

Wisconsin Public Service Corporation

700 North Adams Street P.O. Box 19001 Green Bay, WI 54307-9001 www.wisconsinpublicservice.com

February 26, 2018

Mr. Pablo Valentín USEPA Region 5 – SR6J 77 W. Jackson Boulevard Chicago, Illinois 60604-3590

RE: January 2018 Monthly Progress Report

Wisconsin Public Service Corporation

CERCLA Docket No. V-W-07-C-862

Please find enclosed the monthly progress report for the Wisconsin Public Service Corporation's Sheboygan – Campmarina former manufactured gas plant site. If you have any questions, please don't hesitate to contact me at (920) 433-2643 or bfbartoszek@integrysgroup.com.

Sincerely,

Brian Bartoszek, P.E.

Manager - Remediation

Enclosures as noted

cc: Mr. John Feeney, WDNR (hardcopy and email)

OBG | There's a way

February 26, 2018

Mr. Brian Bartoszek, PE Manager – Remediation WEC Business Services, LLC 700 N. Adams Street Green Bay, WI 54307 (via email)

RE: January 2018 Monthly Progress Report
Campmarina Former Manufactured Gas Plant (MGP), Sheboygan, Wisconsin
Wisconsin Public Service Corporation (WPSC)
CERCLA Docket No. V-W-07-C-862, EPA Site ID – B5DA, CERCLIS ID – WIN000510058
OBG Project No. 67971

Dear Mr. Bartoszek:

O'Brien & Gere Engineers, Inc. (OBG), is providing this Monthly Progress Report for the WPSC Campmarina Former Manufactured Gas Plant (MGP) Site.

1) PROGRESS MADE DURING THE PAST MONTH

 Prepared and submitted December 2017 Monthly Progress Report to United States Environmental Protection Agency (USEPA) by January 26, 2018.

2) ANALYTICAL AND OTHER TESTING RESULTS RECEIVED

December 2017 routine quarterly groundwater results and a site map have been attached to this Progress Report.

3) PROJECTED WORK

WPSC Actions

• Submit the monthly progress report to USEPA by the 26th of the month.

USEPA Actions

 USEPA review of the Sheboygan-Campmarina River Operable Unit Five-Year Review Data Summary Technical Memorandum.

4) ANTICIPATED SCHEDULE

For Additional details, please refer to the December 2016 Progress Report.

Deliverable or Milestone	Target Date	Actual Date											
Upland Operable Unit													
Draft Upland Operable Unit (OU) Technical Letter – Revision 0 to USEPA	April 26, 2007	April 26, 2007											
Receive USEPA Comments on Draft Upland OU		December 6, 2007											
Technical Letter													
	Within 60 days of receiving												
Upland OU Work Plan – Revision 0 to USEPA	USEPA's Technical Scoping												
	Meeting Summary												
Receive USEPA Comments on Upland OU Work Plan	TBD												
- Revision 0													
Submit Technical Memorandum to discontinue		October 19, 2010											
operation of the biosparge system													
Receive USEPA Comments on TI Report		May 1, 2014											
Submit TI Report - Revision 1		July 1, 2014											
2016 Groundwater Levels and Natural Attenuation	March, June, September,	March 17, June 15,											
Parameters Sampling	December	September 14,											
		December 13											
2017 Groundwater Levels and Natural Attenuation	March, June, September,	March 16, June 5,											
Parameters Sampling	December	September 6, December 18											
2018 Groundwater Levels and Natural Attenuation	March, June, September,												
Parameters Sampling	December												
	perable Unit												
Submit Construction Completion Report Revision 1		October 30, 2013											
USEPA signs No Further Action Record of Decision		September 25, 2012											
for River OU													
Receive USEPA Approval for Construction		April 17, 2014											
Completion Report Revision 1 (submitted October													
30, 2013)													
USEPA's Five-Year Review Sediment Sampling	June 2017	June 6, 2017											
USEPA's Five-Year Review Data Summary Technical	July 2017	July 5, 2017											
Memorandum													
USEPA's Five-Year Review Site Inspection	July 2017	July 13, 2017											
USEPA's Five-Year Review (per the USEPA's	September 25, 2017												
December 15, 2016 letter)													

5) PROBLEMS OR POTENTIAL PROBLEMS ENCOUNTERED

None

6) ACTUAL OR PLANNED RESOLUTION OF PROBLEMS OR POTENTIAL PROBLEMS

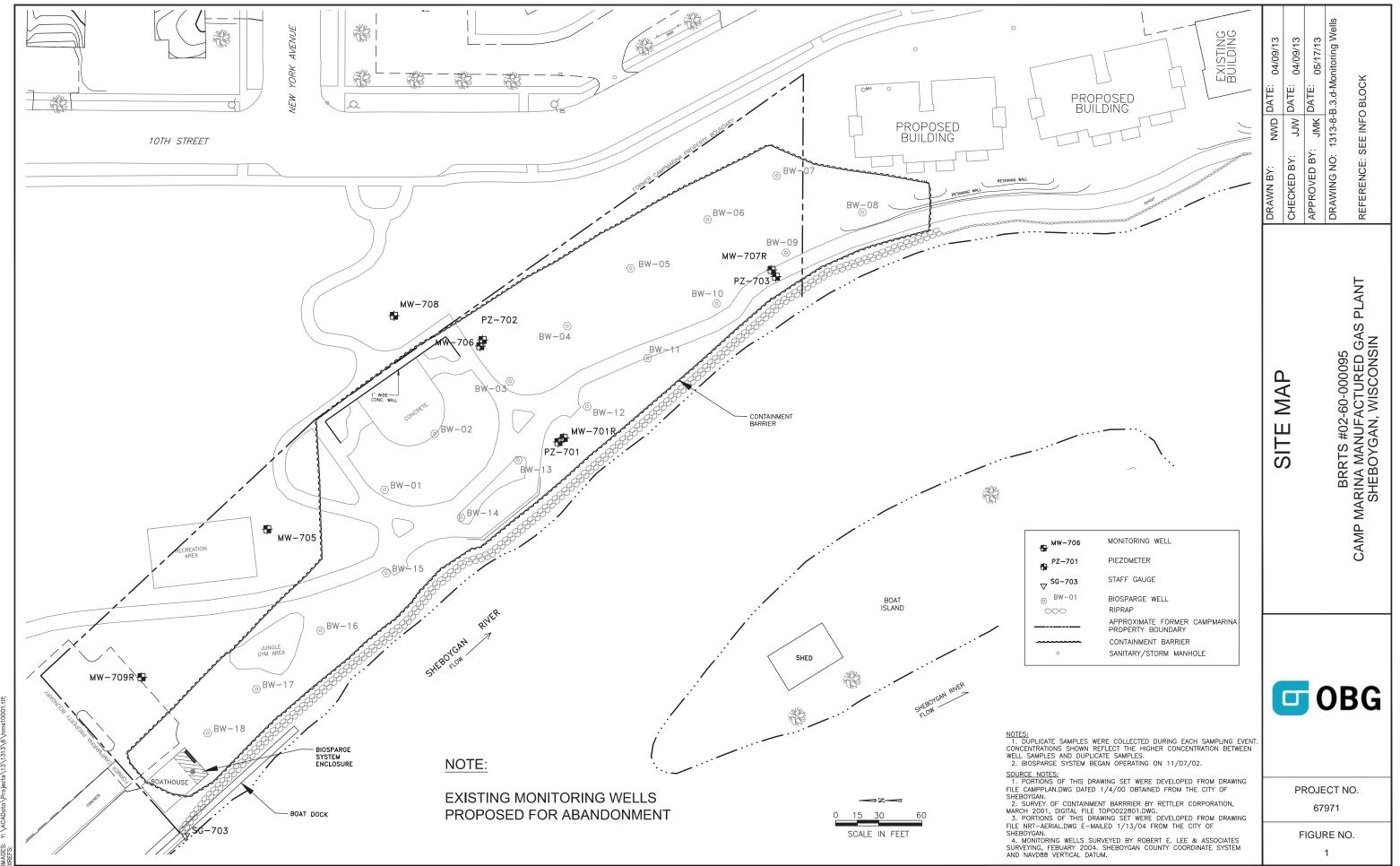
None

Please contact the undersigned if you should have any questions regarding the content of this progress report.

Very truly yours,

O'BRIEN & GERE ENGINEERS, INC.

Enclosures:


Environmental Scientist

December 2017 Groundwater Results Summary Tables

For Distribution to: Mr. Pablo Valentín, USEPA (via email)

Site Map

Mr. John Feeney, WDNR (via US Mail and email)

May 17, 2013 10:05am PLOTTED BY: ndraskovich SAVED BY: ndraskovich Y: \ACAData\Projects\13\\13\3\\8\13\13-8-B.3.d-Monitoring Wells.dwg Layoutl MAGES: Y: \ACAData\Projects\13\\13\3\8\hms10001.tif.

Table 1 - December 2017 Groundwater Results with Groundwater Standard and Tap Water Exceedances

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Campmarina

732 North Water Street, Sheboygan, Wisconsin

BRRTS#: 0260000095 FID#: 460134950 USEPA#: WIN000510058

			TPAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH
9-digit Code	Sample Location	Sample Date	Total PAHs (Lab Calc)	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
Reporting Units:		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	
MGP Groundwater Standard, WI:		NS	NS	NS	NS	NS	3,000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	100	3,000	250	
	Wisconsin G	Groundwater PAL:	NS	NS	NS	<u>NS</u>	NS	600	NS.	0.02	0.02	NS	NS	0.02	NS	80	80	NS	<u>10</u>	NS	<u>50</u>
	MGP Tap Water RSL, WI:		NS	1.1	36	530	530	1,800	0.03	0.025	0.25	120	2.5	25	0.025	800	290	0.25	0.17	1,800	120
121817001	MW-709R	12/18/2017	0.061	<0.0059 U	<0.0049 U	<0.0061 U	<0.0050 U	0.017 J	<0.0076 U	<0.011 U	<0.0057 U	<0.0068 U	<0.0076 U	<0.013 U	<0.010 U	<0.011 U	<0.0080 U	<0.018 U	<0.018 U	<0.014 U	<0.0076 U
121817002	MW-708	12/18/2017	0.016	<0.0063 U	<0.0052 U	<0.0065 U	<0.0053 U	<0.011 U	<0.0080 U	<0.011 U	<0.0061 U	<0.0072 U	<0.0080 U	<0.014 U	<0.011 U	<0.011 U	<0.0085 U	<0.019 U	<0.020 U	<0.015 U	<0.0081 U
121817003	MW-707R	12/18/2017	497	101	1.0	30.4	1.2	2.1	<0.25 U	<0.34 U	<0.19 U	<0.22 U	<0.25 U	<0.43 U	<0.33 U	0.88 J	9.8	<0.58 U	<u>338</u>	11.2	1.0 J
121817004	PZ-703	12/18/2017	0.67	0.054	0.0064 J	0.27	0.053	0.023 J	<0.0088 U	<0.012 U	<0.0067 U	<0.0079 U	<0.0088 U	<0.015 U	<0.012 U	<0.012 U	0.095	<0.021 U	0.083 J	0.052 J	0.011 J
121817005/121817006 (N)	MW-701R	12/18/2017	1,320	150	107	93.1	1.0 J	11.9	<0.79 U	<1.1 U	<0.60 U	<0.71 U	<0.79 U	<1.4 U	<1.0 U	2.9 J	16.1	<1.8 U	<u>901</u>	35.9	4.1 J
121817007	PZ-701	12/18/2017	0.11	<0.0066 U	<0.0054 U	<0.0067 U	0.0094 J	<0.012 U	<0.0084 U	<0.012 U	<0.0064 U	<0.0075 U	<0.0084 U	<0.014 U	<0.011 U	<0.012 U	<0.0089 U	<0.020 U	0.029 J	<0.015 U	0.014 J
121817008	PZ-702	12/18/2017	0.055	0.0076 J	<0.0051 U	<0.0063 U	<0.0052 U	<0.011 U	<0.0079 U	<0.011 U	<0.0060 U	<0.0071 U	<0.0079 U	<0.014 U	<0.010 U	<0.011 U	<0.0083 U	<0.018 U	0.036 J	<0.014 U	<0.0080 U
121817009	MW-706	12/18/2017	2,100	194	53.0	11.0	102	5.1 J	<1.7 U	<2.3 U	<1.3 U	<1.5 U	<1.7 U	<2.9 U	<2.2 U	<2.4 U	20.9	<3.9 U	<u>1,680</u>	24.4	3.1 J
121817012	MW-705	12/18/2017																			
121817013	SG-703	12/18/2017																			
121817010	Equipment Blank	12/18/2017																			
121817011	Trip Blank	12/18/2017					-											-			
				1																	
Total Number of Samples Analyzed: Number of Detections:		8	8 5	8 4	8 4	8 5	8 5	8	8 0	8	8	8	8	8 0	8 2	8 4	8 0	8 6	8	8 5	
Min:			0.016	0.0076	0.0064	0.27	0.0094	0.017	0	0	0	0	0	0	0	0.88	0.095	0	0.029	0.052	0.011
Max:			2,100	194	107	93.1	102	11.9	0	0	0	0	0	0	0	2.9	20.9	0	1,680	35.9	4.1
MGP Groundwater Standard SL: Number of Samples that Exceed MGP Groundwater Standard SL:			NS 0	NS 0	NS 0	NS 0	NS 0	3,000	NS 0	0.2	0.2	NS 0	NS 0	0.2	NS 0	400	400 0	NS 0	100 3	3,000	250 0
WI Groundwater PAL:			NS	NS	NS	NS	NS	600	NS	0.02	0.02	NS	NS	0.02	NS	80	80	NS	10	NS	50
Number of Samples that Meet or Exceed WI PAL:			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0
MGP Tap Water RSL: Number of Samples that Exceed Tap Water RSL:			NS 0	1.1	36	530	530 0	1,800 0	0.03	0.025 0	0.25	120	2.5	25 0	0.025	800	290	0.25	0.17	1,800	120
Number of Samples that Exceed Tap Water RSL.						U	U	U	U	U	. 0	U	U	U		U	U	U	J	U	U

Notes

BOLD = result exceeds MGP Groundwater Standard

<u>Underline = result meets or exceeds WI Groundwater PAL</u>

Italic = result exceeds MGP Tap Water RSL

-- = analysis not performed

< = concentration is less than reported limit

U = not detected

J = estimated concentration at or above the LOD and below the Limit of Quantification (LOQ)

Lab comments, additional data qualifiers and definitions can be found in associated laboratory reports.

Yellow highlighting = one or more Exceedances reported

Pink highlighting = result exceeds the MGP Groundwater Standard; Tap or PAL exceedances are not highlighted if they do not exceed the MGP Groundwater Standard

MGP SLs used on this table were presented in the Multi-Site Risk Assessment Framework Addendum Revision 6 (Exponent, July 2017).

The MGP Groundwater Standard presented is the more conservative of the State and MCL values presented in the RAF Addendum Revision 6. PAL from Chapter NR 140 for Groundwater Quality from Wisconsin Admin Code (February 2017)

NS = No Standard

MGP = Manufactured Gas Plant

RSL = Regional Screening Level

SL = Screening Level

Statistics exclude the quality control samples (Equipment and Trip blanks)

(N) = Normalized sample locations created from combining parent and field duplicate samples following EPA protocol

Deg C = degrees Celsius

mg/L = milligrams per liter

 μ S/cm = microsiemens per centimeter

NTU = nephelometric turbidity unit

s.u. = standard units

μg/L = micrograms per liter

BTEX = Benzene, Toluene, Ethylbenzene and Xylene

RNA = remediation by natural attenuation

PAH = Polycyclic Aromatic Hydrocarbons

TPAH = Total PAHs

Total PAHs were calculated by the laboratory.

Table 1 - December 2017 Groundwater Results with Groundwater Standard and Tap Water Exceedances

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Campmarina

732 North Water Street, Sheboygan, Wisconsin

BRRTS#: 0260000095 FID#: 460134950 USEPA#: WIN000510058

		•	BTEX	BTEX	BTEX	BTEX	Organic	Inorganic	Inorganic	RNA	RNA	RNA	RNA	RNA	RNA	RNA
9-digit Code	Sample Location	Sample Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	Methane	Nitrogen, NO2 + NO3, Total	Sulfate, Total	Dissolved oxygen	Groundwater, depth to	Oxidation Reduction Potential	pH, Field	Specific Conductance, Field	Temperature, Water	Turbidity, Quantitative
	Reporting Units:				μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	feet	millivolts	s.u.	μS/cm	Deg C	NTUs
	MGP Groundwater Standard, WI:			700	800	2,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	Wisconsin Groundwater PAL:			<u>140</u>	<u>160</u>	<u>400</u>	<u>NS</u>	2,000	<u>125,000</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>
	MGP Ta	p Water RSL, WI:	0.46	1.5	1,100	190	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
121817001	121817001 MW-709R 12/18/2017				<0.50 U	<1.5 U	3.800	<95 U	13.600 J	0.80	4.44	-103.2	6.81	2132.1	10.42	0.99
121817002	MW-708	12/18/2017 12/18/2017	<0.50 U	<0.50 U <0.50 U	<0.50 U	<1.5 U	14.4	<95 U	154,000	3.31	11.01	78.6	6.94	4355.8	11.00	6.27
121817002	MW-707R	12/18/2017	<u>1,720</u>	2,080	23.2 J	458	9.980	<95 U	<5,000 U	0.62	4.72	-132.3	7.00	1732.5	10.83	1.01
121817004	PZ-703	12/18/2017	188	31.5	4.8	71.3	985	<95 U	<1,000 U	0.33	4.73	-43.5	6.77	587.3	10.19	1.31
121817005/121817006 (N)	MW-701R	12/18/2017	3,980	290	<25.0 U	147 J	11,600	<95 U	<5,000 U	0.11	5.92	-94.2	6.39	2457.2	8.87	8.49
121817007	PZ-701	12/18/2017	<0.50 U	<0.50 U	<0.50 U	<1.5 U	<1.4 U	97 J	121,000	1.14	5.89	23.5	7.20	809.3	8.71	2.77
121817008	PZ-702	12/18/2017	<0.50 U	<0.50 U	<0.50 U	<1.5 U	<1.4 U	<95 U	1,200 J	0.67	6.69	27.7	7.54	207.1	8.36	0.67
121817009	MW-706	12/18/2017	3,330	<u>168</u>	<u>453</u>	286	65.0	<95 U	57,600	0.25	7.91	-119.0	7.15	1104.2	8.90	1.24
121817012	MW-705	12/18/2017									3.36					
121817013	SG-703	12/18/2017									1.68					
121817010	Equipment Blank	12/18/2017	<0.50 U	<0.50 U	<0.50 U	<1.5 U										
121817011	Trip Blank	12/18/2017	<0.50 U	<0.50 U	<0.50 U	<1.5 U										
		Samples Analyzed:														
	10 4	10 4	10 3	10 4	8 6	8	8 5	7 7	9	7 7	7 7	7	7 7	7 7		
	188	32	5	71	14	97	1,200	0.25	2	-132	7	207	8	1		
	3,980	2,080	453	458	11,600	97	154,000	3	11	79	8	4,356	11	6		
Number of Commiss that	5	700	800	2,000	NS	NS	NS 0	NS	NS	NS	NS	NS	NS	NS		
Number of Samples that	4 1	1 140	0 160	0 400	0 NS	2,000	0 125,000	0 NS	0 NS	0 NS	0 NS	0 NS	0 NS	0 NS		
Number	<u>4</u>	3	1	1	0	0	1	0	0	0	0	0	0	0		
NI aa la aa	4	2 4	1,100 0	190 2	NS 0	NS 0	NS 0	NS 0	NS 0	NS 0	NS 0	NS 0	NS 0	NS 0		
Number	4	4	U	2	U		U	U	L U	L U	0	U	0	0		

[O:ECK 2/6/18, C:SGW 2/7/18, QA:AGC 2/13/18]

Notes

BOLD = result exceeds MGP Groundwater Standard

<u>Underline = result meets or exceeds WI Groundwater PAL</u>

Italic = result exceeds MGP Tap Water RSL

- -- = analysis not performed
- < = concentration is less than reported limit
- U = not detected

J = estimated concentration at or above the LOD and below the Limit of Quantification (LOQ)

Lab comments, additional data qualifiers and definitions can be found in associated laboratory reports.

Yellow highlighting = one or more Exceedances reported

Pink highlighting = result exceeds the MGP Groundwater Standard; Tap or PAL exceedances are not highlighted if they do not exceed the MGP Groundwater Standard

MGP SLs used on this table were presented in the Multi-Site Risk Assessment Framework Addendum Revision 6 (Exponent, July 2017).

The MGP Groundwater Standard presented is the more conservative of the State and MCL values presented in the RAF Addendum Revision 6.

PAL from Chapter NR 140 for Groundwater Quality from Wisconsin Admin Code (February 2017)

NS = No Standard

MGP = Manufactured Gas Plant

RSL = Regional Screening Level

SL = Screening Level

Statistics exclude the quality control samples (Equipment and Trip blanks)

(N) = Normalized sample locations created from combining parent and field duplicate samples following EPA protocol

Deg C = degrees Celsius

mg/L = milligrams per liter

 μ S/cm = microsiemens per centimeter

NTU = nephelometric turbidity unit

s.u. = standard units

μg/L = micrograms per liter

BTEX = Benzene, Toluene, Ethylbenzene and Xylene

RNA = remediation by natural attenuation

PAH = Polycyclic Aromatic Hydrocarbons

TPAH = Total PAHs

Total PAHs were calculated by the laboratory.

