

February 22, 2019

Mr. Pablo Valentín
Project Manager
United States Environmental Protection Agency
77 W. Jackson Boulevard
Chicago, Illinois 60604-3590

RE: January 2019 Monthly Progress Report

Campmarina Former Manufactured Gas Plant

Sheboygan, Wisconsin

Wisconsin Public Services Corporation

CERCLA Docket No. V-W-07-C-862, CERCLIS ID - WIN000510058

Dear Mr. Valentín:

Wisconsin Public Services Corporation (WPSC) is providing this monthly progress report for the WPSC Former Campmarina Manufactured Gas Plant (MGP) Site.

1) PROGRESS MADE DURING THE PAST MONTH

 Prepared and submitted December 2018 Monthly Progress Report to United States Environmental Protection Agency (USEPA) by January 26, 2019.

2) ANALYTICAL AND OTHER TESTING RESULTS RECEIVED

 Groundwater analytical results from the December 13, 2018 sampling event and a site map have been included with this monthly progress report.

3) PROJECTED WORK

WPSC Actions

Submit monthly progress report to USEPA by the 26th of the month.

USEPA Actions

 USEPA review of the Sheboygan-Campmarina River Operable Unit Five-Year Review Data Summary Technical Memorandum.

4) PROBLEMS OR POTENTIAL PROBLEMS ENCOUNTERED

None

700 North Adams Street P.O. Box 19001 Green Bay, WI 54307-9001

www.wisconsinpublicservice.com

5) ACTUAL OR PLANNED RESOLUTION OF PROBLEMS OR POTENTIAL PROBLEMS

None

If you have any questions, please don't hesitate to contact me at (920) 433-2643 or brian.bartoszek@wecenergygroup.com.

Sincerely,

Brian F. Bartoszek, P.E.

Director Land Quality - Environmental

Enclosures:

Site Map

December 2018 Groundwater Results Summary Tables

For distribution to:

Mr. John Feeney, WDNR (US Mail and email)

Mr. Andrew Cawrse, OBG, Part of Ramboll (email)

Table 1 - December 2018 Groundwater Sample Results

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Campmarina

732 Water Street, Sheboygan, Wisconsin BRRTS#: 0260000095 FID#: 460134950 USEPA#: WIN000510058

			PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH
9-digit Code	Sample Location	Sample Date	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(k)fluoranthene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenz(a,h)anthracene	Indeno(1,2,3-cd)pyrene	Fluoranthene	Fluorene	Naphthalene	Phenanthrene	Pyrene
	Reporting Units:			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	Reporting office.			Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag
															,					
		Groundwater SL:	NS	NS	NS	NS	3,000	NS	NS	0.2	0.2	NS	0.2	NS	NS	400	400	100	3,000	250
	WI	Groundwater PAL:	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>600</u>	<u>NS</u>	<u>NS</u>	0.02	0.02	<u>NS</u>	0.02	<u>NS</u>	<u>NS</u>	80	80	<u>10</u>	<u>NS</u>	<u>50</u>
		Tap Water RSL:	1.1	36	530	530	1,800	0.03	2.5	0.025	0.25	120	25	0.025	0.25	· 800	290	0.17	1,800	120
																*				
121318001	MW-709R	12/13/2018	<0.0061 U	<0.0051 U	<0.0063 U	<0.0052 U	<0.011 U	<0.0079 U	<0.0079 U	<0.011 U	<0.0060 U	0.014 J	<0.014 U	<0.010 U	<0.018 U	<0.011 U	<0.0083 U	<0.019 U	<0.014 U	0.0083 J
121318002	MW-708	12/13/2018	<0.0064 U	0.010 J	<0.0066 U	<0.0054 U	<0.011 U	<0.0082 U	<0.0082 U	<0.011 U	<0.0062 U	0.014 J	<0.014 U	<0.011 U	<0.019 U	<0.012 U	<0.0087 U	0.022 J	<0.015 U	0.011 J
121318003/121318004 (N)	MW-707R	12/13/2018	46.9	0.065	26.6	0.73	1.5	0.045	0.0098 J	0.016 J	0.016 J	0.018 J	<u>0.038</u> J	<0.010 U	<0.018 U	0.81	9.9	<u>15.1</u>	6.4	0.90
121318005	PZ-703	12/13/2018	0.042	0.012 J	0.30	0.029	0.012 J	0.013 J	<0.0086 U	0.013 J	<0.0065 U	0.018 J	<0.015 U	<0.011 U	<0.020 U	0.022 J	0.11	0.055 J	0.059 J	0.03 J
121318006	PZ-701	12/13/2018	0.0076 J	0.0076 J	<0.0067 U	<0.0055 U	<0.011 U	<0.0083 U	<0.0083 U	<0.012 U	<0.0063 U	0.017 J	<0.014 U	<0.011 U	<0.019 U	<0.012 U	<0.0088 U	<0.020 U	<0.015 U	0.01 J
121318007	MW-701R	12/13/2018	170	141	10.3	123	5.6 J	1.2 J	<0.85 U	<1.2 U	<u>0.76</u> J	1.1 J	<1.5 U	<1.1 U	<2.0 U	3.3 J	30.8	<u>1,500</u>	27.7	4.5
121318008	PZ-702	12/13/2018	<0.0059 U	0.0049 J	<0.0061 U	<0.0050 U	<0.010 U	<0.0076 U	<0.0076 U	<0.011 U	<0.0057 U	0.014 J	<0.013 U	<0.010 U	<0.018 U	<0.011 U	<0.0080 U	<0.018 U	<0.014 U	0.0088 J
121318009	MW-706	12/13/2018	104	93.0	81.3	0.80 J	6.2	<0.67 U	<0.67 U	<0.94 U	<0.51 U	0.82 J	<1.2 U	<0.89 U	<1.6 U	2.6 J	19.6	<u>667</u>	29.0	3.2 J
121318012	MW-705	12/13/2018																		
121318013	SG-703	12/13/2018																		
121318010	EB01	12/13/2018															-			
121318011	TB01	12/13/2018						, 												
												8								
Total Number of Samples Analyzed:			8 5	8 7	8 4	8 4	8 4	8 3	8	8 2	8 2	8 8	8 1	8	8 0	8 4	4	5	4	8
	Number of Detections: Min:			0.0049	0.3	0.029	0.012	0.013	0.0098	0.013	0.016	0.014	0.038	0	0	0.022	0.11	0.022	0.059	0.0083
		Max:	0.0076 170	141	81.3	123	6.2	1.2	0.0098	0.016	0.76	1.1	0.038	0	0	3.3	30.8	1,500	29	4.5
Groundwater SL:			NS	NS	NS	NS	3,000	NS	NS	0.2	0.2	NS	0.2	NS	NS	400	400	100	3,000	250
Number of Samples that Exceed Groundwater SL:			0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	2	0	0
WI Groundwater PAL:			NS	NS	NS	NS	600	NS	NS	0.02	0.02	NS	0.02	NS	NS	80	80	10	NS	50
Number of Samples that Meet or Exceed WI PAL:			<u>o</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	1	<u>0</u>	1	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	3	<u>0</u>	<u>0</u>
Tap Water RSL:			1.1	36	530	530	1,800	0.03	2.5	0.025	0.25	120	25	0.025	0.25	800	290	0.17	1,800	120 0
Number of Samples that Exceed Tap Water RSL:			3	2	0	0	0	2	0	0	1	_ 0	0	0	0	0	0	3	0	U

Sorted by 9-digit Code

Analyte concentration excee	ds the standard for.
BOLD	Groundwater SL
Underline	WI Groundwater PA
Italic	Tap Water RSL

Yellow Highlighting in Statistics = detected Exceedances

Pink highlighting in the table= a GW SL exceedance;

results only exceeding the PAL and/or Tap Water criteria are not highlighted.

Statistics exclude the quality control samples (Equipment and Trip Blanks)

-- = Analysis not performed

< = Concentration is less than reported limit

 $\mu\text{S/cm} = \text{microsiemens per centimeter}$ (aka micromhos per centimeter)

μg/L = micrograms per liter

BTEX = Benzene, Toluene, Ethylbenzene and Xylene

Deg C = degrees Celsius

J = Estimated Concentration

mg/L = milligrams per liter

(N) = Normalized sample locations created from combining parent

and field duplicate samples following EPA protocol

RSL = Regional Screening Level

s.u. = standard units

SL = Screening Level

NS = No Screening Level

NTU = Nephelometric Turbidity Unit

PAH = Polycyclic Aromatic Hydrocarbon

U = Concentration was not detected above the reported limit

RNA = Remediation by Natural Attenuation (lab and field)

Lab comments and definitions can be found in associated laboratory reports.

PAL = Preventive Action Limit; results that attain or exceed this criteria are considered in exceedance of the PAL

Screening Levels:

Screening Levels used on this table were presented in the Multi-Site Risk Assessment Framework (RAF) Addendum Revision 6, issued in August 2017. Since that time, three revisions of the RSLs have been published by EPA in November 2017, May 2018, and November 2018. As a result of these three revisions, there were no updates to the RSLs necessary for the MGP-related constituents evaluated in this table.

The Groundwater SL presented is the more conservative of the State and MCL values presented in the RAF Addendum Revision 6. PAL from Chapter NR 140 for Groundwater Quality from Wisconsin Admin Code (Feb 2017)

Table 1 - December 2018 Groundwater Sample Results

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Campmarina

732 Water Street, Sheboygan, Wisconsin BRRTS#: 0260000095 FID#: 460134950 USEPA#: WIN000510058

			BTEX	BTEX	BTEX	BTEX	Inorganic	Inorganic	Organic	RNA	RNA	RNA	RNA	RNA	RNA	RNA
9-digit Code	Sample Location	Sample Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	Nitrogen, NO2 + NO3, Total	Sulfate, Total	Methane	Dissolved Oxygen	Groundwater, depth to	Oxidation Reduction Potential	PH, Field	Specific Conductance, Field	Temperature, Water	Turbidity, Quantitative
	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	feet	millivolts	s.u.	μS/cm	Deg C	NTUs		
			Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag	Value / Flag
			_		000	2.000	ALC.	N/C	NS	NS	NS	NS	NS	NS	NS	NS
		Groundwater SL:	5	700	800	2,000	NS	NS 105.000					NS NS	NS NS	NS NS	NS NS
	WI	Groundwater PAL:	0.5	140	<u>160</u>	400	2,000	125,000	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
		Tap Water RSL:	0.46	1.5	1,100	190	NS	NS	NS	NS	NS	NS	143	N3	NS	1/13
121318001	MW-709R	12/13/2018	<0.25 U	<0.22 U	<0.17 U	<1.5 U	<95 U	37,500	2,570	0.15	4.24	-125.6	7.07	1749.2	9.99	6.77
121318001	MW-708	12/13/2018	<0.25 U	<0.22 U	<0.17 U	<1.5 U	250 J	55,200	<1.4 U	2.40	9.86	27.2	7.23	3338.5	10.46	16.40
		12/13/2018			10.1 J	143	<95 U	279,000	12,900	0.11	4.11	-183.7	7.14	1927.5	9.54	9.02
121318003/121318004 (N)	MW-707R		<u>1,310</u>	<u>1,190</u>						0.11	4.04	-147.6	7.04	600.1	9.37	3.13
121318005	PZ-703	12/13/2018	<u>392</u>	<u>179</u>	10.9 J	84.3	290	1600 J	2,140 <1.4 U			-4.1	7.41	200.0	9.37	1.55
121318006	PZ-701	12/13/2018	<0.25 U	<0.22 U	<0.17 U	<1.5 U	<95 U	1800 J	1211	3.19	6.07		6.93	1109.6	9.98	8.60
121318007	MW-701R	12/13/2018	4,140	<u>585</u>	<u>2,830</u>	<u>646</u>	330	116,000	5.1	0.16	8.14	-147.6				
121318008	PZ-702	12/13/2018	<0.25 U	<0.22 U	<0.17 U	<1.5 U	130 J	129,000	<1.4 U	2.38	5.69	-4.0	7.34	943.9	9.74	6.22
121318009	MW-706	12/13/2018	<u>3,710</u>	<u>280</u>	16.8 J	126 J	<95 U	<5,000 U	4,920	0.13	5.20	-149.2	6.42	2366.4	9.80	17.52
121318012	MW-705	12/13/2018	Pr1								5.60					
121318013	SG-703	12/13/2018									1.20					
121318010	EB01	12/13/2018	<0.25 U	<0.22 U	<0.17 U	<1.5 U										
121318011	TB01	12/13/2018	<0.25 U	<0.22 U	<0.17 U	<1.5 U										
									1							T 0
Total Number of Samples Analyzed:			10 4	10	10 4	10 4	8	8 7	8 5	8 8	10 10	8 8	8 8	8 8	8 8	8 8
Number of Detections: Min:			392	179	10.1	84.3	130	1,600	5.1	0.11	1.2	-183.7	6.42	200	9.37	1.55
	Max:			1,190	2,830	646	330	279,000	12,900	3.19	9.86	27.2	7.41	3,339	10.46	17.52
Groundwater SL:			5	700	800	2,000	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Number of Samples that Exceed Groundwater SL:			4	1	1	0	0	0	0	0	0	0	0	0	0	0
WI Groundwater PAL:			0.5	140	160	400	2,000	125,000	NS	NS	NS	NS	NS	NS <u>0</u>	NS <u>0</u>	NS <u>0</u>
Number of Samples that Meet or Exceed WI PAL:			4	4	1	1	0	2	<u>0</u>	<u>0</u>	0	0	0		NS NS	NS NS
Tap Water RSL:			0.46 4	1.5 4	1,100 1	190	NS O	NS O	5	NS O	NS O	NS O	NS O	NS O	0	0
Number of Samples that Exceed Tap Water RSL:			4	4	1	1			3					:SGW 1/8/19, C:KJS :		

Sorted by 9-digit Code

Analyte concentration exceeds the standard for:

BOLD	Groundwater SL
<u>Underline</u>	WI Groundwater PA
Italic	Tap Water RSL

Yellow Highlighting in Statistics = detected Exceedances

Pink highlighting in the table= a GW SL exceedance;

results only exceeding the PAL and/or Tap Water criteria are not highlighted.

Statistics exclude the quality control samples (Equipment and Trip Blanks)

-- = Analysis not performed

< = Concentration is less than reported limit

μS/cm = microsiemens per centimeter (aka micromhos per centimeter)

μg/L = micrograms per liter

BTEX = Benzene, Toluene, Ethylbenzene and Xylene

Deg C = degrees Celsius J = Estimated Concentration

mg/L = milligrams per liter

(N) = Normalized sample locations created from combining parent and field

duplicate samples following EPA protocol

Screening Levels:

Screening Levels used on this table were presented in the Multi-Site Risk Assessment Framework (RAF) Addendum Revision 6, issued in August 2017. Since that time, three revisions of the RSLs have been published by EPA in November 2017, May 2018, and November 2018. As a result of these three revisions, there were no updates to the RSLs necessary for the MGP-related constituents evaluated in this table.

The Groundwater SL presented is the more conservative of the State and MCL values presented in the RAF Addendum Revision 6.

PAL from Chapter NR 140 for Groundwater Quality from Wisconsin Admin Code (Feb 2017)

NS = No Screening Level

NTU = Nephelometric Turbidity Unit

PAH = Polycyclic Aromatic Hydrocarbon

PAL = Preventive Action Limit; results that attain or exceed this criteria are considered in exceedance of the PAL

RNA = Remediation by Natural Attenuation (lab and field)

RSL = Regional Screening Level

s.u. = standard units

SL = Screening Level

U = Concentration was not detected above the reported limit

Lab comments and definitions can be found in associated laboratory reports.

