GIS REGISTRY (Cover Sheet) Form 4400-280 (R 7/12)

Source Pro	perty In	forma	tion				CLOSURE DATE	: Jun 4, 2013	
BRRTS #:	02-36-00	0153	(No Dashes)						
ACTIVITY NAME:	Paragon Ele	Paragon Electric Co Inc				FID#:	436042310		
PROPERTY ADDRES	PROPERTY ADDRESS: 606 Parkway Blvd				DATCP #:				
MUNICIPALITY:	Two Rivers, WI 54241			PECFA#:					
PARCEL ID #:	053-211-102	I-102-001.08							
	*\A/Tha c	CORDINA	TEC.		WTM CO	NODDINATE	C DEDDECENT.		
		OORDINA			WINCO	OKDINATE	S REPRESENT:		
	X: 713189	Y: 4	110167		Approximate	e Center Of	Contaminant Sour	ce	
		ordinates are 3, NAD83 (19			(Approximate	e Source Par	rcel Center		
Please check as app	propriate: (BRF	RTS Action	Code)						
			Conta	aminat	ed Media:				
X G	roundwater Co	ntaminatio	on > ES (236)		⊠ Soil C	ontaminatio	on > *RCL or **SSF	RCL (232)	
	▼ Contaminat	tion in ROV	V		Contamination in ROW				
	▼ Off-Source (Contamina	ition		☐ Off-Source Contamination				
	note: for list of or see "Impacted Off				(note: for list of off-source properties see "Impacted Off-Source Property" form)				
			Contin	uing 0	bligations:				
	□ N/A (Not Ap	plicable)			X	Cover or Ba	rrier <i>(222)</i>		
ĺ	Soil: mainta	ain industri	ial zoning (220	0)		te: maintenai			
	note: soil contan				groundwater or direct contact) X Vapor Mitigation (226)				
	Structural Ir						ability Exemption	(230)	
	Site Specific				(not	te: local gove	rnment unit or econo poration was directed	omic	
Note: Comments will no	ot print out.		Мо	nitorin	g Wells:				
		Are all mo	nitoring wells	properly	abandoned pe	r NR 141? <i>(2</i>	34)		
			Yes	○ No	○ N/A				
							* Residual Contami **Site Specific Resid	nant Level Iual Contaminant Level	

State of Wisconsin
DEPARTMENT OF NATURAL RESOURCES
2984 Shawano Avenue
Green Bay WI 54313-6727

Scott Walker, Governor Cathy Stepp, Secretary Telephone 608-266-2621

Toll Free 1-888-936-7463 TTY Access via relay - 711

June 4, 2013

VPLE BRRTS # 06-36-551669

Mr. Paul A. Ahearn paul.ahearn@invensys.com Invensys, Inc.
33 Commercial Street, B51-2J Foxboro, MA 02035

Rabbi Yitzchok Wolf rabbiwolf@clhds.com SJ Abrams Cheder Lubavitch Hebrew Day School 5201 Howard Street Skokie, Illinois 60077

KEEP THIS DOCUMENT WITH YOUR PROPERTY RECORDS

SUBJECT:

Final Case Closure with Continuing Obligations

Paragon Electric Co Inc., 606 Parkway Blvd, Two Rivers, Wisconsin

WDNR BRRTS Activity #: 02-36-000153 Parcel Tax # 053-211-102-001.08

Dear Mr. Ahearn and Rabbi Wolf:

The Wisconsin Department of Natural Resources (WDNR) considers the Paragon Electric Co Inc. site closed, with continuing obligations. No further investigation or remediation is required at this time. However, current and future property owners must comply with the continuing obligations as explained in the *conditions of closure* in this letter. Please read over this letter closely to ensure that current and future property owners comply with all conditions and other on-going requirements. Provide this letter and any attached maintenance plan to anyone who purchases this property.

This final closure decision is based on the correspondence and data provided to WDNR, and is issued under ch. NR 726, Wisconsin Administrative Code. The Northeast Region (NER) Closure Committee reviewed the request for closure on April 11, 2013. The NER Closure Committee reviews environmental remediation cases for compliance with state laws and standards to maintain consistency in the closure of these cases. A conditional closure letter was issued by WDNR on April 11, 2013, and documentation that the conditions in that letter were met was received on June 4, 2013.

Background

The Paragon Electric Co Inc. ("Paragon") site has a long history that began in the late 1980s with the WDNR Remediation and Redevelopment program. In 1989, EPA notified WDNR of spill incidents at Paragon in 1983 and 1984. In 1989 and 1990, Paragon excavated and closed four former underground storage tanks (12,000 gallon fuel oil; 2,000 gallon and 550 gallon cutting oil; and 550 gallon mineral spirits) and no additional actions were required to address those tanks at that time. However, during that environmental work, the presence of trichloroethylene (TCE) contamination in soil and groundwater was a consistent occurrence, therefore, in early 1991, the Department assigned case # 02-36-000153 to the TCE contamination at the property.

Over the course of the last 20+ years numerous site investigations were completed to address the TCE groundwater plume on and off the property. The subsurface at the site consists of a fine to medium poorly graded sand with a clay layer at 40 feet, followed by another 15 feet of sand. Groundwater at the site moves rather rapidly toward Lake Michigan which is located about 400 feet south of the site.

Mr. Ahearn and Rabbi Wolf, June 4, 2013 Final Closure Letter Paragon Electric Co Inc. — BRRTS # 02-36-000153

In 1992, a combined soil vapor and groundwater cleanup was started at the contaminant source below the building. In the mid 1990s, several other groundwater extraction wells were added and installed outside of the building to continue withdrawal of contaminated groundwater that had moved away from the source. The extracted groundwater was aerated in an underground chamber and then discharged into the City of Two Rivers sanitary sewer. The active source remedy resulted in the extraction of over 120 gallons of TCE contaminated groundwater. Additional water table monitoring wells and piezometers were installed on and off the property and the groundwater was monitored for many years. The groundwater contamination case was conditionally closed in September 2006.

In June 2008, in lieu of accepting the conditional closure decision, the responsible party, Invensys, chose to enter the property into the Voluntary Party Liability Exemption (VPLE) process. Subsequently under the VPLE process, Phase I and Phase II investigations (additional soil, vapor, and groundwater sampling) were undertaken. Additional cleanup activities included extraction of soil vapors in portions of the east half of the building and disposal of an underground vessel were completed. The soil vapor extraction remedy resulted in a ~95% reduction in vapors beneath the building and an additional 18 gallons of TCE were removed from the subsurface. All remediation system components have been decommissioned and all monitoring wells have been filled and sealed.

As part of this closure for case #02-36-000153, the following two historic spills at the facility are also be closed on the WDNR database: 1) BRRTS #04-36-039873 — August 6, 1984, Pumping hose failure, 2) BRRTS# 04-36-045266 —November 20, 1990, 70 gallon spill from faulty valve.

Continuing Obligations

The conditions of closure and continuing obligations required were based on the property being used for **Industrial purposes**. The continuing obligations for this site are summarized below. Further details on actions required are found in the section titled *Closure Conditions*.

- Groundwater contamination is present above ch. NR 140, Wis. Adm. Code enforcement standards.
- Residual soil contamination exists that must be properly managed should it be excavated or removed.
- The concrete floor slab in certain parts of the facility must be maintained over contaminated soil and the WDNR must approve any changes to this barrier.
- Site-specific exposure assumptions were used. Current land or property use must be maintained to be protective. If changes to the current property use or land use are planned, an assessment must be made of whether the closure is still protective.
- Remaining soil contamination could result in vapor intrusion if future construction activities occur. If
 new building construction is planned, vapor control technologies will be required for occupied buildings,
 unless the property owner assesses the potential for vapor intrusion, and the WDNR agrees that
 conditions are protective of the new use.

The following WDNR fact sheet, "Continuing Obligations for Environmental Protection", RR-819, was included with this letter, to help explain a property owner's responsibility for continuing obligations on their property. If the fact sheet is lost, you may obtain a copy at http://DNR.wi.gov/files/PDF/pubs/rr/RR819.pdf.

GIS Registry

This site will be listed on the Remediation and Redevelopment Program's internet accessible Geographic Information System (GIS) Registry, to provide notice of residual contamination and of any continuing obligations.

WDNR approval prior to well construction or reconstruction is required for all sites shown on the GIS Registry, in accordance with s. NR 812.09(4) (w), Wis. Adm. Code. To obtain approval, complete and submit Form 3300-254 to the WDNR Drinking and Groundwater program's regional water supply specialist. This form can be obtained on-line at http://DNR.wi.gov/topic/wells/documents/3300254.pdf or at the web address listed below for the GIS Registry.

All site information is also on file at the Northeast Regional WDNR office, at 2984 Shawano Avenue, Green Bay, WI 54313-6727. This letter and information that was submitted with your closure request application, including the maintenance plan, will be included on the GIS Registry in a PDF attachment. To review the site on the GIS Registry web page, visit the RR Sites Map page at http://dnrmaps.wi.gov/imf/imf.jsp?site=brrts2.

Prohibited Activities

Certain activities are prohibited at closed sites because maintenance of a cover barrier is intended to prevent contact with any remaining contamination. When a barrier is required, the condition of closure requires notification of the WDNR before making a change, in order to determine if further action is needed to maintain the protectiveness of the remedy employed. The following activities are prohibited on any portion of the property where the concrete floor slab is required, as shown on the attached Exhibit A (Location Map), unless prior written approval has been obtained from the WDNR:

- removal of the existing barrier;
- replacement with another barrier;
- excavating or grading of the land surface;
- filling on covered or paved areas;
- plowing for agricultural cultivation;
- construction or placement of a building or other structure;
- changing the use or occupancy of the property to a residential exposure setting, which may include certain uses, such as single or multiple family residences, a school, day care, senior center, hospital, or similar residential exposure settings.

Closure Conditions

Compliance with the requirements of this letter is a responsibility to which the current property owner and any subsequent property owners must adhere. WDNR staff will conduct periodic prearranged inspections to ensure that the conditions included in this letter and the attached maintenance plans are met. If these requirements are not followed, the WDNR may take enforcement action under s. 292.11, Wisconsin Statutes to ensure compliance with the specified requirements, limitations or other conditions related to the property.

Residual Groundwater Contamination (ch. NR 140, 812, Wis. Adm. Code)

Groundwater contamination greater than enforcement standards is present both on this contaminated property and off this contaminated property, as shown on the attached **Figure B.3.b (Groundwater Isoconcentration Map)**. Affected property owners were notified of the presence of groundwater contamination. If you intend to construct a new well, or reconstruct an existing well, you will need prior WDNR approval.

Residual Soil Contamination (ch. NR 718, chs. 500 to 536, Wis. Adm. Code or ch. 289, Wis. Stats.)

Soil contamination remains under the concrete floor slab in limited areas below the storage area, press room, and paint area as indicated on the attached Exhibit A (Location Map). If soil in the specific locations described

Mr. Ahearn and Rabbi Wolf, June 4, 2013 Final Closure Letter Paragon Electric Co Inc. — BRRTS # 02-36-000153

above is excavated in the future, the property owner at the time of excavation must sample and analyze the excavated soil to determine if contamination remains. If sampling confirms that contamination is present, the property owner at the time of excavation will need to determine whether the material is considered solid or hazardous waste and ensure that any storage, treatment or disposal is in compliance with applicable standards and rules. In addition, all current and future owners and occupants of the property need to be aware that excavation of the contaminated soil may pose an inhalation or other direct contact hazard and as a result special precautions may need to be taken to prevent a direct contact health threat to humans.

Cover or Barrier (s. 292.12 (2) (a), Wis. Stats.)

The concrete floor slab that exists in the location shown on **Exhibit A (Location Map)** shall be maintained in compliance with **Attachment D: Cover Barrier Maintenance Plan** in order to minimize the infiltration of water and prevent additional groundwater contamination that would violate the groundwater quality standards in ch. NR 140, Wis. Adm. Code.

A cover or barrier for industrial land uses, or certain types of commercial land uses may not be protective if use of the property were to change such that a residential exposure would apply. This may include, but is not limited to single or multiple family residences, a school, day care, senior center, hospital or similar settings. Before using the property for such purposes, you must notify the WDNR to determine if additional response actions are warranted. A request may be made to modify or replace a cover or barrier. The replacement or modified cover or barrier must be protective of the revised use of the property, and must be approved in writing by the WDNR prior to implementation.

Attachment D: Cover Barrier Maintenance Plan and Inspection Log are to be kept up-to-date and on-site. The inspection log should not be submitted to WDNR unless requested

This property may not be used or developed for a residential, commercial, agricultural or other non-industrial use, unless prior written approval has been obtained from the WDNR. An investigation and remedial action to meet applicable soil cleanup standards may be required at that time.

Vapor Mitigation or Evaluation (s. 292.12 (2), Wis. Stats.)

Vapor intrusion is the movement of vapors coming from volatile chemicals in the soil or groundwater, into buildings where people may breathe air contaminated by the vapors. Vapor mitigation systems are used to interrupt the pathway, thereby reducing or preventing vapors from moving into the building.

Soil vapor beneath the storage area, press room, and paint area of the Paragon Electric building as shown in Exhibit A (Location Map) contain chlorinated solvent vapors at levels that would pose a long-term risk to human health, if allowed to migrate into an occupied building. Case closure was based on the property being used for industrial purposes and currently contains a vacant industrial building. Therefore, use of this property is restricted to the following uses: industrial or manufacturing. If changes in property or land use are planned, the property owner must notify the WDNR and assess whether the closure is still protective. Additional response actions may be necessary.

In addition, before a new building is constructed over vapor contaminated soil, the property owner must notify the WDNR. Vapor control technologies are required for construction of occupied buildings unless the property owner assesses the vapor pathway and WDNR concurs that property conditions are protective of the new use.

Depending on site-specific conditions, construction over contaminated materials may result in vapor migration of contaminants into enclosed structures or migration along newly placed underground utility lines. The potential for vapor inhalation and means of mitigation should be evaluated when planning any future redevelopment, and measures should be taken to ensure the continued protection of public health, safety, welfare and the environment at the site.

General Wastewater Permits for Construction Related Dewatering Activities

The WDNR's Water Quality Program regulates point source discharges of contaminated water, including discharges to surface waters, storm sewers, pits, or to the ground surface. This includes discharges from construction related dewatering activities, including utility and building construction.

If you or any other person plan to conduct such activities, you or that person must contact that program, and if necessary, apply for the necessary discharge permit. Additional information regarding discharge permits is available at http://DNR.wi.gov/topic/wastewater/GeneralPermits.html. If residual soil or groundwater contamination is likely to affect water collected in a pit/trench that requires dewatering, a general permit for Discharge of Contaminated Groundwater from Remedial Action Operations may be needed. If water collecting in a pit/trench that requires dewatering is expected to be free of pollutants other than suspended solids and oil and grease, a general permit for Pit/Trench Dewatering may be needed.

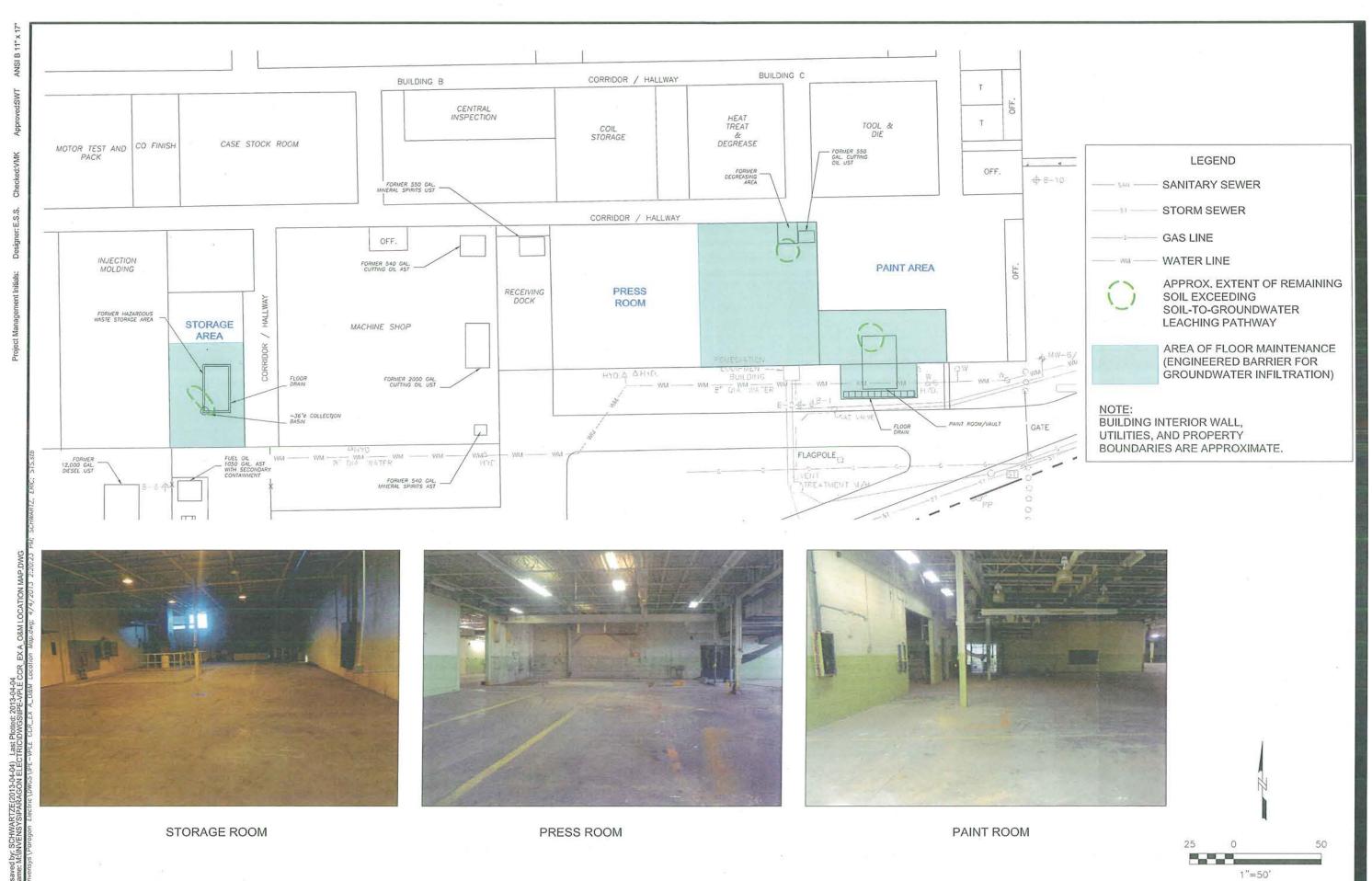
Post Closure Notification Requirements

Please send written notifications in accordance with the above requirements to the Northeast Regional office in Green Bay, to the attention of the Environmental Program Associate.

We appreciate the efforts of Invensys to restore the environment at this site and enroll the property in the Voluntary Party Liability Exemption (VPLE) process. We will be issuing Invensys a final invoice for WNDR oversight fees under the VPLE process; we received the environmental insurance fee paid by Invensys on April 2, 2013. The Certificate of Completion will be issued upon payment of the final invoice. If you have any questions regarding this closure decision or anything outlined in this letter, please contact Annette Weissbach at 920-662-5165.

Sincerely,

Roxanne N. Chronert, Team Supervisor


Northeast Remediation & Redevelopment Program

Attachments:

- Groundwater Isoconcentration Map (Figure B.3.b)
- Remaining Soil Contamination Map (Exhibit A Location Map)
- Cover Barrier Maintenance Plan (Attachment D)
- Publication RR-819 Continuing Obligations Factsheet

cc: Vasanta Kalluri – AECOM

Former Paragon E WDNR BRRTS# 02 Project No.: 602360

ATTACHMENT D : Cover Barrier Maintenance Plan

Paragon Electric Site, Two Rivers, Wisconsin WDNR BRRTS No. 02-36-000153

PROPERTY LOCATED AT:

606 Parkway Boulevard, Two Rivers, Wisconsin (the "Property")

PROPERTY LEGAL DESCRIPTION: NW 1/4 NE 1/4 & NE 1/4 NE 1/2 OF S11 T19N R24E PT OF SUB GOVT LOT 1 LYING N OF C & N W RR ROW ALSO SW 1/4 SE 1/4 S2 T19N R24E TRACTS REC IN V 256 P 261 & V 499 P 327 OF DEEDS ALSO THIEDE& GOELE D ALL OF BLK 3 & VAC STREET IN V 249 P 197 OF DEEDS

PARCEL TAX #: 053-211-102-001.08

Introduction

The Wisconsin Department of Natural Resources ("DNR") has approved closure of the remedial project at the Property to industrial standards with, which is often the case in industrial remediation projects, the installation and maintenance of a cover barrier over three limited locations in the building located at the Property. This document constitutes the Maintenance Plan required by s. NR 724.13(2), Wisconsin Administrative Code for the cover barrier at the Property, which will consist of the concrete floor of the Property's existing building.

More site-specific information about this Property may be found in: (i) the case file in the DNR Northeast regional office; (ii) BRRTS on the Web (DNR's internet based data base of contaminated sites): http://dnr.wi.gov/botw/SetUpBasicSearchForm.do (iii) GIS Registry PDF file for further information on the nature and extent of contamination: http://dnrmaps.wisconsin.gov/imf/imf.jsp?site=brrts2; and (iv) the DNR project manager for Manitowoc County.

Soil Description

Residual low level impacts of trichloroethene and tetrachloroethene (chlorinated solvents) are located at a depth of 0 to 6 feet in the soil in several places at the Property, as shown on the attached Exhibit A (Figure D.1). DNR desires to minimize the soil-to-groundwater leaching of these solvents through the maintenance of a cover barrier, and has acknowledged that such soil may remain in place provided that a cover barrier, such as the concrete slab of the Property's existing building, is maintained.

Description of the Cover Barrier and Maintenance Activities

The cover barrier consists of the approximately 6-inch thick concrete floor slab in the Property's existing building. The areas of the cover barrier to be maintained are in the southeast portion of the building, specifically in the Storage, Press, and Paint areas, as shown in Exhibit A (the "Designated Areas"). The cover barrier over the Designated Areas will be inspected by the owner or its designated representative once a year for deterioration, cracks and other potential problems that may result in leaching of the solvents noted above into underlying groundwater. Any needed repairs to the said cover barrier will be promptly scheduled and completed by the owner. A log of the inspections and any repairs and recommendations will be maintained by the owner at the Property and is included as Exhibit B, Cap Inspection Log. The inspection log will be available for submittal to or inspection by DNR representatives upon their request.] Any soil that is excavated from the Designated Areas must be tested, treated, and disposed of by the owner in accordance with applicable law. If any portion of the cover barrier overlying any portion of the Designated Areas is removed or replaced, the replacement barrier must be equally impervious and subject to the same maintenance and inspection guidelines outlined in this

Maintenance Plan (unless indicated otherwise by the DNR or its successor). The owner will maintain a copy of this Maintenance Plan at the Property and make it available to all interested parties (i.e. on-site employees, contractors, future owners, etc.). This Maintenance Plan can be amended or withdrawn by the owner and its successors with the written approval of WDNR.

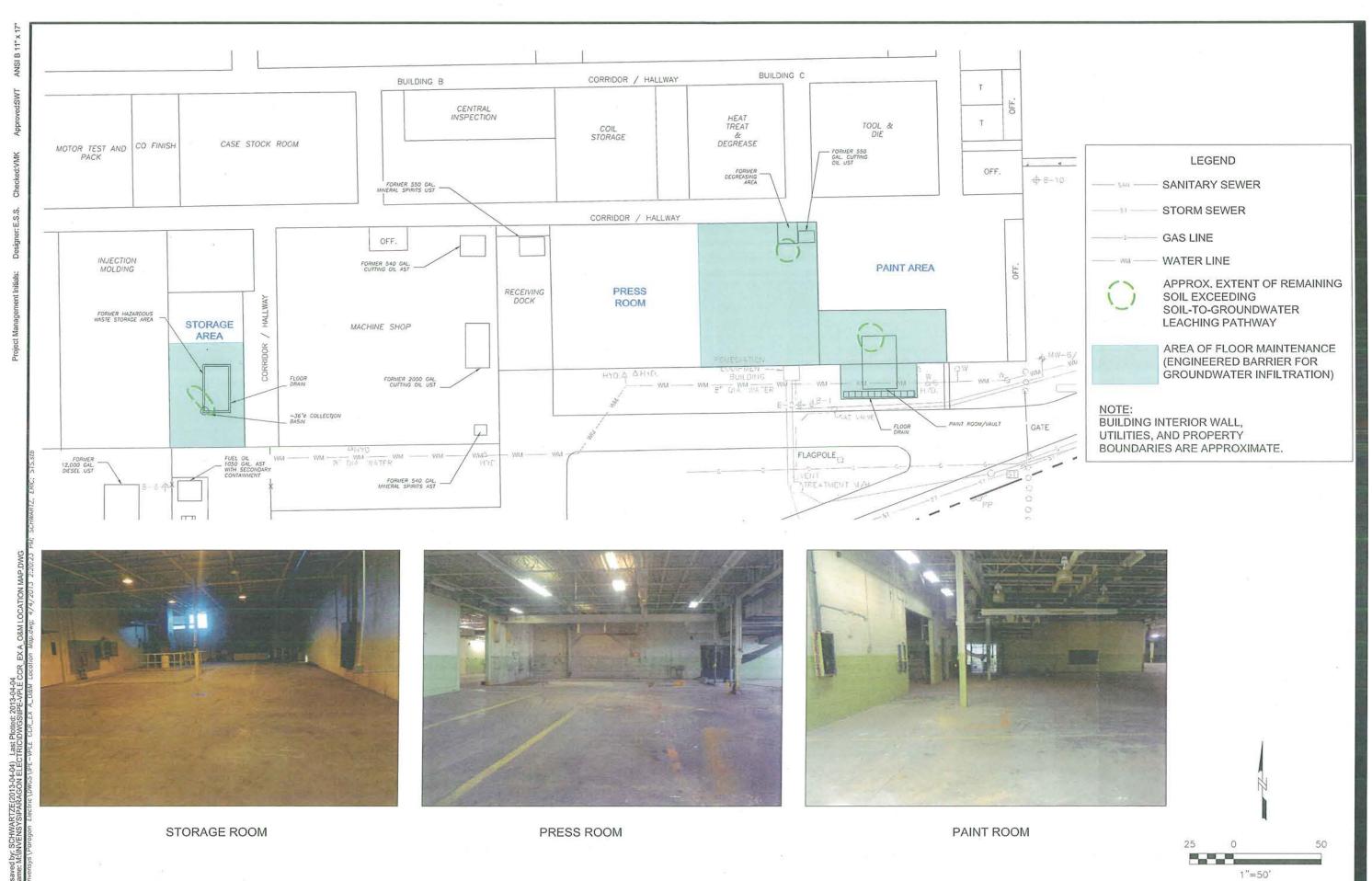
Notwithstanding the above, the owner will not modify the cover barrier over the Designated Areas in a manner that will adversely affect the soil-to-groundwater leaching pathway of the above cited solvents unless prior written approval has been obtained from the DNR.

Contact Information

Responsible Party:

Mr. Paul A. Ahearn Ranco Incorporated of Delaware c/o Invensys Inc. 33 Commercial Street, B51-2J Foxboro, Massachusetts 02035 Phone: (508) 549-4949

Owner:


Lake Bluff Associates Continuation Partnership, No. 1, L.P. c/o Rabbi Yitzchok Wolf SJ Abrams Cheder Lubavitch Hebrew Day School Central Office 5201 Howard Street Skokie, Illlinois 60077 Phone: 847-675-6777

Consultant:

Mr. Mark W. Magee Or Ms. Vasanta M. Kalluri
AECOM AECOM
1035 Kepler Drive 717, 17th Street, Suite 2600
Green Bay, Wisconsin 54311 Denver, Colorado 80202
Phone: (920) 406-3141 Phone: (303) 228-3058

DNR:

Ms. Annette Weissbach Wisconsin Department of Natural Resources 2984 Shawano Avenue Green Bay, Wisconsin 54307-0448 Phone: (920) 662-5165

Exhibit B

Cover Barrier Inspection Log Former Paragon Electric Facility Two Rivers, Wisconsin WDNR BRRTS No. 02-36-000153

Inspection Date	Inspector	Condition of Cover Barrier	Recommedations	Have recommendations from previous inspection been implemented
	Y .	·		
*				:
				-
	·			

State of Wisconsin DEPARTMENT OF NATURAL RESOURCES 2984 Shawano Avenue Green Bay WI 54313-6727

Scott Walker, Governor Cathy Stepp, Secretary Telephone 608-266-2621 Toll Free 1-888-936-7463

TTY Access via relay - 711

April 11, 2013

VPLE BRRTS # 06-36-551669

Mr. Paul A. Ahearn paul.ahearn@invensys.com Invensys, Inc. 33 Commercial Street, B51-2J Foxboro, MA 02035 Rabbi Yitzchok Wolf rabbiwolf@clhds.com SJ Abrams Cheder Lubavitch Hebrew Day School 5201 Howard Street Skokie, Illinois 60077

Subject:

Conditional Closure Decision

with Requirements to achieve Final Closure

Paragon Electric Co Inc., 606 Parkway Blvd, Two Rivers, Wisconsin

BRRTS case # 02-36-000153

Dear Mr. Ahearn and Rabbi Wolf,

On April 11, 2013, the Department of Natural Resources, (the "Department") Northeast Region Closure Committee (the "Committee") reviewed your request for closure of the case described above. The case was initially reviewed and approved for conditional closure in 2006, however, additional investigation and remediation has occurred since then. This April 11, 2013 conditional closure decision includes an evaluation of all site data and replaces the conditional closure letter dated September 27, 2006. The Committee reviews environmental remediation cases for compliance with state rules and statutes to maintain consistency in the closure of these cases. After careful review of the closure request, the Committee has determined that the chlorinated solvent contamination on the property appears to have been investigated and remediated to the extent practicable under site conditions.

Previously, on January 3, 2008, upon request by Invensys, the Department issued a *Technical Assistance Clarification for Meeting Three Possible Closure Scenarios*, in lieu of accepting the September 2006 conditional closure decision. Invensys chose to enter the property into the Voluntary Party Liability Exemption (VPLE) process and as a result the Department approved the property to proceed in the VPLE process in June 6, 2008, to address the remainder of the industrial portions of the property. Since that time Phase I and Phase II investigations, remediation of soil vapors, and disposal of an underground vessel have been completed.

The Paragon Electric Co Inc. case has been remediated to Department standards in accordance with s. NR 726.05, Wis. Adm. Code and will be closed if the following condition is satisfied:

MONITORING WELL ABANDONMENT

All remaining monitoring wells must be properly abandoned in accordance with ch. NR 141, Wis. Adm. Code. Documentation of well abandonment must be submitted to me on Form 3300-005, found at http://dnr.wi.gov/topic/DrinkingWater/documents/forms/3300005.pdf or provided by the Department of Natural Resources.

CONTINUING OBLIGATIONS AND RESPONSIBILITIES

As part of the approval of the closure of this case, the property owner will be responsible for maintaining the following continuing obligations:

- Groundwater contamination is present above ch. NR 140, Wis. Adm. Code enforcement standards.
- Residual soil contamination exists that must be properly managed should it be excavated or removed.
- The concrete floor slab must be maintained over residual contaminated soil in certain parts of the building and the DNR must approve any changes to this barrier.
- Site-specific exposure assumptions were used. Current land or property use must be maintained to be
 protective. If changes to the current property use or land use are planned, an assessment must be made of
 whether the closure is still protective.
- Remaining soil contamination could result in vapor intrusion if future construction activities occur. If new building construction is planned, vapor control technologies will be required for occupied buildings, unless the property owner assesses the potential for vapor intrusion, and the DNR agrees that conditions are protective of the new use.

A final, detailed closure letter will be issued after the monitoring well abandonment forms are received. Furthermore, since the property is enrolled in the VPLE Process, a Certificate of Completion (COC) will also be issued when all Closure and GIS Registry documentation is completed. The closure of the chlorinated solvent groundwater contamination is relying on natural attenuation to eventually restore groundwater quality to meet ch. NR 140 Wisconsin Administrative Code Enforcement Standards. Because the case is being closed prior to meeting standards, Invensys has paid an environmental insurance fee which was received by the Department on April 1, 2013. This insurance fee is in addition to the required VPLE oversight fees. Invensys will be receiving a final invoice for oversight costs within the next 60 days.

We appreciate your efforts to restore the environment at this site. If you have any questions regarding this letter, please contact me at (920)662-5165 or Annette.weissbach@wisconsin.gov.

Sincerely,

Annette Weissbach

Hydrogeologist

Remediation & Redevelopment Program

e-cc:

Vasanta Kalluri - AECOM

Michael Prager - RR/5

BRRTS #: 02-36-000153 **FID** #: 436042310

SITE NAME: PARAGON ELECTRIC CO INC

Associated VPLE Site

To view the Certificate of Completion (COC) for this site click on the link below:

BRRTS # SITE NAME

06-36-551669 PARAGON ELECTRIC CO INC (FORMER) (VPLE)

Case Closure - GIS Registry

Form 4400-202 (R 11/12)

Page 1 of 13

SUBMIT AS UNBOUND PACKAGE IN THE ORDER SHOWN

Notice: Pursuant to ch. 292, Wis. Stats., and chs. NR 726 and 746, Wis. Adm. Code, this form is required to be completed for case closure requests. The closure of a case means that the Department of Natural Resources (DNR) has determined that no further response is required at that time based on the information that has been submitted to the DNR. All sections of this form must be completed unless otherwise directed by the Department. Incomplete forms will be considered "administratively incomplete" and processing of the request will stop until required information is provided. Any section of the form not relevant to the case closure request must be fully filled out or explained on a separate page and attached to the relevant section of this form. DNR will consider your request administratively complete when the form and all sections are completed, all attachments are included, and the applicable fees required under ch. NR 749, Wis. Adm. Code, are included, and sent to the proper destinations. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Open Records Law (ss. 19.31 - 19.39, Wis. Stats.).

Site Information							
BRRTS No.	Parcel ID No.						
02-36-000153	053-211-102-001.08						
BRRTS Activity (Site) Name	WTM Coordinates						
Fmr. Paragon Electric Company, Inc.	713189 Y	41016	7				
Street Address	City	State	ZIP Code				
606 Parkway Boulevard	Two Rivers	wi	54241				
Responsible Party (RP) Name							
Paul A. Ahearn							
Company Name							
Ranco Incorporated of Delaware c/o Invensys							
Street Address	City	State	ZIP Code				
33 Commercial Street, B51-2J	Foxboro	MA	02035				
Phone Number	Email						
(508) 549-4949	508) 549-4949 paul.ahearn@invensys.com						
Check here if the RP is the owner of the source property.							
Environmental Consultant Name							
Vasanta M. Kalluri							
Consulting Firm							
AECOM							
Street Address	City	State	ZIP Code				
717 17th Street, Suite 2600	Denver	CO	80202				
Phone Number	Email						
(303) 228-3058	vasanta.kalluri@aecom.com						
Acres Ready For Use 26.7	Voluntary Party Liability Exemption Site?	Yes	○ No				
Fees and Mailing of Closure Request	A		200				
If any section is not relevant to the case closure request, you must relevant section of the form. All information submitted shall be legit considered incomplete until corrected.	fully explain the reasons why and attach that ble. Providing illegible information may result	explanation in a subm	on to the nittal being				
 Send a copy of page one of this form and the applicable ch. No Program Associate at http://dnr.wi.gov/topic/Brownfields/Co 	R 749, Wis. Adm. Code, fee(s) to the DNR rontact.html. Check all fees that apply:	egional Er	nvironmental				
\$750 Closure Fee	\$200 GIS Registry Fee for Soil						
\$250 GIS Registry Fee for Groundwater Lost Well(s)	Total Amount of Payment \$						

Send one paper copy and one e-copy on compact disk of the entire closure package to the Regional Project Manager
assigned to your site. Submit as <u>unbound</u>, <u>separate documents</u> in the order and with the titles prescribed by this form. For
electronic document submittal requirements, see http://dnr.wi.gov/files/PDF/pubs/rr/RR690.pdf.

Site Summary

If any section is not relevant to the case closure request, you must fully explain the reasons why and attach that explanation to the relevant section of the form. All information submitted shall be legible. Providing illegible information may result in a submittal being considered incomplete until corrected.

1. General Site Information and Site History

A. Site Location: Describe the physical location of the site, both generally and specific to its immediate surroundings. The former Paragon Electric Company, Inc. site (Site) is located at 606 Parkway Boulevard, Two Rivers, Manitowoc County, Wisconsin. Paragon Electric Company, Inc. merged in to Ranco Incorporated of Delaware on March 21, 2003.

The Site is located in the southern 1/2 of Section 2 and the northern 1/2 of Section 11, Township 19 North, Range 24 East. The Site is bordered by 7th Street on the north side, Bucholtz Street on the east side, a railroad right-of-way on the south side and Columbus Street on the west side. The Site is approximately 26.7 acres in area. Site features include the former manufacturing/office building, two asphalt parking areas, an access road, and grassy areas, as shown in Figure B.1.a. Figure B.2.b provides details of the manufacturing building interiors and utility locations. The original plant was built in 1957. The most recent 126,000 square feet (ft) addition was built in 1978. The area north and east of the Site is predominantly residential. The area west of the Site is predominantly commercial/industrial in use. The south (downgradient) property boundary is bordered by the Wisconsin Central Ltd. railroad right-of-way, followed by State Highway 42 and some residential and commercial properties including a gas station. Lake Michigan is located south of the highway, approximately 400 ft from the Site property line.

- B. Prior and current site usage: Specifically describe the current and historic occupancy and types of use. Historically, the Site was used to manufacture electrical components since 1957. Before 1957, the Site was partially used as farm land and was partially undeveloped land. Manufacturing operations occurred on the Site from 1957 through late 1990s. After manufacturing operations ceased, the Site was used as a storage facility (warehouse). Presently, the property is unoccupied and unused.
- C. Describe how and when site contamination was discovered.

Trichloroethene (TCE), a chlorinated solvent, was used for parts-cleaning in the former manufacturing process on the Site. In March 1985, soil and groundwater TCE impacts were discovered on the site during subsurface exploration, which was initiated in response to a potential release of TCE. In August 1991, a subsurface exploration for characterizing soil and groundwater conditions at the Site was conducted. Results indicated the presence of chlorinated-solvent-contaminated unsaturated soil at the contaminant source area (former degreasing pit). Chlorinated volatile organic compounds (VOCs), namely, TCE, cis 1,2-dichloroethylene (1,2-DCE), and tetrachloroethene (PCE), were identified near the source area. The WDNR assigned an Environmental Remediation Program Bureau for Remediation and Redevelopment Tracking System (BRRTS) number (02-36-000153) to the TCE release on February 24, 1989.

The TCE release case was investigated, remediated and conditionally closed by the WDNR on September 27, 2006. On June 6, 2008, Invensys Inc. was approved by the WDNR to proceed with Voluntary Party Liability Exemption (VPLE) process BRRTS number (06-36-551669). Currently, both BRRTS numbers 02-36-000153 and 06-36-551669 are open. A Phase I Environmental Site Assessment (ESA) was conducted under the VPLE process to identify Recognized Environmental Concerns (RECs) on the site. Chlorinated VOCs, namely PCE, TCE and degradation products, remained the primary contaminants on site. Other RECs identified during the Phase I ESA were also investigated during the Phase II ESA and addressed as necessary.

D. Describe the type(s) and source(s) or suspected source(s) of contamination.

The primary contaminants on the site are chlorinated VOCs (PCE, TCE, 1,2-DCE and vinyl chloride). The source of these contaminants are historical parts-cleaning operations in the Degreaser Pit, painting operations in the Paint area and chemical storage in the Storage area as shown in Figure B.1.b.

In this document,

- The former Painting area and Paint Vault area are referred to as the Paint area,
- The former Degreaser Pit located in the Press room is referred to as the Press area, and
- The former Hazardous and Solid Waste Storage area is referred to as the Storage area.
- E. Other relevant site description information (or enter Not Applicable).

As mentioned in 1.C above, the original TCE release case has been conditionally closed by the WDNR. This closure request provides information obtained since 2008 related to closure of the site under the VPLE process. Historical data is referred to only where relevant.

F. List BRRTS activity site name and number for all other BRRTS activities at this property, including closed cases. PLT-606 Parkway Blvd (Spill- Historic) - 04-36-039873
Paragon Electric Company, Inc. (ERP- Cond) - 02-36-000153
600 BLK Parkway Blvd (Spill - Open) - 04-36-045266
Paragon (Invensys) (General Property) - 07-36-550503

Former Paragon Electric Co. Inc. (VPLE- Open) - 06-36-551669

G. List BRRTS activity/site name(s) and number(s) for all properties immediately adjacent to this site, and those impacted by contamination from this site.

BRRTS Activity/ Site Names and Numbers of all neighboring properties within 1200 feet of the Site (see Figure B.1.c): Wisconsin Public Service (Closed) - 03-360-02121 (Northwest of the Site)

Citgo Express (Closed) - 03-361-74861 (South of the Site)

Two Rivers Bulk Plant (Closed) - 02-362-22781 (East of the site)

H. **Current zoning** (e.g. industrial, commercial, residential) for the site and for neighboring properties, and how verified (Provide documentation in Attachment G).

The Site is zoned industrial. The neighboring properties are zoned industrial, commercial and residential. A City of Two Rivers District Zoning Map is provided in Attachment G.

2. General Site Conditions

A. Soil/Geology

 Describe soil type(s) and relevant physical properties, thickness of soil column across the site, vertical and lateral variations in soil types.

The Site is located in an area of surficial lake deposits, which consist of organic matter and stratified clay, silt and sand. The on-site soil borings revealed fine to medium, poorly graded sand with a Unified Soil Classification System (USCS) designation of SP. Based on soil boring logs of monitoring wells installed near the Site, sand deposits appear to be underlain by a thin layer (1 to 5 ft in thickness) of clay at a depth of approximately 40 ft below ground surface (bgs). Below this layer, up to 15 ft of fine sand underlain by a dense clay layer was observed.

- ii. Describe the composition, location and lateral extent, and depth of fill or waste deposits on the site.

 A obvious fill layer was not observed in soil borings completed on the site. Possible fill layers extended from 2 to 7 feet below ground surface in sandy soils.
- iii. Depth to bedrock, bedrock type, and whether or not it was encountered during the investigation. Private well logs in the vicinity of the Site indicate that the bedrock is approximately 90 ft bgs. Bedrock in the area consists of undifferentiated Silurian and Devonian dolomite, which ranges from 0 to 750 ft in thickness (Hydrologic Investigations Atlas, HA-432, 1973). Bedrock was not encountered during Site investigation.
- iv. Describe the nature and locations of current surface cover(s) across the site (e.g. natural vegetation, landscaped areas, gravel, hard surfaces, and buildings).
 - As seen in Figures B.1.a and B.1.b, the site is mainly occupied by a large office/manufacturing building, the remaining area of the Site is occupied by two asphalt parking lots to west and southwest of the building, grassy areas with some trees and access roads.

B. Groundwater

Discuss depth to groundwater and piezometric elevations. Describe and explain depth variations, and whether free
product affects measurement or water table elevation. Describe the stratigraphic unit(s) where water table was found or
which were measured for piezometric levels.

The groundwater table was encountered approximately 7 to 14 ft bgs in monitoring wells within the upper fine to medium sand layer.

 Discuss groundwater flow direction(s), shallow and deep. Describe and explain flow variations, including fracture flow if present.

The groundwater flow direction is south to southeast at a horizontal hydraulic gradient of approximately 0.007 ft per foot toward Lake Michigan. Regional groundwater flow is also likely to be influenced by the West Twin River located approximately 1 mile northeast of the Site.

iii. Discuss groundwater flow characteristics: hydraulic conductivity, flow rate and permeability, or state why this information was not obtained.

The hydraulic conductivities in existing wells PZ-7, PZ-14, and EXT-15 (based on field test data), range from 1x10-4 centimeters per second (cm/sec) in EXT-15 to 2 x10-3 cm/sec in PZ-7. Correspondingly, the calculated horizontal groundwater flow velocity varies from 2 x10-6 cm/sec to 5 x10-5 cm/sec (approximately 2 to 52 ft per year)

iv. Identify and describe locations/distance of potable and/or municipal Wells within 1200 feet of the site.

The City of Two Rivers obtains its municipal water supply from Lake Michigan through a water intake pipe located about 6,000 feet offshore from the municipal sewage treatment plant. The water intake is located approximately 7000 feet southeast of the Site. There are no known potable wells within 1200 feet of the site. The Site and adjacent properties (located within the City limits) obtain drinking water from the municipal water supply.

3. Site Investigation Summary

A. General

Provide a brief summary of the site investigation history. Reference previous submittals by name and date. Describe site investigation activities undertaken since the last submittal for this project and attach the appropriate documentation in Attachment C, if not previously provided.

As mentioned in 1.C earlier, the original TCE release case has been conditionally closed by the WDNR. This closure request provides information obtained since 2008 related to closure of the site under the VPLE process. Historical data is referred to only where relevant.

The Site entered the VPLE Program on May 28, 2008 by submitting a Request for VPLE Eligibility Determination (Form 440 and a Work Plan for Site Assessment. The application was accepted by the WDNR on June 6, 2008. A Phase I ESA was completed in accordance with the VPLE Program requirements and a report was submitted to the WDNR on December 2, 2008. Multiple RECs were identified in Phase I ESA that required further investigation or action. A work plan to address the RECs was submitted to the WDNR on December 2, 2008. The Work Plan was approved by the WDNR on September 1, 2009 after further modifications.

The Phase II ESA included investigation of RECs, including collecting soil, groundwater and soil vapor samples. The Phase II ESA report was submitted to the WDNR on September 16, 2010. Based on the results of the Phase II ESA, a work plan for sampling and remedial action was submitted to the WDNR on May 27, 2011. The work plan was approved by the WDNR on July 28, 2011 after further modifications.

Remedial action included installing and operating a soil vapor extraction system to address chlorinated VOCs in soil and soil vapor. Remedial action also included investigation, removal and disposal of an underground vessel located southwest of the Paint room.

- ii. Identify whether contamination extends beyond the source property boundary, describe the off-site media (e.g., soil, groundwater, etc.) impacted, and the vertical and horizontal extent of off-site impacts.

 TCE, 1,2 DCE and vinyl chloride concentrations in groundwater exceeding NR 140 Enforcement Standard (ES) and Preventive Action Limit (PAL) extend downgradient beyond the property boundary. The impacts extend vertically from the water table (6 to 14 feet below ground surface) to approximately 40 feet below ground surface. Figures B.3.a and B.3.b show the vertical and lateral extents of the ES and PAL exceedances.
- iii. Identify any structural impediments to the completion of site investigation and/or remediation and whether these impediments are on the source property or off the source property. Identify the type and location of any structural impediment (e.g., structure) that also serves as the performance standard barrier for protection of the direct contact or the groundwater pathway.

There were no structural impediment to the completion of site investigation or remediation. The concrete floor slab in the Press area, Paint area and Storage area serve as performance standard barrier for the protection of infiltration to groundwater (groundwater pathway).

B. Soil

 Describe degree and extent of soil contamination at and from this site. Relate this to known or suspected sources and known or potential receptors/migration pathways.

Soil contamination at this site is related to chlorinated VOCs (PCE and TCE) resulting from storage and use in painting and parts-cleaning operations. Arsenic is considered to be from natural sources and characteristic of background concentrations.

The soil concentrations do not exceed direct contact residual contaminant levels (RCLs) for either industrial and non-industrial settings. The low level soil concentrations exceed soil-to-groundwater leaching pathway RCL in the Storage, Press and Paint areas within the manufacturing building. No soil impacts are present outside the building. Off-site impacts related to the release on the Site are not present.

- ii. Describe the level and types of **soil contaminants** found in the upper four feet of the soil column. The soil concentrations do not exceed direct contact residual contaminant levels (RCLs) for both industrial and non-industrial settings. The low level soil concentrations exceed soil-to-groundwater leaching pathway RCL in the Storage, Press and Paint areas in the top four feet within the manufacturing building. See Tables A.2 and A.3 and Figures B.2.a (1) through (3), B.2.b(1) through (3) for details.
- iii. Identify the ch. NR 720, Wis. Adm. Code, method used to establish the soil cleanup standards for this site: for example, a Residual Contaminant Level (RCL), a Site-Specific Residual Contaminant Level (SSRCL), or a Performance Standard as determined under ss NR 720.09, 720.11 and 720.19, Wis. Adm. Code. Identify the land use classification that was used to establish cleanup standards. Provide a copy of the supporting calculations/information in Attachment C.

Generic RCLs for industrial and non-industrial exposure were used as the soil cleanup standards. Site-specific RCLs were not calculated. Therefore no calculations are included in Attachment C.

C. Groundwater

i. Describe degree and extent of groundwater contamination at or from this site. Relate this to known or suspected sources and known or potential receptors/migration pathways. Specifically address any potential or existing impacts to water supply wells or interception with building foundation drain systems.

The groundwater contamination at the Site is related chlorinated VOCs (PCE, TCE, 1,2-DCE, vinyl chloride) originating from the Degreaser pit in the Press Room that was historically used for parts cleaning. The groundwater chlorinated VOCs plume migrated in southeast direction, along the groundwater flow direction, beyond the property line. Figures B.3.a and B.3.b provide the vertical and lateral extents of ES and PAL exceedances based on the most recent data. The offsite ES exceedances are expected to naturally attenuate without adversely affecting Lake Michigan as discussed in the previous Site closure request in January 2006, when the WDNR issued conditional closure to the TCE release case. Since conditional closure was granted in 2006, the groundwater concentrations are continuing to decrease as seen in the 2011 and 2013 sampling results.

The City of Two Rivers obtains its drinking water from an intake in Lake Michigan. ES exceedances related to the Site are not expected to affect the drinking water intake, which is located 7,000 feet from the Site. There are no known impacts to the utilities or the building foundation drains.

Describe the presence of free product at the site, including the thickness, depth, and locations.
 Free product was not encountered on the Site.

D. Vapor

i. Describe how the vapor migration pathway was assessed, including locations where vapor or indoor air samples were collected. If the vapor pathway was not assessed, explain reasons why.

To investigate the potential for indoor vapor migration from subsurface impacts, sub-slab vapor sampling using High Purge Volume (HPV) sampling technique was completed at this site in the Storage area, Machine Shop area, Receiving Dock area, Press Room area and Paint area. The sampling procedures and results were submitted to the WDNR in the Phase II ESA report. The results are also summarized on Table A.5 and Figure B.4.a (1). Based on the results of the HPV sampling, where TCE concentrations exceeding the action levels were observed, a remedial action was implemented on the site. Post-remedial sub-slab soil vapor samples collected using summa canisters indicate that acceptable soil vapor concentrations have been achieved. The results are also summarized on Table A.5 and Figure B.4. a (2)

ii. Identify the applicable DNR action levels and the land use classification used to establish them. Describe where the DNR action levels were reached or exceeded (e.g., sub slab, indoor air or both).

EPA Region III RBC Non-Residential Sub-Slab Soil Gas Screening levels for a large industrial or commercial building (attenuation factor of 0.001) were used as the action levels. TCE was observed at 30,200 ug/m3 (Storage area) and 14,400 ug/m3 (in V-5 located on the border of Press Room and Paint area), which are above the EPA Non-Residential Sub-Slab Soil Gas Screening Levels of 880 ug/m3. The concentrations at other sampling locations were below the Screening Level. As the remedial action to address the TCE exceedances, soil vapor extraction (SVE) system was installed and operated for approximately 1 year. The post-remedial sub-slab soil vapor samples were 64.8 ug/m3 in the Storage area, 1,120 ug/m3 in the Press area and 405 ug/m3 in the Paint area. The remedial action reduced TCE soil vapor concentrations by 99.8% in the Storage area, 92% in the Press Room area and 97% in the Paint area.

E. Surface Water and Sediment

i. Identify whether surface water and/or sediment was assessed and describe the impacts found. If this pathway was not assessed, explain why.

The assessment of surface water and sediments is not needed for this project.

 Identify any surface water and/or sediment action levels used to assess the impacts for this pathway and how these were derived. Describe where the DNR action levels were reached or exceeded.
 Not applicable.

4. Remedial Actions Implemented and Residual Levels at Closure

A. General: Provide a brief summary of the remedial action history. List previous remedial action report submittals by name and date. Identify remedial actions undertaken since the last submittal for this project and provide the appropriate documentation in Attachment C.

Prior to 2002, remedial action was implemented on the Site for the TCE release case that was conditionally closed in 2006. The remedial actions included SVE, and groundwater sparging and extraction. These historic remedial actions and related sampling were documented in WDNR submittals prior to 2006 and are not discussed in this closure request submittal. The list of pre-2006 remediation documents is as follows:

- 1) April 23, 1992: Results of Site Assessment and Corrective Action
- 2) August 12, 1993: Progress Report and Downgradient Groundwater Extraction Work Plan

3) April 27, 1994: 1993 Progress Report and Downgradient Groundwater Extraction Construction Record
4) June 22, 1995: Progress Report March 1995 and Construction Documentation of Downgradient Extraction Well EXT-16

Additional remedial actions were also implemented in 2011 to 2013 to achieve a Certificate of Completion under the VPLE Program. These remedial actions include: 1) SVE in Storage area, Press area and Paint area and 2) Assessment, excavation and disposal of the underground vessel located southwest of the Paint Room. Documentation related to these remedial actions is included in Attachment C

- B. Describe any immediate or interim actions taken at the site under ch NR 708, Wis. Adm. Code. None implemented at the Site under VPLE Program.
- C. Describe the *active* remedial actions taken at the site, including: type of remedial system(s) used for each media impacted; the size and location of any excavation or in-situ treatment; the effectiveness of the systems to address the contaminated media and substances; operational history of the systems; and summarize the performance of the active remedial actions. Provide any system performance documentation in Attachment A.7.

The following active remedial actions were taken at the site:

1) Soil Vapor Extraction (SVE)

SVE was implemented to address soil vapor TCE impacts and to remove TCE from soil vadose zone to reduce groundwater impacts due to leaching. See Figure B.4.a(2) for the locations of SVE. Attachment C provides a detailed documentation of SVE. SVE resulted in reducing TCE concentrations in the Storage area from 30,200 ug/m3 to 64.8 ug/m3 (99.8% decrease); from 14,400 ug/m3 to 1,120 ug/m3 (92% decrease) in the Press Room area and from 14,400 ug/m3 to 406 ug/m3 in the Paint area (97% decrease). The present concentrations are below or slightly above the action level of 880 ug/m3 and are considered acceptable by the WDNR for current site usage. SVE also reduced the extent of residual soil impacts as shown by pre and post remediation extents in Figures B.2.a(1) through (3), B.2.b(1) through (3). The operational history of SVE system is summarized in Table A.8.

- 2) Assessment, Excavation and Disposal of an Underground Vessel
 Phase II ESA revealed that a trench drain in the Paint Vault was not connected to the sewer system and instead drained into
 an underground vessel. Further assessment of the underground vessel was performed in January 2012. The vessel was
 exposed and the interior revealed that the vessel did not have an outlet. The vessel contained water and sludge. The vessel
 was emptied and the structure was removed and disposed of appropriately after required sampling for disposal was
 completed. Details of the remedial action are provided in Attachment C. Confirmation samples collected from the side
 walls and base after the vessel was removed did not indicate soil impacts. VOCs and metals were not detected in the
 confirmation samples, except for arsenic, barium, chromium, lead, silver and mercury, which were detected in
 concentrations similar to site background concentrations or in low concentration (cadmium) below applicable action levels.
 The confirmation sample results are provided in Table A.4.
- D. Provide a discussion of the nature, degree and extent of residual contamination that will remain at the site or on off-site affected properties after case closure.

The residual contamination that will remain on the site after closure includes:

- 1) Soil-to-Groundwater Leaching Pathway RCL exceedance of TCE and PCE concentrations in the unsaturated soils below the concrete floor slab in the Storage, Press and Paint Areas. The degree and the extent of residual contamination are small as shown in Figures B.2.b(1), (2) and (3) and Table A.3. The highest remaining TCE concentration in soil is 121 ug/kg and PCE concentration is 33.7(J) ug/kg.
- 2) ES and PAL exceedance of TCE, 1,2-DCE and vinyl chloride in groundwater. The extent and degree of ES and PAL exceedances are shown on Figure B.3.b. The ES and PAL exceedances extend beyond the property boundary to downgradient offsite properties. The highest concentrations on-site are TCE at 63.1ug/L, 1,2 DCE at 10.6 ug/L and vinyl chloride at 2.7 ug/L. The offsite concentrations were last measured in 2005. In 2005, the highest concentrations were TCE at 270 ug/L, 1,2 DCE at 3,000 ug/L and vinyl chloride at 140 ug/L. The TCE/PCE source is no longer present on the Site. The groundwater concentrations observed on-site in 2011 and 2013 compared to historical concentrations indicate continuing decreasing concentrations.
- 3) TCE concentration in sub-slab soil vapor is 1,120 ug/kg in the Press area as shown in Figure B.4.a(2), near the non-residential screening level of 880 ug/kg.
- E. Describe the remaining soil contamination within four feet of ground surface (direct contact zone) that attains or exceeds the ch. NR720, Wis. Adm. Code, standard(s) for direct contact.

The soil on the Site is below the direct contact standards for both residential and industrial use of the property.

- F. Describe the remaining soil contamination in the vadose zone that attains or exceeds the soil standard(s) for the groundwater pathway.
 - TCE and PCE are present in low levels at concentrations ranging from below detection limit to 121 ug/kg for TCE and 33.7 (J) ug/kg for PCE. TCE and PCE concentrations exceed the soil-to-groundwater leaching pathway RCLs of 3.6 ug/kg and 4.5 ug/kg, respectively. The areas of standard exceedance are inside the manufacturing building, in the Storage, Press and Paint areas as shown in Figure B.2.b (1), (2) and (3). These areas are covered by a concrete floor slab.
- G. Describe how the residual contamination will be addressed, including but not limited to details concerning: covers, engineering controls or other barrier features; use of natural attenuation of groundwater; and vapor mitigation systems or measures.
 - The building concrete floor slab will be considered a barrier to infiltration of water through soil containing PCE and TCE in exceedance of soil-to-groundwater leaching pathway RCL. The barrier will be maintained after closure to control future infiltration of PCE or TCE to groundwater. The remaining chlorinated VOCs in groundwater exceeding ES and PAL will naturally attenuate through dilution and biodegradation as discussed in the 2006 closure request. The groundwater concentrations observed in 2011 and 2013 indicate continuing decreasing concentrations in comparison to historical concentrations and provide evidence that the groundwater plume is continuing to natural attenuate and recede.
- H. If using natural attenuation as a groundwater remedy, describe how the data collected supports the conclusion that natural attenuation is effective in reducing contaminant mass and concentration, (e.g. stable or receding groundwater plume). Natural attenuation was accepted by the WDNR as a closure remedy when it issued a conditional closure in 2006. The source of PCE and TCE has not been on the site since the manufacturing operations were ceased in late 1990s. Therefore, the potential for additional releases since the 2006 conditional closure is not present. Furthermore, the groundwater concentrations observed in 2011 and 2013 indicate continuing decreasing concentrations in comparison to historical concentrations and provide additional evidence that the groundwater plume is continuing to natural attenuate and recede.
- I. Identify how all exposure pathways were removed and/or adequately addressed by immediate and/or remedial action(s) described above in paragraphs, B, C, D, E and F.
 - The SVE system reduced soil vapor concentrations of TCE by 99.8% in the Storage area, 92% in the Press area and 97% in the Paint area. The present sub-slab soil vapor concentrations are considered acceptable by the WDNR for the current use of the property.

Underground vessel excavation and disposal removed a potential source of contamination from the site. Confirmatory soil samples indicated that the surrounding soil was unimpacted. In the confirmation samples, volatile organic compounds were not detected and metals were either not detected or were present in concentrations similar to the background.

- A barrier (concrete building floor slab) covers the residual soil impacts in the Storage, Press and Paint areas.
- J. Identify any system hardware anticipated to be left in place after site closure, and explain the reasons why it will remain. No remedial system hardware is expected to be left in place after site closure.
- K. Identify the need for a ch. NR 140, Wis. Adm. Code, groundwater Preventive Action Limit (PAL) or Enforcement Standard (ES) exemption, and identify the affected monitoring points and applicable substances.
 Not Applicable. The Site will be placed on the GIS Registry.
- L. If a DNR action level for vapor intrusion was exceeded (for indoor air, sub slab, or both) describe where it was exceeded and how the pathway was addressed.
 - During the HPV sampling of sub-slab soil gas, TCE was observed at 30,200 ug/m3 (Storage area) and 14,400 ug/m3 (in V-5 located on the border of Press Room and Paint area), which are above the EPA Non-Residential Sub-Slab Soil Gas Screening Levels of 880 ug/m3. To address the exceedances, a SVE system was installed and operated for approximately 1 year. The post-remedial sub-slab soil vapor samples were 64.8 ug/m3 in the Storage, 1,120 ug/m3 in the Press Room area and 405 ug/m3 in the Paint area. The remedial action reduced TCE soil vapor concentrations by 99.8% in the Storage area, 92% in the Press Room area and 97% in the Paint area.
- M. Describe the surface water and/or sediment contaminant concentrations and areas after remediation. If a DNR action level was exceeded, describe where it was exceeded and how the pathway was addressed.
 Surface water and sediment contamination assessment was not necessary at the Site and therefore not performed.

		Applies Case (cenario s to this Closure	Case Closure Scenario:	aintenance Plan (s) Required in	GIS Regist	ry
		A. On-Site	B. Off-Site	,	Attachment D	Listin	9
	i.			Engineering Control/Barrier for Direct Contact	✓	✓	
	ii.	\boxtimes		Engineering Control/Barrier for Groundwater Infiltration	✓	✓	
	iii.			Vapor Mitigation - post closure passive system	✓	✓	
	iv.			Vapor Mitigation - post closure active system	✓	✓	
	٧.		\boxtimes	None of the above scenarios apply to this case closure	NA	NA	
6.		tions: Ch	_	: Situations where inclusion on DNR's GIS Registry is required tt apply to this case closure request:	1.		
		Applies	s to this Closure	Case Closure Scenario: GIS Registry Only			try g
			Off-Site				- 14
	i.	\boxtimes		Residual soil contamination exceeds ch. NR 720 generic or site-sp		✓	
	ii.			Sites with groundwater contamination equal to or greater than the enforcement standards (ES)	Cn. NR 140,	✓	
	iii.			Monitoring wells: lost, transferred or remaining in use		✓	
	iv.			Structural Impediment (not as a performance standard)		✓	
	٧.			Residual soil contamination remaining at ch. NR 720 Industrial Use		✓	
	vi.	\boxtimes		Vapor intrusion may be future, post-closure issue if building use or changes	land use	✓	
	vii.			None of the above scenarios apply to this case closure		NA	
7.	A V	or remedia	tanks, pip al action?	Tanks ing or other associated tank system components removed as part of the components removed as part of the components			NoNo
T				stion 7b is yes, is the leak detection system currently being monitor	red?	○ Yes	○ No
If a	ny sec evant s	les (Attaction is not ection of the ed incomplete.	relevant the form.	to the case closure request, you must fully explain the reasons why All information submitted shall be legible. Providing illegible informa	and attach that expi tion may result in a s	lanation to submittal b	the eing

General directions for Data Tables:

- Use bold and italics font on information of importance on tables and figures. Use bold font for ch. NR 140, Wis. Adm. Code, groundwater enforcement standard (ES) attainments or exceedances, and italicized font for ch. NR 140, Wis. Adm. Code, groundwater preventive action limit (PAL) standard attainments or exceedances.
- Do not use shading or highlighting on the analytical tables.
- Include on Data Tables the level of detection for results which are below the detection level (i.e., do not just list as no detect (ND)).
- Include the units on data tables.

- Summaries of all data <u>must</u> include information collected by previous consultants.
- Do not submit lab data sheets unless these have not been submitted in a previous report. Tabulate all data required in s. NR 716.15 (2)(g)3, Wis. Adm. Code, in the format required in s. NR 716.15(2)(h)3, Wis. Adm. Code.
- Include in Attachment A all of the following tables, in the order prescribed below, with the specific Closure Form titles noted on the separate attachments (e.g., Title: A.1. Groundwater Analytical Table; A.2. Pre-remedial Soil Analytical Table, etc).
- For required documents, each table (e.g., A.1., A.2., etc.,) should be a separate PDF.

A. Data Tables

- A.1. **Groundwater Analytical Table(s):** Table(s) showing the analytical results and collection dates, for all groundwater sampling points e.g. monitoring wells, temporary wells, sumps, extraction wells, any potable wells and any other wells, extraction wells and any potable wells for which samples have been collected.
- A.2. **Pre-remedial Soil Analytical Table(s):** Table(s) showing the soil analytical results and collection dates prior to conducting the interim and/or remedial action. Indicate if sample was collected above or below the all-time low water table (unsaturated verses saturated).
- A.3. **Post-remedial Soil Analytical Table(s):** Table(s) showing the post-remedial action soil analytical results and collection dates. Indicate if sample was collected above or below the all-time low water table (unsaturated verses saturated).
- A.4. Pre and Post Remaining Soil Contamination Soil Analytical Table(s): Table(s) showing only the pre and post remedial action soil analytical results that exceed a Residual Contaminate Level (RCL) or a Site-Specific Residual Level (SSRCL).
- A.5. **Vapor Analytical Table**: Table(s) showing type(s) of samples, sample collection methods, analytical method, sample results, date of sample collection, time period for sample collection, method and results of leak detection, and date, method and results of communication testing.
- A.6. Other Media of Concern (e.g., sediment or surface water): Table(s) showing type(s) of sample, sample collection method, analytical method, sample results, date of sample collection, time period for sample collection, method and results sampling.
- A.7. Water Level Elevations: Table(s) showing all water level elevation measurements and dates from all monitoring wells. If present, free product should be noted on the table.
- A.8. Other: This attachment should include: 1) any available tabulated natural attenuation data; 2) data tables pertaining to engineered remedial systems that document operational history, demonstrate system performance and effectiveness, and display emissions data; and (3) any other data tables relevant to case closure not otherwise noted above. If this section is not applicable, please explain the reasons why.

Maps and Figures (Attachment B)

If any section is not relevant to the case closure request, you must fully explain the reasons why and attach that explanation to the relevant section of the form. All information submitted shall be legible. Providing illegible information may result in a submittal being considered incomplete until corrected.

General Directions for all Maps and Figures:

- If any map or figure is not relevant to the case closure request, you must fully explain the reason(s) why and attach that explanation (properly labeled with the map/ figure title) in Attachment B.
- Provide on paper no larger than 11 x 17 inches, unless otherwise directed by the Department. Maps and figures may be submitted
 in a larger electronic size than 11x17 inches, in a portable document format (pdf) readable by the Adobe Acrobat Reader. However,
 those larger-size documents must be legible when printed.
- Prepare visual aids, including maps, plans, drawings, fence diagrams, tables and photographs according to the applicable portions
 of ss. NR 716.15(2)(h)1 and 726.05(3)(a)4.d, Wis Adm. Code.
- Do not use shading or highlights on any of the analytical tables.
- Include all sample locations.
- Contour lines should be clearly labeled and defined.
- Include in Attachment B all of the following maps and figures, in the order prescribed below, with the specific Closure Form titles noted on the separate attachments (e.g., Title: B.1. Location Map; B.2. Detailed Site Map, etc).
- For the electronic copies that are required, each map (e.g., B.1.a., B.2.a, etc.,) should be a separate PDF.

B.1. Location Maps

- B.1.a. Location Map: A map outlining all properties within the contaminated site boundaries on a U.S.G.S. topographic map or plat map in sufficient detail to permit easy location of all impacted and/or adjacent parcels. If groundwater standards are exceeded, include the location of all potable wells, including municipal wells, within 1200 feet of the area of contamination.
- B.1.b. **Detailed Site Map:** A map that shows all relevant features (buildings, roads, current ground surface cover, individual property boundaries for on-site and applicable off-site properties, contaminant sources, utility lines, monitoring wells and potable wells) within the contaminated area. This map is to show the location of all contaminated public streets, and highway and railroad rights-of-way in relation to the source property and in relation to the boundaries of groundwater contamination exceeding a ch. NR 140 Enforcement Standard (ES), and/or in relation to the boundaries of soil contamination exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Levels

(SSRCL) as determined under ss. NR 720.09, 720.11 and 720.19, Wis. Adm. Code.

B.1.c. RR Site Map: From RR Sites Map (http://dnrmaps.wi.gov/imf/imf.jsp?site=brrts2) attach a map depicting the source property, and all open and closed BRRTS sites within a half-mile radius or less of the property.

B.2. Soil Figures

- B.2.a. **Pre-remedial Soil Contamination:** Figure(s) showing the sample location of all pre-remedial, unsaturated contaminated soil and a <u>single contour</u> showing the horizontal extent of each area of contiguous residual soil contamination that exceeded a Residual Contaminant Level (RCL) or a Site-Specific Residual Contaminant Level (SSRCL) as determined under ss. NR 720.09, 720.11 and 720.19, Wis. Adm. Code.
- B.2.b. Post-remedial Soil Contamination: Figure(s) showing the sample location of all post-remedial, unsaturated contaminated soil and a <u>single contour</u> showing the horizontal extent of each area of contiguous residual soil contamination that exceeds a Residual Contaminant Level (RCL) or a Site-Specific Residual Contaminant Level (SSRCL) as determined under ss. NR 720.09, 720.11 and 720.19, Wis. Adm. Code. A separate contour line should be used to indicate the extent of residual direct contact exceedances.
- B.2.c. Pre/Post Remaining Soil Contamination: Figure(s) showing the only location of all pre and post remedial residual soil sample location(s) where unsaturated contaminated soil remains after remediation and a single contour showing the horizontal extent of each area of contiguous residual soil contamination that exceeds a Residual Contaminate Level (RCL) or a Site-Specific Residual Level (SSRCL) as determined under ss. NR 720.09, 720.11 and 720.19, Wis. Admin. Code. A separate contour line should be used to indicate the extent of residual direct contact exceedances.

B.3. Groundwater Figures

- B.3.a. **Geologic Cross-Section Figure(s):** One or more cross-section diagrams showing soil types and correlations across the site, water table and piezometric elevations, and locations and elevations of geologic rock units, if encountered. Display on one or more figures all of the following:
 - Source location(s) and vertical extent of residual soil contamination exceeding a Residual Contaminant Level (RCL) or a Site Specific Residual Contaminant Level (SSRCL).
 - Source location(s) and lateral and vertical extent if groundwater contamination exceeds a ch. NR 140 Enforcement Standard (ES)
 - Surface features, including buildings and basements, and show surface elevation changes.
 - Any areas of active remediation within the cross section path, such as excavations or treatment zones.
 - Include a map displaying the cross-section location(s), if they are not displayed on the Detailed Site Map (Map B.1b)
- B.3.b. **Groundwater Isoconcentration:** Figure(s) showing the horizontal extent of the post-remedial groundwater contamination exceeding a ch. NR 140, Wis. Adm. Code, Preventive Action Limit (PAL) and/or an Enforcement Standard (ES). Indicate the date and direction of groundwater flow based on the most recent sampling data.
- B.3.c. **Groundwater Flow Direction:** Figure(s) representing groundwater movement at the site. If the flow direction varies by more than 20° over the history of the site, submit two groundwater flow maps showing the maximum variation in flow direction.
- B.3.d. **Monitoring Wells:** Figure(s) showing all monitoring wells, with well identification number. Clearly designate any wells that: (1) are proposed to be abandoned; (2) cannot be located; (3) are being transferred; (4) will be retained for further sampling, or (5) have been previously abandoned.

B.4. Vapor Maps and Other Media

- B.4.a. **Vapor Intrusion Map:** Map(s) showing all locations and results for samples taken to investigate the vapor intrusion pathway, in relation to remaining soil and groundwater contamination, including sub-slab, indoor air, soil vapor, ambient air, and communication testing. Show locations and footprints of affected structures and utility corridors, and/or where residual contamination poses a future risk of vapor intrusion.
- B.4.b. Other media of concern (e.g., sediment or surface water): Map(s) showing all sampling locations and results for other media investigation. Include the date of sample collection and identify where any standards are exceeded.
- B.4.c. Other: Include any other relevant maps and figures not otherwise noted above. (This section may remain blank)

Documentation of Remedial Action (Attachment C)

If any section is not relevant to the case closure request, you must fully explain the reasons why and attach that explanation to the relevant section of the form. All information submitted shall be legible. Providing illegible information may result in a submittal being considered incomplete until corrected.

General Directions:

- Include in Attachment C all of the following documentation, in the order prescribed below, with the specific Closure Form titles noted on the separate attachments (e.g., Title: C.1. Site Investigation Documentation; C.2. Investigative Waste, etc).
- If the documentation requested below is "not applicable" to the site-specific circumstances, include a brief explanation to support that conclusion.
- If the documentation requested below has already been submitted to the Department, please note the title and date of the report for

that particular document requested.

- C.1. Site investigation documentation, that has not otherwise been previously submitted.
- C.2. Investigative waste disposal documentation.
- C.3. NR 720.19 analysis, assumptions and calculations for site specific RCLs (SSRCLs), with justification, including EPA Soil Screening Level Model Calculations and results.
- C.4. Construction documentation or as-built report for any constructed remedial action or portion of, or interim action specified in s. NR 724.02(1), Wis. Adm. Code.
- C.5. Decommissioning of Remedial Systems. Include plans to properly abandon any systems or equipment upon receiving conditional closure.
- C.6. **Photos.** For sites or facilities with a cover or other performance standard, a structural impediment or a vapor mitigation system. Include one or more photographs documenting the condition and extent of the feature at the time of the closure request. Pertinent features should be visible and discernible. Photographs must be labeled with the site name, the features shown, location and the date on which the photograph was taken.
- C.7. Other. Include any other relevant documentation not otherwise noted above. (This section may remain blank)

Maintenance Plan(s) (Attachment D)

If any section is not relevant to the case closure request, you must fully explain the reasons why and attach that explanation to the relevant section of the form. All information submitted shall be legible. Providing illegible information may result in a submittal being considered incomplete until corrected.

When one or more "maintenance plans" are required for a site closure, include in each maintenance plan all required information in sections D.1. through D.5. below, and attach the plan(s) in Attachment D. The following "model" maintenance plans can be located at: (1) Maintenance plan for a engineering control or cover: http://dnr.wi.gov/topic/Brownfields/documents/maintenance-plan.pdf; and (2) Maintenance plan for vapor intrusion: http://dnr.wi.gov/topic/Brownfields/documents/appendix5 606.pdf.

- D.1. **Location map(s)** which show(s): (1) the feature that requires maintenance; (2) the location of the feature(s) that require(s) maintenance on and off the source property; (3) the extent of the structure or feature(s) to be maintained, in relation to other structures or features on the site; (4) the extent and type of residual contamination; and (5) and all property boundaries.
- D.2. Brief descriptions of the type, depth and location of residual contamination.
- D.3. **Description of maintenance action(s)** required for maximizing effectiveness of the engineered control, vapor mitigation system, feature or other action for which maintenance is required.
- D.4. Inspection log, to be maintained on site, or at a location specified in the maintenance plan or approval letter.
- D.5. Contact information, including the name, address and phone number of the individual or facility who will be conducting the maintenance.

Monitoring Well Information (Attachment E)

If any section is not relevant to the case closure request, you must fully explain the reasons why and attach that explanation to the relevant section of the form. All information submitted shall be legible. Providing illegible information may result in a submittal being considered incomplete until corrected.

General Directions:

Attach monitoring well construction and development forms (DNR FORM 4400-113 A and B: http://dnr.wi.gov/topic/groundwater/documents/forms/4400_113_1_2.pdf) for all wells that will remain in-use, be transferred to another party or that could not be located. A figure of these wells should be included in Attachment B.3.d.

Select One:

0	No n	nonitoring wells were required as part of this response action.
•	All m	nonitoring wells have been located and will be properly abandoned upon the DNR granting conditional closure to the site
0	Sele	ct One or More:
		Not all monitoring wells can be located, despite good faith efforts. Attachment E must include description of efforts made to locate the "lost" wells.
		One or more wells will be transferred to another owner upon case closure being granted. Attachment E should include documentation identifying the name, address and email for the new owner(s).
		One or more wells will remain in use at the site after this closure. Attachment E must include documentation as to the reason(s the well(s) will remain in use.

Notifications to Owners of Impacted Properties (Attachment F)

If any section is not relevant to the case closure request, you must fully explain the reasons why and attach that explanation to the relevant section of the form. All information submitted shall be legible. Providing illegible information may result in a submittal being considered incomplete until corrected.

General Directions:

- State law requires that the responsible party provide a 30-day, written advance notice (i.e., a letter) to certain persons prior to applying for case closure. This requirement applies if: (1) the person conducting the response action does not own the source property; (2) the contamination has migrated onto another property; and/or (3) one or more monitoring wells will not be abandoned.
- A model "template letter" for these mandatory notifications can be downloaded at: http://dnr.wi.gov/files/PDF/pubs/rr/RR919.pdf.

Check all that apply to the site-specific circumstances of this case closure:

	A. Impacted Source Property and Owner is not Conducting Cleanup	B. Impacted Right of Way	C. Impacted Off-Site Property Owner	Impacted Property Notification Situations: Ch. NR 726 Appendix A Letter
1.	\boxtimes	\boxtimes	\boxtimes	Residual groundwater contamination exceeds Ch. NR 140 Wis. Administrative Code enforcement standards.
2.	\boxtimes			Residual soil contamination that attains or exceeds standards is present after the remedial action is complete, and must be properly managed should it be excavated or removed.
3.	\boxtimes			An engineered cover or a soil barrier (e.g. pavement) must be maintained over contaminated soil for direct contact or groundwater infiltration concerns.
4.	\boxtimes			Industrial land use soil standards were used for the clean-up standard.
5.				A vapor mitigation system (or other specific vapor protection) must be operated and maintained.
6.	\boxtimes			Vapor assessment needed if use changes.
7.				Structural impediment.
8.				Lost, transferred or open monitoring wells.
9.				Not Applicable.

If any of the previous boxes in rows 1 thru 8 were checked, include the following as part of Attachment F:

- FORM 4400-246:
- Copy of each letter sent, 30 days or more prior to requesting closure; and
- · Proof of receipt for each letter.
- For this site closure, ____5__ (number) property (ies) has/have been impacted, the owners have been notified, and copies of the letters and receipts are included in Attachment F.

Source Legal Documents (Attachment G)

If any section is not relevant to the case closure request, you must fully explain the reasons why and attach that explanation to the relevant section of the form.All information submitted shall be legible. Providing illegible information may result in a submittal being considered incomplete until corrected.

Include all of the following documents, in this order, in Attachment G:

- G.1. **Deeds Source Property and Other Impacted Properties:** The most recent deed with legal descriptions clearly labeled for (1) the **Source Property** (where the contamination originated) and (2) all **off-source** (off-site) properties where letters were required to be sent per the ch. NR 700, Wis. Adm. Code, rule series (e.g., off-site cover maintenance required, lost monitoring well, off-site cover property impacts to groundwater exceeding the ch. NR 140, Wis. Adm. Code.
 - **Note:** If a property has been purchased with a land contract and the purchaser has not yet received a deed, a copy of the land contract which includes the legal description shall be submitted instead of the most recent deed. If the property has been inherited, written documentation of the property transfer should be submitted along with the most recent deed.
- G.2. Certified Survey Map: A copy of the certified survey map or the relevant section of the recorded plat map for those properties where the legal description in the most recent deed refers to a certified survey map or a recorded plat map. (Lots on subdivided or platted property (e.g. lot 2 of xyz subdivision)).
- G.3. **Verification of Zoning**: Documentation (e.g., official zoning map or letter from municipality) of the property's or properties' current zoning status.
- G.4. Signed Statement: A statement signed by the Responsible Party (RP), which states that he or she believes that the attached legal description(s) accurately describe(s) the correct contaminated property or properties.

Signatures and Findings for Closure Determination	
If any section is not relevant to the case closure request, you must fully relevant section of the form. All information submitted shall be legible. considered incomplete until corrected.	Providing illegible information may result in a submittal being
Check the correct signature block below for this case closure request, document, in accordance with the ch. NR 700 Wis. Adm. Code rule se	and have the proper environmental professional(s) sign this ries. Both boxes may be checked if applicable to this case
closure. A response action(s) for this site addresses groundwater contaminate the closure request must be prepared by, or under the supervision ch. NR 712, Wis. Adm. Code. Include both signatures provided by	n of, a professional engineer and a hydrogeologist, as defined in
The response action(s) for this site addresses media other than g prepared by, or under the supervision of, a professional engineer, certification" language below, at a minimum, must be signed.	roundwater. In this situation, the case closure request must be as defined in ch. NR 712, Wis. Adm. Code. The "engineering
Engineering Certification	
in the State of Wisconsin, registered in accordance with the reclosure request has been prepared in accordance with the Rul and that, to the best of my knowledge, all information contained was prepared in compliance with all applicable requirements in necessary to obtain data, develop conclusions, recommendation have been prepared by me, or their preparation has been supported the rules, in my professional opinion a site investigation has been Code, and all necessary remedial actions have been complete NR 722, NR 724 and NR 726, Wis. Adm. Codes." Vasanta M. Kalluri Printed Name	es of Professional Conduct in ch. A-E 8, Wis. Adm. Code; d in this case closure request is correct and the document of chs. NR 700 to 726, Wis. Adm. Code. All phases of work ons and prepare submittals for this case closure request ervised by me. Specifically, with respect to compliance with the conducted in accordance with ch. NR 716 Wis. Adm.
Hydrogeologist Certification	***************************************
Dennis Lawton defined in s. NR 712.03 (1), Wis. Adm. Code, and that, to the this case closure request is correct and the document was prechs. NR 700 to 726, Wis. Adm. Code. All phases of work necobtaining data, developing conclusions, recommendations and been prepared by me, or their preparation has been supervise rules, in my professional opinion a site investigation has been Code, and all necessary remedial actions have been complete 722, NR 724 and NR 726, Wis. Adm. Codes."	epared in compliance with all applicable requirements in essary to address groundwater contamination including d preparing submittals for this case closure request have ed by me. Specifically, with respect to compliance with the conducted in accordance with ch. NR 716, Wis. Adm.
Dennis R. Lawton	Senior Hydrogeologist
Printed Name	Title

ATTACHMENT A - TABLES

Table A.1(a) Groundwater Analytical Table (Permanent Wells)

Table A.1(b) Groundwater Analytical Table (Temporary Borings)

Table A.2 Pre-Remedial Soil Analytical Results

Table A.3 Post Remedial Soil Analytical Table

Table A.4 Remaining Soil Exceedence Table

Table A.5(a) Vapor Analytical Table

Table A.5(b) Vapor Analytical Table - Field Screening Readings on Samples of Extracted Gas

Table A.5(c) Vapor Analytical Table - Vacuum and Field Screening Readings at Communication Test Points

Table A.5(d) Vapor Analytical Table - Vapor Extraction Points PID Screening Results

Table A.5(e) Vapor Analytical Table - Summary of Transient Response Analysis

Table A.6 Other Media of Concern

Table A.7 Water Level Elevations

Table A.8 SVE Emissions Information

Table A.1(a) Groundwater Analytical Table (Permanent Wells)

VPLE Case Closure Request Former Paragon Electric Company

Two Rivers, Wisconsin

Well	Date	TCE	1,2-DCE cis	PCE	Vinyl Chloride
ID	Sampled	ug/L	ug/L	ug/L	ug/L
MW-1	09/11/91	30.1	3.79	<0.5	1.51
	01/16/92	31.6	9.4	< 0.5	52.3 (1)
	07/30/92	74.6 (2)	8.5 (2)	< 0.5	3
	09/03/92	70.6	5.3	<2.5	1
	01/22/93	47.5	8.1 (4)	<2.5	<1.0
	07/06/93	36.4	5.5	0.9	<0.2
	03/24/94	34.0 (4)	38.4	<0.5	<0.2
	09/29/94	235	<0.2	0.7	<0.2
	03/23/95	1490	281	<50	<20
	09/06/95	984	265	<50	<20
	09/25/96	266	NA	<0.9	<1.3
	03/27/97	91	NA NA		<0.1
				0.4 (9)	
	09/29/97	260	14	0.64	<0.045
	03/17/98	44.2	<2	<1	<0.2
	09/29/98	45.6	<10	<5	<1
	07/28/99	2.1	1.5	< 0.34	< 0.14
	12/22/99	24	7	< 0.34	< 0.14
	10/26/11	1.0	< 0.83	< 0.45	< 0.18
	02/11/13	0.70 (j)	<0.83	< 0.45	<0.18
P-1	09/11/91	2.38	<1.0	<0.5	<0.2
F-1	09/11/91				
		0.3	<1.0	<0.5	<0.2
	07/30/92	0.3	<1.0	<0.5	<0.2
	01/22/93	<0.2	<0.5	<0.5	<0.2
	07/06/93	<0.5	<0.5	<0.5	<0.2
	03/24/94	0.8 (4)	<0.5	<0.5	<0.2
	09/29/94	<0.2	<0.5	<0.5	<0.2
	03/23/95	< 0.2	< 0.5	< 0.5	< 0.2
	09/06/95	< 0.5	< 0.5	< 0.5	< 0.2
	09/25/96	< 0.7	NA	< 0.9	<1.3
	03/27/97	< 0.2	NA	< 0.2	<0.1
	09/29/97	< 0.13	< 0.32	< 0.13	< 0.045
	03/17/98	< 0.5	<1	<1	<0.2
	09/29/98	<0.5	<2	<1	<0.2
	07/28/99	<0.21	<0.19	<0.34	<0.14
	12/22/99	<0.21	<0.19	<0.34	<0.14
MW-2	09/11/91	114	25.66	0.75	< 0.2
	01/16/92	130	13.1	<2.5	<1.0
	07/30/92	226	72.9	0.7	0.4
	01/22/93	544	279 (4)	<12.5	<5.0
	07/06/93	121	<12.5	<12.5	<5.0
	03/24/94	76.3 (4)	1.9	< 0.5	<0.2
	09/29/94	518	6.5	0.6	<0.2
	03/23/95	533 (4)	<50	<50	<20
	09/06/95	482	15.5	<10	<4
		1530	NA	2.5	<1.3
	09/25/96	1120	NA NA		<0.1
	03/27/97			2.7	
	06/17/97	550	37	1.1	<0.045
	09/29/97	1000	120	2.3	<0.045
	12/29/97	740	15	2.3	<0.045
	03/17/98	560	28.9	1.62	<0.2
	09/29/98	472	<40	<20	<4
	07/28/99	75	14	0.89	< 0.14
	12/22/99	108	22	<17	<7
	10/26/11	1.2	<0.83	< 0.45	<0.18
	02/11/13	2.1	< 0.83	< 0.45	<0.18
N 40 A / C					
MW-3	09/11/91	<0.2	<1.0	< 0.5	<0.2
	03/24/94	1.1 (4)	<1.0	<0.5	<0.2
Admn Co	de NR140 ES	5	70	5	0.2
	de NR 140 PAL	<u> </u>		•	V. <u>~</u>

VPLE Case Closure Request Former Paragon Electric Company Two Rivers, Wisconsin

Well	Date	TCE	1,2-DCE cis	PCE	Vinyl Chloride
ID	Sampled	ug/L	ug/L	ug/L	ug/L
MW-4	09/11/91	667500	<500	1675	<100
	01/16/92	385000	<40000	<20000	<8000
	07/30/92	20.9	1.6	0.6	<0.2
	10/26/11	483	56.2	<2.2	6.5
	02/11/13	63.1	10.6	< 0.45	2.7
PZ-4A	09/11/91	689	<1.0	15.4	<0.2
	01/16/92	3370	574	12.9	<5.0
	07/30/92	8.5	238	<0.5	5.6
	01/22/93	2.8	99 (4)	<5.0	3.7 (4)
	07/06/93	4.8	21.6	< 0.5	10.2
	03/24/94	1.7 (4)	3.0	< 0.5	2.3
	09/29/94	0.3	1.2	< 0.5	1.7
	03/23/95	0.32	<2	< 0.5	1.7
	09/06/95	<25	<25	<25	<10
	03/27/96	0.32	<2	< 0.5	1.7
	09/25/96	2	NA	<0.9	<1.3
	03/27/97	0.5 (9)	NA	<0.2	<0.1
	09/29/97	1.1	0.43	<0.13	0.28
	03/17/98	< 0.5	<2	<1	0.309
	09/29/98	1.03	<2	<1	1.77
	07/28/99	<0.21	< 0.19	<0.34	<0.14
	12/22/99	<0.21	<0.19	<0.34	<0.14
EXT-4B	02/03/92	58900	230	265	<20
	07/30/92	52.3	28.2	< 0.5	3
	10/15/92	10.4	12.1	< 0.5	2.1
	01/22/93	246 (4)	13.7 (4)	<2.5	3.3 (4)
	04/14/93	5.5	12	< 0.5	2.4
	07/06/93	67.6	7.5	< 0.5	< 0.2
	11/17/93	49.4	6.2	<0.5	1.3
	02/03/94	209	10.4	7.8	1.4
	03/24/94	20.5	17.1	<0.5	0.3
	05/24/94	174 (7)	12.4	8.2	0.9
	06/30/94	169	7.6	12.7	<1
	10/03/94	<0.2	< 0.5	< 0.5	<0.2
	01/23/95	15.8	5.5	3.2	<0.2
	03/23/95	51 (4)	9.5	5.4	<1
	09/12/95	16.5	4.06	1.67	2.33
	01/08/96	31.1	3.25	1.64	<0.2
	03/27/96	14 10	NA	1.4	<1.3 1.8
	07/10/96		NA	<u> </u>	
	09/25/96	31 22	NA NA	3.5	5.2 4.7
	12/18/96 03/27/97	5.6	NA NA	0.7 (9)	<0.1
	06/17/97	26	13	4.3	4.2
	09/29/97		3.3	0.32 (9)	3.1
	12/29/97	2.2 0.95	2.9	0.19 (9)	2.2
	04/07/98	15.4	2.78	<1	1.32
	06/23/98	5.25	2.95	<1	1.61
	09/29/98	23.4	7.16	<1	1.31
	12/02/98	3.4	3.25	<1	1.36
	03/26/99	2.13	2.2	<0.34	0.98
	07/28/99	68	11	<0.34	<0.14
	09/29/99	<21	<19	<34	<14
	03/08/00	1.1	2.1	< 0.14	0.49
	06/15/00	0.75	1.2	< 0.14	0.35
	10/03/00	0.52	0.92	< 0.14	<0.23
	10/18/01	1.7	0.88	< 0.14	< 0.23
	02/28/03	3.9	<0.81	< 0.63	0.89
	02/11/13	0.63 (j)	1.2	< 0.45	<0.18
VI Admn C	ode NR140 ES	5	70	5	0.2
	ode NR 140 ES	0.5	7	0.5	0.02

VPLE Case Closure Request

Former Paragon Electric Company

Two Rivers, Wisconsin

Well	Date	TCE	1,2-DCE cis	PCE	Vinyl Chlorid
ID	Sampled	ug/L	ug/L	ug/L	ug/L
MW-5	09/11/91	1010	80.2	2	21.1
	01/16/92	1760	<50	<25	<10
	07/30/92	1.4	< 0.5	< 0.5	<0.2
	01/22/93	7	3.1 (4)	< 0.5	<0.2
	07/06/93	2.9	2.4	< 0.5	<0.2
	03/24/94	5.8 (4)	6.2	< 0.5	<0.2
	09/29/94	2.5	2.4	<5	1.8
	03/23/95	1.5	17.7	< 0.5	34.4
	09/06/95	6.35	21.6	< 0.5	16.5
	09/25/96	6.4	NA	< 0.9	2.1
	03/27/97	6.4	NA	< 0.2	<0.1
	09/29/97	3.6	7.5	< 0.13	4.7
	03/17/98	5.62	14.1	<1	5.97
	09/29/98	2.36	3.7	<1	0.574
	07/28/99	3.3	3.1	< 0.34	< 0.14
	12/22/99	1.2	9.9	<0.34	< 0.14
MW-6	09/11/91	35020	982	99.3	16.3
EXT-6)	02/03/92	47800	2080	99.3 <100	76.3 <400
LX1-0)	09/03/92	7184	977	<25	14.2
	10/15/92	31300	1590	<1000	<400
	01/22/93	13300 (3)	950 (4)	<10	12.2
	04/14/93	6110	405	<250	<100
	07/06/93	6160	673	<50	<20
	11/17/93	4000	365	<125	<50
	02/03/94	3170	333	<125	<50
	03/24/94	3340 (4)	294	<62.4	<25
	05/24/94	2290	149	<10	<4
	06/30/94	1740	134	<50	<20
	09/29/94	1750	159	<50	<20
	12/20/94	761	211	3.8	5
	03/23/95	1460	213	<50	<20
	09/12/95	847	265	<10	<4
	09/12/95	553	17.1	<12.5	<5
	03/27/96	595	NA NA	2.5	3.6
	03/27/96	386	NA NA	3	4.1
	09/25/96	436	NA NA	2	3.8
	12/18/96	476	NA NA	<23	<33
	03/27/97	382	NA NA	2.2	<0.1
	06/17/97	140	79	2.2	7.2
	09/29/97	240	110	2.2	3.2
	12/29/97	280	160	1.5	3.9
	04/07/98	93.3	52.7	1.78	9.35
	06/23/98	93.3 141	77.8	<20	9.35
	09/29/98	112	63.2	1.75	2.69
	12/02/98	95	60	<5	1.38
	03/26/99	98	79.5	1.3	4.42
	03/28/99	116	36	1.6	5.8
	09/29/99	169	75	33	<7
	03/08/00	67	65	<7.1	<12
	06/15/00	66	34	<7.1	<12
	10/03/00	50	30	1.5	<1.2
	10/03/00	91	60	1.4	4.4
	06/10/02	37	48	<4.9	
		83		1.4	3.1(j) 15
	02/28/03		59		
	10/26/11 02/11/13	30.4	6 2.2	1.7 1.1	2.2 1.9
	02/11/13	15.8	2.2	1.1	1.9
VI Admn. C	ode NR140 ES	5	70	5	0.2
VI Admn Co	ode NR 140 PAL	0.5	7	0.5	0.02

VPLE Case Closure Request

Former Paragon Electric Company

Two Rivers, Wisconsin

Well	Date	TCE	1,2-DCE cis	PCE	Vinyl Chloric
ID	Sampled	ug/L	ug/L	ug/L	ug/L
PZ-6A	09/11/91	15.3	<1.0	<0.5	10.4
	01/16/92	2.5	<1.0	<0.5	14.5 (1)
	07/30/92	1.1	<0.5	<0.5	1.3
	01/22/93	0.3	<0.5	<0.5	1.4 (4)
	07/06/93	<0.2	<0.5	<0.5	0.7
	03/24/94	<0.2	<0.5	<0.5	0.2
	09/29/94	<0.2	<0.5	<0.5	<0.2
	03/23/95	<0.2	<0.5	<0.5	<0.2
	09/06/95	<0.2	<0.5	<0.5	<0.2
	09/25/96	<0.7	NA	<0.9	<1.3
	03/27/97	< 0.19	NA	<0.24	< 0.15
	09/29/97	< 0.13	< 0.32	<0.13	< 0.045
	03/17/98	58.9	<20	<10	<2
	09/29/98	<0.5	<2	<1	<0.2
	07/28/99	<0.21	<0.19	<0.34	< 0.14
	12/22/99	<0.21	< 0.19	< 0.34	< 0.14
PZ-7	09/11/91	15297	4433	16.9	157
<u> </u>	01/16/92	170000	9650	<250	<100
	09/03/92	108000	7180	<2500	<1000
	01/22/93	71000 (5)	8689 (4)	<50	31 (4)
	03/11/93	136000	11900	<1000	<400
	07/06/93	117000	7380	<1000	<400
	03/24/94	88100	6935 (4)	<50	40.6 (4)
	06/30/94	73300	3140	<1000	<400
	09/29/94	60500	8510	<1000	<400
	12/20/94	111600	8731	<1000	<200
	03/23/95	76900	3700	<2500	<1000
	06/21/95	108000	<5000	<50	<20
	09/06/95	109000	<2500	<2500	<1000
	01/02/96	70000	8600	<2500	<1000
	03/27/96	66600	NA NA	<0.9	9.6
	07/02/96	80100	NA	<90	<130
	09/25/96	66400	NA	<4.5	7.1
	12/18/96	64600	NA NA	<900	<1300
	03/27/97	35900	NA NA	<242	<146
	06/17/97	32000	3800	970 (9)	<225
	09/29/97	35000	2800	970 (9)	<9
	12/29/97	27000	3100	<13	<4.5
	03/17/98	4300	2960	<1	10.6
	04/07/98	39200 17400	5210 2340	<1000 <500	<200 <500
	06/23/98				<40
	09/29/98 12/02/98	14700 12700	2640 2080	<200 <1000	<200
	07/28/99	7850	2060	<0.34	12
	09/29/99	6670	2150 1720	<168	<70 <70
	12/22/99 03/08/00	5070		<168	
		836	1130	<0.14	19
	06/15/00	3140	4790	<7.1	
	10/03/00	1850	8820	<14	<23
	10/18/01	72	7380	<14	107
	06/10/02	<37	2600	<25	490
	02/28/03	22	1200	<6.3	320
	12/22/03	9.3	540	<2.2	270
	04/14/04	13	410	<1.1	210
	01/19/05	9.4	110	<0.45	84
	04/26/05	7.4	60	<0.45	65
VI Admn. (Code NR140 ES	5	70	5	0.2
VI Admn C	Code NR 140 PAL	0.5	7	0.5	0.02

VPLE Case Closure Request Former Paragon Electric Company

Two Rivers, Wisconsin

Well	Date	TCE	1,2-DCE cis	PCE	Vinyl Chloride
ID	Sampled	ug/L	ug/L	ug/L	ug/L
MW-8	09/11/91	787	28.4	1.96	<0.2
	01/16/92	568	<25	<12.5	<5.0
	07/30/92	490	15.7	1.5	<0.2
	01/22/93	563	<10	<10	<4
	07/06/93	189	<2.5	<2.5	<1
	03/24/94	73.8 (4)	< 0.5	1.2 (4)	<0.2
	09/29/94	230	< 0.5	1.1	<0.2
	03/23/95	118	<10	<10	<4
	09/06/95	154	<2.5	<2.5	<1
	09/25/96	76	NA	1.3	<1.3
	03/27/97	30	NA	0.7 (9)	<0.1
	09/29/97	49	0.82	0.77	< 0.045
	03/17/98	28.4	<2	<1	<0.2
	09/29/98	36.4	<2	1.06	<0.2
	07/28/99	28	<0.19	0.87	<0.14
	12/22/99	34	<0.19	0.71	<0.14
	10/26/11	0.94 (j)	<0.83	0.89 (j)	<0.18
	02/11/13	1.4	<0.83	0.88 (j)	<0.18
MW-9	09/11/91	54950	569	61.2	3.22
	01/16/92	43700	<1000	<500	<200
	09/03/92	28400	<1000	<1000	<400
	01/22/93	5005 (4)	1167 (4)	<500	<200
	07/06/93	2000	1400	<100	<40
	03/24/94	1274 (4)(2)	135 (4)	13.7 (4)	<0.2
	09/29/94	1410	366	8.8	<0.2
	03/23/95	1010	215	<50	<20
	09/06/95	450	220	<12.5	<5
	09/25/96	319	NA	6.4	<1.3
	03/27/97	225	NA	1.8	<0.1
	09/29/97	110	73	2.4	<0.045
	03/17/98	56.6	31.9	1.05	<0.2
	09/26/98	70.1	22.9	<5	<1
	07/28/99	124	14	1.9	<0.14
	12/22/99	28	22	<1.7	<0.7
	10/26/11	13.4	2.8	3.0	<0.18
	02/11/13	8.4	1.7	2.5	<0.18
MW-11	01/16/92	0.2	<1	<0.5	0.9 (1)
(Dup)	01/16/92	0.3	<1	<0.5	1.0 (1)
(= up)	03/24/94	6.0 (4)	2.8	<0.5	<0.2
	10/26/11	<0.48	<0.83	<0.45	<0.18
WI Admn C	Code NR140 ES	5	70	5	0.2
	ode NR 140 PAL	0.5	7	0.5	0.02

VPLE Case Closure Request Former Paragon Electric Company

Two Rivers, Wisconsin

Well	Date	TCE	1,2-DCE cis	PCE	Vinyl Chloride
ID	Sampled	ug/L	ug/L	ug/L	ug/L
PZ-13	11/25/92	59.9 (3)	7.3	0.6	<0.2
	01/22/93	90.1	16 (4)	<2.5	<1
	03/11/93	74	12.7	<2.5	<1
	07/06/93	107	24.5	<2.5	<1
	03/24/94	55.2	< 0.5	< 0.5	<0.2
	06/30/94	51.2	7.6	<2.5	<1
	09/29/94	2.4	<2.5	<2.5	<1
	12/20/94	73.9	14.4	<1	<0.2
	03/23/95	37.6	8	<.5	<0.2
	06/21/95	43.3	6.9	< 0.5	<0.2
	09/06/95	41.9	7.01	<2.5	<1
	01/02/96	93.1	12.7	<2.5	<1
	07/02/96	32	NA	< 0.9	<1.3
	09/25/96	12	NA	< 0.9	<1.3
	12/18/96	27	NA	<1.8	<2.6
	03/27/97	9.8	NA	< 0.2	< 0.1
	06/17/97	14	2.2	< 0.13	< 0.045
	09/29/97	2.2	0.84	< 0.13	< 0.045
	12/29/97	4.5	1.4	< 0.13	< 0.045
	03/17/98	87	24.2	<1	<0.2
	04/07/98	16.7	2.5	<1	<0.2
	06/23/98	6.9	<2	<1	<0.2
	09/29/98	13.1	2.34	<1	<0.2
	12/02/98	12.1	2.41	<1	<0.2
	07/28/99	40	3.6	< 0.34	< 0.14
	09/29/99	14	0.49	< 0.34	< 0.14
	12/22/99	24	2.2	< 0.34	< 0.14
	03/08/00	178	<93	<71	<117
	06/15/00	1220	561	<36	<59
	10/03/00	9.9	<4.7	<3.6	<5.9
	10/18/01	11	39	<3.6	< 5.9
	06/10/02	13	3.1	< 0.49	< 0.12
	02/28/03	11	4.0	< 0.63	< 0.11
	12/22/03	8.8	4.5	< 0.45	<0.18
	04/14/04	7.2	4.2	< 0.45	<0.18
	01/19/05		Well cove		
	04/26/05	4.2	3.6	<0.45	<0.18
WI Admn. Code NR140 ES		5	70	5	0.2
WI Admn. Code NR 140 PAL		0.5	7	0.5	0.02

VPLE Case Closure Request Former Paragon Electric Company Two Rivers, Wisconsin

Well	Date	TCE	1,2-DCE cis	PCE	Vinyl Chloride
ID	Sampled	ug/L	ug/L	ug/L	ug/L
PZ-14	11/10/92	18300	125	<125	<50
	01/22/93	65400 (5)	29300 (4)	<500	<200
	03/11/93	83200	41800	<1000	<400
	07/06/93	70100	20400	<1000	<400
	03/24/94	70441	15100	<50	42.5 (4)
	06/30/94	48400	27200	<250	<100
	09/29/94	99100	22800	<250	<100
	12/20/94	97260	18750	<1000	<200
	03/23/95	94600	18200	<2500	<1000
	06/21/95	97400	18800	<50	<20
	09/06/95	94000	30800	<2500	<1000
	01/02/96	83800	29700	<1250	<500
	03/27/96	106000	NA	< 0.9	20
	07/02/96	76800	NA	<90	<130
	09/25/96	104000	NA	<9	47
	12/18/96	356000	NA	<4500	<6500
	02/07/97	107000	NA	<900	<1300
	03/27/97	109000	NA	<605	<365
	06/17/97	87000	19000	<650	<225
	09/29/97	83000	20000	<1300	<450
	12/29/97	110000	22000	<650	<230
	03/17/98	17600	17600	<200	<40
	04/07/98	133000	31200	<5000	<1000
	06/23/98	115000	27600	<1000	<1000
	09/29/98	117000	27900	<1000	<200
	12/02/98	114000	28100	<5000	<1000
	07/28/99	96100	26700	<1680	<700
	09/29/99	86300	27600	<840	<350
	12/22/99	70200	14900	<1680	<700
	03/08/00	98100	35500	<355	<585
	06/15/00	70800	15100	<355	<585
	10/03/00	56800	13000	<355	<585
	10/18/01	64400	19500	<355	<585
	06/10/02	54000	14000	<250	<60
	02/28/03	22000	14000	<130	<22
	12/22/03	11000	19000	<45	<18
	04/14/04	9000	17000	180	<18
PZ-14R	11/02/04	48	1300	<11	<4.5
	01/19/05	<19	3400	<18	<7.2
	04/26/05	<9.6	3000	<9	<3.6
WI Admn. Code NR140 ES		5	70	5	0.2
WI Admn. Code NR 140 PAL		0.5	7	0.5	0.02

Table A.1(a) Groundwater Analytical Table

VPLE Case Closure Request Former Paragon Electric Company Two Rivers, Wisconsin

WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

Well	Date	TCE	1,2-DCE cis	PCE	Vinyl Chloride		
ID	Sampled	ug/L	ug/L	ug/L	ug/L		
EXT-15	02/03/94	76.3	130	<5	3		
EX1-15	03/24/94	108 (4)	141	<2.5	6.3 (4)		
	05/24/94	63.5	116	<2.5	0.3 (4)		
	09/29/94	177	365	<2.5	14.2		
	02/02/95	28.9 (4)	273	<5	45.4		
	02/02/95	13.2	161	<2.5	6.51		
	09/06/95	61	NA NA	<0.9	34		
	03/27/97	25	NA NA	<0.9	<0.1		
	09/29/97	27	520	<0.13	32		
	03/17/98	129	422	<20	<4		
	03/17/96	10.2	569	<20	18.8		
	09/29/96	10.2	491	<0.34	35		
	12/22/99	6.3 <0.48	19 79	<1.7 <0.45	<0.7 120		
	11/05/04		190	<0.45	77		
	01/19/05	<0.96					
	04/26/05	<0.48	94	<0.45	140		
TW-1 (8)	09/13/94	54600	383	19.1	0.3		
	09/29/94	36730	1670	16.1	<0.2		
EXT-16	02/02/95	13600	<250	<250	<100		
LXI IO	03/23/95	1370 (4)	<50	<50	<20		
	06/21/95	1330	<50	<50	<20		
	09/06/95	330	64.5	<25	<10		
	01/02/96	19700	261	<250	<100		
	03/27/96	11400	NA NA	13	<1.3		
	07/19/96	6390	NA NA	14	1.4		
	09/25/96	3300	NA NA	12	3.7		
	12/18/96	7060	NA NA	<90	<130		
	03/27/97	5080	NA NA	12	<0.1		
	06/17/97	5000	1700	11	2.83		
	09/29/97	8000	1400	7.7 (9)	<0.9		
	12/29/97	8700	1300	13	1.8		
	03/17/98	2080	1050	<50	<10		
	06/23/98	4110	1390	<500	<100		
	09/29/98	23.4	<10	<5	1.1		
	12/10/98	1900	1760	10.3	35.3		
	03/26/99	1740	1240	<16.8	<15.6		
	07/28/99	257	997	3.1	9.1		
	09/29/99	111	1590	<84	<35		
	03/08/00	6790	1450	<36	<59		
	06/15/00	1840	1330	<36	<59		
	10/03/00	1510	1150	86	<59		
	10/03/00	808	607	<36	<59 <59		
	06/26/02	1500	800	<49	<12		
	02/28/03	8.8	530	<3.2			
	12/22/03	0.0 180	350	3.8	17		
	04/14/04		370	1.6	150 370		
					130		
	11/05/04	260	530	5.7			
	01/19/05	270	560	4.2	58		
	04/26/05	250	470	0.51	24		
	ode NR140 ES	5	70	5	0.2		
NI Admn. Co	de NR 140 PAL	0.5	7	0.5	0.02		

Table A.1(a) Groundwater Analytical Table

VPLE Case Closure Request

Former Paragon Electric Company

Two Rivers, Wisconsin

WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

Well	Date	TCE	1,2-DCE cis	PCE	Vinyl Chloride
ID	Sampled	ug/L	ug/L	ug/L	ug/L
PZ-17	11/05/04	17	40	<0.45	<0.18
	01/19/05	1.7	2.3	<0.45	<0.18
	04/26/05	<0.48	<0.83	<0.45	<0.18
PZ-18S	11/02/04	0.78	1.9	<0.45	<0.18
	01/19/05	<0.48	1.1	<0.45	<0.18
	04/26/05	<0.45	<0.83	<0.45	<0.18
PZ-18D	10/15/04	<0.48	1.8	<0.45	<0.18
	10/22/04	<0.2	0.37	<0.1	<0.15
	01/19/05	<0.48	<0.83	<0.45	<0.18
	04/26/05	<0.48	<0.83	<0.45	<0.18
PZ-19	11/05/04	<0.48	<0.83	<0.45	<0.18
	01/19/05	<0.48	<0.83	<0.45	<0.18
	04/26/05	<0.48	<0.83	<0.45	<0.18
IW-1	10/13/04	0.65	26	<0.45	84
	01/19/05	0.68	33	<0.45	110
	04/26/05	<0.48	30	<0.45	120
IW-14	10/13/04	18	32	<0.45	<0.18
	01/19/05	4.4	17	<0.45	<0.18
	04/26/05	1.1	19	<0.45	<0.18
Temp Well -1	10/15/04	<0.48	<0.83	<0.45	<0.18
	10/22/04	<0.2	<0.1	<0.1	<0.15
Temp Well -2 10/15/04		<0.48	<0.83	<0.45	<0.18
10/22/04		<0.2	<0.1	<0.1	<0.15
WI Admn. Code NR140 ES		5	70	5	0.2
WI Admn. Code NR 140 PAL		0.5	7	0.5	0.02

Notes:

- (1) Reported as Chloromethane and Vinyl Chloride.
- (2) Compound may be due to carry over.

- (3) Estimated concentration slightly beyond calibration range.
 (4) Reported QC Anomaly Result may be biased high.
 (5) Sample run after saturated detector Result may be biased high.
- (6) Reported QC Anomaly Result may be biased low.
- (7) Reported QC Anomaly.
- (8) TW-1 was abandoned and replaced with EXT-16.
- (9) Reported result is less than the Practical Quantitation Limit (PQL).
 (10) "IW" wells are constructed as injection wells.
 NA = Not Analyzed

- ES = Enforcement Standards (ES are shown in bold.)
- PAL = Preventive Action Limit (PAL exceedences are shown in italics.)
- j = above laboratory detection limit, but below laboratory or quantitation limit, or estimated value

Table A.1(b) Groundwater Analytical Table (Temporary Borings)

VPLE Case Closure Request Former Paragon Electric Company Two Rivers, Wisconsin

WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

Metals (ug/L)		SB-10R	CD C			
Metals (ug/L) Arsenic, Dissolved 10 1 — <t< th=""><th>SB-14 10/12/09</th><th>10/12/09</th><th></th><th>PAL</th><th>ES</th><th>Sampling Date</th></t<>	SB-14 10/12/09	10/12/09		PAL	ES	Sampling Date
Arsenic, Dissolved 2000 400	10/12/03	10/12/03	10/12/03			
Barium, Dissolved	<1.90			1	10	
Cadmium, Dissolved 5 0.5 — — Chromium, Dissolved 100 10 — — Lead, Dissolved 15 1.5 — — Silver, Dissolved 50 10 — — Mercury, Dissolved 2 0.2 — — Volatile Organic Compounds (ug/L) 1,1,1-Trichioroethane 200 40 <0.90	24					
Chromium, Dissolved	<0.45					-
Lead, Dissolved 15 1.5 — <1.30	0.66 J					
Selenium, Dissolved	<1.30	<1.30				
Silver, Dissolved S0	<2.50					-
Mercury, Dissolved 2	< 0.47			10	50	
1,1,1-Trichloroethane	<0.10			0.2	2	Mercury, Dissolved
1,1,1-Trichloroethane					Ind(I)	Volatile Organic Compounds (u
1,1,2,2-Tetrachloroethane 0.2 0.02 <0.20	< 0.90	< 0.90	< 0.90	40		
1,1,2-Trichloroethane 5 0.5 <0.42	<0.20					
1,1-Dichloroethane 850 85 <0.75 <0.75 1,1-Dichloroethane 7 0.7 <0.57	<0.42					
1,1-Dichloroethene 7 0.7 <0.57	< 0.75				850	
1,2-Dichloroethane 5 0.5 <0.36	< 0.57					•
2-Butanone (MEK) 2-Hexanone 3	< 0.36	<0.36	< 0.36	0.5	5	•
2-Hexanone	< 0.49	<0.49	< 0.49	0.5	5	1,2-Dichloropropane
4-Methyl-2-pentanone (MIBK) < < < < < < < < < < < < < < < < < < <	<4.30	<4.30				
Acetone	<2.00					2-Hexanone
Benzene S	<1.20					4-Methyl-2-pentanone (MIBK)
Bromodichloromethane <0.56 <0.56 Bromoform 4.4 0.44 <0.94	<5.00					Acetone
Bromoform	<0.41			0.5	5	
Bromomethane	<0.56					
Carbon disulfide	<0.94					
Carbon tetrachloride 5 0.5 <0.49 <0.49 Chlorobenzene 100 20 <0.41	<0.91		<0.91	1	10	
Chlorobenzene 100 20 <0.41 <0.41 Chloroethane 400 80 <0.97	<0.66					
Chloroethane 400 80 <0.97 <0.97 Chloroform 6 0.6 <1.30	<0.49					
Chloroform 6 0.6 <1.30 <1.30 Chloromethane 3 0.3 <0.24	<0.41					
Chloromethane 3 0.3 < 0.24 < 0.24 Dibromochloromethane 60 6 < 0.81	<0.97					
Dibromochloromethane 60 6 <0.81 <0.81 Ethylbenzene 700 140 <0.54	<1.30				-	
Ethylbenzene 700 140 <0.54 <0.54 Methyl-tert-butyl ether 60 12 <0.61	<0.24					
Methyl-tert-butyl ether 60 12 <0.61 <0.61 Methylene Chloride 5 0.5 <0.43	<0.81					
Methylene Chloride 5 0.5 <0.43 <0.43 Styrene 100 10 <0.86	1.90					•
Styrene 100 10 <0.86 <0.86 Tetrachloroethene 5 0.5 <0.45	<0.61					
Tetrachloroethene 5 0.5 <0.45 <0.45 Toluene 1000 200 <0.67	<0.43 <0.86					
Toluene 1000 200 <0.67 <0.67 Trichloroethene 5 0.5 <0.48	<0.45					•
Trichloroethene 5 0.5 <0.48 3.80 Vinyl chloride 0.2 0.02 <0.18	<0.43					
Vinyl chloride 0.2 0.02 <0.18 <0.18 cis-1,2-Dichloroethene 70 7 <0.83	<0.48					
cis-1,2-Dichloroethene 70 7 <0.83 <0.83 cis-1,3-Dichloropropene 0.2 0.02 <0.20	<0.18					
cis-1,3-Dichloropropene 0.2 0.02 <0.20 <0.20 m&p-Xylene 10,000 1000 <1.8	3.40					
m&p-Xylene 10,000 1000 <1.8 <1.8 o-Xylene 10,000 1000 <0.83	<0.20					·
o-Xylene 10,000 1000 <0.83 <0.83 trans-1,2-Dichloroethene 100 20 <0.89	4.90					
trans-1,2-Dichloroethene 100 20 <0.89 <0.89 trans-1,3-Dichloropropene 0.2 0.02 <0.19 <0.19 Polycyclic Aromatic Hydrocarbons (ug/L) <0.0045 Acenaphthene <0.0045 Acenaphthylene <0.0036 Anthracene 3000 600 <0.0057 Benzo(a)anthracene <0.0036 Benzo(a)pyrene 0.2 0.02 <0.0029 Benzo(b)fluoranthene 0.2 0.02 <0.0034 Benzo(g,h,i)perylene <0.0048	<0.83				•	
Polycyclic Aromatic Hydrocarbons (ug/L) <0.0045 Acenaphthene <0.0045	<0.89				· ·	•
Polycyclic Aromatic Hydrocarbons (ug/L) Acenaphthene <0.0045	<0.19			0.02	0.2	
Acenaphthene <0.0045						
Acenaphthylene <0.0036			<0.0045		1	
Anthracene 3000 600 <0.0057 Benzo(a)anthracene <0.0036						•
Benzo(a)anthracene <0.0036						
Benzo(a)pyrene 0.2 0.02 <0.0029 Benzo(b)fluoranthene 0.2 0.02 <0.0034						
Benzo(b)fluoranthene 0.2 0.02 < 0.0034 Benzo(g,h,i)perylene < 0.0048				0.02	0.2	. ,
Benzo(g,h,i)perylene <0.0048						· / ·
Benzo(k)fluoranthene <0.0044						(), (
Chrysene 0.2 0.02 <0.0035				0.02		()
Dibenz(a,h)anthracene <0.0032						•
Fluoranthene 400 80 <0.0044				80		` ,
Fluorene 400 80 <0.0048						
Indeno(1,2,3-cd)pyrene <0.0047						
Naphthalene 40 8 0.014 J				8	40	
Phenanthrene <0.0081						
Pyrene 250 50 <0.0047			<0.0047	50	250	
Cyanide (ug/L) 200 40	< 8			∆ ∩	200	Cyanide (µg/l)

Notes:

ES = Enforcement Standard (ES exceedences are shown in bold.)

PAL = Preventive Action Limit (PAL Exceedences are shown in italics.)

ug/L = micrograms per liter

^{--- =} not available for standards and not analyzed for results

VPLE Case Closure Request

Former Paragon Electric Company

Two Rivers, Wisconsin

WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

Non-Industrial Industrial Industrial Soil to Groundwater RCL Samples Soil to Groundwater RCL Samples Soil to Groundwater RCL Samples Soil to Groundwater RCL Soil to Groundwater R	4.5-6.5' 0 10/9/09 ed Unsaturate 0) 1.400 (j) 9.0 0 0.0180 (j) 4.2 1.8 < 0.023	1.400 (j) 0.081 6.9 4.
Non-Industrial Industrial Industrial Industrial Soil to Groundwater RCL 3' 3' 2.5' 6.5' 2.5' 6.5' 3.0' 6.0' 2.5-4.5	4.5-6.5' 0 10/9/09 ed Unsaturate 0) 1.400 (j) 9.0 0 0.0180 (j) 4.2 1.8 < 0.023	2' SB-5 10/8/09 10/8 d Unsaturated Unsatu 1.400 (j) 0.080 6.9 4.
Sampling Date	0 10/9/09 ed Unsaturate (i) 1.400 (j) 9.0 0 0.0180 (j 4.2 1.8 < 0.023	10/8/09 10/8 d Unsaturated Unsatu 1.400 (j) 0.086 6.9 4.
Metals (mg/kg) B 1.59 B 0.584 B 0.820 (j) 0.0520 (j)	9.0 9.0 0.0180 (j 4.2 1.8 <0.023	1.400 (j) 0.08
Arsenic C 0.39 B 1.59 B 0.584 B 0.820 (j) 0.0520 (j)	9.0 0.0180 (j 4.2 1.8 <0.023	6.9 4.
Barium C 15,300 B 100,000 B 164.8 B 5.2 6.4 13.8 Cadmium 70.2 B 803 B 0.752 B <0.017 <0.016 <0.016 Chromium(III)/Chromium(VI) C 100,000/0.293 B 100,000/5.57 B 360,000 (If no Cr-VI) B 3.5 2.9 3.3 Lead C 400 B 800 B 27 B 1.1 0.980 (j) 1.0 Selenium 391 B 5,110 B 0.52 B <0.250 <0.240 <0.024 Silver C 391 B 5,110 B 0.8497 B 0.048 (j) 0.029 (j)	9.0 0.0180 (j 4.2 1.8 <0.023	6.9 4.
Cadmium 70.2 B 803 B 0.752 B <0.017	0.0180 (j 4.2 1.8 <0.023	
Chromium(III)/Chromium(VI) C 100,000/0.293 B 100,000/5.57 B 360,000 (if no Cr-VI) B 3.5 2.9 <t< th=""><th>4.2 1.8 <0.023</th><th>) 0.042 () <0.0</th></t<>	4.2 1.8 <0.023) 0.042 () <0.0
Lead C 400 B 800 B 27 B 1.1 0.980 (j)	1.8 <0.023	3.2 3.0
Silver ^C 391 B 5,110 B 0.8497 B 0.048 (j) 0.029 (j) < 0.019		1.8 1.
		<0.025 <0.0
Mercury ^C 3.13 ^B 3.13 ^B 0.208 ^B 0.0023 (j) 0.0044 (j) 0.0047	0,	
Volatile Organic Compounds (ug/kg)	(J) 0.0073 (J) 0.0021 (j) 0.000
1,1,1,2-Tetrachloroethane	<25.0	<25.0 <25
1,1,1-Trichloroethane 640,000 B 640,000 B 140.2 B <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.	_	<25.0 <25
1,1,2,2-Tetrachloroethane 753 B 3,690 B 0.2 B <25.0	_	<25.0 <25 <25.0 <25
1,1,2-Trichloroethane 1,480 B 7,340 B 3.2 B <25.0	<25.0 <25.0	<25.0 <25 <25.0 <25
1,1-Dichloroethene 342,000 B 1,190,000 B 5 B <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25	_	<25.0 <25
1,1-Dichloropropene < < < < < < < <		<25.0 <25
1,2,3-Trichlorobenzene 48,900 B 151,000 B <25.0		<25.0 <25 <25.0 <25
1,2,4-Trichlorobenzene		<25.0 <25
1,2,4-Trimethylbenzene 89,800 B 219,000 B 1379.3 B <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25	_	<25.0 <25
1,2-Dibromo-3-chloropropane 8 B 99 B 0.2 B <82.3	<82.3 <25.0	<82.3 <82 <25.0 <25
1,2-Dibromoethane (EDB) 47 B 230 B 0.282 B <25.0		<25.0 <25 <44.4 <44
1,2-Dichloroethane 608 B 3,030 B 2.8 A <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0	_	<25.0 <25
1,2-Dichloropropane 1,330 B 6,620 B 3.3 B <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0		<25.0 <25
1,3,5-Trimethylbenzene 182,000 B 182,000 B 1379.3 B <25.0	_	<25.0 <25 <25.0 <25
1,3-Dichloropropane 1,490,000 B 1,490,000 B B <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0		<25.0 <25
1,4-Dichlorobenzene 3,480 B 17,500 B 144 B <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0		<25.0 <25
2,2-Dichloropropane < 25.0	_	<25.0 <25 <25.0 <25
2-Chlorotoluene 907,000 B 253000 B < 25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25		<25.0 <25
Benzene 1,490 B 7,410 B 5.5 A <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0	<25.0	<25.0 <25
Bromobenzene 354,000 B 679,000 B <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0		<25.0 <25
Bromochloromethane 232,000 B 976,000 B <25.0	_	<25.0 <25 <25.0 <25
Bromoform 61,600 B 218,000 B 2.3 B <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <25.9 <	_	<25.9 <25
Bromomethane 10,300 B 46,000 B 5.1 B <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0		<25.0 <25
Carbon tetrachloride 854 B 4,250 B 3.9 B <25.0	<25.0 <25.0	<25.0 <25 <25.0 <25
Chloroethane 226.6 B <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0	_	<25.0 <25
Chloroform 423 B 2,130 B 3.3 B <25.0	<25.0	<25.0 <25
Chloromethane 171,000 B 720,000 B 15.5 B <25.0		<25.0 <25 <25.0 <25
Dibromoethane 933 - 4,400 - 32 - <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	_	<25.0 <25
Dichlorodifluoromethane 135,000 B 571,000 B 3,082.5 B <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0	<25.0	<25.0 <25
Diisopropyl ether 2,260,000 B 2,260,000 B < 25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <2		<25.0 <25
Ethylbenzene 7,470 B 37,000 B 2,900 A <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <26.4 <2	_	<25.0 <25 <26.4 <26
Isopropylbenzene (Cumene) 268,000 B 268,000 B <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0	<25.0	<25.0 <25
Methyl-tert-butyl ether 59,400 B 293,000 B 27 B <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0	_	<25.0 <25
Methylene Chloride 60,700 B 1,070,000 B 2.6 B <25.0		<25.0 <25 <25.0 <25
Styrene 867,000 B 867,000 B 220 B <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <2		<25.0 <25
Tetrachloroethene 30,700 B 153,000 B 4.5 B <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0	<25.0	<25.0 <25
Toluene 818,000 B 818,000 B 1,500 A <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0		<25.0 <25 <25.0 <25
Trichloroethene 644 B 8,810 B 3.6 C		<25.0 <25 <25.0 <25
Vinyl chloride 67 B 2,030 B 0.1 B <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <2	<25.0	<25.0 <25
cis-1,2-Dichloroethene 156,000 B 2,040,000 B 41.2 B <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <2	_	<25.0 <25
cis-1,3-Dichloropropene 1,220,000		<25.0 <25 <50.0 <50
n-Butylbenzene 108,000 B 108,000 B - < 40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.4 <40.	_	<40.4 <40
n-Propylbenzene 264,000 B 264,000 B <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25		<25.0 <25
o-Xylene 434,000 B 434,000 B < 25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25	_	<25.0 <25 <25.0 <25
p-Isopropytfoluene 162,000	_	<25.0 <25 <25.0 <25
tert-Butylbenzene 183,000 B 183,000 B - <	<25.0	<25.0 <25
trans-1,2-Dichloroethene 211,000 B 976,000 B 58.8 B <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <2		<25.0 <25
trans-1,3-Dichloropropene 1,570,000 B 1,570,000 B < 25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0 <25.0		<25.0 <25 <50.0 <50
Polycyclic Aromatic Hydrocarbons (PAHs) (ug/kg)		22.3
1-Methylnaphthalene 15,600 B 53,100 B 23,000 B - < 1.9 < 1.9 < 1.9	<2.0	
2-Methylnaphthalene 229,000 B 368,000 B 20,000 B < 1.9 < 1.9 < 1.9	<2.0	
Acenaphthene 3,440,000 B 33,000,000 B 38,000 B - - <0.95	<1.0 <1.9	
Acenaphthylene 487,000 B 487,000 B 700 B - - < 1.7	<1.9 <5.0	
Benzo(a)anthracene 148 B 2,110 B 17,000 B <8.6 <8.6 <8.6	<9.1	
Benzo(a)pyrene 15 B 211 B 48,000 B <3.7 <3.7 <3.8	<4.0	
Benzo(b)fluoranthene 148 B 2,110 B 360,000 B - - < 5.8	<6.2 <4.6	
Benzo(k)fluoranthene 1,480 B 21,100 B 870,000 B <6.3 <6.4 <6.4	<6.8	
Chrysene 14,800 B 211,000 B 37,000 B <3.5 <3.5 <3.6	<3.8	
Dibenz(a,h)anthracene 15 B 211 B 38,000 B - - < 4.8	<5.1 <1.2	
Fluorantnene 2,290,000 - 22,000,000 - 500,000 < 1.1 < 1.1 < 1.1 Fluorene 2,290,000 B 22,000,000 B 100,000 B < 0.93 < 0.94 < <0.94		
Indeno(1,2,3-cd)pyrene 148 B 2,110 B 680,000 B <4.3 <4.3 <4.3	<4.6	
Naphthalene 5,150 B 26,000 B 400 B <1.3 <1.3 1.6 (j)		
Phenanthrene 115,000 B 115,000 B 1,800 B - - <2.0	<2.2 <1.1	
Cyanide (ug/kg) 46,900 ^B 613,000 ^B 4,040 ^B 280 (ji Notes:	1200	

25	Indicates Non-Industrial Direct Contact RCL exceedance (bold and box
50	Indicates Industrial Direct Contact RCL exceedance (bold and bold box
5	Indicates Soil to Groundwater RCL exceedance (bold and italicized)

^{-- =} not analyzed OR not available

^A Generic RCL is established under NR 720 or NR 746

B WDNR RR Program's RCL Spreadsheet, May 2012 (based on EPA web calculator at http://epa-

^c Arsenic, barium, chromium, lead, silver and mercury detected at this site are characteristic of background concentrations and originate from natural sources (based on the background samples BKG-1 and BKG-2)

 $[\]label{eq:continuous} \mbox{(j) = above laboratory detection limit, but below laboratory quantitiation limit, or estimated value}$

VPLE Case Closure Request

Former Paragon Electric Company

Two Rivers, Wisconsin

WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

	WDNR Generic R	CL	s for Direct Contact						2009 Site	Assessmei	nt Samples	5			
	Nan Industrial		la decatada l	Soil to	SB-6 0.5-	SB-6 4.5-	SB-7 2-4'	SB-7 4-6'	SB-8 0.5-	1	SB-9A	SB-9A	SB-9B	SB-9B	SB-10 2-
Sampling Date	Non-Industrial		Industrial	Groundwater RCL	2.5' 10/12/09	6.5' 10/12/09	10/8/09	10/8/09	2.5' 10/12/09	6.5' 10/12/09	1.5-3.0' 10/15/09	6.0-7.0' 10/15/09	0.5-1.5' 10/15/09	6.0-7.0' 10/15/09	4' 10/8/09
Type of Soil Sample		\Box			Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated
Metals (mg/kg)		B		R	В										
Arsenic ^C Barium ^C	0.39 15,300	В	1.59 100,000	B 0.584 B 164.8	В										1.4 (j) 10.7
Cadmium	70.2	В	803	0.752	В										0.033 (j)
Chromium(III)/Chromium(VI) ^C Lead ^C	100,000/0.293 400	В	100,000/5.57 800	B 360,000 (If no Cr-VI) B 27	В				2.6	1.2	1.8	1.1	4.1	0.88 (j)	5.2 1.6
Selenium	391	В	5,110	B 0.52	В										<0.240
Silver ^C Mercury ^C	391 3.13	В	5,110 3.13	B 0.8497 B 0.208	В										<0.019
Volatile Organic Compounds (Ħ	3.13	0.208											0.00001
1,1,1,2-Tetrachloroethane	2,590	В	12,900	53.3	B <25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	640,000 753	В	640,000 3,690	B 140.2 B 0.2	B <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
1,1,2-Trichloroethane	1,480	В	7,340	B 3.2	B <25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,1-Dichloroethane 1,1-Dichloroethene	4,720 342,000	В	23,700 1,190,000	B 483.6	B <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
1,1-Dichloropropene	342,000				<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,2,3-Trichlorobenzene	48,900	В	151,000	B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	5 22,100	В	95 98,700	^B 52 ^B 408	B <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
1,2,4-Trimethylbenzene	89,800	В	219,000	B 1379.3	B <25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB)	8 47	В	99 230	B 0.2 B 0.282	B <82.3	<82.3 <25.0	<82.3 <25.0	<82.3 <25.0	<82.3 <25.0	<82.3 <25.0	<82.3 <25.0	<82.3 <25.0	<82.3 <25.0	<82.3 <25.0	<82.3 <25.0
1,2-Dichlorobenzene	376,000	В	376,000	B 1,168	B <44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4
1,2-Dichloroethane 1,2-Dichloropropane	608 1,330	B	3,030 6,620	B 2.8 B 3.3	A <25.0 B <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
1,3,5-Trimethylbenzene	182,000	В	182,000	B 1379.3	B <25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,3-Dichlorobenzene	297,000	В	297,000	B 1152.2	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,3-Dichloropropane 1,4-Dichlorobenzene	1,490,000 3,480	В	1,490,000 17,500	 В 144	B <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
2,2-Dichloropropane		В			<25.0 B <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
2-Chlorotoluene 4-Chlorotoluene	907,000 253000	В	907,000 253000	В	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0 <25.0	<25.0	<25.0	<25.0	<25.0
Benzene	1,490	В	7,410	В 5.5	A <25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Bromobenzene Bromochloromethane	354,000 232,000	В	679,000 976,000	B	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Bromodichloromethane	390	В	1,960	B 0.3	B <25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Bromoform Bromomethane	61,600 10,300	В	218,000 46,000	B 2.3 B 5.1	B <25.9	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0
Carbon tetrachloride	854	В	4,250	B 3.9	B <25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Chlorobenzene Chloroethane	392,000	В	761,000	226.6	<25.0 B <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Chloroform	423	В	2,130	B 3.3	B <25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Chloromethane Dibromochloromethane	171,000 933	В	720,000 4,400	B 15.5	B <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Dibromomethane	35,000	В	151,000	В	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Dichlorodifluoromethane Diisopropyl ether	135,000 2,260,000	В	571,000 2,260,000	B 3,082.5	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Ethylbenzene	7,470	В	37,000	B 2,900	A <25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Hexachloro-1,3-butadiene	6,230 268,000	В	22,100 268,000	B	<26.4 <25.0	<26.4 <25.0	<26.4 <25.0	<26.4 <25.0	<26.4 <25.0	<26.4 <25.0	<26.4 <25.0	<26.4 <25.0	<26.4 <25.0	<26.4 <25.0	<26.4 <25.0
Isopropylbenzene (Cumene) Methyl-tert-butyl ether	59,400	В	293,000	B 27	B <25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Methylene Chloride	60,700	В	1,070,000	B 2.6 B 658.7	B 140 B <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Naphthalene Styrene	5,150 867,000	В	26,000 867,000	B 220	B <25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Tetrachloroethene	30,700	В	153,000	B 4.5	B <25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Toluene Trichloroethene	818,000 644	В	818,000 8,810	B 1,500 B 3.6	A <25.0 B <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 45.3J	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 170	<25.0 <25.0	<25.0 <25.0
Trichlorofluoromethane	1,120,000	В	1,230,000	B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Vinyl chloride cis-1,2-Dichloroethene	67 156,000	В	2,030 2,040,000	B 0.1 B 41.2	B <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
cis-1,3-Dichloropropene	1,220,000	В	1,220,000	B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
m&p-Xylene n-Butylbenzene	108,000	В	108,000	 B	<50.0 <40.4	<50.0 <40.4	<50.0 <40.4	<50.0 <40.4	<50.0 <40.4	<50.0 <40.4	<50.0 <40.4	<50.0 <40.4	<50.0 <40.4	<50.0 <40.4	<50.0 <40.4
n-Propylbenzene	264,000	В	264,000	B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
o-Xylene p-Isopropyltoluene	434,000 162,000	В	434,000 162,000	B	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
sec-Butylbenzene	145,000	В	145,000	B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
tert-Butylbenzene trans-1,2-Dichloroethene	183,000 211,000	В	183,000 976,000	B 58.8	<25.0 B <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
trans-1,3-Dichloropropene	1,570,000	В	1,570,000	В	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Xylenes, (Total)	258,000	, B	258,000	^B 4,100	A <50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0
Polycyclic Aromatic Hydrocarl 1-Methylnaphthalene	oons (PAHs) (ug/kg 15,600) B	53,100	В 23,000	B <1.9	<2.0	<2.0	<2.0							
2-Methylnaphthalene	229,000	В	368,000	B 20,000	B <2.0	<2.0	<2.0	<2.0							
Acenaphthene Acenaphthylene	3,440,000 487,000	В	33,000,000 487,000	B 38,000 B 700	B <0.98	<1.0 <1.9	<1.0 <1.9	<1.0 <1.9							
Anthracene	17,200,000	В	100,000,000	B 3,000,000	B <4.8	<5.0	<5.0	<5.0							
Benzo(a)anthracene Benzo(a)pyrene	148 15	B	2,110 211	B 17,000 B 48,000	B <8.8	<9.2 <4.0	<9.1 <4.0	<9.1 <4.0							
Benzo(b)fluoranthene	148	В	2,110	B 360,000	B <6.0	<6.2	<6.2	<6.2							
Benzo(g,h,i)perylene Benzo(k)fluoranthene	1,800 1,480	B	39,000 21,100	B 6,800,000 B 870,000	B <4.4 B <6.5	<4.6 <6.8	<4.6 <6.8	<4.6 <6.8							
Chrysene	14,800	В	211,000	B 37,000	B <3.6	<3.8	<3.8	<3.8							
Dibenz(a,h)anthracene Fluoranthene	15 2,290,000	В	211 22,000,000	B 38,000 B 500,000	B <4.9	<5.1 <1.2	<5.1 2.1 (j)	<5.1 <1.2							
Fluorene	2,290,000	В	22,000,000	B 100,000	B <0.96	<1.0	<1.0	<1.0							
Indeno(1,2,3-cd)pyrene	148 5.150	В	2,110	B 680,000	B <4.4	<4.6	<4.6	<4.6 <1.3							
Naphthalene Phenanthrene	5,150 115,000	В	26,000 115,000	B 400 B 1,800	B 2.4 (j) B <2.1	<1.4 <2.2	1.3 (j) <2.2	<1.3 <2.2							
Pyrene	1,720,000	В	16,500,000	B 8,700,000	B <1.1	<1.1	1.8 (j)	<1.1							
Cyanide (ug/kg)	46,900	В	613,000	4,040	В										
Notes:															

25	Indicates Non-Industrial Direct Contact RCL exceedance (bold and bo
50	Indicates Industrial Direct Contact RCL exceedance (bold and bold bo
5	Indicates Soil to Groundwater RCL exceedance (bold and italicized)

^{-- =} not analyzed OR not available

^A Generic RCL is established under NR 720 or NR 746

B WDNR RR Program's RCL Spreadsheet, May 2012 (based on EPA web calculator at http://epa-

^c Arsenic, barium, chromium, lead, silver and mercury detected at this site are characteristic of background concentrations and originate from natural sources (based on the background samples BKG-1 and BKG-2)

 $[\]label{eq:continuous} \mbox{(j) = above laboratory detection limit, but below laboratory quantitiation limit, or estimated value}$

VPLE Case Closure Request

Former Paragon Electric Company

Two Rivers, Wisconsin

WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

	WDNR Generic RC	Ls for Direct Contact							2009 Site	Assessme	nt Samples	s			
	Non-Industrial	Industrial	Soil to		SB-10 4- 6'	SB-11 2-	SB-11 4- 6'	SB-12 0- 2'	SB-12 2- 4'	SB-13 0.5 2.5'	SB-13 4.5 6.5'	SB-14 0.5 2.5'	SB-14 4.5 6.5'	SB-15 1- 2'	SB-15 2- 4'
Sampling Date	Non-industrial	industriai	Groundwater RCL		10/8/09	10/8/09	10/8/09	10/8/09	10/8/09	10/12/09	10/12/09	10/12/09	10/12/09	10/8/09	10/8/09
Type of Soil Sample					Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated
Metals (mg/kg)		B		B											
Arsenic ^C Barium ^C	0.39 15,300	B 1.59 B 100,000	0.584 164.8	В	0.98 (j) 4.3	1.6 (j) 6.2	0.900 (j) 6.4	1.8(j) 13.3	1.3 (j) 11.8	1.5 (j) 14.8	0.760 (j) 3.8	2.2 12.4	0.910 (j) 4.3		
Cadmium	70.2	B 803	0.752	В	0.018 (j)	<0.016	0.022 (j)	0.058 (j)	0.046 (j)	0.120 (j)	<0.018	0.024 (j)	0.035 (j)		
Chromium(III)/Chromium(VI) C	100,000/0.293 400	B 100,000/5.57 B 800	B 360,000 (If no Cr-VI) B 27	В	3.6 1.1	4.5 1.1	2.9 1.1	4.7 5.7	4.6 3.3	4.2 14.9	2.3 0.920 (j)	8.1 2.0	2.9 1.1 (j)		
Selenium	391	5,110 E	0.52	В	<0.230	<0.250	<0.260	<0.250	<0.240	<0.250	<0.270	<0.250	<0.280		
Silver ^C Mercury ^C	391 3.13	5,110 E 3.13	0.8497 0.208	В	<0.018 0.0047 (j)	<0.020 0.0035 (j)	<0.021 0.0051 (j)	<0.020 0.018	0.027 (j) 0.014	0.046 (j) 0.016	<0.022	<0.020 0.0094 (j)	0.031 (j) <0.002		
Volatile Organic Compounds (3.13	0.208	F	0.0047 (j)	0.0033 (j)	0.0031 (j)	0.018	0.014	0.010	<u> </u>	0.0094 (j)	<0.002		
1,1,1,2-Tetrachloroethane	2,590	B 12,900	53.3	В	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	640,000 753	B 640,000 E 3,690	140.2 B 0.2	В	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
1,1,2-Trichloroethane	1,480	7,340	3.2	В	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,1-Dichloroethane	4,720	B 23,700	483.6	В	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,1-Dichloroethene 1,1-Dichloropropene	342,000	1,190,000	5 	F	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
1,2,3-Trichlorobenzene	48,900	B 151,000	 B	B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	5 22,100	95 B 98,700 B	52 B 408	В	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
1,2,4-Trimethylbenzene	89,800	B 219,000	1379.3	В	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB)	8 47	B 99 B 230	0.2 0.282	В	<82.3 <25.0	<82.3 <25.0	<82.3 <25.0	<82.3 <25.0	<82.3 <25.0	<82.3 <25.0	<82.3 <25.0	<82.3 <25.0	<82.3 <25.0	<82.3 <25.0	<82.3 <25.0
1,2-Dichlorobenzene	376,000	B 376,000	1,168	В	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4
1,2-Dichloroethane	608 1,330	3,030 E 6,620	B 2.8	В	<25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
1,2-Dichloropropane 1,3,5-Trimethylbenzene	1,330 182,000	6,620 E	3.3 B 1379.3	В	<25.0 <25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0 <25.0	<25.0	<25.0 <25.0
1,3-Dichlorobenzene	297,000	B 297,000	1152.2	В	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,3-Dichloropropane 1,4-Dichlorobenzene	1,490,000 3,480	B 1,490,000 B 17,500	 B 144	В	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
2,2-Dichloropropane			 R	P	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
2-Chlorotoluene 4-Chlorotoluene	907,000 253000	907,000 E	B	f	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Benzene	1,490	B 7,410	5.5	Α	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Bromobenzene Bromochloromethane	354,000 232,000	679,000 E 976,000	 B	H	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Bromodichloromethane	390	1,960 E	0.3	В	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Bromoform Bromomethane	61,600 10,300	B 218,000 E 46,000	B 2.3 B 5.1	В	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0
Carbon tetrachloride	854	B 4,250	3.9	В	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Chlorobenzene	392,000	^B 761,000		В	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Chloroethane Chloroform	423	B 2,130	226.6 3.3	В	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Chloromethane	171,000	720,000 E	15.5	В	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Dibromochloromethane Dibromomethane	933 35,000	B 4,400 B 151,000	32 	F	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Dichlorodifluoromethane	135,000	571,000 E	3,082.5	В	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Diisopropyl ether Ethylbenzene	2,260,000 7,470	B 2,260,000 B 37,000	2,900	Α	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Hexachloro-1,3-butadiene	6,230	B 22,100			<26.4	<26.4	<26.4	<26.4	<26.4	110	40.7 (j)	43.9 (j)	<26.4	<26.4	<26.4
Isopropylbenzene (Cumene) Methyl-tert-butyl ether	268,000 59,400	B 268,000 B 293,000 B	 B 27	В	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Methylene Chloride	60,700	B 1,070,000	2.6	В	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Naphthalene Styrene	5,150 867,000	B 26,000 B 867,000	658.7 B 220	В	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Tetrachloroethene	30,700	B 153,000	4.5	В	<25.0	<25.0	<25.0	<25.0	<25.0	102	<25.0	132	<25.0	<25.0	<25.0
Toluene Trichloroethene	818,000 644	B 818,000 E 8,810	B 1,500 B 3.6	В	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 176	<25.0 <25.0	<25.0 187	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Trichlorofluoromethane	1,120,000	B 1,230,000	3.0 B		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Vinyl chloride cis-1,2-Dichloroethene	67 156,000	B 2,030 E 2,040,000	B 0.1 B 41.2	В	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
cis-1,3-Dichloropropene	1,220,000	B 1,220,000	#1.2 B		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
m&p-Xylene		B 400.000 F		F	<50.0	<50.0 <40.4	<50.0 <40.4	<50.0 <40.4	<50.0	<50.0	<50.0	<50.0 <40.4	<50.0	<50.0 <40.4	<50.0
n-Butylbenzene n-Propylbenzene	108,000 264,000	B 108,000 E 264,000	 B	t	<40.4 <25.0	<40.4 <25.0	<40.4 <25.0	<40.4 <25.0	<40.4 <25.0	<40.4 <25.0	<40.4 <25.0	<40.4 <25.0	<40.4 <25.0	<40.4 <25.0	<40.4 <25.0
o-Xylene	434,000	B 434,000	B	F	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
p-Isopropyltoluene sec-Butylbenzene	162,000 145,000	162,000 E 145,000	 B	t	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
tert-Butylbenzene	183,000	B 183,000	 B	B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	211,000 1,570,000	976,000 E 1,570,000	58.8 		<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Xylenes, (Total)	258,000	B 258,000	4,100	Α	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0
Polycyclic Aromatic Hydrocari		B 52.400	B 22.000	В											
1-Methylnaphthalene 2-Methylnaphthalene	15,600 229,000	53,100 E 368,000 E	23,000 20,000	В											
Acenaphthene	3,440,000	B 33,000,000	38,000	В											
Acenaphthylene Anthracene	487,000 17,200,000	B 487,000 E 100,000,000	700 3,000,000	В											
Benzo(a)anthracene	148	B 2,110	17,000	В											
Benzo(a)pyrene Benzo(b)fluoranthene	15 148	B 211 B 2,110	48,000 360,000	В											
Benzo(g,h,i)perylene	1,800	B 39,000	6,800,000	В											
Benzo(k)fluoranthene Chrysene	1,480 14,800	B 21,100 E 211,000	870,000 37,000	В											
Dibenz(a,h)anthracene	15	211,000 B 211	38,000	В											
Fluoranthene	2,290,000	B 22,000,000 E	500,000	В											
Fluorene Indeno(1,2,3-cd)pyrene	2,290,000 148	E 22,000,000 E 2,110	100,000 B 680,000	В											
Naphthalene	5,150	B 26,000	400	B											
Phenanthrene Pyrene	115,000 1,720,000	B 115,000 B 16,500,000	1,800 8,700,000	В											
Cyanide (ug/kg)	46,900	B 613,000	4,040	В						210 (j)	120 (j)	<63.0	<72.0		
Notes:		•											_		

25	
50	

Indicates Non-Industrial Direct Contact RCL exceedance (bold and box)
Indicates Industrial Direct Contact RCL exceedance (bold and bold box)
Indicates Soil to Groundwater RCL exceedance (bold and italicized)

^{-- =} not analyzed OR not available

A Generic RCL is established under NR 720 or NR 746

^B WDNR RR Program's RCL Spreadsheet, May 2012 (based on EPA web calculator at http://epa-

^c Arsenic, barium, chromium, lead, silver and mercury detected at this site are characteristic of background concentrations and originate from natural sources (based on the background samples RKG-1 and RKG-2)

⁽j) = above laboratory detection limit, but below laboratory quantitiation limit, or estimated value

VPLE Case Closure Request

Former Paragon Electric Company

Two Rivers, Wisconsin

WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

	WDNK Generic KC	JLS 	for Direct Contact							Storage	e Area Ass	essment S	amples				
	Non Industrial		ا مادوها	Soil to		GP-1 0.5	GP-1 4-	GP-2 0.5	GP-2 4- 6'	GP-3 0.4		GP-4 0.5		GP-5 0.5	GP-5 4-	GP-6 0.5	1
Sampling Date	Non-Industrial		Industrial	Groundwater RCL		4.0' 11/7/11	6' 11/7/11	4.0' 11/7/11	11/7/11	4.0' 11/7/11	6' 11/7/11	4.0' 11/7/11	6' 11/7/11	4.0' 11/7/11	6' 11/7/11	4.0' 11/7/11	6' 11/7/11
Type of Soil Sample						Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	1	Unsaturated
Metals (mg/kg)		Ħ															
Arsenic ^C Barium ^C	0.39	В	1.59	0.584	В												
Cadmium	15,300 70.2	В	100,000 E	164.8 0.752	В												
Chromium(III)/Chromium(VI) C	100,000/0.293	В	100,000/5.57	360,000 (If no Cr-VI)	В												
Lead ^C	400	В	800	27	В												
Selenium Silver ^C	391 391	В	5,110 ⁵	0.52 0.8497	В												
Mercury ^C	3.13	В	3.13	0.208	В												
Volatile Organic Compounds (ug/kg)	H			F												
1,1,1,2-Tetrachloroethane	2,590	В	12,900	53.3	В	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,1,1-Trichloroethane	640,000	В	640,000	140.2	В	<25.0 <25.0	<25.0 <25.0	<27.3	<26.3	<26.0 <26.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	753 1,480	В	3,690 7,340	3.2	В	<25.0	<25.0	<27.3 <27.3	<26.3 <26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,1-Dichloroethane	4,720	В	23,700	483.6	В	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,1-Dichloroethene	342,000	В	1,190,000	5	В	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,1-Dichloropropene 1,2,3-Trichlorobenzene	 48,900	В	 151,000		t	<25.0 <25.0	<25.0 <25.0	<27.3 <27.3	<26.3 <26.3	<26.0 <26.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
1,2,3-Trichloropropane	5	В	95 E	52	В	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,2,4-Trichlorobenzene	22,100	В	98,700	408	В	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	89,800 8	В	219,000 99	1379.3	В	<25.0 <82.3	<25.0 <82.3	<27.3 <89.9	<26.3 <86.6	<26.0 <85.7	<25.0 <82.3	<25.0 <82.3	<25.0 <82.3	<25.0 <82.3	<25.0 <82.3	<25.0 <82.3	<25.0 <82.3
1,2-Dibromoethane (EDB)	47	В	230 E	0.282	В	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<82.3 <25.0	<25.0	<82.3 <25.0	<25.0
1,2-Dichlorobenzene	376,000	В	376,000	1,168	В	<44.4	<44.4	<48.5	<46.7	<46.2	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4
1,2-Dichloroethane	608	В	3,030 E	2.8	A B	<25.0 <25.0	<25.0 <25.0	<27.3	<26.3	<26.0	<25.0	<25.0 <25.0	<25.0	<25.0 <25.0	<25.0	<25.0 <25.0	<25.0 <25.0
1,2-Dichloropropane 1,3,5-Trimethylbenzene	1,330 182,000	В	6,620 182,000	3.3 1379.3	В	<25.0 <25.0	<25.0 <25.0	<27.3 <27.3	<26.3 <26.3	<26.0 <26.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
1,3-Dichlorobenzene	297,000	В	297,000	1152.2	Ļ	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,3-Dichloropropane	1,490,000	В	1,490,000		В	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,4-Dichlorobenzene 2,2-Dichloropropane	3,480	H	17,500	144	f	<25.0 <25.0	<25.0 <25.0	<27.3 <27.3	<26.3 <26.3	<26.0 <26.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
2-Chlorotoluene	907,000	В	907,000		В	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
4-Chlorotoluene	253000	B	253000	<u></u>	Α	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Benzene Bromobenzene	1,490 354,000	В	7,410 679,000	5.5	Ĥ	<25.0 <25.0	<25.0 <25.0	<27.3 <27.3	<26.3 <26.3	<26.0 <26.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Bromochloromethane	232,000	В	976,000		t	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Bromodichloromethane	390	B	1,960	0.3	В	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Bromoform Bromomethane	61,600 10,300	В	218,000 E	2.3 5.1	В	<25.9 <25.0	<25.9 <25.0	<28.3 <27.3	<27.3 <26.3	<27.0 <26.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0	<25.9 <25.0
Carbon tetrachloride	854	В	4,250	3.9	В	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Chlorobenzene	392,000	В	761,000		<u>_</u>	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Chloroethane Chloroform	 423	В	 2 130	226.6	В	<25.0	<25.0 <25.0	<27.3 <27.3	<26.3 <26.3	<26.0 <26.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Chloroform Chloromethane	423 171,000	В	2,130 E	3.3 15.5	В	<25.0 <25.0	<25.0 <25.0	<27.3 <27.3	<26.3 <26.3	<26.0 <26.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Dibromochloromethane	933	В	4,400 E	32	В	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Dibromomethane	35,000	В	151,000		R	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Dichlorodifluoromethane Diisopropyl ether	135,000 2,260,000	В	571,000 E	3,082.5	Ť	<25.0 <25.0	<25.0 <25.0	<27.3 <27.3	<26.3 <26.3	<26.0 <26.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Ethylbenzene	7,470	В	37,000 E	2,900	Α	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Hexachloro-1,3-butadiene	6,230	B	22,100 E		F	98.4	83.7	37.6 (j)	<27.8	<27.5	<26.4	<26.4	<26.4	<26.4	<26.4	44.4 (j)	<26.4
Isopropylbenzene (Cumene) Methyl-tert-butyl ether	268,000 59,400	В	268,000 293,000	27	В	<25.0 <25.0	<25.0 <25.0	<27.3 <27.3	<26.3 <26.3	<26.0 <26.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Methylene Chloride	60,700	В	1,070,000	2.6	В	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Naphthalene	5,150	В	26,000	658.7	В	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Styrene Tetrachloroethene	867,000 30,700	В	867,000 E	220	В	<25.0 <25.0	<25.0 <25.0	<27.3	<26.3	<26.0 72.3	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0	<25.0 <25.0
Tetrachloroethene Toluene	30,700 818,000	В	153,000 E	4.5 1,500	A	<25.0 <25.0	<25.0 <25.0	35.3 (j) <27.3	<26.3 <26.3	72.3 <26.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	81.9 <25.0	<25.0 <25.0
Trichloroethene	644	В	8,810 E	3.6	В	<25.0	<25.0	39.1 (j)	<26.3	78.2	<25.0	<25.0	<25.0	35.2 (j)	<25.0	163	<25.0
Trichlorofluoromethane	1,120,000	В	1,230,000		R	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Vinyl chloride cis-1,2-Dichloroethene	67 156,000	В	2,030 2,040,000	0.1 41.2	В	<25.0 <25.0	<25.0 <25.0	<27.3 <27.3	<26.3 <26.3	<26.0 <26.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
cis-1,3-Dichloropropene	1,220,000	В	1,220,000		T	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
m&p-Xylene		P	 			<50.0	<50.0	<54.6	<52.6	<52.1	<50.0	<50.0	<50.0	<50.0	<50.0	110 (j)	<50.0
n-Butylbenzene n-Propylbenzene	108,000 264,000	В	108,000 E	 	+	<40.4 <25.0	<40.4 <25.0	<44.1 <27.3	<42.5 <26.3	<42.1 <26.0	<40.4 <25.0	<40.4 <25.0	<40.4 <25.0	<40.4 <25.0	<40.4 <25.0	<40.4 <25.0	<40.4 <25.0
o-Xylene	434,000	В	434,000 E	 3	t	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	30.3 (j)	<25.0
p-Isopropyltoluene	162,000	В	162,000		F	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
sec-Butylbenzene	145,000 183,000	В	145,000 183,000	 	+	<25.0 <25.0	<25.0 <25.0	<27.3 <27.3	<26.3 <26.3	<26.0 <26.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
tert-Butylbenzene trans-1,2-Dichloroethene	211,000	В	976,000 E	58.8	В	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
trans-1,3-Dichloropropene	1,570,000	В	1,570,000		Į.	<25.0	<25.0	<27.3	<26.3	<26.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Xylenes, (Total)	258,000	В	258,000 E	4,100	A	<75.0	<75.0	<81.9	<78.9	<78.1	<75.0	<75.0	<75.0	<75.0	<75.0	140.3 (j)	<75.0
Polycyclic Aromatic Hydrocark		В	F0.400	00.000	В												
1-Methylnaphthalene 2-Methylnaphthalene	15,600 229,000	В	53,100 E	23,000	В												
Acenaphthene	3,440,000	В	33,000,000 E	38,000	В												
Acenaphthylene	487,000	В	487,000	700	В												
Anthracene Benzo(a)anthracene	17,200,000 148	В	100,000,000 E	3,000,000 17,000	В												
Benzo(a)anthracene Benzo(a)pyrene	148 15	В	2,110 E	48,000	В												
Benzo(b)fluoranthene	148	В	2,110	360,000	В												
Benzo(g,h,i)perylene	1,800	В	39,000	6,800,000	В												
Benzo(k)fluoranthene Chrysene	1,480 14,800	В	21,100 E	870,000 37,000	В												
Dibenz(a,h)anthracene	15	В	211,000 E	38,000	В												
Fluoranthene	2,290,000	В	22,000,000	500,000	В												
Fluorene	2,290,000	В	22,000,000	100,000	В												
Indeno(1,2,3-cd)pyrene Naphthalene	148 5,150	В	2,110 E	680,000	В												
Phenanthrene	115,000	В	115,000	1,800	В												
Pyrene	1,720,000	В	16,500,000	8,700,000	В												
1 310110	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,																

25	
50	

Indicates Non-Industrial Direct Contact RCL exceedance (bold and box) Indicates Industrial Direct Contact RCL exceedance (bold and bold box) Indicates Soil to Groundwater RCL exceedance (bold and italicized)

^{-- =} not analyzed OR not available

^A Generic RCL is established under NR 720 or NR 746

^B WDNR RR Program's RCL Spreadsheet, May 2012 (based on EPA web calculator at http://epa-

^C Arsenic, barium, chromium, lead, silver and mercury detected at this site are characteristic of background concentrations and originate from natural sources (based on the background samples

 $[\]label{eq:continuous} \mbox{(j) = above laboratory detection limit, but below laboratory quantitiation limit, or estimated value}$

VPLE Case Closure Request

Former Paragon Electric Company

Two Rivers, Wisconsin

WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

Control Cont		WDND Camaria D	٥١.	for Direct Contact		П					Ctoron		acomont C	Samulas				
Company Comp		WDNR Generic RC	CLS	s for Direct Contact		Ц							essment s					1
Semengenich		Nam Industrial		loo aloo a desta d	Soil to			_				-	-	-	_	_		GP-12 4-
Type of the Park	Sampling Date	Non-maustriai		inuustrial	Groundwater RCL	Н					-	-		-				11/8/11
Teach 1.50			T			H								1	+	1	1	
Teach 1.50	Metals (mg/kg)		Ħ			H												
Description of the control of the	Arsenic ^C	0.39	В	1.59	0.584	В												
			В	·		В												
Teach Column Co			В			В												
Section 1.50	. , , ,	· · · · · · · · · · · · · · · · · · ·	В	ŕ		В												
Name			В			В												
1.000 1.00			В			В												
1.15.27 1.15			Ħ	3.13	0.208	H												
1.5.1.7 Teleschanden 40,000 9,000 9,000 10,000			В	12.900 B	53.3	В	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.3	<25.0	<25.0
1.1.5 reference representation 1.400 2.200 2			В	,		В												<25.0
1.1-Cold Landscare 1.2-Fine Management 1.2-Fine M			В			B												<25.0
13-bits 13-b	, ,		В			В					1				1			1
1.22 Tenterprenent			В			В												<25.0
2.2.71 Art Park Agency 1.0	· · ·		В			Ц												<25.0
1.2. Test Annexes 24.00 1.94.00 1.95	, , ,		В	, and the same of		В					1				1			<25.0
7. 250 months of the control of the			В			В												<25.0
3.4 Demonstrate (EDP)	1,2,4-Trimethylbenzene	89,800	В	219,000 B	1379.3	В	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.3	<25.0	<25.0
2.20m/consumers			В	_		B												<82.3
3.20 Petropropers			В			В												<25.0 <44.4
3.3. Terrenty Contents 12,000		· · · · · · · · · · · · · · · · · · ·	В	· .		Α												<25.0
1.6 Defendement			В			B												<25.0
1.3 Demonstragemen	· · · · · · · · · · · · · · · · · · ·		В	· .		H												<25.0 <25.0
2-2006 1000			В	, and a	1	В					1				1			<25.0
September 997,000 9 997,000 9 1 155,000 155,0		3,480	В		144	В												<25.0
Composition			В	-	3	В												<25.0
Belgare			В	· ·	2	H					1				1			<25.0
Decomposition Property Prop	Benzene	1,490	В	7,410 B	5.5	Α	<25.0								1	<25.3		<25.0
Stronger 1.500 1.500 1.500 2			В	, and a		H					1				1			<25.0
Dromochem 19.000 24,000 2.3 2.55			В	, and a		В												<25.0 <25.0
Gebon selectrotics \$42.00 \$7.000 \$3.9 \$3.9 \$3.0			В			В												<25.9
Chicordeniare 302,000 761,000 761,000 77			В	,		В									1			<25.0
Chicorothane			В								1				1			<25.0
Chloromethane		•		·		В												<25.0
Debronochrochenhen	Chloroform	423	В	2,130		В	<25.0				1				1			<25.0
Demonsthemene 15,000 151,000 171,000 2.00 2			В	,		В												<25.0
Declaroposity enhance 133,000 571,000 3,002.5 250			В			H												<25.0
Ellytheminene	Dichlorodifluoromethane	135,000	В	571,000	3,082.5	В										<25.3		<25.0
Headshlore(Jumen) 58,00			В			A												<25.0
Source S			В	, and the same of	, i	H												<26.4
Mellytene Chloride 60,700 26,000 26,000 26,000 26,000 26,000 26,000 26,000 26,000 26,000 26,000 26,000 26,000 26,000 26,000 26,000 26,000 26,000 26,000 26,000 26,000 26,000 26,000 26,000 26,000 26,000 2			В			П					1				1			<25.0
Naphthalane			В	,		В												<25.0
Syme 887,000 887,000 183,000 153,000 4.5 136 250			В	, ,		В					1							<25.0 <25.0
Toluene 818,000 6	Styrene		В			В												<25.0
Trichisoroethene 644 9 8.810 9 3.6 9 202 < 250 3.5.6 0	Tetrachloroethene	30,700	В	153,000 B	4.5	В	136		29.3 (j)		33.6 (j)	<25.0	53.5 (j)	<25.0	<25.0		<25.0	<25.0
Tichlorduromehane 1,120,000 1,120,000 1,120,000 2,040,000 1,120,000 1,1			В	, and the same of	,	В									1			<25.0
Viny chindre 67 8 2,030 9 0.1 9 0.250 2550 2550 2550 2550 2550 2550 255			В			H												<25.0
ciscl-13-Dichloropropee 1,220,000 0 1,220,000 0 - 4550 4550 425	Vinyl chloride	67	В	2,030	0.1	В	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.3	<25.0	<25.0
mSp-Yylene			В	, ,		В												<25.0
n-Butyberzene 108,000 108,000 2			H	1,220,000		Н												<25.0 <50.0
0-Xylene			В	108,000		Ħ												<40.4
p-isopropyltoluene 162,000 162,000 162,000			В	·		Ц												<25.0
sec-Butylbenzene 145,000		· · · · · · · · · · · · · · · · · · ·	В	· .		Н												<25.0 <25.0
tert-Butylbenzene			В	, and the same of		H												<25.0
trans-1,3-Dichloropropene	tert-Butylbenzene	183,000	В	183,000 B		Į	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.3	<25.0	<25.0
Xylenes, (Total) 258,000 B 258,000 B 4,100 ^ 75.0 75.0 </td <td></td> <th></th> <th>В</th> <th>· .</th> <th>1</th> <td>В</td> <td></td> <td><25.0</td>			В	· .	1	В												<25.0
Polycyclic Aromatic Hydrocarbons (PAHs) (ug/kg) 1.Methylnaphthalene 15,600 8 53,100 8 23,000 8 - - - - - - - - -			В			Α					1				1			<25.0 <75.8
1-Methylnaphthalene	, ,		Ħ	,,,,,,	1,	Ħ	. 0.0				. 0.0			. 0.0	. 0.0	. 0.0	. 0.0	
2-Methylnaphthalene			В	53,100 B	23,000	В												
Acenaphthylene	2-Methylnaphthalene		В	· .	.1	В												
Anthracene			В	, ,		В												
Benzo(a)anthracene	· · ·		В	·		В												
Benzo(b)fluoranthene		148	В	2,110 B	17,000	В												
Benzo(g,h,i)perylene	Benzo(a)pyrene		В	-		В												
Benzo(k)filuoranthene			В		· · · · · · · · · · · · · · · · · · ·	В												
Chrysene 14,800 B 211,000 B 37,000 B			В	, and the same of		В												
Fluoranthene 2,290,000 B 22,000,000 B 500,000 B	Chrysene		В	· -	37,000	В												
Fluorene 2,290,000 B 22,000,000 B 100,000 B	· · · /		В		· · · · · · · · · · · · · · · · · · ·	B												
Indeno(1,2,3-cd)pyrene 148 B 2,110 B 680,000 B <	Fluorantnene		В			В												
Phenanthrene 115,000 B 115,000 B 1,800 B <	Indeno(1,2,3-cd)pyrene	148	В	2,110 B	680,000	В												
Pyrene 1,720,000 B 16,500,000 B 8,700,000 B	Naphthalene		В			B												
			В			В												
Oyaniue (uging) 40,300 010,000 4,040			В			В												
N	Notes:	40,900		013,000	4,040	Ш												

25
50

Indicates Non-Industrial Direct Contact RCL exceedance (bold and box)
Indicates Industrial Direct Contact RCL exceedance (bold and bold box)
Indicates Soil to Groundwater RCL exceedance (bold and italicized)

^{-- =} not analyzed OR not available

A Generic RCL is established under NR 720 or NR 746

B WDNR RR Program's RCL Spreadsheet, May 2012 (based on EPA web calculator at http://epa-

^c Arsenic, barium, chromium, lead, silver and mercury detected at this site are characteristic of background concentrations and originate from natural sources (based on the background samples BKG-1 and BKG-2)

⁽j) = above laboratory detection limit, but below laboratory quantitiation limit, or estimated value

VPLE Case Closure Request

Former Paragon Electric Company

Two Rivers, Wisconsin

WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

	WDNR Generic RCLs for Direct Contact					П	Storage Area Receiving Dock Assessment Samples					Receiving Dock Assessment						
	TIDITIC CONGRETA		, ioi Biroti Gomaot			H	Assess.	Samples GP-14	HA-1 0.5			·			HA-4 0.5		D 400	ssment B-4BR
	Non-Industrial		Industrial		Soil to ndwater RCL	Ш	0.5 - 4.0	0.5 - 4.0	4.0'	HA-1 4-6'	4.0'	HA-2 4-6'	HA-3 0.5 · 4.0'	HA-3 4-6'	4.0'	HA-4 4-6'	0.5 - 4.0'	0.5 - 4.0
Sampling Date		+		- Croun	nawater NOL	Ц	12/15/11	12/15/11	11/8/11	11/8/11	11/8/11	11/8/11	11/8/11	11/8/11	11/8/11	11/8/11	12/15/11	12/15/11
Type of Soil Sample		Н				H	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated
Metals (mg/kg) Arsenic ^C	0.39	В	1.59	В	0.584	В												
Barium ^C	15,300	В	100,000	В	164.8	В												
Cadmium Chromium(III)/Chromium(VI) C	70.2 100,000/0.293	В	803 B	B 260	0.752 000 (If no Cr-VI)	В												
Lead ^C	400	В	800 B	300,0	27	В												
Selenium	391	В	5,110 B	В	0.52	В												
Silver ^C Mercury ^C	391 3.13	В	5,110 ^B	В	0.8497 0.208	В												
Volatile Organic Compounds (u		Ħ	0.10		0.200	Ħ												
1,1,1,2-Tetrachloroethane	2,590	В	12,900 B	В	53.3	В	<25.0	<25.0										
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	640,000 753	В	640,000 B	В	140.2 0.2	В	<25.0 <25.0	<25.0 <25.0										
1,1,2-Trichloroethane	1,480	В	7,340	В	3.2	В	<25.0	<25.0										
1,1-Dichloroethane	4,720	В	23,700 B	В	483.6	В	<25.0	<25.0										
1,1-Dichloroethene 1,1-Dichloropropene	342,000	H	1,190,000		5 	H	<25.0 <25.0	<25.0 <25.0										
1,2,3-Trichlorobenzene	48,900	В	151,000	В			<25.0	<25.0										
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	5 22,100	В	95 98,700	В	52 408	В	<25.0 <25.0	<25.0 <25.0										
1,2,4-Trimethylbenzene	89,800	В	219,000	В	1379.3	В	<25.0	<25.0										
1,2-Dibromo-3-chloropropane	8	В	99 B	В	0.2	ВВ	<82.3	<82.3										
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	47 376,000	В	230 B	В	0.282 1,168	В	<25.0 <44.4	<25.0 <44.4										
1,2-Dichloroethane	608	В	3,030 B	B	2.8	A	<25.0	<25.0										
1,2-Dichloropropane 1,3,5-Trimethylbenzene	1,330 182,000	В	6,620 B	В	3.3 1379.3	В	<25.0 <25.0	<25.0 <25.0										
1,3-Dichlorobenzene	297,000	В	297,000		1152.2	Ħ	<25.0	<25.0										
1,3-Dichloropropane	1,490,000	В	1,490,000 B	В		В	<25.0	<25.0										
1,4-Dichlorobenzene 2,2-Dichloropropane	3,480	\dashv	17,500 ⁸		144	H	<25.0 <25.0	<25.0 <25.0										
2-Chlorotoluene	907,000	В	907,000	В		В	<25.0	<25.0										
4-Chlorotoluene Benzene	253000 1,490	В	253000 E	В	5.5	A	<25.0 <25.0	<25.0 <25.0										
Bromobenzene	354,000	В	679,000 B	В			<25.0	<25.0										
Bromochloromethane	232,000	В	976,000 B	В		В	<25.0	<25.0										
Bromodichloromethane Bromoform	390 61,600	В	1,960 218,000	В	0.3 2.3	В	<25.0 <25.9	<25.0 <25.9										
Bromomethane	10,300	В	46,000 B	В	5.1	В	<25.0	<25.0										
Carbon tetrachloride Chlorobenzene	854 392,000	В	4,250 ^B	В	3.9	В	<25.0 <25.0	<25.0 <25.0										
Chloroethane		Н			226.6	В	<25.0	<25.0										
Chloroform	423	В	2,130 B	B	3.3	В	<25.0	<25.0										
Chloromethane Dibromochloromethane	171,000 933	В	720,000 B	В	15.5 32	В	<25.0 <25.0	<25.0 <25.0										
Dibromomethane	35,000	В	151,000 B	В	-		<25.0	<25.0										
Dichlorodifluoromethane	135,000 2,260,000	В	571,000 B	В	3,082.5	В	<25.0 <25.0	<25.0 <25.0										
Diisopropyl ether Ethylbenzene	7,470	В	37,000 B	В	2,900	Α	<25.0	<25.0										
Hexachloro-1,3-butadiene	6,230	В	22,100 B	B		П	<26.4	<26.4										
Isopropylbenzene (Cumene) Methyl-tert-butyl ether	268,000 59,400	В	268,000 B	В	27	В	<25.0 <25.0	<25.0 <25.0										
Methylene Chloride	60,700	В	1,070,000	В	2.6	В	<25.0	<25.0										
Naphthalene	5,150 867,000	В	26,000 B	В	658.7 220	В	<25.0 <25.0	<25.0 <25.0										
Styrene Tetrachloroethene	30,700	В	153,000 B	В	4.5	В	<25.0	<25.0										
Toluene	818,000	В	818,000 B	B	1,500	A	<25.0	<25.0										
Trichloroethene Trichlorofluoromethane	644 1,120,000	В	8,810 B	В	3.6	H	<25.0 <25.0	<25.0 <25.0										
Vinyl chloride	67	В	2,030 B	В	0.1	В	<25.0	<25.0										
cis-1,2-Dichloroethene	156,000	В	2,040,000 B	В	41.2	В	<25.0 <25.0	<25.0 <25.0										
cis-1,3-Dichloropropene m&p-Xylene	1,220,000	H	1,220,000			H	<50.0	<25.0 <50.0										
n-Butylbenzene	108,000	В	108,000 B	В		Д	<40.4	<40.4										
n-Propylbenzene o-Xylene	264,000 434,000	В	264,000 B	В		\forall	<25.0 <25.0	<25.0 <25.0										
p-Isopropyltoluene	162,000	В	162,000	В	-	\parallel	<25.0	<25.0				***						
sec-Butylbenzene	145,000	В	145,000 B	В	<u></u>	\dashv	<25.0 <25.0	<25.0 <25.0										
tert-Butylbenzene trans-1,2-Dichloroethene	183,000 211,000	В	183,000 ^B	В	58.8	В	<25.0 <25.0	<25.0										
trans-1,3-Dichloropropene	1,570,000	В	1,570,000	В		Δ	<25.0	<25.0										
Xylenes, (Total)	258,000		258,000	-	4,100		<75.8	<75.8										
Polycyclic Aromatic Hydrocarb 1-Methylnaphthalene	ons (PAHs) (ug/kg) 15,600	В	53,100 B	В	23,000	В												
2-Methylnaphthalene	229,000	В	368,000 B	_	20,000	В												
Acenaphthene Acenaphthylene	3,440,000 487,000	В	33,000,000 B 487,000 B	В	38,000 700	В												
Anthracene	17,200,000	В	100,000,000 B	В 3	3,000,000	В												
Benzo(a)anthracene	148	В	2,110 B		17,000	B R												
Benzo(a)pyrene Benzo(b)fluoranthene	15 148	В	211 ⁸ 2,110		48,000 360,000	В												
Benzo(g,h,i)perylene	1,800	В	39,000	B 6	6,800,000	В												
Benzo(k)fluoranthene	1,480 14,800	В	21,100 B		870,000 37,000	B												
Chrysene Dibenz(a,h)anthracene	14,800 15	В	211,000 ^S		37,000 38,000	В												
Fluoranthene	2,290,000	В	22,000,000 B		500,000	В												
Fluorene Indeno(1,2,3-cd)pyrene	2,290,000 148	В	22,000,000 ^B 2,110 ^B		100,000 680,000	В												
Naphthalene	5,150	В	26,000 B	В	400	В												
Phenanthrene	0,100					IB			1		1		1				1	
	115,000	В	115,000 B	В	1,800	В												1
Pyrene Cyanide (ug/kg)		B B	115,000 B 16,500,000 B 613,000 B	в В 8	1,800 3,700,000 4,040	В			<240	<140	<200	<180	<220	<240	<240	<250	<180	<200

25	Indicates Non-Industrial Direct Contact RCL exceedance (bold and box)
50	Indicates Industrial Direct Contact RCL exceedance (bold and bold box)

Indicates Soil to Groundwater RCL exceedance (bold and italicized) -- = not analyzed OR not available

^A Generic RCL is established under NR 720 or NR 746

B WDNR RR Program's RCL Spreadsheet, May 2012 (based on EPA web calculator at http://epa-

^c Arsenic, barium, chromium, lead, silver and mercury detected at this site are characteristic of background concentrations and originate from natural sources (based on the background samples BKG-1 and BKG-2)

 $[\]label{eq:continuous} \mbox{(j) = above laboratory detection limit, but below laboratory quantitiation limit, or estimated value}$

Table A.3 Post Remedial Soil Analytical Table VPLE Case Closure Request Former Paragon Electric Company Two Rivers, Wisconsin WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

	WDNR Generic RCLs for Direct Contact					Underground Vessel Post Excavation				Paint Area				
	Non-Industrial		Industrial		Soil to Groundwater RCL	North Side Vessel - 4.5'	South Side Vessel - 4.5'	West Side Vessel - 4.5'	Base Vessel - 4.5'	CS-1 0.5-4.0'	CS-1 4-6'	CS-2 0.5-4'	CS-2 4-6'	
Sampling Date		П				01/23/12	01/23/12	01/23/12	01/23/12	02/06/13	02/06/13	02/06/13	02/06/13	
Type of Soil Sample		Ш				Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	
Metals (mg/kg)														
Arsenic ^C	0.39	В	1.59	В	0.584	0.77 J	0.75 J	0.82 J	0.56 J					
Barium ^C	15,300	В	100,000	В	164.8	8.8	4.7	6	3.9					
Cadmium	70.2	В	803	В	0.752	0.018 J	0.026 J	0.020 J	<0.018					
Chromium(III)/Chromium(VI) C	100,000/0.293	В	100,000/5.57	В	360,000 (If no Cr-VI)	3.1	3	3.2	2.6					
Lead ^C	400	В	800	В	27	0.99	0.91 J	0.92	0.83 J					
Selenium Silver ^C	391 391	В	5,110 5,110	В	0.52 0.8497	<0.28 <0.084	<0.31 <0.092	<0.27 <0.081	<0.31 <0.091					
Mercury ^C	3.13	В	3,110	В	0.208 E	<0.004	<0.092	<0.001	<0.0020					
,	0.10	Ħ	0.10	F	0.200	10.0020	40.0020	40.0020	40.0020					
VOCs (ug/kg) 1,1,1,2-Tetrachloroethane	2,590	В	12,900	В	53.3	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
1,1,1-Trichloroethane	640,000	В	640,000	В	140.2	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
1,1,2,2-Tetrachloroethane	753	В	3,690	В	0.2	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
1,1,2-Trichloroethane	1,480	В	7,340	В	3.2 E	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
1,1-Dichloroethane	4,720	В	23,700	В	483.6	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
1,1-Dichloroethene	342,000	В	1,190,000	В	5	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
1,1-Dichloropropene						<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
1,2,3-Trichlorobenzene	48,900	В	151,000	В	F	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
1,2,3-Trichloropropane	5	В	95	В	52 E	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
1,2,4-Trichlorobenzene	22,100 89,800	В	98,700 219,000	В	408 1379.3	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	8	В	99	В	0.2	<25.0 <82.3	<82.3	<82.3	<25.0 <82.3	<82.3	<82.3	<82.3	<82.3	
1,2-Dibromoethane (EDB)	6 47	В	230	В	0.282 E	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
1,2-Dichlorobenzene	376,000	В	376,000	В	1,168	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	
1,2-Dichloroethane	608	В	3,030	В	2.8	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
1,2-Dichloropropane	1,330	В	6,620	В	3.3 E	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
1,3,5-Trimethylbenzene	182,000	В	182,000	В	1379.3	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
1,3-Dichlorobenzene	297,000	В	297,000	В	1152.2	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
1,3-Dichloropropane	1,490,000	В	1,490,000	В	B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
1,4-Dichlorobenzene	3,480	В	17,500	В	144	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
2,2-Dichloropropane		B		B	F	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
2-Chlorotoluene	907,000	В	907,000	В	"	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
4-Chlorotoluene Benzene	253000 1,490	В	253000 7,410	В	5.5	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	
Bromobenzene	354,000	В	679,000	В	5.5	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Bromochloromethane	232,000	В	976,000	В		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Bromodichloromethane	390	В	1,960	В	0.3	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Bromoform	61,600	В	218,000	В	2.3	<25.9	<25.9	<25.9	<25.9	<25.9	<25.9	<25.9	<25.9	
Bromomethane	10,300	В	46,000	В	5.1 ^B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Carbon tetrachloride	854	В	4,250	В	3.9	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Chlorobenzene	392,000	В	761,000	В		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Chloroethane		В		В	226.6	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Chloroform	423	В	2,130	В	3.3	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Chloromethane	171,000	В	720,000	В	15.5	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Dibromochloromethane	933	В	4,400	В	32	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Dibromomethane Dichlorodifluoromethane	35,000 135,000	В	151,000 571,000	В	3,082.5	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	
Diisopropyl ether	2,260,000	В	2,260,000	В		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Ethylbenzene	7,470	В	37,000	В	2,900	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Hexachloro-1,3-butadiene	6,230	В	22,100	В		<26.4	<26.4	<26.4	<26.4	<26.4	<26.4	<26.4	<26.4	
Isopropylbenzene (Cumene)	268,000	В	268,000	В		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Methyl-tert-butyl ether	59,400	В	293,000	В	27 E	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Methylene Chloride	60,700	В	1,070,000	В	2.6	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Naphthalene	5,150	В	26,000	В	658.7	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Styrene	867,000	В	867,000	B	220	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Tetrachloroethene	30,700	В	153,000	В	4.5	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Toluene	818,000	В	818,000	В	1,500	<25.0	<25.0	<25.0	<25.0	327	<25.0	<25.0	<25.0	
Trichloroethene Trichlorofluoromethane	1,120,000	В	8,810 1,230,000	В	3.6	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	73.4 <25.0	<25.0 <25.0	
Vinyl chloride	67	В	2,030	В	0.1	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
cis-1,2-Dichloroethene	156,000	В	2,040,000	В	41.2	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
cis-1,3-Dichloropropene	1,220,000	В	1,220,000	В		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
m&p-Xylene		П				<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	
n-Butylbenzene	108,000	В	108,000	В		<40.4	<40.4	<40.4	<40.4	<40.4	<40.4	<40.4	<40.4	
n-Propylbenzene	264,000	В	264,000	В		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
o-Xylene	434,000	В	434,000	В		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
p-Isopropyltoluene	162,000	В	162,000	В		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
sec-Butylbenzene	145,000	В	145,000	В		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
tert-Butylbenzene	183,000	В	183,000	B	E	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
trans-1,2-Dichloroethene	211,000	В	976,000	В	58.8	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
trans-1,3-Dichloropropene	1,570,000	В	1,570,000	В	 4 100	<25.0	<25.0 <75.8	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	
Xylenes (Total)	258,000	Ш	258,000	Ĺ	4,100	<75.8	<75.8	<75.8	<75.8	<75.0	<75.0	<75.0	<75.0	

Notes:

Indicates Non-Industrial Direct Contact RCL exceedance 25 Indicates Industrial Direct Contact RCL exceedance 50 Indicates Soil to Groundwater RCL exceedance

^{-- =} not analyzed OR not available

A Generic RCL is established under NR 720 or NR 746

WDNR RR Program's RCL Spreadsheet, May 2012 (based on EPA web calculator at

http://epa-prgs.ornl.gov/cgi-bin/chemicals/csi-seach)

C Arsenic, barium, chromium, lead, silver and mercury detected at this site are characteristic of background concentrations and originate from natural sources (based on the background samples RKG-1 and RKG-2 on Table A 3)

J = Above laboratory detection limit, but below laboratory or quantitation limit, or estimated value

Table A.3 Post Remedial Soil Analytical Table VPLE Case Closure Request Former Paragon Electric Company Two Rivers, Wisconsin WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

	WDNR Generic RC	Ls for Direct Contact		 		Press		1			1	Storag	je Area	ı	
	Non-Industrial	Industrial	Soil to Groundwater RCL	CS-3 0.5-3.5'	CS-3 4- 5.5'	CS-4 0.5-4.0'	CS-4 4 5.5'	CS-5 0.5-4.0'	CS-5 4-6'	CS-6 0.5-4.0'	CS-6 4-6'	CS-7 0.5-4.0'	CS-7 4-6'	CS-8 0.5-4.0'	CS-8 4-6'
Sampling Date				02/06/13	02/06/13	02/06/13	02/06/13	02/06/13	02/06/13	02/06/13	02/06/13	02/06/13	02/06/13	02/06/13	02/06/13
Type of Soil Sample				Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturate
Metals (mg/kg)															
Arsenic ^C	0.39	1.59 B	0.584 B				-								
Barium ^C	15,300	B 100,000 B	164.8												
Cadmium	70.2	B 803 B	0.752 B												
Chromium(III)/Chromium(VI) C	100,000/0.293	B 100,000/5.57 B	360,000 (If no Cr-VI)												
Lead ^C	400	800 B	27 B				-								
Selenium	391 ^E	5,110 B	0.52 B												
Silver ^C	391 ^E	5,110 B	0.8497 B												
Mercury ^C	3.13	3.13 B	0.208												
VOCs (ug/kg)															
1,1,1,2-Tetrachloroethane	2,590	12,900 B	53.3 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,1,1-Trichloroethane	640,000	^B 640,000 ^B	140.2	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,1,2,2-Tetrachloroethane	753	3,690 B	0.2 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,1,2-Trichloroethane	1,480	7,340 B	3.2 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,1-Dichloroethane	4,720	^B 23,700 ^B	483.6	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,1-Dichloroethene	342,000	B 1,190,000 B	5 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,1-Dichloropropene				<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,2,3-Trichlorobenzene	48,900	^B 151,000		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,2,3-Trichloropropane	5	^B 95	52 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,2,4-Trichlorobenzene	22,100 ^E	98,700 B	408 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,2,4-Trimethylbenzene	89,800	^B 219,000 ^B	1379.3 ^B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,2-Dibromo-3-chloropropane	8	99 B	0.2 B	<82.3	<82.3	<82.3	<82.3	<82.3	<82.3	<82.3	<82.3	<82.3	<82.3	<82.3	<82.3
1,2-Dibromoethane (EDB)	47 E	B 230 B	0.282 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,2-Dichlorobenzene	376,000 E	376,000 B	1,168	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4	<44.4
1,2-Dichloroethane	608	3,030 B	2.8 A	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,2-Dichloropropane	1,330	6,620 B	3.3 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,3,5-Trimethylbenzene	182,000	182,000 B	1379.3	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,3-Dichlorobenzene	297,000	³ 297,000 ^B	1152.2	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,3-Dichloropropane	1,490,000	1,490,000 B	B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
1,4-Dichlorobenzene	3,480	17,500 B	144 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
2,2-Dichloropropane				<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
2-Chlorotoluene	907,000	907,000	B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
4-Chlorotoluene	253000	253000		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Benzene	1,490	7,410 B	5.5 A	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Bromobenzene	354,000	679,000		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Bromochloromethane	232,000	976,000	p	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Bromodichloromethane	390	1,960 B	0.3	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Bromoform	61,600	218,000	2.3	<25.9	<25.9	<25.9	<25.9	<25.9	<25.9	<25.9	<25.9	<25.9	<25.9	<25.9	<25.9
Bromomethane	10,300	46,000 B	5.1 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Carbon tetrachloride	854	4,250 B	3.9	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Chlorobenzene	392,000	⁸ 761,000	B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Chloroethane		B	226.6 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Chloroform	423	2,130 B	3.3 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Chloromethane	171,000	720,000 B	15.5 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Dibromochloromethane	933	4,400 B	32 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Dibromomethane Dichlorodifluoromethane	35,000 E	151,000 B	3 082 5 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
	135,000	571,000 B	3,082.5	<25.0	<25.0	<25.0	<25.0 <25.0	<25.0	<25.0	<25.0	<25.0 <25.0	<25.0	<25.0	<25.0	<25.0
Diisopropyl ether Ethylbenzene	2,260,000 E 7,470	37,000 B	2,900 A	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0	<25.0 <25.0
Etnylbenzene Hexachloro-1,3-butadiene	6,230 E	37,000 B 22,100	2,900	<26.4	<26.4	<25.0	<26.4	<26.4	<26.4	<26.4	<25.0	<25.0	<26.4	<26.4	<26.4
Isopropylbenzene (Cumene)	268,000 E	22,100 B 268,000		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Methyl-tert-butyl ether	59,400 E	293,000 B	27 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Methylene Chloride	60,700 E	1,070,000 B	2.6 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	52.1 J	<25.0	34.0 J	27.1 J
Naphthalene	5,150	3 26,000 B	658.7 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Styrene	867,000 E	867,000 B	220 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Tetrachloroethene	30,700	153,000 B	4.5 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	33.7 J	<25.0	<25.0	<25.0
Toluene	818,000 E	B 818,000 B	1,500 A	<25.0	<25.0	<25.0	<25.0	55.2 J	36.8 J	<25.0	<25.0	<25.0	<25.0	<25.0	63.0 J
Trichloroethene	644 E	8,810 B	3.6 B	<25.0	<25.0	121	41.8 J	<25.0	<25.0	32.1 J	<25.0	39.2 J	<25.0	<25.0	<25.0
Trichlorofluoromethane	1,120,000	1,230,000 B		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Vinyl chloride	67	2,030 B	0.1 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
cis-1,2-Dichloroethene	156,000 E	B 2,040,000 B	41.2 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
cis-1,3-Dichloropropene	1,220,000	1,220,000 B		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
m&p-Xylene				<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0
n-Butylbenzene	108,000	B 108,000 B		<40.4	<40.4	<40.4	<40.4	<40.4	<40.4	<40.4	<40.4	<40.4	<40.4	<40.4	<40.4
n-Propylbenzene	264,000 E	B 264,000 B		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
o-Xylene	434,000 E	B 434,000 B		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
p-Isopropyltoluene	162,000	162,000 B		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
sec-Butylbenzene	145,000	102,000 B		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
tert-Butylbenzene	183,000	143,000 B	-	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
trans-1,2-Dichloroethene	211,000 E	976,000 B	58.8 B	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
trans-1,3-Dichloropropene	1,570,000	1,570,000 B		<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Xylenes (Total)	258,000	258,000 B	4,100 A	<75.0	<50.0	<75.0	<50.0	<75.0	<75.0	<75.0	<75.0	<75.0	<75.0	<75.0	<75.0
	£30.000	230,000	+,100	~10.0	~JU.U	~10.0	~JU.U	~10.0	~10.0	~10.0	~10.0	~10.0	~/ U.U	~/ J.U	~/0.0

Notes:

Indicates Non-Industrial Direct Contact RCL exceedance 25 Indicates Industrial Direct Contact RCL exceedance 50 Indicates Soil to Groundwater RCL exceedance

^{-- =} not analyzed OR not available

A Generic RCL is established under NR 720 or NR 746

B WDNR RR Program's RCL Spreadsheet, May 2012 (based on EPA web calculator at

http://epa-prgs.ornl.gov/cgi-bin/chemicals/csi-seach)

C Arsenic, barium, chromium, lead, silver and mercury detected at this site are characteristic of background concentrations and originate from natural sources (based on the background samples RKG-1 and RKG-2 on Table A 3)

J = Above laboratory detection limit, but below laboratory or quantitation limit, or estimated value

Table A.4 Remaining Soil Exceedence Table

VPLE Case Closure Request Former Paragon Electric Company Two Rivers, Wisconsin

WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

	WDNR Gener	ic	RCLs for Dire	ct			Paint	Area	Press	s Area	Storage Area				
	Non-Industria	al	Industrial		Soil to Groundwater RCL		CS-2 0.5-4'	CS-2 4-6'	CS-4 0.5-4.0'	CS-4 4-5.5'	CS-6 0.5-4.0'	CS-7 0.5-4.0'	CS-8 0.5-4.0'	CS-8 4-6'	
Sampling Date							02/06/13	02/06/13	02/06/13	02/06/13	02/06/13	02/06/13	02/06/13	02/06/13	
VOCs (ug/kg)															
Methylene Chloride	60,700	В	1,070,000	В	2.6	В	<25.0	<25.0	<25.0	<25.0	<25.0	52.1 J	34.0 J	27.1 J	
Tetrachloroethene	30,700	В	153,000	В	4.5	В	<25.0	<25.0	<25.0	<25.0	<25.0	33.7 J	<25.0	<25.0	
Trichloroethene	644	В	8,810	В	3.6	В	73.4	<25.0	121	41.8 J	32.1 J	39.2 J	<25.0	<25.0	

Notes:

25	Indicates Non-Industrial Direct Contact RCL exceedance
50	Indicates Industrial Direct Contact RCL exceedance
5	Indicates Soil to Groundwater RCL exceedance

^{-- =} not analyzed OR not available

^A Generic RCL is established under NR 720 or NR 746

^B WDNR RR Program's RCL Spreadsheet, May 2012 (based on EPA web calculator at http://epa-prgs.ornl.gov/cgi-bin/chemicals/csi-seach)

J = above laboratory detection limit, but below laboratory quantitiation limit, or estimated value

Table A.5(a) Vapor Analytical Table
VPLE Case Closure Request
Former Paragon Electric Company
Two Rivers, Wisconsin
WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

	153; AECOM Project No.	. 00_000 10	Pre-Soil Vapor Extraction 3 and 7 Months After SVE Startup HPV-1 HPV-2 HPV-3 HPV-4 HPV-5 CTP-3A V-5 SVE Vapor Emissions SVE V					5 Week	s after 1st Down	SVE Shut	Post-So	oil Vapor I	Extraction								
Sample Name Date Sampled	EPA Region III RBC Residentiall Sub-	EPA Region III RBC Non-Residential	HPV-1 10/8/2009	HPV-2 10/7/2009	HPV-3 10/8/2009	HPV-4 10/7/2009	HPV-5 10/7/2009	CTP-3A 10/8/2009	V-5 10/8/2009	SVE	Vapor Em 04/17/12		SVE	Vapor Em 08/01/12		SVE	Vapor Em 09/10/12			Gas Emis 4/13	02/18/13
Sample Collection Time Date Analyzed	slab Soil Gas Screening Level	Sub-slab Soil Gas Screening Level	10:22 - 10:52 10/13/2009	09:50 - 10:20 10/12/2009	08:20 - 08:55 10/12/2009	12:52 - 13:17 10/13/2009	16:00 - 16:30 10/13/2009	10:10 - 10:45 10/13/2009	07:43 - 08:12 10/13/2009	Press Room	Paint Area	Storage Room	Press Room	Paint Area	Storage Room	Press Room	Paint Area	Storage Room	Press Room	Paint Area	Storage Room
Volatile Organic Compounds	(ua/m³)																				
EPA Method TO-15, 6-L Summ																					
Acetone	32,000,000	140,000,000	<122 U	1.5	1.0	0.87	0.32 U	5.6	0.82	19.2	6.1	23.7	10.1	4.8	6.7	40.5	13	35.6	5.6	7.2	12.5
Benzene	310	1,600	<165 U	1.6	1.7	0.44 U	0.44 U	0.58 U	0.44 U	0.6	0.41 U	0.44 U	0.97	1.0	1.2	0.75	2.0	0.63	0.49	0.66	1.0
Bromodichloromethane	66	330	<356 U	1.1 U	1.0 U	0.94 U	0.94 U	1.3 U	0.94 U	1.8 U	1.7 U	1.8 U	1.8 U	0.25J	1.8 U	5.6	1.8 U	1.8 U	1.8U	1.8U	1.9U
Bromoform Bromomethane	2,200 5,200	11,000 22,000	534 U 201 U	1.7 U 0.63 U	1.6 U 0.58 U	1.4 U 0.53 U	1.4 U 0.53 U	1.9 U 0.71 U	1.4 U 0.53 U	2.8 U 1.1 U	2.6 U 1.0 U	2.8 U 1.1 U	2.8 U 1.1 U	2.9 U 1.1 U	2.8 U 1.1 U	3.0 U 1.1 U	2.8 U 1.1 U	2.8 U 1.1 U	2.8U 1.1U	2.8U 1.1U	2.9U 1.1U
1,3-Butadiene	81	410	114 U	0.36 U	0.33 U	0.30 U	0.30 U	0.40 U	0.30 U	0.60 U	0.57 U	0.60 U	0.60 U	0.63 U	0.60 U	0.60 U	0.60 U	0.60 U	0.60U	0.60U	0.63U
2-Butanone (MEK)	5,200,000	22,000,000	153 U	0.48 U	0.44 U	0.40 U	0.40 U	0.54 U	0.40 U	3.1	2.3	6.8	3.1	2.9	4.6	120	29.5	14.8	3.8	5.3	8.5
Carbon disulfide	730,000	3,100,000	160 U	0.50 U	0.47 U	0.42 U	0.42 U	0.57 U	0.42 U	5	2.6	0.84 U	0.57J	0.88 U	0.58 J	3.0	3.0	0.47 J	0.84U	0.84U	0.88U
Carbon tetrachloride	410	2,000	331 U	1.0 U	0.96 U	0.87 U	0.87 U	1.2 U	0.87 U	0.86 U	0.81 U	0.86 U	0.86 U	0.54J	0.54 J	0.92 U	0.86 U	0.54 J	0.86U	0.86U	0.89U
Chlorobenzene Chloroethane	52,000	220,000	239 U 137 U	0.75 U 0.43 U	0.70 U 0.40 U	0.63 U 0.36 U	0.63 U 0.36 U	0.85 U 0.49 U	0.63 U 0.36 U	1.3 U 0.72 U	1.2 U 0.68 U	1.3 U 0.72 U	1.3 U 0.72 U	1.3 U 0.75 U	1.3 U 0.72 U	1.4 U 0.78 U	1.3 U 0.72 U	1.3 U 0.72 U	1.3U 0.72U	1.3U 0.72U	1.3U 0.75U
Chloroform	110	530	252 U	0.43 U	0.40 U	0.66 U	3.5	0.49 U	2.3	0.75 J	1.5	1.3 U	2	1.3J	1.3 U	8.6	1.3 U	1.0 J	1.4	1.5	1.4U
Chloromethane	94,000	390,000	107 U	0.33 U	0.31 U	0.28 U	0.28 U	0.38 U	0.28 U	0.56 U	0.53 U	0.56 U	0.41J	0.57J	0.56 U	0.60 U	0.56 U	0.56 U	0.56U	0.56U	0.58U
Cyclohexane	6,300,000	26,000,000	173 U	0.54 U	6.9	0.46 U	0.46 U	0.61 U	0.46 U	0.91 U	0.86 U	0.91 U	0.94 U	0.97 U	0.94 U	2.0	85.5	2.3	1.6	2.5	5.7
Dibromochloromethane	90	450	432 U	1.4 U	1.3 U	1.1 U	1.1 U	1.5 U	1.1 U	2.3 U	2.2 U	2.3 U	2.3 U	2.4 U	2.3 U	2.5 U	2.3 U	2.3 U	2.3U	2.3U	2.4U
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	4.1 210,000	20 880,000	407 U 305 U	1.3 U 0.95 U	1.2 U 0.89 U	1.1 U 0.80 U	1.1 U 0.80 U	1.4 U 1.1 U	1.1 U 0.80 U	2.1 U 1.6 U	2.0 U	2.1 U 1.6 U	2.1 U 1.6 U	2.2 U 1.7 U	2.1 U 1.6 U	2.2 U 1.8 U	2.1 U 1.6 U	2.1 U 1.6 U	2.1U 1.6U	2.1U 1.6U	2.2U 1.7U
1.3-Dichlorobenzene	210,000	-	305 U	0.95 U	0.89 U	0.80 U	0.80 U	1.1 U	0.80 U	1.6 U	1.5 U	1.6 U	1.6 U	1.7 U	1.6 U	1.8 U	1.6 U	1.6 U	1.6U	1.6U	1.7U
1,4-Dichlorobenzene	220	1,100	305 U	0.95 U	0.89 U	0.80 U	0.80 U	1.1 U	0.80 U	1.6 U	1.5 U	1.6 U	1.6 U	1.7 U	2.2	1.8 U	1.6 U	2.4	1.6U	1.6U	1.7U
Dichlorodifluoromethane	100,000	440,000	254 U	0.80 U	0.74 U	0.67 U	0.67 U	0.90 U	0.67 U	3.0	2.9	3.4	2.3	2.4	3.4	2.8	2.9	24.7	1.8	2.4	2.5
1,1-Dichloroethane	1,500	7,700	209 U	0.65 U	0.61 U	0.55 U	0.55 U	0.74 U	0.55 U	1.1 U	1.0 U	1.1 U	1.1 U	1.1 U	1.1 U	1.2 U	1.1 U	1.1 U	1.1U	1.1U	1.1U
1,2-Dichloroethane	94	470	209 U	0.65 U	0.61 U	0.55 U	0.55 U 0.54 U	0.74 U	0.55 U 0.54 U	0.55 U	0.52 U	0.55 U	0.55 U 1.1 U	0.57 U	0.55 U 1.1 U	0.59 U	0.55 U	0.55 U	0.55U	0.55U	0.57U
1,1-Dichloroethene cis-1,2-Dichloroethene	210,000	880,000	206 U 206 U	0.64 U 0.64 U	0.60 U 0.60 U	0.54 U 0.54 U	0.54 U	0.73 U 0.73 U	1.3	1.1 U 1.1 U	1.0 U	1.1 U 1.1 U	0.46J	1.1 U 1.1 U	1.1 U	1.2 U 3.8	1.1 U 0.65 J	1.1 U 0.68 J	1.1U 0.91 J	1.1U 1.1U	1.1U 1.1U
trans-1,2-Dichloroethene	63,000	260,000	206 U	0.64 U	0.60 U	0.54 U	0.54 U	0.73 U	0.54 U	1.1 U	1.0 U	1.1 U	1.1 U	1.1 U	1.1 U	1.2 U	1.1 U	1.1 U	1.1U	1.1U	1.1U
1,2-Dichloropropane	240	1,200	239 U	0.75 U	0.70 U	0.63 U	0.63 U	0.85 U	0.63 U	1.1 U	1.2 U	1.3 U	1.3 U	1.3 U	1.3 U	1.4 U	1.3 U	1.3 U	1.3U	1.3U	1.3U
cis-1,3-Dichloropropene	-	-	234 U	0.73 U	0.68 U	0.62 U	0.62 U	0.83 U	0.62 U	1.1 U	1.2 U	1.2 U	1.2 U	1.3 U	1.2 U	1.3 U	1.2 U	1.2 U	1.2U	1.2U	1.3U
trans-1,3-Dichloropropene	-	-	234 U	0.73 U	0.68 U	0.62 U	0.62 U	0.83 U	0.62 U	1.1 U	1.2 U	1.2 U	1.2 U	1.3 U	1.2 U 1.9 U	1.3 U	1.23 U	1.2 U	1.2U	1.2U	1.3U
Dichlorotetrafluoroethane Ethanol	-	<u>-</u>	356 U 432 U	1.1 U 3.3 J	1.0 U 1.3 U	0.94 U 1.1 U	0.94 U 1.1 U	1.3 U 1.5 U	0.94 U 1.1 U	1.9 U 19.4	1.8 U 0.48 U	1.9 U 4.4	0.78J 1.9	1.8J 4.1	2.1	2.0 U 5.9	1.9J 0.51 U	1.9 U 8.3	1.9U 1.7	1.9U 1.9	2.0U 5.9
Ethyl acetate	-	-	186 U	0.58 U	0.54 U	0.49 U	0.49 U	0.66 U	0.49 U	0.98 U	0.92 U	0.98 U	0.98 U	0.63J	0.98 U	1.1 U	0.98 U	0.98 U	0.98U	0.98U	1.3
Ethylbenzene	970	4,900	224 U	0.70 U	0.65 U	0.59 U	0.59 U	7.2	0.59 U	1.2 U	1.1 U	1.2 U	1.2 U	1.2 U	1.2 U	0.99 J	6.0	1.2 U	0.84 J	0.99 J	0.92 J
4-Ethyltoluene	-	-	636 U	2.0 U	1.8 U	1.7 U	1.7 U	12.1	1.7 U	0.98 J	1.13U	1.3 U	1.9	1.9	1.8	0.98 J	1.3 U	1.8	1.3U	1.3U	1.4U
n-Heptane	-	-	211 U	1.8	5.1	0.56 U	0.56 U	0.75 U	0.56 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	0.68 J	1.2 U	1.1 U	1.6	1.1U	0.96 J	1.2
Hexachloro-1,3-butadiene n-Hexane	730,000	3,100,000	560 U 183 U	1.7 U 0.57 U	1.6 U 20.5	1.5 U 0.48 U	1.5 U 0.48 U	2.0 U 0.65 U	1.5 U 0.48 U	2.9 U 5.8	2.8 U 4.2	2.9 U 16.4	2.9 U 1.0	3.1 U 1.8	2.9 U 1.6	3.2 U 5.2	2.9 U 144	1.8 J 18.8	2.9U 1.0	2.9U 1.4	3.1U 2.3
2-Hexanone	-	-	211 U	0.66 U	0.61 U	0.56 U	0.56 U	0.75 U	0.56 U	1.1 U	1.0 U	1.1 U	0.59J	0.62J	1.1 U	1.2 U	1.1 U	1.1 U	1.1U	1.1U	1.2U
Methylene Chloride	63,000	260,000	181 U	0.56 U	0.53 U	0.48 U	0.48 U	0.64 U	0.48 U	54.1	0.89 U	0.95 U	0.95 U	0.99 U	0.95 U	1.2	0.95 U	148	0.95U	0.95U	0.99U
4-Methyl-2-pentanone (MIBK)	-	<u>-</u>	211 U	0.66 U	0.61 U	0.56 U	0.56 U	0.75 U	0.56 U	1.1 U	1.0 U	1.1 U	1.1 J	1.3	1.1 U	1.2 U	1.1 U	0.70 J	4.7	7.8	1.2U
Methyl-tert-butyl ether	9,400 72	47,000 360	186 U 687 U	0.58 U 2.1 U	0.54 U	0.49 U 1.8 U	0.49 U	0.66 U	0.49 U	0.98 U 1.4 U	0.92 U 1.3 U	0.98 U 2.7	0.98 U	1.0 U	0.98 U	1.1 U	0.98 U	0.98 U 2.4	0.98U	0.98U 1.4U	1.0U 1.5U
Naphthalene 2-Propanol	-	-	636 U	2.1 U	2.0 U 1.8 U	1.8 U	1.8 U 1.7 U	2.4 U 2.2 U	1.8 U 1.7 U	4.8	2.5 J	3.7	1.8 0.67 U	1.7 0.70 U	1.5 0.67 U	1. 7 0.72 U	2.3 0.67 U	49.1	1.4U 0.67U	1.3	2.6
Propylene	-	<u> </u>	89.0 U	2.6	0.26 U	0.23 U	0.23 U	0.32 U	0.23 U	0.47 U	0.44 U	0.47 U	0.47 U	0.49 U	0.47 U	0.72 U	0.47 U	0.47 U	0.47U	0.47U	0.49U
Styrene	1,000,000	4,400,000	221 U	0.69 U	0.64 U	0.58 U	0.58 U	0.78 U	0.58 U	1.2 U	1.1 U	1.2 U	1.2 U	1.2 U	1.2 U	1.3 U	1.2 U	1.2 U	1.2U	1.2U	1.2U
1,1,2,2-Tetrachloroethane	42	210	356 U	1.1 U	1.0 U	0.94 U	0.94 U	1.3 U	0.94 U	0.94 U	0.88 U	0.94 U	0.94 U	0.97 U	0.94 U	1.0 U	0.94 U	0.94 U	0.94U	0.94U	0.97U
Tetrachloroethene	4,200	18,000	15,000	1.1 U	1.0 U	10	26.9	1.3 U	30.9	5.6	14.2	23.4	7.8	3.2	20	67.6	32.5	50.9	16.0	14.4	15.8
Tetrahydrofuran Toluene	520,000	2,200,000	153 U 196 U	0.48 U 3.9	0.44 U 0.57 U	0.40 U 1.3	0.40 U 1.3	0.54 U 0.69 U	0.40 U 0.52 U	0.80 U 4.1	4.6 1.0	0.80 U 0.84 J	2.2 4.3	2.3 5.6	2.0 3.1	130 3.2	0.80 U 4.0	0.80 U 3.6	2.7 4.8	4.8 7.1	2.7 5.0
1,2,4-Trichlorobenzene	2,100	18,000	252 U	0.79 U	0.37 U	0.66 U	0.66 U	0.89 U	0.52 U	1.3 U	1.2 U	1.3 U	3.7	2.1 U	2.0 U	2.2 U	2.0 U	2.0 U	2.0U	2.0U	2.1U
1,1,1-Trichloroethane	520,000	2,200,000	280 U	0.87 U	0.81 U	0.74 U	0.74 U	0.99 U	0.74 U	1.5 U	1.4 U	1.5 U	1.5 U	1.5 U	1.5 U	9.9	1.3 J	1.5 U	4.6	1.5 J	1.5U
1,1,2-Trichloroethane	150	770	280 U	0.87 U	0.81 U	0.74 U	0.74 U	0.99 U	0.74 U	0.74 U	0.69 U	0.74 U	0.74 U	0.76 U	0.74 U	0.80	0.74 U	0.74 U	0.74U	0.74U	0.76U
Trichloroethene	210	880	30,200	28.3	7.6	114	182	34.6	14,400	37.8	49.8	49.4	90.9	22.3	47.4	1550	343	130	1120	405	64.8
Trichlorofluoromethane	73,000	310,000	280 U	0.87 U	0.81 U	0.74 U	0.74 U	0.99 U	0.74 U	2.1	2.1	4.0	5.2	4.3	9.6	6.7	5.6	20.8	1.4 J	1.8	2.3
1,1,2-Trichlorotrifluoroethane 1,2,4-Trimethylbenzene	7,300	31,000	407 U 636 U	1.3 U 2.0 U	1.2 U 1.8 U	1.1 U 1.7 U	1.1 U 1.7 U	1.4 U 71.4	1.1 U 1.7 U	2.1 U 1.3 U	2.0 U 1.9	2.1 U 2.1	2.1 U 2.0	2.2 U 2.0	2.1 U 1.9	2.3 U 1.5	2.1 U 1.8	2.1 U 1.4	2.1U 1.3U	2.1U 1.3U	2.2U 1.4U
1,3,5-Trimethylbenzene			636 U	2.0 U	1.8 U	1.7 U	1.7 U	18.3	1.7 U	1.3 U	1.3 U	1.3 U	0.58 J	0.55 J	1.3 U	0.36 J	0.84 J	1.3 U	1.3U	1.3U	1.4U
Vinyl acetate	210,000	880,000	181 U	0.56 U	0.53 U	0.48 U	0.48 U	0.64 U	0.48 U	0.95 U	0.89 U	0.95 U	0.96 U	1.0 U	0.96 U	1.0 U	0.96 U	0.96 U	0.96U	0.96U	1.0U
Vinyl chloride	160	2,800	132 U	0.41 U	0.38 U	0.35 U	0.35 U	0.47 U	0.35 U	0.35 U	0.33 U	0.35 U	0.35 U	0.36 U	0.35 U	0.37 U	0.35 U	0.35 U	0.35U	0.35U	0.36U
m&p-Xylene	10,000	44,000	448 U	1.4 U	1.3 U	1.2 U	1.2 U	35.7	1.2 U	1.8 J	1.5 J	1.6 J	2.4	2.4	2.2 J	2.6	4.7	1.5 J	2.4U	1.4 J	1.3 J
o-Xylene	10,000	44,000	224 U	0.70 U	0.65 U	0.59 U	0.59 U	14.2	0.59 U	1.2 U	1.1 U	1.2 U	1.2	1.2	1.2	1.3	1.2 U	0.76 J	0.45 J	1.2U	1.2U

Notes:

- μg/m³ micrograms per cubic meter

 J Analyte recovery in the laboratory control sample (LCS) was
- U Analyte not detected, associated value is reporting limit.
- ¹ Sub-slab soil gas screening levels based on EPA Region III Risk Based Concentrations with a Cancer Risk of 1 x 10⁻⁵ or a Hazard Index of 1.0 and an attenuation factor of 0.01 (for a large commericial/industial building).
 - Indicates that analyte was detected above residential soil gas screening level
- 55 Indicates that analyte was detected above non-residential soil gas screening level

Table A.5(b) Vapor Analytical Table

Field Screening Readings on Samples of Extracted Gas

VPLE Case Closure Request Former Paragon Electric Company

Two Rivers, Wisconsin

WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

Location	Time	Elapsed Time (min)	Cumulative Volume Removed (L)	VOCs by PID (ppm _v)	O ₂ (%)	CO ₂ (%)
HPV-1	10:15	0.25	0	12.3	18.5	2.5
Extraction Velocity: 1,100 ft/min	10:23	8	0	10.9	18.7	2.4
Extraction Vacuum: 56 in H ₂ O	10:30	15	0	10.7	19.0	2.2
Extraction Flow Rate: 22 scfm	10:50	35	0	7.5	19.5	1.6
Specific Capacity: 0.4 scfm/in H ₂ O	11:05	50	0	5.8	19.5	1.4
HPV-2	9:50	0.25	0	1.7	-	-
Extraction Velocity: 1,200 ft/min	9:55	5	0	1.8	-	-
Extraction Vacuum: 50.5 in H ₂ O	10:00	10	0	1.8	-	-
Extraction Flow Rate: 24 scfm	10:10	20	0	1.8	11.2	8.4
Specific Capacity: 0.5 scfm/in H ₂ O	10:25	35	0	1.7	11.0	8.2
	11:05	75	0	1.5	10.1	8.8
	11:30	100	0	1.7	11.0	8.0
HPV-3	8:18	3	0	0.0	18.6	2.7
Extraction Velocity: 1,500 ft/min	8:30	12	0	0.0	19.1	2.4
Extraction Vacuum: 46 in H ₂ O	8:40	22	0	0.0	19.4	2.1
Extraction Flow Rate: 31 scfm	9:00	45	0	0.0	19.4	1.8
Specific Capacity: 0.7 scfm/in H ₂ O						
HPV-4	12:50	0.5	0	1.8	19.4	1.7
Extraction Velocity: 1,050 ft/min	12:58	8	0	1.6	19.5	1.7
Extraction Vacuum: 50 in H ₂ O	13:03	13	0	1.5	19.7	1.5
Extraction Flow Rate: 21 scfm	13:15	25	0	1.1	20.1	1.3
Specific Capacity: 0.4 scfm/in H ₂ O	13:30	40	0	1.6	19.8	1.6
	14:25	95	0	1.3	20.1	1.0
HPV-5	15:32	2	0	1.9	20.0	1.3
Extraction Velocity: 1,100 ft/min	15:43	13	0	1.7	20.1	1.3
Extraction Vacuum: 50 in H ₂ O	16:05	35	0	1.6	20.1	1.4
Extraction Flow Rate: 22 scfm	16:30	60	0	1.8	20.0	1.3
Specific Capacity: 0.4 scfm/in H ₂ O	16:55	85	0	1.8	20.1	1.3

Notes:

1. The data included on this table has been provided by Geosytec Consultants.

- measurement not collected

min - minutes

L - liters

PID - photoionization detector

ppm_v - parts per million by volume

in H₂O - inches of water

scfm - standard cubic feet per minute

ft/min - feet per minute

VOCs - volatile organic compounds

O₂ - oxygen

CO₂ - carbon dioxide

Table A.5(c) Vapor Analytical Table

Vacuum and Field Screening Readings at Communication Test Points

VPLE Case Closure Request

Former Paragon Electric Company

Two Rivers, Wisconsin

WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

Location	Distance from Point of Extraction (ft)	Vacuum (in H₂O)	VOCs by PID (ppm _v)	O ₂ (%)	CO ₂ (%)
CTP-1A	5.5	0.125	11.5	19.7	1.4
CTP-1B	35	0.012	6.1	17.6	2.4
CTP-1C	22	0.020	4.2	19.8	0.4
CTP-1D	21	0.015	4.2	19.0	1.4
CTP-2A	10	0.300	3.1	-	-
CTP-2B	24	0.122	4.0	3.4	16.1
CTP-2C	36	0.022	24.0	21.0	0.2
CTP-3A	12.8	0.115	44.0	16.6	3.0
CTP-3B	25	0.021	2.0	17.3	1.8
CTP-3C	22	0.022	1.0	20.9	0.0
CTP-3D	20	0.016	1.3	17.1	2.9
CTP-4A	11.5	0.264	0.3	20.8	0.6
CTP-4B	25	0.009	6.0	20.3	0.9
CTP-5A	2	-	-	-	-
CTP-5B	6	0.570	1.8	20.4	0.6
CTP-5C	20	0.133	1.7	21.0	0.0
CTP-5D	43	0.020	3.6	20.1	0.2
CTP-5E	20	0.035	0.8	20.7	0.4
CTP-5F	20	0.015	0.6	20.7	0.3
CTP-5G	20	0.118	0.6	21.0	0.0

Notes:

1. The data included on this table has been provided by Geosytec Consultants.

- measurement not collected

ft - feet

min - minutes

in H₂O - inches of water

PID - photoionization detector

ppm_v - parts per million by volume

VOCs - volatile organic compounds

O₂ - oxygen

CO₂ - carbon dioxide

Table A.5(d) Vapor Analytical Table

Vapor Extraction Points PID Screening Results

VPLE Case Closure Request Former Paragon Electric Company Two Rivers, Wisconsin

WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

Vapor Extraction Well	Cumulative Volume Removed (Liters)	VOCs by PID (ppm _v)
V-1	100	<0.1
V-2	100	< 0.1
	500	<0.1
	1,000	<0.1
V-3	500	1.2
V-5	100	4.0
	500	24.0
	1,000	1.3

Notes:

1. The data included on this table has been provided by Geosytec Consultants.

PID - photoionization detector

ppm_v - parts per million by volume

VOCs - volatile organic compounds

Table A.5(e) Vapor Analytical Table

Summary of Transient Response Analysis

VPLE Case Closure Request

Former Paragon Electric Company

Two Rivers, Wisconsin

WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

Test Location	Monitored CTP	Distance Between CTP and HPV (ft)	HPV Test Duration (min)	HPV Flow Rate (scfm)	Calculated Leakance (B) Value (ft)	Radius of Gas Extracted During Test (ft)	Theoretical Test Extraction Radius1 (ft)	% of model	% Leakage Modeled	% of Sub-slab Soil Gas Collected in the Sample
HPV-1	CTP-1A	5.5	50	22.109048	13.15789474	32	57	0.5614035	0.4385965	0.61
HPV-2	CTP-2A	10	100	24.496894	16.12903226	45	88	0.5113636	0.4886364	0.65
HPV-3	CTP-3A	12.75	45	31.007639	7.657657658	26	60	0.4333333	0.5666667	0.5
HPV-4	CTP-4A	11.5	95	21.464845	6.182795699	27	73	0.369863	0.630137	0.5
HPV-5	CTP-5B	6	85	22.48698	12.94400963	38	75	0.5066667	0.4933333	0.61
HPV-5	CTP-5-D	43		27	13.63636364					

Notes:

1. The data included on this table has been provided by Geosytec Consultants.

Refer to Appendic C for detailed analyses.

CTP - communication test point

HPV - high purge volume

ft - feet

min - minutes

scfm - standard cubic feet per minute

% - pecent

Table A.6 Other Media of Concern

VPLE Case Closure Request Former Paragon Electric Company Two Rivers, Wisconsin WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

THIS TABLE IS NOT APPLICABLE.

NO SURFACE WATER OR SEDIMENT SAMPLING WAS PERFORMED FOR THIS PROJECT.

Well Number	Date	Elevation TPVC (feet MSL)	Depth to Water (feet)	Water Table Elevation (feet MSL
P-1	04/26/95	594.09	11.1	582.99
	05/19/95		11.04	583.05
	06/21/95		11.11	582.98
	09/06/95		10.51	583.58
	10/19/95		10.99	583.10
	11/13/95		10.33	583.76
	01/02/96		10.53	583.56
	03/27/96		10.88	583.21
	04/22/96		10.17	583.92
	07/02/96		9.3	584.79
	09/25/96		11.12	582.97
	12/18/96		11.33	582.76
	03/27/97		10.39	583.70
	09/29/97		10.23	583.86
	12/29/97		11.04	583.05
	03/17/98		10.21	583.88
	06/23/98		10.04	584.05
	09/29/98		10.25	583.84
	12/02/98		-	-
	03/26/99		-	-
	07/28/99		9.66	584.43
	03/08/00		-	-
	06/15/00		-	-
	10/03/00		10.92	583.17
	12/22/03		-	-
	11/10/04		-	-
MW-1	04/26/95	594.23	11.24	582.99
IVI V V - I	05/19/95	∪ 34 .∠3	11.24	582.99
	06/21/95		11.18	582.98
			10.62	582.98 583.61
	09/06/95			
	10/19/95 11/13/95		11.16 10.37	583.07
	01/02/96		10.58	583.86 583.65
	03/27/96 04/22/96		10.93	583.30
	07/02/96		10.22 9.33	584.01 584.90
	09/25/96			
			11.21	583.02
	12/18/96		11.52	582.71
	03/27/97		10.41	583.82
	09/29/97		10.47	583.76
	12/29/97		11.24	582.99
	03/17/98		10.30	583.93
	06/23/98		10.09	584.14
	09/29/98		10.36	583.87
	12/02/98		-	-
	03/26/99		-	-
	07/28/99		10.69	583.54
	03/08/00		11.03	583.20
	06/15/00		10.07	584.16
	10/03/00		10.87	583.36
	12/23/03		10.69	583.54
	11/10/04		10.69	583.54
	10/26/11		10.63	583.60
	02/11/13		10.18	584.05
MW-2	04/26/95	593.45	10.25	583.20
	05/19/95		10.06	583.39
	06/21/95		10.31	583.14
	09/06/95		9.82	583.63
	10/19/95		10.33	583.12
	11/13/95		9.49	583.96
	01/02/96		9.81	583.64
	03/27/96		10.01	583.44
	04/22/96		9.38	584.07
	07/02/96		8.46	584.99
	09/25/96		10.14	583.31
	12/18/96		10.47	582.98
	03/27/97		9.47	583.98
	09/29/97		9.58	583.87
	12/29/97		10.29	583.16
	03/17/98		9.45	584.00
	06/23/98		9.16	584.29
	09/29/98		9.49	583.96
	12/02/98		-	-
	03/26/99		-	-
	07/28/99		8.85	584.60
	03/08/00		10.23	583.22
	06/15/00		9.24	584.21
	10/03/00		10.03	583.42
	12/22/03		9.88	583.57
	11/10/04		-	-
	10/26/11		9.82	583.63
	02/11/13		9.44	584.01

Well Number	Date	Elevation TPVC (feet MSL)	Depth to Water (feet)	Water Table Elevation (feet MSL)
MW-3	04/26/95	593.19	9.55	583.64
	05/19/95		9.41	583.78
	06/21/95		9.58	583.61
	09/06/95		9.21	583.98
	10/19/95		9.6	583.59
	11/13/95		8.89	584.3
	01/02/96		9.13	584.06
	03/27/96		9.27	583.92
	04/22/96		8.62	584.57
	07/02/96		8.1	585.09
	09/25/96		9.51	583.68
	12/18/96		9.8	583.39
	03/27/97		9.0	
				583.98
	09/29/97		9.20	583.99
	12/29/97		9.73	583.46
	03/17/98		8.88	584.31
	06/23/98		8.75	584.44
	09/29/98		9.00	584.19
	12/02/98		-	-
	03/26/99		-	-
	07/28/99		-	-
	03/08/00		9.47	583.72
	06/15/00		8.64	584.55
	10/03/00		9.32	583.87
	12/22/03		9.32	
	12/22/03		უ.∠ ۱	583.98
	11/10/04		-	-
MW-4	04/26/95	589.65	-	-
	05/19/95		7.67	581.98
	06/21/95		6.57	583.08
	09/06/95		5.88	583.77
	10/19/95		7.25	582.40
	11/13/95		-	502.40
	01/02/96		-	-
			6.04	- - -
	03/27/96		6.21	583.44
	04/22/96		5.4	584.25
	07/02/96		4.57	585.08
	09/25/96		7.64	582.01
	12/18/96		7.81	581.84
	03/27/97		5.85	583.80
	09/29/97		5.63	584.02
	12/29/97		-	-
	03/17/98		5.48	584.17
	06/23/98		5.85	583.80
	09/29/98		5.52	584.13
	12/02/98		-	-
	03/26/99		-	
	07/28/99			-
			-	-
	06/15/00		-	-
	10/03/00		-	-
	12/22/03		-	-
	11/10/04		_ =	-
	10/26/11		5.75	583.90
	02/11/13		5.55	584.10
PZ-4A	04/26/95	589.76	6.54	583.22
1 ८ -न/\	05/19/95	000.10	6.50	583.26
	06/21/95		6.49	583.27
	09/06/95		5.75	584.01
	10/19/95		6.33	583.43
	11/13/95		5.87	583.89
	01/02/96			-
	03/27/96		6.20	583.56
	04/22/96		5.54	584.22
	07/02/96		4.72	585.04
	09/25/96		6.59	583.17
	12/18/96		6.82	582.94
	03/27/97		5.93	583.83
	09/29/97		5.66	584.10
	12/29/97		-	
	03/17/98		5.61	584.15
	06/23/98		5.93	583.83
	09/29/98		5.65	584.11
	12/02/98		-	-
	03/26/99		-	<u>-</u>
	07/28/99		5.03	584.73
	06/15/00		-	-
	10/03/00		_	-
	12/22/03		_	<u>-</u>
			_	=
	11/10/04		·	

Well Number	Date	Elevation TPVC	Depth to Water (feet)	Water Table
EXT-4B	04/26/95	(feet MSL) 590.31	7.18	Elevation (feet MSL) 583.13
EX 1-4B		590.31		
	05/19/95		9.90	580.41
	06/21/95		7.01	583.30
	09/06/95		6.33	583.98
	10/19/95		12.25	578.06
	11/13/95		9.92	580.39
	01/02/96			-
	03/27/96		6.73	502 50
			0.73	583.58
	04/22/96		-	-
	07/02/96		5.13	585.18
	09/25/96		12.27	578.04
	12/18/96		16.10	574.21
	03/27/97		18.06	572.25
	09/29/97		10.00	072.20
	12/29/97			-
			-	-
	03/17/98		-	
	06/23/98		18.06	572.25
	09/29/98		-	-
	12/02/98		-	-
	03/26/99		-	_
	07/28/99			
			-	-
	06/15/00		-	-
	10/03/00		-	-
	12/22/03		-	-
	11/10/04		-	-
	02/11/13		4.45	585.86
MW-5	04/26/95	591.61	8.25	583.36
	05/19/95		8.17	583.44
	06/21/95		8.12	583.49
	09/06/95		7.55	584.06
	10/19/95			
			8.04	583.57
	11/13/95		7.38	584.23
	01/02/96		-	-
	03/27/96		7.78	583.83
	04/22/96		7.16	584.45
	07/02/96		6.33	585.28
	09/25/96		8.22	583.39
	12/18/96			
			8.53	583.08
	03/27/97		7.53	584.08
	09/29/97		7.38	584.23
	12/29/97		-	-
	03/17/98		7.28	584.33
	06/23/98		6.95	584.66
	09/29/98		7.20	584.41
				304.41
	12/02/98		-	-
	03/26/99		-	-
	07/28/99		6.58	585.03
	03/08/00		7.96	583.65
	06/15/00		7.03	584.58
	10/03/00		7.70	583.91
			7.70	303.91
	12/22/03		-	-
	11/10/04		-	-
MW-6/EXT-6	04/26/95	590.91	9	581.91
1V1 V V - O/ L/\ 1 - O		16.060	17	573.91
	05/19/95			
	06/21/95		8.47	582.44
	09/06/95		7.74	583.17
	10/19/95		16.1	574.81
	11/13/95		7.72	583.19
	01/02/96		-	-
	03/27/96		8.3	582.61
	03/27/90		7.32	583.59
	07/02/96		6.67	584.24
	09/25/96		12.32	578.59
	12/18/96		17.1	573.81
	03/27/97		18.06	572.85
	09/29/97		10.53	580.38
	12/29/97		18.50	572.41
	03/17/98		7.49	583.42
	06/23/98		9.85	581.06
	09/29/98		7.68	583.23
	12/02/98		-	-
	03/26/99		_	_
	07/28/99		6.91	584.00
	03/08/00		15.24	575.67
	06/15/00		7.39	583.52
	10/03/00		8.25	582.66
	10/03/00		0.20	38Z.00 -
	10/03/00 12/22/03		-	-
	10/03/00 12/22/03 11/10/04		7.84	- 583.07
	10/03/00 12/22/03		-	-

Well Number	Date	Elevation TPVC (feet MSL)	Depth to Water (feet)	Water Table Elevation (feet MSL
PZ-6A	04/26/95	593.21	10.60	582.61
	05/19/95		10.58	582.63
	06/21/95		10.59	582.62
	09/06/95		10.05	583.16
	10/19/95		10.52	582.69
	11/13/95		9.81	583.40
	01/02/96		10.02	583.19
	03/27/96		10.39	582.82
	04/22/96		9.67	583.54
	07/02/96		8.85	584.36
	09/25/96		10.66	582.55
	12/18/96		10.88	582.33
	03/27/97		10.04	583.17
	09/29/97		9.85	583.36
	12/29/97		10.74	582.47
	03/17/98		9.79	583.42
	06/23/98		9.73	583.48
	09/29/98		9.98	583.23
	12/02/98			303.23
			-	-
	03/26/99		-	-
	07/28/99		9.42	583.79
	03/08/00		10.80	582.41
	06/15/00		9.73	583.48
	10/03/00		10.47	582.74
	12/22/03		10.28	582.93
	11/10/04		10.26	582.95
PZ-7	04/26/95	590.99	8.85	582.14
	05/19/95		8.83	582.16
	06/21/95		7.98	583.01
	09/06/95		8.32	582.67
	10/19/95		8.92	582.07
	11/13/95		8.12	582.87
	01/02/96		8.30	582.69
	03/27/96		8.82	582.17
	04/22/96		8.02	582.97
	07/02/96		7.16	583.83
	09/25/96		8.90	582.09
	12/18/96		9.05	581.94
	03/27/97		8.19	582.80
	09/29/97		8.16	582.83
	12/29/97		9.01	581.98
	03/17/98		8.06	582.93
	06/23/98		8.08	582.91
	09/29/98		8.33	582.66
	12/02/98		8.40	582.59
	03/26/99		8.73	582.26
	07/28/99		7.73	583.26
	03/08/00		9.10	581.89
	06/15/00		8.10	582.89
	10/03/00		8.23	582.76
	12/22/03		8.56	582.43
	11/10/04		8.55	582.44
			8.10	
	01/19/05			582.89
	04/26/05		8.45	582.54
MW-8	04/26/95	590.84	8.29	
	05/19/95	000.0 r	8.28	
	06/21/95		8.41	
	09/06/95		7.84	
	10/19/95		8.38	
	11/13/95		8.50	
	01/02/96		7.85	
	03/27/96		8.22	
	04/22/96		7.43	
	07/02/96		6.56	
	09/25/96		8.28	
	12/18/96		8.52	582.32
	03/27/97		7.43	583.41
	09/29/97		7.31	583.53
	12/29/97		8.43	582.41
	03/17/98		7.45	583.39
	06/23/98		7.37	583.47
	09/29/98		7.67	583.17
	12/02/98		-	-
	03/26/99		-	-
	07/28/99		7.02	583.82
	03/08/00		8.43	582.41
	06/15/00			
			9.91	580.93
	10/03/00		8.23	582.61
	12/22/03		7.95	582.89
	11/10/04		-	-
	10/26/11		7.98	582.86
	02/11/13		10.12	580.72
I				

Well Number	Date	Elevation TPVC	Depth to Water (feet)	Water Table
		(feet MSL)	. ,	Elevation (feet MSL)
MW-9	04/26/95	593.74	11.02	582.72
	05/19/95 06/21/95		11.12 11.02	582.62 582.72
	09/06/95		10.32	583.42
	10/19/95		10.32	582.86
	11/13/95		10.08	583.66
	01/02/96		10.26	583.48
	03/27/96		10.77	582.97
	04/22/96		9.96	583.78
	07/02/96		9.25	584.49
	09/25/96		11.23	582.51
	12/18/96 03/27/97		11.49 10.52	582.25 583.22
	09/29/97		9.97	583.77
	12/29/97		11.32	582.42
	03/17/98		10.10	583.64
	06/23/98		10.11	583.63
	09/29/98		10.27	583.47
	12/02/98		-	-
	03/26/99		-	-
	07/28/99		9.56	584.18
	03/08/00		11.24	582.50
	06/15/00		9.91	583.83
	10/03/00 12/22/03		10.71 10.47	583.03 583.27
	12/22/03		10.47	- 503.21
	10/26/11		10.47	583.27
	02/11/13		10.47	583.49
MW-11	04/26/95	593.74	8.98	584.76
10100-11	05/19/95	393.74	8.85	584.89
	06/21/95		9.08	584.66
	09/06/95		8.97	584.77
	10/19/95		9.38	584.36
	11/13/95		8.57	585.17
	01/02/96		8.84	584.90
	03/27/96		8.79	584.95
	04/22/96		8.28	585.46
	07/02/96		7.39	586.35
	09/25/96		8.72	585.02
	12/18/96		9.27	584.47
	03/27/97		8.48	585.26
	09/29/97		8.65	585.09
	12/29/97		-	-
	03/17/98		8.58	585.16
	06/23/98		8.12	585.62
	09/29/98		8.46	585.28
	12/02/98		-	-
	03/26/99 07/28/99		-	-
	03/08/00		9.08	- 584.66
	06/15/00		8.11	585.63
	10/03/00		8.82	584.92
	12/22/03		8.87	584.87
	11/10/04		-	-
	10/26/11		8.85	584.89
MW-12	04/26/95	590.62	8.28	582.34
1414 A _ 17	05/19/95	000.02	8.43	582.19
	06/21/95		8.39	582.23
	09/06/95		7.67	582.95
	10/19/95		8.28	582.34
	11/13/95		-	-
	01/02/96		7.65	582.97
	03/27/96		8.21	582.41
	04/22/96		7.32	583.30
	07/02/96		6.61	584.01
	09/25/96		8.49	582.13
	12/18/96		8.74 7.74	581.88 582.88
	03/27/97 09/29/97		7.74	582.88 582.95
	12/29/97		8.70	582.95
	03/17/98		7.45	583.17
	06/23/98		7.55	583.07
	09/29/98		7.69	582.93
	12/02/98		-	-
	03/26/99		-	-
	07/28/99		-	-
	03/08/00		8.71	581.91
	,,		7.37	583.25
	06/15/00		1.31	J05.Z5
	06/15/00 10/03/00		8.18	582.44

Well Number	Date	Elevation TPVC (feet MSL)	Depth to Water (feet)	Water Table Elevation (feet MSL)
PZ-13	04/26/95	590.75	8.53	·
	05/19/95		8.34	
	06/21/95 09/06/95		8.52 8.12	
	10/19/95		8.58	
	11/13/95		7.63	
	01/02/96		8.20	
	03/27/96		-	
	04/22/96		7.76	
	07/02/96		6.95	
	09/25/96 12/18/96		8.40 8.55	582.20
	03/27/97		0.00	302.20
	09/29/97		7.86	582.89
	12/29/97		8.52	582.23
	03/17/98		7.86	582.89
	06/23/98		7.78	-
	09/29/98		8.08	582.67
	12/02/98		8.17	582.58
	03/26/99		8.32	582.43
	07/28/99 03/08/00		7.69 8.68	583.06 582.07
	06/15/00		8.09	582.66
	10/03/00		8.66	582.09
	12/22/03		8.36	582.39
	11/10/04		8.41	582.34
	01/19/05	Frozen		
	04/26/05		8.23	582.52
PZ-14	04/26/95	595.13	13.91	581.22
	05/19/95	1 2 2 1 . 2	13.70	581.43
	06/21/95		13.99	581.14
	09/06/95		13.53	581.60
	10/19/95		13.97	581.16
	11/13/95		13.41	581.72
	01/02/96 03/27/96		13.46 13.75	581.67 581.38
	03/27/96		13.75	581.81
	07/02/96		12.53	582.60
	09/25/96		13.55	581.58
	12/18/96		13.52	581.61
	03/27/97		13.19	581.94
	09/29/97		12.77	582.36
	12/29/97		13.60	581.53
	03/17/98		13.23	581.90
	06/23/98 09/29/98		13.10 13.55	582.03 581.58
	12/02/98		13.39	581.74
	03/26/99		13.77	581.36
	07/28/99		13.43	581.70
	03/08/00		14.20	580.93
	06/15/00		13.81	581.32
	10/03/00		14.30	580.83
	12/22/03		14.06	581.07
PZ-14R	11/10/04	594.47	13.25	581.22
	01/19/05		13.08	581.39
	04/26/05		13.24	581.23
EXT-15	04/26/95	592.72	10.94	581.78
	05/19/95		10.83	581.89
	06/21/95		-	-
	09/06/95		10.52	582.20 581.65
	10/19/95 11/13/95		11.07 10.37	581.65 582.35
	01/02/96		10.57	582.35
	03/27/96		10.91	581.81
	04/22/96		10.25	582.47
	07/02/96		9.38	583.34
	09/25/96		10.78	581.94
	12/18/96		10.85	581.87
	03/27/97		10.20	582.52
	09/29/97 12/29/97		10.06 10.89	582.66 581.83
	03/17/98		10.89	581.83
	06/23/98		10.20	582.57
	09/29/98		10.13	582.24
	12/02/98		-	-
	03/26/99		-	-
	07/28/99		10.08	-
	03/08/00		11.12	581.60
	06/15/00		10.42	582.30
	10/03/00		11.15	581.57
	12/22/03		10.85	581.87
	11/10/04 01/19/05		10.77 10.36	581.95 582.36
	01/19/05		10.36	582.36 581.98
	UT12U1UJ		10.74	JU 1.3U

Table A.7 Water Level Elevations

VPLE Case Closure Request Former Paragon Electric Company Two Rivers, Wisconsin WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

Well Number	Date	Elevation TPVC (feet MSL)	Depth to Water (feet)	Water Table Elevation (feet MSL)
EXT-16	04/26/95	592.52	16.05	576.47
EX1-10	05/19/95	392.32	14.52	578.00
	06/21/95		17.50	575.02
	09/06/95		10.45	582.07
	10/19/95		15.50	577.02
	11/13/95		17.18	575.34
	01/02/96		10.40	582.12
	03/27/96		10.79	581.73
	04/22/96		10.23	582.29
	07/02/96		9.35	583.17
	09/25/96		12.62	579.90
	12/18/96		23.00	569.52
	03/27/97		18.06	574.46
	09/29/97		17.40	575.12
	12/29/97		20.50	572.02
	03/17/98		20.00	572.52
	06/23/98		23.50	569.02
	09/29/98		16.42	576.10
	12/02/98		-	-
	03/26/99		-	-
	07/28/99		10.19	582.33
	03/08/00		11.11	581.41
	06/15/00		15.50	577.02
	10/03/00		16.80	575.72
	12/22/03		10.86	581.66
	11/10/04		10.82	581.70
	01/19/05		10.48	582.04
	04/26/05		10.75	581.77
PZ-17	11/10/04	591.67	11.20	580.47
	01/19/05		11.43	580.24
	04/26/05		11.43	580.24
PZ-18D	11/10/04	592.47	12.52	579.95
	01/19/05		12.85	579.62
	04/26/05		12.64	579.83
PZ-18S	11/10/04	592.46	12.01	580.45
	01/19/05		12.20	580.26
	04/26/05		12.20	580.26
PZ-19	11/10/04	591.96	11.54	580.42
12-10	01/19/05	001.00	11.72	580.24
	04/26/05		11.6	580.36
IW-1	11/10/04	502.72	11.95	581.77
1 V V - 1	01/19/05	593.72	11.95	581.77
	04/26/05		11.91	581.81
IW-14	11/10/04	593.49	11.81	581.68
	01/19/05		11.48	582.01
	01/11/00		11.73	581.76

Notes:
(1) All elevations are recorded in feet mean sea level.
(2) - = depth to water was not collected

Table A.8 SVE Emissions Information

VPLE Case Closure Request Former Paragon Electric Company Two Rivers, Wisconsin

WDNR BRRTS No. 02-36-000153; AECOM Project No. 60236613

	Cummulative	Blower		nission	Inlet	Exhaust		Stack	VOC Emission	Cummulative Total
Date	Blower Operation	Vacuum		Rate	Temp.	Temp.	PID	FID	Rate	VOC Emissions
D	(hours)	(inches wg)	(fpm)	(cfm)	F	F	(ppm)	(ppm)	(lbs/hour)	(lbs)
	Paint Area Emission		2222	200			0.5		0.01	
01/31/12	0 (Start up)	29	2000	393			2.5	8	0.04	0
02/01/12	24	30	2000	393			0.5	4	0.02	0.7
02/02/12	48	30	2000	393	55	73	1.8	2	0.01	1.1
02/07/12	110	30	2000	393	57	73	1.8	2	0.01	1.8
02/13/12	130	30	2000	393	55	68	0	5	0.03	2.1
02/13/12	131	25	2000	393	57	73	0	5	0.03	2.2
02/21/12	176	24	2000	393	57	72	0	5	0.03	3.3
03/09/12	300	25	2000	393	55	71	0	6.5	0.03	7.1
03/23/12	390	28	2000	393	56	78	0	7.5	0.04	10.4
04/17/12	665	28	2000	393	58	75		5.5	0.03	19.8
04/30/12	808	25	2000	393	56	73		8	0.04	24.9
05/07/12	885	26	2000	393	56	73		14	0.07	29.3
05/22/12	1050	26	2000	393	59	78		8	0.04	38.9
06/28/12	1457	23.5	2000	393	65	84		11	0.06	59.2
07/24/12	1743	27	2000	393	69	92		12	0.06	76.5
08/01/12	1831	27	2000	393	69	87		7	0.04	80.9
	Shut SVE Sytem off									
09/10/12	Collected Summa Ca	nister vapor sa	ample fro	m the pa	int area (PP-5 througl	h PP-11)	- 30-min.	purge	
09/10/12	Collected Summa Ca	nister vapor sa	ample fro	m the Pre	ess room	area (PP-1	through F	PP-4, V-3	and V-4)- 30-min	i. purge
	Shut SVE Sytem off	after collecting	vapor sa	mples, re	estarted S	SVE on 10/3	1/12 (PP-	3, 4, 5, 9	, 11, V-3 & V-5)	
10/31/12	0	35	2000	393	65	73		6	0.03	80.9
11/07/12	77	35	2000	393		74		6	0.03	83.3
11/13/12	143	38	2000	393		76		5	0.03	85.2
11/21/12	335	36	2000	393		77		6.5	0.03	91.0
11/30/12	434	36	2000	393		78		7	0.04	94.6
12/12/12	566	36	2000	393		74		6.5	0.03	99.2
12/19/12	643	36	2000	393		75		7	0.04	102.0
12/27/12	731	36	2000	393		69		8	0.04	105.4
01/03/13	808	38	2000	393		73		6.5	0.03	108.4
	Shut off SVE system			000		70		0.0	0.00	100.1
	Turned SVE system			nor samr	l les from	l the Press ar	l nd Paint a	areas - 30)-min nurge	
02/14/10	Turrica OVE System	on to concet the	J IIIIai va	por samp		110 1 1033 41		11003 00	min. parge	
Storago Ar	ea Emissions									
		37	1500	121			10	25	0.04	0
01/31/12	0 (Start up)		1500	131			12	25	0.04	-
02/01/12	24	37	1500	131		407	5.3	10	0.02	0.7
02/02/12	48	37	1500	131	59	107	23.7	9	0.02	1.1
02/07/12	168	36.5	1550	135	59	106	0.2	6	0.01	2.7
02/13/12	312	37	1550	135	59	111	0	6	0.01	4.2
02/21/12	504	35	1550	135	59	106	0	15	0.03	7.9
03/09/12	912	34	1600	139	59	105	0	15	0.03	19.1
03/23/12	1248	35	1600	139	58	108	0	17	0.03	29.1
04/17/12	1848	35	1600	139	57	104		12	0.02	45.4
04/30/12	2160	35	1600	139	57	104		3.5	0.01	49.9
05/07/12	2328	43	1550	135	58	108		14	0.03	52.5
05/22/12	2688	46	1500	131	59	117		32	0.06	67.2
06/28/12	3576	45	1400	122	68	117		20	0.03	106.5
07/24/12	4200	45	1450	126	72	>125		17	0.03	125.6
08/01/12	4392	46	1450	126	71	>125		16	0.03	131.0
08/01/12	Shut SVE Sytem off	after collecting	Summa	Canister	vapor sa	mples				
09/10/12	0	38	1575	137		117		6.5		
	Collected Summa Ca									
	Shut SVE Sytem off					SVE on 10/3	1/12 (HW	-1, 3, & 6		
10/31/12	0	50	1350	117		107		1.5	0.00	131.0
11/07/12	168	49	1350	117		120		8.5	0.01	132.3
	Changed extraction p	points to HW-2.	3 & 5.							
11/07/12	169	55	1250	109		125		7.5	0.01	132.3
11/13/12	313	54	1250	109		130		7	0.01	133.9
	Changed extraction p									
11/13/12	314	48	1400	122		123		8	0.01	133.9
11/21/12	506	48	1350	117		120		6	0.01	136.0
	Changed extraction p								5.51	. 55.5
11/21/12	507	54	1250	109		125		6	0.01	136.0
11/30/12	723	54	1250	109		128		8	0.01	138.2
1 1/00/12	Changed extraction p			100		120		<u> </u>	0.01	100.2
11/30/12	724	48	1350	117		122		8	0.01	138.2
12/12/12	1012	48	1350	117		117		7.5	0.01	141.8
12/12/12	Changed extraction p			117		117		7.5	0.01	171.0
12/12/12	1013	54	1250	109		123		7	0.01	141.8
	1013	54 54						9		141.8
12/19/12			1250	109		126		9	0.01	143./
40/40/40	Changed extraction p			447		404			0.01	440 7
12/19/12	1182	48	1350	117		121		9	0.01	143.7
12/27/12	1374	48	1350	117		118		9	0.01	146.5
	Changed extraction p									
12/27/12	1375	53	1250	109		121		7	0.01	146.5
01/03/13	1543	53	1250	109		125		10	0.01	148.6
	Shut off SVE system									
02/18/13	Turned SVE system	on to collect the	<u>e final</u> va	por samp	ole from t	he Storage a	<u>area - 3</u> 0-	min. purg	<u></u>	
02/10/10										

Notes:

- (1) Volatile Organic Compound (VOC) emission rate and total based on Flame Ionization Detection (FID) reading.
- (2) Turned off system at 4:00 pm and restarted system at 7:00am beginning 2/6/12, system is off on weekends.
- (3) Installed timer on March 23, 2012 for blower control 24/7; on daily for 11 hours.

(4) Power failure in the Paragon facility from late August to September 9.

fpm = feet per minute

cfm = cubic feet per minute

fpm = feet per minute ppm = parts per million

lbs = pounds

PID = Photoionization Detextor

ATTACHMENT B – FIGURES

i idale D. I.a. Edealion ivial	Fiaure	B.1.a:	Location	Mai
--------------------------------	--------	--------	----------	-----

Figure B.1.b: Detailed Site Map

Figure B.1.c: RR Site Map

Figure B.2.a(1): Pre-Remedial Soil Contamination – Former Storage Area

Figure B.2.a(2): Pre-Remedial Soil Contamination – Former Press Room Area

Figure B.2.a(3): Pre-Remedial Soil Contamination – Former Paint Area

Figure B.2.a(4): Pre-Remedial Soil Sampling Locations

Figure B.2.b(1): Post-Remedial Soil Contamination – Former Storage Area

Figure B.2.b(2): Post-Remedial Soil Contamination – Former Press Room Area

Figure B.2.b(3): Post-Remedial Soil Contamination – Former Paint Area

Figure B.2.c(1): Remaining Soil Contamination - Former Storage Area

Figure B.2.c(2): Remaining Soil Contamination – Former Press Room Area

Figure B.2.c(3): Remaining Soil Contamination – Former Paint Area

Figure B.3.a: Cross Section A-A'

Figure B.3.b: Groundwater Isoconcentration Map

Figure B.3.c: Groundwater Flow Direction

Figure B.3.d: Monitoring Well Location

Figure B.4.a(1): Pre-Remedial Soil Vapor Sampling Locations

Figure B.4.a(2): Post-Remedial Soil Vapor Sampling Locations

Figure: B.1.a LOCATION MAP

VPLE Case Closure Reiquest Former Paragon Electric Site, Two Rivers WI WDNR BRRTS# 02-36-000153 Project No.: 60236613 Date: 03/25/13

Figure: B.1.c

Soil Sample	Date	PCE (µg/Kg)	TCE (µg/Kg)
SB-13 0.5-2.5'	10/12/09	102	176
SB-13 4.5-6.5'	10/12/09	<25.0	<25.0
SB-14 0.5-2.5'	10/12/09	132	187
SB-14 4.5-6.5'	10/12/09	<25.0	<25.0
GP-1 0.5 -4.0'	11/7/11	<25.0	<25.0
GP-1 4-6'	11/7/11	<25.0	<25.0
GP-2 0.5 -4.0'	11/7/11	35.3 (J)	39.1 (])
GP-2 4-6'	11/7/11	<26.3	<26.3
GP-3 0.4-4.0'	11/7/11	72.3	78.2
GP-3 4-6'	11/7/11	<25.0	<25.0
GP-4 0.5 -4.0'	11/7/11	<25.0	<25.0
GP-4 4-6'	11/7/11	<25.0	<25.0
GP-5 0.5 -4.0'	11/7/11	<25.0	35.2 (j)
GP-5 4-6'	11/7/11	<25.0	<25.0
GP-6 0.5 -4.0'	11/7/11	81.9	163
GP-6 4-6'	11/7/11	<25.0	<25.0
GP-7 0.5 -4.0'	11/7/11	136	203
GP-7 4-6'	11/7/11	<25.0	<25.0
GP-8 0.5 -4.0'	11/7/11	29.3 (j)	35.6 (j)
GP-8 4-6'	11/7/11	<25.0	<25.0
GP-9 0.5-4.0'	11/8/11	33.6 (j)	44.7 (j)
GP-9 4-6'	11/8/11	<25.0	<25.0
GP-10 0.5 -4.0'	11/7/11	53.5 (j)	67.2 (J)
GP-10 4-6'	11/7/11	<25.0	<25.0
GP-11 0.5 -4.0'	11/7/11	<25.0	<25.0
GP-11 4-6'	11/7/11	<25.3	<25.3
GP-12 0.5 -4.0'	11/8/11	<25.0	<25.0
GP-12 4-6'	11/8/11	<25.0	<25.0
GP-13 0.5 - 4.0	12/15/11	<25.0	<25.0
GP-14 0.5 - 4.0	12/15/11	<25.0	<25.0

LEGEND

SOIL SAMPLING LOCATION (NOT EXCEEDING RCL)

SOIL SAMPLING LOCATION (RCL EXCEEDANCES)

APPROX. EXTENT OF SOIL EXCEEDING SOIL-TO-GROUNDWATER LEACHING PATHWAY RCL

PRE-REMEDIAL SOIL CONTAMINATION FORMER PRESS ROOM AREA

VPLE Case Closure Request Former Paragon Electric Site, Two Rivers WI WDNR BRRTS# 02-36-000153 Project No.: 60236613 Date: 03/25/13

Figure: B.2.a (2)

Figure: B.2.a (3)

POST-REMEDIAL SOIL CONTAMINATION FORMER STORAGE AREA

PP-1

PP-5

VAPOR EXTRACTION SYSTEM

VAPOR EXTRACTION POINT

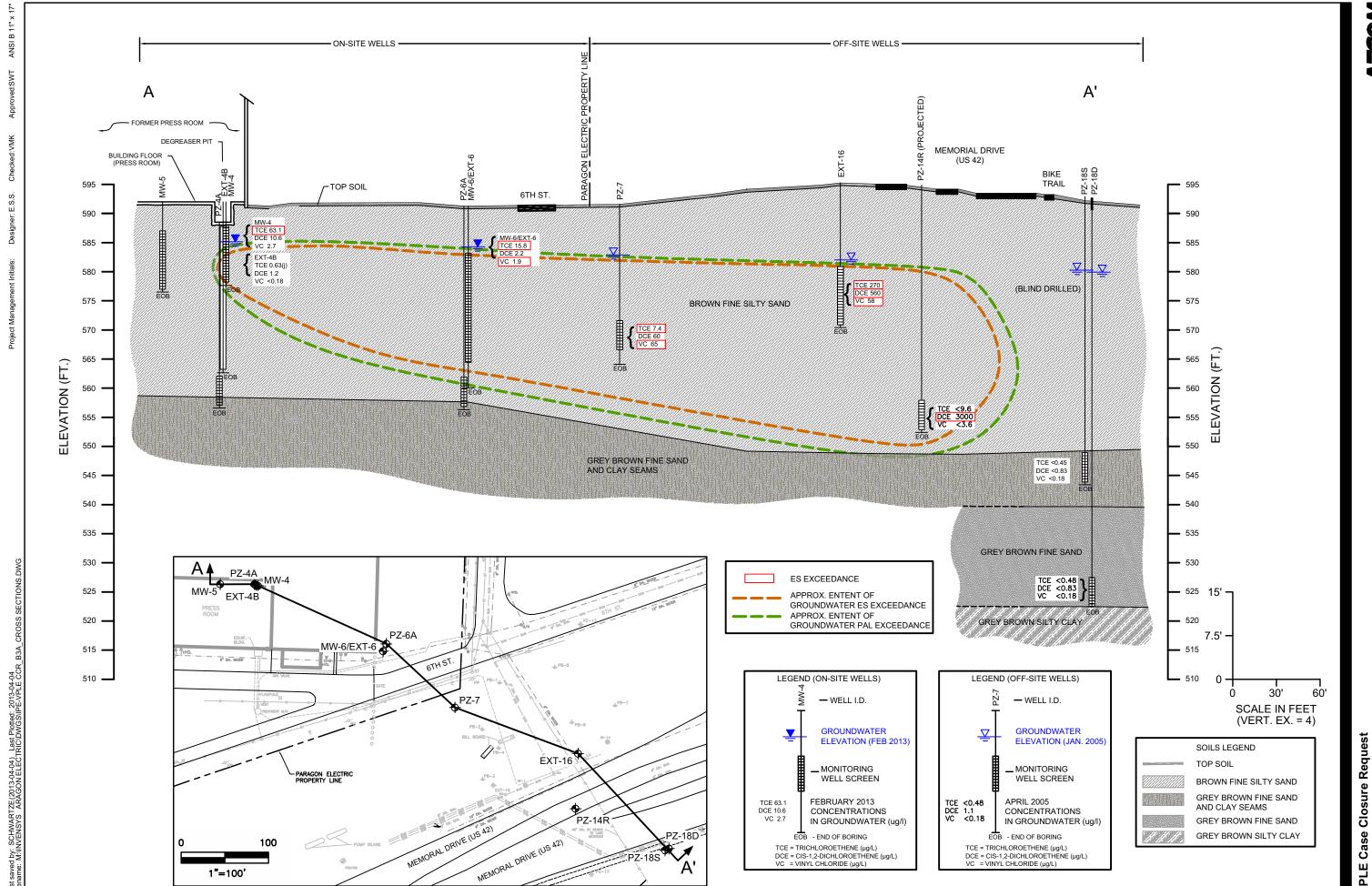
1"=20'

20

Two Rivers WI

POST-REMEDIAL SOIL CONTAMINATION FORMER PRESS ROOM AREA

Figure: B.2.b (2)


Figure: B.2.b (3)

REMAINING SOIL CONTAMINATION FORMER STORAGE AREA

REMAINING SOIL CONTAMINATION FORMER PRESS ROOM AREA

A=COM Figure: B.2.c (2)

Figure: B.2.c (3)

AECOM Figure: B.3.a

CROSS SECTION A-A

Two Rivers WI

Date: 04/04/13

Former Paragon Electric Site WDNR BRRTS# 02-36-000153 Project No.: 60236613 Date: (

Former Paragon E WDNR BRRTS# 02 Project No.: 602360

ROUNDWATER FLOW DIRECTION

VPLE Case Closure Request Former Paragon Electric Site, Tv WDNR BRRTS# 02-36-000153 Project No.: 60236613 Date: 03/

MONITORING WELL LOCATION MAP

A=CO/ Figure: B 4 a (

POST-REMEDIAL SOIL VAP SAMPLING LOCATIONS

VPLE Case Closure Request
Former Paragon Electric Site, Two Rivers
WDNR BRRTS# 02-36-000153

Documentation of Remedial Action (Attachment C)

DISCLAIMER

Documents contained in Attachment C of the Case Closure – GIS Registry (Form 4400-202) are not included in the electronic version (GIS Registry Packet) available on RR Sites Map to limit file size.

For information on how to obtain a copy or to review the file, please contact the Remediation & Redevelopment (RR) Environmental Program Associate (EPA) at dnr.wi.gov/topic/Brownfields/Contact.html

ATTACHMENT D – Maintenance Plan

Cover Barrier Maintenance Plan

ATTACHMENT D : Cover Barrier Maintenance Plan

Paragon Electric Site, Two Rivers, Wisconsin WDNR BRRTS No. 02-36-000153

PROPERTY LOCATED AT:

606 Parkway Boulevard, Two Rivers, Wisconsin (the "Property")

PROPERTY LEGAL DESCRIPTION: NW 1/4 NE 1/4 & NE 1/4 NE 1/2 OF S11 T19N R24E PT OF SUB GOVT LOT 1 LYING N OF C & N W RR ROW ALSO SW 1/4 SE 1/4 S2 T19N R24E TRACTS REC IN V 256 P 261 & V 499 P 327 OF DEEDS ALSO THIEDE& GOELE D ALL OF BLK 3 & VAC STREET IN V 249 P 197 OF DEEDS

PARCEL TAX #: 053-211-102-001.08

Introduction

The Wisconsin Department of Natural Resources ("DNR") has approved closure of the remedial project at the Property to industrial standards with, which is often the case in industrial remediation projects, the installation and maintenance of a cover barrier over three limited locations in the building located at the Property. This document constitutes the Maintenance Plan required by s. NR 724.13(2), Wisconsin Administrative Code for the cover barrier at the Property, which will consist of the concrete floor of the Property's existing building.

More site-specific information about this Property may be found in: (i) the case file in the DNR Northeast regional office; (ii) BRRTS on the Web (DNR's internet based data base of contaminated sites): http://dnr.wi.gov/botw/SetUpBasicSearchForm.do (iii) GIS Registry PDF file for further information on the nature and extent of contamination: http://dnrmaps.wisconsin.gov/imf/imf.jsp?site=brrts2; and (iv) the DNR project manager for Manitowoc County.

Soil Description

Residual low level impacts of trichloroethene and tetrachloroethene (chlorinated solvents) are located at a depth of 0 to 6 feet in the soil in several places at the Property, as shown on the attached Exhibit A (Figure D.1). DNR desires to minimize the soil-to-groundwater leaching of these solvents through the maintenance of a cover barrier, and has acknowledged that such soil may remain in place provided that a cover barrier, such as the concrete slab of the Property's existing building, is maintained.

Description of the Cover Barrier and Maintenance Activities

The cover barrier consists of the approximately 6-inch thick concrete floor slab in the Property's existing building. The areas of the cover barrier to be maintained are in the southeast portion of the building, specifically in the Storage, Press, and Paint areas, as shown in Exhibit A (the "Designated Areas"). The cover barrier over the Designated Areas will be inspected by the owner or its designated representative once a year for deterioration, cracks and other potential problems that may result in leaching of the solvents noted above into underlying groundwater. Any needed repairs to the said cover barrier will be promptly scheduled and completed by the owner. A log of the inspections and any repairs and recommendations will be maintained by the owner at the Property and is included as Exhibit B, Cap Inspection Log. The inspection log will be available for submittal to or inspection by DNR representatives upon their request.] Any soil that is excavated from the Designated Areas must be tested, treated, and disposed of by the owner in accordance with applicable law. If any portion of the cover barrier overlying any portion of the Designated Areas is removed or replaced, the replacement barrier must be equally impervious and subject to the same maintenance and inspection guidelines outlined in this

Maintenance Plan (unless indicated otherwise by the DNR or its successor). The owner will maintain a copy of this Maintenance Plan at the Property and make it available to all interested parties (i.e. on-site employees, contractors, future owners, etc.). This Maintenance Plan can be amended or withdrawn by the owner and its successors with the written approval of WDNR.

Notwithstanding the above, the owner will not modify the cover barrier over the Designated Areas in a manner that will adversely affect the soil-to-groundwater leaching pathway of the above cited solvents unless prior written approval has been obtained from the DNR.

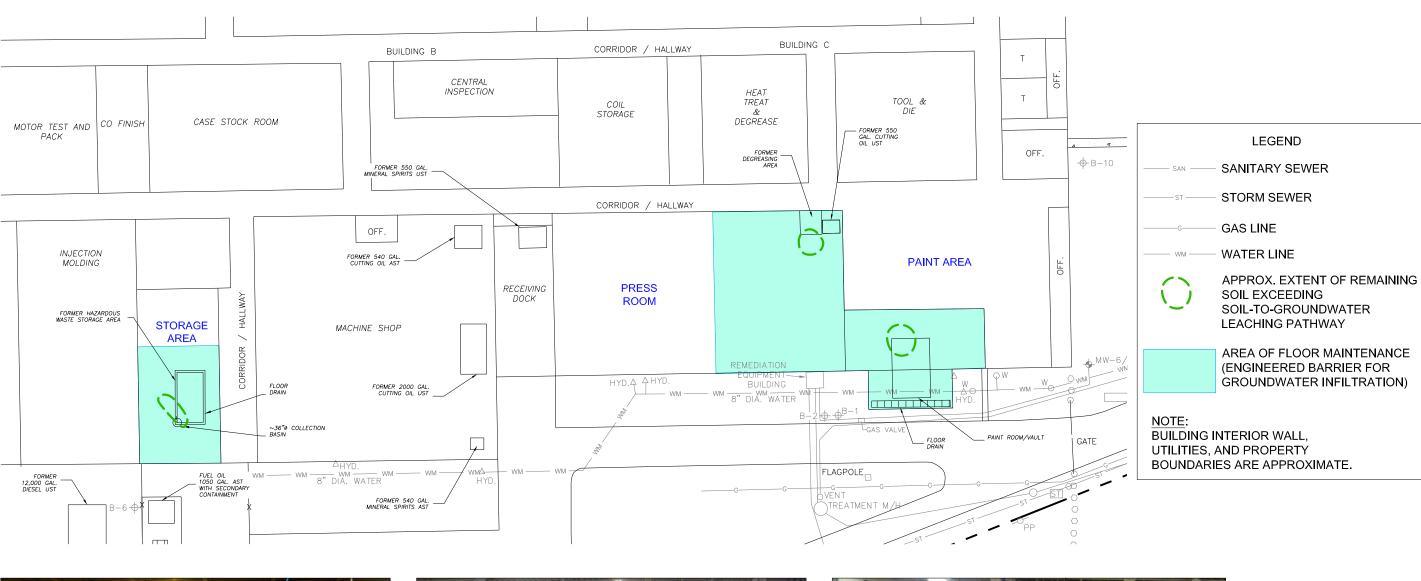
Contact Information

Responsible Party:

Mr. Paul A. Ahearn Ranco Incorporated of Delaware c/o Invensys Inc. 33 Commercial Street, B51-2J Foxboro, Massachusetts 02035 Phone: (508) 549-4949

Owner:

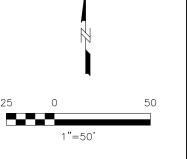
Lake Bluff Associates Continuation Partnership, No. 1, L.P. c/o Rabbi Yitzchok Wolf SJ Abrams Cheder Lubavitch Hebrew Day School Central Office 5201 Howard Street Skokie, Illlinois 60077 Phone: 847-675-6777


Consultant:

Mr. Mark W. Magee Or Ms. Vasanta M. Kalluri
AECOM
1035 Kepler Drive 717, 17th Street, Suite 2600
Green Bay, Wisconsin 54311 Denver, Colorado 80202
Phone: (920) 406-3141 Phone: (303) 228-3058

DNR:

Ms. Annette Weissbach Wisconsin Department of Natural Resources 2984 Shawano Avenue Green Bay, Wisconsin 54307-0448 Phone: (920) 662-5165



STORAGE ROOM PRESS ROOM PAINT ROOM

Exhibit B

Cover Barrier Inspection Log Former Paragon Electric Facility Two Rivers, Wisconsin WDNR BRRTS No. 02-36-000153

Inspection Date	Inspector	Condition of Cover Barrier	Recommedations	Have recommendations from previous inspection been implemented
1				

ATTACHMENT E - MONITORING WELL INFORMATION

No Attachments – All wells were identified for proper abandonment

State of Wisconsin Department of Natural Resources PO Box 7921, Madison WI 53707-7921 dnr.wi.gov

BRRTS No.

D

Ε

State Highway 42 Right-of-Way

Manitowoc County Owned Parcel

Impacted Property Notification Information

Form 4400-246 (R 10/12)

Notice: Completion of this form is mandatory for applications for case closure pursuant to ch. 292, Wis. Stats. and ch. NR 726, Wis. Adm. Code, where specific circumstances exist at the time of case closure. This form applies to situations where: (1) the party conducting the cleanup does not own the source property; (2) contamination has impacted a neighboring property to a certain degree; and (3) not all monitoring wells can/will be abandoned at the time of closure. A letter notifying these property owners is required of the responsible party if certain circumstances exist. The DNR's "Guidance on Case Closure and the Requirements for Managing Continuing Obligations" (PUB-RR-606) specifies those notification requirements. A model "Template for Notification of Residual Contamination and Continuing Obligations" (PUB-RR-919) can be downloaded at: http://dnr.wi.gov/files/PDF/pubs/rr/RR919.pdf. The Department will not consider, or act upon your application, unless all applicable sections are completed on this form and the closure fee and any other applicable fees, required under ch. NR 749, Wis. Adm. Code, Table 1 are included. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Open Records law [ss. 19.31 - 19.39, Wis. Stats.].

Activity Name

BRR 15 NO.		Activity Name														
02-36-000153		Paragon Electric Co Inc														
						Letter Sent To:			Reasons Letter Sent:							
ID	Impacted Property Address	Parcel No.	Date of Letter	WTMX	WTMY	Source Property Owner is not RP	Right of Way Government or Other	Impacted Off-Site Property Owner	Groundwater Exceeds ES	Residual Soil Exceeds Standards	Cap/Engineerd Control	Industrial Use Soil Standards	Vapor System in Place	Vapor Asmt Needed if use Changes	Structural Impediment	Lost, Transferred or Open Wells
Α	606 Parkway Boulevard, Two Rivers, Wisconsin	05321110200	03/2013	713189	410167	\times			\times	\times	\times			\times		
В	Railroad Right-of-Way	053211203190	03/2013	713266	410126		X		X							
С	2626 Memorial Drive, Two Rivers Wisconsin	053211102000	03/2013	713298	410119			X	X							

NA

0532111020104

03/2013

03/2013

713286

713317

410082

410129

Serving clients for 120 years.

120 South Riverside Plaza · Suite 1200 Chicago, Illinois 60606 Phone 312.876.7100 · Fax 312.876.0288 www.arnstein.com

SOURCE PROPERTY William J. Anaya 312.876.7109 wjanaya@arnstein.com Direct Facsimile: 312.876.7309 Licensed in Illinois and Indiana

March 1, 2013

VIA MESSENGER DELIVERY

Lake Bluff Associates Continuation Partnership, No. 1, L.P. c/o Rabbi Yitzchok Wolf SJ Abrams Cheder Lubavitch Hebrew Day School Central Office 5201 Howard Street Skokie, Illinois 60077

Subject: Notice of Completion of Remedial Activities, Application for WDNR Closure; Description of Groundwater Conditions at Real Property commonly known as 606 Parkway Boulevard, Two Rivers, Wisconsin (the "Site"), WDNR BRRTS VPLE No. 06-36-551669, ERP No. 02-36-00153 Our Client: Ranco Incorporated of Delaware

Gentlemen:

This letter is to advise you that Ranco Incorporated of Delaware has completed all of the active remedial activities at the Site required by Wisconsin Environmental Law and by Section 5.6(b)(vii) of the Lease, and is in the process of confirming administrative closure of the Site with the Wisconsin Department of Natural Resources ("WDNR") pursuant to the state's voluntary cleanup program.

Specifically, our client has completed all of the required remediation and corrective action activities at the Site, and is in the process of removing the remediation equipment and properly closing the monitoring wells used in performing the remedial activities at the Site. For your benefit and for our client's benefit, our client is also applying for a Certificate of Completion pursuant to Wisconsin's Voluntary Party Liability Exemption (VPLE) confirming that no further remediation activities are required at the Site.

As you know, our client entered the VPLE Program in June 2008 following WDNR's conditional closure of the Site following a TCE release reported and resolved at that time. As you may know, closure pursuant to the VPLE Program, exempts the current and future owners of the Site from statutory environmental cleanup liability under Wisconsin law for the contaminants of concern identified in the closure report –

SOURCE PROPERTY

Lake Bluff Associates Continuation Partnership, No. 1, L.P. Re: Notice of Completion of Remediation at 666 Parkway Boulevard, Two Rivers, Wisconsin March 1, 2013
Page 2

provided that continuing post-closure obligations are followed. Those continuing obligations will impose certain restrictions on use of the subsurface and groundwater at the Site, and will be described in a letter from WDNR confirming closure. For your review and reference, we have attached a Voluntary Party Liability Exemption Fact Sheet (PUB-RR-506) and Answers to Common Questions about the Voluntary Party Liability Exemption (VPLE) Program.

For your information, our client's environmental consultant has concluded that after nearly a decade of active groundwater remediation, certain residual material left in the groundwater at the Site in the form of trichloroethene ("TCE"), and its degradation by products will remain at concentrations that currently exceed standards found in chapter NR 140, Wisconsin Administrative Code. Nonetheless our client's consultant has concluded (consistent with WDNR closure requirements), that the residual material will not pose a danger at the Site so long as certain continuing obligations consistent with the current use of the Site are in place.

As you know, our client has removed the majority of the contaminants of concern identified at the Site with active remedial activities performed since the late 1980's. At this point, it is our client's consultant's considered opinion that the residual material will naturally attenuate and biodegrade over time, reducing the concentrations of TCE in the groundwater at the Site to well below the standards found in chapter NR 140, Wisconsin Administrative Code. In the meantime, the floors in the Storage, Paint and Press Areas of the building provide adequate and recognized barriers to subsurface conditions in those areas and must be maintained. In addition, the prospective use of the Site will remain industrial as contemplated in the Lease. At this point, our client's consultant has concluded that the current conditions at the Site – including the residual TCE in the groundwater at the Site – do not pose any danger to human health or to the environment. In other words, the conditions at the Site are both compliant with Wisconsin environmental law and are compliant with the closure terms described in the Lease.

As you may know, the natural processes of attenuation and biodegradation are consistent with the administrative requirements for formal closure described at Chapter NR 726, of the Wisconsin Administrative Code. At such time as WDNR formally closes the Site pursuant to the terms of our client's application, no further investigation or cleanup will be performed, required or initiated beyond reliance on natural attenuation.

We are sending you this notice and the attachments pursuant to Wisconsin Administrative Code Chapter NR 726.05(2). For your information, WDNR will not review our client's closure request for at least 30 days following the date of this letter. As the owner of the Site under consideration, if you have contradictory information, you

SOURCE PROPERTY

Lake Bluff Associates Continuation Partnership, No. 1, L.P. Re: Notice of Completion of Remediation at 666 Parkway Boulevard, Two Rivers, Wisconsin March 1, 2013
Page 3

may contact WDNR and provide the Agency with any technical information that contradicts our client's application for VLPE closure.

If you have any such information, you may submit it to WDNR by addressing it as follows:

Ms. Annette Weissbach Wisconsin Department of Natural Resources Northeast Region Headquarters 2984 Shawano Avenue Green Bay, Wisconsin 54313-6727

For your information, after the Site is closed as described in this letter, the boundaries of the groundwater identified with residual contamination known to exceed the standards established at chapter NR 140 will be reported on WDNR's Geographic Information System (GIS) Registry of Closed Remediation Sites. The information reported on the GIS Registry includes maps identifying the location of various properties in Wisconsin with groundwater that contains material at concentrations that exceed the standards established at chapter NR 140. This GIS Registry is available to the general public, and reported publicly on WDNR's internet web site.

At such time as WDNR approves our client's application for closure under the VPLE Program, WDNR will report closure in a letter to our client. Upon receipt, we will provide a copy of the letter to you, or you may obtain a copy from Ms. Annette Weissbach, WDNR, 2984 Shawano Avenue, Green Bay, Wisconsin 54313-6727, or by accessing the DNR GIS Registry of Closed Remediation Sites on the internet at http://www.dnr.wi.gov/org/aw/rr/gis/index.htm.

Finally, in the event that you, or any subsequent owner of the Site, intends to construct or reconstruct a groundwater well at the Site, please be advised that special well construction standards will be applicable to protect the well from the residual TCE remaining in the groundwater, at least until the concentrations naturally attenuate and biodegrade as described above. Every well driller who proposes to construct a well at the Site will need to verify the groundwater conditions at the Site, and if the exceedances described in this letter remain, the well driller will be required to obtain approval from a regional water supply specialist with WDNR's Drinking Water and Groundwater Program. The well construction application, form 3300-254, is available at WDNR's web site at http://www.dnr.wi.gov/org/water/dwg/3300254.pdf, or may be accessed through the GIS Registry web address in the preceding paragraph.

SOURCE PROPERTY

Lake Bluff Associates Continuation Partnership, No. 1, L.P. Re: Notice of Completion of Remediation at 666 Parkway Boulevard, Two Rivers, Wisconsin March 1, 2013
Page 4

Please review this letter and the attachments, and if you require additional information, please feel free to contact the undersigned.

Very truly yours,

Arnstein & Lehr JLP

William J. Anaya

WJA:cle 10790950.1

cc: Mr. Lawrence F. Benjamin/Neal, Gerber & Eisenberg (with attachments)

SOURCE **PROPERTY**

Chicago Office Services

From: Sent:

mark@advancedmessenger.com Friday, March 01, 2013 12:55 PM

To:

Turner, Gregory

Subject:

POD for Control Number 330008

Advanced Messenger Service

ATTN: AARON

330008 CTRL:

ORDER DATE: 3/01/13

SERVICE TYPE: IMM SUB

CUST: 2809 ARNSTEIN & LEHR LLP

REF: 396470011 WJA

PU: ARNSTEIN & LEHR LLP

120 S RIVERSIDE PLZ

DL: CHEDER LUBAVITCH SCHOOL

5201 W HOWARD

SIGN: r. zucker

CHICAGO IL

60606-3910

SKOKIE IL

RM:1200

DEL DATE: 3/01/13

USA

USA

TIME: 12:54

120 South Riverside Plaza · Suite 1200 Chicago, Illinois 60606 Phone 312.876.7100 · Fax 312.876.0288 www.arnstein.com

OFF-SOURCE

B
PROPERTY

William J. Anaya
312.876.7109
wjanaya@arnstein.com
Direct Facsimile: 312.876.7309
Licensed in Illinois and Indiana

March 28, 2013

VIA CERTIFED MAIL – RETURN RECEIPT REQUESTED

Wisconsin Central Railroad c/o Canadian National Railroad Real Estate Department 17641 South Ashland Avenue Homewood, Illinois 60430

Re: Notice of Application for Closure at Real Property commonly

described as 606 Parkway Boulevard, Two Rivers, Wisconsin (the "Site"); Description of Groundwater Conditions at

Parcel No. 053-211-203-190.05;

WDNR BRRTS VPLE No. 06-36-551669, ERP No. 02-36-00153

Our Client: Ranco Incorporated of Delaware

Dear Sir or Madam:

This letter is to advise you per Wisconsin Environmental Law of possible residual groundwater impacts on Railroad's Right-of-Way property (Parcel No. 053-211-203-190.05) located south of the former Paragon Electric Facility (the "Site") at 606 Parkway Boulevard, Two Rivers, Wisconsin (see attached Drawing for location). Ranco Incorporated of Delaware has completed all of the active remedial activities at the Site required by Wisconsin Environmental Law, and is in the process of confirming administrative closure of the Site with the Wisconsin Department of Natural Resources ("WDNR") pursuant to the state's voluntary cleanup program. Our client is applying for a Certificate of Completion pursuant to Wisconsin's Voluntary Party Liability Exemption ("VPLE") confirming that no further remediation activities are required at the Site.

For your information, our client's environmental consultant has concluded that after nearly a decade of active groundwater remediation, the remediation activities are complete with certain residual material left in the groundwater at the Site in the form of trichloroethene ("TCE") and its degradation by products will remain. Those residual materials will remain at concentrations that currently exceed standards found in chapter NR 140, Wisconsin Administrative Code, and some of that material is migrating through the groundwater beneath the Site into the subsurface at the Railroad's Right-of-Way (drawing attached). Even so, our client's consultant has concluded (consistent with

Wisconsin Central Ltd. March 28, 2013 Page 2 OFF-SOURCE
B
PROPERTY

WDNR closure requirements), that the residual material does pose a danger at the Site or to your property interests, and will eventually degrade. The purpose of this notice is to advise you of the presence of the material and to advise you of certain requirements imposed by Wisconsin environmental law.

Again, please be advised that our client's consultant has concluded that the current conditions associated with residual TCE in the groundwater do not pose any danger to human health or to the environment at your property. Indeed, the current conditions at the Site and at your property are compliant with Wisconsin environmental law. At such time as WDNR formally closes the Site pursuant to the terms of our client's currently pending application, no further investigation or cleanup will be performed, required or initiated beyond reliance on natural attenuation.

We are sending you this notice and the attachments pursuant to Wisconsin Administrative Code Chapter NR 726.05(2). For your information, WDNR will not review our client's closure request for at least 30 days following the date of this letter. If, as the owner of property adjacent to the Site, you have contradictory information, you may contact WDNR and provide the Agency with any technical information that contradicts our client's application for VLPE closure.

If you have any such information, you may submit it to WDNR by addressing it as follows:

Ms. Annette Weissbach
Wisconsin Department of Natural Resources
Northeast Region Headquarters
2984 Shawano Avenue
Green Bay, Wisconsin 54313-6727

For your information, after the Site is closed as described in this letter, the boundaries of the groundwater identified with residual contamination known to exceed the standards established at chapter NR 140 will be reported on WDNR's Geographic Information System (GIS) Registry of Closed Remediation Sites. The information reported on the GIS Registry includes maps identifying the location of various properties in Wisconsin with groundwater that contains material at concentrations that exceed the standards established at chapter NR 140. This GIS Registry is available to the general public, and reported publicly on WDNR's internet web site. We have attached a copy of a drawing identifying the location of properties that are known to have been impacted by the TCE described above. Our client also provided a copy of this drawing to WDNR, and WDNR may use it or the information described therein in preparing the information to be disclosed in the GIS referred to above.

At such time as WDNR approves our client's pending application for closure under the VPLE Program, WDNR will report closure in a letter to our client. Upon

OFF-SOURCE
B
PROPERTY

Wisconsin Central Ltd. March 28, 2013 Page 3

receipt, we will provide a copy of the letter to you, or you may obtain a copy from Ms. Annette Weissbach, WDNR, 2984 Shawano Avenue, Green Bay, Wisconsin 54313-6727, or by accessing the DNR GIS Registry of Closed Remediation Sites on the internet at http://www.dnr.wi.gov/org/aw/rr/gis/index.htm.

Finally, in the event that you, or any subsequent owner of your property, intends to construct or reconstruct a groundwater well at your property, please be advised that special well construction standards will be applicable to protect the well from the residual TCE remaining in the groundwater, at least until the concentrations naturally attenuate and biodegrade as described above. Every well driller who proposes to construct a well at your property will need to verify the groundwater conditions, and if the exceedances described in this letter remain, the well driller will be required to obtain approval from a regional water supply specialist with WDNR's Drinking Water and Groundwater Program. The well construction application, form 3300-254, is available at WDNR's web site at http://www.dnr.wi.gov/org/water/dwg/3300254.pdf, or may be accessed through the GIS Registry web address in the preceding paragraph.

Please review this letter and the attachments, and if you require additional information, please feel free to contact the undersigned.

Very truly yours,

Arnstein & Lehr LLP

/s/ William J. Anaya

William J. Anaya

WJA/cle 10852717.1

A A STATE OF THE S	a recommendada						
SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY						
Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits.	B. Received by (Printed Name) C. Date of Delivery C. Date of Delivery						
Wisconsin Central Railroad	If YES, enter delivery address below: ☐ No						
c/o Canadian National Railroad Real Estate Department 17641 South Ashland Avenue Homewood, Illinois 60430	3. Service Type Certified Mail Registered Return Receipt for Merchandise C.O.D.						
	4. Restricted Delivery? (Extra Fee) ☐ Yes						
2. Article Number (Transfer from service label) 7008 1140	0004 3547 8745						
PS Form 3811, February 2004 Domestic Ret	urn Receipt 102595-02-M-1540						

120 South Riverside Plaza · Suite 1200 Chicago, Illinois 60606 Phone 312.876.7100 · Fax 312.876.0288 www.arnstein.com

William J. Anaya
312.876.7109
wjanaya@arnstein.com
Direct Facsimile: 312.876.7309
Licensed in Illinois and Indiana

OFF-SOURCE C

PROPERTY

March 28, 2013

VIA CERTIFIED MAIL – RETURN RECEIPT REQUESTED

Mr. Muhammad Javeed Mrs. Tahira Javeed

3308 Chasm Lane Manitowoc, Wisconsin 54220

Re: Notice of Application for Closure at Real Property commonly described as 606 Parkway Boulevard, Two Rivers, Wisconsin

(the "Site"); Description of Groundwater Conditions at

2626 Memorial Drive, Two Rivers, Wisconsin;

WDNR BRRTS VPLE No. 06-36-551669, ERP No. 02-36-00153

Our Client: Ranco Incorporated of Delaware

Dear Mr. and Mrs. Javeed:

This letter is to advise you per Wisconsin Environmental Law of possible residual groundwater impacts on your property commonly known as 2626 Memorial Drive in Two Rivers, Wisconsin (Parcel No. 053-211-102-010.07) located south of the former Paragon Electric Facility (the "Site") at 606 Parkway Boulevard, Two Rivers, Wisconsin. Please refer to the attached drawing for location. Ranco Incorporated of Delaware has completed all of the active remedial activities at the Site required by Wisconsin Environmental Law, and is in the process of confirming administrative closure of the Site with the Wisconsin Department of Natural Resources ("WDNR") pursuant to the state's voluntary cleanup program. Our client is applying for a Certificate of Completion pursuant to Wisconsin's Voluntary Party Liability Exemption ("VPLE") confirming that no further remediation activities are required at the Site.

For your information, our client's environmental consultant has concluded that after nearly a decade of active groundwater remediation, the remediation activities are complete with certain residual material left in the groundwater at the Site in the form of trichloroethene ("TCE") and its degradation by products. Those residual materials will remain at concentrations that currently exceed standards found in chapter NR 140, Wisconsin Administrative Code, and some of that material is migrating through the groundwater beneath the Site into the subsurface at your property commonly known as 2626 Memorial Drive, Two Rivers, Wisconsin (drawing attached). Even so, our client's

Mr. Javeed Muhammed Mrs. Tahira Javeed March 28, 2013 Page 2 OFF-SOURCE
C
PROPERTY

consultant has concluded (consistent with WDNR closure requirements), that the residual material does pose a danger at the Site or to your property interests, and will eventually biodegrade over time. The purpose of this notice is to advise you of the presence of the material and to advise you of certain requirements imposed by Wisconsin environmental law.

Please be advised that our client's consultant has concluded that the current conditions associated with residual TCE in the groundwater do not pose any danger to human health or to the environment at your property. Indeed, the current conditions at the Site and at your property are compliant with Wisconsin environmental law. At such time as WDNR formally closes the Site pursuant to the terms of our client's currently pending application, no further investigation or cleanup will be performed, required or initiated beyond reliance on natural attenuation.

We are sending you this notice and the attachments pursuant to Wisconsin Administrative Code Chapter NR 726.05(2). For your information, WDNR will not review our client's closure request for at least 30 days following the date of this letter. If, as the owner of property adjacent to the Site, you have contradictory information, you may contact WDNR and provide the Agency with any technical information that contradicts our client's application for VLPE closure.

If you have any such information, you may submit it to WDNR by addressing it as follows:

Ms. Annette Weissbach Wisconsin Department of Natural Resources Northeast Region Headquarters 2984 Shawano Avenue Green Bay, Wisconsin 54313-6727

For your information, after the Site is closed as described in this letter, the boundaries of the groundwater identified with residual contamination known to exceed the standards established at chapter NR 140 will be reported on WDNR's Geographic Information System (GIS) Registry of Closed Remediation Sites. The information reported on the GIS Registry includes maps identifying the location of various properties in Wisconsin with groundwater that contains material at concentrations that exceed the standards established at chapter NR 140. This GIS Registry is available to the general public, and reported publicly on WDNR's internet web site. We have attached a copy of a drawing identifying the location of properties that are known to have been impacted by the TCE described above. Our client also provided a copy of this drawing to WDNR, and WDNR may use it or the information described therein in preparing the information to be disclosed in the GIS referred to above.

Mr. Javeed Muhammed Mrs. Tahira Javeed March 28, 2013 Page 3 OFF-SOURCE
C
PROPERTY

At such time as WDNR approves our client's pending application for closure under the VPLE Program, WDNR will report closure in a letter to our client. Upon receipt, we will provide a copy of the letter to you, or you may obtain a copy from Ms. Annette Weissbach, WDNR, 2984 Shawano Avenue, Green Bay, Wisconsin 54313-6727, or by accessing the DNR GIS Registry of Closed Remediation Sites on the internet at http://www.dnr.wi.gov/org/aw/rr/gis/index.htm.

Finally, in the event that you, or any subsequent owner of your property, intends to construct or reconstruct a groundwater well at your property, please be advised that special well construction standards will be applicable to protect the well from the residual TCE remaining in the groundwater, at least until the concentrations naturally attenuate and biodegrade as described above. Every well driller who proposes to construct a well at your property will need to verify the groundwater conditions, and if the exceedances described in this letter remain, the well driller will be required to obtain approval from a regional water supply specialist with WDNR's Drinking Water and Groundwater Program. The well construction application, form 3300-254, is available at WDNR's web site at http://www.dnr.wi.gov/org/water/dwg/3300254.pdf, or may be accessed through the GIS Registry web address in the preceding paragraph.

Please review this letter and the attachments, and if you require additional information, please feel free to contact the undersigned.

Very truly yours

Arnstein & Lehr LLP

/s/ William J. Anaya

William J. Anaya

WJA/cle 10852765.1

PLE

Former Paragon E WDNR BRRTS# 02 Project No.: 602360

and the second s						
SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY					
Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. 1. Article Addressed to:	A. Signature Agent Addressee B. Received by (Printed Name) C. Date of Delivery Hunammad Javeal D. Is delivery address different from item 1? If YES, enter delivery address below:					
Mr. Muhammad Javeed						
Mrs. Tahira Javeed 3308 Chasm Lane Manitowoc, Wisconsin 54220	3. Septice Type Certified Mail Registered Insured Mail C.O.D.					
	4. Restricted Delivery? (Extra Fee) ☐ Yes					
2. Article Number (Transfer from service label) 7008 1140 0004 3547 8721						
PS Form 3811, February 2004 Domestic R	teturn Receipt 102595-02-M-154					

*	
SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY
 Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. 	A. Signature Agent Addressee B. Received by (Printed Name) Agent Addressee C. pate of Delivery
Article Addressed to:	D. Is delivery address different from item 1? ☐ Yes If YES, enter delivery address below: ☐ No
Mr. Muhammad Javeed Mrs. Tahira Javeed	
3308 Chasm Lane Manitowoc, Wisconsin 54220	3. Service Type Certified Mail Registered Insured Mail C.O.D.
	4. Restricted Delivery? (Extra Fee) ☐ Yes
2. Article Number (Transfer from service label) 7008 11	40 0004 3547 8776
PS Form 3811, February 2004 Domestic Ret	

120 South Riverside Plaza · Suite 1200 Chicago, Illinois 60606 Phone 312.876.7100 · Fax 312.876.0288 www.arnstein.com

OFF-SOURCE

D

PROPERTY

William J. Anaya
312.876.7109
wjanaya@arnstein.com
Direct Facsimile: 312.876.7309
Licensed in Illinois and Indiana

March 28, 2013

VIA CERTIFIED MAIL – RETURN RECEIPT REQUESTED

Wisconsin Department of Transportation 944 Vanderperren Way Green Bay, Wisconsin 54304-5344

Attention: Mr. Will Dorsey, Director

Re: Notice of Application for Closure at Real Property commonly

described as 606 Parkway Boulevard, Two Rivers, Wisconsin

(the "Site"); Description of Groundwater Conditions;

WDNR BRRTS VPLE No. 06-36-551669, ERP No. 02-36-00153

Our Client: Ranco Incorporated of Delaware

Dear Mr. Dorsey:

This letter is to advise you that Ranco Incorporated of Delaware has completed all of the active remedial activities at the Site required by Wisconsin Environmental Law, and is in the process of confirming administrative closure of the Site with the Wisconsin Department of Natural Resources ("WDNR") pursuant to the state's voluntary cleanup program. Our client is applying for a Certificate of Completion pursuant to Wisconsin's Voluntary Party Liability Exemption ("VPLE") confirming that no further remediation activities are required at the Site.

For your information, our client's environmental consultant has concluded that after nearly a decade of active groundwater remediation, the remediation activities are complete with certain residual material left in the groundwater at the Site in the form of trichloroethene ("TCE") and its degradation by products will remain. Those residual materials will remain at concentrations that currently exceed standards found in chapter NR 140, Wisconsin Administrative Code, and some of that material is migrating through the groundwater beneath the Site into the subsurface at the Department of Transportation's right-of-way (drawing attached). Even so, our client's consultant has concluded (consistent with WDNR closure requirements), that the residual material does pose a danger at the Site or to your property interests, and will eventually biodegrade over time. The purpose of this notice is to advise you of the presence of the material and to advise you of certain requirements imposed by Wisconsin environmental law.

OFF-SOURCE

D

PROPERTY

Wisconsin Department of Transportation Attention: Mr. Will Dorsey, Director March 28, 2013 Page 2

Please be advised that our client's consultant has concluded that the current conditions associated with residual TCE in the groundwater do not pose any danger to human health or to the environment at your property. Indeed, the current conditions at the Site and at your property are compliant with Wisconsin environmental law. At such time as WDNR formally closes the Site pursuant to the terms of our client's currently pending application, no further investigation or cleanup will be performed, required or initiated beyond reliance on natural attenuation.

We are sending you this notice and the attachments pursuant to Wisconsin Administrative Code Chapter NR 726.05(2). For your information, WDNR will not review our client's closure request for at least 30 days following the date of this letter. If, as the owner of property adjacent to the Site, you have contradictory information, you may contact WDNR and provide the Agency with any technical information that contradicts our client's application for VLPE closure.

If you have any such information, you may submit it to WDNR by addressing it as follows:

Ms. Annette Weissbach Wisconsin Department of Natural Resources Northeast Region Headquarters 2984 Shawano Avenue Green Bay, Wisconsin 54313-6727

For your information, after the Site is closed as described in this letter, the boundaries of the groundwater identified with residual contamination known to exceed the standards established at chapter NR 140 will be reported on WDNR's Geographic Information System (GIS) Registry of Closed Remediation Sites. The information reported on the GIS Registry includes maps identifying the location of various properties in Wisconsin with groundwater that contains material at concentrations that exceed the standards established at chapter NR 140. This GIS Registry is available to the general public, and reported publicly on WDNR's internet web site. We have attached a copy of a drawing identifying the location of properties that are known to have been impacted by the TCE described above. Our client also provided a copy of this drawing to WDNR, and WDNR may use it or the information described therein in preparing the information to be disclosed in the GIS referred to above.

At such time as WDNR approves our client's pending application for closure under the VPLE Program, WDNR will report closure in a letter to our client. Upon receipt, we will provide a copy of the letter to you, or you may obtain a copy from Ms. Annette Weissbach, WDNR, 2984 Shawano Avenue, Green Bay, Wisconsin 54313-6727, or by accessing the DNR GIS Registry of Closed Remediation Sites on the internet at http://www.dnr.wi.gov/org/aw/rr/gis/index.htm.

Arnstein & Lehr Llp

OFF-SOURCE
D
PROPERTY

Wisconsin Department of Transportation Attention: Mr. Will Dorsey, Director March 28, 2013 Page 3

Finally, in the event that you, or any subsequent owner of your property, intends to construct or reconstruct a groundwater well at your property, please be advised that special well construction standards will be applicable to protect the well from the residual TCE remaining in the groundwater, at least until the concentrations naturally attenuate and biodegrade as described above. Every well driller who proposes to construct a well at your property will need to verify the groundwater conditions, and if the exceedances described in this letter remain, the well driller will be required to obtain approval from a regional water supply specialist with WDNR's Drinking Water and Groundwater Program. The well construction application, form 3300-254, is available at WDNR's web site at http://www.dnr.wi.gov/org/water/dwg/3300254.pdf, or may be accessed through the GIS Registry web address in the preceding paragraph.

Please review this letter and the attachments, and if you require additional information, please feel free to contact the undersigned.

Very truly yours

Arnstein & Lehr LLP

/s/ William J. Anaya

William J. Anaya

WJA/cle

A=COM

Two Rivers PLE

Former Paragon E WDNR BRRTS# 02 Project No.: 602360

SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY
 Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. 	A. Signature X M angui Olipiugos Agent Addressee B. Received by (Printed Name) C. Date of Delivery
1. Article Addressed to:	D. Is delivery address different from Item 1? \ \ \frac{\tau}{\text{Ves}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Wisconsin Department of	
Transportation	3. Service Type
944 Vanderperren Way	☐ Certified Mail ☐ Express Mail
Green Bay, Wisconsin 54304-5344	☐ Registered ☐ Return Receipt for Merchandise
Attention: Mr. Will Dorsev. Director	☐ Insured Mail ☐ C.O.D.
	4. Restricted Delivery? (Extra Fee) ☐ Yes
2. Article Number 7008 1140 000	4 3547 8707
PS Form 3811, February 2004 Domestic Ret	urn Receipt 102595-02-M-1540

OFF-SOURCE D PROPERTY

SENDER: COMPLETE THIS SECTION Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. Received by (Printed Name) C. Date of Delivery address different from item 1? D. Is delivery address different from item 1? Wisconsin Department of Transportation 944 Vanderperren Way
item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. 1. Article Addressed to: Agent
Wisconsin Department of Transportation
Green Bay, Wisconsin 54304-5344 Attention: Mr. Will Dorsey, Director 3. Service Type Certified Mail
4. Restricted Delivery? (Extra Fee) ☐ Yes
2. Article Number (Transfer from service lebel) 7008 1,140 0004 3547 8783
PS Form 3811, February 2004 Domestic Return Receipt 102595-02-M-15

120 South Riverside Plaza · Suite 1200 Chicago, Illinois 60606 Phone 312.876.7100 · Fax 312.876.0288 www.arnstein.com

OFF-SOURCE
E
PROPERTY

William J. Anaya
312.876.7109
wjanaya@arnstein.com
Direct Facsimile: 312.876.7309
Licensed in Illinois and Indiana

March 28, 2013

VIA CERTIFIED MAIL – RETURN RECEIPT REQUESTED

Manitowoc County 1010 South 8th Street Manitowoc, Wisconsin 54220

Re: Notice of Application for Closure at Real Property commonly

described as 606 Parkway Boulevard, Two Rivers, Wisconsin (the "Site"); Description of Groundwater Conditions at

Parcel No. 053-211-102-010.07;

WDNR BRRTS VPLE No. 06-36-551669, ERP No. 02-36-00153

Our Client: Ranco Incorporated of Delaware

Dear Sir or Madam:

This letter is to advise you per Wisconsin Environmental Law of possible residual groundwater impacts on County's Right-of-Way property (Parcel No. 053-211-102-010.07) located south of the former Paragon Electric Facility (the "Site") at 606 Parkway Boulevard, Two Rivers, Wisconsin (see attached Drawing for location). Ranco Incorporated of Delaware has completed all of the active remedial activities at the Site required by Wisconsin Environmental Law, and is in the process of confirming administrative closure of the Site with the Wisconsin Department of Natural Resources ("WDNR") pursuant to the state's voluntary cleanup program. Our client is applying for a Certificate of Completion pursuant to Wisconsin's Voluntary Party Liability Exemption ("VPLE") confirming that no further remediation activities are required at the Site.

For your information, our client's environmental consultant has concluded that after nearly a decade of active groundwater remediation, the remediation activities are complete with certain residual material left in the groundwater at the Site in the form of trichloroethene ("TCE") and its degradation by products. Those residual materials will remain at concentrations that currently exceed standards found in chapter NR 140, Wisconsin Administrative Code, and some of that material is migrating through the groundwater beneath the Site into the subsurface at the County's Right-of-Way (drawing attached). Even so, our client's consultant has concluded (consistent with WDNR closure requirements), that the residual material does pose a danger at the Site or to your property interests, and will eventually biodegrade over time. The purpose of

Arnstein & Lehr Llp

Manitowoc County March 28, 2013 Page 2

this notice is to advise you of the presence of the material and to advise you of certain requirements imposed by Wisconsin environmental law.

Again, please be advised that our client's consultant has concluded that the current conditions associated with residual TCE in the groundwater do not pose any danger to human health or to the environment at your property. Indeed, the current conditions at the Site and at your property are compliant with Wisconsin environmental law. At such time as WDNR formally closes the Site pursuant to the terms of our client's currently pending application, no further investigation or cleanup will be performed, required or initiated beyond reliance on natural attenuation.

We are sending you this notice and the attachments pursuant to Wisconsin Administrative Code Chapter NR 726.05(2). For your information, WDNR will not review our client's closure request for at least 30 days following the date of this letter. If, as the owner of property adjacent to the Site, you have contradictory information, you may contact WDNR and provide the Agency with any technical information that contradicts our client's application for VLPE closure.

If you have any such information, you may submit it to WDNR by addressing it as follows:

Ms. Annette Weissbach Wisconsin Department of Natural Resources Northeast Region Headquarters 2984 Shawano Avenue Green Bay, Wisconsin 54313-6727

For your information, after the Site is closed as described in this letter, the boundaries of the groundwater identified with residual contamination known to exceed the standards established at chapter NR 140 will be reported on WDNR's Geographic Information System (GIS) Registry of Closed Remediation Sites. The information reported on the GIS Registry includes maps identifying the location of various properties in Wisconsin with groundwater that contains material at concentrations that exceed the standards established at chapter NR 140. This GIS Registry is available to the general public, and reported publicly on WDNR's internet web site. We have attached a copy of a drawing identifying the location of properties that are known to have been impacted by the TCE described above. Our client also provided a copy of this drawing to WDNR, and WDNR may use it or the information described therein in preparing the information to be disclosed in the GIS referred to above.

At such time as WDNR approves our client's pending application for closure under the VPLE Program, WDNR will report closure in a letter to our client. Upon receipt, we will provide a copy of the letter to you, or you may obtain a copy from Ms. Annette Weissbach, WDNR, 2984 Shawano Avenue, Green Bay, Wisconsin 54313-

Arnstein & Lehr Llp

Manitowoc County March 28, 2013 Page 3

6727, or by accessing the DNR GIS Registry of Closed Remediation Sites on the internet at http://www.dnr.wi.gov/org/aw/rr/gis/index.htm.

Finally, in the event that you, or any subsequent owner of your property, intends to construct or reconstruct a groundwater well at your property, please be advised that special well construction standards will be applicable to protect the well from the residual TCE remaining in the groundwater, at least until the concentrations naturally attenuate and biodegrade as described above. Every well driller who proposes to construct a well at your property will need to verify the groundwater conditions, and if the exceedances described in this letter remain, the well driller will be required to obtain approval from a regional water supply specialist with WDNR's Drinking Water and Groundwater Program. The well construction application, form 3300-254, is available at WDNR's web site at http://www.dnr.wi.gov/org/water/dwg/3300254.pdf, or may be accessed through the GIS Registry web address in the preceding paragraph.

Please review this letter and the attachments, and if you require additional information, please feel free to contact the undersigned.

Very truly yours

Arnstein & Lehr LLP

/s/ William J. Anaya

William J. Anaya

WJA/cle 10852746.1

Two Rivers PLE

Former Paragon E WDNR BRRTS# 02 Project No.: 602360

SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY
 Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. 	A. Signature Agent Addressee B. Received by (Printed Name) C. Date of Delivery AURIE HEIER H. 13 D. Is delivery address different from Item 1? Yes
1. Article Addressed to: Manitowoc County	If YES, enter delivery address below: ☐ No
1010 South 8th Street	3. Service Type
Manitowoc, Wisconsin 54220	Certified Mall Express Mall Registered Return Receipt for Merchandise C.O.D.
	4. Restricted Delivery? (Extra Fee) ☐ Yes
2. Article Number (Transfer from service label) 7008 1140	0004 3547 8714
PS Form 3811, February 2004 Domestic Retu	urn Receipt 102595-02-M-15408

ATTACHMENT G.1: DEEDS

Paragon Electric Site, Two Rivers, Wisconsin WDNR BRRTS No. 02-36-000153, AECOM Project No. 60236613

- 1. DEED FOR PARAGON ELECTRIC PROPERTY (**PARCEL NO. 053-211-102-001.8**) ATTACHED ALONG WITH TAX RECORD DETAIL)
- 2. DEED FOR **PARCEL NO. 05321110100001** OWNED BY MR. MUHAMMAD JAVEED AND MRS. TAHIRA JAVEED ATTACHED.
- 3. DEED FOR **PARCEL No. 05321110201007** OWNED BY MANITOWOC COUNTY ATTACHED.
- 4. WISCONSIN CENTRAL RAILROAD RIGHT-OF-WAY AND STATE HIGHWAY 42 RIGHT-OF-WAY DO NOT HAVE DEED DOCUMENTS.
- 5. NONE OF THE DEED DOCUMENTS REFER TO A CERTIFIED SURVEY MAP, THEREFORE MAPS NOT ATTACHED.

kolstellerrem der

DOCUMENT NO. 744334

County, State of Wisconsin:

hereto and made a part hereof.

successors and assigns, forever.

STATE BAR OF WISCONSIN FORM 1 --- 1983 SPECIAL WARRANTY DEED 290

This Deed, made between _Royal_Jerrace_Partnership, L.P., an Illinois limited partnership.

Witnesseth, That the said Grantor, for a valuable consideration.....

conveys to Grantes the following described real estate in ... Manitowoc

made a part hereof, subject to the matters shown on Exhibit B attached

and more particularly described in Exhibit A attached hereto and

and Lake Bluff Associates Continuation Partnership No. 1,

an Illinois limited partnership

Tem and Mp/100 Dollars (\$10.00)----

RECEIVED FOR RECORD voi 1101 Mas 290 '94 OCT 3 PM 3 10

MAILLEL TOO GUUSTY, WI PRESTON JONES RELLEGATION LEEDS

6.00+ 50,100.00Chk

PATURE TO THE CO.

Chicago Title Co.

1) North Clark St.

Chicago IL 60601 - 329

53-202-403-000-2

53-211-102-000-9

Tax Parcel No: ...53-308-003-019-2

To have and to hold the premises aforesaid, with all and singular the rights, privileges, and appurtenances immunities, and improvements thereto belonging, or in anywise appertaining, unto Grantee, and unto its

Correct Tax Parcel No. 053-211-102-001.08 (See Attached Tax Record Detail)

And the Grantor, for itself, and its successors, does covenant, promise and agree, to and with the Grantee, its successors and assigns, that it has not done or suffered to be done, anything whereby the said premises hereby granted are, or may be, in any manner incumbered or charged except as herein recited; and that the said premises, against all persons lawfully claiming, or to claim the same, by, through or under it, will Warrant and Defend.

This	xis.	not	homestead	property.
------	------	-----	-----------	-----------

zandonikosumunkondudeleninteksumuk ROYAL TERRACE PARTNERSHIP, L.P., an Illinois limited partnership M.AND.B.INVESTHENT.CORPORATION, its (REAL) general partner Bertram L. Miner, President

A	U	T	H	E	N	т	I	ø	A	T	1	o	Ń	
	•	-	-	-	••	-	-	•		•	•	•	••	

TITLE: MEMBER STATE BAR OF WISCONSIN (If not, authorized by § 706.06, Wis. Stats.)

THIS INSTRUMENT WAS DRAFTED BY David M. Alin, Rosenthal and Schanfield, 55 E. Monroe Street, 46th Floor, Chicago, IL (Signatures may be authenticated or acknowledged. Both are not necessary.) ACKNOWLEDGMENT

STATE OF WARDENBURY ILLINOIS Cook ...County. Personally came before me this 28th day of September ..., 19.94 the above named Roya! Terrace Partnership L.P., an Illinois limited partnership, acting by and through its general partner, H and B investment Corporation, by Bertrom L. Miner, President

to me known to be the nerson white created the foregoing instrument out leave the same that the same Lindas Fox

WARRANTT DEED

Signature(s)

STATE BAR OF WISCONSIN FORM No. 1 — 1982

Wisconsin Legal Blank Co. Inc. Milwaukee, Wis.

SOURCE PROPERTY

EXHIBIT A

Legal Description

A parcel of land located partially in the South One-half (S1/2) of the Southeast Quarter (SE1/4) of Section Numbered Two (2), Township Numbered Nineteen (19) North, Range Numbered Twenty-four (24) East, partially in the Subdivision of Government Lot Numbered One (1) of Section Numbered Eleven (11), Township Numbered Nineteen (19) North, Range Numbered Twenty-four (24) East, and in Block Numbered Three (3) of Thiede and Goeler's Addition, in the City of Two Rivers, Manitowoc County, Wisconsin, described as follows:

Commencing at the S1/4 corner of said Section 2; thence N.05'23'40"E. along the 1/4 section line, 331.39 feet to its intersection with the South line of 7th Street extended West; thence N.89'14'10"E. along the extension of the South line of 7th Street, 70.41 feet to the intersection of the South line of 7th Street and the East line of Columbus Street, said point being the point of real beginning; thence continue N.89'14'10"E. along the South line of 7th Street, 1349.18 feet; thence S.86'00'50"E. along the South line of 7th Street, 343.20 feet to its intersection with the West line of Buchholz Street; thence S.00'38'30"W. along the West line of Buchholz Street; thence S.00'38'30"W. along the West line of Buchholz Street, 302.05 feet to its intersection with the South section line of said Section 2; thence N.89'16'00"E. along said section line, 66.42 feet to its intersection with the Northerly line of the Fox River Valley Railroad; thence S.68'29'50"W. along the Northerly line of the Fox River Valley Railroad, 1914.13 feet to its intersection with the East line of Columbus Street; thence N.00'26'00"W. along the East line of Columbus Street, 674.83 feet; thence N.00'26'00"W. along the East line of Columbus Street, 335.33 feet to the point of real beginning.

American Services

EXHIBIT B

Permitted Title Exceptions

- General taxes for 1994 and subsequent years not yet due and payable; Tax Rey Numbers 53-202-403-000-2; 53-211-102-000-9; and 53-308-003-019-2.
- Rights of the public in that portion of the within described premises lying within the limits of public roads and public rights of way; namely in Sixth Street and Bucholz Street and as shown on Survey #T-14265 by Brey, Stuewe & Braun, Inc., dated February 10, 1993.
- (c) Easement to the City of Two Rivers, as recorded in the Office of the Register of Deeds for Manitowoc County, Wisconsin in Volume 194 of Deeds, page 348, #249195.
- Terms and condition of Agreement and Easement to City of Two Rivers, as recorded in the Office of the Register of Deeds for Manitowoc County, Wisconsin in Volume 296 of Deeds, page 337, #365216.
- Setback requirements as disclosed by Survey #T-14265, dated February 10, 1993, (as revised) by Kenneth C. Meneau, Registered Land Surveyor, by Brey, Stuewe & Braun, Inc. as follows:

 - Setback is 25 feet minimum.
 Side Yard is 10 feet minimum.
 Buildings shall not exceed 75 feet or 6 stores in height
- (f) Utilities as disclosed by Survey #T-14265, dated February 10, 1993, (as revised) by Kenneth C. Meneau, Registered Land Surveyor, by Brey, Stuewe & Braun, Inc. as follows:

 - Sanitary sewer lateral
 Overhead Electric Service
 - Water service
 - 4) Gas service

4.

- Rights of Paragon Electric Company, Inc., as lessee, under a lease, memorandum of which was recorded in the Office of the Register of Deeds for Manitowoc County, Wisconsin in Volume 1019 of Records, page 752, #714546 on April 8, 1993, and all parties claiming thereunder.
- 1992 REAL ESTATE TAXES #53-308-003-019-2 Amount: \$135,328.45 Paid: 90.218.97 Balance: \$ 45,109.48 not now due.
- Unrecorded rights of Intermatic, Incorporated contained in paragraph 11 of Stock Purchase and Stockholders

Agreement by and between PECO-Two Rivers Inc. and Intermatic, Incorporated dated March 19, 1986.

- (j) Financing Statement #448186
 Debtor: Mesirow Two Rivers Limited Partnership
 Secured Party: State Street Bank and Trust Company of
 Connecticut, National Association, as
 Security Trustee
 Filed April 8, 1993 at 3:55 P.M.
- (k) Financing Statement #448187 Debtor: Paragon Electric Company, Inc. Secured Party: Mesirow Two Rivers Limited Partnership Filed April 8, 1993 at 3:56 P.M.
- (1) Indenture of Mortgage, Assignment of Lease and Security Agreement between Mesirow Two Rivers Limited Partnership and State Street Bank and Trust Company of Connecticut National Association, as Indenture Trustee, dated as of March 25, 1993 and recorded in the Office of the Register of Deeds for Manitowoc County, Wisconsin in Volume 1020 of Records, page 1, as Document No. 714547 on April 8, 1993 at 3:54 P.M.
- (m) Any documents related to the sale of the Property to Royal Terrace Partnership, L.P. that modify items (j), (k) and (l) above.
- (n) That certain lease agreement dated as of March 25, 1993 between Royal Terrace Partnership, L.P. (as successor in interest to Mesirow Two Rivers Limited Partnership, an Illinois limited partnership) as landlord, and Paragon Electric Co. Inc. as tenant (and a memorandum thereof).
- (o) Rights of persons claiming by, through or under Purchaser.
- (p) liens or encumbrances caused by the acts of Paragon, its agents, employees or contractors and rights of persons claiming by, through or under Paragon and all other liens and encumbrances which Paragon is required to remove pursuant to the terms of the lease; and any other matters which Purchaser shall approve in writing.

744336

ASSIGNMENT AND ASSUMPTION AGREEMENT

Dated as of September 30, 1994

RE:

Lease of Manufacturing Facility

To

PARAGON ELECTRIC COMPANY, INC.,

Among

MONUMENTAL LIFE INSURANCE COMPANY

And

THE OHIO NATIONAL LIFE INSURANCE COMPANY

NOTEHOLDERS

RECEIVED FOR RECORD

131 OCT 3 PN 3 11

Marting and Settle 1, Wi

INTES INTERESTRICTION

1101

299

ROYAL TERRACE PARTNERSHIP, L.P.

M AND B INVESTMENT CORPORATION

TRANSFEROR

LAKE BLUFF ASSOCIATES CONTINUATION PARTNERSHIP No. 1, L.P.

M AND B LESSOR

L.B. PROPERTIES

GENERAL PARTNER

And

STATE STREET BANK AND TRUST COMPANY OF CONNECTICUT, NATIONAL ASSOCIATION

INDENTURE TRUSTEE

This instrument prepared by and upon recording should be returned to:

Daniel J. Favero, Esq. Chapman and Cutler 111 West Monroe Street Chicago, Illinois 60603

278590.03.03 1400423

	SPECIAL WARRANT	T VEED	
This Deed, made to an Illinois limited partner	between Royal Terrace, Pa	irtnership, L.P.,	
and Lake Bluff Associates C	***************************************	Greates	
An Illinois limited partne	rship		
Witnesseth, That Jem and Mo/190 Dollars (\$10 conveys to Grantee the followin	the said Grantor, for a valu- ,00)	************	PRETURN TO
County, State of Wisconsin: and more particularly desc made a part heraof, subjec	ribed in Exhibit A attach	ed hereto and	53-202-403-00 53-211-102-00 Tax Parcel No: 53-308-003-01
To have and to hold the or-	eof. Hodges aformenid, with al	1 and elements the	1-bb
secessors and assigns. To	ever.		ignes, privileges, and appurte ing, unto Grantee, and unto it
premises hereby granted an	, that it has not done or 1, Or may be, in any mann , against all persons law	suffered to be done	and agree, to and with the Gr , anything whereby the said rged except as herein recited; o claim the same, by, through
This XXXX fig not)	bemestead property.		
Fegather with all and all	ogular the hered/tements as	nd appurlemeness there	
Fegather-with-all-and-si			
Fegether with all and al And	ngular the hared teaments on indefeasible in fee simple o		
Fogother with all and at And	ngular the hared teaments on indefeasible in fee simple o	nd free and clear of a	neembrasies aneept
Fegroba: with all and at And. And. And. Come with the good with the g	ogular the kereditaments or indefensible in fee cimple of	September ROYAL TERRAC limited part	E PARTHERSHIP. L.P., an Illing
Fegesher with all and at And.	mgular-the hereditaneous as indefeasible in fee simple of manager	September Soyal Terrac 11st ted part 15st. M.A.D. g. (Myc	E PARTHERSHIP. L.P., an Illing
Fegesher with all and at And.	mgular the horseltaneous as the simple of th	September ROYAL TERRAC 11mi ted part 22:	E PARIMERSHIP, L.P., an Illingership, L.S., (stanser
Propulse with the said of Anda. Anda. Anda. Anda. Anda. AUTRENTIC	mgular the horseltaneous as the simple of th	September September ROYAL TERRAL Holfted part BY: N. AND. R. Myk general part By: Bertran ACK STATE OF WEREK	E PARIMERSHIP. L.P., en Illinnership SINERIL CORPORALION. Its. (REA BET L. Miner, President NOWLEDGMENT
Fegether with all and at And. And. And. And. And. And. And. AND THEN TIC. Signature(a)	mgular the horseltaneous as the simple of th	September ROYAL TERRAL Haited part Bx: N. AND B. INVE general part By: Bartran STATE OF WEEK COOK	E PARTHERSHIP, L.P., an Illino mership polykar.comporation, its (sea learner). L. Hiner, President NOWLEDGMENT COUNTY, 1994 E. HOWLEDGMENT LESSE ILLINOIS
Proposite with all and all And. And. And. 254 Dated this	day of	September ROYAL TERROR BY: MANUEL MAN	E PARIMERSHIP. L.P., an Illian nership sixent. Corporation. Its (see a constitution) and the company of the com
Fegeshar with all and at And. And. And. 25th Dated this	Ogular the hereditances of the stands of the	September ROYAL TERRAC BY AND B. HOWE General Part BY: BY: BATTE OF WEEK COCK Fersonally ca September ROYAL TERRAC COCK Fersonally ca September ROYAL TERRAC BETTER	E PARINERSHIP. L.P., an Illino nership SINGRIT. CORPORATION. Jax. (SEA CONSTRUCTION OF THE STATE
Pegesher with all and all And	day of	September ROYAL TERRAC BY AND B. HOWE General Part BY: BY: BATTE OF WEEK COCK Fersonally ca September ROYAL TERRAC COCK Fersonally ca September ROYAL TERRAC BETTER	E PARINERSHIP. L.P., an Illino nership SINGRIT. CORPORATION. Jax. (SEA CONSTRUCTION OF THE STATE
Fegether with the and of And. Sometimes and with the good. AND. Signature (a) Signature (a) Continued this	day of	September ROYAL TERROR BY: MANUEL MINE STATE OF WEEK STATE OF WEEK COOK Personally a Perturn Bertran Bertran Forther Royal Jerrace, Par Bertran Lifter, H and B Sertran Lifter Com Shown Service Royal Jerrace, Par Bertran Lifter Royal	E PARIMERSHIP. L.P., an Illian nership sixear corporation. Its (see a construction of the construction of
Propulse with all and at And. And. And. And. And. And. And. Section of the	day of	September ROYAL TERROR BY: MANUEL MINE STATE OF WEEK STATE OF WEEK COOK Personally a Perturn Bertran Bertran Forther Royal Jerrace, Par Bertran Lifter, H and B Sertran Lifter Com Shown Service Royal Jerrace, Par Bertran Lifter Royal	E PARINERSHIP. L.P., an Illino nership SINGRIT. CORPORATION. Jax. (SEA CONSTRUCTION OF THE STATE

346

EXHIBIT A

Legal Description

A parcel of land located partially in the South One-half (S1/2) of the Southeast Quarter (SE1/4) of Section Numbered Two (2), Township Numbered Nineteen (19) North, Range Numbered Twenty-four (24) East, partially in the Subdivision of Government Lot Numbered One (1) of Section Numbered Eleven (11), Township Numbered Nineteen (19) North, Range Numbered Twenty-four (24) East, and in Block Numbered Three (3) of Thiede and Goeler's Addition, in the City of Two Rivers, Manitowoc County, Wisconsin, described as follows:

Commencing at the S1/4 corner of said Section 2; thence N.05'23'40"E. along the 1/4 section line, 331.39 feet to its intersection with the South line of 7th Street extended West; thence N.89'14'10"E. along the extension of the South line of 7th Street, 70.41 feet to the intersection of the South line of 7th Street and the East line of Columbus Street, said point being the point of real beginning; thence continue N.89'14'10"E. along the South line of 7th Street, 1349.18 feet; thence S.86'00'50"E. along the South line of 7th Street, 343.20 feet to its intersection with the West line of Buchholz Street; thence S.00'38'30"W. along the West line of Buchholz Street, 302.05 feet to its intersection with the South section line of said Section 2; thence N.89'16'00"E. along said section line, 66.42 feet to its intersection with the Northerly line of the Fox River Valley Railroad; thence S.68'29'50"W. along the Northerly line of the Fox River Valley Railroad, 1914.13 feet to its intersection with the East line of Columbus Street; thence N.00'26'00"W. along the East line of Columbus Street, 674.83 feet; thence N.00'26'00"W. along the East line of Columbus Street, 335.33 feet to the point of real beginning.

ENGINE

SOURCE PROPERTY

A:456 257

vol 1456

PAGE 257

RECEIPT 7609 \$12.00 DEED-Charge

STATE OF WISCONSIN
MANITOWOC COUNTY
PRESTON JONES
REGISTER OF DEEDS
RECEIVED FOR RECORD

RETURN & CHARGE TO: TR WATER & LIGHT 1415 LAKE ST. TWO RIVERS WI SYDYI

\$12 CHG

DO NOT REMOVE

This page is part of this legal document

UTILITY EASEMENT

VOL 1456 PA

PAGE 258

FOR VALUABLE CONSIDERATION, (Lake Bluff Associates Continuation Partnership No.1, L.P., an Illinois Limited Partnership), hereinafter referred to as "Grantor", hereby grants and conveys unto the City of Two Rivers, hereinafter referred to as "Grantee", a Wisconsin municipal corporation, Manitowoc County, Wisconsin, as well as their lessees, successors and assigns, a perpetual easement for the purpose of constructing, maintaining, repairing and replacing utility facilities over, on and under the following described real estate:

The West most 3 feet measured at right angles to the East ROW line of Columbus St. starting at the South West Corner of the parcel going North for 325 feet for the parcel recorded as follows:

Parcel Number 211-102-001-8

NW1/4, NE1/4, and the NE1/4, NE1/2 of Sect.11, Township 19N, Range 24E, Part of Subdivision GL 1 lying North of C&NW Railroad ROW, also SW1/4, SE1/4 of Sect. 2, Township 19N, Range 24E, Tracts recorded in Vol. 256, Page 261 & Vol. 499, Page 327 of Deeds, also Thiede & Goeler Addition, all of Block 3 and Vacated Street described in Vol. 249, Page 197 of Deeds.

The trimming and removal of trees, bushes, shrubs or other foliage as may be necessary, in the judgment of Grantee, for the safe location of utility facilities shall be included in the rights granted hereunder by the Grantor and the Grantor hereby consents to such trimming or removal.

The Grantor warrants that the Grantor possesses sufficient title to the above described property to convey this easement free and clear of any encumbrances.

The easement granted herein shall run with the land, and shall be binding upon and inure to the benefit of the parties hereto, as well as their successors and assigns.

Dated this 25 day of (Aveust, 2000)

A General Partner Representative of Lake Huff Associates Continuation Partnership No.1, L.P.,

an Illinois Limited Partnership

STATE - OF - ILLINOIS

)ŚS

COUNTY-OF- COOK

Personally came before me this 25 of (Avevs 7, 2000), the above named, as a General Partner Representative of (Lake Bluff Associates Continuation Partnership No.1, L.P., an Illinois Limited Partnership), to me known to be the persons who executed the foregoing instrument and acknowledged the same.

Notary Public, State of

My commission expires:

This instrument drafted by: City Attorney John M. Bruce

Return to:

Two Rivers Water & Light Department 1415 Lake St.
Two Rivers, WI 54241-0087

"OFFICIAL SEAL"
SHIRLEY A. BYRDLONG
Notary Public, State of Illinois
My Commission Exp. 06/08/2004

SOURCE **PROPERTY**

Manitowoe County, Wisconsin

Tax Record Detail

(Click 'back' on your browser to return to your listing.) Updated 2/17/2013

Tax Detail For Parcel Number 053-211-102-001.08

Location Information

Parcel Number	053-211-102-001.08
Municipality	CITY OF TWO RIVERS
Owner(s) Name	PARTNE LAKE BLUFF ASSOC CONTIN
	INVENSYS INC
Location Address	606 PARKWAY BLVD
Mailing Address	33 COMMERICAL STREET MS

Property Description (As of last tax bill issued)

City, State, Zip

Legal Description Please refer to original source document for actual legal description. (The first line of the legal

& page numbers for recorded documents in the Register of Deeds Office.)

NW 1/4 NE 1/4 & NE 1/4 NE 1/ 2 OF S11 T19N R24E PT OF SUB GOVT LOT 1 LYING N OF C & N W RR ROW ALSO SW 1/4 SE 1/4 S2 T19N R24E TRACTS description contains the volume REC IN V 256 P 261 & V 499 P 327 OF DEEDS ALSO THIEDE& GOELE D ALL OF BLK 3 & VAC STREET IN V 249 P 197 OF **DEEDS**

FOXBORO MA 20350-0000

Section, Town, Range

S.0, T.0, R.0

0.000

Total Acres

Volume Page

Document Number

Click Here To Access The City Of Two Rivers Assessors Site

Assessment Information

Print Report

Note: Fair Market Value is not shown for Agricultural Land because of Use Value Assessment per State law.

	2010	2011
Assessed Acres	0.000	0.000
Land Value	\$25,850.00	\$25,850.00
Improvement Value	\$4,017,200.00	\$4,017,200.00
Total Value Fair Market Value Fair Market Ratio	\$4,043,050.00 \$4,497,700.00 0.8989	\$4,043,050.00 \$4,401,500.00 0.9185

Tax Information

	<u> 2010</u>	<u> 2011</u>
Original Tax	\$112,726.19	\$112,752.52
Lottery Credit	\$0.00	\$0.00
Net Tax	\$112,726.19	\$112,752.52
Special Assessments	\$4,241.34	\$0.00
Total Amount Due	\$116,967.53	\$112,752.52
Total Payments	\$116,967.53	\$112,752.52
Balance Due	\$0.00	\$0.00

^{*}Green = postponed

Please refer to the 'TAXES DUE' table below for payoff amounts.

Taxing District Information

School District

TWO RIVERS SCHOOL

Vocational School

District

LTC

TAX PAYMENTS					
Tax Year	Payment Date	Payment Amount	Interest	Receipt Number	
2011	12/27/2011	\$112,752.52	\$0.00	682180	
2010	1/21/2011	\$112,726.19	\$0.00	19526	
2010	1/21/2011	\$4,241.34	\$0.00	19526	

^{*}Red = delinquent (subject to interest).

OFF-SOURCE B PROPERTY

ATTACHMENT G.1: DEEDS

Paragon Electric Site, Two Rivers, Wisconsin WDNR BRRTS No. 02-36-000153, AECOM Project No. 60236613

- 1. DEED FOR PARAGON ELECTRIC PROPERTY (**PARCEL NO. 053-211-102-001.8**) ATTACHED ALONG WITH TAX RECORD DETAIL)
- 2. DEED FOR **PARCEL NO. 05321110100001** OWNED BY MR. MUHAMMAD JAVEED AND MRS. TAHIRA JAVEED ATTACHED.
- 3. DEED FOR **PARCEL No. 05321110201007** OWNED BY MANITOWOC COUNTY ATTACHED.
- 4. WISCONSIN CENTRAL RAILROAD RIGHT-OF-WAY AND STATE HIGHWAY 42 RIGHT-OF-WAY DO NOT HAVE DEED DOCUMENTS.
- 5. NONE OF THE DEED DOCUMENTS REFER TO A CERTIFIED SURVEY MAP, THEREFORE MAPS NOT ATTACHED.

979074

STATE BAR OF WISCONSIN FORM 1 - 2000 WARRANTY DEED

Document Number

A2833 423 1

vol **2039** pg 423

OFF-SOURCE С **PROPERTY**

imed hijspand and wife	
nmed, husband and wife	STATE OF WI - MTWC OC PRESTON JONES REG/DEE RECEIVED FOR RECORD
Taking Jayand husband and wife.	11/29/2004 1:15:51 PM
antor, and Muhammad Javeed and Tahira Javeed, husband and wife, survivorship marital property	
antee.	
Grantor, for a valuable consideration, conveys to Grantee the following	
comit of real actate in Manifowor	
isconsin (the "Property") (if more space is needed, please attach addendum)	/v 0 0 0 v v
	Recording Area // + 210 Ck
	Name and Return Address
	Muhammad and Tahira Javeed
	3308 Chasm Lane
	Manitowoc, WI 54220
nat part of Lot Numbered Two (2) of the Subdivision of Government	
Name and One (1) of Section Numbered Eleven (11), 10 wilship	53-211-101-000-1
whered Nineteen (19) North Range Numbered 1 Welly-lour (24) East,	Parcel Identification Number (PIN)
the City of Two Rivers, Manitowoc County, Wisconsin, included with	This is not homestead property.
e following boundaries, to-wit:	(is) (is not)
ommence at a point where the line between said Lot 2 and Lot 1, in said	W-7
ubdivision, intersects the Easterly line of the right-of-way of the Chicago Northwestern Railway Company; thence Southwesterly along the East Northwestern Railway Company; thence Southwesterly along the East	erly
and and and any 205 feet: thence Southeasterly on a fine wa	ich TDANGEED
itt be at wight angles with the Easterly line of State 1 runk righway 17,	
New throntonin along the Westerly houndary line of Salu State 11 up	s \$ 2/0.00
ti-book to the point where it intersects the said line between Lut I and I	FEE
a said Subdivision: thence Northwesterly along said line between Lot 1	ilu .
Lot 2 in said Subdivision back to the place of beginning.	
SUBJECT TO Deed Restriction recorded in the office of the Register of for Manitowoc County, Wisconsin in Volume 1658 of Records, page 124,	
locument number 907022, and rerecorded in Volume 1661 of Records, p	45
or Mantowoc County, Wisconsider of Precords, p. document number 907022, and rerecorded in Volume 1661 of Records, p. 246, as document number 907719. Together with all appurtenant rights, title and interests. Grantor warrants that the title to the Property is good, indefeasible in all easements, restrictions and covenants of record.	ase
Together with all appurtenant rights, title and interests. Grantor warrants that the title to the Property is good, indefeasible in all easements, restrictions and covenants of record.	ase
Together with all appurtenant rights, title and interests. Grantor warrants that the title to the Property is good, indefeasible in all easements, restrictions and covenants of record. Dated this Adda day of November , 2004	rage fee simple and free and clear of encumbrances except
Together with all appurtenant rights, title and interests. Grantor warrants that the title to the Property is good, indefeasible in all easements, restrictions and covenants of record. Dated this Adda day of November , 2004	rage fee simple and free and clear of encumbrances except
Together with all appurtenant rights, title and interests. Grantor warrants that the title to the Property is good, indefeasible in all easements, restrictions and covenants of record. Dated this	ange fee simple and free and clear of encumbrances except ammed drig thmed
Together with all appurtenant rights, title and interests. Grantor warrants that the title to the Property is good, indefeasible in all easements, restrictions and covenants of record. Dated this	ange fee simple and free and clear of encumbrances except ammed by thme d
Together with all appurtenant rights, title and interests. Grantor warrants that the title to the Property is good, indefeasible in all easements, restrictions and covenants of record. Dated this	fee simple and free and clear of encumbrances except ammed Aziz Ahmed amide H. Ahmed
Together with all appurtenant rights, title and interests. Grantor warrants that the title to the Property is good, indefeasible in all easements, restrictions and covenants of record. Dated this	fee simple and free and clear of encumbrances except ammed dry Shme d ammed Aziz Ahmed ammed Aziz Ahmed
AUTHENTICATION Toglocument number 907022, and rerecorded in Volume 1661 of Records, p. 1246, as document number 907719. Together with all appurtenant rights, title and interests. Grantor warrants that the title to the Property is good, indefeasible in all easements, restrictions and covenants of record. Authentication	fee simple and free and clear of encumbrances except ammed sig show a ammed Aziz Ahmed ammed Aziz Ahmed ACKNOWLEDGMENT
AUTHENTICATION Togetment number 907022, and rerecorded in Volume 1661 of Records, p. 1246, as document number 907719. Together with all appurtenant rights, title and interests. Grantor warrants that the title to the Property is good, indefeasible in all easements, restrictions and covenants of record. Authentication Authentication	fee simple and free and clear of encumbrances except ammed significant description of the simple and free and clear of encumbrances except ammed Aziz Ahmed ammed Aziz Ahmed ACKNOWLEDGMENT E OF WISCONSIN)
AUTHENTICATION locument number 907022, and rerecorded in Volume 1661 of Records, p. 1246, as document number 907719. Together with all appurtenant rights, title and interests. Grantor warrants that the title to the Property is good, indefeasible in all easements, restrictions and covenants of record. Dated this	fee simple and free and clear of encumbrances except ammed drig Shme d ammed Aziz Ahmed ammed Aziz Ahmed AcknowledGMENT E OF WISCONSIN) ss.
AUTHENTICATION STAT Manite State Color Col	fee simple and free and clear of encumbrances except ammed Aziz Ahmed Acknowledgment E OF WISCONSIN) ss. County)
AUTHENTICATION STAT	fee simple and free and clear of encumbrances except ammed Aziz Ahmed ammed Aziz Ahmed ACKNOWLEDGMENT E OF WISCONSIN) ss. County) Personally came before me this 2011 day of
authenticated this day of,	fee simple and free and clear of encumbrances except ammed Aziz Ahmed ammed Aziz Ahmed ACKNOWLEDGMENT E OF WISCONSIN) ss. covoc County Personally came before me this 20th day of the above name.
AUTHENTICATION Signature(s)	fee simple and free and clear of encumbrances except ammed Aziz Ahmed ammed Aziz Ahmed ACKNOWLEDGMENT E OF WISCONSIN) ss. County) Personally came before me this 20th day of
authenticated this day of ,	fee simple and free and clear of encumbrances except animal drig Ahme d animal Aziz Ahmed Acknowledgment E OF WISCONSIN) ss. owoc County) Personally came before me this Aday of anber , 2004 the above name animal and Hamida H. Ahmed
authenticated this day of ,	fee simple and free and clear of encumbrances except animal deg Ahme d animal Aziz Ahmed Acknowledgment E OF WISCONSIN Sowe County Personally came before me this Aday of the above name mmed Aziz Ahmed and Hamida H. Ahmed
authenticated this day of ,	fee simple and free and clear of encumbrances except animal diag Ahmed animal Aziz Ahmed animal Aziz Ahmed ACKNOWLEDGMENT E OF WISCONSIN) ss. bowoc County) Personally came before me this Almost day of the above name mmed Aziz Ahmed and Hamida H. Ahmed
AUTHENTICATION Signature(s) AUTHENTICATION Signature(s) AUTHENTICATION Signature(s) TITLE: MEMBER STATE BAR OF WISCONSIN (If not, authorized by § 706.06, Wis. Stats.)	fee simple and free and clear of encumbrances except ammed Aziz Ahmed ammed Aziz Ahmed ACKNOWLEDGMENT E OF WISCONSIN sowce County Personally came before me this above a county conter med Aziz Ahmed and Hamida H. Ahmed known to be the person(s) who executed the foregoing ment and acknowledged the same.
AUTHENTICATION Signature(s) AUTHENTICATION Signature(s) AUTHENTICATION SIGnature(s) AUTHENTICATION SIGnature(s) AUTHENTICATION STAT Manit authenticated this day of,	fee simple and free and clear of encumbrances except ammed Aziz Ahmed ACKNOWLEDGMENT E OF WISCONSIN Sersonally came before me this Above name and Aziz Ahmed and Hamida H. Ahmed known to be the person(s) who executed the foregoing ment and acknowledged the same.
AUTHENTICATION Signature(s) AUTHENTICATION Signature(s) authenticated this day of day of day of TITLE: MEMBER STATE BAR OF WISCONSIN (If not, authorized by § 706.06, Wis. Stats.) THIS INSTRUMENT WAS DRAFTED BY Normall rights, title and interests. Grantor warrants that the title to the Property is good, indefeasible in all easements, restrictions and covenants of record. Authorized by § 706.06, Wis. Stats.) THIS INSTRUMENT WAS DRAFTED BY	fee simple and free and clear of encumbrances except ammed Aziz Ahmed ACKNOWLEDGMENT E OF WISCONSIN See Source County Cersonally came before me this
AUTHENTICATION Signature(s) authenticated this day of,	fee simple and free and clear of encumbrances except ammed Aziz Ahmed ACKNOWLEDGMENT E OF WISCONSIN Sersonally came before me this Above name mmed Aziz Ahmed and Hamida H. Ahmed known to be the person(s) who executed the foregoing ment and acknowledged the same.

ATTACHMENT G.1: DEEDS

Paragon Electric Site, Two Rivers, Wisconsin WDNR BRRTS No. 02-36-000153, AECOM Project No. 60236613

- 1. DEED FOR PARAGON ELECTRIC PROPERTY (**PARCEL NO. 053-211-102-001.8**) ATTACHED ALONG WITH TAX RECORD DETAIL)
- 2. DEED FOR **PARCEL NO. 05321110100001** OWNED BY MR. MUHAMMAD JAVEED AND MRS. TAHIRA JAVEED ATTACHED.
- 3. DEED FOR **PARCEL No. 05321110201007** OWNED BY MANITOWOC COUNTY ATTACHED.
- 4. WISCONSIN CENTRAL RAILROAD RIGHT-OF-WAY AND STATE HIGHWAY 42 RIGHT-OF-WAY DO NOT HAVE DEED DOCUMENTS.
- 5. NONE OF THE DEED DOCUMENTS REFER TO A CERTIFIED SURVEY MAP, THEREFORE MAPS NOT ATTACHED.

	WARRANTY DEED—Corporation To Corporation. Form 187 encode services 8500
	Form of No. 3 Sportions 295, 16 Wisconsin Statutes
ć	E This Indenture, Made this 29 th day of May A. D., 19 64
ď	Stetween Lake Park Oil, Inc.,
V	a Corporation duly organized and existing under and by virtue of the laws of the State of Wisconsin, located at
	Manitowoc Wisconsin, party of the first part, and Power Oil Corporation,
	, a Corporation duly organized and existing under and by
V.	virtue of the laws of the State of Wisconsin, located at MLlwaukee Wisconsin, party of the second part,
	. Witnesseth, That the said party of the first part, for and in consideration of the sum of
メスト	One Dollar (\$1.00) and other valuable considerations to it paid by the said party of the second part, the receipt whereof is hereby confessed and acknowledged, has given, granted bargained, sold, remised, released, aliened, conveyed and confirmed, and by these presents does give, grant, bargain, sell, remise, release, alien, convey and confirm unto the said party of the second part, its successors and assigns forever, the following described real estate, situated in the County of Manitowoc and State of Wisconsin, to-wit:
どれ	That part of Lot Numbered Two (2) of the Subdivision of Government Lot Numbered One (1) of Section Numbered Eleven (11), Township Numbered Nineteen (19) North, Range Numbered Twenty- four (24) East, included within the following boundaries, to-wit:
	Commence at a point where the line between said Lot 2 and Lot 1, in said Subdivision, intersects the Easterly line of the right of way of the Chicago & Northwestern Railway Company; thence Southwesterly along the Easterly line of said right of way of said railroad company 205 feet; thence Southeasterly on a line which will be at right angles with the Easterly line of State Trunk Highway 17; thence Northeasterly along the Westerly boundary line of said State Trunk Highway to the point whereit intersects t said line between Lot 1 and Lot 2 in said Subdivision; thence Northwesterly along said line between Lot 1 and Lot 2 in said Subdivision back to the place of beginning.
	The party of the second part assumes and agrees to pay the 1964 real estate taxes in full.
	Together with all and singular the hereditaments and appurtenances thereunto belonging or in any wise

either in law or equity, either in possession or expectancy of, in and to the above bargained premises, and their hereditaments and appurtenances.

To Have and to Hold the said premises as above described with the hereditaments and appurtenances, unto the said party of the second part, and to its successors and assigns FOREVER.

And the said. Lake Park Oil, Inc.

party of the first part, for itself and its successors, does covenant, grant, bargain and agree to and with the said party of the second part, its successors and assigns, that at the time of the ensealing and delivery of these presents it is well seized of the premises above described, as of a good, sure, perfect, absolute and indefeasible estate of inheritance in the law, in fee simple, and that the same are free and clear from all incumbrances whatever.

and that the above bargained premises in the quiet and peaceable possession of the said party of the second part, its/successors and assigns, against all and every person or persons lawfully claiming the whole or any part thereof, it will forever WARRANT AND DEFEND.

In Witness Whereof, the said. Lake Park	Oil, Inc.,
party of the first part, has caused these presents to be signed	hy Henry W. Meissner.
its. President, and countersigned by William	是这种的是是是一种,我们就是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个
at Man1 towor Wisconsin, and its o	corporate seal to be hereunto affixed, this
	LAKE PARK OIL, INC.
SIGNED AND SEALED IN PRESENCE OF	-/ Q. 1/400 h
Cluster F Smith	Henry W. Meissner
Leona Hoffman	William KMUISSNER 1
Leona Hoffman	William H. Melssner
State of Wisconsin, ss. ManitoWoc County	
经验验的证据的证据的证据的证据的证据的证据的证据的证据的证据的证据的证据的证据的证据的	day of
Henry W. Meisster Pre	
	o me known to be the persons who executed the foregoing
instrument, and to me known to be such	
acknowledged that they executed the foregoing instrument as s	
	Ouster 7 Smith
TELEPHONE POLICE AND DESCRIPTION OF THE PROPERTY OF THE PROPER	Austin F. Smith
	stary Public, Manitowood - County, Wis
M	y commission xypyy 1s permanent W.Xy/W/
NOTE—The names of the parties to this instrument and of the witnesses and Section 39.31 (1) (1)). Wisconain Societies.	morey miles be privated or types forces the copy to battle it to be recorded.
Section 99.11 (1) (11) Wiscomin Sciptific,	
This instrument was drafted by	
Attorney Austin F. Smith.	
	The state of the s
	_2
AND ENGLISHED FOR THE PARTY.	
241	
1000 1000 1000 1000 1000 1000 1000 100	
28. (A. (A. (A. (A. (A. (A. (A. (A. (A. (A	
# 15 Jacob	
408016 To T	State of Wisconsin, A Line A
Second Se	
· · · · · · · · · · · · · · · · · · ·	
	15

STATE OF OKLAHOMA,)
SS.
COUNTY OF TULSA.

Personally appeared before me this 20th day of February, A. D., 1935, the above-named H. N. GREIS, Ancillary Receiver for Wisconsin of Deep Rock Oil Corporation, to me personally known to be the person who executed the foregoing instrument, and acknowledged that he executed the same as such Ancillary Receiver, and as his own free act and deed, for the uses and purposes therein stated.

(Notary Seal)

May Scheig

Notary Public, Tulsa County, Oklahoma. My commission expires July 5, 1935

STATE OF ILLINOIS, SS COUNTY OF COOK.

Personally appeared before me this 27th day of February, A. D. 1935, the above-named BERNARD L. MAJEWSKI, Ancillary Receiver for Wisconsin of Deep Rock Oil Corporation, to me personally known to be the person who executed the foregoing instrument, and acknowledged that he executed the same as such Ancillary Receiver, and as his own free act and deed, for the uses and purposes therein stated.

(Notary Seal)

Yvonne Page

Received for record the 7th day of March A. D. 1935 at 2:10 P. M.

Notary Public, Cook County, Illinois My Commission expires March 7, 1935

Jos. M. Zahorik, Register of Deeds.

221750

RECEIVERS DEED

THIS INDENTURE, Made and entered into by and between H. N. CREIS and BERNARD L. MAJEEWSKI, as Ancillary Receivers for Wisconsin of Deep Rock Oil Corporation, a Delaware corporation, duly authorized to do business in the State of Wisconsin, parties of the first part, and H. N. GREIS, as Trustee in Bankruptcy of said DEEP ROCK OIL CORPORATION, party of the second part,

WITNESSETH:

That, WHEREAS, the above-named H. N. GREIS and BERNARD L. MAJEWSKI were duly appointed Ancillary Receivers for the State of Wisconsin of Deep Rock Oil Corporation, by the Circuit Court of Milwaukee County, State of Wisconsin, on the 7th day of March, 1933, in an action therein pending, en titled John L. Gray and L. B. Riddle, plaintiffs, vs. Deep Rock Oil Corporation, defendant; and

WHEREAS, on the 16th day of March, 1933, said H. N. GREIS and BERNARD L. MAJEWSKI duly qualified in all things as such Ancillary Receivers, have been ever since said 16th day of March, 1933, and still are, the duly appointed and qualified Ancillary Receivers for Wisconsin of said Deep Rock Oil Corporation; and

WHEREAS, the above-named Deep Rock Oil Corporation, at the time of the appointment of as said parties of the first part/Ancillary Receivers herein, was seized and possessed of that certain real estate situated in the City of TWO RIVERS, County of MANITOWOC, and State of Wisconsin, hereinafter more particularly described; and

WHEREAS, on the 15th day of November, 1934, a quit-claim deed was executed by said Deep Rock Oil Corporation to said parties of the first part, as Macillary Receivers for the State of Wisconsin, of the real estate hereinafter described; and

WHEREAS, on the 19th day of June, 1934, in the District Court of the United States for the Northern District of Oklahoma, in an action entitled "In the Matter of Deep Rock Oil Corporation, a corporation, debtor," H. N. GREIS, said party of the second part, was appointed Trustee of the Estate of said Deep Rock Oil Corporation, under Section 77b of the

Bankruptcy Act, to act as such until the further order of the Court; and upon the filing and approval of a bond in the sum of fifty thousand dollars (\$50,000.00), to have all the title to the property of said Deep Rock Oil Corporation; and

WHEREAS, on the 9th day of July, 1934, in the District Court of the United States for the Northern District of Oklahoma, an order was entered making permanent the appointment of said party of the second part as such Trustee; and

WHEREAS, in said proceedings in the Circuit Court of Milwaukee County, Wisconsin, an order was duly made and entered on the 27th day of December, 1934, authorizing and directing said parties of the first part, as such Ancillary Receivers, to convey the real estate hereinafter described, and other property, to said party of the second part:

NOW, THEREFORE, said parties of the first part, for and in consideration of the sum of One Dollar and other good and valuable consideration to them in hand paid by said party of the second part, receipt whereof is hereby confessed and acknowledged, have conveyed, remised and quitclaimed, and do hereby convey, remise and quitclaim unto the said party of the second part, and to his successors and assigns forever, all their right, title and interest as Ancillary Receivers for Wisconsin of said Deep Rock Oil Corporation, in and to the following described real estate situated in the County of MANITOWOC, State of Wisconsin, towit:

That part of Lot One (1), of the Subdivision of Government Lot One (1), Section Eleven (11), Township Nineteen (19) North of Range Twenty-four (24) East, lying between the highway leading from Two Rivers to Manitowoc, and formerly known as the Two Rivers and Manitowoc Plank Road and the right-of-way of the Chicago & Northwestern Railway Company, in the City of TWO RIVERS, Manitowoc County, Wisconsin.

TO HAVE AND TO HOLD unto the said party of the second part, his successors and assigns, FOREVER.

IN WITNESS WHEREOF, H. N. GREIS, as Ancillary Receiver for Wisconsin only, one of the parties of the first part, has hereunto set his hand and seal, at the City of Tulsa, County of Tulsa, and State of Oklahoma, and BERNARD L. MAJEWSKI, as Ancillary Receiver for Wisconsin only, one of the parties of the first part, has hereunto set his hand and seal, at the City of Chicago, County of Cook, and State of Illinois, this 20th day of February, A. D. **1935.**

Signed, Sealed and Delivered In Presence of:

Edgar A. de Meules

W. R. Francisco

E. Intudate

H. Coffey

H. N. Greis

(SEAL)

As ancillary Receiver for Wisconsin of Deep Rock Oil Corporation.

Bernard L. Majewski

As Ancillary Receiver for Wisconsin of Deep Rock Oil Corporation

(Corporate Seal)

STATE OF OKLAHOMA, COUNTY OF TULSA.

Personally appeared before me this 20th day of February, A. D. 1935, the above-named H. N. GREIS, Ancillary Receiver for Wisconsin of Deep Rock Oil Corporation, to me personally known to be the person who executed the foregoing instrument, and acknowledged that he executed the same as such Ancillary Receiver, and as his own free act and deed, for the uses and purposes therein stated.

(Notary Seal)

- May Scheig

Notary Public, Tulsa County, Oklahoma. My commission expires July 5, 1935.

STATE OF ILLINOIS,)ss.

COUNTY OF COOK.

Personally appeared before me this 27th day of February, A. D. 1935, the above-named

BERNARD L. MAJEWSKI, Ancillary Receiver for Wisconsin of Deep Rock Oil Corporation, to me personally known to be the person who executed the foregoing instrument, and acknowledged that he executed the same as such Ancillary Receiver, and as his own free act and deed, for the uses and purposes therein stated.

(Notary Seal)

Yvonne Page

Received for record the 7th day of March A. D. 1935 at 2:15 P. M.

Notary Public, Cook County, Illinois. My commission March 7, 1935

Jos. M. Zahorik, Register of Deeds.

221703A

QUIT CLAIM DEED

THIS INDENTURE, made this 9th day of January, A. D. 1935, between HARRY D. SAMMONS, a single man, of the city of Manitowoc, Manitowoc County, Wisconsin, party of the first part, and MANITOWOC PORTLAND CEMENT COMPANY, a Wisconsin corporation having its principal office at the city of Manitowoc, Manitowoc County, Wisconsin, party of the second part, WITNESSETH:

That the said party of the first part, for and in consideration of the sum of One Dollar (\$1.00) and other valuable considerations; to him in hand paid by the said party of the second part, the receipt whereof is hereby confessed and acknowledged, has given, granted, bargained, sold, remised, released and quit-claimed, and by these presents does give, grant, bargain, sell, remise, release and quit-claim unto the said party of the second part, and to its successors and assigns forever, the following described real estate, situated in the county of Manitowoc, state of Wisconsin, to-wit:

Government Lot Seven (7), Section Twenty-four (24), Township Nineteen (19) North, Range Twenty-three (23) East of the Fourth Principal Meridian, including a so-called island lying in the Manitowoc River adjacent to the said Government Lot Seven (7) and forming a part thereof.

TO HAVE AND TO HOLD the same, together with all and singular the appurtenances and privileges thereunto belonging or in anywise thereunto appertaining, and all the estate, right, title, interest and claim whatsoever of the said party of the first part, either in law or equity, either in possession or expectancy of, to the only proper use, benefit of the said party of the second part, its successors and assigns forever.

IN WITNESS WHEREOF, the said party of the first part has hereunto set his hand and seal this 9th day of January, A. D. 1935.

In presence of:

H. D. Sammons

(SEAL)

M. E. Torrison

A. F. Rankin

State of Wisconsin,) (SS. Manitowoc County,)

Personally came before me, this 9th day of January, A. D. 1935, the above named Harry D. Sammons, to me known to be the person who executed the foregoing instrument, and acknowledged the same.

(Notary Seal)

Archie F. Rankin

Received for record the 6th day of March A. D. 1935 at 10:20 A..M.

Notary Public, Manitowoc County, Wisconsin. My commission expires May 31, 1936.

Jos. M. Zahorik, Register of Deeds.

(SEE MAP ON PAGE 504)

ATTACHMENT G.1: DEEDS

Paragon Electric Site, Two Rivers, Wisconsin WDNR BRRTS No. 02-36-000153, AECOM Project No. 60236613

- 1. DEED FOR PARAGON ELECTRIC PROPERTY (**PARCEL NO. 053-211-102-001.8**) ATTACHED ALONG WITH TAX RECORD DETAIL)
- 2. DEED FOR **PARCEL NO. 05321110100001** OWNED BY MR. MUHAMMAD JAVEED AND MRS. TAHIRA JAVEED ATTACHED.
- 3. DEED FOR **PARCEL No. 05321110201007** OWNED BY MANITOWOC COUNTY ATTACHED.
- 4. WISCONSIN CENTRAL RAILROAD RIGHT-OF-WAY AND STATE HIGHWAY 42 RIGHT-OF-WAY DO NOT HAVE DEED DOCUMENTS.
- 5. NONE OF THE DEED DOCUMENTS REFER TO A CERTIFIED SURVEY MAP, THEREFORE MAPS NOT ATTACHED.

ATTACHMENT G.1: DEEDS

Paragon Electric Site, Two Rivers, Wisconsin WDNR BRRTS No. 02-36-000153, AECOM Project No. 60236613

- 1. DEED FOR PARAGON ELECTRIC PROPERTY (**PARCEL NO. 053-211-102-001.8**) ATTACHED ALONG WITH TAX RECORD DETAIL)
- 2. DEED FOR **PARCEL NO. 05321110100001** OWNED BY MR. MUHAMMAD JAVEED AND MRS. TAHIRA JAVEED ATTACHED.
- 3. DEED FOR **PARCEL No. 05321110201007** OWNED BY MANITOWOC COUNTY ATTACHED.
- 4. WISCONSIN CENTRAL RAILROAD RIGHT-OF-WAY AND STATE HIGHWAY 42 RIGHT-OF-WAY DO NOT HAVE DEED DOCUMENTS.
- 5. NONE OF THE DEED DOCUMENTS REFER TO A CERTIFIED SURVEY MAP, THEREFORE MAPS NOT ATTACHED.

OFF-SOURCE
E
PROPERTY

ATTACHMENT G.1: DEEDS

Paragon Electric Site, Two Rivers, Wisconsin WDNR BRRTS No. 02-36-000153, AECOM Project No. 60236613

- 1. DEED FOR PARAGON ELECTRIC PROPERTY (**PARCEL NO. 053-211-102-001.8**) ATTACHED ALONG WITH TAX RECORD DETAIL)
- 2. DEED FOR **PARCEL NO. 05321110100001** OWNED BY MR. MUHAMMAD JAVEED AND MRS. TAHIRA JAVEED ATTACHED.
- 3. DEED FOR **PARCEL No. 05321110201007** OWNED BY MANITOWOC COUNTY ATTACHED.
- 4. WISCONSIN CENTRAL RAILROAD RIGHT-OF-WAY AND STATE HIGHWAY 42 RIGHT-OF-WAY DO NOT HAVE DEED DOCUMENTS.
- 5. NONE OF THE DEED DOCUMENTS REFER TO A CERTIFIED SURVEY MAP, THEREFORE MAPS NOT ATTACHED.

ATTACHMENT G.3: VERIFICATION OF ZONING

Paragon Electric Site, Two Rivers, Wisconsin WDNR BRRTS No. 02-36-000153, AECOM Project No. 60236613

SEE ATTACHED EMAIL FROM THE CITY OF TWO RIVERS AND THE CITY OF TWO RIVERS DISTRICT ZONING MAP

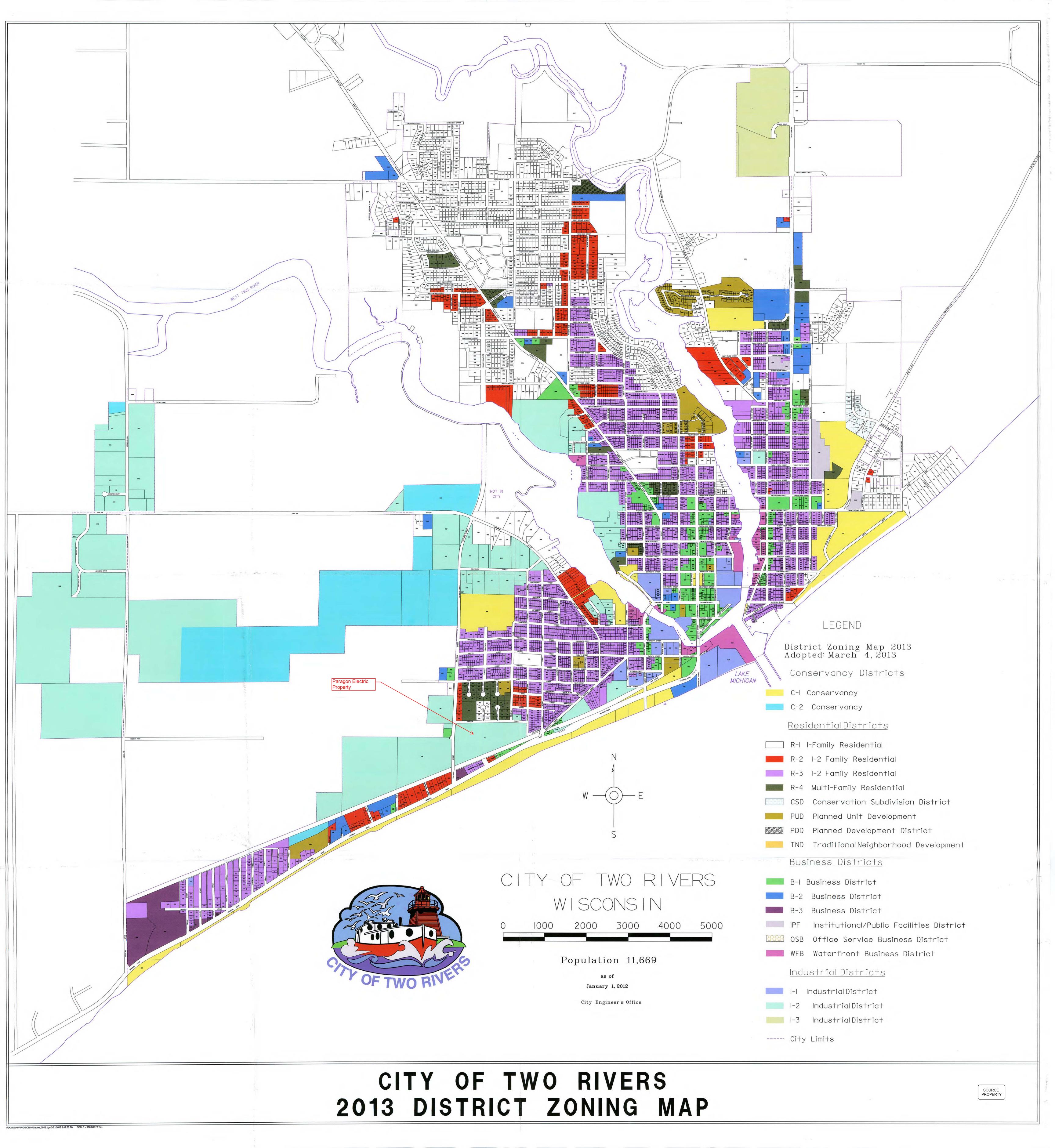
From: Vicky BERG [mailto:vicber@two-rivers.org]

Sent: Monday, March 18, 2013 11:15 AM

To: Durkin, Laura G.

Subject: Re: Zoning Map [IWOV-ACTIVE.FID1059378]

Ms. Durkin-


The current zoning for the property known as 606 Parkway Blvd, Two Rivers is I-2 Industrial District.

The City's Zoning Ordinance may be reviewed on the City's website at www.two-rivers.org. Click on Departments, Click on City Manager, Click on Municipal Code...the Zoning Code is Chapter 10.

Vicky Berg Zoning Administrator City of Two Rivers 1717 East Park Street PO Box 87 Two Rivers, WI 54241

Phone: 920-793-5566 Fax: 920-793-7272

Email: <u>vicber@two-rivers.org</u>
Website: <u>www.two-rivers.org</u>

SOURCE PROPERTY

ATTACHMENT G.4: SIGNED STATEMENT

Paragon Electric Site, Two Rivers, Wisconsin WDNR BRRTS No. 02-36-000153, AECOM Project No. 60236613

STATEMENT OF VERIFICATION

As required by s. NR 726.05(3)f of the Wisconsin Administrative Code, I am providing this signed statement that to the best of my knowledge the legal description that is provided in Attachment G.1 of this Closure Request is complete and accurate for the former Paragon Electric property located at 606 Parkway Boulevard, Two Rivers, Wisconsin.

(Signature)

YANL A. AHEARN

(Name)

DIR, ENV. PROT

(Title)

INVENSYS TNC, ON BEHALF OF

(Company)

RANCO INCORPINATES OF DELAWAEE