

May 24, 1990

Mr. Richard Lubenow Paragon Electric Company, Inc. P.O. Box 28 606 Parkway Blvd. Two Rivers, Wisconsin 54241

RE: Contamination Assessment at the Paragon Electric Company, Two Rivers, Wisconsin -- STS Project No. 17566XF

Dear Mr. Lubenow:

STS is pleased to submit four copies of this Contamination Assessment at the Paragon Electric Company in Two Rivers, Wisconsin. This work was completed in accordance with our proposal dated October 30, 1990 and your purchase order number 15443.

It is a pleasure working with you. If you any questions or comments on this report or wish to set up a meeting with us and/or the DNR, please feel free to call.

Sincerely,

STS CONSULTANTS, LTD.

Donna M. Bugs Hydrogeologist

and

James A. Senger, CPG Principal Geologist

DMB/lb

STS Consultants Ltd. Consulting Engineers

540 Lambeau Street Green Bay, Wisconsin 54303 414.494.9656/Fax 414.494.0851

Report

Project

CONTAMINATION ASSESSMENT PARAGON ELECTRIC COMPANY TWO RIVERS, WISCONSIN

Client

PARAGON ELECTRIC COMPANY, INC. 606 PARKWAY BLVD. TWO RIVERS, WISCONSIN 54241

Project #	17566XF	
Date	MAY 1990	
	FJ	
	STS Consultants Ltd. Consulting Engineers	
	540 Lambeau Street Green Bay, Wisconsin 54303	
	(414) 494-9656	

TABLE OF CONTENTS

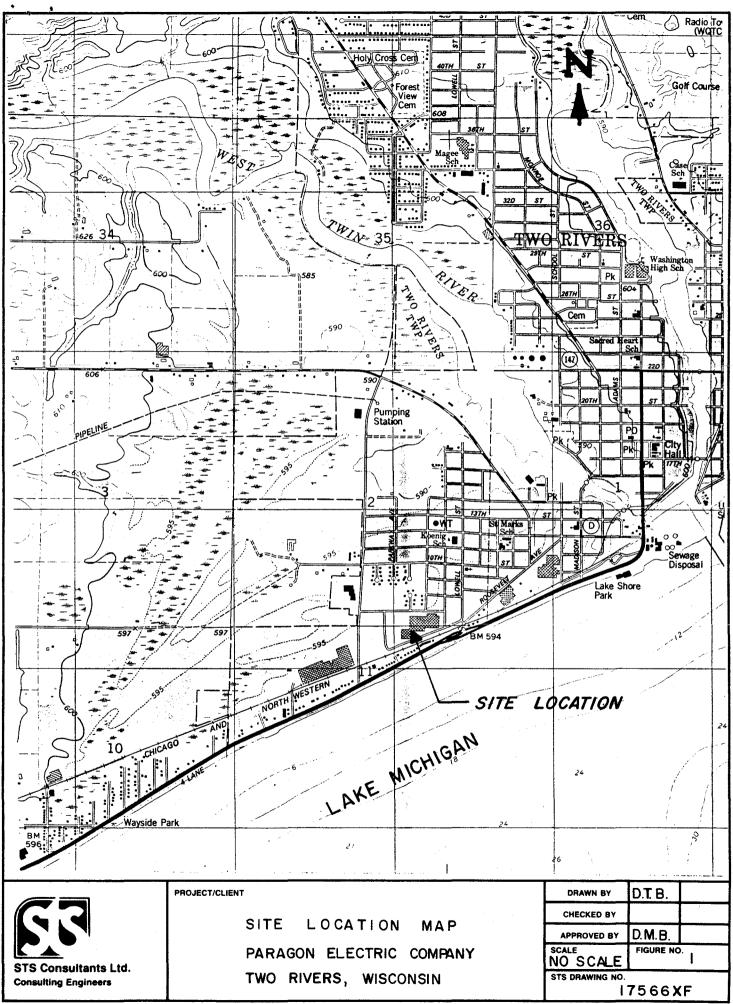
	Page No.
I. INTRODUCTION A. Purpose and Scope of Work B. Site Background	1 1 1
 II. METHODS OF ASSESSMENT A. Soil Boring B. Soil Sampling and HNU Screening C. Well Installation D. Surveying E. Groundwater Sampling and Analysis 	4 4 7 7 8
 III. RESULTS A. Geology B. Soil Quality C. Hydrogeology D. Groundwater Quality 	9 9 10 10 10
IV. CONCLUSIONS	15
V. GENERAL QUALIFICATIONS	16
APPENDICES	
 Appendix A - STS General Notes STS Field and Laboratory Procedures Unified Soil Classification System Soil Boring Logs Monitoring Well Construction Forms Appendix B - Summary of Groundwater Elevations Groundwater Sampling Field Data Appendix C - Groundwater Quality Results 	•
LIST OF FIGURES	
Figure 1-Site LocationFigure 2-Monitoring Well Location DiagramFigure 3-Groundwater Table Contour Map (4-20-90)	2 5 11
TABLES	
Table 1 -Vertical Groundwater Gradients at MW-1/P-1Table 2 -Summary of Concentrations of VOCs in Groundwater Samples	12 13

CONTAMINATION ASSESSMENT PARAGON ELECTRIC COMPANY

I. INTRODUCTION

A. Purpose and Scope of Work

The purpose of conducting this contamination assessment at the Paragon Electric Company property is to estimate the direction of groundwater flow on site, the degree and extent of contamination, and the source of contamination if possible.


The scope of work for this contamination assessment was developed based on mutual understanding of the client, the Department of Natural Resources and STS relative to present and previous site uses and available analytical data. The scope of work includes conducting soil borings, installing monitoring wells, collecting soil samples, screening soil samples with an HNU photoionization detector (HNU), submitting groundwater samples for laboratory analysis, interpreting field and laboratory data and providing recommendations for additional site assessment and potential remediation options.

B. Site Background

The Paragon Electric Company site is located within the SE 1/4, Section 2 and NE 1/4 Section 11, T19N, R24E on the southwest side of Two Rivers, Wisconsin. A map showing the location of the site is provided as Figure 1.

The Paragon Electric Company manufactures electrical components primarily for temperature regulation. Paragon Electric uses trichloroethylene and has used toluene as a parts cleaner. It is our understanding that two surface spills have occurred on the property. During the winter of 1983 a spill occurred in an outside storage area during the transfer of containers to a new enclosed storage area. Drums containing TCE and

- 1 - -

toluene were accidentally punctured allowing approximately 35 to 40 gallons of liquid to leak onto the paved storage area. It is likely that much of the liquid spilled (which is highly volatile) evaporated directly from the pavement. This may also be true for liquid that may have reached soil adjacent to the pavement. At the time of the spill the frozen soil would have behaved much like asphalt allowing evaporation of a liquid to occur.

A second spill occurred on August 4, 1984 from a tanker truck containing TCE. Approximately 25 to 30 gallons spilled onto a paved area near the paint vault at the southeast end of the Paragon plant. West of the pavement is a lawn area underlain by soil material that may have been contaminated during the spill.

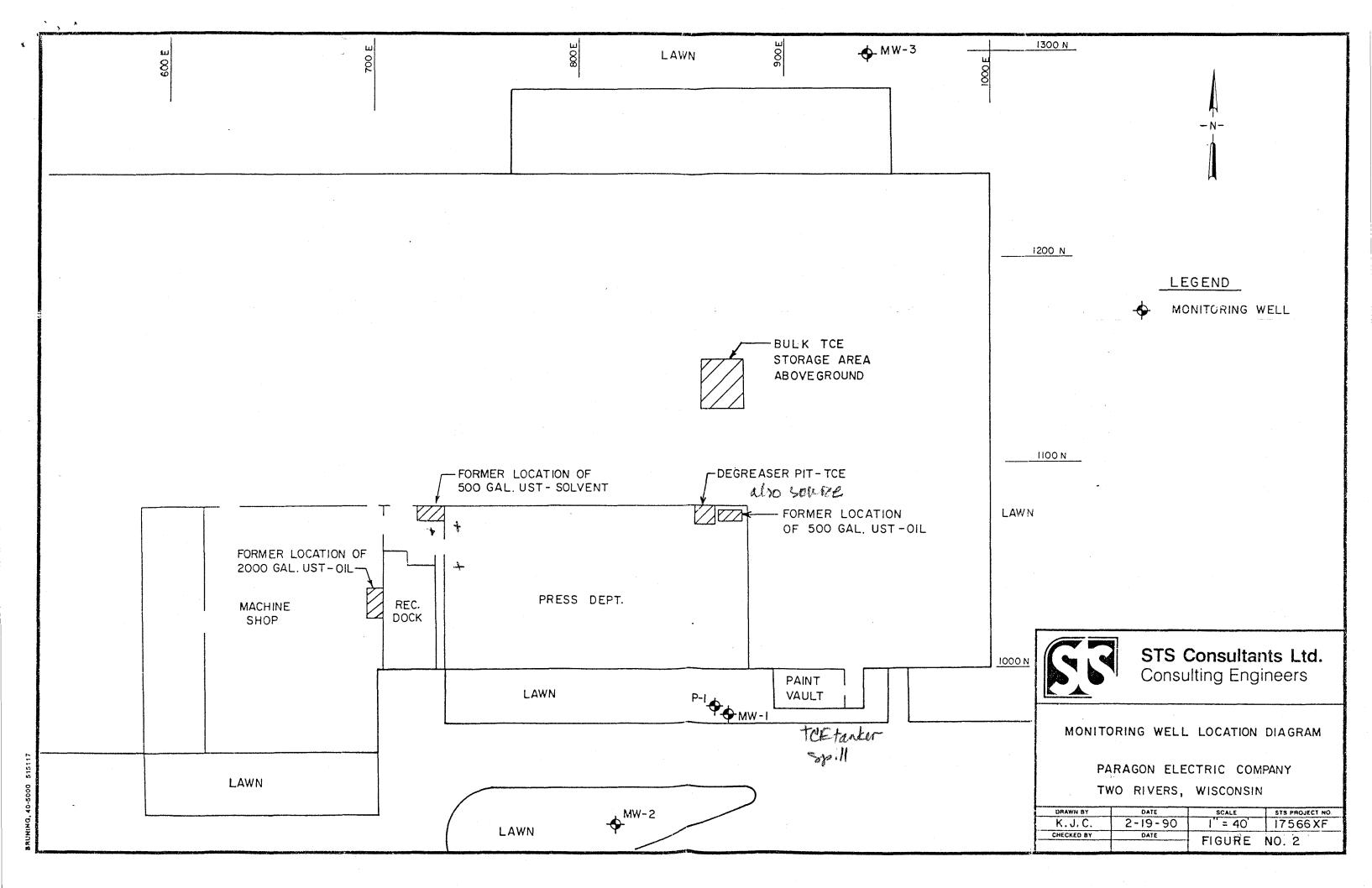
In addition to these known spills, it is also possible that a degreaser pit may also be a potential source for TCE contamination.

Limited investigation work has been conducted by STS Consultants in late 1986 and by CBC Environmental Services and Yanko Environmental Services in 1989. This data has been reviewed by STS Consultants.

II. METHODS OF ASSESSMENT

A. Soil Borings

On February 2 and 5, 1990, three soil borings were completed at the Paragon Electric site. At two of these locations water table monitoring wells were installed and at the other location a piezometer was installed adjacent to an existing water table monitoring well. These soil boring and monitoring well locations are shown on Figure 2. The borings were drilled using a truck mounted drill rig. A combination of solid stem auger and hollow stem auger were employed to advance the boreholes. The specific drilling methods are indicated on the boring logs provided in Appendix A. No drilling muds were used.


All augers and downhole drilling equipment were streamed cleaned prior to drilling and between soil borings to minimize the potential for cross contamination. Furthermore, the split spoon sampler was washed with Alconox detergent and rinsed with clean water between collecting subsequent soil samples.

B. Soil Sampling and HNU Screening

Soil samples were collected at each of the soil boring locations at 2.5-foot intervals by means of split barrel sampling procedures in general accordance with ASTM Specification D-1586-67 "Standard Method for Penetration Testing and Split Barrel Sampling of Soils". A brief description of the sampling procedure is included in Appendix A.

An STS Environmental Technician was on site with the drill crew to preliminarily classify and screen all of the recovered soil samples with an HNU Model 101 photoionization detector (HNU) equipped with 10.2 eV lamp. This instrument is capable

- 4 -

of detecting VOCs (volatile organic compounds) including many of the volatile components characteristic of common solvents and petroleum products with ionization potentials less than or equal to 10.2 eV in air relative to a benzene standard. The HNU meter operates on the principle of photoionization in which incoming gas molecules are subjected to ultra violet radiation and transformed into charged ion pairs. The charged ions create a current between two electrodes and this current is transformed into a meter reading. Because organic compounds have varying ionization potential, response of the HNU meter is related to the compounds being ionized. Accordingly, when a variety of compounds are present in the air the meter does not necessarily indicate the concentration of any specific VOC. Prior to screening the soil samples, the HNU was calibrated to a benzene standard (isobutylene) per the manufacturer's specifications.

As each soil sample was collected, it was placed in a clean glass jar, sealed with aluminum foil and closed with a screw-on lid. HNU screening of the recovered soil sample was accomplished first by shaking the soil sample jar for several seconds which increases the surface area of the soil particles exposed to inside of the jar followed by inserting the tip of the HNU probe about an inch into the jar through the aluminum foil cover. The highest value read off the HNU meter during the first few seconds after inserting the probe tip is recorded as the HNU reading for the soil sample. All HNU readings are recorded on the soil boring logs provided in Appendix A.

All soil samples collected during the boring program were visually classified according to the Unified Soil Classification System. A copy of this soil classification system and STS General Notes are provided in Appendix A. An STS Hydrogeologist classified these soils in the laboratory. Then boring logs with soil descriptions, methods of sampling, sample depths, HNU readings, boring dates, etc. were constructed. These logs are provided in Appendix A.

- 6 -

C. Well Installation

The groundwater monitoring wells consist of 2-inch ID Schedule 40 PVC riser and 0.01-inch slotted PVC well screen. The shallow water table observation wells have a 10-foot well screen which is placed so that the well screen intersects the water table. The piezometer has a 5-foot well screen sealed at depth. The annulus around each well screen was backfilled with a clean silica sand. A fine sand material was placed above the filter pack. Granular bentonite was used as the bentonite seal, the annular space seal and the surface seal at the monitoring wells. Bentonite pellets were used as the bentonite seal, bentonite slurry as the annular space seal, and 1-foot of topsoil as the surface seal at the piezometer. A steel protector pipe with lock was secured over each well. Monitoring Well Construction Forms are provided in Appendix A.

Prior to leaving the site the drill crew developed each well by bailing. Details of the monitoring well development are provided on the back side of the Monitoring Well Construction Form provided in Appendix A.

D. Surveying

A field survey was conducted by STS personnel on February 14, 1989 in order to determine the top of PVC and ground surface elevation at each boring/well location and to set benchmarks adjacent to Lake Michigan and the West Twin River for surface water elevation measurements. All boring/wells were located relative to mean sea level and a site grid as shown on the Monitoring Well Location Diagram, Figure 2. The site grid was established relative to the southeast corner of the plant which is designated as 1,000 north and 1,000 east.

E. Groundwater Sampling and Analysis

The groundwater monitoring wells and piezometer were sampled on February 14, 1990 and March 22, 1990 by an STS Environmental Technician. Surface water elevations were collected at the same time from Lake Michigan and the West Twin River. Generally the Technician first measured the water level in each well, purged up to five gallons of water from each well, allowed the well to recharge and then collected the sample utilizing a Teflon bailer. The VOC sample vials were filled to overflowing to achieve a positive meniscus without entrapped air bubbles, in order to minimize volatilization prior to sample analysis. Observation on color, turbidity and odor are made and recorded in the field notes. One additional round of groundwater elevations and surface water elevations at the West Twin River and Lake Michigan were also measured on April 20, 1990. The field data collected during groundwater sampling and water level measurements are presented in Appendix B.

The Environmental Technician packaged the samples and sent them to the laboratory by the following day after sampling along with a completed Chain of Custody form. Enviroscan Laboratory in Rothschild, Wisconsin provided the sample containers and performed the laboratory analysis. All samples were analyzed for volatile organic constituents (VOCs) using the EPA Method 502.2.

III. RESULTS

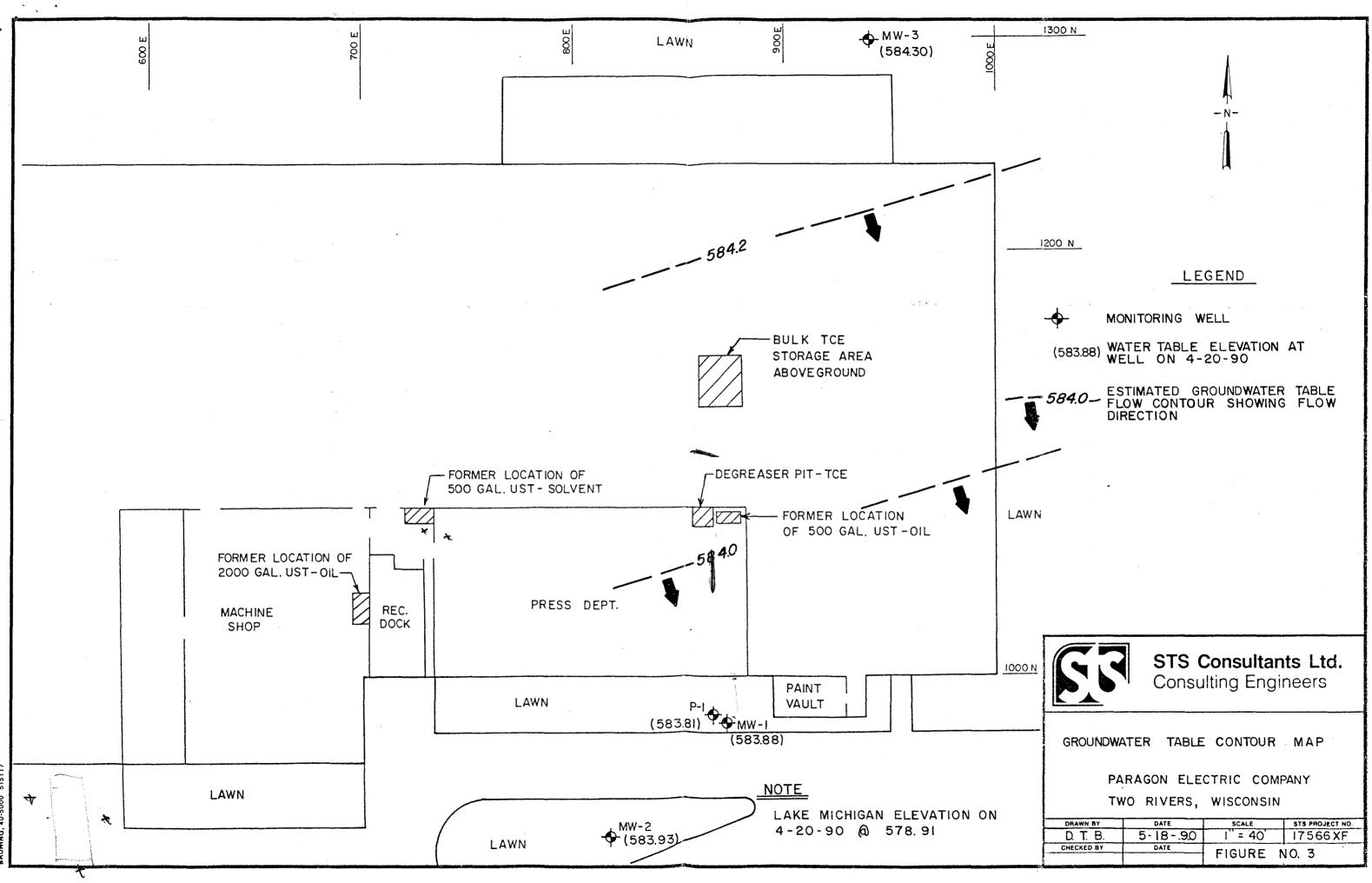
A. Geology

According to Skinner and Borman (1973), the site is located in an area of surficial lake deposits which may consist of organic material and stratified clay silt and sand. Beach sand, which has little or no developed soil horizon and an approximate infiltration rate of 5 to 10 inches per hour is located within the area of lake deposits and in the area which includes the site. The bedrock which underlies the unconsolidated soils is a Silurian dolomite.

Based on the three soil borings conducted to a maximum approximate depth of 36.5 feet. it appears that there are three soil types present on site. A thin layer of topsoil was observed at the ground surface to approximately 2.5 feet at each of the soil boring The topsoil is described as a brown silty fine sand (SM) with a trace of locations. organics and a trace of coarse sand at MW-3. Below the topsoil, a light brown very fine to fine sand (SP) was observed. This sand appears to be an eolian deposit which means it was deposited via wind transport and is described in some literature as beach deposits (as referenced above). A trace of organics from 7.5 to 11.5 feet at Boring MW-3 and at 23.5 to 25 feet at Boring P-1 were observed. A trace of fine gravel was observed at 10 to 14 feet at MW-3 and at 5 to 9 at Boring P-1. A trace of coarse sand and fine gravel was also observed at Boring MW-2. This eolian deposit was observed at Borings MW-2 and MW-3 to the end of the boring which is approximately 15.5 feet and at Boring P-1 to a depth of 28 feet. At Boring P-1 a brown silty very fine sand (SM) laminated with brown clayey silt (ML) was observed from 28 feet to the end of the boring Detailed descriptions are provided on the soil boring logs located in (36.5 feet). Appendix A.

B. Soil Quality

As described in a previous section, each of the soil samples were screened in the field with an HNU meter. Elevated HNU readings were observed at boring locations P-1 and MW-2. Readings ranged from zero to 52 ppm. The background reading at the site was approximately zero. The HNU readings for specific samples are provided on the soil boring logs in Appendix A.


C. Hydrogeology

The groundwater table was observed at approximate depths of seven to nine feet below ground surface. Groundwater flow on the site appears to be south to southeast toward Lake Michigan based on three rounds of groundwater and surface water elevations. Approximate groundwater table contours and direction of flow are shown on Figure 3. Based on the location of the West Twin River and Lake Michigan in relation to the site and on the observed groundwater elevation, there does not appear to be a groundwater divide below the site. A groundwater divide probably does exist to the north-northwest closer toward the West Twin River.

Vertical groundwater gradients observed at MW-1/P-1 were low. Gradients were downward on February 14, 1990 and April 20, 1990 and were upward on March 22, 1990. A summary of the vertical groundwater gradients at MW-1/P-1 is provided as Table 1.

D. Groundwater Quality

Groundwater samples were collected on February 14 and March 21, 1990. These samples were analyzed for VOCs by Enviroscan Laboratories of Rothschild, Wisconsin. A summary of the VOCs detected in the groundwater samples and their respective concentrations is provided in Table 2.

TABLE 1

Vertical Groundwater Gradients at MW-1/P-1

Date	Head Difference	Average Length Between Gravel Packs (ft)	Minimum Length Between Gravel Packs (ft)	Average Gradient	Maximum Gradient
2-14-90	.17	22.5	17.3	7.6x10 ⁻³	9.8×10^{-3}
3-22-90	03	23.0	17.3	-1.3×10^{-3}	-1.7×10^{-3}
4-20-90	.07	23.0	17.3	3.0×10^{-3}	4.0×10^{-3}

*Note: Positive Gradient - Downward Negative Gradient - Upward

TABLE 2

Summary of Concentrations of VOCs (in ug/l) in Groundwater Samples Collected 2-14-90 and 3-21-90

		Well Loc	cation	
Compound	MW-1	<u>P-1</u>	<u>MW-2</u>	<u>MW-3</u>
Date: 2-14-90				
Carbon Tetrachloride	1.05	Х	X	х
Chloroethane	2.56	Х	X	х
Chloroform	X	3.33	3.06	X
1,1-Dichloroethane	1.81	Х	х	х
1,1-Dichloroethylene	1.48*	Х	х	х
1,2-Dichloroethylene	29.9	Х	37.7	x
Tetrachloroethylene	X	х	1.84*	x
Toluene	X	1.86	4.13	3.25
1,1,1-Trichloroethane	10.4	X	0.58	x
1,1,2-Trichloroethane	Х	Х	1.67*	х
Trichloroethylene	219*	12.0*	2,560*	X
Vinyl Chloride	3.12*	X	x	X
Date: 3-21-90 Chloroform	X	0.62	X	X
1,2-Dichloroethylene	44.4	2.15	X	X
Trichloroethylene Vinyl Chloride	137* 9.48*	6.47* X	560* X	X X
ATHAT CUTOLIDE	7.40"	Λ	Λ	л

* Exceedance of the NR 140 Enforcement Standard

X Analyzed but not detected

results from February 14, 1990 indicate The analytical elevated levels of trichloroethylene (TCE) and some of its breakdown products and common impurities at well locations MW-1, MW-2 and P-1. Low levels of toluene were also observed at MW-2, MW-3 Exceedances of the NR 140 enforcement standards (ES) occurred for and P-1. 1,1-dichloroethylene at MW-1; tetrachloroethylene at MW-2; 1,1,2-trichloroethane at MW-2; trichloroethylene at MW-1; MW-2 and P-1; and vinyl chloride at MW-1. The highest concentration of trichloroethylene was observed at MW-2.

Analytical results from the second round of sampling conducted March 21, 1990 also indicated elevated levels of trichloroethylene and some of the breakdown products. Exceedances of the NR 140 enforcement standards occurred for trichloroethylene at MW-1, MW-2 and P-1, and for vinyl chloride at MW-1. No detectable levels of VOCs were observed at MW-3. Again the highest concentration of trichloroethylene was observed at MW-2. In general, the analytical results from the second round of sampling indicate lower concentrations of VOCs than the first round of sampling. Otherwise, the results are not significantly different. It is possible that the groundwater samples collected on March 21, 1990 were influenced by dilution from frost thawing or a recent rainfall event.

IV. CONCLUSIONS

Based on the data presented herein, TCE and some of its breakdown materials and common impurities are present in the soils and groundwater on the Paragon Electric site. Exceedances of the NR 140 groundwater quality standards have been observed for 1,1-dichloroethylene, tetrachloroethylene, 1,1,2-trichloroethane, trichloroethylene, and vinyl chloride. Based on the concentrations of these substances at the well locations, it is clear that MW-3 is upgradient of the contaminant source(s) and that MW-1 and MW-2 are downgradient of the sources. Water samples from MW-2 appear to have the highest concentrations of contaminants.

V. GENERAL QUALIFICATIONS

The results and conclusions submitted in this report are based on data obtained from three soil borings and groundwater samples collected from four monitoring well installations. Variations can occur between these borings, the nature and extent of which may not become evident until some later date. Water levels have measured in the monitoring wells and at surface water points at the time and under the conditions stated in the report. However, it must be noted that annual fluctuations in the groundwater level will likely occur. This data has been revealed and an interpretation in the text of this report.

The scope of work for this contamination assessment was developed based on the mutual understanding of the client, the Department of Natural Resources and the consultant relative to the present and previous uses of the site. It is normally the case that the contaminants, if present, are hidden the subsurface materials, typically having been placed there due to the unpredictable actions of man. The most a consultant can do is formulate a logical exploration program that reduces the clients risk of the unknown. The more extensive the exploration the greater certainty of defining the extent and degree of contamination that is present. Even for very extensive and expensive explorations, it is not possible to define a precise degree and extent of contamination at a particular site.

This report has been prepared in accordance with generally accepted engineering practices to aid in the evaluation of this property. No other warranty, expressed or The scope of this report is limited to the specific projects and implied, is made. location described herein and our description of the project represents our significant aspects relative soil understanding of the to and groundwater characteristics.

APPENDIX A

STS General Notes STS Field and Laboratory Procedures Unified Soil Classification System Soil Boring Logs Monitoring Well Construction Forms

STS CONSULTANTS, LTD.

DRILLING & SAMPLING SYMBOLS:

SS : Split Spoon-1 3/8" I.D., 2" O.D.

STS General Notes

- Unless otherwise noted
- ST : Shelby Tube-2" O.D.,
- Unless otherwise noted
- PA : Power Auger
- DB : Diamond Bit-NX, BX, AX AS : Auger Sample

Standard "N" Penetration:

- JS : Jar Sample
- VS : Vane Shear

Blows per foot of a 140 pound hammer falling 30 inches on a 2 inch 0.D. split spoon sampler, except where otherwise noted.

WATER LEVEL MEASUREMENT SYMBOLS:

- WL : Water Level
- WS : While Sampling
- WD: While Drilling
- AB : After Boring

Water levels indicated on the boring logs are the levels measured in the boring at the times indicated. In pervious soils, the indicated elevations are considered reliable groundwater levels. In impervious soils, the accurate determination of groundwater elevations may not be possible, even after several days of observations; additional evidence of groundwater elevations must be sought.

GRADATION DESCRIPTION & TERMINOLOGY:

Coarse Grained or Granular Soils have more than 50% of their dry weight retained on a #200 sieve; they are described as: boulders, cobbles, gravel or sand. Fine Grained soils have less than 50% of their dry weight retained on a #200 sieve; they are described as: clays or clayey silts if they are cohesive and silts if they are non-cohesive. In addition to gradation, granular soils are defined on the basis of their relative in-place density and fine grained soils on the basis of their strength or consistency and their plasticity.

Major Component Of Sample	Size Range	Description Of Components Also Present in Sample	Percent Of Dry Weight
Boulders	Over 8 in. (200 mm)	Trace	1-9
Cobbles	8 inches to 3 inches (200 mm to 75 mm)	Little	10-1 9
Gravel	3 inches to #4 sieve (75 mm to 4.76 mm)	Some	20- 34
Sand	#4 to #200 sieve (4.76 mm to 0.074 mm)	And	38-50
Silt	Passing #200 sieve (0.074 mm to 0.005 mm)		
Clay	Smaller than 0.005 mm		

CONSISTENCY OF COHESIVE SOILS:

Unconfined Compressive			
Strength, Qu, tsf	Consistency	N-Blows per ft.	Relative Density
0.25	Very Soft	0-3	Very Loose
0.25-0.49	Soft	4-9	Loose
0.50-0.99	Medium (Firm)	10-29	Medium Dense
1.00-1.99	Stiff	30-49	Dense
2.00-3.99	Very Stiff	50-80	Very Dense
4.00-8.00	Hard	> 80	Extremely Dense
>8.00	Very Hard		

7/87

- OS : Osterberg Sampler-3" Shelby Tube
- HS : Hollow Stem Auger
- WS : Wash Sample
- FT : Fish Tail
- **RB** : Rock Bit
- BS : Bulk Sample
- PM : Pressuremeter Test. In-Situ
- GS : Giddings Sampler

- DCI : Dry Cave In

- WCI : Wet Cave In
- BCR : Before Casing Removal
- ACR : After Casing Removal

RELATIVE DENSITY OF GRANULAR SOILS:

53

SUBSURFACE EXPLORATION PROCEDURES

Hand-Auger Drilling (HA)

In this procedure, a sampling device is driven into the soil by repeated blows of a sledge hammer. When the sampler is driven to the desired sample depth, the soil sample is retrieved. The hole is then advanced by manually turning the hand auger until the next sampling depth increment is reached. The hand auger drilling between sampling intervals also helps to clean and enlarge the bore hole in preparation for obtaining the next sample.

Power Auger Drilling (PA)

In this type of drilling procedure, continuous flight augers are used to advance the bore holes. They are turned and hydraulically advanced by a truck or track-mounted unit as site accessibility dictates. In auger drilling, casing and drilling mud are not required to maintain open bore holes.

Hollow Stem Auger Drilling (HS)

In this drilling procedure, continuous flight augers having open stems are used to advance the bore holes. The open stem allows the sampling tool to be used without removing the augers from the bore hole. Hollow stem augers thus provide support to the sides of the bore hole during the sampling operations.

Rotary Drilling (RB)

In employing rotary drilling methods, various cutting bits are used to advance the bore holes. In this process, surface casing and/or drilling fluids are used to maintain open bore holes.

Diamond Core Drilling (DB)

Diamond core drilling is used to sample cemented formations. In this procedure, a double tube (triple tube) core barrel with a diamond bit cuts an annular space around a cylindrical prism of the material sampled. The sample is retrieved by a catcher just above the bit. Samples recovered by this procedure are placed in sturdy containers in sequential order.

STS Field and Laboratory Procedures

SAMPLING PROCEDURES

Auger Sampling (AS)

In this procedure, soil samples are collected from cuttings off of the auger flights as they are removed from the ground. Such samples provide a general indication of subsurface conditions; however, they do not provide undisturbed samples, nor do they provide samples from discrete depths.

Split-Barrel Sampling (SS) — (ASTM Standard D-1586-84)

In the split-barrel sampling procedure, a 2 inch O.D., split barrel sampler is driven into the soil a distance of 18 inches by means of a 140 pound hammer falling 30 inches. The value of the Standard Penetration Resistance is obtained by counting the number of blows of the hammer over the final 12 inches of driving. This value provides a qualitative indication of the in-place relative density of cohesionless soils. The indication is qualitative only, however, since many factors can significantly affect the Standard Penetration Resistance Value, and direct correlation of results obtained by drill crews using different rigs, drilling procedures, and hammer-rod-spoon assemblies should not be made. A portion of the recovered sample is placed in a sample jar and returned to the laboratory for further analysis and testing.

Shelby Tube Sampling Procedure (ST) — (ASTM Standard D-1587-83)

In the shelby tube sampling procedure, a thin-walled steel seamless tube with a sharp cutting edge is pushed hydraulically into the soil and a relatively undisturbed sample is obtained. This procedure is generally employed in cohesive soils. The tubes are carefully handled in the field to avoid excessive disturbance and are returned to the laboratory for extrusion and further analysis and testing.

Giddings Sampler (GS)

This type of sampling device consists of 5-ft. sections of thin-wall tubing which are capable of retrieving continuous columns of soil in 5-ft. maximum increments. Because of a continuous slot in the sampling tubes, the sampler allows field determination of stratification boundaries and containerization of soil samples from any sampling depth within the 5-ft. interval.

STS Field and Laboratory Procedures

LABORATORY PROCEDURES

Water Content (Wc)

53

The water content of a soil is the ratio of the weight of water in a given soil mass to the weight of the dry soil. Water content is generally expressed as a percentage.

Hand Penetrometer (Qp)

In the hand penetrometer test, the unconfined compressive strength of a soil is determined, to a maximum value of 4.5 tons per square foot (tsf), by measuring the resistance of the soil sample to penetration by a small, spring-calibrated cylinder. The hand penetrometer test has been carefully correlated with unconfined compressive strength tests, and thereby provides a useful and a relatively simple testing procedure in which soil strength can be quickly and easily estimated.

Unconfined Compression Tests (Qu)

In the unconfined compression strength test, an undisturbed prism of soil is loaded axially until failure or until 20% strain has been reached, whichever occurs first.

Dry Density (δD)

The dry density is the quantity used as a measure of the amount of solids in a unit volume of soil aggregate. Use of this value is often made when measuring the degree of compaction of a soil.

Classification of Samples

In conjunction with the sample testing program, all soil samples are examined in our laboratory and classified on the basis of their texture and plasticity in accordance with United Soil Classification System (USCS). The soil descriptions on the boring logs are in conformance with this system and the estimated group symbols according to this system are included in parentheses following the soil descriptions on the boring logs. Included on a separate sheet entitled "General Notes" is a brief explanation of this system of soil classification.

STS Standard Boring Log Procedures

STS CONSULTANTS, LTD.

In the process of obtaining and testing samples and preparing this report, standard procedures are followed regarding field logs, laboratory data sheets and samples.

Field logs are prepared during performance of the drilling and sampling operations and are intended to essentially portray field occurrences, sampling locations and procedures.

Samples obtained in the field are frequently subjected to additional testing and reclassification in the laboratory by more experienced soil engineers, and differences between the field logs and the final logs may exist.

The engineer preparing the report reviews the field and laboratory logs, classifications and test data, and using judgement and experience in interpreting this data, may make further changes.

Samples taken in the field, some of which are later subjected to laboratory tests, are retained in our laboratory for sixty days and are then destroyed unless special disposition is requested by our client. Samples retained over a long period of time, even in sealed jars, are subject to moisture loss which changes the apparent strength of cohesive soil, generally increasing the strength from what was originally encountered in the field. Since they are then no longer representative of the moisture conditions initially encountered, an observation of these samples should recognize this factor.

It is common practice in the geotechnical engineering profession that field logs and laboratory data sheets not be included in engineering reports, because they do not represent the engineer's final opinions as to appropriate descriptions for conditions encountered in the exploration and testing work. On the other hand, we are aware that perhaps certain contractors and subcontractors submitting bids or proposals on work might have an interest in studying these documents before submitting a bid or proposal. For this reason, the field logs are retained in our office for review by all contractors submitting a bid or proposal. We would welcome the opportunity to explain any changes that have been and typically are made in the preparation of our final reports, to the contractor or subcontractors, before the firm submits its bid or proposal, and to describe how the information was obtained to the extent the contractor or subcontractor wishes. Results of laboratory tests are generally shown on the boring logs or are described in the text of the report, as appropriate.

The descriptive terms and symbols used on the logs are described on the attached sheet, entitled: "General Notes".

STS Soil Classification System

			_	UNIFIED SOIL	, CLASSIFICATION
Ma	jor Divisi	ons	Group symbols	Typical names	Laboratory classification criteria
	liun	ravchs w fincs)	GW	Well-grades gravels, gravel-sand mixtures, little or no fines	$C_u = \frac{D_{to}}{D_t}$ greater than 6; $C_c = \frac{(D_{to})^t}{D_t \times D_{to}}$ between 1 and 3
(2715	els E coarse frac 4 sieve size	Clean gravels (Little of no fines)	GP	Poorly graded gravels, gravel- sand mixtures, little or no fines	Not meeting all gradation requirements for GW
lo. 200 sieve	Gravels (More than half of coarse fraction larger than No. 4 sieve size)	ith lines e amount es)	GM d	Silty gravels, gravel-sand-silt mixtures	Not meeting all gradation requirements for GW Atterberg limits below "A" Ine or P.I. less than 4 Atterberg define cases requiring use
Course-grained soils (More than half of material is <i>larger</i> than No. 200 sieve size)	(Murc lar	Ciravels with Tines (Appreciable amount of fines)	GC	Clavey gravels, gravel-sand-clay mixtures	Not meeting all gradation requirements for GW Atterberg limits below "A" line or P.L. less than 4 Atterberg limits above "A" line with P.L. greater than 7 $C_u = \frac{D_{u}}{D_{u}}$ greater than 4; $C_c = \frac{(D_{u})^2}{D_{u}AD_{ue}}$ between 1 and 3 $C_u = \frac{D_{u}}{D_{u}}$ greater than 4; $C_c = \frac{(D_{u})^2}{D_{u}AD_{ue}}$ Not meeting all gradation requirements for SW Not meeting all gradation requirements for SW Atterberg limits below "A" line or P.L. less than 4 $C_u = \frac{D_{u}}{D_{u}}$ greater than 4; $C_c = \frac{(D_{u})^2}{D_{u}AD_{ue}}$ Not meeting all gradation requirements for SW Atterberg limits below "A" line or P.L. less than 4 $C_u = \frac{D_{u}}{D_{u}}$ greater than 7 Limits plotting in hatched cone with P.L. between 4 and 7 are borderline cases requiring use of dual sym- bols
Coarse-grained soils f material is <i>larger</i> tha	c1101 4.2C)	Clean sauds (Lutte or no fines)	s₩	Well-graded sands, gravelly sands, little or no fines	$C_{u} = \frac{D_{uo}}{D_{10}}$ greater than 4; $C_{c} = \frac{(D_{10})^{4}}{D_{10}}$ between 1 and 3 D_{10}
: than half o	Sands If of coarse fra in No. 4 sieve s	Clean (Lutic or	SP	Poorly graded sands, gravelly sands, little or no fines	Not meeting all gradation requirements for SW
(More	Sands (More than half of coarse fraction is smaller than No. 4 sieve size) Sunds with fines ('Ikan saud (Appreciable amount (Lutte or no fi		SM d u	Silty sands, sand-silt mixtures	Atterberg limits above "A" Limits plotting in hatched zone with P.I. between 4 and 7 are borderline cases requiring use of dual sym- bols
	(Mor i si	Sunds w (Appreciat of fi	sc	Clayey sands, sand-clay mix- tures	Atterberg limits above "A" bols d
		X ()	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity	60 For classification of fine-grained
cvc)	Silts and clays	(Liquid limit less than S	CL	Inorganic clays of low to me- dium plasticity, gravelly clays, sandy clays, silty clays, lean clays	50 grained soils. 50 Atterberg Limits plotting in hatched area are borderline class- ifications requiring use of dual 50 Suppose.
Fine-grained soils material is <i>smaller</i> than No. 200 sieve)	Silts	(L'iquid hr	OL	Organic silts and organic silty clays of low plasticity	Equation of A-line: PI = 0.73 (L1 20)
Fine-grained soils material is <i>smaller</i> th		(U) IN	мн	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	
	Silts and clays	(Liquid limit greater than 50)	сн	Inorganic clays of high plas- ticity, fat clays	10 7 4
(More than half of	उँ	(Liquid lin	он	Organic clays of medium to high plasticity, organic silts	0 10 20 30 40 50 60 70 80 90 ;00
(Ma	Highly	1	Pt	Peak and other highly organic soils	Liquid Limit Plasticity Chart

53

	OWNER	LOG	OF BC	DRING	NUMB	ER			
	Paragon Electric	P-1							<u> </u>
	PROJECT NAME	ENG	INEER						
STS Consultants Ltd.	Contamination Assessment	STS	Consul	tants,	Ltd.				
SITE LOCATION	Two Rivers, Wisconsin	•	N	IVE T ²)					
	WELL INSTALLATION] ĂŢ	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT²)	%		LIQUID/PLASTIC LIMIT	9	×
щ	TOP STANDPIPE EL. + 594.09	<u> </u>	L STANDARD PENETRATION TEST, N (B/FT)	TON	WATER CONTENT,	HNU READING	10	PERCENT PASSING #200 SIEVE	PERMEABILITY, H (CM/SEC)
DEPTH ELEVATION SAMPLE NO. SAMPLE TYPE SAMPLE DISTANCE		ł	DEN (D d	IN	EAD	JPL ST	PA	SEC
APE 0	DESCRIPTION OF MATERIAL		8	Ê.	30	U H	12	500	Ξ <u>Ň</u>
DEPTH ELEVATION MPLE NO. MPLE TYPE MPLE DIST/			IE	NFI	ATEI	Ŧ	l û î	₩EBC	EB -
DEPTH ELEVATION SAMPLE NO. SAMPLE TYPE SAMPLE DIST/	· · · · · · · · · · · · · · · · · · ·		STAI	ICO	ĺ.			E	<u> </u>
A S S S	SURFACE ELEVATION 591.8			S P					
	Brown silty fine sand (SM) - trace of organics -								
1 AS	moist - topsoil	5				2			
2 SS			7			2			
									
3 ss			17			3			
╞══╡╌┍╴╟╫	7	5	<u> </u>						
	d l	2							
4 SS 1	Light brown very fine to fine sand (SP) - trace	ŧ	19			1.5			
	of fine gravel 5.0 to 9.0 feet - trace of	Ł							
5 SS	organics 23.5 to 25.0 feet - loose to very dense -	ş	49			1.1			
┝━━━┼╶┼╶┾╵╀╧	moist to saturated by 7.5 feet - eolian deposit	1		1					
		2							
6 SS	-	ł	57			9			
		<u> </u>				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			
7 SS		1	52			9.2			
							l		
8 SS		F	25			2			
┝╾╾╾┽╾┈╌┦╶╌╌┟┸╵╏╴			25			3		[
20									
		- B -					-		
		•							
		ł							
9 SS		-	19			1			
		ł							
		ł						1	
		Ł							
<u></u>			46			1			
	Brown silty very fine sand (SM) laminated with								
	brown clayey silt (ML) - loose to dense - saturated - lacustrine deposit								
	sacurated - facustrine deposit								
	4							l	
<u>-35</u> 11 SS			7			0			
36.5		*							
	End of Boring								
	Boring advanced from 0.0 to 33.5 feet using								
	solid stem auger		1						
	Boring advanced from 0.0 to 36.5 feet using 41 inch ID hollow stem auger								
	2 inch PVC monitoring well installed at 36.2 feet								
	Background HNU reading 0.0 ppm		1						
			1						
						. 1		[
The stratification lines rem	sent the approximate boundary between soil types. In situ, the transition may be gradual. We	ter ievele	Were measure	ured at the	times indi	cated. Wate	er levels m	ay yarv sea	sonally
	sent the approximate boundary between soil types. In situ, the transition may be gradual. Wa				5	cated. Wate 40 Lam			sonally.
WL 10.0' WD	BORING STARTED	2-2-90)	STS OFFIC	5	40 Lam	beau S		
		2-2-90	<u> </u>	STS OFFIC	SE G	40 Lami reen Ba	beau S ay, WI	treet 54303	
WL 10.0' WD	BORING STARTED	2-2-90 2-2-90	<u> </u>	STS OFFIC	YRLS	40 Lam	beau S ay, WI	treet	
WL 10.0' WD	BORING STARTED TIME WL-T. PIPE DATE TIME BORING COMPLETED	2-2-90 2-2-90	<u> </u>	STS OFFIC	YRLS	40 Lami reen Ba SHEET	beau S ay, WI 1	treet 54303	

				OWNER					1	LOG	OF BC	DRING	NUMB	ER			
				Paragon	Electric					MW-2				2			
				PROJEC	T NAME				1	ENGI	NEER						
STS Cons	ultar	nts L	td.	Contamin	nation Ass	essment				STS	Consu	ltants,	Ltd.				
SITE LO		_										1				Γ	<u> </u>
				Two Rive	ers, Wisco	nsin					z	Щ Ц					
	1	T	T	[WELL INS	TALLATION			STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT ²)	%		1		
	Í						TOP STAN	DPIPE EL. + 593.	44		/FT/	ONS	WATER CONTENT,	NG	LIQUID/PLASTIC LIMIT	PERCENT PASSING #200 SIEVE	PERMEABILITY, K (CM/SEC)
		SAMPLE DISTANCE									E E	NO d	NTE	HNU READING	PTIC PT	PAS	
NO	H H	STA			DES	CRIPTION OF	MATERIAL				QL.	GU.	Ö	JRE		NT S	M/S
DEPTH ELEVATION SAMPLE NO.	SAMPLE TYPE		Ì.₩	f							DAF	GT	TER	ŇH	1/0	#2((C
DEPTH ELEVAT MPLE N	J-L	JPL A	RECOVERY								TAN	BEN	WA		1 De	BE	ΒE
N IS	SA	SAI	REC	SURFACE I	ELEVATION 5	91.3					S	ST					
	+	Π	+							1		 					
	L AS				lty fine	sand (SM)	- trace	of organics -	-	1		}		0			
			$\frac{1}{1}$	topsoil						1			 				
2	2 ss		μ								18			8			
-5		1.1								*							
	siss	Ш	Ш	Light ho	own verv	fine to f	ine cand	(SP) - trace			12			0			
	+	┯┷	+					dium dense to									
	1	111	$ \Pi$	dense -				eet - eolian									
	1 SS	╨	┢┷┥	deposit							44			3			
10	+	+	$\left \frac{1}{1} \right $							EXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX							
5	ss		Щ							Ē	49			15			
e	5 SS		$ \Pi $								50			52			
15	+	μ															
		₩	\mathbf{H}							.=							
16.5 7	' ss	411	Ш								49			30			
	1			ਇਸਤੋ ਕਈ ਸ) 												
				End of B Boring a		rom 0.0 +	o 15.5 fe	et using 41									
					hollow st												
								d at 15.0 fee	et								
				Backgrou	nd HNU re	ading 0.0	ppm										
		1															
		1															
		1															
			ĺĺ														
	1																
	1																
The stratifica	1 Ition II	L nes r	epres	ent the approxim	nate boundary by	etween soll type	s. In situ. the tra	nsition may be gradua	. Water	r levels v	were meas	ured at the	times indi	cated. Wat	er levels m	ay varv sea	sonativ.
WL 7.5'								BORING STARTED		2-5-9				40 Lam	beau S	treet	
WL-T. PIPE		ATE		TIME	WL-T. PIPE	DATE	TIME					STS OFFIC		Freen B	Bay, WI	54303	
								BORING COMPLETE		2-5-9	<u>v</u>	DRAWN B	Y RLS	SHEET	1	of 1	
								RIG Mobile 1	361		 					*	
								FOREMAN	TT			APP'D. BY	DMB	STS JOE	טא נ . 1	.7566XF	
BCG 8421																	

C		7			OWNER								DRING	NUMB	ER			
					Paragon						MW-3					·		
	_				PROJEC							INEER						
STS Con	sul	tants	Lt	d.	Contamin	ation Asse	essment				STS	Consul	ltants,	Ltd.				
SITE LO	00	ATIO			Two Rive	rs, Wiscon	nsin					NO	51VE 512)					
			Ē					WELL INS TOP STAN	TALLATION DPIPE EL. + <u>59</u> 3	3.18	₁	STANDARD PENETRATION TEST, N (B/FT)	UNCONFINED COMPRESSIVE STRENGTH, Qp (TONS/FT ²)	ENT, %	ING	LIQUID/PLASTIC LIMIT	SSING /E	λ. K
S	_	퓓	STANC			DES	CRIPTION OF	MATERIAL				ID PEN	ED COA	CONTE	HNU READING	LL/PL	PERCENT PASSING #200 SIEVE	PERMEABILITY, (CM/SEC)
DEPTH ELEVATION MBL E NO	SAMPLE NU	SAMPLE TYPE	SAMPLE DISTANCE	RECOVERY								ANDAF	ONFIN	WATER CONTENT.	NH	guib/1	PERCE #2(PERM (C
	SAM	SAM	SAM	REC	SURFACE E	ELEVATION	591.0				_	ST	STR					
	1	AS		TL		lty fine s organics			of coarse		Į				0			
	2	SS		<u>+++</u>			an	non needen en en en eerste se	nen, Frankrik alfan i Krimin dan undarkinamenan			4	<u> </u>		0			
	3	ss	Щ	Щ								15			0			
	4	SS		Ш	oforgan	ics 7.5 to	o 11.5 fe	et - trace	(SP) - trace e of fine ense to dens			11			. 0			
10	5	SS		Π					lian deposit		Mamman	27			0.1			
											HIMMAN							
15	6	SS										32			0.1			
16.5	7	ss	ļ	Щ	an a that was a second to be a second s	understation of the state of th	dade a securit la cara anar apar					14			0			
					End of B Boring f		o 16.0 fe	et using	41 inch ID									
					2 inch P		ring well		d at 15.0 fe	eet								
					Backgrou	nd HNU rea	ading 0.0	ppm										
														ļ				ĺ
											İ							
			s re	pres	ent the approxin	nate boundary be	atween soil type	s. In situ, the tra	nsition may be grad				l sured at the					isonally.
WL 5.0 WL-T. PIPE	_	DA DA	ΓE		TIME	WL-T. PIPE	. DATE	TIME	BORING STARTED		2-5-9		STS OFFI		T	Bay, W	Street I 54303	3
	-								RIG Mobile				DRAWN B		SHEET		OF 1	
									FOREMAN	TT]	APP'D. BY	DMB	STS JOI	B NO. 1	7566XF	

State of Wisconsin Department of Natural Resources		M(Fo	ONITORING WELL CONSTR rm 4400-113A	UCTION 8-89		
Facility/Project Name	Grid Location		Well Name	0-07		-
Paragon Electric	982	ft. 🔼 N. 🗖 S.	P-1			
Facility License, Permit or Monitoring Number	866 based on site o	ft. 🔯 E. 🗆 W.	Wis. Unique Well Number	DNR We	linu	mber
Type of Well Water Table Observation Well 11	Section Location	<u>1710</u>	Date Well Installed			
Piezometer	NE 1/4 of NE 1	Mof Section 1	<u>0</u> 2	·/ 육 중/ 북	0	
Distance Well Is From Waste/Source Boundary	1		Well Installed By: (Person's	a a y	<u></u>	
NA ft.	T_19_N, R_24	ØEO W	Tom Tasch			
Is Well A Point of Enforcement Std. Application?	Location of Well Relative	to Waste/Source Sidegradient		<u> </u>		
🗆 Yes 🛛 No	Downgradient	Not Known	STS Consult	ants		
A. Protective pipe, top elevation	ft. MSL	1. Cap and lo	ck?	⊠ Yes		No
B. Well casing, top elevation -594.291	ît. MSL	2. Protective a. Inside di	-		4,	Q in.
C. Land surface elevation -591.8	* MSL	b. Length:			.Z.(
D. Surface seal, bottom_586.8 ft. MSL or _	5.0 ft.	c. Material	:	Steel Other	Ø	04
12. USCS classification of soil near screen:		d. Addition	nal protection?			And reading
GP GM GC GW SW SP SKSM SC SSML MH CL CL		If yes, d	escribe:	Bentonite	-	
Bedrock		3. Surface sea	d:	Concrete		30 01
13. Sieve analysis attached? 🔲 Yes 🔯 1	vo 🔪		1 topsoil	Other		
14. Drilling method used: Rotary	50 🔪 👹	4. Material be	tween well casing and protectiv	ve pipe:		
Hollow Stem Auger 🛛				Bentonite		30
Other 🗖			Annul	ar space seal		
			nona	Other	_	
		5. Annular sp	ace seal: Granul	ar Bentonite		33
Drilling Mud 🗖 03 None 🖾	99	Lb	s/gal mud weight Bentonit	e-sand slurry		35
16. Drilling additives used? 🖸 Yes 🛛 N	J.	<u>8.8</u> Lь	s/gal mud weight Ben	tonite slurry	2	31
		× ~ %	Bentonite Bentonite-	ement grout		50
Describe		$\frac{X_{i}}{X_{i}}$	Ft ³ volume added for any			
17. Source of water (attach analysis):		How install		Tremie		01
			Irer			02
	📓 📓		<u>.</u>	Gravity		08
		6. Bentonite s		uite granules		33
E. Bentonite seal, top -565.6 ft. MSL or -2	ω. <u>ω</u> .		in. 🛛 3/8 in. 🖾 1/2 in. Bent			32
F. Fine sand, top _ <u>563.6</u> ft. MSL or _ 2	.8.2 ft	7. Fine sand r Badag	naterial: Manufacturer, produ	Other oth		size
G. Filter pack, top _ 561.6 ft. MSL or _ 3	0.2. ft	Volume add	r Sand 40-60 sie	Ve siza	-	
	/		material: Manufacturer, produ	ict nome and	mast	1 ci74
H. Well screen, top 562.6 ft. MSL or 3	1.2 ft		r Sand 20-40 sice			1 31205
		Volume ad			_	
Well screen, bottom _ <u>555</u> .6 ft. MSL or _ <u>3</u>	6.2 n.	9. Well casin	g: Flush threaded PVC s Flush threaded PVC s			23 24
L Filter pack, bottom _ 555 1 ft. MSL or _ 3	4.7 ft.			Other		
		10. Screen mat	erial:PVC			
I. Borehole, bottom 555.1 ft. MSL or 3	<u>6.7</u> ft.	Screen type		Factory cut tinuous slot		11
Borehole, diameter $\underline{\mathcal{J}} \cdot \mathcal{Q}$ in.		×		Other		01
M. O.D. well casing 2.38 in.		Slot size:	er Crasling/Northern	· '0.	61	Qin.
■. I.D. well casing _2.27 in.		Slotted leng 11. Backfill ma	gth: terial (below filter pack):	None Other	図	Q ft.
hereby certify that the information on this	form is true and cor	rect to the best of m	y knowledae.			
Ignature	Firm					
An Jad Kuran	STE CO	. 01 A				

Conna M. Bugo Please complete and return both sides of this form as required by chs. 144, 147 and 160, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with a 144, Wis Stats., failure to file this form may result in a forfeiture of not less than \$10, nor more than \$5,000 for each day of violation. In accordance with ch. 147, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. In accordance with ch. 147, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. DTE: Shaded areas are for DNR use only. See instructions for more information.

aragon Electric ense, Permit or Monitoring Number				Well Name P- (
		Wis. Unique Well Number DNR Well Number							
Can this well be purged dry?	🗆 Yes 🖾 No	11. Depth to Water	Before Development	After Development					
Well development method surged with bailer and bailed		(from top of well casing)	ft.	ft.					
surged with bailer and pumped surged with block and bailed surged with block and pumped	0 6 1 0 4 2 0 6 2	Date	<u>02102190</u> mmddyy	<u>02/02/90</u> mm d d y y					
surged with block, bailed and pumped compressed air bailed only	□ 7 0 □ 2 0 □ 1 0	Time	□ a.m. : □ p.m.	a.m. : p.m					
pumped only pumped slowly Other	⊠ 51 □ 50 □ □	12. Sediment in well bottom13. Water clarity	inches	inches Clear ⊠ 20					
Time spent developing well	<u>30_</u> min.	15. Wale Clarity	Turbid E 15	Turbid 🔲 25 (Describe)					
Depth of well (from top of well casisng)	<u>38.2</u> ft.								
nside diameter of well	_ <u>2</u> .00 in.								
Volume of water in filter pack and well casing	gal.	Fill in if dilling found		at solid waste facility: 🖄					
Volume of water removed from well	15.0 gal.								
Volume of water added (if any)	gal.	14. Total suspended solids	mg/l	mg,					
Source of water addedA		15. COD	mg/l	mg/					
Analysis performed on water added? (If yes, attach results)	Yes No		1	•					

		I hereby certify that the above information is true and correct to the best of my knowledge.			
Name:	Tom Tesch	Signature:	Donna 11 Queas		
Firm:	STS Consoltants	Firm:	STS Concultante		

NOTE: Shaded areas are for DNR use only. See instructions for more information.

State of Wisconsin Department of Natural Resources		M Fo	ONITORING WELL CONS orm 4400-113A	STRUCTION 8-89
Facility/Project Name	Grid Location		Well Name	
Paragon Electric	924	ft. 🛛 N. 🗆 S.	MW-2	
Facility License, Permit or Monitoring Number	BIT based on site a	, ft. 🔀 E. 🗂 W.	Wis. Unique Well Number	DNR Well Numbe
Type of Well Water Table Observation Well 211	Section Location		Date Well Installed	
Piezometer 12	<u>NE1/4 of NE1</u>	/4 of Section	4	
Distance Well Is From Waste/Source Boundary			Well Installed By: (Perso	n's Name and Firm)
NA ft.	T 19 N. R 24 Location of Well Relative		Tom Tesch	•
Is Well A Point of Enforcement Std. Application?	Upgradient	Sidegradient		······································
□ Yes 🖾 No	Downgradient	Not Known	STS Consu	iltants
· · · ·	t. MSL	1. Cap and lo 2. Protective		🖄 Yes 🔲 No
B. Well casing, top elevation _ 593.44 f	t. MSL	a. Inside di		_4.0 in
C. Land surface elevation -591.3 f	• MSL	b. Length:		_ <u>5</u> . D ft
D. Surface seal, bottom_ 590.3 ft. MSL or	1.0 ft.	c. Materia	1:	Steel 27 04 Other 🛛
12. USCS classification of soil near screen:		d. Additio	nal protection?	Outer Li Di Yes <u>Di</u> No
			lescribe:	
Bedrock		3. Surface sea	al:	Bentonite 🖬 30
13. Sieve analysis attached? 🔲 Yes 🖾 N	50 V		$7ft^3$	Concrete D 01
14. Drilling method used: Rotary	io 🔪 👹		etween well casing and prote	Other 🛛 🔛
Hollow Stem Auger 🙇 4				Bentonite 🔲 30
Other 🗖			Ал	nular space seal
		no	me	Other 🛃 🧾
15. Drilling fluid used: Water 🖸 02 Air 🗍		5. Annular sp	ace seal: Gra	nular Bentonite 🛛 33
Drilling Mud 🔲 03 None 🖾		📓L	x/gal mud weight Bento	onite-sand shurry 🔲 35
16. Drilling additives used? 🔲 Yes 🖾 N	h 🔛		s/gal mud weight I	
	~ 🛛 📓	9	Bentonite Bentoni	
Describe	📓	How instal	Ft [°] volume added for a	
17. Source of water (attach analysis):				
				Gravity ⊠ 08
		6. Bentonite	Real Ba	
E. Bentonite seal, top ft. MSL or	ft.s		in. $\Box 3/8$ in. $\Box 1/2$ in. B	
	3.0 ft	<u>same</u>	as annular space	seal Other 🛛 🔛
[±] . Fine sand, top _ <u>5 8 8</u> .3 ft. MSL or	<u>3</u> .0 tr. ∕	7. Fine sand i	material: Manufacturer, pr 2 Sand 40-60	oduct name and mesh size $5 \sqrt{2} \sqrt{2}$
3. Filter pack, top _ 58 7 .3 ft. MSL or	4.0 ft.	Volume ad		
			material: Manufacturer, pr	
H. Well screen, top -586.3 ft. MSL or			<u>ar Sand 20-40</u>	SIEVE SIZE
Well screen, bottom 5763 ft. MSL or 1	Soft.	Volume ad 9. Well casin		C schedule 40 🔯 23
Well screen, boltom 2210.2 m. MSE of 1	2.0 **	9. Well cash	-	C schedule $40 \square 23$
Filter pack, bottom _ 57.5.8 ft. MSL or _]	55 ft.			Other 🛛
		10. Screen ma	terial: <u>PVC</u>	
Borehole, bottom $-5.7.5.8$ ft. MSL or -1	2.2 IL	Screen typ		Factory cut 🔯 11
_Borehole, diameter & () in.		×		Continuous slot \Box 01
Borehole, diameter $2 \cdot 0$ in.		Manufactur	er Craslina/Norther	Other D
M. O.D. well casing <u>238</u> in.		Slot size:	a crusting Norther	0.010ir
		Slotted len	gth:	LQ.Qf
_ I.D. well casing _ 2.07 in.		11. Backfill m	aterial (below filter pack):	None E
				Other 🛛
hereby certify that the information on this		rrect to the best of m	iy knowledge.	
gnature Atrika M. Brigo	Firm STS C	mulfants		

Please complete and return both sides of this form as required by chs. 144, 147 and 160, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with L. 144, Wis Stats., failure to file this form may result in a forfeiture of not less than \$10, nor more than \$5,000 for each day of violation. In accordance Lth ch. 147, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. In accordance Lth ch. 147, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. In accordance Lth ch. 147, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. DTE: Shaded areas are for DNR use only. See instructions for more information.

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B 8-89

• • •

_ *

6)

Facility/Project Name	Well Name MW-Z Wis. Unique Well Number DNR. Well Number				
Paragon Electric License, Permit or Monitoring Number					
1. Can this well be purged dry?	🛛 Yes 🖾 No	11. Depth to Water	Before Development	After Development	
2. Well development method surged with bailer and bailed surged with bailer and pumped	4 1 6 1	(from top of well casing)	ft.	ft.	
surged with block and bailed surged with block and pumped surged with block, bailed and pumped	4 2 6 2 7 0	Date		$\frac{D 2 0 5 90}{m m d d y y}$	
compressed air bailed only		Time	a.m.	: p.m.	
pumped only pumped slowly Other		12. Sediment in well bottom13. Water clarity	inches Clear □ 10	inches	
3. Time spent developing well	<u>3</u> O min.		Turbid E 15 Describe)	Turbid 🗖 25 (Describe)	
4. Depth of well (from top of well casisng)	7.Qft.				
5. Inside diameter of well	<u>_2.00</u> in.				
6. Volume of water in filter pack and well casing	gal.				
7. Volume of water removed from well	<u>30</u> . <u>O</u> gal.	14. Total suspended		at solid waste facility: NA	
8. Volume of water added (if any)	gal.	solids			
9. Source of water added <u>MA</u>		15. COD	mg/l	mg/l	
10. Analysis performed on water added? (If yes, attach results)	Yes No	1			
Additional comments on development:					

Well developed by: Person's Name and Firm		I hereby certify that the above information is true and correct to the best of my knowledge.			
Name:	Tom Tesch	Signature:	Sonna M Bugo		
Firm:	OTS Consultants	Firm:	STS Consultants		

NOTE: Shaded areas are for DNR use only. See instructions for more information.

State of Wisconsin Department of Natural Resources		M0 Fo	ONITORING WELL CON	STRUCTION 8-89	
Facility/Project Name	Grid Location		Well Name		
Paragon Electric	1298	ft. 🛃 N. 🗖 S.	Mu)-3		
Facility License, Permit or Monitoring Number	941		Wis. Unique Well Numb	er DNR Well	Number
	based on site qu	ft. 🖾 E. 🖸 W.			
Type of Well Water Table Observation Well 🛛 11	Section Location J		Date Well Installed		-
Piezometer 12	<u>_SE</u> 1/4 of <u>SE</u> 1	/4 of Section,	-	$\frac{0}{m}\frac{2}{m}\frac{3}{m}\frac{5}{4}\frac{9}{4}\frac{9}{4}$	2 ▼
Distance Well Is From Waste/Source Boundary	T_19_N, R_24		Well Installed By: (Pers		n)
<u>NAft.</u>	Location of Well Relative	to Waste/Source	lon Tesch		
Is Well A Point of Enforcement Std. Application?	Upgradient	Sidegradient	STS Consu	Hante	
	Downgradient	Not Known		Itants	
•••	t. MSL	1. Cap and lo 2. Protective		🛛 Yes [I No
B. Well casing, top elevation -593.18 f	t. MSL ———	a. Inside di	••	د	I.Qin.
C. Land surface elevation -591.0 f	· MSL	b. Length:			2.Qft.
D. Surface seal, bottom_ 59.0.0 ft. MSL or	LO ft.	c. Materia	:	Steel	
12. USCS classification of soil near screen:				Other E	
$\Box GP \Box GM \Box GC \Box GW \Box SW \Box SP$	and a superior		nal protection?	🖸 Yes 🛛	No
		II yes, d	escribe:		
Bedrock		3. Surface sea	վ։	Bentonite	
13. Sieve analysis attached? 🔲 Yes 🖾 N	ь 📓		C+3)	Concrete	
14. Drilling method used: Rotary	io 🔪 📓	4. Material be	tween well casing and pro	Other E	
Hollow Stem Auger 🖾 4	1			Bentonite E	3 0
Other 🗆			A	nnular space seal	
			none	Other E	
15. Drilling fluid used: Water 0 0 Air 0		5. Annular sp	ace seal: G	ranular Bentonite	33
Drilling Mud 🗖 03 None 🖾		💥 Lb	s/gal mud weight Ben	tonite-sand shurry	35
16. Drilling additives used? 🖸 Yes 🛛 N	ь 📓		s/gal mud weight		
	~ 🔛	<u> </u>	Bentonite Bento	nite-cement grout C	3 50
Describe XJA	🛛 👹	How install	Ft ³ volume added for		-
17. Source of water (attach analysis):				Tremie C Tremie pumped	
$\Delta t \lambda$				Gravity	
	io i0 11 01 99 io 			-	_
_E. Bentonite seal, top ft. MSL or		6. Bentonite s	in. \Box 3/8 in. \Box 1/2 in.	entonite granules	
	***		as annular space		
F. Fine sand, top 588.0 ft. MSL or	$\frac{1}{3.2} ft$		naterial: Manufacturer, p		
		Badge	r Sand 40-160	SIEVE SIZE	0511 5120
J. Filter pack, top 587.0 ft. MSL or	4.0 ft.	Volume add		t ³	
			material: Manufacturer, j		esh size
H. Well screen, top $5 \& 0.0$ ft. MSL or		Volume ad	<u>er Sand 20-40</u> det 2.6	<u>- 519 JQ 5120</u>	
- Well screen, bottom $\underline{576}$, $\underline{9}$ ft. MSL or $\underline{14}$	5 D ft.	9. Well casin		TC schedule 40 🛛	23
			-	VC schedule 80	
L Filter pack, bottom _ 575.5 ft. MSL or _ 1	5.5 ft.			Other C	
		10. Screen mat	terial: <u>PVC</u>		
H. Borehole, bottom -575.5 ft. MSL or -1	2.2 ft.	Screen typ		Factory cut	_
Parahala diamater 9 a .		×.		Continuous slot	
\angle . Borehole, diameter $\underline{\mathcal{S}} \mathcal{Q}$ in.		Manufactur	er Craslina/Northa		
M. O.D. well casing _ 2 3 2 in.		Slot size:	a <u>construct</u> por true	11 1	7 ≬⊥Qin.
		Slotted len	gth:		<u>0.0</u> ft.
I. I.D. well casing 2.07 in.		11. Backfill ma	aterial (below filter pack):	None 🗵	
				Other 🛙]
hereby certify that the information on this		rrect to the best of m	y knowledge.		
ignature	Firm				

Sonna M. Bugo Please complete and return both sides of this form as required by chs. 144, 147 and 160, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with 144, Wis Stats., failure to file this form may result in a forfeiture of not less than \$10, nor more than \$5,000 for each day of violation. In accordance 144, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. In accordance 145, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation. 146, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation.

.

._

Facility/Project Name		Well Name	· · · · · · · · · · · · · · · · · · ·	·····	
Paracon Electric License, Permit or Monitoring Number	MW-3 Wis. Unique Well Number DNR Well Number				
		·			
1. Can this well be purged dry?	🛛 Yes 🖉 No	11. Depth to Water	Before Development	After Development	
2. Well development method surged with bailer and bailed surged with bailer and pumped surged with block and bailed surged with block, bailed and pumped surged with block, bailed and pumped compressed air bailed only pumped only pumped slowly Other	4 1 6 1 4 2 6 2 7 0 2 0 1 0 5 1	(from top of well casing) Date Time 12. Sediment in well bottom 13. Water clarity	$\begin{array}{c} - & - & - & - & \text{ft.} \\ \hline 0 & 2 / & 0 & 5 / & 9 \\ \hline m & m & d & d & y & y \\ \hline m & m & d & d & y & y \\ \hline 0 & a.m. \\$		
3. Time spent developing well	<u>3 O</u> min.		Turbid 🗾 15	Turbid 🔲 25 (Describe)	
4. Depth of well (from top of well casisng)	7.0 ft.				
5. Inside diameter of well	<u>2.00</u> in.				
6. Volume of water in filter pack and well casing	gal.	Fill in if drilling fluids	were used and well is a	at solid waste facility: > []	
7. Volume of water removed from well	<u> </u>	_			
8. Volume of water added (if any)	gal.	14. Total suspended solids	mg/l	mg/l	
9. Source of water added NA		15. COD .	mg/l	mg/l	
10. Analysis performed on water added? (If yes, attach results)	Yes No	1	1	.	

Additional comments on development:

		I hereby certify that the above information is true and correct to the best of my knowledge.			
Name:	Tom Tasch	Signature:	Donna il Pica		
Firm:	5T5 Consultants	Firm:	5TS angultante		

NOTE: Shaded areas are for DNR use only. See instructions for more information.

APPENDIX B

Summary of Groundwater Elevations Groundwater Sampling Field Data PARAGON ELECTRIC COMPANY STS JOB # 17566XF

SUMMARY OF GROUNDWATER LEVEL ELEVATIONS

WELL #	GROUND SURFACE	TOP OF RISER	DATE:	2-14-90	DATE:	3-21-90	DATE :	4-20-90
	ELEVATION		DEPTH	ELEVATION	DEPTH	ELEVATION	DEPTH	ELEVATION
MW-1	591.7	594.23	11.37	582.86	10.38	583.85	10.35	583.88
P-1	591.8	594.09	11.40	582.69	10.21	583.88	10.28	583.81
MW-2	591.3	593.44	10.57	582.87	9.44	584.00	9.51	583.93
MW-3	591.0	593.18	9.98	583.20	8.98	584.20	8.88	584.30
RIVER	GAGE HT:	580.66	2.31	578.35	1.96	578.70	1.86	578.80
L.MICH.	GAGE HT:	584.84	6.18	578.66	6.08	578.76	5.93	578.91

Pr Cli	STS Job No.: <u>IT566XE</u> Date: <u>2-14-90</u> Project Name: <u>Contamination Assessment</u> Sampled By: <u>KJC, DTB</u> Client: <u>Paragon Electric</u> Weather: <u>CL</u> PC OC Sampling Order: <u>MW-3</u> , <u>P-1</u> , <u>MW-1</u> , <u>MW-2</u> Well Water L Depth Vol. Temp. pH Field Corr. Color Turbld Odor Remarks													
Well [d.	Water L. (TPVC)		Vol. Purg.	Temp.	рH	Fleid Cond.	Corr. Cond.	Color	Turbid	Odor	Remarks Water clevation			
MW-1	11,37		5					CI	N	N	582.86			
P-1	11.40		5						N	N	582.69			
MW-2			5					CL	N	<u>N_</u>	582.87			
MW-3	9.98		5					Cl	N	<u>N</u> .	583.20			
River											578.35			
L. Mich.		-									578.66-Note.			
											1-3'waves and			
										•				
				·							strong casterly			
											Winds.			
-			<u></u>	·		ļ								
						_								
						1	<u> </u>							
								<u> </u>	<u> </u>					
•.					(<u> </u>	<u> </u>	 					
		<u> </u>		<u> </u>	<u> </u>	 		<u> </u>		<u> </u>				
		ļ		 	 		 		 -	 				
		 	 	 	 	ļ	┠────		·	<u> </u>				
	L		L	L	L	Ļ		ļ	<u> </u>					
	·													
	1	1	1	1		1	1		1	<u> </u>				
,,		<u>├</u> ──	<u> </u>	<u> </u>	 	<u> </u>		† • • • •	<u> </u>	 				
	<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>		<u> </u>				
	<u> </u>	<u> </u>				┠	<u> </u>	<u> </u>		<u> </u>				
·	ļ	ļ	 	ļ	Ļ	 	<u> </u>	 	_	┣───				
		L	· ·	<u> </u>			ļ		ļ	ļ				
		[L					

See Reverse for Legend

WATER SAMPLING FIELD DATA LOG DEFINITIONS

Water Level Measurements: Measured in feet below the top of PVC (well casing).

Depth of Well: Measured in feet below the top of PVC (well casing).

Volume Purged: Measured in gallons.

Temperature: Measured in degrees centigrade.

pH: Measured in standard units.

<u>Conductivity</u>: Measured in micromhos per centimeter. Conductivity values have been corrected to 25°C.

Odor:

No = No odor detected Sl = Slight odor detected St = Strong odor detected

The following suffixes can be added to S1 or St to further define the odor detected:

S = Septic
P = Petroleum product
C = Solvent or cleaning product

Color:

Cl = Clear Cld = Cloudy Br = Brown RBR = Reddish brown Bl = Black G = Gray Y = Yellow

Turbidity:

N = None to slight Y = Significant

12	S Job	No ·	· · · · ·	7566	хF			Date	•	3-22	-90
Pr	oject I	Vame		tamino	tion	Asses	sment	Sam	pled	By:	RLS
Cli	ient: <u> </u>	arago	on El	ectric				Weat	her:	CL	PC OC
	mpling										
30	inping	UIU	. 13	<u></u>		· · · ·	<u>/\w/</u>	, ///			
		Depth					· -				
Weil Idu	Water L. (TPVC)	of Well	Vol. Pu rg.	Temp.	рH	Field Cond.	Corr. Cond	Color	Turbid	Odor	Remarks
MW-1	10.38		3					CI	N	N	
P-1	10.21		3					CL	N	N	
MW-2			4					CL	N	N	
MW-3	8.98		5					Cŀ	N	N	
D:											
River	1.96' 6.08'							<u> </u>			
L. Mich.	6.00										
									<u> </u>	•	· · · · · · · · · · · · · · · · · · ·
								[
					~						
	·		ļ	<u> </u>		<u> </u>			<u> </u>		
· · ·				L	ļ	ļ		ļ	ļ		
·	<u> </u>	· .	 	ļ	. (ļ	 	<u> </u>	<u> </u>	<u> </u>	
		ļ				ļ					
		 	 	ļ	<u> </u>	 	<u> </u>		` 	+	
·	<u> </u>		┝		<u> </u>		 	<u> </u>	+		
					<u> </u>				<u> </u>		<u> </u>
 	<u> </u>					· ·				<u> </u>	
	t	<u> </u>	<u> </u>	1	<u> </u>			<u> </u>		1	
	1	 	1	1	1			1	1 .	1	
	1			1		1		·			
			·								

See Reverse for Legend

WATER SAMPLING FIELD DATA LOG DEFINITIONS

<u>Water Level Measurements</u>: Measured in feet below the top of PVC (well casing).

<u>Depth of Well</u>: Measured in feet below the top of PVC (well casing).

Volume Purged: Measured in gallons.

Temperature: Measured in degrees centigrade.

pH: Measured in standard units.

<u>Conductivity</u>: Measured in micromhos per centimeter. Conductivity values have been corrected to 25°C.

Odor:

No = No odor detected Sl = Slight odor detected St = Strong odor detected

The following suffixes can be added to S1 or St to further define the odor detected:

S = Septic
P = Petroleum product
C = Solvent or cleaning product

Color:

Cl = Clear Cld = Cloudy Br = Brown RBR = Reddish brown Bl = Black G = Gray Y = Yellow

Turbidity:

N = None to slight Y = Significant

ST	S Job	No.:		7566	хF			Date		4-20	-90
Pr	oject I	Name	: <u>Co</u>	<u>nta mi</u>	nation	Asses	ssment	Sam	pled	By:	KJC
Cli	ent: <u>Pa</u>	ragon	Elec	tric				Weat	her:	CL	PC OC
Sa	mpling	Ord	er:	MW-	3, P-	<u>, M</u>	w-1,	Μω-	2-1	vatar	levels only
											/
Well Idı	Wat er L (TPVC)	Depth of Well	Vol. Purg.	Temp.	рН	Field Cond.	Corr. Cond	Color	Turbid	Odor	Remarke
MW-1 P-1	10,35										
MW-2	10.28 9.51			;							
MW-3	8,88									•	
River	1.86										
L.Mich.	5,93										
											·
· · · · · · · · · · · · · · · · · · ·											
					. £						
					· · · · ·						
									•		
	•										
		· · ·	-		· · ·						
						· · ·			·		
· · · ·				·				ļ	<u> </u>		
				<u> </u>							

See Reverse for Legend

WATER SAMPLING FIELD DATA LOG DEFINITIONS

<u>Water Level Measurements</u>: Measured in feet below the top of PVC (well casing).

<u>Depth of Well</u>: Measured in feet below the top of PVC (well casing).

Volume Purged: Measured in gallons.

Temperature: Measured in degrees centigrade.

pH: Measured in standard units.

<u>Conductivity</u>: Measured in micromhos per centimeter. Conductivity values have been corrected to 25°C.

Odor:

No = No odor detected Sl = Slight odor detected St = Strong odor detected

The following suffixes can be added to Sl or St to further define the odor detected:

S = Septic
P = Petroleum product
C = Solvent or cleaning product

Color:

Cl = Clear Cld = Cloudy Br = Brown RBR = Reddish brown Bl = Black G = Gray Y = Yellow

Turbidity:

N = None to slight Y = Significant

APPENDIX C

Groundwater Quality Results

February 28, 1990

STS Consultants Ltd. 540 Lambeau Green Bay, WI 54303

Attn: Donna Bugs

Re: 17566XF - Paragon Electric

Please find enclosed the analytical results for the samples received February 15, 1990.

The VOC analyses were completed using EPA Method 502.2.

The chain of custody document is enclosed.

If you have any questions about the results, please call. Thank you for using Enviroscan, Inc. for your analytical needs.

Sincerely,

Enviroscan, Inc.

udig Auandonsk

Judy A. Lewandowski Senior Instrumentation Technician

NALYTICAL REPOR

STS Consultants Ltd. 540 Lambeau Green Bay, WI 54303

Attn: Donna Bugs

CUST NUMBER:	17566XF
SAMPLED BY:	Client
DATE REC'D:	02/15/90
REPORT DATE:	02/28/90
APPROVED BY:	JAL
	jæl
	\bigcirc

27839

27840

	Detection								
	Units	Limit	MW-1	MW-2					
Benzene	μg/1	0.2	 x	 x					
Bromoform	µg/1	2.0	x	x					
Bromomethane	µg/1	4.0	x	x					
Carbon Tetrachloride	µg/1	0.5	1.05	x					
Chlorobenzene	µg/1	2.0	x	x					
Chloroethane	µg/1	2.0	2.56	x					
2-Chloroethylvinyl Ether	µg/1	5.0	x	x					
Chloroform	µg/1	0.5	x	3.06					
Chloromethane	µg/1	2.0	x	x					
Chlorodibromomethane	µg/1	0.5	x	X					
1,2-Dichlorobenzene	µg/1	1.0	x	x					
1,3-Dichlorobenzene	µg/1	1.0	x	x					
1,4-Dichlorobenzene	µg/1	0.5	x	x					
Bromodichloromethane	µg/1	0.5	х	x					
1,1-Dichloroethane	µg/l	0.5	1.81	x					
1,2-Dichloroethane	µg/1	0.5	x	x					
1,1-Dichloroethylene	µg/1	1.0	1.48 2 2	x					
1,2-Dichloroethylene	µg/1	1.0	29.9	37.7					
Methylene Chloride	µg/1	1.0	X	x					
1,2-Dichloropropane	µg/1	0.5	х	x					
cis-1,3-Dichloropropene	µg/1	2.0	x	x					
trans-1,3-Dichloropropene	µg/1	0.5	X	x					
Ethylbenzene	µg/1	1.0	x	x					
1,1,2,2-Tetrachloroethane	µg/1	1.0	x	x					
Tetrachloroethylene	µg∕l	0.5	x	1.84					
Toluene	µg/1	0.5	x	4.13					
1,1,1-Trichloroethane	µg/1	0.5	10.4	0.58					
1,1,2-Trichloroethane	µg/1	0.5	x	1.67					
Trichloroethylene	µg/1	0.2	219. F-	2,560.					
Vinyl Chloride	µg/1	0.2	3.12	2,500 x					
Trichlorofluoromethane	µg/1	1.0	x	x					
Dichlorodifluoromethane	µg/1	2.0	x	x					

Analytical No.:

X = Analyzed but not detected.

All analyses conducted in accordance with Enviroscan Quality Assurance Program.

STS Consultants Ltd. 540 Lambeau Green Bay, WI 54303

J/A

3

CUST NUMBER: 17566XF SAMPLED BY: Client DATE REC'D: 02/15/90 REPORT DATE: 02/28/90 APPROVED BY: JAL

Attn: Donna Bugs

	Detection							
	Units	Limit	MW-3	P-1				
Benzene	 μg/l	0.2	 x					
Bromoform	μg/1	2.0	x	X				
Bromomethane	μg/1	4.0	X	x				
Carbon Tetrachloride	μg/1	0.5	x	x				
Chlorobenzene	µg/1	2.0	x	x				
Chloroethane	µg/1	2.0	x	x				
2-Chloroethylvinyl Ether	µg/1	5.0	x	x x				
Chloroform	µg/1	0.5	x	x 3.33				
Chloromethane	µg/1	2.0	x					
Chlorodibromomethane	μg/1	0.5	x	x x				
1,2-Dichlorobenzene	µg/1	1.0	x	x				
1,3-Dichlorobenzene	µg/1	1.0	x					
1,4-Dichlorobenzene	µg/1	0.5	x	x x				
Bromodichloromethane	μg/1	0.5	X	x				
1,1-Dichloroethane	μg/1	0.5	x	×				
1,2-Dichloroethane	μg/1	0.5	x	x				
1,1-Dichloroethylene	µg/1	1.0	x	x				
1,2-Dichloroethylene	µg/1	1.0	x	x				
Methylene Chloride	µg/1	1.0	x	x				
1,2-Dichloropropane	µg/1	0.5	x	x				
cis-1,3-Dichloropropene	μg/1	2.0	x	x				
trans-1,3-Dichloropropene	µg/1	0.5	x	x				
Ethylbenzene	μg/1	1.0	x	x				
1,1,2,2-Tetrachloroethane	µg/1	1.0	x	x				
Tetrachloroethylene	μg/1	0.5	x	x				
Toluene	µg/1	0.5	3.25	1.86				
1,1,1-Trichloroethane	µg/1	0.5	x	x				
1,1,2-Trichloroethane	µg/1	0.5	x	x				
Trichloroethylene	µg/1	0.2	x	12.0				
Vinyl Chloride	μg/1	0.2	x	1210 G				
Trichlorofluoromethane	µg/1	1.0	x	x				
Dichlorodifluoromethane	µg/1	2.0	x	x				
Analytical No.:			27841	27842				

X = Analyzed but not detected.

All analyses conducted in accordance with Enviroscan Quality Assurance Program.

SS STS CH		F CU	ST	OD	Y F	ECOR)						_{NO.} 1781	RECORD NO	_THROUGH		
ontact person Donne Bugs special special hone No. <u>414-494-9656</u> hone No. <u>414-494-9656</u> roject No. <u>1566 XF</u> PO No. <u>Paragun Elec.</u> RUSH [IS Office												ING REQUEST	Contact Pers Phone No	Laboratory Contact Person Phone No Results Due			
Sample I D	Date	Time	Grab	Composite	No. of ners	Sample Type (Water,soil air,sludge, etc.)	Preservation YN	PID A m b i e	FID S m P 1 e		a S C P o c d	Analysi	s Request	Comments (Include Major	on Samples Contaminants)		
mw-1	2/14/90		χ		Z	water						VOC 601	1/602				
mw - 2			12		2			<u> </u>				1			<u></u>		
MW-3			X		2												
<u>P-1</u>	<u>v</u>		X		2	V		<u>.</u>			<u> </u>	₩					
	-													· ·			
			╞														
Collected by : K	1. C.	×	 ~	De	te ?	114/90	Ti	me	[Delivery by :		Date	Time		
Received by :				Da	te	<u></u>	Ti	me		÷.		Relinquished h	ру:	Date	Time		
Received by :				Da	te	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ti	me				Relinquished b	ру:	Date	Time		
Received by :				De	te		Ti	me				Relinquished h	ру:	Date	Time		
Received for lab by	Linde	beck	her	be po	te I	115/90	Tiı	me /	10:0	274	M	Relinquished b	у :	Date	Time		
Laboratory Com	ments	Only	: :	Sea	ls li	ntact Up	on	Re	ceip	ot	Ì	YES DNO	DN/A				
Final disposition :												Comments (1	Teather Conditions,	Precautions, Hazards):		
					•												
							£					27839 -	37843				
	Di	stributio	n: Or	rigina	l and	Green - Labo	rato	ry	Yello	5w - /	∎ As ne	eded Pink - Tra	Insporter Goldenrod	- STS Project File			

Instruction to Laboratory: Forward completed original to STS with analytical results. Hetain green copy.

March 27, 1990

STS Consultants Ltd. 540 Lambeau Green Bay, WI 54303

Attn: Donna Bugs

Re: 17566XF

Please find enclosed the analytical results for the samples received March 23, 1990. Results were given to you within a 3 to 5 day turnaround.

The VOC analyses were completed using EPA Method 502.2.

The chain of custody document is enclosed.

If you have any questions about the results, please call. Thank you for using Enviroscan, Inc. for your analytical needs.

Sincerely,

Enviroscan, Inc.

Judy Lywantowski

Judy A. Lewandowski Senior Instrumentation Technician STS Consultants Ltd. 540 Lambeau Green Bay, WI 54303

ľA

BP

CUST NUMBER: 17566XF SAMPLED BY: CLIENT DATE REC'D: 03/23/90 REPORT DATE: 03/27/90 APPROVED BY: JAL

Attn: Donna Bugs

		Detection		
	Units	Limit	MW-1	MW-2
Benzene	 μg/l	2.0		
Bromoform	µg/1	20.0	X	x
Bromomethane	µg/1	40.0	X 	х
Carbon Tetrachloride	µg/1	5.0	X 	x
Chlorobenzene	μg/1	20.0	x 	x
Chloroethane	μg/1	20.0	× ×	· X
2-Chloroethylvinyl Ether	μg/1	50.0	x	x
Chloroform	µg/1	5.0	x	x
Chloromethane	µg/1	20.0	x	x
Chlorodibromomethane	µg/1	5.0	x	x
1,2-Dichlorobenzene	µg/1	10.0	X	x
1,3-Dichlorobenzene	µg/1	10.0	x	x
1,4-Dichlorobenzene	µg/1	5.0	x	x
Bromodichloromethane	µg/1	5.0	X	x
1,1-Dichloroethane	µg/1	5.0	X	x
1,2-Dichloroethane	µg/1	5.0	X	x
1,1-Dichloroethylene	µg/1	10.0	X	x
1,2-Dichloroethylene	μg/1	10.0	X 44.4	x.
Methylene Chloride	μg/1	10.0		x
1,2-Dichloropropane	µg/1	5.0	X	x
cis-1,3-Dichloropropene	µg/1	20.0	X	x
trans-1,3-Dichloropropene	µg/1	5.0	x	X
Ethylbenzene	µg/1	10.0	X	x
1,1,2,2-Tetrachloroethane	µg/1	10.0	x	x
Tetrachloroethylene	μg/1	5.0	x	x
Toluene	µg/1	5.0	x	x
1,1,1-Trichloroethane	µg/1	5.0	x	x
1,1,2-Trichloroethane	μg/1	5.0	x	x
Trichloroethylene	µg/1	2.0	X 137. (X
Vinyl Chloride	μg/1	2.0		560.
Trichlorofluoromethane	µg/1 µg/1	10.0	9.48	x
Dichlorodifluoromethane	μg/1	20.0	X	X
	~ 3/ -		x	x
Analytical No.:			29671	29673

X = Analyzed but not detected.

All analyses conducted in accordance with Enviroscan Quality Assurance Program.

STS Consultants Ltd. CUST NUMBER: 17566XF 540 Lambeau Green Bay, WI 54303 Attn: Donna Bugs

cool admont.	T / DOORL
SAMPLED BY:	Client
DATE REC'D:	03/23/90
REPORT DATE:	
APPROVED BY:	JAL Jal
	0

		Detection		
	Units	Limit	P-1	MW-3
Benzene				
Bromoform	µg/1	0.2	X	x
Bromomethane	µg/1	2.0	X	X
Carbon Tetrachloride	µg/1	4.0	X	x
Chlorobenzene	µg/1	0.5	X	х
Chloroethane	µg/1	2.0	X	x
2-Chloroethylvinyl Ether	µg/1	2.0	x	x
Chloroform	µg/1	5.0	X	x
Chloromethane	µg/1	0.5	0.62	x
Chlorodibromomethane	µg/1	2.0	X	x
1,2-Dichlorobenzene	µg/1	0.5	x	x
1,3-Dichlorobenzene	µg/1	1.0	x	x
	µg/1	1.0	x	x
1,4-Dichlorobenzene	µg/1	0.5	X	X
Bromodichloromethane	µg/1	0.5	X	x
1,1-Dichloroethane	µg/1	0.5	X	x
1,2-Dichloroethane	µg/1	0.5	X	x
1,1-Dichloroethylene	µg/1	1.0	x	x
1,2-Dichloroethylene	µg/1	1.0	2.15	х
Methylene Chloride	µg/1	1.0	X	x
1,2-Dichloropropane	µg/1	0.5	x	х
cis-1,3-Dichloropropene	µg/1	2.0	x	x
trans-1,3-Dichloropropene	µg/1	0.5	x	x
Ethylbenzene	µg/1	1.0	x	x
1,1,2,2-Tetrachloroethane	µg/1	1.0	X	x
Tetrachloroethylene	µg/1	0.5	x	x
Toluene	µg/1	0.5	x	x
1,1,1-Trichloroethane	µg/1	0.5	X	x
1,1,2-Trichloroethane	µg/l	0.5	X	x
Trichloroethylene	$\mu g/1$	0.2	6.47	x
Vinyl Chloride	µg/1	0.2	X	x
Trichlorofluoromethane	μg/1	1.0	X	X
Dichlorodifluoromethane	μg/1	2.0	×	x
	•			A
Analytical No.:			29672	20674
			49014	29674

X = Analyzed but not detected.

All analyses conducted in accordance with Enviroscan Quality Assurance Program.

Enviroscan Inc., 303 West Military Rd., Rothschild, WI 54474 1/800/338-SCAN Wisconsin Lab Certification No. 737053130

STS CH									SPEC	IAL I	IANDL	ING REQUEST	NO. 1783 RECORD NOTHROUGH			
ontact person_ none No. <u>414</u> roject No. <u>7256</u> 'S Office	- 494 lo X F B	- 96. PO N	0			· · · · · · · · · · · · · · · · · · ·	-		RUSH	C		RBAL 🗌 OTHER	Contact Person Judy Leutenburski Phone No. <u>300 - 338 - 3226</u> Results Due <u>ASAP</u>			
Sample I D	Date	Time	G rab	Coffposite	Nontainers	Sample Type (Water,soil air,sludge, sta.)	Preservation YN	F PID A m b i e n t	field FID s am P 1 •		a spec.	Analysi	s Request	Commer (Include Ma	nts on Samples jor Contaminants)	
muv-1 P-1	3/21/90	10:00 10:10	X X		22	water						601/607	2 vocs			
mw-2		10:15	X	┟──┤	$\frac{1}{2}$	ų	ϯ									
mu-3	V	10:25	۶		2	(1						V				
					فيسبا جن وليرون											
							╋									
ollected by : S	EDERSI	POM	<u></u>	Da	te Z	-21-90	Tin	nie j	01	οĊ	>	Delivery by :		Date	Time	
ceived by :		<u> </u>		Da			Tin					Relinquished b	о у :	Date	Time	
ceived by :				Da	te		Tin	ne				Relinquished b	у:	Date	Time	
ceived by :				Da	te		Tin	ne				Relinquished b	у:	Date	Time	
eceived for lab by	Lbac	hhu	her	Da	te J	123/90	Tin	ae	IIA	M		Relinquished b	у:	Date	Time	
aboratory Com	ments	Only	: :	Seal	s Iı	ntact Up	on	Re	ceip	ot	C	IYES DNO	XN/A			
nal disposition :	pr 14 Alkada			to A page - succession to const	1996 av 1.00 av1-171-197							Comments (W	leather Conditions	, Precautions, Hazai	:ds) :	
		anan kuta ministra siyang menangan		ebernes M. Alasman -				Reads to a state group of the light of				ann an san ann a Anna a stadh an an an ann an ann an ann an ann an an	#10-2	29671-296	74	

I t