	Total PAHs (mg/kg)	Phenol (mg/kg)
			Surfa	ice Soil Sai	mples				_	
CS-101B	0 - 0.25	< 0.002	<0.012	<0.024	<0.008	< 0.01	<0.016	<0.032	0.1	<0.66
CS-101C	0 - 0.25	<0.002	<0.012	< 0.024	<0.008	<0.01	<0.016	<0.032	0	<0.66
CS-101D	0 - 0.25	< 0.002	< 0.012	< 0.024	<0.008	<0.01	< 0.016	< 0.032	0	< 0.66
CS-102B	0 - 0.25	<0.002	< 0.012	<0.024	<0.008	< 0.01	< 0.016	< 0.032	0	<0.66
CS-102D	0 - 0.25	< 0.002	< 0.012	<0.024	<0.008	< 0.01	<0.016	< 0.032	0	<0.66
CS-103C	0 - 0.25	< 0.002	< 0.012	< 0.024	<0.008	< 0.01	<0.016	< 0.032	0.065	<0.66
			Test	Pit Soil Sai	mples					
TP-101	5	3.1	15	<mdl< td=""><td>7</td><td><mdl< td=""><td>4.4</td><td>14</td><td>101.2</td><td>2.7</td></mdl<></td></mdl<>	7	<mdl< td=""><td>4.4</td><td>14</td><td>101.2</td><td>2.7</td></mdl<>	4.4	14	101.2	2.7
TP-102	5	< 0.002	<0.012	<0.024	<0.008	< 0.01	<0.016	< 0.032	0	<0.66
TP-103	7	0.98	6.9	1.2	2.1	<0.01	5.4	6.2	44.9	<0.66
TP-104	6.5	< 0.002	<0.012	< 0.024	<0.008	4.3	<0.016	<0.032	4.3	<0.66
TP-106	5	< 0.002	18	< 0.024	<0.008	< 0.01	18	20	56	13.2
TP-107	5	< 0.002	18	< 0.024	13	<0.01	7.9	6.6	122.9	<6.6
TP-108	5	< 0.002	0.86	< 0.024	<0.008	0.68	2	1	4.5	< 0.66
°P-109	5	<6.6	23	<0.024	9.2	<0.01	. 14	24	145.2	<6.6
TP-110	1.5	4.6	17	<0.024	11	8	5.4	20	151.3	<3.3
TP-111	5	<0.002	0.9	<0.024	<0.008	< 0.01	<0.016	0.94	30.4	<0.66
TP-112	5	< 0.002	<0.012	<0.024	<0.008	<0.01	< 0.016	< 0.032	0	<0.66
TP-113	5	< 0.002	4.3	2.6	<0.008	8.5	10	5.3	39.9	<1.32
TP-114	5	< 0.002	<0.012	< 0.024	<0.008	<0.01	< 0.016	< 0.032	0	<0.66

ns: A NR 720 RCL has not been established for this parameter.

na: Analysis was not performed.

<100: Less than method detection limit of 100 ug/kg.

Notes: 1. Samples exceeding the NR 720 RCL are shaded.

2. See Appendix D of the Phase I report (HSI (1), 1992) for a complete list of analytical parameters.

3. Phase I samples were collected by Simon Hydro-Search

PAGE 3 of 3 W:\PROJECTS\1058\SITE-INV\1060T2-1.WP6 BJK/EPK(11/06/95)

Natural Resource Technology

.

Table 2-2

Phase I Groundwater Analytical Summary WPSC Sheboygan II - North Water Street

Sampling Location and Depth (feet)	Benzene (μg/L)	Ethyl- benzene (μg/L)	Toluene (μg/L)	Total Xylene (μg/L)	Total BETX (μg/L)	Acenaph- thene (μg/L)	Acenaph- thylene (µg/L)	Anthra- cene (μg/L)
TP-101 (10)	<1	<1	<]	<]	· 0	<0.4	<0.5	<0.6
TP-107 (5.5)	1,700	<u>380</u>	<u>170</u>	280	2,530	<200	<250	<20
TP-110 (5.5)	<u>2.6</u>	1.4	2.6	2.9	9.5	<4	<5	<2
	Wisco	nsin Groun	dwater Qua	lity Standa	rds (NR 14	0)		
Preventive Action Limit (PAL)	0.5	140	68.6	124	ns	ns	ns	ns
Enforcement Standard (ES)	5	700	343	620	ns	ns	ns	ns

Sampling Location and Depth (feet)	DRO (mg/L)	Phenols (mg/L)	Cyanide (amenable) (mg/L)	Cyanide (dissociable) (mg/L)	Cyanide (total) (mg/L)	Arsenic (mg/L)	Nickel (mg/L)
TP-101 (10')	na	< 0.010	0.18	0.085	0.37	<u>0.006</u>	<0.1
TP-107 (5.5')	5	0.026	0.048	0.057	0.30	<u>0.005</u>	<0.1
TP-110 (5.5')	na	<0.010	0.028	0.15	0.23	<u>0.019</u>	<0.1
	Wisconsin	Groundwate	er Quality Sta	ndards (NR 14	40)		
Preventive Action Limit (PAL)	ns	1.20	ns	ns	0.04	0.005	ns
Enforcement Standard (ES)	ns	6.00	ns	ns	0.20	0.050	ns

na: Parameter not analyzed for this sample.

لمرد مرجوعها

en united

Contraction of the

Contraction of the

Control of

to oracid

(and the second

and the second

Second and 10.00 A

00000

the second

di araa

and a strength

NR 140 ES or PAL standards have not been established for this parameter. ns:

Notes: 1. Samples exceeding the ES are bolded and shaded. Samples exceeding the PAL are bolded and underlined. 2. Phase I samples were collected by Simon Hydro-Search.

PAGE 1 of 2

Table 2-2 Continued...

Ì.

L

No.

Phase I Groundwater Analytical Summary

Sampling Location and Depth (feet)	Benzo (a) anthracene (μg/L)	Benzo (b) fluoranthene (µg/L)	Benzo (k) fluoranthene (µg/L)	Benzo (a) pyrene (µg/L)	Benzo (ghi) perylene (µg/L)	Chrysene (μg/L)	Dibenzo (a,h) anthracene (µg/L)
TP-101 (10')	<0.3	<0.02	<0.1	<0.08	<3	<0.4	< 0.05
TP-107 (5.5')	<30	<2	<10	<8	<30	<40	<5
TP-110 (5.5')	<3	<0.2	<1	<0.8	<3	<4	<0.5
	Wiscon	sin Groundwa	ter Quality St	andards (N	R 140)		· · · · · · · · · · · · · · · · · · ·
Preventive Action Limit (PAL)	ns	ns	ns	0.02	ns	ns	ns
Enforcement Standards (ES)	ns	ns	ns	0.2	ns	ns	ns

Sampling Location and Depth (feet)	Fluoran- thene (µg/L)	Fluorene (µg/L)	Indeno (1,2,3-cd) pyrene (µg/L)	Naphthalene (µg/L)	Phenan- threne (µg/L)	Pyrene (µg/L)	Total PAH (μg/L)
TP-101 (10')	0.7	<0.6	<0.2	0.3	2	<0.8	3.0
TP-107 (5.5')	<30	<300	<20	780	<40	<80	780
TP-110 (5.5')	<3	<6	<2	<2	<4	<8	0
	Wisco	onsin Groun	dwater Quality Sta	ndards (NR 140)		
Preventive Action Limit (PAL)	ns	80	ns	8	ns	ns	ns
Enforcement Standard (ES)	ns	400	ns	40	ns	ns	ns

na: Parameter not analyzed for this sample.

ns: NR 140 ES or PAL standards have not been established for this parameter.

Notes: 1. Samples exceeding the ES are bolded and shaded. Samples exceeding the PAL are bolded and underlined.

2. Phase I samples were collected by Simon Hydro-Search.

PAGE 2 of 2 W:\PROJECTS\1060\SITE-INV\1060T2-2.WP6 BJK/EPK(09/30/95)

Natural Resource Technology

Table 4-1

Well	TOC ^A Elevation (feet) ^B	Ground Surface Elevation (feet) ^B	Well Depth (feet)	Measurement Date	Depth to Water from TOC ^A (feet)	Groundwater Elevation (feet) ^B
-		Wat	er Table V	Vells	_	
MW-701	588.51	588.97	13.40	08/14/95	5.51	583.00
				09/25/95	5.58	582.93
]				10/20/95	5.63	582.88
MW-702	590.09	590.39	13.40	08/14/95	4.86	585.23
				09/25/95	4.88	585.21
				10/20/95	4.69	585.40
MW-703	588.80	589.16	13.46	08/14/95	5.63	583.17
				09/25/95	5.74	583.06
				10/20/95	5.69	583.11
MW-704	589.05	589.43	13.20	08/14/95	5.93	583.12
				09/25/95	6.00	583.05
				10/20/95	5.96	583.09
MW-705	589.91	590.22	13.45	08/14/95	6.95	582.96
				09/25/95	6.09	583.82
				10/20/95	6.07	583.84
MW-706	591.34	591.51	13.4 ^c	08/14/95	3.5 ^c	587.8 ^c
				09/25/95	3.6 ^c	587.7 ^c
				10/20/95	3.4 ^c	587.9 ^c
MW-707	590.08	590.29	13.35	08/14/95	7.48	582.60
				09/25/95	7.67	582.41
				10/20/95	7.71	582.37
the grad		<u> </u>	Piezometer	5		• • {* ;
PZ-701	588.89	589.28	33.80	08/14/95	13.27	575.62
				09/25/95	16.26	572.63
				10/20/95	15.15	573.74
		<u> </u>	Staff Gauge	<u>, </u>		<u>·</u>
SG-701	582.02	na	na	08/15/95	2.00	580.02
				09/25/95	2.49	579.53
				10/20/95	2.33	579.69

Monitoring Well Construction and Water Level Elevation Data WPSC Sheboygan II - North Water Street

A: TOC - Top of Well Casing.

B: Elevations relative to National Vertical Geodetic Datum (mean sea level).

C: Monitoring well MW-706 contains coal tar. Due to the difficulty with field decontamination for coal tar, depth to water is measured with a tape measure and not a water level indicator. Therefore, the water level is estimated to the 10th of an inch.

PAGE 1 of 1 W\PROJECTS\1060\SITE-INV\1060T4-1 WP6 BJK/EPK(11/17/95)

Natural Resource Technology

Table 4-2

5.0

Hydaulic Conductivity (K) and Grain Size Analysis Results WPSC Sheboygan II - North Water Street

	Sampling Depth	Gen	eral Grai	n Size Ra	ange	к	ĸ	K Rauges A	
Well	(feet)	Gravel	Sand	Fines	Clay	(ft/min)	(cm/sec)	(cm/sec)	
MW-701	6-10	6.6%	61.0%	25.0%	7.4%	6.2e-05 ⁻ L	3.2e-05	Clean Sand:	3E-04 to 1
MW-702	7-11	33.7%	56.0%	10.	3%	4.5e-05 L	2.3e-05	Silty Sand: Silt, Loess:	8E-06 to 9E-02 10E-7 to 3E-03
MW-703	8-10	2.3%	36.4%	49.1%	12.2%	2.5e-04 H	1.3e-04	Glacial Till: Unweathered Clay:	8E-11 to 2E-04 5E-11 to 2E-07
MW-704	6-10	36.3%	53.6%	10.	1%	No R	esults	Limestone/Dolomite:	7E-08 to 3E-04
MW-705	4-6	17.7%	57.1%	25.	2%	2.5e-05 L	1.2e-05	Karst Limestone: Fractured Rock:	9E-05 to 1 6E-07 to 2E-02
MW-706	6-10	1.9%	60.3%	29.9%	7.9%	No R	Results		
MW-707	2-6	3.7%	23.9%	50.4%	22.0%	1.0e-04 H	5.1e-05	^A Values from "GROUND Freeze and Cherry 107	
PZ-701	29-33	0.0%	12.3%	32.7%	55.0%	No R	Results	Freeze and Cherry, 197	γ, μ. 2γ

PAGE 1 of 1 W.\PROJECTS\1060\SITE-IN\1060T4-2 WP6 BJK/MIB/EPK(11/08/95)

.

Table 4-3

Phase II Soil Analytical Summary WPSC Sheboygan II - North Water Street

Sample Location (Depth - feet)	Benzene (µg/kg)	Toluene (μg/kg)	Ethyl- benzene (µg/kg)	Xylene total (µg/kg)	Total BETX (µg/kg)	Phenol (mg/kg)							
Monitoring Well Samples													
MW-701(4'-6')	<16	<16	310	160	470	1.9							
MW-702 (2'-4')	<16	<16	50	160	210	1.2							
MW-703 (4'-6')	13	6.1	<5.0	6.9	26	0.97							
MW-704 (2'-4')	<5.0	<5.0	<5.0	<15	0	0.55							
MW-705 (2'-4')	<5.0	<5.0	<5.0	<15	0	0.76							
MW-706 (2'-4')	<5.0	<5.0	<5.0	<15	0	0.68							
MW-707 (2'-4')	<5.0	<5.0	<5.0	<15	0	83							
Soil Boring Samples													
SB-701 (2'-4')	<5.0	<5.0	<5.0	<15	0	0.63							
NR 720 Residual Contaminant Levels (RCLs)													
Protective of Groundwater	5.5	2900	1500	4100	ns	ns							

Sample Location (Depth - feet)	Anthracene (mg/kg)	Benzo (a) anthracene (mg/kg)	Benzo (b) fluoranthene (mg/kg)	Benzo (k) fluoranthene (mg/kg)	Benzo (a) pyrene (mg/kg)	Benzo (ghi) perylene (mg/kg)	Chrysene (mg/kg)
		Mor	itoring Well Sa	mples			. • •
MW-701 (2'-4)	15	2.3	0.95	0.88	1.7	2.9	1.6
MW-702 (2'-4')	0.21	1.1	0.66	0.53	1.2	1.2	0.74
MW-703 (2'-4')	1.3	3.8	2.3	0.077	3.8	5.1	2.8
MW-704 (4'-6')	0.015	0.015	0.004	0.0036	<0.008	< 0.004	0.0078
MW-705 (2'-4')	0.5	1.7	1.0	0.88	1.7	2.1	1.3
MW-706 (2'-4')	< 0.008	<0.002	< 0.002	< 0.002	<0.008	< 0.004	< 0.004
MW-707 (4'-6')	0.068	0.33	0.18	0.16	0.43	0.48	0.23
		S	oil Boring Samp	les .			÷.,'
SB-701 (2'-4')	0.23	0.91	0.49	0.38	0.74	0.89	0.68

ns: A NR 720 RCL has not been established for this parameter.

<5.0: Less than method detection limitof 5.0.

1

Ŀ

Statute 1

E

Notes: 1. Samples exceeding the NR 720 RCL are shaded.

2. A parameter is listed if detected in at least one sample. See Appendix B for a complete list of analytical parameters.

PAGE 1 of 2

RT

Table 4-3 Continued... 'hase II Soil Analytical Summary

5

and a

ł.

Sample Location (Depth - feet)	Dibenzo (a,h) anthracene (mg/kg)	Fluor- anthene (mg/kg)	Fluorene (mg/kg)	Indeno (1,2,3-cd) pyrene (mg/kg)	Naph- thalene (mg/kg)	Phenan- threne (mg/kg)	Pyrene (mg/kg)	Total PAHs (mg/kg)
		Mo	onitoring We	l Samples				
MW-701 (2'-4)	0.18	17	13	1.3	77	53	10	196.8
MW-702 (2'-4')	0.15	2.1	0.11	0.75	<0.04	0.48	1.1	10.3
MW-703 (4'-6')	0.64	12.0	0.95	3.1	3.0	5.6	7.3	51.8
MW-704 (2'-4')	<0.004	0.04	0.028	< 0.004	<0.04	0.091	0.021	0.2
MW-705 (2'-4')	0.27	4.4	0.36	1.1	<0.04	1.7	1.8	18.9
MW-706 (2'-4')	< 0.004	<0.008	<0.016	< 0.004	<0.04	<0.016	<0.008	0
MW-707 (2'-4')	0.063	0.64	0.065	0.33	<0.04	0.21	0.75	3.9
			Soil Boring S	amples		<u> </u>		
SB-701 (2'-4')	0.093	2.5	0.17	0.5	< 0.04	1.0	0.81	9.4

ns: A NR 720 RCL has not been established for this parameter.

5.0: Less than method detection limit of 5.0.

Notes: 1. Samples exceeding the NR 720 RCL are shaded.

2. A parameter is listed if detected in at least one sample. See Appendix B for a complete list of analytical parameters.

PAGE 2 of 2 W \PROJECTS\1060\SITE-IN\\1060T4-3 WP6 MMB/BJK/EPK(10/15/95)

Natural Resource Technology

Table 4-4

Phase II Groundwater Analytical Summary WPSC Sheboygan II - North Water Street

Sampling Location	Sampling Date	Benzene (µg/L)	Ethyl- benzene (μg/L)	Toluene (μg/L)	Total Xylene (μg/L)	Total BETX (μg/L)	Acenaph- thene (µg/L)	Acenaph- thylene (µg/L)	Anthra- cene (µg/L)
	·		Water Tal	ble Monitor	ing Well Sa	mples	-		
MW-701	08/15/95	10,000	880	<u>96</u>	820	11,796	800	<2.0	23
	09/25/95	12,000	780	53	680	13,513	680	1,100	17
MW-702	08/15/95	5,900	1,500	2,300	1,600	11,300	390	<2.0	19
	09/25/95	6,100	1,400	2,100	1,400	11,000	400	1,400	17
MW-703	08/15/95	1,300	980	29	<u>430</u>	2,739	180	<2.0	17
	09/25/95	1,300	1,100	23	<u>450</u>	2,873	220	430	14
MW-704	08/15/95	340	<u>280</u>	<u>200</u>	<u>430</u>	1,250	770	<2.0	44
	09/25/95	1,100	<u>670</u>	<u>380</u>	970	3,120	440	1,400	20
MW-705	08/15/95	<1.0	<1.0	<].0	<3.0	0	<1.0	<2.0	<0.20
	09/25/95	<0.50	<1.0	<1.0	<3.0	0	<1.0	<2.0	<0.20
MW-706	08/15/95	34,000	<u>560</u>	13,000	7,900	55,460	197,000	1,480,000	177,000
	09/25/95	31,000	<2,500	12,000	7,700	50,700	9,400	82,000	15,000
MW-707	08/15/95	1,500	3,600	<u>190</u>	1,400	6,690	430	<2.0	12
	09/25/95	1,200	3,500	<u>130</u>	1,200	6,030	240	1,400	10
· ·	1	<u> </u>	F	Piezometer S	Samples				1
PZ-701	08/17/95	5.0	3.6	6.3	11	25.9	<1.0	<2.0	1.5
	09/26/95	<u>2.2</u>	1.7	6.6	6.8	17.3	<1.0	<2.0	0.25
		Q	uality Conti	rol / Quality	Assurance	-			1
MW-799	08/15/95	310	<u>280</u>	<u>190</u>	<u>440</u>	1,220	660	<2.0	44
(MW-704 dup.)	09/25/95	1,100	<u>610</u>	360	900	2,970	420	1,100	64
Trip Blank	08/15/95	<1.0	<1.0	<1.0	<3.0	0	na	na	na
	09/25/95	<0.50	<1.0	<1.0	<3.0	0	na	na	na
				Quality Sta		k 140.10 an	d 140.12)		1
Preventive Action		0.5	140	68.6	124	ns	ns	ns	ns
Enforcement Star	idard (ES)	5	700	343	620	ns	ns	ns	ns

na: Parameter not analyzed for this sample.

ns: NR 140 ES or PAL standards have not been established for this parameter.

<1.0: Less than method detection limit of 1.0.

Note: 1. Samples exceeding the ES are bolded and shaded. Samples exceeding the PAL are bolded and underlined.

2. A parameter is listed if detected in at least one sample. See Appendix D for a complete list of analytical parameters.

.

PAGE 1 of 4

Natural Resource Technology

siouun _S	lasityinnk.	лэрвмрипол	П	əsvijə
		трәпиниоэ	t-t	əldnT

	30/30/00						1 1	
Trip Blank	\$6/\$1/80	pn –	eu	eu	eu	eu	вп	eu
(.dnp +07-WM)	\$6/\$7/60	97	14	۶I	88	١٤	18	2.2
662-MW	\$6/\$I/80	52	۲.8	£".7	12	91	61	01.0>
		uD	ality Assurance	: / Quality Cor	itrol Sampi	Sə		
	\$6/97/60	6.13	0\$0.0>	<0.050.0>	<0.20	<01.0>	61.0	01.0>
102-Zd	S6/L1/80	68.0	12.0	81.0	0.43	0.24	19'0	01.0>
	• * *		ozsiq	meter Samples	. :			·
	\$6/\$Z/60	0*0	6.23	61.0	99*0	£8.0	4 9.0	07'0
202-WM	\$6/\$I/80	5.2	85.0	22.0	971	£.1	٤.1	\$2.0
	\$6/\$7/60	000'11	5,400	086	002'9	006'⊅	2,400	m 01>
902-MW	\$6/\$1/80	156,000	000'I E	000 [°] 67	000°E8	000'79	85,000	13,000
	\$6/\$7/60	0\$0.0>	020.0>	<0.050.0>	<0.20	<0.10	<0.10	01.0>
507-WM	S6/S1/80	0\$0.0>	<0.050	<0.050	<0.20	01.0>	01.0>	<01.0>
	\$6/\$ <u>7</u> /60	0.2	2.7	5.3	1.5	<0.10	٤.٤	01.0>
\$07-WM	S6/S1/80	56	6.8	6°.L	ZZ	LΙ	61	<01.0>
	S6/SZ/60	1.2	\$0.0	0.12	LE*0	0.34	12.0	0.23
E07-WM	S6/S[/80	1.4	0.10	91.0	97'0	0.24	SS.0	L1.0
	\$6/\$ 7 /60	Ζ.ε	99.0	57.0	8-1	9.1	6.1	82.0
202-MM	S6/S1/80	6.2	25.0	87`0	1.4	£6 [°] 0	2.I	6.23
	S6/SZ/60	5.0	0.24	05.0	0.1	<i>L</i> 9 [.] 0	0.1	04.0
102-WM	S6/S1/80	3.4	09'0	t2.0	8.1	1.2	<i>L</i> 'T	S <u>2</u> .0
		ιι	V ster Table N	9W gnirotinol	ll Samples			
Sampling Location	Sampling Date	anthracene (µg/L)	fluoranthene fluoranthene	fluoranthene (µg/L)	(µg/L) pyrene	perylene perylene	(kg/L) Chrysene	anthracene (µg/L)

(א) ozusa

(q) ozuəg

(b) oznsd

Parameter not analyzed for this sample. u9:

NR 140 ES or PAL standards have not been established for this parameter. :su

su

su

eu

su

su

eu

<1.0: Less than method detection limit of 1.0.

\$6/\$7/60

Enforcement Standards (ES)

Preventive Action Limit (PAL)

. 1

<u></u>

:]

2. A parameter is listed if detected in at least one sample. See Appendix D for a complete list of analyticalparameters. Note: 1. Samples exceeding the ES are bolded and shaded. Samples exceeding the PAL are bolded and underlined.

su

su

вn

Wisconsin Groundwater Quality Standards (NR 140.10 and 140.12)

2.0

20.02

eu

PAGE 2 of 4

su

su

вn

(d,s) oznodi**U**

su

su

eu

su

su

eu

Benzo (a) Benzo (ghi)

Plase II Groundwater Analytical Summary ...b9le 4-4 continued...

2.229,2	83	310	001*£	50	021	510	\$6/\$7/60	(.qub 407-VVV)
2.210,2	55	520	009 ° C	2.6	061	140	\$6/\$I/80	662 -MW
		_	rol Samples	ance / Quality Cont	ruseA yilau	δ		
2.78	<i>LL</i> [.] 0	08.0	0.1>	<0.10	<0.40	02.0	\$6/97/60	
90.71	1.2	9.9	0.1>	<01.0>	0.1	5.5	\$6/L1/80	102-Zd
				esometer Samples	đ			
ء'220.5	4.8	09	3,400	\$5.0	Ī8	12	56/52/60	
3,742.29	21	09	3,100	0.74	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	LT	<u>\$6/\$1/80</u>	LOL-WM
432'280	002`6	000'95	000'991	2'200	000*LS	8'400	\$6/\$2/60	
000'£66'\$	142,000	000'0EL	000'006'1	000'ZE	000'0#9	000'997	<u>\$6/\$1/80</u>	902-MW
0	<0.20	<0.40	0.1>	<0.10	<0.40	02.0>	\$6/\$7/60	
0	<0.20	<0.40	0.1>	01.0>	<0.40	<0.20	S6/SI/80	502-MW
9.295,8	٤I	120	4'200	<0.10	<u>150</u>	98	S6/S2/60	
8 [.] 0£ <i>L</i> '9	95	520	00Z*S	01	081	120	S6/S1/80	#02-WM
16.502,5	6.8	85	00 <i>L</i> *Z	61.0	24	61	\$6/\$7/60	
2,781.44	5.2	74	5,400	91.0	02	58	\$6/\$1/80	£07-WM
£4.502,8	٤I	06	e*400	92.0	140	32	\$6/\$2/60	
15.950,8	32	96	005*2	\$\$.0	051	41	S6/S1/80	202-MW
۶٬823.97	11	18	008'£	95.0	001	62	\$6/\$2/60	
1,352.25	50	001	022	92.0	130	67	\$6/\$1/80	102-WM
(J\zu)	(ๅ/ช <u>ี</u> ฑ)	(J/gµ)	(ๅ/อี <i>ท</i>)	(l/gu)	(ๅ/ฮิ <i>ท</i>)	(Π/\overline{a}_{1})	Date	Location
lstoT 2HAA	Ругепе	threne Phenan-	90918111908N	onsbní lndeno pyrene	Fluorene	fluoran- fluoran-		gnilqmsZ
		<u> </u>		<u>-</u>		- .		

Parameter not analyzed for this sample. :eu

NR 140 ES or PAL standards have not been established for this parameter. :su

400

08

вn

вn

su

su

eu

eu

<1.0: Less than method detection limit of 1.0.

\$6/\$7/60

\$6/\$1/80

Enforcement Standard (ES)

Ansl& qirT

1

: 1 2

Preventive Action Limit (PAL)

2. A parameter is listed if detected in at least one sample. See Appendix D for a complete list of analytical parameters. Note: 1. Samples exceeding the ES are bolded and shaded. Samples exceeding the PAL are bolded and underlined.

su

su

Wisconsin Groundwater Quality Standards (NR 140.10 and 140.12)

eu

eu

Technology Resource Natural

PAGE 3 of 4

su

su

eu

eu

su

su

eu

eu

su

su

ъa

вn

0\$

8

вn

eu

մորապոշ հոնիչուհ հոնին	nuord II seall
···pənu	Table 4-4 conti

obingvO	əbinryƏ	Date	gnilqmsZ	_
				•
	in.	אויכמן צמוווויי	виу тэтемрано	ID II OSDA

na	eu	eu	2u Ba	eu	eu	\$6/\$Z/60	
eu	eu	eu	eu	eu	eu	\$6/\$1/80	Trip Blank
eu	eu	eu	96-0	0.41	020.0	\$6/\$7/60	('dnp \$02-MN)
<0.0015	67.0	0£00:0>	62:0	220.0	61.0	£6/£1/80	662-MW
			səlqms	ality Control S	surance / Qus	ea viilend	
eu	БП	рц	¢10.0	<0.0050	¢10.0	\$6/97/60	
<u>£000.0</u>	٤90'0	<0:0030	0.020	0\$00.0>	020.0	\$6/L[/80	107-29
		•		səlqma2	Piezometer		
eu	eu	eu	0'44	820.0	<0.0050	56/52/60	
<0.0015	12.0	<0.003	86.0	0.042	12.0	\$6/\$1/80	202-MW
eu	eu	en	<0500.0>	0\$00.0>	0\$00.0>	\$6/\$7/60	
<0°00.05	91.0	0£00.0>	<0.00500	0500.0>	0\$00.0>	\$6/\$1/80	902-MW
eu	en	en	0\$00.0>	<0.0050	<0.0050	\$6/\$7/60	
\$100.0>	11.0	6£00.0	0200.0>	<0.0050	<0.00500	\$6/\$1/80	507-WM
eu	eu	eu	87-0	790.0	0\$00.0>	\$6/\$7/60	
\$100 [.] 0>	15.0	0£00.0>	IE.0	950.0	0\$00.0>	\$6/\$I/80	\$07-WM
eu	eu	eu	0.14	820.0	0200.0>	\$6/\$7/60	
\$100 [.] 0>	61.0	0£00.0>	0.12	6£0.0	<0.00500	S6/S1/80	E07-WM
eu	eu	eu	<u>770.0</u>	0.032	0200.0>	\$6/\$7/60	
<u><0.0015</u>	s2.0	<u>7900.0</u>	02.0	0.043	<0.00500	\$6/\$1/80	202-MW
eu	eu	eu	<u>880.0</u>	020.0	<0.00500	\$6/\$7/60	
<0.0015	0.44	0£00:0>	0.11	9 [.] 055	0\$00.0>	\$6/\$1/80	107-WM
		L	səld	ms2 ll9W gni1	toinoM sldsT	Water	<u>.</u>
Lead (mg/L)	Barium (mg/L)	Arsenic (U\ <u>m</u>)	(letot) (J\2m)	(əldsisossib) (Alquingular)	(amenable) (mg/L)		Location

Parameter not analyzed for this sample.

Enforcement Standard (ES)

Preventive Action Limit

NR 140 ES or PAL standards have not been established for this parameter.

su

su

Wisconsin Groundwater Quality Standards (NR 140.10 and 140.12)

<1.0.: Less than method detection limit of 1.0.

ា

kan tang

لاستنابطهما

Gran

12-21-1-1-M

3

in the second second

:su

:eu

Note: I. Samples exceeding the ES are bolded and shaded. Samples exceeding the PAL are bolded and underlined. 2. A parameter is listed if detected in at least one sample. See Appendix D for a complete list of analytical parameters.

su

su

2.0

†0.0

Syanide

PAGE 4 of 4 W /PROJECTS/1060/21TE-LWV/106074-LWP6 BJK/MMB(09730795)

210.0

2100.0

7

p.0

S0.0

200.0

Table 1 - Soil Analytical Results - Lead, Cyanide, Phenol. BTEX, and PAHs Site Evaluation of Potential Manufactured Gas Plant (MGP) Impacted Soil, Vacant City of Sheboygan Property (Center Avenue Right-of-Way)

əti Wisconsin Public Service Corporation

lanufactured Gas Plant Sit	Sheboygan II Former ?
----------------------------	-----------------------

BJK																			_											
əu	000'19	əu	002'8	อน	əu	021	000'78	000,28	21	000'21	002'1	ວu	021	21	0/1	000'019	ວບ	120,000	əu	000'01	45,000	000,82	2,100	120,000	່ວບ	4'100	400		uction Worker S	
əu	30,000	06E	011	40,000	000'02	6°£	40 ,000	40,000	65.0	06E	65	65	6.5	65.0	6°£	300'000	09E	000'09	ວແ	əu	əu	ວບ	эu	ວບ) əu	ວນ	200		nternaria and a state of the second sec	
əu	00\$	81	50	009	1,100	880.0	009	009	8800.0	8.8	88.0	8.1	880.0	8800.0	880.0	2 '000	81	006	əu	au au	ວແ	əu	əu	ne	əu	ວບ	05	dustrial RCL	ni-noN-yewdreg	
əu	002'8	8.1	<u>t</u> .0	50	57	089	001	005	38	2£	028	008'9	095	81	21	<u>3</u> ,000	L.0	88	ວບ	¢'100	005'1	<u>5</u> '000	5.2	əu	əu	əu	əu	h	ATD WAY RCL	Groundwater P
					(0:0-						8.6	7 .0					- (0:0>		pu	52>	52>	52>		60L	6.1	- 77	085	86/6Z/L0		902-91
1.461	IZ	LT	* I'I	82.>	\$9.0>	9.7	2.2	62	9.£	13		2.8	п		13	7.4	<i>L</i> 9 [.] 0>	2.5	•	í									_	
9°206	57	14	61	* E.E	T.2>	LL	5.5>	77	ZE	1 4 0	021	LS	061	43	001	5.2	01	4.∽	415	* 79	* 68	\$2>	011	011,2	092	00£'Z	086	86/6Z/L0	5	207-9T
ZE6.9	<i>L</i> 9'0	61.0	+ ZSO '0	S0.0	910'0>	19'0	<0.015	9'0	62.0	<i>L</i> 9'0	65.0	8.0	19.0	I	99 '0	+ <i>L</i> †0'0	£60.0	\$10 [.] 0>	pu	52>	52>	52>	52>	75>	* 15.0	9.2	02	86/67/20	8-2	
621.1	0.14	690.0	710.0>	* \$10.0	\$10.0>	£80.0	¢10.0>	61.0	* 140.0	11.0	†60.0	21.0	860.0	61.0	1.0	\$10.0>	910'0>	\$10.0 >	6E	6£	52>	52>	52>	¥ 85	99*0	2.1	* 2.8	86/6Z/L0	3-4	407-9T
pu	910.0>	£10.0>	210.0>	† 10:0>	910.0>	L10.0>	\$10 [.] 0>	\$10.0>	210.0>	910.0>	910.0>	LI0.0>	910.0>	¢10.0>	910.0>	≤10.0>	910.0>	¢10.0>	рц	52>	52>	52>	52>	+ ZOI	81.0>	* † *0	9.6>	86/6Z/L0	01-6	
\$9.28	1.8	2°5	14.0	2.0	091 >	£	I	п	1.4	9.8	6.2	8.2	8'9	1.2	Z .9	6°I	\$ 8.0	Z. 0	pu	52>	\$2>	52>	52>	LSS	£8.0	53	092	86/67/20	9-1-	T.b-703
671.7	84.0	84.0	120.0	+ ZZ0'0	LI0.0>	S. 0	0'0 1 3 +	1.1	22.0	65.0	95'0	22.0	17.0	17.0	\$9.0	21.0	£70.0	\$10.0>	ри	52>	52>	52>	52>	+ †II .	<0.20	58.0	21	86/6Z/L0	01-2	
† E9	12	140	13	S'L	5.4	81	12	011	01	6£	82	81	LΖ	98	40	0.62	4.2>	22	pu	52>	52>	52>	52>	0/2,2	81.0>	8.5	011	86/67/20	L-7	207-9T
089.4	15.0	91.0	+ 750.0	SI0.0>	910.0>	16.0	\$10:0>	<i>L</i> 9'0	91.0	94.0	SE.0	6.0	LS:0	95.0	15.0	0.046	0.04	\$10.0>	ZL	ZL	52>	57>	52>	145 ¥	61.0>	89.0	1	86/67/20	6-8	
52.162	02	Π	£.4	÷ 4°1	+ 056'0	53	¥Ι	53	п	34	9E	81	95	61	SZ	0.6	£.4	0 <i>LL</i> `>	8£2	007	0/Z	88	0£2	667	2T	82	0 1 5	86/67/20	8-2	107-9T
68.67	п	1.7	Z9' 0	95.0	6£.0	2.5	89'0	14	6 . I	2.8	1.7	8.2	£"L	5.4	T .7	1.4	4. I	† \$'0	96	96	52>	52>	52>	345	2.5	¥ 4I	410	86/67/20	S.0	104-SS
I.784	60	L t	01	C.4	ç	57	٤.1>	7 L	13	85	ZE	\$7	95	/1	64	8.£	71	t,!>	08E	011	140	5 2>	130	085,2	917	68	OSE	86/6Z/L0	z	107-AH
			•••				0.02																					86/62/20	5.01-01	+12-8S
1.1021	0/1	310	0/1	140	051	UE	85>	052	* \$I	£6	67	٣C	28	* S.I	92	9>	*0	9.8>	0#6	<310	+ 044	<310	+ 00S	0£1,5	Z‡	071	400			
45.46	9	5'9	+ 09£'0	+ 012.0	+ 091°0	2.1	72.0	£.7	89'0	9.6	2.3	2.1	2.5	2.5	2.5	1.1	81.0	9'0	pu	\$2>	52>	52>	52>	230	+ 055.0	9.9	061	86/67/20	S.11-11	£17-88
10.25	1.4	<i>L</i> 'S	+ 012.0	+ 06 7 .0	+ 091.0	1.2	†9 .0	9.2	SS.0	2.2	5.1	2.1	5.3	2.2	4.2	66.0	0£1 >	<i>LL</i> ` 0	рц	\$Z>	52>	52>	52>	# 86	91.0>	7.5	082	86/67/20	2.61-61	712-8S
815.4	£7.0	67.0	720.0>	+ †90'0	220.0>	67.0	840.0>	¢7.0	\$\$0.0>	65.0	7 .0	46.0	95.0	75.0	85.0	* \$60.0	<0`023	9#0.0>	рц	52>	52>	\$2>	52>	092	81.0>	81.0>	011	86/6Z/L0	S.11-11	112-8S
										<u> </u>								~~~~				-								<u></u>
l fots	אין	Phe	Vap	ž	Ϋ́.	nde	The	Tuo	Dip	, E	Ben	Ben	Ben	Ben	Ben	Ant	Ace	Ace	Fota	l fot	Folu	ŝthj	Ben	Total Re Phenolic	Weak an Cyanide	「ota	Jeao	a m	Sam grou	am
E P	ene	nan	Ē.	eth	eth	ino	ren	rar	Suz	ysei	20 (Z0 (Z0 (Z0 (Z0 (bra	nap	nap	ıl B	Ì	iene	lbe	zen		nid	10		Plir	nd	plin
АН		Ē.	ale	yln	yln	£	le	Ē	о (а	ne	S.	ц.8	9	(a)	(a)	cen	Ě	hth	ET	yle		inze	e	C C	° a	yar		181	sur 181	ıg I
5		CII (ne	aph	aph	2,3		ine	Ē		Tuo	j.	fluc	руг	ant	ē	ıyle	lene	×	e		ene		Ver	Dis	ide		Dat	Depth 1rface)	00
				tha	th	É.					ran	Der .	rar	ene	hra		ne	()		ļ				20	soc				e #	atio
				ilen	ılen	ру			ora		Ē	yler	Ĩ		cen					ļ				6	ia b				fee	ā
				ē	ē	ren			nth		me	Ie	ene		ò										- F				ťb	
						e			ene																			1	low	
						(8)	ີ ສີພ) ຣຸນ(ງອງ)	T DROCH	1 JI I WWW	UCLEAR AI	LULIN										83/81			23y/2m		និង/ភ័យ		1	-	
						(20)	7 3140/00				uuu 10a														1					

CPR4 By: GMP. By: BIK

_ -

5. RCLs for polynuclear aromatic hydrocarbon compounds reflect interim standards proposed in the WDNR publication RR-519-97, dated April, 1997.

Notes:

2. < - Indicates parameter was not detected above the indicated detection limit. 1. * - Indicates parameter was detected above the limit of detection (LOD) but below the limit of quantitation (LOQ).

Bold numbers indicate detected concentrations.

ne - Indicates "not established".

TACO - Illinois Tiered Approach to Cleanup Objectives.
 SRO - Soil remediation objectives for inhalation (BTEX) and ingestion (lead, cyanide, phenolics, PAHs)

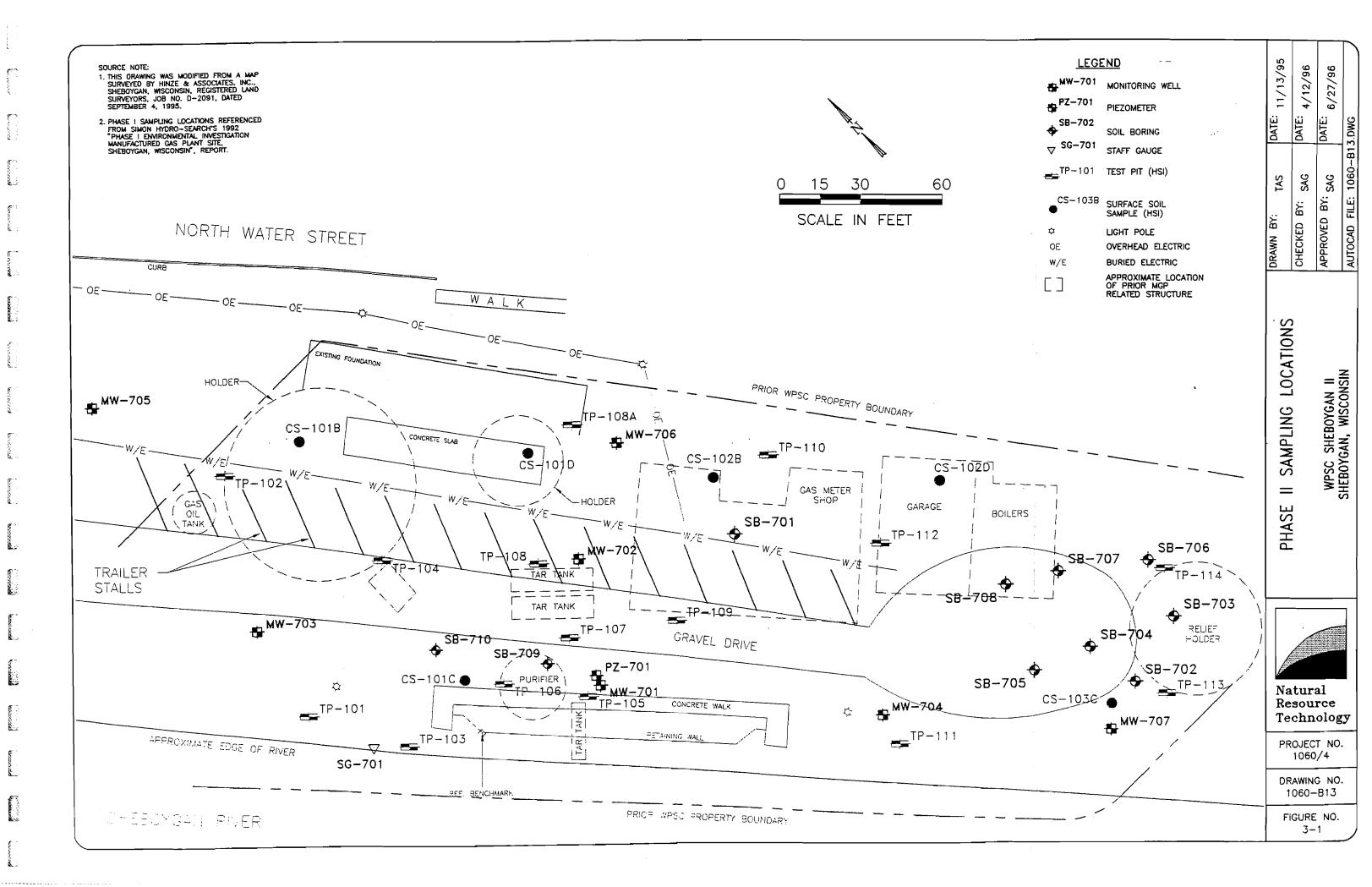
8. TACO cyanide SRO shown is for amenable species.

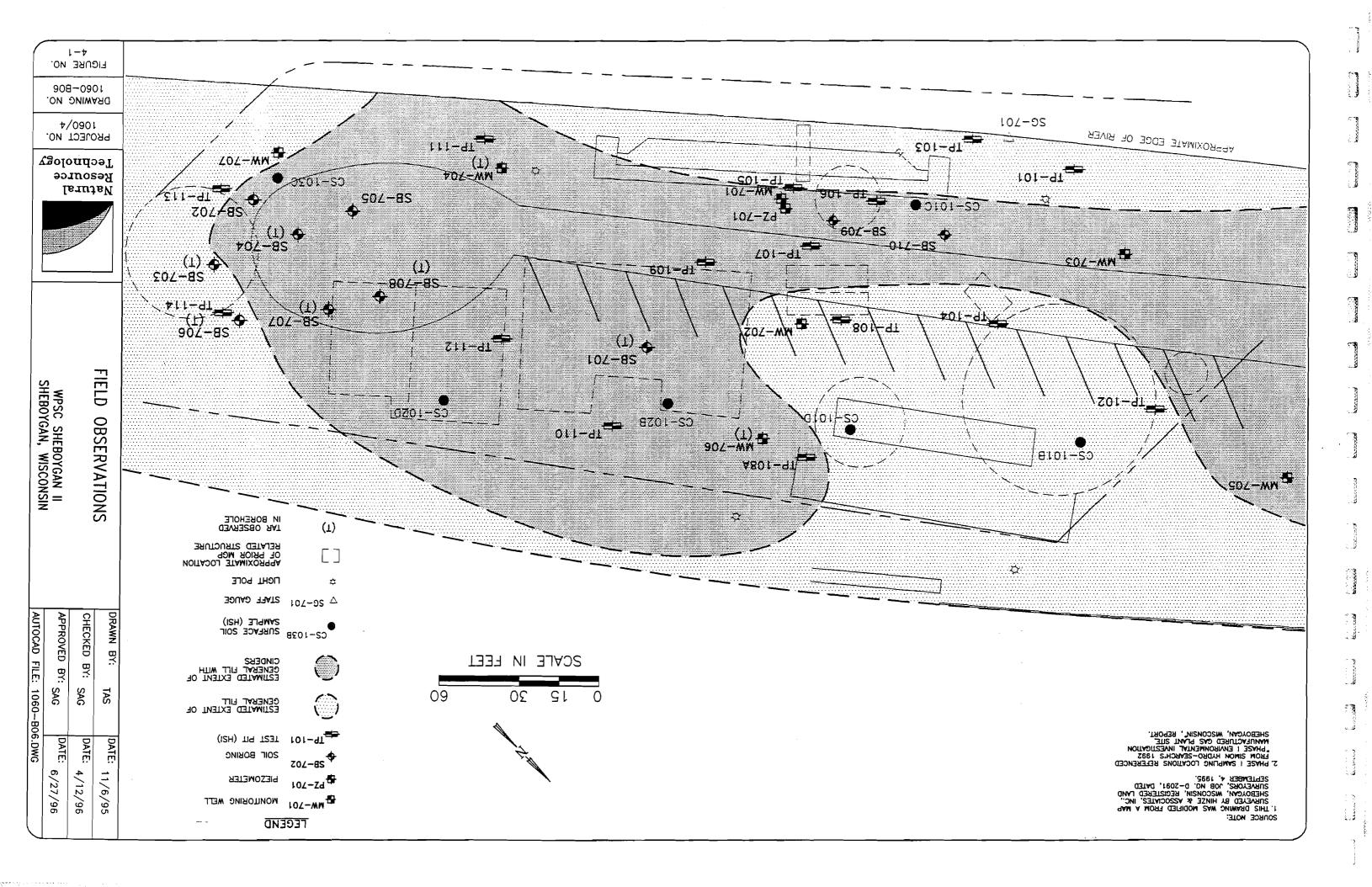
nd - not detected.

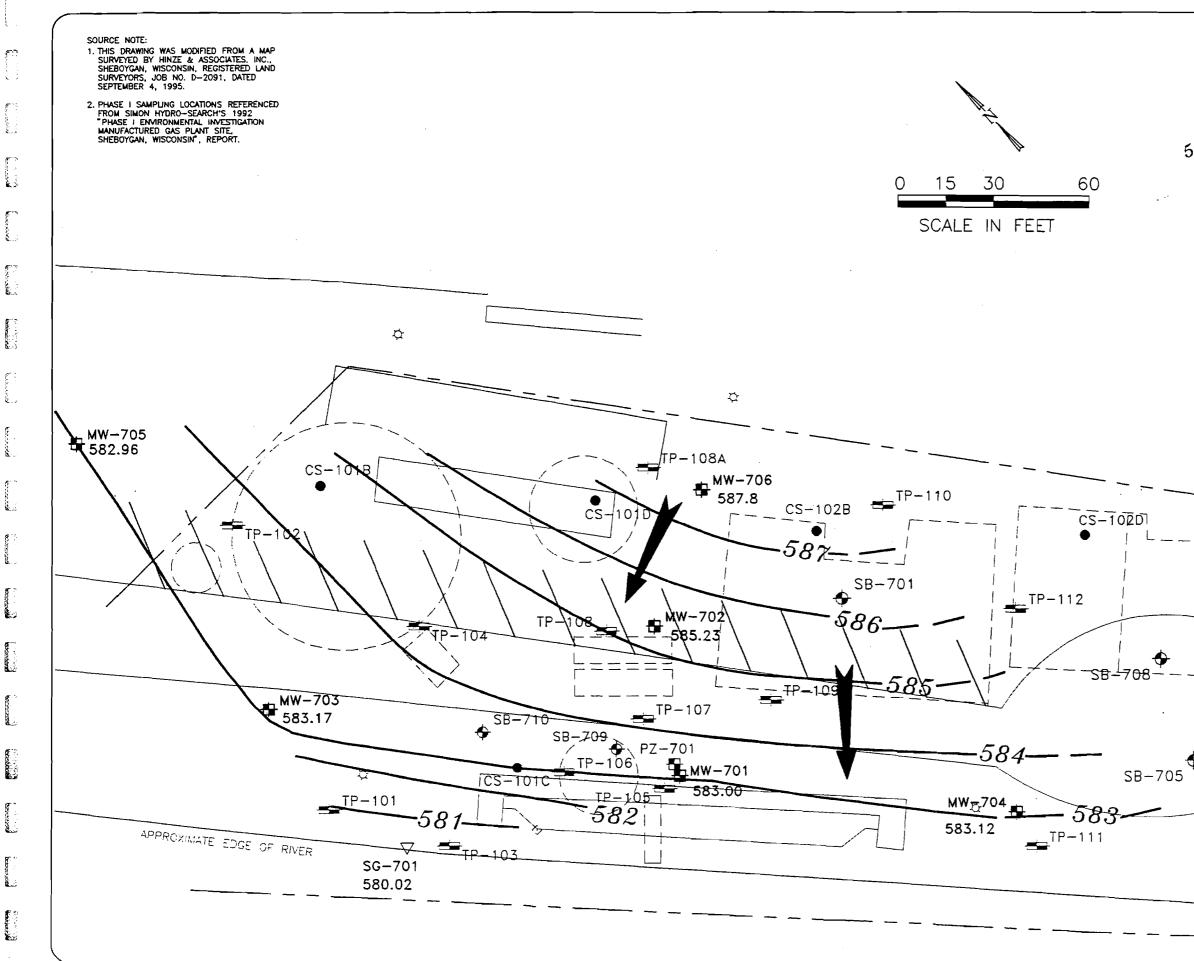
Data Summery edited

ିନ୍

. .


.


Notice Const


3.3

8

1.3

۶C

6 È.,

r >

2

6

F

ě.,

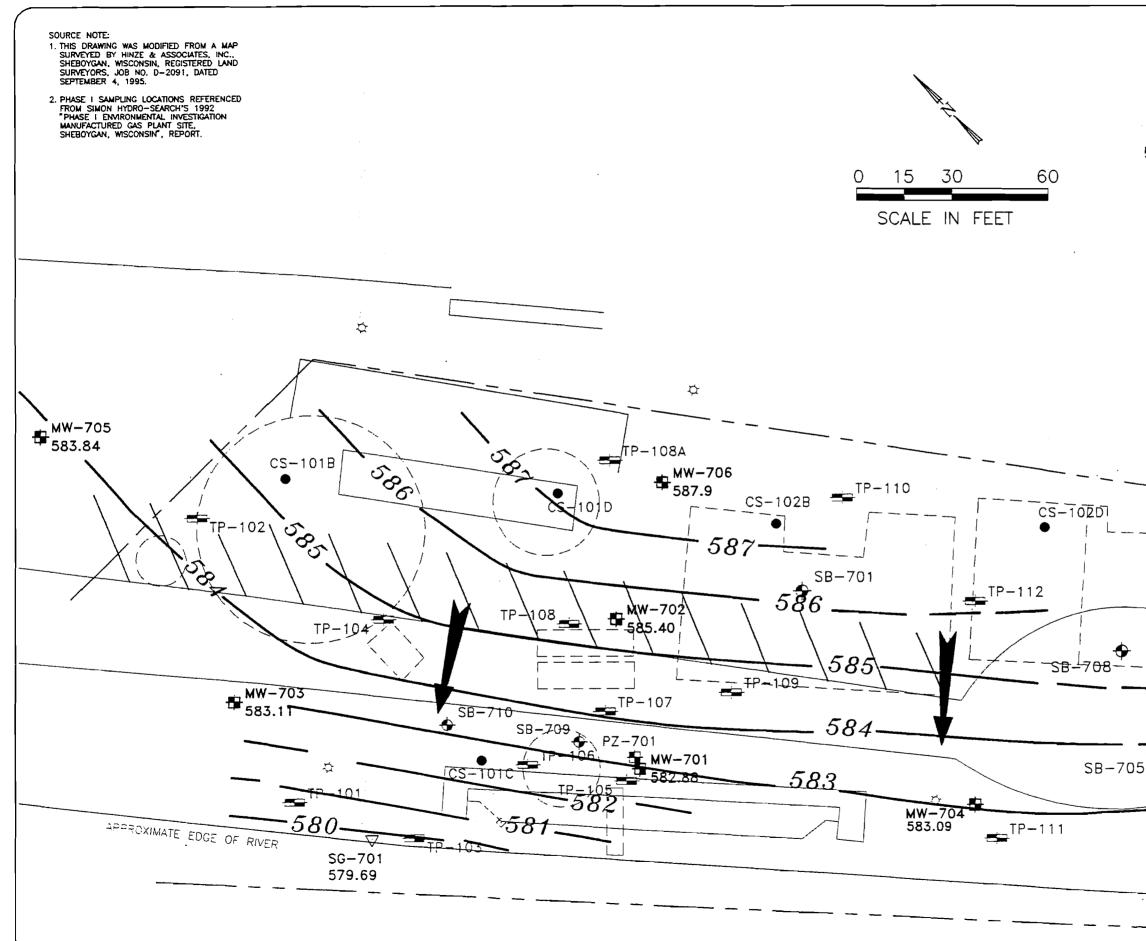
ŝ. ...

17

8 🖸

¥...

5


E.

Æ

Ţ

1

LEGE	END				\square
MW-701 583.46	MONITORING WELL AND WATER TABLE ELEVATION (MSL)	0/6/92	/12/96	6/27/96	
⊽ SG-701 580.02	STAFF GAUGE AND WATER SURFACE ELEVATION (MSL)	1 -	4		Q Q
581	WATER TABLE ELEVATION CONTOUR (MSL)	DATE:	DATE:	DATE:	303.DV
>	APPARENT GROUNDWATER FLOW DIRECTION	TAS	SAG	SAG	FILE: 1060-B03.DWG
SB~702					تن
	SOIL BORING	5	BY:	B	긑
== ^{TP-101}	TEST PIT (HSI)	WN BY:	CHECKED	APPROVED BY:	AUTOCAD
CS-103B ●	SURFACE SOIL SAMPLE (HSI)	DRAWN	CHE	APPI	AUTC
₽Z-701	PIEZOMETER	S			
₽	LIGHT POLE	CONTOURS			
	APPROXIMATE LOCATION				
	OF PRIOR MGP RELATED STRUCTURE	0	_		
		0	95	_ 3	Z
		z	\sim		MICNODCIM
		2		NA AK	3
		A	4	X	CI V
		$ \geq$			
	· ·		⊢	HIS	AN I
_			<u>S</u>	0	2
		143	5	WPSC SHEBOYGAN I	<u> </u>
7			5	_ ≥ į	SHEBUTGAN,
		<u>≺</u>	⊲	C	~
1					
1		WATER			
	SB-706	E			
SB-7	07 🔶				
₽	TP-114	-			
1					
	✓ _ SB-703 `\			_	
	λ 🗢 ή				11
	SB-704				
↔					ä
<u>к</u>	SB-702				
$\overline{\mathbf{v}}$		<i>F</i>			
00 1070-	TP-113		tur		
CS-1030	• /		sou		
	₩W-707 ₩582.60	Te	chn	olog	ӯ∤
	₩582.60	PR		T NO.	
		<u> </u>	1060	/4	
			A WIN (060—	3 NO. B03	
/		FI	GURE		
		L			ノ

673

1

6

Č. J

8

and the second

5

P

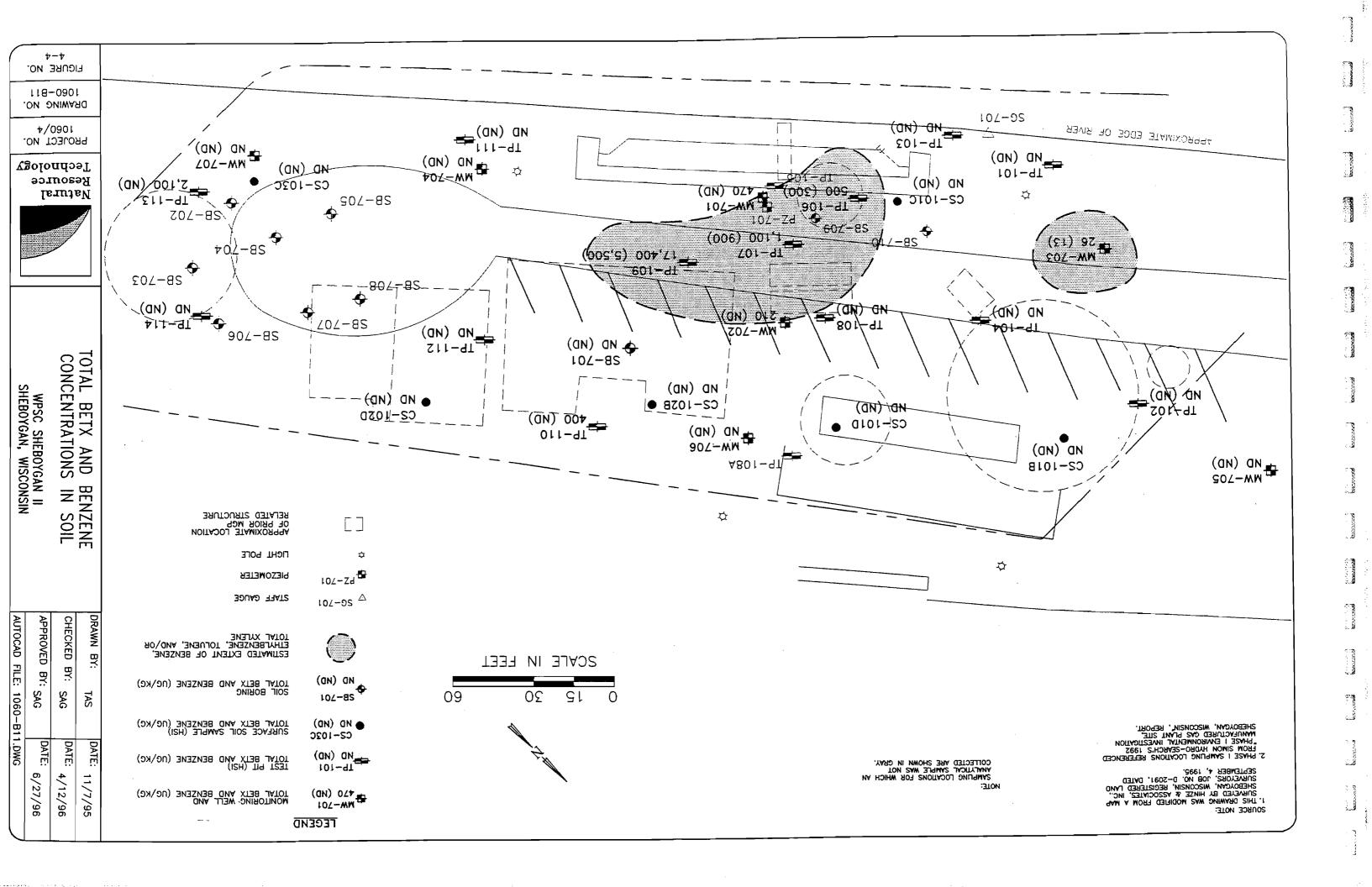
F

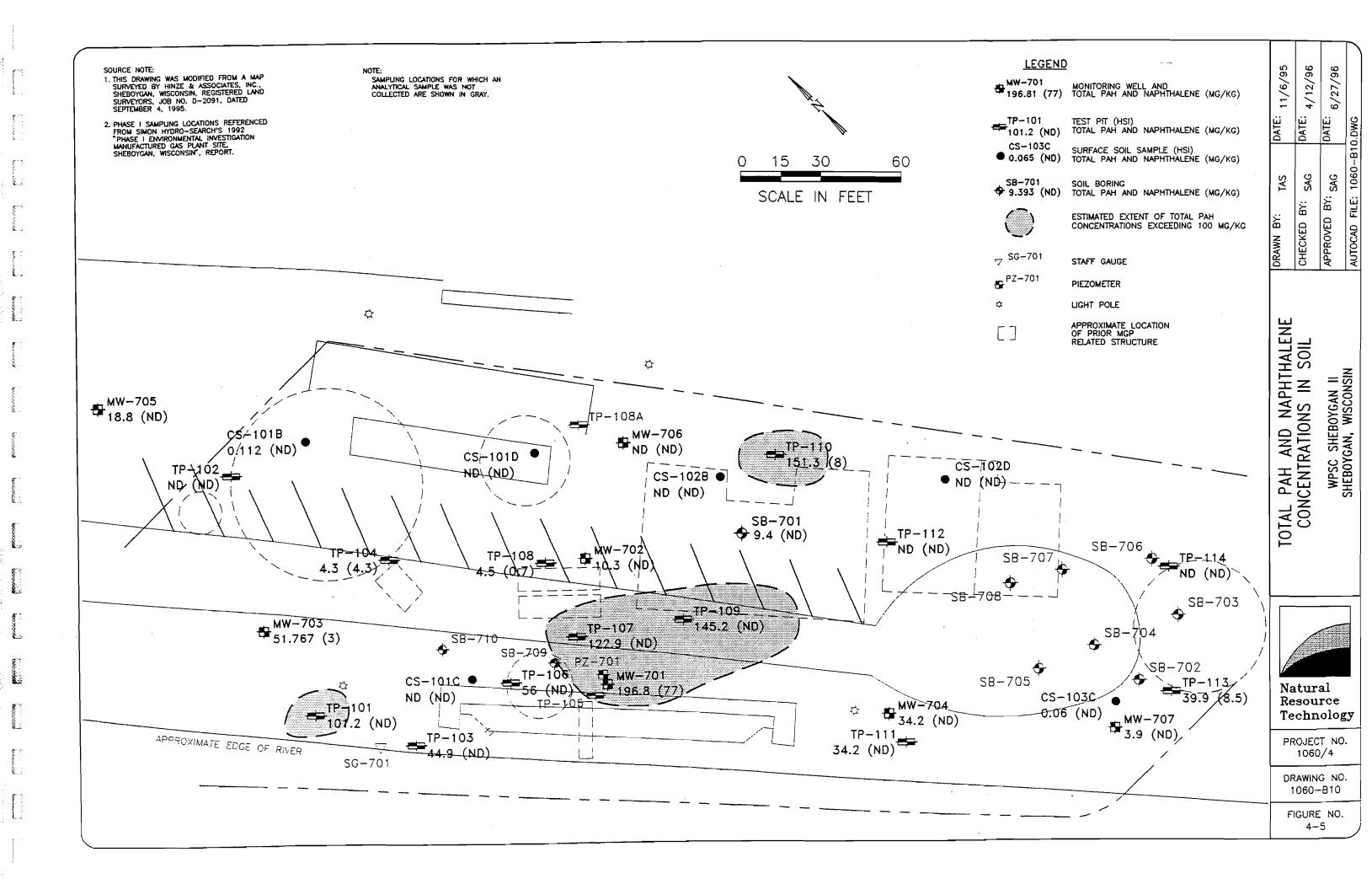
5

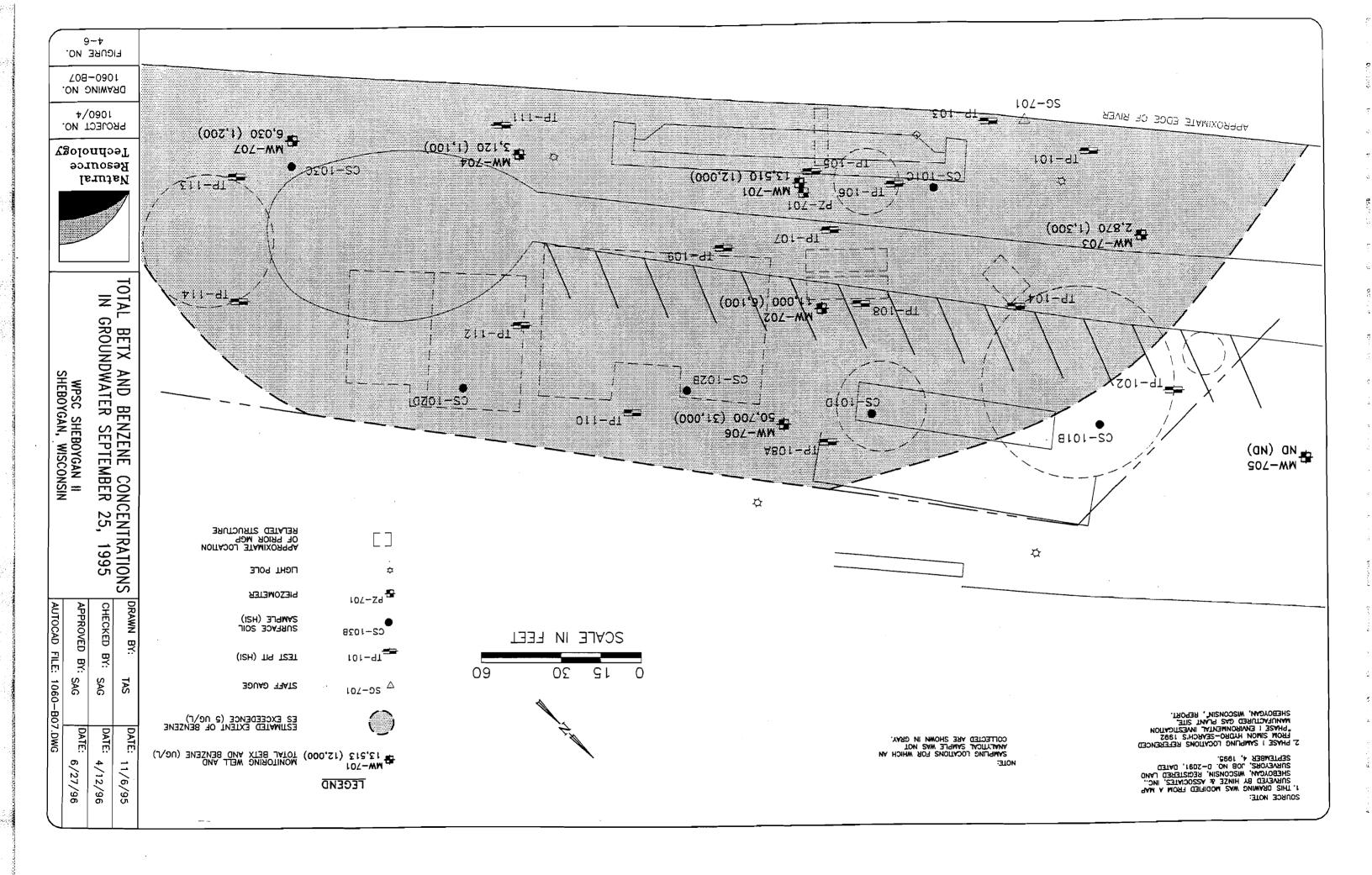
2

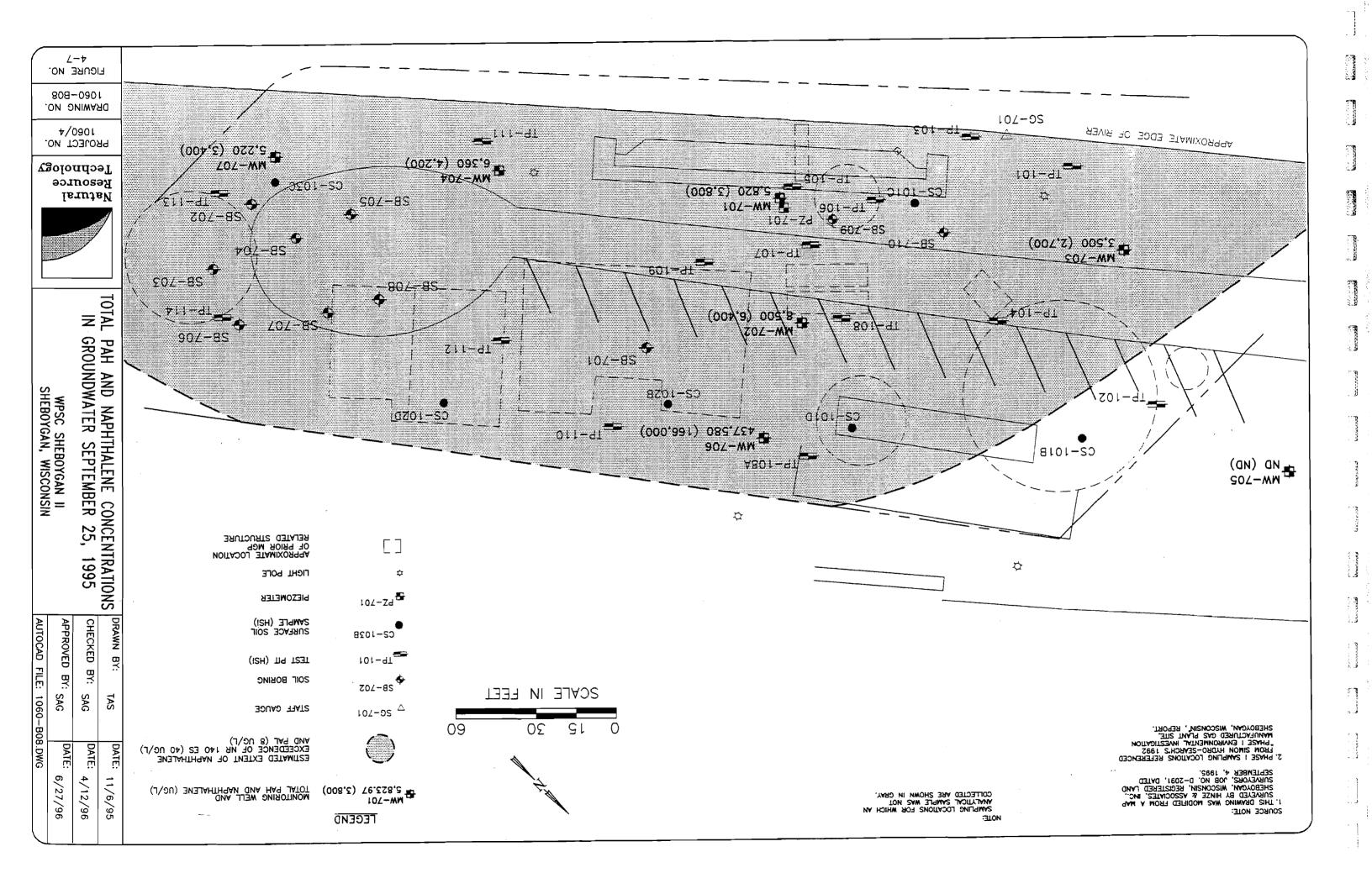
1

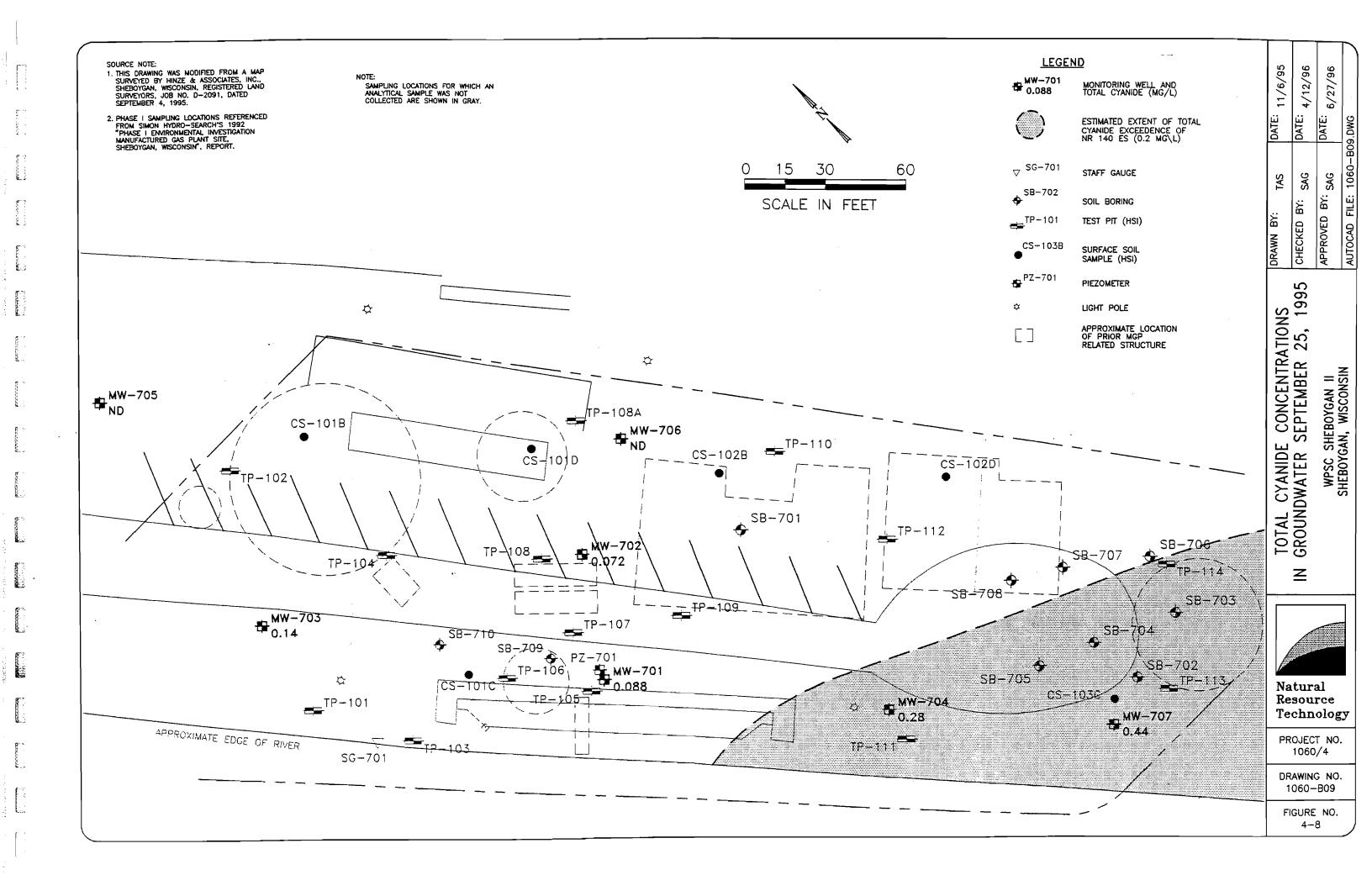
(i)


<u>.</u>


1.1


E T


٤...


				1	
LEGE	END	/95	96	96	
₩₩-701 583.34	MONITORING WELL AND WATER TABLE ELEVATION (MSL)	10/16/95	4/12/96	6/27/96	
♥ SG-701 579.69	STAFF GAUGE AND WATER SURFACE ELEVATION (MSL)	DATE: 1	DATE: 4	DATE: 6	OWG
581	WATER TABLE ELEVATION CONTOUR (MSL)	<u>a</u> _		<u>à</u>	1060-B05.DWG
3	APPARENT GROUNDWATER FLOW DIRECTION	TAS	SAG	SAG	1060-
\$B−702	SOIL BORING	BY:	BY:	D BY:	FILE:
TP-101	TEST PIT (HSI)		CHECKED	APPROVED	AUTOCAD
CS-103B	SURFACE SOIL SAMPLE (HSI)	DRAWN	HH -	APP	AUT
PZ-701	PIEZOMETER	S	1		
\$	LIGHT POLE	OUR	•		
[]	APPROXIMATE LOCATION OF PRIOR MGP RELATED STRUCTURE	CONT	1995	PMARINA	SIN
SB-7	TP-114	WATER TABLE ELEVATION CONTOURS	OCTOB	WPSC SHEBOYGAN II CAMPMARINA	SHEBOYGAN, WISCONSIN
CS-1030 MW-707 582.37	SB-702	Re Te	atur esou chn ROJEC 1060	rce olog	
			RAWIN	G NO	•
			IGURE	NO.	

NRT STANDARD PRACTICES TABLE OF CONTENTS

1

Constant of the second

et a constant

and the second

3

ΨΡΡΕΝDΙΧΓ

NATURAL RESOURCE TECHNOLOGY STANDARD PRACTICES MANUAL Eff. Date Initiator		Section: Number: Date: Revision: Page:	Site Investigation 07-TC 02-18-94 0 1 of 6	
		Apprv '	′d	
		TABLE OF CONT	ENTS	
<u>PRAC</u>	TICE TI	<u>rle</u>	<u>REFEI</u>	RENCE DOCUMENTS
07-01	POLICY	STATEMENT		1
07-02	DATA M	IANAGEMENT		
	07-02-02 07-02-03 07-02-04	General Field Notebooks Photographic Evidence Document Storage and Management Electronic File Management	· · · · · · · · · · · · · · · · · · ·	1, 2 1, 2 1, 2
07-03	SAMPLE	E COLLECTION - GENERAL		
07.04	07-03-02 07-03-03 07-03-04	Sample Identification Sample Location Control Chain of Custody Sample Transportation and Shipping		1, 2, 3 1, 2
07-04		NG QUALITY CONTROL		
	07-04-02	General Considerations Data Quality Objectives Sample Container Preparation, Preser Maximum Hold Times	vation and	1, 2
	07-04-04 07-04-05	Quality Assurance Samples Equipment Decontamination	· · · · · · · · · · · · · · · · · · ·	1, 2 1, 2
07-05	GENERA	AL MONITORING AND SITE SUR	VEYS	
	07-05-02	Well Integrity Evaluation		1
07-06	SUBSUR	FACE EXPLORATION METHODS	5	
	07-06-02	Borehole and Excavation Clearance Monitoring Wells-General Monitoring Wells-Drilling Methods		1. 2. 4, 6

(|____;

(+

In case - spectrum

ی ایران ا محمد ایران ایران

Section:Site InvestigationNumber:07-TCDate:02-18-94Revision:0Page:2 of 6

REFERENCE DOCUMENTS

07-06 SUBSURFACE EXPLORATION METHODS (Cont'd)

BRACTICE TITLE

of Soil and Rock ASTM D5434	
Guide for Field Logging of Subsurface Explorations	E1 -9 0-20
Diamond Core Drilling for Site Investigation ASTM D2113	21-90-70
7821CI MT2A Allow-nint of Solution o	11-90-20
Soil Investigation and Sampling by Auger Methods ASTM D1452	0I -9 0-20
Ground-Water Sample Collection with the HydroPunch 1	60-90-20
Well Abandonment 1, 2, 4, 6	80 - 90-20
Well Development 1, 2, 4, 6	L0 - 90-L0
Monitoring Wells-Construction Materials 1, 2, 4, 6	90 -9 0-20
Monitoring Wells-Construction Methods 1, 2, 4, 6	50 -90 -20
Monitoring Wells-Borehole Requirements 1, 2, 4, 6	70-90- 20

07-07 SOIL SAMPLING AND MEASUREMENT PROCEDURES

King Bain Barner Ba	
Using a Double Ring Infiltrometer with a Sealed Inner	
Test Method for Field Measurement of Infiltration Rate	II-20-70
Using Double Ring Infiltrometer ASTM D3385	
Test Method for Infiltration Rate of Soils in Field	80-70-70
Hydraulic Conductivity in the Vadose Zone ASTM D5126	
Guide for Comparison of Field Methods for Determining	L0-L0-L0
Soil Sampling from the Vadose Zone ASTM D4700	90-20-20
Pore-Liquid Sampling from the Vadose Zone ASTM D4696	S0-70-70
Using Tensiometers ASTM D3404	
Measuring Matric Potential in the Vadose Zone	70-70-70
Soil Sampling for Microorganisms I, 2	
Soil Sampling Procedures 1, 2	20-70-70
Soil Sample Description	10-70-70

07-08 GROUND-WATER SAMPLING AND MEASUREMENT PROCEDURES

Aquifer Testing/Baildown Tests - General ASTM D4043	20-80-70
Private Well Sampling and Analysis l, 3, 5	⊅0-80-70
Circulation	
Ground-Water Profiling Using Dual Wall Reverse	£0-80-70
Ground-Water Sampling Using Packers I	20-80-70
Ground-Water Sampling 1, 2, 4 (ASTM D4448), 5	10-80-70

Section:	Site Investigation
Number:	07-TC
Date:	02-18-94
Revision:	0
Page:	3 of 6

PRACTICE TITLE

٤.

Constant of

Sec.

- Contraction

REFERENCE DOCUMENTS

07-08 GROUND-WATER SAMPLING AND MEASUREMENT PROCEDURES

	07-08-06	Field Procedure for Instantaneous Change in Head
		(Slug Tests) for Determining Hydraulic Properties
		in Aquifers ASTM D4044
	07-08-07	Field Procedure for Withdrawal and Injection Well Tests
		for Determining Hydraulic Properties of Aquifer Systems ASTM D4050
	07-08-08	Analytical Procedure for Determining Transmissivity of
		Nonleaky Confined Aquifers by Over-damped Well
		Response to Instantaneous Change in Head (Slug Tests) ASTM D4104
	07-08-09	Analytical Procedure for Determining Transmissivity and
		Storage Coefficient of Nonleaky Confined Aquifers by the
		Modified Theis Nonequilibrium Method ASTM D4105
	07-08-10	Analytical Procedure for Determining Transmissivity and
		Storage Coefficient of Nonleaky Confined Aquifers by the
		Theis Nonequilibrium Method ASTM D4106
	07-08-11	Determining Transmissivity and Storativity of Low
		Permeability Rocks by In-Situ Measurements Using the
		Constant Head Injection Test ASTM D4630
	07-08-12	Determining Transmissivity and Storativity of Low
		Permeability Rocks by In-Situ Measurements Using the
		Pressure Pulse Technique ASTM D4631
	07-08-13	Determining Transmissivity of Nonleaky Confined Aquifers
		by the Theis Recovery Method ASTM D5269
	07-08-14	Determining Transmissivity and Storage Coefficient of
		Bounded, Nonleaky, Confined Aquifers ASTM D5270
	07-08-15	Test Method for Determining Specific Capacity and
		Estimating Transmissivity at Control Well ASTM D5472
	07-08-16	Test Method (Analytical Procedure) for Analyzing the
		Effects of Partial Penetration of Control Well and
		Determining the Horizontal and Vertical Hydraulic
		Conductivity in a Nonleaky Confined Aquifer ASTM D5473
	07-08-15	Ground-Water Elevation Measurement-Solonist 17, 4 (ASTM D4750)
•	SUDEAC	E WATED SEDIMENT SAMPLING AND

07-09 SURFACE WATER/SEDIMENT SAMPLING AND MEASUREMENT PROCEDURES

07-09-01	Surface Water/Sediment Sampling	1,	2
07-09-02	Stage Discharge Determination in Small Streams	1,	2

Site Investigation
07-TC
02-18-94
0
4 of 6

PRACTICE TITLE

· · · ·

ł

ŧ

ţ

, U

Sector and the sector of the s

<u>REFERENCE DOCUMENTS</u>

07-10 AIR SAMPLING PROCEDURES

	07-10-02 07-10-03 07-10-04	Soil Gas Survey - General1, 3, 4 (ASTM D5314)Soil Gas Survey - AMS Vapor Probe System1, 2, 14Headspace Screening for Volatile Organic Compounds7Bar Hole Survey1Methane Monitoring in Buildings (MSA Model 260)1
07-11	WASTE	SAMPLING 1, 2
07-12	WASTEN	WATER SAMPLING AND MEASUREMENT PROCEDURES 1, 2
07-13	FIELD A	NALYTICAL PROCEDURES
	07-13-02 07-13-03	Equipment Calibration, Operation and Maintenance1, 2Photovac PID11pH Meter12Specific Conductance Meter10
07-14	FIELD P	HYSICAL MEASUREMENTS
	07-14-01	Survey Control (Horizontal and Vertical) 1, 2
07-15	LABORA	TORY ANALYTICAL PROCEDURES
		Method for Particle Size Analysis of Soils
	07-15-03	Test Method for Unconfined Compressive Strenght of Cohesive Soil ASTM D2166
	07-15-04	Test method for Laboratory Determination of Water (Moisture) Content of Soil and Rock
	07-15-05	Practice for Wet Preparation of Soil Samples for Partical Size Analysis and Determination of Soil Constants ASTM D2217
	07-15-06	Test Method for Permeability of Granular Soils (Constant Head) ASTM D2434
	07-15-07	Test Method for Classification of Soils for Engineering Purposes (Unified Soil Classification System)
	07-15-08	Practice for Description and Identification of Soils (Visual-Manual Procedure) ASTM D2488

Section:	Site Investigation
Number:	07-TC
Date:	02-18-94
Revision:	0
Page:	5 of 6

PRACTICE TITLE

1.

REFERENCE DOCUMENTS

07-15 LABORATORY ANALYTICAL PROCEDURES (Cont'd)

07-15-09	Test Method for Liquid Limit, Plastic Limit and Plasticity
	Index of Soils ASTM D4318
07-15-10	Test Method for pH of Soils ASTM D4972
07-15-11	Test Method for Permeability of Rocks by Flowing Air ASTM D4525
07-15-12	Test Method for Measurement of Hydraulic Conductivity
	of Saturated Porous Materials Using a Flexible Wall
	Permeameter ASTM D5084

07-16 GEOPHYSICAL SURVEYS

07-16-01	Electrical Resistivity Survey	3
07-16-02	Siesmic Refraction Survey	3

07-17 GROUND-WATER MODELING

•	07-17-01 Guide for Application of Ground-water Flow Model to
	a Site-Specific Problem ASTM D5447
	07-17-02 Guide for Comparing Ground-water Flow Model
	Simulations to Site ASTM D5490
	07-17-03 Quality Assurance Procedures

07-18 DATA ANALYSIS, REDUCTION AND VALIDATION

07-18-01	Data	Validation		. 1	6
----------	------	------------	--	-----	---

Section:	Site Investigation
Number:	07-TC
Date:	02-18-94
Revision:	0
Page:	6 of 6

REFERENCE DOCUMENTS

- 1. Natural Resource Technology, Inc., 1994.
- 2. Modified from: U.S.EPA Environmental Compliance Branch Standard Operating Procedures and Quality Assurance Manual, February 1, 1991 (ECBSOPQAM).
- 3. Modified from: U.S.EPA, Performance of Remedial Response Activities at Uncontrolled Hazardous Waste Sites (REM II), U.S.EPA Contract No. 68-01-6939, 1984.
- 4. American Society for Testing and Materials, <u>1994 Annual Book of ASTM Standards</u>, Vols. 4.08 and 4.09
- 5. Wisconsin Department of Natural Resources, <u>Groundwater Sampling Procedures</u>, Publ-WR-168 87, September 1987.
- 6. Wisconsin Department of Natural Resources, Chapter NR 141, W.A.C.
- 7. Wisconsin Department of Natural Resources, Leaking Underground Storage Tank Program, Field Screening Procedures, Publ-SW-176-92.
- 8. Wisconsin Department of Natural Resources, <u>General Interim Guidelines for the</u> <u>Management of Investigative Wastes</u>, January 14, 1993
- 9. Personal Communication, Layne-Northwest Co., Pewaukee, WI
- 10. Cole-Parmer Model 01481-61 Conductivity Meter Manual
- 11. Photovac Microtip IS-3000 User's Manual
- 12. Cole-Parmer Models 5996-50,60,70,80 pH Meter Instruction Manual
- 13. American Society for Testing and Materials, Proposed Standard Guide, W. Teasdale, February 5, 1994
- 14. AMS Vapor Probe Instruction Manual
- 15. Bouwer and Rice, 1976. "A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially

PLATE

1

 $\langle \hat{} \rangle$

.]