AT&T Communications, Inc.

Chicago, IL

Soil and Groundwater
Investigation and
Anti-Seep Plug Installation
at AT&T Cable Site in
Appleton, Wisconsin

ENSR Consulting and Engineering

(Formerly ERT)

May 12, 1989

Document Number 0550-029-510

ENSR Corporation Offices

Alaska California

Colorado

Anchorage Los Angeles Orange County

Ventura County San Francisco

Connecticut

Fort Collins Hartford

Dist. of Columbia

Georgia Atlanta
Illinois Chicago
Louisiana New Orleans
Massachusetts Boston
Minnesette

Minnesota Minneapolis
New Jersey New Brunswick

Ohio Canton Pennsylvania Philadelphia

Pittsburgh

Texas Dallas

Washington Seattle
Puerto Rico San Juan
Ontario, Canada Toronto

May 12, 1989

ENSR Consulting and Engineering

740 Pasquinelli Drive Suite 124 Westmont, IL 60559 (312) 887-1700

Mr. John Seigla
AT&T Communications, Inc.
One North Wacker Drive, Room 605
Chicago, Illinois 60606

SUBJECT: Final Report of Soil and Groundwater Investigation and

Anti-Seep Plug Installation at AT&T Cable Site in

Appleton, Wisconsin

Dear Mr. Seigla:

Transmitted herewith are three copies of our Final Report describing ENSR services, analytical results, and conclusions regarding our services for AT&T at the subject fiberoptic cable site in Appleton, Wisconsin.

This report documents our investigation at and adjacent to the cable route (Phase I) and along potential alternate routes (Phase II). It also documents the installation of three of four planned anti-seep plugs (Phase III) and of the final anti-seep plug (Phase IV).

If you have questions or comments, please call. We appreciate the opportunity to be of continuing service to AT&T on this interesting project.

Very truly yours,

Larry M. Campbell, P.E.

General Manager Chicago Operations

LMC/lmq

ENSR Program No. 0550-029-510 Ref. #89-05-Q121

Enclosures

cc: M. DeBartolo

A. Basile

D. Cheney

May 12, 1989

ENSR Consulting and Engineering

740 Pasquinelli Drive Suite 124 Westmont, IL 60559 (312) 887-1700

Mr. John Seigla AT&T Communications, Inc. One North Wacker Drive, Room 605 Chicago, Illinois 60606

SUBJECT: Final Report of Soil and Groundwater Investigation and

Anti-Seep Plug Installation at AT&T Cable Site in

Appleton, Wisconsin

Dear Mr. Seigla:

Transmitted herewith are three copies of our Final Report describing ENSR services, analytical results, and conclusions regarding our services for AT&T at the subject fiberoptic cable site in Appleton, Wisconsin.

This report documents our investigation at and adjacent to the cable route (Phase I) and along potential alternate routes (Phase II). It also documents the installation of three of four planned anti-seep plugs (Phase III) and of the final anti-seep plug (Phase IV).

If you have questions or comments, please call. We appreciate the opportunity to be of continuing service to AT&T on this interesting project.

Very truly yours,

Larry M. Campbell, P.E.

General Manager Chicago Operations

LMC/lmq

ENSR Program No. 0550-029-510 Ref. #89-05-Q121

Lawy M. Campbell

Enclosures

cc: M. DeBartolo

A. Basile

D. Cheney

AT&T Communications, Inc.

Chicago, IL

Soil and Groundwater
Investigation and
Anti-Seep Plug Installation
at AT&T Cable Site in
Appleton, Wisconsin

ENSR Consulting and Engineering (Formerly ERT)

May 12, 1989

Document Number 0550-029-510

TABLE OF CONTENTS

				Page
1.0	INTR	ODUCTION		1-1
	1.1	Scope of	Work	1-1
	1.2	Backgrour	nd	1-3
2.0	PHAS	E I		2-1
	2.1	Soil and	Groundwater Investigation	2-1
		2.1.1	Borings	2-1
		2.1.2	Soil Sampling	2-3
		2.1.3	Groundwater Samples	2-4
		2.1.4	Decontamination Procedures	2-4
	2.2	Analytica	al Results	2-5
		2.2.1	Soil	2-5
		2.2.2	Groundwater	2-8
	2.3	Discussio	on .	2-8
3.0	PHAS	E II		3-1
	3.1	Soil and	Groundwater Investigation	3-1
		3.1.1	Borings	3-1
		3.1.2	Soil Sampling	3-1
٠		3.1.3	Groundwater Sampling	3-3
	•	3.1.4	Decontamination Procedures	3-3
	3.2	Analytica	al Results	3-3
		3.2.1	Soil	3-3
		3.2.2	Groundwater	3-3
	3.3	Discussio	on	3-3
4.0	PHAS	E III		4-1
	4.1	Soil and	Groundwater Investigation	4-1
		4.1.1	Pit Excavations	4-1
		4.1.2	Soil Sampling	4-1
		4.1.3	Groundwater Sampling	4-3
		4.1.4	Decontamination Procedures	4-3
	4.2	Analytica	al Results	4-4
		4.2.1	Soil	4-4
		4.2.2	Groundwater	4-4
	4.3	Discussio	on	4-4
	4.4	Anti-Seep	Plug Construction	4-6

TABLE OF	CONTENTS	(Con't.
----------	----------	---------

							Page
5.0	PHAS	E IV					5-1
	5.1	Soil	Investigat	cion			5-1
		5.1.1	Soil	Sampli	ng		5-1
		5.1.2	Decor	ntamina	tion Procedur	es	5-1
	5.2	Analy	tical Resu	ılts			5-1
	5.3	Discu	ssion				5-3
	5.4	Anti-	Seep Plug	Constr	uction		5-3
6.0	CONC	LUSION	S				6-1
				LIST O	F FIGURES		
No.	<u>Titl</u>	<u>.e</u>					Page
1-1	Site	Locat	ion Map				1-2
2-1	Phas	e I Bo	ring Locat	ions			2-2
3-1	Phas	e II B	oring Loca	ations			3-2
4-1	Phas	e III	Pit Locati	ions			4-2
				LIST C	F TABLES		
No.	<u>Titl</u>	<u>e</u>					<u>Page</u>
2-1	Anal	ytical	Results:	Phase	I Soil	•	2-6
2-2	Anal	ytical	Results:	Phase	I Groundwate	r	2-9
3-1	Anal	ytical	Results:	Phase	II Soil		3-4
4-1	Anal	ytical	Results:	Phase	III Soil		4-5
4-2	Anal	ytical	Results:	Phase	III Groundwa	ter	4-7
5-1	Anal	ytical	Results:	Phase	IV Soil (Pit	В)	5-2

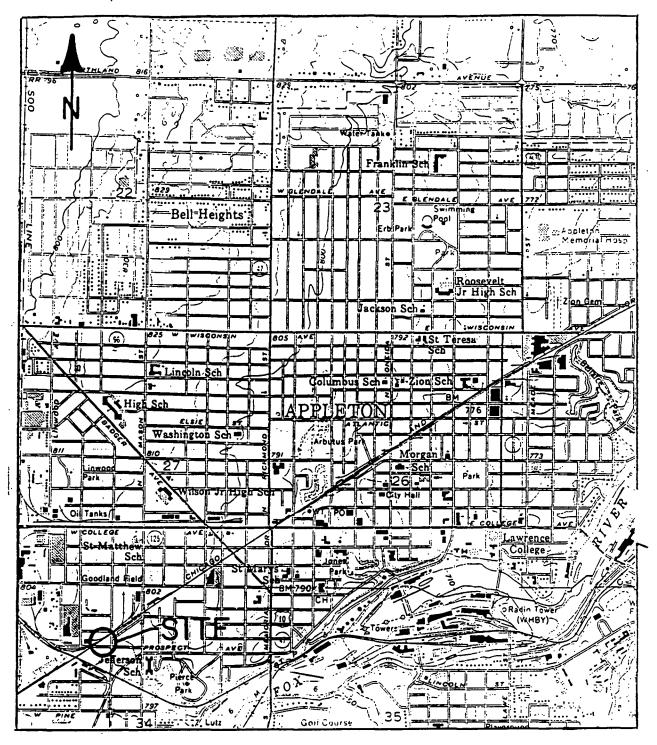
LIST OF APPENDICES

APPENDIX A: SOIL BORING LOGS

APPENDIX B: PIT LOGS

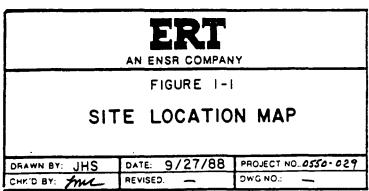
APPENDIX C: ANALYTICAL DATA

1.0 INTRODUCTION


1.1 Scope of Work

ENSR Consulting and Engineering (formerly ERT, Inc.) was retained by AT&T Communications to perform a multi-phase soil and groundwater investigation and to supervise the construction of anti-seep plugs on a site in Appleton, Wisconsin. The site, shown in Figure 1-1, contains chromium and volatile organic compounds (VOCs) deposited by another party through which AT&T Communications and U.S. Sprint, without knowledge of these chemical constituents, had each subsequently installed fiberoptic telecommunication cables.

As a result of the above actions, AT&T retained ENSR to perform the following phases of work:


- Phase I Soil and groundwater investigation of the area adjacent to the previously installed AT&T cable.
- Phase II Soil and groundwater investigation of two proposed alternate cable routes that bypassed the area.
- Phase III Soil and groundwater investigation of the locations of the anti-seep plugs and the supervision of their construction.
- Phase IV Soil investigation and construction of an anti-seep plug at a location southwest of Outagamie Street.

May 12, 1989 Page 1-1

Ref.: USGS Map Appleton, Wi. Quadrangle 1975

1.2 Background

The area in question is approximately 450 ft long and is bounded on the northeast by Outagamie Street and on the southwest by Second Street. This property is owned by the Chicago and Northwestern Railroad Company (C&NW) and has a pair of parallel railroad tracks passing through it. The AT&T cable was installed in an easement south of the southern track.

According to information provided by the Wisconsin Department of Natural Resources (WDNR) from their previous sampling in the area, the property contains elevated concentrations of chromium and chlorinated solvents in the groundwater. These constituents are attributed to a 1979 chromic acid spill from the N.W. Mauthe Co. chrome plating facility, located immediately north of and adjacent to the property.

Analytical results from the WDNR sampling indicated that elevated concentrations of organic compounds (as high as 18,000 parts per billion (ppb) in the case of 1,1,1-trichloroethane) and inorganic compounds (as high as 1,510,000 ppb in the case of chromium) existed in the groundwater. To remedy the problem, the WDNR installed a French drain liquid collection system in the area, but its operation was discontinued a few years ago.

On June 21, 1988, the U.S. Environmental Protection Agency (U.S. EPA) added the site to the federal National Priorities List (NPL) of sites eligible for investigation and response under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA, known as Superfund). In September 1988, WDNR entered into an agreement with U.S. EPA to conduct a Remedial Investigation/Feasibility Study of the site.

2.0 PHASE I

2.1 Soil and Groundwater Investigation

The Phase I soil and groundwater investigation was performed to investigate the nature and concentration of constituents in the area between Outagamie and Second Streets where the AT&T fiberoptics cable had been installed. Field sampling was conducted during the period October 5 through 7, 1987 in accordance with the ERT Sampling Plan (ERT Document No. G417-200) dated October 2, 1987.

2.1.1 Borings

The boring locations from where the Phase I soil and groundwater samples were taken are depicted in Figure 2-1. Borings along the AT&T cable route were spaced approximately 65 ft apart and kept at least 1.5 ft south of the cable. The AT&T cable had been installed in an easement approximately 9 ft southeast of the centerline of the southern railroad track. All borings were performed at the numbered locations except for boring 9 which was abandoned due to its proximity to the U.S. Sprint cable and the WDNR groundwater collection system.

Boring locations were approved in advance by Finley Engineering Company acting as AT&T's field construction coordinator. A C&NW representative was present during all activities conducted on C&NW property.

In all, nine borings were made using a stainless steel hand auger with a 3-in.-diameter bucket. With the exception of boring 6, all borings were advanced to a depth of 4 ft; boring 6 was only advanced to a depth of 3.5 ft, where an impenetrable gravel layer was encountered. Logs of the nine borings are included in Appendix A.1.

AT&T Communications, Appleton,

Page 2-2

2.1.2 Soil Sampling

Phase I soil samples were collected and prepared for analyses and shipment in the following manner:

- a. Two grab samples were taken from depths of 3.5 and 4.0 ft from each boring, placed into a stainless steel mixing bowl and covered with a plastic lid. After the two grab samples had been composited, they constituted a single representative soil sample for that boring.
- b. A portion of the composited soil sample was then transferred into an 8 oz. wide-mouth glass jar (for total and hexavalent chromium analysis) and three 40 ml vials (to test for the presence of VOCs). The remainder of the soil sample was returned to the boring from which it had been taken.
- c. The soil sample jar and vials were then labeled for analysis and marked with an identification number corresponding to its boring location (unless otherwise noted).
- d. After all the soil samples had been collected and prepared for analyses, they were placed into coolers. Then, to preserve the samples at the specified 4°C, they were packed with ice and accompanied with the proper chain-of-custody forms. The coolers were then affixed with identification seals, packaged, and sent to ERT laboratories in Houston, TX, (for chromium analysis) and Wilmington, MA, (for VOC analysis) via overnight courier.

2.1.3 Groundwater Samples

Groundwater was encountered at three boring locations. These locations are shown in Figure 2-1, along with the WDNR collection system sump from which an additional groundwater sample was taken. The samples were collected with a stainless steel bailer and prepared for analyses and shipment in the following manner:

- a. A portion of the groundwater collected in the bailer was poured into two 4 oz. amber glass jars (one for total chromium and one for hexavalent chromium analyses) and three 40 ml vials (to test for the presence of VOCs).
- b. The groundwater sample for the total chromium analysis was then acidified, dropwise with nitric acid, to a pH of less than 2 for preservation purposes.
- c. The remaining portion of the groundwater in the bailer was then returned to the boring from which it had been taken.
- d. The groundwater sample jars and vials were prepared for analysis and shipment in the manner described in Sections 2.1.2.c and d.

2.1.4 Decontamination Procedures

To insure the integrity of the soil and groundwater samples, the following decontamination procedures were followed:

a. A decontamination station was set up in the field. The station consisted of one washtub of non-phosphate Alconox detergent and deionized water, one washtub of

deionized water, a pump sprayer of deionized water, scrub brushes and Kimwipes.

- b. Between obtaining soil samples, the bucket of the hand auger was removed, scrubbed, rinsed with deionized water, and dried with Kimwipes. This procedure was also used for decontaminating the bailer between groundwater samples.
- c. Sampling personnel applied a new pair of gloves between collection of each soil and groundwater sample.
- d. All rinse water from the decontamination process was disposed into the sump of the WDNR collection system.

 Mr. Terry Hegeman of the WDNR approved such disposal during a telephone conversation with ERT's sample team leader, Mr. Scott Veenstra, on October 1, 1987.
- e. To check that the decontamination procedures were effective, deionized water was poured over the decontaminated sampling equipment and collected for analyses. This sample constituted a field blank. The deionized water itself was also collected for analyses and constituted a shipping blank. Both blanks were collected and prepared for shipment and analyses in the manner described in Section 2.1.3.

2.2 Analytical Results

2.2.1 Soil

The analytical results for the Phase I soil samples are summarized in Table 2-1. Each soil sample was taken from the boring location that corresponds to its sample number, unless noted otherwise (e.g., duplicate sample, field blank). All soil samples were analyzed for concentrations of total and hexavalent

TABLE 2-1

ANALYTICAL RESULTS: PHASE I SOIL

Sample No.	Total Chromium (mg/kg)	Hexavalent Chromium (mg/kg)	Total Chromium of Leachate (mg/kg)	VOC <u>Detected</u>	(hā\ā) Couc· AOC
SB-01	26	<20	<2	2-Butanone	1.4 B ¹
SB-02	45	<20	<2	NA ²	-
SB-03	98	<20	<2	2-Butanone	1.4 B
SB-04	519	50	64	2-Butanone	1.4 B
SB-12 ³	478	54	72	2-Butanone	1.1 B
SB-05	59	<20	<2	NA	-
SB-06	238	<20	<2	NA	-
SB-07	26	<20	<2	2-Butanone	1.2 B
SB-08	536	108	110	NONE	BDL4
SB-10	172	72	72	NA	-
	_				
MB870847	⁵ NA	NA	NA	2-Butanone	1.9
MB870848	6 _{NA}	NA	NA	2-Butanone	18 μg/l

Notes:

B = Detected in the method blank samples

NA = Not Analyzed

³ SB-12 is a duplicate of SB-04

BDL = Below Detection Limits (See Appendix C.1.b for detection limits of various VOCs)

⁵ Laboratory method blank for VOC analyses of muffled sand.

Analysis of laboratory water used in analysis of muffled sand method blank MB870847.

chromium and for total chromium concentration of the hexavalent chromium leachate. In addition, selected samples were analyzed for VOCs.

The total chromium concentration was determined by either atomic adsorption (AA) or inductively coupled plasma (ICP) analyses of the extract resulting from acid digestion of the soil sample. The total chromium analysis by AA was done in Phases I and II in accordance with Method 303A (Standard Methods for the Examination of Water and Wastewater, 16th Edition, 1985, APHA-AWWA-WPCF), and that by ICP (in Phases III and IV), in accordance with Method 6010 (EPA Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW-846, 2nd Edition, 1984).

The hexavalent chromium concentration was determined by the colormetric Method 312 B (Standard Methods). The total chromium concentration of the hexavalent chromium leachate was analyzed by a modified method in which the hexavalent chromium water leachate (without acid digestion) was analyzed by ICP for total chromium instead of by colormetric analysis for hexavalent chromium. The total chromium analysis of the leachate was intended only to give an indication of the maximum hexavalent chromium concentration, not that of total chromium. Total chromium is more properly represented by samples analyzed subsequent to acid digestion.

VOC concentrations in soils were determined by Method 8240 (EPA, SW-846).

Quality control (QC) samples included one duplicate (SB-12 is a duplicate of SB-04), a field blank (SB-13-W), a shipping blank, and two laboratory method blanks (MB870847, muffled sand, and MB870848, laboratory water used in analysis of muffled sand method blank MB870847). Complete laboratory reports are contained in Appendices C.1.a (chromium) and C.1.b (VOCs).

2.2.2 Groundwater

Groundwater was encountered at three of the Phase I boring locations and samples were collected. The analyzed results of these samples, and that taken from the WDNR collection sump, are summarized in Table 2-2. Field-measured pH values are also reported.

Total and hexavalent chromium analyses and VOC analysis were performed on all of the groundwater samples, except for the sample taken from the sump (SB-11-W). The sump water was only tested for the presence of total and hexavalent chromium. The chromium analyses were performed using the methods described in Section 2.2.1. VOC concentrations in water were determined using Method 624 (Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, revised March 1983).

In addition, SB-12-W (a duplicate sample of SB-04) was split in the laboratory so that duplicate laboratory analyses could be performed for VOCs. Finally, the field blank (SB-13-W) and shipping blank serve the same QC purposes for both the Phase I soil and Phase I groundwater sampling programs because the same deionized water was used during both decontamination processes. Laboratory method blank MB870842 was analyzed for VOCs.

2.3 Discussion

Concentrations of total chromium in soil ranged from 26 to 536 mg/kg (parts per million (ppm)) (Table 2-1) and generally decreased markedly with increasing distance from the chrome plating facility north of the railroad tracks (Figure 2-1). The smaller chromium concentrations (e.g., less than about 100 mg/kg) are typical for normally occurring chromium in soils. The larger concentrations, however, can be indicative of the chromic acid spill attributed by WDNR to the adjacent chrome plating facility. These higher concentrations occurred in borings 4, 6, 8 and 10.

ANALYTICAL RESULTS: PHASE I GROUNDWATER

May 12	Sample No.	Total Chromium (mg/l)	Hexavalent Chromium(mg/l)	VOC Detected	VOC Concentration (ug/l)	Field pH (S.U.)
, 1989	SB-03-W	31	341	1,1-Dichloroethane 1,1,1-Trichloroethane Carbon Tetrachloride Trichloroethene	16 330 52 59	7.20
	SB-04-W	42	741	1,1-Dichloroethene 1,1-Dichloroethane Trans-1,2-Dichloroethene 1,1,1-Trichloroethane Carbon Tetrachloride Trichloroethene	18 26 18 530 86 41	7.20
	SB-12-W ²	105	68 ¹	1,1-Dichloroethene 1,1-Dichloroethane Trans-1,2-Dichloroethene 1,1,1-Trichloroethane Carbon Tetrachloride Trichloroethene	17 25 17 510 82 40	7.15
	SB-12-W DUP ³	NA ⁴	NA	1,1-Dichloroethene 1,1-Dichloroethane Trans-1,2-Dichloroethene 1,1,1-Trichloroethane Carbon Tetrachloride Trichloroethene	20 28 19 560 90 44	NA
Page 2-9	SB-08-W	280	3501	1,1-Dichloroethene 1,1-Dichloroethane Trans-1,2-Dichloroethene 1,1,1-Trichloroethane Carbon Tetrachloride Trichloroethene	94 47 77 1,400 240 590	6.90

TABLE 2-2 (Con't.)

י נר	Sample No.	Total Chromium (mg/l)	Hexavalent Chromium _(mg/l)	VOC Detected	VOC Concentration (ug/l)	Field pH (S.U.)
1000	SB-11-W (Collection Su	219 mp)	2121	NA	NA	7.05
	SB-13-W ⁵ (Field Blank)	<0.04	<0.5 ¹	NONE	BDL ⁶	NA
	Shipping Blank ⁵	<0.04	<0.51	NONE -	BDL	NA
	MB870842 ⁷	NA	NA	Acetone	40	NA

Notes:

- 1 The maximum holding time for this analysis after sampling (24 hrs.) was exceeded
- 2 SB-12-W is a duplicate of SB-04-W
- 3 SB-12-W DUP is a laboratory duplicate of SB-12-W
- 4 NA = Not Analyzed
- 5 Deionized water
- 6 BDL = Below Detection Limits (See Appendix C.1.b for detection limits of various VOCs)
- 7 Laboratory method blank

Hexavalent chromium concentrations in soil were generally low except in those borings exhibiting high total chromium concentrations. The detection limit for hexavalent chromium determined by the colormetric method was typically 20 mg/kg. This detection limit was effectively lowered to 2 mg/kg by performing a total chromium analysis on the leachate of the hexavalent chromium analysis. Since the total chromium analysis measures the concentration of both trivalent and hexavalent chromium, the concentration of hexavalent chromium cannot, theoretically, exceed that of the total chromium.

With the exception of 2-butanone, VOCs were not detected in the analyzed soil samples. 2-Butanone was also found in the laboratory water used in the analysis of method blank MB870847 (see MB870848 in Table 2-1) and is considered an artifact of the laboratory procedure - not a constituent in the soil sample.

Total and hexavalent chromium were detected in all groundwater samples collected from borings 3, 4 and 8 and from the south collection sump (SB-11) (Table 2-2). Total chromium concentrations ranged from 31 to 280 mg/l (i.e., ppm), and hexavalent concentrations, from 34 to 350 mg/l - all of which exceed the WDNR 5 mg/l criteria that classifies the liquid as hazardous.

As stated previously, the concentration of hexavalent chromium cannot theoretically exceed that of total chromium for a sample. It should be understood that values reported for total chromium and hexavalent chromium were determined using two distinct methods, each of which has its own associated precision and accuracy. When the precision of the methods are considered, the values reported in Table 2-2 for each sample agree within the associated precision of the measurements. It is reasonable to assume for these samples that the reported hexavalent chromium represents all chromium present within the precision of the measurements.

These groundwater samples also exhibited elevated concentrations of various chlorinated solvents, similar to those

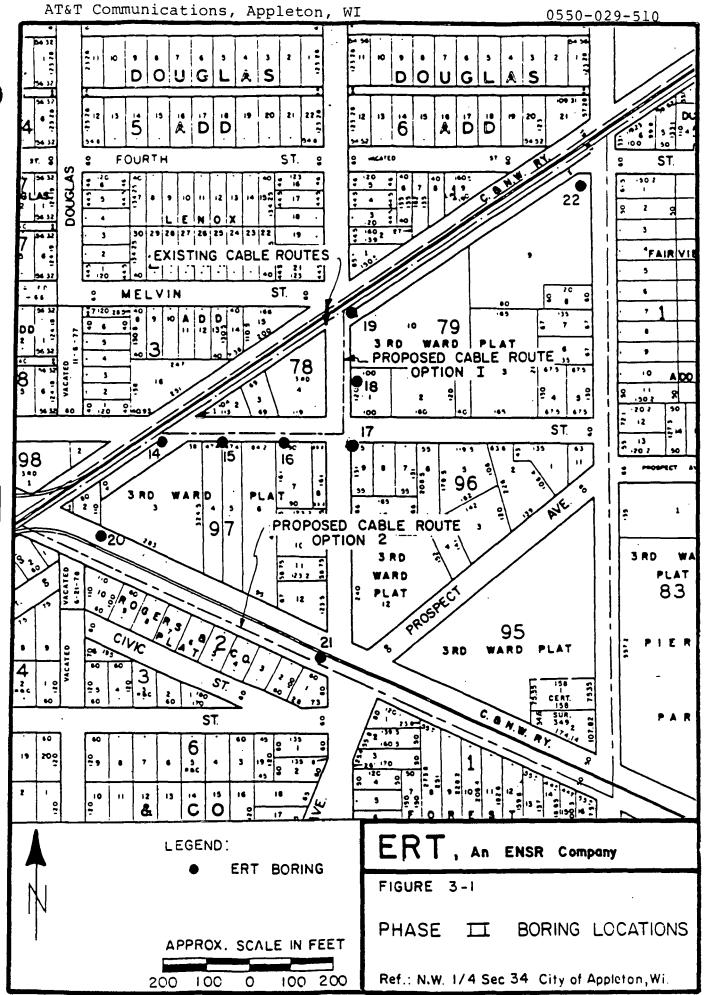
results obtained by WDNR during previous groundwater sampling. In particular, 1,1,1-trichloroethane was found in all analyzed groundwater samples at concentrations ranging from 330 to 1400 μ g/l (i.e., ppb). The field pH of these samples was neutral, ranging from 6.90 to 7.20.

Based on these results, ERT and AT&T concluded that the area contained constituents that would preclude maintenance of the fiberoptics cable by regular maintenance personnel and could possibly impact the operational performance of the cable. In addition, future cleanup operations by other parties could interfere with cable operations. Accordingly, AT&T requested that ERT investigate alternate routes to bypass the area investigated during Phase I activities. Alternate routes were investigated in Phase II, as described in Section 3.0.

3.0 PHASE II

3.1 Soil and Groundwater Investigation

The Phase II soil and groundwater investigation was performed for AT&T to investigate the potential presence of chromium and VOC constituents along two alternate cable routes that bypassed the area studied in Phase I. The Phase II field sampling was conducted during the period October 26 and 27, 1987. The Phase II investigation procedures are described in ERT correspondence (Ref. #87-10-033) dated October 21, 1987, and applicable portions of the original Sampling Plan (ERT Document No. G417-200).


3.1.1 Borings

The borings from which the Phase II soil samples were taken are depicted in Figure 3-1. Soil boring locations were approved in advance of drilling by permit from the City of Appleton. All borings were advanced to a depth of 4 ft at the numbered locations, except for borings 20 and 22. The location of boring 20 was moved approximately 100 ft to the southeast due to encountering impenetrable fill material at the planned location. The location of boring 22 was moved to the southwestern corner of Fourth and Mason Streets to be closer to the proposed option-2 cable route. In all, nine borings were made using a stainless steel hand auger with a 3-in.-diameter bucket. Logs of these borings are included in Appendix A.2.

3.1.2 Soil Sampling

Phase II soil samples were collected and prepared for shipment and analyses in the manner described in Section 2.1.2.

May 12, 1989 Page 3-1

3.1.3 Groundwater Sampling

Groundwater was not encountered at any of the Phase II boring locations.

3.1.4 Decontamination Procedures

Phase II decontamination procedures were followed in the manner described in Section 2.1.4.

3.2 Analytical Results

3.2.1 Soil

The analytical results for the Phase II soil samples are summarized in Table 3-1. Each soil sample was analyzed for total and hexavalent chromium, total chromium of the hexavalent chromium leachate, and VOCs, using the methods described in Section 2.2.1. Total chromium was analyzed using the AA technique. QC samples included one duplicate (SB-23 is a duplicate of SB-16), a field blank (SB-24-W), and a shipping blank. Complete laboratory results are contained in Appendices C.2.a (chromium) and C.2.b (VOCs).

3.2.2 Groundwater

Groundwater was not encountered in Phase II borings.

3.3 Discussion

Concentrations of total chromium in soil along the alternate cable routes ranged from 25 to 48 mg/kg, concentrations that are not unexpected in soils. Hexavalent chromium and VOCs were not found in concentrations above their detection limits (Table 3-1).

May 12, 1989 Page 3-3

TABLE 3-1
ANALYTICAL RESULTS: PHASE II SOIL

Sample No.	Total Chromium (mg/kg)	Hexavalent Chromium (mg/kg)	Total Chromium of Leachate(mg/kg)	VOC Detected	VOC Conc. (μg/kg)
SB-14	25	<20	<1	None	\mathtt{BDL}^{1}
SB-15	26	<20	<1	None	BDL
SB-16	40	<20	3.4	None	BDL
SB-23 ²	44	<20	<1	None	BDL
SB-17	26	<20	<1	None	BDL
SB-18	28	<20	<1	None	BDL
SB-19	38	<20	<1	None	BDL
SB-20	40	<20	<1	None	BDL
SB-21	40	<20	<1	None	BDL
SB-22	48.	<20	<1	None	BDL
SB-24-W (Field Blank) ³	<0.04 mg	/l <2 mg/l ⁴	<0.01 mg/l	None	BDL
Shippin Blank ³	g <0.04 mg	/l <2 mg/l ⁴	<0.01 mg/l	None	BDL

Notes:

BDL = Below Detection Limits (See Appendix C.2.b for detection limits of various VOCs)

² SB-23 is a duplicate of SB-16

³ Deionized water

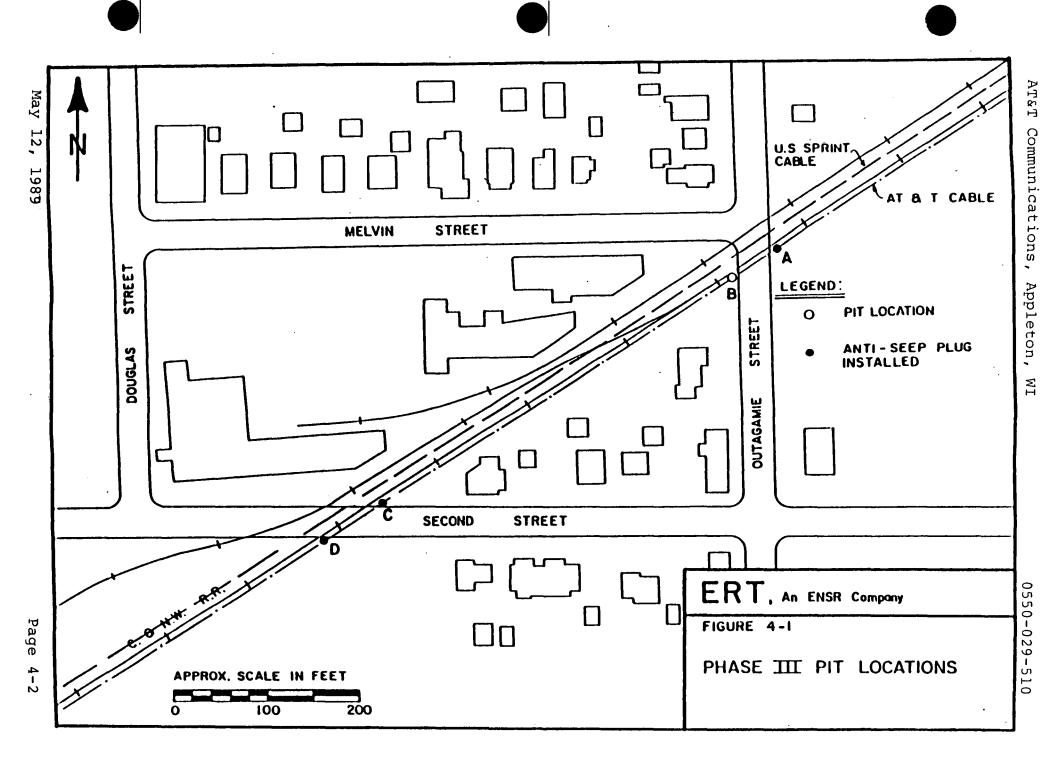
⁴ The maximum holding time for this analysis after sampling (24 hrs.) was exceeded

Based on these results, ERT concluded in a December 4, 1987, letter to AT&T (Ref. #87-12-H022) that neither of the alternate routes appear to have been affected by the chromium and VOC constituents that were encountered along the existing cable route. Either alternate route should therefore be suitable as a bypass route.

AT&T and U.S. Sprint subsequently installed new cables in a common trench (mandated by the City of Appleton) along the shorter route (Option 1) along Outagamie and Second Streets (Figure 3-1). They both abandoned their cables in the area between Outagamie and Second Streets that was investigated during Phase I.

4.0 PHASE III

4.1 Soil and Groundwater Investigation


The Phase III soil and groundwater investigation was performed for AT&T to investigate and document the potential chromium and VOC constituents at proposed locations of anti-seep plugs to be constructed at each end of the cable conduits under Outagamie and Second Streets. The Phase III investigation and anti-seep plug construction were performed in accordance with ERT correspondence (Ref. #87-12-H022) dated December 4, 1987, and applicable portions of the original Sampling Plan (ERT Document No. G417-200). The Phase III field work was performed during the period December 7 through 11, 1987.

4.1.1 Pit Excavations

The pit excavation locations (A, B, C and D) from which the Phase III samples were taken are shown in Figure 4-1. All Phase III pit excavations were performed at the lettered locations using both a backhoe and hand labor. This work was performed by Michaels Pipeline Construction Co. Pit logs are contained in Appendix B.

4.1.2 Soil Sampling

Phase III soil samples were taken from pit locations A, B, C and D. In addition, background samples were taken from pits B and C. A QC duplicate sample was also taken from pit B. The samples were collected and prepared for analyses and shipment in the following manner:

- a. Each soil sample was collected with a stainless steel spoon, placed into a stainless steel bowl and covered with a plastic lid. This constituted a single soil sample. All soil samples were taken from the undisturbed soils from the pit walls closest to the Mauthe facility (i.e., southwestern walls of pits A and B, and northwestern walls of pits C and D).
- b. The actual soil samples were taken immediately below the steel conduit (pits A and D) or plastic interduct (pits B and C) exposed in each pit excavation.
- c. Background soil samples were taken in pits B and C in apparently undisturbed soil approximately 2 ft laterally from the exposed conduits and at about the same depths.
- d. Phase III soil samples were prepared for shipment and analyses in the manner described in Section 2.1.2.

4.1.3 Groundwater Sampling

Groundwater was not encountered at pit location B immediately following excavation, but seeped into the excavation during the night, as described in ERT Ref. #88-01-Q150 dated January 22, 1988. This water was collected and prepared for shipment and analysis in the manner described in Section 2.1.3.

4.1.4 Decontamination Procedures

Phase III decontamination procedures were followed as described in Section 2.1.4.

May 12, 1989 Page 4-3

4.2 Analytical Results

4.2.1 Soil

The analytical results for the Phase III soil samples are summarized in Table 4-1. Each soil sample was taken from the pit location that corresponds to its sample number. All samples were analyzed for total and hexavalent chromium, total chromium concentration of the hexavalent chromium leachate, and VOCs, as described in Section 2.2.1. Total chromium was analyzed using the ICP technique. Complete laboratory results are contained in Appendices C.3.a (chromium) and C.3.b (VOCs).

4.2.2 Groundwater

The analytical results for the Phase III groundwater sample from pit B and liquid field and shipping blanks are summarized in Table 4-2. Total and hexavalent chromium analyses, total chromium analysis of the non-acidified hexavalent chromium leachate, and VOC analysis were performed on the sample, as described in Section 2.2.2. QC field and shipping blanks for each day that samples were taken during Phase III operations were analyzed for these same chemicals except for the total chromium of the hexavalent chromium leachate.

4.3 Discussion

Total chromium concentrations in soils at pit locations A, B and D ranged from about 28 to 59 mg/kg. Concentrations were greater, however, in pit C - 92 and 158 mg/kg. Hexavalent chromium was found above detection limits only in pit B soils, at concentrations ranging from 2.30 to 5.94 mg/kg. VOCs were not detected in any soil samples above detection limits. Although these concentrations of chromium and VOCs are not atypical of soils in the area, the chromium levels in pit C may indicate a greater disbursement of chromium toward the southwest.

May 12, 1989 Page 4-4

TABLE 4-1

ANALYTICAL RESULTS: PHASE III SOIL

Sample		Total Chromium	Hexavalent Chromium	Total Chromium of Leachate	VOC	VOC
No.	Location ¹	(mg/kg)	(mg/kg)	(mg/kg)	Detected	(µg/kg)
A-1	С	30.6	<0.08	<0.08	None	BDL ²
B-1	С	59.0	2.56	2.88	None	BDL
B-2 ³	С	55.8	2.30	2.61	None	BDL
B-3	В	36.8	5.94	6.99	None	BDL
C-1	С	157.4	<0.08	<0.08	None	BDL
C-2	В	92.0	<0.08	<0.08	None	BDL
D-1	С	27.6	<0.08	<0.08	None	BDL

Notes:

B = Background soil sample, approximately 2 ft laterally
from C sample
C = sample collected from soil beneath conduit or interduct

BDL = Below Detection Limits (See Appendix C.3.b for detection limits of various VOCs)

³ Sample B-2 is a duplicate of B-1

The total and hexavalent chromium levels in the groundwater that had seeped into pit B during the night (Table 4-2) were found to be 5.84 and 5.40 mg/l, respectively, and may be considered RCRA hazardous (i.e., >5.0 mg/l) by WDNR. In addition, acetone was detected in VOC analyses of pit B groundwater. Toluene and chloroform were also detected at low levels in field and shipping blanks.

Based on these Phase III results, ERT concluded in a January 22, 1988, letter (Ref. #88-01-Q150) that chromium had not migrated along the fiberoptics cable line northeast of Outagamie Street or southwest of Second Street. This conclusion is based on the similarity of results from samples collected immediately beneath the fiberoptics cable and those collected from nearby undisturbed background locations in pits B and C (Table 4-1). In addition, the concentrations of Phase III soil samples collected from the pits (Table 4-1) are consistent with those collected from Phase I borings (Table 2-1) in those areas near Outagamie and Second Streets, and are also significantly less than those in the central portion of the site southeast of the Mauthe facility (see Figure 2-1).

4.4 Anti-Seep Plug Construction

The Phase III anti-seep plug construction was performed at pit locations A, C and D in accordance with the specifications contained in ERT correspondence (Ref. #87-12-H022) dated December 4, 1987. The anti-seep plugs were installed during the period December 7 through 11, 1987.

The construction of the anti-seep plugs was performed by Michaels Pipeline Construction Co., under the supervision of ERT, in the following manner:

a. The pit was excavated with a backhoe and hand labor so that the minimum 4 ft square, 2 ft wide, conduit-centered anti-seep plug volume was achieved.

TABLE 4-2
ANALYTICAL RESULTS: PHASE III GROUNDWATER

Sample No.	Total Chromium (mg/l)	Hexavalent Chromium (mg/l)	Total Chromium of Leachate (mg/1)	VOC <u>Detected</u>	VOC Conc. (µg/l)
B-W	5.84	5.40 ¹	5.70	Acetone	130
Field Blank ² :					
12/7/87	<0.01	<0.02	NA ³	Chloroform	8.2
12/8/87	<0.01	<0.002 ¹	NA	Chloroform	4.3
12/10/8	7 <0.01	<0.0021	NA	Toluene	4.7
Shipping Blank ² :					
12/7/87	<0.01	<0.02	NA	Chloroform	8.0
12/8/87	<0.01	<0.0021	. • NA	Chloroform	4.6
12/10/8	7 <0.01	<0.002 ¹	NA	Toluene	3.2
Laborato Blank ²	ry NA	NA	NA	None	BDL ⁴

Notes:

The maximum holding time for this analysis after sampling (24 hrs.) was exceeded

² Deionized water

³ NA = Not Analyzed

BDL = Below Detection Limits (See Appendix C.3.b for detection limits of various VOCs)

- b. The pit was formed with plywood (transverse to the cable direction) in a manner such that the plug extended into the undisturbed soil walls of the pit. The plywood form was then reinforced with 2 x 4 lumber.
- c. Before the plug mix was poured, the end of the exposed conduit was injected with an expanding polyurethane sealing compound to further decrease the chance of chromium seepage through the conduit.
- d. The anti-seep plug mixture of sand and bentonite was prepared by the 4X Corporation of Neenah, Wisconsin, and had the following composition per cubic yard:

<u>Material</u>	<u>Quantity</u>
Bentonite	600 lbs.
Sand*	2500 lbs.
Water	15 gal.

^{*}Includes approximate 4% moisture.

The bentonite used to prepare the anti-seep plug was Volclay TFS-81, a chemically treated bentonite formulated by American Colloid Co. to contain organic and inorganic chemical constituents.

The anti-seep plug mixture was supplied and transported to the site by 4X Corporation in a concrete mixer. As the mixture was poured into the pit, additional water was added from the mixer's tank in order to hydrate the bentonite to effect the plug. Workmen mixed, placed, and tamped the mixture into the pit to at least 2 ft above the conduit.

e. Upon completion of placement of the anti-seep plug, the excavated material was returned to the pit (behind the plywood form and above the plug mixture) and the excess smoothed over the top with a backhoe. The area was covered with coarse gravel.

Installation of the remaining anti-seep plug at location B was deferred because greenish water (possibly indicative of chromium) had seeped into the excavation during the night. Michaels Pipeline Construction Co. was not a licensed hazardous waste contractor and Michaels' personnel were not trained to handle hazardous waste. In addition, no provision existed to collect, transport or dispose of potentially hazardous groundwater or soil from pit B. Consequently, excavated materials from pit B were replaced in the excavation, backfilling it to grade.

Planning, sampling, testing and installation of the antiseep plug at location B were conducted in Phase IV, as described in Section 5.0.

5.0 PHASE IV

5.1 Soil Investigation

Because the excavated soil used to backfill pit B may have been mixed with the greenish groundwater that had seeped into the pit, a sample of the soil was collected and analyzed. This sampling and analysis were performed as described in ERT's letter (Ref. #88-01-Q168) dated January 28, 1988, to Mr. Hegeman of WDNR. The Phase IV field sampling was conducted on June 1, 1988.

5.1.1 Soil Sampling

A boring was drilled at the location of pit B using a stainless steel hand auger with a 3-in.-diameter bucket. Samples were collected from the 3 and 4-ft-depth intervals, composited into a single sample, and shipped under chain-of-custody to ERT's Houston, TX laboratory via overnight courier.

5.1.2 Decontamination Procedures

The hand auger bucket was decontaminated both before and after collecting the samples, as described in Section 2.1.4. Similarly, deionized water poured over the decontaminated sampler was collected as a field blank. As previously, rinse water from the decontamination process was disposed into the sump of the WDNR collection system.

5.2 Analytical Results

The analytical results for the Phase IV soil sample are presented in Table 5-1, together with EP Toxicity concentrations that would classify the soil as a hazardous material. The soil sample was analyzed for concentrations of EP Toxicity metals.

May 12, 1989 Page 5-1

TABLE 5-1
ANALYTICAL RESULTS - PHASE IV SOIL
(PIT B)

<u>Chemical</u>		Sample Concentration (mg/l)	Hazardous Criteria (mg/l)
	EP TOX		
Arsenic		<0.0025	5
Barium		0.31	100
Cadmium		<0.010	1
Chromium		<0.02	5
Lead		<0.04	5
Mercury		<0.0025	0.2
Selenium		<0.0025	1
Silver		<0.02	5
	FIELD BLA	NK ,	
Oh sa am i sam		. 0.02	

Chromium <0.02

The extraction was done in accordance with Method 1310 (EPA Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, SW-846, 2nd Edition, 1984). Analyses for barium, cadmium, chromium and lead were done by ICP in accordance with Method 6010 (SW-846). Analyses for silver, arsenic, mercury and selenium were done, respectively, in accordance with Methods 303A, 303E, 303F and 303E (Standard Methods for Examination of Water and Wastewater, 16th Edition, 1985, APHA-AWWA-WPCF).

A QC sample included one field blank which was analyzed for total chromium in accordance with Method 200.7 (Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, revised March 1983).

Complete laboratory results are contained in Appendix C.4.

5.3 Discussion

The soil sample was analyzed for EP Toxicity metals and was found to contain no metals concentrations in the leachate that exceeded the maximum allowable concentrations. In fact, all metal concentrations were below detection limits except for barium at a concentration of 0.31 mg/l (maximum allowable concentration is 100 mg/l). Total chromium concentration in the field blank was also below the detection limit.

Accordingly, the soils at pit B are classified as non-hazardous and may be disposed at the surface near the pit excavation. This disposal method is based upon the testing and disposal criteria approved by Mr. Hegeman of WDNR, as summarized in ERT correspondence (Ref. #88-01-Q168) dated January 28, 1988.

These data were transmitted to AT&T in ERT correspondence (Ref. #88-07-Q508) dated July 22, 1988.

5.4 Anti-Seep Plug Construction

The Phase IV anti-seep plug construction was performed at pit location B in accordance with the specifications contained in

May 12, 1989 Page 5-3

ERT correspondence (Ref. #87-12-H022) dated December 4, 1987, as modified in ERT correspondence (Ref. #88-01-Q150) dated January 22, 1988. This work was conducted under an Addendum to the AT&T Lightguide Cable Health and Safety Plan dated August 18, 1988.

The anti-seep plug at pit B was constructed on August 19, 1988, by ERT and its sister company, ENSR Constructors, Inc., in the following manner:

- a. The pit was excavated with a backhoe so that the minimum 4 ft square, 2 ft wide, conduit-centered antiseep plug volume was achieved. Actual dimensions were approximately 7 to 8 ft long (transverse to the cable direction, by 3 to 4 ft wide (along the cable direction), by 6 ft deep. The steel conduit was located approximately 3 ft deep.
- b. The pit was excavated such that the plug extended into the undisturbed soil walls of the pit.
- c. The anti-seep plug mixture of sand and bentonite was prepared by Valley Redi-mix of Appleton, Wisconsin, and had the following composition per cubic yard:

<u>Material</u>	<u>Quantity</u>
Bentonite	600 lbs.
Sand*	2500 lbs.

^{*}Includes approximately 3-4% moisture.

The bentonite used to prepare the anti-seep plug was Volclay TFS-81, and chemically treated bentonite formulated by American Colloid Co. to contain organic and inorganic chemical constituents.

The anti-seep plug mixture was supplied and transported

to the site by Valley Redi-mix in a concrete mixer. The mixture was poured into the pit, in approximately 6-in.-thick lifts. Water was added from the mixer's tank and the components were mixed in the pit by hand using shovels. Additional water was added from the mixer's tank in order to hydrate the bentonite to effect the plug. Workmen mixed, placed, and tamped the mixture and backfilled the pit to existing grade.

- d. Upon completion of placement of the anti-seep plug, the excavated material was disposed on the surface near the pit using a backhoe. The area was covered with coarse gravel.
- e. The backhoe bucket and other tools were decontaminated using a high pressure washer prior to being removed from the site. The decontamination was done in the area between the north and south railroad tracks west of Outagamie Street.

6.0 CONCLUSIONS

Phase I activities provided data that indicated that the area between Outagamie and Second Streets contained types and concentrations of chemicals that were not conducive to the operation and maintenance of the existing fiberoptics cable. Future cleanup operations by other parties could also impact performance of the cable.

Phase II activities provided data that demonstrated that both of the proposed alternate routes were acceptable for installation and operation of a bypass cable.

Phase III activities provided data that indicated that chromium had not migrated along the fiberoptics cable line northeast of Outagamie Street or southwest of Second Street.

Phase III and IV anti-seep plug construction on both sides of both Outagamie and Second Streets should effectively block any potential seepage from the area along the cable route.

APPENDIX A SOIL BORING LOGS

APPENDIX A.1

PHASE I BORING LOGS

	LOG OF BORING BORING/WELL NO. SB-01														
F	ROJ	ECT	NO.	G417		SITE _	AT&T L	ightguid	de Cable						
C	ATE		10/	6/87					DRILLER ERT						
L	OCA	TIOI	N	Apple	ton,	WI			METHOD Hand Auger						
_									LOGGED BY S. Veenstra						
_	WATER LEVEL														
•	ELEVATION WHILE DRILLING none encountered GROUND SUFACE unknown AT COMPLETION														
9	ROUI	ND S	UFACI	Eu	nknos	<u>m</u>	AT COMPLETION								
						Hnu/OVA	EQUIP								
DEPT	LEN	RECO	NO.	APLE TYPE	N	READING			SOIL DESCRIPTION						
-									Topsoil - Black	-					
- - 0.5						1		<u> </u>							
:															
<u>-</u> 1.0									Silty-Clay: Reddish brown with	some tan dis-					
•									colorations, sligh	try moist.					
- - 1.5					<u> </u>					-					
•										:					
- - 2.0										<u>.</u>					
					}	}		}							
_ _ 2.5										-					
•															
3.0	\mathbb{N}]				-					
	\square														
- 3.5										_					
• • • • •	IX														
- - 4.0	\mathbb{L}								Total Depth = 4.0 feet						
•									OVA Readings:						
<u>.</u>									Breathing Zone = 0 ppm Boring Opening = 0 ppm	-					
• •	-								Lower Explosive Limit Reading: LEL = 0%						
-									Sample SB-01 was a composite of	the two indicated					
<u>-</u>					İ		İ		intervals.	• -					
•						1									
•															
							1								
_						1	[•					
•										•					
<u>.</u>															
•															
<u>-</u>							1	1.							
•]	'							
• •							 	1							
•								1.							

				ORING	SB-02					
PF	10J	ECT	NO.	G	17	SITE _	AT&T	ightgui	de Cable	
DA	ATE.		10/6	/87					DRILLER ERT	
LO	CAT	ION	A;	pleto	ı, WI				METHOD Hand Auger_	
_									LOGGED BY S. Veenstr	
_				WATER LE	•					
68	CHIN	D 61	LEVA	TION	inkno	⊌n '			WHILE DRILLING none e	
EN	D O	F BC	RING		inkno	wn .			. 24 HOURS	
DEPTH (ft)	LENGTH	RECOV'Y		TYPE	N	Hnu/OVA READING	i e	GRAPHIC LOG	SOIL DESCRIPTION	
0.5									Topsoil - Black	
										1
1.0									Silty-Clay: Reddish-brown, sl	ightly moist.
1.5										=
2.0										1
2.5										1
3.0	\bigvee									
	Δ									
3 .5	X									
4.0	4								Total Depth = 4.0 feet	
-									OVA Readings: Breathing Zone = 0 ppm Boring Opening = 0 ppm	<u>-</u>
- -									Lower Explosive Limit Reading: LEL = 0%	-
-									Sample SB-02 was a composite of intervals.	of the two indicated
. ,									. •	
										-
-		·	!							
<u> </u>										<u>-</u>
<u>-</u>										<u>:</u> -
: - -										-
										:

LOG OF BORING															
PF	≀OJŧ	ECT	NO.	G417		SITE A	T&T Li	ghtaui	de Cable	30-03					
			/6/8						DRILLER ERT						
LO	CAT	ION	A	pplet	on,	WI			METHOD Hand Auger						
			<u> </u>						LOGGED BY S. Veenstr	-a					
_									WATER LEY	VEL					
_	GROUND SUFACE UNKNOWN AT COMPLETION 3 feet AT COMPLETION 3 feet														
GR EN	END OF BORING UNKNOWN 24 HOURS														
	EPTH S SAMPLE N Hnu/OVA EQUIP GRAPHIC SOIL DESCRIPTION														
(ft)	LEN	RECO	NO.	TYPE	R				SDIL DESCRIPTION						
0.5									Topsoil - Black						
•							,		Silty-clay: Reddish brown	, moist.					
1.0							ŀ			7					
1.5										1					
2.0										4					
2.5										3					
										7					
3.0	abla				•				Hater level	<u> </u>					
- 3.0 -	Ň		:					- ₹		3					
3.5								1							
-	\bigvee														
4.0	\triangle								Total Depth = 4.0 feet	\					
									OVA Readings: Breathing Zone = 0 ppm Boring Ocening = 0 ppm	-					
-									Lower Explosive Limit Read	ding:					
1									LEL = 0%	-					
					•			ŀ	Sample SB-03 was a composindicated intervals.						
		٠							Sample SB-03-W was collected boring, note the the color of anti-freeze.	ted from the at the water was					
-															
-										-					
-					"										
										-					
							ľ								
<u>-</u>										-					
-															
										•					

	LOG OF BORING BORING/WELL NO. SR-04														
PF	≀OJI	ECT	NO.	G417		SITE	AT&T L	ightau	ide Cable	SB-04					
DA	TE		10/6	/87					DRILLER ERT						
LO	CAT	101	1 <u> </u>	pplet	on,	WI			METHOD Hand Auger						
_									LOGGED BYS. Veenstra						
_	ELEVATION WHILE DRILLING 3 feet														
GR EN	OUN D O	D S	UFACE DRING	unkno	OWN Wn				AT COMPLETION 3 feet 24 HOURS						
DEPTH (ft)	LENGTH	RECOV'Y	SAM	TYPE	N	Hnu/OVA READING			SOIL DESCRIPTION						
0.5									Topsoil - Black						
									Clay: Grey with black mott	ling slightly					
1.0									moist.	1					
_ 1.5										7					
2.0					i					1					
2.5										1					
3.0	M								Water Level						
-	\triangle							}	Clay: Tan, moist.	-					
3.5	\forall								Clay: Red, moist.						
	X							}	Total Depth = 4.0 feet						
4.0						•			OVA Readings: Breathing Zone = O ppm Boring Opening = O ppm						
									Lower Explosive Limit Read LEL = 0 %	ing:					
<u>-</u> :									Sample SB-04 was a composi indicated intervals.						
									Sample SB-12 was a a dupli SB-04. Sample SB-04-W was collect completed boring, SB-12-W	ed from the was a duplicate					
									The water was the color of	antifreeze					
-				j						<u>-</u> -					
										<u>-</u>					
-		ł								_					
-	l	ļ								-					
:															

							LOG	OF B	ORING	BORING/WELL NO.
PE	OJE	T C T	NO	G417		SITE	AT&T 1	Lightgu	nide Cable	\$8-05
DA	TE	1	0/7/	87					DRILLER ERT	
LO	CAT	TION	Ap	pleto	n, k	<u> </u>			METHOD Hand Aug	er
_									LOGGED BY S. Veens	
_									WATER LE	1
_			LEVA	TION					WHILE DRILLINGnone_	encountered
GR	OU N			unk					AT COMPLETION	
EN	D O	F BC	RING	unk	nowr				24 HOURS	
DEPTH (ft)	NGT	, VO	SAM	IPLE	N	Hnu/OVA READING		GRAPHIC LOG	SOIL DESCRIPTION	
(ft)	۳	Ÿ	NO.	TYPE		NEXD#10	1431.	-		
									Topsoil - Black	4
0.5										
										3
1.0									Silty-clay: Red, slightly	moist.
										1
1.5						,				7
										3
2.0									•	4
										-
2.5										
	$ \overline{} $									
3.0	XI									-
	4						!			1
- 3.5	\forall									
	XI								Total Depth = 4.0 feet	\:
4.0									OVA Readings: Breathing Zone = O ppm	
									Boring Opening = O ppm	• •
-									Lower Explosive Limit Rea	ading: .
:									Sample SB-05 was a compo	site of the two -
									indicated intervals.	
<u> </u>							1			
:										•
	Ì	1				ļ				_
<u> </u>										
-					ļ					-
<u>-</u>						[-			-
.							1			
-										•

SHEET _ OF 1

Topsoil - Black Clay: Red, slightly silty. 2.0 2.5 3.0 Total Death s 3 5 feet								LOG	OF BO	ORING	SB-06
LOCATION Appleton, WI METHOD Hand Auger						_	_SITE	AT&I	Light	guide Cable	
LOGGED BY S. Veenstra WATER LEVEL WHILE DRILLING											
Sample Sample Levation Service Sample Sample Service Sample Sample Service	L	DC A	TION	A <u>A</u> p	pleto	n, W	11				i i
ELEVATION GROUND SUFACE UNKNOWN END OF BORING SAMPLE (ft) SAMPLE N N HOW/OVA EQUIP GRAPHIC 1.0 Clay: Red, slightly silty. Clay: Red, slightly silty. Total Depth = 3.5 feet OVA Readings: Breathing Zone = 0 ppm Boring Opening = 0 ppm Lower Explosive Limit Reading: Ltl = 0 % Sample SB-06 was a grab sample from the indicated dinterval. The boring was terminated at the indicated depth due to an inpecentable gravel											
GROUND SUFACE END OF BORING END OF BORING DEPTH 5	_										′ I
DEPTH (ft) SAMPLE NO. TYPE N READNG INST. LOG SOIL DESCRIPTION 1.0 1.5 2.0 3.0 7 Total Depth = 3.5 feet OVA Readings: Breathing Zone = 0 ppm Boring Opening = 0 ppm Lower Explosive Limit Reading: Ltl = 0 % Sample SB-06 was a grab sample from the indicated depth due to an inpeneratable gravel	GI	ROUN	E ID Ş								
Topsoil - Black Clay: Red, slightly silty. Clay: Red, slightly silty. Total Depth = 3.5 feet OVA Readings: Breathing Zone = 0 ppm Boring Opening = 0 ppm Lower Explosive Limit Reading: Ltl = 0 % Sample SB-06 was a grab sample from the indicated interval. The boring was terminated at the indicated depth due to an inpeneratable gravel	Ε	ND O	F B					[
Clay: Red, slightly silty. Cl	DEPTH (ft)	LENGT	RECOV'			l N		ř .		SOIL DESCRIPTION	
2.0 2.5 3.0 Total Depth = 3.5 feet OVA Readings: Breathing Zone = 0 ppm Boring Opening = 0 ppm Lower Explosive Limit Reading: Ltl = 0% Sample SB-06 was a grab sample from the indicated interval. The boring was terminated at the indicated depth due to an inpeneratable gravel	0.5		•							Topsoil - Black	
2.0 2.5 3.0 3.5 4.0 Total Depth = 3.5 feet OVA Readings: Breathing Zone = 0 ppm Boring Opening = 0 ppm Lower Explosive Limit Reading: LtL = 0 % Sample SB-06 was a grab sample from the indicated interval. The boring was terminated at the indicated depth due to an inpeneratable gravel	1.0									Clay: Red, slightly silty	, <u> </u>
2.5 - 3.0 - 3.5 - 4.0 Total Depth = 3.5 feet OVA Readings: Breathing Zone = 0 ppm Boring Opening = 0 ppm Lower Explosive Limit Reading: LtL = 0% Sample SB-06 was a grab sample from the indicated interval. The boring was terminated at the indicated depth due to an inpeneratable gravel	_ 1.5										1
Total Depth = 3.5 feet OVA Readings: Breathing Zone = 0 ppm Boring Opening = 0 ppm Lower Explosive Limit Reading: LtL = 0 % Sample SB-06 was a grab sample from the indicated interval. The boring was terminated at the indicated depth due to an inpeneratable gravel	2.0										<u>-</u>
Total Depth = 3.5 feet OVA Readings: Breathing Zone = 0 ppm Boring Opening = 0 ppm Lower Explosive Limit Reading: LtL = 0 % Sample SB-06 was a grab sample from the indicated interval. The boring was terminated at the indicated depth due to an inpeneratable gravel	_ 2.5				-						
Total Depth = 3.5 feet OVA Readings: Breathing Zone = 0 ppm Boring Opening = 0 ppm Lower Explosive Limit Reading: LtL = 0 % Sample SB-06 was a grab sample from the indicated interval. The boring was terminated at the indicated depth due to an inpeneratable gravel	3.0	X]
OVA Readings: Breathing Zone = 0 ppm Boring Opening = 0 ppm Lower Explosive Limit Reading: LtL = 0 % Sample SB-06 was a grab sample from the indicated interval. The boring was terminated at the indicated depth due to an inpeneratable gravel	_ 3.5										
OVA Readings: Breathing Zone = 0 ppm Boring Opening = 0 ppm Lower Explosive Limit Reading: LtL = 0 % Sample SB-06 was a grab sample from the indicated interval. The boring was terminated at the indicated depth due to an inpeneratable gravel	- 4.0	.								Total Depth = 3.5 feet	-
LtL = 0 % Sample SB-06 was a grab sample from the indicated interval. The boring was terminated at the indicated depth due to an inpeneratable gravel	_									Breathing Zone = 0 ppm	<u>.</u>
indicated interval. The boring was terminated at the indicated depth due to an inpeneratable gravel	•									Lower Explosive Limit Rea LtL = 0 %	ding:
depth due to an inpeneratable grave	-									Sample SB-06 was a grab s indicated interval.	ample from the
	-									depth due to an inpenerat	at the indicated able gravel
								! !			-
	-										-
	-						<u> </u> -				-
	-										-
									[•

	LOG OF BORING BORING/WELL NO.														
0.5	- I	- C -	NO	G417					ide Cable	SB-07					
			NO.			. SIIE			DRILLER ERT						
				pleto	n, W	1			METHODHand Auge	r					
_									LOGGED BY S. Veenst	ra					
	WATER LEVEL														
_	ELEVATION WHILE DRILLING none encountered AT COMPLETION														
GR	GROUND SUFACE UNKNOWN AT COMPLETION END OF BORING UNKNOWN 24 HOURS														
SAMPLE HOW/OVA FOLLIP GRAPHIC															
DEPTH	ENG	ECO	NO.	TYPE	N	READING			SOIL DESCRIPTION	·					
(ft) -	1	~							Topsoil - Black, some gra	vel.					
0.5								}							
_ 0.5															
1.0	_ 1.0 Silt-Clay: Red, slightly moist.														
-									•	-					
1.5															
•															
2.0										=					
						,				-					
- - 2.5			•						·						
									-						
3.0	X									3					
	4														
3.5	abla						ļ			-					
	X	'				:									
4.0									Total Depth = 4.0 feet						
:									OVA Readings: Breathing Zone = 0 ppm Boring Opening = 0 ppm	<u>:</u>					
	İ								Lower Explosive Limit Rea	iding:					
-									LEL = 0%	-					
							<u> </u>		Sample SB-U7 was a composindicated intervals.	ite of the two					
-										-					
										_					
:									·						
_										-					
:			İ				}								
					ļ					-					
:							1			1					
_					ĺ		[·	-					
								1							
-									·						

				ORING	BORING/WELL NO.										
										SB-08					
							&T Li	ghtguid	de Cable						
				87					DRILLER ERT						
LC	CA	ION	Whi	leton	, ,	'			METHOD <u>Hand Auger</u> LOGGED BY S. Veenstra						
_															
	ELEVATION WHILE DRILLING 1 foot														
ELEVATION WHILE DRILLING 1 foot GROUND SUFACE unknown AT COMPLETION 1 foot END OF BORING Unknown 24 HOURS															
GF EI	ROUN ND OI	D S	UFACE ORING	unk unk	now!	<u> </u>			24 HOURS						
DEPTH (ft)						Hnu/OVA READING			SOIL DESCRIPTION						
- (10)	-	R	NO.						Fill - Gravel and sand						
0.5									Fill - Gravel and Sand						
-										3					
- - 1.0								▽		4					
-					i			}	Water Level	1					
_ _ 1.5									Silty-Clay: Red, moist.						
-										3					
- 2.0				ľ						4					
-										3					
2.5								İ		4					
•								ļ		3					
3.0	M						Ī			4					
‡ ••••	\triangle									3					
3.5										_					
-	\bigvee														
4.0	\triangle								Total Depth = 4.0 feet						
									OVA Readings: Breathing Zone = O ppm Boring Opening = 25 ppm						
- - -									Lower Explosive Limit Rea	ding:					
<u>-</u> -									Sample SB-08 was a compos indicated intervals.	ite of the two					
l				!					Sample SB-O8-W was collected boring, note th	ted from the					
		,							color of antifreeze.	·					
-										•					
Ε.															
-		İ								•					
_															
-															
-						1				-					
-		·													
-		ł													
-		- 1			l		1	1	1						

SHEET OF

				ORING	BORING/WELL NO.										
P	ROJI	ECT	NO.	de Cable	SB-10										
			0/7/						DRILLER ERT						
				pleto	n , 1	11			METHODHand Auger						
_									LOGGED BY S. Veenstr	a					
_					WATER LE	VEL									
_		E	LEV	ATION		WHILE DRILLING none enc	ountered								
GI	GROUND SUFACE UNKNOWN AT COMPLETION														
	EPTH (ft) SAMPLE N HOLON EQUIP GRAPHIC LOG SOIL DESCRIPTION														
DEPTH (ft)	LENGT	RECOV'	NO.	TYPE	N	1		SOIL DESCRIPTION							
0.5									Fill - Coal cinders and gi	avel.					
										7					
1.0															
1.5										1					
2.0						}			Silty-Clay: Red, slightly	moist.					
2.5										_					
- - - - 3.0	И														
- J.U	Д														
- 3.5	X														
- - 4.0	Н							<u> </u>	Total Denth = 4.0 feet						
- - -									OVA Readings: Breathing Zone = O ppm Boring Opening = O ppm	: 					
- - -									Lower Explosive Limit Rea LEL = 0%	ding:					
-						<u> </u>			Sample SB-10 was a compos indicated intervals.	ite of the two					
<u>.</u>										-					
• •										-					
: -										_					
		}				,									
<u>-</u>										. •					
•		ļ)]]							
<u>.</u>										-					
-															
-		ļ						1		•					
_	Ш			L		<u> </u>	L	<u></u>	<u>L</u> SH	EET OF					

APPENDIX A.2

PHASE II BORING LOGS

	LOG OF BORING												
	20 11	SB-14											
l				<u> </u>		_ 3115	iai L	ryntigu	DRILLER ERT				
				pplet	on,	WI			METHOD Hand Auge	r			
_									LOGGED BY S. Veenst				
-									WATER LEV				
		ountered											
	ROUN												
DE DEU	E												
DEPTH (ft)	LENG	RECO	NO.	TYPE	N	Hnu/OVA READING			SOIL DESCRIPTION				
		•							Fill - Sandy some gravel				
0.5									Fill - Sandy Some graver	1			
-										1			
1.0													
									. Clause Cilt. Dod				
1.5									्र Clayey+Silt: Red	-			
<u> </u>								1		-			
- 2.0 -										:			
2.5										_			
•													
3.0	XI									-			
-	H								·				
3.5	\forall									-			
	X								Total Depth = 4.0 feet				
- 4.0 -	П				'				OVA Readings:				
-									Breathing Zone = O ppm Boring Opening = O ppm	_			
					'				Lower Explosive Limit Rea LEL = 0%	ıding:			
									Sample SB-14 was a composindicated intervals.	ite of the two			
_					!					-			
								1.		•			
						1]	}					
							1						
Ė								1		-			
-													
-	·		:				}			_			
1									,				
			;										
		Į					j	J	}				

							LOG	OF B	ORING	BORING/WELL NO.
PF	SOJI	ECT	NO.	G41	7	SITE	AT&T L	ightgu	ide Cable	SB-15
				1					DRILLER ERT	
LO	CA	TION		А	pple	ton, WI			METHOD Hand Aug	er
_									LOGGED BY S. Veens	tra
_	_		·						WATER LE	VEL
_	_	F	LEVA	TION					WHILE DRILLINGnone_end	ountered
GR	OUN	D S	UFACE	un Un	know	n			AT COMPLETION	
EN	D O	F BC	RING							
DEPTH (ft)	LENGT	RECOV	NO.	TYPE	N	Hnu/OVA READING			SOIL DESCRIPTION	
									Topsoil - Black	
0.5										3
										4
- 1.0									Silty-Clay: Red.	4
- 1.5										‡
									i	1
_ 2.d								j		•
2.5										
-										
3.0	\bigvee									-
	Δ									
3.5										
	X									
4.4	\triangle						·	<u> </u>	· Total Depth = 4.0 feet	
									OVA Readings: Breathing Zone = 0 ppm Boring Opeining = 0 ppm	
									Lower Explosive Limit Re LEL = 0%	ading:
									Sample SB-15 was a compo two indicated intervals.	site of the
_										
							١.			•
							ļ ·			-
						} 				•
-									<i>.</i> .	
]				
-										-
:								1		
- 1										
<u> </u>										•
-		ŀ								
	- 1	ı		l	l		1	1	1	

							LOG	OF B	ORING	BORING/ WELL NO.
PF	SOJE	ECT	NO.	G417		SITE _	AT&T L	ightguid	e Cable	SB-16
			0/27/			_ •			DRILLER ERT	
				pleto	n, W	ī			METHOD Hand Auger	
			•						LOGGED BY S. Veenstra	
_									WATER L	
_	_								WHILE DRILLING none er	1
CB	~ IN			TION					AT COMPLETION	icoanice.
EN	D OI	FBC	RING	un un	known				24 HOURS	
DEPTH	втн	JV'Y	SAN	IPLE	N	Hnu/OVA	EQUIP	GRAPHIC	SOIL DESCRIPTION]
DEPTH	LEN	RECOV'Y	NO.	TYPE	N	READING	INST.	LOG		
						_			Topsoil	4
0.5									10,0021	3
								1 1		1
1.0										
										4
1.5										3
_ 1.3									Silty-Clay: Reddish brown.	. ‡
2.0										3
										3
2.5						,				
-		- 1						1		7
	abla									
3.0	XI									3
	$\overline{}$	ľ								
3.5	abla							 .		
	XI								(1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
4.0	4								Total Depth = 4.0 feet	
								i '	OVA Reading: Breathing Zone = 0 ppm	:
-		ļ						1	Boring Opeining = 0 ppm	-
								ļ 1	Lower Explosive Limit Readin LEL = 0%	g:
1									Sample SB-16 was a composite indicated intervals.	of the two
									Sample SB-23 was also collect of SB-16.	ted as a duplicate
		Ì								•
-		l			l		}	Ì		-
										•
-						ļ				-
		[[,
-		1		'		1				-
		ļ]			
-	ļ			· '		1				-
	Į						1			
-	1	ļ								•

	_		_			-	100	OF P	ORING	BORING/WELL NO.
										SB-17
						_SITE _	AT&T	Lightgui	de Cable	
		_		27/87 oleton,					DRILLER ERT METHOD Band Auger	
LO	CA	ION		TECOU,						
_									LOGGED BY S. Veenst	
									WATER L	
				TION					WHILE DRILLING none_er AT COMPLETION	
GR EN	ID O	F BC	RING	unkr	IOME				. 24 HOURS	
DEPTH	LENGTH	RECOV'Y	_	TYPE	N	Hnu/OVA READING		4 1	SOIL DESCRIPTION	
-									Topsoil	
0.5										7
-										
1.0										
1.5									Silty-Clay: Reddish brown.	
										:
2.0										-
						!				
- 2.5										
3.0								}		
- 3.0	X							1		•
3.5	\dashv							1		
- ^{3.3}								}		
	X								/	
4.0	$\overline{}$								Total Depth = 4.0 feet	_
-			•						OVA Readings: Breathing Zone = 0 ppm Boring Opening = 0 ppm	-
									Lower Explosive Limit Readin LEL = 0%	g:
							<u> </u> 		Sample SB-17 was a composite intervals.	of the two indicated
-										
-										٠
						1	1			-
-										
]				
							1		·	•
-									·	
-										
[

SHEET 1 OF 1

							LOG	OF B	ORING BORING/WELL NO.	
PF	ROJ	ECT	NO.	G417		SITE	AT&T L	ightgui	de Cable	4
				87					DRILLER ERT	
				pleton					METHOD Hand Auger	1
_									LOGGED BY S. Veenstra	
_									WATER LEVEL	
_			LEVA	TION					WHILE DRILLINGnone_encountered	ł
GR	OUN	ID S	UFACE	นท	know	<u> </u>			AT COMPLETION	1
				un	KIIOWI			1		┨
DEPTH	LENG	RECOV	NO.	TYPE	N	Hnu/OVA READING			SOIL DESCRIPTION	-
0.5									TopBoil	7
- ^{(,,})										3
_ ,						:				4
_ 1.0									•	3
1.5					:				Silt: Reddish brown, no clay.	1
- 1 -									Sile. Reduish blown, no cray.	4
2.0										3
										4
2.5		·								4
- 2.3	·								•	1
3.0	M					1				4
-	\triangle				i ,				•	1
3.5										4
	XI					,				3
4.0	\triangle								Total Depth = 4.0 feet	-
•		ļ							OVA Readings:	1
-		•							Breathing Zone = 0 ppm Boring Opening = 0 ppm	_
									Lower Explosive Limit Reading:	
-									LEL = 0X	-
									Sample SB-18 was a composite of the two indicated intervals.	-
:									• •	
								1		-
						,				
_		·								_
:									·	•
-										-
-			!					[-
										٠
-										-
		j								

							LOG	OF B	ORING	BORING/WELL NO.			
PF	80JI	ECT	NO.	G417		SITE	AT&T	Lightgu	ide Cable	SB-19			
				87					DRILLER ERT	l			
				leton.					METHOD Hand Auger				
								LOGGED BY S. Veenstra					
_	_								WATER LEY	/EL			
_		E	LEVA	TION	•				WHILE DRILLINGnone encou				
GR	OUN	D S	UFACE	un un	knovn				AT COMPLETION				
						Hnu/OVA	FOUIR	GBABUIG					
DEPTH	ENG	ECO\	NO.	IPLE TYPE	N	READING			SOIL DESCRIPTION				
(11)	_								Fill - Sand and gravel				
0.5		•											
1.0									Silty-Clay: Red with tannish-	green mottling.			
1.5									Silty-Clay: red.				
2.0									53.59 53.59	1			
										-			
- - 2.5													
3.0	X												
- 3.5										-			
	\bigvee												
4.0	\triangle				:				Total Depth = 4.0 feet				
									OVA Readings:				
-									Breathing Zone = 0 ppm Boring Opeining = 0 ppm	=			
									Lower Explosive Limit Reading: LEL = 0%	-			
:									Sample SB-19 was a composite of intervals.	the two indicated			
<u>-</u>								ļ		-			
	- 1									, •			
:							}						
										· <u>-</u>			
		ļ								<u>-</u>			
- [- {					İ			-			
-										-			
-													

,	•						1 06	OF R	ORING	BORING/WELL NO.
									,	SB-20
							AT&T	ightgui	de Cable	
				27/87		_			DRILLER ERT	
Lo	CA	TION	AAJ	pletor	, WI	 -			METHOD Hand Auger	
									LOGGED BY S. Veenstre	
_									WATER LE	
		E	LEVA	TION	•				WHILE DRILLING none enc	ountered
GR	OUN	DS	UFACE	unkr unkr	OVT				AT COMPLETION	
						Hnu/OVA	501110			
DEPTH (ft)	LENGTH	ECOV	NO.	TYPE	N	READING			SOIL DESCRIPTION	· }
-	1	Œ				· ·				
-									Fill - Sand and gravel	3
0.5										
- '			•							3
1.0									Silty-Clay: Red, slightly moi	st. ¬
										3
- - 1.5										
									•	1
2.0		'								4
										4
2.5						1				- 4
										1
3.0	\bigvee		į							
	\triangle						}			
3.5										_
• 3.3	VI									
4.0	\triangle						İ		Total Depth = 4.0 feet	\
:	: 1								OVA Readings:	
-		·					}		Breathing Zone = 0 ppm Boring Opeining = 0 ppm	
:									Lower Explosive Limit Reading	
-	.								LEL - OX	
									Sample SB-20 was a composite intervals.	of the two indicated .
-								1		-
<u> </u>							ļ ·			•
-										-
					I]				•
-										
						[1			
									·	-
. 1]			
-										-
]			:
-	Ì						1			· -
					ı			1		

							LOG	OF B	ORING	BORING/WELL NO.			
										SB-21			
					17	SITE _	AT&T L	ighteuid	e Cable DRILLER ERT				
			0/27/						METHOD Hand Auger				
L,	JUM	ııor	· ·	ppleto	0, W1				LOGGED BY S. Veenstra				
_						_			WATER LEV				
-									WHILE DRILLINGnone_en	Į.			
GI	ROUN			TION					AT COMPLETION				
E	ND O	F BC	RING	unkne) WT			,	. 24 HOURS				
DEPTH	ENGT	ECOV'Y	SAN	PLE TYPE	N	Hnu/OVA READING		GRAPHIC LOG	SOIL DESCRIPTION				
(ft)	1	2					_		Fill - Sand and gravel				
. .									•				
0.5										3			
-										Ė			
<u> </u>]]	Silty-Clay: Red	4			
- - , [
- 1.5										1			
- - - 2.0										4			
- 1.0 :										1			
- 2.5													
-	Ĺ.,								·	1			
3.0	\bigvee									4			
	Γ									3			
3.5													
-	X												
4.0				ľ				 	Total Depth = 4.0 feet				
:							 		OVA Readings:				
-									Breathing Zone = 0 ppm Boring Opening = 15 ppm	7			
_									Lower Explosive Limit Reading: LEL = 0%				
- - - -									Sample SB-21 was a composite of indicated intervals.	f the two			
									NOTE: Slight odor was present of boring, similar to o				
-								ļ.		· <u>-</u>			
•													
										-			
•													
- -										-			
•							1			:			
-										-			
• • •										-			
-													
:						}		1		,			

							LOG	OF B	DRING	SB-22
PF	ROJI	ECT	NO.		G41	<u> </u>	AT&1	Lighte	ilde Cable	
D/	YE	_1	0/27/	87					DRILLERETT	
LC	CAT	LION	Ap	pleton	, WI				METHOD Hand Auger	
-			-	-					LOGGED BY S. Veenstra	
									WATER LE	VEL
_			LEVA	TION					WHILE DRILLINGnone end	ountered
GR	OUN	D S	UFACE	<u> </u>	nknov	m			AT COMPLETION	
EN	ID O	F B	RING		nknov	<u>m</u>		1		
DEPTH (ft)	LENGT	RECOV')	SAN NO.	TYPE	N	Hnu/OVA READING			SOIL DESCRIPTION	
0.5									Topsoil - Black	
; ;										1
1.0									Silty-Clay: Red, some greenis	th blebs were eximately 3.5 feet.
				*					oboution at appro	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1.5										
2.0										3
. [1		+
							ì	1 .		3
2.5										7
- - 3.0	X			1						1
	\triangle					·				
										- <u>-</u>
-	M				:					
4.0	\triangle						ļ		Total Depth = 4.0 feet	
- "								}	-	
									OVA Readings: Breathing Zone = 0 ppm Boring Opening = 0 ppm	<u>-</u>
!				1					Lower Explosive Limit Reading: LEL = 0%	- -
									Sample SB-22 was a composite of intervals.	f the two indicated
				:						
-										-
-										•
-										_
										-
-										
-						•				-
-							1			
-										-
				1		[1		

SHEET ___ OF ___

APPENDIX B
PIT LOGS

S ==	= =	ī	 U	ŕ	

		EXC		TION	INSF	PECTORS REPORT
۱	ROJECT	Aren			<u> </u>	DATE: 12/9/81
L	OCATION	v: Apple	m, L	Viben	sin	WEATHER Overest cold
FI	ELD INS	SPECTOR:	Butt	14. P		
. v	OL. EXC	AVA TE D:				FINAL DEPTH: 6.37
РІ	CTURE	NO.:				_
1	SCRIPT (ETCH:	ION OF E	XC AV	ATION		NOTES: Pitk
						This pit is the ne execution of the pit previously executed on the 187; which was lack-filled by alguest of the Chicago and Monthwestely Railroad.
	PTH	DEDTU	SAN	PLE		NOTES
TO	FROM	DEPTH	NO.	TYPE	F/L	NOTES
	7.00			 		Pint, sand, and gravel miny (black in
				+		
1.66'						
2011	1.66'		1			Gand and gravel mup (San in color).
2.49°	224					Mottling of soil (Black in color).
2.47	2491					Sed / San Clay
		11011	4 .			
		4.24	R/I	boil		
						· · · · · · · · · · · · · · · · · · ·
6.90					_	
					_	
				-	<u> </u>	
				 		

ERT
A RESOURCE ENGINEERING COMPANY

FILE NO.

•-	 _	_			
ت	 _	_	 V,	_	

		EX	CAVA	TION	1 INSI	PECTORS REPORT
F S	OCAT.10 IELD IN TART/E OL. EXC	NE APPLE SPECTOR ND TIME: DAVATED: NO.:	1500 9 190	/41. 9:4	Poradu	DATE: 12/9/81 WEATHER: Quartable Cold CONTRACTOR: Fully lags. / Michels EXCAVATOR TYPE: FOR 555-4 B.H. FINAL DEPTH: 6.17'
1	ESCRIPT KETCH:	ION OF E		TION		NOTES: PHB
O.F.i	PIH FROM	DEPTH	SAMI NO.	TYPE	F/L	NOTES Black hand, gravel, and birk mighter.
1.49	1.47					Ton sand and gravel. Red/Ten Clay
	1.99					REAJAM Clay
G.M'						

ERT
A RESOURCE ENGINEERING COMPANY

FILE NO. _

RESOURCE ENGINEERING COMPANY

ERT

FILE NO. _____

>	 -	=	 Ü	-	
-		_	 ~		

			ΕX	CAVA	71101	1/1 1/1/2	PECIORS REPOR:			
	ح	ROJECI	ATE	1	_		DATE: M/10/81 WEATHER: Parkly Cloudy, cold			
			N: App		Wisis	nsu	WEATHER: Varkly Ploudy . I do			
ļ	F	IFLO IN	SPEC TOP	Sen	et ell.	Porade	CONTRACTOR: Englas Inen. / Malas les			
1	S	TART/E	ND TIME	7:1	9 / 9:	80	EXCAVATOR TYPE: Ford 555-4 B. H.			
1.			CAVATED				FINAL DEPTH: 6.92			
			NO.:							
		SCRIP (ETCH:	TION OF	EXCAV	'AT ION		NOTES: PHP			
}	DE	PIH	T	SAN	API E					
	0	FROM	DEPTH	1 NO	APLE TYPE	F/L	NOTES			
		0.00					Black sand, dirt, and gravel			
<u> </u>		<u> </u>	1	<u> </u>	<u> </u>		7			
1.9	31	ļ	<u> </u>							
		1.55	<u> </u>				Black loans			
1.2	*51						-			
		1.85	<u> </u>		ļ	<u> </u>	Red/Kom Clay			
	<u> </u>		<u> </u>		-	-				
			1							
			4.01	 •	1 0 00					
	<u> </u>		9.84	P-1	boil	 				
		· · · · · · · · · · · · · · · · · · ·	<u> </u>	1		 				
			<u>! </u>	 	<u> </u>	 				
5.9	11		<u> </u>		1	<u> </u>				
7.7				 	╁┷─	<u> </u>				
				 	 	 				
	1			1		 				
	Ť		***************************************							
	_		•							
	i			1						
				1						
			•							
					·					
				ļ						
	1					i				

ERT A RESOURCE ENGINEERING COMPANY

FILE NO. __

APPENDIX C ANALYTICAL DATA

APPENDIX C: ANALYTICAL DATA

C.1: PHASE I ANALYTICAL RESULTS

C.1.a: PHASE I, TOTAL AND HEXAVALENT CHROMIUM

C.1.b: PHASE I, VOLATILE ORGANIC COMPOUNDS

C.2: PHASE II ANALYTICAL RESULTS

C.2.a: PHASE II, TOTAL AND HEXAVALENT CHROMIUM

C.2.b: PHASE II, VOLATILE ORGANIC COMPOUNDS

C.3: PHASE III ANALYTICAL RESULTS

C.3.a: PHASE III, TOTAL AND HEXAVALENT CHROMIUM

C.3.b: PHASE III, VOLATILE ORGANIC COMPOUNDS

C.4: PHASE IV ANALYTICAL RESULTS, EP TOXICITY IN SOIL (PIT B)

APPENDIX C.1
PHASE I ANALYTICAL RESULTS

APPENDIX C.1.a PHASE I TOTAL AND HEXAVALENT CHROMIUM

DATE: 12/02/87

TO: Larry Campbell

FROM: Bo Blankfield, Lab Director

PROJ. NO.: G417-300 LAB NO.: 8720

Attached are reports of chemical analyses of samples received October 8, 1987. These analyses are:

Count	Test	Code		Test Name	Test Method	Sampled	Matrix
7	Cr		-HOU	CHRONIUN	SM: 303A, ATOMIC ABSORPTION		WATER
				•	•	10/07/87	LIQUID
10	Cr	-S-	-HOU	CHROMIUM ON SOLID	SM: 303A, ATOMIC ABSORPTION	10/06/87	SOIL
					·	10/07/87	
7	Cr+ô		-MBA	CHROMIUM, HEXAVALENT	SM: 312B, COLORIMETRIC	10/06/87	WATER
					•	10/07/87	LIQUID
10	Cr+6	-S-	-MBA	CHRONIUM, HEXAVALENT ON SOLID	SM: 312B, COLORIMETRIC	10/06/87	SOIL
••		•				10/07/87	

Should you have any questions, do not hesitate to contact me at (713) 520-9900.

BB/lis

Enclosures: Analytical Summary, Analytical Reports, Chain of

Custody, Sample Receipt Checklist, Quality Control

Logs, Narrative Log

LAB NO. 8720

PROJECT G417-300 AT&T

environmental and engineering excellence

ERT LABORATORIES

Analytical Summary 12/02/87 14:54

Lab	תז	1	2	3	4	5	6	7	8
Fie	ld ID nt'd)	SB-01	SB-02	SB-03	SB-03-W	SB-04	SB-04-W	SB-12	SB-12-W
Test /Mat		SOIL	SOIL	SOIL	WATER	SOIL	WATER	SOIL	WATER
Cr	-HOU				31 MG/L (4)		42 MG/L (4)		105 MG/L (4)
Cr -S-	-HOU	MG/KG	45 MG/KG (20)	98 MG/KG (20)		519 MG/KG (40)		478 MG/KG (40)	
Cr+6	-MBA				34 MG/L		74 MG/L		68 MG/L
Cr+6 -S-	-MBA	MG/KG	<20 MG/KG (20)	<20 MG/KG (20)		50 MG/KG		54 MG/KG	

QAQC Approval: Schome Shomesson Date: 12-2-87

* Please see attached Analytical Report for remarks.

Analytical Summary 12/02/87 14:55

	Lab Fie	ID 1d ID	9 SB-05	10 SB-06	11 SB-07	12 SB-08	13 SB-08-W	14 SB-11-W	15 SB-13-W	16 SB-10
Test	(Co:	nt'd) trix	SOIL	SOIL	SOIL	SOIL	WATER.	WATER	WATER	SOIL
Cr		-HOU					280 MG/L (16)	219 MG/L (8)	<0.04 MG/L (0.04)	
Cr	-s-	-HOU	MG/KG	238 MG/KG (20)	26 MG/KG (20)	536 MG/KG (20)				172 MG/KG (20)
Cr+6		-MBA					350 MG/L	212 MG/L	<0.5 MG/L (0.5) *	
Cr+6	-S-	-MBA	<20 MG/KG (20)	<20 MG/KG (20)	<20 MG/KG (20)	108 MG/KG				72 MG/KG

QAQC Approval: Schomm Longson Date: 12-2-87

Mgr. Approval: Ba Bladd Date: 13-3-87

* Please see attached Analytical Report for remarks.

Analytical Summary 12/02/87 14:56

Lab Number: 8720 Project: G417-30 AT&T	=
Lab ID	17
Field ID	SHIP. BL
(Cont'd)	ANK
Test /Matrix	LIQUID
CrHOU	<0.04
(MDL)	MG/L (0.04)
Cr+6 MBA	<0.5
(MDL)	MG/L (0.5) *

QAQC Approval: Johns Thomason Date: 12-2-87

mgr. Approval: Sir Sir July Date: 72 287

* Please see attached Analytical Report for remarks.

Analytical Report 12/02/87 13:20

AT&T Field ID: SB-01 Date Sampled: 10/06/87 Time Sampled: 1335 Lab ID: 1 Proj. No.: G417-300 Matrix: SOIL Date Received: 10/08/87 Lab No.: 8720 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis Performed (Test Method) tration Units Limit -s--HOU 26 MG/KG 20 10/12/87 Cr 1730 CHROMIUM ON SOLID SM: 303A, ATOMIC ABSORPTION Cr+6 -S-<20 MG/KG 20 11/02/87 -MBA CHROMIUM, HEXAVALENT ON SOLID 1300 SM: 312B, COLORIMETRIC

11/02/87

1300

ERT LABORATORIES

Analytical Report 12/02/87 13:20

Field ID: SB-02 Date Sampled: 10/06/87 AT&T Proj. No.: G417-300 Lab ID: 2 Time Sampled: 1425 Lab No.: 8720 Matrix: SOIL Date Received: 10/08/87 (Test Code) Date/Time Method Parameter (Test Name) Concen-Detection Analysis (Test Method) Performed tration Units Limit -S--HOU 45 MG/KG 20 10/12/87 CHROMIUM ON SOLID 1730 SM: 303A, ATOMIC ABSORPTION

<20

MG/KG

20

Cr+6 -S-

-MBA

SM: 312B, COLORIMETRIC

CHROMIUM, HEXAVALENT ON SOLID

Analytical Report 12/02/87 13:20

Field ID: SB-03 AT&T Date Sampled: 10/06/87 Time Sampled: 1500 Proj. No.: G417-300 Lab ID: 3 Lab No.: 8720 Matrix: SOIL Date Received: 10/08/87 (Test Code) Method Date/Time Parameter (Test Name) Detection Analysis Concen-(Test Method) tration Units Limit Performed -HOU -s-98 MG/KG 20 10/12/87 Cr 1730 CHROMIUM ON SOLID SM: 303A, ATOMIC ABSORPTION <20 MG/KG 20 11/02/87 Cr+6 -S--MBA CHROMIUM, HEXAVALENT ON SOLID 1300

SM: 312B, COLORIMETRIC

Analytical Report 12/02/87 13:20

Field ID: SB-03-W AT&T Date Sampled: 10/06/87 Proj. No.: G417-300 Lab ID: 4 Time Sampled: 1515 Lab No.: 8720 Matrix: WATER Date Received: 10/08/87 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed Cr - --HOU 31 MG/L 10/12/87 CHROMIUM 1730 SM: 303A, ATOMIC ABSORPTION Cr+6 - --MBA 34 MG/L 10/12/87 CHROMIUM, HEXAVALENT *1 SM: 312B, COLORIMETRIC

^{*1} HOLDING TIME EXPIRED BEFORE RECEIPT

Analytical Report 12/02/87 13:20

AT&T Field ID: SB-04 Date Sampled: 10/06/87 Proj. No.: G417-300 Time Sampled: 1600 Lab ID: 5 Lab No.: Matrix: SOIL 8720 Date Received: 10/08/87 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed Cr -S- -HOU 519 MG/KG 40 10/12/87 CHROMIUM ON SOLID 1730 SM: 303A, ATOMIC ABSORPTION Cr+6 -S-MG/KG -MBA 50 11/25/87 CHROMIUM, HEXAVALENT ON SOLID SM: 312B, COLORIMETRIC

Analytical Report 12/02/87 13:20

Field ID: SB-04-W AT&T Date Sampled: 10/06/87 Lab ID: Time Sampled: 1645 Proj. No.: G417-300 6 Lab No.: 8720 Matrix: WATER Date Received: 10/08/87 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) Units Limit Performed tration - --HOU 42 MG/L 10/12/87 CHROMIUM 1730 SM: 303A, ATOMIC ABSORPTION Cr+6 - --MBA MG/L 10/12/87 CHROMIUM, HEXAVALENT ***1** SM: 312B, COLORIMETRIC

^{*1} HOLDING TIME EXPIRED BEFORE RECEIPT

Analytical Report 12/02/87 13:20

Field ID: SB-12 AT&T Date Sampled: 10/06/87 Time Sampled: 1600 Proj. No.: G417-300 Lab ID: 7 Lab No.: Matrix: SOIL Date Received: 10/08/87 8720 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed -S--HOU 478 MG/KG 40 10/12/87 CHROMIUM ON SOLID 1730 SM: 303A, ATOMIC ABSORPTION Cr+6 -S--MBA 54 MG/KG 11/25/87 CHROMIUM, HEXAVALENT ON SOLID SM: 312B, COLORIMETRIC

Analytical Report 12/02/87 13:21

Field ID: SB-12-W AT&T Date Sampled: 10/06/87 Time Sampled: 1645 Proj. No.: G417-300 Lab ID: 8 Lab No.: 8720 Matrix: WATER Date Received: 10/08/87 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed Cr - --HOU 105 MG/L 10/12/87 4 CHROMIUM 1730 SM: 303A, ATOMIC ABSORPTION Cr+6 - - - MBA 68 MG/L 10/12/87 CHROMIUM, HEXAVALENT *1 SM: 312B, COLORIMETRIC

^{*1} HOLDING TIME EXPIRED BEFORE RECEIPT

Analytical Report 12/02/87 13:21

AT&T Proj. No.: Lab No.:		Field ID Lab ID: Matrix:	: SB-05 9 SOIL		Date Sampled: 10/07/87 Time Sampled: 750 Date Received: 10/08/87			
Parameter	(Test Code) (Test Name) (Test Method)	-	oncen- ration	Units	Method Detection Limit	Date/Time Analysis Performed		
Cr -S- CHROMIUM C SM: 303A,	-HOU ON SOLID ATOMIC ABSORPTION	. 5	9	MG/KG	20	10/12/87 1730		
•	-MBA HEXAVALENT ON SOLID COLORIMETRIC	<	20	MG/KG	20	11/02/87 1300		

Analytical Report 12/02/87 13:21

AT&T Proj. No.: G417-300 Lab No.: 8720	Field ID: SB-06 Lab ID: 10 Matrix: SOIL		Date Sampled: 10/0 Time Sampled: 830 Date Received: 10/0				
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed			
Cr -SHOU CHROMIUM ON SOLID SM: 303A, ATOMIC ABSORPTION	238	MG/KG	20	10/12/87 1730			
Cr+6 -SMBA CHROMIUM, HEXAVALENT ON SOLID SM: 312B, COLORIMETRIC	<20	MG/KG	20	11/02/87 1300			
							

Analytical Report 12/02/87 13:21

AT&T Proj. No.: G417-300 Lab No.: 8720	Field ID: SB-07 Lab ID: 11 Matrix: SOIL		Date Sampled: 10/0 Time Sampled: 910 Date Received: 10/0			
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed		
Cr -SHOU CHROMIUM ON SOLID SM: 303A, ATOMIC ABSORPTION	26	MG/KG	20	10/12/87 1730		
Cr+6 -SMBA CHROMIUM, HEXAVALENT ON SOLID SM: 312B, COLORIMETRIC	<20	MG/KG	20	11/02/87 1300		

Analytical Report 12/02/87 14:58

AT&T Field ID: SB-08 Date Sampled: 10/07/87 Proj. No.: G417-300 Lab ID: 12 Time Sampled: 1010 SOIL Date Received: 10/08/87 Lab No.: 8720 Matrix: (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) Limit Performed tration Units -S-Cr -HOU 536 MG/KG 20 10/12/87 CHROMIUM ON SOLID 1730 SM: 303A, ATOMIC ABSORPTION Cr+6 -S--MBA 108 MG/KG 11/02/87 CHROMIUM, HEXAVALENT ON SOLID 1300 SM: 312B, COLORIMETRIC

Analytical Report 12/02/87 13:21

AT&T Field ID: SB-08-W Date Sampled: 10/07/87 Proj. No.: G417-300 Time Sampled: 1025 Lab ID: 13 Lab No.: 8720 Matrix: WATER Date Received: 10/08/87 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) Limit Performed tration Units Cr - --HOU 280 MG/L 16 10/08/87 CHROMIUM 1415 SM: 303A, ATOMIC ABSORPTION Cr+6 - --MBA 350 MG/L 10/12/87 CHROMIUM, HEXAVALENT *1 SM: 312B, COLORIMETRIC

^{*1} HOLDING TIME EXPIRED BEFORE RECEIPT

Analytical Report 12/02/87 13:21

AT&T Field ID: SB-11-W Date Sampled: 10/07/87 Proj. No.: G417-300 Lab ID: Time Sampled: 1035 14 Lab No.: 8720 Matrix: WATER Date Received: 10/08/87 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) Units Limit Performed tration Cr - --HOU 219 MG/L 8 10/12/87 CHROMIUM 1730 SM: 303A, ATOMIC ABSORPTION Cr+6 - -MG/L 10/12/87 -MBA 212 CHROMIUM, HEXAVALENT *1 SM: 312B, COLORIMETRIC

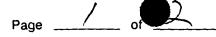
^{*1} HOLDING TIME EXPIRED BEFORE RECEIPT

Analytical Report 12/02/87 13:21

AT&T Field ID: SB-13-W Date Sampled: 10/07/87 Time Sampled: 1115 Proj. No.: G417-300 Lab ID: 15 Lab No.: 8720 Matrix: WATER Date Received: 10/08/87 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed - --HOU <0.04 MG/L 0.04 10/12/87 CHROMIUM 1730 SM: 303A, ATOMIC ABSORPTION Cr+6 - -10/12/87 -MBA <0.5 MG/L 0.5 *1 CHROMIUM, HEXAVALENT SM: 312B, COLORIMETRIC

^{*1} HOLDING TIME EXPIRED BEFORE RECEIPT

Analytical Report 12/02/87 13:21


Date Sampled: 10/07/87 AT&T Field ID: SB-10 Time Sampled: 1200 Proj. No.: G417-300 16 Lab ID: Lab No.: 8720 Matrix: SOIL Date Received: 10/08/87 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed MG/KG 20 10/12/87 Cr -S--HOU 172 CHROMIUM ON SOLID 1730 SM: 303A, ATOMIC ABSORPTION Cr+6 -S-11/02/87 -MBA 72 MG/KG CHROMIUM, HEXAVALENT ON SOLID 1300 SM: 312B, COLORIMETRIC

Analytical Report 12/02/87 13:21

AT&T Field ID: SHIP. BLANK Date Sampled: 10/07/87 Proj. No.: G417-300 Lab ID: Time Sampled: 17 Lab No.: 8720 Matrix: LIQUID Date Received: 10/08/87 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) Units Limit Performed tration Cr -HOU <0.04 MG/L 0.04 10/15/87 CHROMIUM 1900 SM: 303A, ATOMIC ABSORPTION Cr+6 - --MBA <0.5 MG/L 0.5 10/12/87 CHROMIUM, HEXAVALENT ***1** SM: 312B, COLORIMETRIC

^{*1} HOLDING TIME EXPIRED BEFORE RECEIPT

	ERT A	RES	OURCE EN	GINEERING (alysis Request and Chain of Custody Record					
	Project No. (1	ient/Project Na	ıme	·····		Project Location	·		
	Field Date Sample No./ Identification Time	Grab	Sample Container (Size/Mat'l)	Sample Type (Liquid, Sludge, Etc.)	Preser- vative		ANALYSIS REQUESTED		LABORATORY REMARKS	
/	53.011068	7	\68	Soil.		Yevan	leny Chromuer	2		
2	5B:02 10 68	اد		1		,	· 1			
3	SB:03 10:68	2				<u> </u>				
5	SB:04	-		,					 	
7	SB:00									
9	SB.15 10.787									
0	SB:06	-								
11	56.07						 			
12	8.08						 			
10	210.10.1 ×		Relinquished by: (Signature)	Volnice	y A	Date: 10897/F	Received by: (Signature)	Date: Time:	Intact	
	Affiliation		Relinquished by: (Signature)			Date: Time:	Received by: (Signature)	Date: Time:	Intact	
			Relinquished by: (Signature)		 	Date: Time:	Received by: (Signature)	Date: Time:	Intact	
	SAMPLER REMARKS:	4/	Rosel	to due	, 10	1267/	Received for Laboratory (Signature)	Date: Time:	Laboratory No.	
	Seal #	*	Routto due 10.12671				Data Results to:	8/20		

				SOURCE EN	GINEERING (NY An	alysis Request and C	Chain of Cu	stody Record	
	Project No.	300) C	lient/Project Na	ame			Project Location		
	Field Date Sample Sample Sample Sample Container Type (Liquid, Siudge, Etc.)							ANALYSIS REQUESTED		LABORATORY REMARKS
4	5B.63.W	10.68	7	amber	Water	HUDZ	Hexaela	len Chrome	en	
6	SB-04-W	+		. (T				
8	SB12·W	1								
14	SB: 11.4	10.78	2							
15	58:13 W	1		1/		V		4		-
12	SBOBW	1		1						
17.	Ship Bek			1	I	1420	<u>B</u>	<u> </u>		
	1									
•					\cap					
	Samplers	(Signature)		Relinquished by: (Signature)	Mrie	1	Date: 1030	Received by: (Signature)	Date: Time:	Intact
				Relinquished by: (Signature)		· ·	Date: Time:	Received by: (Signature)	Date: Time:	Intact
	ATII	liation		Relinquished by: (Signature)			Date: Time:	Received by: (Signature)	Date: Time:	Intact
	SAMPLER REM	ARKS:						Received for Laboratory (Signature)	Date: Time:	Laboratory No.
	Seal #]				Data Results to:	8720	

ERT LABORATORIES SAMPLE RECEIPT CHECKLIST

CLIENT OTETA	PROJECT NO. 900-01/6417-300 LAB NO. 8720
shipped	NOTES: Fed 9x 5728443416
hand-delivered	120 75 128443416
2COC present on receipt	NOTES:
no COC	
3COC tape on shipping container	NOTES:
no COC tape	
samples broken/leaking on receipt	NOTES: SB.D8.W. Sample open on receipt (lid
samples intact on receipt	NOTES: SB.D8.W. Sample open on receipt (ind cracked in transit) knowled the cient pample retained for
5ambient on receipt	NOTES: TCL & analysis
chilled on receipt	HexCr
6samples preserved correctly	NOTES:
improper preservatives	
N/A, no recommended preservatives	
received within holding times	NOTES: TON OR
not received within holding times	Hex Cr Sampled 10.6 Expersed 10.7
N/A, no analysis request on COC	
8COC tapes on samples	NOTES:
no COC tapes	
9discrepancies between COC and sample labels	NOTES: Red Shipping Blanks (2) 80% on COC
no discrepancies noted	
N/A, no COC received	
Additional comments:	
Pu= Larry campbell	$\mathcal{L}_{\mathcal{L}}$
Samples inspected and logged in by	Date/Time 10.8-87 1/30
LOGIN COMMENTS:	
& new prof	
MDL SPECS:	Cutho time,
	C+16-5 415a C+16-5 418a
STATUS:(H)OLD(I)N F	PROGRESS (R) USH (S) UBCONTRACT (C) ANCEL
TURNAROUND:6 DAY14	DAY21 DAY 10.12 RUSH DUE DATE 100 % PREMIUM

METHOD OF ANALYSIS	5M 3	1A A EO	PARAMET	ER Cr	MATRIX	LIQ ANA	LYST C	Sdate 80	78700	TIME \	415
CALIBRATION STANDAR	DS/BLANK	ABSOR	BANCE	STA	ANDARDS	CONCENTRATION	FOUND C	ONCENTRATION	- ACTUA	L CONCE	NTRATION
BLK		0.0	000		BLANK	-0.010	- 0,0	10			
1.0		0.0	39		1.0/2.5	1,002	-0.0		 	 	
2,5		0.0	91		5.0	4,987	-0.0				
2.0	 	0.1	66		PA 386 A 386 X 5	0.093	TV= -1	-0.007			
SLOPE					0.10	0.103	+0.0	500			
LAB NUMBERS/SAMPLE	ID NUMBE	RS IN THI	S RUN:	MET	THOD BLAN	ζ					
		5888	-1 8	706-1	, 87	81-05	1707	405			· •
		100		Y \		1/100		•	•		
		 			 	· · · · · · · · · · · · · · · · · · ·	······································	· · · · · · · · · · · · · · · · · · ·			
QUALITY CONTROL DUP	LICATES	AND SPIKE	S	PER	CENT RECO	OVERY CALCULAT	ON: SPI	KE CONC. ÷ T	HEORETIC	AL CONC	ж 100
LAB #-SAMPLE ID #	FIRST CONC.	DIL. FACTOR	REPL.	DIL. FACTOR	RANGE	%PRECISION	ZSAMPLE x CONC.	ZSTANDARD x CONC.	THEO.	SPIKE CONC.	%RECOVERY
8706-1							5°% 0.310	50% 2.5	1.405	1.911	100,4
8682-1	3,782	\	3.737	\	0.045	0.85%					
· ·		 									
								- . · 			
SAMPLES RUN BY MOA:	·								,		
·											

MDL O

METHOD OF ANALYSIS	2W 3	303A	_PARAMET	ER V	MATRIX	LIQ_AN	alyst <u>C</u>	DATE L'	30078	7 _{TIME} \	900
CALIBRATION STANDAL	RDS/BLAN	K ABSOR	BANCE	STA	NDARDS	CONCENTRATIO	N FOUND (CONCENTRATION	I - ACTU	AL CONCE	NTRATION
BCK		0.	000	· [B	LANK	0.006	+0	3,006	•		
0.1		0,	035		1.0	0,993	~0	700,0			
2,5		0	480,0		5,5	2,494	-0	.006			
5.0		0,	149		5,0	5.010	+0	0,010	- , 	· · · · · · · · · · · · · · · · · · ·	
SLOPE					08E NO	0.096	0	,004			
LAB NUMBERS/SAMPLE	ID NUMBI	ERS IN THI	S RUN:		HOD BLANI						
TOTALS 873	1-20	·) · 87	41-[-47	3 : [8	1-057	7 7	DRWKWC	L 442	27	
€970X	872	9-1 8	87	41-	1 -4.	Z					
					· · · · · · · · · · · · · · · · · · ·			•			
QUALITY CONTROL DUF	LICATES	AND SPIKE	S	PER	CENT REC	OVERY CALCULA	rion: SPI	KE CONC. ÷ T	HEORETI(CAL CONC	. x 100
LAB #-SAMPLE ID #	FIRST CONC.	DIL. FACTOR	REPL.	DIL. FACTOR	RANGE	%PRECISION		ZSTANDARD x CONC.	THEO.	SPIKE CONC.	%RECOVE
8741-1	34,59	1.	35.26	1	0.67	1.36%	34.59	5.0	39,59	\$8,79	98 9
•=-				:					·		
8729-1	1.0>	\	٥٠١ ((0	0					
									•		
								,			
SAMPLES RUN BY MOA:	87	1-12	87	41-[1-4	\					
			 	_					-		

ERT LABORATORIES QUALITY CONTROL LOG

LEACHATE

METHOD OF ANALYSIS 5M 303A AA PARAMETER CV MATRIX +50LID ANALYST 1200787 IME 1730

CALIBRATION STANDARDS/BLANK	ABSORBANCE
BLK	0,000
1.0	850.0
5,2	0.066
5.0	451,0
SLOPE	

STANDARDS	CONCENTRATION	FOUND CONCENTRATION - ACTUAL CONCENTRATION
BLANK	-0.011	- 0.011
0.05	0.047	-0.003
0.10	0.105	40,005
1.0	1.011	+0.011
2.5	2.519	+0.009
5.0	4.991	-0.009
7.5	7.513	+0.013
EPA 386	0.098	500.00 1.=VT
EPA 386 X 5	0.491	TU=.5 - 0.009
METHOD BLAN	ζ	

LAB NUMBERS/SAMPLE ID NUMBERS IN THIS RUN:

TOTALS: 8720-[1-12,14-16] ; 8717-[1-6]

EP 70X: 8711-[1]

QUALITY CONTROL DUPLICATES AND SPIKES

PERCENT RECOVERY CALCULATION: SPIKE CONC. + THEORETICAL CONC. x 100

	LAB #-SAMPLE ID #	FIRST CONC.	DIL. FACTOR	REPL.	DIL. FACTOR	RANGE	%PRECISION	%SAMPLE x CONC.	ZSTANDARD x CONC.	THEO.	SPIKE CONC.	ZRECOVER
	5-0578	0.453	1	0.451	\	500.0	15.0	100% Q451	100% 5.0	5.451	4.513	88.58
-	8717-1	0.875	1	0.830	1	0.045	3.7					
	8711-1	<0.1	1	<0.1	l	0	0	100	4.0	4.0	3.99	99.8%
×												
		87	11 - 1				·					
2	SAMPLES RUN BY MOA:	8.1	1									

FOTAL VATE

NARRATIVE LOG

CLIENT AT & T PROJECT NO. G417-300 LAB NO. 8720

PARAMETER METHOD DETECTION LIMIT ANALYST DATE/TIME

Chromium, Hexavalent Sm 312 ColoriSoil metric & 312 B
Colorimetric

REF.: Numbers 8720 #4=SB-03W, #6=SB-04W, #11=SB-07 and #13=SB-08W

The Hexavalent Chromium for the above ID#s yeilded higher results than total Chromiums. When results were posted by ERT, Subcontract Laboratory was notified of that fact. Subcontract Laboratory analyzed for Total Chromium and results were at levels which ERT posted. Therefore, positive unknown interferences; exists one of which is colored leachate from the extraction.

Conclusion of both laboratory managers site that the Hexavalent Chromium results are somewhat approximate because of interferences, but conclude that Hexavalent Chromium is definitly in each sample which is posted above the detection limit. Data should be carefully used.

REFERENCE:

PHASE I

TOTAL CHROMIUM ANALYSIS OF HEXAVALENT CHROMIUM LEACHATE

L.M. CAMPRELI

DATE: 12/02/87

Larry Campbell

Bo Blankfield, Lab Director

PROJ. NO.: G417-350 LAB NO.: 8720A

Attached are reports of chemical analyses of samples received October 28, 1987. These analyses are:

Count	Test	Code	Test Name	Test Method	Sampled	Matrix
10	Cr	-S-Cr6-MBA	CHROMIUM ON SOLID (Cr+6 LEACH)	Cr+6 LEACHATE, SW-846: 6010, ICP	10/06/87 10/07/87	SOIL

Should you have any questions, do not hesitate to contact me at (713) 520-9900.

BB/lis

Enclosures: Analytical Summary, Analytical Reports, Chain of Custody, Sample Receipt Checklist, Quality Control

Logs, Narrative Log

LAB NO. 8720A

PROJECT G417-350 AT&T

environmental and engineering excellence

ERT LABORATORIES

Analytical Summary 12/01/87 14:31

Lab Number: 872	DA Pr	oject: G4	17-350	AT&T					
Lab ID Field ID (Cont'd)	1 SB-01	2 SB-02	3 SB-03	5 SB-04	7 SB-12	9 SB-05	10 SB-06	11 SB-07	
Test /Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
Cr -S-Cr6-MBA	<2.0 MG/KG	<2.0 MG/KG	<2.0 MG/KG	64 MG/KG	72 MG/KG	<2.0 MG/KG	<2.0 MG/KG	<2.0 MG/KG	
(MDL)	(2.0)	(2.0)	(2.0)		1	(2.0)	(2.0)	(2.0)	

QAQC Approval: Johnna Thomaso Date: 12-1-87

Approval: La Glesqueld Date: 12-1-8

Analytical Summary 12/01/87 14:32

Lab Number: 8720A Project: G417-350 AT&T									
Lab ID 12 16									
Field ID SB-08 SB-10 (Cont'd)									
Test /Matrix SOIL SOIL									

MG/KG

MG/KG

-S-Cr6-MBA 110

(MDL)

Cr

QAQC Approval: Acomm Johnson Date: 12-1-87

Mgr. Approval: Be Bliffld Date: 12-1-87

Analytical Report 12/01/87 14:41

AT&T Field ID: SB-01 Date Sampled: 10/06/87 Proj. No.: G417-350 Lab ID: 1 Time Sampled: 1355 Lab No.: Date Received: 10/28/87 8720A Matrix: SOIL (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed -S-Cr6-MBA <2.0 MG/KG 2.0 11/02/87 CHROMIUM ON SOLID (Cr+6 LEACH) 1300 Cr+6 LEACHATE, SW-846: 6010, ICP

AT&T Proj. No.: G417-350 Lab No.: 8720A	Field ID: SB-02 Lab ID: 2 Matrix: SOIL		Time Samp	led: 10/06/87 led: 1425 ived: 10/28/87
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	<2.0	MG/KG	2.0	11/02/87 1300

AT&T Proj. No.: G417-350 Lab No.: 8720A	Field ID: SB-03 Lab ID: 3 Matrix: SOIL		Time Samp	led: 10/06/87 led: 1500 ived: 10/28/87
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	<2.0	MG/KG	2.0	11/02/87 1300

Analytical Report 12/01/87 14:42

AT&T Field ID: SB-04 Date Sampled: 10/07/87 Proj. No.: G417-350 Lab ID: 5 Time Sampled: 1600 Lab No.: 8720A Matrix: SOIL Date Received: 10/28/87 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed -S-Cr6-MBA 64 MG/KG 11/25/87 CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP

Analytical Report 12/01/87 14:42

AT&T Field ID: SB-12 Date Sampled: 10/06/87 Proj. No.: G417-350 Time Sampled: 1600 Lab ID: 7 Lab No.: 8720A Matrix: SOIL Date Received: 10/28/87 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed -S-Cr6-MBA 72 MG/KG 11/25/87 CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP

AT&T Proj. No.: G417-350 Lab No.: 8720A	Field ID: SB-05 Lab ID: 9 Matrix: SOIL		Date Samp Time Samp Date Rece	
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	<2.0	MG/KG	2.0	11/02/87 1300

Analytical Report 12/01/87 14:42

AT&T Field ID: SB-06 Date Sampled: 10/07/87 Proj. No.: G417-350 Lab ID: 10 Time Sampled: 830 Lab No.: 8720A Matrix: SOIL Date Received: 10/28/87

(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	<2.0	MG/KG	2.0	11/02/87 1300

AT&T Proj. No.: G417-350 Lab No.: 8720A	Field ID: SB-07 Lab ID: 11 Matrix: SOIL		Date Sampled: 10/07/87 Time Sampled: 910 Date Received: 10/28/87		
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed	
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	<2.0	MG/KG	2.0	11/02/87 1300	

AT&T Proj. No.: G417-350 Lab No.: 8720A	Field ID: SB-08 Lab ID: 12 Matrix: SOIL		Date Sampl Time Sampl Date Recei	
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	110	MG/KG		11/25/87

AT&T Proj. No.: G417-350 Lab No.: 8720A	Field ID: SB-10 Lab ID: 16 Matrix: SOIL	·	Time Sampl	led: 10/07/87 led: 1210 lved: 10/28/87
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	72	MG/KG		11/02/87 1300

	1		1
Page		 of	

ł	Project No.			C	lient/Project Na	ıme			Project Location		
	G41	7 - 30			A 7				APPLETON	WS	
	Field Sample No./ Identification	Date and Time	Grab	Сошр	Sample Container (Size/Mat'l)	Sample Type (Liquid, Sludge, Etc.)	Preser- vative		ANALYSIS REQUESTED		LABORATORY REMARKS
,	SB-01	10-6.17			802	Soil		Hex. C	hrom: um	CV	or leacha
2	53-02	10 16 07 14:25		_	803,	11		1.	/1		Boltenho
3	58-03	10/00	_	_	9 mg.	<i>!</i> '		11	"	9	10 (00
5	56.04	10/1/67	_		\$ 05	10		/.	11		
7	58-12	18:00	_	_	802	11		1,	11		
1	58.05	7:57	_	_	8 0	11		11	/1	· ·	
D	513-06	10-7-57			80	11		1.,	/1		
,	58-07	13-7-87	_	_	8 03	ľ		//	. ,,		
0.7	59,-08	10-757	_	,	\$ 55 U	11		1.	/1		
į,	5,4. 10	10.757			5.,	/:		//	//		
	Samplers	: (Signature)			Relinquished by: (Signature)	R. Herry	Jez	Date: 10/29 87 Time: 11:45	Received by: (Signature)	Date: Time:	Intact
					Relinquished by: (Signature)	!		Date: Time:	Received by: (Signature)	Date: Time:	Intact
	Affi	liation			Relinquished by: (Signature)			Date: Time:	Received by: (Signature)	Date: Time:	Intact
	SAMPLER REM	ARKS:			TO: V	MBA	, , .		Received for Laboratory (Signature)	Date: Time:	Laboratory No.

NARRATIVE LOG

CLIENT AT & T Appleton WS PROJECT NO.900-01/G417-300

LAB NO. 8720A

PARAMETER	METHOD	DETECTION LIMIT	ANALYST	DATE/TIME
T-Cr of Leachate	312B	2.0 mg/kg	R V	11-2-87/1300

Procedure: Soil sample aliquot was taken from original sample container for analysis. This aliquot was mixed in distilled water for 24 hours producing a leachate as per Standard Methods 312B for Hexavalent Chromium. Total Chromium analyses were performed on this leachate as requested by our client.

REFERENCE:

APPENDIX C.1.b

PHASE I

VOLATILE ORGANIC COMPOUNDS

ANALYSIS OF SOIL AND WATER SAMPLES

ERT PROJECT NO. 0005-429 NOVEMBER 3, 1987

PREPARED FOR

L. Campbell

ERT, Lombard

Prepared by
Analytical Chemistry Laboratory
ERT, A Resource Engineering Company
33 Industrial Way, Wilmington, Massachusetts 01887

ANALYSIS OF SAMPLES FROM SOIL AND WATER

INTRODUCTION

This report represents the results of analysis conducted on various Soil and Water samples received by the ERT Analytical Chemistry Laboratory on October 8, 1987. The samples were to be selectively analyzed for volatile organic compounds.

SAMPLE RECEIPT AND CHAIN OF CUSTODY

Routine inspection of the samples revealed them to be packaged properly and received in good condition.

Upon receipt, information from the submitted samples was recorded in the Master Log Book (and the LIMS computer system) and assigned ERT Control Numbers. These unique sample labels were affixed to respective sample containers and subsequently utilized throughout the laboratory analysis procedures for positive traceability.

ANALYTICAL PROCEDURES

The water samples were analyzed according to procedures as outlined in:

- a. Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, 40 CFR Part 136.
- b. Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, revised, March, 1983.
- c. Standard Methods for the Examination of Water and Wastewater, 16th Edition, APHA, 1985.

The soil samples were analyzed according to procedures as outlined in "Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods," SW-846, 2nd Edition, revised April, 1984.

QUALITY CONTROL PROCEDURES

Standard quality control procedures were implemented for all analyses. Laboratory reagent (method) blanks, laboratory duplicated samples, and laboratory fortified control samples were analyzed concurrently with each case of submitted samples. The laboratory normally prepares and analyzes one (1) blank, one (1) fortified sample, and one (1) duplicate sample for each case of samples received or for each twenty (20) samples, whichever is more frequent. A case consists of a finite, usually predetermined number of samples collected over a given time period from one particular site. Duplicate sample analyses are performed only when sufficient sample volume is received. The results of the analyses are reviewed by the laboratory quality control coordinator to insure compliance with established analytical control limits.

Laboratory prepared method blank samples and fortified samples are identified in the analytical result tables under the Field Identification number using a unique numbering system and also assigning one ERT sample number to each sample. The Prefix "MB" refers to Method Blank, and "LF" refers to Laboratory Fortification (i.e., a quality control recovery sample).

In most cases, the analytical results will have been corrected using mean method blank results.

RESULTS OF ANALYSIS

Analytical results for the submitted samples are presented in the appended tables. Summary tables for the results of duplicate, blank, and fortified control samples have also been provided in the Appendix.

DISCUSSION

Review of the results of the quality control/quality assurance samples analyzed concurrently with the submitted samples indicated that the analyses were within the acceptance criteria as established by the U.S. EPA.

DATA AND REPORT APPROVAL FORM

SUBMITTED BY:

Analytical Chemistry Laboratory ERT A Resource Engineering Company 33 Industrial Way Wilmington, MA 01887 November 3, 1987

DATA AUDITED BY:

M. S. Sparlin

Quality Control Coordinator

REPORT APPROVED BY:

A. P. Paradice

Laboratory Manager

ERT ANALYTICAL LABORATORY Screening Results Volatile Organics in Soil

DATE SAMPLED: 10/6-10/7 /1987 DATE SCREENED: 10/8/87 CLIENT: AT&T

PROJECT NO: 0005-429

		a
ERT #	FIELD ID	RESULT
48279	SB-01	_
		_
48280	SB-02	-
48281	SB-03	-
48282	SB-04	-
48283	SB-12	-
48284	SB-05	-
48285	SB-06	-
48286	SB-07	-
48287	SB-08	-
48287D	SB-08	-
48288	SB-10	-
MB870844	•	

+ = greater than 1.0 ppm
- = less than 1.0 ppm a.

ERT ANALYTICAL LABORATORY Screening Results Volatile Organics in Water

CLIENT: AT&T DATE SAMPLED: 10/6-7/87

PROJECT NO: 0005-429 DATE SCREENED: 10/9/87

		а
ERT #	FIELD ID	RESULT
48274	SB-08-W	-
48275	SB-13-W	-
48276	SB-03-W	-
48277	SB-04-W	-
48278	SB-12-W	-
48278D	SB-12-W	-
48356	MB870849	-

a. + = greater than 1.0 ppm
- = less than 1.0 ppm

VOLATILES ANALYSIS IN WATER
SUMMARY OF ANALYTICAL RESULTS
METHOD BLANK RESULTS
QUALITY CONTROL CHECK SAMPLE RESULTS

ERT NO.:

48274

CLIENT:

AT&T

FLD ID:

SB-08-W

SAMPLING SITE: APPLETON, WI

DATE SAMPLED: 10/07/87 DATE ANALYZED: 10/09/87

PARAMETER	RESULT UG/L	PARAMETER	RESULT UG/L
CHLOROMETHANE BROMOMETHANE	BDL BDL	TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE	BDL
VINYL CHLORIDE	BDL		590 BDL
CHLOROETHANE	BDL		BDL
METHYLENE CHLORIDE	BDL	• •	BDL
ACETONE	BDL		BDL
CARBON DISULFIDE	BDL	•	BDL
1,1-DICHLOROETHENE	94	BROMOFORM	BDL
1,1-DICHLOROETHANE	47	2-HEXANONE	\mathtt{BDL}
TRANS-1,2-DICHLOROETHENE	77	4-METHYL-2-PENTANONE	\mathtt{BDL}
CHLOROFORM	BDL	TETRACHLOROETHENE	\mathtt{BDL}
1,2-DICHLOROETHANE	BDL	1,1,2,2-TETRACHLOROETHANE	\mathtt{BDL}
2-BUTANONE	BDL	TOLUENE	BDL
1,1,1-TRICHLOROETHANE	1400	CHLOROBENZENE	BDL
CARBON TETRACHLORIDE	240	ETHYL BENZENE	\mathtt{BDL}
VINYL ACETATE	BDL	STYRENE	\mathtt{BDL}
BROMODICHLOROMETHANE	BDL	TOTAL XYLENES	- BDL
1,2-DICHLOROPROPANE	BDL		

SURROGATE RECOVERY %		REVIEWED by
1,2-DICHLOROETHANE,D4	97	ANALYST
BENZENE, D6	100	$\overline{}$
TOLUENE, D8	101	SUPERVISOR AND 12/22/22
BROMOFLUOROBENZENE	95	
		QC COORD ALL REALES
BDL = BELOW DETECTION LIN	MIT (CONC.<10 UG/L)	

ERT NO: 48275
FLD ID: SB-13-W

CLIENT:

SAMPLING SITE: APPLETON, WI

DATE SAMPLED: 10/07/87 DATE ANALYZED: 10/09/87

PARAMETER	RESULT	PARAMETER	RESULT
	UG/L		UG/L
CHLOROMETHANE	BDL	TRANS-1,3-DICHLOROPROPENE	BDL
BROMOMETHANE	BDL	TRICHLOROETHENE	\mathtt{BDL}
VINYL CHLORIDE	BDL	DIBROMOCHLOROMETHANE	\mathtt{BDL}
CHLOROETHANE	BDL	1,1,2-TRICHLOROETHANE	\mathtt{BDL}
METHYLENE CHLORIDE	BDL	BENZENE	BDL
ACETONE	BDL	CIS-1,3-DICHLOROPROPENE	\mathtt{BDL}
CARBON DISULFIDE	\mathtt{BDL}	2-CHLOROETHYL VINYL ETHER	BDL
1,1-DICHLOROETHENE	BDL	BROMOFORM	BDL
1,1-DICHLOROETHANE	BDL	2-HEXANONE	BDL
TRANS-1,2-DICHLOROETHENE	\mathtt{BDL}	4-METHYL-2-PENTANONE	BDL
CHLOROFORM	BDL	TETRACHLOROETHENE	BDL
1,2-DICHLOROETHANE	\mathtt{BDL}	1,1,2,2-TETRACHLOROETHANE	BDL
2-BUTANONE	BDL	TOLUENE	BDL
1,1,1-TRICHLOROETHANE	\mathtt{BDL}	CHLOROBENZENE	BDL
CARBON TETRACHLORIDE	BDL	ETHYL BENZENE	BDL
VINYL ACETATE	BDL	STYRENE	BDL
BROMODICHLOROMETHANE	BDL	TOTAL XYLENES	BDL
1,2-DICHLOROPROPANE	BDL	•	

LYST _ '
110/ / L.
ISOR -4/10/22/8-
COORD 1/1/1/2/00 1/1/57
V

ERT NO.:

48276

CLIENT: AT&T

FLD ID: SB-03-W

DATE SAMPLED: 10/06/87

SAMPLING SITE: APPLETON, WI

PARAMETER	RESULT UG/L	PARAMETER	RESULT UG/L
CHLOROMETHANE BROMOMETHANE VINYL CHLORIDE CHLOROETHANE METHYLENE CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,1-DICHLOROETHANE TRANS-1,2-DICHLOROETHENE CHLOROFORM 1,2-DICHLOROETHANE 2-BUTANONE 1,1,1-TRICHLOROETHANE	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE DIBROMOCHLOROMETHANE 1,1,2-TRICHLOROETHANE BENZENE CIS-1,3-DICHLOROPROPENE 2-CHLOROETHYL VINYL ETHER BROMOFORM 2-HEXANONE 4-METHYL-2-PENTANONE TETRACHLOROETHENE 1,1,2,2-TETRACHLOROETHANE TOLUENE CHLOROBENZENE	UG/L BDL 59 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL
CARBON TETRACHLORIDE VINYL ACETATE	52 BDL	STYRENE	BDL BDL
BROMODICHLOROMETHANE 1,2-DICHLOROPROPANE	BDL BDL	TOTAL XYLENES	BDL

SURROGATE RECOVERY %		REVIEWED by	
1,2-DICHLOROETHANE,D4	114	ANALYST	
BENZENE, D6	120	(1) () () ()	
TOLUENE, D8	118	SUPERVISOR Sif 19/22/22	
BROMOFLUOROBENZENE	119	QC COORD All 10/21/37	
BDL = BELOW DETECTION LIM	TT (CONC.<10 UG/L)	(

ERT NO.: FLD ID:

48277

CLIENT:

AT&T

SB-04-W

DATE SAMPLED: 10/06/87

SAMPLING SITE: APPLETON, WI

PARAMETER	RESULT	PARAMETER	RESULT
	UG/L		UG/L
	, -		/ -
CHLOROMETHANE	BDL	TRANS-1,3-DICHLOROPROPENE	BDL
BROMOMETHANE	BDL	TRICHLOROETHENE	41
VINYL CHLORIDE	\mathtt{BDL}	DIBROMOCHLOROMETHANE	\mathtt{BDL}
CHLOROETHANE	BDL	1,1,2-TRICHLOROETHANE	BDL
METHYLENE CHLORIDE	\mathtt{BDL}	BENZENE	BDL
ACETONE	\mathtt{BDL}	CIS-1,3-DICHLOROPROPENE	BDL
CARBON DISULFIDE	BDL	2-CHLOROETHYL VINYL ETHER	BDL
1,1-DICHLOROETHENE	18	BROMOFORM	BDL
1,1-DICHLOROETHANE	26	2-HEXANONE	BDL
TRANS-1,2-DICHLOROETHENE	18	4-METHYL-2-PENTANONE	BDL
CHLOROFORM	\mathtt{BDL}	TETRACHLOROETHENE	BDL
1,2-DICHLOROETHANE	BDL	1,1,2,2-TETRACHLOROETHANE	BDL
2-BUTANONE	BDL	TOLUENE	BDL
1,1,1-TRICHLOROETHANE	530	CHLOROBENZENE	BDL
CARBON TETRACHLORIDE	86	ETHYL BENZENE	BDL
VINYL ACETATE	\mathtt{BDL}	STYRENE	BDL
BROMODICHLOROMETHANE	BDL	TOTAL XYLENES	\mathtt{BDL}
1,2-DICHLOROPROPANE	BDL		

SURROGATE RECOVERY %		REVIEWED by
1,2-DICHLOROETHANE,D4	95	ANALYST
BENZENE, D6	101	-21.0 1 /
TOLUENE, D8	96	SUPERVISOR Licht
BROMOFLUOROBENZENE	100	7,7
		QC COORD (Solve 187)
BDL = BELOW DETECTION LIM	IT (CONC.<10 UG/L)	

ERT NO.:

48278A

CLIENT:

AT&T

FLD ID:

SB-12-W

DATE SAMPLED: 10/06/87

SAMPLING SITE: APPLETON, WI

PARAMETER	RESULT UG/L	PARAMETER	RESULT UG/L
CHLOROMETHANE BROMOMETHANE VINYL CHLORIDE CHLOROETHANE METHYLENE CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,1-DICHLOROETHANE TRANS-1,2-DICHLOROETHENE CHLOROFORM 1,2-DICHLOROETHANE 2-BUTANONE 1,1,1-TRICHLOROETHANE		TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE DIBROMOCHLOROMETHANE 1,1,2-TRICHLOROETHANE BENZENE CIS-1,3-DICHLOROPROPENE 2-CHLOROETHYL VINYL ETHER BROMOFORM	
CARBON TETRACHLORIDE VINYL ACETATE	82 BDL	ETHYL BENZENE STYRENE	BDL BDL
BROMODICHLOROMETHANE 1,2-DICHLOROPROPANE	BDL BDL	TOTAL XYLENES	BDL

SURROGATE RECOVERY %		REVIEWED by
1,2-DICHLOROETHANE,D4	94	ANALYST
BENZENE, D6	98	·NO i
TOLUENE, D8	94	SUPERVISOR Life 10/22/47
BROMOFLUOROBENZENE	98	
•		QC COORD pick 10/81
BDL = BELOW DETECTION LIM	IT (CONC.<10 UG/L)	717-1-1-

CLIENT: AT&T

ERT NO.: 48278B FLD ID: SB-12-W DUP

DATE SAMPLED: 10/06/87

SAMPLING SITE: APPLETON, WI

RESULT	PARAMETER	RESULT
UG/L		UG/L
•		•
BDL	TRANS-1,3-DICHLOROPROPENE	BDL
\mathtt{BDL}	TRICHLOROETHENE	44
\mathtt{BDL}	DIBROMOCHLOROMETHANE	BDL
\mathtt{BDL}	1,1,2-TRICHLOROETHANE	BDL
\mathtt{BDL}	BENZENE	\mathtt{BDL}
\mathtt{BDL}	CIS-1,3-DICHLOROPROPENE	BDL
\mathtt{BDL}	2-CHLOROETHYL VINYL ETHER	BDL
20	BROMOFORM	BDL
28	2-HEXANONE	BDL
19	4-METHYL-2-PENTANONE	BDL
BDL	TETRACHLOROETHENE	BDL
BDL	1,1,2,2-TETRACHLOROETHANE	BDL
BDL	TOLUENE	\mathtt{BDL}
560	CHLOROBENZENE	BDL
90	ETHYL BENZENE	BDL
BDL	STYRENE	BDL
BDL	TOTAL XYLENES	BDL
BDL		
	UG/L BDL BDL BDL BDL BDL 20 28 19 BDL BDL BDL BDL BDL BDL BDL BD	BDL TRANS-1,3-DICHLOROPROPENE BDL TRICHLOROETHENE BDL DIBROMOCHLOROMETHANE BDL 1,1,2-TRICHLOROETHANE BDL BENZENE BDL CIS-1,3-DICHLOROPROPENE BDL 2-CHLOROETHYL VINYL ETHER 20 BROMOFORM 28 2-HEXANONE 19 4-METHYL-2-PENTANONE BDL TETRACHLOROETHENE BDL 1,1,2,2-TETRACHLOROETHANE BDL TOLUENE 560 CHLOROBENZENE 90 ETHYL BENZENE BDL STYRENE BDL TOTAL XYLENES

SURROGATE RECOVERY %		REVIEWED by	
1,2-DICHLOROETHANE,D4	97	ANALYST	
BENZENE, D6	9 9	$\frac{1}{2}$	
TOLUENE, D8	95	SUPERVISOR LA MERCET	
BROMOFLUOROBENZENE	9 8		
		QC COORD ASS 12/2/87	
RDI. = RELOW DETECTION LIMIT	T (CONC <10 HG/I)		

48289

CLIENT:

AT&T

ERT NO.: FLD ID:

SHIPPING BLANK

DATE SAMPLED: 10/09/87

SAMPLING SITE: APPLETON, WI

PARAMETER	RESULT UG/L	PARAMETER	RESULT UG/L
	, -		,
CHLOROMETHANE	BDL	TRANS-1,3-DICHLOROPROPENE	BDL
BROMOMETHANE	BDL	TRICHLOROETHENE	BDL
VINYL CHLORIDE	\mathtt{BDL}	DIBROMOCHLOROMETHANE	BDL
CHLOROETHANE	BDL	1,1,2-TRICHLOROETHANE	BDL
METHYLENE CHLORIDE	BDL	BENZENE	BDL
ACETONE	BDL	CIS-1,3-DICHLOROPROPENE	BDL
CARBON DISULFIDE	BDL	2-CHLOROETHYL VINYL ETHER	\mathtt{BDL}
1,1-DICHLOROETHENE	BDL	BROMOFORM	\mathtt{BDL}
1,1-DICHLOROETHANE	\mathtt{BDL}		BDL
TRANS-1,2-DICHLOROETHENE	\mathtt{BDL}	4-METHYL-2-PENTANONE	BDL
CHLOROFORM	BDL	TETRACHLOROETHENE	\mathtt{BDL}
1,2-DICHLOROETHANE	\mathtt{BDL}	1,1,2,2-TETRACHLOROETHANE	\mathtt{BDL}
2-BUTANONE	\mathtt{BDL}	TOLUENE	BDL
1,1,1-TRICHLOROETHANE	\mathtt{BDL}	CHLOROBENZENE	\mathtt{BDL}
CARBON TETRACHLORIDE	\mathtt{BDL}	ETHYL BENZENE	\mathtt{BDL}
VINYL ACETATE	BDL	STYRENE	BDL
BROMODICHLOROMETHANE	BDL	TOTAL XYLENES	\mathtt{BDL}
1,2-DICHLOROPROPANE	\mathtt{BDL}		

SURROGATE RECOVERY %		REVIEWED by
1,2-DICHLOROETHANE,D4	92	ANALYST
BENZENE, D6 TOLUENE, D8	102 99	SUPERVISOR Afficial?
BROMOFLUOROBENZENE	102	QC COORD XX pbols 7
BDL = BELOW DETECTION LIM	IT (CONC.<10 UG/L)	The state of

ERT NO.:

48299

CLIENT:

AT&T

FLD ID:

MB870842

DATE SAMPLED: 10/09/87

SAMPLING SITE: APPLETON, WI

PARAMETER	RESULT	PARAMETER	RESULT
	UG/L		UG/L
	·		·
CHLOROMETHANE	BDL	TRANS-1,3-DICHLOROPROPENE	BDL
BROMOMETHANE	\mathtt{BDL}	TRICHLOROETHENE	BDL
VINYL CHLORIDE	\mathtt{BDL}	DIBROMOCHLOROMETHANE	BDL
CHLOROETHANE	BDL	1,1,2-TRICHLOROETHANE	\mathtt{BDL}
METHYLENE CHLORIDE	BDL	BENZENE	BDL
ACETONE	40	CIS-1,3-DICHLOROPROPENE	\mathtt{BDL}
CARBON DISULFIDE	BDL	2-CHLOROETHYL VINYL ETHER	\mathtt{BDL}
1,1-DICHLOROETHENE	BDL	BROMOFORM	BDL
1,1-DICHLOROETHANE	\mathtt{BDL}	2-HEXANONE	BDL
TRANS-1,2-DICHLOROETHENE	BDL	4-METHYL-2-PENTANONE	BDL
CHLOROFORM	\mathtt{BDL}	TETRACHLOROETHENE	. BDL
1,2-DICHLOROETHANE	\mathtt{BDL}	1,1,2,2-TETRACHLOROETHANE	\mathtt{BDL}
2-BUTANONE	\mathtt{BDL}	TOLUENE	BDL
1,1,1-TRICHLOROETHANE	BDL	CHLOROBENZENE	BDL
CARBON TETRACHLORIDE	\mathtt{BDL}	ETHYL BENZENE	\mathtt{BDL}
VINYL ACETATE	BDL	STYRENE	BDL
BROMODICHLOROMETHANE	\mathtt{BDL}	TOTAL XYLENES	BDL
1,2-DICHLOROPROPANE	BDL		

SURROGATE RECOVERY %		REVIEWED by
1,2-DICHLOROETHANE,D4	84	ANALYST
BENZENE, D6	97	-11.01/
TOLUENE, D8	95	SUPERVISOR Lift 10/22/17
BROMOFLUOROBENZENE	93	
		QC COORD ASSAST87
BDL = BELOW DETECTION LIN	IIT (CONC.<10 UG/L)	

ERT NO.:

48305

CLIENT:

AT&T

FLD ID:

LF871139

DATE SAMPLED:

10/09/87

SAMPLING SITE: APPLETON, WI

DATE ANALYZED: 10/09/87

PARAMETER	% RECOVERY
VINYL CHLORIDE	110
1,1-DICHLOROETHENE	110
CHLOROFORM	110
1,2-DICHLOROPROPANE	99
TOLUENE	110
ETHYL BENZENE	100

JAP 10/22/27

VOLATILES ANALYSIS IN SOIL
SUMMARY OF ANALYTICAL RESULTS
METHOD BLANK RESULTS
QUALITY CONTROL CHECK SAMPLE RESULTS

ERT NO.:

48279

CLIENT:

AT&T

FLD ID.: SYB-01

DATE SAMPLED: SAMPLING SITE: APPLETON, WI DATE ANALYZED: 10/06/87 10/13/87

PARAMETER RESULT PARAMETER RESU	
(UG/G) (UG/	•
CHLOROMETHANE < 0.5	555555555555555555555555555555555555555

SURROGATE RECOVERY %		REVIEWED by
1,2-DICHLOROETHANE,D4 BENZENE,D6 TOLUENE,D8 BROMOFLUOROBENZENE	110 119 116 115	SUPERVISOR AN icholars

ERT NO.:

48281

CLIENT:

AT&T

FLD ID.:

SB-03

DATE SAMPLED:

10/06/87 10/13/87

SAMPLING SITE: APPLETON, WI

DATE ANALYZED:

PARAMETER	RESULT (UG/G)	PARAMETER	RESULT (UG/G)
CHLOROMETHANE	< 0.5	TRANS-1,3-DICHLOROPROPENE	< 0.5
BROMOMETHANE	< 0.5	TRICHLOROETHENE	< 0.5
VINYL CHLORIDE	< 0.5	DIBROMOCHLOROMETHANE	< 0.5
CHLOROETHANE	< 0.5	1,1,2-TRICHLOROETHANE	< 0.5
METHYLENE CHLORIDE	< 0.5	BENZENE	< 0.5
ACETONE	< 2.4	CIS-1,3-DICHLOROPROPENE	< 0.5
CARBON DISULFIDE	< 2.4	2-CHLOROETHYL VINYL ETHER	< 0.5
1,1-DICHLOROETHENE	< 0.5	BROMOFORM	< 0.5
1,1-DICHLOROETHANE	< 0.5	2-HEXANONE	< 2.4
TRANS-1,2-DICHLOROETHENE	< 0.5	4-METHYL-2-PENTANONE	< 2.4
CHLOROFORM	< 0.5	TETRACHLOROETHENE	< 0.5
1,2-DICHLOROETHANE	< 0.5	1,1,2,2-TETRACHLOROETHANE	< 0.5
2-BUTANONE	- 1.4	TOLUENE	< 0.5
1,1,1-TRICHLOROETHANE	< 0.5	CHLOROBENZENE	< 0.5
CARBON TETRACHLORIDE	< 0.5	ETHYL BENZENE	< 0.5
VINYL ACETATE	< 0.5	STYRENE	< 0.5
BROMODICHLOROMETHANE	< 0.5	TOTAL XYLENES	< 0.5
1,2-DICHLOROPROPANE	< 0.5		

SURROGATE RECOVERY %		REVIEWED by
1,2-DICHLOROETHANE, D4 BENZENE, D6 TOLUENE, D8 BROMOFLUOROBENZENE	122 127 124 126	SUPERVISOR All results

ERT NO.: 48282 CLIENT: AT&T
FLD ID.: SB-04 DATE SAMPLED: 10/06/87
SAMPLING SITE: APPLETON, WI DATE ANALYZED: 10/13/87

PARAMETER	RESULT	PARAMETER	RESULT
	(UG/G)		(UG/G)
CHLOROMETHANE	< 0.5	TRANS-1,3-DICHLOROPROPENE	< 0.5
BROMOMETHANE	< 0.5	TRICHLOROETHENE	< 0.5
VINYL CHLORIDE	< 0.5	DIBROMOCHLOROMETHANE	< 0.5
CHLOROETHANE	< 0.5	1,1,2-TRICHLOROETHANE	< 0.5
METHYLENE CHLORIDE	< 0.5	•	< 0.5
ACETONE	< 2.5	CIS-1,3-DICHLOROPROPENE	< 0.5
CARBON DISULFIDE	< 2.5	•	
1,1-DICHLOROETHENE	< 0.5	BROMOFORM	< 0.5
1,1-DICHLOROETHANE	< 0.5	2-HEXANONE	< 2.5
TRANS-1,2-DICHLOROETHENE	< 0.5	4-METHYL-2-PENTANONE	< 2.5
CHLOROFORM		TETRACHLOROETHENE	< 0.5
1,2-DICHLOROETHANE	< 0.5	1,1,2,2-TETRACHLOROETHANE	< 0.5
2-BUTANONE	1.4	TOLUENE	< 0.5
1,1,1-TRICHLOROETHANE	< 0.5	CHLOROBENZENE	< 0.5
		ETHYL BENZENE	< 0.5
VINYL ACETATE	< 0.5	STYRENE	< 0.5
BROMODICHLOROMETHANE	< 0.5	TOTAL XYLENES	< 0.5
1,2-DICHLOROPROPANE	< 0.5		

SURROGATE RECOVERY %		REVIEWED by
1,2-DICHLOROETHANE, D4 BENZENE, D6 TOLUENE, D8 BROMOFLUOROBENZENE	115 114 112 114	SUPERVISOR SUPERVISOR

ERT NO.:

48283

CLIENT:

AT&T

FLD ID.:

BROMODICHLOROMETHANE

1,2-DICHLOROPROPANE

SB-12

DATE SAMPLED:

10/06/87 10/13/87

< 0.4

SAMPLING SITE: APPLETON, WI

DATE ANALYZED:

PARAMETER RESULT PARAMETER RESULT (UG/G) (UG/G) CHLOROMETHANE < 0.4 TRANS-1, 3-DICHLOROPROPENE < 0.4 < 0.4 BROMOMETHANE TRICHLOROETHENE < 0.4 VINYL CHLORIDE < 0.4 DIBROMOCHLOROMETHANE < 0.4 CHLOROETHANE < 0.4 1,1,2-TRICHLOROETHANE < 0.4 METHYLENE CHLORIDE < 0.4 BENZENE < 0.4 **ACETONE** < 2.1 CIS-1,3-DICHLOROPROPENE < 0.4 CARBON DISULFIDE < 2.1 2-CHLOROETHYL VINYL ETHER < 0.4 1,1-DICHLOROETHENE < 0.4 BROMOFORM < 0.4 2-HEXANONE 1,1-DICHLOROETHANE < 0.4 < 2.1 TRANS-1,2-DICHLOROETHENE < 0.4 4-METHYL-2-PENTANONE < 2.1 CHLOROFORM < 0.4 TETRACHLOROETHENE < 0.4 1,2-DICHLOROETHANE < 0.4 1,1,2,2-TETRACHLOROETHANE < 0.4 2-BUTANONE -----1.1 TOLUENE < 0.4 1,1,1-TRICHLOROETHANE < 0.4 CHLOROBENZENE < 0.4 CARBON TETRACHLORIDE < 0.4 ETHYL BENZENE < 0.4 VINYL ACETATE < 0.4 STYRENE < 0.4

SURROGATE RECOVERY %		REVIEWED by
1,2-DICHLOROETHANE,D4 BENZENE,D6 TOLUENE,D8 BROMOFLUOROBENZENE	122 122 120 123	SUPERVISOR Afficients 7 QC COORD Millidents 1

< 0.4

< 0.4

TOTAL XYLENES

ERT NO.:

48286

CLIENT:

AT&T

FLD ID.:

SB-07

DATE SAMPLED:

10/07/87

SAMPLING SITE: APPLETON, WI

DATE ANALYZED:

10/13/87

	PARAMETER	RESULT (UG/G)	PARAMETER	RESULT (UG/G)
		(00/0)		(00/0)
	CHLOROMETHANE	< 0.5	TRANS-1,3-DICHLOROPROPENE	< 0.5
	BROMOMETHANE	< 0.5	TRICHLOROETHENE	< 0.5
	VINYL CHLORIDE	< 0.5	DIBROMOCHLOROMETHANE	< 0.5
	CHLOROETHANE	< 0.5	1,1,2-TRICHLOROETHANE	< 0.5
	METHYLENE CHLORIDE	< 0.5	BENZENE	< 0.5
	ACETONE	< 2.5	CIS-1,3-DICHLOROPROPENE	< 0.5
	CARBON DISULFIDE			
	1,1-DICHLOROETHENE	< 0.5	BROMOFORM	< 0.5
	1,1-DICHLOROETHANE			< 2.5
	TRANS-1,2-DICHLOROETHENE	< 0.5	4-METHYL-2-PENTANONE	< 2.5
	CHLOROFORM	< 0.5	TETRACHLOROETHENE	< 0.5
	1,2-DICHLOROETHANE	< 0.5	1,1,2,2-TETRACHLOROETHANE	< 0.5
	2-BUTANONE	1.2	TOLUENE	< 0.5
	1,1,1-TRICHLOROETHANE	< 0.5	CHLOROBENZENE	< 0.5
	CARBON TETRACHLORIDE	< 0.5	ETHYL BENZENE	< 0.5
			STYRENE	< 0.5
	BROMODICHLOROMETHANE	< 0.5	TOTAL XYLENES	< 0.5
	1.2-DICHLOROPROPANE	< 0.5		

SURROGATE RECOVERY %		REVIEWED by
1,2-DICHLOROETHANE,D4 BENZENE,D6 TOLUENE,D8 BROMOFLUOROBENZENE	115 113 111 112	analystsupervisor <u>Bific/21/</u> 87 qc coord <u>Na ababy</u>

ERT NO.:

48287

CLIENT:

AT&T

FLD ID.:

SB-08

DATE SAMPLED:

10/07/87

SAMPLING SITE: APPLETON, WI

DATE ANALYZED:

10/13/87

PARAMETER	RESULT	PARAMETER	RESULT
	(UG/G)		(UG/G)
CHLOROMETHANE	< 0.5	TRANS-1,3-DICHLOROPROPENE	< 0.5
BROMOMETHANE	< 0.5	TRICHLOROETHENE	< 0.5
VINYL CHLORIDE	< 0.5	DIBROMOCHLOROMETHANE	< 0.5
CHLOROETHANE	< 0.5	1,1,2-TRICHLOROETHANE	< 0.5
METHYLENE CHLORIDE	< 0.5	BENZENE	< 0.5
ACETONE	< 2.3	CIS-1,3-DICHLOROPROPENE	< 0.5
CARBON DISULFIDE	< 2.3	2-CHLOROETHYL VINYL ETHER	< 0.5
1,1-DICHLOROETHENE	< 0.5	BROMOFORM	< 0.5
1,1-DICHLOROETHANE	< 0.5	2-HEXANONE	< 2.3
TRANS-1,2-DICHLOROETHENE	< 0.5	4-METHYL-2-PENTANONE	< 2.3
CHLOROFORM	< 0.5	TETRACHLOROETHENE	< 0.5
1,2-DICHLOROETHANE	< 0.5	1,1,2,2-TETRACHLOROETHANE	< 0.5
2-BUTANONE	< 2.3	TOLUENE	< 0.5
1,1,1-TRICHLOROETHANE	< 0.5	CHLOROBENZENE	< 0.5
CARBON TETRACHLORIDE	< 0.5	ETHYL BENZENE	< 0.5
VINYL ACETATE	< 0.5		< 0.5
BROMODICHLOROMETHANE	< 0.5	TOTAL XYLENES	< 0.5
1,2-DICHLOROPROPANE	< 0.5		
-,			

SURROGATE RECOVERY %		REVIEWED by
1,2-DICHLOROETHANE,D4	125	ANALYST
BENZENE, D6	124	Man /
TOLUENE, D8	124	SUPERVISOR La Color les
BROMOFLUOROBENZENE	127	-
		QC COORD 10/21/87/88

ERT NO.:

48356

CLIENT:

AT&T

FLD ID.:

MB870847

DATE SAMPLED:

10/13/87

SAMPLING SITE: APPLETON, WI

DATE ANALYZED:

10/13/87

		·	
PARAMETER	RESULT (UG/G)	PARAMETER	RESULT (UG/G)
BROMOMETHANE VINYL CHLORIDE CHLOROETHANE METHYLENE CHLORIDE ACETONE CARBON DISULFIDE 1,1-DICHLOROETHENE 1,1-DICHLOROETHANE TRANS-1,2-DICHLOROETHENE CHLOROFORM 1,2-DICHLOROETHANE 2-BUTANONE 1,1,1-TRICHLOROETHANE CARBON TETRACHLORIDE	<pre>< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 2.5 < 2.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 <</pre>	BENZENE CIS-1,3-DICHLOROPROPENE 2-CHLOROETHYL VINYL ETHER BROMOFORM 2-HEXANONE 4-METHYL-2-PENTANONE TETRACHLOROETHENE 1,1,2,2-TETRACHLOROETHANE TOLUENE CHLOROBENZENE ETHYL BENZENE	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 2.5 < 2.5 < 0.5 < 0.5 < 0.5
VINYL ACETATE BROMODICHLOROMETHANE 1,2-DICHLOROPROPANE		STYRENE TOTAL XYLENES	< 0.5 < 0.5

SURROGATE RECOVERY %		REVIEWED by
1,2-DICHLOROETHANE,D4 BENZENE,D6 TOLUENE,D8 BROMOFLUOROBENZENE	125 141 133 134	SUPERVISOR AND ICENTED

ERT ANALYTICAL LABORATORY SUMMARY OF ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS IN WATER

ERT NO.:

48355

CLIENT:

AT&T

FLD ID:

MB870848

DATE SAMPLED: 10/13/87

SAMPLING SITE: APPLETON, WI

DATE ANALYZED: 10/13/87

PARAMETER	RESULT UG/L	PARAMETER	RESULT UG/L
CHLOROMETHANE	BDL	TRANS-1,3-DICHLOROPROPENE	BDL
BROMOMETHANE	\mathtt{BDL}	TRICHLOROETHENE	BDL
VINYL CHLORIDE	BDL	DIBROMOCHLOROMETHANE	BDL
CHLOROETHANE	BDL	1,1,2-TRICHLOROETHANE	BDL
METHYLENE CHLORIDE	BDL	BENZENE	BDL
ACETONE	\mathtt{BDL}	CIS-1,3-DICHLOROPROPENE	BDL
CARBON DISULFIDE	BDL	2-CHLOROETHYL VINYL ETHER	BDL
1,1-DICHLOROETHENE	BDL	BROMOFORM	BDL
1,1-DICHLOROETHANE	BDL	2-HEXANONE	BDL
TRANS-1,2-DICHLOROETHENE	BDL	4-METHYL-2-PENTANONE	BDL
CHLOROFORM	BDL	TETRACHLOROETHENE	BDL
1,2-DICHLOROETHANE	BDL	1,1,2,2-TETRACHLOROETHANE	BDL
2-BUTANONE	18	TOLUENE	BDL
1,1,1-TRICHLOROETHANE	BDL	CHLOROBENZENE	BDL
CARBON TETRACHLORIDE	BDL	ETHYL BENZENE	BDL
VINYL ACETATE	BDL	STYRENE	BDL
BROMODICHLOROMETHANE	BDL	TOTAL XYLENES	BDL
1.2-DICHLOROPROPANE	BDL		

SURROGATE RECOVERY %	REVIEWED by	
1,2-DICHLOROETHANE,D4	89	ANALYST
BENZENE, D6	104	11011
TOLUENE, D8	101	SUPERVISOR Afford 12/53
BROMOFLUOROBENZENE	98	
		QC COORD NAL 10/30/87
BDL = BELOW DETECTION LIM	IT (CONC.<10 UG/L)	· * · · /

ERT ANALYTICAL LABORATORY SUMMARY OF ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS IN WATER

ERT NO.:

48357

CLIENT:

AT&T

FLD ID:

LF871140

DATE SAMPLED:

10/13/87

SAMPLING SITE: APPLETON, WI

DATE ANALYZED: 10/13/87

PARAMETER	% RECOVERY
VINYL CHLORIDE	120
1,1-DICHLOROETHENE	110
CHLOROFORM	100
1,2-DICHLOROPROPANE	100
TOLUENE	100
ETHYL BENZENE	100

ERT ANALYTICAL LABORATORY SUMMARY OF ANALYTICAL RESULTS VOLATILE ORGANIC COMPOUNDS IN WATER

ERT NO.:

48286M

CLIENT:

AT&T

FLD ID:

SB-07 MATRIX OVERSPIKE

DATE SAMPLED:

10/07/87

SAMPLING SITE: APPLETON, WI

DATE ANALYZED: 10/13/87

PARAMETER	% RECOVERY
VINYL CHLORIDE	120
1,1-DICHLOROETHENE	120
CHLOROFORM	120
1,2-DICHLOROPROPANE	120
TOLUENE	120
ETHYL BENZENE	120

CHAIN-OF-CUSTODY RECORD

AT&T

APPLETON, WI

SAMPLE RECEIPT CHECK LIST

	757 9543, 91	11		
Matrix	Container	ERT #(s)		
water	VOA	48274-48275, 48250		· -
Soil		482 79-48288		
			-	

1. Were samples	shipped or hand-delivered?			
	452 4616792	Y	es /	No
	ord present upon receipt of sa	nples?	es C	N ₀
Notes:		Y	es,	No I
	present/unbroken on outer p	ackage?	3	ο.
	22357			
·	received ambient of chilled?	/		
Notes:	also seed and backen fleeking	11 60 0 10 0 0 10 10 10 10 10 10 10 10 10 10	es	No
Notes:	ples received broken/leaking	lumbi ober i A see iegi.	J	14
	properly preserved?	. Y	es T	No C
Notes:	property preserved			u
7 Wara COC bys	es present/unbröken on samj	olas?	es T	No
Notes:	court on Shipping black	not on other saples		u
			es/	No
Notes:	him Blak not	nd COC records? included on COC added by (DAG) 10/2/4/1 2	1	
د 9. Were samples	received within holding times	? (es/	N _O
Notes:				
		-		
Additional Comm				
	ARBILL #	4524610392		

Client/Project Name	Project Location				7				7
AT+T	APPLETON W	15.				ANALY	YSES		
Project No.	Field Logbook No.			/		77	7 /		
G417-300	į				_/ &/	/ /·,	/ /		
Sampler: (Signature)	Chain of Custody Tape No.			7-5					
Sampler: (Signature)	22357			Tro Co				/	
					K /	/ / ,			
Sample No./ Lab Sai Identification Date Time Number 18150	ber Sam	ple	So					REMAR	RKS
5B-05 N-7-67 7:50 48284	Soil			~			37	BY YX	BAL
SB-060 10-7-87 8:30 48285				/				n	
38-07 10-7-17 9:10 48286	Soil							W	
SB-06 10.7-87 10:10 48287	1 501			~				71	
5B-08-W 10-7-87 10:25 48274	WARK		~					• • •	
55-11-W 10-7-67 10135-		<u></u>						••	
3B-13-W 10-7-87 11:15 48275	WARR		1					• • • • • • • • • • • • • • • • • • • •	
SB-10 10-7-67 12:10 48286	501							11	v =
Relinquished by: (Signature)	Date 10/7 /67	Time /4:30	1	ved by:	(Sign e ture))		Date	Time
Relinquished by: (Signature)	Date	Time	Recei	ved by:	(Signature))		Date	Time
Relinquished by: (Signature)	Date	Time		ved for in Luc		y: (Signature)	<u> </u>	Date /0/8/8>	Time /o:•o
Sample Disposal Method:	Disposed	of by: (Sigi	nature)					Date	Time
SAMPLE COLLECTOR	ANALYTIC		ATORY					4514	
Environmental Research and Technology				1.				E.J	
Cencord, MA 01742		MOUSIN		•				270	
617-369-8910 LIMBARD, IL		MYTON .	<i>'</i>		ख)			Nº	9999
317 62a S	5900 617	65)	42	90					

Location								,	
PLETON, I	NS					AN.	ALYSE	s /	
ook No.	·····	·		17		7	7		
					NO/				
stody Tape No.	· · · · · · · · · · · · · · · · · · ·		12						
57				g 5/		/			
1		18				/.		REMA	RKS
Soil			V					3 day ve	WAL
Sort		<u> </u>						•••	
341	<u> </u>		/						
WAT	EK	V						ч	
١١٠٥		1	/						
٠ ٠ ٠ ١			<u> </u>					**	,
WAT	NATE			l					
									<u></u>
	1	Recei	ved by	: (Signal	ture)			Date	Time
Date	Time	Recei	ved by	: (Signal	(ure)			Date	Time
Date	Time	Received for Laboratory: (Signature) Date Time					İ		
			<u> </u>	Kusi					1000 A
Disposed	of by: (Sigr	nature)						Date	Time
ANALYTIC	AL LABOR	ATORY						121	DT
ER	-								
W. 33 I	NAUSTRIA	, M	1A7 A C	1687	>			Nº	9943
	Type Sam Soil Soil Soil Soil Soil Soil Soil Analytic EPT AN. 33 J	Type of Sample Soil So	Type of Sample Soil Soil Soil Soil Soil Soil Soil Soil Date Time Recei I-/7/87 14:30 Date Time Recei Disposed of by: (Signature) ANALYTICAL LABORATORY EXT. N. 33 TANSTRIAL M.	Type of Sample Soil So	Type of Sample Soil So	Type of Sample Soil So	Type of Sample Soil So	Type of Sample Soil Soignature) Date Time Received by: (Signature) Date Time Received for Laboratory: (Signature) ANALYTICAL LABORATORY Soil ANALYTICAL LABORATORY Soil ANALYTICAL LABORATORY Soil	Type of Sample Soil So

APPENDIX C.2 PHASE II ANALYTICAL RESULTS

APPENDIX C.2.a

PHASE II

TOTAL AND HEXAVALENT CHROMIUM

DATE: 11/09/87

FROM:

TO: Larry Campbell

Bo Blankfield, Lab Manager

MOV 11 1987

RECEIVED

L. M. CAMPBELL

PROJ. NO.: G417-350 LAB NO.: 8777

Attached are reports of chemical analyses of samples received October 28, 1987. These analyses are:

Count	Test	Code		Test Name	Test Method	Sampled	Matrix
2	Cr		-HOU	CERONIUM	SM: 303A, ATOMIC ABSORPTION	10/27/87	WATER
10	Cr	-S-	-H00	CHROMIUM ON SOLID	SM: 303A, ATOMIC ABSORPTION	10/27/87	SOIL
2	Cr+6		-MBA	CHROMIUM, HEXAVALENT	SM: 312B, COLORIMETRIC	10/27/87	WATER
10	Cr+6	-S-	-MBA	CHROMIUM, HEXAVALENT ON SOLID	SM: 312B, COLORIMETRIC	10/27/87	SOIL

Should you have any questions, do not hesitate to contact me at (713) 520-9900.

BB/lis

Enclosures: Analytical Summary, Analytical Reports, Chain of .

Custody, Sample Receipt Checklist, Quality Control

Logs, Billing Summary

LAB NO. 8777 PROJECT G417-350 AT&T

environmental and engineering excellence

ERT Labs Analytical Summary 11/09/87 11:18

	5 <i>TD</i>	1	2	3	4	5	6	77	8
	≡ <i>ld ID </i> ont d)	SB-14 	SB-15	58-16	SB-17	513-18	SB-19	SB-20	SB21 *
Test /M	atrix	SOIL	SOIL	SOIL	SOIL.	SOIL	SOIL.	SOIL	SOIL
C: -9-	HOU	25 MG/KG	26 MG/KG	40 MG/KG	26 MG/KG	28 MG/KG	3 3 MG/KG	40 MG/KG	40 MG/KG
	(PDL)	20	20	20	20	20	20	20	20
Cr+6 - 3-	-14EVA	1	<20	<20	<20	<20	<20	<20	(20
	(MDL)	<i>MG/KG</i> 20	MG/KG 20	MG/KG 20	MG/KG 20	MG/KG 20	MG/KG 20	MG / KG 20	MG/KG 20

QADE Approval: Solomo Shomossonate: 11-10-87

Mar. Approval:

Date: 11-10-87

**** CCNTINUED ****

ERT Labs Analytical Summary 11/09/97 11:19

Lab N	umber	r# 8777	7 Proj	7ect: 0417	7350	AT&T
Test	(Cor	Id ID nt d)	9 53-22 501L	10 SB-23 SOIL	11 SB-24-W WATER	12 SHIFPING ELK WATER
Cr		-HOU			<0.04 MG/L 0.04	<0.04 MG/L 0.04
	(*** <u>***</u>	HOU	MG/KG	44 MG/KG 20		
Cr+6		-MBA			<2 MG/L 2 *	<2 MG/L 2 *
Cr+6 -	-	-MBA	MG/KG	< 20 I4G/KG 20		

QAQC Approval: Johnson Data:11-10-87

Mgr. Approval: Ba Bliffle Date: 11-10-87

* Please see attached Analytical Report for remarks.

AT&T Proj. No.: G417- Lab No.: 8777				Time Samp	oled: 10/27/87 oled: 740 eived: 10/28/87
(Test Parameter (Test (Test	(1- 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1 1-1	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
Cr —S— —HOU CHROMIUM ON SOL SM: 303A, ATOMIC		25	MG/KG	20	10/30/87 800
Cr+6 -SMBA CHROMIUM, HEXAV SM: 3128, COLOR:		<20	MG/kG	20	11/02/87

AT&T Proj. No.: 6417—350 Lab No.: 8777	Field ID: SB-15 Lab ID: 2 Matrix: SDIL		Time Samo	oled: 10/27/87 oled: 1245 rived: 10/28/87
(Test Code) Farameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	
Cr —S— HOU CHROMIUM ON SOLID SM: 303A, ATOMIC ABSORPTION	26	MG/KG	20	10/30/87 800
Cr+6 -SMBA CHFOMIUM, HEXAVALENT ON SOLID SM: 3128, COLORIMETRIC	<.20	MG/KG	20	11/02/87

AT&T Proj. No.: 6417—350 Lab No.: 8777	Field ID: SB-16 Lab ID: 3 Matrix: SOIL		Date Sampled: 10/27/87 Time Sampled: 1315 Date Received: 10/28/87		
(Test Code) Farameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	i	
Cr —S— —HOU O-FOY/UM ON SOLID SM: 303A, ATOMIC ABSORPTION	40	MG/KG	20	10/30/87 800	
Cr+6 -SMBA CHROMIUM, HEXAVALENT ON SOLID SM: 3128, COLORIMETRIC	<20	MG/KG	20	11/02/87	

A[%] Proj. No.: G417—350 Lab No.: 8777	Field ID: SB-17 Lab ID: 4 Matrix: SOIL	Date Sampled: 10/27/87 Time Sampled: 1345 Date Received: 10/28/87		
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	
Cr —S— —HOU CHROMIUM ON SOLID SM: 303A, ATOMIC ABSORPTION	26	MG/KG	20	10/30/87 800
Cr+6 -SMBA CHROMIUM, HEXAVALENT ON SOLID SM: 3128, COLORIMETRIC	<20	MG/KG	20	11/02/87

AT&T Proj. No.: G417—350 Lab No.: 8777	Field ID: SB—18 Lab ID: 5 Matrix: SOIL			Date Sampled: 10/27/87 Time Sampled: 1410 Date Received: 10/28/87		
(Test Code) Parameter (Test Name) (Test Method)		Concen- tration	Units	Method Detection Limit		
Cr —S— —HOU CHFOMIUM ON SOLID SM: 303A, ATOMIC ABSORPTION		28	MG/KG	20	10/30/87 800	
Cr+6 -SMBA Cl-ROMIUM, HEXAVALENT ON SOLID SM: 312B, COLORIMETRIC		(20	MG/KG	20	11/02/87	

Proj. No.: 6417—350	Field ID: SB—19 Lab ID: 6 Matrix: SDIL			Date Sampled: 10/27/87 Time Sampled: 825 Date Received: 10/28/87		
(Test Code) Farameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed		
Cr —S— —HOU CHROMIUM ON SOLID SM: 303A, ATOMIC ABSORPTION	38	MG/KG	20	10/30/87 800		
Cr+6 -SMBA CHROMIUM, HEXAVALENT ON SOLID SM: 3128, COLORIMETRIC	<20	MG/KG	20	11/02/87		

Proj. No.: 6417-350	Field ID: SP—20 Lab ID: 7 Matrix: SOIL		Date Sampled: 10/27/87 Time Sampled: 1035 Date Received: 10/28/87	
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	i i
Cr —S— —HOU CHROMIUM ON SOLID SM: 303A, ATOMIC ABSOMPTION	40	MG/KG	20	10/30/87 800
Cr+6 -SMBA CHROMIUM, HEXAVALENT ON SOLID SM: 3128, COLORIMETRIC	<20	MG/KG	20	11/02/87

AT&T Proj. No.: G417—350 Lab No.: 8777	Field ID: SB—21 Lab ID: 8 Matrix: 90IL		Date Sampled: 10/27/97 Time Sampled: 1115 Date Received: 10/28/87		
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed	
Cr -SHOU CHROMIUM ON SOLID SM: 303A, ATOMIC AESOFFTION	40	MG/KG	20	10/30/87 800	
Cr+6 -SMBA CHROMIUM, HEXAVALENT ON SOLID SM: 3128, COLORIMETRIC	<20	MG/kG	20	11/02/87	

AT&T Proj. No.: G417—350 Lab No.: 8777	Field ID: SB-22 Lab ID: 9 Matrix: SOIL		Date Sampled: 10/27/87 Time Sampled: 905 Date Received: 10/28/87	
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
Cr —S— —HOU CHROMIUM ON SOLID SM: 303A, ATOMIC ABSORPTION	48	MG/KG	20	10/30/87 800
Cr+6 -SMBA C-ROMIUM, HEXAVALENT ON SOLID SM: 312B, COLORIMETRIC	<20	MG/KG	20	11/02/87

AT&T Proj. No.: G417—350 Lab No.: 8777	Field ID: \$8-23 Lab ID: 10 Matrix: 90IL	Date Sampled: 10/27/87 Time Sampled: 1315 Date Received: 10/28/87		
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
Cr —S— —HOU CHROMIUM ON SOLID SM: 303A, ATOMIC ABSORPTION	44	MG/KG -	20	. 10/30/87 800 ·
Cr+6 -SMBA O-ROMIUM, HEXAVALENT ON SOLID SM: 312B, COLORIMETRIC	<20	'MG/KG	20	11/02/87

AT&T Froj. No.: 6417-350 Lab No.: 8777	Lab ID: 11			Date Sampled: 10/27/87 Time Sampled: 1430 Date Received: 10/28/87	
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed	
Cr — — — HOU CHROMIUM SM: 303A, ATOMIC ABSORFTION	<0.04 N	MG/L	0.04	10/29/87 1500	
Cr+6 MBA CHROMIUM, HEXAVALENT SM: 312B, COLORIMETRIC	<2 *1	MG/L	2	11/02/87	

AT&T Proj. No.: G417—350 Lab No.: 8777	Field ID: SHIPPING BLK Lab ID: 12 Matrix: WATER		Date Sampled: 10/27/87 Time Sampled: Date Received: 10/28/87		
(Test Code) Farameter (Test Name) (Test Method)	ì	Concen- tration	Lhits	Method Detection Limit	Date/Time Analysis Performed
Cr — HÖU CHROMIUM SM: 303A, ATOMIC ABSORPTION		<0.04	MG/L_	0.04	10/29/87 1500
Cr+6 MBA C-FOMIUM, HEXAVALENT SM: 312B, COLORIMETRIC		<2 *1	MG/L	2	11/02/87

		٠.
MDL	20 som	

712

METHOD OF ANALYSIS Stanfmeth 16	HE1303A PARAMETER	_CMATRIX_	Soil anai	LYST M5 DATE 1030-87 TIME 0800
CALIBRATION STANDARDS/BLANK	ABSORBANCE	STANDARDS	CONCENTRATION	FOUND CONCENTRATION - ACTUAL CONCENTRATION
Biemk	0.000	BLANK	۷٥،٦	·
U.250 ppm	0.010	0.250	0.254	0.004
0.200	0.021	0:500	0.497	-0.003
1.000 ppm	0.041	1.000	1.001	0.00/
SLOPE		12-0.5	0.491	-0-009
LAB NUMBERS/SAMPLE ID NUMBER	S IN THIS RUN:	METHOD BLANK	۷٥.٦	IS. 0.050 -> 0.050
	8777(1-10)	by mod 1	00/1 MDL-2	o ms/kg
QUALITY CONTROL DUPLICATES A	ND SPIKES	PERCENT RECO	VERY CALCULAT	ION: SPIKE CONC. ÷ THEORETICAL CONC. x 100

SPIKE FIRST DIL. REPL. DIL. **%SAMPLE** %STANDARD THEO. LAB #-SAMPLE ID # **FACTOR FACTOR** RANGE %PRECISION x CONC. x CONC. CONC. CONC. **%RECOVERY** CONC. CONC. 1007. 100% 100 4.258 4.250 100 8777-2 10.6 100000 0.258 0.222 0.036 4 600 0.258 1007. 1007. 104 90 0.057 8777-9 9.0 100 4.478 0.478 100 0 421 4.638 0.478 4000 SAMPLES RUN BY MOA: 8777- A11

METHOD OF ANALYSIS	Standme	K. 16th Ed	PARAMET	er <u>C</u>	MATRIX_	HLO ANA	LYST WS	DATE 10)-29 -8 7	TIME 1	200
CALIBRATION STANDAR	DS/BLANK			STA	NDARDS	CONCENTRATION	N FOUND C	ONCENTRATION	- ACTU	AL CONCE	TRATION
BIK		0.0	000	В	LANK	20-2					
0.500	ppm	0.0	23		.500	0 515	5.01	2			-
1-000	ppm	0.0	42		000	0.559	- 6.00	1			
2000	±6.~~	0.	088		.000	2.013	0.01	3	·		
SLOPE					v=0.5	0.488	~0.01	2.			
LAB NUMBERS/SAMPLE	ID- NUMBE	RS IN THI	S RUN:	MET:	HOD BLANE	< <0.2	IS. O	05->0.	047		
		8777-1	. حارا	1/5 max	- 0.04	ms/L		·			
QUALITY CONTROL DUP	LICATES	AND SPIKE	S	PER	CENT RECO	OVERY CALCULAT	CION: SPI	KE CONC. ÷ T	HEORETIC	CAL CONC.	x 100
LAB #-SAMPLE ID #	FIRST CONC.	DIL. FACTOR	REPL.	DIL. FACTOR	RANGE	%PRECISION	%SAMPLE x CONC.	%STANDARD x CONC.	THEO.	SPIKE CONC.	ZRECOVERY
8777-11	0.165	0.2	0.158	٥.٦	0.007	3.1%					
8777-12							100% 0.186	10090 5 ppm	5.186	4.656	90%
				· · · · · · · · · · · · · · · · · · ·							
				***						-	
							-				
SAMPLES RUN BY MOA:											

ERT LABORATORIES SAMPLE RECEIPT CHECKLIST

	E H I i (PROJECT NO.	<u> </u>	35U	_LAB NO	0//	
1							
•	shipped	NOTES:					
	hand-delivered						
• –	COC present on receipt	NOTES:					
_	no COC						
· ´	COC tape on shipping container	NOTES:					
	no COC tape						
· _	samples broken/leaking on receipt	NOTES:					
	j∕samples intact on receipt	•					
_	other, see notes						
	ambient on receipt	NOTES:	•				
	chilled on receipt				•		
-	samples preserved correctly	NOTES:					
	improper preservatives						
_	N/A, no recommended preservatives						
	other, see notes		•				
·	received within holding times	NOTES:					
_	not received within holding times						
	N/A, no recommended holding time						•
· 	other, see notes						
	COC tapes on samples	NOTES:					
	no COC tapes		٠				
• _	discrepancies between COC and sample labels	NOTES:	SHIPPING	BLANK	8777	-12	
	no discrepancies noted						
	N/A, no COC received						
-	other, see notes						

Samples inspected and logged in by: John B. Hennily Date/Time: 10-28-87 8:45

morais a

ſ	Client/Project N	lame			Project L	Location				7						
	ATT				APP	CETON, U	11					Al	VALYS	ES		
	Project No.	_	· · · · · · · · · · · · · · · · · · ·		Field Logbo	ook No.					7	7	7	7		
	G 417-	350								' <u>L</u> .	_ /					
Ĭ	Sampler: (Signa		/	(Chain of Cust	tody Tape No.			K.	0/2	19					
	Test	# C-V	کسہ	•	70	50 915	•				γ	/ /	/ /	/ /	/	
	Sample No./			Lab Sa	mple	Туре	of :	Zi.	20/3							
	Identification	Date	Time	Num		Samı		St.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				_	_	REMAR	
9		10/27/87		87	77-9	Soil		V	V					43	DA7 VE	JUBALS
6	58-23	10/27/27	13:15	ه	77-10	Sol		1	/						LI	
, ,]	5B-54-M	10/11/47	14:30	8 7	177-11	WARA		/							٠١	
	SHIFFING BLACK			87-	17-12	WATE	i R	V	V							
١								-								•
ł		-												 		
								-								
ł	Relinquished by	l r: (Signątu <i>j</i> u	[]	<u> </u>		Date	Time	Rece	ved by	: (Sign	ature)		l	l	Date	Time
	Six	r(.//_			-	10/27/27	16:00									
	Relinquished by	ı: (Signatur	e)			Date	Time	Rece	ived by	: (Sign	ature)				Date	Time
						.,										
	Relinquished by	ı: (Signatur	e)			Date	Time		ved for						Date	Time
									Joly	B. 1	lema	mile	7		10/28/87	8:85
	Sample Dispose	al Method:				Disposed	of by: (Sigi	nature)					0		Date	Time
	SAMPLE COLLI	ECTOR				ANALYTIC	AL LABOR	ATORY								
	Envir	onmental R	Research an	nd Technology	y, Inc.	ERT								•		KI
	Environmental Research and Technology, Inc. 696 Virginia Road 131 N. EJSHOWAL				3000 RICHMOND AVE.											
	Concord, MA 91742 Lam BARD, 16 60148				HOUSTON, TX 77098							Nº	7057			
				670-58		. 713 -	=				'					
'	1974-3-84															

CHAIN OF CUSTODY RECORD

Client/Project Name	Project Loca					7		· · · · · · · · · · · · · · · · · · ·		···		
AT+T	APPU	ETW,	WI					Al	NALYS	ES		
Project No.	Field Logbook	No.			- -	/, /	7	7	7	7		
G417-350					Ø	F_/.	m/		. /			
Sampler: (Signature)	Chain of Custod	y Tape No.	<u> </u>		₹	3/5						
Scott Colono	2009	114			1	7 × 4	γ /	1	5 2	/	004	Ma 1
		T	- 6	73		in to	10	4	LΥ	Y	Per	Hart
	Sample mber	Type Sam		CA.	1 2 V	in is	χ		20	10	> REMAR	RKS
SB-14 11/11/87 7:40 87	77-1	Soil		V	レ		3	-		<3,	AY VE	LBALS
SB-15 10/27/67 12:45 87-	17-2	ح ح		<u> -</u>	~			81	7/A	<u></u>	10	
SB-16 10/27/87 13:15 87	17-3	چه، د		~	V	:					L!	
SB-17 10/27/E7 13:45 87	77-4	ح مر ب		~	1						11	
SB-18 10/28/87 14:10 87	77-5	5 50,0		/	1						11	
SB-19 10/27/67 8:25 87	77-6	511		~	1						૫	
SB-20 10/2/87 10:35 87	17-7	561		1	1						ч	
15B-21 10/01/87 11:15 87	77-8	Son		10	/					<u> </u>	μ	
Relinquished by: (Signature)		Date	Time	Recei	ved by	: (Signa	ature)				Date	Time
Scott (.//		10/21/2	16:00	<u></u>								
Relinquished by: (Signature)		Date	Time	Recei	ved by	: (Sign	ature)				Date	Time
Relinquished by: (Signature)		Date	Time	Recei	ved for	r Labor	atory: ('Signa	ture)		Date	Time
				l a	roly 1	B. Her	nond) _e ,			/6/25/37 Date	8:45
Sample Disposal Method:		Disposed	of by: (<i>Sigi</i>	natur g f	,			0			Date	Time
SAMPLE COLLECTOR		ANALYTIC	AL LABOR	ATORY			····) T
Environmental Research and Technology	gy, Inc.	ERT									L.	7.1
Concord, MA 01742 617-369-8910	3000 ZICHMOND AVE.											
617-369-8910-	HOUSTON, TX 77098						N_{\bullet}	7060				
317-670-59	رن د	713-520-9900										

PHASE II

TOTAL CHROMIUM ANALYSIS OF HEXAVALENT CHROMIUM LEACHATE

RECEIVED

kOV 19 1987

L.M. CAMPBELL

DATE: 11/18/87

TO:

Larry Campbell

FROM:

Bo Blankfield, Lab Manager

PROJ. NO.: G417-350 LAB NO.: 8777A

Attached are reports of chemical analyses of samples received October 28, 1987. These analyses are:

Count	Test	Code	Test Name	Test Method	Sampled	Matrix
2	Cr	Cr6-MBA	CHROMIUM (Cr+6 LEACHATE)	Cr+6 LEACHATE, EPA 600: 200.7, ICP	10/27/87	WATER
10	Cr	-S-Cr6-MBA	CHROMIUM ON SOLID (Cr+6 LEACH)	Cr+6 LEACHATE, SW-846: 6010, ICP	10/27/87	SOIL

Should you have any questions, do not hesitate to contact me at (713) 520-9900.

BB/lis

Enclosurés: Analytical Summary, Analytical Reports, Chain of

Custody, Sample Receipt Checklist, Quality Control

Logs, Billing Summary

LAB NO. 8777A

PROJECT G417-350 AT&T

environmental and engineering excellence

ERT LABORATORIES

Analytical Summary 11/18/87 15:19

Lab Number: 877	7A Pr	oject: G4	17-350	AT&T				
Lab ID Field ID (Cont'd)	1 SB-14	2 SB-15	3 SB-16	4 SB-17	5 SB-18	6 SB-19	7 SB-20	8 SB-21
Test /Matrix	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
Cr -S-Cr6-MBA	<1.0 MG/KG	<1.0 MG/KG	3.4 MG/KG	<1.0 MG/KG	<1.0 MG/KG	<1.0 MG/KG	<1.0 MG/KG	<1.0 MG/KG
(MDL)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)	(1.0)

QAQC Approval: Saloma Themason Date: 11-18-87

Mgr. Approval:

_ Date: <u>//-/8-8</u>/

**** CONTINUED ****

Analytical Summary 11/18/87 15:20

Lab Number: 87	AT&T			
Lab ID Field II (Cont'd)		10 SB-23	11 SB-24-W	12 SHIP BLA NK
Test /Matrix	SOIL	SOIL	WATER	WATER
Cr Cr6-ME			<0.01 MG/L	<0.01 MG/L
(MDI	<i>O</i>	0	(0.01)	(0.01)
Cr -S-Cr6-ME	A <1.0 MG/KG	<1.0 MG/KG		
(MDI	(1.0)	(1.0)	0	0

QAQC Approval: Achomo Thompson Date: 11-18-87

Mgr. Approval: La Bledguld Date: 11-18-87

Analytical Report 11/18/87 15:22

AT&T Field ID: SB-14 Date Sampled: 10/27/87 Lab ID: Time Sampled: 740 Proj. No.: G417-350 1 Lab No.: Matrix: SOIL Date Received: 10/28/87 8777A (Test Code) Method Date/Time Parameter (Test Name) Detection Analysis Concen-Performed (Test Method) Units Limit tration <1.0 11/02/87 -S-Cr6-MBA MG/KG 1.0 CHROMIUM ON SOLID (Cr+6 LEACH) 1000 Cr+6 LEACHATE, SW-846: 6010, ICP

**** CONTINUED ****

Analytical Report 11/18/87 15:22

AT&T Proj. No.: G417-350 Lab No.: 8777A	Field ID: SB-15 Lab ID: 2 Matrix: SOIL		Date Sampled: 10/27/8 Time Sampled: 1245 Date Received: 10/28/8		
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed	
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	<1.0	MG/KG	1.0	11/02/87 1000	

Analytical Report 11/18/87 15:22

AT&T Proj. No.: G417-350 Lab No.: 8777A	Field ID: SB-16 Lab ID: 3 Matrix: SOIL		•	led: 10/27/87 led: 1315 ived: 10/28/87
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	3.4	MG/KG	1.0	11/02/87 1000

AT&T Proj. No.: G417-350 Lab No.: 8777A	Field ID: SB-17 Lab ID: 4 Matrix: SOIL		Date Sampled: 10/27/87 Time Sampled: 1345 Date Received: 10/28/87		
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed	
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	<1.0	MG/KG	1.0	11/02/87 1000	

AT&T Proj. No.: G417-350 Lab No.: 8777A	Field ID: SB-18 Lab ID: 5 Matrix: SOIL	Time Samp	Date Sampled: 10/27/87 Time Sampled: 1410 Date Received: 10/28/87		
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration U	Method Detection Units Limit	Date/Time Analysis Performed		
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	<1.0 MG	G/KG 1.0	11/02/87 1000		

AT&T Proj. No.: G417-350 Lab No.: 8777A	Field ID: SB-19 Lab ID: 6 Matrix: SOIL		Date Sampled: 10/27/87 Time Sampled: 825 Date Received: 10/28/87		
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed	
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	<1.0	MG/KG	1.0	11/02/87 1000	

AT&T Proj. No.: G417-350 Lab No.: 8777A				led: 10/27/87 led: 1035 ived: 10/28/87
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	<1.0	MG/KG	1.0	11/02/87 1000

AT&T Proj. No.: G417-350 Lab No.: 8777A	Field ID: SB-21 Lab ID: 8 Matrix: SOIL		Date Sampled: 10/27/8 Time Sampled: 1115 Date Received: 10/28/8	
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	<1.0	MG/KG	1.0	11/02/87 1000

AT&T Proj. No.: G417-350 Lab No.: 8777A	Field ID: SB-22 Lab ID: 9 Matrix: SOIL		Date Sampled: 10/27/87 Time Sampled: 905 Date Received: 10/28/87		
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed	
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	<1.0	MG/KG	1.0	11/02/87 1000	

AT&T Proj. No.: G417-350 Lab No.: 8777A	Field ID: SB-23 Lab ID: 10 Matrix: SOIL		Date Sampled: 10/27/87 Time Sampled: 1315 Date Received: 10/28/87		
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed	
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	<1.0	MG/KG	1.0	11/02/87 1000	

AT&T Field ID: SB-24-W Proj. No.: G417-350 Lab ID: 11 Lab No.: 8777A Matrix: WATER			Time Sampl	Date Sampled: 10/27/87 Time Sampled: 1430 Date Received: 10/28/87		
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed		
CrCr6-MBA CHROMIUM (Cr+6 LEACHATE) Cr+6 LEACHATE, EPA 600: 200.7, ICP	<0.01	MG/L	0.01	11/02/87 1000		

Analytical Report 11/18/87 15:22

AT&T Field ID: SHIP BLANK Date Sampled: 10/27/87

 Proj. No.: G417-350
 Lab ID: 12
 Time Sampled:

 Lab No.: 8777A
 Matrix: WATER
 Date Received: 10/28/87

Lab No.: 8777A	Matrix: WATER		Date Received: 10/28/8/		
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed	
CrCr6-MBA CHROMIUM (Cr+6 LEACHATE) Cr+6 LEACHATE, EPA 600: 200.7, ICP	<0.01	MG/L	0.01	11/02/87 1000	

Page	1	of	, ·		
, age		0.		_	

ER	AF	RESOURCE EN	GINEERING (COMPA	NY An	alysis R	equest and Cha	ain of Cus	stody Record
Project No.		Client/Project Na	me =		:	Project Lo	ocation		
641	1-350	ATi-	T ^		*. <u>.</u>	N APP	LETON; WI		
Field Sample No./ Identification	Date and Carago	Sample Container (Size/Mat'l)	Sample Type (Liquid, Sludge, Etc.)	Preser- vative	. 777	ANALYSIS R	,		LABORATORY REMARKS
SB - 14	7:40	4 ory Plassic	SOIL	NA	CHROM, um	HEX	METHOD 3/2B		
58-15	10/27/87	403 Plastic	SOIL	1	t,	<u> </u>			
SB-16	10/27/87	yor Plastic	SOIL		1.		()		
56-17	10/27/17	4 m. Plastic	5016		(1	11	(1		
SB-18	10/27/57	4 oz Plastic	50/2		١,	₹ 0	11		
SB-19	8:25	yoz. Plastic			. 11	1 .,	()	## ·	,
SB-20	10177673	4 n. Plustic			: 4	II	11		
58-21	10127/87	4 or Plastic	soit		1 11	×1,7	l i		
58-22	10127187	Un Plastic	3077		11	·	()		
58-23	13:15	40 Pastic	1 /3076	4	: '	t <i>i</i>	t į		
Samplers	: (Signature) 🤇	Relinquished by:	S. Hendele		Date: 10/28/87 Time: 10:50	Received by: (Signature)	hined Mille	Date: 7 Time: ncov	Intact Ye.5
A#	iliation	Relinquished by: (Signature)		j.	Date:	Received by: (Signature)		Date: Time:	Intact
All		Relinquished by: (Signature)	6		Date:	Received by: (Signature)		Date:	Intact
SAMPLER REM	IARKS:		* 11D	_	⅓ ∕	Received for (Signature)	Laboratory	Date:	Laboratory No.
Seal #	0,	No.	DERBALS	hu 10	-30-87 PM	Data Results	to:	Time:	8777
L		I VETE 31	VEKOW-7	77		<u> 1 :</u>			

NARRATIVE LOG

CLIENT AT & T Appleton WS PROJECT NO. 900-01/G417-350 LAB NO. 8777A

PARAMETER	METHOD	DETECTION LIMIT	ANALYST	DATE/TIME
	21.05	1.0 /		11 0 07/1000
T-Cr of Leachate	312B	1.0 mg/kg	RV	11-2-87/1000

Procedure: Soil sample aliquot was taken from original sample container for analysis. This aliquot was mixed in distilled water for 24 hours producing a leachate as per Standard Methods 312B for Hexavalent Chromium. Total Chromium analyses were performed on this leachate as requested by our client.

REFERENCE:

APPENDIX C.2.b

PHASE II

VOLATILE ORGANIC COMPOUNDS

ANALYSIS OF SOIL AND WATER SAMPLES FROM AT&T APPLETON, WI

ERT PROJECT NO. 0005-429 (G417-350) November 16, 1987

PREPARED FOR

S. Veenstra

Prepared by
Analytical Chemistry Laboratory
ERT, A Resource Engineering Company
33 Industrial Way, Wilmington, Massachusetts 01887

ANALYSIS OF SOIL AND WATER SAMPLES FROM AT&T APPLETON

INTRODUCTION

This report represents the results of analysis conducted on various Soil and Water samples received by the ERT Analytical Chemistry Laboratory on October 28, 1987. The samples were to be selectively analyzed for volatiles.

SAMPLE RECEIPT AND CHAIN OF CUSTODY

Routine inspection of the samples revealed them to be packaged properly and received in good condition.

Upon receipt, information from the submitted samples was recorded in the Master Log Book (and the LIMS computer system) and assigned ERT Control Numbers. These unique sample labels were affixed to respective sample containers and subsequently utilized throughout the laboratory analysis procedures for positive traceability.

ANALYTICAL PROCEDURES

The water samples were analyzed according to procedures as outlined in:

- a. Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, 40 CFR Part 136.
- b. <u>Methods for Chemical Analysis of Water and Wastes</u>, EPA-600/4-79-020, revised, March, 1983.
- c. Standard Methods for the Examination of Water and Wastewater, 16th Edition, APHA, 1985.

The soil samples were analyzed according to procedures as outlined in "Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods," SW-846, 2nd Edition, revised April, 1984.

QUALITY CONTROL PROCEDURES

Standard quality control procedures were implemented for all analyses. Laboratory reagent (method) blanks, laboratory duplicated samples, and laboratory fortified control samples were analyzed concurrently with each case of submitted samples. The laboratory normally prepares and analyzes one (1) blank, one (1) fortified sample, and one (1) duplicate sample for each case of samples received or for each twenty (20) samples, whichever is more frequent. A case consists of a finite, usually predetermined number of samples collected over a given time period from one particular site. Duplicate sample analyses are performed only when sufficient sample volume is received. The results of the analyses are reviewed by the laboratory quality control coordinator to insure compliance with established analytical control limits.

Laboratory prepared method blank samples and fortified samples are identified in the analytical result tables under the Field Identification number using a unique numbering system and also assigning one ERT sample number to each sample. The Prefix "MB" refers to Method Blank, and "LF" refers to Laboratory Fortification (i.e., a quality control recovery sample).

In most cases, the analytical results will have been corrected using mean method blank results.

RESULTS OF ANALYSIS

Analytical results for the submitted samples are presented in the appended tables. Summary tables for the results of duplicate, blank, and fortified control samples have also been provided in the Appendix.

DISCUSSION

Review of the results of the quality control/quality assurance samples analyzed concurrently with the submitted samples indicated that the analyses were within the acceptance criteria as established by the U.S. EPA.

DATA AND REPORT APPROVAL FORM

SUBMITTED BY:

Analytical Chemistry Laboratory ERT A Resource Engineering Company 33 Industrial Way Wilmington, MA 01887 November 16, 1987

DATA AUDITED BY:

M. S. Sparlin

Quality Control Coordinator

REPORT APPROVED BY:

A. P. Paradice

Laboratory Manager

VOLATILES ANALYSES IN SOIL

Summary of Analytical Results

Method Blank Results

Quality Control Check Sample Results

EPA Method 8240/HSL List

Client Name:	AT&T Appleton	,		Project No	: 0005-42	9
ample Client ID:	48792 SB-14					
Laboratory ID:	5757-01					
Matrix:	Soil	Sampled:	10/27/87	Received:	10/29/87	
Authorized:	10/29/87	Prepared:	10/29/87	Analyzed:	10/29/87	

<u>Parameter</u>	Result		Units	Reporting <u>Limit</u>
Chloromethane	ND		μg/kg (dry wt)	150
Bromomethane	ND		μg/kg (dry wt)	150
Vinyl chloride	ND		µg/kg (dry wt)	150
Chloroethane	ND		μg/kg (dry wt)	150
Methylene chloride	ND		μg/kg (dry wt)	150
Acetone	ND		μg/kg (dry wt)	1,500
Carbon disulfide	ND		μg/kg (dry wt)	. 60
1,1-Dichloroethene	ND		μg/kg (dry wt)	60
1,1-Dichloroethane	ND		μg/kg (dry wt)	60
trans-1,2-Dichloroethene	ND		μg/kg (dry wt)	60
Chloroform	ND	F	μg/kg (dry wt)	60
1,2-Dichloroethane	ND		μg/kg (dry wt)	60
2-Butanone	ND		µg/kg (dry wt)	300
1,1,1-Trichloroethane	ND		μg/kg (dry wt)	60
Carbon tetrachloride	ND		μg/kg (dry wt)	60
Vinyl acetate	ND		μg/kg (dry wt)	300
Bromodichloromethane	ND		μg/kg (dry wt)	60
1,2-Dichloropropane	ND		μg/kg (dry wt)	60
trans-1,3-Dichloropropene	ND		μg/kg (dry wt)	60
Trichloroethene	ND		μg/kg (dry wt)	60
Dibromochloromethane	ND		μg/kg (dry wt)	60
1,1,2-Trichloroethane	ND		μg/kg (dry wt)	60
Benzene	ND		μg/kg (dry wt)	60
cis-1,3-Dichloropropene	ND		μg/kg (dry wt)	60
2-Chloroethyl vinyl ether	ND		μg/kg (dry wt)	300
Bromoform	ND		μg/kg (dry wt)	60
4-Methyl-2-pentanone	ND		μg/kg (dry wt)	300
2-Hexanone	ND		μg/kg (dry wt)	300
1,1,2,2-Tetrachloroethane	ND	•	μg/kg (dry wt)	60
Tetrachloroethene	ND		μg/kg (dry wt)	60
Toluene	ND		μg/kg (dry wt)	60
Chlorobenzene	ND		μg/kg (dry wt)	60
Ethyl benzene	ND		μg/kg (dry wt)	60
Styrene	ND		μg/kg (dry wt)	60
Total xylenes	ND		μg/kg (dry wt)	60

Solid content = 89%

ND = Not detected.

Reported by $_$

EPA Method 8240/HSL L1st

Client Name:	AT&T Applet	on	Project No	: 0005-429
Sample/Client ID:	48793 SB-15			
Laboratory ID:	5757-02			
Matrix:	<u>Soil</u>	Sampled: <u>10/27/87</u>	Received:	10/29/87
Authorized:	10/29/87	Prepared: <u>10/29/87</u>	Analyzed:	10/29/87

<u>Parameter</u>	Result	<u>Units</u>	Reporting <u>Limit</u>
Chloromethane	ND	μg/kg (dry wt)	150
Bromomethane	ND	μg/kg (dry wt)	150
Vinyl chloride	ND	μg/kg (dry wt)	150
Chloroethane	ND	μg/kg (dry wt)	150
Methylene chloride	ND	μg/kg (dry wt)	300
Acetone	ND	μg/kg (dry wt)	1,500
Carbon disulfide	ND	μg/kg (dry wt)	60
1,1-Dichloroethene	ND	μg/kg (dry wt)	60
1,1-Dichloroethane	ND	μg/kg (dry wt)	60
trans-1,2-Dichloroethene	ND	μg/kg (dry wt)	60
Chloroform	ND	μg/kg (dry wt)	60
1,2-Dichloroethane	ND	μg/kg (dry wt)	60
2-Butanone	ND	μg/kg (dry wt)	300
1,1,1-Trichloroethane	ND	μg/kg (dry wt)	60
Carbon tetrachloride	ND	μg/kg (dry wt)	60
Vinyl acetate	ND	μg/kg (dry wt)	300
Bromodichloromethane	ND	μg/kg (dry wt)	60
1,2-Dichloropropane	ND	μg/kg (dry wt)	60
trans-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
Trichloroethene	ND	μg/kg (dry wt)	60
Dibromochloromethane	ND	μg/kg (dry wt)	60
1,1,2-Trichloroethane	ND	μg/kg (dry wt)	60
Benzene	ND	μg/kg (dry wt)	60
cis-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
2-Chloroethyl vinyl ether	ND	μg/kg (dry wt)	300
Bromoform	ND	μg/kg (dry wt)	60
4-Methy1-2-pentanone	ND	μg/kg (dry wt)	300
2-Hexanone	ND	μg/kg (dry wt)	300
1,1,2,2-Tetrachloroethane	ND	μg/kg (dry wt)	60
Tetrachloroethene	ND	μg/kg (dry wt)	60
Toluene	ND	μg/kg (dry wt)	60
Chlorobenzene	ND	μg/kg (dry wt)	60
Ethyl benzene	ND	μg/kg (dry wt)	60
Styrene	ND	μg/kg (dry wt)	60
Total xylenes	ND	μg/kg (dry wt)	60

Solid content = 87%

ND = Not detected.

Reported by Approved by Approved by

EPA Method 8240/HSL List

Client Name:	AT&T Apple	ton		Project No.	: 0005-429)
Sample/ Client ID:	48794 SB-16					
Laboratory ID:	5757-03					
Matrix:	<u>Soil</u>	Sampled: 1	0/27/87	Received:	10/29/87	
Authorized:	10/29/87	Prepared: 10	0/29/87	Analyzed•	10/29/87	

<u>Parameter</u>	Result	<u>Units</u>	Reporting <u>Limit</u>
Chloromethane	ND	μg/kg (dry wt)	150
Bromomethane	ND	μg/kg (dry wt)	150
Vinyl chloride	ND	μg/kg (dry wt)	150
Chloroethane	ND	μg/kg (dry wt)	150
Methylene chloride	ND	μg/kg (dry wt)	300
Acetone	ND	μg/kg (dry wt)	1,500
Carbon disulfide	ND	μg/kg (dry wt)	60
1,1-Dichloroethene	ND	μg/kg (dry wt)	60
1,1-Dichloroethane	ND	μg/kg (dry wt)	60
trans-1,2-Dichloroethene	ND	μg/kg (dry wt)	60
Chloroform	ND	- μg/kg (dry wt)	60
1,2-Dichloroethane	, ND	μg/kg (dry wt)	60
2-Butanone	ND	μg/kg (dry wt)	300
1,1,1-Trichloroethane	ND	μg/kg (dry wt)	60
Carbon tetrachloride	ND	μg/kg (dry wt)	60
Vinyl acetate	ND	μg/kg (dry wt)	300
Bromodichloromethane	ND	μg/kg (dry wt)	60
1,2-Dichloropropane	ND	μg/kg (dry wt)	60
trans-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
Trichloroethene	ND	μg/kg (dry wt)	60
Dibromochloromethane	ND	μg/kg (dry wt)	60
1,1,2-Trichloroethane	ND	μg/kg (dry wt)	60
Benzene	ND	μg/kg (dry wt)	60
cis-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
2-Chloroethyl vinyl ether	ND	μg/kg (dry wt)	300
Bromoform	ND	μg/kg (dry wt)	60
4-Methyl-2-pentanone	ND	μg/kg (dry wt)	300
2-Hexanone	ND	μg/kg (dry wt)	300
1,1,2,2-Tetrachloroethane	ND	μg/kg (dry wt)	60
Tetrachloroethene	ND	μg/kg (dry wt)	60
Toluene	ND	μg/kg (dry wt)	60
Chlorobenzene	ND	μg/kg (dry wt)	60
Ethyl benzene	ND	μg/kg (dry wt)	60
Styrene	ND	μg/kg (dry wt)	60
Total xylenes	ND	μg/kg (dry wt)	60

Solid content = 86%

ND = Not detected.

Reported by	 Approved	bу	- Au	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
		•		

EPA Method 8240/HSL List

Client Name:	AT&T Appleto	o n		Project No.	: 0005-429
Sample/ Client ID:	48795 SB-17				
Laboratory ID:	5757-04				
Matrix:	So11	Sampled:	10/27/87	Received:	10/29/87
Authorized:	10/29/87	Prepared:	10/29/87	Analyzed:	10/29/87

<u>Parameter</u>	Result	<u>Units</u>	Reporting <u>Limit</u>
Chloromethane	ND	μg/kg (dry wt)	150
Bromomethane	ND	μg/kg (dry wt)	150
Vinyl chloride	ND	μg/kg (dry wt)	150
Chloroethane	ND	μg/kg (dry wt)	150
Methylene chloride	ND	μg/kg (dry wt)	300
Acetone	ND	μg/kg (dry wt)	1,500
Carbon disulfide	ND	μg/kg (dry wt)	60
1,1-Dichloroethene	ND	μg/kg (dry wt)	60
1,1-Dichloroethane	ND	μg/kg (dry wt)	60
trans-1,2-Dichloroethene	ND	μg/kg (dry wt)	60
Chloroform	ND	— μg/kg (dry wt)	60
1,2-Dichloroethane	ND	μg/kg (dry wt)	60
2-Butanone	ND	μg/kg (dry wt)	300
1,1,1-Trichloroethane	ND	μg/kg (dry wt)	60
Carbon tetrachloride	ND	μg/kg (dry wt)	60
Vinyl acetate	ND	μg/kg (dry wt)	300
Bromodichloromethane	ND	μg/kg (dry wt)	60
1,2-Dichloropropane	ND	μg/kg (dry wt)	60
trans-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
Trichloroethene	ND	μg/kg (dry wt)	60
Dibromochloromethane	ND	μg/kg (dry wt)	60
1,1,2-Trichloroethane	ND	μg/kg (dry wt)	60
Benzene	ND	μg/kg (dry wt)	60
cis-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
2-Chloroethyl vinyl ether	ND	μg/kg (dry wt)	300
Bromoform	ND	μg/kg (dry wt)	60
4-Methy1-2-pentanone	ND	μg/kg (dry wt)	300
2-Hexanone	ND	μg/kg (dry wt)	300
1,1,2,2-Tetrachloroethane	ND	μg/kg (dry wt)	60
Tetrachloroethene	ND	μg/kg (dry wt)	60
Toluene	ND	μg/kg (dry wt)	60
Chlorobenzene	ND	μg/kg (dry wt)	60
Ethyl benzene	ND	μg/kg (dry wt)	60
Styrene	ND	μg/kg (dry wt)	60
Total xylenes	ND	μg/kg (dry wt)	60

Solid content = 88%

ND = Not detected.

Reported by Approved by Au

EPA Method 8240/HSL List

Client Name:	AT&T Applet	on		Projec	ct No.: 0005-429
Sample/Client ID:	48796 SB-18				
Laboratory ID:	5757-05	· · · · · · · · · · · · · · · · · · ·	···		····
Matrix:	So11	Sampled:	10/27/87	_ Received:	10/29/87
Authorized	10/29/87	Prenared.	10/20/87	- Analyzed:	10/20/87

			Reporting
<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Limit
Chloromethane	ND	μg/kg (dry wt)	150
Bromomethane	ND	μg/kg (dry wt)	150
Vinyl chloride	ND	μg/kg (dry wt)	150
Chloroethane	ND	μg/kg (dry wt)	150
Methylene chloride	ND	μg/kg (dry wt)	300
Acetone	ND	μg/kg (dry wt)	1,500
Carbon disulfide	ND	μg/kg (dry wt)	60
1,1-Dichloroethene	ND	μg/kg (dry wt)	60
1,1-Dichloroethanè	ND	μg/kg (dry wt)	60
trans-1,2-Dichloroethene	ND	μg/kg (dry wt)	60
Chloroform .	ND	μg/kg (dry wt)	60
1,2-Dichloroethane	ND	μg/kg (dry wt)	60
2-Butanone	ND	μg/kg (dry wt)	300
1,1,1-Trichloroethane	ND	μg/kg (dry wt)	60
Carbon tetrachloride	ND	μg/kg (dry wt)	60
Vinyl acetate	ND	μg/kg (dry wt)	300
Bromodichloromethane	ND	μg/kg (dry wt)	60
1,2-Dichloropropane	ND	μg/kg (dry wt)	60
trans-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
Trichloroethene	ND	μg/kg (dry wt)	60
Dibromochloromethane	ND	μg/kg (dry wt)	60
1,1,2-Trichloroethane	ND	μg/kg (dry wt)	60
Benzene	ND	μg/kg (dry wt)	60
cis-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
2-Chloroethyl vinyl ether	ND	μg/kg (dry wt)	300
Bromoform	ND	μg/kg (dry wt)	60
4-Methyl-2-pentanone	ND	μg/kg (dry wt)	300
2-Hexanone	ND	μg/kg (dry wt)	300
1,1,2,2-Tetrachloroethane	ND	μg/kg (dry wt)	60
Tetrachloroethene	ND	μg/kg (dry wt)	60
Toluene	ND	μg/kg (dry wt)	60
Chlorobenzene	ND	μg/kg (dry wt)	60
Ethyl benzene	ND	μg/kg (dry wt)	60
Styrene	ND	μg/kg (dry wt)	60
Total xylenes	ND	μg/kg (dry wt)	60

Solid content = 93%

ND = Not detected.

	V 20	1	1 (1
Reported by		Approved by	1 1
MODOL COM DJ			

EPA Method 8240/HSL List

Client Name:	AT&T Appletor	1	Project No.	: 0005-429
Sample/ Client ID:	48797 SB-19			
Laboratory ID:	5757-06			
Matrix:	Soft	Sampled: <u>10/27/87</u>	Received:	10/29/87
Authorized:	10/29/87	Prepared: 10/29/87	Analyzed:	10/29/87

<u>Parameter</u>	Result	<u>Units</u>	Reporting Limit
Chloromethane	ND	μg/kg (dry wt)	150
Bromomethane	ND	μg/kg (dry wt)	150
Vinyl chloride	ND	μg/kg (dry wt)	150
Chloroethane	ND	μg/kg (dry wt)	150
Methylene chloride	ND	μg/kg (dry wt)	300
Acetone	ND	μg/kg (dry wt)	1,500
Carbon disulfide	ND	μg/kg (dry wt)	60
1,1-Dichloroethene	ND	μg/kg (dry wt)	60 .
1,1-Dichloroethane	ND	μg/kg (dry wt)	60
trans-1,2-Dichloroethene	ND	μg/kg (dry wt)	60
Chloroform	ND	- μg/kg (dry wt)	60
1,2-Dichloroethane	ND	μg/kg (dry wt)	60
2-Butanone	ND	μg/kg (dry wt)	300
1,1,1-Trichloroethane	ND	μg/kg (dry wt)	60
Carbon tetrachloride	ND	μg/kg (dry wt)	60
Vinyl acetate	ND	μg/kg (dry wt)	300
Bromodichloromethane	ND	μg/kg (dry wt)	60
1,2-Dichloropropane	ND	μg/kg (dry wt)	60
trans-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
Trichloroethene	ND	μg/kg (dry wt)	60
Dibromochloromethane	ND	μg/kg (dry wt)	60
1,1,2-Trichloroethane	ND	μg/kg (dry wt)	. 60
Benzene	ND	μg/kg (dry wt)	60
cis-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
2-Chloroethyl vinyl ether	ND	μg/kg (dry wt)	300
Bromoform	ND	μg/kg (dry wt)	60
4-Methy1-2-pentanone	ND	μg/kg (dry wt)	300
2-Hexanone	ND	μg/kg (dry wt) `	300
1,1,2,2-Tetrachloroethane	ND	μg/kg (dry wt)	60
Tetrachloroethene	ND	μg/kg (dry wt)	60
Toluene	ND	μg/kg (dry wt)	60
Chlorobenzene	ND	μg/kg (dry wt)	60
Ethyl benzene	ND	μg/kg (dry wt)	60
Styrene	ND	μg/kg (dry wt)	60
Total xylenes	ND	μg/kg (dry wt)	60

Solid content = 85%

ND = Not detected.

Reported by Approved by Approved by

EPA Method 8240/HSL List

Client Name:	AT&T Applet	on	Project No.	·0005-429
Sample/ Client ID:	48798 SB-20			
Laboratory ID:	5757-07			
Matrix:	So11	Sampled: <u>10/27/87</u>	Received:	10/29/87
Authorized:	10/29/87	Prepared: <u>10/29/87</u>	Analyzed:	10/29/87

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Chloromethane	ND	μg/kg (dry wt)	150
Bromomethane	ND	μg/kg (dry wt)	150
Vinyl chloride	ND	μg/kg (dry wt)	150
Chloroethane	ND	μg/kg (dry wt)	150
Methylene chloride	ND	ug/kg (dry wt)	300
Acetone	ND	μg/kg (dry wt)	1,500
Carbon disulfide	ND	μg/kg (dry wt)	60
1,1-Dichloroethene	ND	μg/kg (dry wt)	60
1,1-Dichloroethane	ND	μg/kg (dry wt)	60
trans-1,2-Dichloroethene	ND	μg/kg (dry wt)	60
Chloroform	ND	- μg/kg (dry wt)	60
1,2-Dichloroethane	ND	' μg/kg (dry wt)	60
2-Butanone	ND	μg/kg (dry wt)	300
1,1,1-Trichloroethane	ND	μg/kg (dry wt)	60
Carbon tetrachloride	ND	μg/kg (dry wt)	60
Vinyl acetate	ND	μg/kg (dry wt)	300
Bromodichloromethane	ND	μg/kg (dry wt)	60
1,2-Dichloropropane	ND	μg/kg (dry wt)	60
trans-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
Trichloroethene	ND	μg/kg (dry wt)	60
Dibromochloromethane	ND	μg/kg (dry wt)	60
1,1,2-Trichloroethane	ND	μg/kg (dry wt)	60
Benzene	ND	μg/kg (dry wt)	60
cis-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
2-Chloroethyl vinyl ether	ND	μg/kg (dry wt)	300
Bromoform	ND	μg/kg (dry wt)	. 60
4-Methy1-2-pentanone	• ND	μg/kg (dry wt)	300
2-Hexanone	ND	μg/kg (dry wt)	300
1,1,2,2-Tetrachloroethane	ND	μg/kg (dry wt)	60
Tetrachloroethene	ND	μg/kg (dry wt)	60
Toluene	ND	μg/kg (dry wt)	60
Chlorobenzene	ND.	μg/kg (dry wt)	60
Ethyl benzene	ND	μg/kg (dry wt)	60
Styrene	ND	μg/kg (dry wt)	60
Total xylenes	ND	μg/kg (dry wt)	60

Solid content = 87%

ND = Not detected.

Reported by Approved by An.

EPA Method 8240/HSL List

Client Name:	AT&T Applet	on	Project No.:	0005-429
Sample/ Client ID:	48799 SB-21			
Laboratory ID:	5757-08			
Matrix:	Soil	Sampled: 10/27/87	Received: 10/	29/87
Authorized:	10/29/87	Prepared: 10/29/87	Analyzed: 10/	29/87

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Chloromethane	ND	μg/kg (dry wt)	150
Bromomethane	ND	μg/kg (dry wt)	150
Vinyl chloride	ND	μg/kg (dry wt)	150
Chloroethane	ND	μg/kg (dry wt)	150
Methylene chloride	ND	μg/kg (dry wt)	300
Acetone	ND	μg/kg (dry wt)	1,500
Carbon disulfide	ND	μg/kg (dry wt)	60
1,1-Dichloroethene	ND	μg/kg (dry wt)	60
1,1-Dichloroethane	ND	μg/kg (dry wt)	60
trans-1,2-Dichloroethene	ND	μg/kg (dry wt)	60
Chloroform	ND	μg/kg (dry wt)	60
1,2-Dichloroethane	ND	μg/kg (dry wt)	60
2-Butanone	· ND	μg/kg (dry wt)	300
1,1,1-Trichloroethane	ND	μg/kg (dry wt)	60
Carbon tetrachloride	ND	μg/kg (dry wt)	60
Vinyl acetate	ND	μg/kg (dry wt)	300
Bromodichloromethane	ND	μg/kg (dry wt)	60
1,2-Dichloropropane	ND	μg/kg (dry wt)	60
trans-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
Trichloroethene	ND	μg/kg (dry wt)	60
Dibromochloromethane	ND	μg/kg (dry wt)	60
1,1,2-Trichloroethane	ND	μg/kg (dry wt)	60
Benzene	ND	μg/kg (dry wt)	60
cis-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
2-Chloroethyl vinyl ether	ND	μg/kg (dry wt)	300
Bromoform	ND	μg/kg (dry wt)	60
4-Methy1-2-pentanone	ND	μg/kg (dry wt)	300
2-Hexanone	ND	μg/kg (dry wt)	300
1,1,2,2-Tetrachloroethane	ND	μg/kg (dry wt)	60
Tetrachloroethene	ND	μg/kg (dry wt)	60
Toluene	ND	μg/kg (dry wt)	60
Chlorobenzene	ND	μg/kg (dry wt)	60
Ethyl benzene	ND	μg/kg (dry wt)	60
Styrene	ND	μg/kg (dry wt)	60
Total xylenes	ND	μg/kg (dry wt)	60

Solid content = 88%

ND = Not detected.

Reported by ______ Approved by ______ . IV

EPA Method 8240/HSL List

Client Name:	AT&T Applet	on		Project No.	: 0005-42	9
Sample/ Client ID:	48800 SB-22					
Laboratory ID:	5757-09					
Matrix:	<u>Soil</u>	Sampled:	10/27/87	Received:	10/29/87	
Authorized:	10/29/87	Prepared:	10/29/87	Analyzed:	10/29/87	

<u>Parameter</u>	Result	<u>Units</u>	Reporting Limit
Chloromethane	ND	μg/kg (dry wt)	150
Bromomethane	ND	μg/kg (dry wt)	150
Vinyl chloride	ND	μg/kg (dry wt)	150
Chloroethane	ND	μg/kg (dry wt)	150
Methylene chloride	ND	μg/kg (dry wt)	300
Acetone	ND	μg/kg (dry wt)	1,500
Carbon disulfide	ND	μg/kg (dry wt)	60
1,1-Dichloroethene	ND	μg/kg (dry wt)	60
1,1-Dichloroethane	ND	μg/kg (dry wt)	60
trans-1,2-Dichloroethene	ND	μg/kg (dry wt)	60
Chloroform	ND	μg/kg (dry wt)	60
1,2-Dichloroethane	ND	μg/kg (dry wt)	60
2-Butanone	ND	μg/kg (dry wt)	300
1,1,1-Trichloroethane	ND	μg/kg (dry wt)	60
Carbon tetrachloride	ND	μg/kg (dry wt)	60
Vinyl acetate	ND	μg/kg (dry wt)	300
Bromodichloromethane	ND	μg/kg (dry wt)	60
1,2-Dichloropropane	ND	μg/kg (dry wt)	60
trans-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
Trichloroethene	ND	μg/kg (dry wt)	60
Dibromochloromethane	ND	μg/kg (dry wt)	60
1,1,2-Trichloroethane	ND	μg/kg (dry wt)	60
Benzene	ND	μg/kg (dry wt)	60
cis-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
2-Chloroethyl vinyl ether	ND	μg/kg (dry wt)	300
Bromoform	ND	μg/kg (dry wt)	60
4-Methyl-2-pentanone	ND	μg/kg (dry wt)	300
2-Hexanone	ND	μg/kg (dry wt)	300
1,1,2,2-Tetrachloroethane	ND	μg/kg (dry wt)	60
Tetrachloroethene	ND	μg/kg (dry wt)	60
Toluene	ND	μg/kg (dry wt)	.60
Chlorobenzene	ND	μg/kg (dry wt)	60
Ethyl benzene	ND	μg/kg (dry wt)	60
Styrene	ND	μg/kg (dry wt)	60
Total xylenes	ND	μg/kg (dry wt)	60

Solid content = 87%

ND = Not detected.

Reported by	B	Approved by	An	14

EPA Method 8240/HSL List

Client Name:	AT&T Apples	ton	Project No.	: 0005-429
Sample/Client ID:	48801 SB-23			
Laboratory ID:	5757-10			
Matrix:	So11	Sampled: 10/27/87	Received:	10/29/87
Authorized:	10/29/87	Prepared: 10/29/87	Analyzed:	10/29/87

Danamakan	D 1 A	Had Aa	Reporting
<u>Parameter</u>	Result	<u>Units</u>	<u>Limit</u>
Chloromethane	ND	μg/kg (dry wt)	150
Bromomethane	ND	μg/kg (dry wt)	150
Vinyl chloride	ND	μg/kg (dry wt)	150
Chloroethane	ND	μg/kg (dry wt)	150
Methylene chloride	ND	μg/kg (dry wt)	1,500
Acetone	ND	μg/kg (dry wt)	1,500
Carbon disulfide	ND	μg/kg (dry wt)	60
1,1-Dichloroethene	ND	μg/kg (dry wt)	60
1,1-Dichloroethane	ND	μg/kg (dry wt)	60
trans-1,2-Dichloroethene	ND	μg/kg (dry wt)	60
Chloroform	ND	μg/kg (dry wt)	60
1,2-Dichloroethane	ND	μg/kg (dry wt)	60
2-Butanone	ND	μg/kg (dry wt)	300
1,1,1-Trichloroethane	ND	μg/kg (dry wt)	60
Carbon tetrachloride	ND	μg/kg (dry wt)	. 60
Vinyl acetate	ND	μg/kg (dry wt)	300
Bromodichloromethane	ND	μg/kg (dry wt)	60
1,2-Dichloropropane	ND	μg/kg (dry wt)	60
trans-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
Trichloroethene	ND	μg/kg (dry wt)	60
Dibromochloromethane	ND	μg/kg (dry wt)	60 .
1,1,2-Trichloroethane	ND	μg/kg (dry wt)	60
Benzene	ND	μg/kg (dry wt)	60
cis-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
2-Chloroethyl vinyl ether	ND	μg/kg (dry wt)	300
Bromoform	ND	μg/kg (dry wt)	60
4-Methy1-2-pentanone	ND	μg/kg (dry wt)	300
2-Hexanone	ND	μg/kg (dry wt)	300
1,1,2,2-Tetrachloroethane	ND	μg/kg (dry wt)	60
Tetrachloroethene	ND	μg/kg (dry wt)	60
Toluene	ND	μg/kg (dry wt)	60
Chlorobenzene	ND	μg/kg (dry wt)	60
Ethyl benzene	ND	μg/kg (dry wt)	60
Styrene	ND	μg/kg (dry wt)	60
Total xylenes	ND	μg/kg (dry wt)	60

Solid content = 85%

ND = Not detected.

Reported by Approved by Avenue 1987

VOLATILE ORGANICS

Surrogate Recovery Summary

Client Name: _____AT&T Appleton

Project No.: 0005-429

Matrix: Soil

Authorized: 10/29/87

_____ Received: <u>10/29/87</u>

·		Sur	rogate Compound	d .
Sample IO	Client ID	d1,2,-Dichloro- ethane	dToluene	p-Bromofluoro- benzene
5757-01	48792	91	102	97
5757-02	48793	92	102	95
5757-03	48794	93	103	96
5757-04	48795	94	102	97
5757-05	48796	90	102	96
5757-06	48797	91 🖚	101	96
5757-07	48798	92	103	94
5757-08	48799	92	101	- 97
5757-09	48800	91	- 101	100
5757-10	48801	90	102	94

QC Advisory Limits:

70-121%

61-117%

74-121%

PRIORITY POLLUTANT VOLATILE ORGANICS

EPA Method 624 + 624/HSL List

QUALITY CONTROL

Client Name:	AT&T Appleton		Projec	t No 0005-4	129
Client ID:	Laboratory Control	Spike Dup.	<u> </u>		
Laboratory ID:	3082LCS0	 		 	
Matrix:	Water	Prepared:	10/29/87	Analyzed:	10/29/87

<u>Parameter</u>	% Recovery	QC Advisory Limits
1,1-Dichloroethene	84	61 - 145%
Trichloroethene	87	71 - 120%
Benzene	90	76 - 127%
Toluene	87	76 - 125%
Chlorobenzene	86	75 - 130%

13

Reported by Approved by An

VOLATILES ANALYSES IN WATER

Summary of Analytical Results

Method Blank Results

Quality Control Check Sample Results

EPA Method 624/HSL List

Client Name:	AT&T Applet	on	Project No	.: 0005-429
Sample/Client ID:				
Laboratory ID:	5757-11			
Matrix:	Water	Sampled: <u>10/27/87</u>	Received:	10/29/87
Authorized:	10/29/87	Prepared: 10/29/87	Analyzed:	10/29/87

			Reporting
<u>Parameter</u>	Result	<u>Units</u>	<u>Limit</u>
Chloromethane	ND	μg/L	5
Bromomethane	ND	· μg/L	5 5 5 5
Vinyl chloride	ND	μg/L	5
Chloroethane	ND	μg/L	
Methylene chloride	ND	μg/L	50
Acetone	ND.	μg/L	50
Carbon disulfide	ND	μg/L	2 2 2 2 2 2
1,1-Dichloroethene	ND	μg/L	2
1,1-Dichloroethane	ND	μg/L	2
trans-1,2-Dichloroethene	ND	μg/L	2
Chloroform	ND	μg/L	2
1,2-Dichloroethane	ND	μg/L	2
2-Butanone	ND	μg/L	10
1,1,1-Trichloroethane	ND	μg/L	10 2 2
Carbon tetrachloride	ND	μg/L	2
Vinyl acetate	ND	μg/L	10 2 2 2 2 2 2 2 2
Bromodichloromethane	ND	μg/L	2
1,2-Dichloropropane	ND	μg/L	2
trans-1,3-Dichloropropene	ND	μg/L	2
Trichloroethene	ND	μg/L	. 2
Dibromochloromethane	ND	μg/L	2
1,1,2-Trichloroethane	ND	μg/L	2
Benzene	ND	μg/L	2
cis-1,3-Dichloropropene	ND	μg/L	2
2-Chloroethyl vinyl ether	ND	μg/L	
Bromoform	ND	μg/L	2
4-Methy1-2-pentanone	ND	μg/L	10
2-Hexanone	ND	μg/L	10
1,1,2,2-Tetrachloroethane	ND	μg/L	2
Tetrachloroethene	ND	μg/L	2
Toluene	ND	μg/L	2
Chlorobenzene	ND	μg/L	2 2 2 2 2 2 2
Ethyl benzene	ND	μg/L	2
Styrene	ND	μg/L	2
Total xylenes	ND	μg/L	2

ND = Not detected.

Reported by Approved by Approved by	Reported by	<u> </u>	Approved by	An. Ji	
-------------------------------------	-------------	----------	-------------	--------	--

EPA Method 624/HSL L1st

	lient Name:	AT&T Appleton	Project No.: 00	05-429
ample/	Client ID:	48803 Shipping Blank		

ample/ Citent in: 48803 Shipping Blank

Laboratory ID: 5757-12

Matrix: <u>Water</u> Sampled: <u>10/27/87</u> Received: <u>10/29/87</u>

Authorized: 10/29/87 Prepared: 10/29/87 Analyzed: 10/29/87

<u>Parameter</u>	Result		<u>Units</u>	Reporting <u>Limit</u>
Chloromethane.	ND		μg/L	5
Bromomethane	ND		μg/L	5 5 5 5
Vinyl chloride	ND		μg/L	5
Chloroethane	ND		μg/L	5
Methylene chloride	ND		μg/L	10
Acetone	ND		μg/L	50
Carbon disulfide	ND		μg/L	
1,1-Dichloroethene	ND		μg/L	2 2 2 2 2 2
1,1-Dichloroethame	ND		μg/L	2
trans-1,2-Dichloroethene	ND		μg/L	2
Chloroform	ND	=	μg/L	2
1,2-Dichloroethane	ND	-	μg/L	
2-Butanone	ND		μg/L	10
1,1,1-Trichloroethane	ND		μg/L	2 2
Carbon tetrachloride	ND		μg/L	
Vinyl acetate	ND		μg/L	10
Bromodichloromethane	ND		μg/L	2 2 2 2 2 2 2
1,2-Dichloropropane	ND		μg/L	2
trans-1,3-Dichloropropene	ND		μg/L	2
Trichloroethene	ND		μg/L	2
Dibromochioromethane	ND		μg/L	2
1,1,2-Trichloroethane	ND		μg/L	2
Benzene	ND		μ g /L	2
cis-1,3-Dichloropropene	ND		μg/L	
2-Chloroethyl vinyl ether	ND		μ g/L	10
Bromoform	ND		μg/L	2
4-Methyl-2-pentanone	ND		μg/L	10
2-Hexanone	ND		μg/L	10
1,1,2,2-Tetrachloroethane	ND		μg/L	2
Tetrachloroethene	ND		μg/L	2
Toluene	ND		μg/L	2
Chlorobenzene	ND		μg/L	2
Ethyl benzene	ND		μg/L	2 2 2 2 2 2 2
Styrene	ND		μg/L	2
Total xylenes	ND		μg/L	. 2
				*

ND = Not detected.

Reported by	B	 Approved	bу	ghe	1.7
		 	- 7		

VOLATILE ORGANICS

Surrogate Recovery Summary

Client Name: AT&T Appleton Project No.: 0005-429

Matrix: Water

Authorized: 10/29/87 Received: 10/29/87

			Surrogate Compound				
Lab	Erco ID	Sample Client IO	d ₄ -1,2,-Dichloro- ethane	d _e -Toluene	p-Bromofluoro- benzene		
	5757-11	48802	116	92	123		
	5757-12	48803	101	90	125		

15/

QC Advisory Limits: 76-114% 61-110% 74-115%

Reported by ______ Approved by ______

PRIORITY POLLUTANT VOLATILE ORGANICS

EPA Method 624 + 624/HSL List

QUALITY CONTROL

Client Name:	ATGT Appleton		Projec	t No.: 00	<u>05-429</u>	-
Client ID:	Laboratory Control S	Spike	-			_
Laboratory ID:	3068LCS					_
Matrix:	Water	Prepared:	10/28/87	Analyzed:	10/28/87	_
<u>Parameter</u>		<u>X</u>	Recovery	QC Ad	visory Limits	<u> </u>

 Parameter
 % Recovery
 QC Advisory Limits

 1,1-Dichloroethene
 93
 61 - 145%

 Trichloroethene
 95
 71 - 120%

 Benzene
 97
 76 - 127%

 Toluene
 97
 76 - 125%

 Chlorobenzene
 96
 75 - 130%

13

N	20				/	
Reported by		Approved	i by	<i></i>	An	

CHAIN-OF-CUSTODY RECORD

AT&T

APPLETON, WI

SAMPLE RECEIPT CHECK LIST

Client: ATE	- Auleta	•		
COC Record #(s):	7058, 7055			
COC Necola Way.	1650, 1635			
Matrix	Container	ERT #(s)		
nater	(c) (sit ys)	48801-48803		
Soil	10 11	48792-78801		
			·	
(shipped or hand-delivered?			
Notes:	4. MEILL # 6110632990		Yas a	· No ,
→ 2. Was COC reco	ord present upon receipt of samples	?	Yes	<u> </u>
Notes:			Yes	No
	present/unbroken on outer packag	pe?	Yes	□ No ·
•	£ 200913	,		
	received ambient of chilled?			•
Notes:		• • 11-49	Yes	No
•	ples received broken/leaking (impro	operly sealed?		No
Notes:			Yes	No
Notes:	properly preserved?		Ø	U
	es present/unbroken on samples?		Yes	No.
Notes:				Ø
Q Asy disessana	cies between sample labels and CO	C records?	Yes Z	No □
Notes: Sa	ple sabeled Shipping	Slank met on CCC	/	J
9. Were samples	received within holding times?		Yes Ø	N°
Notes:			,~	•
Additional Comm	ents: Stoud in	₹¢.		
	Storio ~			
				,
Samples inspects	od and logged in by	Louisia D	ate: <u>/ (/ x</u>	20/57

2013/2-86

005-429

CHAIN OF CUTODY RECORD

Client/Project Name	Project Loca										
I AT+T	TEN, W	<u> </u>					AN	IALYSE	s		
Project No.	Field Logbook	No.				,	/ 0/	/ /	/ /		
6417-350					_/	/					
Sampler: (Signature)	y Tape No.			5	9/2 3	2 /		/ ,	/ /		
Scatt C. Vans	7009	13		/		Y 6	/	/ /			
Sample No./ Identification Date Time	Lab Sample Number	Type Sam		38	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N. S. S. S. S. S. S. S. S. S. S. S. S. S.			/ ·	REMA	RKS
SB-14 10/27/87 7:40	46742	5016								43Day val	SALS
SB-15 10/11/67 12:45	48745	Sil								ι(["]	
5B-16 10/17/67 13:15					/					4	
SB-17 10/27/67 13:45	:45 48745				/					n	
58-10 10/1/47 14:10	48796	Sorc			/					4	
5B-19 10/67 6:25	<u> </u>		Sai C.		/					ч	
SB-20 10/2/010:35	48798	501					4	. 			
	SB-71 6/23/57 11:15 4.8799					<i>u</i>					
Relinquished by: (Signature)		Date	Time	Recei	ved by:	(Sign	eture)			Date	Time
Scott (. Vict		10/27/87		<u> </u>							<u> </u>
Relinquished by: (Signature)		Date	Time	Recei	ved by:	(Sign	ature)			Date	Time
Relinquished by: (Signature)	Date	Time	Received for Laboratory: (Signature) Date Time						Time		
Sample Disposal Method:	Disposed	Disposed of by: (Signature)						Date	Time		
SAMPLE COLLECTOR	ANALYTICA	ANALYTICAL LABORATORY							DT		
Environmental Research and Tec	ERT										
690 Virginia Road 131 N. OSWHENDE Concord, MA 01742			33 INDISTRIAL WAT								
,	0,160148	WILMINGTON, MA 01807					Nº	7058			
1974-3-84	-5900	617 -	657	-429	90						

0005-429

CHAIN OF TODY RECORD

Client/Project N	ame		Project Lo	ocation									/
AT+T				RETUN	,WI				A	NALYS	ES	/	•
Project No.			Field Logboo				. 7		,/		/ /	/ 7	
G417-	350						_/.		7 /	′ /			
Sampler: (Signa	iture) .		Chain of Custo	ody Tape No.			ろい	9/ 30/	/				
State	C. V.	~5	7009	13					/ ,	/ ,	/ /	/	
Sample No./ Identification	Date	Time	Lab Sample Number	• •	pe of mple		5 6/3 5/2 6/	**/				REMA	NRKS
SB-22	10/27/27		पुर १००	Soil			V				< 3	DAY V	DUBALS
SR-23	10/27/87	13:15	15 801	Soil	-		レ					١,	
SB-24.W			46802	WATE	人	V						и	
SHIPPUR SHOK			48903	ı)		IV				1	<u> </u>		
										1	<u></u>		·
										1	<u> </u>		
Relinquished by	: (Signature			Date	Time	Recei	ived by:	(Signature	9)			Date	Time
Relinquished by				Date	Time	Received by: (Signature) Date Time					Time		
Relinquished by	: (Signature	9)		Date	Time	Received for Laboratory: (Signature) Date Time						Time	
Sample Disposal Method:					Disposed of by: (Signature)						Date	Time	
SAMPLE COLLE	ANALYTI	ANALYTICAL LABORATORY											
Environmental Research and Technology, Inc.					ET WATER ALLIANT						L	KI.	
Conec	ord, MA 01 369-89	742	N. EISENHONEL BALL, IL 60148		33 INDUSTRIALWAT WILMINITON, MA O1887					Nº	7055		
	3/2-620-5900					617 - 657-4290							

APPENDIX C.3 PHASE III ANALYTICAL RESULTS

APPENDIX C.3.a

PHASE III

TOTAL AND HEXAVALENT CHROMIUM

PHASE III CHROMIUM IN SOIL, PITS A AND B

DATE: 01/05/88

TO: Larry Campbell

FROM: Bo Blankfield, Laboratory Director

PROJ. NO.: G417-510 LAB NO.: 8913A

RECEIVED

L.M. CAMPBELL

Attached are reports of chemical analyses of samples received December 9, 1987. These analyses are:

Count	Test	Code	Test Name	Test Method	Sampled	Matrix
_		ICP-HOU		EPA SW-846: 6010, ICP	12/08/87	
4	Cr	-S-Cr6-MBA	CHROMIUM ON SOLID (Cr+6 LEACH)	Cr+6 LEACHATE, SW-846: 6010, ICP	12/08/87	
4	Cr	-S-ICP-HOU	CHROMIUM ON SOLID	EPA SW-846: 6010, ICP	12/08/87	
2	Cr+6	MBA	CHROMIUM, HEXAVALENT	SM: 312B, COLORIMETRIC	12/08/87	WATER
4	Cr+6	-SMBA	CHRONIUM, HEXAVALENT ON SOLID	SM: 312B, COLORIMETRIC	12/08/87	SOIL

Should you have any questions, do not hesitate to contact me at (713) 520-9900.

BB/lis

Enclosures: Analytical Summary, Analytical Reports, Chain of

Custody, Sample Receipt Checklist, Quality Control

Logs, Billing Summary

LAB NO. 8913A

PROJECT G417-510 AT&T

environmental and engineering excellence

ERT LABORATORIES

Analytical Summary 01/05/88 14:12

Lab Number: 891	3A Pro	ject: G41	7-510	AT&T		
Lab ID	1	2	3	4	10	11
Field ID (Cont'd)	A-1	B-1	B-2	B-3	SHIP BLA	FIELD BI
Test /Matrix	SOIL	SOIL	SOIL	SOIL	WATER	WATER
Cr ICP-HOU					<0.01 MG/L	<0.01 MG/L
(MDL)					(0.01)	(0.01)
Cr -S-Cr6-MBA	<0.08 MG/KG	2.88 MG/KG	2.61 MG/KG	6.99 MG/KG		
(MDL)	(0.08)	(0.08)	(0.08)	(0.08)		
Cr -S-ICP-HOU	30.6 <i>MG/KG</i>	59.0 MG/KG	55.8 MG/KG	36.8 MG/KG		
(MDL)	(0.4)	(0:4)	(0.4)	(0.4)		
Cr+6 MBA					<0.002 MG/L	<0.002 MG/L
(MDL)					(0.002)*	1
Cr+6 -SMBA	<0.08 MG/KG	2.56 MG/KG	2.30 MG/KG	5.94 MG/KG		
(MDL)	1	(0.08)	(0.08)	(0.08)		

QAQC Approval: John Jomeson Date: 1-5-88

Mgr. Approval: Bladfuld Date: 1-6-80 * Please see attached Analysical Report for remarks.

Analytical Report 01/05/88 14:14

AT&T Field ID: A-1 Date Sampled: 12/08/87 Proj. No.: G417-510 Lab ID: Time Sampled: 1300 Lab No.: SOIL Date Received: 12/09/87 8913A Matrix: (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) Limit Performed tration Units 0.08 -S-Cr6-MBA <0.08 MG/KG 12/14/87 CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP -S-ICP-HOU 12/11/87 0.4 30.6 MG/KG Cr CHROMIUM ON SOLID 1030 EPA SW-846: 6010, ICP Cr+6 -S--MBA <0.08 MG/KG 0.08 12/14/87 CHROMIUM, HEXAVALENT ON SOLID SM: 312B, COLORIMETRIC

Analytical Report 01/05/88 11:34

AT&T Field ID: B-1 Date Sampled: 12/08/87 Proj. No.: G417-510 Lab ID: 2 Time Sampled: 1200 Lab No.: 8913A Matrix: SOIL Date Received: 12/09/87 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed Cr -S-Cr6-MBA 2.88 MG/KG 0.08 12/14/87 CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP Cr -S-ICP-HOU 59.0 MG/KG 0.4 12/11/87 CHROMIUM ON SOLID 1030 EPA SW-846: 6010, ICP Cr+6 -S--MBA 2.56 0.08 MG/KG 12/14/87 CHROMIUM, HEXAVALENT ON SOLID SM: 312B, COLORIMETRIC

12/14/87

ERT LABORATORIES

Analytical Report 01/05/88 11:34

AT&T Field ID: B-2 Date Sampled: 12/08/87 Proj. No.: G417-510 Lab ID: 3 Time Sampled: 1200 Date Received: 12/09/87 Lab No.: 8913A Matrix: SOIL (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed -S-Cr6-MBA 2.61 MG/KG 0.08 12/14/87 CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP -S-ICP-HOU 55.8 MG/KG 0.4 12/11/87 CHROMIUM ON SOLID 1030

2.30

MG/KG

0.08

EPA SW-846: 6010, ICP

SM: 312B, COLORIMETRIC

-MBA CHROMIUM, HEXAVALENT ON SOLID

Cr+6 -S-

Analytical Report 01/05/88 11:34

AT&T Proj. No.: G417-510 Lab No.: 8913A	Field ID: B-3 Lab ID: 4 Matrix: SOIL	Date Sampled: 12/08/87 Time Sampled: 1205 Date Received: 12/09/87			
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed	
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	6.99	MG/KG	0.08	12/14/87	
Cr -S-ICP-HOU CHROMIUM ON SOLID EPA SW-846: 6010, ICP	36.8	MG/KG	0.4	12/11/87 1030	
Cr+6 -SMBA CHROMIUM, HEXAVALENT ON SOLID SM: 312B, COLORIMETRIC	5.94	MG/KG	0.08	12/14/87	

Analytical Report 01/05/88 11:34

AT&T Field ID: SHIP BLANK Date Sampled: 12/08/87 Proj. No.: G417-510 Lab ID: 10 Time Sampled: 1600 Lab No.: 8913A Matrix: WATER Date Received: 12/09/87 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed Cr - - ICP-HOU 0.01 <0.01 MG/L 12/10/87 CHROMIUM 1330 EPA SW-846: 6010, ICP 0.002 Cr+6 - --MBA <0.002 MG/L 12/14/87 CHROMIUM, HEXAVALENT *****1 SM: 312B, COLORIMETRIC

^{*1} HOLDING TIME EXPIRED BEFORE ANALYSIS

Analytical Report 01/06/88 11:03

AT&T Field ID: FIELD BLANK Date Sampled: 12/08/87 Proj. No.: G417-510 Lab ID: 11 Time Sampled: 1600 Lab No.: 8913A WATER Date Received: 12/09/87 Matrix: (Test Code) Date/Time Method Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed - -ICP-HOU <0.01 0.01 MG/L 12/10/87 CHROMIUM 1330 EPA SW-846: 6010, ICP Cr+6 - -<0.002 0.002 -MBA MG/L 12/14/87 CHROMIUM, HEXAVALENT ***1** SM: 312B, COLORIMETRIC

^{*1} HOLDING TIME EXPIRED BEFORE ANALYSIS

ICAP ERT LABORATORIES QC LOG

DATE 100EC8 1 1330 TIME

DE ANALYST

RAMETER CY CW NI PYS ZN B BCK 0.002 0.001 0.001 0.002 0.004			
BCK 0.002 0.001 0.002 0.004			/
1 N			
1 5 6.11 8.01 8.01 4.93 5.00			
	APS).	2801	=2.0
B EPA 1085 x.5 2.64 2.47 -			
S EP A 386 X 5 0.566 0.514 0.502 0.490 0,505		_	
(EPA 386 0.111 0.099 0.096 0.095 0.109 True value =	7PA 3	8-6-0,	/
A EPA 386 x .5 0.050 0.048 0.050 0.047 0.055			
5 EPA 386 X.2 0.021 0.019 0.020 - 0.022			
B 8919 6.002 0.001 0.000 0.003 0.001			
14 8913 0,002			
K S			
8919-3 <0.007 <0.007 <0.007 <0.007	;		
DUP K0.007 K0.007 K0.017 K0.007			
1 % PREC 0 0 0 0			,
C 601201005(
1 8913B-10.006			
% PREC 5			
8919-3 4,49 4.46 4,51 4,44 4,44			
TV 5 5 5 5 5			
5 70 REC 89.8 89.2 90.2 88.8 68.8			
1 8913AB-10 4.32			
E TV 5			
90 REC 86,4 1			
			

B A N K

Λ 11 D

STANDARDS

DUPLICATES

ICAP ERT LABORATORIES QC LOG

DATE 11DEC 8 1 TIME ANALYST

-4		'					- 		71		
	RAMETER	0.02									
B	BCK	0.000									
N V	1.0/5.0	1.00									
K A	EPA 386 x.Z	0.019		•							
D D	EPA 386	0.097	True	ر معلیہ	OEPA.	3%b =	0.10				
S T	C x 388 A93	0.549									
A N D	EPA 1085	5,43	true	valu	LEPA	1982=	5,0				
II D A R D S	EPA 10854.5					-					
Š											
B	8913	0.000									•
B L N K S	8913AB-10	0.004	<i>'</i> .								<u> </u>
S											
	8913A-1	1.53							;		
D U	DOB	1.41									U
DUPLICATES	% PREE	5.8									,
C A T	89138-6	1.74									
Ē S	DUP	1.67									
	% PREC	2,9									
	8913A-1	2,93									
	UT	3.265									
S	% REC	86.6									
S P I K E S											
E S	89138-6	5.17									
	TU	5.74		1							
	% REC	85.8					·			·	

QA/QC DATA

I. SM 312B

A. Calibration 12-14-87, 9:00 a.m., Joe Kresse

Concentration	Absorbance at 540 nms
BLK	0.00
0.25 mg/l	0.222
0.50 mg/l	0.442
0.75 mg/l	0.666
1.00 mg/1	0.853

B. Duplicates and Spikes

8924 Ships Blank (Spike)
Amount spiked 0.50
Amount recovered 0.50
Recovery = 100%

II. ICAP Method EPA 200.7

Instrument standardized with 10 mg/l Cr standard. Checked with EPA ICAP 19std. 1-10 dilution = 0.105 mg/l SHOULD BE 0.103 mg/l

A-4 (Duplicate) 7.04 mg/kg
A-4 Spike Amount spiked 0.05 mg/l
Amount recovered 0.048
% recovery = 96% recovery

Jokness

ERT LABORATORIES SAMPLE RECEIPT CHECKLIST

shipped	NOTES: Fed Ex A/B# 70 5539411
hand-delivered	•
COC present on receipt	NOTES:
COC tape on shipping container	NOTES: # # 012345
no COC tape	
samples broken/leaking on receipt	NOTES:
samples intact on receipt	
other, see notes	
ambient on receipt	NOTES:
chilled on receipt	
samples preserved correctly	NOTES:
improper preservatives	•
N/A, no recommended preservatives	
other, see notes	••
received within holding times	NOTES:
not received within holding times	
N/A, no recommended holding time	
other, see notes	
COC tapes on samples	NOTES:
no COC tapes	
discrepancies between COC and sample labels	NOTES: ATT G41.7-510 Logged IN AS Lab # 89131
no discrepancies noted	USSPRINT G417-520 LOGGED IN AS
N/A, no COC received	
other, see notes	Lab #8913 B

2000	/		7
age		. 01	

									rage	<u> </u>
ER					HOUSTON, TX 7			alysis Request and	Chain of	Custody Record
Project No.			CI	ient/Project Na	ame			Project Location		4
3417.5	10.57	O							•	
Field Sample No./ Identification	Date and Time	Grab	Сошр	Sample Container (Size/Mat'l)	Sample Type (Liquid, Sludge, Etc.)	Preser- vative		ANALYSIS REQUESTED		LABORATORY REMARKS
3913 B. 1 Adu-us	12-8-87			407 Amas	water	4°C	Heravalry T	312B Charmium Cron	Cr6 Extinc	(
34136,2 B-W-US	1430			402 pmB	water	1	11		,,	·
8913 A. 1 9-1	13/5/87			Sluss 1002 SSWM	SOIL		1 4	·	,,	·
891363	12/8/87				: /			·	1,	·
8913 HZ B-1	1200							····	1.	
8913 B-4 B-1-US	12/8/87				\		. 11	The state of the s	11	•
8913 H.3 B-2	12/8/57 1200) i	
8913 B-5 B-2-45	1218187				<u></u>		1 miles (1)		- 11	
8913 A.4 B-3	12:00						1.1	·	,,	
8913 66	1145			V		7	,,		٠,	
Samplers:	(Signature)			Relinquished by: (Signature)	Henone-		Date: 12/9/87 Time: 11:10	Received by: (Signature)	Date:	Intact
Affi	liation			Relinquished by: (Signature)	C	נ	Date: Time:	Received by: (Signature)	Date: Time:	Intact
				Relinquished by: (Signature)			Date: Time:	Received by: (Signature)	Date: Time:	Intact
SAMPLER REMA	_			L			<u></u>	Received for Laboratory (Signature)	Date:	Laboratory No.
Seal #	To:	M	rs F	t Rosul	to du	ASA:	P/ No Pranum	Data Results to:		8913

\$1. 3.

Page	 of

ER	_				HOUSTON, TX 77			alysis Rec	uest and Ch	nain of	Custody Record
Project No.			CI	ient/Project Na	me			Project Local	tion		
6417-SO	1520										
Field Sample No./ Identification	Date and Time	Grab	Comp	Sample Container (Size/Mat'l)	Sample Type (Liquid, Sludge, Etc.)	Preser- vative		ANALYSIS REQ	UESTED		LABORATORY REMARKS
4-1-45 49138:7				1002 SSNM	Soil	4°C	Homewalent U	runum 2B,	(r on Crt6	Extina	ļ
3413 B-8 C-2-45	11:10			1 }	11	• ,		·····			
8913 B-9 D-1- US	1045			11	. ,,	,,					
SAIP Blunk				402 AMB	water	. 11				·	
5, dd 616-k 5113A.B-11	12/8/87			402 Am	water	"					
				0							·
·											
				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		1.1					
							·		• • • • • • • • • • • • • • • • • • • •		
								• • • •	<i>;</i> .	·	·
Samplers	: (Signature)			Relinquished by: (Signature)	nanle		Date: 12/9/87 Time: 11:10	Received by: (Signature)		Date: Time:	Intact
A.6	11:-4:			Relinquished by: (Signature)	d		Date:	Received by: (Signature)		Date: Time:	Intact
Afr	iliation			Relinquished by: (Signature)		<u> </u>	Date:	Received by: (Signature)		Date: Time:	Intact
SAMPLER REM		<u>~</u>	B				 	Received for Lab (Signature)	poratory	Date: Time:	Laboratory No.
Seal #					of Dise	ASA	P/ No Premu	Data Results to:			8913

PHASE III CHROMIUM IN SOIL, PITS C AND D

DATE: 01/08/88

TO: Larry Campbell 2

FROM: Bo Blankfield, Laboratory Director

PROJ. NO.: G417-510 LAB NO.: 8912

RECEIVED

JAN 14 1988

L. M. CAMPBELL

Attached are reports of chemical analyses of samples received December 8, 1987. These analyses are:

Count	Test	Code	Test Name	Test Method	Sampled	Matrix
2	Cr	ICP-HOU	CHRONIUM	EPA SW-846: 6010, ICP	12/07/87	WATER
3	Cr	-S-Cr6-MBA	CHROMIUM ON SOLID (Cr+6 LEACH)	Cr+6 LEACHATE, SW-846: 6010, ICP	12/07/87	SOIL
3	Cr	-S-ICP-HOU	CHRONIUM ON SOLID	EPA SW-846: 6010, ICP	12/07/87	SOIL
2	Cr+6	MBA	CHROMIUM, HEXAVALENT	SM: 312B, COLORIMETRIC	12/07/87	WATER
3	Cr+6	-SMBA	CHROMIUM, HEXAVALENT ON SOLID	SM: 312B, COLORIMETRIC	12/07/87	SOIL

Should you have any questions, do not hesitate to contact me at (713) 520-9900.

BB/lis

Enclosures: Analytical Summary, Analytical Reports, Chain of

Custody, Sample Receipt Checklist, Quality Control

Logs, Billing Summary

LAB NO. 8912

PROJECT G417-510 AT&T

environmental and engineering excellence

ERT LABORATORIES

Analytical Summary 01/13/88 09:08

Lab Number: 891	2 Pro	ject: G41	7-510	AT&T	
Lab ID	1	2	3	4	5
Field ID (Cont'd)	D1	C1	C2	FIELD BL ANK	SHIP BLA NK
Test /Matrix	SOIL	SOIL	SOIL	WATER	WATER
CrICP-HOU				<0.01 MG/L	<0.01 MG/L
(MDL)				(0.01)	(0.01)
Cr -S-Cr6-MBA	<0.08 MG/KG	<0.08 MG/KG	<0.08 MG/KG		
(MDL)	(0.08)	(0.08)	(0.08)		
Cr -S-ICP-HOU	27.6 MG/KG	157.4 MG/KG	92.0 MG/KG		
(MDL)	(0.4)	(0.4)	(0.4)		
Cr+6 MBA				<0.02 MG/L	<0.02 MG/L
(MDL)				(0.02)	(0.02)
Cr+6 -SMBA	<0.08 MG/KG	<0.08 MG/KG	<0.08 MG/KG		
(MDL)	(0.08)	(0.08)	(0.08)		

QAQC Approval: Spann, Lord Date: 1-13-88

Mgr. Approval: Bladdld Date: 1-13-88

Analytical Report 01/13/88 09:10

Date Sampled: 12/07/87 AT&T Field ID: Dl Proj. No.: G417-510 Lab ID: 1 Time Sampled: 1135 Lab No.: 8912 Matrix: SOIL Date Received: 12/08/87 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed -S-Cr6-MBA <0.08 0.08 / / Cr MG/KG CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP -S-ICP-HOU 27.6 MG/KG 0.4 12/09/87

<0.08

MG/KG

CHROMIUM ON SOLID

Cr+6 -S-

EPA SW-846: 6010, ICP

SM: 312B, COLORIMETRIC

-MBA

CHROMIUM, HEXAVALENT ON SOLID

***** CONTINUED ****

1600

12/18/87

1800

0.08

Analytical Report 01/13/88 09:10

AT&T Field ID: C1 Date Sampled: 12/07/87 Proj. No.: G417-510 Lab ID: 2 Time Sampled: 1200 Lab No.: 8912 Matrix: SOIL Date Received: 12/08/87

Lab No.: 0912	Matrix. Soil		Date Recei	.veu: 12/06/6
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	<0.08	MG/KG	0.08	/ /
Cr -S-ICP-HOU CHROMIUM ON SOLID EPA SW-846: 6010, ICP	157.4	MG/KG	0.4	12/09/87 1600
Cr+6 -SMBA CHROMIUM, HEXAVALENT ON SOLID SM: 312B, COLORIMETRIC	<0.08	MG/KG	0.08	12/18/87 1800

Analytical Report 01/13/88 09:10

AT&T Field ID: C2 Date Sampled: 12/07/87
Proj. No.: G417-510 Lab ID: 3 Time Sampled: 1230
Lab No.: 8912 Matrix: SOIL Date Received: 12/08/87

(Test Code) Method Date/Time

(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
Cr -S-Cr6-MBA CHROMIUM ON SOLID (Cr+6 LEACH) Cr+6 LEACHATE, SW-846: 6010, ICP	<0.08	MG/KG	0.08	/ /
Cr -S-ICP-HOU CHROMIUM ON SOLID EPA SW-846: 6010, ICP	92.0	MG/KG	0.4	12/09/87 1600
Cr+6 -SMBA CHROMIUM, HEXAVALENT ON SOLID SM: 312B, COLORIMETRIC	<0.08	MG/KG	0.08	12/18/87 1800

Analytical Report 01/13/88 09:10

AT&T Proj. No.: G417-510 Lab No.: 8912	Field ID: FIELD BLA Lab ID: 4 Matrix: WATER	Time Samp	led: 12/07/87 led: 1300 ived: 12/08/87
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Method Detection Units Limit	Date/Time Analysis Performed
CrICP-HOU CHROMIUM EPA SW-846: 6010, ICP	<0.01 M	IG/L 0.01	12/09/87 1600
Cr+6MBA CHROMIUM, HEXAVALENT SM: 312B, COLORIMETRIC	<0.02 M	IG/L 0.02	12/08/87 1800

**** CONTINUED ****

Analytical Report 01/13/88 09:10

AT&T Proj. No.: G417-510 Lab No.: 8912	Lab ID: 5			
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration	Units	Method Detection Limit	Date/Time Analysis Performed
CrICP-HOU CHROMIUM EPA SW-846: 6010, ICP	<0.01	MG/L	0.01	12/09/87 1600
Cr+6MBA CHROMIUM, HEXAVALENT SM: 312B, COLORIMETRIC	<0.02	MG/L	0.02	12/18/87 1800

METHOD SW-846 3rd ED #6010

ICAP ERT LABORATORIES QC LOG

DATE 9 DEC 87
TIME 1600
ANALYST

	PARAMETER	C /	\'\\	$\overline{}$							
	PARAMETER	CV/0.02									
									\longrightarrow	\longrightarrow	
B L	BLK	0.001	, .								
L A N K	1.0	1,02									
Λ	20	4.99									
N D	EPA 386X.2	0.020									
S T	288 A93	0.104	Tru	e vai	ue EP	A 38	Q=0.	7			
N D	2801 A93	5.27	: 1	1	1	,	5 = S.O				
A R	EPA 1085X.5	2.64									
D S			·								
S B	8912- BLK	0.006									
S B A L N A P N L K E S	8912-BLK	0,608									
L K E S											
	4-5198	0.007							:		
D U	DUP	0.005									
P L I	% PREC	0									,
UPLICATES	8912-3	4.60									<u> </u>
E S	DUP	4.73									
	5% PRIC	2									
	4-5188	3.93									
	% REC	98									
s	8912-3	P5.8					:				
S P I K E S	570 REC	29									
Ë S					1						
				1			1				
					1		·				
						1					
	*								4		*

QAQC APPROVAL John - Hash

I. SM 312 B (STARTED 12-8-87 FINISHED 12-8-87 @ 6:00 P.M. JOE KRESSE)

Α.	CALIBRATION	ABS @ 540 nms	HEX. CR.	ICAP CR.
	BLK	0.00		
	0.25 mg/1	0.20		
	0.50 mg/1	0.41		
	0.75 mg/1	0.64		
	1.00 mg/1	0.86		
	8912-1	0.000	<0.08 mg/kg	<0.08 mg/kg
	8912-2	0.001	<0.08 mg/kg	<0.08 mg/kg
	8912-3	0.000	<0.08 mg/kg	<0.08 mg/kg
	8912-4	0.001	<0.02 mg/1	<0.02 mg/l
	8912-5	0.002	<0.02 mg/1	$\langle 0.02 \text{ mg/1}$

II. DUPLICATES AND SPIKES

8912-3 (DUP) 0.000
$$\langle 0.08 \text{ mg/kg} \rangle$$

8912-3 (Spike) 0.390
 $\langle 0.08 \text{ mg/kg} \rangle$
 $\langle 0.08 \text{ mg/kg} \rangle$
 $\langle 0.08 \text{ mg/kg} \rangle$
 $\langle 0.08 \text{ mg/kg} \rangle$
 $\langle 0.08 \text{ mg/kg} \rangle$

III. ICAP

A. CALIBRATION

10 mg/1 Cr STD. USED FOR CALIBRATION

EPA CHECK STD (ICAP 19 1:10)

THEORETICAL 0.105 mg/1

ACTUAL 0.096 mg/1

8912-3 (DUP) = <0.08 mg/kg

SPIKE 8912-3 THEORETICAL = 0.50

ACTUAL = 0.045

% RECOVERY = .045
.050

X 100 = 90%

Jollyuns

ERT LABORATORIES SAMPLE RECEIPT CHECKLIST

CLIEN	T <u> </u>	OJECT NO. $64/7-5/0$ LAB NO. $89/2$
1	shipped hand-delivered	NOTES: Feel Ex. A/B# 676-5539-315
2	COC present on receipt	NOTES:
3	COC tape on shipping container	NOTES: # 200 9 33
_	no COC tape	
4	samples broken leaking on receipt	NOTES : # C-2
-	samples intact on receipt	
_	other, see notes	
5	ambient on receipt	NOTES:
	chilled on receipt	
6	samples preserved correctly	NOTES:
_	improper preservatives	
_	N/A, no recommended preservatives	
_	other, see notes	
7	received within holding times	NOTES:
-	not received within holding times	
-	N/A, no recommended holding time	
_	other, see notes	
8	COC tapes on samples	NOTES:
_	no COC tapes	
9	discrepancies between COC and sample labels	NOTES:
_	no discrepancies noted	
	N/A, no COC received	
_	other, see notes	
- Addit	ional comments:	

Samples inspected and logged in by: John Handy Date/Time: 12/8/87 9:45

CHAIN OF CUSTODY RECORD & ANALYSES **Project Location** Client/Project Name Appleton, Wisconsin ATIT Project No. Field Logbook No. Sampler: (Signature) Chain of Custody Tape No. Sost M. Posadus 200933 Lab Sample Type of Sample No./ Identification Number Sample **REMARKS** Date Time Verbals 40i 8912.1 12:00 8912.2 12:30 ıl 891213 Soil Water Field Blank 12/7/87/13:00 8912.4 Ship Blank 12/1/8/18.19 8912.5 Woter Relinguished by: (Signature) Received by: (Signature) Date Time Date Time 12/1/81 17:00 Relinquished by: (Signature) Received by: (Signature) Date Time Date Time Relinquished by: (Signature) Date Date Time Received for Laboratory: (Signature) Time 9:40 Disposed of by: (Signeture) Sample Disposal Method: Time SAMPLE COLLECTOR ANALYTICAL LABORATORY ERT, Inc. 29825RichmondAve Houston, TX 77098 Environmental Research and Technology, Inc. 131 N. Elsenhower LM. 696 Virginia Road Concord, MA 01742 Lombard, 1160148 617-369-8910-No 10424 (3/2) 620-5900 (713) 520 - 9900

1974-3-84

PHASE III CHROMIUM IN GROUNDWATER, PIT B

DATE: 01/05/88

TO: Larry Campbell

FROM: Bo Blankfield, Laboratory Director

PROJ. NO.: G417-510 LAB NO.: 8924

RECEIVED

JAN 7 1988
L' M. CAMPBEL

Attached are reports of chemical analyses of samples received December 11, 1987. These analyses are:

Count	Test	Code	Test Name	Test Method	Sampled	Matrix
3	Cr	ICP-	MBA CHROMIUM (Cr+6 LEACHATE) HOU CHROMIUM MBA CHROMIUM, HEXAVALENT	· · · · · · · · · · · · · · · · · · ·	12/10/87 12/10/87 12/10/87	WATER

Should you have any questions, do not hesitate to contact me at (713) 520-9900.

BB/lis

Enclosures: Analytical Summary, Analytical Reports, Chain of

Custody, Sample Receipt Checklist, Quality Control

Logs, Billing Summary

LAB NO. 8924

PROJECT G417-510 AT&T

environmental and engineering excellence

ERT LABORATORIES

Analytical Summary 01/05/88 11:41

Lab Number: 8924 AT&T	4 Pro	ject: G41	7-510
Lab ID	1	2	3
Field ID	B-W	FIELD BL	SHIP BLA
(Cont'd)		ANK	NK
Test /Matrix	WATER	WATER	WATER
CrCr6-MBA	5.70 MG/L		
(MDL)			
CrICP-HOU	5.84	<0.01	<0.01
	MG/L	MG/L	MG/L
(MDL)	(0.01)	(0.01)	(0.01)
Cr+6 MBA	5.40	<0.002	<0.002
	MG/L	MG/L	MG/L
(MDL)	(0.002)*	(0.002)*	(0.002)*

QAQC Approval: Saloma Thomason Date: 1-6-88

Mgr. Approval: Date: 1-6-98

* Please see attached Analytical Report for remarks.

Analytical Report 01/05/88 11:35

AT&T Field ID: B-W 12/10/87 Date Sampled: Proj. No.: G417-510 Lab ID: 1 Time Sampled: 1500 Lab No.: 8924 Matrix: WATER Date Received: 12/11/87 (Test Code) Method Date/Time Detection Parameter (Test Name) Concen-Analysis (Test Method) tration Units Limit Performed - -Cr6-MBA 5.70 MG/L 12/14/87 CHROMIUM (Cr+6 LEACHATE) Cr+6 LEACHATE, EPA 600: 200.7, ICP - -ICP-HOU Cr 5.84 MG/L 0.01 12/11/87 CHROMIUM 1400 EPA SW-846: 6010, ICP Cr+6 - --MBA 5.40 0.002 12/14/87 MG/L CHROMIUM, HEXAVALENT ***1** SM: 312B, COLORIMETRIC

*1 HOLDING TIME EXPIRED BEFORE ANALYSIS

**** CONTINUED ****

Analytical Report 01/05/88 11:35

AT&T Field ID: FIELD BLANK Date Sampled: 12/10/87 Proj. No.: G417-510 Lab ID: 2 Time Sampled: 1515 Lab No.: 8924 Matrix: WATER Date Received: 12/11/87 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed - -ICP-HOU <0.01 MG/L 0.01 12/11/87 Cr CHROMIUM 1400 EPA SW-846: 6010, ICP Cr+6 - -<0.002 -MBA MG/L 0.002 12/14/87 CHROMIUM, HEXAVALENT *1 SM: 312B, COLORIMETRIC

^{*1} HOLDING TIME EXPIRED BEFORE ANALYSIS

ERT LABORATORIES

Analytical Report 01/05/88 11:36

AT&T Field ID: SHIP BLANK Date Sampled: 12/10/87 Proj. No.: G417-510 3 Time Sampled: 1530 Lab ID: WATER Date Received: 12/11/87 Lab No.: 8924 Matrix: (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis (Test Method) tration Units Limit Performed - -ICP-HOU <0.01 0.01 Cr MG/L 12/11/87 CHROMIUM 1400 EPA SW-846: 6010, ICP Cr+6 - -<0.002 0.002 12/14/87 MG/L -MBA CHROMIUM, HEXAVALENT *1 SM: 312B, COLORIMETRIC

^{*1} HOLDING TIME EXPIRED BEFORE ANALYSIS

BLANK

И И

STANDARDS

ICAP ERT LABORATORIES QC LOG

DATE 11DEC87 1400 TIME ANALYST

	ARAMETER MDL	Cr/ 0.01								
B L A	BLK									
	EPA386 X.Z	 								
K A	EPA 386	0.104	7 ru	_ val	ue 60	LEPA	380=	0.10		
N D	1,0	1.04			0					
S T	10851,5	2.68								
D N	CPA 1085	5,18	true	معم	کت س	。 み 井 に	85=5	٠٥.		
A R D S	5,0	5,03								
Š	10.0.	9.74								
В	8924	0.001								
, N										
, K ; S ——										
	8924-2	10.0>							;	
)) ` U P	DOB	2010								
Ĺ	% PREC	Ø								<u> </u>
DUPLICATES										
E S										
	8924-3	4.08								
	TU BREC	4.00								<u> </u>
S	3 REC	102					;			
SPIKES										
E S										
				1						
							·			

QA/QC DATA

I. SM 312B

A. Calibration 12-14-87, 9:00 a.m., Joe Kresse

Concentration	Absorbance at 540 nms
BLK	0.00
0.25 mg/1	0.222
0.50 mg/1	0.442
0.75 mg/1	0.666
1.00 mg/l	0.853

B. Duplicates and Spikes

8913	B-9 (Duplicate)	< 0.08 mg/kg
8924	Field Blk (DUP)	< 0.002 mg/1
8913	B-5 (Spike)	·
	Amount spiked 0.5	mg/l
	Amount Recovered	0.497
	Recovery = 99%	

8924 Ships Blank (Spike)
Amount spiked 0.50
Amount recovered 0.50
Recovery = 100%

II. ICAP Method EPA 200.7

Instrument standardized with 10 mg/l Cr standard. Checked with EPA ICAP 19std. 1-10 dilution = 0.105 mg/l SHOULD BE 0.103 mg/l

A-4 (Duplicate) 7.04 mg/kg
A-4 Spike Amount spiked 0.05 mg/l
Amount recovered 0.048
% recovery = 96% recovery

Jorkeni

ERT LABORATORIES SAMPLE RECEIPT CHECKLIST

CLII	ENT ATET	PROJECT NO. <u>6417-510</u>	LAB NO8924
1.	shipped hand-delivered	NOTES: Fed Ex A/B	670 5539 396
2.	COC present on receipt	NOTES:	
3.	COC tape on shipping container	NOTES: # 200 936	
4.	no COC tapesamples broken/leaking on receipt	NOTES:	
	samples intact on receipt		
	other, see notes	. 1	X.
5.	ambient on receipt	NOTES:	•
	chilled on receipt		
6 .	samples preserved correctly	NOTES:	
i	improper preservatives		
1	N/A, no recommended preservatives		`
	other, see notes		•
7.	received within holding times	NOTES:	
	not received within holding times	•	•
	N/A, no recommended holding time		
	other, see notes		
8.	COC tapes on samples	NOTES:	
	no COC tapes		
9.	discrepancies between COC and sample labels	NOTES:	
	no discrepancies noted		
	N/A, no COC received	•	
	other, see notes		
Add.	Ltional comments:	•	

Samples inspected and logged in by John B. Henauly Date/Time: 12/11/87 10/15

Page	 of	
ugu	 ٠.	

ER					SINEERING C			alysis Request and	Chain of	Custody Record
Project No. Client/Project Name G-4/7 - 5/0								Project Location		
Field Sample No./ Identification	Date and Time	Grab	Comp	Sample Container (Size/Mat'l)	Sample Type (Liquid, Sludge, Etc.)	Preser- vative		ANALYSIS REQUESTED		LABORATORY REMARKS
B-W	B-W 12/10/67 Hoz Liquid 400 ilexqualent + Chremium method 312B, Cron (, Cron Cri	H- Extract		
Field Bkint	12/10/67							Chronin netted 312B	<u> </u>	.·-
Ship Blank	12/10/87			L	<u> </u>	1		Chramin methol 312 B		
					. و _{ال}					
·				_						
	·			·						
Samplers	: (Signature)			Relinquished by: (Signature)	Herande	<u> </u>	Date: /2/16/87 Time: /0/30	Received by: (Signature)	Date: Time:	Intact
Aff	iliation			Relinquished by: (Signature)	Ü		Date: Time:	Received by: (Signature)	Date: Time:	Intact
Relinquished by: (Signature)			Date: Time:	Received by: (Signature)	Date: Time:	Intact				
SAMPLER REM	IARKS:	TC):	MBA				Received for Laboratory (Signature)	Date: Time:	Laboratory No.
Seal #					acoults	Duce	12/15/67	Data Results to:	···	5924

š į

APPENDIX C.3.b

PHASE III

VOLATILE ORGANIC COMPOUNDS

PHASE III

VOCS IN SOIL, PITS A, B, C, AND D

ANALYSIS OF SOIL & WATER SAMPLES

FROM AT&T APPLETON, WI RECEIVED

JAN 19 1988

L. M. CAMPBELL

ERT PROJECT NO. 0005-467 JANUARY 18, 1988

PREPARED FOR

S. POSADZY LOMBARD, IL

Prepared by
Analytical Chemistry Laboratory
ERT, A Resource Engineering Company
33 Industrial Way, Wilmington, Massachusetts 01887

ANALYSIS OF WATER & SOIL SAMPLES FROM AT&T APPLETON

INTRODUCTION

This report represents the results of analysis conducted on various soil and water samples received by the ERT Analytical Chemistry Laboratory on December 8, 1987. The samples were to be selectively analyzed for volatiles.

SAMPLE RECEIPT AND CHAIN OF CUSTODY

Routine inspection of the samples revealed them to be packaged properly and received in good condition.

Upon receipt, information from the submitted samples was recorded in the Master Log Book (and the LIMS computer system) and assigned ERT Control Numbers. These unique sample labels were affixed to respective sample containers and subsequently utilized throughout the laboratory analysis procedures for positive traceability.

ANALYTICAL PROCEDURES

The water samples were analyzed according to procedures as outlined in:

- a. Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, 40 CFR Part 136.
- b. Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, revised, March, 1983.
- c. Standard Methods for the Examination of Water and Wastewater, 16th Edition, APHA, 1985.

The soil samples were analyzed according to procedures as outlined in "Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods," SW-846, 2nd Edition, revised April, 1984.

QUALITY CONTROL PROCEDURES

Standard quality control procedures were implemented for all analyses. Laboratory reagent (method) blanks, laboratory duplicated samples, and laboratory fortified control samples were analyzed concurrently with each case of submitted samples. The laboratory normally prepares and analyzes one (1) blank, one (1) fortified sample, and one (1) duplicate sample for each case of samples received or for each twenty (20) samples, whichever is more frequent. A case consists of a finite, usually predetermined number of samples collected over a given time period from one particular site. Duplicate sample analyses are performed only when sufficient sample volume is received. The results of the analyses are reviewed by the laboratory quality control coordinator to insure compliance with established analytical control limits.

Laboratory prepared method blank samples and fortified samples are identified in the analytical result tables under the Field Identification number using a unique numbering system and also assigning one ERT sample number to each sample. The Prefix "MB" refers to Method Blank, and "LF" refers to Laboratory Fortification (i.e., a quality control recovery sample).

RESULTS OF ANALYSIS

Analytical results for the submitted samples are presented in the appended tables. Summary tables for the results of blank, and fortified control samples have also been provided in the Appendix.

DISCUSSION

Review of the results of the quality control/quality assurance samples analyzed concurrently with the submitted samples indicated that the analyses were within the acceptance criteria as established by the laboratory.

DATA AND REPORT APPROVAL FORM

SUBMITTED BY:

Analytical Chemistry Laboratory ERT A Resource Engineering Company 33 Industrial Way Wilmington, MA 01887 January 18, 1987

DATA AUDITED BY:

M. S. Sparlin

Quality Control Coordinator

REPORT APPROVED BY:

A. P. Paradice

Laboratory Manager

VOLATILES (GC/MS) ANALYSES IN SOIL

Summary of Analtyical Results

Method Blank Results

Quality Control Check Sample Results

.VOLATILE ORGANICS

Surrogate Recovery Summary

Client Name: AT&T, Appleton Project No: 0005-467

Matrix: Soil

Authorized: 12/09/87 Received: 12/09/87

		Sur	1	
ERT 10	Client ID	d ₄ -1,2,-Dichloro- ethane	dToluene	p-Bromofluoro- benzene
6168-01	50462 / D-1	88	102	90
6168-02	50463 / C-1	85	101	90
6168-03	50464 / C-2	94	102	99
6168-06	50500 / A-1	90	103	95
6168-07	50501 /B-1	92	106	91
6168-08	50502 / B-2	90	104	96
6168-09	50503 / B-3	90	104	95

QC Advisory Limits: 70-121% 81-117% 74-121%

Reported by Approved by

Jar

EPA Method 8240/HSL List

Client Name:	AT&T, Appleton		·	Project No	: 0005-467
ERT :	50462 / D-1		·		
Client :	6168-01				
Matrix:	Soil	Sampled:	12/07/87	Received:	12/09/87
Authorized:	12/09/87	Prepared:	12/10/87	Analyzed:	12/18/87

<u>Parameter</u>	Result	<u>Units</u>	Reporting <u>Limit</u>
Chloromethane	ND	μg/kg (dry wt)	150
Bromomethane	ND	μg/kg (dry wt)	150
Vinyl chloride	ND	μg/kg (dry wt)	150
Chloroethane	ND	μg/kg (dry wt)	150
Methylene chloride	ND	μg/kg (dry wt)	600
Acetone	ND	μg/kg (dry wt)	1,500
Carbon disulfide	ND	μg/kg (dry wt)	60
1,1-Dichloroethene	ND	μg/kg (dry wt)	60
1,1-Dichloroethane	ND	μg/kg (dry wt)	60
trans-1,2-Dichloroethene	ND	μg/kg (dry wt)	60
Chloroform	ND	μg/kg (dry wt)	60
1,2-Dichloroethane	. ND	μg/kg (dry wt)	60
2-Butanone	ND	μg/kg (dry wt)	300
1,1,1-Trichloroethane	ND	μg/kg (dry wt)	60
Carbon tetrachloride	ND	μg/kg (dry wt)	60
Vinyl acetate	ND	μg/kg (dry wt)	300
Bromodichloromethane	ND	μg/kg (dry wt)	60
1,2-Dichloropropane	ND	μg/kg (dry wt)	60
trans-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
Trichloroethene	ND	μg/kg (dry wt)	· 60
Dibromochloromethane	ND	μg/kg (dry wt)	. 60
1,1,2-Trichloroethane	ND	μg/kg (dry wt)	60
Benzene	ND	ug/kg (dry wt)	60
cis-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
2-Chloroethyl vinyl ether	ND	μg/kg (dry wt)	300
Bromoform	ND	μg/kg (dry wt)	60
4-Methy1-2-pentanone	ND	μg/kg (dry wt)	300
2-Hexanone	- ND	μg/kg (dry wt)	300
1,1,2,2-Tetrachloroethane	ND	ug/kg (dry wt)	60
Tetrachloroethene	ND	μg/kg (dry wt)	60
Toluene	ND	μg/kg (dry wt)	60
Chlorobenzene	ND	μg/kg (dry wt)	60
Ethyl benzene	ND	μg/kg (dry wt)	. 60
Styrene	ND	μg/kg (dry wt)	60
Total xylenes	ND	μg/kg (dry wt)	60

Solid content = 85%

ND = Not detected.

Reported by

Approved by _

EPA Method 8240/HSL List

Client Name: ATST. Appleton Project No: 0005-467

ERT : 50463 / C-1

Client : 6168-02

Matrix: Soil Sampled: 12/07/87 Received: 12/09/87

Authorized: 12/09/87 Prepared: 12/10/87 - Analyzed: 12/18/87

<u>Parameter</u>	Result	<u>Units</u>	Reporting Limit
Chloromethane	ND	μg/kg (dry wt)	150
Bromomethane	ND	μg/kg (dry wt)	150
Vinyl chloride	ND	μg/kg (dry wt)	150
Chloroethane	ND .	μg/kg (dry wt)	150
Methylene chloride	· ND	μg/kg (dry wt)	300
Acetone	ND	μg/kg (dry wt)	1,500
Carbon disulfide	ND	μg/kg (dry wt)	60
1,1-Dichloroethene	ND	μg/kg (dry wt)	60
1,1-Dichloroethane	ND	μg/kg (dry wt)	60
trans-1,2-Dichloroethene	ND	μg/kg (dry wt)	60
Chloroform	ND	μg/kg (dry wt)	60
1,2-Dichloroethane	ND	μg/kg (dry wt)	60
2-Butanone	ND	μg/kg (dry wt)	300
1,1,1-Trichloroethane	ND	μg/kg (dry wt)	60
Carbon tetrachloride	ND	μg/kg (dry wt)	60
Vinyl acetate	ND	μg/kg (dry wt)	300
Bromodichloromethane	ND	μg/kg (dry wt)	60
1,2-Dichloropropane	ND	μg/kg (dry wt)	60
trans-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
Trichloroethene	ND ·	μg/kg (dry wt)	60
Dibromochloromethane	ND	μg/kg (dry wt)	60
1,1,2-Trichloroethane	ND	μg/kg (dry wt)	60
Benzene	ND	μg/kg (dry wt)	60
cis-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
2-Chloroethyl vinyl ether	ND	μg/kg (dry wt) -	300
Bromoform	ND	μg/kg (dry wt)	60
4-Methy1-2-pentanone	ND	μg/kg (dry wt)	300
2-Hexanone	ND	μg/kg (dry wt)	300
1,1,2,2-Tetrachloroethane	ND	μg/kg (dry wt)	60
Tetrachloroethene	ND	ug/kg (dry wt)	60
Toluene	ND	μg/kg (dry wt)	60
Chlorobenzene	ND	μg/kg (dry wt)	60
Ethyl benzene	ND	μg/kg (dry wt)	60
Styrene	ND	μg/kg (dry wt)	60
Total xylenes	ND	μg/kg (dry wt)	60

Solid content = 80%

ND = Not detected.

Reported by Approved by

3 /1

EPA Method 8240/HSL List

Client Name: AT&T, Appleton Project No: 0005-467

ERT : 50464 / C-2

Client : 6168-03

Matrix: Soil Sampled: 12/07/87 Received: 12/09/87

Authorized: 12/09/87 Prepared: 12/10/87 - Analyzed: 12/20/87

<u>Parameter</u>	Result	<u>Units</u>	Reporting <u>Limit</u>
Chloromethane	ND	μg/kg (dry wt)	150
Bromomethane	ND	μg/kg (dry wt)	150
Vinyl chloride	ND	μg/kg (dry wt)	150
Chloroethane	ND	μg/kg (dry wt)	150
Methylene chloride	ND	μg/kg (dry wt)	300
Acetone	ND	μg/kg (dry wt)	1,500
Carbon disulfide	ND	μg/kg (dry wt)	60
1,1-Dichloroethene	ND	μg/kg (dry wt)	60
1,1-Dichloroethane	ND	μg/kg (dry wt)	60
trans-1,2-Dichloroethene	ND	μg/kg (dry wt)	. 60
Chloroform	ND	μg/kg (dry wt)	60
1,2-0ichloroethane	ND	μg/kg (dry wt)	60
2-Butanone	ND	μg/kg (dry wt)	300
1,1,1-Trichloroethane	ND	μg/kg (dry wt)	60
Carbon tetrachloride	ND	μg/kg (dry wt)	60
Vinyl acetate	ND	μg/kg (dry wt)	300
Bromodichloromethane	ND	μg/kg (dry wt)	60
1,2-Dichloropropane	ND	μg/kg (dry wt)	60
trans-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
Trichloroethene	ND	μg/kg (dry wt)	60
Dibromochioromethane	ND	μg/kg (dry wt)	60
1,1,2-Trichloroethane	ND	µg/kg (dry wt)	60
Benzene	ND	μg/kg (dry wt)	60
cis-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
2-Chloroethyl vinyl ether	ND	μg/kg (dry wt)	300
Bromoform	ND	μg/kg (dry wt)	60
4-Methy1-2-pentanone	ND	μg/kg (dry wt)	300
2-Hexanone	ND	μg/kg (dry wt)	300
1,1,2,2-Tetrachloroethane	ND	μg/kg (dry wt)	60
Tetrachloroethene	ND	μg/kg (dry wt)	50
Toluene	ND	μg/kg (dry wt)	60
Chlorobenzene	ND	μg/kg (dry wt)	60
Ethyl benzene	ND ND	μg/kg (dry wt)	60
Styrene	ND	μg/kg (dry wt)	60
Total xylenes	ND	μg/kg (dry wt)	60

Solid content = 81%

ND = Not detected.

Reported by ______ Approved by ______

7.

EPA Method 8240/HSL List

Client Name: AT&T, Appleton Project No: 0005-467

ERT : 50500 / A-1

Client : <u>6168-06</u>

Matrix: <u>Soil</u> Sampled: <u>12/08/87</u> Received: <u>12/09/87</u>

Authorized: 12/09/87 Prepared: 12/10/87 Analyzed: 12/21/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Chloromethane	ND	μg/kg (dry wt)	150
Bromomethane	ND	μg/kg (dry wt)	150
Vinyl chloride	ND	μg/kg (dry wt)	150
Chloroethane	ND	μg/kg (dry wt)	150
Methylene chloride	ND	μg/kg (dry wt)	600
Acetone	ND	μg/kg (dry wt)	1,500
Carbon disulfide	ND	μg/kg (dry wt)	60
1,1-Dichloroethene	ND	μg/kg (dry wt)	60
1,1-Dichloroethane	ND	μg/kg (dry wt)	60
trans-1,2-Dichloroethene	· ND	μg/kg (dry wt)	60
Chloroform	ND	μg/kg (dry wt)	60
1,2-Dichloroethane	ND	μg/kg (dry wt)	60
2-Butanone	· ND	μg/kg (dry wt)	300
1,1,1-Trichloroethane	ND	μg/kg (dry wt)	60
Carbon tetrachloride	ND	μg/kg (dry wt)	60
Vinyl acetate	ND	μg/kg (dry wt)	300
Bromodichloromethane	ND	μg/kg (dry wt)	60
1,2-Dichloropropane	ND	μg/kg (dry wt)	60
trans-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
Trichloroethene	ND	μg/kg (dry wt)	60
Dibromochloromethane	ND	μg/kg (dry wt)	60
1,1,2-Trichloroethane	ND	μg/kg (dry wt)	60
Benzene	ND	μg/kg (dry wt)	60
cis-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
2-Chloroethyl vinyl ether	ND	μg/kg (dry wt)	300
Bromofo rm	ND	μg/kg (dry wt)	60
4-Methy1-2-pentanone	ND	μg/kg (dry wt)	300
2-Hexanone	ND	μg/kg (dry wt)	300
1,1,2,2-Tetrachloroethane	ND	μg/kg (dry wt)	60
Tetrachloroethene	ND	μg/kg (dry wt) .	60
Toluene	ND ·	μg/kg (dry wt)	60
Chlorobenzene	ND	μg/kg (dry wt)	60
Ethyl benzene	ND	μg/kg (dry wt)	60
Styrene	ND	μg/kg (dry wt)	60
Total xylenes	ND	μg/kg (dry wt)	60

Solid content = 87%

ND = Not detected.

Reported by _____ Approved by

July

EPA Method 8240/HSL List

Client Name: AT&T, Appleton Project No: 0005-467 : _50501 / B-1 ERT Client : <u>6168-07</u> Matrix: Soil ____ Sampled: <u>12/08/87</u> _ Received: <u>12/09/87</u> Authorized: 12/09/87 Prepared: 12/10/87 Analyzed: 12/21/87

<u>Parameter</u>	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Chloromethane	ND	μg/kg (dry wt)	150
Bromomethane	ND	μg/kg (dry wt)	150
Vinyl chloride	ND	μg/kg (dry wt)	150
Chloroethane	ND	μg/kg (dry wt)	150
Methylene chloride	ND	μg/kg (dry wt)	300
Acetone	ND	μg/kg (dry wt)	1,500
Carbon disulfide	ND	μg/kg (dry wt)	60
1,1-Dichloroethene	ND	μg/kg (dry wt)	60
1,1-Dichloroethane	ND	μg/kg (dry wt)	60
trans-1,2-Dichloroethene	ND	μg/kg (dry wt)	60
Chloroform	ND	μg/kg (dry wt)	60
1,2-Dichloroethane	ND	μg/kg (dry wt)	60
2-Butanone	ND	μg/kg (dry wt)	300
1,1,1-Trichloroethane	ND	μg/kg (dry wt)	60
Carbon tetrachloride	ND.	μg/kg (dry wt)	60
Vinyl acetate	ND	μg/kg (dry wt)	300
Bromodichloromethane	ND	μg/kg (dry wt)	60
1,2-Dichloropropane	ND	μg/kg (dry wt)	60
trans-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
Trichloroethene	ND	μg/kg (dry wt)	60
Dibromochloromethane	ND	μg/kg (dry wt)	60
1,1,2-Trichioroethane	ND	μg/kg (dry wt)	60
Benzene	ND	μg/kg (dry wt)	60
cis-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
2-Chloroethyl vinyl ether	ND	μg/kg (dry wt)	300
Bromoform	ND	μg/kg (dry wt)	60
4-Methyl-2-pentanone	ND	μg/kg (dry wt)	300
2-Hexanone	ND	μg/kg (dry wt)	300
1,1,2,2-Tetrachloroethane	ND	μg/kg (dry wt)	60
Tetrachloroethene	ND	μg/kg (dry wt)	60
Toluene	ND	μg/kg (dry wt)	60
Chlorobenzene	ND	μg/kg (dry wt)	60
Ethyl benzene	ND	μg/kg (dry wt)	60
Styrene	ND	μg/kg (dry wt)	60
Total xylenes	ND	μg/kg (dry wt)	60

Solid content = 85%

ND = Not detected. Reported by

____ Approved by ______

EPA Method 8240/HSL List

Client Name: AT&T. Appleton Project No: 0005-467

ERT : 50502 / B-2

Client : 6168-08

Matrix: Soil Sampled: 12/08/87 Received: 12/09/87

Authorized: 12/09/87 Prepared: 12/10/87 Analyzed: 12/21/87

<u>Parameter</u>	Result	<u>Units</u>	Reporting Limit
Chloromethane	ND	μg/kg (dry wt)	150
Bromomethane	ND	μ g/kg (dry wt)	150
Vinyl chloride	ND	μg/kg (dry wt)	150
Chloroethane	ND	μg/kg (dry wt)	150
Methylene chloride	ND	μg/kg (dry wt)	150
Acetone	ND	μg/kg (dry wt)	1,500
Carbon disulfide	ND	μg/kg (dry wt)	60
1,1-Dichloroethene	ND -	μg/kg (dry wt)	60
1,1-Dichloroethane	ND	μg/kg (dry wt)	60
trans-1,2-Dichloroethene	ND	μg/kg (dry wt)	60
Chloroform	ND	μg/kg (dry wt)	60
1,2-Dichloroethane	ND	μg/kg (dry wt)	60
2-8utanone	ND ,	μg/kg (dry wt)	300
1,1,1-Trichloroethane	ND	μg/kg (dry wt)	60
Carbon tetrachloride	ND	μg/kg (dry wt)	60
Vinyl acetate	ND	μg/kg (dry wt)	300
Bromodichloromethane	ND	μg/kg (dry wt)	60
1,2-Dichloropropane	ND	μg/kg (dry wt)	60
trans-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
Trichloroethene	ND	μg/kg (dry wt)	60
Dibromochloromethane	ND	μg/kg (dry wt)	60
1,1,2-Trichloroethane	ND	μg/kg (dry wt)	60
Benzene	- ND	μg/kg (dry wt)	60
cis-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
2-Chloroethyl vinyl ether	ND	μg/kg (dry wt)	300
Bromoform	ND	μg/kg (dry wt)	• 60
4-Methyl-2-pentanone	ND	μg/kg (dry wt)	300
2-Hexanone	ND	μg/kg (dry wt)	300
1,1,2,2-Tetrachloroethane	ND	μg/kg (dry wt)	60
Tetrachloroethene	ND	μg/kg (dry wt)	60
Toluene	ND	μg/kg (dry wt)	60
Chlorobenzene	ND	μg/kg (dry wt)	60
Ethyl benzene	ND	μg/kg (dry wt)	60
Styrene	ND	μg/kg (dry wt)	. 60
Total xylenes	ND	μg/kg (dry wt)	60

Solid content = 85%

ND = Not detected.

Reported by

Approved by _

VA

EPA Method 8240/HSL List

Client Name: AT&T, Appleton . Project No: 0005-467

ERT : 50503 / B-3

Client : 6168-09

Matrix: Soil Sampled: 12/08/87 Received: 12/09/87

Authorized: 12/09/87 Prepared: 12/10/87 Analyzed: 12/21/87

<u>Parameter</u>	Result	<u>Units</u>	Reporting <u>Limit</u>
Chloromethane	ND .	μg/kg (dry wt)	150
Bromomethane	ND	μg/kg (dry wt)	150
Vinyl chloride	ND	μg/kg (dry wt)	150
Chloroethane	ND	μg/kg (dry wt)	150
Methylene chloride	ND	μg/kg (dry wt)	300
Acetone	ND	μg/kg (dry wt)	1,500
Carbon disulfide	ND	μg/kg (dry wt)	60
1,1-Dichloroethene	ND	μg/kg (dry wt)	60
1,1-Dichloroethane	ND	μg/kg (dry wt)	60
trans-1,2-Dichloroethene	ND	μg/kg (dry wt)	60
Chloroform	ND	μg/kg (dry wt)	60
1,2-Dichloroethane	ND	μg/kg (dry wt)	60
2-Butanone	ND	μg/kg (dry wt)	300
1,1,1-Trichloroethane	ND	μg/kg (dry wt)	. 60
Carbon tetrachloride	ND	μg/kg (dry wt)	60
Vinyl acetate	ND	μg/kg (dry wt)	300
Bromodichloromethane	ND	μg/kg (dry wt)	60
1,2-Dichloropropane	ND	μg/kg (dry wt)	(60
trans-1,3-Dichloropropene	ND .	μg/kg (dry wt)	60
Trichloroethene	ND	μg/kg (dry wt)	60
Dibromochloromethane	ND	μg/kg (dry wt)	60
1,1,2-Trichloroethane	ND	μg/kg (dry wt)	60
Benzene	ND	μg/kg (dry wt)	60
cis-1,3-Dichloropropene	ND	μg/kg (dry wt)	60
2-Chloroethyl vinyl ether	ND	μg/kg (dry wt)	300
Bromoform	ND	μg/kg (dry wt)	60
4-Methy1-2-pentanone	ND	μg/kg (dry wt)	300
2-Hexanone	ND	μg/kg (dry wt)	300
1,1,2,2-Tetrachloroethane	ND	μg/kg (dry wt)	60
Tetrachloroethene	ND	μg/kg (dry wt)	60
Toluene	ND	μg/kg (dry wt)	60
Chlorobenzene	ND	μg/kg (dry wt)	60
Ethyl benzene	ND	μg/kg (dry wt)	60
Styrene	ND	μg/kg (dry wt)	60
Total xylenes	ND	μg/kg (dry wt)	60

Solid content = 86%

ND = Not detected.

Reported by _____ Approved by _____

06

v de

PRIORITY POLLUTANT VOLATILE ORGANICS

EPA Method 624 + 624/HSL List

QUALITY CONTROL

Client Nar	ne:	AT&T, Appleton			Project No	0005-467	
ERT	:	Laboratory Control	Spike			·-··	
Client	:	M932LCS			,. 		
Matr	i v ·	Water	Prepared:	12/13/87	Analyzed:	12/13/87	

<u>Parameter</u>	% Recovery	QC Advisory Limits
1,1-Dichloroethene	117	61 - 145%
Trichloroethene	94	71 - 120%
Benzene	106	76 - 12 7%
Toluene	101	7 6 - 125%
Chlorobenzene	103	75 - 130%

PRIORITY POLLUTANT VOLATILE ORGANICS

EPA Method 624 + 624/HSL List

QUALITY CONTROL

Client Na	me:AT&T. Appleton	Project No: 0005-467
ERT	: Laboratory Control Spike Dup.	
	110.151.000	,,.

Client: M947LCSD Prepared: 12/14/87 Analyzed: 12/14/87

<u>Parameter</u>	% Recovery	QC Advisory Limits
1,1-Dichloroethene	97	61 - 145%
Trichloroethene	7 6	71 - 120%
Benzene	85	76 - 127%
Toluene	84	76 - 125%
Chlorobenzene	89	75 - 130%

Reported by ______ Approved by ______

1

VOLATILES (GC/MS) ANALYSES IN WATER

Summary of Analytical Results

Method Blank Results

Quality Control Check Sample Results

VOLATILE ORGANICS

Surrogate Recovery Summary

Client Name: AT&T, Appleton Project No: 0005-467

Matrix: <u>Water</u>

Authorized: 12/09/87 Received: 12/09/87

		Surrogate Compound			
ERT IO		-Dichloro- hane	d _e -Toluene	p-Bromofluoro- benzene	
6168-04	50465 / Field Blank	104	106	108	
6168-05	50466 / Shipping Blank	100	102	109	
M931B	ERT Procedural Blank - Water / 51481	98	100	101	
N034B	ERT Procedural Blank - Methanol/ 51482	85	100	91	
N097B	ERT Procedural Blank - Methanol/ 51483	94	103	96	

QC Advisory Limits: 76-114% 88-110% 86-115%

Reported by Approved by

/

EPA Method 624/HSL List

Client Name: AT&T, Appleton Project No: 0005-467

ERT : 50465 / Field Blank

Client : 6168-04

Matrix: Soil Sampled: 12/07/87 Received: 12/09/87

Authorized: 12/09/87 Prepared: 12/13/87 Analyzed: 12/13/87

			Reporting
<u>Parameter</u>	<u>Result</u>	<u>Units</u>	<u>Limit</u>
Chloromethane	ND	μg/L	5
Bromomethane	ND	μg/L	5
Vinyl chloride	ND	μg/L	5 5 5
Chloroethane	ND	μg/L	5
Methylene chloride	ND	μg/L	5
Acetone	ND	μg/L	50 ,
Carbon disulfide	ND	μg/L	2
1,1-Dichloroethene	ND	μg/L	2 2 2 2 2 2
1,1-Dichloroethane	ND	μg/L	2
trans-1,2-Dichloroethene	ND	μg/L	2
Chloroform	8.2	μg/L	2
1,2-Dichloroethane	ND	μg/L	
2-Butanone	ND	μg/L	10
1,1,1-Trichloroethane	ND	μg/L	2 2
Carbon tetrachloride	ND	μg/L	
Vinyl acetate	ND	μg/L	10
Bromodichloromethane	ND	μg/L	2 2 2 2 2 2 2 2
1,2-Dichloropropane	ND	μg/L	2
trans-1,3-Dichloropropene	ND	μg/L	2
Trichloroethene	ND ·	μg/L	2
Dibromochloromethane	ND	μg/L	2
1,1,2-Trichloroethane	ND	μg/L	2
Benzene	ND	μg/L	2
cis-1,3-Dichloropropene	ND	μg/L	
2-Chloroethyl vinyl ether	ND	μg/L	10
Bromoform	ND	μg/L	2
4-Methyl-2-pentanone	ND	μg/L	10
2-Hexanone	ND	μg/L	10
1,1,2,2-Tetrachloroethane	ND	μg/L	2
Tetrachloroethene	ND	μg/L	2
Toluene	ND	μg/L	2 2 2 2 2
Chlorobenzene	ND	μg/L	2
Ethyl benzene	ND	μg/L	2
Styrene	ND	' μg/L	2
Total xylenes	ND	μg/L	2

ND = Not detected. j

Reported by ______ Approved by ______

EPA Method 624/HSL List

Client Name: ATST, Appleton Project No: 0005-467

ERT : 50466 / Shipping Blank

Client : 6168-05

Matrix: Soil Sampled: 12/07/87 Received: 12/09/87

Authorized: 12/09/87 Prepared: 12/13/87 Analyzed: 12/13/87

<u>Parameter</u>	Result	Units	Reporting Limit
Chloromethane	ND	μg/L	5
Bromomethane	ND	μg/L	5
Vinyl chloride	ND	μg/L	5
Chloroethane	ND	μg/L	5
Methylene chloride	ND	μg/L	5
Acetone	ND	μg/L	5 5 5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 2
Carbon disulfide	ND	μg/L	2
1,1-Dichloroethene	ND	μg/L	2
1,1-Dichloroethane	ND	μg/L	2
trans-1,2-Dichloroethene	ND	μg/L	2
Chloroform	8.0	μg/L	2
1,2-Dichloroethane	ND	μg/L	2
2-Butanone	ND	μg/L	10
1,1,1-Trichloroethane	ND	μg/L	2
Carbon tetrachloride	ND	μg/L	2
Vinyl acetate	ND	μg/L	10
Bromodichloromethane	ND	μg/L	2
1,2-Dichloropropane	ND	μg/L	2
trans-1,3-Dichloropropene	ND	μg/L	2
Trichloroethene	ND	μg/L	2
Dibromochloromethane	ND	μg/L	2
1,1,2-Trichloroethane	ND	μg/L	2
Benzene	ND	μg/L	2
cis-1,3-Dichloropropene	ND	μg/L	2
2-Chloroethyl vinyl ether	ND	μg/L	10
Bromoform	ND	μg/L	2
4-Methy1-2-pentanone	ND	μg/L	10
2-Hexanone	ND	μg/L	10
1,1,2,2-Tetrachloroethane	ND	μ g /L	2
Tetrachloroethene	ND	μg/L	2
Toluene	ND	μg/L	2
Chlorobenzene	ND	μg/L	2 2 2 2 2 2 2
Ethyl benzene	ND	μg/L	2
Styrene	ND	μg/L	2
Total xylenes	ND	μ g /L	2

ND = Not detected.

Reported by Approved by

EPA Method 624/HSL List

Client Name:	AT&T, Appleton	Project No: 0005-467
ERT :	ERT Procedural Blank - Water / 51481	
Client :	M9318	
Matrix:	Water Sampled: NA	Received: NA
Authorized:	NA Prepared: 12/13/8	7 Analyzed: 12/13/87

Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>
Chloromethane	ND	μ g /L	5
Bromomethane	ND	µg/L	5
Vinyl chloride	ND	μg/L	5
Chloroethane	ND	μg/L	5
Methylene chloride	ND	μg/L	10
Acetone	ND	μg/L	50
Carbon disulfide	ND	μg/L	
1,1-Dichloroethene	ND	μg/L	2 2 2 2 2 2
1,1-Dichloroethane	ND	µg/L	2
trans-1,2-Dichloroethene	ND	μg/L	2
Chloroform	ND	μg/L	2
1,2-Dichloroethane	ND	µg/L	2
2-Butanone	ND	μg/L	10
1,1,1-Trichloroethane	. ND	μg/L	2 2
Carbon tetrachloride	ND	μg/L	
Vinyl acetate	ND	µg/L	10
Bromodichloromethane	ND	µg/L	2
1,2-Dichloropropane	ND	μg/L	2 2 2 2 2 2 2 2
trans-1,3-Dichloropropene	ND	μg/L	2
Trichloroethene	ND	µg/L	2
Dibromochloromethane	ND	μg/L	. 2
1,1,2-Trichloraethane	ND	μg/L	2
Benzene	ND	μg/L	2
cis-1,3-Dichloropropene	ND	μg/L	2
2-Chloroethyl vinyl ether	ND	μ g /L	10
Bromoform	ND	μg/L	2
4-Methyl-2-pentanone	ND	μg/L	10
2-Hexanone	ND	μg/L	10
1,1,2,2-Tetrachloroethane	ND	μg/L	2
Tetrachloroethene	ND	μg/L	2
Toluene	ND	μg/L	2
Chlorobenzene	ND	μg/L	2
Ethyl benzene	ND	μg/L	2 2 2 2 2 2 2
Styrene	ND	μg/L	2
.Total xylenes	ND	µg/L	2
		•	

NA = Not applicable.

ND = Not detected.

Reported by Approved by

Ì

EPA Method 624/HSL List

Client Name: AT&T, Appleton Project No: 0005-467

ERT : ERT Procedural Blank - Methanol / 51482

Client : N0348

Matrix: Water Sampled: NA Received: NA

Authorized: NA Prepared: 12/17/87 Analyzed: 12/17/87

Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>
Chloromethane	ND	μg/L	130
Bromomethane	ND	μg/L	130
Vinyl chloride	ND	μg/L	130
Chloroethane	ND	µg/L	130
Methylene chloride	ND	µg/L	130
Acetone	ND	μg/L	1,300
Carbon disulfide	ND	μg/L	50
1,1-Dichloroethene	ND .	μg/L	50
1,1-Dichloroethane	ND	μg/L	50
trans-1,2-Dichloroethene	ND	μg/L	50
Chloroform	ND	μg/L	50
1,2-Dichloroethane	ND	μg/L	50
2-Butanone	ND	μ g /L	250
1,1,1-Trichloroethane	ND	μg/L	50
Carbon tetrachloride	ND	μg/L	50
Vinyl acetate	ND	μg/L	250
Bromodichloromethane	ND	μg/L	50
1,2-Dichloropropane	ND	μg/L	50
trans-1,3-Dichloropropene	ND	μg/L	50
Trichloroethene	ND	μg/L	50
Dibromochloromethane	ND	μg/L	50
1,1,2-Trichloroethane	ND	μg/L	50
Benzen e	ND	μg/L	50
cis-1,3-Dichloropropene	ND	μg/L	50
2-Chloroethyl vinyl ether	ND	μg/L	250
Bromoform	ND	μg/L	50
4-Methy1-2-pentanone	ND	μg/L	250
2-Hexanone	ND	μg/L	250
1,1,2,2-Tetrachloroethane	ND	μg/L	50
Tetrachloroethene	ND	μg/L	50
Toluene	ND	μg/L	50
Chlorobenzene	ND	μg/L	50
Ethyl benzene	ND	μg/L	50
Styrene	ND	μg/L	50
Total xylenes	ND	μg/L	50

NA = Not applicable.

ND = Not detected.

Reported by Approved by

1

EPA Method 624/HSL List

Client Name:	AT&T, Appleton	Project No: 0005-467
ERT :	ERT Procedural Blank - Methanol / 51483	
Client :	N0978	
Matrix:	Water Sampled: NA	Received: NA
Authorized:	NA Prepared: 12/20/87	_ Analyzed: _12/20/87

<u>Parameter</u>	Result	<u>Units</u>	Reporting <u>Limit</u>
Chloromethane	ND	μg/L	. 130
Bromomethane	ND	μg/L	130
Vinyl chloride	ND	μg/L	130
Chloroethane	ND	μg/L	130
Methylene chloride	ND	μg/L	130
Acetone	ND	μg/L	1,300
Carbon disulfide	. ND	μg/L	50
1,1-Dichloroethene	ND	μg/L	50
1,1-Dichloroethane	ND	μg/L	50
trans-1,2-Dichloroethene	ND	μg/L	50
Chloroform	ND .	μg/L	50
1,2-Dichloroethane	ND	μg/L	50
2-Butanone	ND	μg/L	250
1,1,1-Trichloroethane	ND	μg/L	50
Carbon tetrachloride	ND	μg/L	50
Vinyl acetate	ND	μg/L	250
Bromodichloromethane	ND.	μg/L	50
1,2-Dichloropropane	ND	μg/L	50
trans-1,3-Dichloropropene	ND	μg/L	50
Trichloroethene	ND	μg/L	50
Dibromochloromethane	ND	μ g /L	50
1,1,2-Trichloroethane	ND	μg/L	50
Benzene	ND	μg/L	50
cis-1,3-Dichloropropene	ND	μg/L	50
2-Chloroethyl vinyl ether	ND	μg/L	250
Bromoform	ND	μg/L	50
4-Methyl-2-pentanone	ND	μg/L	250
2-Hexanone	ND	μ g /L	250
1,1,2,2-Tetrachloroethane	ND	μg/L	50
Tetrachloroethene	ND	μg/L	50
Toluene	ND	μg/L	50
Chlorobenzene	ND	μ g /L	50
Ethyl benzene	ND	μg/L	50
Styrene	ND	μ g /L	. 50
Total xylenes	ND	μ g /L	50

NA = Not applicable. ND = Not detected.

Reported by Approved by

	SAMP	LE RECEIPT CHECK LIST		
Client: . AT	T, APPLETON .	6-8-87 0005-	467.	
COC Record #(s):		· <u>·</u>		• •
Matrix	Container	ERT #(s)		;
SOIL	VOA	.50462-64-		
WATER	/'	50465-66		
				
L				———
1. Were samples	shipped or hand-delivered?			
Notes:	D EX.543780473	5	•	ب
2. Was COC reco	rd present upon receipt of samp	es?	Yes	No D
Notes:			W.a.	A1 -
3. Was COC tape	present/unbroken on outer pac	kage?	Yes	No P
Notes:		•		
4. Were samples	received ambient or chilled?		•	
Notes:		•	Yes	No
5. Were any same	ples received broken/leaking (im	properly sealed?		NO L
Notes: 1			Yes	 . No .
6. Were samples	properly preserved?		Ø	
Notes:			Yes	No
7. Were COC type	es present/unbroken on samples	PFIELD I.D. DI, SMIPPING BL	ANK)	
Notes:	•		Yes	No
8. Any discrepand	cies between sample labels and (COC records?		U
Notes:			Yes	, No
	received within holding times?			
Notes:	<i>(4</i>		FD /U: /	LQ.
Additional Comme	ents:			
•	1/2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DAY VERBAL. NORMAL TO	IBNAROUNI	٠ ک
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	UU LONGER A S	,	, , <u>.</u>	4

__ Date: 12-8-

2013/2-86

Samples inspected and logged in by.

7	-1	٠,	
	المحا	7	

SAMPLE RECEIPT CHECK LIST

AT+T, APPLETON 0005-467 6417-510

lient: . AT	T/U.S. SPAIN	UT	ATAT / U.S. SPRIN
OC Record #(s):			0005-470
letrix .	Container	ERT #(s) •:	6417-520
WATER	VOA VIL	= 50489.90.91.9	2-15. SPRINT
SOIL	1.	50500 - 03	
<u></u>		-	
Were samples sh	nipped or hand-delivered?		
Notes: FEZ	D. EX 67055394	122	;
Was COC record	present upon receipt of sar	npies?	Yes, No
Notes:		•	• • • • • • • • • • • • • • • • • • •
Nas COC tape pr	esent/unbroken on outer p	ackage?	Yes No .
iones: 34/60	0	•	
Nere samples re	ceived embient of chilled?)	
Notes:		•	V.a. Na
	s received broken/leaking	(improperly sealed?	Yes No
Notes:	e v de 1945. George		Yes No
Nere samples pro	operly preserved?	·	Yes No
Notes:			Yes No
Nere COC types	present/unbroken on samp	les?	Yes No
Notes:			Yes No
	s between sample labels an	d COC records?	Yes No
Notes:		,	Yes No
	ceived within holding times	•	Yes No
iotes:			STORED IN: BB
itional Comment	s: -	,	STORED IN: NO
NoTE:	No LANKER 3	DAY VERBAL. NO	MAAL TURNAROUNI
100,0	, -0 , , , , , , , , , , , , , , , , , ,		
		, ,	•
nples inspected a	nd looged in hu	Sest Gerade	Date: 12-9-87

HTST	U.5.	PRINT	Project Lo	pleton,	Wis	COUSIN		ANALY	SES		
4417 - 4	510/5		Piela Coglood			1			/ 5/		•
Sempler: (Signature)	M. P	orodn	Chain of Custo			A SHAR	9 / /		//		,
Sample No./	Dat e	Time	Leb Sample Number	- Type Sam	37 🚜	79,00				REMAR	KS
9-W-US	12/8/81	14.00	50489	wet		V			3	Pay Ve	102/4
B-W-US	1 ,	14:30	50490	wore Soil					11	SAMA	
R-1		12:00	50500	Soil	· · · · · · · · · · · · · · · · · · ·	1 7 1				TUNDA	MULID
B-2	12/8/81		50502	Soil	ar.	1 %				11	OUND
a-3		12:05	50503	Soil	1	T V				11	
Ship Blank		16:00	50491	wate		T T				11	
Field Blank		16:00	. 50492	Wat		17				ţ1	
Relinquished by				Date ·	Time 18:00	Received by:	(Signature)	 		Date	Time
Relinquished by	: (Signature	•)		Date	Time	Received by	(Signeture)	·	2	Date ,	Time
Relinquished by	(Signature	9)		Date	Time	Received for	Laboratory:	-	,	Date 4-9-59	Time /0:00/
Sample Dispose	l Method:			Disposed	of by: (Sign					Date	Time
SAMPLE COLL	ECTOR +, Inc	C. C. O.A	hower In	ANALYTIC		ental Researci	n and Techno	ology, Inc.		EI	TS
13	mber	120 m	hower Ln. L 60148 -5900		33 Industr Wilmingto 617-657-4	n, MA 01887	,			Nº 20	0124

VOLATILES (GC/MS) ANALYSES IN WATER

Summary of Analytical Results

Method Blank Results

Quality Control Check Sample Results

VOLATILE ORGANICS

Surrogate Recovery Summary

Client Name: Matrix:	AT&T			· · · · · · · · · · · · · · · · · · ·	Project	No: 0005-470
Authorized:		Rec	eived:	12/09/87		
		· · · · · · · · · · · · · · · · · · ·		Surroga	ite Compound	
ERT 10	Client II		-1,2,-Dichloro ethane		,-Toluene	p-Bromofluoro- benzene
	·	-				
6164-03	50491	Ship Blar	nk 102		104	102
6164-04	50492	Field Bla	ank 98		100	102

QC Advisory Limits:

76-114%

88-110%

86-115%

Reported by ______ Approved by ______

أييا

EPA Method 624/HSL List

Client Name.	AT&T			Project No	: 0005-470
ERT :	50491 / Ship Blank		<u></u>		
Client :	6164-03				
Matrix:	Water	Sampled:	12/08/87	Received:	12/09/87
Authorized:	12/09/87	Prepared:	12/14/87	Analyzed:	12/14/87

			Reporting
Parameter	Result	<u>Units</u>	Limit
Chloromethane	ND	20/1	K
Bromomethane	ND ND	μg/L μg/L	5 5 5 5 5 2 2 2 2 2 2 2 2 2 2 2
Vinyl chloride	ND ND	μg/L	š
Chloroethane	ND	μg/L	Š
Methylene chloride	ND	μg/L	Š
Acetone	ND	μg/L	50
Carbon disulfide	ND	μg/L	2
1.1-Dichloroethene	ND	μg/L	2
1,1-Dichloroethane	ND	μg/L	2
trans-1,2-Dichloroethene	ND	μg/L	2
Chloroform		μg/L	2
1,2-Dichloroethane	ND	μg/L	2
2-Butanone	ND	μg/L	10
1,1,1-Trichloroethane	ND	μg/L	2
Carbon tetrachloride	ND	μg/L	2
Vinyl acetate	ND	μg/L	10
Bromodichloromethane	ND	μg/L	10 2 2 2 2 2 2 2 2
1,2-Dichloropropane	ND	μg/L	2 ·
trans-1,3-Dichloropropene	ND	μg/L	2
Trichloroethene	ND	μg/L	2
Dibromochloromethane	ND	μg/L	2
1,1,2-Trichloroethane	ND	μg/L	2
Benzene	ND	μg/L	2
cis-1,3-Dichloropropene	ND	μg/L	2
2-Chloroethyl vinyl ether	ND	μg/L	10
Bromoform	ND	μg/L	2
4-Methy1-2-pentanone	ND	μg/L	10
2-Hexanone	ND	μg/L	10
1,1,2,2-Tetrachloroethane	ND	μg/L	2
Tetrachloroethene	ND	μg/L	2
Toluene	ND	μg/L	2
Chlorobenzene	ND	μg/L	2 2 2 2 2 2 2
Ethyl benzene	ND	μg/L	2
Styrene	ND	µg/L	2
Total xylenes -	ND	μg/L	2

ND = Not detected.

و ن ،

EPA Method 624/HSL List

Client Name:	AT&T			Project No	: 0005-470	
ERT:	50492 / Field Blank					
Client :	6164-04					
Matrix:	Water	Sampled:	12/08/87	Received:	12/09/87	
Authorized.	12/00/87	Dranarad.	12/14/87	Analyzed:	12/14/87	

Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>
Chloromethane	ND	μg/L	5
Bromomethane	ND	μg/L	5
Vinyl chloride	ND	μg/L	5
Chloroethane	ND	μg/L	5
Methylene chloride	ND	μg/L	5
Acetone	ND	μg/L	5 5 5 5 50 2 2 2 2 2 2 10 2
Carbon disulfide	ND	μg/L	2
1,1-Dichloroethene	ND	μg/L	2
1,1-Dichloroethane	ND	μg/L	2
trans-1,2-Dichloroethene	ND	μg/L	2
Chloroform	4.3	μg/L	2
1,2-Dichloroethane	ND	μg/L	2
2-Butanone	ND	μg/L	10
1,1,1-Trichloroethane	ND	μg/L	2
Carbon tetrachloride	ND	μg/L	2
Vinyl acetate	ND	μg/L	10 2 2 2 2 2 2 2 2
Bromodichloromethane	ND	μg/L	2
1,2-Dichloropropane	ND	μg/L	2
trans-1,3-Dichloropropene	ND	μg/L	2
Trichloroethene	ND	μg/L	2
Dibromochloromethane	ND	μg/L .	2
1,1,2-Trichloroethane	ND	μg/L	2
Benzene	ND	μg/L	· 2
cis-1,3-Dichloropropene	ND	μg/L	. 2
2-Chloroethyl vinyl ether	ND	μg/L	10
Bromoform	ND	μg/L	2
4-Methyl-2-pentanone	ND	μg/L	10
2-Hexanone	ND	μg/L	10
1,1,2,2-Tetrachloroethane	ND	μg/L	2
Tetrachloroethene	ND	μg/L	2
Toluene	ND	μg/L	2 2 2 2 2 2 2
Chlorobenzene	ND	μg/L	2
Ethyl benzene	ND	μg/L	2
Styrene	ND	μg/L	2
Total xylenes -	ND	μg/L	2

ND = Not detected.

Reported by Approved by ______

EPA Method 624/HSL List

Client Name:	AT&T			Project No	: 0005-470
ERT :	ERT Procedural Blas	nk - Water			
Client :	5080				
Matrix:	<u>Water</u>	Sampled:	NA	_ Received:	NA
Authorized:	NA	Prepared:	12/14/87	Analyzed:	12/14/87

Parameter	Result	Units	Reporting Limit
Chloromethane	ND	μg/L	5
Bromomethane	ND	μg/L	5
Vinyl chloride	ND	μg/L	5 5 5 5
Chloroethane	ND	μg/L	5
Methylene chloride	ND	μg/L	5
Acetone	ND	μg/L	50
Carbon disulfide	ND :	μg/L	2
1,1-Dichloroethene	- ND	μg/L	2
1,1-Dichloroethane	ND	μg/L	2
trans-1,2-Dichloroethene	ND	μg/L	2
Chloroform	ND	ug/L	2
1,2-Dichloroethane	ND	μg/L	2
2-Butanone	ND	μg/L	10
1,1,1-Trichloroethane	ND	μg/L	2
Carbon tetrachloride	ND	μg/L	2 2 2 2 10 2 10 2 2 2 2 2 2 2 2 2 2
Vinyl acetate	ND	μg/L	10
Bromodichloromethane	ND	μg/L	2
1,2-Dichloropropane	· ND	μg/L	2
trans-1,3-Dichloropropene	ND	μg/L	2
Trichloroethene	ND	μg/L	2
Dibromochloromethane	ND	μg/L	2
1,1,2-Trichloroethane	ND	μg/L	2
Benzene	ND	μg/L	2
cis-1,3-Dichloropropene	ND	μg/L	2
2-Chloroethyl vinyl ether	ND	μg/L	10
Bromoform	ND	μg/Ļ	2
4-Methyl-2-pentanone	ND	μg/L	10
2-Hexanone	ND ·	μg/L	. 10
1,1,2,2-Tetrachloroethane	ND	μg/L	2
Tetrachlöroethene	ND	μg/L	2
Toluene	ND ND	μg/L	2
Chlorobenzene	ND	µg/L	2
Ethyl benzene	ND .	μg/L	2
Styrene Total wylenes	ND ND	μg/L	10 2 2 2 2 2 2 2
Total xylenes	ND	μg/L ·	4

NA = Not applicable.

ND = Not detected.

Reported by

Approved by

12.8

EPA Method 624/HSL List

Client Name:	AT&T			Project No	: 0005-470
ERT :	ERT Procedural Bla	nk - Methano	<u></u>		
Client :	N097				
Matrix:	Water	Sampled:	NA	Received:	NA
Authorized:	NA .	Prepared:	12/20/87	Analyzed:	12/20/87

			Reporting
<u>Parameter</u>	Result	<u>Units</u>	Limit
Chloromethane	ND	μg/L	130
Bromomethane	ND	μg/L	130
Vinyl chloride	ND	μg/L	130
Chloroethane	ND	μg/L	130
Methylene chloride	ND	μg/L	130
Acetone	ND	μg/L	1,300
Carbon disulfide	ND	μg/L	50
1,1-Dichloroethene	ND	μg/L	50
1,1-Dichloroethane	ND	μg/L	50
trans-1,2-Dichloroethene	ND	·μg/L	50
Chloroform	ND	μg/L	50
1,2-Dichloroethane	ND	μg/L	50
2-Butanone	ND	µg/L	250
1,1,1-Trichloroethane	ND	μg/L	50
Carbon tetrachloride	. ND	μg/L	. 50
Vinyl acetate	ND	μg/L	250
Bromodichloromethane	ND	μg/L	50
1,2-Dichloropropane	ND	μg/L	50
trans-1,3-Dichloropropene	ND	μg/L	50
Trichloroethene	ND	μg/L	50
Dibromochloromethane	ND	μg/L	50
1,1,2-Trichloroethane	ND	µg/L	50
Benzene	ND	µg/L	50
cis-1,3-Dichloropropene	ND	μg/L	50
2-Chloroethyl vinyl ether	ND	μg/L	250
Bromoform	ND	µg/L	50
4-Methyl-2-pentanone	ND	µg/L	250
2-Hexanone	ND	µg/L	250
1.1.2.2-Tetrachloroethane	ND	ug/L	50
Tetrachloroethene _	ND	μg/L	50
Toluene	ND	µg/L	50
Chlorobenzene	ND	μg/L	50
Ethyl benzene	ND .	μg/L	. 50
Styrene	ND	μg/L	50
Total xylenes	ND	μg/L	50

NA = Not applicable. ND = Not detected.

Reported by Approved by Approved by

EPA Method 624/HSL List

Client Name:	AT&T	·	Project No: 0005-470	
ERT :	ERT Procedural Blan	nk - Methanol		
Client :	N034	·		_
Matrix:	Water	Sampled: NA	Received: NA	
Authorized:	NA	Prepared: 12/17/87	Analyzed: <u>12/17/87</u>	

Parameter	<u>Result</u>	<u>Units</u>	Reporting Limit
			
Chloromethane	ND	μg/L	130
Bromomethane	ND	μg/L	130
Vinyl chloride	ND	μg/L	130
Chloroethane	· ND	μg/L	130
Methylene chloride	ND	μg/L	130
Acetone	ND	μg/L	1,300
Carbon disulfide	ND	μg/L	50
1,1-Dichloroethene	ND	μg/L	50
1,1-Dichloroethane	ND	μg/L	50
trans-1,2-Dichloroethene	ND	μg/L	50
Chloroform	ND	µg/L	50
1,2-Dichloroethane	ND	μg/L	50
2-Butanone	ND	μg/L	• 250
1,1,1-Trichloroethane	ND	μg/L	50
Carbon tetrachloride	ND	μg/L	50
Vinyl acetate	ND	μg/L	250
Bromodichloromethane	ND	μg/L	50
1,2-Dichloropropane	ND	μg/L	50
trans-1,3-Dichloropropene	ND .	μg/L	50
Trichloroethene	ND	μg/L	50
Dibromochloromethane	ND	μg/L	50
1,1,2-Trichloroethane	ND	μg/L	50
Benzene	ND	μg/L	50
cis-1,3-Dichloropropene	ND	μg/L	<u>5</u> 0
2-Chloroethyl vinyl ether	ND	μg/L	250
Bromoform	ND ·	μg/L	50
4-Methyl-2-pentanone	ND	μg/L	250
2-Hexanone	ND.	μg/L	250
1,1,2,2-Tetrachloroethane	ND	μg/L	50
Tetrachloroethene	ND	μg/L	50
Toluene	ND	μg/L	50
Chlorobenzene	ND	μg/L	50
Ethyl benzene	ND .	μg/L	50
Styrene	ND	μg/L	50
Total xylenes -	ND	μg/L	59

NA = Not applicable. ND = Not detected.

Reported by Approved by Approved by

140

EPA Method 624/HSL List

Client Name:	AT&T		Project No:	0005-470
ERT :	ERT Procedural Bla	ink - Methanol		·
Client :	M983			
Matrix:	Water	Sampled: NA	Received:	NA
Authorized:	NA	Prepared: 12/15/87	Analyzed:	12/15/87

Chloromethane	Par <u>a</u> meter	Result	<u>Units</u>	Reporting Limit
Bromomethane	rarameter	RESULE	011163	<u> </u>
Vinyl chloride ND µg/L 130 Chloroethane ND µg/L 130 Methylene chloride ND µg/L 130 Acetone ND µg/L 1,300 Carbon disulfide ND µg/L 50 1,1-Dichloroethene ND µg/L 50 1,1-Dichloroethane ND µg/L 50 trans-1,2-Dichloroethene ND µg/L 50 Chloroform ND µg/L 50 Chloroforme ND µg/L 50 1,2-Dichloroethane ND µg/L 50 2-Butanone ND µg/L 50 1,1-Trichloroethane ND µg/L 50 1,1,1-Trichloroethane ND µg/L 50 Carbon tetrachloride ND µg/L 50 Vinyl acetate ND µg/L 50 Bromodichloromethane ND µg/L 50 trans-1,3-Dichloropropene ND µg	Chloromethane	_	μg/L	
Chloroethane ND µg/L 130 Methylene chloride ND µg/L 130 Acetone ND µg/L 1,300 Carbon disulfide ND µg/L 50 1,1-Dichloroethane ND µg/L 50 1,1-Dichloroethane ND µg/L 50 Chloroform ND µg/L 50 Chloroform ND µg/L 50 Chloroform ND µg/L 50 Chloroform ND µg/L 50 2-Butanone ND µg/L 50 1,2-Dichloroethane ND µg/L 50 L1,1-Trichloroethane ND µg/L 50 Bromodichloromethane ND µg/L 50 I,2-Dichloropropane ND µg/L 50 trans-1,3-Dichloropropene ND µg/L 50 Trichloroethane ND µg/L 50 Tolloroethane ND µg/L 50 <td></td> <td>_</td> <td>μg/L</td> <td></td>		_	μg/L	
Methylene chloride ND µg/L 130 Acetone ND µg/L 1,300 Carbon disulfide ND µg/L 50 1,1-Dichloroethene ND µg/L 50 1,1-Dichloroethane ND µg/L 50 trans-1,2-Dichloroethene ND µg/L 50 Chloroform ND µg/L 50 1,2-Dichloroethane ND µg/L 50 2-Butanone ND µg/L 50 1,1-Trichloroethane ND µg/L 50 1,1,1-Trichloroethane ND µg/L 50 Vinyl acetate ND µg/L 50 Vinyl acetate ND µg/L 50 Bromodichloromethane ND µg/L 50 Vinyl acetate ND µg/L 50 Bromodichloropropane ND µg/L 50 trans-1,3-Dichloropropane ND µg/L 50 trans-1,3-Dichloropropane ND	Vinyl chloride	ND	μg/L	
Acetone	Chloroethane	ND	μg/L	
Carbon disulfide ND µg/L 50 1,1-Dichloroethene ND µg/L 50 1,1-Dichloroethane ND µg/L 50 trans-1,2-Dichloroethene ND µg/L 50 Chloroform ND µg/L 50 1,2-Dichloroethane ND µg/L 50 2-Butanone ND µg/L 50 1,1,1-Trichloroethane ND µg/L 50 1,1,1-Trichloroethane ND µg/L 50 Vinyl acetate ND µg/L 50 Vinyl acetate ND µg/L 50 Bromodichloromethane ND µg/L 50 I,2-Dichloropropane ND µg/L 50 I-1,2-Dichloropropene ND µg/L 50 I-richloroethane ND µg/L 50 I-richloroethane ND µg/L 50 Benzene ND µg/L 50 Cis-1,3-Dichloropropene ND <t< td=""><td>Methylene chloride</td><td>ND</td><td>μg/L</td><td></td></t<>	Methylene chloride	ND	μg/L	
1,1-Dichloroethene ND µg/L 50 1,1-Dichloroethane ND µg/L 50 trans-1,2-Dichloroethene ND µg/L 50 Chloroform ND µg/L 50 1,2-Dichloroethane ND µg/L 50 2-Butanone ND µg/L 250 1,1,1-Trichloroethane ND µg/L 50 Carbon tetrachloride ND µg/L 50 Carbon tetrachloride ND µg/L 250 Bromodichloromethane ND µg/L 250 Bromodichloromethane ND µg/L 50 trans-1,3-Dichloropropene ND µg/L 50 trans-1,3-Dichloropropene ND µg/L 50 Dibromochloromethane ND µg/L 50 Dibromochloromethane ND µg/L 50 1,1,2-Trichloroethane ND µg/L 50 Emazene ND µg/L 50 Benzene ND µg/L 50 Benzene ND µg/L 50 2-Chloroethyl vinyl ether ND µg/L 50 2-Chloroethyl vinyl ether ND µg/L 50 Bromoform ND µg/L 50 4-Methyl-2-pentanone ND µg/L 250 2-Hexanone ND µg/L 250 1,1,2,2-Tetrachloroethane ND µg/L 250 1,1,2,2-Tetrachloroethane ND µg/L 50 Tetrachloroethene ND µg/L 50 Tetrachloroethene ND µg/L 50 Tetrachloroethene ND µg/L 50 Tetrachloroethene ND µg/L 50 Tetrachloroethene ND µg/L 50 Tetrachloroethene ND µg/L 50 Tetrachloroethene ND µg/L 50 Tetrachloroethene ND µg/L 50 Tetrachloroethene ND µg/L 50 Tetrachloroethene ND µg/L 50 Toluene ND µg/L 50 Chlorobenzene ND µg/L 50 Styrene ND µg/L 50		=	μg/L	
1,1-Dichloroethane ND µg/L 50 trans-1,2-Dichloroethene ND µg/L 50 Chloroform ND µg/L 50 1,2-Dichloroethane ND µg/L 50 2-Butanone ND µg/L 250 1,1,1-Trichloroethane ND µg/L 50 Carbon tetrachloride ND µg/L 50 Bromodichloromethane ND µg/L 50 trans-1,3-Dichloropropane ND µg/L 50 trans-1,3-Dichloropropene ND µg/L 50 Trichloroethene ND µg/L 50 Dibromochloromethane ND µg/L 50 i,1,2-Trichloroethane ND µg/L 50 i,1,2-Trichloroethane ND µg/L 50 cis-1,3-Dichloropropene ND µg/L 50 cis-1,3-Dichloropropene ND µg/L 50 cis-1,3-Dichloropropene ND µg/L 50 2-Chloroethyl vinyl ether ND µg/L 50 Bromoform ND µg/L 50 2-Charanone ND µg/L 250 Bromoform ND µg/L 250 Bromoform ND µg/L 250 Bromoform ND µg/L 250 Bromoform ND µg/L 250 Tetrachloroethane ND µg/L 250 1,1,2,2-Tetrachloroethane ND µg/L 250 1,1,2,2-Tetrachloroethane ND µg/L 50 Tetrachloroethene ND µg/L 50		ND	μg/L	- -
trans-1,2-Dichloroethene ND µg/L 50 Chloroform ND µg/L 50 1,2-Dichloroethane ND µg/L 50 2-Butanone ND µg/L 250 1,1,1-Trichloroethane ND µg/L 50 Vinyl acetate ND µg/L 50 Vinyl acetate ND µg/L 50 Bromodichloromethane ND µg/L 50 Bromodichloromethane ND µg/L 50 1,2-Dichloropropane ND µg/L 50 Trichloroethene ND µg/L 50 Trichloroethane ND µg/L 50 Dibromochloromethane ND µg/L 50 1,1,2-Trichloroethane ND µg/L 50 enzene ND µg/L 50 cis-1,3-Dichloropropene ND µg/L 50 2-Chloroethyl vinyl ether ND µg/L 50 Bromoform ND <td< td=""><td></td><td>ND</td><td>μg/L</td><td></td></td<>		ND	μg/L	
trans-1,2-Dichloroethene ND µg/L 50 Chloroform ND µg/L 50 1,2-Dichloroethane ND µg/L 50 2-Butanone ND µg/L 250 1,1,1-Trichloroethane ND µg/L 50 Carbon tetrachloride ND µg/L 50 Vinyl acetate ND µg/L 50 Bromodichloromethane ND µg/L 50 Bromodichloromethane ND µg/L 50 trans-1,3-Dichloropropene ND µg/L 50 Trichloroethane ND µg/L 50 Till-Trichloroethane ND µg/L 50 1,1,2-Trichloroethane ND µg/L 50 cis-1,3-Dichloropropene ND µg/L 50 cis-1,3-Dichloropropene ND µg/L 50 2-Chloroethyl vinyl ether ND µg/L 50 8 romoform ND µg/L 50 2-Hexanone		ND	μg/L	
Chloroform ND µg/L 50 1,2-Dichloroethane ND µg/L 50 2-Butanone ND µg/L 250 1,1,1-Trichloroethane ND µg/L 50 Carbon tetrachloride ND µg/L 50 Vinyl acetate ND µg/L 50 Bromodichloromethane ND µg/L 50 1,2-Dichloropropane ND µg/L 50 1,2-Dichloropropene ND µg/L 50 Trichloroethene ND µg/L 50 Trichloroethane ND µg/L 50 1,1,2-Trichloroethane ND µg/L 50 Benzene ND µg/L 50 cis-1,3-Dichloropropene ND µg/L 50 2-Chloroethyl vinyl ether ND µg/L 50 Bromoform ND µg/L 250 2-Hexanone ND µg/L 50 1,1,2,2-Tetrachloroethane ND		ND	μg/L	
2-Butanone ND μg/L 250 1,1,1-Trichloroethane ND μg/L 50 Carbon tetrachloride ND μg/L 50 Vinyl acetate ND μg/L 250 Bromodichloromethane ND μg/L 50 L,2-Dichloropropane ND μg/L 50 trans-1,3-Dichloropropene ND μg/L 50 Dibromochloromethane ND μg/L 50 Dibromochloromethane ND μg/L 50 Benzene ND μg/L 50 cis-1,3-Dichloropropene ND μg/L 50 cis-1,3-Dichloropropene ND μg/L 50 cis-1,3-Dichloropropene ND μg/L 50 2-Chloroethyl vinyl ether ND μg/L 250 Bromoform ND μg/L 250 4-Methyl-2-pentanone ND μg/L 250 2-Hexanone ND μg/L 50 Tetrachloroethene		ND	μg/L	
1,1,1-Trichloroethane ND µg/L 50 Carbon tetrachloride ND µg/L 50 Vinyl acetate ND µg/L 250 Bromodichloromethane ND µg/L 50 1,2-Dichloropropane ND µg/L 50 Trichloropropene ND µg/L 50 Trichloroethene ND µg/L 50 Dibromochloromethane ND µg/L 50 1,1,2-Trichloroethane ND µg/L 50 Benzene ND µg/L 50 cis-1,3-Dichloropropene ND µg/L 50 cis-1,3-Dichloropropene ND µg/L 50 2-Chloroethyl vinyl ether ND µg/L 250 Bromoform ND µg/L 250 Bromoform ND µg/L 250 2-Hexanone ND µg/L 250 2-Hexanone ND µg/L 250 Tetrachloroethane ND µg/L 250 Tetrachloroethene ND µg/L 50 Toluene ND µg/L 50 Chlorobenzene ND µg/L 50 Chlorobenzene ND µg/L 50 Ethyl benzene ND µg/L 50 Styrene ND µg/L 50 Styrene		ND	μg/L	
Carbon tetrachloride ND µg/L 50 Vinyl acetate ND µg/L 250 Bromodichloromethane ND µg/L 50 1,2-Dichloropropane ND µg/L 50 trans-1,3-Dichloropropene ND µg/L 50 Trichloroethane ND µg/L 50 Dibromochloromethane ND µg/L 50 1,1,2-Trichloroethane ND µg/L 50 1,1,2-Trichloroethane ND µg/L 50 cis-1,3-Dichloropropene ND µg/L 50 cis-1,3-Dichloropropene ND µg/L 50 2-Chloroethyl vinyl ether ND µg/L 50 2-Chloroethyl vinyl ether ND µg/L 50 4-Methyl-2-pentanone ND µg/L 50 2-Hexanone ND µg/L 50 1,1,2,2-Tetrachloroethane ND µg/L 50 Toluene ND µg/L 50 Chlorob	2-Butanone	ND	μg/L	250
Vinyl acetate ND µg/L 250 Bromodichloromethane ND µg/L 50 1,2-Dichloropropane ND µg/L 50 trans-1,3-Dichloropropene ND µg/L 50 Trichloroethane ND µg/L 50 Dibromochloromethane ND µg/L 50 1,1,2-Trichloroethane ND µg/L 50 Benzene ND µg/L 50 cis-1,3-Dichloropropene ND µg/L 50 2-Chloroethyl vinyl ether ND µg/L 250 Bromoform ND µg/L 50 4-Methyl-2-pentanone ND µg/L 250 2-Hexanone ND µg/L 250 1,1,2,2-Tetrachloroethane ND µg/L 50 Toluene ND µg/L 50 Chlorobenzene ND µg/L 50 Ethyl benzene ND µg/L 50 Styrene ND µg/L </td <td>1,1,1-Trichloroethane</td> <td>ND</td> <td>μg/L</td> <td></td>	1,1,1-Trichloroethane	ND	μg/L	
Bromodichloromethane ND μg/L 50 1,2-Dichloropropane ND μg/L 50 trans-1,3-Dichloropropene ND μg/L 50 Trichloroethene ND μg/L 50 Dibromochloromethane ND μg/L 50 1,1,2-Trichloroethane ND μg/L 50 Benzene ND μg/L 50 cis-1,3-Dichloropropene ND μg/L 50 2-Chloroethyl vinyl ether ND μg/L 250 Bromoform ND μg/L 250 4-Methyl-2-pentanone ND μg/L 250 2-Hexanone ND μg/L 250 1,1,2,2-Tetrachloroethane ND μg/L 50 Toluene ND μg/L 50 Chlorobenzene ND μg/L 50 Ethyl benzene ND μg/L 50 Styrene ND μg/L 50		ND	μg/L	
1,2-Dichloropropane ND µg/L 50 trans-1,3-Dichloropropene ND µg/L 50 Trichloroethene ND µg/L 50 Dibromochloromethane ND µg/L 50 1,1,2-Trichloroethane ND µg/L 50 Benzene ND µg/L 50 cis-1,3-Dichloropropene ND µg/L 50 2-Chloroethyl vinyl ether ND µg/L 250 Bromoform ND µg/L 50 4-Methyl-2-pentanone ND µg/L 250 2-Hexanone ND µg/L 250 1,1,2,2-Tetrachloroethane ND µg/L 50 Toluene ND µg/L 50 Chlorobenzene ND µg/L 50 Ethyl benzene ND µg/L 50 Styrene ND µg/L 50		ND	μg/L	
trans-1,3-Dichloropropene ND µg/L 50 Trichloroethene ND µg/L 50 Dibromochloromethane ND µg/L 50 1,1,2-Trichloroethane ND µg/L 50 Benzene ND µg/L 50 cis-1,3-Dichloropropene ND µg/L 50 2-Chloroethyl vinyl ether ND µg/L 250 Bromoform ND µg/L 50 4-Methyl-2-pentanone ND µg/L 250 2-Hexanone ND µg/L 250 1,1,2,2-Tetrachloroethane ND µg/L 50 Toluene ND µg/L 50 Toluene ND µg/L 50 Chlorobenzene ND µg/L 50 Ethyl benzene ND µg/L 50 Styrene ND µg/L 50		ND	μg/L	
Trichloroethene ND μg/L 50 Dibromochloromethane ND μg/L 50 1,1,2-Trichloroethane ND μg/L 50 Benzene ND μg/L 50 cis-1,3-Dichloropropene ND μg/L 50 2-Chloroethyl vinyl ether ND μg/L 250 Bromoform ND μg/L 50 4-Methyl-2-pentanone ND μg/L 250 2-Hexanone ND μg/L 250 1,1,2,2-Tetrachloroethane ND μg/L 50 Toluene ND μg/L 50 Chlorobenzene ND μg/L 50 Ethyl benzene ND μg/L 50 Styrene ND μg/L 50		ND	μg/L	
Dibromochloromethane ND μg/L 50 1,1,2-Trichloroethane ND μg/L 50 Benzene ND μg/L 50 cis-1,3-Dichloropropene ND μg/L 50 2-Chloroethyl vinyl ether ND μg/L 250 Bromoform ND μg/L 50 4-Methyl-2-pentanone ND μg/L 250 2-Hexanone ND μg/L 250 1,1,2,2-Tetrachloroethane ND μg/L 50 Toluene ND μg/L 50 Toluene ND μg/L 50 Chlorobenzene ND μg/L 50 Ethyl benzene ND μg/L 50 Styrene ND μg/L 50	trans-1,3-Dichloropropene	ND	μg/L	
1,1,2-Trichloroethane ND μg/L 50 Benzene ND μg/L 50 cis-1,3-Dichloropropene ND μg/L 50 2-Chloroethyl vinyl ether ND μg/L 250 Bromoform ND μg/L 50 4-Methyl-2-pentanone ND μg/L 250 2-Hexanone ND μg/L 250 1,1,2,2-Tetrachloroethane ND μg/L 50 Tetrachloroethene ND μg/L 50 Toluene ND μg/L 50 Chlorobenzene ND μg/L 50 Ethyl benzene ND μg/L 50 Styrene ND μg/L 50	Trichloroethene	ND	μg/L	
1,1,2-Trichloroethane ND μg/L 50 Benzene ND μg/L 50 cis-1,3-Dichloropropene ND μg/L 50 2-Chloroethyl vinyl ether ND μg/L 250 Bromoform ND μg/L 50 4-Methyl-2-pentanone ND μg/L 250 2-Hexanone ND μg/L 250 1,1,2,2-Tetrachloroethane ND μg/L 50 Tetrachloroethene ND μg/L 50 Toluene ND μg/L 50 Chlorobenzene ND μg/L 50 Ethyl benzene ND μg/L 50 Styrene ND μg/L 50	Dibromochloromethane	ND	μg/L	
cis-1,3-Dichloropropene ND µg/L 50 2-Chloroethyl vinyl ether ND µg/L 250 Bromoform ND µg/L 50 4-Methyl-2-pentanone ND µg/L 250 2-Hexanone ND µg/L 250 1,1,2,2-Tetrachloroethane ND µg/L 50 Tetrachloroethene ND µg/L 50 Toluene ND µg/L 50 Chlorobenzene ND µg/L 50 Ethyl benzene ND µg/L 50 Styrene ND µg/L 50	1,1,2-Trichloroethane	ND		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Benzene	ND	μg/L	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ND	μg/L	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-Chloroethyl vinyl ether	ND	μg/L	250
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bromoform	ND	μg/L	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4-Methy1-2-pentanone	ND	μg/L	250
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-Hexanone	ND		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1,1,2,2-Tetrachloroethane	ND	μg/L	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		ND		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Toluene	ND	μg/L	
Styrene ND µg/L 50	Chlorobenzene	ND	μg/L	
Styrene ND µg/L 50		ND .		
		ND	μg/L	
•	Total xylenes	ND	• • •	50

NA = Not applicable.

ND = Not detected.

Reported by Approved by Approved by

Jak

EPA Method 624/HSL List

Client Name:	AT&T	·	·	Project No	: 0005-470
ERT :	ERT Procedural Blan	k - Water	·	 	
Client :	M931				·
Matrix:	Water	Sampled:	NA	`Received:	NA
Authorized:	NA .	Prepared:	12/13/87	Analyzed:	12/13/87

			Reporting
<u>Parameter</u>	Result	<u>Units</u>	Limit
Chloromethane	ND	μg/L	5
Bromomethane	ND	μg/L	
Vinyl chloride	ND	μg/L	5
Chloroethane	ND	μg/L	5 5 5 5
Methylene chloride	ND	μg/L	5
Acetone	ND	μg/L	50
Carbon disulfide	ND	μg/L	2
1,1-Dichloroethene	ND	μg/L	2
1,1-Dichloroethane	ND	μg/L	2
trans-1,2-Dichloroethene	ND	μg/L	2
Chloroform	ND	μg/L	.2
1,2-Dichloroethane	. ND	μg/L	2
2-Butanone	ND	μg/L	10
1,1,1-Trichloroethane	ND	μg/L	2 2 2 2 2 2 10 2
Carbon tetrachloride	ND	μg/L	2
Vinyl acetate	ND	μg/L	10
Bromodichloromethane	ND	μg/L	2
1,2-Dichloropropane	ND	μg/L	10 2 2 2 2 2 2 2 2
trans-1,3-Dichloropropene	ND	μg/L	2
Trichloroethene	ND	μg/L	2
Dibromochloromethane	ND	μg/L	2
1,1,2-Trichloroethane	ND	μg/L	2
Benzene	ND	μg/L	2
cis-1,3-Dichloropropene	ND	μg/L	2
2-Chloroethyl vinyl ether	ND	μg/L	10
Bromoform	ND	μg/L	2
4-Methyl-2-pentanone	ND	μg/L	10
2-Hexanone	ND	μg/L	10
1,1,2,2-Tetrachloroethane	ND	μg/L	2
Tetrachloroethene	ND	μg/L	2
Toluene	ND	μg/L	2
Chlorobenzene	ND	μg/L	2
Ethyl benzene	ND	μg/L	2 .
Styrene	ND	μg/L	2 2 2 2 2 2 2
Total xylenes	ND	μg/L	2
•		• •	

NA = Not applicable.

ND = Not detected.

Reported by Approved by Approved by

المن و

EPA Method 624/HSL List

Client Name:	AT&T			Project No	: 0005-470	
	ERT Procedural 81		1			
Client :	M996	·				
Matrix:	Water	Sampled:	NA	Received:	NA	_
Authorized:	NA	Prepared:	12/16/87	Analyzed:	12/16/87	

	,		Reporting
<u>Parameter</u>	Result	<u>Units</u>	Limit
Chloromethane	ND	μg/L	130
Bromomethane	ND	μg/L	130
Vinyl chloride	ND	μg/L	130
Chloroethane	ND	μg/L	130
Methylene chloride	ND	μg/L	130
Acetone	ND	μg/L	1,300
Carbon disulfide	ND	μg/L	50
1,1-Dichloroethene	ND	μg/L	50
1,1-Dichloroethane	ND	μg/L	50
trans-1,2-Dichloroethene	ND	μg/L	50
Chloroform	ND	μg/L	50
1,2-Dichloroethane	ND	μg/L	50
2-Butanone	ND	μg/L	250
1,1,1-Trichloroethane	ND	μg/L	50
Carbon tetrachloride	ND	μg/L	50
Vinyl acetate	ND	μg/L	250
Bromodichloromethane	ND	μg/L	50
1,2-Dichloropropane	ND	μg/L	50
trans-1,3-Dichloropropene	ND	μg/L	50
Trichloroethene	ND	μg/L	50
Dibromochloromethane	ND	μg/L	50
1,1,2-Trichloroethane	ND	μg/L	50
Benzene	ND	μg/L	50
cis-1,3-Dichloropropene	ND	μg/L	50
2-Chloroethyl vinyl ether	ND .	μg/L	250
Bromoform	ND	μg/L	50
4-Methyl-2-pentanone	ND	μg/L	. 250
2-Hexanone	ND	μg/L	250
1,1,2,2-Tetrachloroethane	ND	μg/L	50
Tetrachloroethene	ND	μg/L	50
Toluene	ND	μg/L	50
Chlorobenzene	ND	μg/L	50
Ethyl benzene	ND	μg/L	50
Styrene	ND	μg/L	. 50
Total xylenes	ND	μg/L	50
•		•	

NA = Not applicable.

ND = Not detected.

Reported by Approved by

لى ار

AT+T, APPLE-TON 0005-467

		HECEIPI CHECK LIST	8417-510
Client: . AT+	T/U.S. SPRINT		ATIT / U.S. SIG.
COC Record #(s):	20124		0005-470
Matrix	Container	ERT#(s) •:	6417-520
WATER	VOA VILE	50489.90.91.9	2-15. SPRINT
SiL	//	50500 - 03	
	pped or hand-delivered?		
⊋	.EX 6705539422		Yas No
. 3 34	resent upon receipt of samples?		Yes, No
Notes:			÷ Yes No
Was COC tape pre	sant/unbrokan on outer package ,	o7	Yes No .
Notes: 24/60			
Notes:	eived ambient & chilled		•
	received broken/leaking (improp	perly sealed?	Yes No
Notes:	,		
♥ . Were samples prop	perty preserved?		Yes No
Notes:		·	· • · · · · · · · · · · · · · · · · · ·
	esant/unbroken on samples?		Yes No
Notes:			
Any discrepancies	between sample labels and COC	records?	Yes No
Notes:	·		Yar No
	ived within holding times?	•	Yes No
Notes:			
ditional Comments:	-		STORED IN: BB
NOTE: 1	NO LONGER 3 DI	AY VERBAL. NON	SMAL TURNAROUN
, —			
h.	•	0 01 1	
mples inspected and	1 logged in by	Sest Gerade	Date: <u>/-2-9-87</u>

Samples inspected and logged in by

					AIN OF CUS	DY REC	ORD	A			SPBIN 5417-5	9 1
<u>`</u>	1 0.5.4	SPRINT				Wisc	OUSIN			ANALYSE	S	
Project No.	510/9	120		Field Logbor				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		/ /	 	
Aust			C	hain of Custo 241						/. /		
Sample No./ Identification	Date	Time	Lab Sar Numb	· ·	- Type Samp	of (70,00		.//		REN	MARKS
7-W-US	A	14.00		489	wate		V				3924	Verbal/
3-W-US 4-1	12/8/87 18/81	1		190 500	wore Soil	Y	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			-	NORMA.	<u> </u>
B-1	12/8/87			501	Soil	7						GUNDANG
B-2	12/8/87			502	Soil	٨٠.	V				1	1
B-3	12/8/87		50	1503	Soi!	1	V				<u> </u>	1
hip Blank	12/8/81	16:00	504	91	wate	ev ·	V,				1	\
reld Blank			. 504	192	Wate		V		<u> </u>]	(·
elinguished by	y: (Signatur M - Po	rady	• .		Date	Time 18:00	Received	by: (<i>Sign</i>	ature)		Date	Time
lelinquished by	y: (Signatur	e) /			Date 3	Time	Received	by: (Sign	atura)	2	Date	Time
lelinquished by	y: (Signatur	e) _.			Date	Time	•	\sim	ratory: (Sign		Date	69 10:001
Sample Dispos	al Method:				Disposed	of by: (Sign	neture)				Date	Time
SAMPLE COLL	ECTOR				ANALYTIC	AL LABOR	ATORY	···········				
Er	+, In	C. EICPIN	hower	- Ln.				irch and	Tachnology	, Inc.		
131 N. EISEN HOWER LN. Lombard 3 12 60148 (3127 620 -5900				32 Industrial Way Wilmington, MA 01887 617-657-4290 Nº 2012				20124				
974-3-84					- I			·····		,		

PHASE III

VOCs IN GROUNDWATER, PIT B

ANALYSIS OF WATER SAMPLES FROM AT&T APPLETON

RECEIVED

JAN 8 1988
L. M. CAMPBELL

ERT PROJECT NO.0005-467 January 5, 1988

PREPARED FOR

L. Campbell ERT, Lombard

Prepared by
Analytical Chemistry Laboratory
ERT, A Resource Engineering Company
33 Industrial Way, Wilmington, Massachusetts 01887

ANALYSIS OF WATER SAMPLES FROM AT&T APPLETON

INTRODUCTION

This report represents the results of analysis conducted on various water samples received by the ERT Analytical Chemistry Laboratory on December 11, 1987. The samples were to be selectively analyzed for volatiles.

SAMPLE RECEIPT AND CHAIN OF CUSTODY

Routine inspection of the samples revealed them to be packaged properly and received in good condition.

Upon receipt, information from the submitted samples was recorded in the Master Log Book (and the LIMS computer system) and assigned ERT Control Numbers. These unique sample labels were affixed to respective sample containers and subsequently utilized throughout the laboratory analysis procedures for positive traceability.

ANALYTICAL PROCEDURES

The water samples were analyzed according to procedures as outlined in:

- a. Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act, 40 CFR Part 136.
- b. Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020, revised, March, 1983.
- c. Standard Methods for the Examination of Water and Wastewater, 16th Edition, APHA, 1985.

QUALITY CONTROL PROCEDURES

Standard quality control procedures were implemented for all analyses. Laboratory reagent (method) blanks, laboratory duplicated samples, and laboratory fortified control samples were analyzed concurrently with each case of submitted samples. The laboratory normally prepares and analyzes one (1) blank, one (1) fortified sample, and one (1) duplicate sample for each case of samples received or for each twenty (20) samples, whichever is more frequent. A case consists of a finite, usually predetermined number of samples collected over a given time period from one particular site. Duplicate sample analyses are performed only when sufficient sample volume is received. The results of the analyses are reviewed by the laboratory quality control coordinator to insure compliance with established analytical control limits.

Laboratory prepared method blank samples and fortified samples are identified in the analytical result tables under the Field Identification number using a unique numbering system and also assigning one ERT sample number to each sample. The Prefix "MB" refers to Method Blank, and "LF" refers to Laboratory Fortification (i.e., a quality control recovery sample).

In most cases, the analytical results will have been corrected using mean method blank results.

RESULTS OF ANALYSIS

Analytical results for the submitted samples are presented in the appended tables. Summary tables for the results of duplicate, blank, and fortified control samples have also been provided in the Appendix.

DISCUSSION

Review of the results of the quality control/quality assurance samples analyzed concurrently with the submitted samples indicated that the analyses were within the acceptance criteria as established by the U.S. EPA.

SUBMITTED BY:

Analytical Chemistry Laboratory ERT A Resource Engineering Company 33 Industrial Way Wilmington, MA 01887 January 7, 1988

DATA AUDITED BY:

M. S. Sparlin

Quality Control Coordinator

REPORT APPROVED BY:

L. G. Pounds

rogram Manager

VOLATILES (GC/MS) ANALYSES IN WATER

Summary of Analytical Results

Method Blank Results

Quality Control Check Sample Results

VOLATILE ORGANICS

Surrogate Recovery Summary

Client Name: ATET Appleton Project No.: 0005-467

Matrix: <u>Water</u>

Authorized: 12/14/87 Received: 12/14/87

		Surrogate Compound				
ERT ID	Client ID	d ₄ -1,2,-Dichloro- ethane	d _e -Toluene	p-Bromofluoro- benzene		
6228-01	50632 / _B -w	101	100	106		
6228-02	50633 / Field Bla	nk 99	101	106		
6228-03	50634 / Shipping	Blank 99	99	107		
2254B	ERT Procedural Blank - Water / 5	51198 9 7	100	107		

QC Advisory Limits:

76-114%

88-110%

86-115%

Reported by ____

Approved by

(

1.6

PRIORITY POLLUTANT VOLATILE ORGANICS

EPA Method 624 + 624/HSL List

QUALITY CONTROL

Client Name: AT&T Appleton Project No.: 0005-467

ERT ID: Laboratory Control Spike

Client ID: 2255LCS

Matrix: Water Prepared: 12/18/87 Analyzed: 12/18/87

<u>Parameter</u>	% Recovery	QC Advisory Limits
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	95 103 102 96 104	61 - 145% 71 - 120% 76 - 127% 76 - 125% 75 - 130%

Reported by

Approved by

PRIORITY POLLUTANT VOLATILE ORGANICS

EPA Method 624 + 624/HSL List

QUALITY CONTROL

Client Name:	AT&T Appleton		Project N	o.: 0005-467	<u></u>
ERT ID:	Laboratory Control	Spike Dup.		·	
Client ID:	2266LCSD			·	
Matrix:	Water	Prepared:	12/18/87	_ Analyzed:	12/18/87

<u>Parameter</u>	% Recovery	QC Advisory Limits
1,1-Dichloroethene	108	61 - 145%
Trichloroethene	99	71 - 120%
Benzene	101	76 - 127%
Toluene	92	76 - 125%
Chlorobenzene	104	75 - 130%

Reported by ______ Approved by ______

EPA Method 624/HSL List

Client N	ame:	AT&T Appleton		Project	No. : 0005-4	67
		ERT Procedural		•		
Client	ID:	<u>22548</u>				·
Mati	rix:	Water	Sampled:	NA	Received:	NA
Authori:	zed:	NA	Prepared:	12/18/87	Analyzed:	12/18/87

Parameter	Result	Units	Reporting Limit
- ar amo cor	RESUIT	<u>0111 C 3</u>	<u> </u>
Chloromethane	ND	μg/L	5
Bromomethane	ND	μg/L	5 5 5 5
Vinyl chloride	ND	μg/L	5
Chloroethane	ND	μg/L	5
Methylene chloride	ND	μg/L	
Acetone	ND	μg/L	50
Carbon disulfide	ND	μg/L	2
1,1-Dichloroethene	ND	μg/L	2
1,1-Dichloroethane	ND	μg/L	2
trans-1,2-Dichloroethene	ND	μg/L	2
Chloroform	ND	μg/L	2
1,2-Dichloroethane	ND	μg/L	2
2-Butanone	ND	μg/L	10
1,1,1-Trichloroethane	ND	μg/L	2
Carbon tetrachloride	ND	. μg/L	2
Vinyl acetate	ND	μg/L	10
Bromodichloromethane	ND	μg/L	50 2 2 2 2 2 10 2 2 2 2 2 2 2 2 2 2
1,2-Dichloropropane	ND	μg/L	2
trans-1,3-Dichloropropene	ND	μg/L	2
Trichloroethene	ND	μg/L	2
Dibromochloromethane	ND	μg/L	2
1,1,2-Trichloroethane	ND	μg/L	2
Benzene	ND -	μg/L	2
cis-1,3-Dichloropropene	ND	μg/L	2
2-Chloroethyl vinyl ether	ND	μg/L	10
Bromoform	ND	μg/L	2
4-Methy1-2-pentanone	ND	μg/L	10
2-Hexanone	ND	μg/L	10
1,1,2,2-Tetrachloroethane	ND	μg/L	2
Tetrachloroethene	ND	μg/L	2
Toluene	ND	μg/L	2 .
Chlorobenzene	ND	μg/L	2
Ethyl benzene	· ND	μg/L	2 2 2 2 2 2 2
Styrene	ND	μg/L	2
Total xylenes	ND	μg/L	2
•			

NA = Not applicable.

ND = Not detected.

Reported by Approved by

EPA Method 624/HSL List

Client Name: AT&T Appleton . Project No.: 0005-467

ERT ID: 50632 / B-W

Client ID: 6228-01

Matrix: Water Sampled: 12/10/87 Received: 12/14/87

Authorized: 12/14/87 Prepared: 12/18/87 Analyzed: 12/18/87

Parameter	Result	<u>Units</u>	Reporting <u>Limit</u>
Chloromethane	ND	<u></u> μg/L	5
Bromomethane	ND	μg/L	
Vinyl chloride	ND	μg/L	5
Chloroethane	ND	μg/L	Š
Methylene chloride	ND	μg/L	5 5 5 5
	130	μg/L	50
Carbon disulfide	ND	μg/L	2
1,1-Dichloroethene	ND	μg/L	2
1,1-Dichloroethane	ND	μg/L	2
trans-1,2-Dichloroethene	ND	μg/L	2
Chloroform	ND	μg/L	2
1,2-Dichloroethane	ND	μg/L	2 2 2 2 10 2 10 2 2 2 2 2 2 2 2 2 2
2-Butanone	ND	μg/L	10
1,1,1-Trichloroethane	ND	μg/L	2
Carbon tetrachloride	ND	μg/L	2
Vinyl acetate	ND	μg/L	10
Bromodichloromethane	ND	μg/L	2
1,2-Dichloropropane	ND	μg/L	2
trans-1,3-Dichloropropene	ND	μg/L	2
Trichloroethene	ND	μg/L	2
Dibromochloromethane	ND	μg/L	2
1,1,2-Trichloroethane	ND	μg/L	2
Benzene	ND	μg/L	2
cis-1,3-Dichloropropene	ND	μg/L	2
2-Chloroethyl vinyl ether	ND	μg/L	10
Bromoform	ND	μg/L	2
4-Methyl-2-pentanone	ND	μg/L	10
2-Hexanone	ND	μg/L	10
1,1,2,2-Tetrachloroethane	ND	μg/L	2
Tetrachloroethene	ND	μg/L	2
Toluene	ND	μg/L	2
Chlorobenzene	ND	μg/L	2 2 2 2 2 2 2
Ethyl benzene	ND	μg/L	2
Styrene	ND	μg/L	2
Total xylenes	ND	μg/L	2

ND = Not detected.

Reported by ______ Approved by _____

EPA Method 624/HSL List

Matrix: <u>Water</u> Sampled: <u>12/10/87</u> Received: <u>12/14/87</u>

Authorized: 12/14/87 Prepared: 12/18/87 Analyzed: 12/18/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting <u>Limit</u>
Chloromethane	ND	μg/L	5
Bromomethane	ND	μg/L	5
Vinyl chloride	ND	μg/L	5
Chloroethane	ND	μg/L	5 5 5 5
Methylene chloride	ND	μg/L	5
Acetone	ND	μg/L	50
Carbon disulfide	DM	μg/L	2
1,1-Dichloroethene	ND	μg/L	2
1,1-Dichloroethane	ND	μg/L	2
trans-1,2-Dichloroethene	ND	μg/L	2
Chloroform	ND	μg/L	. 2
1,2-Dichloroethane	ND	μg/L	. 2
2-Butanone	ND	μg/L	10
1,1,1-Trichloroethane	ND	μg/L	2
Carbon tetrachloride	ND	μg/L	2
Vinyl acetate	ND	μg/L	10
Bromodichloromethane	ND	μg/L	2 2 2 2 10 2 10 2 2 2 2 2 2 2 2 2 2 2 2
1,2-Dichloropropane	ND	μg/L	2
trans-1,3-Dichloropropene	ND	μg/L	2
Trichloroethene	ND	μg/L	2
Dibromochloromethane	ND	μg/L	2
1,1,2-Trichloroethane	ND	μg/L	2
Benzene	ND	μg/L	2
cis-1,3-Dichloropropene	ND	μg/L	2
2-Chloroethyl vinyl ether	ND	μg/L	10
Bromoform	ND	μg/L	
4-Methy1-2-pentanone	ND	μg/L	10
2-Hexanone	ND	μg/L	10
1,1,2,2-Tetrachloroethane	ND	μg/L	2
Tetrachloroethene	ND	μg/L	2
Toluene	4.7	μg/L	2
Chlorobenzene	ND	μg/L	2
Ethyl benzene	ND	μg/L	2 2 2 2 2 2 2
Styrene	ND	μg/L	2
Total xylenes	ND	μg/L	2

ND = Not detected.

Reported by Approved by

EPA Method 624/HSL List

Client Name: AT&T Appleton _ Project No.: 0005-467

ERT ID: 50634 / Shipping Blank

Client ID: <u>6228-03</u>

Matrix: <u>Water</u> Sampled: <u>12/10/87</u> Received: <u>12/14/87</u>

Authorized: 12/14/87 Prepared: 12/18/87 Analyzed: 12/18/87

Parameter	<u>Result</u>	<u>Units</u>	Reporting Limit
T. C. C. C. C. C. C. C. C. C. C. C. C. C.	Kesare	<u>911,03</u>	
Chloromethane	ND	μg/L	5 5 5 5 5
Bromomethane	ND	μg/L	5
Vinyl chloride	ND	μg/L	5
Chloroethane	ND	μg/L	5
Methylene chloride	ND	µg/L	
Acetone	ND ·	μg/L	50
Carbon disulfide	ND	μg/L	2 2 2 2 2 2 2
1,1-Dichloroethene	ND	μg/L	2
1,1-Dichloroethane	ND	μg/L	2
trans-1,2-Dichloroethene	ND	μg/L	2
Chloroform	ND	μg/L	2
1,2-Dichloroethane	ND	μg/L	2
2-Butanone	ND	μg/L	10
1,1,1-Trichloroethane	ND	μg/L	2 2
Carbon tetrachloride	ND	μg/L	2
Vinyl acetate	ND .	μg/L	10
Bromodichloromethane	ND	μg/L	2 2 2 2 2 2 2 2
1,2-Dichloropropane	ND	μg/L	2
trans-1,3-Dichloropropene	ND	μg/L	2
Trichloroethene	ND	μg/L	2
Dibromochloromethane	ND	μg/L	. 2
1,1,2-Trichloroethane	ND	μg/L	2
Benzene	ND	μg/L	2
cis-1,3-Dichloropropene	ND	μg/L	
2-Chloroethyl vinyl ether	ND	μg/L	10
Bromoform	ND	μg/L	. 2
4-Methy1-2-pentanone	ND	μg/L	10
2-Hexanone	ND	μg/L	10
1,1,2,2-Tetrachloroethane	ND	μg/L	2
Tetrachloroethene	· ND	μg/L	2
Toluene	3.2	μg/L	2
Chlorobenzene	ND ·	μg/L	2
Ethyl benzene	ND	μg/L	2 2 2 2 2 2 2
Styrene	ND	μg/L	2
Total xylenes	ND	μg/L	2.

ND = Not detected.

Reported by _____ Approved by _____

CHAIN-OF-CUSTODY RECORD

AT&T

APPLETON, WI

	SAM	PLE RECEIPT CHECK FIST		
Client: A	T+T APPLETO	N CO05-46	7	•
COC Record #(s)	10427			
Matrix	Container	ERT #(s)		
CNATER	8 VOA	50632-34		
 -			•	
				
<u> </u>				J
	shipped of hand-delivered?	o<-		
	D. EX. 670553936	•	Yes \	No
	ord present upon receipt of samp	oles?	<u>O</u>	
Notes:		aka?	Yes	No .
Notes: 200	e present/unbroken on outer pa 0985	ckager		ο.
	received ambient of chilled)			
Notes:		•		-
5. Were any sam	ples received broken/leaking (in	nproperly sealed?	Yes	No
Notes:			S	
6. Were samples	properly preserved?		Yes	No
Notes:			.	· ••
7. Were COC type	es present/unbroken on sample	s?	Yes	No
Notes:		• .	Yes	No
8. Any discrepand	cies between sample labels and	COC records?	Ö	
Notes:		•	Yes	No
•	received within holding times?	•		Ο.
Notes:			STOBED IN	U : RE
Additional Comme	ents:		_	
NOTE:	NO LONGER 3 DA	Y VERBAL. NORMAL	UNN AROUR) .
	*	Sex Gerade	Date:	1-01
Samples inspected	and logged in by	Scott Olrade	Date:	OF

CHAIN OF CUSTODY RECORD

0005-467

Project Location Client/Project Name Appleton, Wisconsin ATRT **ANALYSES** Field Logbook No. Project No Son withing again 4417-510 Sampler: (Signature) Swet M. Poradry Chain of Custody Tape No. 200935 Lab Sample Type of Sample No./ REMARKS Sample Identification Date Time Number B-W 10/10/67 15:00 EBT #50632 Field Biznk 12/10/87 15:15 50633 water weter Sing Blznk 12/10/87 15:30 Water 506 34 Relinquished by: (Signature) Received by: (Signature) Time Date Time 12/10/87 18:00 Relinquished by: (Signature) Time Date Received by: (Signature) Time Date Relinquished by: (Signature) Date Time Received for Laboratory: (Signature) Date Time 12-11-87 09.45 Sample Disposal Method: Disposed of by: (Signature) Date Time SAMPLE COLLECTOR ANALYTICAL LABORATORY Test , INC. Environmental Research and Technology, Inc. 33 Industrial Way Wilmingtong MA 01887 696 Virginia Road 131 NEISENhower Ln. Concord, MA 01742 Lombardall 60148 617-369-8910 No 10427 (312) 620 -900 (617) 657-4290

APPENDIX C.4

PHASE IV ANALYTICAL RESULTS

EP TOXICITY IN SOIL, PIT B

DATE: 06/15/88

TO: Larry Campbell

FROM: Bo Blankfield, Laboratory Director bunda buile for BB

PROJ. NO.: 0550-029-510 LAB NO.: 9498

RECEIVED

L. M. CAMPBELL

Attached are reports of chemical analyses of samples received June 2, 1988. These analyses are:

Count	Test	Code	Test Name	Test Method	Sampled	Matrix
1	Ag	-S-EPT-HOU	EP TOXICITY SILVER ON SOLID	LEACHATE: 846:1310, Ag: SM:303A, AA	06/01/88	SOIL
1	As	-S-EPT-HOU	EP TOXICITY ARSENIC ON SOLID	LEACHATE:SW846:1310, ARSENIC:SM303E	06/01/88	SOIL
1	Ba	-S-EPI-HOU	EP TOXICITY BARIUM ON SOLID	LEACHATE: SW846: 1310, Ba: 846: 6010, ICP	06/01/88	SOIL
1	Cđ	-S-EPI-HOU	EP TOXICITY CADMIUM ON SOLID	LEACHATE: SW846:1310, Cd:846:6010, ICP	06/01/88	SOIL
1	Cr	ICP-HOU	CHROMIUN	EPA 600: 200.7, ICP	06/01/88	LIQUID
1	Cr	-S-EPI-HOU	EP TOXICITY CHRONIUM ON SOLID	LEACHATE: SW846:1310, Cr: 846:6010, ICP	06/01/88	SOIL
1	Hg	-S-EPT-HOU	EP TOXICITY MERCURY ON SOLID	LEACHATE: SW846:1310, MERCURY: SM303F	06/01/88	SOIL
1	Pb	-S-EPI-HOU	EP TOXICITY LEAD ON SOLID	LEACHATE: SW846:1310, Pb: 846:6010, ICP	06/01/88	SOIL
1	Se	-S-EPT-HOU	EP TOXICITY SELENIUM ON SOLID	LEACHATE: SW846:1310, SELENIUM:303E	06/01/88	SOIL

Data contained in this report reflect a full quality control review and have met all applicable standards established by ERT. ERT quality assurance protocols are in accordance with EPA guidelines.

Should you have any questions, do not hesitate to contact me at (713) 520-9900.

BB/lis

Enclosures: Analytical Summary, Analytical Reports, Chain of

Custody, Sample Receipt Checklist, Quality Control

Logs, Billing Summary

LAB NO. 9498

PROJECT 0550-029-510 AT&T

environmental and engineering excellence

ERT LABORATORIES

Analytical Summary 06/15/88 06:49

Lab Number: 9498 Project: 0550-02 AT&T		
(Cont'd)	l MAY-B-1 SOIL	2 FIELD BL ANK
,		LIQUID
Ag -S-EPT-HOU	<0.02 MG/L (0.02)	 .
As -S-EPT-HOU	MG/L (.0025)	
(MDL)	(.0023)	
Ba -S-EPI-HOU	MG/L	
(MDL)	(0.02)	
Cd -S-EPI-HOU	<0.010 <i>MG/L</i>	
(MDL)	(0.010)	
CrICP-HOU		<0.02 MG/L
(MDL)		(0.02)

QAQC Approval: Sylomo ZhomasonDate: 6/16/88

Igr. Approval: Dienda Pable Date: 6/14/88

***** CONTINUED *****

LABORATORIES

Analytical Summary 06/15/88 06:49

Lab Number: 9498

Project: 0550-029-510

AT&T

Lab ID	1	2
Field ID	MAY-B-1	FIELD BL
(Cont'd)		ANK
Test /Matrix	SOIL	LIQUID
Cr -S-EPI-HOU	<0.02	
	MG/L	
(MDL)	(0.02)	
Hg -S-EPT-HOU	<0.0025	
	MG/L	
(MDL)	(.0025)	
Pb -S-EPI-HOU	<0.04	
	MG/L	
(MDL)	(0.04)	
Se -S-EPT-HOU	<0.0025	
	MG/L	
(MDL)	(.0025)	

QAQC Approval: John Shoressa Date: 6/16/55

Mgr. Approval: Sunda Saule Date: 6/16/88

Analytical Report 06/15/88 06:47

AT&T Field ID: MAY-B-1 Date Sampled: 06/01/88 Proj. No.: 0550-029-510 Lab ID: 1 Time Sampled: 1300 Lab No.: 9498 Matrix: SOIL Date Received: 06/02/88 (Test Code) Method Date/Time Parameter (Test Name) Concen-Detection Analysis Units Performed (Test Method) tration Limit -S-EPT-HOU <0.02 MG/L 0.02 06/06/88 EP TOXICITY SILVER ON SOLID 1000 LEACHATE: 846:1310, Ag: SM:303A, AA <0.0025 -S-EPT-HOU MG/L .0025 06/06/88 EP TOXICITY ARSENIC ON SOLID 1430 LEACHATE: SW846:1310, ARSENIC: SM303E 0.31 0.02 -S-EPI-HOU MG/L 06/06/88 Ba EP TOXICITY BARIUM ON SOLID 1149 LEACHATE: SW846: 1310, Ba: 846: 6010, ICP Cd -S-EPI-HOU <0.010 MG/L 0.010 06/06/88 EP TOXICITY CADMIUM ON SOLID 1149 LEACHATE: SW846: 1310, Cd: 846: 6010, ICP <0.02 MG/L 0.02 06/06/88 -S-EPI-HOU EP TOXICITY CHROMIUM ON SOLID 1149 LEACHATE: SW846: 1310, Cr: 846: 6010, ICP <0.0025 06/09/88 -S-EPT-HOU MG/L .0025 EP TOXICITY MERCURY ON SOLID 1300 LEACHATE: SW846:1310, MERCURY: SM303F Рb -S-EPI-HOU <0.04 MG/L 0.04 06/06/88 EP TOXICITY LEAD ON SOLID 1149 LEACHATE: SW846: 1310, Pb: 846: 6010, ICP -S-EPT-HOU <0.0025 MG/L .0025 06/06/88 Se 1130 EP TOXICITY SELENIUM ON SOLID

LEACHATE: SW846:1310, SELENIUM:303E

Analytical Report 06/15/88 06:47

AT&T Proj. No.: 0550-029-510 Lab No.: 9498	Field ID: FIELD BLANK Lab ID: 2 Matrix: LIQUID	Date Sampled: 06/01/88 Time Sampled: 1300 Date Received: 06/02/88
(Test Code) Parameter (Test Name) (Test Method)	Concen- tration Uni	Method Date/Time Detection Analysis ts Limit Performed
CrICP-HOU CHROMIUM EPA 600: 200.7, ICP	<0.02 MG/L	0.02 06/02/88 902

METHOD SW-846 3rd BD #6010

DATE 6JUN 88

TIME 1/49

ANALYST 77M

_											
	ARAMETER	z^	Pb /	cd /	N: /	c-/	Be/	cu_/	Ba		
ĺ	MOLE 50-225		0.04	3.013	0.02	10.02	0.37	0.32	0.02		
	MOLLE 50 315	10.02	70.34	73.613	<u> </u>	7000					
В	BLANK	70.001	0.005	0.00	0.000	0.001	00000	0.000	0.000		
L						ļ	į	, (
N K	MOLSTO	0.041		0.021	860.0	0.042	0.00/	3,133/	0.040	Found	
į	EPA 386		0.101				0.100	0.133		TRUE	
Λ N	CIN 30%	0.423	0.100		0.207/	0.283	0.235	0.345			
D	EPA 481-2	0.418	3.435			ا ما2.2	0.235	0.339	_		
S									5.08		
T A	EPA 686		5.25	1.91		5:24			112/		
N D	EPA 1085		5.00	1.33		5.00			100	\downarrow	
Λ	•			Ì	-			<u> </u>	,		
R D	1.00 ppm	1.00	0.966	0.985	1.00	1.00	1.02	0.987	1.00		
S	5.00 ppm	4.99	4.97	4.99	4.97	5.00	5.00	4.99	4.99		
_											
5 B	9505-BLK	0.007	0.017	0.000	400.0	0.003	0.002	410.0			
i Λ N	9498-BLK	_	0.012	0.004	_	80.0			0.302		
K	9502 - BLK		0.223	0.003		م ب الم			εοο.ο		
S	9506 - BUK		-0.003	3.002		-					
		214	39	120	z86	58	**	178		SAMPLE	
	505-1	212	37	/ <z.0< td=""><td>290</td><td>/57</td><td>154</td><td>163</td><td></td><td>DVP</td><td></td></z.0<>	290	/57	154	163		DVP	
D U	TO PREC	ماما.٥	3.72	Ø	0.98	1.23	ø	6.22			
P L I	9498 - 1		10.04	<0.010		40.02			031	SAMPLE	
I	7478-1		1004	(0.01		/ <0.07			0 .28	DUP	<u></u>
A	2 PREC		Ø	Ø	-	0.			7.19		
T E	13 1 KC C		10.04	(0.019	 	10.02			1	SAMPLE	
S	9502-1	_	20.04	· /		10.02			0.05	9,0	
	5 7 00 - 4		8	0	_	Ø			Ø		
-	3 PREC		عر	<u> </u>					9	 	
	9505-1	5.92	4.09	3.91	6.80	4.28	3.91	5.72			
					1						
	2 REC	94.5	92.5	97.8	98.5	92.5	97.8	98.5			
9	9498-1		3.55	3.90		3.51	_		4.26	Ì	
P	1478-1		2.53	3.10					7.20		
SPIKES	ろんらく		88.8	1975	_	87.8		_	91.1		
E									-		
3	9562-1		3.52	3.80		3.74			3.82	<u> </u>	
	3 REC		88.0	95.0		93.5			93.0		ļ
	13 KEC			}	 	12:0		 	 	 	
	9506-1		3.71	3.84							
			1			1 .	1	1	l	1	1
- (% REC		92.8	96.0	1			i —		1	

J.D. McKilling

QAQC APPROVAL Dom . bese

B L A N K

Λ N D

STANDARDS

DUPLICATES

DATE 6 JUNE 83

	J 3W-040 J.M. D.			_	_	~		ANALYST_	TW	
	MOLO NOL		Pb	cd	T NO E					
	WOLK 2352		P.c.0_	0.010						
-										
-										
-									· ·	
	;					<u></u>				
	<u> </u>									-
_							 			
		l					 !	L		l
	106-1		<0.04 VO.44	< 0.010 (0.010	SAMPLE					
	706-1:		<0.04 <0.04	(0.010	SAMILE					
	706-1: 708-1:			(0.010						
				(0.010	SAMPLE					
				(0.010 (0.010						
				(0.010 (0.010						
	70 PREC		8	(0.010						
	70 PREC		8	(0.010 D						
	70 PREC		8	(0.010 (0.010						
	70 PREC		8	(0.010 D						
	70 PREC		8	(0.010 D						

Ted Mckeley

QAQC APPROVAL Juan Sharel

Quality Control Log

Parameter:	50		Matrix:	<i>L10</i>
Method of Analysis:	5M303E	HYDRIDE	Date/Time:	670788 1130

Lab Numbers	Detection Limits	Calibration Standards/Blank	Absorbance	Check Standards	Concentration Found/True
9504	0000 DO	BCK	,000	Sample Blank	< 1.0_ PPB
		2.5	1071	Method Blank	510,0
9498	0.0025	5.0	.148	P.E.Std. TV=3,0 Internal Std	3.026
502	2 pm	10.0	1276	Internal Std	7,423
				2.5	2,526
			·	5,0	5.091
				10.0	10.025
				1.0	1.039
		Comments:			
	ļ				İ

Internal Quality Control Duplicates and Spikes											
Lab No Sample ID	Sample Conc. PPB	Duplicate Conc. PPB	Range	₹ R.S.D.	Spiked Sample B Result	Sample Result PPB	Spike Added PPB	Percent Recovery			
9504-8	< 1	< 1	*	*	5.055	<1	5.0	101			
9498-1	< 2.5	<2.5	*	*	3.612	42.5	4.0	90			
9502-1	1.688	1.394	*	¥	5.438	1.688	4.0	94			
		•									
			* BE	iow	MDL						

Analyst:

QAQC Approval: Comment Word

DATE 2500288

TIME 0907

ANALYST 774

	ARAMETER	Zn	Pb	Cd	N.	Cr/	Cu				
	MDL O TO > 25	0.02	La.07	0.013	/o.02	<u>/0.52</u>	10.02				
B L	BLANK	10.00	0.000	0.000	0.000	0.004	0. 200				
A N K	5.00 ppm	4.91	5.01	5.01	4.99	4.94	4.96				
A	1.00 ppm	1.00	1.00	1.51	00.1	1.01	1.04				
N D	EPA 1085-I		4.99	1.00		5.22		TRUE			
S T	EPA 481-2		0.434	0.037	0.209	0.283	0.343	.)			
Λ		0.418	0.435	0.039	6.207 6.207	0.107	0.099		<u> </u>		
N D A	EPA 386		0.100	كاه. ه	0.100	200	0.100	Ψ			
R D	GW MDIL	0.042	0.030	810.0	0.040	७.०५1	0.039				
S	10.00 ppm		9.58					74 · · · · · · · · · · · · · · · · · · ·			
S B	9496-BLK	0.007	0.000	-0.001	-0.001	0.000	0.005				
1 A	9489-9480						4.005				
K E S	9486-BUK		0.004								
	1496-1	0.18	3.16	0 0	۲۵.٥	<0.0Z		SAMPLE			
D U	%PREC	4.0	4.3	Ø	ø	ø	1.4				
PLICATES	9480-1		_	_			10.02		L		
C A T	7. PREC			_			Ø				
Ē	9486-3		58.6	1	1		_		# F.W	aL code. g→100 ml ((65X)
	% PREC	_	1.2	_		-	_				
	9496-1	4.42	4.45	4.02	4.04	4.00	4.82				
	7. REC	101.5	102.8	100.5	99.0	100.0	96.0				
S	9480-1	_	_	_			3.56			L	
SPIKES	73 REC	_	_	_	_	J	89.0				
S	9486-3		6.68	(1	(
	7, REC		93.8								
	9498-Z	_		_		3.55					
	7. REC					88.8	_				

Ted McKelvey

QAQC APPROVAL Jann, Clocol

METHOD SW-846 3rd ED #6010

DATE ZJUNE 88

ANALYST TW CONTINUED ARAMETER WOL GRAST 0.02 BLANK A N D STANDARDS 9498-BLK 0:005 S B L A A P N K E S 1498-Z 40.02 DUPLICATES DUP رع. عر 70 PREC SPIKES

J. D. McKilvey

QAQC APPROVAL Spann - Hosel

Quality Control Log

Farameter:	AS	Matrix:	LIQ.
Method of Analysis:	SM 303E HYDRIDE	Date/Time:	PJNN88 1730

Lab Numbers	Detection Limits	Calibration Standards/Blank	Absorbance	Check Standards	PPG Concentration Found/True
9504	0,010 max	BUK	1001	Sample Blank	< 2.5 PB
		こ,ち	9511	Method Blank	٥.052
9498	0.0025	5,0	0851	eda 318-4 • 44 P.E.Std. TV • 6,25	6.123
9502	mg/l	10.0	1369	Internal Std	7,507
				S.S	2,461
		·		5.0	5,005
				10.0	9,960
				1.0	1.037
		Comments:			
				·	

	Internal Quality Control Duplicates and Spikes											
Lab No Sample ID	Sample Conc.	Duplicate Conc.	Range	% R.S.D.	ρ Spiked ρ Sample & Result	Sample Result	Spike Added PPB	Percent Recovery				
9504-8 40,0025		<0.0052	*	*	4.854	८०,००८५	5.0	97				
9498-1	<0,∞25	<0.0025	*	æ	4.245	حه.٥٥٥	4.0	106				
75021	<0.0025	<0.0025	*	¥	4.277	55000	4.0	107				
			*BE	iow n	DC							

Analyst:

QAQC Approval: (4) anom: Word

Quality Control Log

Parameter:	AS	Matrix: L(Q
Method of Analysis:	SM 303A AA	Date/Time: 630N88 1000

Lab Numbers	Detection Limits	Calibration Standards/Blank	Absorbance	Check Standards	Concentration Found/True
9498	0,020	BUK	, 000	Sample Blank	C0.020
9502	max	1,0	1044	Method Blank	0,001
€P	عو	2,5	801,	P.E.Std. 7V=5.0	850,2
TOX'S		5.0	1216	Internal Std	1.017
				2.5	2,476
				5.0	5.037
				050.0	0,019
		Comments:		5-118811 AGS 250,0=UT	450,0
		Commence:		0,040	0.039

Internal Quality Control Duplicates and Spikes										
Lab No Sample ID	Sample Conc.	Duplicate Conc.	Range	% R.S.D.	Spiked Sample Result	Sample Result	Spike Added	Percent Recovery		
9502-1	20,050	<0.030	*	*	3.802	050,020	40	95		
9 498-1	<0.020	CSO. 0>	×	*	3,839	CO: 050	4,0	96		
						· · · · · · · · · · · · · · · · · · ·				
		·								
			* F	SECOL	DW C					

Analyst:

QAQC Approval:

mm Hoel

Quality Control Log

Parameter:	Ha		Matrix:	LIQ.
Method of Analysis:	5M 303F	COLD VAPOR	Date/Time:	97MR8 1300

L					
Lab Numbers	Detection Limits	Calibration Standards/Blank	Absorbance	Check Standards	PPB Concentration Found/True
9498	0,0025	BLK	, 000	Sample Blank	0,153
9502	21 jour	2,5.	,013	Method Blank	150,0
9526.		5.0	,076	P.E.Std. @ 12	3.651
9541		10.0	5001	Internal Std	7,455
9517				2,5	2,369
1539	/			5,0	4,945
			•	1.0	1,039
				10.0	150.01
		Comments:			
		·		·	
					
L	I				1

	Internal Quality Control Duplicates and Spikes											
Lab No Sample ID	Sample Conc. Way(Q	Duplicate Conc.	Range	₹ R.S.D.	p Spiked b Sample B Result	Sample Result	Spike Added PPB	Percent Recovery				
9498-1	2500,0>	<0.0025	*	*	4.925	<0.∞≥5	5,0	99				
9502-2	<0.0025	<0.0052	*	*	4.531	<0.005	5.0	91				
7526-17	40،00ZS	८०:००८८	*	*	4.927	250000	5,0	99				
7541-2	2500.0>	८०,०८८	X	*	4.986	<0.0025	5.0	100				
9517-21	<0.00	<0.∞25	*	*	4.858	حه،٥٥٤	2.0	97				
7541-4	<0.0625	2500.00	*	*	5.393	250000	<u> </u>	108				

* BELOW MOL

QAQC Approval: German . the sel

Analyst:

ERT LABORATORIES SAMPLE RECEIPT CHECKLIST

CLI	ENT AT! T Apple Ton P	ROJECT NO. 0550-029-5/0 LAB NO. 9498
1.	shipped	NOTES: Fel Ex a/B #68/6635792
	hand-delivered	
2.	COC present on receipt	NOTES:
	no COC	
3.	COC tape on shipping container	NOTES:#200948
	no COC tape	
4.	samples broken/leaking on receipt	NOTES:
	samples intact on receipt	
	other, see notes	
5.	ambient on receipt	NOTES:
	chilled on receipt	
6.	samples preserved correctly	NOTES:
NI.	improper preservatives	
	N/A, no recommended preservatives	
	other, see notes	
7.	received within holding times	NOTES:
	not received within holding times	
	N/A, no recommended holding time	·
	other, see notes	
8.	COC tapes on samples	NOTES:
1	no COC tapes	•
9.	discrepancies between COC and sample labels	NOTES:
•	no discrepancies noted	
	N/A, no COC received	
	other, see notes	
Addi	tional comments:	

Samples inspected and logged in bx: 37 ly B. Neumole Date/Time: 6-2-88 910

			_
	/		/
Page		of	

ER					HOUSTON, TX 77			nalysis Request and Ch	ain of Cı	ustody Record
Project No. 0550-0	29-510	9	CI	ient/Project Na	ame Appleto	И		Project Location Apploton, WI		
Field Sample No./ Identification	Date and Time	Grab	Сошр	Sample Container (Size/Mat'l)	Sample Type (Liquid, Sludge, Etc.)	Preser- vative		ANALYSIS REQUESTED		LABORATORY REMARKS
May-Bt1	6/1		X	8021	Goil	None	EPTOX	8 Metals Iromium		
Pield Blank	stat 1	X		11	Liquid	HNOZ	Total C	rom iUM		
	11:00 M									
	Detvi									
							,			
Samplers	s: (Signature)	7	4	Relinquished by: (Signature)	t M. Por	ady	Date: 6/1 Time: 2:00 PW	Received by: (Signature)	Date: Time:	Intact
		-	<i></i>	Relinquished by: (Signature)		1	Date: Time:	Received by: (Signature)	Date: Time:	Intact
Af	filiation			Relinquished by: (Signature)			Date: Time:	Received by: (Signature)	Date:	Intact
SAMPLER REM	MARKS:						1	Received for Laboratory (Signature)	Date: 6-2.	Laboratory No.
Seal # :20	0946	· · · · · · · · · · · · · · · · · ·]				Data Results to:		7 4448