BARKSDALE WORKS RESIDENT WELL SAMPLING 4/04

June 9, 2004

Prepared for

Cary A. Pooler (URS Diamond-Louisville)

Prepared by

URS Diamond Laboratory Services – Sharon A. Nordstrom Barley Mill Plaza, Building 27 Wilmington, DE 19805

Memorandum

DATE: JUNE 9, 2004

TO: Cary A. Pooler, URS Diamond

FROM: Sharon A. Nordstrom

RE: BARKSDALE RESIDENT WELL SAMPLING 12/03

Enclosed is the data report for the residential well samples collected on April 6-7, 2004 for the analyses listed below. All samples were received at the laboratories in good condition and within temperature requirements.

Matrix	Laboratory	Analysis	Analytical Method
Groundwater	STL- Denver	Nitroaromatic/ nitramine organics	SW846 8321A
Groundwater	Environmental Health Laboratories (EHL)	Wisconsin-regulated Volatile organics	EPA 524.2

As indicated above, the samples were submitted to STL-Denver for analysis for the nitro organic compounds, and samples collected at 29600N-INFLOW and 30900N-INFLOW were submitted to EHL for analysis for the Wisconsin–regulated volatile organics.

The STL-Denver data deliverable included both a hard-copy report and an electronic data file, while the EHL data was reported in hard-copy only. A copy of the EHL laboratory report has been included with the DuPont Corporate Environmental Database Report for the STL data. All electronic data was reviewed via the automated DuPont Data Review (DDR) process. As noted on the DDR narrative report, several QC exceedances were identified and data qualifiers were applied to the reported results as applicable. In addition, all nitroaromatic/nitramine and volatile organics data was submitted to Environmental Standards, Inc. for independent, third-party validation. Copies of the Environmental Standards Quality Assurance Reviews are included herein.

No positive detections of nitroaromatic/nitramine compounds or volatile organics were reported in this sample group. Sample BAR-G-30380N-INFLOW was analyzed at a five-fold dilution because the associated internal standard exhibited a low recovery in the undiluted sample. This sample was also reported by the laboratory as containing orange sediment. The household was resampled for the nitroaromatic/nitramine organics in May; the results of the re-analysis will be reported separately as soon as available. The MDL and PQL limits for tetryl and nitroglycerin in sample BAR-G-72730H-INFLOW may be higher than reported, and the "not-detected" (ND) results for these compounds have been qualified with a UJ on the analysis report. The associated

h:\bar resident4_04.doc

matrix spike/spike duplicates were recovered below the laboratory QC limits for these compounds.

No volatile compounds were detected by EHL above the stated reporting limits, however the ND results for chloroacetonitrile, 2-nitropropane, and nitrobenzene in all samples were qualified by the data validator as unusable (R) due to very low relative response factors in the associated calibration standards.

Please do not hesitate to contact me if you have any questions regarding this report.

Sitename: BARKSDALE WORKS Project: RESIDENT WELLS 4/04

DDR Standard Used: LABSTATS

Associated MS and/or MSD analysis had relative percent recovery (RPR) values less than the lower control limit. The actual detection limits may be higher than reported.

Sampleno	Datesn	npl Lab Id	Method	Analyte	Rsltmod	Result	Unit	Mdl	Pql	Qual
BAR-G-72730H-INFLOW	4/6/04	GDTQ81-AA FS	8321	TETRYL	<	0.012	UG/L	0.012	0.12	UJ
BAR-G-72730H-INFLOW	4/6/04	GDTQ81-AA FS	8321	NITROGLYCERIN	<	0.039	UG/L	0.039	0.12	UJ

Site: BARKSDALE WORKS Project: RESIDENT WELLS 4/04 Reporting Limit: MDL

06/09/2004 Page 1 of 9

Sampling Point: Date Sampled: Lab Sample ID:	30300N-INFLOW 4/6/04 GDTQ61-AA FS		Sa	ampleno: ample Type: ab:	Grou	R-G-303 undwate S-DEN	00N-INFL ər	ow			
Analyte/Parameter		Dilu	ution	Result	Lab Qual	In- House Qual	Review	Unit	MDL	PQL	Date Analyzed
Method No: 8321		Prep Meth	od:	SW3535			Pre P	Prep Method:			
Analytes											
1,3,5-trinitrobenzene		1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
1,3-dinitrobenzene		1	<	0.014				UG/L	0.014	0.12	Apr 15, 2004
2,4,6-trinitrotoluene		1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
2,4-dinitrotoluene		1	<	0.019				UG/L	0.019	0.12	Apr 15, 2004
2,6-dinitrotoluene		1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
2-amino-4,6-dinitrotolue	ne	1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
2-nitrotoluene		1	<	0.023				UG/L	0.023	0.12	Apr 15, 2004
3-nitrotoluene		1	<	0.019				UG/L	0.019	0.12	Apr 15, 2004
4-amino-2,6-dinitrotolue	ne	1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
4-nitrotoluene		1	<	0.018				UG/L	0.018	0.12	Apr 15, 2004
Hmx		1	<	0.016				UG/L	0.016	0.12	Apr 15, 2004
Nitrobenzene		1	<	0.020				UG/L	0.020	0.12	Apr 15, 2004
Nitroglycerin		1	<	0.039				UG/L	0.039	0.12	Apr 15, 2004
Petn		1	<	0.031				UG/L	0.031	0.12	Apr 15, 2004
Rdx		1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
Tetryl		1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
Surrogates											
Nitrobenzene-d5		1		92 RPR				UG/L			Apr 15, 2004

Site: BARKSDALE WORKS Project: RESIDENT WELLS 4/04 Reporting Limit: MDL

06/09/2004 Page 2 of 9

Sampling Point: Date Sampled: Lab Sample ID:	30380N-INFLOW 4/6/04 GDTQ41-AA FS				npleno: nple Type: ::	Gro	R-G-303 undwate S-DEN	80N-INFL ar	ow			
An all da (Dansan d						Lab	In- House					Date
Analyte/Parameter		Di	utio	n	Result	Qual	Qual	Review	Unit	MDL	PQL	Analyzed
Method No: 8321		Prep Met	hod:	:	SW3535			Pre P	rep Method:			
Analytes												
1,3,5-trinitrobenzene		5		<	0.075				UG/L	0.075	0.60	Apr 15, 2004
1,3-dinitrobenzene		5		<	0.070				UG/L	0.070	0.60	Apr 15, 2004
2,4,6-trinitrotoluene		5		<	0.075				UG/L	0.075	0.60	Apr 15, 2004
2,4-dinitrotoluene		5		<	0.095				UG/L	0.095	0.60	Apr 15, 2004
2,6-dinitrotoluene		5		<	0.075				UG/L	0.075	0.60	Apr 15, 2004
2-amino-4,6-dinitrotolue	ne	5	•	<	0.060				UG/L	0.060	0.60	Apr 15, 2004
2-nitrotoluene		5		<	0.12				UG/L	0.12	0.60	Apr 15, 2004
3-nitrotoluene		5	<	<	0.095				UG/L	0.095	0.60	Apr 15, 2004
4-amino-2,6-dinitrotolue	ne	5	<	<	0.075				UG/L	0.075	0.60	Apr 15, 2004
4-nitrotoluene		5	<	<	0.090				UG/L	0.090	0.60	Apr 15, 2004
Hmx		5	<	<	0.080				UG/L	0.080	0.60	Apr 15, 2004
Nitrobenzene		5	<	:	0.10				UG/L	0.10	0.60	Apr 15, 2004
Nitroglycerin		5	<	:	0.20				UG/L	0.20	0.60	Apr 15, 2004
Petn		5	<	:	0.16				UG/L	0.16	0.60	Apr 15, 2004
Rdx		5	<	:	0.060				UG/L	0.060	0.60	Apr 15, 2004
Tetryl		5	<	:	0.060				UG/L	0.060	0.60	Apr 15, 2004
Surrogates												
Nitrobenzene-d5		5			60 RPR				UG/L			Apr 15, 2004

Site: BARKSDALE WORKS Project: RESIDENT WELLS 4/04 Reporting Limit: MDL

06/09/2004 Page 3 of 9

Sampling Point: Date Sampled: Lab Sample ID:	30490N-INFLOW 4/6/04 GDTQ31-AA FS			impleno: imple Type: b:	Grou	R-G-304 undwate S-DEN	90N-INFL ər	OW			
Analyte/Parameter		Dilı	ution	Result	Lab Qual	In- House Qual	Review	Unit	MDL	PQL	Date Analyzed
Method No: 8321		Prep Meth	od:	SW3535			Pre P	Prep Method:			
Analytes											
1,3,5-trinitrobenzene		1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
1,3-dinitrobenzene		1	<	0.014				UG/L	0.014	0.12	Apr 15, 2004
2,4,6-trinitrotoluene		1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
2,4-dinitrotoluene		1	<	0.019				UG/L	0.019	0.12	Apr 15, 2004
2,6-dinitrotoluene		1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
2-amino-4,6-dinitrotolue	ne	1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
2-nitrotoluene		1	<	0.023				UG/L	0.023	0.12	Apr 15, 2004
3-nitrotoluene		1	<	0.019				UG/L	0.019	0.12	Apr 15, 2004
4-amino-2,6-dinitrotolue	ne	1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
4-nitrotoluene		1	<	0.018				UG/L	0.018	0.12	Apr 15, 2004
Hmx		1	<	0.016				UG/L	0.016	0.12	Apr 15, 2004
Nitrobenzene		1	<	0.020				UG/L	0.020	0.12	Apr 15, 2004
Nitroglycerin		1	. <	0.039				UG/L	0.039	0.12	Apr 15, 2004
Petn		1	<	0.031				UG/L	0.031	0.12	Apr 15, 2004
Rdx		1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
Tetryl		1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
Surrogates											
Nitrobenzene-d5		1		94 RPR				UG/L			Apr 15, 2004

Site: BARKSDALE WORKS Project: RESIDENT WELLS 4/04 Reporting Limit: MDL

06/09/2004 Page 4 of 9

Sampling Point: Date Sampled: Lab Sample ID:	30600N-INFLOW 4/7/04 GDTRE1-AA FS			mpleno: mple Type: b:	Grou	I-G-306 Undwate S-DEN	00N-INFL or	OW			
Analyte/Parameter		Dilu	ition	Result	Lab Qual	In- House Qual	Review	Unit	MDL	PQL	Date Analyzed
Method No: 8321		Prep Meth	od:	SW3535			Pre P	rep Method:			
Analytes											
1,3,5-trinitrobenzene		1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
1,3-dinitrobenzene		1	<	0.014				UG/L	0.014	0.12	Apr 15, 2004
2,4,6-trinitrotoluene		1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
2,4-dinitrotoluene		1	<	0.019				UG/L	0.019	0.12	Apr 15, 2004
2,6-dinitrotoluene		1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
2-amino-4,6-dinitrotoluer	10	1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
2-nitrotoluene		1	<	0.023				UG/L	0.023	0.12	Apr 15, 2004
3-nitrotoluene		1	<	0.019				UG/L	0.019	0.12	Apr 15, 2004
4-amino-2,6-dinitrotoluen	6	1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
4-nitrotoluene		1	<	0.018				UG/L	0.018	0.12	Apr 15, 2004
Hmx		1	<	0.016				UG/L	0.016	0.12	Apr 15, 2004
Nitrobenzene		1	<	0.020				UG/L	0.020	0.12	Apr 15, 2004
Nitroglycerin		1	<	0.039				UG/L	0.039	0.12	Apr 15, 2004
Petn		1	<	0.031				UG/L	0.031	0.12	Apr 15, 2004
Rdx		1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
Tetryl		1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
Surrogates											
Nitrobenzene-d5		1		96 RPR				UG/L			Apr 15, 2004

Site: BARKSDALE WORKS Project: RESIDENT WELLS 4/04 Reporting Limit: MDL

06/09/2004 Page 5 of 9

Sampling Point: Date Sampled: Lab Sample ID:	72730H-INFLOW 4/6/04 GDTQ81-AA FS			mpleno: mple Type: b:	Grou	R-G-727 undwate S-DEN	30H-INFL ər	ow			
Analyte/Parameter		Dilu	ution	Result	Lab Qual	In- House Qual	Review	Unit	MDL	PQL	Date Analyzed
Method No: 8321		Prep Meth	od:	SW3535			Pre P	Prep Method:			
Analytes											
1,3,5-trinitrobenzene		1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
1,3-dinitrobenzene		1	<	0.014				UG/L	0.014	0.12	Apr 15, 2004
2,4,6-trinitrotoluene		1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
2,4-dinitrotoluene		1	<	0.019				UG/L	0.019	0.12	Apr 15, 2004
2,6-dinitrotoluene		1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
2-amino-4,6-dinitrotoluer	18	1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
2-nitrotoluene		1	<	0.023				UG/L	0.023	0.12	Apr 15, 2004
3-nitrotoluene		1	<	0.019				UG/L	0.019	0.12	Apr 15, 2004
4-amino-2,6-dinitrotoluer	IE	1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
4-nitrotoluene		1	<	0.018				UG/L	0.018	0.12	Apr 15, 2004
Hmx		1	<	0.016				UG/L	0.016	0.12	Apr 15, 2004
Nitrobenzene		1	<	0.020				UG/L	0.020	0.12	Apr 15, 2004
Nitroglycerin		1	<	0.039		UJ	UJ	UG/L	0.039	0.12	Apr 15, 2004
Petn		1	<	0.031				UG/L	0.031	0.12	Apr 15, 2004
Rdx		1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
Tetryl		1	<	0.012		UJ	UJ	UG/L	0.012	0.12	Apr 15, 2004
Surrogates											
Nitrobenzene-d5		1		90 RPR				UG/L			Apr 15, 2004

Site: BARKSDALE WORKS Project: RESIDENT WELLS 4/04 Reporting Limit: MDL

06/09/2004 Page 6 of 9

Sampling Point: Date Sampled: Lab Sample ID:	72790H-INFLOW 4/6/04 GDTRC1-AA FS		S	ampleno: ample Type: ab:	Grou	R-G-727 undwate S-DEN	90H-INFL ər	ow			
Analyte/Parameter	······	Dilu	ition	Result	Lab Qual	In- House Qual	Review	Unit	MDL	PQL	Date Analyzed
Method No: 8321		Prep Meth	od:	SW3535			Pre P	Prep Method:			
Analytes											
1,3,5-trinitrobenzene		1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
1,3-dinitrobenzene		1	<	0.014				UG/L	0.014	0.12	Apr 15, 2004
2,4,6-trinitrotoluene		1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
2,4-dinitrotoluene		1	<	0.019				UG/L	0.019	0.12	Apr 15, 2004
2,6-dinitrotoluene		1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
2-amino-4,6-dinitrotolue	ne	1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
2-nitrotoluene		1	<	0.023				UG/L	0.023	0.12	Apr 15, 2004
3-nitrotoluene		1	<	0.019				UG/L	0.019	0.12	Apr 15, 2004
4-amino-2,6-dinitrotolue	ne	1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
4-nitrotoluene		1	<	0.018				UG/L	0.018	0.12	Apr 15, 2004
Hmx		1	<	0.016				UG/L	0.016	0.12	Apr 15, 2004
Nitrobenzene		1	<	0.020				UG/L	0.020	0.12	Apr 15, 2004
Nitroglycerin		1	<	0.039				UG/L	0.039	0.12	Apr 15, 2004
Petn		1	<	0.031				UG/L	0.031	0.12	Apr 15, 2004
Rdx		1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
Tetryl		1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
Surrogates											
Nitrobenzene-d5		1		73 RPR				UG/L			Apr 15, 2004

Site: BARKSDALE WORKS Project: RESIDENT WELLS 4/04 Reporting Limit: MDL

06/09/2004 Page 7 of 9

Sampling Point:	72790H-INFLOW	Sampleno:	BAR-G-72790H-INFLOW-DUP
Date Sampled:	4/6/04	Sample Type:	Groundwater
Lab Sample ID:	GDTRD1-AA FS	Lab:	QES-DEN
			In- Lab House

A south to 200 to 1				Lab	In- House					Date
Analyte/Parameter	Dilu	tion	Result	Qual	Qual	Review	Unit	MDL	PQL	Analyzed
Method No: 8321	Prep Meth	od:	SW3535			Pre P	rep Method:			
Analytes										
1,3,5-trinitrobenzene	1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
1,3-dinitrobenzene	1	<	0.014				UG/L	0.014	0.12	Apr 15, 2004
2,4,6-trinitrotoluene	1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
2,4-dinitrotoluene	1	<	0.019				UG/L	0.019	0.12	Apr 15, 2004
2,6-dinitrotoluene	1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
2-amino-4,6-dinitrotoluene	1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
2-nitrotoluene	1	<	0.023				UG/L	0.023	0.12	Apr 15, 2004
3-nitrotoluene	1	<	0.019				UG/L	0.019	0.12	Apr 15, 2004
1-amino-2,6-dinitrotoluene	1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
4-nitrotoluene	1	<	0.018				UG/L	0.018	0.12	Apr 15, 2004
Hmx	1	<	0.016				UG/L	0.016	0.12	Apr 15, 2004
Nitrobenzene	1	<	0.020				UG/L	0.020	0.12	Apr 15, 2004
Nitroglycerin	1	<	0.039				UG/L	0.039	0.12	Apr 15, 2004
Petn	1	<	0.031				UG/L	0.031	0.12	Apr 15, 2004
Rdx	1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
Tetryl	1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
Surrogates										
Nitrobenzene-d5	1		90 RPR				UG/L			Apr 15, 2004

Site: BARKSDALE WORKS Project: RESIDENT WELLS 4/04 Reporting Limit: MDL

06/09/2004 Page 8 of 9

Sampling Point: Date Sampled: Lab Sample ID:	72860H-INFLOW 4/6/04 GDTQ91-AA FS				mpleno: mple Type: b:	Gro	R-G-728 undwate S-DEN	60H-INFL ər	ow			
Analyte/Parameter			Dilut	tion	Result	Lab Qual	In- House Qual	Review	Unit	MDL	PQL	Date Analyzed
Method No: 8321		Prep N	/letho	od:	SW3535			Pre P	rep Method:			
Analytes												
1,3,5-trinitrobenzene			1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
1,3-dinitrobenzene			1	<	0.014				UG/L	0.014	0.12	Apr 15, 2004
2,4,6-trinitrotoluene			1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
2,4-dinitrotoluene			1	<	0.019				UG/L	0.019	0.12	Apr 15, 2004
2,6-dinitrotoluene			1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
2-amino-4,6-dinitrotolue	ne		1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
2-nitrotoluene			1	<	0.023				UG/L	0.023	0.12	Apr 15, 2004
3-nitrotoluene			1	<	0.019				UG/L	0.019	0.12	Apr 15, 2004
4-amino-2,6-dinitrotolue	ne		1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
4-nitrotoluene			1	<	0.018				UG/L	0.018	0.12	Apr 15, 2004
Hmx			1	<	0.016				UG/L	0.016	0.12	Apr 15, 2004
Nitrobenzene			1	<	0.020				UG/L	0.020	0.12	Apr 15, 2004
Nitroglycerin			1	<	0.039				UG/L	0.039	0.12	Apr 15, 2004
Petn			1	<	0.031				UG/L	0.031	0.12	Apr 15, 2004
Rdx			1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
Tetryl			1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
Surrogates												
Nitrobenzene-d5			1		89 RPR				UG/L			Apr 15, 2004

Site: BARKSDALE WORKS Project: RESIDENT WELLS 4/04 Reporting Limit: MDL

06/09/2004 Page 9 of 9

Sampling Point: Date Sampled: Lab Sample ID:	73280H-INFLOW 4/6/04 GDTQ71-AA FS	Sampleno: Sample Type: Lab:				BAR-G-73280H-INFLOW Groundwater QES-DEN						
Analyte/Parameter			Dilut	ion	Result	Lab Qual	In- House Qual	Review	Unit	MDL.	PQL	Date Analyzed
Method No: 8321		Prep	Metho	d:	SW3535			Pre P	rep Method:			
Analytes												
1,3,5-trinitrobenzene			1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
1,3-dinitrobenzene			1	<	0.014				UG/L	0.014	0.12	Apr 15, 2004
2,4,6-trinitrotoluene			1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
2,4-dinitrotoluene			1	<	0.019				UG/L	0.019	0.12	Apr 15, 2004
2,6-dinitrotoluene			1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
2-amino-4,6-dinitrotoluen	e		1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
2-nitrotoluene			1	<	0.023				UG/L	0.023	0.12	Apr 15, 2004
3-nitrotoluene			1	<	0.019				UG/L	0.019	0.12	Apr 15, 2004
4-amino-2,6-dinitrotoluen	e		1	<	0.015				UG/L	0.015	0.12	Apr 15, 2004
4-nitrotoluene			1	<	0.018				UG/L	0.018	0.12	Apr 15, 2004
Hmx			1	<	0.016				UG/L	0.016	0.12	Apr 15, 2004
Nitrobenzene			1	<	0.020				UG/L	0.020	0.12	Apr 15, 2004
Nitroglycerin			1	<	0.039				UG/L	0.039	0.12	Apr 15, 2004
Petn			1	<	0.031				UG/L	0.031	0.12	Apr 15, 2004
Rdx			1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
Tetryl			1	<	0.012				UG/L	0.012	0.12	Apr 15, 2004
Surrogates												
Nitrobenzene-d5			1		97 RPR				UG/L			Apr 15, 2004

Corporate Environmental Database Lab Analysis QAQC Report

Site: BARKSDALE WORKS Project: RESIDENT WELLS 4/04

NITROBENZENE-D5

06/09/2004 Page 1 of 2

RPD

Max

RPD

51

93

53

44

148

124

Method Number: 8321	Prep	Method: SW3	3535	Pre-prep:			
Batch Start Date: 04/11/2004	Intru	ment: LCN	IS2	Batch Number:			
						<u>RPR</u>	Limits
Analyte/Parameter	Result	Unit	MDL	PQL	RPR	Min	Мах
Sample Type LCS	Lab Sample II	D: GD0KN1-A	AC LCS	Lab: QES-DEN			
1,3,5-TRINITROBENZENE	0.408	UG/L	0.015	NS	82	64	137
1,3-DINITROBENZENE	0.443	UG/L	0.014	NS	89	70	127
2,4,6-TRINITROTOLUENE	0.505	UG/L	0.015	NS	101	43	133
2,4-DINITROTOLUENE	0.439	UG/L	0.019	NS	88	65	129
2,6-DINITROTOLUENE	0.424	UG/L	0.015	NS	85	66	128
2-AMINO-4,6-DINITROTOLUENE	0.469	UG/L	0.012	NS	94	69	131
2-NITROTOLUENE	0.364	UG/L	0.023	NS	73	17	105
3-NITROTOLUENE	0.393	UG/L	0.019	NS	79	23	105
4-AMINO-2,6-DINITROTOLUENE	0.445	UG/L	0.015	NS	89	69	128
4-NITROTOLUENE	0.412	UG/L	0.018	NS	82	26	114
HMX	0.469	UG/L	0.016	NS	94	53	169
NITROBENZENE	0.461	UG/L	0.020	NS	92	27	120
NITROGLYCERIN	0.365	UG/L	0.039	NS	73	43	154
PETN	0.455	UG/L	0.031	NS	91	34	173
RDX	0.437	UG/L	0.012	NS	87	62	127
TETRYL	0.303	UG/L	0.012	NS	61	40	152
NITROBENZENE-D5	91 RPR	UG/L		NS	91	39	114
Sample Type MB	Lab Sample I	: GD0KN1-A	AMB	Lab: QES-DEN	0.		
1,3,5-TRINITROBENZENE	< 0.015	UG/L	0.015	0.12			
I,3-DINITROBENZENE	< 0.014	UG/L	0.014	0.12			
2,4,6-TRINITROTOLUENE	< 0.015	UG/L	0.015	0.12			
2,4-DINITROTOLUENE	< 0.019	UG/L	0.019	0.12			
2,6-DINITROTOLUENE	< 0.015	UG/L	0.015	0.12			
2-AMINO-4,6-DINITROTOLUENE	< 0.012	UG/L	0.012	0.12			
2-NITROTOLUENE	< 0.023	UG/L	0.023	0.12			
B-NITROTOLUENE	< 0.019	UG/L	0.019	0.12			
-AMINO-2,6-DINITROTOLUENE	< 0.015	UG/L	0.015	0.12			
NITROTOLUENE	< 0.018	UG/L	0.018	0.12			
IMX	< 0.016	UG/L	0.016	0.12			
ITROBENZENE	< 0.020	UG/L	0.020	0.12			
ITROGLYCERIN	< 0.039	UG/L	0.020	0.12			
PETN	< 0.031	UG/L	0.039				
RDX	< 0.012	UG/L	0.031	0.12			
ETRYL	< 0.012	UG/L	0.012	0.12			
ITROBENZENE-D5	92 RPR	UG/L	0.012	0.12			
Sample Type MS	Lab Sample ID		C MC		92	44	124
,3,5-TRINITROBENZENE	0.349			Lab: QES-DEN			
,3-DINITROBENZENE	0.463	UG/L	0.015	NS	70	70	126
,4,6-TRINITROTOLUENE	0.463	UG/L	0.014	NS	93	68	125
,4-DINITROTOLUENE	0.481	UG/L	0.015	NS	92	59	129
,6-DINITROTOLUENE	0.442	UG/L	0.019	NS	95	64	124
-AMINO-4,6-DINITROTOLUENE		UG/L	0.015	NS	88	67	124
-NITROTOLUENE	0.482	UG/L	0.012	NS	96	68	126
NITROTOLUENE	0.378	UG/L	0.023	NS	76	25	99
	0.406	UG/L	0.019	NS	81	27	104
-AMINO-2,6-DINITROTOLUENE	0.467	UG/L	0.015	NS	93	63	125
	0.420	UG/L	0.018	NS	84	33	108
	0.258	UG/L	0.016	NS	52	52	158
ITROBENZENE	0.439	UG/L	0.020	NS	88	40	110
	0.242	UG/L	0.039	NS	48	56	148
ETN	0.528	UG/L	0.031	NS	106	35	177
DX	0.460	UG/L	0.012	NS	92	61	123
ETRYL	0.253	UG/I	0.012	NS	E 1	50	

0.253

93 RPR

UG/L

UG/L

0.012

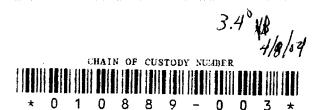
NS

NS

Corporate Environmental Database Lab Analysis QAQC Report

Site: BARKSDALE WORKS Project: RESIDENT WELLS 4/04

06/09/2004


Page 2 of 2

						<u>RPR</u>	<u>Limits</u>		RPD
Analyte/Parameter	Result	Unit	MDL	PQL	RPR	Min	Max	RPD	Max
Sample Type MSD	Lab Sample ID	: GDTQ81-A	D MSD	Lab: QES-DEN					
1,3,5-TRINITROBENZENE	0.375	UG/L	0.015	NS	75	70	126	7.2	40
1,3-DINITROBENZENE	0.453	UG/L	0.014	NS	91	68	125	2.1	40
2,4,6-TRINITROTOLUENE	0.453	UG/L	0.015	NS	91	59	129	1.7	40
2,4-DINITROTOLUENE	0.440	UG/L	0.019	NS	88	64	124	7.6	40
2,6-DINITROTOLUENE	0.445	UG/L	0.015	NS	89	67	124	0.65	40
2-AMINO-4,6-DINITROTOLUENE	0.485	UG/L	0.012	NS	97	68	126	0.55	40
2-NITROTOLUENE	0.378	UG/L	0.023	NS	76	25	99	0.14	40
3-NITROTOLUENE	0.411	UG/L	0.019	NS	82	27	104	1.3	40
4-AMINO-2,6-DINITROTOLUENE	0.462	UG/L	0.015	NS	92	63	125	1.0	40
4-NITROTOLUENE	0.427	UG/L	0.018	NS	85	33	108	1.6	40
HMX	0.285	UG/L	0.016	NS	57	52	158	9.7	40
NITROBENZENE	0.451	UG/L	0.020	NS	90	40	110	2.7	40
NITROGLYCERIN	0.255	UG/L	0.039	NS	51	56	148	5.4	40
PETN	0.530	UG/L	0.031	NS	106	35	177	0.27	40
RDX	0.437	UG/L	0.012	NS	87	61	123	5.1	40
TETRYL	0.269	UG/L	0.012	NS	54	53	148	6.1	40
NITROBENZENE-D5	93 RPR	UG/L		NS	93	44	124		

The following field samples are included in this batch:

Sampleno	Datesmpl	Lab Id	Lab
BAR-G-30300N-INFLOW	04/06/2004	GDTQ61-AA FS	QES-DEN
BAR-G-30380N-INFLOW	04/06/2004	GDTQ41-AA FS	QES-DEN
BAR-G-30490N-INFLOW	04/06/2004	GDTQ31-AA FS	QES-DEN
BAR-G-30600N-INFLOW	04/07/2004	GDTRE1-AA FS	QES-DEN
BAR-G-72730H-INFLOW	04/06/2004	GDTQ81-AA FS	QES-DEN
BAR-G-72790H-INFLOW	04/06/2004	GDTRC1-AA FS	QES-DEN
BAR-G-72790H-INFLOW-DUP	04/06/2004	GDTRD1-AA FS	QES-DEN
BAR-G-72860H-INFLOW	04/06/2004	GDTQ91-AA FS	QES-DEN
BAR-G-73280H-INFLOW	04/06/2004	GDTQ71-AA FS	QES-DEN

Chain of Custody Record

021898

Severn Trent Laboratories, Inc.

N Client				Project Manag	er				Date	Т				<u></u>				
E.I. Dupont De Nemours				Cary Poo	ler				03/27/2004		Pag	70		•	of			
Address					nber (Area Code)/Fax Number			ab Location	+	<u>, ag</u>	<u>/•</u>					-11-	
Barley Mill Plaza Building 27				(000)	/ ((STL Denver					Ana	lysis			
City	State	Zip Code		Site Contact					SIL DENVEL		T	7-7		Т				
Wilmington	DE	19805		TIM RATS	EP					E								
Project Number/Name				Carrier/Waybill					······································	- <u>x</u>								
BAR										P								
Contract/Purchase Order/Quote Number				···I						۱° ۱								
CONTRACT / PURCHASE ORDER # :	7035-	507355-7720	000/LBI	0-65011					QUOTE: 39097									
					Co	ntainers		1		 [
Sample I.D. Number and Descriptio	n	Date	Time	Sample Type	Volume	Type	No.	Preservative	Condition on Receipt/Comments									
BAR-G-30490N-INFLOW		416/04	1720	WATER	11.	AMBER	2	None		x	+	+-+	+	┝─┼─	++	╀┼	++	
	_						<u>†</u>	Mone		┼ᢩᠲ	+	++	+-	┝─╋╌	╉╋	╉╋	- -	
		· · · · · · · ·				<u>†</u>				╉╋	┿	++		\vdash	╋╋	++	┿	
						†				++	┿			┝╋╴	++	++	++	
						1	+			++		++		┝╌╋╼	++	++	+	
										++	-	++	+		++	++	┼┼	+
										+		++	+	 + -	++	++	++	+-
										$^{++}$	-	$\uparrow \uparrow$	+			++	┼╌╂	+-
										$\uparrow \uparrow$	+	\mathbf{T}	++	r†	++	++	+	+
										11	+	Ħ	++		++	++		
										Π	\top	\square				++	++	
										TT		\square			\square			\top
		·								П		\square	\top			\square		
												TT			\square	\square		
																Ш		
Special Instructions		1															П	T
Protoco	1 C				83	21 Explo	sives	only										
Possible Hazard Identification				· · · · · · · · · · · · · · · · · · ·	Sample Dispo		· · · · · · · · · · · · · · · · · · ·											
] Skin Ir	ritant 🗖 (Poison B	Unknown			— .								ed if sa		s are	
Turn Around Time Required			Poison B	QC Level	Return To		_	osal By Lab	Archive For Months	rel	laine	d lon	ger th	ian 3	month	is)		
	Other				□ <i>Ⅲ.</i>	Project	specific	Requirements (Specity)									
1. Relinquished By				Date /	, Time	1. Recei	and Ru								<u>_</u>			
1 1 7?				11/1	1235	1. Recer	veo by	DLA	Ina Di o			Dat		1.		Time	ກາ	
2. Relinguished By				<u>4///04</u> Date	Time	2. Recei	1 france	VEISED	1100 1 flue			Dat		104		08	ω	
Mr. IX. I				4/7/04	1000	1	000 Dy	Ann-	5 111 0			il	 _ ,			Time In I		
3. Relinquished By			-	Date	Time	3. Recei	red By	THAT	Uniony			ĽŢĮ	<u>alo</u>	9		<u>///</u>	5	<u> </u>
						3. 1000	. 50 Dy	-			ł	Jan	5		('	нтiê		
Comments			I]	L				<u> </u>	·	

DISTRIBUTION: WHITE - Stays with the Sample: CANARY - Returned to Client with Report. PINK - Field Copy

Chain of Custody Record

021897

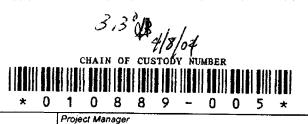
Severn Trent Laboratories, Inc.

RClient				Project Manag	er			Da	te									
E.I. Dupont De Nemours				Cary Poo	ler				3/27/2004		Pag	30		-	~5			
Address			·······	Telephone Nur	nber (Area Code)/Fax Numbe	r		b Location	-	Fag	<u>/•</u>			_ of		-11	
Barley Mill Plaza Building 27				(000)	/ (0									Ana	lysis			
City	State	Zip Code		Site Contact	/ (0	/00)			IL Denver	+-	ГТ				<u> </u>			-
Wilmington	DE	19805		TIM RATS	FP					E			i I					
Project Number/Name				Carrier/Waybill				······································										
BAK				1						P								
Contract/Purchase Order/Quote Number				, .						- 8								
CONTRACT / PURCHASE ORDER # :	7035-	507355-7720	0071.81	0-65011					010000	3								
Sample I.D. Number and Description					Co	ntainers	·	Γ	<u>OUOTE: 39097</u>	- 2								
	n	Date	Time	Sample Type	Volume	Туре	No.	Preservative	Condition on Receipt/Comments									
BAR-G-30380N-INFLOW		416/04	1312	WATER	11.	AMBER	7,10.	None			+	++	+-	\vdash	╉╌╂		++	
					11	AMPEN	· 	NONE		$+\overline{z}$	+	┽╍╁		\vdash	┽╌╄╴	┽┽		+
							+			+	+	┽╉	-+	┢─┼─	++	++	-+-+	
							+			╀╂	-+-	+	+	┢╾┼╴	╉╋	┼╌╂	- -	+-
							+			╉╋	+	++	-+!	\vdash	╉┯╋	╉╋	+	
						<u> </u>				╉	┿	++	+	┢╼╋╍	╉╌┾╴	╋╋	╶┾╌┼	
									·····	╉╋	+	╆╋	+	⊢ −	++	┽┼	┼┼	+
	_					t				╂╌╂	+	╉┦	+	\vdash	╆┿	╉╉	++	+
										++	+	┼╋	++	-+-	╀╋	╉╌╂╴	┽╋	+
					-					++	+	┼┼	-+	-+-	╋╋	+	╉╋	+-
										╋╌╋	+	┿╋	-+-+	-+-	╋╼╋╴	+	+++	-+-
										+	+	++	-+-+	-+-	╆┼╴	╋╋	+	+
										+	+	\mathbf{H}	++		+-+-	++	╈	+
										\dagger	+	$\uparrow \uparrow$	++	+	++	╋╋	┽┼	
											+	++	++	+	++-	++	┼┼	+
Special Instructions										† †	+-	<u>†</u> +		+		╀╌╄╴	╋	
Special instructions Protoco	1 C				3.3	321 Explo	Sives	onty		1. I		<u></u>	t		<u></u>	4 . 1		<u> </u>
Possible Hazard Identification								onry										
-	-			_	Sample Dispo					(4	fan	mau	ha ar	POPPI	ed if sa	amolo	D 360	—
Turn Around Time Required	Skin li	rritant L F	^p oison B		Return To			oosal By Lab 🛛 🚺	Archive For Months						month		5 910	
] Other_			QC Level		Project S	Specific	Requirements (S)	oecify)									
1. Relinquished By	Other_				□ <i>Ⅲ.</i>													
1.1 - 2			1	Date	Time	1. Recei	ved By	$\cap I$	I'M TA			Date		1		Time		
2 Relinguished By				<u>4/1/04</u>	1235	- 7	in	Ratel	Allow KI Scal			4	161	164		<u> </u>	30	$\mathcal{O}_{\mathbb{C}}$
					Time	2. Recei	ved By	1	1. 115			Date	°/	Γ.		Time		
3 Relinquished By				4/7/04	1000			Hann (Dmall			4	18/	04	/	015	-	
			1	Date	Time	3. Recei	ved By	· ····				Date	e			Time		
Comments					1													
								· · · · · · · · · · · · · · · · · · ·	·									

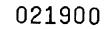
DISTRIBUTION: WHITE - Stays with the Sample: CANARY - Returned to Client with Report: PINK - Field Copy

Chain of	Custody
Record	-
ы Бтгата (1202)	

021896


Severn Trent Laboratories, Inc.

Client				Project Manag		0 0	<u>^</u>	D	ate	- <u></u>		·····						
E.I. Dupont De Nemours				Cary Poo	ler				3/27/2004		Pag	e			of			
Address					nber (Area Code,)/Fax Number			ab Location					<u> </u>				
Barley Mill Plaza Building 27				(000)	/ (0	00)			TL Denver				1	4 <i>nal</i> j	ysis			
City	State	Zip Code		Site Contact				1_ <u>~</u>		E	T	TT			\square	П		
Wilmington	DE	19805		TIM RATS	F.P													
Project Number/Name				Carrier/Waybill						11				1				
BAR				1						P								
Contract/Purchase Order/Quote Number										- ^								
CONTRACT / PURCHASE ORDER # :	7035-	507355-7721	0007181	0-65011					00075. 20005	3								
	1		1	Containart														
Sample I.D. Number and Description	n	Date	Time	Sample Type	Volume	Type	No.	Preservative	Condition on Receipt/Comments									
BAR-G-30300N-INFLOW		416/04	1220	WATER		1				↓╹	-+-	╋╋	++		++-	\vdash	┟┼┼	
0 00000 ATT201		410101	130	MALEK	1L	AMBER	2	None		- <u> x</u>	+	╂┼	++		┝╌┠╌	\vdash	╂╌┼╌┼	
			-			· · ·	+	 		++	-+-	┢┼╴	┿┽		┢┼╴	┝╌┟─	┥┥┥	
							+			┿		\vdash	+++		\vdash	┝-┥	+++	<u> </u>
			<u> </u>				+	<u> </u>		++		++	++	+	\vdash	┝╼┠╌	┝╋╋	
			1							++	+	++	┽┽	+-'	┟╌┠━╵	┝╋╴	┞┼┼	
			<u> </u>				+			++	+-	┢╌┟╴	╆┽	┉╋┉┙	++	\vdash		_
		•					+			++		++	╉┯┽		┟╌╊╾┘	┢╌╂━╵		_
						ŀ				┿		┢╌┿╴	++	-+'	┝╼╋┙	┍╼┼╼┙	┝╌┼╴	_
			<u>† </u>							┿╋		┝╌┼╴	┿		$\left + + \right\rangle$	┍┥┙	┝╌┟╌┟	_
										++	+-	┝─┼─	++	+	H	┢╍╄╌┦	╞╄┼	-
		· · · · · · · · · · · · · · · · · · ·								++	+	╞┼╋	╇		H	┍┼┦	┝╌┝╌┾	-
		· · · · · · · · · · · · · · · · · · ·								╉╼╋	+-	┢┼┾╸	╉╇	-+	H	┍╼╂╼┦	┟──┼──┼	
										╆╋	+-	┝╍╆╍	╉╍┽		┝╋╋	┍┼┦		—
										┢╋		++	╉╍┾	-+	┍╼╂╌┦	+	┝╌┼╌┿	-
			f							╋╋	+	\vdash	╀╋	+	+	-+-		
Special Instructions Protoco	<u>1</u>						I/	L	_L			L						-
	a t				33	321 Explo	sives	only										
Possible Hazard Identification					Sample Dispo	osal												
Non-Hazard Flammable	🗋 Skin li	ritant 🔲	Poison B	Unknown	Return To	Client	🗖 Disi	oosal By Lab	Archive For Months						d if sai month:		are	
Turn Around Time Required				QC Level				Requirements (:								<u> </u>		-
Normal Rush	Other_				🗆 III.		•	,										
1. Relinguished By				Date	Time	1. Recei	ved By	~	,			Date				ime		-
In par							n	Dates	MA ANUL			4	1/	Inc.		081	(γ)	
2. Relinquished By				Date	Time	2. Recei		- DUNIN	a court			, Date	101	ρ 7		ime	$\overline{\mathcal{O}}$	-
Marcus Duch				4/2/04	1000		•	Stans	Dinall		1	11	12/1	1		101	5	
3. Relinquished By	r			Date	Time	3. Recei	ved By		umary		i	Dete	<u>40</u>	7		ime	م	-
							-		•									
Comments				······										·				-


С3

STRIBUTION: WHITE - Stays with the Sample: CANARY - Returned to Client with Report: PINK - Field Copy

³ Chain of Custody **Record** TL4149 (1202)

Severn Trent Laboratories, Inc.

Client					0 0		<u>^</u>									
			Project Manage	er			Da	ate	Т							
E.I. Dupont De Nemours			Cary P					03/27/2004		Pag	ae _			ہ د_	Ŧ	
Address			Telephone Nur	nber (Area Code)	/Fax Number		La	b Location	+					<u> </u>	<u> </u>	
Barley Mill Plaza Building 2	7		(000)	/	(000)			STL Denver					An	alysi	s	
City	State Zip Code		Site Contact				I		+	L.T	—	ГТ	—	<u> </u>	T T	
Wilmington	DE 1980:	5	TIM RA	TSEP												
Project Number/Name			Carrier/Waybill	Number					-	X						
BAR										P						
Contract/Purchase Order/Quote Number							•••		-1	8						
CONTRACT / PURCHASE ORDER #	: 7035-507355-1	72000/3	LBIO-65011					01075. 20002		3		11				
		1		Con	lainers		1	QUOTE: 39097	-	2	-	11				
Sample I.D. Number and Description	on Date	Time	Sample Type	Volume	Туре	No.	Preservative	Condition on Receipt/Comments		1		11				
BAR-G-73280H-INFLOW	4/6/04	124K	WATER	11	AMBER	170.	2 None		+	L	+-4	┝╌┠╴	+		\vdash	
		4010	- MAILA	1 .	ANDER		2 None	······	╁╌╁	x	+	┝┻╋		\square		
		1			·····		{		\downarrow		\square	\square	┽┥	$- \square$		\square
		1							╉╌╂		┯┥	-+	$\downarrow \downarrow$			
			<u> </u>			┼───			$\downarrow \downarrow$	_	┿┥	\perp	┥┥┥			$ \downarrow \downarrow $
									\square	\perp	\square		\square			
		+			·····				\square		\square		\square			
		+									\square		\downarrow			
		<u> </u>				ļ						1	\square		\square	
											\square					
			I								\square					
		 														
															TT	
pecial Instructions			·							Τ	\square	T	FT	TT		
Proto	col C				8321 Exp	losiv	es only				.		•••	<u> </u>		1 1
ssible Hazard Identification																
			-	Sample Dispo					(Δ	foo		he a		nd if	sample	
Non-Hazard Flammable	Skin Irritant	Poison B		Return To		🗌 Disp		Archive For Months	ret	aine	d lor	iger t	han :	зеа II з 3 тол	tampie ths)	es are
	-		QC Lavel		Project S	Specific	Requirements (S	pecify)				-				
	Other	·		<u> </u>			:									
Relinquished By			Date //	Time	1. Receiv			1. 2. 1	/		Dat	91	1	······	Time	!
Tod 2m2			4/1/24	1235	1	a	Kakes	Mun & Duck /	-		4	11.	10	\mathbf{V}	08	$\mathcal{O}\mathcal{O}$
Relinguished By			Date	∧ ^{Time}	2. Receiv	red By		A. IT	· .		Dat	- 7	Ť	<u>, 1</u>	Time	,
In 1 Duck			4/7/04	1000			Marin	() ind V			4	18	10 2	1	16	215
Relinquished By			Date	Time	3. Receiv	red By	m			······	Dat	~/		ł	Time	
								-			ĺ					
a manafa																
omments								······································								

Chain of Custody				CUSTODY NI				SEVERN TRENT ST	Ĺ			()2:	190	01
Record								Severn Trent Laborator	'ies	, In	Ç.				
TL4449 (1202)		* 0		89-	0 0	6	*								
Client			Project Manager					Date	T						
E.I. Dupont De Nemours			Cary Po	oler				03/27/2004		Page	,	6	of _		-++-
Address			Telephone Num	ber (Area Code)/	Fax Number			Lab Location				Anaiy	(eic		
Barley Mill Plaza Building 27 City			(000)		(000)			STL Denver	┶	 ,			-313		
City	State Zip Code		Site Contact							E					
Wilmington Project Number/Name	DE 19805		Carrier/Waybill N							x					
										P					
BAR Contract/Purchase Order/Quote Number			<u> </u>						-	s					
CONTRACT / PURCHASE ORDER # :	7035-507355-7	7200071	BT0-65011					OUOTE: 39097							
	_		1	Con	tainers				-	1					
Sample I D. Number and Description		Time	Sample Type	Volume	Туре	No.	Preservati	ve Condition on Receipt/Comments	1						
BAR-G-72730H-INFLOW	4/6/04	1205	WATER	11.	AMBER		2 None		TT	x					
		Ļ				ļ			\square						
		 				 			$\downarrow \downarrow$	$\downarrow \downarrow$	-+-+		\vdash	\perp	
			├ 		· · · · · · · · · · · · · · · · · · ·				┿┽	++		++	┝╋╤╋	╶┾╍┽╴	++
		<u> </u>	}						┽╂	++	++	╺╁╌┼╌┦	┝┼╧┼	╶┾┼╸	++
		+				+			┼╋	++	++	┽┽┙	┍╌╂╌╁	╺╉╶╂╍	++-
		+	1			1			++	++		┽╂┦	┍╶╂╌┼	╉╋	++-
		1	11		·····	1			++	++	++	+++			
									$\uparrow \uparrow$					117	
		<u> </u>	 			 			+	\downarrow]			
		_						· · · · · · · · · · · · · · · · · · ·	++		$\downarrow\downarrow$	++		\square	
									++			┽┼┤		+	
		+	}			<u> </u>			╉╋	++	-+-+	+++		┼┼╴	++-
Special Instructions Proto	col C		<u>ا</u>	.• .•	8321 Exp	losi	ves only				<u>i</u>	_		_ <u></u> ,	_
Possible Hazard Identification		. —	_	Sample Dispo		_						assesse			e
	Skin Irritant	Poison B		Return To			spos <mark>a</mark> l By Lab ic Requirement	Archive For Months	rel	tained	longer	than 3 r	nonths) 	
Turn Around Time Required				D III.	Frojeci	Specin	c requirement	s (Specny)							
Normal Rush Rush	Other		Date , /	Time	1. Rece	ived B	×	1		 I	Date ,	1)	Til Til	ne	
In In			41.104	1235		m	Rates	o/Mu / Duch/			<u> </u>	6/04		080	0
2 Relinquisted By			1 4/7/04		2. Rece	ived B	And	n Rivell			Date	64		пе 1 / Г	-
3. Relinquished By	:		Date	Time	3. Rece	ived B	y				Dáte		Tir	пе	······ !
Comments	<u> </u>		1							L					
N															
DISTRIBUTION: WHITE - Stave with the Sam	ple CANARY - Returne	ed to Clier	nt with Report: PINI	K - Field Copy								· · · · ·			

Ŋ

Chain of Custody Record

3

Ħ

021906

Severn Trent Laboratories, Inc.

TL4149 (1202)			* 0	1 0 8	89-	0 1	1	*			· • • •							
H Client				Project Manage	31			1	Date	<u> </u>				<u> </u>				—
E.I. Dupont De Nemours				Cary P	ooler				03/27/2004		Pag	e		11	of			
Address				Telephone Nun	nber (Area Code)	/Fax Number			Lab Location	+	<u></u>		—					—
Barley Mill Plaza Building 2				(000)	1	(000)			STL Denver					Anal	ysis			
City	State	Zip Code		Site Contact	······					+	E	ТТ			TT			<u> </u>
Wilmington	DE	19805		TIM RA	TSEP						x							Ì
Project Number/Name				Carrier/Waybill	Number					- 1	D D							l
BAR											8							1
Contract/Purchase Order/Quote Number										-	3							Į
CONTRACT / PURCHASE ORDER #	: 703	5-507355-7	72000/1	.BIO-65011					QUOTE: 39097		2							
Sample I.D. Number and Description					Cor	ntainers				-	- -							
		Date	Time	Sample Type	Volume	Туре	No.	Preservativ	e Condition on Receipt/Comments	;								
BAR-G-72730H -INFLOW-MS		4/6/04	1205	WATER	11	ANBER		2 None		┽╂	X	┼┼	++	┍╼╋─	┢┼┿	+	┼┼┥	
BAR-G-72730H -INFLOW-MSD		416104	1205	WATER	11	AMBER		2 None		-+-+	x	╋╍╋	++	_ 	┢┼┿	+	╉╼┼╶┤	_
							†	2 110114		┿╋	4	┢┼	++	·	┢┼┼		+++	
							1			++	-+	┢╋	++		⊢	╀┼	+++	—
										++	+	┝╋	┽╉	-+	┢┈┝┈	+	┿┽╌╆	
						·				++	+	┢┼┼	++	-	┝╋╴	┝╌┢╌	+++	
										┽╋	+-	┢┼╴	++		┢╋		┨╂╉	-
										┼╋	╺╉╌┤	┢╶╊╸	++		┝┼╴	┠╌┠┈	╉╋╋	
							•			++	-+	┢┼┼	+	+	\vdash	$\left[+ \right]$	┼┼┼	
										++	╶╋╼┥	┢╌╋╴	++	-+	┝╌┠─	╞╌┟╴	┼┼╀	—
										++	+	\vdash	╋	-+-		╞╌┠╍	┿┥╉	-
										++	+	\vdash	++	┿	┝╌┨━╸		┼┼┼	—
					······					++	-+	⊢╀	┼╋	┯	┝╌┼─╴		┼┼┼	-
										++		┝╼╄╍	++	++	+	\vdash	┟╌┽╍┠	—
										++	-+-+	┍╾╋╾	╉╼╋			┝─┟─	╄╌╋╌╀	
								·····		++	╉┩	<u>-+-</u>	++	+	┍╾╂─┦		┝╼┟╶┟	
Special Instructions Proto	col C				L	9001 E			·							<u> </u>	I	-
						8321 Exp	10517	es only										
Possible Hazard Identification					Sample Dispo	sal	<u></u>				<u> </u>			••••••				—
Non-Hazard Flammable	Skin Ir	ritant	Poison B	🔲 Unknown	Return To	Client	🗌 Disp	osal By Lab	Archive For Months	(A rei	fee n tainer	nay b Lionc)e ass oer th	sesse an 3 i	d if sai month:	mples si	are	
Turn Around Time Required				QC Lavel			pecific	Requirements	(Specify)									-
Normal Rush	Other_				🗆 III.													
1 Relinquished By				Date	Time	1. Receiv	yed By	<u> </u>				Date			7	ime		
Bril gen				4/1/04	1235	77	m	Ratse	DIAm I Durk			41	6/	64	$' \mid c$	180	Ó	
2. Relinguished By				Date	Time	2. Receiv	ved By		12.110			Date		Ť.		ime		
Ma- & Dull				4/7/04	1000			Almon	Dursell			41	18/2	14		101	5	
3. Relinquished By				Date	Time	3. Receiv	red By		Chang		l	Date				ime		
Commente	_																	·
Comments																		-

DISTRIBUTION: WHITE - Stays with the Sample: CANARY - Returned to Client with Report: PINK - Field Copy

Chain of Custody Record

3

021902

Severn Trent Laboratories, Inc.

Client			Project Manage	er			Da	ate	Т								
E.I. Dupont De Nemours			Cary P					03/27/2004		Pag	1e			_7 0	f		
Address			Telephone Nun	ber (Area Code).	/Fax Number		La	b Location	+					<u> </u>			
Barley Mill Plaza Building 2	7		(000)	/	(000)			STL Denver					An	alysi:	S		
City	State Zip Code		Site Contact		í												
Wilmington	DE 1980:	s	TIM RAT	TSEP						E.							
Project Number/Name			Carrier/Waybill							X							
BAR										P							
Contract/Purchase Order/Quote Number			<u></u>							8							
CONTRACT / PURCHASE ORDER #	: 7035-507355-1	772000 /3	1810-65013							3							i.
		// <u>2000/</u>	LB10-03011				1	QUOTE: 39097		2					i		
Sample I.D. Number and Description	on Date	Time	Sample Type		tainers		Preservative	Condition on Receipt/Comments		1							
BAR-G-72860H-INFLOW	4/10/04	1220		Volume	Туре	No.				L							
BAR-G- /2800n-INFLOW		1235	WATER	11	AMBER	_	2 None			x							\Box
			┟┈┈╼╼╾╁								\Box		Π			\square	Г
			ļ							Γ	$\Box T$	T	TT				Γ
			<u> </u>							T	\square	T		+1	\square	\square	T
										1	\square	T	\square	11	++		t
										+	\square	1	$\uparrow \uparrow$	++	-++		t
										+		-	Ħ	++	-+-+		┢
										-+-	<u>+</u> -+-	++		++	-++	┟┄╄━╸	┢
										+	++	-+	┢╋╋	┽╋	++	┝╋╋	┢─
		T							-	+	┢┼┼	+-	┢╍┽	++	┽┥	┟╌╂┯┙	⊢
									+	+	┢╌╁╴	-+	┢┼	+++	-+-+	┍╶┠┿┥	-
									+	-+-	┟┼╴	÷	┢┼	++	++		┢─
									-+	+	┝╌┼╴	-+	┝╌┝	┿╃	┽┤	_ <u>_</u>	\vdash
		1	ł							╇	┝╼╉╴		┟╌╊	╺┽╾┼	++	4	<u> </u>
									-	+	\vdash	+	\vdash	╉┽	┽┽		┣
		+							_	+	\vdash		\vdash	++	$\downarrow \downarrow$		<u> </u>
Special Instructions		1									L		L	Ш	\square		L
Proto	col C			•	8321 Exp	losiv	es only										
Possible Hazard Identification	·····			Sample Dispo													
	Skin Irritant	Poison B		1			-	-	(A	fee i	nay t)e as	5855	ed if s	sampli	es are	,
Furn Around Time Required		Poison B	Unknown QC Level	Return To				Archive For Months	ret	aine	t long	ger th	han 3	3 mont	lhs)		
	٦		1	F	Project S	pecific	Requirements (S)	pecify)									
Normal Rush [Other			<u> </u>													
Ind pri			Date 4/1/011	Time /235	1. Receiv	yed By	Deter	Man Dr.	/	1	Date		<u>_</u>	\mathcal{J}	Time	80	r.
Relinguished By			Date UMM/04	Time 1000	2. Receiv		dana -	2: Il		ا ا	Date		\overline{L}	7 I 1	Time		
3. Relinguished By	-		Date	Time	J. Receiv	nd O.	_ (077(()MALL			<u>_</u> /	'8/	04	<u></u>	<u>[0[</u>	<u>'</u>)	
			Care	1 4110	J. Kecen	еа ву	•	- (Date	•			Time		
Comments				• <u>•</u> •••••							. <u> </u>					 .	

Chain	of	Custody
Recor	-	-

:3

021903

Severn Trent Laboratories, Inc.

TL4149 (1202)		1	* 0			÷ .			Severn Trent Laboratori	ies	, Ir	IC.					
Client			× 0	Project Manage	89-	0 0	8	*				. ,					
								10	Date								
E.I. Dupont De Nemours				Cary Po	boler (Area Code)	/ au Alumbaa			03/27/2004		Pag	e		8	of .		
								L L	ab Location				,	Inaly	- ie		
Barley Mill Plaza Building 2 City	State	Zip Code		(000) Site Contact	/	(000)			STL Denver				~	mary	5/5		
•											E						TT
Wilmington Project Number/Name	DE	19805		TIM RAT Carrier/Waybill					·		x						
BAR					10111001						P						
Contract/Purchase Order/Quote Number											8						
CONTRACT / PURCHASE ORDER #	: 703	5-507355-77	2000/1	BIO-65011					00000.00000		3						
Sample I.D. Number and Descripti					Con	tainers		[QUOTE: 39097		2						
Sample I.D. Number and Description	011	Date	Time	Sample Type	Volume	Туре	No.	Preservative	Condition on Receipt/Comments	.							
BAR-G-72790H-INFLOW		4/6/04	1220	WATER	11	AMBER	1	2 None		╞┼╏	L K	r+	++	┿┦	++		++
										t†ť		-+-	++	++	╺┼╶┤	-+-	\vdash
			<u> </u>								\top	-+-	$\uparrow \uparrow$	┼╀	┥┦		\vdash
												+	++-	++	┼╌┦	++	┢╋╍
											1-1		++	++			\vdash
														$\uparrow \uparrow$	++		\square
						·					T		\square	\mathbf{T}	++		
														TT			
						•				_	\square		\square	$\downarrow \downarrow$			
										_	\downarrow		\vdash	$\downarrow \downarrow$	\downarrow		<u> </u>
										_	+	- -	┟╁╴	++	┶┶		1
									+		┼┼	+-	\vdash	++	++	-	
		· · · · · · · · · · · · · · · · · · ·									╀╉	+	┝╌┼╌	╄╋	┿╋	┿┼	
pecial Instructions Proto	ocol C	······				8321 Exp	losiv	es only	<u> </u>						11	<u> </u>	
ossible Hazard Identification								·									
	🔲 Skin l		Poison B	🔲 Unknown	Sample Dispo		-			(A f	ee m	ay be) asse	essed	if sam	ples a	are
urn Around Time Required			013011 8	QC Level	Return To			oosal By Lab Requirements (Archive For Months	reta	ined	longe	er thai	n 3 m	onths		
_	C Other				□ <i>III</i> .	1 10/061 3	<i>pcon/</i> 6	nagunements (opecny)								
Relinquished By				Date	Time	1. Receiv	ed Bv	· · · · · · · ·	1 ii Ti A			Date			Tir		
Bal Jan				4/104	1236	1 1	m	Detroi	Mar I Bull.	/		4	4.1.	54) 80	2 7
Rélinquistred By				Date	Time	2. Receiv		nat set	1 1 mary			- 4 Date	914	; -	<u> </u>		$\overline{\mathbf{U}}$
Mar Louly				4/1/0/	1000		-	Harm	Dindel			4/	8/1	4		01ª	5
Relinquished By				Date	Time	3. Receiv	ed By					Date	4		Tin		
	·			l													
Comments	· · ·										I						
				with Report PINK													

μ ned to Client with Report: PINK - Field Copy

Ci	ha	in	of	Cus	tody	
R	ĕc	or	d			

021905

ŧ

Severn Trent Laboratories, Inc.

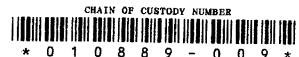
₽ ₩149 (1202)			1 0 8	89-				Severn Irent Laborato	103	,	ν.					
ent		<u> </u>	Project Manage			0		Date								
							1-			-						
1. Dupont De Nemours			Cary Po	ber (Area Code)/	Fax Number		·······	03/27/2004 Lab Location		Page	?		10 °	of		-11
							1-					Aı	nalysi	is		
arley Mill Plaza Building 27	State Zip Code		(000) Site Contact		000)		l	STL Denver	+							
r i i i i i i i i i i i i i i i i i i i										E						
lmington Ject Number/Name	DE 19805		TIM RAT				·		_ ‡	X						
ect numbermanie			Carrienveayour	10111001						P						
AR htract/Purchase Order/Quote Number			<u> </u>						41	8						
										3						
NTRACT / PURCHASE ORDER # :	7035-507355-7	72000/1	B10-65011	0	4 - 1		<u>, </u>	OUOTE: 39097	- :	2						
Sample I.D. Number and Description	n Date	Time	Sample Type		tainers	No.	Preservative	e Condition on Receipt/Comments		1						
n ano Aul	- Itilat			Volume	Туре	NO.			╇			┢┼┝	┢┼┝	\downarrow		1
BAR-G-72790H-INFLOW-DUP	4/6/04	1220	WATER	1L	AMBER	<u> </u>	2 None		∔ -₽	×	+	┢╌┝╴	┟┼┷	+	$\downarrow \downarrow$	∔
		+							++	+		┢╌┿╌	₊₊	+	++	╇
		4							++			₊	┢┥┝	╂╌┟┈	\square	╇
									╉╌╂╴	+		\vdash	\vdash	┢╌┝		+-
		+							╉╂	+		┢╼┟─	\vdash	_	_⊢	4-
									╋╌┟╴	+		┢╌┠╌	++	\downarrow		+
									╉╌╁╸	+-+		┟┥┥╸	\vdash	┟╻╃┈	╞╌┠╴	∔
		4					ł		++	+		┢╼╁━╵	\vdash	┟┈┟┈	<mark>↓ </mark>	+
		+							╋╌┠╴	╉┥		┝╾┠─╴╵	$\left + \right $			+
							<u> </u>	· · · · · · · · · · · · · · · · · · ·	++	+		┝╼╋╾╵	\vdash	++		÷
							<u> </u>		+ +	++		┝╼╋╼┙	┢╌┠╌	┟╌┟╾╸		┢
									+	++		┝╍┠╌┙	\vdash	┦╌┥╴		_
							<u> </u>		++	+ +		┝╋╋┙	┢━╂━╵		┝╌╿╌╸	+
						<u> </u>			+	+		┍╼╂╌┦	┟╼┼━╴╵	┝╶┟╴╽		+
									╋╌╁╴	╉╋		┍─╂─┦	┢╾╋╾╵	+ + -		+-
cial Instructions			l		<u></u>	[L						لـلـــ			1
Proto	col C				8321 Exp	losiv	es only									
sible Hazard Identification	······			Sample Dispo	sai			· · · · · · · · · · · · · · · · · · ·		<u> </u>					_	
	Skin Irritant	Poison B				🗖 nis	posal By Lab	Archive For Months				e asses er than		samp	les ar	e
n Around Time Required			QC Level				Requirements		, etc	aneo	lange	i (nan	3 110	minsj		
	Other			🗆 III.		,	•									
Relinguished By			, Date	Time	1. Recei	ived By	-	1 0 1			Date			Time	•	
X Y P			4/1/04	1235		n	Po fear	Marceis Dudley				6/1	1		80	r?
Relinquished By			Date		2. Recei	ived By	No 13	/ Maries Prolley		<u> </u>	/ Date	भू	¥	Time	_	<u>~</u>
Mr-1 h ls/			4/7/04	1000			daine	1 A in all			4	8/A	21		215	~
Relinquished By			Date	Time	3. Recei	ived By	_ / junion	Camer			Date	e fu	7	, Time		<u>`</u>
						-,	•	-		ľ						
omments			1							L	· · ·			1		
			with Report: PINI													

021899

Severn Trent Laboratories, Inc.

SIL4149 (1202)			* 0	108	89-	0 0	4	*									
Client				Project Manag	er			D	ate	T							
E.I. Dupont De Nemours				Cary P	ooler				03/27/2004		Page	.			of _		
Address				Telephone Nu	mber (Area Code)	/Fax Number		Li	ab Location	<u> </u>	uge						
Barley Mill Plaza Building	27			(000)	1	(000)			STL Denver	1			A	nalys	sis		
City	State	Zip Code		Site Contact					SIL Denver			<u> </u>			- T T		
Wilmington	DE	19805		TIM RA	TSEP						E						
Project Number/Name				Carrier/Waybill						ΗĒ	x						
BAR																	
Contract/Purchase Order/Quote Number										11							
CONTRACT / PURCHASE ORDER #	: 703	5-507355-73	200071	BI0-65011							3						
	1		.		Con	tainers			QUOTE: 39097	1	2						
Sample I.D. Number and Descript	tion	Date	Time	Sample Type	Volume	Type	No.	Preservative	Condition on Receipt/Comments								
BAR-G-30600N-INFLOW		4/7/04	0958	WATER	11							+	┢┼┢╴	┿	┥┥		┢┼╄╼╵
		11 1121		WAILK		AMBER	+	2 None		+	4	 '	\square	++		+	┟╌┿╼┙
							<u> </u>			┥┥┥	+		ЦĿ	\downarrow		+	\square
									+	\square	+		┢┷┟┷	$\downarrow \downarrow$	++	+	\square
								· · · · · · · · · · · · · · · · · · ·		\square			\vdash	┿╇	+		\square
	+					<u> </u>		·		┢╌╽╴	++		\vdash	┿╍┝	+ +	++	
										\square	\downarrow	_	\square	┶┶			i l
										\square	\downarrow		\square	$\downarrow \downarrow$			ЦJ
											\downarrow	\square	\square	\square			
· · · · · · · · · · · · · · · · · · ·										LL.	\square		LL.				
	+					·····							\square				
													il.				
			<u> </u>														
······································																	
Special Instructions																	
Prot	ocol e				:	3321 Exp	losiv	es only									
Possible Hazard Identification																	
	🔲 Skin Ir		Poison B		Sample Dispo					(A I	iee m	av be	asses	ssed	f sam	oles a	are
Turn Around Time Required			oison B	QC Level	Return To				Archive For Months	reta	ined	longe	er than	1 3 mc	onths)	·	
				1	— —	Project S	pecific	Requirements (S	Specify)								
Relinquished By		-		Date / /	<u> </u>				······································								-
96.8 4 2			1	4/1/04	Time	1. Receiv		21	In To I	_		Date	1.1	,	1 Tin		- ~
2. Relinquished By	/			Date .	1235 Time	-11.		KCTRE	DITTh & Duely				610	14	_	<u>Ə</u> 81	∞
M- DAL	, ,	×		11- last		2. Receiv	red By	1	VR. IT O		1	Date	1.7		Tim	ie a	
3. Relinquished By				411104	1000	_		Stann	Mall			4/8	310	4	1	01	5
			1	Date	Time	3. Receiv	ed By	/ (1	Date	,		Tim	ie	
Comments																	

3.1°48 4/8/04


CHAIN OF CUSTODY NUMBER

Chain of Custody Record

n V

Chain of Custody Record

Э

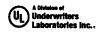
021904

Severn Trent Laboratories, Inc.

RClient				Project Manage														
E.I. Dupont De Nemours				Cary P							.							
Address					nber (Area Code)/	Fax Number		la	03/27/2004 b Location		Pa	<u> 78 –</u>			.9 0	or		<u></u>
Barley Mill Plaza Building 2	7			(000)		000)								An.	alys	is		
City	State	Zip Code		Site Contact	/ /	0001			STL Denver	-		 -		 ,				
Wilmington	DE	19805		TIM RA	TEFD						E							
Project Number/Name	- L			Carrier/Waybill						-	х							
BAR											Р							
Contract/Purchase Order/Quote Number				1						41	8							
CONTRACT / PURCHASE ORDER #	: 703	5-507355-77	2000/L	BIO-65011					QUOTE: 39097		3 2							
Sample I.D. Number and Description		Date	Time	Sample Type Containers Preservat					-				11					
			,,,,,	Sample Type	Volume	Туре	No.	Preservative	Condition on Receipt/Comments		;		11					
BAR-G-73300BC-INFLOW				WATER		AMBER		2-None	Not sampled	++	X	┿┙	┢┼╋	++		┿╋	++	++-
										╉┽	^	┽┦	┌┼ -	╉┼	-+-	╀╌╂╌	┿╍╄	++-
								······	·····	+	-	╇┥	-+-	++		+	┼╌╄	++-
										╋	╉	╉┩	-+-	╋	-+	┼╌┼╴	+ +	
										+		╉╾┩	+	++	-+	┟╌┞╴	╉╂	++-
										++	╋	+	-+-	┿┽	+	┠━┼╌	╋╋	
										╀╋	-+-	╇┥	+	++		┝╌┞╌	+ $+$	++-
										╉╂		+	+	╉╌╄	+	╽╌╿╴	╉╋	- }-
										┼┼	-	+	-+-	╀╋		┞┼╴	++	++-
				1						╉╋	+	┼┥	-	┼╌╋	-+-		+	
										╋	+	┿╾┿	+	┾╍╋	+		┼╌╂	++
										┥┥	+	╄╌┥	╋	╀╋	+		┼╌┼	++-+
										++	+	++	+-	┼┼			+	++-
									·····	╆╌╋	+	┢┥	-+-	╀╌╄╸				++-
										++	+	┢┥		┢┼┢	+		╆╌╊	- -
							-+			╆╌┼	+	\mathbb{H}	+-	┢┼┾			┥┦	++-
Special Instructions Proto	col C					321 Expl				1		Ц						
Possible Hazard Identification							0.51.74	cs only										
-		-			Sample Dispos					//	60.0							
Non-Hazard Flammable	Skin In	itant L P	oison B	Unknown	Return To (osal By Lab	Archive For Months	rel	aine	d lor	be as iger ti	han :	sea it 3 moi	samp hths)	nes a	re
	- ר			QC Level		Project S	pecific I	Requirements (Sp	pecify)				<u> </u>					
1. Relinquished By	Other_				<u> </u>													
			1	Date	Time	1. Receiv			Into A	1		Dat	e ,			Tim	e	
2. Relinquished By				4/1/24	1235	Tin	$\underline{\lambda e}$	atsen 1	Wan & Duel	/		4	1/6	,10	4	Õ	80	Ø
M. ON 0.			1	Date	Time	2. Receiv	ed By	~	2. 1.1			Dat		f	<u> </u>	Time		
3 Relinquished By			[4 MOY	1000			Hetton c	Dindly			4	18 i	94	ī	11	119	-
a channel and the system of th			1	Date	Time	3. Receiv	ed By	1		-	ني معروب	Dat	e	-		Time	÷ – –	
Comments											1	ĺ						
												<u> </u>	~~~			L		

DSTRIBUTION: WHITE - Stays with the Sample: CANARY - Returned to Client with Report: PINK - Field Copy

Environmental Health Laboratories The Nation's Drinking Water Laboratory Division of Underwriters Laboratories Inc.


> 110 South Hill Street South Bend, IN 46617 Phone: (574) 233-4777 Fax: (574) 233-8207

LABORATORY REPORT

This report contains 0/ pages. (including the cover page)

If you have any questions concerning this report, please do not hesitate to call us at 1-800-332-4345 or 574-233-4777.

This report may not be reproduced, except in full, without written approval from Environmental Health Laboratories (EHL). EHL is accredited by the National Environmental Laboratory Accreditation Program (NELAP).

	110 S. Hill Street South Bend, IN 46617 574.233.4777
Environmental Health Laboratories The Nation's Drinking Water Laboratory	800.332.4345 Fax: 574.233.8207 www.chl.cc
LABORATORY REPOR	т
Client: URS Delaware Attn: Sharon Nordstrom	Report : 1023135-37(35)
AUN: Sharon Nordstrom ADQM Services Barley Mill Plaza Building # 27 4417 Lancaster Pike	Priority: Standard Written
Wilmington, DE 19805	Status: Final
Sampling Point: Barksdale Offsite 4/04 / BAR-G-29600N-INFLOV Samples Submitted: One drinking water sample Copies to: None	N
Collected Date: 04/06/04 Time: 13:30 By: Client	Received Date: 04/08/04 Time: 09:40

REPORT SUMMARY

None of the VOCs included in the detailed parameter list were detected in the sample submitted for analysis.

Detailed quantitative results are presented on the following page.

12 ·

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call us at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from Environmental Health Laboratories (EHL). EHL is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory. These results may not meet the NELAP standard but satisfy the requirements for this project.

Reviewed By:

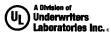
Willin Rever Section Manger Date: 4/20/04

Finalized By:

P.M

41-20-04 Date:

Sampling Point: Barksdale Offsite 4/04 / BAR-G-29600N-INFLOW


	Report				Report	
PARAMETER	Limit **	Result	MCL	PARAMETER	Limit **	Result
	(ug/L)	(ug/L)	(ug/L)		(ug/L)	(ug/L)
Regulated Pa		and the second sec		Unregulated Paramet	ers	
Benzene	0.5	< 0.5	5	2-Chlorotoluene (o-)	0.5	< 0.5
Bromodichloromethane	0.5	< 0.5	80 *	4-Chlorotoluene (p-)	0.5	< 0.5
Bromoform	0.5	< 0.5	80 *	Dibromomethane	0.5	< 0.5
Carbon tetrachloride	0.5	< 0.5	5	1,3-Dichlorobenzene	0.5	< 0.5
Chlorobenzene	0.5	< 0.5	100	trans-1,4-Dichloro-2-butylene	5.0	< 5.0
Chloroform	0.5	< 0.5	80 *	Dichlorodifluoromethane	0.5	< 0.5
Dibromochloromethane	0.5	< 0.5	80 *	1,1-Dichloroethane	0.5	< 0.5
1,2-Dibromo-3-Chloropropane	0.2	< 0.2	0.2 †	1,3-Dichloropropane	0.5	< 0.5
1,2-Dibromoethane(EDB)	0.2	< 0.2	0.05 †	2,2-Dichloropropane	0.5	< 0.5
1,2-Dichlorobenzene	0.5	< 0.5	6 0 0	1,1-Dichloropropanone	5.0	< 5.0
1,4-Dichlorobenzene	0.5	< 0.5	75	1,1-Dichloropropylene	0.5	< 0.5
1,2-Dichloroethane	0.5	< 0.5	5	cis-1,3-Dichloropropylene	0.5	< 0.5
1,1-Dichloroethylene	0.5	< 0.5	7	trans-1,3-Dichloropropylene	0.5	< 0.5
cis-1,2-Dichloroethylene	0.5	< 0.5	70	Diethyl ether	5.0	< 5.0
trans-1,2-Dichloroethylene	0.5	< 0.5	100	Ethyl methacrylate	1.0	< 1.0
Dichloromethane	0.5	< 0.5	5	Hexachlorobutadiene	0.5	< 0.5
1,2-Dichloropropane	0.5	< 0.5	5	Hexachloroethane	2.0	< 2.0
Ethylbenzene	0.5	< 0.5	700	2-Hexanone	5.0	< 5.0
Styrene	0.5	< 0.5	100	Isopropylbenzene	0.5	< 0.5
Tetrachloroethylene	0.5	< 0.5	5	4-Isopropyltoluene (p-)	0.5	< 0.5
Toluene	0.5	< 0.5	1000	Methacrylonitrile	5.0	< 5.0
1,2,4-Trichlorobenzene	0.5	< 0.5	70	Methylacrylate	1.0	< 1.0
1,1,1-Trichloroethane	0.5	< 0.5	200	Methyl iodide (lodomethane)	2.0	< 2.0
1,1,2-Trichloroethane	0.5	< 0.5	5	Methylmethacrylate	1.0	< 1.0
Trichloroethylene	0.5	< 0.5	5	4-Methyl-2-pentanone (MIBK)	2.0	< 2.0
Vinyl chloride	0.2	< 0.2	2	Methyl-t-butyl ether (MTBE)	0.5	< 0.5
Total Xylenes	0.2	< 0.2	10,000	Naphthalene	0.5	< 0.5
Unregulated P	arameters	3		Nitrobenzene	5.0	< 5.0
Acetone	5.0	< 5.0		2-Nitropropane	2.0	< 2.0
Acrylonitrile	1.0	< 1.0		Pentachloroethane	2.0	< 2.0
Allyl chloride	5.0	< 5.0		Propionitrile	5.0	< 5.0
Bromobenzene	0.5	< 0.5		n-Propylbenzene	0.5	< 0.5
Bromochloromethane	0.5	< 0.5		1,1,1,2-Tetrachloroethane	0.5	< 0.5
Bromomethane	0.5	< 0.5		1,1,2,2-Tetrachloroethane	0.5	< 0.5
2-Butanone (MEK)	5.0	< 5.0		1,1,2-Trichloro-1,2,2-trifluoroethane	0.5	< 0.5
n-Butylbenzene	0.5	< 0.5		Tetrahydrofuran	5.0	< 5.0
ec-Butylbenzene	0.5	< 0.5		1,2,3-Trichlorobenzene	0.5	< 0.5
ert-Butylbenzene	0.5	< 0.5		Trichlorofluoromethane	0.5	< 0.5
Carbon disulfide	5.0	< 5.0		1,2,3-Trichloropropane	0.5	< 0.5
Chloroacetonitrile	5.0	< 5.0		1,2,3-Trimethylbenzene	0.5	< 0.5
I-Chlorobutane	5.0	< 5.0		1,2,4-Trimethylbenzene	0.5	< 0.5
Chloroethane	0.5	< 0.5		1,3,5-Trimethylbenzene	0.5	< 0.5
Chloromethane	0.5	< 0.5			0.0	
Method: 524.2				Analysis Date: 04/14/04	L	

Analysis Date: 04/14/04

* The MCL of 80 ug/L is for total trihalomethanes and compliance samples must be collected from the distribution system.

** EHL has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

† Compliance monitoring for these parameters must be done using EPA method 504.1

Environmental Health Labo	unaterrise		110 S. Hill Street South Bend, IN 46617 574.233.4777 800.332.4345					
The Nation's Drinking Water Laborato			Fax: 574.233.8207 www.chl.cc					
	LABORATORY F	REPORT						
Client: URS Delaware Attn: Sharon Nordstrom		Report : 102313	5-37(36)					
ADQM Services Barley Mill Plaza 4417 Lancaster Pike	a Building # 27	Priority: Standard Written						
Wilmington, DE 19805		Status: Final						
Sampling Point: Barksdale Offsite 4/04	/ BAR-G-30900N-I	NFLOW						
Samples Submitted: One drinking water	sample							
Copies to: None								
Collected Date: 04/06/04 Time: 16:45	By: Client	Rece Date: 04/08/04						
REPORT SUMMARY								

None of the VOCs included in the detailed parameter list were detected in the sample submitted for analysis.

Detailed quantitative results are presented on the following page.

N 100.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call us at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from Environmental Health Laboratories (EHL). EHL is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory. These results may not meet the NELAP standard but satisfy the requirements for this project.

Reviewed By:

Finalized By:

William Reeven Section Manager Date: 4/20/04 hV. P.M. Date: 41-20-04

Client: URS Delaware

Sampling Point: Barksdale Offsite 4/04 / BAR-G-30900N-INFLOW

PARAMETER	Report Limit **		MCL	PARAMETER	Report Limit **	Resul
	(ug/L)	(ug/L)	(ug/L)		(ug/L)	(ug/L)
Regulated Pa	arameters		1	Unregulated Paramet	ters	
Benzene	0.5	< 0.5	5	2-Chlorotoluene (o-)	0.5	< 0.5
Bromodichloromethane	0.5	< 0.5	80 *	4-Chlorotoluene (p-)	0.5	< 0.5
Bromoform	0.5	< 0.5	80 *	Dibromomethane	0.5	< 0.5
Carbon tetrachloride	0.5	< 0.5	5	1,3-Dichlorobenzene	0.5	< 0.5
Chlorobenzene	0.5	< 0.5	100	trans-1,4-Dichloro-2-butylene	5.0	< 5.0
Chloroform	0.5	< 0.5	80 *	Dichlorodifluoromethane	0.5	< 0.5
Dibromochloromethane	0.5	< 0.5	80 *	1,1-Dichloroethane	0.5	< 0.5
1,2-Dibromo-3-Chloropropane	0.2	< 0.2	0.2 †	1,3-Dichloropropane	0.5	< 0.5
1,2-Dibromoethane(EDB)	0.2	< 0.2	0.05 †	2,2-Dichloropropane	0.5	< 0.5
1,2-Dichlorobenzene	0.5	< 0.5	600	1,1-Dichloropropanone	5.0	< 5.0
1,4-Dichlorobenzene	0.5	< 0.5	75	1,1-Dichloropropylene	0.5	< 0.5
1,2-Dichloroethane	0.5	< 0.5	5	cis-1,3-Dichloropropylene	0.5	< 0.5
1,1-Dichloroethylene	0.5	< 0.5	7	trans-1,3-Dichloropropylene	0.5	< 0.5
cis-1,2-Dichloroethylene	0.5	< 0.5	70	Diethyl ether	5.0	< 5.0
trans-1,2-Dichloroethylene	0.5	< 0.5	100	Ethyl methacrylate	1.0	< 1.0
Dichloromethane	0.5	< 0.5	5	Hexachlorobutadiene	0.5	< 0.5
1,2-Dichloropropane	0.5	< 0.5	5	Hexachloroethane	2.0	< 2.0
Ethylbenzene	0.5	< 0.5	700	2-Hexanone	5.0	< 5.0
Styrene	0.5	< 0.5	100	Isopropylbenzene	0.5	< 0.5
Tetrachloroethylene	0.5	< 0.5	5	4-Isopropyltoluene (p-)	0.5	< 0.5
Toluene	0.5	< 0.5	1000	Methacrylonitrile	5.0	< 5.0
1,2,4-Trichlorobenzene	0.5	< 0.5	70	Methylacrylate	1.0	< 1.0
1,1,1-Trichloroethane	0.5	< 0.5	200	Methyl iodide (lodomethane)	2.0	< 2.0
1,1,2-Trichloroethane	0.5	< 0.5	5	Methylmethacrylate	1.0	< 1.0
Trichloroethylene	0.5	< 0.5	5	4-Methyl-2-pentanone (MIBK)	2.0	< 2.0
Vinyl chloride	0.2	< 0.2	2	Methyl-t-butyl ether (MTBE)	0.5	< 0.5
Total Xylenes	0.2	< 0.2	10,000	Naphthalene	0.5	< 0.5
Unregulated P				Nitrobenzene	5.0	< 5.0
Acetone	5.0	< 5.0		2-Nitropropane	2.0	< 2.0
Acrylonitrile	1.0	< 1.0		Pentachloroethane	2.0	< 2.0
Allyl chloride	5.0	< 5.0		Propionitrile	5.0	< 5.0
Bromobenzene	0.5	< 0.5		n-Propylbenzene	0.5	< 0.5
Bromochloromethane	0.5	< 0.5		1,1,1,2-Tetrachloroethane	0.5	< 0.5
Bromomethane	0.5	< 0.5		1,1,2,2-Tetrachloroethane	0.5	< 0.5
2-Butanone (MEK)	5.0	< 5.0		1,1,2-Trichloro-1,2,2-trifluoroethane	0.5	< 0.5
-Butylbenzene	0.5	< 0.5		Tetrahydrofuran	5.0	< 5.0
sec-Butylbenzene	0.5	< 0.5		1,2,3-Trichlorobenzene	0.5	< 0.5
ert-Butylbenzene	0.5	< 0.5		Trichlorofluoromethane	0.5	< 0.5
Carbon disulfide	5.0	< 5.0		1,2,3-Trichloropropane	0.5	< 0.5
Chloroacetonitrile	5.0	< 5.0		1,2,3-Trimethylbenzene	0.5	< 0.5
-Chlorobutane	5.0	< 5.0		1,2,4-Trimethylbenzene	0.5	< 0.5
Chloroethane	0.5	< 0.5		1,3,5-Trimethylbenzene	0.5	< 0.5 < 0.5
Chloromethane	0.5	< 0.5			0.5	<u> </u>
Method: 524.2	0.5	< 0.0		Analysis Date: 04/14/04		

Method: 524.2

Analysis Date: 04/14/04

* The MCL of 80 ug/L is for total trihalomethanes and compliance samples must be collected from the distribution system.

** EHL has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

† Compliance monitoring for these parameters must be done using EPA method 504.1

Environmental Health Labor The Nation's Drinking Water Laborator			 110 S. Hill Street South Bend, IN 46617 574.233.4777 800.332.4345 Fax: 574.233.8207 www.ehl.cc
	LABORATORY REPOR	т	
Client: URS Delaware Attn: Sharon Nordstrom		Report : 102313	5-37(37)
AUN. Sharon Nordstrom ADQM Services Barley Mill Plaza 4417 Lancaster Pike	Building # 27	Priority: Standar	d Written
Wilmington, DE 19805		Status: Final	
Sampling Point: Laboratory Trip Blank			
Samples Submitted: One reagent water	sample		
Copies to: None			
Collected Date: 03/31/04 Time: 08:20	By: EHL	Rec Date: 04/08/04	eived Time: 09:40
		· · ·	

SUMMARY

None of the VOCs included in the detailed parameter list were detected in the sample submitted for analysis.

Detailed quantitative results are presented on the following page.

We appreciate the opportunity to provide you with this analysis. If you have any questions concerning this report, please do not hesitate to call us at (574) 233-4777.

Note: This report may not be reproduced, except in full, without written approval from Environmental Health Laboratories (EHL). EHL is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory. These results may not meet the NELAP standard but satisfy the requirements for this project.

Reviewed By:

Within Reener Section Manager Date: 4/20/04

Finalized By:

Date: 04 7

Sampling Point: Laboratory Trip Blank

	Report				Report	
PARAMETER	Limit **	Result	MCL	PARAMETER	Limit **	Resul
	(ug/L)	(ug/L)	(ug/L)		(ug/L)	(ug/L)
Regulated P		and the second		Unregulated Paramet	ers	
Benzene	0.5	< 0.5	5	2-Chlorotoluene (o-)	0.5	< 0.5
Bromodichloromethane	0.5	< 0.5	80 *	4-Chlorotoluene (p-)	0.5	< 0.5
Bromoform	0.5	< 0.5	80 *	Dibromomethane	0.5	< 0.5
Carbon tetrachloride	0.5	< 0.5	5	1,3-Dichlorobenzene	0.5	< 0.5
Chlorobenzene	0.5	< 0.5	100	trans-1,4-Dichloro-2-butylene	5.0	< 5.0
Chloroform	0.5	< 0.5	80 *	Dichlorodifluoromethane	0.5	< 0.5
Dibromochloromethane	0.5	< 0.5	80 *	1,1-Dichloroethane	0.5	< 0.5
1,2-Dibromo-3-Chloropropane	0.2	< 0.2	0.2 †	1,3-Dichloropropane	0.5	< 0.5
1,2-Dibromoethane(EDB)	0.2	< 0.2	0.05 †	2,2-Dichloropropane	0.5	< 0.5
1,2-Dichlorobenzene	0.5	< 0.5	600	1,1-Dichloropropanone	5.0	< 5.0
1,4-Dichlorobenzene	0.5	< 0.5	75	1,1-Dichloropropylene	0.5	< 0.5
1,2-Dichloroethane	0.5	< 0.5	5	cis-1,3-Dichloropropylene	0.5	< 0.5
1,1-Dichloroethylene	0.5	< 0.5	7	trans-1,3-Dichloropropylene	0.5	< 0.5
cis-1,2-Dichloroethylene	0.5	< 0.5	70	Diethyl ether	5.0	< 5.0
trans-1,2-Dichloroethylene	0.5	< 0.5	100	Ethyl methacrylate	1.0	< 1.0
Dichloromethane	0.5	< 0.5	5	Hexachlorobutadiene	0.5	< 0.5
1,2-Dichloropropane	0.5	< 0.5	5	Hexachloroethane	2.0	< 2.0
Ethylbenzene	0.5	< 0.5	700	2-Hexanone	5.0	< 5.0
Styrene	0.5	< 0.5	100	Isopropylbenzene	0.5	< 0.5
Tetrachloroethylene	0.5	< 0.5	5	4-Isopropyltoluene (p-)	0.5	< 0.5
Toluene	0.5	< 0.5	1000	Methacrylonitrile	5.0	< 5.0
1,2,4-Trichlorobenzene	0.5	< 0.5	70	Methylacrylate	1.0	< 1.0
1,1,1-Trichloroethane	0.5	< 0.5	200	Methyl iodide (lodomethane)	2.0	< 2.0
1,1,2-Trichloroethane	0.5	< 0.5	5	Methylmethacrylate	1.0	< 1.0
Trichloroethylene	0.5	< 0.5	5	4-Methyl-2-pentanone (MIBK)	2.0	< 2.0
Vinyl chloride	0.2	< 0.2	2	Methyl-t-butyl ether (MTBE)	0.5	< 0.5
Total Xylenes	0.2	< 0.2	10,000	Naphthalene	0.5	< 0.5
Unregulated F	Parameters	\$	4	Nitrobenzene	5.0	< 5.0
Acetone	5.0	< 5.0		2-Nitropropane	2.0	< 2.0
Acrylonitrile	1.0	< 1.0		Pentachloroethane	2.0	< 2.0
Allyl chloride	5.0	< 5.0		Propionitrile	5.0	< 5.0
Bromobenzene	0.5	< 0.5		n-Propylbenzene	0.5	< 0.5
Bromochloromethane	0.5	< 0.5		1,1,1,2-Tetrachloroethane	0.5	< 0.5
Bromomethane	0.5	< 0.5		1,1,2,2-Tetrachloroethane	0.5	< 0.5
2-Butanone (MEK)	5.0	< 5.0	 	1,1,2-Trichloro-1,2,2-trifluoroethane	0.5	< 0.5
n-Butylbenzene	0.5	< 0.5		Tetrahydrofuran	5.0	< 5.0
sec-Butylbenzene	0.5	< 0.5		1,2,3-Trichlorobenzene	0.5	< 0.5
ert-Butylbenzene	0.5	< 0.5		Trichlorofluoromethane	0.5	< 0.5
Carbon disulfide	5.0	< 5.0		1,2,3-Trichloropropane	0.5	< 0.5
Chloroacetonitrile	5.0	< 5.0		1,2,3-Trimethylbenzene	0.5	< 0.5
1-Chlorobutane	5.0	< 5.0		1,2,4-Trimethylbenzene	0.5	< 0.5
Chloroethane	0.5	< 0.5		1,3,5-Trimethylbenzene	0.5	< 0.5
Chloromethane	0.5	< 0.5				

Method: 524.2

Analysis Date: 04/14/04

* The MCL of 80 ug/L is for total trihalomethanes and compliance samples must be collected from the distribution system.

** EHL has demonstrated it can achieve these report limits in reagent water, but can not document them in all sample matrices.

† Compliance monitoring for these parameters must be done using EPA method 504.1

Env He	vironment alth Labo	tal ratories South Bend (800) 332-4	, IN 46617	A Division of Underwrite	rs	Pléase print See back for exam	ple docun	nenie		
The N	Nation's Drinking	Water Laboratory Fax (574) 2.	33-8207	Laboratorie	es Inc.	ORDER #	812			
	IED AREA FOR LA		I OF CUS	TODY RE	CORD	PAGE		DF	/	
CLIENT/COMPANY ORD DuPont COMPLIANCE MONITOI	· .	NO	$\sum_{i=1}^{n}$	STATE (of Sample Origin)		ROJECT NAME Barksdale DFF Site 4/04	D#	CONTAINERS	CODE	TURNAROUND TIME
EHL C LAB# DAT	OLLECTION E TIME	Sampling site			T NAME	SAMPLE REMARKS	Chlorinated Yes No	# OF (•
1023135 46 1023136 4	04 1330 - 2	SAR-G-29600N-IN	vFIOW	VộC				3	ws	
1023137 33	/ 1695 AM (MDD	CAR-G-30900N-T LTB	NFIDW					37	W S Rev	ω
	AM PM			V		-		-	<u>hir</u>	
	AM PM				······································	· · · · · · · · · · · · · · · · · · ·				
	AM PM			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		ļ		
	AM PM			·····	· · · · · · · · · · · · · · · · · · ·					
	AM PM		· · · · · · · · · · · · · · · · · · ·					$\left - \right $		
	AM PM					-				-
	AM PM	· · · · · · · · · · · · · · · · · · ·								
	AM PM	····								
	AM PM									
FIELD COMMENTS:	CARRIER	AIRBILL NO)		COOLER NO	DATE SH	IPPED			_
REUNQUISHED BY: (Signa	ture) DATE TIM		DATE TIME	LAB RESER		RETURN UNUSED P SAMPLES TO CLIENT.	ORTIONS	DF		7
RELINOUISHED BY ISIgna	· · · · · · · · · · · · · · · · · · ·		DATE TIME	LAB COMMENTS						
And	- 4/7/01AM	20 PM	AM PM							
RELINQUISHED DX: (Signal	ure) DATE TIM	drand	DATE TIME 44 8 AM PM		NECEIPT: (Check On		°C Upon Re	ceipt		
MATRIX CODES:	I I			JND TIME (TAT) -	SURCHARGES					-
	RV*= RUSH (5 W RW* = RUSH (5) WRITTEN (15 WORKING DAYS) 0% /ORKING DAYS) VERBAL 50% 5 WORKING DAYS) WRITTEN 75% lited services not available for all services.	IV * = immediate	e (3 working days) veri E (3 working days) wri	BAL 100% STAT ITEN 125% Sampl	* = LESS THAN 48 HOURS es received unannounced with les g time remaining may be subject Irges.		-		

-

Environmental Health Laboratories Run Log

Run Id: 64157 Method: 524.2 Analyst: conn

Туре	Sample Id	File Name	Sample Site	<u>Matrix</u>	Analysis <u>Date</u>	Analysis <u>Time</u>
LMB	1023811	MB-524A	Not Available	RW	04/14/2004	08:57
LFB	1023812	FB-524A	Not Available	RW	04/14/2004	09:34
CCC	1023813	C-5-13A	Not Available	RW	04/14/2004	10:10
LTB	1023137	L1023137	LTB	RW	04/14/2004	12:10
FS	1023135	1023135	BAR-G-29600N-INFLOW	DW	04/14/2004	12:47
FS	1023136	1023136	BAR-G-30900N-INFLOW	DW	04/14/2004	13:23
QCS	1025233	Q-524A	Not Available	RW	04/15/2004	03:35

Environmental Health Laboratories Laboratory Method Blank

Sample Matrix: RW Acquisition File: Not Available Data Directory: 041404A Instrument: ITD - C Extracted Date: Not Available Sample Number: 1023811 Dilution Factor: 1 Sample Site: Not Available Sample Location: Not Available

Method: 524.2 Calibration File: 524 2-040504C-up1.mth Analysis Date: 04/14/2004 Analysis Time: 08:57 Analyst: conn Results Submitted By: conn Run Number: 64157

Sample Quality Control

		CCC				IC		
Internal Standards <u>Parameter</u>	Area	CCC <u>Area</u>	% L	irea imits Pass vr Upr / Fail	IC Avg <u>Area</u>	% <u>Res</u>	Area Limits Pass <u>p Lwr Upr</u> / Fail	
IS-1,4-Difluorobenzene	270820	270481	100 70	130 PASS	Not Fo	ound N/A	N/A N/A N/A	
Surrogate Standards <u>Parameter</u>	Amount	<u>Units</u>	<u>Target</u>	<u>%Rec</u>	Lim <u>Lower</u>	its <u>Upper</u>	Pass/Fail	
SS-1,2-Dichlorobenzene-d4 SS-1,2-Dichloroethane-d4 SS-Bromofluorobenzene SS-Toluene-d8	9.233 9.978 4.725 9.728	ug/L ug/L ug/L ug/L	10 10 5.0 10	92 100 94 97	70 70 70 70	130 130 130 130	PASS PASS PASS PASS	

Ordered Parameter Results

Parameter	Amount	MRL	<u>Units</u>
1,1,1,2-Tetrachloroethane	< 0.5	0.5	ug/L
1,1,1-Trichloroethane	< 0.5	0.5	ug/L
1,1,2,2-Tetrachloroethane	< 0.5	0.5	ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.5	0.5	ug/L
1,1,2-Trichloroethane	< 0.5	0.5	ug/L
1,1-Dichloroethane	< 0.5	0.5	ug/L
1,1-Dichloroethylene	< 0.5	0.5	ug/L
1,1-Dichloropropanone	< 5.0	5.0	ug/L
1,1-Dichloropropylene	< 0.5	0.5	ug/L
1,2,3-Trichlorobenzene	< 0.5	0.5	ug/L
1,2,3-Trichloropropane	< 0.5	0.5	ug/L
1,2,3-Trimethylbenzene	< 0.5	0.5	ug/L
1,2,4-Trichlorobenzene	< 0.5	0.5	ug/L
1,2,4-Trimethylbenzene	< 0.5	0.5	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	< 0.2	0.2	ug/L
1,2-Dibromoethane (EDB)	< 0.2	0.2	ug/L
1,2-Dichlorobenzene	< 0.5	0.5	ug/L
1,2-Dichloroethane	< 0.5	0.5	ug/L
1,2-Dichloropropane	< 0.5	0.5	ug/L
1,2-Xylene	< 0.5	0.5	ug/L
1,3,5-Trimethylbenzene	< 0.5	0.5	ug/L
1,3-Dichlorobenzene	< 0.5	0.5	ug/L

1,3-Dichloropropane	< 0.5	0.5	ug/L
1,3-Xylene	< 0.5	0.5	ug/L
1,4-Dichlorobenzene	< 0.5	0.5	ug/L
1,4-Xylene	< 0.5	0.5	ug/L
1-Chlorobutane	< 5.0	5.0	ug/L
2,2-Dichloropropane	< 0.5	0.5	ug/L
2-Butanone (MEK)	< 5.0	5.0	ug/L
2-Chlorotoluene	< 0.5	0.5	ug/L
2-Hexanone	< 5.0	5.0	ug/L
2-Nitropropane	< 2.0	2.0	ug/L
4-Chiorotoluene	< 0.5	0.5	ug/L
4-Isopropyitoluene	< 0.5	0.5	ug/L
4-Methyl-2-pentanone (MIBK)	< 2.0	2.0	ug/L
Acetone	< 5.0	5.0	ug/L
Acrylonitrile	< 1.0	1.0	ug/L
Allyl chloride	< 5.0	5.0	ug/L
Benzene	< 0.5	0.5	ug/L
Bromobenzene	< 0.5	0.5	ug/L
Bromochloromethane	< 0.5	0.5	ug/L
Bromodichloromethane	< 0.5	0.5	ug/L
Bromoform	< 0.5	0.5	ug/L
Bromomethane	< 0.5	0.5	ug/L
Carbon disulfide	< 5.0	5.0	ug/L
Carbon tetrachloride	< 0.5	0.5	ug/L
Chloroacetonitrile	< 5.0	5.0	ug/L
Chlorobenzene	< 0.5	0.5	ug/L
Chloroethane	< 0.5	0.5	ug/L
Chloroform	< 0.5	0.5	ug/L
Chloromethane	< 0.5	0.5	ug/L
Dibromochloromethane	< 0.5	0.5	ug/L
Dibromomethane	< 0.5	0.5	ug/L
Dichlorodifluoromethane	< 0.5	0.5	ug/L
Dichloromethane	< 0.5	0.5	ug/L
Ethyl Ether	< 2.0	2.0	ug/L
Ethyi methacrylate	< 1.0	1.0	ug/L
Ethylbenzene	< 0.5	0.5	ug/L
Hexachlorobutadiene	< 0.5	0.5	ug/L
Hexachloroethane	< 2.0	2.0	ug/L
lsopropylbenzene	< 0.5	0.5	ug/L
Methacrylonitrile	< 5.0	5.0	ug/L
Methyl iodide	< 2.0	2.0	ug/L
Methyl-t-butyl ether (MTBE)	< 0.5	0.5	ug/L
Methylacrylate	< 1.0	1.0	ug/L
Methylmethacrylate	< 1.0	1.0	ug/L
Naphthalene	< 0.5	0.5	ug/L
Nitrobenzene	< 5.0	5.0	ug/L
Pentachloroethane	< 2.0	2.0	ug/L
Propionitrile	< 5.0	5.0	ug/L
Styrene	< 0.5	0.5	ug/L
Tetrachloroethylene	< 0.5	0.5	ug/L
Tetrahydrofuran	< 5.0	5.0	ug/L
Toluene	< 0.5	0.5	ug/L
Trichloroethylene	< 0.5	0.5	ug/L
Trichlorofluoromethane	< 0.5	0.5	ug/L
Vinyl chloride	< 0.2	0.2	ug/L
Xylenes, Total	< 0.5	0.5	ug/L
cis-1,2-Dichloroethylene	< 0.5	0.5	ug/L
cis-1,3-Dichloropropylene	< 0.5	0.5	ug/L
n-Butylbenzene	< 0.5	0.5	ug/L
-			v

n-Propylbenzene	< 0.5	0.5	ug/L
sec-Butylbenzene	< 0.5	0.5	ug/L
tert-Butylbenzene	< 0.5	0.5	ug/L
trans-1,2-Dichloroethylene	< 0.5	0.5	ug/L
trans-1,3-Dichloropropylene	< 0.5	0.5	ug/L
trans-1,4-Dichloro-2-butylene	< 5.0	5.0	ug/L

Additional Found Parameters

<u>Parameter</u>	<u>Amount</u>	MRL	<u>Units</u>

The symbol * in the Amount column above indicates that the sample was re-analyzed for that parameter and the results are presented on another page.

Environmental Health Laboratories Laboratory Fortified Blank

Sample Matrix: RW Acquisition File: Not Available Data Directory: 041404A Today's Date: 04/19/2004 Instrument: ITD - C Extracted Date: Not Available Sample Number: 1023812

Method: 524.2 Calibration File: 524 2-040504C-up1.mth Analysis Date: 04/14/2004 Analysis Time: 09:34 Analyst: conn Results Submitted By: conn Run Number: 64157

Sample Quality Control

		IC CCC					
Internal Standards <u>Parameter</u>	Area	CCC <u>Area</u>	% L	Area Limits Pass wr Upr / Fai		% <u>Res</u> i	Area Limits Pass <u>p Lwr Upr / Fail</u>
IS-1,4-Difluorobenzene	271430	270481	100 70	0 130 PAS	S 29691	2 91	50 150 PASS
Surrogate Standards <u>Parameter</u>	Amount	<u>Units</u>	Target	<u>%Rec</u>	Lim <u>Lower</u>	its <u>Upper</u>	<u>Pass/Fail</u>
SS-1,2-Dichlorobenzene-d4 SS-1,2-Dichloroethane-d4 SS-Bromofluorobenzene SS-Toluene-d8	9.605 10.188 5.013 9.827	ug/L ug/L ug/L ug/L	10 10 5.0 10	96 102 100 98	70 70 70 70	130 130 130 130	PASS PASS PASS PASS

				Limits			
Parameter	<u>Amount</u>	<u>Units</u>	<u>Target</u>	<u>%Rec</u>	<u>Lower</u>	<u>Upper</u>	<u>Pass/Fail</u>
1,1,1,2-Tetrachloroethane	1.951	ug/L	2.0	98	70	130	PASS
1,1,1-Trichloroethane	1.881	ug/L	2.0	94	70	130	PASS
1,1,2,2-Tetrachloroethane	1.948	ug/L	2.0	97	70	130	PASS
1,1,2-Trichloroethane	2.013	ug/L	2.0	101	70	130	PASS
1,1-Dichloroethane	1.84	ug/L	2.0	92	70	130	PASS
1,1-Dichloroethylene	1.88	ug/L	2.0	94	70	130	PASS
1,1-Dichloropropylene	1.859	ug/L	2.0	93	70	130	PASS
1,2,3-Trichlorobenzene	1.768	ug/L	2.0	88	70	130	PASS
1,2,3-Trichloropropane	1.848	ug/L	2.0	92	70	130	PASS
1,2,4-Trichlorobenzene	1.794	ug/L	2.0	90	70	130	PASS
1,2,4-Trimethylbenzene	1.728	ug/L	2.0	86	70	130	PASS
2-Chlorotoluene	1.94	ug/L	2.0	97	70	130	PASS
1,2-Dibromoethane (EDB)	1.971	ug/L	2.0	99	70	130	PASS
1,2-Dibromo-3-chloropropane (DBCP)	1.978	ug/L	2.0	99	70	130	PASS
1,2-Dichlorobenzene	1.823	ug/L	2.0	91	70	130	PASS
1,2-Dichloroethane	1.957	ug/L	2.0	98	70	130	PASS
1,2-Dichloropropane	1.757	ug/L	2.0	88	70	130	PASS
1,2-Xylene	1.819	ug/L	2.0	91	70	130	PASS
1,3,5-Trimethylbenzene	1.788	ug/L	2.0	89	70	130	PASS
1,3-Dichlorobenzene	1.799	ug/L	2.0	90	70	130	PASS
1,3-Dichloropropane	1.955	ug/L	2.0	98	70	130	PASS
1,3-Xylene	3.656	ug/L	4.0	91	70	130	PASS
4-Chlorotoluene	1.881	ug/L	2.0	94	70	130	PASS

1,4-Dichlorobenzene	1.799	ug/L	2.0	90	70	130	PASS
4-isopropyltoluene	1.819	ug/L	2.0	91	70	130	PASS
1,4-Xylene	3.656	ug/L	4.0	91	70	130	PASS
2,2-Dichloropropane	1.941	ug/L	2.0	97	70	130	PASS
Benzene	1.882	ug/L	2.0	94	70	130	PASS
Bromobenzene	1.9	ug/L	2.0	95	70	130	PASS
Bromochloromethane	1.967	ug/L	2.0	98	70	130	PASS
Bromodichloromethane	1.923	ug/L	2.0	96	70	130	PASS
Bromoform	2.008	ug/L	2.0	100	70	130	PASS
Bromomethane	1.743	ug/L	2.0	87	70	130	PASS
Carbon tetrachloride	1.812	ug/L	2.0	91	70	130	PASS
Chlorobenzene	1.915	ug/L	2.0	96	70	130	PASS
Chloroethane	2.39	ug/L	2.0	120	70	130	PASS
Chloroform	1.886	ug/L	2.0	94	70	130	PASS
Chloromethane	1.762	ug/L	2.0	88	70	130	PASS
cis-1,2-Dichloroethylene	1.928	ug/L	2.0	96	70	130	PASS
cis-1,3-Dichloropropylene	1.977	ug/L	2.0	99	70	130	PASS
Dibromochloromethane	1.921	ug/L	2.0	96	70	130	PASS
Dibromomethane	1.979	ug/L	2.0	99	70	130	PASS
Dichlorodifluoromethane	1.813	ug/L	2.0	91	70	130	PASS
Dichloromethane	1.971	ug/L	2.0	99	70	130	PASS
Ethylbenzene	1.88	ug/L	2.0	94	70	130	PASS
Hexachlorobutadiene	1.815	ug/L	2.0	91	70	130	PASS
Isopropylbenzene	1.859	ug/L	2.0	93	70	130	PASS
Methyl-t-butyl ether (MTBE)	2.049	ug/L	2.0	102	70	130	PASS
Naphthalene	1.699	ug/L	2.0	85	70	130	PASS
n-Butylbenzene	1.698	ug/L	2.0	85	70	130	PASS
n-Propylbenzene	1.849	ug/L	2.0	92	70	130	PASS
sec-Butylbenzene	1.827	ug/L	2.0	91	70	130	PASS
Styrene	1.765	ug/L	2.0	88	70	130	PASS
tert-Butylbenzene	1.882	ug/L	2.0	94	70	130	PASS
Tetrachloroethylene	1.735	ug/L	2.0	87	70	130	PASS
Toluene	1.896	ug/L	2.0	95	70	130	PASS
trans-1,2-Dichloroethylene	1.863	ug/L	2.0	93	70	130	PASS
trans-1,3-Dichloropropylene	2.031	ug/L	2.0	102	70	130	PASS
Trichloroethylene	1.858	ug/L	2.0	93	70	130	PASS
Trichlorofluoromethane	1.882	ug/L	2.0	94	70	130	PASS
Vinyl chloride	1.608	ug/L	2.0	80	70	130	PASS
Xylenes, Total	5.475	N/A	6.0	91	70	130	PASS
1,1,2-Trichloro-1,2,2-trifluoroethane	1.836	ug/L	2.0	92	70	130	PASS
1,2,3-Trimethylbenzene	1.809	ug/L	2.0	90	70	130	PASS
÷					• •		

Environmental Health Laboratories Continuing Calibration Check

Sample Matrix: RW Acquisition File: Not Available Data Directory: 041404A Today's Date: 04/19/2004 Instrument: ITD - C Extracted Date: Not Available Sample Number: 1023813 Method: 524.2 Calibration File: 524 2-040504C-up1.mth Analysis Date: 04/14/2004 Analysis Time: 10:10 Analyst: conn Results Submitted By: conn Run Number: 64157

Sample Quality Control

		IC IC					
			A	rea	IC		Area
Internal Standards		CCC	% L	imit <mark>s Pas</mark> s	Avg	%	Limits Pass
Parameter	<u>Area</u>	<u>Area</u>	<u>Resp</u> Lv	vr Upr / Fai	Area	Res	<u> Lwr Upr / Fail</u>
IS-1,4-Difluorobenzene	270481	270481	100 70	130 PAS	S 296912	2 91	50 150 PASS
Surrogate Standards	Limits						
Parameter	<u>Amount</u>	<u>Units</u>	<u>Target</u>	<u>%Rec</u>	<u>Lower</u>	<u>Upper</u>	Pass/Fail
SS-1,2-Dichlorobenzene-d4	9.764	ug/L	10	98	70	130	PASS
SS-1,2-Dichloroethane-d4	10.187	ug/L	10	102	70	130	PASS
SS-Bromofluorobenzene	5.143	ug/L	5.0	103	70	130	PASS
SS-Toluene-d8	9.917	ug/L	10	99	70	130	PASS

				Limits			
Parameter	<u>Amount</u>	<u>Units</u>	<u>Target</u>	<u>%Rec</u>	<u>Lower</u>	Upper	Pass/Fail
1,1,1,2-Tetrachloroethane	4.609	ug/L	5.0	92	70	130	PASS
1,1,1-Trichloroethane	5.328	ug/L	5.0	107	70	130	PASS
1,1,2,2-Tetrachloroethane	5.059	ug/L	5.0	101	70	130	PASS
1,1,2-Trichloroethane	5.032	ug/L	5.0	101	70	130	PASS
1,1-Dichloroethane	4.824	ug/L	5.0	96	70	130	PASS
1,1-Dichloroethylene	5.467	ug/L	5.0	109	70	130	PASS
1,1-Dichloropropanone	4.507 Not	Searched	ł	ug/L	5.0	90	70
	130	PASS		•			
1,1-Dichloropropylene	5.181	ug/L	5.0	104	70	130	PASS
1,2,3-Trichlorobenzene	4.795	ug/L	5.0	96	70	130	PASS
1,2,3-Trichloropropane	4.761	ug/L	5.0	95	70	130	PASS
1,2,4-Trichlorobenzene	4.68	ug/L	5.0	94	70	130	PASS
1,2,4-Trimethylbenzene	4.647	ug/L	5.0	93	70	130	PASS
2-Chlorotoluene	4.876	ug/L	5.0	98	70	130	PASS
1,2-Dibromoethane (EDB)	4.823	ug/L	5.0	96	70	130	PASS
1,2-Dibromo-3-chloropropane (DBCP)	5.091	ug/L	5.0	102	70	130	PASS
1,2-Dichlorobenzene	4.975	ug/L	5.0	100	70	130	PASS
1,2-Dichloroethane	4.983	ug/L	5.0	100	70	130	PASS
1,2-Dichloropropane	5.359	ug/L	5.0	107	70	130	PASS
1,2-Xylene	4.712	ug/L	5.0	94	70	130	PASS
1,3,5-Trimethylbenzene	4.666	ug/L	5.0	93	70	130	PASS
1,3-Dichlorobenzene	4.949	ug/L	5.0	99	70	130	PASS
1,3-Dichloropropane	5.03	ug/L	5.0	101	70	130	PASS

1,3-Xylene	9.814	ug/L	10	98	70	130	PASS
4-Chlorotoluene	4.973	ug/L	5.0	99	70	130	PASS
1,4-Dichlorobenzene	4.943	ug/L	5.0	99	70	130	PASS
4-Isopropyitoluene	4.874	ug/L	5.0	97	70	130	PASS
1,4-Xylene	9.814	ug/L	10	98	70	130	PASS
1-Chlorobutane	5.05	ug/L	5.0	101	70	130	PASS
2,2-Dichloropropane	5.41	ug/L	5.0	108	70	130	PASS
2-Butanone (MEK)	5.199	ug/L	5.0	104	70	130	PASS
2-Hexanone		t Searched		ug/L	5.0	97	70
	130	PASS	-		0.0	07	
2-Nitropropane	5.158	ug/L	5.0	103	70	130	PASS
4-Methyl-2-pentanone (MIBK)	5.088	ug/L	5.0	102	70	130	PASS
Acetone		Searched	ug/L	5.0	95	70	130
	PASS		-9-	0.0	00		100
Acrylonitrile	5.055	ug/L	5.0	101	70	130	PASS
Ally! chloride	5.211	ug/L	5.0	104	70	130	PASS
Benzene	4.951	ug/L	5.0	99	70	130	PASS
Bromobenzene	5.117	ug/L	5.0	102	70	130	PASS
Bromochloromethane	5.059	ug/L	5.0	101	70	130	PASS
Bromodichloromethane	4.936	ug/L	5.0	99	70	130	PASS
Bromoform	4.964	ug/L	5.0	99	70	130	PASS
Bromomethane	5.746	ug/L	5.0	55 115	70	130	PASS
Carbon disulfide	5.208	ug/L	5.0	104	70	130	PASS
Carbon tetrachloride	4.962	ug/L	5.0	99	70	130	PASS
Chloroacetonitrile		t Searched		ug/L	5.0	86	
	130	PASS		uy/L	5.0	00	70
Chlorobenzene	5.124	ug/L	5.0	102	70	130	PASS
Chloroethane	5.07	ug/L	5.0	102	70	130	PASS
Chloroform	4.985	ug/L	5.0	100	70	130	PASS
Chloromethane	5.078	ug/L	5.0	102	70	130	PASS
cis-1,2-Dichloroethylene	5.075	ug/L	5.0	102	70	130	PASS
cis-1,3-Dichloropropylene	5.163	ug/L	5.0	102	70	130	PASS
Dibromochloromethane	4.872	ug/L	5.0	97	70 70	130	PASS
Dibromomethane	5.042	ug/L	5.0	101	70	130	PASS
Dichlorodifluoromethane	5.407	ug/L	5.0	108	70	130	PASS
Dichloromethane	5.433	ug/L	5.0	109	70	130	PASS
Ethyl methacrylate	4.912	ug/L	5.0	98	70	130	PASS
Ethylbenzene	4.922	ug/L	5.0	98	70	130	PASS
Hexachlorobutadiene	4.856	ug/L	5.0	97	70	130	PASS
Hexachloroethane	5.48	ug/L	5.0	110	70	130	PASS
Isopropylbenzene	5.135	ug/L	5.0	103	70	130	PASS
Methacrylonitrile	5.076	ug/L	5.0	102	70	130	PASS
Methyl iodide	4.118	ug/L	5.0	82	70	130	PASS
Methylacrylate	4.543	ug/L	5.0	91	70	130	
Methylmethacrylate	5.048	ug/L	5.0	101	70		PASS
Methyl-t-butyl ether (MTBE)	5.172	ug/L	5.0	101		130	PASS
Naphthalene	4.437	ug/L	5.0	89	70 70	130	PASS
Nitrobenzene		Searched	5.0		70	130	PASS
	130	PASS		ug/L	5.0	97	70
n-Butylbenzene	4.717	ug/L	5.0	94	70	120	DAGO
n-Propylbenzene	4.995	ug/L	5.0	94 100	70	130	PASS
Pentachloroethane	5.178	ug/L ug/L	5.0	100	70	130	PASS
Propionitrile		Searched	5.0	ug/L	5.0	130	PASS
	130	PASS		uy/L	5.0	88	70
sec-Butylbenzene	4.891	ug/L	5.0	98	70	130	DAGO
Styrene	4.905	ug/L	5.0	98 98	70 70		PASS
tert-Butylbenzene	5.127	ug/L ug/L	5.0 5.0	98 103		130	PASS
Tetrachloroethylene	4.86	-	5.0 5.0	97	70 70	130	PASS
Tetrahydrofuran	4.86 4.734 Not		5.0		70 5 0	130	PASS
	7.704 NUL	00010100		ug/L	5.0	95	70

	130	PASS					
Toluene	4.92	ug/L	5.0	98	70	130	PASS
trans-1,2-Dichloroethylene	5.161	ug/L	5.0	103	70	130	PASS
trans-1,3-Dichloropropylene	5.249	ug/L	5.0	105	70	130	PASS
trans-1,4-Dichloro-2-butylene	5.534	ug/L	5.0	111	70	130	PASS
Trichloroethylene	5.097	ug/L	5.0	102	70	130	PASS
Trichlorofluoromethane	5.346	ug/L	5.0	107	70	130	PASS
Vinyl chloride	5.217	ug/L	5.0	104	70	130	PASS
Xylenes, Total	14.526	N/A	15	97	70	130	PASS
Ethyl Ether	5.178	ug/L	5.0	104	70	130	PASS
1,1,2-Trichloro-1,2,2-trifluoroethane	5.271	ug/L	5.0	105	70	130	PASS
1,2,3-Trimethylbenzene	4.709	ug/L	5.0	94	70	130	PASS

.

Environmental Health Laboratories Laboratory Trip Blank

Sample Matrix: RW Acquisition File: Not Available Data Directory: 041404A Instrument: ITD - C Extracted Date: Not Available Sample Number: 1023137 Dilution Factor: 1 Sample Site: LTB Sample Location: Not Available

Method: 524.2 Calibration File: 524 2-040504C-up1.mth Analysis Date: 04/14/2004 Analysis Time: 12:10 Analyst: conn Results Submitted By: conn Run Number: 64157

Sample Quality Control

		0 000 0000000	CCC			IC		
Internal Standards <u>Parameter</u>	Area	CCC <u>Area</u>	% L	irea imits Pass <u>vr Upr / Fail</u>	IC Avg <u>Area</u>	% <u>Res</u> i	Area Limits Pass <u>p Lwr Upr / Fail</u>	
IS-1,4-Difluorobenzene	247218	263271	94 70	130 PASS	Not Fo	ound N/A	N/A N/A N/A	
Surrogate Standards <u>Parameter</u>	<u>Amount</u>	<u>Units</u>	<u>Target</u>	<u>%Rec</u>	Lim <u>Lower</u>	its <u>Upper</u>	Pass/Fail	
SS-1,2-Dichlorobenzene-d4 SS-1,2-Dichloroethane-d4 SS-Bromofluorobenzene SS-Toluene-d8	9.015 9.747 4.844 10.024	ug/L ug/L ug/L ug/L	10 10 5.0 10	90 97 97 100	70 70 70 70	130 130 130 130	PASS PASS PASS PASS	

Parameter	Amount	MRL	<u>Units</u>
1,1,1,2-Tetrachloroethane	< 0.5	0.5	ug/L
1,1,1-Trichloroethane	< 0.5	0.5	ug/L
1,1,2,2-Tetrachloroethane	< 0.5	0.5	ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.5	0.5	ug/L
1,1,2-Trichloroethane	< 0.5	0.5	ug/L
1,1-Dichloroethane	< 0.5	0.5	ug/L
1,1-Dichloroethylene	< 0.5	0.5	ug/L
1,1-Dichloropropanone	< 5.0	5.0	ug/L
1,1-Dichloropropylene	< 0.5	0.5	ug/L
1,2,3-Trichlorobenzene	< 0.5	0.5	ug/L
1,2,3-Trichloropropane	< 0.5	0.5	ug/L
1,2,3-Trimethylbenzene	< 0.5	0.5	ug/L
1,2,4-Trichlorobenzene	< 0.5	0.5	ug/L
1,2,4-Trimethylbenzene	< 0.5	0.5	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	< 0.2	0.2	ug/L
1,2-Dibromoethane (EDB)	< 0.2	0.2	ug/L
1,2-Dichlorobenzene	< 0.5	0.5	ug/L
1,2-Dichloroethane	< 0.5	0.5	ug/L
1,2-Dichloropropane	< 0.5	0.5	ug/L
1,2-Xylene	< 0.5	0.5	ug/L
1,3,5-Trimethylbenzene	< 0.5	0.5	ug/L
1,3-Dichlorobenzene	< 0.5	0.5	ug/L

1,3-Dichloropropane	< 0.5	0.5	ug/L
1,3-Xylene	< 0.5	0.5	ug/L
1,4-Dichlorobenzene	< 0.5	0.5	ug/L
1,4-Xylene	< 0.5	0.5	ug/L
1-Chlorobutane	< 5.0	5.0	ug/L
2,2-Dichloropropane	< 0.5	0.5	ug/L
2-Butanone (MEK)	< 5.0	5.0	ug/L
2-Chlorotoluene	< 0.5	0.5	ug/L
2-Hexanone	< 5.0	5.0	ug/L
2-Nitropropane	< 2.0	2.0	ug/L
4-Chlorotoluene	< 0.5	0.5	ug/L
4-Isopropyltoluene	< 0.5	0.5	ug/L
4-Methyl-2-pentanone (MIBK)	< 2.0	2.0	ug/L
Acetone	< 5.0	5.0	ug/L
Acrylonitrile	< 1.0	1.0	ug/L
Allyl chloride	< 5.0	5.0	ug/L
Benzene	< 0.5	0.5	ug/L
Bromobenzene	< 0.5	0.5	ug/L
Bromochloromethane	< 0.5	0.5	ug/L
Bromodichloromethane	< 0.5	0.5	ug/L
Bromoform	< 0.5	0.5	ug/L
Bromomethane	< 0.5	0.5	ug/L
Carbon disulfide	< 5.0	5.0	ug/L
Carbon tetrachloride	< 0.5	0.5	ug/L
Chloroacetonitrile	< 5.0	5.0	ug/L
Chlorobenzene	< 0.5	0.5	ug/L
Chloroethane	< 0.5	0.5	ug/L
Chloroform	< 0.5	0.5	ug/L
Chloromethane	< 0.5	0.5	ug/L
Dibromochloromethane	< 0.5	0.5	ug/L
Dibromomethane	< 0.5	0.5	ug/L
Dichlorodifluoromethane	< 0.5	0.5	ug/L
Dichloromethane	< 0.5	0.5	ug/L
Ethyl Ether	< 2.0	2.0	ug/L
Ethyl methacrylate	< 1.0	1.0	ug/L
Ethylbenzene	< 0.5	0.5	-
Hexachlorobutadiene	< 0.5	0.5	ug/L
Hexachloroethane	< 2.0	2.0	ug/L
Isopropylbenzene	< 0.5	0.5	ug/L
Methacrylonitrile	< 5.0	5.0	ug/L
Methyl iodide	< 2.0	2.0	ug/L ug/L
Methyl-t-butyl ether (MTBE)	< 0.5	0.5	ug/L
Methylacrylate	< 1.0	1.0	ug/L
Methylmethacrylate	< 1.0	1.0	ug/L
Naphthalene	< 0.5	0.5	ug/L ug/L
Nitrobenzene	< 5.0	5.0	ug/L ug/L
Pentachloroethane	< 2.0	2.0	-
Propionitrile	< 5.0	5.0	ug/L
Styrene	< 0.5		ug/L
Tetrachloroethylene		0.5	ug/L.
Tetrahydrofuran	< 0.5	0.5	ug/L
Toluene	< 5.0	5.0	ug/L
Trichloroethylene	< 0.5	0.5	ug/L
Trichlorofluoromethane	< 0.5	0.5	ug/L
Vinyl chloride	< 0.5	0.5	ug/L
Xylenes, Total	< 0.2	0.2	ug/L
cis-1,2-Dichloroethylene	< 0.5	0.5	ug/L
-	< 0.5	0.5	ug/L
cis-1,3-Dichloropropylene n-Butylbenzene	< 0.5	0.5	ug/L
	< 0.5	0.5	ug/L

n-Propylbenzene	< 0.5	0.5	ug/L
sec-Butylbenzene	< 0.5	0.5	ug/L
tert-Butylbenzene	< 0.5	0.5	ug/L
trans-1,2-Dichloroethylene	< 0.5	0.5	ug/L
trans-1,3-Dichloropropylene	< 0.5	0.5	ug/L
trans-1,4-Dichloro-2-butylene	< 5.0	5.0	ug/L

Additional Found Parameters

<u>Parameter</u>	<u>Amount</u>	<u>MRL</u>	<u>Units</u>

The symbol * in the Amount column above indicates that the sample was re-analyzed for that parameter and the results are presented on another page.

Environmental Health Laboratories Sample Result Record Sheet

Sample Matrix: DW Acquisition File: Not Available Data Directory: 041404A Instrument: ITD - C Extracted Date: Not Available Sample Number: 1023135 Dilution Factor: 1 Sample Site: BAR-G-29600N-INFLOW Sample Location: Not Available

Method: 524.2 Calibration File: 524 2-040504C-up1.mth Analysis Date: 04/14/2004 Analysis Time: 12:47 Analyst: conn Results Submitted By: conn Run Number: 64157

Sample Quality Control

			CCC			IC	
Internal Standards <u>Parameter</u>	Area	CCC <u>Area</u>	-	irea imits Pass <u>vr Upr / Fail</u>	IC Avg <u>Area</u>	% <u>Res</u>	Area Limits Pass <u>p Lwr Upr / Fail</u>
IS-1,4-Difluorobenzene	254872	263271	97 70	130 PASS	Not Fo	und N/A	N/A N/A N/A
Surrogate Standards Parameter	Amount	<u>Units</u>	Target	% Baa	Lim		
<u>- arameter</u>	Amount	<u>Units</u>	Talget	<u>%Rec</u>	Lower	<u>Upper</u>	Pass/Fail
SS-Toluene-d8	9.961	ug/L	10	100	70	130	PASS
SS-1,2-Dichlorobenzene-d4	9.352	ug/L	10	94	70	130	PASS
SS-Bromofluorobenzene	5.083	ug/L	5.0	102	70	130	PASS
SS-1,2-Dichloroethane-d4	10.487	ug/L	10	105	70	130	PASS

Parameter	Amount	MRL	<u>Units</u>
1,1,1,2-Tetrachloroethane	< 0.5	0.5	ug/L
1,1,1-Trichloroethane	< 0.5	0.5	ug/L
1,1,2,2-Tetrachloroethane	< 0.5	0.5	ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.5	0.5	ug/L
1,1,2-Trichloroethane	< 0.5	0.5	ug/L
1,1-Dichloroethane	< 0.5	0.5	ug/L
1,1-Dichloroethylene	< 0.5	0.5	ug/L
1,1-Dichloropropanone	< 5.0	5.0	ug/L
1,1-Dichloropropylene	< 0.5	0.5	ug/L
1,2,3-Trichlorobenzene	< 0.5	0.5	ug/L
1,2,3-Trichloropropane	< 0.5	0.5	ug/L
1,2,3-Trimethylbenzene	< 0.5	0.5	ug/L
1,2,4-Trichlorobenzene	< 0.5	0.5	ug/L
1,2,4-Trimethylbenzene	< 0.5	0.5	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	< 0.2	0.2	ug/L
1,2-Dibromoethane (EDB)	< 0.2	0.2	ug/L
1,2-Dichlorobenzene	< 0.5	0.5	ug/L
1,2-Dichloroethane	< 0.5	0.5	ug/L
1,2-Dichloropropane	< 0.5	0.5	ug/L
1,2-Xylene	< 0.5	0.5	ug/L
1,3,5-Trimethylbenzene	< 0.5	0.5	ug/L
1,3-Dichlorobenzene	< 0.5	0.5	ug/L

1,3-Dichloropropane	< 0.5	0.5	ug/L
1,3-Xylene	< 0.5	0.5	ug/L
1,4-Dichlorobenzene	< 0.5	0.5	ug/L
1,4-Xylene	< 0.5	0.5	ug/L
1-Chlorobutane	< 5.0	5.0	ug/L
2,2-Dichloropropane	< 0.5	0.5	ug/L
2-Butanone (MEK)	< 5.0	5.0	ug/L
2-Chlorotoluene	< 0.5	0.5	ug/L
2-Hexanone	< 5.0	5.0	ug/L
2-Nitropropane	< 2.0	2.0	ug/L
4-Chlorotoluene	< 0.5	0.5	ug/L
4-Isopropyltoluene	< 0.5	0.5	ug/L
4-Methyl-2-pentanone (MIBK)	< 2.0	2.0	ug/L
Acetone	< 5.0	5.0	ug/L
Acrylonitrile	< 1.0	1.0	ug/L
Allyl chloride	< 5.0	5.0	ug/L
Benzene	< 0.5	0.5	ug/L
Bromobenzene	< 0.5	0.5	ug/L
Bromochloromethane	< 0.5	0.5	ug/L
Bromodichloromethane	< 0.5	0.5	ug/L
Bromoform	< 0.5	0.5	ug/L
Bromomethane	< 0.5	0.5	ug/L
Carbon disulfide	< 5.0	5.0	ug/L
Carbon tetrachloride	< 0.5	0.5	ug/L
Chloroacetonitrile	< 5.0	5.0	ug/L
Chlorobenzene	< 0.5	0.5	ug/L
Chloroethane	< 0.5	0.5	ug/L
Chloroform	< 0.5	0.5	ug/L
Chloromethane	< 0.5	0.5	ug/L
Dibromochloromethane	< 0.5	0.5	ug/L
Dibromomethane	< 0.5	0.5	ug/L
Dichlorodifluoromethane	< 0.5	0.5	ug/L
Dichloromethane	< 0.5	0.5	ug/L
Ethyl Ether	< 2.0	2.0	ug/L
Ethyl methacrylate	< 1.0	1.0	ug/L
Ethylbenzene	< 0.5	0.5	ug/L
Hexachlorobutadiene	< 0.5	0.5	ug/L
Hexachloroethane	< 2.0	2.0	ug/L
Isopropylbenzene	< 0.5	0.5	ug/L
Methacrylonitrile	< 5.0	5.0	ug/L
Methyl iodide	< 2.0	2.0	ug/L
Methyl-t-butyl ether (MTBE)	< 0.5	0.5	ug/L
Methylacrylate	< 1.0	1.0	ug/L
Methylmethacrylate	< 1.0	1.0	ug/L
Naphthalene Nitrobenzene	< 0.5	0.5	ug/L
Pentachloroethane	< 5.0	5.0	ug/L
	< 2.0	2.0	ug/L
Propionitrile	< 5.0	5.0	ug/L
Styrene Tetrachloroethylene	< 0.5	0.5	ug/L
Tetrahydrofuran	< 0.5	0.5	ug/L
Toluene	< 5.0	5.0	ug/L
Trichloroethylene	< 0.5	0.5	ug/L
Trichlorofluoromethane	< 0.5	0.5	ug/L
Vinyl chloride	< 0.5	0.5	ug/L
Xylenes, Total	< 0.2	0.2	ug/L
cis-1,2-Dichloroethylene	< 0.5	0.5	ug/L
cis-1,3-Dichloropropylene	< 0.5 < 0.5	0.5	ug/L
n-Butylbenzene	< 0.5 < 0.5	0.5 0.5	ug/L ug/l
,	~ 0.0	0.5	ug/L

.

n-Propylbenzene	< 0.5	0.5	ug/L
sec-Butylbenzene	< 0.5	0.5	ug/L
tert-Butylbenzene	< 0.5	0.5	ug/L
trans-1,2-Dichloroethylene	< 0.5	0.5	ug/L
trans-1,3-Dichloropropylene	< 0.5	0.5	ug/L
trans-1,4-Dichloro-2-butylene	< 5.0	5.0	ug/L

Additional Found Parameters

Parameter	<u>Amount</u>	<u>MRL</u> <u>Units</u>

The symbol * in the Amount column above indicates that the sample was re-analyzed for that parameter and the results are presented on another page.

Environmental Health Laboratories Sample Result Record Sheet

Sample Matrix: DW Acquisition File: Not Available Data Directory: 041404A Instrument: ITD - C Extracted Date: Not Available Sample Number: 1023136 Dilution Factor: 1 Sample Site: BAR-G-30900N-INFLOW Sample Location: Not Available

Method: 524.2 Calibration File: 524 2-040504C-up1.mth Analysis Date: 04/14/2004 Analysis Time: 13:23 Analyst: conn Results Submitted By: conn Run Number: 64157

Sample Quality Control

		• • • • • • • • • • • • • • • • • • •	CCC	Xa 11 499 99 99 90 2001		IC	*******
Internal Standards <u>Parameter</u>	Area	CCC <u>Area</u>	% L	irea imits Pass <u>vr Upr / Fail</u>	IC Avg <u>Area</u>	% <u>Res</u> i	Area Limits Pass <u>2 Lwr Upr / Fail</u>
IS-1,4-Difluorobenzene	255332	263271	97 70	130 PASS	Not Fo	ound N/A	N/A N/A N/A
Surrogate Standards <u>Parameter</u>	Amount	<u>Units</u>	<u>Target</u>	<u>%Rec</u>	Lim <u>Lower</u>	its <u>Upper</u>	Pass/Fail
SS-1,2-Dichlorobenzene-d4 SS-1,2-Dichloroethane-d4 SS-Bromofluorobenzene SS-Toluene-d8	9.509 10.687 4.965 10.125	ug/L ug/L ug/L ug/L	10 10 5.0 10	95 107 99 101	70 70 70 70	130 130 130 130	PASS PASS PASS PASS

Parameter	Amount	MRL	<u>Units</u>
1,1,1,2-Tetrachloroethane	< 0.5	0.5	ug/L
1,1,1-Trichloroethane	< 0.5	0.5	ug/L
1,1,2,2-Tetrachloroethane	< 0.5	0.5	ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.5	0.5	ug/L
1,1,2-Trichloroethane	< 0.5	0.5	ug/L
1,1-Dichloroethane	< 0.5	0.5	ug/L
1,1-Dichloroethylene	< 0.5	0.5	ug/L
1,1-Dichloropropanone	< 5.0	5.0	ug/L
1,1-Dichloropropylene	< 0.5	0.5	ug/L
1,2,3-Trichlorobenzene	< 0.5	0.5	ug/L
1,2,3-Trichloropropane	< 0.5	0.5	ug/L
1,2,3-Trimethylbenzene	< 0.5	0.5	ug/L
1,2,4-Trichlorobenzene	< 0.5	0.5	ug/L
1,2,4-Trimethylbenzene	< 0.5	0.5	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	< 0.2	0.2	ug/L
1,2-Dibromoethane (EDB)	< 0.2	0.2	ug/L
1,2-Dichlorobenzene	< 0.5	0.5	ug/L
1,2-Dichloroethane	< 0.5	0.5	ug/L
1,2-Dichloropropane	< 0.5	0.5	ug/L
1,2-Xylene	< 0.5	0.5	ug/L
1,3,5-Trimethylbenzene	< 0.5	0.5	ug/L
1,3-Dichlorobenzene	< 0.5	0.5	ug/L

1.0 Distribution	. _		-
1,3-Dichloropropane	< 0.5	0.5	ug/L
1,3-Xylene	< 0.5	0.5	ug/L
1,4-Dichlorobenzene	< 0.5	0.5	ug/L
1,4-Xylene	< 0.5	0.5	ug/L
1-Chlorobutane	< 5.0	5.0	ug/L
2,2-Dichloropropane	< 0.5	0.5	ug/L
2-Butanone (MEK) 2-Chlorotoluene	< 5.0	5.0	ug/L
	< 0.5	0.5	ug/L
2-Hexanone	< 5.0	5.0	ug/L
2-Nitropropane 4-Chlorotoluene	< 2.0	2.0	ug/L
	< 0.5	0.5	ug/L
4-Isopropyltoluene	< 0.5	0.5	ug/L
4-Methyl-2-pentanone (MIBK) Acetone	< 2.0	2.0	ug/L
Acrylonitrile	< 5.0	5.0	ug/L
Allyl chloride	< 1.0 < 5.0	1.0	ug/L
Benzene	< 0.5	5.0	ug/L
Bromobenzene	< 0.5 < 0.5	0.5	ug/L
Bromochloromethane	< 0.5	0.5	ug/L
Bromodichloromethane	< 0.5	0.5	ug/L
Bromoform	< 0.5 < 0.5	0.5	ug/L
Bromomethane	< 0.5	0.5	ug/L
Carbon disulfide	< 5.0	0.5	ug/L
Carbon tetrachloride	< 0.5	5.0	ug/L
Chloroacetonitrile	< 5.0	0.5	ug/L
Chlorobenzene	< 0.5	5.0	ug/L
Chloroethane	< 0.5	0.5	ug/L
Chloroform	< 0.5 < 0.5	0.5	ug/L
Chloromethane	< 0.5	0.5 0.5	ug/L
Dibromochloromethane	< 0.5	0.5	ug/L
Dibromomethane	< 0.5		ug/L
Dichlorodifluoromethane	< 0.5	0.5 0.5	ug/L
Dichloromethane	< 0.5	0.5	ug/L ug/L
Ethyl Ether	< 2.0	2.0	ug/L
Ethyl methacrylate	< 1.0	1.0	ug/L
Ethylbenzene	< 0.5	0.5	ug/L
Hexachlorobutadiene	< 0.5	0.5	ug/L
Hexachloroethane	< 2.0	2.0	ug/L
Isopropylbenzene	< 0.5	0.5	ug/L
Methacrylonitrile	< 5.0	5.0	ug/L
Methyl iodide	< 2.0	2.0	ug/L
Methyl-t-butyl ether (MTBE)	< 0.5	0.5	ug/L
Methylacrylate	< 1.0	1.0	ug/L
Methylmethacrylate	< 1.0	1.0	ug/L
Naphthalene	< 0.5	0.5	ug/L
Nitrobenzene	< 5.0	5.0	ug/L
Pentachloroethane	< 2.0	2.0	ug/L
Propionitrile	< 5.0	5.0	ug/L
Styrene	< 0.5	0.5	ug/L
Tetrachloroethylene	< 0.5	0.5	ug/L
Tetrahydrofuran	< 5.0	5.0	ug/L
Toluene	< 0.5	0.5	ug/L
Trichloroethylene	< 0.5	0.5	ug/L
Trichlorofluoromethane	< 0.5	0.5	ug/L
Vinyl chloride	< 0.2	0.2	ug/L
Xylenes, Total	< 0.5	0.5	ug/L
cis-1,2-Dichloroethylene	< 0.5	0.5	ug/L
cis-1,3-Dichloropropylene	< 0.5	0.5	ug/L
n-Butylbenzene	< 0.5	0.5	ug/L
			-

n-Propylbenzene	< 0.5	0.5	ug/L
sec-Butylbenzene	< 0.5	0.5	ug/L
tert-Butylbenzene	< 0.5	0.5	ug/L
trans-1,2-Dichloroethylene	< 0.5	0.5	ug/L
trans-1,3-Dichloropropylene	< 0.5	0.5	ug/L
trans-1,4-Dichloro-2-butylene	< 5.0	5.0	ug/L

Additional Found Parameters

Parameter	<u>Amount</u>	<u>MRL</u>	<u>Units</u>

The symbol * in the Amount column above indicates that the sample was re-analyzed for that parameter and the results are presented on another page.

Environmental Health Laboratories Quality Control Sample

Sample Matrix: RW Acquisition File: Not Available Data Directory: 041404A Today's Date: 04/19/2004 Instrument: ITD - C Extracted Date: Not Available Sample Number: 1025233

Method: 524.2 Calibration File: 524 2-040504C-up1.mth Analysis Date: 04/15/2004 Analysis Time: 03:35 Analyst: conn Results Submitted By: conn Run Number: 64157

Sample Quality Control

			CCC			IC					
				Area	IC	IC Area					
Internal Standards		CCC	% L	imit <mark>s Pas</mark> a	Avg	%	Limits Pass				
Parameter	<u>Area</u>	<u>Area</u>	<u>Resp Lv</u>	<u>wr Upr / Fai</u>	<u>Area</u>	<u>Res</u>	<u> Lwr Upr / Fail</u>				
IS-1,4-Difluorobenzene	258058	263868	98 70	0 130 PAS	S 296912	87	50 150 PASS				
Surrogate Standards						ts					
<u>Parameter</u>	<u>Amount</u>	<u>Units</u>	<u>Target</u>	<u>%Rec</u>	Lower	<u>Upper</u>	Pass/Fail				
SS-1,2-Dichlorobenzene-d4	10.011	ug/L	10	100	70	130	PASS				
SS-1,2-Dichloroethane-d4	10.118	ug/L	10	101	70	130	PASS				
SS-Bromofluorobenzene	5.275	ug/L	5.0	106	70	130	PASS				
SS-Toluene-d8	10.277	ug/L	10	103	70	130	PASS				

				Limits						
<u>Parameter</u>	<u>Amount</u>	<u>Units</u>	<u>Target</u>	<u>%Rec</u>	<u>Lower</u>	<u>Upper</u>	Pass/Fail			
Bromodichloromethane	9.585	ug/L	10	96	70	130	PASS			
Bromoform	9.821	ug/L	10	98	70	130	PASS			
Chloroform	10.327	ug/L	10	103	70	130	PASS			
Dibromochloromethane	10.117	ug/L	10	101	70	130	PASS			

Environmental Health Laboratories Volatile Organic Chemicals Surrogate Percent Recovery

	SS1	SS2	SS3	SS4
Upper Limit	130	130	130	130
Lower Limit	70	70	70	70

Method: 524.2

Sample No.	Filename	SS1	Targe	t %Rec	Q SS2	Target	t %Rec	Q SS3	Target	%Rec	Q SS4	Target	%Rec	Q
1023811 / LMB	MB-524A	9.233	10.0	92	9.978	10.0	100	4.725	5.0	94	9.728	10.0	97	
1023812 / LFB	FB-524A	9.605	10.0	96	10.188	10.0	102	5.013	5.0	100	9.827	10.0	98	
1023813 / CCC	C-5-13A	9.764	10.0	98	10.187	10.0	102	5.143	5.0	103	9.917	10.0	99	
1023137 / LTB	L1023137	9.015	10.0	90	9.747	10.0	9 7	4.844	5.0	97	10.024	10.0	100	
1023135 / FS	1023135	9.352	10.0	94	10.487	10.0	105	5.083	5.0	102	9.961	10.0	100	
1023136 / FS	1023136	9.509	10.0	95	10.687	10.0	107	4.965	5.0	99	10.125	10.0	101	
1025233 / QCS	Q-524A	10.011	10.0	100	10.118	10.0	101	5.275	5.0	106	10.277	10.0	103	

SS1 = SS-1,2-Dichlorobenzene-d4 SS2 = SS-1,2-Dichloroethane-d4 SS3 = SS-Bromofluorobenzene SS4 = SS-Toluene-d8 Q = Out of Range

Environmental Health Laboratories Volatile Organic Chemicals Internal Standard Area Summary

	IS1 Area
CCC (1023813)	270481
Upper Limit	351625
Lower Limit	189337
IC AVG AREA (524 2-040504C-up1.mth)	296912
Upper Limit	445368
Lower Limit	148456

Method: 524.2

Sample No.	Filename	IS1 Area Q
1023811 / LMB	MB-524A	270820
1023812 / LFB	FB-524A	271430
1023137 / LTB	L1023137	247218
1023135 / FS	1023135	254872
1023136 / FS	1023136	255332
1025233 / QCS	Q-524A	258058

IS1 = IS-1,4-Difluorobenzene

Q: B = IS Area out of range compared to the previous CCC IS Area and the Initial Calibration IS Average Area

Q : C = IS Area out of range compared to the previous CCC IS Area

Q: I = IS Area out of range compared to the Initial Calibration IS Average Area

Page 1 of 4							D DETEC	-	_			· · · · · · · · · · · · · · · · · · ·		
			ME	THOD 52	24.2 - VOL	ATILE O	RGANIC	CHEMICA	LS					
Lab Name:	Environmenta	al Health Laborat	ories		Method:	524.2			Acq. F	ile:	C073103A, C080103A, C080203A			
Contract:	n/a				Initial Cal: 524_2-072203c.mth						C080803A, C081103A, C081203A			
Project:	Method Dete	ction Limits			524_2-080703c.mth							C082003A,		
Column:		60m x 0.25mm	חו		524_2-080703c-up1.mth			Data D	irectory:		, C\080103A			
					Matrix:	8W	07000-up1		Dala D	nectory.				
					Mauix.	1174						, C\081103A		
		Data File:	MOE 1A	M 05 1D	N 05 10		14.05.45	1105 45	11 05 10		C\081803A	, C\082003A	, C\082203	A
			M-05-1A	M-05-1B	M-05-1C	M-05-1D	M-05-1E	M-05-1F	M-05-1G					
		Analysis Date:	07/31/03	07/31/03			08/01/03	08/01/03	08/03/03					
		Target			1	d Recover	· · · · /		1	Mean	Average	Std.	Calc.	Q
Parameter		Conc. (ug/L)		Rep - 2	Rep - 3	Rep - 4	Rep -5	Rep - 6		Recovery	%Rec	Deviation	MDL	
	chloroethane *	1.0	1.130	1.037	0.961	0.974	1.083	1.104	0.944	1.033	103	0.0748	0.235	
1,1,1-Trichlor		0.50	0.526	0.499	0.506	0.473	0.483	0.471	0.488	0.492	98	0.0196	0.062	
1,1,2,2-Tetrac		0.50	0.548	0.511	0.525	0.518	0.523	0.513	0.568	0.529	106	0.0210	0.066	
1,1,2-Trichlor		0.50	0.493	0.472	0.462	0.466	0.475	0.436	0.491	0.471	94	0.0193	0.061	
1,1-Dichloroe		0.50	0.510	0.450	0.465	0.437	0.437	0.470	0.469	0.463	93	0.0252	0.079	
1,1-Dichloroe		0.50	0.596	0.538	0.553	0.575	0.562	0.528	0.570	0.560	112	0.0230	0.072	
1,1-Dichloropropylene 0.50			0.534	0.538	0.548	0.496	0.480	0.471	0.496	0.509	102	0.0306	0.096	ļ
1,2,3-Trichlorobenzene0.501,2,3-Trichloropropane *1.0		0.591	0.568	0.577	0.577	0.560	0.566	0.533	0.567	113	0.0182	0.057		
		1.0	1.081	1.080	1.004	0.928	1.026	1.005	1.044	1.024	102	0.0529	0.166	
1,2,4-Trichlor		0.50	0.597	0.599	0.600	0.578	0.590	0.570	0.559	0.585	117	0.0160	0.050	
1,2,4-Trimeth		0.50	0.556	0.527	0.540	0.472	0.494	0.484	0.508	0.512	102	0.0307	0.097	
1,2-Dibromoe	3-Chloropropa		0.548	0.519	0.524	0.502	0.472	0.480	0.490	0.505	101	0.0269	0.085	
1,2-Dichlorob		0.50	0.577 0.422	0.547 0.367	0.544	0.525	0.525	0.513	0.501	0.533	107	0.0252	0.079	
1,2-Dichloroe		0.40	0.422	0.367	0.388 0.454	0.387	0.403	0.399	0.385	0.393	98	0.0172	0.054	
1,2-Dichlorop		0.50	0.487	0.539	0.454	0.442	0.407	0.439	0.438	0.442	88	0.0186	0.058	
1,2-Xylene	Topane	0.50	0.521	0.549	0.543	0.493	0.490 0.528	0.466	0.499	0.499	100	0.0239	0.075	
1,3,5-Trimeth	vlbenzene	0.50	0.592	0.532	0.543	0.540	0.528	0.532	0.565	0.549 0.529	110	0.0203	0.064	
1,3-Dichlorob		0.50	0.583	0.555	0.550	0.525	0.510	0.498	0.522	0.529	106 109	0.0310	0.097	
1,3-Dichlorop		0.50	0.505	0.500	0.330	0.323	0.515	0.323	0.331	0.344		0.0229	0.072	
1,3- + 1,4-Xyl		1.0	1.140	1.093	1.057	1.032	1.038	1.012	1.032	1.058	98 106	0.0228	0.072	
1,4-Dichlorob		0.50	0.594	0.567	0.551	0.542	0.537	0.523	0.533	0.550	110	0.0444 0.0241	0.139 0.076	
2,2-Dichlorop		0.50	0.619	0.567	0.569	0.482	0.493	0.467	0.509	0.529	106	0.0241	0.078	
2-Chlorotolue			0.500	0.503	0.512	0.493	0.482	0.309	0.506	108	0.0361	0.080		
4-Chlorotolue		0.50	0.565	0.521	0.519	0.495	0.502	0.484	0.482	0.512	101	0.0234	0.091	
4-Isopropyltol		0.50	0.564	0.527	0.527	0.400	0.469	0.477	0.498	0.506	102	0.0208	0.109	
Benzene		0.50	0.591	0.563	0.598	0.549	0.561	0.543	0.567	0.567	113	0.0348	0.064	
Bromobenzer	ne **	0.40	0.430	0.375	0.368	0.379	0.383	0.371	0.362	0.381	95	0.0204	0.071	
				0.373	0.370	0.383	0.424	0.396	0.364	0.390	97	0.0220	0.075	

Page 2 of 4

DETERMINATION OF METHOD DETECTION LIMITS METHOD 524.2 - VOLATILE ORGANIC CHEMICALS

Lab Name: Environmental H	lealth Laborat			Method:	524.2				nent ID:	Saturn C		
	Data File:	a		1			N 05 45			Saturno		
		M-05-1A	M-05-1B	M-05-1C	M-05-1D	M-05-1E	M-05-1F	M-05-1G				
A	nalysis Date:	07/31/03	07/31/03	07/31/03	08/01/03		08/01/03	08/03/03	-		1	
	Target		1	F	d Recover				Average	Average	Std.	Calc. Q
	Conc. (ug/L)	Rep - 1	Rep - 2	Rep - 3	Rep - 4	Rep -5	Rep - 6	Contraction of the second second	Recovery		Deviation	MDL
Bromodichloromethane	0.50	0.582	0.569	0.541	0.541	0.552	0.540	0.551	0.554	111	0.0161	0.051
Bromoform *	1.0	1.080	1.083	1.043	1.088	1.095	1.069	1.154	1.087	109	0.0339	0.106
Bromomethane	0.50	0.570	0.544	0.592	0.640	0.559	0.606	0.592	0.586	117	0.0320	0.101
Carbon tetrachloride	0.50	0.569	0.540	0.565	0.542	0.541	0.519	0.565	0.549	110	0.0183	0.057
Chlorobenzene	0.50	0.531	0.474	0.499	0.465	0.466	0.455	0.443	0.476	95	0.0297	0.093
Chloroethane	0.50	0.418	0.326	0.487	0.434	0.449	0.514	0.422	0.436	87	0.0598	0.188
Chloroform	0.40	0.454	0.396	0.404	0.409	0.419	0.396	0.383	0.409	102	0.0230	0.072
Chloromethane	0.50	0.548	0.453	0.501	0.469	0.571	0.534	0.458	0.505	101	0.0470	0.148
cis-1,2-Dichloroethylene **	0.40	0.457	0.388	0.390	0.402	0.405	0.410	0.390	0.406	102	0.0240	0.076
cis-1,3-Dichloropropylene	0.50	0.554	0.502	0.482	0.508	0.500	0.484	0.494	0.503	101	0.0242	0.076
Dibromochloromethane *	1.0	1.036	1.079	0.975	1.027	1.007	1.026	0.991	1.020	102	0.0338	0.106
Dibromomethane	0.40	0.438	0.367	0.380	0.388	0.402	0.393	0.381	0.393	98	0.0228	0.072
Dichlorodifluoromethane	0.40	0.288	0.220	0.228	0.215	0.217	0.230	0.209	0.230	57	0.0268	0.084
Ethylbenzene	0.50	0.558	0.531	0.505	0.499	0.500	0.490	0.490	0.510	102	0.0251	0.079
Hexachlorobutadiene	0.50	0.572	0.539	0.535	0.483	0.474	0.483	0.486	0.510	102	0.0379	0.119
Isopropylbenzene	0.50	0.534	0.488	0.483	0.481	0.475	0.469	0.493	0.489	98	0.0214	0.067
Methyl tert-butyl ether (MTBE)	0.50	0.438	0.432	0.434	0.445	0.473	0.461	0.501	0.455	91	0.0253	0.079
Methylene chloride *	1.0	0.834	0.874	0.849	0.870	0.734	0.787	0.868	0.831	83	0.0523	0.164
n-Butylbenzene	0.50	0.518	0.505	0.488	0.434	0.440	0.436	0.438	0.466	93	0.0367	0.115
n-Propylbenzene	0.50	0.560	0.535	0.518	0.473	0.522	0.476	0.483	0.510	102	0.0331	0.104
Naphthalene	0.40	0.445	0.376	0.409	0.398	0.414	0.398	0.421	0.409	102	0.0216	0.068
sec-Butylbenzene	0.50	0.478	0.489	0.530	0.477	0.470	0.472	0.505	0.489	98	0.0218	0.069
Styrene	0.50	0.582	0.534	0.550	0.482	0.488	0.507	0.504	0.521	104	0.0361	0.114
tert-Butylbenzene	0.50	0.553	0.527	0.534	0.501	0.490	0.487	0.521	0.516	103	0.0244	0.077
Tetrachloroethylene	0.50	0.579	0.568	0.541	0.529	0.514	0.526	0.541	0.543	109	0.0233	0.073
Toluene *	1.0	1.031	1.017	0.929	0.984	0.939	0.983	0.949	0.976	98	0.0390	0.123
trans-1,2-Dichloroethylene	0.50	0.539	0.497	0.481	0.498	0.478	0.465	0.491	0.493	99	0.0235	0.074
trans-1,3-Dichloropropylene	0.50	0.530	0.521	0.546	0.479	0.500	0.460	0.513	0.507	101	0.0298	0.094
Trichloroethylene	0.50	0.558	0.505	0.502	0.519	0.514	0.495	0.500	0.513	103	0.0214	0.067
Trichlorofluoromethane *	1.0	1.116	1.177	1.079	1.122	1.178	1.128	1.137	1.134	113	0.0349	0.110
Vinyl chloride	0.50	0.498	0.459	0.444	0.493	0.461	0.487	0.480	0.475	95	0.0201	0.063
Q = A flag or qualifier indicating	g possible cau	se for an o	ut of range	or failed re						L		

Comments: * MDL replicates at 1 ug/L were used from C\073103A, C\080103A, and C\080203A.

** MDL replicates at 0.4 ug/L were used from C\080803A, C\081103A, and C\081203A.

Page 3 of 4

DETERMINATION OF METHOD DETECTION LIMITS METHOD 524.2 - VOLATILE ORGANIC CHEMICALS

Contract: n/a	contract: n/a				Method: 524.2 Initial Cal: 524_2-072203c.mth				Acq. File:		C073103A, C080103A, C080203A C080803A, C081103A, C081203A			
		on Limits 0m x 0.25mm i	ID		Matrix:	524_2-080703c.mth 524_2-080703c-up1.mth Data Direc trix: RW				Directory:	C081803A, C082003A, C082203A bry: C\073103A, C\080103A, C\080203A C\080803A, C\081103A, C\081203A			
		Data File: nalysis Date:	M-05-1A	M-05-1B		M-05-1D 08/01/03	M-05-1E	M-05-1F 08/01/03	M-05-1G 08/03/03		C\081803A	∖, C\082003A	, C\082203	A
		Target	0//01/03	0//01/00		d Recover		00/01/03	00/03/03	Average	Average	Std.	Calc.	Q
Parameter		Conc. (ug/L)	Rep - 1	Rep - 2	Rep - 3	Rep - 4	Rep -5	Rep -6	Rep -7	Recovery	%Rec	Deviation	MDL	L CI
1,1,2-Trichlorotrif	luoroethane *	1.00	1.047	1.095	1.045	1.005	1.013	1.042	0.995	1.035	103	0.0339	0.106	
1,2,3-Trimethylbe		0.50	0.556	0.547	0.521	0.482	0.492	0.492	0.509	0.514	103	0.0286	0.090	
												0.0200	0.000	
1,4-Dioxane ****		5.0	5.481	5.127	4.528	4.481	4.063	3.600	5.508	4.684	94	0.7230	2.272	
Butyl Acrylate ***	**	1.0	0.965	1.184	1.176	1.365	1.132	1.170	1.139	1.162	116	0.1170	0.368	
Chloroprene **** 5.		5.0	5.392	5.215	4.819	4.913	4.736	4.851	5.051	4.997	100	0.2362	0.742	
Cyclohexanone *	***	5.0	3.042	2.990	3.610	3.062	2.824	4.529	5.087	3.592	72	0.8802	2.767	
Epichlorohydrin *		1.0	0.956	1.207	1.157	1.002	1.108	1.074	1.212	1.102	110	0.0986	0.310	
Ethyl Acrylate ***		1.0	0.884	0.823	0.844	0.806	0.869	0.883	0.745	0.836	84	0.0500	0.157	
t-Amyl Methyl Eth		1.0	0.938	0.953	0.997	1.286	0.954	0.962	0.976	1.009	101	0.1234	0.388	
t-Butyl alcohol ***		5.0	4.598	5.039	4.684	4.797	4.806	5.454	5.313	4.956	99	0.3246	1.020	
t-Butyl Ethyl Ethe	er ***	1.0	0.935	0.925	0.987	0.866	0.927	0.951	0.968	0.937	94	0.0386	0.121	
Vinyl Acetate ***		1.0	0.947	0.892	0.937	0.826	0.862	0.851	0.918	0.890	89	0.0459	0.144	
·			n											
·														ļ
		· · · · · · · · · · · · · · · · · · ·												<u> </u>
														
						L								
Q = A flag or qual Comments: * M									dard not a	vailable at i	the time of	the initial ca	libration.	

*** MDL replicates containing the Mix 4 compounds at 1 ppb were used from C\073103A, C\080103A, and C\080203A.

**** MDL replicates containing the Mix 4 compounds at 5 ppb were used from C\073103A, C\080103A, and C\080203A.

***** MDL replicates containing the Mix 4 compounds at 1 ppb were used from C\081803A, C\082003A, and C\082203A.

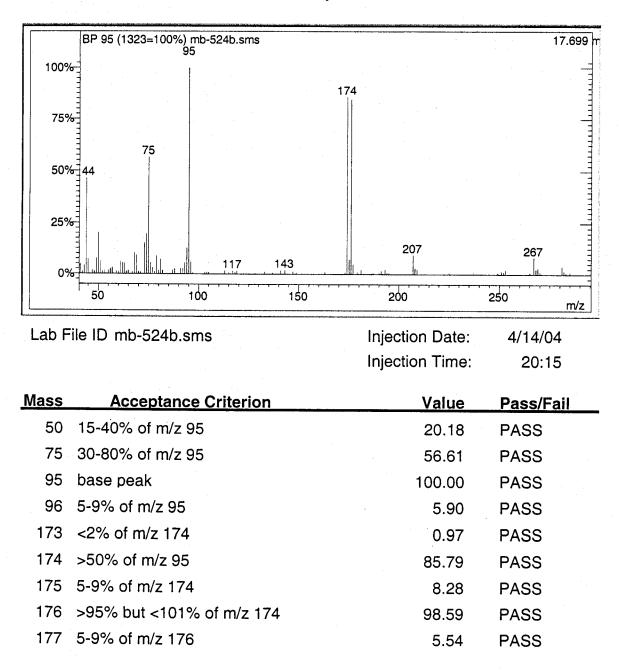
Page 4 of 4

DETERMINATION OF METHOD DETECTION LIMITS METHOD 524.2 - VOLATILE ORGANIC CHEMICALS


Lab Name: Contract: Project:		Method: Initial Cal	524_2-08	2203c.mth 0703c.mth		Acq. File:			C073103A, C080103A, C080203A C080803A, C081103A, C081203A C081803A, C082003A, C082203A					
Column:	J&VV DB-024	60m x 0.25mm	U		Matrix:						C\073103A, C\080103A, C\080203A C\080803A, C\081103A, C\081203A C\081803A, C\082003A, C\082203A			
		Data File:	M-5-1A	M-5-1B	M-5-1C	M-5-1D	M-5-1E	M-5-1F	M-5-1G			,	, =	
		Analysis Date:	07/31/03	07/31/03	07/31/03	08/02/03	08/02/03	08/02/03	08/03/03					
		Target			Observe	d Recover			L	Average	Average	Std.	Calc.	Q
Parameter		Conc. (ug/L)	Rep - 1	Rep - 2	Rep - 3	Rep - 4	Rep -5	Rep - 6	Rep - 7	Recovery	%Rec	Deviation	MDL	
1,1-Dichlorop	propanone	5.0	4.826	5.252	5.445	4.871	5.252	4.611	5.036	5.042	101	0.2922		+
1-Chiorobuta		5.0	4.886	5.483	4.879	4.485	4.754	4.484	4.787	4.823	96	0.2922	0.918	
2-Butanone (5.0	4.715	5.157	4.905	4.687	4.780	4.758	5.224	4.823	98	0.3361	1.056 0.684	
2-Hexanone		5.0	4.881	5.033	4.699	4.371	4.852	4.628	4.663	4.732	95	0.2177	0.672	
2-Nitropropar	ne	5.0	3.496	4.864	4.083	4.679	4.515	4.902	4.047	4.369	87	0.5155	1.620	+
		0.880	0.997	0.828	0.887	0.922	0.913	0.915	0.906	91	0.0513	0.161	+	
Acetone		5.0	5.462	5.568	5.665	5.723	5.997	5.598	6.472	5.784	116	0.3468	1.090	+
Acrylonitrile		5.0	4.646	5.583	4.906	4.953	5.073	4.955	5.056	5.025	100	0.2836	0.891	
Allyl Chloride)	5.0	4.730	5.358	5.124	4.569	5.073	4.616	4.700	4.881	98	0.3018	0.949	
Carbon Disul	fide	5.0	4.932	5.252	4.942	4.487	4.742	4.367	4.788	4.787	96	0.2971	0.934	<u> </u>
Chloroaceton	nitrile	5.0	3.644	4.288	4.063	4.118	4.208	3.856	3.747	3.989	80	0.2432	0.764	<u> </u>
Ethyl Ether		5.0	5.349	5.986	5.821	5.762	5.665	5.649	5.306	5.648	113	0.2462	0.774	-
Ethyl Methac	rylate	5.0	4.840	5.093	5.099	4.685	4.955	4.588	5.023	4.898	98	0.2009	0.631	
Hexachloroet		5.0	4.821	5.1 9 8	4.999	4.774	5.041	4.704	4.910	4.921	98	0.1713	0.538	
lodomethane		5.0	5.393	6.156	5.924	5.604	5.954	5.723	5.583	5.762	115	0.2624	0.825	
Methacrylonit		5.0	4.692	5.165	5.108	4.811	5.051	4.659	4.880	4.909	98	0.2022	0.636	
Methyl Metha		1.0	0.900	1.025	0.958	0.934	0.956	0.969	0.926	0.953	95	0.0395	0.124	
Methylacrylat		1.0	0.926	0.884	0.859	0.875	0.866	0.807	0.772	0.856	86	0.0510	0.160	
Nitrobenzene		5.0	4.568	4.267	4.544	4.147	4.110	4.275	4.668	4.368	87	0.2218	0.697	
Pentachloroe	thane *	1.0	1.031	1.109	1.022	0.935	0.997	1.018	0.972	1.012	101	0.0543	0.171	
Propionitrile		5.0	4.504	4.835	4.299	4.384	4.651	4.375	4.408	4.494	90	0.1883	0.592	
t-1,4-Dichloro		5.0	4.177	4.426	4.230	3.867	4.041	3.932	4.063	4.105	82	0.1899	0.597	
Tetrahydrofur	ran	5.0	4.888	5.127	4.881	4.724	4.836	4.508	5.154	4.874	97	0.2238	0.703	

Q = A flag or qualifier indicating possible cause for an out of range or failed result.

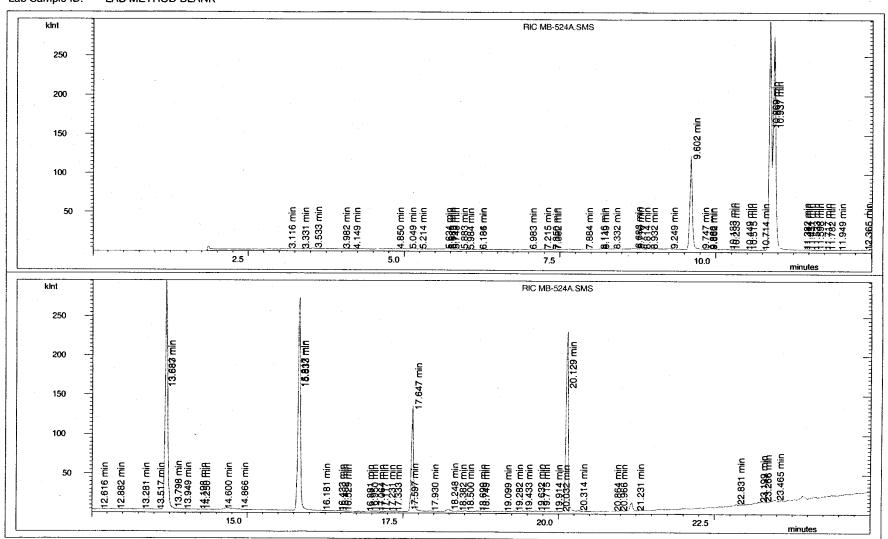
NA = Standard not available at the time of the initial calibration.


Comments: * MDL replicates at 1 ug/L were used from C\073103A, C\080103A, and C\080203A.

BFB Report

Page 1 of 1

BFB Report


CHROMATOGRAM REPORT

EPA Method 524.2

Lab File ID:C:\C\041404A\MB-524A.SMSAcquisition Date:4/14/048:57EPA Sample No:MB-524ALab Sample ID:LAB METHOD BLANK

Operator:

DC

GENERAL QUANTITATION REPORT

EPA Method 524.2

Environmental Health Laboratories

A Division of Underwriters Laboratories, Inc.

Lab SampleID:	LAB METHOD BLANK	Corr. Factor:	1	
Analyst:	DC			
Instument:	Saturn C			
Acquisition Date:	4/14/04 8:57			
Data File:	C:\C\041404A\MB-524A.SMS			
Recalc Method:	C:\C\041404A\524_2-040504C-up1.mth			
Comment:	MB-524A\DC\1023811\LMB\RW\524\1\\LAB METHOD BLA	NK		

IS-FLUOROBENZENE 10.87 321745 S 10.000 0.00 ug/L IS-1,4-DIFLUOROBENZENE 10.94 270820 S 10.000 0.00 ug/L SS-1,2-DICHLOROETHANE-D4 9.60 144281 9.978 0.00 ug/L SS-TOLUENE-D8 13.89 309596 9.728 0.00 ug/L SS-BROMOFLUOROBENZENE 17.65 113396 4.725 0.00 ug/L SS-1,2-DICHLOROBENZENE-D4 20.13 166031 9.233 0.00 ug/L CHLOROMETHANE 3.33 0 M 0.000 0.50 ug/L VINYL CHLORIDE 3.53 1902 0.08 0.20 ug/L TRICHLOROETHANE 4.85 0 M 0.000 0.50 ug/L T1-2DICHLOROETHANE 5.86 0 M 0.000 0.50 ug/L T1-2DICHLOROETHANE 7.36 0 M 0.000 0.50 ug/L C12-DICHLOROETHANE 7.38 0 <td< th=""><th>999 906 999 867 999 835 999 912 992 927 993 884</th></td<>	999 906 999 867 999 835 999 912 992 927 993 884
IS-1,4-DIFLUOROBENZENE 10.94 270820 S 10.000 0.00 ug/L SS-1,2-DICHLOROETHANE-D4 9.60 144281 9.978 0.00 ug/L SS-TOLUENE-D8 13.69 309596 9.728 0.00 ug/L SS-BROMOFLUOROBENZENE 17.65 113396 4.725 0.00 ug/L SS-1,2-DICHLOROBENZENE 17.65 113396 4.725 0.00 ug/L CHLOROMETHANE 3.33 0 M 0.000 0.50 ug/L VINYL CHLOROBENZENE 3.53 1902 0.708 0.20 ug/L TRICHLOROFLUOROMETHANE 3.53 1902 0.708 0.20 ug/L TRICHLOROFLUOROMETHANE 4.85 0 M 0.000 0.50 ug/L TI-DICHLOROFLUOROMETHANE 5.63 0 M 0.000 0.50 ug/L T1.2-DICHLOROETHYLENE 5.88 0 M 0.000 0.50 ug/L C-1.2-DICHLOROETHYLENE 6.98 0 M 0.000 0.50 ug/L C-1.2-DICHLOROETHYLENE <t< td=""><td>999 867 999 835 999 912 992 927</td></t<>	999 867 999 835 999 912 992 927
SS-TOLUENE-D8 13.69 309596 9.728 0.00 ug/L SS-BROMOFLUOROBENZENE 17.65 113396 4.725 0.00 ug/L SS-1,2-DICHLOROBENZENE-D4 20.13 166031 9.233 0.00 ug/L CHLOROMETHANE 3.33 0 M 0.400 0.50 ug/L BROMOMETHANE 3.53 1902 0.08 0.20 ug/L TRICHLOROPLUOROMETHANE 4.85 0 M 0.600 0.50 ug/L 1,1-DICHLOROETHYLENE 5.63 0 M 0.600 0.50 ug/L 1,1-DICHLOROETHYLENE 6.98 0 M 0.600 0.50 ug/L 1,1-DICHLOROETHANE 7.38 0 M 0.600 0.50 ug/L 1,1-DICHLOROETHYLENE 8.33 0 M 0.600 0.50 ug/L CARBON TETRACHLORIDE 10.45 0 M 0.600 0.50 ug/L CHLOROPOPANE 11.45 0 <t< td=""><td>999 912 992 927</td></t<>	999 912 992 927
SS-TOLUENE-D8 13.69 309596 9.728 0.00 ug/L SS-BROMOFLUOROBENZENE 17.65 113396 4.725 0.00 ug/L SS-1,2-DICHLOROBENZENE-D4 20.13 166031 9.233 0.00 ug/L CHLOROMETHANE 3.53 1902 0.08 0.20 ug/L BROMOMETHANE 3.98 0 M 0.600 0.50 ug/L TRICHLOROFLUOROMETHANE 4.85 0 M 0.600 0.50 ug/L 1,1-DICHLOROFLUOROMETHANE 4.85 0 M 0.600 0.50 ug/L 1,1-DICHLOROETHYLENE 5.63 0 M 0.600 0.50 ug/L 1,1-DICHLOROETHALENE 7.38 0 M 0.600 0.50 ug/L 1,1-DICHLOROETHALENE 8.33 0 M 0.600 0.50 ug/L CHLOROETHYLENE 8.33 0 M 0.600 0.50 ug/L CHLOROFORM 8.68 0 M	992 927
SS-BROMOFLUOROBENZENE 17.65 113396 4.725 0.00 ug/L SS-1,2-DICHLOROBENZENE-D4 20.13 166031 9.233 0.00 ug/L CHLOROMETHANE 3.33 0 M 0.000 0.50 ug/L VINYL CHLORIDE 3.53 1902 0.108 0.20 ug/L BROMOMETHANE 3.98 0 M 0.000 0.50 ug/L TRICHLOROETHYLENE 5.63 0 M 0.000 0.50 ug/L METHYLENE CHLORIDE 5.83 0 M 0.000 0.50 ug/L T1.2-DICHLOROETHYLENE 6.98 0 M 0.000 0.50 ug/L C-1.2-DICHLOROETHANE 7.38 0 M 0.600 0.50 ug/L CARBON TETRACHLORIDE 10.45 0 M 0.600 0.50 ug/L CARBON TETRACHLORIDE 11.63 0 M 0.600 0.50 ug/L ILCHOROPORDANE 11.60 M </td <td></td>	
SS-1,2-DICHLOROBENZENE-D4 20.13 166031 9.233 0.00 ug/L CHLOROMETHANE 3.33 0 M 0.000 0.50 ug/L VINYL CHLORIDE 3.53 1902 0.008 0.20 ug/L BROMOMETHANE 3.98 0 M 0.000 0.50 ug/L TRICHLOROFLUOROMETHANE 4.85 0 M 0.000 0.50 ug/L 1,1-DICHLOROETHYLENE 5.63 0 M 0.000 0.50 ug/L T.1.2-DICHLOROETHYLENE 6.98 0 M 0.000 0.50 ug/L 1,1-DICHLOROETHYLENE 8.33 0 M 0.000 0.50 ug/L C-1,2-DICHLOROETHYLENE 8.33 0 M 0.000 0.50 ug/L CARBON TETRACHLORIDE 10.45 0 M 0.000 0.50 ug/L L2-DICHLOROPROPANE 11.45 0 M 0.000 0.50 ug/L L2-DICHLOROPROPANE 11	
VINYL CHLORIDE 3.53 1902 0.108 0.20 ug/L BROMOMETHANE 3.98 0 M 0.008 0.20 ug/L TRICHLOROFLUOROMETHANE 4.85 0 M 0.000 0.50 ug/L 1,1-DICHLOROETHYLENE 5.63 0 M 0.000 0.50 ug/L METHYLENE CHLORIDE 5.88 0 M 0.000 0.50 ug/L 1,1-DICHLOROETHYLENE 6.98 0 M 0.000 0.50 ug/L 1,1-DICHLOROETHYLENE 8.33 0 M 0.000 0.50 ug/L C-1.2-DICHLOROETHYLENE 8.33 0 M 0.000 0.50 ug/L CHLOROFORM 8.68 0 M 0.000 0.50 ug/L CHLOROFORM 8.68 0 M 0.000 0.50 ug/L L2-DICHLOROPROPANE 11.45 0 M 0.000 0.50 ug/L ROMODICHLOROMETHANE 11.60	
BROMOMETHANE 3.98 0 M 0.000 0.50 ug/L TRICHLOROFLUOROMETHANE 4.85 0 M 0.000 0.50 ug/L 1,1-DICHLOROETHYLENE 5.63 0 M 0.000 0.50 ug/L METHYLENE CHLORIDE 5.88 0 M 0.000 0.50 ug/L 1,1-DICHLOROETHYLENE 6.98 0 M 0.000 0.50 ug/L 1,1-DICHLOROETHANE 7.38 0 M 0.000 0.50 ug/L C-1,2-DICHLOROETHYLENE 8.33 0 M 0.000 0.50 ug/L C-1,2-DICHLOROETHYLENE 10.45 0 M 0.000 0.50 ug/L CHLOROFORM 8.68 0 M 0.000 0.50 ug/L L2-DICHLOROPROPANE 10.51 0 M 0.000 0.50 ug/L L2-DICHLOROPETHYLENE 11.45 0 M 0.000 0.50 ug/L L2-DICHLOROPOP	145 0
TRICHLOROFLUOROMETHANE 4.85 0 M 0.000 0.50 ug/L 1,1-DICHLOROETHYLENE 5.63 0 M 0.000 0.50 ug/L METHYLENE CHLORIDE 5.88 0 M 0.000 0.50 ug/L 1,1-DICHLOROETHYLENE 6.98 0 M 0.000 0.50 ug/L 1,1-DICHLOROETHANE 7.38 0 M 0.000 0.50 ug/L 1,1-DICHLOROETHANE 7.38 0 M 0.000 0.50 ug/L C-1.2-DICHLOROETHYLENE 8.33 0 M 0.000 0.50 ug/L CHLOROFORM 8.68 0 M 0.000 0.50 ug/L CARBON TETRACHLORIDE 10.45 0 M 0.000 0.50 ug/L 1,2-DICHLOROETHYLENE 11.45 0 M 0.000 0.50 ug/L 1,2-DICHLOROETHYLENE 11.53 0 M 0.000 0.50 ug/L TRICHLOR	751 157
1,1-DICHLOROETHYLENE 5.63 0 M 0.000 0.50 ug/L METHYLENE CHLORIDE 5.88 0 M 0.000 0.50 ug/L 1.1-DICHLOROETHYLENE 6.98 0 M 0.000 0.50 ug/L 1.1-DICHLOROETHYLENE 6.98 0 M 0.000 0.50 ug/L C-1,2-DICHLOROETHYLENE 8.33 0 M 0.000 0.50 ug/L C-1,2-DICHLOROETHYLENE 8.33 0 M 0.000 0.50 ug/L C-1,2-DICHLOROETHYLENE 10.45 0 M 0.000 0.50 ug/L CARBON TETRACHLORIDE 10.45 0 M 0.000 0.50 ug/L BENZENE 10.51 0 M 0.000 0.50 ug/L 1,2-DICHLOROPROPANE 11.45 0 M 0.000 0.50 ug/L TRICHLOROETHYLENE 11.60 0 M 0.000 0.50 ug/L DIBROMOCHLOROMETHANE 14.25 0 M 0.000 0.50 ug/L	747 149
METHYLENE CHLORIDE 5.88 0 M 0.000 0.50 ug/L T-1,2-DICHLOROETHYLENE 6.98 0 M 0.000 0.50 ug/L 1,1-DICHLOROETHANE 7.38 0 M 0.000 0.50 ug/L C-1,2-DICHLOROETHYLENE 8.33 0 M 0.000 0.50 ug/L C+1,2-DICHLOROETHYLENE 8.33 0 M 0.000 0.50 ug/L CHLOROFORM 8.68 0 M 0.000 0.50 ug/L CARBON TETRACHLORIDE 10.45 0 M 0.000 0.50 ug/L BENZENE 10.51 0 M 0.000 0.50 ug/L 1,2-DICHLOROPROPANE 11.45 0 M 0.000 0.50 ug/L TRICHLOROETHYLENE 11.83 0 M 0.000 0.50 ug/L TOLUENE 13.80 0 M 0.000 0.50 ug/L DIBROMOCHLOROMETHANE	382 64
METHYLENE CHLORIDE 5.88 0 M 0.000 0.50 ug/L T-1,2-DICHLOROETHYLENE 6.98 0 M 0.000 0.50 ug/L 1,1-DICHLOROETHANE 7.38 0 M 0.000 0.50 ug/L C-1,2-DICHLOROETHYLENE 8.33 0 M 0.000 0.50 ug/L CHLOROFORM 8.68 0 M 0.000 0.50 ug/L CARBON TETRACHLORIDE 10.45 0 M 0.000 0.50 ug/L BENZENE 10.51 0 M 0.000 0.50 ug/L 1,2-DICHLOROPROPANE 11.45 0 M 0.000 0.50 ug/L BROMODICHLOROMETHANE 11.60 0 M 0.000 0.50 ug/L DIBROMOCHLOROMETHANE 14.25 0 M 0.000 0.50 ug/L CHLOROBENZENE 16.18 0 M 0.000 0.50 ug/L ETHYLENE <t< td=""><td>590 35</td></t<>	590 35
T-1,2-DICHLOROETHYLENE 6.98 0 M 0.000 0.50 ug/L 1,1-DICHLOROETHANE 7.38 0 M 0.000 0.50 ug/L C-1,2-DICHLOROETHYLENE 8.33 0 M 0.000 0.50 ug/L CHLOROFORM 8.68 0 M 0.000 0.50 ug/L CARBON TETRACHLORIDE 10.45 0 M 0.000 0.50 ug/L BENZENE 10.51 0 M 0.000 0.50 ug/L 1,2-DICHLOROPROPANE 11.45 0 M 0.000 0.50 ug/L BROMODICHLOROMETHANE 11.60 0 M 0.000 0.50 ug/L DIBROMOCHLOROMETHANE 14.87 0 M 0.000 0.50 ug/L CHLOROBENZENE 15.82 0 M 0.000 0.50 ug/L ETHYLENE 16.18 0 M 0.000 0.50 ug/L LETHYLENE 16.43 0 M 0.000 0.50 ug/L 1,3-XYLENE	313 51
1,1-DICHLOROETHANE 7.38 0 M 0.000 0.50 ug/L C-1,2-DICHLOROETHYLENE 8.33 0 M 0.000 0.50 ug/L CHLOROFORM 8.68 0 M 0.000 0.50 ug/L CARBON TETRACHLORIDE 10.45 0 M 0.000 0.50 ug/L BENZENE 10.51 0 M 0.000 0.50 ug/L 1,2-DICHLOROPROPANE 11.45 0 M 0.000 0.50 ug/L BROMODICHLOROMETHANE 11.60 0 M 0.000 0.50 ug/L DIBROMOCHLOROMETHANE 11.60 0 M 0.000 0.50 ug/L CHLOROBENZENE 13.80 0 M 0.000 0.50 ug/L DIBROMOCHLOROMETHANE 14.25 0 M 0.000 0.50 ug/L CHLOROBENZENE 15.82 0 M 0.000 0.50 ug/L ETHYLBENZENE 16.18 0 M 0.000 0.50 ug/L 1,3-XYLENE </td <td>392 73</td>	392 73
C-1,2-DICHLOROETHYLENE 8.33 0 M 0.000 0.50 ug/L CHLOROFORM 8.68 0 M 0.000 0.50 ug/L CARBON TETRACHLORIDE 10.45 0 M 0.000 0.50 ug/L BENZENE 10.51 0 M 0.000 0.50 ug/L 1,2-DICHLOROPROPANE 11.45 0 M 0.000 0.50 ug/L TRICHLOROETHYLENE 11.53 0 M 0.000 0.50 ug/L BROMODICHLOROMETHANE 11.60 0 M 0.000 0.50 ug/L DIBROMOCHLOROMETHANE 13.80 0 M 0.000 0.50 ug/L CHLOROETHYLENE 14.87 0 M 0.000 0.50 ug/L DIBROMOCHLOROMETHANE 15.82 0 M 0.000 0.50 ug/L CHLOROBENZENE 15.82 0 M 0.000 0.50 ug/L BROMOFORM 16.43 0 M 0.000 0.50 ug/L 1,3-XYLENE <td>915 100</td>	915 100
CHLOROFORM 8.68 0 M 0.000 0.50 ug/L CARBON TETRACHLORIDE 10.45 0 M 0.000 0.50 ug/L BENZENE 10.51 0 M 0.000 0.50 ug/L 1,2-DICHLOROPROPANE 11.45 0 M 0.000 0.50 ug/L TRICHLOROETHYLENE 11.53 0 M 0.000 0.50 ug/L BROMODICHLOROMETHANE 11.60 0 M 0.000 0.50 ug/L DIBROMOCHLOROMETHANE 13.80 0 M 0.000 0.50 ug/L CHLOROBENZENE 14.25 0 M 0.000 0.50 ug/L CHLOROBENZENE 15.82 0 M 0.000 0.50 ug/L BROMOFORM 16.43 0 M 0.000 0.50 ug/L LTHYLBENZENE 16.48 0 M 0.000 0.50 ug/L 1,2-XYLENE 17.06 <t< td=""><td>891 88</td></t<>	891 88
CARBON TETRACHLORIDE 10.45 0 M 0.000 0.50 ug/L BENZENE 10.51 0 M 0.000 0.50 ug/L 1,2-DICHLOROPROPANE 11.45 0 M 0.000 0.50 ug/L TRICHLOROETHYLENE 11.53 0 M 0.000 0.50 ug/L BROMODICHLOROMETHANE 11.60 0 M 0.000 0.50 ug/L TOLUENE 13.80 0 M 0.000 0.50 ug/L DIBROMOCHLOROMETHANE 14.25 0 M 0.000 0.50 ug/L TETRACHLOROETHYLENE 14.87 0 M 0.000 0.50 ug/L CHLOROBENZENE 15.82 0 M 0.000 0.50 ug/L ETHYLBENZENE 16.18 0 M 0.000 0.50 ug/L 1,3-XYLENE 16.48 0 M 0.000 0.50 ug/L 1,2-XYLENE 17.06	96 503
BENZENE 10.51 0 M 0.000 0.50 ug/L 1,2-DICHLOROPROPANE 11.45 0 M 0.000 0.50 ug/L TRICHLOROETHYLENE 11.53 0 M 0.000 0.50 ug/L BROMODICHLOROMETHANE 11.60 0 M 0.000 0.50 ug/L TOLUENE 13.80 0 M 0.000 0.50 ug/L DIBROMOCHLOROMETHANE 14.25 0 M 0.000 0.50 ug/L CHLOROBENZENE 15.82 0 M 0.000 0.50 ug/L ETHYLBENZENE 16.18 0 M 0.000 0.50 ug/L BROMOFORM 16.43 0 M 0.000 0.50 ug/L 1,2-XYLENE 16.48 0 M 0.000 0.50 ug/L 1,2-XYLENE 17.06 0 M 0.000 0.50 ug/L 1,2-XYLENE 17.60 0	326 38
1,2-DICHLOROPROPANE 11.45 0 M 0.000 0.50 ug/L TRICHLOROETHYLENE 11.53 0 M 0.000 0.50 ug/L BROMODICHLOROMETHANE 11.60 0 M 0.000 0.50 ug/L TOLUENE 13.80 0 M 0.000 0.50 ug/L DIBROMOCHLOROMETHANE 14.25 0 M 0.000 0.50 ug/L TETRACHLOROETHYLENE 14.87 0 M 0.000 0.50 ug/L CHLOROBENZENE 15.82 0 M 0.000 0.50 ug/L ETHYLBENZENE 16.18 0 M 0.000 0.50 ug/L BROMOFORM 16.43 0 M 0.000 0.50 ug/L 1,3-XYLENE 16.48 0 M 0.000 0.50 ug/L 1,2-XYLENE 17.06 0 M 0.000 0.50 ug/L 1,1,2,2,-TETRACHLOROETHANE 17.12 0 M 0.000 0.50 ug/L ISOPROPYLBENZENE	28 144
TRICHLOROETHYLENE 11.53 0 M 0.000 0.50 ug/L BROMODICHLOROMETHANE 11.60 0 M 0.000 0.50 ug/L TOLUENE 13.80 0 M 0.000 0.50 ug/L DIBROMOCHLOROMETHANE 14.25 0 M 0.000 0.50 ug/L TETRACHLOROETHYLENE 14.87 0 M 0.000 0.50 ug/L CHLOROBENZENE 15.82 0 M 0.000 0.50 ug/L ETHYLBENZENE 16.18 0 M 0.000 0.50 ug/L BROMOFORM 16.43 0 M 0.000 0.50 ug/L 1,3-XYLENE 16.48 0 M 0.000 0.50 ug/L 1,2-XYLENE 17.06 0 M 0.000 0.50 ug/L ISOPROPYLBENZENE 17.60 0 M 0.000 0.50 ug/L BROMOBENZENE 17.93 0 M 0.000 0.50 ug/L ISOPROTOLUENE 18.38 <td>44 25</td>	44 25
BROMODICHLOROMETHANE 11.60 0 M 0.000 0.50 ug/L TOLUENE 13.80 0 M 0.000 0.50 ug/L DIBROMOCHLOROMETHANE 14.25 0 M 0.000 0.50 ug/L TETRACHLOROETHYLENE 14.87 0 M 0.000 0.50 ug/L CHLOROBENZENE 15.82 0 M 0.000 0.50 ug/L ETHYLBENZENE 16.18 0 M 0.000 0.50 ug/L BROMOFORM 16.43 0 M 0.000 0.50 ug/L 1,3-XYLENE 16.48 0 M 0.000 0.50 ug/L 1,2-XYLENE 16.48 0 M 0.000 0.50 ug/L 1,1,2,2,-TETRACHLOROETHANE 17.12 0 M 0.000 0.50 ug/L ISOPROPYLBENZENE 17.60 0 M 0.000 0.50 ug/L BROMOBENZENE 17.93	379 256
TOLUENE 13.80 0 M 0.000 0.50 ug/L DIBROMOCHLOROMETHANE 14.25 0 M 0.000 0.50 ug/L TETRACHLOROETHYLENE 14.87 0 M 0.000 0.50 ug/L CHLOROBENZENE 15.82 0 M 0.000 0.50 ug/L ETHYLBENZENE 16.18 0 M 0.000 0.50 ug/L BROMOFORM 16.43 0 M 0.000 0.50 ug/L 1,3-XYLENE 16.48 0 M 0.000 0.50 ug/L 1,2-XYLENE 17.06 0 M 0.000 0.50 ug/L 1,1,2,2,-TETRACHLOROETHANE 17.12 0 M 0.000 0.50 ug/L ISOPROPYLBENZENE 17.60 0 M 0.000 0.50 ug/L BROMOBENZENE 17.93 0 M 0.000 0.50 ug/L 2-CHLOROTOLUENE 18.38 0 M 0.000 0.50 ug/L	25 84
DIBROMOCHLOROMETHANE 14.25 0 M 0.000 0.50 ug/L TETRACHLOROETHYLENE 14.87 0 M 0.000 0.50 ug/L CHLOROBENZENE 15.82 0 M 0.000 0.50 ug/L ETHYLBENZENE 16.18 0 M 0.000 0.50 ug/L BROMOFORM 16.43 0 M 0.000 0.50 ug/L 1,3-XYLENE 16.48 0 M 0.000 0.50 ug/L 1,2-XYLENE 17.06 0 M 0.000 0.50 ug/L 1,1,2,2,-TETRACHLOROETHANE 17.12 0 M 0.000 0.50 ug/L ISOPROPYLBENZENE 17.60 0 M 0.000 0.50 ug/L BROMOBENZENE 17.93 0 M 0.000 0.50 ug/L 2-CHLOROTOLUENE 18.38 0 M 0.000 0.50 ug/L	96 204
TETRACHLOROETHYLENE 14.87 0 M 0.000 0.50 ug/L CHLOROBENZENE 15.82 0 M 0.000 0.50 ug/L ETHYLBENZENE 16.18 0 M 0.000 0.50 ug/L BROMOFORM 16.43 0 M 0.000 0.50 ug/L 1,3-XYLENE 16.48 0 M 0.000 0.50 ug/L 1,2-XYLENE 16.48 0 M 0.000 0.50 ug/L 1,1,2,2,-TETRACHLOROETHANE 17.06 0 M 0.000 0.50 ug/L ISOPROPYLBENZENE 17.60 0 M 0.000 0.50 ug/L BROMOBENZENE 17.93 0 M 0.000 0.50 ug/L 2-CHLOROTOLUENE 18.38 0 M 0.000 0.50 ug/L	784 75
CHLOROBENZENE 15.82 0 M 0.000 0.50 ug/L ETHYLBENZENE 16.18 0 M 0.000 0.50 ug/L BROMOFORM 16.43 0 M 0.000 0.50 ug/L 1,3-XYLENE 16.48 0 M 0.000 0.50 ug/L 1,2-XYLENE 16.48 0 M 0.000 0.50 ug/L 1,1,2,2,-TETRACHLOROETHANE 17.06 0 M 0.000 0.50 ug/L ISOPROPYLBENZENE 17.60 0 M 0.000 0.50 ug/L BROMOBENZENE 17.93 0 M 0.000 0.50 ug/L 2-CHLOROTOLUENE 18.38 0 M 0.000 0.50 ug/L	19 383
ETHYLBENZENE 16.18 0 M 0.000 0.50 ug/L BROMOFORM 16.43 0 M 0.000 0.50 ug/L 1,3-XYLENE 16.48 0 M 0.000 0.50 ug/L 1,2-XYLENE 16.48 0 M 0.000 0.50 ug/L 1,2-XYLENE 17.06 0 M 0.000 0.50 ug/L 1,1,2,2,-TETRACHLOROETHANE 17.12 0 M 0.000 0.50 ug/L ISOPROPYLBENZENE 17.60 0 M 0.000 0.50 ug/L BROMOBENZENE 17.93 0 M 0.000 0.50 ug/L 2-CHLOROTOLUENE 18.38 0 M 0.000 0.50 ug/L	642 31
BROMOFORM 16.43 0 M 0.000 0.50 ug/L 1,3-XYLENE 16.48 0 M 0.000 0.50 ug/L 1,2-XYLENE 16.48 0 M 0.000 0.50 ug/L 1,2-XYLENE 17.06 0 M 0.000 0.50 ug/L 1,1,2,2,-TETRACHLOROETHANE 17.12 0 M 0.000 0.50 ug/L ISOPROPYLBENZENE 17.60 0 M 0.000 0.50 ug/L BROMOBENZENE 17.93 0 M 0.000 0.50 ug/L 2-CHLOROTOLUENE 18.38 0 M 0.000 0.50 ug/L	40 226
1,3-XYLENE 16.48 0 M 0.000 0.50 ug/L 1,2-XYLENE 17.06 0 M 0.000 0.50 ug/L 1,1,2,2,-TETRACHLOROETHANE 17.12 0 M 0.000 0.50 ug/L ISOPROPYLBENZENE 17.60 0 M 0.000 0.50 ug/L BROMOBENZENE 17.93 0 M 0.000 0.50 ug/L 2-CHLOROTOLUENE 18.38 0 M 0.000 0.50 ug/L	336 20
1,2-XYLENE 17.06 0 M 0.000 0.50 ug/L 1,1,2,2,-TETRACHLOROETHANE 17.12 0 M 0.000 0.50 ug/L ISOPROPYLBENZENE 17.60 0 M 0.000 0.50 ug/L BROMOBENZENE 17.93 0 M 0.000 0.50 ug/L 2-CHLOROTOLUENE 18.38 0 M 0.000 0.50 ug/L	94 519
1,1,2,2,-TETRACHLOROETHANE 17.12 0 M 0.000 0.50 ug/L ISOPROPYLBENZENE 17.60 0 M 0.000 0.50 ug/L BROMOBENZENE 17.93 0 M 0.000 0.50 ug/L 2-CHLOROTOLUENE 18.38 0 M 0.000 0.50 ug/L	33 232
ISOPROPYLBENZENE 17.60 0 M 0.000 0.50 ug/L BROMOBENZENE 17.93 0 M 0.000 0.50 ug/L 2-CHLOROTOLUENE 18.38 0 M 0.000 0.50 ug/L	40
BROMOBENZENE 17.93 0 M 0.000 0.50 ug/L 2-CHLOROTOLUENE 18.38 0 M 0.000 0.50 ug/L	953 166
2-CHLOROTOLUENE 18.38 0 M 0.000 0.50 ug/L	64 427
	85 509
	82 527
1,2,4-TRIMETHYLBENZENE 19.28 0 M 0.000 0.50 ug/L	78 520
1,3-DICHLOROBENZENE 19.63 0 M 0.000 0.50 ug/L	68 600
4-ISOPROPYLTOLUENE 19.71 0 M 0.000 0.50 ug/L	89 528
N-BUTYLBENZENE 20.31 0 M 0.000 0.50 ug/L	978 650
1,2-DIBROMO-3-CHLOROPROPANE 20.86 0 M 0.000 0.50 ug/L	583 41
1,2,4-TRICHLOROBENZENE 22.83 0 M 0.000 0.50 ug/L	973 542
NAPHTHALENE 23.20 0 M 0.000 0.50 ug/L)68 252
1,2,3-TRICHLOROBENZENE 23.47 0 M 0.000 0.50 ug/L	966 252 964 248
DICHLORODIFLUOROMETHANE 3.12 0 M 0.000 0.50 ug/L	935 28

C:\C\041404A\MB-524A.SMS

Page 1 of 3

37

Compound	R. T.	Area	Status Codes	Conc	TSV	Units	Fit	Purity
CHLOROETHANE	4.15	0	м	0.000	0.50	ug/L	217	2
1,1,2-TRICHLOROTRIFLUOROETHA	5.98	0	М	0.000	0.50	ug/L	803	110
МТВЕ	7.22	0	M	0.000	0.50	ug/L	971	323
BROMOCHLOROMETHANE	8.68	0	М	0.qoo	0.50	ug/L	238	13
2,2-DICHLOROPROPANE	8.93	0	М	0.000	0.50	ug/L	594	9
1,2-DICHLOROETHANE	9.75	0	М	0. 0 00	0.50	ug/L	567	31
1,1,1-TRICHLOROETHANE	9.88	0	М	0.000	0.50	ug/L	828	85
1,1-DICHLOROPROPYLENE	10.18	0	М	0.000	0.50	ug/L	733	86
DIBROMOMETHANE	11.38	0	М	0.000	0.50	ug/L	766	90
CIS-1,3-DICHLOROPROPYLENE	12.62	0	M	0.000	0.50	ug/L	659	24
TRANS-1,3-DICHLOROPROPYLENE	13.28	0	М	0.000	0.50	ug/L	732	62
1,1,2-TRICHLOROETHANE	13.52	0	Μ	0.000	0.50	ug/L	595	30
1,3-DICHLOROPROPANE	13.68	0	Μ	0.000	0.50	ug/L	548	3
1,2-DIBROMOETHANE(EDB)	14.60	0	M	0.000	0.50	ug/L	900	15
1,1,1,2-TETRACHLOROETHANE	15.83	0	. M ·	0.000	0.50	ug/L	601	78
1,4-XYLENE	16.48	0	М	0.000	0.50	ug/L	992	503
STYRENE	16.95	0	М	0.000	0.50	ug/Ľ	970	489
1,2,3-TRICHLOROPROPANE	17.23	0	M	0.000	0.50	ug/L	466	34
N-PROPYLBENZENE	18.25	0	Μ	0. 0 00	0.50	ug/L	995	186
4-CHLOROTOLUENE	18.50	0	М	0.000	0.50	ug/L	988	478
TERT-BUTYLBENZENE	19.10	0	M	0.000	0.50	ug/L	923	410
SEC-BUTYLBENZENE	19.43	0	М	0.000	0.50	ug/L	997	532
1,4-DICHLOROBENZENE	19.63	0	М	0.000	0.50	ug/L	972	622
1,2,3-TRIMETHYLBENZENE	19.91	0	M	0.000	0.50	ug/L	974	431
1,2-DICHLOROBENZENE	20.03	0	М	0.000	0.50	ug/L	476	31
HEXACHLOROBUTADIENE	23.27	0	М	0.000	0.50	`ug/L	931	302
ACETONE	5.05	0	М	0.000	5.00	ug/L	982	69
ETHYL ETHER	5.21	0	Μ	0.000	2.00	ug/L	486	38
IODOMETHANE	5.69	717		0.916	2.00	ug/L	999	95
ACRYLONITRILE	5.75	0	Μ	0.000	1.00	ug/L	851	114
ALLYL CHLORIDE	6.18	0	М	0.000	5.00	ug/L	473	174
CARBON DISULFIDE	6.19	1401	< *C	-1.000	5.00	ug/L	995	401
PROPIONITRILE	7.35	0	М	0.000	5.00	ug/L	806	15
METHACRYLONITRILE	8.15	0	М	0.000	5.00	ug/L	739	32
2-BUTANONE	8.15	0	М	0.000	5.00	ug/L	346	5
METHYLACRYLATE	8.81	0	М	0.000	1.00	ug/L	668	6
TETRAHYDROFURAN	9.25	0	M	0.000	5.00	ug/L	924	189
	9.87	0	M	0.000	5.00	ug/L	531	17
CHLOROACETONITRILE	10.23	0	M	0.000	5.00	ug/L	450	13
METHYL METHACRYLATE	11.72	0	M	0.000	1.00	ug/L	481	20
2-NITROPROPANE	11.78	0	M	0.000	2.00	ug/L	0	0
	12.36	0	M	0.000	5.00	ug/L	514	19
	12.88	0	M	0.000	2.00	ug/L	448	14
	13.95	0	M	0.000	1.00	ug/L	482	3
	14.20	0	M	0.000	5.00	ug/L	430	22
T-1,4-DICHLORO-2-BUTENE PENTACHLOROETHANE	17.33	0	M	0.000	5.00	ug/L	454	25
HEXACHLOROETHANE	18.75	0	M	0.000	2.00	ug/L	521	71
NITROBENZENE	20.97 21.23	0	M	0.000	2.00	ug/L	788	233
			М	0.000	5.00	ug/L	532	29
	5.71	. 0	М	0.000	2.00	ug/L	250	41
	7.88	0	M	0.000	5.00	ug/L	0	0
CHLOROPRENE	8.12	0	М	0.000	5.00	ug/L	630	23
TERT-BUTYL ETHYL ETHER	8.72	0	. M	0.000	3.00	ug/L	667	7
TERT-AMYL METHYL ETHER	10.71	0	M	0.000	3.00	ug/L	685	38
ETHYL ACRYLATE	11.41	0	М	0.000	1.00	ug/L	450	12
1,4-DIOXANE	11.95	0	М	0.000	5.00	ug/L	567	98
Epichlorohydrin	11.95	0	М	o.qpo	1.00	ug/L	475	19

57

Compound	R. T.	Area	Status Codes	Conc	TSV	Units	Fit	Purity
Butyl Acrylate	16.53	72		0.128	1.00	ug/L	633	18
CYCLOHEXANONE	16.88	0	М	9.000	5.00	ug/L	381	18

2 4/15/4

Applicable Status Codes Key:

s *

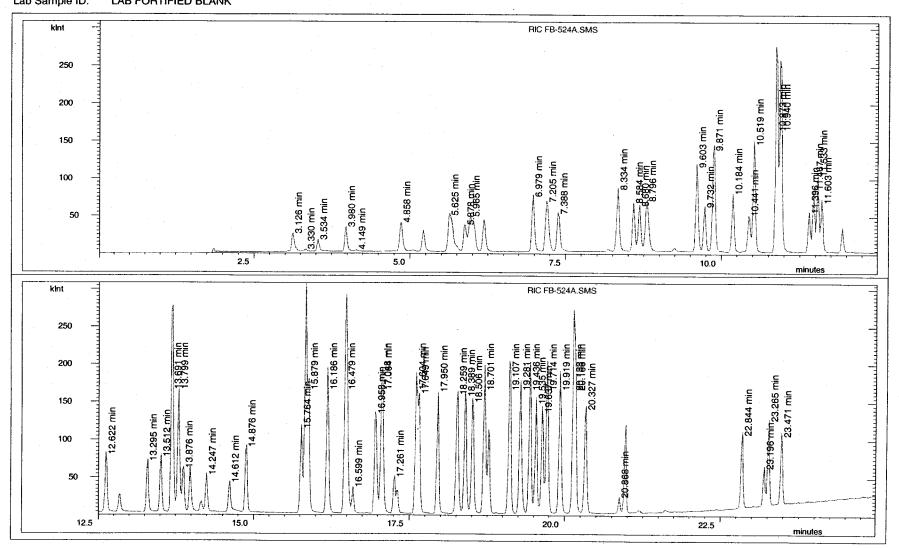
Internal Standard Compound No result can be calculated; check calibration curve More than one result; check calibration curve

+

М Missing Peak

C U Result out of calibration range; check calibration curve User defined end points

CHROMATOGRAM REPORT


EPA Method 524.2

Lab File ID:C:\C\041404A\FB-524A.SMSAcquisition Date:4/14/049:34EPA Sample No:FB-524ALab Sample ID:LAB FORTIFIED BLANK

Operator:

ator.

DC

GENERAL QUANTITATION REPORT

EPA Method 524.2

Environmental Health Laboratories

A Division of Underwriters Laboratories, Inc.

Lab	SampleID:	LAB FORTIFIED BLANK	Corr. Factor:	1
Ana	lyst:	DC		
Inst	ument:	Saturn C		
Acq	uisition Date:	4/14/04 9:34		
Data	a File:	C:\C\041404A\FB-524A.SMS		
Rec	alc Method:	C:\C\041404A\524_2-040504C-up1.mth		
Con	nment:	FB-524A\DC\1023812\LFB\RW\524\1\2\LFB	2 PPB MIX 123	

Compound	R. T.	Area	Status Codes	Conc	TSV	Units	Fit	Purity
IS-FLUOROBENZENE	10.87	320177	S	10.000	0.00	ug/L	998	905
IS-1,4-DIFLUOROBENZENE	10.94	271430	S	10.000	0.00	ug/L	999	807
SS-1,2-DICHLOROETHANE-D4	9.60	147644		10.188	0.00	ug/L	999	854
SS-TOLUENE-D8	13.69	313443		9.827	0.00	ug/L	999	923
SS-BROMOFLUOROBENZENE	17.65	120584		5.013	0.00	ug/L	992	860
SS-1,2-DICHLOROBENZENE-D4	20.13	173104		9.605	0.00	ug/L	993	878
CHLOROMETHANE	3.33	3230		1.762	0.50	ug/L	988	436
VINYL CHLORIDE	3.53	21339		1.608	0.20	ug/L	921	813
BROMOMETHANE	3.98	33844		1.743	0.50	ug/L	922	650
TRICHLOROFLUOROMETHANE	4.86	102633		1.882	0.50	ug/L	998	913
1,1-DICHLOROETHYLENE	5.62	62493		1.880	0.50	ug/L	996	921
METHYLENE CHLORIDE	5.88	65777		1.971	0.50	ug/L	999	796
T-1,2-DICHLOROETHYLENE	6.98	142770		1.863	0.50	ug/L	999	938
1,1-DICHLOROETHANE	7.39	90841		1.840	0.50	ug/L	999	893
C-1,2-DICHLOROETHYLENE	8.33	70457		1.928	0.50	ug/L	998	874
CHLOROFORM	8.68	107542		1.886	0.50	ug/L	999	942
CARBON TETRACHLORIDE	10.44	85355		1.812	0.50	ug/L	1000	930
BENZENE	10.52	169254		1.882	0.50	ug/L	998	934
1,2-DICHLOROPROPANE	11.47	96057		1.757	0.50	ug/L	968	891
TRICHLOROETHYLENE	11.53	117502		1.858	0.50	ug/L	998	939
BROMODICHLOROMETHANE	11.60	80312		1.923	0.50	ug/L	998	912
TOLUENE	13.80	264123		1.896	0.50	ug/L	999	887 ·
DIBROMOCHLOROMETHANE	14.25	53222		1.921	0.50	ug/L	998	900
TETRACHLOROETHYLENE	14.88	81266		1.735	0.50	ug/L	998	947
CHLOROBENZENE	15.88	216285		1.915	0.50	ug/L	998	886
ETHYLBENZENE	16.19	265963		1.880	0.50	ug/L	999	880
1,3-XYLENE	16.48	516038		3.656	0.50	ug/L	999	930
BROMOFORM	16.60	37271		2.008	0.50	ug/L	999	927
1,1,2,2,-TETRACHLOROETHANE	17.05	40007		1.948	0.50	-	899 899	
1,2-XYLENE	17.06	257328		1.819	0.50	ug/L	998 998	316
ISOPROPYLBENZENE	17.60	192156		1.859	0.50	ug/L	999 999	867
BROMOBENZENE	17.95	211085		1.900		ug/L		883
2-CHLOROTOLUENE	18.39	135049		1.900	0.50	ug/L	999. 000	936
1,3,5-TRIMETHYLBENZENE	18.70	281121		1.788	0.50 0.50	ug/L	999 999	919 897
1,2,4-TRIMETHYLBENZENE	19.28	253333		1.728	0.50	ug/L		
1,3-DICHLOROBENZENE	19.28	168473				ug/L	999	906 800
4-ISOPROPYLTOLUENE	19.54	249768		1.799	0.50	ug/L	999	892 795
N-BUTYLBENZENE	20.33			1.819	0.50	ug/L	999	785
1,2-DIBROMO-3-CHLOROPROPANE		191854		1.698	0.50	ug/L	997	872
1,2,4-TRICHLOROBENZENE	20.87	26114		1.978	0.50	ug/L	990	856
NAPHTHALENE	22.84	72650		1.794	0.50	ug/L	980	812
1,2,3-TRICHLOROBENZENE	23.20	44956		1.699	0.50	ug/L	999	842
	23.47	66350		1.768	0.50	ug/L	990	793
DICHLORODIFLUOROMETHANE	3.13	47097	-	1.813	0.50	ug/L	999	841

Compound	R. T.	Area	Status Codes	Conc	TSV	Units	Fit	Purity
CHLOROETHANE	4.15	2685	,	2.390	0.50	ug/L	942	453
1,1,2-TRICHLOROTRIFLUOROETHA	5.97	75362		1.836	0.50	ug/L	994	858
МТВЕ	7.20	129858		2.049	0.50	ug/L	999	895
BROMOCHLOROMETHANE	8.58	53589		1.967	0.50	ug/L	995	876
2,2-DICHLOROPROPANE	8.80	85546		1.941	0.50	ug/L	999	903
1,2-DICHLOROETHANE	9.73	75168		1.957	0.50	ug/L	999	894
1,1,1-TRICHLOROETHANE	9.87	193016		1.881	0.50	ug/L	999	705
1,1-DICHLOROPROPYLENE	10.18	62082		1.859	0.50	ug/L	999	891
DIBROMOMETHANE	11.40	73992		1.979	0.50	ug/L	999	951
CIS-1,3-DICHLOROPROPYLENE	12.62	77835		1.977	0.50	ug/L	999	854
TRANS-1,3-DICHLOROPROPYLENE	13.30	66964		2.031	0.50	ug/L	998	864
1,1,2-TRICHLOROETHANE	13.51	75894		2.013	0.50	ug/L	999	952
1,3-DICHLOROPROPANE	13.88	46044		1.955	0.50	ug/L	999	875
1,2-DIBROMOETHANE(EDB)	14.61	68695		1.971	0.50	ug/L	997	785
1,1,1,2-TETRACHLOROETHANE	15.76	122765		1.951	0.50	ug/L	999	932
1,4-XYLENE	16.48	516038		3.656	0.50	ug/L	1000	912
STYRENE	16.96	172362		1.765	0.50	ug/L	998	934
1,2,3-TRICHLOROPROPANE	17.26	39771		1.848	0.50	ug/L	987	870
N-PROPYLBENZENE	18.26	203436		1.849	0.50	ug/L	1000	673
4-CHLOROTOLUENE	18.51	138381		1.881	0.50	ug/L	999	892
TERT-BUTYLBENZENE	19.11	346844		1.882	0.50	ug/L	986	852
SEC-BUTYLBENZENE	19.44	205890		1.827	0.50	ug/L	1000	866
1,4-DICHLOROBENZENE	19.64	162314		1.799	0.50	ug/L	998	913
1,2,3-TRIMETHYLBENZENE	19.92	261731		1.809	0.50	ug/L	999	905
1,2-DICHLOROBENZENE	20.17	173892		1.823	0.50	ug/L	992	863
HEXACHLOROBUTADIENE	23.26	71749		1.815	0.50	ug/L	998	803

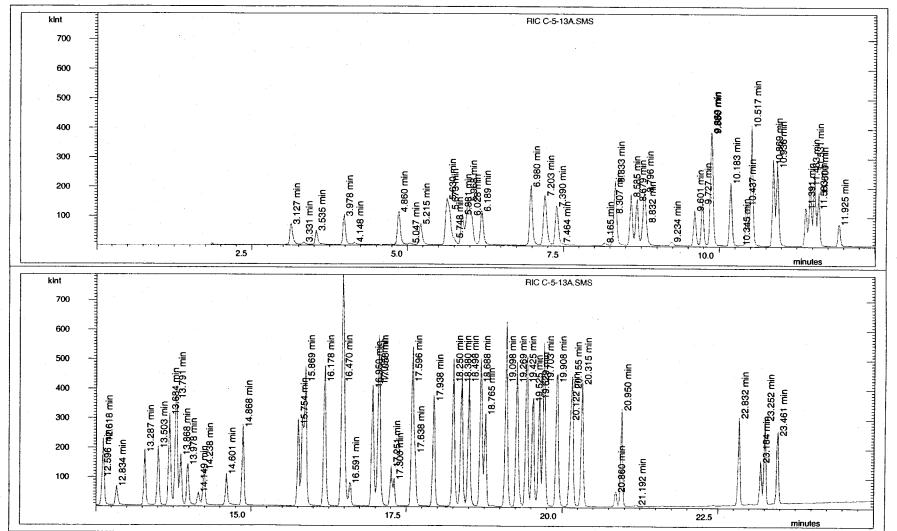
Applicable Status Codes Key:

s

Internal Standard Compound No result can be calculated; check calibration curve More than one result; check calibration curve *

+


Missing Peak
 C Result out of calibration range; check calibration curve
 U User defined end points


CHROMATOGRAM REPORT

EPA Method 524.2

Lab File ID: C:\C\041404A\C-5-13A.SMS Acquisition Date: 4/14/04 10:10 EPA Sample No: C-5-13A Lab Sample ID:

CONTINUING CALI CHE

GENERAL QUANTITATION REPORT

EPA Method 524.2

Environmental Health Laboratories

A Division of Underwriters Laboratories, Inc.

Lab SamplelD:	CONTINUING CALI CHE		Corr. Factor:	1
Analyst:	DC			
Instument:	Saturn C			
Acquisition Date:	4/14/04 10:10			
Data File:	C:\C\041404A\C-5-13A.SMS			
Recalc Method:	C:\C\041404A\524_2-040504C-up1.mth			
Comment:	C-5-13A\DC\1023813\CCC\RW\524\1\5\CCC	5 PPB MIX 1	23	

Compound	R. T.	Area	Status Codes	Conc	TSV	Units	Fit	Purity
IS-FLUOROBENZENE	10.87	318298	S	10.000	0.00	ug/L	998	901
IS-1,4-DIFLUOROBENZENE	10.94	270481	S	10.000	0.00	ug/L	999	901
SS-1,2-DICHLOROETHANE-D4	9.60	147110		10.187	0.00	ug/L	999	850
SS-TOLUENE-D8	13.68	315197		9.917	0.00	ug/L	1000	927
SS-BROMOFLUOROBENZENE	17.64	123276		5.143	0.00	ug/L	992	861
SS-1,2-DICHLOROBENZENE-D4	20.12	175365		9.764	0.00	ug/L	993	880
CHLOROMETHANE	3.33	10570		5.078	0.50	ug/L	989	718
VINYL CHLORIDE	3.53	64041		5.217	0.20	ug/L	943	880
BROMOMETHANE	3.98	116618		5.746	0.50	ug/L	917	795
TRICHLOROFLUOROMETHANE	4.86	288974		5.346	0.50	ug/L	997	920
1,1-DICHLOROETHYLENE	5.63	178174		5.467	0.50	ug/L	985	823
METHYLENE CHLORIDE	5.88	195190		5.433	0.50	ug/L	999	882
T-1,2-DICHLOROETHYLENE	6.98	385843		5.161	0.50	ug/L	999	948
1,1-DICHLOROETHANE	7.39	241843		4.824	0.50	ug/L	1000	915
C-1,2-DICHLOROETHYLENE	8.33	183276		5.075	0.50	ug/L	999	773
CHLOROFORM	8.68	277568		4.985	0.50	ug/L	999	959
CARBON TETRACHLORIDE	10.44	234391		4.962	0.50	ug/L	999	956
BENZENE	10.52	444908		4.951	0.50	ug/L	999	848
1,2-DICHLOROPROPANE	11.46	296412		5.359	0.50	ug/L	982	943
TRICHLOROETHYLENE	11.53	313142		5.097	0.50	ug/L	998	958
BROMODICHLOROMETHANE	11.60	206996		4.936	0.50	ug/L	999	920
TOLUENE	13.79	680008		4.920	0.50	ug/L	999	897
DIBROMOCHLOROMETHANE	14.24	136021		4.872	0.50	ug/L	998	915
TETRACHLOROETHYLENE	14.87	219131		4.860	0.50	ug/L	999	957
CHLOROBENZENE	15.87	559328		5.124	0.50	ug/L	999	904
ETHYLBENZENE	16.18	689628		4.922	0.50	ug/L	999	885
1,3-XYLENE	16.47	1380090		9.814	0.50	ug/L	999	939
BROMOFORM	16.59	91708		4.964	0.50	ug/L	999	928
1,1,2,2,-TETRACHLOROETHANE	17.04	101120		5.059	0.50	ug/L	899	587
1,2-XYLENE	17.05	687339		4.712	0.50	ug/L	997	886
ISOPROPYLBENZENE	17.60	517150		5.135	0.50	ug/L	1000	877
BROMOBENZENE	17.94	557898		5.117	0.50	ug/L	999	935
2-CHLOROTOLUENE	18.38	340982		4.876	0.50	ug/L	999	927
1,3,5-TRIMETHYLBENZENE	18.69	739167		4.666	0.50	ug/L	999	905
1,2,4-TRIMETHYLBENZENE	19.27	687656		4.647	0.50	ug/L	999	913
1,3-DICHLOROBENZENE	19.53	460542		4.949	0.50	ug/L	992	885
4-ISOPROPYLTOLUENE	19.70	664387		4.874	0.50	ug/L	999	832
N-BUTYLBENZENE	20.32	517095		4.717	0.50	ug/L	997	877
1,2-DIBROMO-3-CHLOROPROPANE	20.86	66514		5.091	0.50	ug/L	991	873
1,2,4-TRICHLOROBENZENE	22.83	188593		4.680	0.50	ug/L	980	826
NAPHTHALENE	23.18	119130		4.437	0.50	ug/L	999	879
1,2,3-TRICHLOROBENZENE	23.46	179173		4.795	0.50	ug/L	979	816
DICHLORODIFLUOROMETHANE	3.13	137239		5.407	0.50	ug/L	999	887
4/15/04 13:33	C:\C\04140/	14\C-5-134 SM	e					<u></u>

C:\C\041404A\C-5-13A.SMS

Compound	R. T.	Area	Status Codes	Conc	TSV	Units	Fit	Purity
CHLOROETHANE	4.15	6342		5.070	0.50	ug/L	981	725
1,1,2-TRICHLOROTRIFLUOROETHA	5.97	220434		5.271	0.50	ug/L	996	862
MTBE	7.20	317582		5.172	0.50	ug/L	999	908
BROMOCHLOROMETHANE	8.59	136133		5.059	0.50	ug/L	996	896
2,2-DICHLOROPROPANE	8.80	231527		5.410	0.50	ug/L	999	913
1,2-DICHLOROETHANE	9.73	189627		4.983	0.50	ug/L	999	894
1,1,1-TRICHLOROETHANE	9.87	528045		5.328	0.50	ug/L	999	695
1,1-DICHLOROPROPYLENE	10.18	169577		5.181	0.50	ug/L	1000	897
DIBROMOMETHANE	11.39	185161		5.042	0.50	ug/L	999	950
CIS-1,3-DICHLOROPROPYLENE	12.62	202468		5.163	0.50	ug/L	999	860
TRANS-1,3-DICHLOROPROPYLENE	13.29	169135		5.249	0.50	ug/L	999	877
1,1,2-TRICHLOROETHANE	13.50	185546		5.032	0.50	ug/L	990	943
1,3-DICHLOROPROPANE	13.87	117542		5.030	0.50	ug/L	998	929
1,2-DIBROMOETHANE(EDB)	14.60	167296		4.823	0.50	ug/L	997	838
1,1,1,2-TETRACHLOROETHANE	15.75	291201		4.609	0.50	ug/L	999	934
1,4-XYLENE	16.47	1380090		9.814	0.50	ug/L	999	920
STYRENE	16.95	481441		4.905	0.50	ug/L	999	933
1,2,3-TRICHLOROPROPANE	17.25	98788		4.761	0.50	ug/L	987	872
N-PROPYLBENZENE	18.25	543925		4.995	0.50	ug/L	1000	821
4-CHLOROTOLUENE	18.50	362521		4.973	0.50	ug/L	999	916
TERT-BUTYLBENZENE	19.10	930859		.5.127	0.50	ug/L	992	858
SEC-BUTYLBENZENE	19.42	550676		4.891	0.50	ug/L	999	871
1,4-DICHLOROBENZENE	19.63	446098		4.943	0.50	ug/L	999	913
1,2,3-TRIMETHYLBENZENE	19.91	682088		4.709	0.50	ug/L	999	909
1,2-DICHLOROBENZENE	20.16	446677		4.975	0.50	ug/L	992	883
HEXACHLOROBUTADIENE	23.25	187710		4.856	0.50	ug/L	999 999	814
ACETONE								
	5.05	11022		4.730	5.00	ug/L	1000	577
	5.21	69896		5.178	2.00	ug/L	996	943
	5.67	269921		4.118	2.00	ug/L	997	513
ACRYLONITRILE	5.75	30200		5.055	1.00	ug/L	993	771
ALLYL CHLORIDE	6.03	55260		5.211	5.00	ug/L	999	681
CARBON DISULFIDE	6.19	276023		5.208	5.00	ug/L	1000	951
PROPIONITRILE	7.46	6544		4.386	5.00	ug/L	918	117
2-BUTANONE	8.17	7591		5.199	5.00	ug/L	999	733
METHACRYLONITRILE	8.31	80809		5.076	5.00	`ug/L	997	454
METHYLACRYLATE	8.83	47960		4.543	1.00	ug/L	927	526
TETRAHYDROFURAN	9.23	20927		4.734	5.00	ug/L	999	886
1-CHLOROBUTANE	9.88	333949		5.050	5.00	ug/L	979	336
CHLOROACETONITRILE	10.34	3683		4.304	5.00	ug/L	959	684
2-NITROPROPANE	11.58	5064		5.158	2.00	ug/L	841	73
METHYL METHACRYLATE	11.92	112070		5.048	1.00	ug/L	998	833
1,1-DICHLOROPROPANONE	12.60	17199		4.507	5.00	ug/L	996	473
4-METHYL-2-PENTANONE	12.83	99276		5.088	2.00	ug/L	998	799
ETHYL METHACRYLATE	13.98	177105		4.912	1.00	ug/L	999	855
2-HEXANONE	14.15	60893		4.843	5.00	ug/L	981	809
T-1,4-DICHLORO-2-BUTENE	17.30	29358		5.534	5.00	ug/L	999	910
PENTACHLOROETHANE	18.76	210816		5.178	2.00	ug/L	992	842
HEXACHLOROETHANE	20.95	241373		5.480	2.00	ug/L	992	925
NITROBENZENE	21.19	6017		4.859	5.00	ug/L	965	487
						-		

Applicable Status Codes Key:

s *

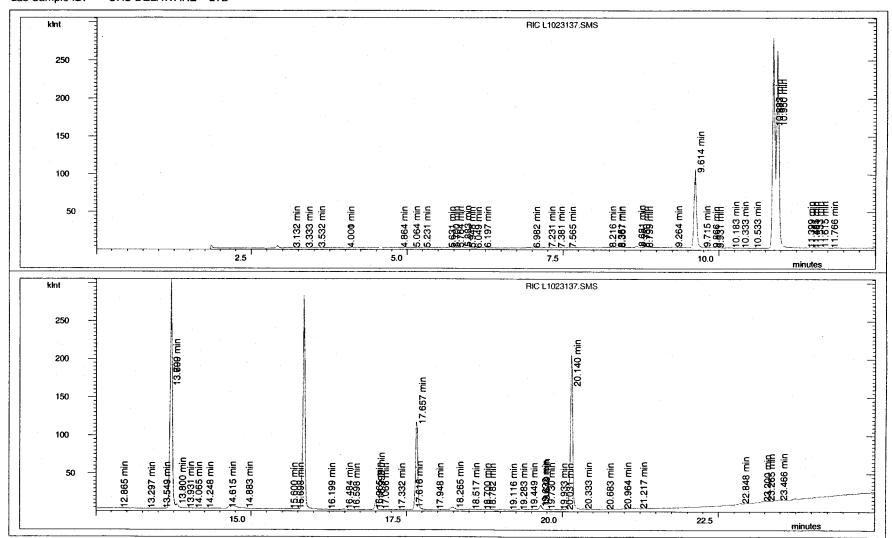
Internal Standard Compound No result can be calculated; check calibration curve More than one result; check calibration curve

+

M C Missing Peak

Result out of calibration range; check calibration curve

υ User defined end points


CHROMATOGRAM REPORT

EPA Method 524.2

Operator:

DC

GENERAL QUANTITATION REPORT

EPA Method 524.2

Environmental Health Laboratories

A Division of Underwriters Laboratories, Inc.

Lab SampleID:	URS DELAWARE LTB	Corr. Factor: 1
Analyst:	DC	
Instument:	Saturn C	
Acquisition Date:	4/14/04 12:10	
Data File:	C:\C\041404A\L1023137.SMS	
Recalc Method:	C:\C\041404A\524_2-040504C-up1.mth	
Comment:	L1023137\DC\1023137\LTB\RW\524\1\\URS DELAWARE	LTB

Compound	R. T.	Area	Status Codes	Conc	TSV	Units	Fit	Purity
IS-FLUOROBENZENE	10.88	296538	S	10.000	0.00	ug/L	998	897
IS-1,4-DIFLUOROBENZENE	10.95	247218	S	10.000	0.00	ug/L	999	846
SS-1,2-DICHLOROETHANE-D4	9.61	128648		9.747	0.00	ug/L	1000	842
SS-TOLUENE-D8	13.70	291206		10.024	0.00	ug/L	999	927
SS-BROMOFLUOROBENZENE	17.66	106134		4.844	0.00	ug/L	999	932
SS-1,2-DICHLOROBENZENE-D4	20.14	147973		9.015	0.00	ug/L	994	890
CHLOROMETHANE	3.33	0	м	0.0000	0.50	ug/L	145	0
VINYL CHLORIDE	3.53	0	М	0.000	0.20	ug/L	766	135
BROMOMETHANE	4.00	552		0.120	0.50	ug/L	818	116
TRICHLOROFLUOROMETHANE	4.86	0	M	0.000	0.50	ug/L	839	64
1,1-DICHLOROETHYLENE	5.63	0	М	0.000	0.50	ug/L	575	28
METHYLENE CHLORIDE	5.88	0	М	0.000	0.50	ug/L	968	207
T-1,2-DICHLOROETHYLENE	6.98	0	M	0.000	0.50	ug/L	804	55
1,1-DICHLOROETHANE	7.38	. 0	M	0.000	0.50	ug/L	836	47
C-1,2-DICHLOROETHYLENE	8.35	0	M	0.000	0.50	ug/L	832	65
CHLOROFORM	8.68	. 0	M	0.000	0.50	ug/L	999	486
CARBON TETRACHLORIDE	10.33	. 0	M	0.000	0.50	ug/L	730	27
BENZENE	10.53	0	M	0.000	0.50	ug/L	966	179
1.2-DICHLOROPROPANE	11.46	0	M	0.000	0.50	ug/L	624	39
TRICHLOROETHYLENE	11.53	0	M	0.000	0.50	ug/L	844	200
BROMODICHLOROMETHANE	11.61	ů O	M	0.000	0.50	ug/L	733	72
TOLUENE	13.80	. 0	M	0.000	0.50	ug/L	999	627
DIBROMOCHLOROMETHANE	14.25	0	M	0.000	0.50	ug/L	743	89
TETRACHLOROETHYLENE	14.88	0	M	0.000	0.50	ug/L	890	404
CHLOROBENZENE	15.70	0	M	0.000	0.50	ug/L	679	22
ETHYLBENZENE	16.20	0	M	0.000	0.50	ug/L	981	547
1,3-XYLENE	16.48	0	M	0.000	0.50	ug/L	991	711
BROMOFORM	16.60	0	M	0.000	0.50	ug/L	454	76
1,1,2,2,-TETRACHLOROETHANE	17.00	0	M	0.000	0.50	ug/L	393	27
1,2-XYLENE	17.07	0	M	0.000	0.50	ug/L ug/L	929	424
ISOPROPYLBENZENE	17.62	0	M	0.000	0.50	-	929 941	424 316
BROMOBENZENE	17.95	0	M	0.000	0.50	ug/L		
2-CHLOROTOLUENE	18.52	0	M	0.000		ug/L	915	367
1,3,5-TRIMETHYLBENZENE	18.70				0.50	ug/L	967 050	422
1,2,4-TRIMETHYLBENZENE		0	M	0.000	0.50	ug/L	952	493
1,3-DICHLOROBENZENE	19.28	0	M	0.000	0.50	ug/L	963	488
4-ISOPROPYLTOLUENE	19.63	0	M	0.000	0.50	ug/L	990	804
N-BUTYLBENZENE	19.73	0	M	0.000	0.50	ug/L	992	465
1,2-DIBROMO-3-CHLOROPROPANE	20.33	0	M	0.000	0.50	ug/L	978	460
1,2,4-TRICHLOROBENZENE	20.68	0	M	0.000	0.50	ug/L	339	35
	22.85	0	M	0.000	0.50	ug/L	974	485
	23.20	0	M	0.000	0.50	ug/L	963	286
1,2,3-TRICHLOROBENZENE	23.47	0	M	0.000	0.50	ug/L	918	230
DICHLORODIFLUOROMETHANE	3.13	0	М	0.000	0.50	ug/L	731	11
4/15/04 13:33	C:\C\041404	A\L1023137.S	ims	31		Page 1 o	f 2	· . ·

(4/15/4

Compound	R. T.	Area	Status Codes	Conc	TSV	Units	Fit	Purity
CHLOROETHANE	4.00	0	M	0.000	0.50	ug/L	299	7
1,1,2-TRICHLOROTRIFLUOROETHA	5.95	0	Μ	0.000	0.50	ug/L	622	90
MTBE	7.23	0	Μ	0.000	0.50	ug/L	971	250
BROMOCHLOROMETHANE	8.68	0	M	0.000	0.50	ug/L	235	21
2,2-DICHLOROPROPANE	8.80	0	M	0.000	0.50	ug/L	712	- 36
1,2-DICHLOROETHANE	9.72	0	M	0.000	0.50	ug/L	588	57
1,1,1-TRICHLOROETHANE	9.87	0	Μ	0.000	0.50	ug/L	829	45
1,1-DICHLOROPROPYLENE	10.18	0	M	0.000	0.50	ug/L	459	29
DIBROMOMETHANE	11.40	0	м	0.000	0.50	ug/L	553	46
CIS-1,3-DICHLOROPROPYLENE	12.50	0	М	0.000	0.50	ug/L	629	3
TRANS-1,3-DICHLOROPROPYLENE	13.30	0	M	0.000	0.50	ug/L	609	18
1,1,2-TRICHLOROETHANE	13.55	0	М	0.000	0.50	ug/L	503	35
1,3-DICHLOROPROPANE	13.70	0	м	0.000	0.50	ug/L	548	3
1,2-DIBROMOETHANE(EDB)	14.61	0	М	0.000	0.50	ug/L	894	35
1,1,1,2-TETRACHLOROETHANE	15.60	0	M	0.000	0.50	ug/L	352	39
1,4-XYLENE	16.48	0	М	0.000	0.50	ug/L	995	671
STYRENE	16.96	0	м	0.000	0.50	ug/L	955	360
1,2,3-TRICHLOROPROPANE	17.33	0	M	0.000	0.50	ug/L	447	21
N-PROPYLBENZENE	18.27	0	M	0.000	0.50	ug/L	971	63
4-CHLOROTOLUENE	18.52	0	M	0.000	0.50	ug/L	985	446
TERT-BUTYLBENZENE	19.12	0	M	0.000	0.50	ug/L	947	360
SEC-BUTYLBENZENE	19.45	0	M	0.000	0.50	ug/L	964	296
1,4-DICHLOROBENZENE	19.65	0	M	0.000	0.50	ug/L	992	831
1,2,3-TRIMETHYLBENZENE	19.93	0	M	0.000	0.50	ug/L	949	417
1,2-DICHLOROBENZENE	20.03	0	M	0.000	0.50	ug/L	566	56
HEXACHLOROBUTADIENE	23.26	0	M	0.000	0.50	ug/L	924	234
ACETONE	5.06	0	M	0.000	5.00	ug/L	996	173
ETHYL ETHER	5.23	0	М	0.000	2.00	ug/L	340	21
IODOMETHANE	5.70	1290		0.327	2.00	ug/L	997	355
ACRYLONITRILE	5.76	0	М	0.000	1.00	ug/L	633	104
ALLYL CHLORIDE	6.05	0	M	0.000	5.00	ug/L	475	9
CARBON DISULFIDE	6.20	1221	< *C	-1.000	5.00	ug/L	933	310
PROPIONITRILE	7.57	0	м	0.000	5.00	ug/L	558	13
2-BUTANONE	8.22	0	M	0.000	5.00	ug/L	943	218
METHACRYLONITRILE	8.37	0	м	0.000	5.00	ug/L	666	31
METHYLACRYLATE	8.75	0	м	0.000	1.00	ug/L	726	25
TETRAHYDROFURAN	9.26	0	М	0.000	5.00	ug/L	925	236
1-CHLOROBUTANE	9.93	0	м	0.000	5.00	ug/L	736	33
CHLOROACETONITRILE	10.18	0	м	0.000	5.00	ug/L	418	23
2-NITROPROPANE	11.48	0	M	0.000	2.00	ug/L	821	53
METHYL METHACRYLATE	11.77	0	M	0.000	1.00	ug/L	324	10
4-METHYL-2-PENTANONE	12.87	0	M	0.000	2.00	ug/L	809	74
1,1-DICHLOROPROPANONE	12.87	0	M	0.000	5.00	ug/L	639	41
ETHYL METHACRYLATE	13.93	0	M	0.000	1.00	ug/L	585	7
2-HEXANONE	14.06	. 0	M	0.000	5.00	ug/L	152	, 7
T-1,4-DICHLORO-2-BUTENE	17.33	0	M	0.000	5.00	ug/L	504	41
PENTACHLOROETHANE	18.78	0	M	0.000	2.00	ug/L	417	43
HEXACHLOROETHANE	20.96	0	M	0.000	2.00	ug/L	749	156
NITROBENZENE	21.22	· 0	M	0.000	5.00	ug/L	477	57
	£1.22	U	IVI	0.400	5.00	uyr	+//	57

Applicable Status Codes Key:

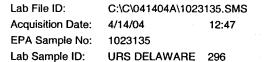
S Internal Standard Compound

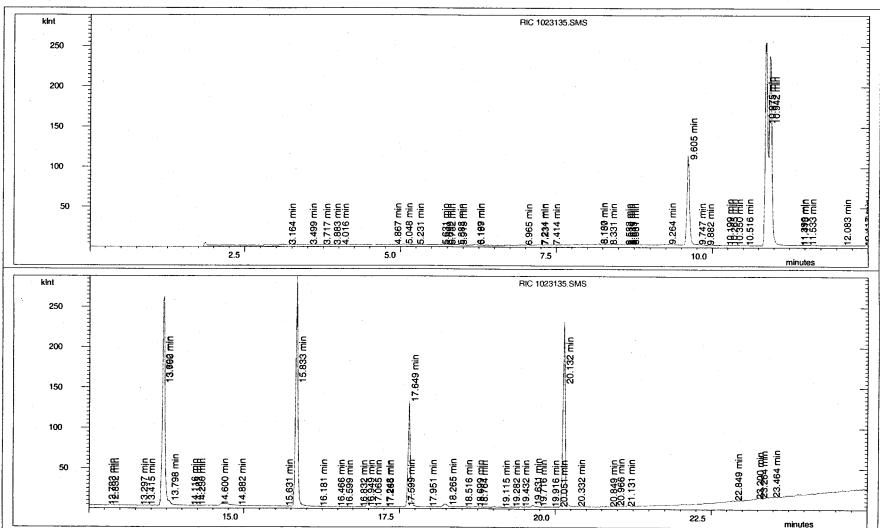
* No result can be calculated; check calibration curve

+ More than one result; check calibration curve

M Missing Peak

C Result out of calibration range; check calibration curve


U User defined end points


48 CZ115/4

CHROMATOGRAM REPORT

EPA Method 524.2

Operator: DC

GENERAL QUANTITATION REPORT

EPA Method 524.2

Environmental Health Laboratories

A Division of Underwriters Laboratories, Inc.

Lab SampleID:	URS DELAWARE 296	Corr. Factor: 1
Analyst:	DC	
Instument:	Saturn C	
Acquisition Date:	4/14/04 12:47	
Data File:	C:\C\041404A\1023135.SMS	
Recalc Method:	C:\C\041404A\524_2-040504C-up1.mth	
Comment:	1023135\DC\1023135\FS\DW\524\1\\URS DELAWARE	29600N

Compound	R. T.	Area	Status Codes	Conc	TSV	Units	Fit	Purity
IS-FLUOROBENZENE	10.87	310112	S	10.000	0.00	ug/L	998	908
IS-1,4-DIFLUOROBENZENE	10.94	254872	S	10.000	0.00	ug/L	999	867
SS-1,2-DICHLOROETHANE-D4	9.60	142707		10.487	0.00	ug/L	999	838
SS-TOLUENE-D8	13.69	298319		9.961	0.00	ug/L	1000	899
SS-BROMOFLUOROBENZENE	17.65	114813		5.083	0.00	ug/L	992	926
SS-1,2-DICHLOROBENZENE-D4	20.13	158258		9.352	0.00	ug/L	993	894
CHLOROMETHANE	3.50	0	М	0.000	0.50	ug/L	145	1
VINYL CHLORIDE	3.72	0	М	0.000	0.20	ug/L	498	24
BROMOMETHANE	4.02	0	м	0.000	0.50	ug/L	762	137
TRICHLOROFLUOROMETHANE	4.87	· • 0	M	0.000	0.50	ug/L	827	34
1,1-DICHLOROETHYLENE	5.63	0	М	0.000	0.50	ug/L	654	55
METHYLENE CHLORIDE	5.88	0	M	0.000	0.50	ug/L	807	45
T-1,2-DICHLOROETHYLENE	6.97	0	м	0.000	0.50	ug/L	821	84
1,1-DICHLOROETHANE	7.23	0	M	0.000	0.50	ug/L	669	15
C-1,2-DICHLOROETHYLENE	8.33	0	М	0.000	0.50	ug/L	758	26
CHLOROFORM	8.68	0	M	0.000	0.50	ug/L	781	67
CARBON TETRACHLORIDE	10.35	0	M	0.000	0.50	ug/L	847	79
BENZENE	10.52	. 0	М	0.000	0.50	ug/L	971	246
1,2-DICHLOROPROPANE	11.42	0	М	0.000	0.50	ug/L	508	53
BROMODICHLOROMETHANE	11.53	0	М	0.000	0.50	ug/L	607	14
TRICHLOROETHYLENE	11.53	0	М	0.000	0.50	ug/L	870	106
TOLUENE	13.80	0	М	0.000	0.50	ug/L	999	368
DIBROMOCHLOROMETHANE	14.23	0	Μ	0.000	0.50	ug/L	452	23
TETRACHLOROETHYLENE	14.88	0	М	0.000	0.50	ug/L	880	269
CHLOROBENZENE	15.83	0	M	0.000	0.50	ug/L	588	23
ETHYLBENZENE	16.18	0	м	0.000	0.50	ug/L	914	295
1,3-XYLENE	16.47	0	М	0.000	0.50	ug/L	990	552
BROMOFORM	16.60	0	м	0.000	0.50	ug/L	613	77
1,1,2,2,-TETRACHLOROETHANE	16.83	0	м	0.000	0.50	ug/L	334	33
1,2-XYLENE	17.07	0	М	0.000	0.50	ug/L	867	288
ISOPROPYLBENZENE	17.60	0	м	0.000	0.50	ug/L	911	200
BROMOBENZENE	17.95	0	М	0.000	0.50	ug/L	911	380
2-CHLOROTOLUENE	18.52	0	м	0.000	0.50	ug/L	938	401
1,3,5-TRIMETHYLBENZENE	18.70	0	м	0.000	0.50	ug/L	952	475
1,2,4-TRIMETHYLBENZENE	19.28	0	Μ	0.000	0.50	ug/L	977	532
1,3-DICHLOROBENZENE	19.63	0	м	0.000	0.50	ug/L	991	745
4-ISOPROPYLTOLUENE	19.72	0	м	0.000	0.50	ug/L	984	574
N-BUTYLBENZENE	20.33	0	м	0.000	0.50	ug/L	949	488
1,2-DIBROMO-3-CHLOROPROPANE	20.85	0	М	0.000	0.50	ug/L	322	22
1,2,4-TRICHLOROBENZENE	22.85	0	м	0.000	0.50	ug/L	967	429
NAPHTHALENE	23.20	0	м	0.000	0.50	ug/L	964	334
1,2,3-TRICHLOROBENZENE	23.46	0	M	0.000	0.50	ug/L	957	263
DICHLORODIFLUOROMETHANE	3.16	0	м	0.000	0.50	ug/L	651	5
4/15/04 13:33	C:\C\041404	A\1023135.SI	MS	37		Page 1 c	of 2	

Page 1 of 2

Pulisla

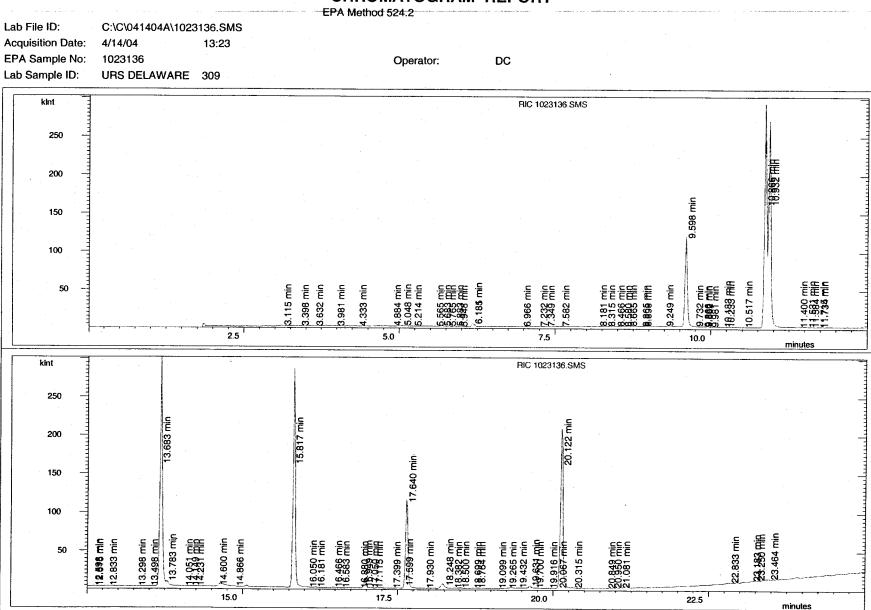
Compound	R. T.	Area	Status Codes	Conc	TSV	Units	Fit	Purity
CHLOROETHANE	3.88	0	M	0.000	0.50	ug/L	266	5
1,1,2-TRICHLOROTRIFLUOROETHA	5.92	· 0	M	0.000	0.50	ug/L	581	63
MTBE	7.21	0	М	0.000	0.50	ug/L	856	197
BROMOCHLOROMETHANE	8.58	0	Μ	0.000	0.50	ug/L	176	7
2,2-DICHLOROPROPANE	8.62	0	M	0.000	0.50	ug/L	731	18
1,2-DICHLOROETHANE	9.75	0	M	0.000	0.50	ug/L	533	52
1,1,1-TRICHLOROETHANE	9.88	0	M	0.000	0.50	ug/L	594	53
1,1-DICHLOROPROPYLENE	10.20	0	Μ	0.000	0.50	ug/L	558	27
DIBROMOMETHANE	11.40	0	Μ	0.000	0.50	ug/L	779	120
CIS-1,3-DICHLOROPROPYLENE	12.78	0	м	0.000	0.50	ug/L	635	21
TRANS-1,3-DICHLOROPROPYLENE	13.30	0	M	0.000	0.50	ug/L	589	8
1,1,2-TRICHLOROETHANE	13.41	. 0	M	0.000	0.50	ug/L	448	23
1,3-DICHLOROPROPANE	13.70	0	M	0.000	0.50	ug/L	548	3
1,2-DIBROMOETHANE(EDB)	14.60	0	М	0.000	0.50	ug/L	837	49
1,1,1,2-TETRACHLOROETHANE	15.63	0	M	0.000	0.50	ug/L	407	21
1,4-XYLENE	16.47	0	м	0.000	0.50	ug/L	995	548
STYRENE	16.95	0	M	0.000	0.50	ug/L	915	311
1,2,3-TRICHLOROPROPANE	17.25	0	M	0.000	0.50	ug/L	532	23
N-PROPYLBENZENE	18.26	0	M	0.000	0.50	ug/L	991	61
4-CHLOROTOLUENE	18.52	0	M	0.000	0.50	ug/L	974	388
TERT-BUTYLBENZENE	19.11	0	M	0.000	0.50	ug/L	929	312
SEC-BUTYLBENZENE	19.43	0	M	0.000	0.50	ug/L	985	287
1,4-DICHLOROBENZENE	19.63	0	M	0.000	0.50	ug/L	991	788
1,2,3-TRIMETHYLBENZENE	19.92	0	M	0.000	0.50	ug/L	956	359
1,2-DICHLOROBENZENE	20.05	0	M	0.000	0.50	ug/L	606	83
HEXACHLOROBUTADIENE	23.26	· 0	M	0.000	0.50	ug/L	900	212
ACETONE	5.05	0	М	0.000	5.00	ug/L	862	54
ETHYL ETHER	5.23	0	М	0.000	2.00	ug/L	432	7
IODOMETHANE	5.70	0	M	0.000	2.00	ug/L	984	230
ACRYLONITRILE	5.73	0	М	0.000	1.00	ug/L	828	30
CARBON DISULFIDE	6.19	2552	< *C	-1.000	5.00	ug/L	929	258
ALLYL CHLORIDE	6.20	0	Μ	0.000	5.00	ug/L	469	239
PROPIONITRILE	7.41	0	М	0.000	5.00	ug/L	597	14
METHACRYLONITRILE	8.18	0	M	0.000	5.00	ug/L	619	23
2-BUTANONE	8.19	809		0.736	5.00	ug/L	998	309
METHYLACRYLATE	8.65	0	М	0.000	1.00	ug/L	722	19
TETRAHYDROFURAN	9.26	0	M	0.000	5.00	ug/L	997	406
1-CHLOROBUTANE	9.88	. 0	M	0.000	5.00	ug/L	637	23
CHLOROACETONITRILE	10.26	0	M	0.000	5.00	ug/L	447	3
2-NITROPROPANE	11.40	0	M	0.000	2.00		380	11
METHYL METHACRYLATE	12.08	0	M	0.000	1.00	ug/L		
1,1-DICHLOROPROPANONE	12.00	0	M.	0.000		ug/L	381	16
4-METHYL-2-PENTANONE	12.42	0		0.000	5.00	ug/L	516 502	7
ETHYL METHACRYLATE	12.03		M		2.00	ug/L	503	22
2-HEXANONE		0	M	0.000	1.00	ug/L	627	51
T-1,4-DICHLORO-2-BUTENE	14.18	0	M	0.000	5.00	ug/L	361	12
	17.26	0	M	0.000	5.00	ug/L	424	24
PENTACHLOROETHANE	18.76	0	M	0.000	2.00	ug/L	669	121
HEXACHLOROETHANE	20.97	0	M	0.000	2.00	ug/L	670	124
NITROBENZENE	21.13	0	M	0.000	5.00	ug/L	484	44

Applicable Status Codes Key:

s *

Internal Standard Compound No result can be calculated; check calibration curve

More than one result; check calibration curve +


М Missing Peak

Result out of calibration range; check calibration curve User defined end points С

U

48 CP4/15/4

CHROMATOGRAM REPORT

GENERAL QUANTITATION REPORT

EPA Method 524.2

Environmental Health Laboratories

A Division of Underwriters Laboratories, Inc.

Lab SampleID:	URS DELAWARE 309	Corr. Factor:	1
Analyst:	DC		
Instument:	Saturn C		
Acquisition Date:	4/14/04 13:23		
Data File:	C:\C\041404A\1023136.SMS		
Recalc Method:	C:\C\041404A\524_2-040504C-up1.mth		
Comment:	1023136\DC\1023136\FS\DW\524\1\\URS DELAWARE	30900N	

Compound	R. T.	Area	Status Codes	Conc	TSV	Units	Fit	Purity
IS-FLUOROBENZENE	10.87	308743	S	10.000	0.00	ug/L	998	913
IS-1,4-DIFLUOROBENZENE	10.93	255332	S	10.000	0.00	ug/L	999	870
SS-1,2-DICHLOROETHANE-D4	9.60	145688		10.687	0.00	ug/L	1000	815
SS-TOLUENE-D8	13.68	303800		10.125	0.00	ug/L	999	923
SS-BROMOFLUOROBENZENE	17.64	112350		4.965	0.00	ug/L	998	934
SS-1,2-DICHLOROBENZENE-D4	20.12	161215		9.509	0.00	ug/L	994	865
CHLOROMETHANE	3.40	0	М	0.000	0.50	ug/L	145	1
VINYL CHLORIDE	3.63	0	М	0.000	0.20	ug/L	647	12
BROMOMETHANE	3.98	· 0	М	0.000	0.50	ug/L	745	121
TRICHLOROFLUOROMETHANE	4.88	0	М	0.000	0.50	ug/L	843	24
1,1-DICHLOROETHYLENE	5.56	0	М	0.000	0.50	ug/L	497	10
METHYLENE CHLORIDE	5.88	0	М	0.000	0.50	ug/L	959	82
T-1,2-DICHLOROETHYLENE	6.97	0	М	0.000	0.50	ug/L	663	26
1,1-DICHLOROETHANE	7.58	0	М	0.000	0.50	ug/L	747	5
C-1,2-DICHLOROETHYLENE	8.31	0	М	0.000	0.50	ug/L	753	8
CHLOROFORM	8.67	0	M	0.000	0.50	ug/L	780	72
CARBON TETRACHLORIDE	10.23	0	M	0.000	0.50	ug/L	734	61
BENZENE	10.52	0	M	0.000	0.50	ug/L	917	218
1,2-DICHLOROPROPANE	11.40	0	M	0.000	0.50	ug/L	510	210
TRICHLOROETHYLENE	11.53	0	M	0.000	0.50	ug/L	888	184
BROMODICHLOROMETHANE	11.58	0	M	0.000	0.50			
TOLUENE	13.78	0	M	0.000	0.50	ug/L	553	25
DIBROMOCHLOROMETHANE	14.23	0	M	0.000	0.50	ug/L	999	605
TETRACHLOROETHYLENE	14.87	0	M	0.000		ug/L	484	27
CHLOROBENZENE	16.05	0	M		0.50	ug/L	892	342
ETHYLBENZENE	16.18	0	M	0.000	0.50	ug/L	642	44
1,3-XYLENE	16.47			0.000	0.50	ug/L	987	432
BROMOFORM		0	M	0.000	0.50	ug/L	981	675
1,1,2,2,-TETRACHLOROETHANE	16.58	0	М	0.000	0.50	ug/L	391	31
1,2-XYLENE	16.88	0	M	0.000	0.50	ug/L	529	63
ISOPROPYLBENZENE	17.05	0	M	0.000	0.50	ug/L	946	454
BROMOBENZENE	17.60	0	M	0.000	0.50	ug/L	941	339
2-CHLOROTOLUENE	17.93	0	M	0.000	0.50	ug/L	919	179
	18.38	0	М	0.000	0.50	ug/L	910	283
1,3,5-TRIMETHYLBENZENE	18.70	0	м	0.000	0.50	ug/L	889	335
	19.27	0	м	0.000	0.50	ug/L	900	409
1,3-DICHLOROBENZENE	19.63	0	м	0.000	0.50	ug/L	988	803
	19.70	0	M	0.000	0.50	ug/L	967	403
	20.32	0	М	0.000	0.50	ug/L	955	581
1,2-DIBROMO-3-CHLOROPROPANE	20.85	0	Μ	0.000	0.50	ug/L	685	55
1,2,4-TRICHLOROBENZENE	22.83	0	M	0.000	0.50	ug/L	965	430
NAPHTHALENE	23.18	0	М	0.000	0.50	ug/L	968	213
1,2,3-TRICHLOROBENZENE	23.46	0	М	0.000	0.50	ug/L	886	228
DICHLORODIFLUOROMETHANE	3.12	0	М	0.000	0.50	ug/L	996	52
4/15/04 13:33	C:\C\041404A	1023136 SM	15	· · ·		Page 1 of		

C:\C\041404A\1023136.SMS

04/15/04 Page 1 of 2

Compound	R. T.	Area	Status Codes	Conc	TSV	Units	Fit	Purity
CHLOROETHANE	4.33	0	М	0.000	0.50	ug/L	212	4
1,1,2-TRICHLOROTRIFLUOROETHA	5.95	0	М	0.000	0.50	ug/L	800	82
MTBE	7.23	0	M	0.000	0.50	ug/L	739	82
BROMOCHLOROMETHANE	8.58	0	Μ	0.000	0.50	ug/L	164	6
2,2-DICHLOROPROPANE	8.90	0	Μ	0.000	0.50	ug/L	602	25
1,2-DICHLOROETHANE	9.73	0	М	0.000	0.50	ug/L	588	53
1,1,1-TRICHLOROETHANE	9.87	0	М	0.000	0.50	ug/L	679	15
1,1-DICHLOROPROPYLENE	9.98	0	M	0.000	0.50	ug/L	434	4
DIBROMOMETHANE	11.40	0	м	0.000	0.50	ug/L	639	72
CIS-1,3-DICHLOROPROPYLENE	12.61	0	М	0.000	0.50	ug/L	628	28
TRANS-1,3-DICHLOROPROPYLENE	13.30	0	м	0.000	0.50	ug/L	680	71
1,1,2-TRICHLOROETHANE	13.50	0	м	0.000	0.50	ug/L	509	29
1,3-DICHLOROPROPANE	13.68	0	M	0.000	0.50	ug/L	548	
1,2-DIBROMOETHANE(EDB)	14.60	0	M ,	0.000	0.50	ug/L	789	8
1,1,1,2-TETRACHLOROETHANE	15.82	0	M	0.000	0.50	ug/L	538	53
1,4-XYLENE	16.47	0	M	0.000	0.50	ug/L	979	589
STYRENE	16.95	. 0	M	0.000	0.50	-		
1,2,3-TRICHLOROPROPANE	17.11	0	M	0.000	0.50	ug/L	873	156
N-PROPYLBENZENE	18.25	0	M	0.000		ug/L	490	8
4-CHLOROTOLUENE	18.50	0	M	0.000	0.50	ug/L	951	. 38
TERT-BUTYLBENZENE	19.10	0			0.50	ug/L	949	341
SEC-BUTYLBENZENE		_	M	0.000	0.50	ug/L	896	226
1,4-DICHLOROBENZENE	19.43	0	М	0.000	0.50	ug/L	961	329
1,2,3-TRIMETHYLBENZENE	19.63	0	M	0.000	0.50	ug/L	990	830
	19.92	0	M	0.000	0.50	ug/L	951	331
	20.07	0	М	0.000	0.50	ug/L	374	32
HEXACHLOROBUTADIENE	23.25	0	M	0.000	0.50	ug/L	852	168
ACETONE	5.05	2279		0.906	5.00	ug/L	1000	243
ETHYL ETHER	5.21	0	М	0.000	2.00	ug/L	449	16
IODOMETHANE	5.68	0	М	0.000	2.00	ug/L	992	215
ACRYLONITRILE	5.77	0	М	0.000	1.00	ug/L	744	18
ALLYL CHLORIDE	6.18	0	М	0.000	5.00	ug/L	480	154
CARBON DISULFIDE	6.18	9225		0.123	5.00	ug/L	982	612
PROPIONITRILE	7.35	0	м	0.000	5.00	ug/L	703	12
2-BUTANONE	8.18	. 0	M	0.000	5.00	ug/L	942	159
METHACRYLONITRILE	8.47	0	М	0.000	5.00	ug/L	335	3
METHYLACRYLATE	8.86	0	M	0.000	1.00	ug/L	660	9
TETRAHYDROFURAN	9.25	0	M	0.000	5.00			
1-CHLOROBUTANE	9.88	0	M			ug/L	991	307
CHLOROACETONITRILE	10.18	0.		0.000	5.00	ug/L	566	7
METHYL METHACRYLATE	11.71		M	0.000	5.00	ug/L	435	20
2-NITROPROPANE	11.73	0	M	0.000	1.00	ug/L	413	25
1,1-DICHLOROPROPANONE		0	M	0.000	2.00	ug/L	462	7
4-METHYL-2-PENTANONE	12.60	0	M	0.000	5.00	ug/L	773	113
ETHYL METHACRYLATE	12.83	0	M	0.000	2.00	ug/L	793	65
	14.05	0	M	0.000	1.00	ug/L	544	24
	14.15	· 0	M	0.000	5.00	ug/L	306	4
T-1,4-DICHLORO-2-BUTENE	17.40	0	М	0.000	5.00	ug/L	425	32
	18.76	0	M	0.000	2.00	ug/L	507	60
HEXACHLOROETHANE	20.95	0	М	0.000	2.00	ug/L	532	100
NITROBENZENE	21.08	0	М	0.doo	5.00	ug/L	378	51

Applicable Status Codes Key:

s

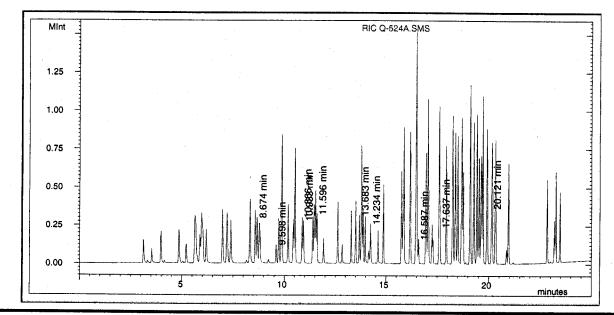
Internal Standard Compound No result can be calculated; check calibration curve *

More than one result; check calibration curve +

M Missing Peak

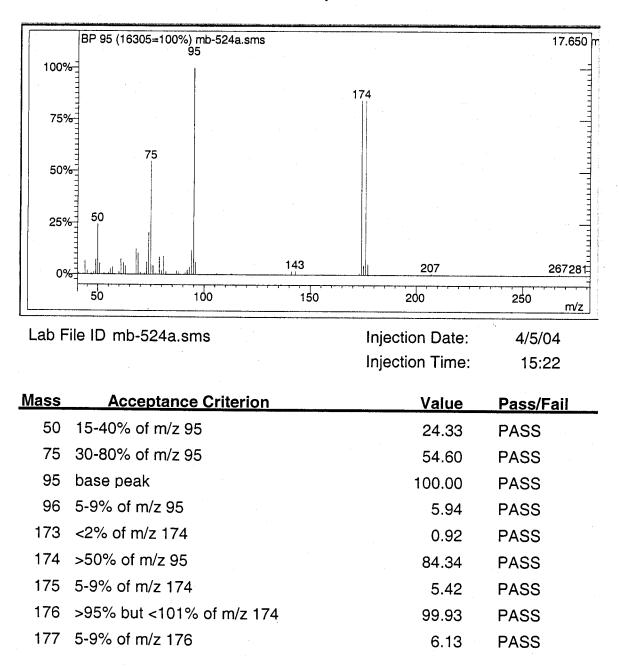
Result out of calibration range; check calibration curve С

U User defined end points

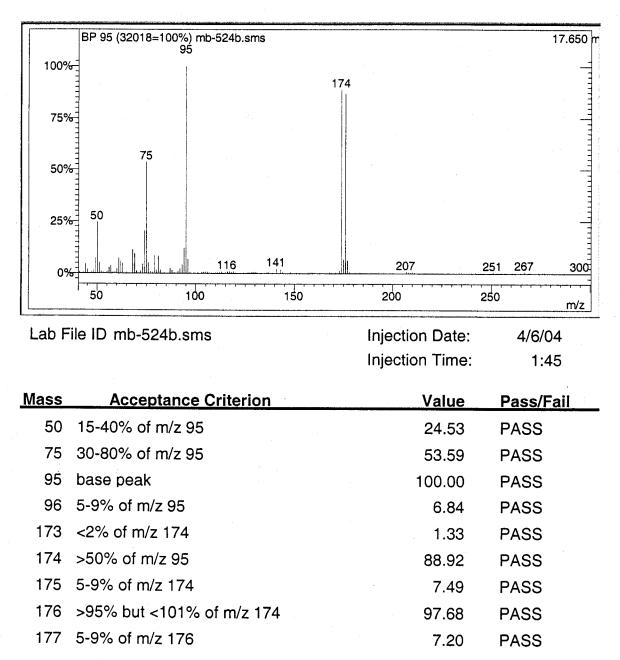


LABELED CHROMATOGRAM REPORT

EPA Method 524.2 Environmental Health Laboratories


A Division of Underwriters Laboratories, Inc.

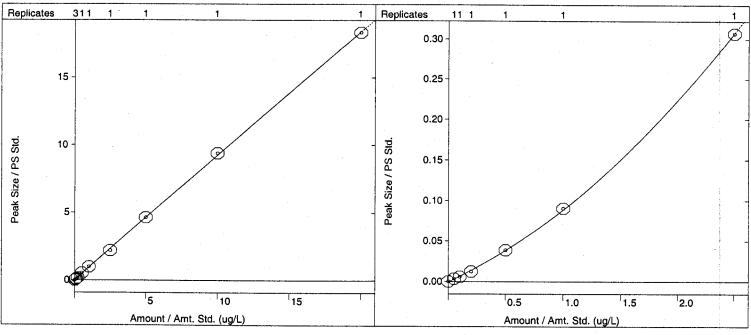
Lab SampleID:	QCS 10 PPB	Corr. Factor: 1
Analyst:	DC	
Instument:	Saturn C	
Acquisition Date:	4/15/04 3:35	
Data File:	C:\C\041404A\Q-524A.SMS	
Recalc Method:	C:\C\041404A\524_2-040504C-up1.mth	
Comment:	Q-524A\DC\1025233\QCS\RW\524\1\10\QCS	10 PPB



Compound	R. T.	Area	Status	Conc	TSV	Units	Fit	Purity
* IS-FLUOROBENZENE	10.87	305459	S	10.000	0.00	ug/L	999	898
* IS-1,4-DIFLUOROBENZENE	10.93	258058	S	10.000	0.00	ug/L	999	859
SS-1,2-DICHLOROETHANE-D4	9.60	139411		10.118	0.00	ug/L	999	809
SS-TOLUENE-D8	13.68	311640		10.277	0.00	ug/L	999	917
SS-BROMOFLUOROBENZENE	17.64	120638		5.275	0.00	ug/L	990	808
SS-1,2-DICHLOROBENZENE-D4	20.12	171542		10.011	0.00	ug/L	993	882
CHLOROFORM	8.67	545154		10.327	0.50	ug/L	999	918
BROMODICHLOROMETHANE	11.60	384401		9.585	0.50	ug/L	999	901
DIBROMOCHLOROMETHANE	14.23	271389		10.117	0.50	ug/L	999	
BROMOFORM	16.59	173334		9.821	0.50	ug/L	999	912
* indicates Internal Standard.						- 3 -		

BFB Report

Method:	c:\c\040504a\524_2-0405	504c.mth	
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
Sequence:	N/A	Detector:	2000 Mass Spec
Saturn GC/MS Workstatio	n (Reprocess)	Workstation Version:	Version 5.52
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis

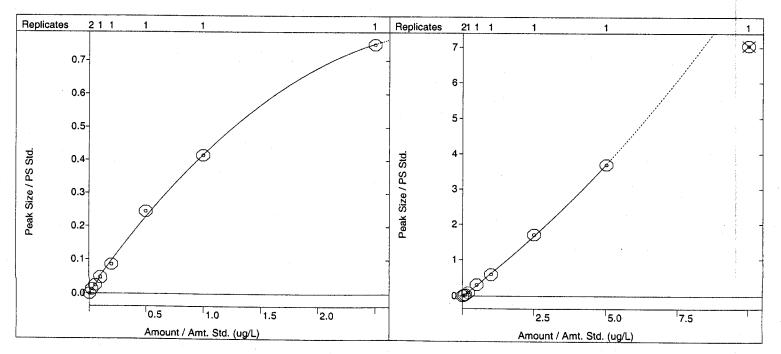

DICHLORODIFLUOROMETHANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 8.780%, Coeff. Det.(r2): 0.999853 y = -4.1306e-4x2 + 0.9293x

+0.0050

CHLOROMETHANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 30.51%, Coeff. Det.(r2): 0.999905 y = +0.0228x2 +0.0663x -4.9700e-4

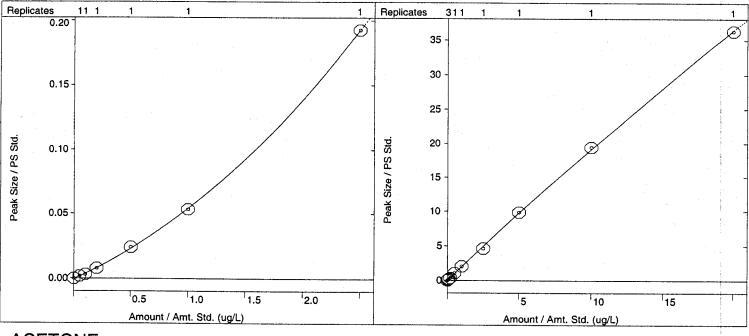


VINYL CHLORIDE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 23.20%, Coeff. Det.(r2): 0.999078 y = -0.0762x2 +0.4902x +0.0017

BROMOMETHANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 31.41%, Coeff. Det.(r2): 0.999734 y = +0.0275x2 + 0.6088x - 0.0194

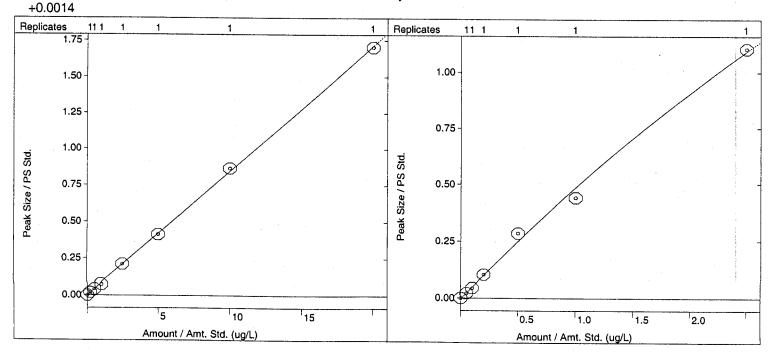

Method:	c:\c\040504a\524_2-04050	4c.mth	
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
Sequence:	N/A	Detector:	2000 Mass Spec
Saturn GC/MS Workstation (F	Reprocess)	Workstation Version:	Version 5.52
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis

CHLOROETHANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 34.01%, Coeff. Det.(r2): 0.999925 y = +0.0151x2 + 0.0393x - 3.6450e - 4

TRICHLOROFLUOROMETHANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 7.900%, Coeff. Det.(r2): 0.999824 y = -0.0088x2 +1.9993x +0.0021

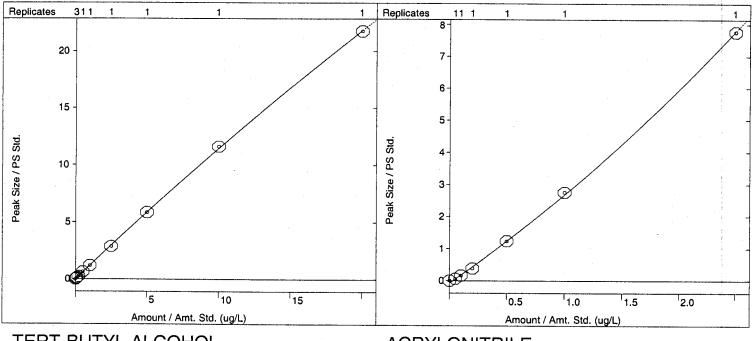


ACETONE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 9.223%, Coeff. Det.(r2): 0.999731 y = +1.2233e-4x2 + 0.0831x

ETHYL ETHER

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 12.22%, Coeff. Det.(r2): 0.996299 y = -0.0344x2 +0.5255x -0.0044

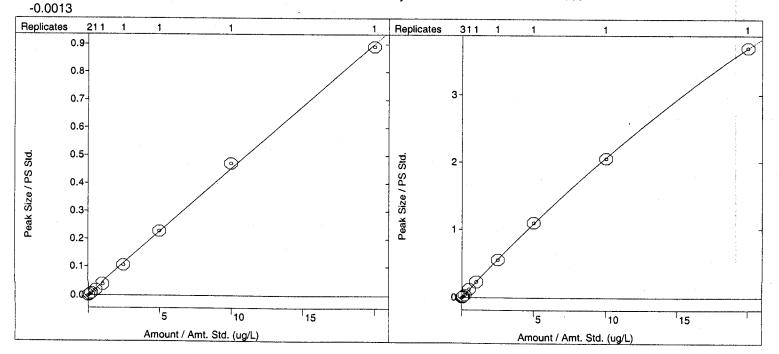

Method:	c:\c\040504a\524_2-040	504c.mth	
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
Sequence:	N/A	Detector:	2000 Mass Spec
Saturn GC/MS Workstati	on (Reprocess)	Workstation Version:	Version 5.52
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis

1,1-DICHLOROETHYLENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 6.445%, Coeff. Det.(r2): 0.999913 y = -0.0054x2 +1.1986x +0.0050

IODOMETHANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 32.94%, Coeff. Det.(r2): 0.999721 y = +0.2577x2 +2.5036x -0.0768

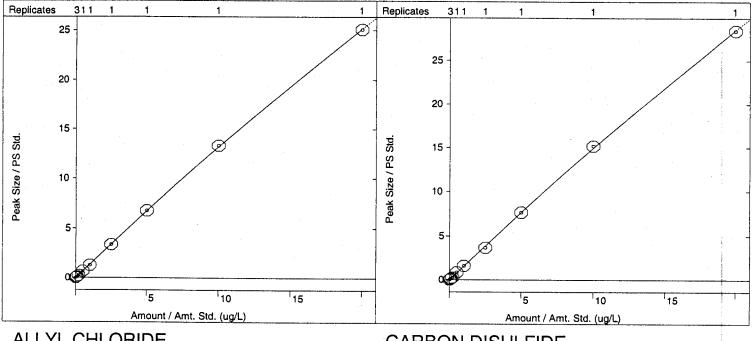


TERT-BUTYL ALCOHOL

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 7.780%, Coeff. Det.(r2): 0.999267 y = -2.3199e-5x2 + 0.0456x

ACRYLONITRILE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 11.10%, Coeff. Det.(r2): 0.999962 y = -0.0022x2 +0.2290x -0.0035

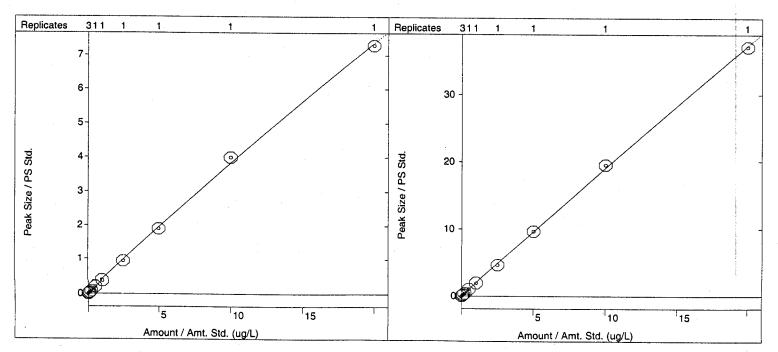

Method:	c:\c\040504a\524_2-040	504c.mth	
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
Sequence:	N/A	Detector:	2000 Mass Spec
Saturn GC/MS Workstatic	on (Reprocess)	Workstation Version:	Version 5.52
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis

METHYLENE CHLORIDE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 13.46%, Coeff. Det.(r2): 0.999956 y = -0.0065x2 +1.3893x -0.0312

1,1,2-TRICHLOROTRIFLUOROETHANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 8.922%, Coeff. Det.(r2): 0.999859 y = -0.0073x2 + 1.5696x - 0.0104

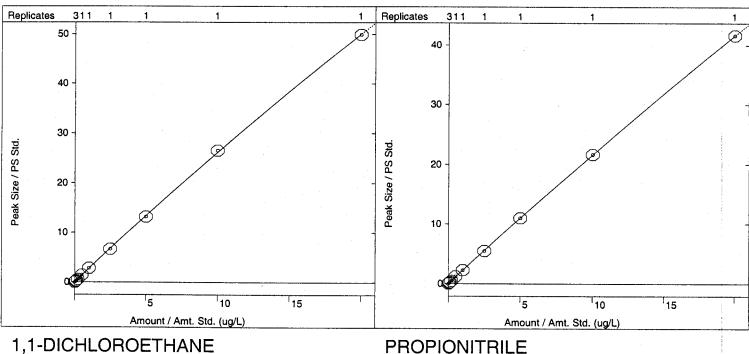


ALLYL CHLORIDE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 4.070%, Coeff. Det.(r2): 0.999297 y = -0.0014x2 +0.3971x -0.0022

CARBON DISULFIDE

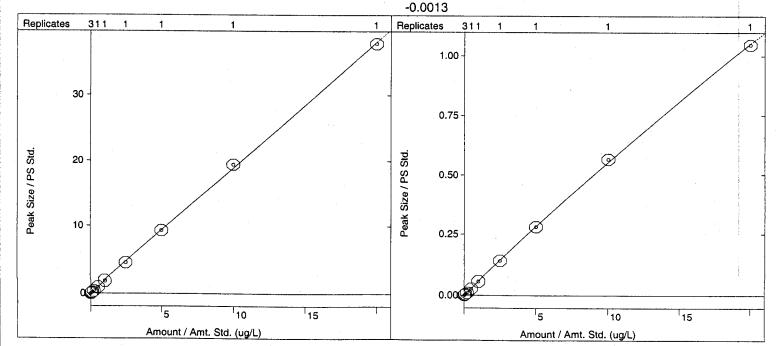
Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 7.068%, Coeff. Det.(r2): 0.999750 y = -0.0033x2 +1.9377x +0.0123


Method:	c:\c\040504a\524_2-040	504c.mth	
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
Sequence:	N/A	Detector:	2000 Mass Spec
Saturn GC/MS Workstat	ion (Reprocess)	Workstation Version:	Version 5.52
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis

T-1,2-DICHLOROETHYLENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 5.652%, Coeff. Det.(r2): 0.999912 y = -0.0119x2 + 2.7392x + 0.0160

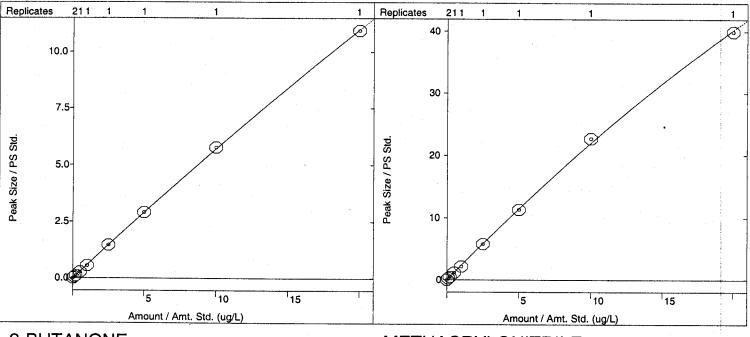
MTBE


Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 6.823%, Coeff. Det.(r2): 0.999990 y = -0.0076x2 + 2.2336x + 0.0210

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 3.610%, Coeff. Det.(r2): 0.999691 y = +0.0015x2 + 1.8735x - 0.0100

PROPIONITRILE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 12.23%, Coeff. Det.(r2): 0.999816 y = -2.7901e - 4x2 + 0.0583x

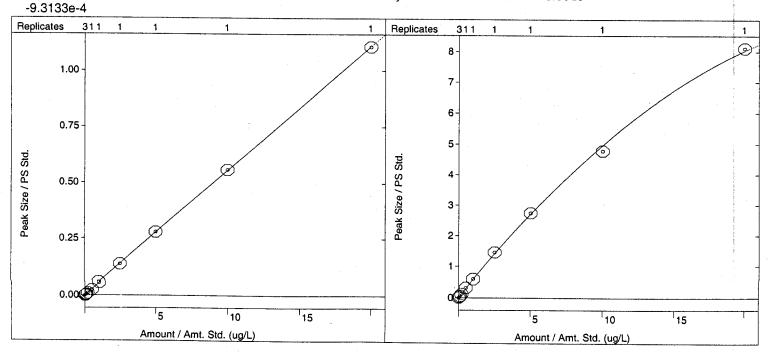

Method:	c:\c\040504a\524_2-040	504c.mth	
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
Sequence:	N/A	Detector:	2000 Mass Spec
Saturn GC/MS Workstatic	on (Reprocess)	Workstation Version:	Version 5.52
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis

VINYL ACETATE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 7.887%, Coeff. Det.(r2): 0.999940 y = -0.0023x2 +0.5953x -0.0169

CHLOROPRENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 5.244%, Coeff. Det.(r2): 0.999589 y = -0.0187x2 +2.3885x -0.0218



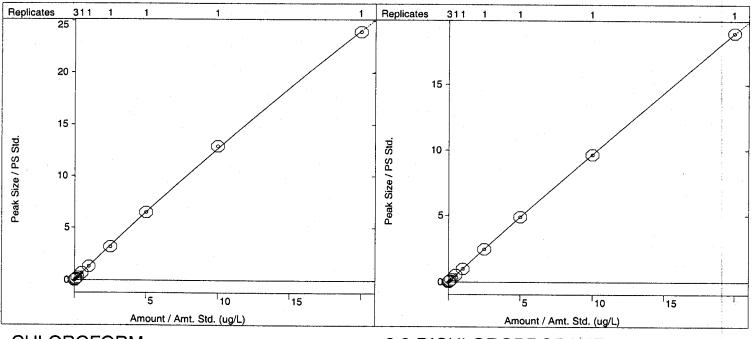
2-BUTANONE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 10.80%, Coeff. Det.(r2): 0.999977 y = -1.5422e-5x2 + 0.0558x

METHACRYLONITRILE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 12.79%, Coeff. Det.(r2): 0.999381 y = -0.0094x2 +0.5894x +0.0020

Page	7 -	4/6/04	9:29	AM
------	-----	--------	------	----

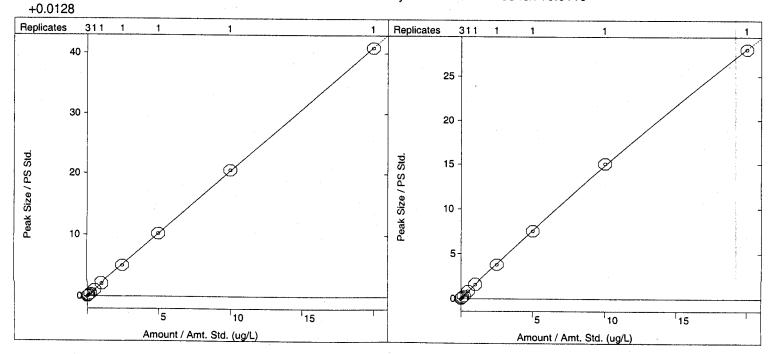

Method:	c:\c\040504a\524_2-0405	504c.mth	
Recalc Method:	c:∖ 524_2-040	Last Calibration:	4/6/04 8:46 AM
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
Sequence:	N/A	Detector:	2000 Mass Spec
Saturn GC/MS Workstatio	n (Reprocess)	Workstation Version:	Version 5.52
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis

C-1,2-DICHLOROETHYLENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 4.703%, Coeff. Det.(r2): 0.999863 y = -0.0066x2 +1.3328x +0.0029

BROMOCHLOROMETHANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 3.463%, Coeff. Det.(r2): 0.999996 y = -0.0023x2 +0.9907x +0.0027

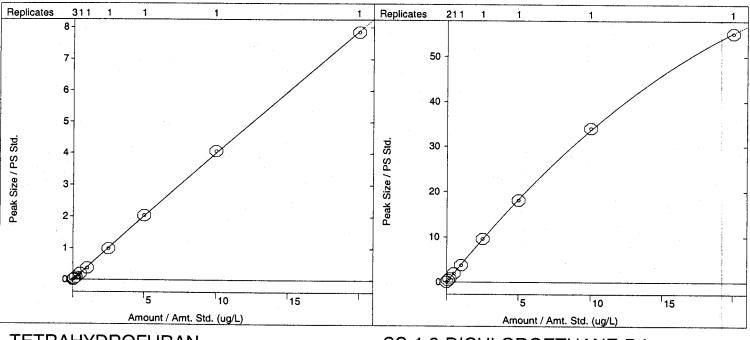


CHLOROFORM

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 4.029%, Coeff. Det.(r2): 0.999965 y = +8.0513e-4x2 + 2.0324x

2,2-DICHLOROPROPANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 7.541%, Coeff. Det.(r2): 0.999922 y = -0.0079x2 +1.5648x +0.0118

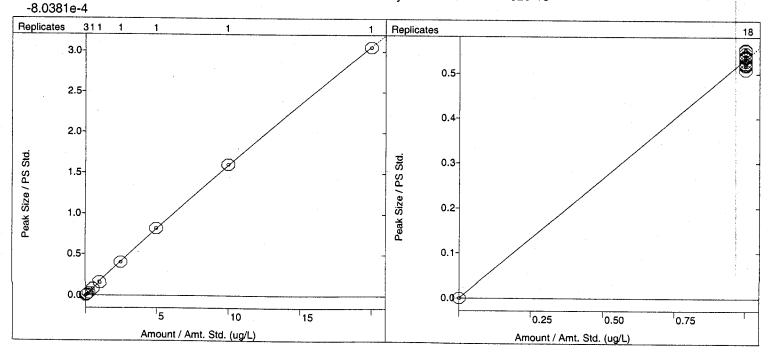

Method:	c:\c\040504a\524_2-040	504c.mth		
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM	
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM	
Sequence:	N/A	Detector:	2000 Mass Spec	
Saturn GC/MS Workstatio	n (Reprocess)	Workstation Version:	Version 5.52	
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis	
·······				

METHYLACRYLATE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 12.35%, Coeff. Det.(r2): 0.999882 y = -6.9675e-4x2 +0.4087x -0.0082

TERT-BUTYL ETHYL ETHER

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 10.88%, Coeff. Det.(r2): 0.999914 y = -0.0598x2 +3.9632x -0.0146

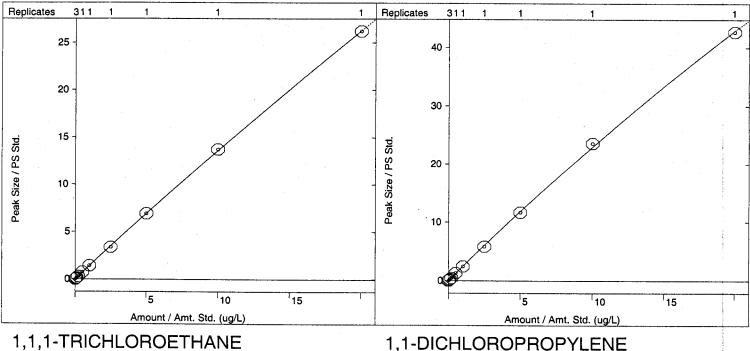


TETRAHYDROFURAN

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 3.761%, Coeff. Det.(r2): 0.999958 y = -6.1897e-4x2 + 0.1654x

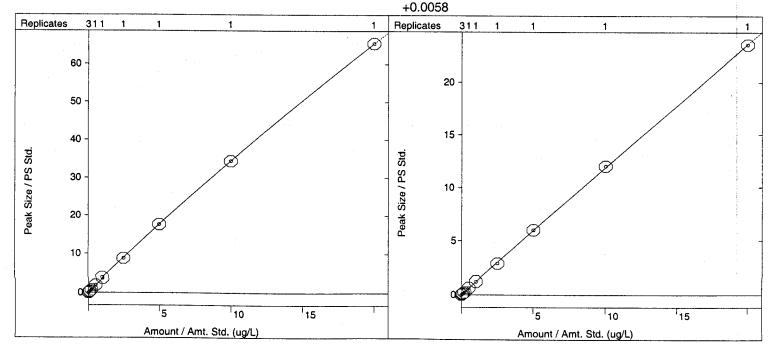
SS-1,2-DICHLOROETHANE-D4

Curve Fit: Linear, Origin: Include, Weight: 1/XResp. Fact. RSD: 2.618%, Coeff. Det.(r2): 0.987850 y = +0.5336x + 1.1102e-15


Method:	c:\c\040504a\524_2-0405	504c.mth	
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
Sequence:	N/A	Detector:	2000 Mass Spec
Saturn GC/MS Workstatic	on (Reprocess)	Workstation Version:	Version 5.52
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis

1,2-DICHLOROETHANE

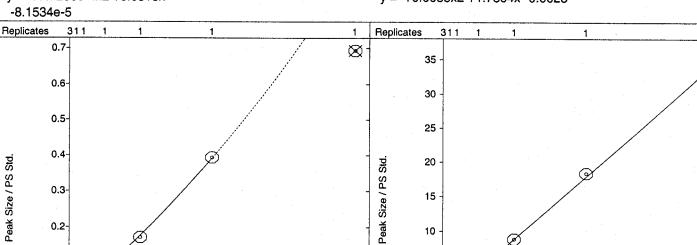
Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 3.419%, Coeff. Det.(r2): 0.999945 y = -0.0046x2 + 1.4049x + 0.0021


1-CHLOROBUTANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 6.138%, Coeff. Det.(r2): 0.999717 y = -0.0150x2 + 2.4458x + 0.0033

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 7.413%, Coeff. Det.(r2): 0.999983 $y = -0.0173x^2 + 3.6131x + 0.0320$

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 5.245%, Coeff. Det.(r2): 0.999934 y = -9.1598e - 4x2 + 1.1994x



B

Method:	c:\c\040504a\524_2-040504c.	mth		
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM	
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM	
Sequence:	N/A	Detector:	2000 Mass Spec	
Saturn GC/MS Workstation	(Reprocess)	Workstation Version:	Version 5.52	
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis	

CHLOROACETONITRILE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 9.983%, Coeff. Det.(r2): 0.999684 y = +7.7236e - 4x2 + 0.0315x

BENZENE

0.1

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 2.942%, Coeff. Det.(r2): 0.999780 y = +0.0076x2 + 3.3232x - 0.0023

Amount / Amt. Std. (ug/L)

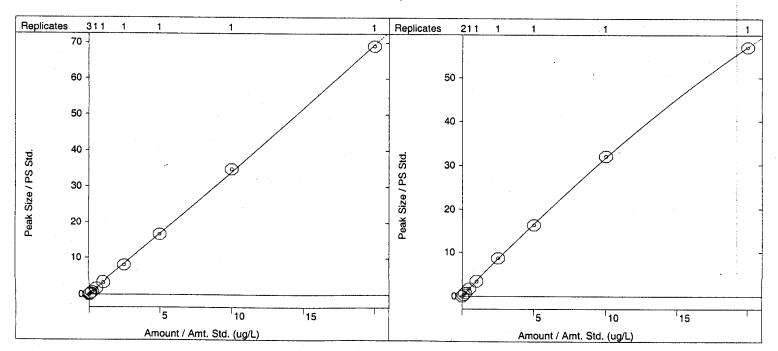
10

15

5

TERT-AMYL METHYL ETHER

5


10

15

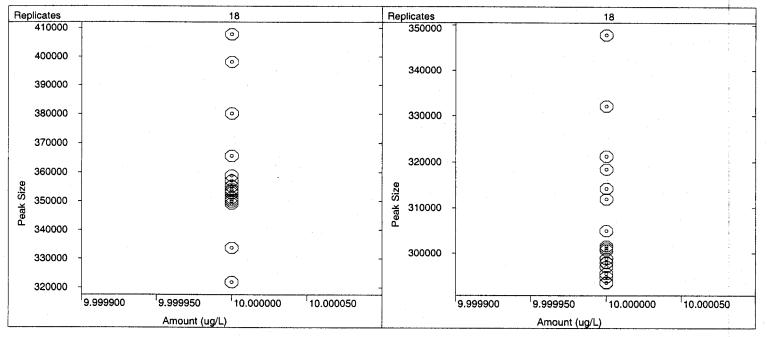
5

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 7.725%, Coeff. Det.(r2): 0.999937 y = -0.0308x2 + 3.4771x + 0.0170

Amount / Amt. Std. (ug/L)

CARBON TETRACHLORIDE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 5.474%, Coeff. Det.(r2): 0.999725 y = +0.0035x2 + 1.7504x - 0.0028

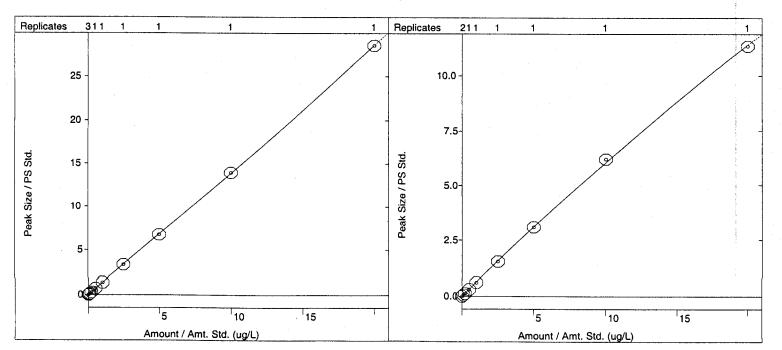

Method:	c:\c\040504a\524_2-0405	504c.mth		
Recalc Method:	c:∖ 524_2-040	Last Calibration:	4/6/04 8:46 AM	
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM	
Sequence:	N/A	Detector:	2000 Mass Spec	
Saturn GC/MS Workstation	n (Reprocess)	Workstation Version:	Version 5.52	
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis	

IS-FLUOROBENZENE

Curve Fit: Linear, Origin: Include, Weight: 1/XResp. Fact. RSD: 0.0000%, Coeff. Det.(r2): 1.000000 y = +1.0000x + 0.0

IS-1,4-DIFLUOROBENZENE

Curve Fit: Linear, Origin: Include, Weight: 1/XResp. Fact. RSD: 0.0000%, Coeff. Det.(r2): 1.000000 y = +1.0000x + 0.0

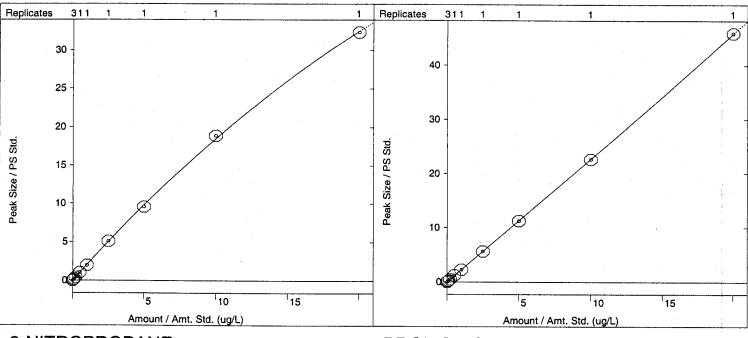


DIBROMOMETHANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 2.718%, Coeff. Det.(r2): 0.999982 $y = +0.0043x^2 + 1.3422x + 0.0068$

ETHYL ACRYLATE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 4.994%, Coeff. Det.(r2): 0.999749 y = -0.0035x2 + 0.6428x - 0.0138

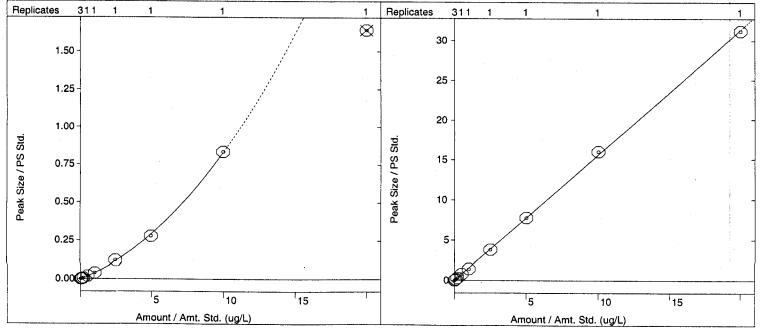

Method:	c:\c\040504a\524_2-040504c.r	nth	
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
Sequence:	N/A	Detector:	2000 Mass Spec
Saturn GC/MS Workstation	(Reprocess)	Workstation Version:	Version 5.52
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis

1,2-DICHLOROPROPANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 8.196%, Coeff. Det.(r2): 0.999776 y = -0.0226x2 + 2.0760x - 0.0101

TRICHLOROETHYLENE

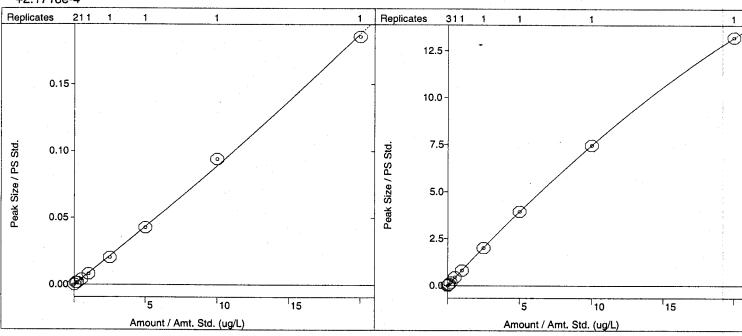
Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 4.298%, Coeff. Det.(r2): 0.999995 y = +0.0030x2 + 2.2357x + 0.0174


2-NITROPROPANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X. Resp. Fact. RSD: 36.88%, Coeff. Det.(r2): 0.999685 y = +0.0049x2 + 0.0335x + 1.0893e-4

BROMODICHLOROMETHANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 3.567%, Coeff. Det.(r2): 0.999795 y = +5.4195e-4x2 + 1.5575x



Method:	c:\c\040504a\524_2-040	504c.mth	
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
Sequence:	N/A	Detector:	2000 Mass Spec
Saturn GC/MS Workstatic	on (Reprocess)	Workstation Version:	Version 5.52
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis
·			-

1,4-DIOXANE

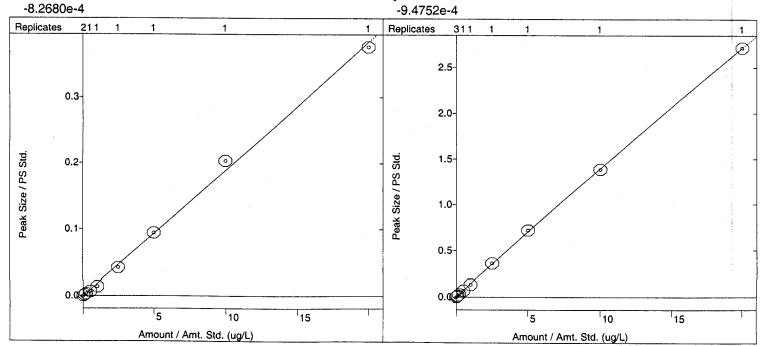
Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 24.57%, Coeff. Det.(r2): 0.998950 y = +5.1859e-5x2 + 0.0084x

+2.1718e-4

Epichlorohydrin

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 15.25%, Coeff. Det.(r2): 0.997592 y = +2.8798e-5x2 + 0.0186x

1,1-DICHLOROPROPANONE

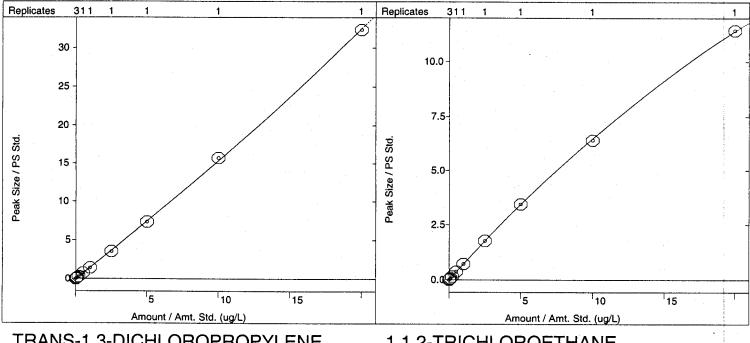

METHYL METHACRYLATE

y = -0.0085x2 + 0.8314x - 0.0032

Curve Fit: Quadratic, Origin: Include, Weight: 1/X

Resp. Fact. RSD: 8.321%, Coeff. Det.(r2): 0.999991

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 4.180%, Coeff. Det.(r2): 0.999933 y = -3.7374e - 4x2 + 0.1434x

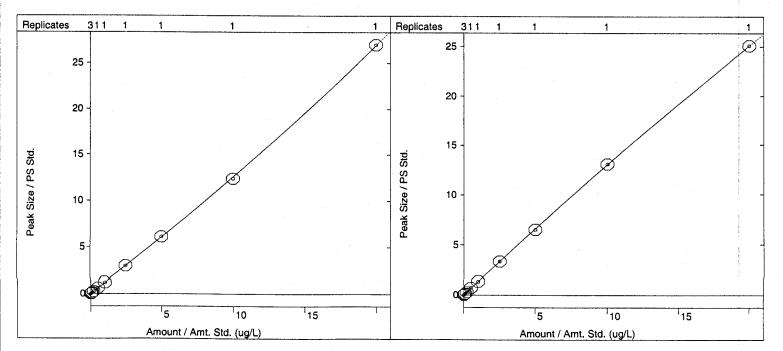

Method:	c:\c\040504a\524_2-040504c.m	th	
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
Sequence:	N/A	Detector:	2000 Mass Spec
Saturn GC/MS Workstation	(Reprocess)	Workstation Version:	Version 5.52
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis

CIS-1,3-DICHLOROPROPYLENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 4.762%, Coeff. Det.(r2): 0.999818 y = +0.0091x2 + 1.4429x + 0.0012

4-METHYL-2-PENTANONE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 8.020%, Coeff. Det.(r2): 0.999946 y = -0.0078x2 + 0.7254x - 3.4896e - 5

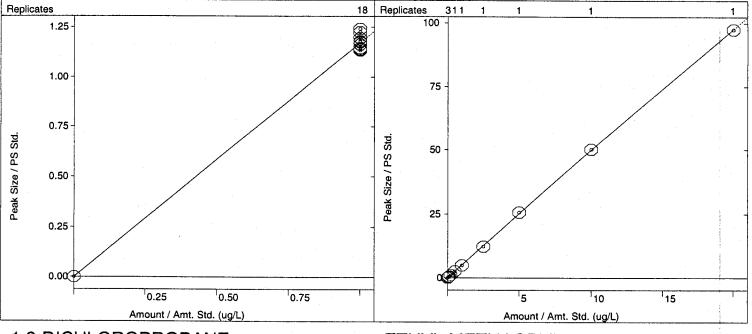


TRANS-1,3-DICHLOROPROPYLENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 3.506%, Coeff. Det.(r2): 0.999935 y = +0.0087x2 + 1.1699x + 0.0087

1,1,2-TRICHLOROETHANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 4.984%, Coeff. Det.(r2): 0.999977 y = -0.0047x2 + 1.3492x + 0.0082

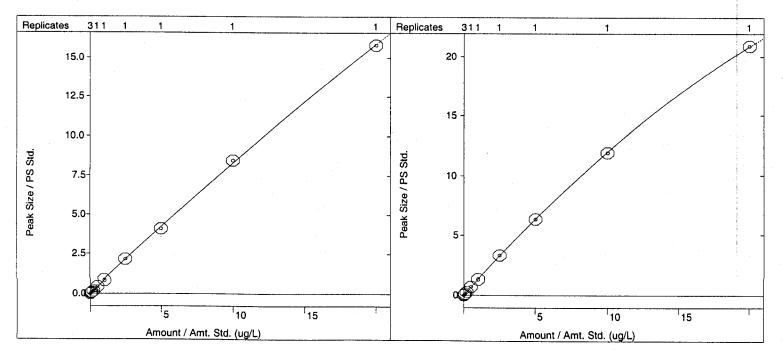

Method:	c:\c\040504a\524_2-040	504c.mth	
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
Sequence:	N/A	Detector:	2000 Mass Spec
Saturn GC/MS Workstation (Reprocess)		Workstation Version:	Version 5.52
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis

SS-TOLUENE-D8

Curve Fit: Linear, Origin: Include, Weight: 1/XResp. Fact. RSD: 2.518%, Coeff. Det.(r2): 0.988752 y = +1.1726x - 4.4409e - 16

TOLUENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 3.127%, Coeff. Det.(r2): 0.999948 y = -0.0108x2 + 5.1030x + 0.0058

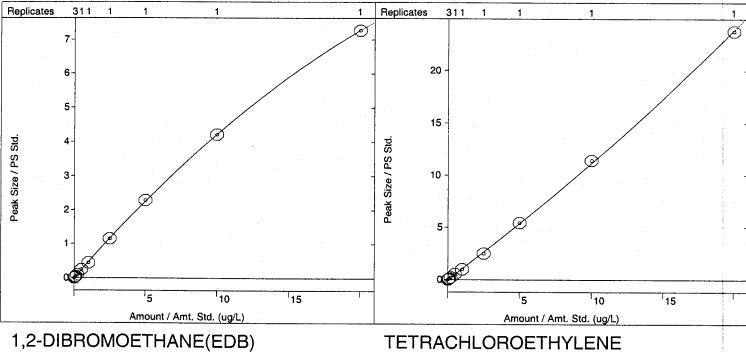


1,3-DICHLOROPROPANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 4.301%, Coeff. Det.(r2): 0.999805 y = -0.0035x2 +0.8639x +9.0702e-4

ETHYL METHACRYLATE

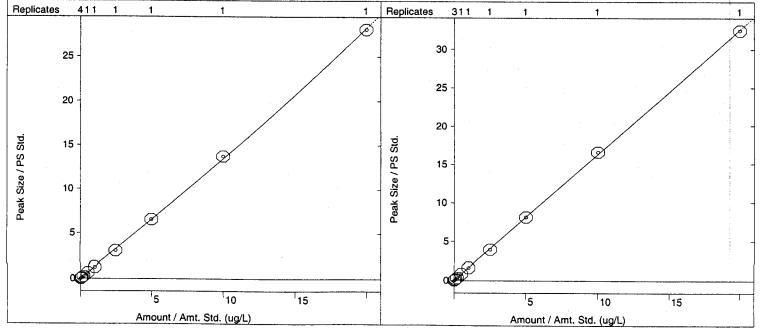
Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 9.802%, Coeff. Det.(r2): 0.999979 y = -0.0154x2 +1.3513x -0.0053


Method:	c:\c\040504a\524_2-040	504c.mth	
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
Sequence:	N/A	Detector:	2000 Mass Spec
Saturn GC/MS Workstat	ion (Reprocess)	Workstation Version:	Version 5.52
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis

2-HEXANONE

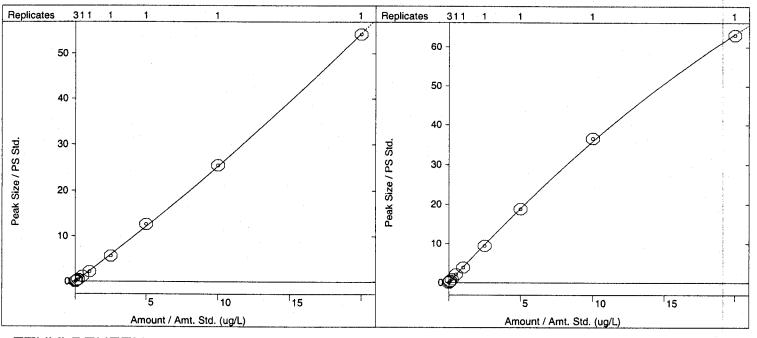
Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 10.55%, Coeff. Det.(r2): 0.999960 y = -0.0058x2 + 0.4813x - 0.0066

DIBROMOCHLOROMETHANE


Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 6.667%, Coeff. Det.(r2): 0.999792 y = +0.0081x2 + 1.0342x - 0.0029

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 4.206%, Coeff. Det.(r2): 0.999818 y = +0.0066x2 + 1.2768x + 0.0012

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 7.063%, Coeff. Det.(r2): 0.999879 y = -3.1507e - 4x2 + 1.6346x

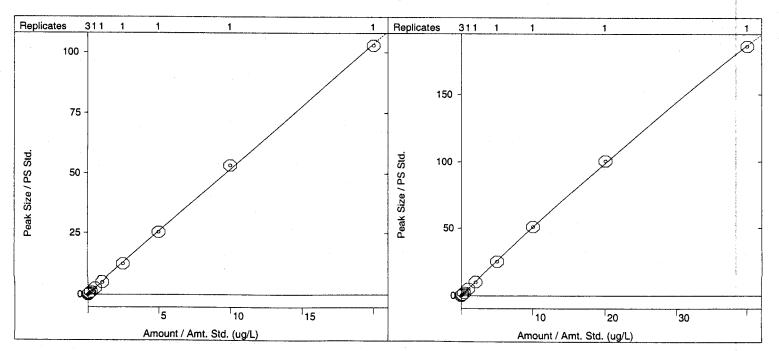

Method:	c:\c\040504a\524_2-040504c.mth			
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM	
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM	
Sequence:	N/A	Detector:	2000 Mass Spec	
Saturn GC/MS Workstation	(Reprocess)	Workstation Version:	Version 5.52	
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis	

1,1,1,2-TETRACHLOROETHANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 8.427%, Coeff. Det.(r2): 0.999834 y = +0.0194x2 + 2.3354x - 0.0040

CHLOROBENZENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 11.06%, Coeff. Det.(r2): 0.999821 y = -0.0411x2 +3.9893x +0.0344

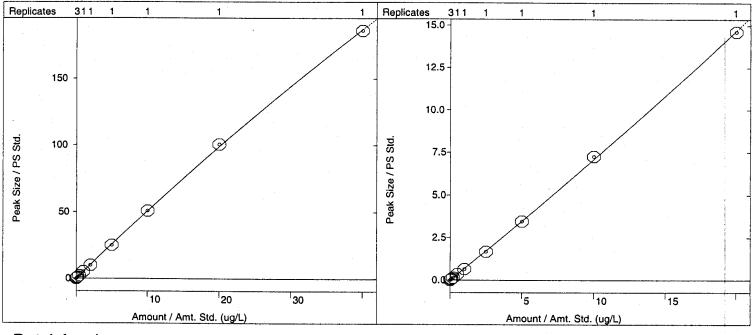


ETHYLBENZENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 3.670%, Coeff. Det.(r2): 0.999623 y = +0.0010x2 +5.1607x +0.0094

1,3-XYLENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 4.029%, Coeff. Det.(r2): 0.999886 y = -0.0135x2 +5.2162x -0.0040

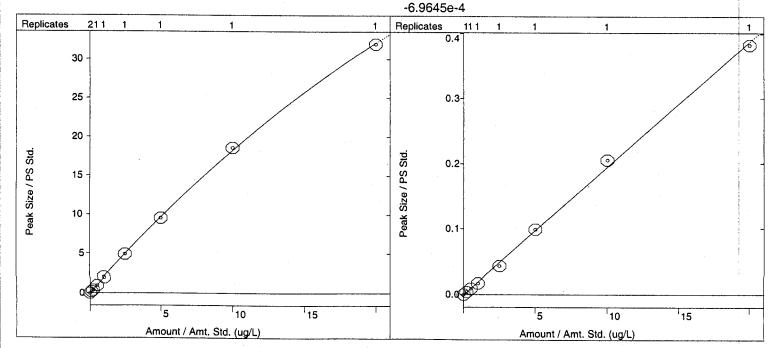

Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis
Saturn GC/MS Workstati	on (Reprocess)	Workstation Version:	Version 5.52
Sequence:	N/A	Detector:	2000 Mass Spec
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM
Method:	c:\c\040504a\524_2-0405	04c.mth	

1,4-XYLENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 4.029%, Coeff. Det.(r2): 0.999886 y = -0.0135x2 +5.2162x -0.0040

BROMOFORM

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 4.349%, Coeff. Det.(r2): 0.999817 y = +0.0027x2 + 0.6807x + 5.0081e-4

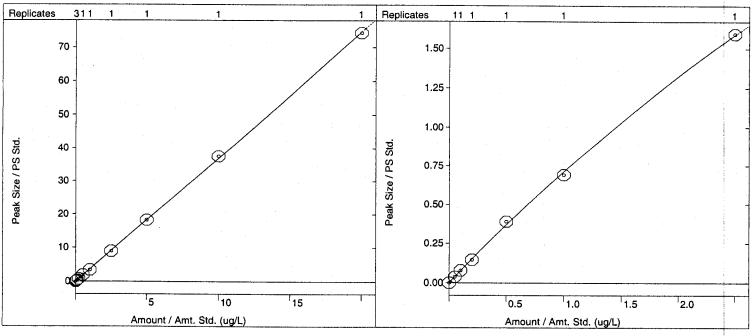


Butyl Acrylate

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 6.474%, Coeff. Det.(r2): 0.999844 y = -0.0223x2 +2.0511x -0.0256

CYCLOHEXANONE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 6.876%, Coeff. Det.(r2): 0.998692 y = -1.8707e-5x2 + 0.0198x

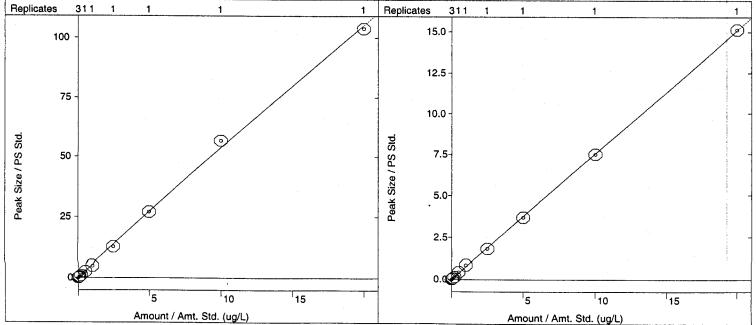

Method:	c:\c\040504a\524_2-040504c.mt	th e e e	
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
Sequence:	N/A	Detector:	2000 Mass Spec
Saturn GC/MS Workstatio	n (Reprocess)	Workstation Version:	Version 5.52
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis

STYRENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 3.031%, Coeff. Det.(r2): 0.999884 y = +0.0046x2 +3.6427x -0.0080

1,1,2,2,-TETRACHLOROETHANE

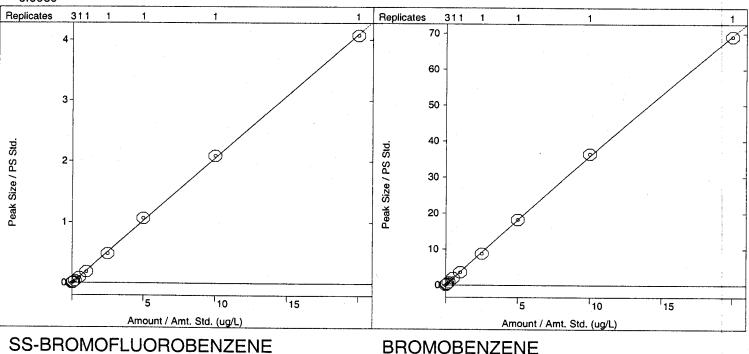
Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 7.727%, Coeff. Det.(r2): 0.999541 y = -0.0511x2 +0.7637x +5.2674e-4


1,2-XYLENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 4.233%, Coeff. Det.(r2): 0.998873 y = -0.0128x2 +5.5158x -0.0548

1,2,3-TRICHLOROPROPANE

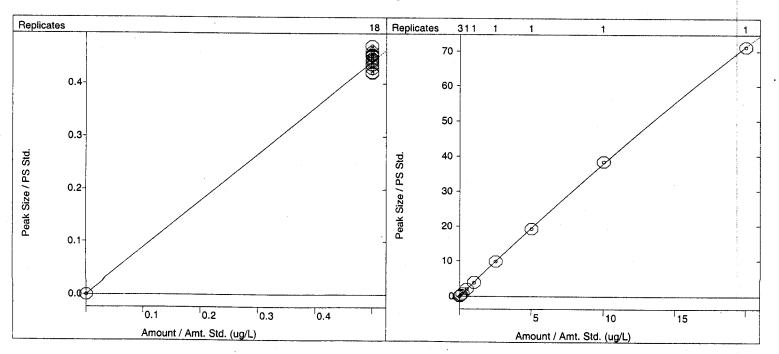
Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 7.422%, Coeff. Det.(r2): 0.999889 y = +1.9412e-4x2 + 0.7508x


c:\c\040504a\524_2-040	504c.mth	
c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM
N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
N/A	Detector:	2000 Mass Spec
ion (Reprocess)	Workstation Version:	Version 5.52
Area	Calibration Type:	Internal Standard Analysis
	c:\ 524_2-040 N/A N/A ion (Reprocess)	N/ACmpd. Table Updated:N/ADetector:ion (Reprocess)Workstation Version:

T-1,4-DICHLORO-2-BUTENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 16.16%, Coeff. Det.(r2): 0.999698 y = -8.7314e - 5x2 + 0.2070x-0.0060

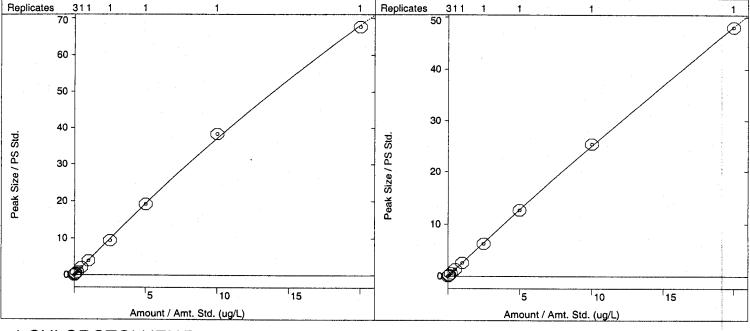
ISOPROPYLBENZENE


Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 6.375%, Coeff. Det.(r2): 0.999865 y = -0.0105x2 + 3.6822x + 0.0238

BROMOBENZENE

Curve Fit: Linear, Origin: Include, Weight: 1/X Resp. Fact. RSD: 3.287%, Coeff. Det.(r2): 0.980978 y = +0.8848x - 8.8818e - 16

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 5.750%, Coeff. Det.(r2): 0.999929 y = -0.0220x2 + 4.0099x + 0.0164

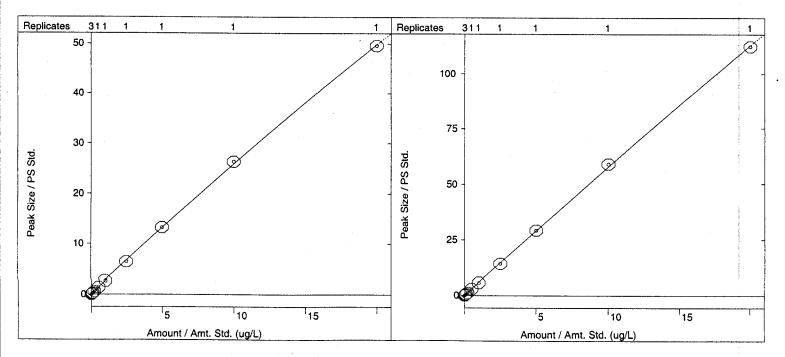

Method:	c:\c\040504a\524_2-040	504c.mth	
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
Sequence:	N/A	Detector:	2000 Mass Spec
Saturn GC/MS Workstati	on (Reprocess)	Workstation Version:	Version 5.52
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis
	, ,		

N-PROPYLBENZENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 6.904%, Coeff. Det.(r2): 0.999575 y = -0.0314x2 +4.0316x +0.0050

2-CHLOROTOLUENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 8.893%, Coeff. Det.(r2): 0.999918 y = -0.0098x2 +2.6052x -0.0074

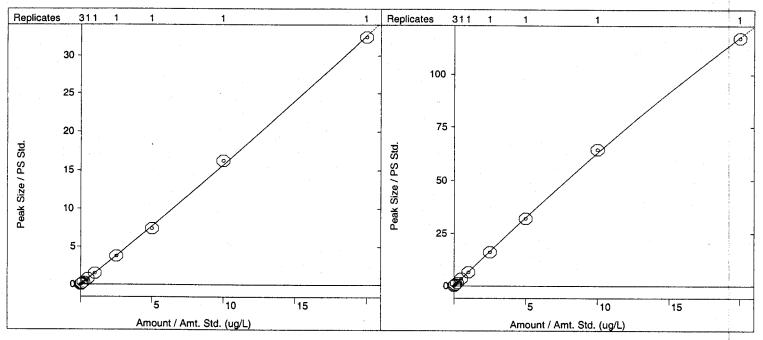


4-CHLOROTOLUENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 3.972%, Coeff. Det.(r2): 0.999854 y = -0.0101x2 +2.6931x +0.0036

1,3,5-TRIMETHYLBENZENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 2.178%, Coeff. Det.(r2): 0.999829 y = -0.0127x2 +5.9062x -0.0201

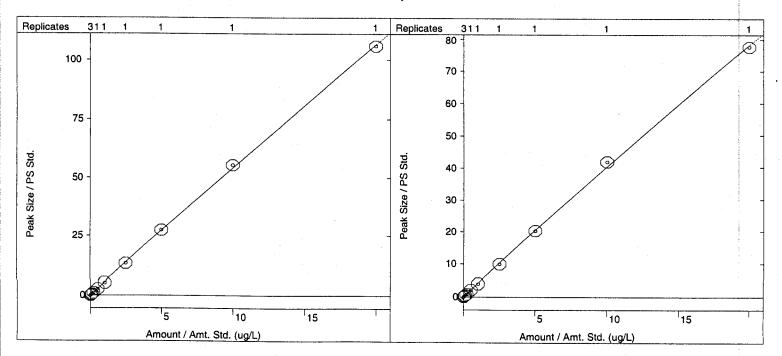

c:\c\040504a\524_2-0405	504c.mth		
c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM	
N/A	Cmpd. Table Updated:	4/6/04 8:51 AM	
N/A	Detector:	2000 Mass Spec	
on (Reprocess)	Workstation Version:	Version 5.52	
Area	Calibration Type:	Internal Standard Analysis	
	c:\ 524_2-040 N/A N/A on (Reprocess)	N/ACmpd. Table Updated:N/ADetector:on (Reprocess)Workstation Version:	c:\ 524_2-040Last Calibration:4/6/04 8:46 AMN/ACmpd. Table Updated:4/6/04 8:51 AMN/ADetector:2000 Mass Specon (Reprocess)Workstation Version:Version 5.52

PENTACHLOROETHANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 4.373%, Coeff. Det.(r2): 0.999575 y = +0.0061x2 +1.5103x -0.0043

TERT-BUTYLBENZENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 5.980%, Coeff. Det.(r2): 0.999795 y = -0.0401x2 + 6.6962x + 0.0191

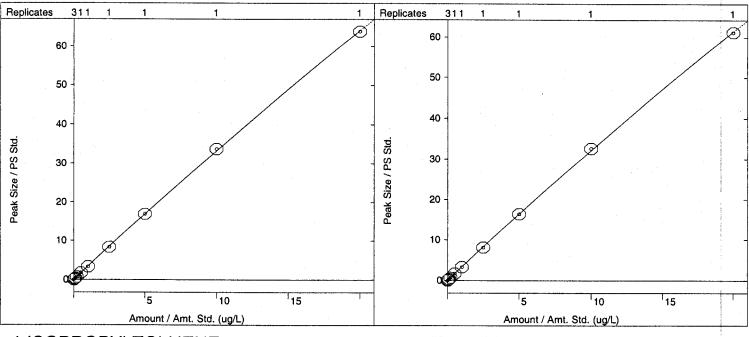


1,2,4-TRIMETHYLBENZENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 2.356%, Coeff. Det.(r2): 0.999788 y = -0.0094x2 +5.5189x -0.0202

SEC-BUTYLBENZENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 4.907%, Coeff. Det.(r2): 0.999502 y = -0.0133x2 +4.1786x -0.0046

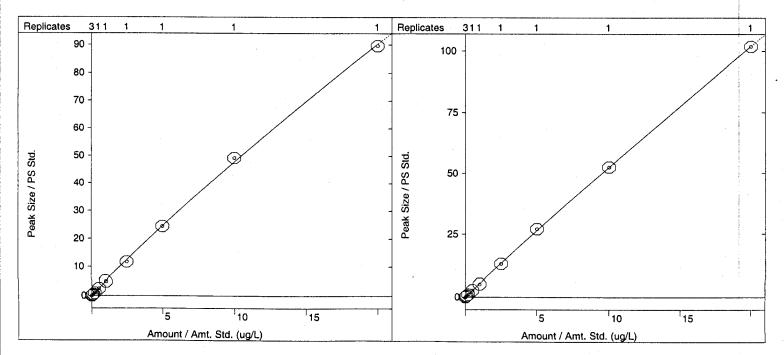

Method:	c:\c\040504a\524_2-040504c.mth			
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM	
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM	
Sequence:	N/A	Detector:	2000 Mass Spec	
Saturn GC/MS Workstatic	on (Reprocess)	Workstation Version:	Version 5.52	
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis	

1,3-DICHLOROBENZENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 3.267%, Coeff. Det.(r2): 0.999911 y = -0.0118x2 + 3.4423x + 0.0019

1,4-DICHLOROBENZENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 2.835%, Coeff. Det.(r2): 0.999904 y = -0.0140x2 +3.3539x -0.0050

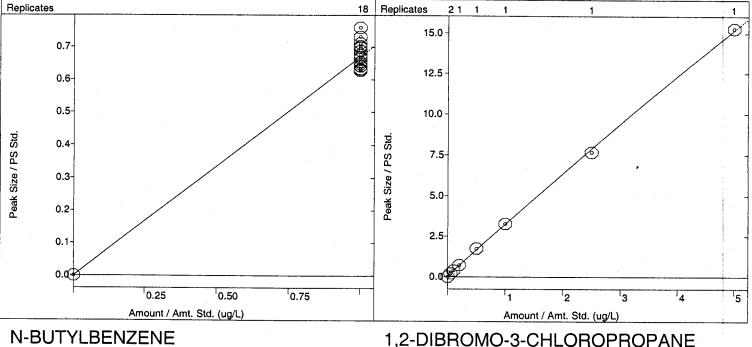


4-ISOPROPYLTOLUENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 5.527%, Coeff. Det.(r2): 0.999616 y = -0.0267x2 +5.0466x +0.0029

1,2,3-TRIMETHYLBENZENE

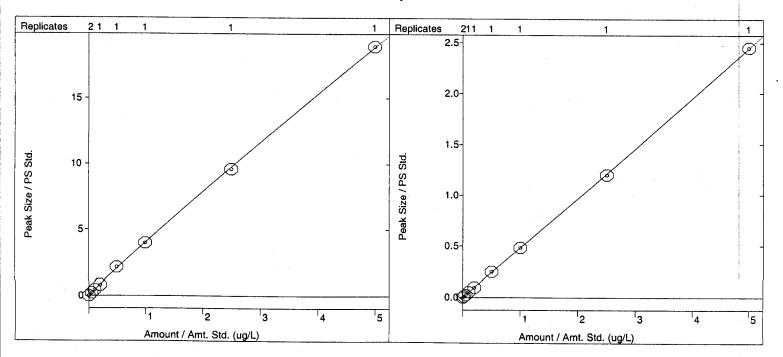
Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 2.487%, Coeff. Det.(r2): 0.999950 y = -0.0139x2 +5.3803x -0.0086


Method:	c:\c\040504a\524_2-0405	04c.mth	
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
Sequence:	N/A	Detector:	2000 Mass Spec
Saturn GC/MS Workstatior	n (Reprocess)	Workstation Version:	Version 5.52
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis

SS-1,2-DICHLOROBENZENE-D4

Curve Fit: Linear, Origin: Include, Weight: 1/X Resp. Fact. RSD: 5.742%, Coeff. Det.(r2): 0.944146 y = +0.6708x + 2.2204e - 16

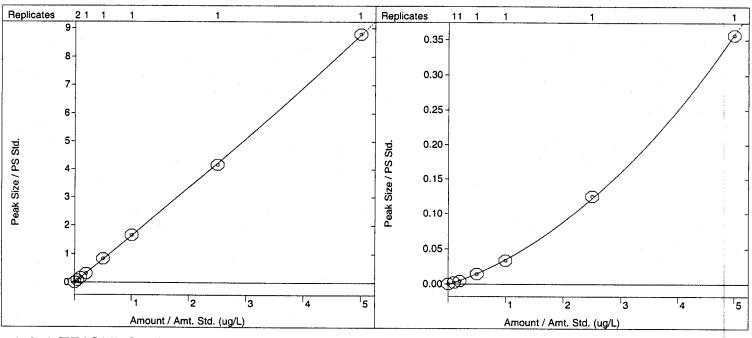
1,2-DICHLOROBENZENE


Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 10.90%, Coeff. Det.(r2): 0.999663 y = -0.0411x2 + 3.2342x + 0.0524

N-BUTYLBENZENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 5.807%, Coeff. Det.(r2): 0.999864 y = -0.0505x2 + 4.0243x + 0.0248

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 4.512%, Coeff. Det.(r2): 0.999970 y = +0.0020x2 + 0.4796x + 0.0013

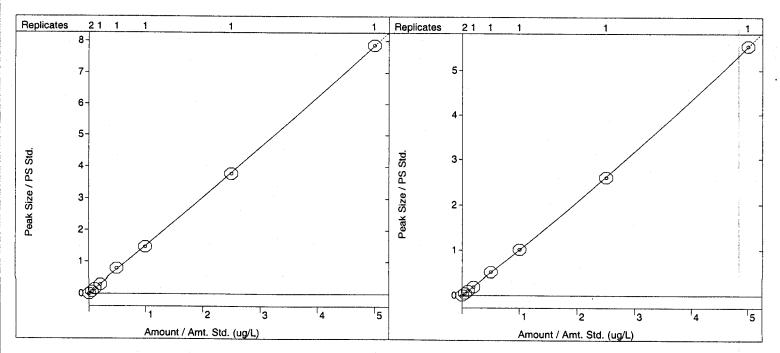

Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis	
Saturn GC/MS Workstation (Reprocess)		Workstation Version:	Version 5.52	
Sequence:	N/A	Detector:	2000 Mass Spec	
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM	
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM	
Method:	c:\c\040504a\524_2-040504c.mth			

HEXACHLOROETHANE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 5.802%, Coeff. Det.(r2): 0.999938 y = +0.0260x2 + 1.6254x - 0.0061

NITROBENZENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 52.81%, Coeff. Det.(r2): 0.999872 y = +0.0091x2 +0.0265x -9.3477e-4



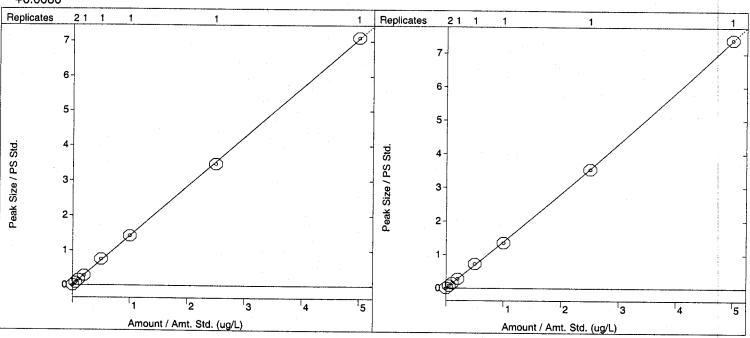
1,2,4-TRICHLOROBENZENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 3.257%, Coeff. Det.(r2): 0.999939 y = +0.0189x2 + 1.4764x + 0.0022

NAPHTHALENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 6.312%, Coeff. Det.(r2): 0.999974 y = +0.0237x2 + 0.9893x - 0.0031

Print Date: 06 Apr 2004 09:29:35 Calibration Curves Report


Method:	c:\c\040504a\524_2-04050	D4c.mth	
Recalc Method:	c:\ 524_2-040	Last Calibration:	4/6/04 8:46 AM
Sample List:	N/A	Cmpd. Table Updated:	4/6/04 8:51 AM
Sequence:	N/A	Detector:	2000 Mass Spec
Saturn GC/MS Workstation	n (Reprocess)	Workstation Version:	Version 5.52
Peak Measurement:	Area	Calibration Type:	Internal Standard Analysis

HEXACHLOROBUTADIENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/X Resp. Fact. RSD: 5.130%, Coeff. Det.(r2): 0.999864 y = +4.4999e-4x2 +1.4124x +0.0080

1,2,3-TRICHLOROBENZENE

Curve Fit: Quadratic, Origin: Include, Weight: 1/XResp. Fact. RSD: 3.407%, Coeff. Det.(r2): 0.999945 y = +0.0230x2 + 1.3659x + 0.0022

Setting the Standards for Innovative Environmental Solutions

QUALITY ASSURANCE REVIEW OF THE

AQUEOUS SAMPLES COLLECTED ON APRIL 6 AND 7, 2004

FOR THE DUPONT CORPORATE REMEDIATION GROUP

4/04 GROUNDWATER SAMPLING PROJECT

AT THE BARKSDALE, WISCONSIN FACILITY

May 13, 2004

Prepared for:

DUPONT CORPORATE REMEDIATION GROUP

Barley Mill Plaza, Bldg. 27 Rts. 141 and 48 Wilmington, DE 19805

Prepared by:

ENVIRONMENTAL STANDARDS, INC. 1140 Valley Forge Road P.O. Box 810 Valley Forge, PA 19482-0810

TABLE OF CONTENTS

Executive Summary

Introduction

- Section 1 Quality Assurance Review
 - A. Organic Data
 - B. Conclusions
- Section 2 Target Analyte Summary
- Section 3 Organic Data Support Documentation
- Section 4 Laboratory Case Narrative and Project Chain-of-Custody Records

Executive Summary

An analytical quality assurance review was performed on data for the 11 aqueous samples (including quality control samples) collected in association with the DuPont Corporate Remediation Group 4/04 Groundwater Sampling Project at the Barksdale Facility in Barksdale, Wisconsin. The organic analyses were performed by an SW-846 method. A comprehensive Contract Laboratory Program (CLP)-like raw data package was prepared by the laboratory and was reviewed by Environmental Standards.

The quality of the data is acceptable; however, the following qualifications were made.

• The results for tetryl and nitroglycerine in one sample were qualified due to low matrix spike and/or matrix spike duplicate recoveries.

Reporting errors were not identified during the quality assurance review.

Introduction

This quality assurance (QA) review is based upon a rigorous examination of data generated from the 11 aqueous samples (including quality control [QC] samples) that were collected on April 6 and 7, 2004, as part of the DuPont Corporate Remediation Group 4/04 Groundwater Sampling Project at the Barksdale Facility in Barksdale, Wisconsin. The samples that have undergone a QA review are listed on Table 1. Table 1 also presents the field sample number, laboratory sample number, laboratory project number, collection date, and parameter analyzed and reviewed for each sample.

This review has been performed with guidance from the "National Functional Guidelines for Organic Data Review" (US EPA, 2/94).

The reported analytical results are presented on the laboratory analysis reports included in Section 2, "Target Analyte Summary." Data were examined to determine the usability of the analytical results and compliance relative to requirements specified by "Test Methods for Evaluating Solid Waste" (SW-846, Third Revision, 1986, and updates as applicable). In addition, the deliverables prepared according to a Contract Laboratory Program-like data package were evaluated. Details of this QA review are presented in Section 1 of this report.

This critical QA review identifies data quality issues for specific samples and specific evaluation criteria. Data not qualified in this report should be considered valid based on the QC criteria that have been reviewed.

TABLE 1

SUMMARY OF GROUNDWATER SAMPLE DATA REVIEWED

DuPont Corporate Remediation Group Sample Identification	Laboratory Sample Number	Project Number	Date of Sample Collection	Parameter Analyzed and Reviewed
BAR-G-30490N-INFLOW	GDTQ3	D4D080371	4/6/04	E
BAR-G-30380N-INFLOW	GDTQ4	D4D080371	4/6/04	E
BAR-G-30300N-INFLOW	GDTQ6	D4D080371	4/6/04	E
BAR-G-73280H-INFLOW	GDTQ7	D4D080371	4/6/04	E
BAR-G-72730H-INFLOW	GDTQ8	D4D080371	4/6/04	E
BAR-G-72730H-INFLOWMS (Matrix Spike)	GDTQ8MS	D4D080371	4/6/04	E
BAR-G-72730H-INFLOWMSD (Matrix Spike Duplicate)	GDTQ8MSD	D4D080371	4/6/04	E
BAR-G-72860H-INFLOW	GDTQ9	D4D080371	4/6/04	E
BAR-G-72970H-INFLOW	GDTRC	D4D080371	4/6/04	E
BAR-G-72970H-INFLOW-DUP (Field Duplicate of BAR-G-72970H-INFLOW)	GDTRD	D4D080371	4/6/04	E
BAR-G-30600N-INFLOW	GDTRE	D4D080371	4/7/04	E

DUPONT BARKSDALE, WISCONSIN FACILITY

NOTE:

E - Nitroaromatics and Nitroamines by SW-846 Method 8321A (Modified per STL SOP No. DEN-LC-0010, Revision No. 3). (11 analyses)

Section 1 Quality Assurance Review

A. Organic Data

The organic analyses of 11 aqueous samples (including QC samples) collected as part of the DuPont Corporate Remediation Group (DuPont) 4/04 Groundwater Sampling Project at the Barksdale, Wisconsin, Facility on April 6 and 7, 2004, were performed by Severn Trent Laboratories, Inc. (STL) in Denver, Colorado. The samples were collectively analyzed for nitroaromatics and nitroamines according to SW-846 Method 8321A, as specified in "Test Methods for Evaluating Solid Waste" (SW-846, Third Edition, Final Update II, September, 1994) and modified as specified in STL proprietary Standard Operating Procedure (SOP) No. DEN-LC-0010 (Revision No. 3). This modified method uses liquid chromatography with a thermospray interfaced to a mass spectrometer (LC/TSP/MS). These analyses are identified on Table 1. The data were presented in one Contract Laboratory Program (CLP)-like data package.

The findings offered in this report are based upon a rigorous review of the following:

- sample holding times
- blank analysis results
- surrogate recoveries
- matrix spike (MS) and MS duplicate (MSD) recoveries and precision
- sample condition upon laboratory receipt
- initial and continuing calibrations
- analytical sequence
- laboratory control sample (LCS) recoveries
- quantitation of results
- qualitative identification

• field duplicate precision

The analytical results for the organic compounds are provided as a summary of the data in Section 2 of this report.

Data Package Deliverables

Overall, the organic data quality is good. The following analytical criteria were not met for the original data package received. Reporting errors were not identified during the quality assurance review. The following items do not affect data usability. Usability is addressed in the Data Evaluation section.

•

Noncorrectable Deficiency

- The laboratory analyzed one continuing calibration verification (CCV) standard with a concentration of 50 μ g/L. According to STL SOP No. DEN-LC-0010 (Section 10.6.1, pg. 14 of 33), the concentration of the CCV standards should be "100 μ g/L." In the data reviewer's opinion, there was no impact on data quality due to this issue.

Comments

- According to the Laboratory Case Narrative, sample BAR-G-30380N-INFLOW was analyzed at a five-fold dilution because the internal standard RDX 13C-3 exhibited a low recovery. The method detection limits (MDLs) and practical quantitation limits (PQLs) for all target compounds in sample BAR-G-30380N-INFLOW were raised to reflect the dilution performed.
- 2. According to the Laboratory Case Narrative and the Chain-of-Custody Records, sample BAR-G-73300BC-INFLOW was not collected. Nitroaromatics and nitroamines results are not available for this sample.
- 3. As noted in the Laboratory Case Narrative, sample cooler temperatures of 3.1°C, 3.3°C, and 3.4°C were recorded upon laboratory receipt for the project cooler. Samples collected for nitroaromatics and nitroamines analyses are required to be preserved at a temperature of 4°C (STL SOP No. DEN-LC-0010 [Section 8.2., pg. 10 of 33]). The data reviewer, however, does not consider the data to have been impacted because it is customary for the acceptable preservation temperature to be 4±2°C.

Data Evaluation

With respect to data usability, the principal area of concern is low MS and/or MSD recoveries. Based on a rigorous review of the data provided, the following organic data qualifiers are offered. The following data usability issue represents an interpretation of the QC results obtained for the project samples. Quite often, data qualifications address issues relating to sample matrix problems. Similarly, the data validation guidelines routinely specify areas of the data that require qualification, yet the methods used for analysis may not require corrective action by the laboratory. Accordingly, the following data usability issues should <u>not</u> be construed as an indication of laboratory performance.

Organic Data Qualifiers

- The MDLs and PQLs for tetryl and nitroglycerine in sample BAR-G-72730H-INFLOW may be higher than reported, and the "not-detected" results have been flagged "UJ" on the qualified analysis report. Low recoveries (<laboratory QC limits) were observed for tetryl and nitroglycerine in the associated MS and/or MSD analyses.
- One field duplicate pair (sample BAR-G-72790H-INFLOW and its duplicate, sample BAR-G-72790H-INFLOW-DUP) was included in the data package provided for the nitroaromatics and nitroamines analyses. Good precision was observed between the results for nitroaromatics and nitroamines in the field duplicate pair to the limited extent that no positive results were reported for nitroaromatics and nitroamines in these samples.

w:\dupont\barksdal\0701\y1071617\final\report32.doc

A complete support documentation of this organic QA review is provided in Section 3 of this report.

B. Conclusions

Based on this QA review, a few organic compounds results were qualified due to low MS and/or MSD recoveries. In order to use any of the data, the data user should understand the qualifications and limitations as specified in this QA review. The Laboratory Case Narrative and Project Chain-of-Custody Records are presented in Section 4 of this report.

Report prepared by:

KUluhogian

Konstadina Vlahogiani, M.S. Senior Quality Assurance Chemist III/ **Project Manager**

Report reviewed by:

Midre

Meg A. Michell, M.S. Senior Quality Assurance Chemist III

Report reviewed and approved by:

David R. Blye, CEAC Quality Assurance Specialist/ Principal

ENVIRONMENTAL STANDARDS, INC. 1140 Valley Forge Road P.O. Box 810 Valley Forge, PA 19482-0810

(610) 935-5577

Date: 5-13-04

-page 3

SECTION 2

C

Ć

C

TARGET ANALYTE SUMMARY

ORGANIC DATA QUALIFIERS

- ND The compound was not detected at or above the associated numerical value.
- U This compound should be considered "not detected" because it was detected in a blank at a similar level.
- J Quantitation is approximate due to limitations identified during the quality assurance review (data validation).
- R Unusable result; compound may or may not be present in this sample.
- UJ This compound was not detected, but the detection limit is probably higher due to a low bias identified during the quality assurance review.

Client Sample ID: BAR-G-30490N-INFLOW

HPLC

Lot-Sample #: D4D080371-00	1 Work Order #: GDTQ31AA	Matrix WATER
Date Sampled: 04/06/04 17:	20 Date Received: 04/08/04	
Prep Date: 04/11/04	Analysis Date: 04/15/04	
Prep Batch #: 4101132	Analysis Time: 13:09	
Dilution Factor: 1		

Method.....: SW846 8321A

	REPORTIN	IG		
RESULT	LIMIT	UNITS	MDL	
ND	0.12	ug/L	0.015	
ND	0.12	ug/L	0.012	
ND	0.12	ug/L	0.014	
ND	0.12	ug/L	0.019	
ND	0.12	ug/L	0.015	
ND	0.12	ug/L	0.016	
ND	0.12	ug/L	0.020	
ND	0.12	ug/L	0.039	
ND	0.12	ug/L	0.019	
ND	0.12	-	0.023	
ND	0.12	-	0.018	
ND	0.12	ug/L	0.031	
ND	0.12	ug/L	0.012	
ND	0.12	ug/L	0.012	
ND	0.12	ug/L	0.015	
ND	0.12	ug/L	0.015	
PERCENT	RECOVERY	-		
RECOVERY	LIMITS			
94	(44 - 12	(4)		
	ND ND ND ND ND ND ND ND ND ND ND ND ND N	RESULT LIMIT ND 0.12 ND <td>ND 0.12 ug/L ND 0.12</td> <td>RESULT LIMIT UNITS MDL ND 0.12 ug/L 0.015 ND 0.12 ug/L 0.015 ND 0.12 ug/L 0.012 ND 0.12 ug/L 0.012 ND 0.12 ug/L 0.014 ND 0.12 ug/L 0.014 ND 0.12 ug/L 0.019 ND 0.12 ug/L 0.016 ND 0.12 ug/L 0.016 ND 0.12 ug/L 0.020 ND 0.12 ug/L 0.020 ND 0.12 ug/L 0.039 ND 0.12 ug/L 0.019 ND 0.12 ug/L 0.018 ND 0.12 ug/L 0.031 ND 0.12 ug/L 0.012 ND 0.12 ug/L 0.012 ND 0.12 ug/L 0.015 ND</td>	ND 0.12 ug/L ND 0.12	RESULT LIMIT UNITS MDL ND 0.12 ug/L 0.015 ND 0.12 ug/L 0.015 ND 0.12 ug/L 0.012 ND 0.12 ug/L 0.012 ND 0.12 ug/L 0.014 ND 0.12 ug/L 0.014 ND 0.12 ug/L 0.019 ND 0.12 ug/L 0.016 ND 0.12 ug/L 0.016 ND 0.12 ug/L 0.020 ND 0.12 ug/L 0.020 ND 0.12 ug/L 0.039 ND 0.12 ug/L 0.019 ND 0.12 ug/L 0.018 ND 0.12 ug/L 0.031 ND 0.12 ug/L 0.012 ND 0.12 ug/L 0.012 ND 0.12 ug/L 0.015 ND

(

7

Client Sample ID: BAR-G-30380N-INFLOW

HPLC

Lot-Sample #:	D4D080371-002	Work Order #:	GDTQ41AA	Matrix:	WATER
Date Sampled:	04/06/04 13:12	Date Received:	04/08/04		
Prep Date:	04/11/04	Analysis Date:	04/15/04		
Prep Batch #:	4101132	Analysis Time:	13:41		
Dilution Factor:	5				

Method..... SW846 8321A

		REPORTIN	IG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
4-Amino-2,6-	ND	0.60	ug/L	0.075	
dinitrotoluene					
2-Amino-4,6-	ND	0.60	ug/L	0.060	
dinitrotoluene					
1,3-Dinitrobenzene	ND	0.60	ug/L	0.070	
2,4-Dinitrotoluene	ND	0.60	ug/L	0.095	
2,6-Dinitrotoluene	ND	0.60	ug/L	0.075	
HMX	ND	0.60	ug/L	0.080	
Nitrobenzene	ND	0.60	ug/L	0.10	
Nitroglycerin	ND	0.60	ug/L	0.20	
3-Nitrotoluene	ND	0.60	ug/L	0.095	
2-Nitrotoluene	ND	0.60	ug/L	0.12	
4-Nitrotoluene	ND	0.60	ug/L	0.090	
PETN	ND	0.60	ug/L	0.16	
RDX	ND	0.60	ug/L	0.060	
Tetryl	ND	0.60	ug/L	0.060	
1,3,5-Trinitrobenzene	ND	0.60	ug/L	0.075	
2,4,6-Trinitrotoluene	ND	0.60	ug/L	0.075	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	60	(44 - 12	.4)		

Client Sample ID: BAR-G-30300N-INFLOW

HPLC

Lot-Sample #:	D4D080371-003	Work Order #:	GDTQ61AA	Matrix WATER
Date Sampled:	04/06/04 13:20	Date Received:	04/08/04	
Prep Date:	04/11/04	Analysis Date:	04/15/04	
Prep Batch #:	4101132	Analysis Time :	14:45	
Dilution Factor:	1			

Method.....: SW846 8321A

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
4-Amino-2,6-	ND	0.12	ug/L	0.015	
dinitrotoluene			-		
2-Amino-4,6-	ND	0.12	ug/L	0.012	
dinitrotoluene			-		
1,3-Dinitrobenzene	ND	0.12	ug/L	0.014	
2,4-Dinitrotoluene	ND	0.12	ug/L	0.019	
2,6-Dinitrotoluene	ND	0.12	ug/L	0.015	
HMX	ND	0.12	ug/L	0.016	
Nitrobenzene	ND	0.12	ug/L	0.020	
Nitroglycerin	ND	0.12	ug/L	0.039	
3-Nitrotoluene	ND	0.12	ug/L	0.019	
2-Nitrotoluene	ND	0.12	ug/L	0.023	
4-Nitrotoluene	ND	0.12	ug/L	0.018	
PETN	ND	0.12	ug/L	0.031	
RDX	ND	0.12	ug/L	0.012	
Tetryl	ND	0.12	ug/L	0.012	
1,3,5-Trinitrobenzene	ND	0.12	ug/L	0.015	
2,4,6-Trinitrotoluene	ND	0.12	ug/L	0.015	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	92	(44 - 12	4)		

Client Sample ID: BAR-G-73280H-INFLOW

HPLC

•		Work Order #: GDTQ71AA	Matrix WATER
Date Sampled:	04/06/04 12:48	Date Received: 04/08/04	
Prep Date:	04/11/04	Analysis Date: 04/15/04	
Prep Batch #:	4101132	Analysis Time: 15:17	
Dilution Factor:	۹.		

Method....: SW846 8321A

		REPORTIN	IG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
4-Amino-2,6-	ND	0.12	ug/L	0.015	
dinitrotoluene					
2-Amino-4,6-	ND	0.12	ug/L	0.012	
dinitrotoluene					
1,3-Dinitrobenzene	ND	0.12	ug/L	0.014	
2,4-Dinitrotoluene	ND	0.12	ug/L	0.019	
2,6-Dinitrotoluene	ND	0.12	ug/L	0.015	
HMX	ND	0.12	ug/L	0.016	
Nitrobenzene	ND	0.12	ug/L	0.020	
Nitroglycerin	ND	0.12	ug/L	0.039	
3-Nitrotoluene	ND	0.12	ug/L	0.019	
2-Nitrotoluene	ND	0.12	ug/L	0.023	
4-Nitrotoluene	ND	0.12	ug/L	0.018	
Petn	ND	0.12	ug/L	0.031	
RDX	ND	0.12	ug/L	0.012	
Tetryl	ND	0.12	ug/L	0.012	
1,3,5-Trinitrobenzene	ND	0.12	ug/L	0.015	
2,4,6-Trinitrotoluene	ND	0.12	ug/L	0.015	
	PERCENT	RECOVERY	•		
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	97	(44 - 12	:4)		

Client Sample ID: BAR-G-72730H-INFLOW

HPLC

Lot-Sample #:	D4D080371-005	Work Order #:	GDTQ81AA	Matrix WATER
Date Sampled:	04/06/04 12:05	Date Received:	04/08/04	
Prep Date:	04/11/04	Analysis Date:	04/15/04	
Prep Batch #:	4101132	Analysis Time:	15:49	
Dilution Factor:	1			

Method.....: SW846 8321A

		REPORTIN	IG		
PARAMETER	RESULT	LIMIT	UNITS	MDL	
4-Amino-2,6-	ND	0.12	ug/L	0.015	
dinitrotoluene					
2-Amino-4,6-	ND	0.12	ug/L	0.012	
dinitrotoluene					
1,3-Dinitrobenzene	ND	0.12	ug/L	0.014	
2,4-Dinitrotoluene	ND	0.12	ug/L	0.019	
2,6-Dinitrotoluene	ND	0.12	ug/L	0.015	
HMX	ND	0.12	ug/L	0.016	
Nitrobenzene	ND	0.12	ug/L	0.020	
Nitroglycerin	ND UJ	0.12	ug/L	0.039	
3-Nitrotoluene	ND	0.12	ug/L	0.019	
2-Nitrotoluene	ND	0.12	ug/L	0.023	
4-Nitrotoluene	ND	0.12	ug/L	0.018	
PETN	ND	0.12	ug/L	0.031	
RDX	ND	0.12	ug/L	0.012	
Tetryl	ND UJ	0.12	ug/L	0.012	
1,3,5-Trinitrobenzene	ND	0.12	ug/L	0.015	
2,4,6-Trinitrotoluene	ND	0.12	ug/L	0.015	
	PERCENT	RECOVERY	7		
SURROGATE	RECOVERY	LIMITS	<u></u>		
Nitrobenzene-d5	90	(44 - 12	:4)		

KV 513104

(

Client Sample ID: BAR-G-72860H-INFLOW

HPLC

Lot-Sample #: D4D080371-006	Work Order #: GDTQ91AA	Matrix: WATER
Date Sampled: 04/06/04 12:3	5 Date Received: 04/08/04	
Prep Date: 04/11/04	Analysis Date: 04/15/04	
Prep Batch #: 4101132	Analysis Time: 17:56	
Dilution Factor: 1		

Method....: SW846 8321A

		REPORTIN	ſĠ	
PARAMETER	RESULT	LIMIT	UNITS	MDL
4-Amino-2,6-	ND	0.12	ug/L	0.015
dinitrotoluene				
2-Amino-4,6-	ND	0.12	ug/L	0.012
dinitrotoluene				
1,3-Dinitrobenzene	ND	0.12	ug/L	0.014
2,4-Dinitrotoluene	ND	0.12	ug/L	0.019
2,6-Dinitrotoluene	ND	0.12	ug/L	0.015
HMX	ND	0.12	ug/L	0.016
Nitrobenzene	ND	0.12	ug/L	0.020
Nitroglycerin	ND	0.12	ug/L	0.039
3-Nitrotoluene	ND	0.12	ug/L	0.019
2-Nitrotoluene	ND	0.12	ug/L	0.023
4-Nitrotoluene	ND	0.12	ug/L	0.018
PETN	ND	0.12	ug/L	0.031
RDX	ND	0.12	ug/L	0.012
Tetryl	ND	0.12	ug/L	0.012
1,3,5-Trinitrobenzene	ND	0.12	ug/L	0.015
2,4,6-Trinitrotoluene	ND	0.12	ug/L	0.015
	PERCENT	RECOVERY		
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	89	(44 - 12	4)	

Client Sample ID: BAR-G-72790H-INFLOW

HPLC

Lot-Sample #:	D4D080371-007	Work Order #:	GDTRC1AA	Matrix WATER
Date Sampled:	04/06/04 12:20	Date Received:	04/08/04	
Prep Date:	04/11/04	Analysis Date:	04/15/04	
Prep Batch #:	4101132	Analysis Time:	18:28	
Dilution Factor:	1			

Method.....: SW846 8321A

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
4-Amino-2,6-	ND	0.12	ug/L	0.015	
dinitrotoluene			-		
2-Amino-4,6-	ND	0.12	ug/L	0.012	
dinitrotoluene					
1,3-Dinitrobenzene	ND	0.12	ug/L	0.014	
2,4-Dinitrotoluene	ND	0.12	ug/L	0.019	
2,6-Dinitrotoluene	ND	0.12	ug/L	0.015	
HMX	ND	0.12	ug/L	0.016	
Nitrobenzene	ND	0.12	ug/L	0.020	
Nitroglycerin	ND	0.12	ug/L	0.039	
3-Nitrotoluene	ND	0.12	ug/L	0.019	
2-Nitrotoluene	ND	0.12	ug/L	0.023	
4-Nitrotoluene	ND	0.12	ug/L	0.018	
PETN	ND	0.12	ug/L	0.031	
RDX	ND	0.12	ug/L	0.012	
Tetryl	ND	0.12	ug/L	0.012	
1,3,5-Trinitrobenzene	ND	0.12	ug/L	0.015	
2,4,6-Trinitrotoluene	ND	0.12	ug/L	0.015	
	PERCENT	RECOVERY			
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	73	(44 - 12	4)		

Client Sample ID: BAR-G-72790H-INFLOW-DUP

HPLC

Lot-Sample #:	D4D080371-008	Work Order #:	GDTRD1AA	Matrix: WATER
Date Sampled:	04/06/04 12:20	Date Received:	04/08/04	
Prep Date:	04/11/04	Analysis Date:	04/15/04	
Prep Batch #:	4101132	Analysis Time:	18:59	
Dilution Factor:	1			

Method..... SW846 8321A

		REPORTING			
PARAMETER	RESULT	LIMIT	UNITS	MDL	
4-Amino-2,6- dinitrotoluene	ND	0.12	ug/L	0.015	
2-Amino-4,6- dinitrotoluene	ND	0.12	ug/L	0.012	
1,3-Dinitrobenzene	ND	0.12	ug/L	0.014	
2,4-Dinitrotoluene	ND	0.12	ug/L	0.019	
2,6-Dinitrotoluene	ND	0.12	ug/L	0.015	
HMX	ND	0.12	ug/L	0.016	
Nitrobenzene	ND	0.12	ug/L	0.020	
Nitroglycerin	ND	0.12	ug/L	0.039	
3-Nitrotoluene	ND	0.12	ug/L	0.019	
2-Nitrotoluene	ND	0.12	ug/L	0.023	
4-Nitrotoluene	ND	0.12	ug/L	0.018	
PETN	ND	0.12	ug/L	0.031	
RDX	ND	0.12	ug/L	0.012	
Tetryl	ND	0.12	ug/L	0.012	
1,3,5-Trinitrobenzene	ND	0.12	ug/L	0.015	
2,4,6-Trinitrotoluene	ND	0.12	ug/L	0.015	
	PERCENT	RECOVERY	7		
SURROGATE	RECOVERY	LIMITS			
Nitrobenzene-d5	90	(44 - 12	4)		

Client Sample ID: BAR-G-30600N-INFLOW

HPLC

Lot-Sample #: D4D080371-009	Work Order #: GDTRE1AA	Matrix WATER
Date Sampled: 04/07/04 09:5	3 Date Received: 04/08/04	
Prep Date: 04/11/04	Analysis Date: 04/15/04	
Prep Batch #: 4101132	Analysis Time: 19:31	
Dilution Factor: 1	-	

Method.....: SW846 8321A

		REPORTIN		
PARAMETER	RESULT	LIMIT	UNITS	MDL
4-Amino-2,6-	ND	0.12	ug/L	0.015
dinitrotoluene				
2-Amino-4,6-	ND	0.12	ug/L	0.012
dinitrotoluene				
1,3-Dinitrobenzene	ND	0.12	ug/L	0.014
2,4-Dinitrotoluene	ND	0.12	ug/L	0.019
2,6-Dinitrotoluene	ND	0.12	ug/L	0.015
HMX	ND	0.12	ug/L	0.016
Nitrobenzene	ND	0.12	ug/L	0.020
Nitroglycerin	ND	0.12	ug/L	0.039
3-Nitrotoluene	ND	0.12	ug/L	0.019
2-Nitrotoluene	ND	0.12	ug/L	0.023
4-Nitrotoluene	ND	0.12	ug/L	0.018
PETN	ND	0.12	ug/L	0.031
RDX	ND	0.12	ug/L	0.012
Tetryl	ND	0.12	ug/L	0.012
1,3,5-Trinitrobenzene	ND	0.12	ug/L	0.015
2,4,6-Trinitrotoluene	ND	0.12	ug/L	0.015
	PERCENT	RECOVERY	•	
SURROGATE	RECOVERY	LIMITS		
Nitrobenzene-d5	96	(44 - 12	4)	

Setting the Standards for Innovative Environmental Solutions

QUALITY ASSURANCE REVIEW OF THE

AQUEOUS SAMPLES COLLECTED ON APRIL 6, 2004

FOR THE DUPONT CORPORATE REMEDIATION GROUP

4/04 GROUNDWATER SAMPLING PROJECT

AT THE BARKSDALE, WISCONSIN FACILITY

May 14, 2004

Prepared for:

DUPONT CORPORATE REMEDIATION GROUP

Barley Mill Plaza, Bldg. 27 Rts. 141 and 48 Wilmington, DE 19805

Prepared by:

ENVIRONMENTAL STANDARDS, INC. 1140 Valley Forge Road P.O. Box 810 Valley Forge, PA 19482-0810

TABLE OF CONTENTS

Executive Summary

Introduction

- Section 1 Quality Assurance Review
 - A. Organic Data
 - B. Conclusions
- Section 2 Target Analyte Summary
- Section 3 Organic Data Support Documentation
- Section 4 Laboratory Project Narrative and Project Chain-of-Custody Record
- Section 5 Project Correspondence

Executive Summary

An analytical quality assurance review was performed on data for the three aqueous samples collected in association with the DuPont Corporate Remediation Group 4/04 Groundwater Sampling Project at the Barksdale Facility in Barksdale, Wisconsin. The organic analyses were performed by a US EPA method. A comprehensive Contract Laboratory Program (CLP)-like raw data package was prepared by the laboratory and was reviewed by Environmental Standards.

The "not-detected" results for chloroacetonitrile, 2-nitropropane, and nitrobenzene in all samples were qualified as unusable due to very low relative response factors in the associated initial calibration and calibration verification standards. The quality of the remaining data is acceptable.

Any reporting errors identified during the quality assurance review were corrected by the data reviewer or the laboratory.

Introduction

This quality assurance (QA) review is based upon a rigorous examination of data generated from the three aqueous samples that were collected on April 6, 2004, as part of the DuPont Corporate Remediation Group 4/04 Groundwater Sampling Project at the Barksdale Facility in Barksdale, Wisconsin. The samples that have undergone a QA review are listed on Table 1. Table 1 also presents the field sample number, laboratory sample number, laboratory run number, collection date, and parameter analyzed and reviewed for each sample.

This review has been performed with guidance from the "National Functional Guidelines for Organic Data Review" (US EPA, 2/94).

The reported analytical results are presented on the laboratory analysis reports included in Section 2, "Target Analyte Summary." Data were examined to determine the usability of the analytical results and compliance relative to requirements specified in the applicable US EPA method. In addition, the deliverables prepared according to a Contract Laboratory Program-like data package were evaluated. Details of this QA review are presented in Section 1 of this report.

This critical QA review identifies data quality issues for specific samples and specific evaluation criteria. Data not qualified in this report should be considered valid based on the quality control (QC) criteria that have been reviewed.

TABLE 1

SUMMARY OF GROUNDWATER SAMPLE DATA REVIEWED

DuPont Corporate Remediation Group Sample Identification	Laboratory Sample Number	Laboratory Run Number	Date of Sample Collection	Parameter Analyzed and Reviewed
BAR-G-29600N-INFLOW	1023135	64157	4/6/04	V
BAR-G-30900N-INFLOW	1023136	64157	4/6/04	V
LTB (Trip Blank)	1023137	64157	3/31/04*	V

DUPONT BARKSDALE, WISCONSIN FACILITY

NOTES:

V - Volatile Organic Compounds by US EPA Method 524.2. (3 analyses)

- The date of sample collection provided on Table 1 is the date of sample collection recorded on the Chain-of-Custody Record. For the trip blank, this date represents the date the trip blank was prepared at the laboratory. For the holding time evaluation, the data reviewer used the collection date of the samples associated with the trip blank for the trip blank date of sample collection. This date was used in order to reflect the usability of the trip blank data from the time the associated samples were collected.

Section 1 Quality Assurance Review

A. Organic Data

The organic analyses of three aqueous samples collected as part of the DuPont Corporate Remediation Group (DuPont) 4/04 Groundwater Sampling Project at the Barksdale, Wisconsin, Facility on April 6, 2004, were performed by Environmental Health Laboratories in South Bend, Indiana. The samples were analyzed for volatile organic compounds according to US EPA Method 524.2 as indicated on Table 1. The data were presented in one Contract Laboratory Program (CLP)-like data package.

The findings offered in this report are based upon a rigorous review of the following:

- sample holding times
- blank analysis results
- gas chromatogram/mass spectral (GC/MS) tuning and system performance
- surrogate recoveries
- qualitative identification

- sample condition upon laboratory receipt
- initial and continuing calibrations
- internal standard areas
- analytical sequence
- laboratory control sample (LCS) recoveries

• quantitation of results

The analytical results for the organic compounds are provided as a summary of the data in Section 2 of this report.

Data Package Deliverables

Overall, the organic data quality is good. The following analytical criteria and/or reporting requirements were not met for the original data package received. Reporting errors identified during the quality assurance review were corrected by the data reviewer or the laboratory. Amended data package pages provided by the laboratory have been included in the Project Correspondence (Section 5). The following items do not affect data usability. Usability is addressed in the Data Evaluation section.

<u>Comments</u>

1. The raw data for the volatile initial calibration and the bromofluorobenzene (BFB) tunes were not included in the data package provided for run number 64157. Upon the data reviewer's request, the laboratory submitted the raw data for the BFB tunes associated with the analysis of the project samples and a summary form of the calculated initial calibration relative response factors (see Section 5.) The raw data for the BFB tune associated with the initial calibration and the quantitation reports for the initial calibration standards were not provided.

2. The data package for run number 64157 was not paginated.

Data Evaluation

With respect to data usability, the principal area of concern is poor instrument sensitivity. Based on a rigorous review of the data provided, the following organic data qualifier is offered. The following data usability issue represents an interpretation of the QC results obtained for the project samples. Quite often, data qualifications address issues relating to sample matrix problems. Similarly, the data validation guidelines routinely specify areas of the data that require qualification, yet the methods used for analysis may not require corrective action by the laboratory. Accordingly, the following data usability issue should <u>not</u> be construed as an indication of laboratory performance.

Organic Data Qualifier

- The analyses for chloroacetonitrile, 2-nitropropane, and nitrobenzene in all samples in run number 64157 are unusable, and the "not-detected" results have been flagged "R" on the qualified analysis reports. Very low (<0.05) relative response factors were observed for these compounds in the associated initial calibration and calibration verification standards.

A complete support documentation of this organic QA review is provided in Section 3 of this report.

B. Conclusions

Based on this QA review, a few volatile organic compounds results were qualified due to poor instrument sensitivity. In order to use any of the data, the data user should understand the qualifications and limitations as specified in this QA review. The Laboratory Project Narrative and Project Chain-of-Custody Record are presented in Section 4 of this report. The Project Correspondence is presented in Section 5 of this report.

Report prepared by:

for

Konstadina Vlahogiani, M.S. Senior Quality Assurance Chemist III/ Project Manager

Report reviewed by:

Donald J. Lancaster, M.S. Senior Quality Assurance Chemist II

Report reviewed and approved by:

Vand K

David R. Blye, CEAC Quality Assurance Specialist/ Principal

ENVIRONMENTAL STANDARDS, INC. 1140 Valley Forge Road P.O. Box 810 Valley Forge, PA 19482-0810

(610) 935-5577

Date: 5-14-04

w:\dupont\barksdal\0701\y1071617\final\report33voa.doc

SECTION 2

(

C

TARGET ANALYTE SUMMARY

ORGANIC DATA QUALIFIERS

- ND The compound was not detected at or above the associated numerical value.
- U This compound should be considered "not detected" because it was detected in a blank at a similar level.
- J Quantitation is approximate due to limitations identified during the quality assurance review (data validation).
- R Unusable result; compound may or may not be present in this sample.
- UJ This compound was not detected, but the detection limit is probably higher due to a low bias identified during the quality assurance review.

Environmental Health Laboratories Sample Result Record Sheet

Sample Matrix: DW Acquisition File: Not Available Data Directory: 041404A Instrument: ITD - C Extracted Date: Not Available Sample Number: 1023135 Dilution Factor: 1 Sample Site: BAR-G-29600N-INFLOW Sample Location: Not Available Method: 524.2 Calibration File: 524 2-040504C-up1.mth Analysis Date: 04/14/2004 Analysis Time: 12:47 Analyst: conn Results Submitted By: conn Run Number: 64157

Sample Quality Control

			CCC	مر به مور به مون مربوع در برج مربع	-	IC	
Internal Standards <u>Parameter</u>	Area	CCC <u>Area</u>	% L	Area imits Pass vr Upr / Fail	IC Avg <u>Area</u>	% <u>Res</u> j	Area Limits Pass <u>2 Lwr Upr / Fall</u>
IS-1,4-Difluorobenzene	254872	263271	97 70) 130 PASS	Not Fo	und N/A	N/A N/A N/A
Surrogate Standards <u>Parameter</u>	Amount	<u>Units</u>	Target	<u>%Rec</u>	Limi <u>Lower</u>	ts <u>Upper</u>	Pass/Fail
SS-Toluene-d8 SS-1,2-Dichlorobenzene-d4 SS-Bromofluorobenzene SS-1,2-Dichloroethane-d4	9.961 9.352 5.083 10.487	ug/L ug/L ug/L ug/L	10 10 5.0 10	100 94 102 105	70 70 70 70	130 130 130 130	PASS PASS PASS PASS

Ordered Parameter Results

Parameter	Amount	MRL	<u>Units</u>
1,1,1,2-Tetrachloroethane	< 0.5	0.5	ug/L
1,1,1-Trichloroethane	< 0.5	0.5	ug/L
1,1,2,2-Tetrachloroethane	< 0.5	0.5	ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.5	0.5	ug/L
1,1,2-Trichloroethane	< 0.5	0.5	ug/L
1,1-Dichloroethane	< 0.5	0.5	ug/L
1,1-Dichloroethylene	< 0.5	0.5	ug/L
1,1-Dichloropropanone	< 5.0	5.0	ug/L
1,1-Dichloropropylene	< 0.5	0.5	ug/L
1,2,3-Trichlorobenzene	< 0.5	0.5	ug/L
1,2,3-Trichloropropane	< 0.5	0.5	ug/L
1,2,3-Trimethylbenzene	< 0.5	0.5	ug/L
1,2,4-Trichlorobenzene	< 0.5	0.5	ug/L
1,2,4-Trimethylbenzene	< 0.5	0.5	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	< 0.2	0.2	ug/L
1,2-Dibromoethane (EDB)	< 0.2	0.2	ug/L
1,2-Dichlorobenzene	< 0.5	0.5	ug/L
1,2-Dichloroethane	< 0.5	0.5	ug/L
1,2-Dichloropropane	< 0.5	0.5	ug/L
1,2-Xylene	< 0.5	0.5	ug/L
1,3,5-Trimethylbenzene	< 0.5	0.5	ug/L
1,3-Dichlorobenzene	< 0.5	0.5	ug/L

	·				
	1,3-Dichloropropane	< 0.5		0.5	ug/L
	1,3-Xylene	< 0.5		0.5	ug/L
	1,4-Dichlorobenzene	< 0.5		0.5	ug/L
	1,4-Xylene	< 0.5		0.5	ug/L
J	1-Chlorobutane	< 5.0		5.0	ug/L
	2,2-Dichloropropane	< 0.5		0.5	ug/L
	2-Butanone (MEK)	< 5.0		5.0	ug/L
	2-Chlorotoluene	< 0.5		0.5	ug/L
	2-Hexanone	< 5.0		5.0	ug/L
	2-Nitropropane	< 2.0	R	2.0	ug/L
	4-Chlorotoluene	< 0.5		0.5	ug/L
	4-isopropyitoluene	< 0.5		0.5	ug/L
	4-Methyl-2-pentanone (MIBK)	< 2.0		2.0	ug/L
	Acetone	< 5.0		5.0	ug/L
	Acrylonitrile	< 1.0		1.0	ug/L
	Allyi chloride	< 5.0		5.0	ug/L
	Benzene	< 0.5		0.5	ug/L
	Bromobenzene	< 0.5		0.5	ug/L
	Bromochloromethane	< 0.5		0.5	ug/L
	Bromodichloromethane	< 0.5		0.5	ug/L
	Bromoform	< 0.5		0.5	ug/L
	Bromomethane	< 0.5		0.5	ug/L.
	Carbon disulfide	< 5.0		5.0	ug/L
	Carbon tetrachloride	< 0.5	•.	0.5	ug/L
	Chloroacetonitrile	< 5.0	R	5.0	ug/L
	Chiorobenzene	< 0.5		0.5	ug/L
	Chloroethane	< 0.5		0.5	ug/L
	Chloroform	< 0.5		0.5	ug/L
	Chloromethane	< 0.5		0.5	ug/L
	Dibromochloromethane	< 0.5		0.5	ug/L
	Dibromomethane	< 0.5		0.5	ug/L
1.	Dichlorodifluoromethane	< 0.5		0.5	ug/L
	Dichloromethane	< 0.5		0.5	ug/L
	Ethyi Ether	< 2.0		2.0	ug/L.
	Ethyl methacrylate	< 1.0		1.0	ug/L.
	Ethylbenzene	< 0.5		0.5	ug/L
	Hexachlorobutadiene	< 0.5		0.5	ug/L
	Hexachloroethane	< 2.0		2.0	ug/L
	Isopropylbenzene	< 0.5		0.5	ug/L
,	Methacrylonitrile	< 5.0		5.0	ug/L
	Methyl iodide	< 2.0		2.0	ug/L
	Methyl-t-butyl ether (MTBE)	< 0.5		0.5	ug/L
	Methylacrylate	< 1.0		1.0	ug/L
	Methylmethacrylate	< 1.0		1.0	ug/L
	Naphthalene	< 0.5		0.5	ug/L
	Nitrobenzene	< 5.0	R	5.0	ug/L
	Pentachloroethane	< 2.0		2.0	ug/L
	Propionitrile	< 5.0		5.0	ug/L
	Styrene	< 0.5		0.5	ug/L
	Tetrachloroethylene	< 0.5		0.5	ug/L
	Tetrahydrofuran	< 5.0		5.0	ug/L
	Toluene	< 0.5		0.5	ug/L
	Trichloroethylene	< 0.5		0.5	ug/L
	Trichlorofluoromethane	< 0.5		0.5	ug/L
	Vinyl chloride	< 0.2		0.2	ug/L
	Xylenes, Total	< 0.5		0.5	ug/L
	cis-1,2-Dichloroethylene	< 0.5		0.5	ug/L
j	cis-1,3-Dichloropropylene	< 0.5		0.5	ug/L
·	n-Butylbenzene	< 0.5		0.5	ug/L
	-				-

C

C

W 5/15/04

n-Propylbenzene	< 0.5	0.5	ug/L
sec-Butylbenzene	< 0.5	0.5	ug/L
tert-Butylbenzene	< 0.5	0.5	ug/L
trans-1,2-Dichloroethylene	< 0.5	0.5	ug/L
trans-1,3-Dichloropropylene	< 0.5	0.5	ug/L
trans-1,4-Dichloro-2-butylene	< 5.0	5.0	ug/L

Additional Found Parameters

Parameter	<u>Amount</u>	MRL	<u>Units</u>

The symbol * in the Amount column above indicates that the sample was re-analyzed for that parameter and the results are presented on another page.

Environmental Health Laboratories Sample Result Record Sheet

Sample Matrix: DW Acquisition File: Not Available Data Directory: 041404A Instrument: ITD - C Extracted Date: Not Available Sample Number: 1023136 Dilution Factor: 1 Sample Site: BAR-G-30900N-INFLOW Sample Location: Not Available Method: 524.2 Calibration File: 524 2-040504C-up1.mth Analysis Date: 04/14/2004 Analysis Time: 13:23 Analyst: conn Results Submitted By: conn Run Number: 64157

Sample Quality Control

			CC	C	و به			IC	************	
Internal Standards <u>Parameter</u>	Area	CCC <u>Area</u>	% <u>Resp</u>	Are Lim <u>Lwr</u>		IC Avg <u>Area</u>		% <u>Resp</u>	Area Limits	Pass <u>/ Fail</u>
IS-1,4-Difluorobenzene	255332	263271	97	70	130 PASS	Not Fo	und	N/A	N/A N/A	N/A
Surrogate Standards <u>Parameter</u>	<u>Amount</u>	<u>Units</u>	<u>Target</u>		<u>%Rec</u>	Lim <u>Lower</u>	its <u>Upp</u>	<u>er</u>	Pass/Fail	
SS-1,2-Dichlorobenzene-d4	9.509	ug/L	10		95	70	130		PASS	
SS-1,2-Dichloroethane-d4	10.687	ug/L	10		107	70	130		PASS	
SS-Bromofluorobenzene	4.965	ug/L	5.0		99	70	130		PASS	
SS-Toluene-d8	10.125	ug/L	10		101	70	130		PASS	

Ordered Parameter Results

Parameter	Amount	MRL	<u>Units</u>
1,1,1,2-Tetrachloroethane	< 0.5	0.5	ug/L
1,1,1-Trichloroethane	< 0.5	0.5	ug/L
1,1,2,2-Tetrachloroethane	< 0.5	0.5	ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.5	0.5	ug/L
1,1,2-Trichloroethane	< 0.5	0.5	ug/L
1,1-Dichloroethane	< 0.5	0.5	ug/L
1,1-Dichloroethylene	< 0.5	0.5	ug/L
1,1-Dichloropropanone	< 5.0	5.0	ug/L
1,1-Dichloropropylene	< 0.5	0.5	ug/L
1,2,3-Trichlorobenzene	< 0.5	0.5	ug/L
1,2,3-Trichloropropane	< 0.5	0.5	ug/L
1,2,3-Trimethylbenzene	< 0.5	0.5	ug/L
1,2,4-Trichlorobenzene	< 0.5	0.5	ug/L
1,2,4-Trimethylbenzene	< 0.5	0.5	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	< 0.2	0.2	ug/L
1,2-Dibromoethane (EDB)	< 0.2	0.2	ug/L
1,2-Dichlorobenzene	< 0.5	0.5	ug/L
1,2-Dichloroethane	< 0.5	0.5	ug/L
1,2-Dichloropropane	< 0.5	0.5	ug/L
1,2-Xylene	< 0.5	0.5	ug/L
1,3,5-Trimethylbenzene	< 0.5	0.5	ug/L
1,3-Dichlorobenzene	< 0.5	0.5	ug/L

	1,3-Dichloropropane	< 0.5		0.5	ug/L
	1,3-Xylene	< 0.5		0.5	ug/L
	1,4-Dichlorobenzene	< 0.5		0.5	ug/L
	1,4-Xylene	< 0.5		0.5	ug/L
J	1-Chlorobutane	< 5.0		5.0	ug/L
	2,2-Dichloropropane	< 0.5		0.5	ug/L
	2-Butanone (MEK)	< 5.0		5.0	ug/L
	2-Chlorotoluene	< 0.5		0.5	ug/L
	2-Hexanone	< 5.0		5.0	ug/L
	2-Nitropropane	< 2.0	R	2.0	ug/L
	4-Chiorotoluene	< 0.5		0.5	ug/L
	4-Isopropyitoluene	< 0.5		0.5	ug/L
	4-Methyl-2-pentanone (MIBK)	< 2.0		2.0	ug/L
	Acetone	< 5.0		5.0	ug/L
	Acrylonitrile	< 1.0		1.0	ug/L
	Ally! chloride	< 5.0		5.0	ug/L
	Benzene	< 0.5		0.5	ug/L
	Bromobenzene	< 0.5		0.5	ug/L
	Bromochloromethane	< 0.5		0.5	ug/L
	Bromodichloromethane	< 0.5		0.5	ug/L
	Bromoform	< 0.5		0.5	ug/L
	Bromomethane	< 0.5		0.5	ug/L
	Carbon disulfide	< 5.0		5.0	ug/L
	Carbon tetrachloride	< 0.5	-	0.5	ug/L
	Chloroacetonitrile	< 5.0	R	5.0	ug/L
	Chlorobenzene	< 0.5		0.5	ug/L
	Chloroethane	< 0.5		0.5	ug/L
	Chloroform	< 0.5		0.5	ug/L
	Chloromethane	< 0.5		0.5	ug/L
	Dibromochloromethane	< 0.5		0.5	ug/L
	Dibromomethane	< 0.5		0.5	ug/L
1	-Dichlorodifluoromethane	< 0.5		0.5	ug/L
	Dichloromethane	< 0.5		0.5	ug/L
	Ethyl Ether	< 2.0		2.0	ug/L
	Ethyl methacrylate	< 1.0		1.0	ug/L
	Ethylbenzene	< 0.5		0.5	ug/L
	Hexachlorobutadiene	< 0.5	· ,	0.5	ug/L
	Hexachloroethane	< 2.0		2.0	ug/L
	Isopropylbenzene	< 0.5		0.5	ug/L.
`	Methacrylonitrile	< 5.0		5.0	ug/L
	Methyl iodide	< 2.0		2.0	ug/L
	Methyl-t-butyl ether (MTBE)	< 0.5		0.5	ug/L
	Methylacrylate	< 1.0		1.0	ug/L.
	Methylmethacrylate	< 1.0		1.0	ug/L
	Naphthalene	< 0.5		0.5	ug/L
	Nitrobenzene	< 5.0	R	5.0	ug/L
	Pentachloroethane	< 2.0		2.0	ug/L
	Propionitrile	< 5.0		5.0	ug/L
	Styrene	< 0.5		0.5	ug/L
	Tetrachloroethylene	< 0.5		0.5	ug/L
	Tetrahydrofuran	< 5.0		5.0	ug/L
	Toluene	< 0.5		0.5	ug/L
	Trichloroethylene	< 0.5		0.5	ug/L
	Trichlorofluoromethane	< 0.5		0.5	ug/L
	Vinyl chloride	< 0.2		0.2	ug/L
	Xylenes, Total	< 0.5		0.5	ug/L
	cis-1,2-Dichloroethylene	< 0.5		0.5	ug/L
į	cis-1,3-Dichloropropylene	< 0.5		0.5	ug/L
/	n-Butylbenzene	< 0.5		0.5	ug/L

C

KV

5115/04

n-Propylbenzene	< 0.5	0.5	ug/L
sec-Butylbenzene	< 0.5	0.5	ug/L
tert-Butylbenzene	< 0.5	0.5	ug/L
trans-1,2-Dichloroethylene	< 0.5	0.5	ug/L
trans-1,3-Dichloropropylene	< 0.5	0.5	ug/L
trans-1,4-Dichloro-2-butylene	< 5.0	5.0	ug/L

(

Additional Found Parameters

Parameter	Amount	MRL	<u>Units</u>

The symbol * in the Amount column above indicates that the sample was re-analyzed for that parameter and the results are presented on another page.

Environmental Health Laboratories Laboratory Trip Blank

Sample Matrix: RW Acquisition File: Not Available Data Directory: 041404A Instrument: ITD - C Extracted Date: Not Available Sample Number: 1023137 Dilution Factor: 1 Sample Site: LTB Sample Location: Not Available Method: 524.2 Calibration File: 524 2-040504C-up1.mth Analysis Date: 04/14/2004 Analysis Time: 12:10 Analyst: conn Results Submitted By: conn Run Number: 64157

Sample Quality Control

				CC	:с	بو بو بو بو بو	ا خا نو بن زو بن او بروی	، کده شاهند تو در در		IC		
	Internal Standards <u>Parameter</u>	Area	CCC <u>Area</u>	% <u>Resp</u>		nits	Pass <u>/ Fail</u>	IC Avg <u>Area</u>			Area Limits Lwr Up	Pass <u>r / Fall</u>
	IS-1,4-Difluorobenzene	247218	263271	94	70	130	PASS	Not Fo	bund	N/A	N/A N/A	N/A
	Surrogate Standards <u>Parameter</u>	Amount	<u>Units</u>	<u>Target</u>		<u>%Re</u>	<u>ec</u>	Lim <u>Lower</u>		<u>per</u>	Pass/Fa	<u>ail</u>
į	SS-1,2-Dichlorobenzene-d4 SS-1,2-Dichloroethane-d4 SS-Bromofluorobenzene SS-Toluene-d8	9.015 9.747 4.844 10.024	ug/L ug/L ug/L ug/L	10 10 5.0 10		90 97 97 100		70 70 70 70	130 130 130 130)	PASS PASS PASS PASS	

Ordered Parameter Results

Parameter	Amount	MRL	<u>Units</u>
1,1,1,2-Tetrachloroethane	< 0.5	0.5	ug/L
1,1,1-Trichloroethane	< 0.5	0.5	ug/L
1,1,2,2-Tetrachioroethane	< 0.5	0.5	ug/L
1,1,2-Trichloro-1,2,2-trifluoroethane	< 0.5	0.5	ug/L
1,1,2-Trichloroethane	< 0.5	0.5	ug/L
1,1-Dichloroethane	< 0.5	0.5	ug/L
1,1-Dichloroethylene	< 0.5	0.5	ug/L
1,1-Dichloropropanone	< 5.0	5.0	ug/L
1,1-Dichloropropylene	< 0.5	0.5	ug/L
1,2,3-Trichlorobenzene	< 0.5	0.5	ug/L
1,2,3-Trichloropropane	< 0.5	0.5	ug/L
1,2,3-Trimethylbenzene	< 0.5	0.5	ug/L
1,2,4-Trichlorobenzene	< 0.5	0.5	ug/L
1,2,4-Trimethylbenzene	< 0.5	0.5	ug/L
1,2-Dibromo-3-chloropropane (DBCP)	< 0.2	0.2	ug/L
1,2-Dibromoethane (EDB)	< 0.2	0.2	ug/L
1,2-Dichlorobenzene	< 0.5	0.5	ug/L
1,2-Dichloroethane	< 0.5	0.5	ug/L
1,2-Dichloropropane	< 0.5	0.5	ug/L
1,2-Xylene	< 0.5	0.5	ug/L
1,3,5-Trimethylbenzene	< 0.5	0.5	ug/L
1,3-Dichlorobenzene	< 0.5	0.5	ug/L

	1,3-Dichloropropane	< 0.5		0.5	ug/L
	1,3-Xylene	< 0.5		0.5	ug/L
	1,4-Dichlorobenzene	< 0.5		0.5	ug/L
	1,4-Xylene	< 0.5		0.5	ug/L
1	1-Chlorobutane	< 5.0		5.0	ug/L
	2,2-Dichloropropane	< 0.5	•	0.5	ug/L
		< 5.0		5.0	ug/L
	2-Butanone (MEK)	< 0.5		0.5	ug/L
	2-Chlorotoluene				-
	2-Hexanone	< 5.0	R	5.0	ug/L
	2-Nitropropane	< 2.0		2.0	ug/L
	4-Chlorotoluene	< 0.5		0.5	ug/L
	4-Isopropyltoluene	< 0.5		0.5	ug/L
	4-Methyl-2-pentanone (MIBK)	< 2.0		2.0	ug/L
	Acetone	< 5.0		5.0	ug/L
	Acrylonitrile	< 1.0		1.0	ug/L
	Allyl chloride	< 5.0		5.0	ug/L
	Benzene	< 0.5		0.5	ug/L
	Bromobenzene	< 0.5		0.5	ug/L
	Bromochloromethane	< 0.5		0.5	ug/L
	Bromodichloromethane	< 0.5		0.5	ug/L
	Bromoform	< 0.5		0.5	ug/L
	Bromomethane	< 0.5		0.5	ug/L
	Carbon disulfide	< 5.0		5.0	ug/L
	Carbon tetrachloride	< 0.5		0.5	ug/L
	Chloroacetonitrile	< 5.0	R	5.0	ug/L
	Chlorobenzene	< 0.5		0.5	ug/L
	Chloroethane	< 0.5		0.5	ug/L
	Chloroform	< 0.5		0.5	ug/L
	Chloromethane	< 0.5		0.5	ug/L
	Dibromochloromethane	< 0.5		0.5	ug/L
	Dibromomethane	< 0.5		0.5	ug/L
j.	. Dichlorodifluoromethane	< 0.5		0.5	ug/L
	Dichloromethane	< 0.5		0.5	ug/L
	Ethyl Ether	< 2.0		2.0	ug/L
	Ethyl methacrylate	< 1.0		1.0	ug/L
	• •	< 0.5		0.5	ug/L
	Ethylbenzene	< 0.5 < 0.5		0.5	-
	Hexachlorobutadiene			2.0	ug/L
	Hexachloroethane	< 2.0			ug/L
•	Isopropylbenzene	< 0.5		0.5	ug/L
	Methacrylonitrile	< 5.0		5.0	ug/L
	Methyl iodide	< 2.0		2.0	ug/L
	Methyl-t-butyl ether (MTBE)	< 0.5		0.5	ug/L.
	Methylacrylate	< 1.0		1.0	ug/L
	Methylmethacrylate	< 1.0		1.0	ug/L
	Naphthalene	< 0.5		0.5	ug/L
	Nitrobenzene	< 5.0	R	5.0	ug/L
	Pentachloroethane	< 2.0		2.0	ug/L
	Propionitrile	< 5.0		5.0	ug/L
	Styrene	< 0.5		0.5	ug/L
	Tetrachloroethylene	< 0.5	1	0.5	ug/L
	Tetrahydrofuran	< 5.0		5.0	ug/L
	Toluene	< 0.5		0.5	ug/L
	Trichloroethylene	< 0.5		0.5	ug/L
	Trichlorofluoromethane	< 0.5		0.5	ug/L
	Vinyl chloride	< 0.2		0.2	ug/L
	Xylenes, Total	< 0.5		0.5	ug/L
	cis-1,2-Dichloroethylene	< 0.5		0.5	ug/L
ź	cis-1,3-Dichloropropylene	< 0.5		0.5	ug/L
	n-Butylbenzene	< 0.5		0.5	ug/L
					- 🖉 -

(

(

(

KV Slislo4

n-Propylbenzene	< 0.5	0.5	ug/L
sec-Butylbenzene	< 0.5	0.5	ug/L
tert-Butylbenzene	< 0.5	0.5	ug/L
trans-1,2-Dichloroethylene	< 0.5	0.5	ug/L
trans-1,3-Dichloropropylene	< 0.5	0.5	ug/L.
trans-1,4-Dichloro-2-butylene	< 5.0	5.0	ug/L

Additional Found Parameters

Parameter	<u>Amount</u>	MRL	<u>Units</u>

The symbol * in the Amount column above indicates that the sample was re-analyzed for that parameter and the results are presented on another page.