AECOM

500 West Jefferson Street Suite 1600 Louisville, KY 40202 Tel. (502) 569-2301 Fax (502) 569-7898

May 29, 2020

Mr. Bradley S. Nave Principal Remediation Project Manager Chemours C/O AECOM 500 West Jefferson Street Suite 1600 Louisville, KY 40202

Re: Waste Management Progress Report No. 8 For Period May 19, 2019 to May 18, 2020 Bioremediation Pilot Test – 2019 Field Season Former DuPont Barksdale Explosives Plant Remediation Variance Approval of May 22, 2012 Remediation Variance Renewal Approval of May 18, 2017 FID No.: 804009140 EPA ID No.: WIR000133447 BRRTS No. 02-04-000156

Dear Mr. Nave:

This letter report provides a summary of work conducted in 2019 in conjunction with the ongoing Bioremediation Pilot Test Program (BPTP) at the Former E. I. du Pont de Nemours and Company (DuPont) Barksdale Works site (Figure 1). This letter and its attachments are provided for your communication to the Wisconsin Department of Natural Resources (WDNR) so that The Chemours Company, FC, LLC (Chemours) may fulfill Condition 7 of the Hazardous Waste Remediation Variance for Biodegradation of Contaminants and Removal of Residual Product and Debris (HWRV), which was originally issued for the site on May 22, 2012 and renewed on May 18, 2017. Condition 7 requires that annual progress reports be submitted to the department in accordance with s. NR 724.13(3), Wis. Adm. Code. The annual reports are required until the variance ends on May 18, 2022 and are due on or before June 1st of each year.

1.0 BACKGROUND INFORMATION

1.1 REQUIREMENTS OF THE VARIANCE

Condition 7 of the variance specifies that the progress reports shall be submitted annually in accordance with s. NR 724.13(3), and shall include:

- a. Documentation of the type and amount of product residuals and debris removed from biopilot cells. Documentation of any characterization and container storage of product residuals and debris removed from biopilot cells. Documentation of disposal of any product residuals and debris removed from the biopilot cells including manifest copies.
- b. Documentation of any management, including consolidation, of discrete areas where impacted soil is located within narrow locations such as former ditches or locations that are contorted by the layout of former building features. Documentation of the location of those areas and the amount of soil that is moved. Documentation of the location of areas where the soil combined from discrete source areas is managed.
- c. Documentation of any alternative treatment of large debris that facilitates management, including washing and physical resizing of large debris for off-site disposal.

Documentation of management of all impacted waste streams generated by these activities, including amounts and volumes of waste treated and generated.

Certified laboratory analytical testing for effectiveness, waste collection, management, and disposal associated with construction and operation of the BPTP are addressed in this progress report. Laboratory reports for data referenced in this report are included in Appendix D.

1.2 BIOREMEDIATION PILOT TEST PROGRAM HISTORY

The Barksdale BPTP is focused on biodegradation of nitroaromatic and nitramine organic compounds (NNOCs) in soil. The BPTP began in 2007 with the construction of four in-situ till areas (cells) intended to evaluate the effect of water, oxygen, and pH on the rate of in-situ microbial degradation of 2,4- and 2,6-dinitrotoluene (DNT) in site soil as a possible alternative to conventional remedies. These original cells are identified as cell locations C01 through C04 on Figure 2.

Early results indicated that degradation of these two primary DNT isomers was feasible; however, the presence of various other NNOCs was observed to affect degradation rates. As such, the program was expanded in 2008 to evaluate the range of this observed effect by adding three more cells that contained less complex NNOC mixtures. After initiating tilling, several of the 2008 cells were found to contain solid pieces of residual product that resulted in cell heterogeneity and limited the analysis of the test results. As a result, six additional cells within similar trinitrotoluene (TNT)/DNT ratios were constructed in 2009 at locations where the majority of such solids could be removed manually prior to tilling. Also in 2009, one of the 2008 cells was expanded to four times its original size with the construction of two contiguous new cells in order to evaluate potential economies of scale in cell operation. The cells constructed in 2008 and 2009 are identified as C05 through C15 on Figure 2.

In 2010, the investigation of new areas of the site discovered NNOCs within a sandy soil matrix. Because all cells constructed prior to 2010 had been in clayey soil, three additional cells were added in 2011 to evaluate degradation in the new soil types. These cells are identified as C16 through C18 on Figure 2. All debris and product residues encountered during development of the first 18 cells was collected, containerized, and shipped off-site for incineration.

Prior to the HWRV, there were several limitations with respect to construction; soil and waste handling; and test evaluation for the first 18 cells. These limitations included:

- Having to incinerate soil removed during cell construction, which would have otherwise been amenable to biodegradation.
- Having to remove product either by bulk removal prior to cell construction or by manually removing product solids on a periodic basis from the cell surface after tilling was initiated.
- Not having permission to consolidate disjointed areas for testing.
- Having limitations on the ability to control water content within the cells driven by the fact that all cells had to be constructed in-situ.

To address these constraints on the BPTP, Chemours, at the suggestion of WDNR, requested a hazardous waste remediation variance in July 2010. Following Chemours response to several sets of comments by the department, WDNR issued the HWRV on May 22, 2012. The permit specifies that a total of 10,000 cubic yards of soil may be treated as part of the operations permitted under the HWRV.

Since June of 2012, 18 additional cells have been constructed within the area of concern (AOC). Cells C19, C20, C21, and C22 were constructed in 2012 to accommodate and evaluate material removed in and around areas investigated.

Mr. Bradley S. Nave Chemours May 29, 2020 Page 3 of 10

Cell C23 was constructed in 2013 to run a study in conjunction with the United States Army Corp of Engineers (USACE) that addressed degradation of TNT and other NNOCs by introducing additional stimuli (including hydrated lime) to accelerate the waste degradation process. The study on cell C23 was completed in 2014 and waste soils were subsequently removed from the cell and stored for further study or to await treatment or incineration. While the cell structure is still present, it has been unused since 2014. Soils stored from the cell were placed in treatment cells C12, C17, and C22 during the 2017 field season.

Further site investigation during 2014 to 2019 uncovered soil that contained varying concentrations of fine grained (i.e., sand sized or smaller) TNT. Cells C24 through C36 were constructed between 2015 and 2019 to store, test, and treat with methods developed as a direct result of the C23 study.

Table 1 lists the cells currently in place and includes information regarding their volume, status, and contaminant mass. Pilot test activities performed under the HWRV are conducted within the designated AOC. Any debris or product removed from cells is handled in accordance with Resource Conservation and Recovery Act (RCRA) rules, including land disposal restrictions (LDRs) and Best Demonstrated Available Technology (BDAT) requirements.

2.0 REPORTING REQUIRED BY THE VARIANCE

This section provides the information stipulated in HWRV.

2.1 PROGRESS OF THE BIOREMEDIATION PILOT TEST PROGRAM

2.1.1 Contaminant Removal

Table 1 includes estimates of contaminant mass removed within the biopilot test program over the calendar year and to date, as well as estimated contaminant mass remaining for each cell and constituent of potential concern (COPC). The estimated masses indicated in Table 1 are based on averaged values for all samples collected in a given cell at the first sampling of a COPC (typically 8 to 12 samples per cell) and in the most recent events that included that COPC (typically multiple locations within a cell to form a composite sample). Observations on contaminant removal during the past pilot test season are provided below.

- Distribution of COPCs in the soil in the cells is heterogeneous. As a result, the concentrations of a few COPCs are shown to have increased over time on Table 1. However, statistical analysis based on data collected across the full duration of the program show overall concentrations are decreasing. Such heterogeneity effects are more apparent in the single season product removal estimates than in the long-term, overall removal values. The apparent mass increases shown on Table 1 are generally on the order of a few micrograms per kilogram (µg/kg) and many of the apparent increases are due to changes in detection limits within the duration of the project.
- To date, an estimated total of 12,084 pounds (lbs) of COPCs in soil has been destroyed/removed via on-site treatment efforts in the entirety of the BPTP (Table 1).
- Over ninety percent of the COPCs being tracked have shown decreases over the life of the pilot program.
- Laboratory reporting limits (RLs) were compared to Residual Contaminant Levels (RCLs) for direct contact as shown on Table 4. This comparison shows that the laboratory RLs are below the direct contact RCLs and are considered suitable for making risk management decisions.

Mr. Bradley S. Nave Chemours May 29, 2020 Page 4 of 10

2.1.2 Operational Issues

Heterogeneity of the contaminant mixtures in the cells has been an on-going issue. Measures taken to address heterogeneity included changing the soil mixing technique to allow for ongoing mixing of the soil in the cells and collecting composite soil samples for laboratory analysis. A mix head attached to an excavator was used to mix the contents of select cells in 2019. Prior to 2019, the soil was mixed with a rotovator attached to a tractor. This method required the tractor to enter the cell which caused access issues when the soil was wet.

2.1.3 Evaluation of System Effectiveness

In general, the BPTP results continually show that the approaches being tested show promise for remediation of affected site soil, but the evaluation is on-going to determine if the process will be effective in reaching site-wide remedial goals for the varying COPC mixtures found in site soil.

Because this is a pilot test program, the activities do not address all impacted areas on the site; therefore, discussion of site-wide monitored natural attenuation and case closure are not applicable.

The status of the cells during the reporting period is as follows:

- Cells C01 to C05, C07 to C11, C13 to C15, C18, C19, C22, C23, C29, C30, C32 and C34 were not mixed or actively tested in 2019.
 - Control cells C01 to C04 were inactive in 2019 because historical analytical testing has showed that COPC concentrations have generally stabilized and were not responding to the previous treatment approach.
 - COPC concentrations in cells C05, C07 through C11, C13 through C15, and C18 through C20, were below site-specific recreational RCLs for direct contact on average. These cells were seeded prior to 2019 and observed for vegetation regrowth, which was successful.
 - Cell C22 has not yet been loaded with soil, with the exception of approximately 1 cubic yard of soil.
 - The soil tested in cell C23 was containerized at the close of the 2013 field season and has remained empty. The soil formerly located in C23 was spread in C22 (1 cubic yard of impacted soils), C12 (0.9 cubic yard of impacted soils), and C17 (0.8 cubic yard of impacted soils) in spring 2017 based on the similarities of the constituents.
 - o Cells C29, C30, and C32 have not yet been loaded with soil.
 - Cell C34 was partially loaded and it is anticipated that lime addition, mixing and sampling will occur after the cell has been loaded to capacity.
 - Willow trees were planted in cell C09 prior to 2019 to evaluate the ability of the trees to control pore water. COPC concentrations fell below site-specific recreational RCLs for direct contact in 2010.
- Cells C06, C12, C16, C17, C21, C24 through C28, C31, C33, C35, and C36 are active alkaline hydrolysis (AH) cells. AH cells have been treated by pH adjustment as allowed under the HWRV for treatment of elevated NNOC concentrations using hydrated lime. Composite soil samples were collected from the AH cells in 2019.
 - Soil from cell C25 was placed in C27 to make room for additional soil during the 2019 field season. However, C25 was not reloaded in 2019. Sampling of both C25 and C27 occurred prior to combination of the cells. For the purposes of this

Mr. Bradley S. Nave Chemours May 29, 2020 Page 5 of 10

report, they are represented on Table 1 as still containing their pre-combined soil/constituent volumes.

- Cells C35 and C36 were constructed in 2019. Cells C33 (constructed in 2018), C35 and C36 were loaded in 2019 and the cells were mixed, following the application of lime. Approximately 1,190 yd³ of soil was added to cells C33, C34, C35 and C36 in 2019. This includes 41 yd³ in C33, 7 yd³ in C34, 564 yd³ in C35 and 578 yd³ in C36.
- Additional lime was added to cells C24, C26, and C33 in 2019 to raise the pH. Lime was initially added to the cells in previous field seasons. These cells were mixed following the application of the lime.
- o Cell C28 was mixed in 2019.
- Willow trees were planted in cells C16 and C20 in 2019. Composite soil samples were collected from both cells prior to planting the trees. Many of the trees in cell C16 were removed due to subsequent site investigation excavations within and adjacent to cell C16 late in the 2019 field season.

With the completion of the 2019 field season, the total volume of soil currently being evaluated under the HWRV is 7,109 cubic yards, which is within the permitted maximum of 10,000 cubic yards. See Figure 5 for the general design of cells C1 through C22. See Figure 6 for the general design of cells C24 through C36 (ex-situ, lime addition cells).

2.1.4 System Status and Recommended Future Work

The bioremediation project has treated approximately 12,084 lbs of site contaminants to date (Table 1). The initial quantity of contaminants placed in all cells was approximated at 14,313 lbs. With the addition of 2019 contaminated soils, the approximated quantity of COPCs in current treatment cells is estimated to be 2,228 lbs. A visual representation of the cell data is provided in Appendix C.

Work proposed for the 2020 field season includes:

- Results of the vegetative regrowth in cells C05, C07, C08, C10, C11, C13 through C15, and C18 through C20 will continue to be evaluated in 2020, and re-seeding will be conducted if necessary.
- Alkaline hydrolysis cells C06, C12, C17, C21, C24, C26 through C28, C31, C33, C35, and C36 will continue to receive monitoring.
- Soil in the area of cell C16 will be excavated as part of on-going site investigation work in Use Area PAJ.
- Cells C25, C29, C30, and C32 are currently empty and may be utilized as needed in 2020.
- Cell C34 will continue to be loaded with soil, as needed.
- Up to two new cells (C37 and C38) are proposed for construction in 2020. These cells will be built using the general design depicted in Figure 6. The cells will be constructed to contain soil generated during site investigation work. The specific locations of the new cells have not yet been determined.

The total volume of soil anticipated to be treated under the HWRV at the end of 2020 is between 7,109 to 9,000 cubic yards, which will be within the permitted maximum of 10,000 cubic yards.

Mr. Bradley S. Nave Chemours May 29, 2020 Page 6 of 10

2.2 SITE MAPS

Site maps are provided in Figures 1 through 4. Figures 2 through 4 provide the locations of the test cells. Figures 5 and 6 provide details of the construction of the existing cells.

2.3 DATA PRESENTATION

Table 1 provides data indicating the progress of soil bioremediation. Table 2 lists debris and residuals removed in the reporting period. Table 3 lists the source and quantities of soil moved to cells in the reporting period. Table 4 provides a comparison of RCLs to laboratory reporting limits.

Prior to 2015, data represented in tables assumed non-detected concentrations as half the laboratory method detection limit (MDL). Subsequent reports assumed a concentration of zero for analyte concentrations below the MDL. This report has re-aligned the "initial analyte" table to reflect the zero value for analyte concentrations below the MDL.

2.4 DATA DOCUMENTATION

Manifests for waste materials removed from site are attached in Appendix B. Scatter plots for contaminant trend monitoring are attached in Appendix C. Laboratory analytical reports are attached in Appendix D.

2.5 **REPORTING FORM**

A completed copy of WDNR Form 4400-194: "Remediation Site Operation, Maintenance, Monitoring & Optimization Report" is attached in Appendix A.

2.6 PRODUCT RESIDUALS AND DEBRIS REMOVED FROM BIOREMEDIATION PILOT CELLS [CONDITION 7a]

The cited variance condition requires:

- Documentation of the type and amount of product residuals and debris removed from biopilot cells.
- Documentation of any characterization and container storage of product residuals and debris removed from biopilot cells.
- Documentation and disposal of any product residuals and debris removed from the biopilot cells including manifest copies.

A total of 0.5 lbs of residual solid product (RSP)/soil mix (estimated RSP weight of 0.4 lbs) was removed from cells C24, C26, C28, and C33 on July 9, 2019. The material collected from the four cells was placed in a 5-gallon plastic bucket, wetted and stored in the on-site magazine for future treatment. The material remains stored in the on-site magazine as of the date of this report.

2.7 PRODUCT RESIDUALS AND DEBRIS REMOVED AS PART OF SITE INVESTIGATION WORK

Debris managed and/or removed by site investigation work during the current reporting period included metal, concrete, and RSP from historical operations within the AOC. Debris was screened in the field using an amplifying fluorescent polymer meter (FIDO[®]) and/or a

Mr. Bradley S. Nave Chemours May 29, 2020 Page 7 of 10

colorimetric identification spray (Expray[®]). Debris removal locations are indicated on Figure 4. Table 2 provides a summary of debris handled on-site during the 2019 field season.

2.7.1 Residual Solid Product

RSP, identified by visual evidence and field screening, was encountered during the current reporting period at dispersed locations in 2019 (Table 2). RSP consisting of TNT was identified in Use Area PAJ in the area of the Refined Triton Screening House (RTSH), Refined Triton East and West Graining House drainages, and the Tank Storage Area. Approximately 103.5 lbs of RSP/soil mix (estimated 99.4 lbs of RSP not including soil) was removed from Use Area PAJ in 2019. The RSP/soil mix was containerized, wetted, and placed in the on-site magazine.

RSP was also collected from Use Areas PAB, PAD, and PAI to support on-going site-related testing at the USACE. Approximately 1.1 lbs of TNT was collected from Use Area PAB and 2.6 lbs of TNT was collected from Use Area PAD. Approximately 217.5 lbs of trinitroxylene (TNX)/soil mix (estimated 152.3 lbs of TNX not including soil) was collected from Use Area PAI. The RSP/soil was containerized and wetted after collection and placed in the on-site magazine. The TNX/soil mix and 2.5 lbs of the 3.7 lbs of the TNT was shipped to the USACE in Vicksburg, Mississippi. The remaining 1.2 lbs of RSP is currently being stored in the on-site magazine.

Total RSP remaining in the designated on-site magazine includes 101 lbs of TNT. The total weight of the RSP, soil, added water, and containers remaining in the magazine is 193 lbs.

2.7.2 Concrete

Concrete was removed from excavations in the area of the former RTSH in Use Area PAJ to access surrounding soil. The concrete moved during the investigation work was managed within the AOC. Concrete for which field screening did not indicate the presence of NNOCs was temporarily stockpiled near the RTSH and placed back in the excavation after completion of the investigation in the area. Concrete that screened positive for residual product was moved to cell C28 and cleaned. Additional information related to concrete handling is included in Section 2.9.

2.7.3 Metal

Metallic debris, including pipes, were encountered in the area of the former RTSH and Refined Triton East Graining House (RTEGH) in Use Area PAJ in 2019. The pipes excavated in the area of the RTSH had visible internal channels that allowed for field screening. Field screening did not indicate the presence of NNOCs on the metallic debris. The ends of three of the pipes contained lead solder with suspect asbestos containing packing material. Approximately 45 feet of pipe without suspect asbestos packing was transported to a metal stockpile area (PAK-SP01). The three pipe ends containing suspect asbestos were handled separately as described in Section 2.7.6. The approximately 20 linear feet of pipe encountered in the area of RTEGH was bent in places and was placed in cell C28 pending additional accumulation.

2.7.4 Wood

Approximately 135 lbs of impacted wood was encountered in Use Area PAJ excavations. The wood was scraped to remove adhered soil and sized to manageable sized pieces prior to being placed in the site-designated roll-off container (SAJ-WP01). The waste in the roll-off container will be shipped off-site for incineration following the accumulation of additional debris.

Mr. Bradley S. Nave Chemours May 29, 2020 Page 8 of 10

2.7.5 Vitrified Clay Pipes (VCP)

Approximately 20 linear feet of VCP was encountered in the area of the former RTSH in Use Area PAJ. Field screening did not indicate the presence of NNOCs on the VCP. The VCP was placed back into the RTSH excavation after screening.

2.7.6 Suspect Asbestos Containing Material

Suspect asbestos containing material was encountered in excavations in the area of the RTSH in Use Area PAJ. The material included cement tile and packings on pipe ends as indicated on Table 2. The material was removed from the excavation, bagged, containerized and labeled. The cement tile was shipped off-site to Veolia's waste disposal facility in Menomonee Falls, Wisconsin (EPA ID no: WID003967148) for disposal. The pipe ends with suspect asbestos containing packing material and lead solder are currently stored on-site pending additional accumulation.

2.7.7 Water

As part of site investigation work, approximately 1,000 gallons of decontamination water (e.g. hand and boot washes and equipment/tool decontamination) was applied to test cells. The water was used to hydrate soil in alkaline hydrolysis cells, including cells C28, C33, C35, and C36. The on-site wastewater treatment unit was not operated in 2019.

2.7.8 Other

An estimated 150 lbs of debris consisting of used personal protective equipment (PPE), plastic buckets, plastic sampling scoops, and used soil sample jars were consolidated into a site-designated roll-off container (SAJ-WP01) in 2019. The roll-off container was only partially full following the 2019 field season. The waste in the roll-off container will be shipped off-site for incineration following the accumulation of additional debris.

2.8 MOVEMENT OF SOIL INTO PILOT CELLS [CONDITION 7b]

The cited variance condition requires:

- Documentation of any management, including consolidation, of discrete areas where impacted soil is located within narrow locations such as former ditches or locations that are contorted by the layout of former building features.
- Documentation of the location of those areas and the amount of soil that is moved.
- Documentation of the location of areas where the soil combined from discrete source areas is managed.

A total of 1,190 cubic yards (yd³) of soil was placed into test cells C33, C34, C35 and C36 in 2019. In addition, the soil in cell C25 (approximately 250 yd³) was removed and placed into cell C27 in 2019. Table 3 lists the source areas and destinations of the soil managed during the current reporting period, and locations are provided on Figure 3.

2.9 ALTERNATIVE TREATMENT OF LARGE DEBRIS [CONDITION 7c]

The cited variance condition requires:

 Documentation of any alternative treatment of large debris that facilitates management, including washing and physical resizing of large debris for off-site disposal. Documentation of management of all impacted waste streams generated by these activities, including amounts and volumes of waste treated and generated.

This section describes alternative treatment of debris that potentially contained RCRA hazardous constituents. As detailed in Section 2.6, most of the debris recovered did not test positive for hazardous constituents and was managed as non-regulated debris. Some non-regulated debris may be stored and resized to facilitate on-site reuse as aggregate or to meet off-site industrial facility acceptance requirements.

2.9.1 Alternative Treatment and Management of Metallic Debris

See Section 2.7.3.

2.9.2 Alternative Treatment and Management of Concrete Debris

In 2019, impacted concrete debris was decontaminated on a decontamination pad constructed within cell C28. Water from the decontamination activities was used to hydrate the soil within cell C28 to aid with alkaline hydrolysis. The material was cleaned with water using a pressure washer until no solid product was detected using the FIDO[®] and Expray[®]. After cleaning, the concrete was placed back in the excavation from which it was removed in 2019.

2.9.3 Alternative Treatment and Management of Decontamination Water

See Section 2.7.7.

3.0 SUMMARY

The information contained within this report will allow Chemours to comply with the reporting requirements of the May 18, 2017 Hazardous Waste Remediation Variance issued for the Former DuPont Barksdale Works site and this report should be included with the filing.

Should you have any questions or comments, please do not hesitate to contact us.

Sincerely,

E.CSA .It

Eric Schmidt, P.E. Project Engineer

C.E. "CAm" Polen P.G.

C. E. "Cary" Pooler, P.G. Associate Vice President

Figure 1: Regional Site Location

Figure 2: Site Layout and Bio-Cell Locations

Attachments:

- Table 1: 2019 Contaminant Progress Summary
- Table 2: 2019 Debris and Residuals Removed

Figure 3: 2019 Impacted Soil Recovery Locations Figure 4: Debris Removal Locations Figure 5: Typical Biopilot Sites Operation Stage 2007-2010 Figure 6: General pH Adjustment Cell Configuration

Table 3: 2019 Soil Moved to Test Cells

Table 4: Comparison of Pace Analytical Detection Limits to RCLs

Mr. Bradley S. Nave Chemours May 29, 2020 Page 10 of 10

Appendix A: WDNR Form 4400-194: Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Appendix B: Shipping Documentation/Manifests State of Wisconsin Annual Hazardous Waste Report

Appendix C: Barksdale Summary Graphs 2019 Year End

Appendix D: Biodegradation Evaluation Lab Data - Pace Analytical Reports

lytical Reports A192405 Final 070219 1251 (June 2019 Cell Soil Samples) A193320 Final 090319 1054 (August 2019 Cell Soil Samples) A194211 Final 103119 1310 (September and October 2019 Cell Soil Samples)

2019 Contaminant Progress Summary

Waste Management Progress Report No. 8 For Period May 19, 2019 to May 18, 2020 Hazardous Waste Remediation Variance Approval of May 22, 2012 Hazardous Waste Remediation Variance Renewal Approval of May 18, 2018 Former Barksdale Works Bayfield County, Wisconsin

Analyte	Amount remaining (lbs) as of 2019	Initial Amount (Ibs)	Amount Decreased from 2018 to 2019 (lbs)	Amount Decreased (Ibs) to Date for all Cells
2,4,6-TNT	1184.53	4655.54	102.18	7725.14
2-A-4,6-DNT	9.73	60.20	(1.88)	50.47
4-A-2,6-DNT	37.98	71.26	(8.72)	33.28
2,3-DNT	0.84	102.41	0.01	101.57
2,4-DNT	7.72	2565.70	(1.25)	2557.98
2,5-DNT	0.33	0.51	0.00	0.17
2,6-DNT	4.81	908.18	(0.05)	903.38
3,4-DNT	1.45	136.00	0.02	134.55
3,5-DNT	0.11	2.80	0.00	2.69
Total DNT ¹	15.26	3716.90	0.54	3701.02
1,2-DM-3,4-DNB	39.37	92.77	(0.07)	53.40
1,2-DM-3,5-DNB	36.29	92.83	0.19	56.54
1,2-DM-3,6-DNB	9.22	23.49	0.09	14.27
1,2-DM-4,5-DNB	12.27	29.09	0.00	16.82
1,3-DM-2,4-DNB	98.82	255.03	(1.15)	156.22
1,3-DM-2,5-DNB	0.26	0.00	0.00	(0.26)
1,4-DM-2,3-DNB	60.55	145.03	2.71	84.48
1,4-DM-2,5-DNB	11.44	12.35	(3.49)	0.90
1,4-DM-2,6-DNB	28.73	25.32	(0.30)	(3.41)
1,5-DM-2,3-DNB	3.28	5.84	0.00	2.56
1,5-DM-2,4-DNB	178.86	349.84	(6.31)	170.98
Total DNX	479.10	1031.60	(7.72)	552.50
2,4,6-TNX	7.27	14.19	(0.91)	6.92
1,3,5-TNB	0.00	4.80	0.00	4.80
1,3-DNB	0.06	6.88	0.17	6.82
NB	0.00	0.56	0.00	0.56
3-NT	0.00	1.74	0.00	1.74
4-NT	0.00	0.39	0.04	0.39
2-NT	0.00	1.16	0.00	1.16
NG	0.00	0.00	NA	0.00
HMX	NA	0.00	NA	NA
3,5-Dinitroaniline	0.12	0.27	0.26	0.15
All Analyte Totals	1,734.06	9,564.19	81.55	12,084.27

NOTES:

¹Total DNT calculated by adding 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-DNT isomers.

Red Data	Denotes an increase over time. Many of the apparent increases are due to changes in detection limits within the duration of the project and heterogeneity effects. 2-A-4,6 DNT and 4-A-2,6 DNT increases may be associated with the anaerobic degradation of TNT.

Data Compilation Summary

If multiple samples were analyzed from a single cell during a single sampling event, the average concentration of the samples was calculated.

Results reported below the method detection limit (MDLs) have been rounded to zero to compare varying/changing MDLs: over multiple years, using different laboratories, concentration dilutions, etc.

To calculate analyte weights, the following formula was used:

Analyte Concentration (mg/kg)	х	Volume of Soil in Cell (cuyd)	x	Estimated Soil Weight per Cubic Yard of Soil (2,700 lbs / cuyd)	х	Soil Concentration Conversion Factor from Parts Per Million (1 kg / 1,000,000 mg)	=	Recorded Analyte Concentration per Cell in Pounds (lbs)	
------------------------------------	---	---------------------------------------	---	---	---	--	---	--	--

2019 Contaminant Progress Summary Waste Management Progress Report No. 8 For Period May 19, 2019 to May 18, 2020

Hazardous Waste Remediation Variance Approval of May 22, 2012 Hazardous Waste Remediation Variance Renewal Approval of May 18, 2018

. Former Barksdale Works

Bayfield County, Wisconsin

Cell	C01	C02	C03	C04	C05	C06	C07	C08	C09	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25*	C26	C27*	C28	C29	Г
Sampled in 2019	No	No	No	No	No	Yes	No	No	No	No	No	Yes	No	No	No	Yes	Yes	No	No	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	Г
Mixed in 2019	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	Yes	No	Yes	No	Yes	No	
pH Adjustment Cell	No	No	No	No	No	Yes	No	No	No	No	No	Yes	No	No	No	Yes	Yes	No	No	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	Г
Hydrated Lime Added in 2019	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	Yes	No	Yes	No	No	No	Г
Debris Removed 2019 (lbs.)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.1	0.0	Γ
Soil Added to Cell 2019 (cuyd)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Г
Soil Volume in Cell (cuyd)	13.6	13.6	13.6	13.6	432.9	68.4	189.4	115.4	229.2	392.5	244.4	300.9	369.4	189.4	468.5	176.8	136.6	57.0	106.5	76.0	41.1	1.5	0.0	263.0	250.0	307.0	277.0	850.0	0.0	Ι

Cell	C01	C02	C03	C04	C05	C06	C07	C08	C09	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	C25*	C26	C27*	C28	C29	C30	C31	C32	C33	C34	C35	C36	Total for All Cells
Sampled in 2019	No	No	No	No	No	Yes	No	No	No	No	No	Yes	No	No	No	Yes	Yes	No	No	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	No	Yes	No	Yes	Yes	
Mixed in 2019	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	Yes		Yes	No	Yes	No	No	Yes	No	Yes	No	Yes	Yes	
pH Adjustment Cell	No	No	No	No	No	Yes	No	No	No	No	No	Yes	No	No	No	Yes	Yes	No	No	No	Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	No	Yes	No	Yes	No	Yes	Yes	
Hydrated Lime Added in 2019	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	Yes	No	Yes	No	No	No	No	No	No	Yes	No	Yes	Yes	
Debris Removed 2019 (lbs.)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.5
Soil Added to Cell 2019 (cuyd)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	41.5	6.6	564.0	577.8	1189.9
Soil Volume in Cell (cuyd)	13.6	13.6	13.6	13.6	432.9	68.4	189.4	115.4	4 229.2	2 392.5	244.4	300.9	369.4	189.4	468.5	176.8	136.6	57.0	106.5	76.0	41.1	1.5	0.0	263.0	250.0	307.0	277.0	850.0	0.0	0.0	11.4	0.0	292.0	66.6	564.0	577.8	7109.2
A																																					
Analytes remaining (lbs) 2019 (Averages														~	<u> </u>		o														~~~			~~~			
of subcells)	C01	C02	C03	C04					C09			C12		C14	C15	C16		C18	-	C20	C21	C22	C23	C24		C26	C27	C28	C29	C30	C31	C32	C33	C34	C35	C36	Total for All Cells
2,4,6-TNT		1.2	0.2		0.3				0.0	0.2	0.0	-	0.2			0.3	0.2	0.0	0.4	0.0	53.3	NA	NA	27.7	0.2	3.2	24.7	23.0	NA	NA	1.0	NA	11.5	NA	198.0	1154.4	1184.5
2-A-4,6-DNT	0.5		0.1	0.1	0.0	0.3			0.0	0.0	0.0	1.3	0.0	0.1		0.2	0.1	0.0	0.1	0.0	0.6	NA	NA	0.4	0.0	0.2	0.3	1.8	NA	NA	0.0	NA	0.0	NA	1.0	1.6	9.7
4-A-2,6-DNT	0.4		0.1		0.3				0.0	0.2	0.0	2.7	0.0	0.6	4.3	0.4	0.6	0.0	0.5	0.1	2.7	NA	NA	3.0	0.2	0.9	0.9	9.2	NA	NA	0.0	NA	0.4	NA	3.4	4.5	38.0
2,3-DNT	0.0		0.0	0.1	0.2	0.1	-		0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	0.8
2,4-DNT	0.3	0.0	0.1	0.1	0.9	0.5		0.2	0.0	0.3	0.0	2.7	0.2	0.4	0.3	0.0	0.2	0.0	0.1	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.3	0.4	7.7
2,5-DNT	0.0	0.0	0.0	0.0	0.2	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	0.3
2,6-DNT	0.4	0.0	0.0	0.1	2.0				0.0	0.2	0.2	0.5	0.3	0.3	0.0	0.0	0.1	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	4.8
3,4-DNT	0.0	0.0	0.0	0.0	0.3	0.1	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	1.5
3,5-DNT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	0.1
Total DNT ¹	0.7	0.1	0.2	0.3	3.6	0.8	1.5	0.2	0.0	0.6	0.2	3.1	0.5	2.0	0.3	0.0	0.3	0.1	0.1	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.3	0.4	15.3
1,2-DM-3,4-DNB	19.7		5.5	9.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	39.4
1,2-DM-3,5-DNB	21.7	3.8	3.0	7.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	36.3
1,2-DM-3,6-DNB	4.9	0.8	1.1	2.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	9.2
1,2-DM-4,5-DNB	6.0		1.6	3.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	12.3
1,3-DM-2,4-DNB	54.3		11.6	20.9	0.0	0.0	0.0	0.0	0.0	0.5	0.8	0.0	0.9	0.0	0.0	0.0	3.3	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	98.8
1,3-DM-2,5-DNB	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	0.3
1,4-DM-2,3-DNB	30.8	5.5	8.8	14.3	0.0	0.0	0.0	0.0	0.0	0.4	0.4	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	60.6
1,4-DM-2,5-DNB	4.6	0.6	0.7	2.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.4	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	11.4
1,4-DM-2,6-DNB	14.7	2.0	3.5	6.8	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.0	0.3	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	28.7
1,5-DM-2,3-DNB	1.6	0.3	0.5	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	3.3
1,5-DM-2,4-DNB	88.6	15.2	24.3	38.5	0.2	0.1	0.0	0.0	0.0	1.0	0.9	0.0	0.8	0.0	0.0	0.0	9.2	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	178.9
Total DNX	247.0		60.6	106.7	0.3	0.2	0.0	0.0	0.0	2.2	2.3	0.0	2.5	0.0	0.0	0.0	17.4	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	479.1
2,4,6-TNX	2.0	0.4	0.4	0.9	0.2	0.3	0.0	0.0	0.0	0.0	0.6	1.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.1	NA	0.0	NA	0.9	0.0	7.3
1,3,5-TNB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	0.0
1,3-DNB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	0.1
NB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	0.0
3-NT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	0.0
4-NT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	0.0
2-NT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	0.0
NG	NA	NA	NA	NA	NA	NA	NA	0.0	0.0	0.0	0.0	NA	0.0	0.0	0.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0
HMX	NA	NA	NA	NA	NA	NA	NA	0.0	0.0	0.0	0.0	NA	0.0	0.0	0.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0
3,5-Dinitroaniline	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	0.1
he is a second se																																					2228.4

NOTES:

 1: Total DNT calculated by adding 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-DNT isomers.

 0.0
 Values: The constituent was not detected above the Method Detection Limit (MDL) and was rounded down to zero.

 NA:
 Not analyzed/applicable

 Gray cells with numbers (#.#):
 These cells were not sampled in 2019. Most recent data for each cell is shown.

 C23:
 Was emptied in 2014. The remaining contents from the C23 stored soils were placed in cells C12, C17, and C22 in 2017.

C25: Was emptied in 2019. Contents of C25 (approximately 250 cubic yards of soil) placed in C27 late in the 2019 field season.

2228.4

2019 Contaminant Progress Summary Waste Management Progress Report No. 8 For Period May 19, 2019 to May 18, 2020 Hazardous Waste Remediation Variance Approval of May 22, 2012 Hazardous Waste Remediation Variance Renewal Approval of May 18, 2018 . Former Barksdale Works Bayfield County, Wisconsin

Analytes, Initial readings starting in 2007 (Averages of subcells)	C01	C02	C03	604	C05	600	C07	7 000			C11	C12	642	C14	C15	C16	C17	C10	640	620	624	C 22	C23	C24	C25	0.00	C27	C28	C29	C30	C31	C32	C 22	624	C35	C36	Total for All Cells 2007 to 2019
(· · 5 ·· · · · · · · · · · · · · · · · · · ·	1		-	C04	C05		-		-		1	1	C13	1	-	1	1	C18	C19	C20	C21	C22	1		-	C26	1	1	-	1		-	C33	C34	-	1	
2,4,6-TNT	15.8	5.5	0.6	0.6	3.2	991.0	171.0					1472.7	9.4	144.9			47.0	0.0	130.4	24.9	1332.4	NA	NA	874.3		137.8	251.7	6.7	NA	NA	318.6	NA	135.3	NA	198.0	1154.4	4655.5
2-A-4,6-DNT	0.2	0.0	0.0	0.0	0.0	1.7	6.2				-	0.0	0.9	0.8	5.4	14.8	1.7	0.0	0.8	0.2	2.7	NA	NA	4.0	3.1	2.2	10.1	0.6	NA	NA	1.2	NA	0.5	NA	1.0	1.6	60.2
4-A-2,6-DNT	0.3	-	0.0	0.0	0.0	0.4	5.9				-	0.0	0.5	0.7	6.4	11.4	1.1	0.0	2.0	0.3	6.3	NA	NA	6.4	3.0	3.6	10.1	2.3	NA	NA	1.2	NA	0.7	NA	3.4	4.5	71.3
2,3-DNT	0.1	0.0	0.0	0.1	50.4		2.6					2.7	10.0	7.9	0.2	0.0	11.6	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	102.4
2,4-DNT	1.0	1.1	0.5	0.5	854.1	129.8	60.4	13.6	0.2	427.8	3 0.5	789.5	56.3	17.6	39.2	0.4	132.9	0.2	0.7	5.0	1.1	NA	NA	0.5	29.5	1.5	0.0	0.0	NA	NA	0.7	NA	0.3	NA	0.3	0.4	2565.7
2,5-DNT	0.0	0.0	0.0	0.0	0.0	0.0	0.1		NA		0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	0.5
2,6-DNT	0.8	1.0	0.6	0.8	447.9	20.9	54.0) 1.7	0.0	147.3	3 0.1	32.3	21.9	79.4	1.5	0.0	95.7	0.1	0.0	0.0	0.0	NA	NA	0.0	1.9	0.2	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	908.2
3,4-DNT	0.2	0.1	0.0	0.1	55.3	2.4	4.0	0.1	0.0	21.3	0.0	6.2	14.1	13.8	0.4	0.0	17.8	0.0	0.0	0.0	0.0	NA	NA	0.0	0.1	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	136.0
3,5-DNT	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.4		0.0	0.6	1.1	0.1	0.0	0.0	0.0	0.0	0.2	0.1	NA	NA	0.1	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	2.8
Total DNT	2.1	2.2	1.2	1.5	1407.7	154.6	121.1	1 15.6	0.3	612.0	0.7	830.7	102.9	120.1	41.4	0.4	258.1	0.4	0.7	5.2	1.2	NA	NA	0.6	31.5	1.7	0.0	0.0	NA	NA	0.7	NA	1.0	NA	0.6	0.7	3716.9
1,2-DM-3,4-DNB	18.3	14.7	6.5	16.6	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.3	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	92.8
1,2-DM-3,5-DNB	17.8	14.2	6.5	16.3	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	37.4	0.1	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	92.8
1,2-DM-3,6-DNB	4.7	2.0	1.9	2.2	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.5	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	23.5
1,2-DM-4,5-DNB	5.5	4.3	1.9	5.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	29.1
1,3-DM-2,4-DNB	56.5	40.0	17.8	43.8	1.4	0.0	0.0	0.0	0.0	0.1	0.0	0.4	0.6	0.0	0.0	0.0	94.0	0.3	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	255.0
1,3-DM-2,5-DNB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	0.0
1,4-DM-2,3-DNB	31.0	24.8	11.2	29.7	0.6	0.0	0.0	0.0	0.0	0.1	0.0	0.3	0.0	0.0	0.0	0.0	47.1	0.2	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	145.0
1,4-DM-2,5-DNB	6.0	1.7	2.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.4	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	12.3
1,4-DM-2,6-DNB	4.9	3.8	1.6	3.8	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	10.8	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	25.3
1,5-DM-2,3-DNB	1.2	0.9	0.4	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	5.8
1,5-DM-2,4-DNB	84.2	58.7	25.1	61.1	1.6	0.1	0.0	0.1	0.0	0.2	0.0	0.6	0.5	0.0	0.0	0.0	117.3	0.3	0.1	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	349.8
Total DNX	230.1	165.0	75.1	179.6	4.9	0.2	0.1	0.2	0.0	0.5	0.0	1.2	1.5	0.0	0.0	0.0	372.4	0.9	0.1	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	1031.6
2,4,6-TNX	1.0	0.6	0.2	0.8	0.2	0.2	0.0	0.0	0.0	0.0	5.0	2.6	0.1	0.0	0.0	0.1	1.3	0.0	0.0	0.5	0.4	NA	NA	0.0	0.2	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.9	0.0	14.2
1,3,5-TNB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.5	0.5	0.7	0.9	0.0	1.2	0.0	0.2	0.0	0.3	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.4	NA	0.0	NA	0.0	0.0	4.8
1,3-DNB	0.0	0.0	0.0	0.0	1.3	0.0	0.0	0.0	0.0	0.3	0.0	0.4	0.3	0.1	0.3	0.1	3.2	0.0	0.0	0.0	0.5	NA	NA	0.2	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.2	NA	0.0	0.0	6.9
NB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.4	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	0.6
3-NT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.0	0.9	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	1.7
4-NT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.1	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	0.4
2-NT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.2	0.0	0.3	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	1.2
NG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	0.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0
HMX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	0.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0
PETN	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	0.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0
RDX	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	0.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0
Tetryl	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	0.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0
3,5-Dinitroaniline	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.1	0.0	0.0	0.0	0.0	NA	NA	0.1	NA	0.0	NA	0.0	0.0	0.3
	1	1												1			1	1	1	1	1	1			1	1	1	1				1					14312.7

NOTES:

¹: Total DNT calculated by adding 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-DNT isomers.

Initial analyte concentrations: Not all analytes were initially sampled for each cell. TNX, some DNX & DNT isomers and 3,5-Dinitroaniline were added to the sampling program at later dates. The initial reading for each analyte included on this table are from the earliest recorded data set for each analyte. 0.0 Values: The constituent was not detected above the Method Detection Limit (MDL) and was rounded down to zero.

NA: Not analyzed/applicable

C23 Was emptied in 2014. The remaining contents from the C23 stored soils were placed in cells C12, C17, and C22 in 2017.

14312.7

2019 Contaminant Progress Summary Waste Management Progress Report No. 8 For Period May 19, 2019 to May 18, 2020 Hazardous Waste Remediation Variance Approval of May 22, 2012 Hazardous Waste Remediation Variance Renewal Approval of May 18, 2018 . Former Barksdale Works

Bayfield County, Wisconsin

Analytes decrease (lbs) 2018 to 2019																																						
(Averages of subcells)	C01	C02	C03	C04	C05	C06	CO	7 C(08	C09	C10	C11	C12	C13	C14	C15	C16	C17	C18	C19	C20	C21	C22	C23	C24	1 C25	C26	C27	C28	C29	C30	C31	C32	C33	C34	C35	C36	Total for All Cells
2,4,6-TNT	NA	NA	NA	NA	NA	(16.1) NA	A N.	A	NA	NA	NA	(120.2)	NA	NA	NA	(0.1)	(0.1)	NA	NA	NA	(34.4)	NA	NA	149.	8 0.6	20.8	(12.0)	(16.3)	NA	NA	(0.8)	NA	123.8	NA	NA	NA	102.2
2-A-4,6-DNT	NA	NA	NA	NA	NA	(0.1)	NA	A N.	A	NA	NA	NA	(0.9)	NA	NA	NA	(0.1)	(0.0)	NA	NA	NA	(0.4)	NA	NA	0.5	0.0	0.1	(0.1)	(1.2)	NA	NA	(0.0)	NA	0.5	NA	NA	NA	(1.9)
4-A-2,6-DNT	NA	NA	NA	NA	NA	(0.2)	NA	A N.	A	NA	NA	NA	(0.9)	NA	NA	NA	(0.2)	(0.2)	NA	NA	NA	(1.0)	NA	NA	0.4	0.1	0.2	(0.2)	(6.9)	NA	NA	0.0	NA	0.2	NA	NA	NA	(8.7)
2,3-DNT	NA	NA	NA	NA	NA	0.0	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.0
2,4-DNT	NA	NA	NA	NA	NA	(0.0)	NA	A N	A	NA	NA	NA	(1.5)	NA	NA	NA	0.0	(0.0)	NA	NA	NA	(0.0)	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.3	NA	NA	NA	(1.2)
2,5-DNT	NA	NA	NA	NA	NA	0.0	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.0
2,6-DNT	NA	NA	NA	NA	NA	(0.1)	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	(0.0)
3,4-DNT	NA	NA	NA	NA	NA	0.0	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.0
3,5-DNT	NA	NA	NA	NA	NA	0.0	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.0
Total DNT	NA	NA	NA	NA	NA	0.0	NA	A N	A	NA	NA	NA	(0.8)	NA	NA	NA	0.0	0.3	NA	NA	NA	0.1	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	1.0	NA	NA	NA	0.5
1,2-DM-3,4-DNB	NA	NA	NA	NA	NA	0.0	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	(0.1)	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	(0.1)
1,2-DM-3,5-DNB	NA	NA	NA	NA	NA	0.0	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	0.2	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.2
1,2-DM-3,6-DNB	NA	NA	NA	NA	NA	0.0	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	0.1	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.1
1,2-DM-4,5-DNB	NA	NA	NA	NA	NA	0.0	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.0
1,3-DM-2,4-DNB	NA	NA	NA	NA	NA	(0.0)	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	(1.1)	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	(1.1)
1,3-DM-2,5-DNB	NA	NA	NA	NA	NA	0.0	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.0
1,4-DM-2,3-DNB	NA	NA	NA	NA	NA	0.1	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	2.7	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	2.7
1,4-DM-2,5-DNB	NA	NA	NA	NA	NA	(0.1)	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	(3.4)	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	(3.5)
1,4-DM-2,6-DNB	NA	NA	NA	NA	NA	0.0	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	(0.3)	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	(0.3)
1,5-DM-2,3-DNB	NA	NA	NA	NA	NA	0.0	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.0
1.5-DM-2.4-DNB	NA	NA	NA	NA	NA	0.1	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	(6.4)	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	(6.3)
Total DNX	NA	NA	NA	NA	NA	0.4	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	(8.1)	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	(7.7)
2.4.6-TNX	NA	NA	NA	NA	NA	(0.2)	NA	A N	A	NA	NA	NA	(1.2)	NA	NA	NA	0.0	0.6	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	(0.1)	NA	0.0	NA	NA	NA	(0.9)
1.3.5-TNB	NA	NA	NA	NA	NA	0.0	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.0
1.3-DNB	NA	NA	NA	NA	NA	0.0	NA	A N	A	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	NA	(0.0)	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.2	NA	NA	NA	0.2
NB	NA	NA	NA	NA	NA	0.0	NA			NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.0
3-NT	NA	NA	NA	NA	NA	0.0	NA			NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.0
4-NT	NA	NA	NA	NA	NA	0.0	NA			NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.0
2-NT	NA	NA	NA	NA	NA	0.0	NA			NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	NA	0.0	NA	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.0
NG	NA	NA	NA	NA	NA	NA	N/			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
НМХ	NA	NA	NA	NA	NA	NA	NA			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3.5-Dinitroaniline	NA		NA	NA	NA	(0.0)	N/				NA	NA	0.0	NA	NA	NA	0.0	0.0	NA		NA	(0.0)	NA	NA	0.3		0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.3
<u>1</u>						(0.0)							2.10		101		0.0	0.0		101		(0.0)			0.0	0.0	0.0	0.0	0.0			5.0		5.0				81.6

NOTES:

¹: Total DNT calculated by adding 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-DNT isomers.

0.0 Values: The constituent was not detected above the Method Detection Limit (MDL) and was rounded down to zero.

Red Data (#.#): Denotes an increase over time. Many of the apparent increases are due to changes in detection limits within the duration of the project and heterogeneity effects. 2-A-4,6 DNT and 4-A-2,6 DNT increases may be associated with the anaerobic degradation of TNT. NA: Not analyzed in 2018 and/or 2019
 C23: Was emptied in 2014. The remaining contents from the C23 stored soils were placed in cells C12, C17, and C22 in 2017.

2019 Contaminant Progress Summary

Waste Management Progress Report No. 8 For Period May 19, 2019 to May 18, 2020 Hazardous Waste Remediation Variance Approval of May 22, 2012 Hazardous Waste Remediation Variance Renewal Approval of May 18, 2018 . Former Barksdale Works

Bayfield County, Wisconsin

Analytes decrease (lbs) Initial to 2019																																							
(Averages of subcells)	C01	C02	C03	C04	C05	C00	6 C	07	C08	C09	C10	C11	C12	C13	C14	C15	C16	C17	C18	6 C19	C20	C21	C22	: C	C23	C24	C25	C26	C27	C28	C29	C30	C31	C32	C33	C34	C35	C36	Total for All Cells
2,4,6-TNT	10.8	4.3	0.5	0.3	2.9	968.	8 17).3	0.5	0.3	8.8	0.7	1326.5	9.2	142.7	1551.5	294.3	46.8	0.0	130.0	24.8	1279.1	NA	1	NA	846.6	118.9	134.6	227.0	(16.3)	NA	NA	317.5	NA	123.8	NA	NA	NA	7725.1
2-A-4,6-DNT	(0.3)	(0.1)	(0.1)	(0.1)	0.0	1.4	6	0	0.0	0.0	0.5	0.1	(1.3)	0.9	0.7	4.9	14.6	1.6	0.0	0.6	0.2	2.1	NA	1	NA	3.6	3.1	2.0	9.8	(1.2)	NA	NA	1.2	NA	0.5	NA	NA	NA	50.5 33.3
4-A-2,6-DNT	(0.1)	(0.0)	(0.1)	(0.1)	(0.3)	(1.9) 5.	6	0.1	0.0	0.5	0.1	(2.7)	0.5	0.2	2.1	11.0	0.5	0.0	1.4	0.2	3.7	NA	1	NA	3.4	2.9	2.7	9.2	(6.9)	NA	NA	1.1	NA	0.2	NA	NA	NA	33.3
2,3-DNT	0.1	0.0	0.0	0.0	50.2	1.4	2	4	0.1	0.0	15.2	0.0	2.7	10.0	7.7	0.2	0.0	11.6	0.0	0.0	0.0	0.0	NA	1	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	101.6
2,4-DNT	0.7	1.0	0.4	0.3	853.1	129.	4 59	.9 '	13.4	0.2	427.5	0.5	786.8	56.1	17.1	39.0	0.4	132.7	0.2	0.6	5.0	1.1	NA	1	NA	0.5	29.5	1.5	0.0	0.0	NA	NA	0.7	NA	0.3	NA	NA	NA	2558.0
2,5-DNT	0.0	0.0	(0.0)	0.0	(0.2)	0.0	(0	.1)	0.0	NA	0.0	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	1	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.2
2,6-DNT	0.4	0.9	0.5	0.7	446.0	20.6	6 53	.5	1.7	0.0	147.1	(0.0)	31.8	21.7	79.0	1.5	0.0	95.7	0.1	0.0	0.0	0.0	NA	1	NA	0.0	1.9	0.2	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	903.4
3,4-DNT	0.2	0.1	0.0	0.1	55.0	2.4	3	8	0.1	0.0	21.3	0.0	6.2	14.1	12.9	0.4	0.0	17.8	0.0	0.0	0.0	0.0	NA	1	NA	0.0	0.1	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	134.6
3,5-DNT	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0.0	0.0	0.4	0.0	0.0	0.6	1.0	0.1	0.0	0.0	0.0	0.0	0.2	0.1	NA	1	NA	0.1	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	2.7
Total DNT	1.4	2.1	1.0	1.2	1404.1	1 153.	7 11	9.6	15.4	0.3	611.4	0.5	827.5	102.4	118.2	41.1	0.4	257.8	0.3	0.7	5.2	1.2	NA	1	NA	0.6	31.5	1.7	0.0	0.0	NA	NA	0.7	NA	1.0	NA	NA	NA	3701.0
1,2-DM-3,4-DNB	(1.5)	10.7	1.0	6.9	0.3	0.0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	35.8	0.0	0.0	0.0	0.0	NA	1	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	53.4
1,2-DM-3,5-DNB	(3.9)	10.3	3.5	8.5	0.3	0.0	0.	0	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.0	37.4	0.1	0.0	0.0	0.0	NA	1	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	56.5
1,2-DM-3,6-DNB	(0.2)	1.2	0.8	(0.2)	0.1	0.0	0.	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.5	0.0	0.0	0.0	0.0	NA	1	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	14.3
1,2-DM-4,5-DNB	(0.5)	3.0	0.3	1.8	0.1	0.0	0.	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.0	0.0	0.0	0.0	0.0	NA	1	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	16.8
1,3-DM-2,4-DNB	2.2	33.5	6.2	22.9	1.4	0.0	0.	0	0.0	0.0	(0.4)	(0.8)	0.4	(0.3)	0.0	0.0	0.0	90.7	0.3	0.0	0.0	0.0	NA	1	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	156.2
1.3-DM-2.5-DNB	(0,1)	(0.0)	(0.0)	(0,1)	0.0	0.0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	1	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	(0.3)
1,4-DM-2,3-DNB	0.2	19.4	2.5	15.4	0.6	0.0	0.	0	0.0	0.0	(0.3)	(0.4)	0.3	(0.5)	0.0	0.0	0.0	47.1	0.2	0.0	0.0	0.0	NA	1	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	84.5
1.4-DM-2.5-DNB	1.4	1.1	1.5	(2.0)	0.0	(0,1) 0.	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(1.0)	0.0	0.0	0.0	0.0	NA	1	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.9
1,4-DM-2,6-DNB	(9.8)	1.8	(1.9)	(3.0)	0.3	0.0	0.	0	0.0	0.0	(0.2)	(0.2)	0.0	(0.3)	0.0	0.0	0.0	9.8	0.0	0.0	0.0	0.0	NA	1	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	(3.4)
1,5-DM-2,3-DNB	(0,4)	0.6	(0,1)	(0.0)	0.0	0.0	0.	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.6	0.0	0.0	0.0	0.0	NA	1	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	2.6
1.5-DM-2.4-DNB	(4.3)	43.5	0.7	22.7	1.4	0.0	0	0	0.1	0.0	(0.9)	(0.9)	0.6	(0.3)	(0.0)	0.0	0.0	108.1	0.3	0.1	0.0	0.0	NA	1	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	171.0
Total DNX	(16.9)	125.1	14.5	72.9	4.6	0.1	0	1	0.2	0.0	(1.7)	(2.3)	1.2	(1.1)	(0.0)	0.0	0.0	355.0	0.9	0.1	0.0	0.0	NA	1	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	552.5
2.4.6-TNX	(1.0)	0.2	(0.2)	(0,1)	0.1	(0.1) 0.		0.0	0.0	0.0	4.5	1.0	0.1	0.0	0.0	0.1	1.3	0.0	0.0	0.5	0.4	NA	1	NA	0.0	0.2	0.0	0.0	0.0	NA	NA	(0,1)	NA	0.0	NA	NA	NA	6.9
1.3.5-TNB	0.0	0.0	0.0	0.0	0.0	0.0	0		0.0	0.0	0.1	0.0	0.5	0.5	0.7	0.9	0.0	1.2	0.0	0.2	0.0	0.3	NA	1	NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.4	NA	0.0	NA	NA	NA	4.8
1,3-DNB	0.0	(0.0)	(0.0)	(0.0)	1.3	0.0	0	0	0.0	0.0	0.3	0.0	0.4	0.3	0.1	0.3	0.1	3.2	0.0	-	0.0	0.5	NA		NA	0.2	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.2	NA	NA	NA	6.8
NB	0.0	(0.0)	0.0	0.0	0.0	0.0	0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.4	NA		NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.6
3-NT	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0.3	0.0	0.1	0.0		0.0	0.1	0.0	0.0	0.9		0.0	0.0	0.0	NA		NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	1.7
4-NT	0.0	0.0	0.0	0.0	0.0	0.0	0		0.1	0.0	0.1	0.0	0.0	0.1	0.1	0.0	0.0	0.1	0.0	0.0	0.0	0.0	NA		NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	0.4
2-NT	0.0	0.0	0.0	0.0	0.0	0.0	0		0.1	0.0	0.2	0.0	0.3	0.0	-	0.0	0.0	0.5	0.0	0.0	0.0	0.0	NA		NA	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	NA	0.0	NA	NA	NA	1.2
NG	NA	NA	NA	NA	NA	NA		A	0.0	0.0	0.0	0.0	NA	0.0	0.0	0.0	NA		NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0
HMX	NA		NA	NA	NA	NA		A	0.0	0.0	0.0	0.0	NA	0.0	0.0	0.0	NA		NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0
3.5-Dinitroaniline	0.0	0.0	0.0	0.0	0.0	(0.1		0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	(0.1)				0.1	0.0	0.0	0.0	0.0	NA	NA	0.1	NA	0.0	NA	NA	NA	0.1
	1																	0.0				()				•••													12.084.3

NOTES:

¹: Total DNT calculated by adding 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-DNT isomers. 0.0 Values: The constituent was not detected above the Method Detection Limit (MDL) and was rounded down to zero. Red Data (#.#): Denotes an increase over time. Many of the apparent increases are due to changes in detection limits within the duration of the project and heterogeneity effects. 2-A-4,6 DNT and 4-A-2,6 DNT increases may be associated with the anaerobic degradation of TNT. MA: Not analyzed/applicable Gray cells with numbers (##): These cells were not sampled in 2019. Decreases shown are from initial reading to the most recent data available for each cell.

C23: Was emptied in 2014. The remaining contents from the C23 stored soils were placed in cells C12, C17, and C22 in 2017.

Table 2 2019 Debris and Residuals Removed Waste Management Progress Report No. 8 For Period May 19, 2019 to May 18, 2020

Hazardous Waste Remediation Variance Approval of May 22, 2012 Hazardous Waste Remediation Variance Renewal Approval of May 18, 2017 Former Barksdale Works Bayfield County, Wisconsin

Items For Off-Site Removal Material Approximate Quantity (cf) On-Site Approximate Weight (lbs.) Off-Site Destination Shipping Number/Manifes ource Description Holding Location RSP 103.5 (weight including added water and storage PAJ investigation areas TNT / soil mix 2 NA (currently stored onsite) Magazine containers = 173.4 lbs) 0.5 (weight including added Cells C24, C26, C28 and C33 TNT / soil mix <1 Magazine NA (currently stored onsite) ater and storage cont = 18.5 lbs) 217.5 (shipping weight including added water and containers = 362 lbs) US Army Corp of Engineers Vicksburg, MS XPOLogistics 874-547774 AI TNX03 Tri-Nitration House area TNX / soil mix 3 Magazine 2.5 lbs RSP (shipping weight including added water and containers = 106 lbs) sent to US Army Corp of Engineers in Vicksburg, NS, remaining 1.2 lbs of RSP is currently stored on site 3.7 (weight including added water and storage containers = 15.7 lbs) PAD TNT02 drainage ditch (PADD0001/0003) and PAB bare spot just south of cell C06 within the footprint of the TNT04 production line (PABB0050) XPOLogistics 874-481742 TNT <1 Magazine Wood Lined and covered roll-off container (SAJ-WP01) 8" x 2" planks, 8' x 4' plywood sheets, other ast of PAJ RTEGH 9 135 NA (currently stored onsite) --various sized pieces Pipe, Metal 6 inch diameter pipes (screened below background) 9 ---PAR-SP01 NA (currently stored onsite) ---Three pipe ends containing lead solder and suspect asbestos packing (screened below background) PAJ RTSH (PAJB0004) 1 PAR-SP01 NA (currently stored onsite) ------PAJ RTEGH (PAJB008) 2 to 6 inch diameter pipes (with bends) 3 Cell C28 NA (currently stored onsite) ---Other Sample scoops, used PPE (i.e. gloves, Lined and covered roll-off container troduced materials 150 NA (currently stored onsite) -----coveralls) used sample jars (SAJ-WP01) Suspect asbestos cement tile pieces, 1/4 inch thick, varying length and width Lined and covered drum stored in building (SAJ-WP01) Veolia Shipping Document N ZZ00854625 AJ RTSH (PAJB0004 and PAJD0023) ---20 Veolia, Menomonee Falls, WI Universal Waste - batteries (lithium ion, lithium metal, and NiCAD) /eolia Shipping Document N ZZ00854626 On-site equipment/tools ---12 Field office trailer Veolia, Port Washington, WI Non-Regulated Material - used oil 55-gallon drum stored inside cow shed olia Shipping Document I n-site equipment 30 Veolia, Menomonee Falls, WI ---(hydraulic and lubricating oil) (SAJ-WP01) ZZ00854626 olia Shipping Document N ZZ00854625 ield office trailer Universal Waste - fluorescent light tubes --10 Field office trailer Veolia, Port Washington, WI Non-Regulated Material - fluorescent light lia Shipping Document ZZ00854625 ield office trailer 5 Field office trailer Veolia, Port Washington, WI --ballasts (non-PCB) tems Not Requiring Off-Site Disposal On-Site Material Description Approximate Weight (lbs.) Off-Site Destination Manifest ource Approximate Quantity (cf) Holding Location Concrete concrete (screened above background) AJ RTSH (PAJB0004 and PAJD0023) 900 econtaminated at cell C28 and returned to source AJ RTSH (PAJB0004 and PAJD0023) concrete (scre Cell C28 (used to extend pad) 2 --------above background) concrete (screened PAJ RTSH (PAJB0004 and PAJD0023) 1400 Returned to source location Other 20 linear ft of clay pipe, screened below background PAJ RTSH (PAJB0004 and PAJD0023) 3 Returned to source location --------PAJ investigation area east of RTEGH 2 tree stumps 8 Cell C28

Notes: -: not applicable or not measured cf. cubic feet fic. feet lbs: pounds PAB: Use Area PAB PAD: Use Area PAD PAL Use Area PAI

PAJ: Use Area PAJ

RSP: Residual Solid Product RTEGH: Refined Triton East Graining House RTBH: Refined Triton Screening House RTWGH: Refined Triton West Graining House TNT: trinitrodulerne TNS: trinitroxylene

Table 32019 Soil Moved to Test Cells

Waste Management Progress Report No. 8

For Period May 19, 2019 to May 18, 2020

Hazardous Waste Remediation Variance Approval of May 22, 2012

Hazardous Waste Remediation Variance Renewal Approval of May 18, 2017

Former Barksdale Works

Bayfield County, Wisconsin

Source	Destination	Volume (CY)	Date
RTSH area including the former building (PAJB0004), barricade berms, and associated ditches (PAJD0023)	C33	41.5	8/2/2019
Total C33	C33	41.50	2019
Cell C36 Construction Excavation	C34	1.0	6/18/2019
RTSH area including the former building (PAJB0004), barricade berms, and associated ditches (PAJD0023)	C34	5.6	8/6/2019
Total C34	C34	6.60	2019
RTSH area ditch (PAJD0023)	C35	116.6	8/15/2019
Area between the RTEGH and RTWGH, including drainage ditches (PAJD0018, PAJD0019, PAJD0020), a catch box area, and rail grades (PAJR0001 and PAJR0003)	C35	423.7	8/28/2019
Refined Triton Tank Storage buildings (PAJB0003 and PAJB0005) and adjacent drainage ditch (PAJD0005)	C35	20.74	10/8/2019
Area adjacent and east of the RTEGH, including drainage ditches (PAJD0029, PAJD0030 and PAJD0031), and rail grades (PAJR0001 and PAJR0003)	C35	3.0	10/15/2019
Total C35	C35	563.98	2019
RTSH Area including the former building (PAJB0004), barricade berms, and associated ditches (PAJD0023)	C36	5.9	9/9/2019
Area between the RTEGH and RTWGH, including drainage ditches (PAJD0018, PAJD0019, PAJD0020), a catch box area, and rail grades (PAJR0001 and PAJR0003)	C36	417.8	9/12/2019
Area adjacent and east of RTEGH, including drainage ditches (PAJD0029, PAJD0030 and PAJD0031), overflow area, and rail grades (PAJR0001 and PAJR0003)	C36	88.9	9/24/2019
Refined Triton Tank Storage buildings (PAJB0003 and PAJB0005) and adjacent drainage ditch (PAJD0005)	C36	65.2	10/9/2019
Total C36	C36	577.80	2019
Soil removed from Cell C25	C27	-250.0	9/17/2019
Total C25	C25	-250.00	2019
Soil placed in Cell C27 from C25	C27	250.0	9/17/2019
Total C27	C27	250.00	2019
Total for 2019	ALL	1189.9	2019

Notes:

RTEGH: Refined Triton East Graining House

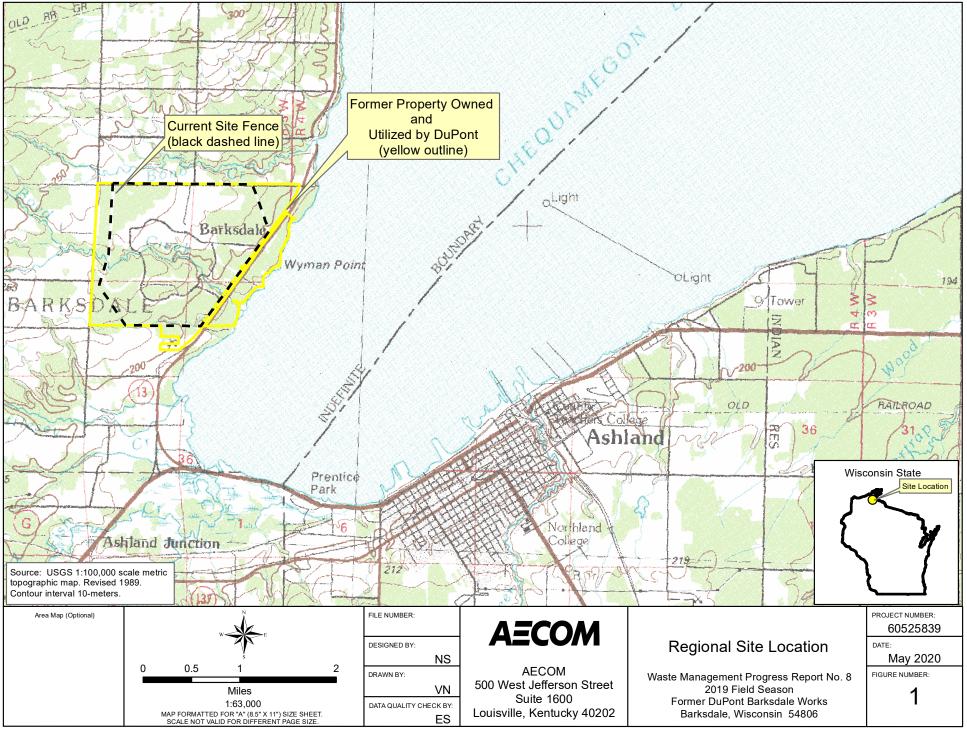
RTSH: Refined Triton Screening House

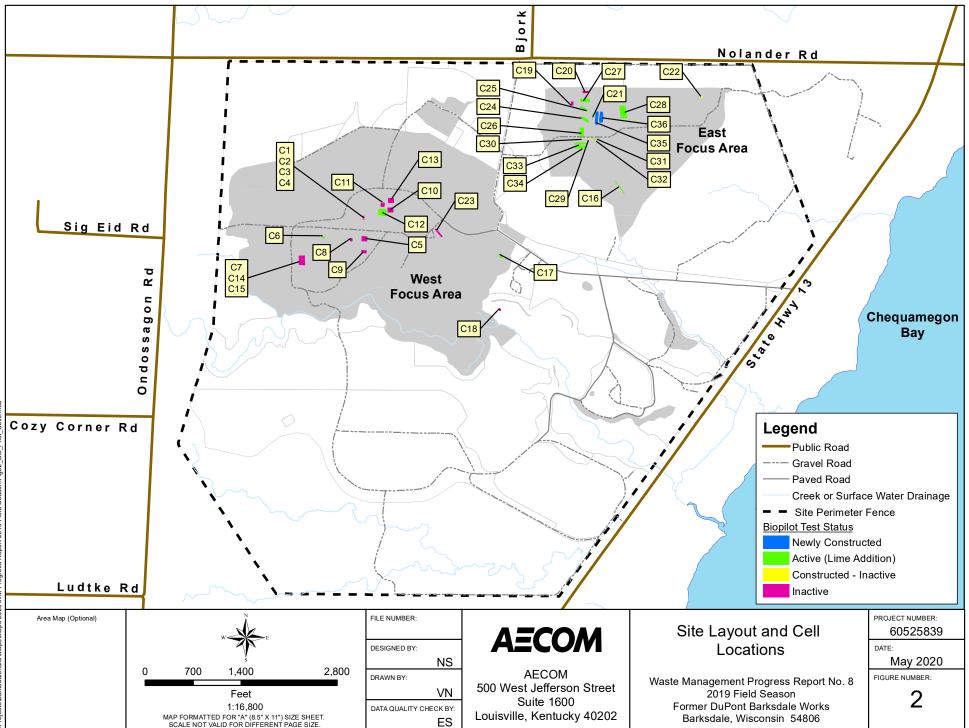
RTWGH: Refined Triton West Graining House

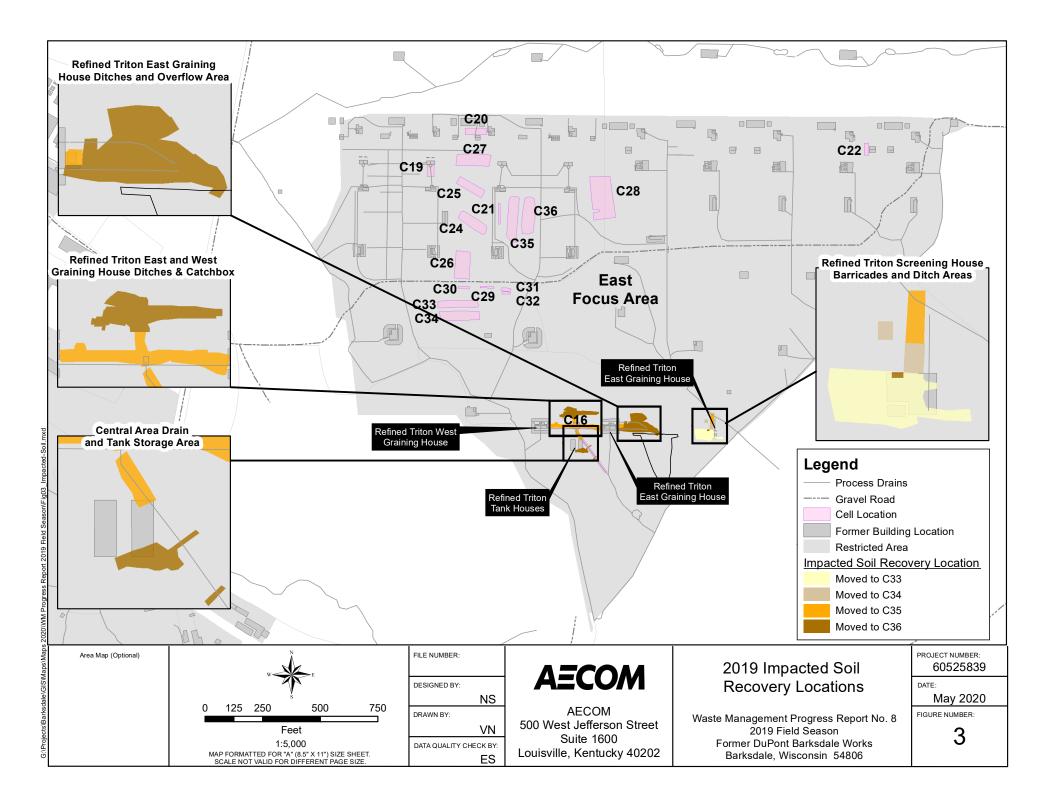
Table 4 Comparison of Pace Analytical Reporting Limits to RCLs Waste Management Progress Report No. 8

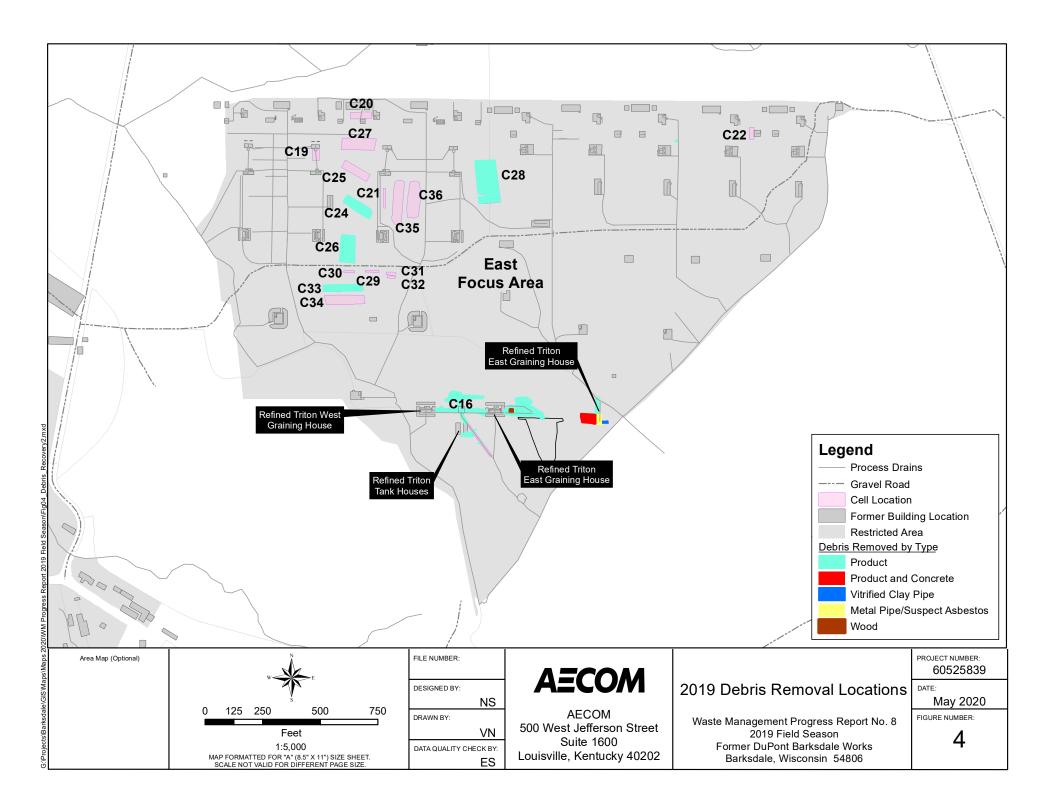
For Period May 19, 2019 to May 18, 2020 Hazardous Waste Remediation Variance Approval of May 22, 2012 Hazardous Waste Remediation Variance Renewal Approval of May 18, 2017 Former Barksdale Works

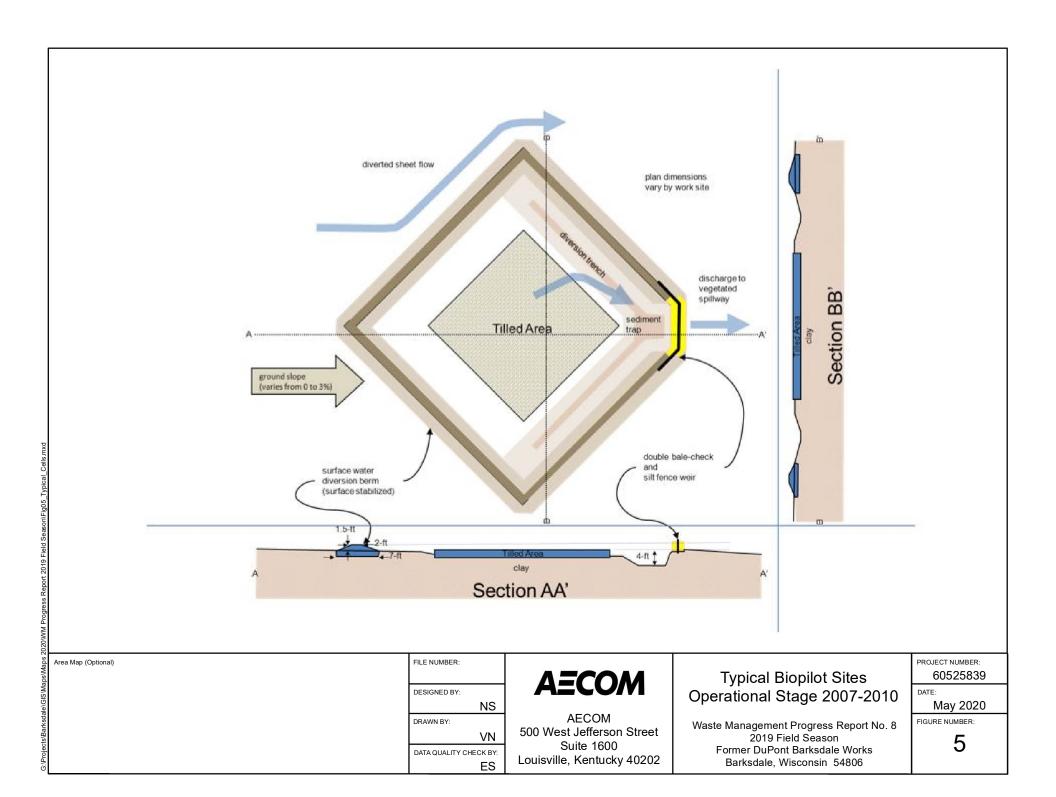
Bayfield County, Wisconsin


CAS		Non-Industrial RCL	Industrial RCL	Site-Specific Recreational RCL	2019 Pace Analytical Laboratory Reporting Limit
Number	Chemical Constituent	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) ¹
99-35-4	1,3,5-Trinitrobenzene	2,250	32,400	13,100	0.2
99-65-0	1,3-Dinitrobenzene	6.32	82.1	36.9	0.2
118-96-7	2,4,6-Trinitrotoluene	21.3	96	124	0.2
121-14-2	2,4-Dinitrotoluene	1.21	5.11	7.03	0.2
606-20-2	2,6-Dinitrotoluene	1.21	5.11	7.03	0.2
35572-78-2	2-Amino-4,6-Dinitrotoluene	154	2,280	900	0.2
88-72-2	2-Nitrotoluene	3.16	14.9	18.4	0.2
99-08-1	3-Nitrotoluene	6.32	82.1	36.9	0.2
19406-51-0	4-Amino-2,6-Dinitrotoluene	153	2,250	893	0.2
99-99-0	4-Nitrotoluene	33.9	144	198	0.2
98-95-3	Nitrobenzene	7.41	32.4	43.2	0.2
2691-41-0	НМХ	3,860	57,000	22,500	Not analyzed
78-11-5	PETN	126	574	737	Not analyzed
121-82-4	RDX	8.34	38.4	48.6	Not analyzed
479-45-8	Tetryl	156	2,330	911	Not analyzed
55-63-0	Nitroglycerin	6.32	82.1	36.9	Not analyzed
602-01-7	2,3-Dinitrotoluene	1.21	5.11	7.03	0.2
618-85-9	3,5-Dinitrotoluene	1.21	5.11	7.03	0.2
610-39-9	3,4-Dinitrotoluene	1.21	5.11	7.03	0.2
619-15-8	2,5-Dinitrotoluene	1.21	5.11	7.03	0.2
632-92-8	2,4,6-Trinitro-3-Xylene	21.3	96	124	0.2
616-69-3	1,2-Dimethyl-3,5-Dinitrobenzene	19	247	111	0.2
603-02-1	1,3-Dimethyl-2,4-Dinitrobenzene	19	247	111	0.2
711-41-1	1,4-Dimethyl-2,6-Dinitrobenzene	19	247	111	0.2
65151-56-6	1,5-Dimethyl-2,3-Dinitrobenzene	19	247	111	0.2
616-72-8	1,5-Dimethyl-2,4-Dinitrobenzene	19	247	111	0.2
EVS0672	1,2-Dimethyl-3,4-Dinitrobenzene	19	247	111	0.2
EVS0709	1,2-Dimethyl-3,6-Dinitrobenzene	19	247	111	0.2
EVS0670	1,2-Dimethyl-4,5-Dinitrobenzene	19	247	111	0.2
EVS0708	1,3-Dimethyl-2,5-Dinitrobenzene	19	247	111	0.2
EVS0671	1,4-Dimethyl-2,3-Dinitrobenzene	19	247	111	0.2


Notes:


¹: Reporting limits ranged from 0.20 to 0.22 mg/kg when laboratory dilution was equal to 1. Reporting limits were higher where dilution was required.


Not analyzed = With the exception of nitroglycerin, the compounds listed as not analyzed were not used or manufactured on-site. This is supported by historical analytical sampling for these compounds. Nitroglycerin was manufactured on-site; however, the manufacturing operation was located in the Boyd Creek valley and not associated with the bio-pilot test cells.


RCL = Residual Contaminant Level for direct contact

Putputputput and the Map (Optional)	Basin Basin	The boots and the second secon		PROJECT NUMBER:
G.IProjects Barksdatel GISIM aps/Ma	DESIGNED BY: NS DRAWN BY: VN DATA QUALITY CHECK BY: ES	AECOM 500 West Jefferson Street Suite 1600 Louisville, Kentucky 40202	General pH Adjustment Cell Configuration Waste Management Progress Report No. 8 2019 Field Season Former DuPont Barksdale Works Barksdale, Wisconsin 54806	60525839 DATE: May 2020 FIGURE NUMBER: 6

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 07/19)

GENERAL INSTRUCTIONS, PURPOSE AND APPLICABILITY OF THIS FORM:

Completion of the applicable portions of this form is required under Wis. Admin. Code § NR 724.13(3). Failure to submit this form as required is a violation of that rule section and is subject to the penalties in Wis. Stats. § 292.99. This form must be submitted every six months for remediation projects that report operation and maintenance progress, in accordance with Wis. Admin. Code §. NR 724.13(3). A narrative report or letter containing the equivalent information required in this form may be submitted in lieu of the actual form. Submittal of this form is not a substitute for reporting required by department programs such as Waste Water or Air Management.

Notes:

- 1. Long-term monitoring results submitted in accordance with Wis. Admin. Code § NR 724.17(3) are required to be submitted within 10 business days of receiving sampling results and are not required to be submitted using this form. However, portions of this form require monitoring data summary information that may be based on information previously submitted in accordance with that section of code.
- Responsible parties should check with the department Project Manager assigned to the site to determine if this form is required to be submitted at sites responded to under the Federal Comprehensive Environmental Response and Compensation Act (commonly known as Superfund) or an equivalent state-lead response.
- 3. Responsible parties should check with the department Project Manager assigned to the site to determine if any of the information required in this form may be omitted or changed and should obtain prior written approval for any omissions or changes.
- Responsible parties are required to report separately on a semi-annual basis under Wis. Admin. Code § NR 700.11(1). Reporting
 under that provision is through an internet-based form. More information can be found at:
 http://dnr.wi.gov/topic/Brownfields/documents/regs/NR700progreport.pdf.

5 Personally identifiable information on this form is not intended to be used for any other purpose than tracking progress of the

Section GI - General Site Information

A. General Information

1. Site name

Former DuPont Barksdale Works

2. Reporting period from:	05/22/2019	То: 05	/21/2020	Days in	period:			365	
3. Regulatory agency (enter DN	R, DATCP and/or c	ther)	4. BRRTS ID No	. (2 digit pr	ogram-2	2 digit	county-6	digit site	specific)
WDNR			02-04-000156						
5. Site location									
Region	County		Address						
NO	4		72315 High	way 13					
Municipality name O City O	Town 🔿 Village		·	Township	Range	Oe	Section	1/4	1/4 1/4
Town of Barksdale				48 N	5	€W	24	NW	
6. Responsible party			7. Consultant						
Name			Select if th	e following	information	tion ha	as chang	ed since t	he last
Mr. Bradley S. Nave, Projec	t Director, Chemo	ours	└─┘ submittal						
Mailing address	· · · · · · · · · · · · · · · · · · ·		Company nam	е					
7204 Overlook Cove, Georg	etown, IN 47122		AECOM - A		Cary Po	oler			
Phone number			-Mailing addres				P	hone nur	nber
			500 W. Jeffer	,	uite 160	00			
(812)	923-1136		Louisville, K	Y 40202				(502) 25	2-5878
8. Contaminants	o : c	1 00100							
Nitramine and Nitroaromatic	e Organic Compo	unds (NNOCs) including TN	T, DNT, I	DNX, I	NX,	NT		
9. Soil types (USCS or USDA)									
CL / SM-ML / SC									
10. Hydraulic conductivity(cm/se	ec):		11. Average lir	ear velocit	y of grou	undwa	ter (ft/yr)		
NA			NA						

Site name: Former DuPont Barksdale Works	Remediation Site Operation, Maintenance,		
Reporting period from: <u>05/22/2019</u> To: <u>05/21/2020</u>	Monitoring & Optimization Report		
Days in period: <u>365</u> Form 4400-194 (R 07/19)			
12. If soil is treated ex situ, is the treatment location off site? O Yes	No		
If yes, give location: Region	County		
Municipality name City Town Village	Township Range CE Section 1/4 1/4 N OW		
B. Remediation Method			
Only submit sections that apply to an individual site. Check all that apply:			
 Groundwater extraction (submit a completed Section GW-1). Free product recovery (submit a completed Section GW-1). In situ air sparging (submit a completed Section GW-2). Groundwater natural attenuation (submit a completed Section GW-3). Other groundwater remediation method (submit a completed Section GW-3). Soil venting (including soil vapor extraction building venting and biove Soil natural attenuation (submit a completed Section IS-2). Y Other in situ soil remediation method (submit a completed Section IS-Biopiles (submit a completed Section ES-1). Landspreading/thinspreading of petroleum contaminated soil (submit X Other ex situ remediation method (submit a completed Section ES-3). Site is a landfill (submit a completed Section LF-1). 	GW-4). enting submit a completed Section IS-1). 3). a completed Section ES-2).		
C. General Effectiveness Evaluation for All Active Systems			
If the remediation is active (not natural attentuation), complete this subset 1. Is the system operating at design rates and specifications? If the answer is no, explain whether or not modifications are necessary System is a pilot test, there are no applicable specifications	s 🖲 No		
2. Are modifications to the system warranted to improve effectiveness If yes, explain: Results of prior seasons' testing are used to improve system per that elevated (above ground) cells and adjustments to pH are lik being acquired to support this finding.			
 3. Is natural attenuation an effective low cost option at this time? 4. Is closure sampling warranted at this time? Yes No S. Are there any modifications that can be made to the remediation to improve the same term of t	Yes No Prove cost effectiveness? Yes No		

If yes, explain:

Site name: Former DuPont Barksdale Works		Remediation Site Operation, Maintenance,	
Reporting period from: 05/22/2019	To: <u>05/21/2020</u>	Monitoring & Optimiza	ation Report
Days in period: <u>365</u>		Form 4400-194 (R 07/19)	
D. Economic and Cost Data to Date			
1. Total investigation cost:			
2. Implementation costs (design, capita	al and installation costs, excl	uding investigation costs:	
3. Total costs during the previous repo	rting period:		
4. Total costs during this reporting peri	od:		
5. Total anticipated costs for the next re	eporting period:		
6. Are any unusual or one-time costs li	sted in the reporting periods	covered by D.3., D.4. or D.5. above?	\odot Yes \bigcirc No
If yes, explain: System is a pilot test. Economic	and cost data is not applie	cable.	

....

. .

.. ..

7. If closure is anticipated within 12 months, estimated costs for project closeout:

E. Name(s), Signature(s) and Date of Person(s) Submitting Form

Legibly print name, date and sign. Only persons qualified to submit reports under ch. NR 712 Wis. Adm. Code are to sign this form for sites with any ongoing active remediation, monitoring or an investigation. Other persons may sign this form for sites with no response activities during the six month reporting period.

Registered Professional Engineers:

I hereby certify that I am a registered professional engineer in the State of Wisconsin, registered in accordance with the requirements of ch. A-E 4, Wis. Adm. Code; that this document has been prepared in accordance with the rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

Print name	Title
Eric C. Schmidt	Project Engineer, P.E. 38842-6
Signature	Date
E.C.S.M.	May 28, 2020

Hydrogeologists:

I hereby certify that I am a hydrogeologist as that term is defined in s. NR 712.03(1), Wis. Adm. Code, and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

Print name	Title
Carroll E. Pooler, III	Project Manager, P.G. 1265
Signature	Date
C. E. Carloten, HU	May 28, 2020

Scientists:

I hereby certify that I am a scientist as that term is defined in s. NR 712.03(3), Wis. Adm. Code, and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

Print name	Title	
Signature	Date	
Other Persons:		
Print name	Title	
Signature	Date	

Site name: Former DuPont Barksdale Works

Reporting period from: 05/22/2019

To:<u>05/21/2020</u>

Days in period:<u>365</u>

Professional Seal(s), if applicable:

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 07/19)

Si	te name: Former DuPont Barksdale Works			peration, Maintenance,
Re	eporting period from: 05/22/2019	To: <u>05/21/2020</u>	Monitoring & Optimi	ization Report
Da	ays in period: <u>365</u>		Form 4400-194 (R 07/19)	
_	ection GW-1, Groundwater Pump an		Product Recovery Systems	
	. Groundwater Extraction System Op			
	Total number of groundwater extraction		and the number in	
2.	Number of days of operation (only list th	ne number of days the system	actually operated, if unknown e	xplain:
3.	System utilization in percent (days of op	peration divided by reporting ti	me period multiplied by 100). If	< 80%, explain:
4.	Quantity of groundwater extracted durin	g this time period:	gallons	
5.	Average groundwater extraction rate:	gpm		
6.	Quantity of dissolved phase contaminar	nts removed during this time p	eriod in pounds:	lbs
_	. Free Product Recovery System Ope	- ·	·	
1.	Is free product (nonaqueous phase liqui If yes, explain:	id) being recovered at this site	? 🔾 Yes 🔾 No	
2.	Quantity of free product extracted durin	ng this time period (enter none	if none):	gallons
3.	Average free product extraction rate:	gp	m	
	System Effectiveness Evaluation			
1.	Is a contaminated groundwater plume · If no, explain:	fully contained in the capture :	zone?	() Yes () No
2.	If free product is present, is the free pro If no, explain:	oduct fully contained in captur	e zone?	◯ Yes ◯ No
3.	If free product is present in any wells a	t the site, but free product was	s not recovered during reporting	period, explain:
4.	If free product is not present, determine ES and PAL. Perform this calculation for highestcontaminant concentration mea PRODUCT" in C.4.a.	or all contaminantsthat were p	present at thesite that have ch. N	NR 140 standards. Use the
	a. Contaminant:			
	b. Percent reduction necessary to reac	h ch. NR 140 ES and PAL:	%	
	c. Maximum contaminant concentration	n level in any monitoring well o	of that contaminant:	µg/L
	d. Maximum contaminant concentration	n level in any extraction well o	f that contaminant:	μg/L

Site name: Former DuPont Barksdale Works

Reporting period from: 05/22/2019

To:<u>05/21/2020</u>

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Days in period: <u>365</u>

e. If the maximum concentration in a monitoring well is more that one order of magnitude above the concentration measured in an extraction well, explain why the extracted groundwater contamination levels are significantly less than the levels at other locations within the aquifer.

Form 4400-194 (R 07/19)

D. Additional Attachments

Attach the following to this form:

- Most recent report to the DNR Wastewater Program, if applicable.
- Groundwater contour map with capture zone indicated.
- Groundwater contaminant distribution map (may be combined with contour map).
- Graph of cumulative contaminant removal, if both free product recovery and ground water extraction are used, provide separate graphs.
- Time versus groundwater contaminant concentration graphs for the contaminant listed in C.4.a. (above), as follows: -- Graph of contaminant concentrations versus time for each extraction well in use during the period.
 - Graph of contaminant concentrations versus time for the monitoring well with the greatest level of contamination.
- Groundwater contaminant chemistry table.
- Groundwater elevations table.
- System operational data table.

Site name: Former DuPont Barksdale Works

Reporting period from: 05/22/2019

To:<u>05/21/2020</u>

Days in period: <u>365</u>

Section GW-2, In Situ Air Sparging Systems

A. In Situ Air Sparging System Operation

1. Number of air injection wells at the site and the number actually in use during the period:

2. Number of days of operation (only list the number of days the system actually operated, if unknown explain):

3. System utilization in percent (days of operation divided by reporting time period multiplied by 100). If < 80%, explain:

B. System Effectiveness Evaluation

 If free product is not present, determine the single contaminant that requires the greatest percent reduction to achieve ch. NR 140 ES and PAL. Perform this calculation for all contaminants that were present at the site that have ch. NR 140 standards. Use the highest contaminant concentration measured in any sampling points during reporting period. If free product is present, write "FREE PRODUCT" in B.1.a.

	a. Contaminant:
	b. Percent reduction necessary to reach ch. NR 140 ES and PAL:%
	c. Maximum contaminant concentration level in any monitoring well:µg/L
2.	Is there any evidence that air is short circuiting through natural or man-made pathways? \bigcirc Yes \bigcirc No If yes, explain:
3.	Is the size of the plume: \bigcirc Increasing \bigcirc Stabalized \bigcirc Decreasing ?

If increasing, explain:

C. Additional Attachments

Attach the following to this form:

- Groundwater contour map.
- Groundwater contaminant distribution map (may be combined with contour map).
- When contaminants are aerobically biodegradable, attach a dissolved oxygen in groundwater map (dissolved oxygen may be combined with the contaminant data on a single map).
- Site map with all air injection wells and groundwater monitoring points.
- Graph of contaminant concentrations versus time for the contaminant listed in B.1.a. (above) for the monitoring point with the greatest level of contamination.
- Groundwater contaminant chemistry table.
- Groundwater elevations table.
- System operational data table.

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 07/19)

Site name: Former DuPont Barksdale Works		Remediation Site Operation, Maintenance
	o: <u>05/21/2020</u>	Monitoring & Optimization Report
Days in period: <u>365</u>		Form 4400-194 (R 07/19)
Section GW-3, Natural Attenuation (Pass	ve Bioremediation) in C	Groundwater
PAL. Perform this calculation for all contamina concentration measured in any sampling point	nts that were present at the	es the greatest percent reduction to achieve ch. NR 140 ES and site that have ch. NR 140 standards. Use the highest contaminal free product is present, write "FREE PRODUCT" in A.1.a
a. Contaminant:		
b. Percent reduction necessary to reach ch.		%
c. Maximum contaminant concentration leve	l in any monitoring well of	that contaminant:µg/L
2. Aquifer parameters:		
a. Hydraulic conductivity:		cm/se
b. Groundwater average linear velocity:		ft/yr
3. Is there a downgradient monitoring well that	meets ch. NR 140 standa	rds? 🔿 Yes 🔿 No
4. Based on water chemistry results, is the plu	me: ()?Expanding () Sta	abalized 🔘 Contracting
5. If the answer in 4. (above) is "expanding," is If yes, explain:	natural attenuation still the	e best option? O Yes O No
6. Biodegradation parameters:		
a. Upgradient (or other site specific backgro	und) DO level:	μg/L
b. DO levels in the part of the plume that is	most heavily contaminated	μg/L
7. Is site closure a viable option within 12 mon	ths from the date of this for	rm? 🔿 Yes 🔿 No
8. Are there any modifications that can improv If yes, explain:	e cost effectiveness?	Yes 🔿 No
9. Have groundwater table fluctuations change If yes, explain:	d the contaminant level tre	ends over time? O Yes O No
10. Has the direction of groundwater flow char	ged during the reporting p	eriod? 🔿 Yes 🔿 No
If yes, approximate change in degrees:		
B. Additional Attachments		
Attach the following:		
 combined with the contaminant data Graph of contaminant concentrations greatest level of contamination. Note: This is the minimum require 	iodegradable, attach a diss on a single map). versus time for the contan d graph; however, it is rec	vith contour map). solved oxygen in groundwater map (dissolved oxygen may be ninant listed in A.1.a. (above) for the monitoring point with the ommended that multiple time versus contamination ge 24 for Natural Attenuation of Groundwater be submitted.

- Groundwater contaminant chemistry table. Groundwater biological parameters. Groundwater elevations table. •
- •
- •

Site name: Former DuPont Barksdale Works		Remediation Site Operation, Maintenance,	
Reporting period from: 05/22/2019	To: <u>05/21/2020</u>	Monitoring & Optimization Report	
Days in period: <u>365</u>		Form 4400-194 (R 07/19)	
Section GW-4, Other Groundwater Ren	nediation Methods		
A. Effectiveness Evaluation			
1. If free product is not present, determine the single contaminant that requires the greatest percent reduction to achieve ch. NR 140 ES and PAL. Perform this calculation for all contaminants that were present at the site that have ch. NR 140 standards. Use the highest contaminant concentration measured in any sampling points during reporting period. If free product is present, write "FREE PRODUCT" in A.1.a.			
a. Contaminant:			
b. Percent reduction necessary:	%		
c. Maximum contaminant concentration le	evel in any monitoring well: _	µg/L	
2. Is the size of the plume: \bigcirc Indreasing (🔿 Stabalized 🔿 Decreasing	g	
3. Describe the method used to remediate g	proundwater at the site:		

4. List any additional information required by the DNR for this method for this site:

B. Additional Attachments

Attach the following:

- Groundwater contour map.
- Groundwater contaminant distribution map (may be combined with contour map).
- When contaminants are aerobically biodegradable, attach a dissolved oxygen in groundwater map (dissolved oxygen may be combined with the contaminant data on a single map).
- Graph of contaminant concentrations versus time for the contaminant listed in A.1.a. (above) for the monitoring point with the greatest level of contamination.
- Groundwater contaminant chemistry table.
- Groundwater elevations table.
- Any other attachments required by the DNR for this remediation method.

Site name: Former DuPont Barksdale Works	Remediation Site Operation, Maintenance,
Reporting period from: 05/22/2019 To: 05/2	Monitoring & Optimization Report
Days in period: <u>365</u>	Form 4400-194 (R 07/19)
Section IS-1, Soil Venting (Including Soil Vapo A. Soil Venting Operation	or Extraction, Building Venting and Bioventing)
	itigation systems that are installed proactively to protect building occupants/users emediation.
1. Number of air extraction wells available and num	ber of wells actually in use during the period:
2. Number of days of operation (only list the numbe	er of days the system actually operated, if unknown explain):
3. System utilization in percent (days of operation d	livided by reporting time period multiplied by 100). If < 80%, explain:
4. Average depth to groundwater:	gpm
B. Building Basement/Subslab Venting System	n Operation
1. Number of venting points available and number of	of points actually in use during the period:
2. Number of days of operation (only list the numbe	er of days the system actually operated, if unknown explain):
 3. System utilization in percent (days of operation of C. Effectiveness Evaluation 	divided by reporting time period multiplied by 100). If < 80%, explain:
1. Average contaminant removal rate for the entire	system: pounds per day
2. Average contaminant removal rate per well or ve	nting point: pounds per day
3. If the average contaminant removal rate is less the rate per well is less than one tenth of a pound pe	han one pound per day for the entire system, or if the average contaminant removal er day, evaluate the following:
a. If contaminants are aerobically biodegradable	and confirmation borings have not been drilled in the past year:
i. Oxygen levels in extracted air:	percent
ii. Methane levels in extracted air (ppm _V) If ov	/er 10 ppm _V , explain:
 Drill confirmation borings during the nex Or, perform an in situ respirometry test i use a gas probe or water table well. If a then you should drill confirmation boring 2 and 10 mg/kg, operate for one more re 	nd if oxygen is greater than 20 percent in extracted air, you should either: At reporting period, if the entire site should be considered for closure. In a zone of high contamination. Do not perform the test in an air extraction well, a zero order rate of decay based on oxygen depletion is less than 2 mg/kg per day, gs, if the entire site should be considered for closure. If the rate of decay is between eporting period before evaluating further. If the zero order rate of decay is greater inue operating the system in a manner than maximizes aerobic biodegradation.
	able and confirmation borings have not been recently drilled during the past year, e next reporting period if the entire site should be considered for closure.

c. If soil borings were drilled during the past year and soil contamination remains above acceptable levels, explain if the system effectiveness can be increased and/or if other options need to be considered to achieve cleanup criteria.

D. Additional Attachments

Attach the following to this form:

- Well and soil sample location map indicating all air extraction wells. If forced air injection wells are also in use, identify those wells.
- If water table monitoring wells are present at the site, a map of well locations.
- Time versus vapor phase contaminant concentration graph.
- Time versus cumulative contaminant removal graph.
- Groundwater elevations table, if water table wells are present at the site; also list screen lengths and elevations.
- Table of soil contaminant chemistry data.
- Soil gas data, if gas probes are used to monitor subsurface conditions in locations other than where air is extracted.
- System operational data table.

Site name: Former DuPont Barksdal	e Works	_ Remediation Site Operation, Maintenance,
Reporting period from: 05/22/2019	To: <u>05/21/2020</u>	Monitoring & Optimization Report
Days in period: <u>365</u>		Form 4400-194 (R 07/19)
Section IS-2, Natural Attenua A. Effectiveness Evaluation	tion (Passive Bioremediation) in	Soil
	that is most contaminated from a per	manently installed gas probe(s) or water table monitoring well(s).
a. Hydrocarbon levels:	ppm, with an F	
b. Oxygen levels:	percent	
c. Carbon dioxide levels(spec	i	
d. Methane levels:	ppm	
		nanently installed gas probe(s)or water table monitoring well(s):
a. Hydrocarbon levels:	ppm, with an F	
b. Oxygen levels:	percent	
c. Carbon dioxide levels(spec	'	
d. Methane levels:	ppm of percenty	
	··	
date those samples were colle	ected. Since soil borings are only drill	I contamination during the last round of soil sampling, and the ed periodically, list the most recent data even if the data is prior based on the most recent soil sampling event, do not list data
a. Total hydrocarbons (Specif	y if GRO and/or DRO):	µg/kg
b. Specific compounds (µg/kg):	
i. Benzene:	µg/kg	
ii. 1,2 Dichloroethane:	μg/kg	
iii. Ethylbenzene:	µg/kg	
iv. Toluene:	µg/kg	
v. Total xylenes:	μg/kg	
4. Is there any evidence that cor	taminants are leaching into groundwa	ater? 🔿 Yes 🔿 No
If the answer is yes and if gro	undwater quality is not being monitore	d, explain:
5. Is site closure a viable option	within 12 months from the date of this	form? 🔿 Yes 🔿 No
-	at can be made to the remediation to	improve cost effectiveness? \bigcirc Yes \bigcirc No
If yes, explain:		

B. Additional Attachments

Attach the following to this form:

- Well and soil sample location map.
- Cross sections showing the water table, soil sampling locations, screened intervals for gas probes or water table wells, geologic contacts, and any former excavation boundaries.
- Graphs of contaminant concentrations, oxygen, carbon dioxide and methane levels over time.
- Groundwater elevations table, if water table wells are present at the site.
- Table of soil contaminant chemistry.
- Table of soil gas readings.

Site name: Former DuPont Barksdale Works	
Reporting period from: 05/22/2019	To: <u>05/21/2020</u>

Days in period: 365

Section IS-3, Other In Situ Soil Remediation Methods

A. Effectiveness Evaluation

1. Describe the method used to remediate soil at the site:

The Bioremediation Pilot Test program is a preliminary evaluation of the efficacy of enhanced attenuation of NNOCs using periodic soil mixing with moisture and pH adjustment. The test program, initiated June 16, 2007, is currently evaluating alternate till bed configurations, tilling frequencies, and cell construction methods. Analytical data is currently being collected to evaluate the effects of soil moisture, pH and various NNOC mixtures on degradation pathways and is anticipated to provide information needed to implement a full scale program within several years.

2. List all information required by the DNR for this remediation method for this site:

This form is attached to a Waste Management Progress Report, which required to support the Remediation Variance issued by WDNR for the Bioremediation PilotTest program. Methods to achieve remediation are currently not fully evaluated and will not be available until the test program is completed. Until such time, annual progress reports attached to this form will provide waste tracking data requested by the Remediation Variance for the following topics: Product Residuals and Debris Removed from Bioremediation Pilot Cells

Movement of Impacted Soils into Bioremediation Pilot Cells

Alternative Treatment of Large Debris

Multiple pilot cells have been constructed at the site. Detailed information regarding the cells is included in the annual Waste Management Progress Report.

B. Additional Attachments

Attach the following to this form:

• Any other attachments required by the DNR for this remediation method.

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 07/19)

Site name: Former DuPont Barksdale Works		Remediation Site Operation, Maintenance,
Reporting period from: 05/22/2019	To: <u>05/21/2020</u>	Monitoring & Optimization Report
Days in period: <u>365</u>		Form 4400-194 (R 07/19)
Section ES-1, Ex Situ Soil Treatment	Using Biopiles	
A. Effectiveness Evaluation1. Volume of soil in the biopile (if multiple	biopiles, list number of pi	les and total volume):
2. Monitoring used to assess progress ar	nd verify optimal condition	s for biodegradation.
a. Vapor phase measurements of gase	es (average of all readings	s from most recent sampling event):
i. VOCs by FID:	ppm	
ii. Oxygen:percent		
iii. Carbon dioxide:perc	ent	
iv. Methane:	ppm	
b. Soil temperature:°F		
c. Soil moisture sensors, if used:	percent	
3. Treatment amendments added to the s	oil during construction:	
a. Artificial nutrients, excluding manure).	
i. Types and total pounds added:		
ii. Nitrogen and phosphorous conter		nt:percent
b. Manure:	total pounds	
c. Natural organic materials (straw, wo	od chips, etc.)(type and to	otal pounds):
4. Forced air biopiles only answer the follo	owing:	
a. Total air flow rate of the ventilation s	ystem:	scfm
b. Average contaminant removal rate:		pounds per day
c. Average biodegradation rate based o	on oxygen utilization:	pounds per day
5. If soil samples have been taken to mon	nitor progress, list results.	Only list the most recent results. If none collected enter NA.
a. Total hydrocarbons. Specify if GRO	and/or DRO:	µg/kg
b. Specific compounds (µg/kg):		
i. Benzene:	µg/kg	
ii. 1,2 Dichloroethane:	µg/kg	
iii. Ethylbenzene:	µg/kg	
iv. Toluene:	µg/kg	
v. Total xylenes:	µg/kg	

B. Additional Attachments
Attach the following to this form:

Figure showing the construction details of the biopile and any sampling locations within the biopile.
Table of soil contaminant chemistry data.
Table of operational data.

Site name: Former DuPont Barksdale Works		Remediation Site Operation, Maintenance,
Reporting period from: 05/22/2019	To: <u>05/21/2020</u>	Monitoring & Optimization Report
Days in period: <u>365</u>		Form 4400-194 (R 07/19)
Section ES-2, Ex Situ Soil Treatment	Using Landspreading/	Thinspreading
A. Effectiveness Evaluation		
1. Method used: \bigcirc landspreading \bigcirc t	hinspreading	
		f contaminated soil on native topsoil, incorporation of that soil into rm "thinspreading" refers to placing contaminated soil on an
2. Was any progress monitoring using field	d screening on soil condu	cted during this reporting period? \bigcirc Yes \bigcirc No
3. If the answer to A.2. (above) is yes:		
i. List monitoring method:		
ii. List monitoring results:		
4. Is there any evidence of soil erosion at	the landspreading/thinspr	eading location? O Yes O No
5. Spreading thickness:	inches	
6. Type of crop planted (if thinspreading w	rith no crop planted, so sta	ate):
7. Confirmation sampling date:	Anticipat	ted confirmation sampling date:
8. Most recent soil sample results, if soil sample result of the most recent sampling round		lysis have been collected to monitor progress. Only list the highest en collected, enter NA.
a. Total hydrocarbons. Specify if GRO a	and/or DRO:	µg/kg
b. Specific compounds (µg/kg):		
i. Benzene:	µg/kg	
ii. 1,2 Dichloroethane:	µg/kg	
iii. Ethylbenzene:	µg/kg	
iv. Toluene:	µg/kg	
v. Total xylenes:	µg/kg	
B. Additional Attachments		

- Attach the following to this form:
 Map of the landspreading/thinspreading area. If soil samples have been collected, specify locations of samples and dates of sampling.
 - ٠
 - Table of soil contaminant chemistry data. Table of any field screening results with dates of sample collection. •

Reporting period from: 05/22/2019

Days in period: <u>365</u>

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 07/19)

Section ES-3, Landfills

Note: Reporting forms or reporting requirements in a Department approved Operation and Maintenance Plan for a landfill may take the place of this form.

To:<u>05/21/2020</u>

the place of this form			
Specific Inspection Items	Potential Problem Areas	Status	Notes
Perimeter Security Fencing	Broken or missing wood slats, torn chain link fabric, barbed wire, other - list		
Entrance Gate and Locking Mechanism	Lock broken/missing, mechanism inoperative.		
Monitoring Wells and Wellhead Covers	Signs of tampering, casing damaged, lock missing.		
Final Cover Vegetation	Bare spots, stressed vegetation, deep rooted vegetation.		
Final Cover Slope (explain below)	Gullies, lack of vegetation, subsidence, ponding.		
Evidence of Burrowing Animals	Damage to final cover, evidence of waste.		
Stormwater Drainage Channels	Gullies, erosion, debris, culvert blocked.		
Passive Landfill Gas Venting System	Damaged or blocked vent risers, stressed vegetation.		
Active Landfill Gas Extraction System	Damaged or blocked piping, cleanouts, other blower flare, knockouts, etc.		
Leachate Collection System	Pumps, connection piping, collection system piping, extraction wells, collection tanks, tanker truck loading system or sanitary sewer discharge piping.		
Access Road Cover Mowing; Tall Vegetation Removal	Ponding, rutting, erosion, cracked or damaged pavement. Mowing and tall vegetation removal done to specified vegetation.		

Summary of Deficiencies and/or Corrective Actions:

Reporting period from: 05/22/2019

To:<u>05/21/2020</u>

Days in period: 365

B. Additional Attachments

Attach the following to this form:

- Any photographs documenting problems and maintenance activities. ٠
- Maps, drawings showing site features requiring maintenance.
- Records for leachate pumping/discharge/hauling. Records for active gas extraction volumes. •
- •

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 07/19)

Reporting period from: 05/22/2019

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Days in period: 365

Form 4400-194 (R 07/19)

Section INS- 1, Section by Section Instructions and Information

Specific Section by Section Instructions for This Form. The site name and reporting period is listed on every page. Then if the pages are inadvertently separated, that information can be used to determine which pages form the report.

To: 05/21/2020

General Site Information

- -- A.1. List the name as it appears on the DNR tracking system. If the person filling out the form does not know what the name on the tracking system is, use the name that the DNR used in the most recent correspondence.
- -- A.2. The reporting period should be either from January 1 to June 30 or July 1 to December 31 for active systems. For passive systems, use a calendar year basis. If however the report covers a newly installed system, list the actual startup date instead of January 1 or July 1. For new passive systems, use the first date that monitoring data is available as the date of startup.
- -- A.3. Enter all regulatory agencies that regulate the site.
- A.4. This form is a DNR form. For that reason, list the DNR site number. If there are other agencies regulating the site, listing identification numbers for other agencies is also recommended, but not mandatory, unless specified by those other agencies.
- -- A.5. If the information listed for the site location is not sufficient information for a person to use to drive to a site (example: no street address in a rural area), also include a map that is sufficient for a person to use to drive to the site. A U.S.G.S. topographic map that shows the site location may be used.
- -- A.8. List the contaminants that have at one time exceeded the PALs or Table Values in ch. NR 720. If GRO and/or DRO exceed the ch. NR 720 standards, also list GRO and/or DRO. Do not list other contaminants that have never exceeded state standards at the site. If more room is necessary, write "SEE ATTACHED SHEETS" and list all contaminants on a separate sheet.
- -- A.9. List the predominant soil types that are contaminated. If there is both contaminated soil and groundwater at the site, list soil types both above and below the water table. If only some soil is contaminated, do not list the soil types that are uncontaminated. If the site soils meet soil cleanup criteria, but groundwater is contaminated, so state that. Specify if the USCS or USDA system is used for soil descriptions. This line specifies soil because the vast majority of contaminated sites do not have contaminated bedrock. If bedrock is contaminated, also list that bedrock type.
- -- A.10. If the groundwater meets ch. NR 140 standards, enter "NA NO NR 140 EXCEEDANCES". Otherwise, list the estimated hydraulic conductivity and the method used to estimate it (bail-down tests, calculations based on grain size, pumping test, etc.) If the hydraulic conductivity has not been determined, state when the tests are to be conducted. When a number of test results are available, list the range of results and the geometric mean. If however some results have a low level of accuracy and some results have a high level of accuracy, you should only list the most accurate results. See the Section on aquifer testing in the *Guidance on Design, Installation and Operation of Ground Water Extraction and Product Recovery Systems* for more information.
- -- A.11.If the groundwater meets ch. NR 140 standards, enter "NA NO NR 140 EXCEEDANCES". Otherwise, enter groundwater average linear velocity as a function of hydraulic conductivity, effective porosity and the groundwater gradient. You should use the geometric mean from A.11. (above) and the most representative value for the gradient at the site. Estimate the effective porosity based on soil types and geologic origin of the soil. If there are reasons to believe that the average liner velocity estimate is less than the actual rate at the site, so state that reason. Secondary porosity effects, flow through submerged utility trenches, widespread contaminant distribution in low permeability soils, etc., are reasons to assume that the actual migration rate is much greater than the predicted average linear velocity. In such cases, you should explain the reasoning for doubting the predicted average linear velocity.

Site name: Former DuPont Barksdale Works	
Reporting period from: 05/22/2019	To: <u>05/21/2020</u>
Days in period: <u>365</u>	

Form 4400-194 (R 07/19)

- B. Check all methods used at a site. For example, if groundwater extraction, free product recovery and soil venting are used, check all three methods and submit the additional pages for those methods. If dual-phase or bioslurping are used, these methods extract both air and groundwater, check boxes for and attach additional pages for both soil venting and pump and treat.
- -- C. Remediation systems that use any form of enhancement are considered "active" and sites where there are no enhancements of any kind are considered "passive" forms of remediation. For purposes of these forms, natural attenuation (also called naturally occurring bioremediation) is "passive" and all other remediation methods are "active" methods.
- -- C.1. Design flow rates refers to flow rates such as gallons per minute extracted by a ground water extraction system, standard cubic feet per minute extracted by a soil venting system, standard cubic feet per minute injected by an in situ air sparging system, etc. If the actual flow rate is within 80 percent of the rate predicted in the design, consider that as meeting the design specification.
- -- D. The cost data in this section is used by DNR staff to evaluate whether or not the selected remedy is the most cost effective remedy and whether or not system modifications may be warranted to improve efficiency and/or cost effectiveness. Responsible parties and consultants are encouraged to submit cost information so that DNR staff may assist responsible parties and consultants accomplish environmental cleanups in the most cost effective manner.

Total costs for past costs are all costs to date. This information is for all costs that were incurred to investigate and/ or remediate the site. These costs include but are not limited to: consulting labor and supplies, laboratory testing, transportation, equipment, etc. If the consultant does not pass all costs through the consulting firm, the consultant will need to contact their client for other non-consulting costs to determine total costs. Exceptions include costs for attorney fees, accounting, claim assistance in preparing claims to state reimbursement funds, or other indirect expenses that are not essential to remediating the site.

- -- D.2. The initial implementation costs are all costs that are incurred to start implementing a remedy at a site. Costs for the investigation however are excluded because those costs are incurred prior to remedy selection. Since costs for treatability and/or pilot testing are used to procure data for remedial design and are specific to different remediation methods, these costs should be included in implementation costs and not investigation costs. Startup or shakedown costs are also considered implementation costs and should not be considered operation and maintenance costs.
- -- D.3. Costs for implementation or investigation should not be repeated here or they will be double counted.
- -- D.4. Costs for implementation or investigation should not be repeated here or they will be double counted.
- -- D.5. Costs for implementation or investigation should not be repeated here or they will be double counted.
- -- D.6. Examples of one-time or unusual costs include the following:
 - [°] Replacing a burned out motor on a pump.
 - Replacement of a well that was destroyed by a snowplow.
 - [°] Confirmation sampling to determine if the site meets closeout criteria. This type of cost is considered an unusual cost because this type of sampling is not conducted during most reporting periods.
- -- D.7. This estimate of costs is for all costs to close out a site minus the salvage value of any remediation equipment. Pertinent costs include items such as well abandonment, equipment removal from the site, consulting costs associated with these items, etc. Do not include any costs that will not be paid by a state reimbursement fund, such as repaying.

Site name: Former DuPont Barksdale Works		
Reporting period from: 05/22/2019	To: <u>05/21/2020</u>	
Days in period: ₃₆₅		

Form 4400-194 (R 07/19)

Section GW-1, Groundwater Extraction and Product Recovery

- -- A.1. List two numbers, the total number of extraction wells at the site and the number that were in actual use during the period. If all wells were in use, state that on the form.
- -- A.2. The number of days of operation are the number of days that the system was actually operated. If the system was shut down for reasons such as: repairs were necessary, piping froze, shut down to provide time for subsurface conditions to equilibrate before sampling, etc., do not list those days as being in operation.
- -- A.3. System utilization is a measure of the amount of time that the system operated relative to the amount of time that it could have operated.
- -- A.5. The average is for the entire site, not per well or trench. For purposes of determining the average ground water extraction rate, calculate the average based on the total volume of groundwater extracted divided by the time of the reporting period. For example, if the system operated at 10 gallons per minute for one month, the amount of water extracted would be approximately 432,000 gallons. If the reporting period was six months long, then the time period is approximately 260,000 minutes. Therefore, the average flow rate over six months is 432,000 divided by 260,000 minutes for an average flow rate of 1.67 gallons per minute (gpm).
- -- A.6. Calculate the total dissolved contaminants removed in pounds. If the estimate is a sum of BTEX and not based on a total hydrocarbon test (GRO and/or DRO), so state that on the form.
- -- B.3. The average should be based on the entire site over the entire reporting period. See instructions above for A.5. List the free product recovery rate as gallons per day (gpd), not gallons per minute (gpm).
- -- C.1. To answer this question, a thorough evaluation of water levels and chemical analyses in all monitoring points at the site is necessary.
- -- C.2. If the capture zone has not been determined mathematically, it will need to be determined to answer this question. See the *Guidance on Design, Installation and Operation of Ground Water Extraction and Product Recovery Systems*for and any recent update or errata sheets for more information on plume capture.
- C.4. When free product is present, line C.4.a. should state "FREE PRODUCT" and lines C.4.b. through C.4.d. are left blank. Otherwise, complete the following calculations.
 There typically are several compounds at most contaminated sites that exceed the standards in ch. NR 140. The purpose of this question is to focus on the single contaminant that requires the most treatment to achieve groundwater quality standards on a percent reduction basis. For example, the most recent round of sampling at an example site demonstrated the highest levels of contaminants were 1,000 µg/L benzene and 1,000 µg/L toluene in the most heavily contaminated monitoring well. The ES and PAL for benzene is 5 µg/L and 0.5 µg/L (respectively) and for toluene the ES and PAL is 343 µg/L and 68.6 µg/L (ES and PAL data as of August 1995). Therefore the percent reduction to meet the ES and PAL for benzene is 99.5 and 99.95 percent and for toluene it is 65.7 and 93.14 percent. For that reason, the single contaminant that is most critical to reaching state groundwater standards is benzene. Therefore benzene is entered on line a. In this example, 99.5 and 99.95 percent is entered on line b. In this example, 1,000 µg/L is entered on line c. In this example, benzene is the driving factor, therefore enter the maximum benzene level in the single most heavily contaminated extraction well during the most recent sampling period on line d.
- -- D. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

Section GW-2, In Situ Air Sparging

-- B.1. See instructions for Section GW-1, Item C.4.

Site name: Former DuPont Barksdale Works Reporting period from: 05/22/2019

To:<u>05/21/2020</u>

Days in period: 365

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 07/19)

Section GW-3, Natural Attenuation in Groundwater

- -- A.1. See instructions for Section GW-1, Item C.4.
- -- A.2.a. List the estimated hydraulic conductivity that was listed on line A.11 in Section GI-1.
- -- A.2.b. List the groundwater average linear velocity that was listed on line A.12 in Section GI-1.
- -- A.3. Assess the monitoring well network to determine if there is a down gradient well that has not been impacted by the contaminants. Consider the possibility of a submerged (or diving) plume in that assessment. If all evidence indicates that the plume does not extend to the farthest "clean" downgradient well, indicate "YES" on the form. Otherwise indicate "NO" on the form. If there are not plans to install such a well, explain.
- -- A.4. Based on the contaminant distribution, evaluate whether or not the plume is expanding, stabilized, or contracting. When making this determination, consider the contaminant that requires the greatest percent reduction to achieve ch. NR 140 standards.
- -- A.5. If the plume is expanding and a justification is necessary, add additional sheets justifying why natural attenuation is still the appropriate remedy. If it is not, further describe in the explanation the plans to use a different remedy.
- -- A.6.a. Enter the upgradient dissolved oxygen (DO) level(s). If however there are contaminants measured in the upgradient well, it is not a true background measurement. In that case enter "UNKNOWN" on the form.
- -- A.6.b. Enter the range of DO values measured in wells within the plume.
- -- B. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

Section GW-4, Other Groundwater Remediation Methods

- -- A.1. See instructions for Section GW-1, Item C.4.
- -- A.2. Self explanatory.
- -- A.3-4. Enter the information specified by the DNR for this method at this site.

Section IS-1, Soil Venting (Including both Soil Vapor Extraction and Bioventing)

- B.3. This subsection is used as a trigger for determining if the system requires an evaluation for future activities, such as improvements, converting the site to monitoring for natural attenuation, closure, etc. If an in situ respiration test must be performed, see Hinchee, R.E. and Ong, S.K. 1992. A Rapid In Situ Respiration Test for Measuring Aerobic Biodegradation Rates of Hydrocarbons in Soil. *Journal of the Air and Waste Management Association*. Volume 42, Number 10. Pages 1305 to 1312 for general procedures. For a discussion of methane monitoring, see the instructions for Section IS-2, item A.1.d., below. If the contaminant extraction rate in B.3. is greater than the trigger levels, leave lines B.3.a.i. and B.3.a.ii. blank.
- -- C. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

Site name: Former DuPont Barksdale Works		Rer
Reporting period from: 05/22/2019	To: <u>05/21/2020</u>	Mo
Days in period: 365		Form

4400-194 (R 07/19)

Section IS-2, Natural Attenuation in Soil

- -- A.1. This data is used to assess subsurface conditions based on soil gas data. Whenever possible, a permanently installed gas probe should be used. If at all possible, the gas probe should be located in the part of the site that is most heavily contaminated, since that is the part of the site that is likely to take the longest amount of time to meet ch. NR 720 standards. Water table wells that have screen exposed above the water table are also good measuring points. When installing permanent gas probes, you should install the screen deep enough that a true measure of the most heavily contaminated soil is possible, but install the screen shallow enough to assure that it is not submerged by groundwater table fluctuations. In some situations where the depth of contamination is variable, consideration should be given to using nested gas probes instead of only using probes at a single depth. Measuring points that should not be used include temporary gas probes because these points are less repeatable from one monitoring event to the next. Also, if there has been an active soil venting system in use at the site, the air extraction wells should not be used because these wells are in locations that have had much more aggressive treatment than the rest of the site.
- -- A.1.a. A flame ionization detector (FID) is specified instead of a photo ionization detector (PID) because PIDs often read inaccurately in moist oxygen deficient/carbon dioxide rich atmospheres. Also, PIDs do not detect some petroleum compounds.
- Methane readings are used to measure for anaerobic conditions. When the original product that is lost is a A.1.d. refined petroleum product (not crude oil), there should not be any methane within the product. Methane however may be produced under very anaerobic conditions. Any method may be used for measuring methane provided that the detection limit is less than a few ppmy. One convenient method is to use an FID that is equipped with a granular activated carbon filter to filter out non-methane components. Some instrument manufacturers make these filters available as options. In some cases an FID will flame out due to an oxygen deficiency. Some instrument manufacturers offer a dilution device as an accessory that is designed to prevent flameouts and also raises the upper limit of measurement to 10,000 ppmyor higher. If the meter "pegs" at 10,000 ppmy(or one percent), enter ">10,000 ppmv."
- -- A.2. The background monitoring point is predominantly used to measure natural oxygen and carbon dioxide levels in soil over time. For this reason, the background monitoring point should be reasonably close to the site, but not so close that the conditions are no longer representative. Considerable variations over time can occur, this background point should be measured during every sample event. Considerations for determining if a background point is representative include:
 - If an on-site background point has minor levels of VOCs in it due to gas phase diffusion, that is acceptable, but if the levels are high, it may not be representative of true background conditions.
 - Background oxygen and carbon dioxide levels vary with soil type and natural organic carbon content. For this reason, if at all possible, the soil types should be identical within the screened interval of all gas probes.
 - The same depths should be used for all gas probes to allow comparison from one location to the next. If the depth to water varies greatly across the site, a certain amount of confusion in the data is likely. In this case, use professional judgement to provide the best data possible at a reasonable cost.
- -- A.3. Enter this data for petroleum fuel sites. For other sites, provide the data that is most appropriate for the situation.
- Cross sections are self explanatory, see the generic discussion at the end of the instructions (below) for other -- B. attachments.

Section IS-3, Other In Situ Soil Treatment Methods

-- A.2. Enter the information specified by the DNR for this method at this site.

Site name: Former DuPont Barksdale Works
Reporting period from: 05/22/2019 To: 05/21/2020
Days in period: 365

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 07/19)

Section ES-1, Ex Situ Soil Treatment Using Biopiles

- -- A.3.a. The term "artificial nutrients" essentially means agricultural fertilizers or any other fertilizer products.
- -- A.3.a.i. The types of fertilizers that are added should be listed here by chemical names, not by vendor trade names.
- A.3.a.ii. List nitrogen content as N, list phosphorous content as phosphoric acid (P2O5). Note: Fertilizer ratings are based not on actual content of N, P and K, but on nitrogen (as N), phosphorous (as P2O5) and potassium (as K2O).
- -- A.4.c. See example calculations at the end of this set of instructions.
- -- A.5. Enter this data for petroleum fuel sites. For other sites, provide the data that is most appropriate for the situation.
- -- B. The figure is self explanatory. See the generic discussion at the end of the instructions (below) for instructions for the tables.

Section ES-2, Ex Situ Soil Treatment Using Landspreading/Thinspreading

-- B. A map to scale of the landspreading location including and landmarks or benchmarks. When samples have been collected, the distances to any landmarks or benchmarks should be indicated.

Section ES-3, Other Ex Situ Soil Treatment Methods

-- A.2. Enter the information specified by the DNR for this method at this site.

Reporting period from: 05/22/2019

To:<u>05/21/2020</u>

Days in period: <u>365</u>

Section INS- 2, Figures, Graphs and Tables

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 07/19)

When figures and graphs are specified, they should at a minimum contain the following information, or an explanation as to why the information is not necessary.

Maps. All maps should include the applicable information specified in s. NR 724.11(6), Wis. Adm. Code. In most cases, all information can be combined into a single map. There are times that a single map will have so much data that it is essentially unreadable. The consultant should use professional judgement when determining if a single map or multiple maps best portray the information necessary.

- Groundwater Contour Map Guidelines.
 - -- List groundwater elevations for each measuring point on the map.
 - -- Use the most recent data available.
 - -- For water table maps, do not use data from deeper piezometers. If piezometer data is shown, use a different symbol for the piezometers than used for water table wells.
 - -- If any wells are dry, indicate that on the map.
 - -- If free product is present at site, shade the area where free product is estimated to be present.
 - -- If groundwater is extracted with a pump and treat system, also denote plume capture zone.
 - -- If in situ air sparging or soil venting is in use, specify on the map if the system was operating or shut down during the water level measurements. See the Subsection on water table maps in the *Guidance on Design, Installation and Operation of Ground Water Extraction and Product Recovery Systems* for more information on this topic.
- Groundwater Contaminant Distribution Map Guidelines.
 - -- Only contaminants that exceed the ch. NR 140 ES or PAL should be shown on the map. When contaminants are above the PAL or ES at some data points and below the PAL or ES at other data points, list the data for all locations to portray which areas of the site meet ch. NR 140 groundwater quality standards.
 - -- If a well is not sampled due to the presence of free product indicate "FREE PRODUCT" at those data points.
 - -- If more than five contaminants exceed ch. NR 140 ES, only the five contaminants that require the greatest percent reduction to achieve ch. NR 140 ES or PAL should be shown on the map.
 - -- Drawing isoconcentration lines is optional, unless specified for the site on a site specific basis.
 - -- If the contamination has crossed the property line, that property line should be clearly denoted on the map.
 - -- If in situ air sparging is used, water samples from ch. NR 141 type monitoring wells may not represent aquifer water quality as a whole. For that reason, groundwater data should be obtained from driven probes with no filter pack. If there are no driven probes and conventional ch. NR 141 monitoring wells are used, shut down the air injection system at least two weeks prior to collecting groundwater samples. See the *Guidance on Design, Installation and Operation of In Situ Air Sparging Systems*and the August 1995 update sheets for more information on this topic.
- Dissolved Oxygen Map Guidelines.
 - -- Dissolved oxygen data may be shown on the contaminant concentration graphs or on a separate graph.
 - -- Dissolved oxygen maps are optional for ground water extraction and product recovery systems.
 - --- When in situ air sparging is used, monitoring points may not represent aquifer water quality as a whole. For that reason, groundwater data should be obtained from driven probes with no filter pack. If there are no driven probes and conventional ch. NR 141 monitoring wells are used, shut down the air injection system at least two weeks prior to collecting groundwater samples for DO. See the *Guidance on Design, Installation and Operation of In Situ Air Sparging Systems* and the August 1995 update sheets for more information on this topic.
- Well and Soil Sample Location Map Guidelines. Well and sample location maps for all methods should clearly indicate the location(s) of the release or the area where soil contamination historically has been highest. Also, if part of the contamination has been excavated, the pit boundaries.

The recommended documentation for each remedial method is as follows:

Site name: Former DuPont Barksdale Works	
Reporting period from: 05/22/2019	To: <u>05/21/2020</u>
Days in period: 365	

Form 4400-194 (R 07/19)

Maps (Continued).

- -- Natural Attenuation in Groundwater separate well location maps should not be provided, instead the wells should be indicated on the groundwater contour maps.
- -- Soil Venting indicate all air extraction wells. If any gas probes are used to assess subsurface conditions in either contaminated zones or background locations, also indicate those data points with a different symbol. If soil samples have been collected recently to track progress, indicate those locations with the date of sampling noted on the map.
- -- Natural Attenuation in Soil show all monitoring points. Indicate which data points are background measuring points. If soil samples have been collected recently to track progress, indicate those locations with the date of sampling noted on the map. If the site was previously treated by soil venting, the locations of former air extraction wells should also be shown since these are areas where aggressive treatment has been applied. Also show area(s) of paved and unpaved ground surface. If pavement is significantly broken to allow significant water infiltration and air diffusion, map that area as broken pavement.

Graphs. All graphs that show time versus contaminant concentration or cumulative contaminant removal should be based on total time, not only operation time. All graphs that denote cumulative removal should use pounds of contaminant removed. Graphs should accurately show the time period(s) when the system was not operating. Plot time on the X axis, concentration or cumulative removal data on the Y axis.

- Time Versus Cumulative Removal. The recommended documentation for each remedial method is as follows:
 - -- Groundwater Extraction and Product Recovery separate graphs should be used for free product recovery and dissolved phase recovery. A single graph for each phase is adequate, per well graphs are only necessary when specified by the Department on a site specific basis.
 - -- In Situ Air Sparging no graph is necessary (removal data is shown on the graphs for the soil venting system).
 - -- Natural Attenuation in Groundwater no graph is necessary.
 - -- Soil Venting provide a graph of cumulative removal for total VOCs for the total system.
 - -- Natural Attenuation in Soil no graph is necessary.
 - -- Ex Situ Soil Treatment Using Biopiles Provide two graphs, one showing cumulative removal of total VOCs and a second graph showing total contaminant biodegradation over time.
 - -- Ex Situ Soil Treatment Using Landspreading/Thinspreading no graphs are needed.
- Time Versus Contamination Concentration Graphs. Create graphs with contamination level on the y axis (semilog scale) and time on the x axis (linear scale). If free product is present, time versus contamination concentration graphs are not necessary.

The recommended documentation for each remedial method is as follows:

- -- Groundwater Extraction and Product Recovery graph the contaminant level over time for the groundwater that is extracted by the extraction system. List all compounds that exceed ch. NR 140 ES or PAL. If over five contaminants exceed ch. NR 140 ES or PAL, only list the five contaminants that exceed ch. NR 140 standards by the greatest percent.
- -- In Situ Air Sparging provide a graph for the single monitoring well that is most heavily contaminated. If over five contaminants exceed ch. NR 140 ES or PAL, only list the five contaminants that exceed ch. NR 140 standards by the greatest percent.
- -- Natural Attenuation in Groundwater provide a graph for all monitoring wells that contain any compounds that exceed ch. NR 140 standards. If over five contaminants exceed ch. NR 140 ES or PAL, only list the five contaminants that exceed ch. NR 140 standards by the greatest percent.
- -- Soil Venting provide a graph of contaminant concentration over time for the entire system for total VOCs. If any gas probes are used to assess subsurface conditions in either contaminated zones, also provide a graph with the data from the most heavily contaminated gas probe.
- -- Natural Attenuation in Soil provide a graph of contaminant concentration over time for total vapor phase VOCs as measured with an FID, oxygen, carbon dioxide and methane in an gas probe.
- -- Ex Situ Soil Treatment Using Biopiles no graph is necessary.
- -- Ex Situ Soil Treatment Using Landspreading/Thinspreading no graphs are needed.

Site name: Former DuPont Barksdale Works	
Reporting period from: 05/22/2019	To: <u>05/21/2020</u>
Days in period: <u>365</u>	

Form 4400-194 (R 07/19)

Graphs (Continued).

Graph of Contaminant Concentrations Versus Distance. If free product is present, a graph of contaminant concentrations versus distance is not necessary.

The recommended documentation for each remedial method is as follows:

- -- Groundwater Extraction and Product Recovery no graph is necessary.
- In Situ Air Sparging and Natural Attenuation in Groundwater plot a graph with distance (on the x axis, linear scale) and contaminant concentrations (y axis, log scale) from the upgradient measurement point to the farthest downgradient data point along the centerline of the plume. List the same contaminants as shown on the Time Versus Contaminant Concentration Graphs. Clearly show the source area on the graph. If free product has been present, label the data points that previously contained free product. For in situ air sparging, see comments above about samples collected from conventional monitoring wells with filter packs versus driven probes.

Tables. Whenever possible, data over the life of the project should be listed.

The recommended documentation for each type of table is as follows:

Groundwater Contaminant Chemistry Data.

List:

- -- Contamination levels for all contaminants that exceed ch. NR 140 standards.
- -- Dissolved oxygen levels if applicable.
- -- Other biological parameters, if applicable (nitrogen, phosphorous, manganese, sulphate, iron, dissolved methane, redox potential, pH, microbial population size, etc.). See instructions for page GW-3 for more information on these parameters. Also, list the dates the samples were collected and the standard methods used to analyze the samples.
- Groundwater Biological Parameters.

For natural attenuation in groundwater only, these measurements should be listed (if known) to provide information on biodegradation. This table is not necessary for free product extraction, groundwater extraction or in situ air sparging.

Provide a table that includes any results of tests conducted for dissolved oxygen, nitrate, manganese, iron, sulphate, methane, redox potential, heterotrophic and/or hydrocarbon degrading microorganism populations. Identify on the table if the monitoring locations are upgradient, side gradient, downgradient, or within the plume, dates of sampling, and the analytical methods used for those parameters. Include all data for the life of the project. Since some of these tests are only conducted once, or periodically - enter "NS" in the table for not sampled for any parameters that were not sampled during a particular round of sampling.

When asked to list the standard methods, list the method if a standard method exists. There are however some tests (for example dissolved methane) where there are no official standard laboratory or field methods. In this case the laboratory will have to create their own standard procedures. In these cases list the name of the laboratory and that laboratory's name for that test.

Specific considerations for each parameter are as follows:

- -- Dissolved oxygen (mg/L). The most efficient mechanism for natural or enhanced biodegradation of petroleum compounds is aerobic biodegradation.
- -- Nitrate (mg/L as N). Nitrate (NO3⁻¹) is a potential electron acceptor for denitrification and also serves as a nutrient for heterotrophic microbial populations to enhance aerobic biodegradation. Decreasing nitrate levels from background wells to wells within the plume are an indication of either aerobic or anaerobic biodegradation.

Site name: Former DuPont Barksdale Works		Re
Reporting period from: 05/22/2019	To: <u>05/21/2020</u>	Mo
Days in period: ₃₆₅		For

Form 4400-194 (R 07/19)

Tables (Continued).

- -- Dissolved sulphate (SO4⁻², mg/L). Sulphate (SO4⁻²) is a potential electron acceptor. Decreasing sulphate levels from background wells to wells within the plume are an indication of anaerobic biodegradation.
- Dissolved methane (mg/L). Methane is produced under anaerobic conditions. Since background methane levels can usually be assumed to be zero, in most cases only measurements within the plume are used. Exceptions are when the natural soils have very high levels of TOC (for example peat), background methane levels are also warranted. When the contaminant is crude oil instead of a refined petroleum product, methane measurements may however cause erratic results. Significant amounts of methane may be created when other electron acceptors (NO3⁻¹, Mn⁺⁴, Fe⁺³and SO4⁻²)
- are exhausted. For this reason, significant levels of methane are indicative of very very anaerobic conditions.
 Redox potential (millivolts, include + or sign). Redox potential is another measure of the level of aerobic/anaerobic conditions, however it is a much more sensitive measurement than DO at very low levels of DO.
- -- Heterotrophic and hydrocarbon degrading microorganism populations (CFU/mL). Heterotrophic and specific hydrocarbon degrader population sizes should be listed for both background locations and locations within the plume, if there is information available. There is disagreement by many of the experts within the field as to the merits of sampling for this parameter. Refer to other DNR guidance documents on natural attenuation (or passive bioremediation) for more information on this topic.

Soil Gas Data.

The recommended documentation for each remedial method is as follows:

- -- When natural attenuation in soil is used, provide a graph of all soil gas readings over time for every data point.
- When soil venting is used, if a gas probe is used to assess subsurface conditions over time in a location where air is not extracted, provide that data in a table.
- System Operational Data.

The recommended documentation for each remedial method is as follows:

- -- Groundwater Extraction and Product Recovery:
 - [°] Well by well flow rates in gpm for each extraction well. If a well is off line, list flow rate as "ZERO." Clearly denote on the table periods of system shutdown.
- -- In Situ Air Sparging:
 - [°] Air pressure and injection flow rates in scfm for each well. If a well is off line, list flow rate as "ZERO." Clearly denote on the table periods of system shutdown.
- -- Natural Attenuation in Groundwater no table needed.
- -- Soil Venting:
 - Vacuum readings and extraction rates in scfm for each well. If a well is off line, list flow rate as "ZERO." Clearly denote on the table periods of system shutdown.
 - [°] Air concentrations in ppm_Vor in mg/L for total VOCs.
 - * Total system contaminants removed in pounds and the pounds per day removal rate.
- -- Natural Attenuation in Soil no table needed.

Reporting period from: 05/22/2019

Days in period: <u>365</u>

Tables (Continued).

- -- Ex Situ Soil Treatment Using Biopiles:
 - 0 If forced air ventilation is used:
 - System extraction rates in scfm.
 - Air concentrations in ppmvfor total VOCs. -
 - Total system contaminants removed in pounds and the pounds per day removal rate.
 - Temperature.
 - 0 If passive ventilation is used, a table of temperatures.
- -- Ex Situ Soil Treatment Using Landspreading/Thinspreading no table is needed.

To:<u>05/21/2020</u>

Acronyms and Abbreviations:

	colony forming units per milliliter
	centimeters per second
	Department of Agriculture, Trade and Consumer Protection
	Department of Commerce
DNR	Department of Natural Resources
DO	Dissolved Oxygen
DRO	Diesel Range Organics
ES	Enforcement Standards in NR 140
FID	Flame Ionization Detector
ft/yr	feet per year
gpd	gallons per day
gpm	gallons per minute
GRO	Gasoline Rage Organics
mg/kg	milligrams per kilogram
mg/Lmill	ligrams per liter
NŘ	prefix for rules established by the DNR
P.E.	Registered Professional Engineer
P.G.	Registered Professional Geologist
PAL	Preventative Action Limit in NR 140
PECFA	the state sponsored cleanup fund for certain petroleum contaminated sites
ppmv	parts per million by volume (vapor phase only)
scfm	standard cubic feet per minute
TOC	Total Organic Carbon
USCS	Unified Soil Classification System
USDA	United States Department of Agriculture
µg/kg	micrograms per kilogram
µg/mL	micrograms per milliliter
VOC	Volatile Organic Compounds

- Volatile Organic Compounds ΟC
- Y/N Yes or No

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 07/19)

Reporting period from: 05/22/2019

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Days in period: 365

Form 4400-194 (R 07/19)

Section INS-3, Example Calculations for Determining the Biodegradation Rate on Forced Air Biopiles

To: 05/21/2020

Important Note: This page uses a nonproportional font and characters that are unique to WordPerfect. If the user received this document electronically, this page may need to be converted to a different font for the formulas to print correctly. The original font used for this page was prestige elite with 16.67 characters per inch.

Assumptions:

- The measurements at the stack are as follows:
 - -- Average flow rate is 20 scfm.
 - -- Average oxygen level extracted from biopile is 14.0 percent by volume.
 - -- Average carbon dioxide level extracted from biopile is 3.5 percent by volume or 35,000 ppmv.
- Atmospheric air contains 21 percent oxygen by volume and 400 ppm_V(or 0.04 percent) carbon dioxide. (Note: On each site visit, the consultant should check atmospheric air to assure that the instrument is spanned correctly.)
- Atmospheric air weight 0.0763 pounds per cubic foot at standard temperature and pressure (Gibbs, 1971).
- Average molecular weight of air is 28.97 (Gibbs, 1971) which is rounded off to 29, molecular weight of O2 is 32, molecular weight of CO2 is 44.
- For every pound of contaminants biodegraded, 3.3 pounds of oxygen is utilized and up to 3.2 pounds of carbon dioxide is generated.
 - -- The stoichiometry of aerobic benzene biodegradation can be described as follows:

C6H6+ 7.5 O2 -- -- > 6 CO2+ 3 H2O

Based on this, benzene biodegradation requires that 3.07 pounds of oxygen are utilized to fully oxidize one pound of benzene, assuming no electron acceptors other than oxygen are used. Assuming no biomass is produced and no geochemical reactions consume carbon dioxide, 3.38 pounds of carbon dioxide is generated from one pound of benzene.

-- The stoichiometry of aerobic hexane biodegradation can be described as follows:

C6H14+ 9.5 O2 -- -- > 6 CO2+ 7 H2O

Based on the above assumptions, hexane biodegradation requires 3.52 pounds of oxygen and generates up to 3.06 pounds of carbon dioxide.

Other hydrocarbons also require a similar ratio of oxygen for aerobic biodegradation. For purposes of this guidance it is assumed that a pound of petroleum contamination requires 3.3 pounds of oxygen and generates up to 3.2 pounds of carbon dioxide and 1.1 pounds of water in the biodegradation reaction.

Calculations:

Oxygen utilization rate:

Reporting period from: 05/22/2019

Days in period: <u>365</u>

Calculations (Continued):

Biodegradation rate based on oxygen:

7.07 / 3.3 = 2.1 pounds per hour

Biodegradation rate based on carbon dioxide:

4.81 / 3.2 = 1.5 pounds per hour

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 07/19)

Since the biodegradation rate is based on oxygen utilization and/or carbon dioxide generation, it is a measure of the overall biodegradation rate of all carbon sources, including natural organic carbon and any organic materials that were added. For this reason, the biodegradation rate is not specific to hydrocarbons and it is likely that the measured biodegradation rate will overestimate the rate of contaminant reduction.

To: 05/21/2020

Commonly the measured biodegradation rate based on carbon dioxide generation is less than the rate estimated with oxygen. Because of geochemical interferences and biomass formation, estimates based on carbon dioxide measurements are often low. If however the biodegradation rate estimate based on carbon dioxide is significantly greater than the estimate based on oxygen, it is likely that there is a measurement or calculation error. In this way, the carbon dioxide measurements can be used to double check the oxygen measurements and calculations. **VEOLIA** ENVIRONMENTAL SERVICES

USI-120319

					- X-				IN IN SHIT SHE FT	78		-					
Source Nume and Nation Statement of National Statement of Nation Statement of National Statement of National Statement of Natio	1			Torrest and the second second second		47			an meanings	e Phone	4 Shipping Z	Z 0	085	462	6		
11 U.S. ENG Decked: VICULA ESTCHNCL & COUNTIONS U.S. ENG DECKNCL & COUNTIONS 12 Dogspace Facility, Name 13 Dogspace Facility, Name 14 Dogspace Facility, Name 15 Dogspace Facility, Name 16 Dogspace Facility, Name 17 Dogspace Facility, Name 18 Dogspace Facility, Name 19 Dogspace Facility, Name 10 Dogspace Facility, Name 10 Dogspace Facility, Name 11 Dogspace Facility, Name 12 Dogspace Facility, Name 13 Dogspace Facility, Name 14 Dogspace Facility, Name 15 <t< td=""><td></td><td></td><td></td><td>the second se</td><td>1.1.0</td><td>and the second se</td><td></td><td></td><td></td><td>i (if different th</td><td>an mailing address</td><td></td><td></td><td></td><td>-</td></t<>				the second se	1.1.0	and the second se				i (if different th	an mailing address				-		
1 10. 2. EVE Dutabel: VICALLA ESTENINCAL SOLUTIONE II D 0 0 0 3 9 6 7 1 3 6 9 VICAULA ESTENINCAL SOLUTIONE U.S. EPK D burker VICAUNA ESTENINCAL SOLUTIONE VILLA ESTENENALA, WILLA ESTENENALA, W		CHE 1725 GOI Gener	CHEMOURS BARKSDALE WORKS C/O ALCOM 1722+W 17TH PL 500 W. Jefferson Str. 1600 WASHBURN, WI 54891 GOLDEN, CO-80401-2508 LOUISWILL, 144 40202														
T. Screeping: 2 Company Name		6. Transporter 1 Company Name															
WILLIA NASI JUCUNCAJA (2010) Yesti NA SI JUCUNCAJA (2010) <td< td=""><td></td><td>10.25-00</td><td colspan="8"></td><td></td><td></td><td>003</td><td>1 3</td><td>0 9</td></td<>		10.25-00											003	1 3	0 9		
WILLIA NASI JUCUNCAJA (2010) Yesti NA SI JUCUNCAJA (2010) <td< td=""><td></td><td>8 Des</td><td>sionaled Facility Name an</td><td>d Site Address</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>U.S. EPAID N</td><td>umber</td><td></td><td></td><td></td></td<>		8 Des	sionaled Facility Name an	d Site Address						_	U.S. EPAID N	umber					
Bit USE DOT Description (Deckarg Proper Shypoling Name, Hazard Class. 1D Number. 10. Containers 11. Ibid Dourlay 12. Use UNAME 13. Codes VII. Second Harding Concerning Conc		VEOLIA ES TECHNICAL SOLUTIONS, W124 N9451 BOUNDARY															
Image: State		Facilit											396	7 1	48		
Image: Second State Second State Image: Second State Second State Image: Second State Second State Image: Second State Second State Image: Second State Second State Image: Second State Second State Image: Second State Second State Image: Second State Second State Image: Second State Second State Image: Second State Second State Image: Second State Second State Image: Second State Second State Image: Second State Second State Image: Second State Second State Image: Second State Second State Image: Second State Second State Image: Second State Se					Shipping Name, Haz	ard Class, ID Number,				1	1		13.0	Codes			
	ATOR -	X	¹ NA2212, ASB	ISTOS, 9, III, 1	RQ (ASBESTO	(8)			ĩ	DF	20#	Þ	NONE				
	NER	-	2 NON-REGUL	ATEO MATER	IAL NON-RC	RA NON-DOT.			1		1-	-	NONE	_			
A Special Handling Instructions and Additional Information ER. Service Contracted by VEBTE +-OU36150 +-Contract retained by generator conting on anihal transporters to add or substitute additional transporters on generator's behalf. + Security (Contract retained by Security (Contract Retained	8		(USED OIL)						1	DM	30括	P	-				
14. Special Handing Instructions and Additional Information ER. Beavice Contracted by VESTB + Ox135190 + Contract retained by generators obtained in the second or embedding additional transporting on generator's bahalf 19. ISRC: 171 W:160397 A: CWDABBEBETOR I 2W.655212 A: BEREDUP101 19. ISRC: 171 W:160397 A: CWDABBEBETOR II 2W.655212 A: BEREDUP101 19. ISRC: 171 W:160397 A: CWDABBEBETOR II 2W.655212 A: BEREDUP101 19. ISRC: 171 W:160397 A: CWDABBEBETOR II 2W.655212 A: BEREDUP101 19. ISRC: 171 W:160397 A: CWDABBEBETOR III on the product has contracted of the contents of the content			3.														
14. Special Handing Instructions and Additional Information ER. Bervice Contracted by VESTB										_							
Besenetic confers agency authority on initial response to sold or subjective sold sold sold sold sold sold sold sold			4														
Besenetic confers agency authority on initial responsive to add or subject to a												_					
		14. Sp			Construction of the second	ER Service Contr asporter to add or 2) W:685212 A:8	acted by Vi substitute RRDUP10	EST8 + additional t I	OU361 Masport	90 + Cor ters on ger	ntract retained perator's behal	ι by £ +					
Image: Statements Im		15.0 C 0 n 0	SENERATOR S/OFFERO narked and labeled/placa	R S CERTIFICATIO rded, and are in all re	N: I hereby declare aspects in proper cor	that the contents of this adition for transport acc	s consignment a ording to applic	are fully and acc able internation	curately de tal and nat	scribed above ional governm	nental regulations.		e, and are clas	sified, packa	aged,		
Image: Statements Im		0 Gener	ator's/Offeror's Printed/Ty	ped Name			Sig	del.	Al	1	Ton bet	eff	Mon	th Day	Year		
Transporter signature (for exports only): Image: Control only of the second only	¥	E	lizabeth	Bisho	ρ		14	Allh	D	4P	of chr	ww	:) 11	1170	119		
17. Transporter 1 Printed/Typed Name Month Day Year Transporter 1 Printed/Typed Name Month Day Year Transporter 2 PrintediTyped Name Month Day Year Transporter 2 PrintediTyped Name Month Day Year 18. Discrepancy Ia. Discrepancy Ia. Discrepancy Ia. Discrepancy 18. Alternate Facility (or Generator) U.S. EPA ID Number Full Rejection Facility's Phone: Ia. C. Signature of Alternate Facility (or Generator) Wonth Day 19. Report Management Method Codes (i.e., codes for treatment, disposal, and recycling systems) Ia. Lease State	NT'L				U.S.		Export from	S			C	/	/				
18. Discrepancy 18a Discrepancy Indication Space Quantity Type Residue Shipping Document Tracking Number: 18b. Alternate Facility (or Generator) U.S. EPA ID Number IBc. Signature of Alternate Facility (or Generator) Month Day Year 19. Report Management Method Codes (i.e., codes for treatment, disposal, and recycling systems) 1. 2 1. 2 20. Designated Facility Owner or Operator: Certification of receipt of shipment except as noted in Item 18a Philed/Typed Name Month Day Year 12 QB					ent		D.		Date leav	ing U.S.: I							
18. Discrepancy 18a Discrepancy Indication Space Quantity Type Residue Shipping Document Tracking Number: 18b. Alternate Facility (or Generator) U.S. EPA ID Number IBc. Signature of Alternate Facility (or Generator) Month Day Year 19. Report Management Method Codes (i.e., codes for treatment, disposal, and recycling systems) 1. 2 1. 2 20. Designated Facility Owner or Operator: Certification of receipt of shipment except as noted in Item 18a Philed/Typed Name Month Day Year 12 QB	ORTI	Transp	-	D. #			Sigr	nature	, -				Mon		1 A		
18. Discrepancy 18a Discrepancy Indication Space Quantity Type Residue Shipping Document Tracking Number: 18b. Alternate Facility (or Generator) U.S. EPA ID Number IBc. Signature of Alternate Facility (or Generator) Month Day Year 19. Report Management Method Codes (i.e., codes for treatment, disposal, and recycling systems) 1. 2 1. 2 20. Designated Facility Owner or Operator: Certification of receipt of shipment except as noted in Item 18a Philed/Typed Name Month Day Year 12 QB	NSP	Transp			<u> </u>		æ	olexore				>	Mon	-	Year		
18a. Discrepancy Indication Space Quantity Type Residue Partial Rejection Shipping Document Tracking Number: U.S. EPA ID Number 18b. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone: Image: Contract of the state facility (or Generator) Month Day 19. Report Management Method Codes (i.e., codes for treatment, disposal, and recycling systems) 3 4. 20. Designated Facility Owner or Operator: Certification of receipt of shipment except as noted in Item 18a Month Day Year Philed/Typed Name Month Day Year 12 QB / 9		40.01					1				-						
Shipping Document Tracking Number: 18b. Atternate Facility (or Generator) U.S. EPA ID Number Facility's Phone: 1 18c. Signature of Alternate Facility (or Generator) Month Day 19. Report Management Method Codes (i.e., codes for treatment, disposal, and recycling systems) 1 1 2 3 4 20. Designated Facility Owner or Operator: Certification of receipt of shipment except as noted in Item 18a Month Day Phyted/Typed Name Month Day Year 12 020 04 12	Î	1.5271.5			ib.	Tune			siduo		Rartial Pain	ction	Г	Full Poin	etian		
18b. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone: 18b. Alternate Facility (or Generator) 18b. Alternate Facility (or Generator) Month 18b. Alternate Facility (or Generator) Month 18b. Alternate Facility (or Generator) Month 19. Report Management Method Codes (i.e., codes for treatment, disposal, and recycling systems) 4. 1 2. 1 2. 20. Designated Facility Owner or Operator: Certification of receipt of shipment except as noted in Item 18a Proted/Typed Name Month 12 0.00000000000000000000000000000000000				C Quali		- sype									newser I		
20. Designated Facility Owner or Operator: Certification of receipt of shipment except as noted in Item 18a Proted/Typed Name Month Day Year 12. 102. 19	È	18b_A	Iternate Facility (or Gener	rator)				Shipping	Documen	it Tracking Nu		umber					
20. Designated Facility Owner or Operator: Certification of receipt of shipment except as noted in Item 18a Proted/Typed Name Month Day Year 12. 102. 19	FACIL	Enoitie	da Phone								1						
20. Designated Facility Owner or Operator: Certification of receipt of shipment except as noted in Item 18a Proted/Typed Name Month Day Year 12. 102. 19	TED			tity (or Generator)									Mo	nth Day	Year		
20. Designated Facility Owner or Operator: Certification of receipt of shipment except as noted in Item 18a Proted/Typed Name Month Day Year 12. 102. 19	IGNA	19. Re	port Management Metho	d Codes (i.e., codes	for treatment. dispos	al, and recycling system	ms)		_						-		
Protect/yped Name Month Day Year 12 10319	DES	1.	1101	And Article Control of the second	2.	1					4.						
Protect/yped Name Month Day Year 12 10319		20. De	signated Facility Owner of	or Operator: Certificat	tion of receipt of shin	ment except as noted i	n Item 18a										
DESIGNATED FACILITY TO GENERATOR				00	00	00		natu	-				Mor	th Day	Year		
	4		win	IN IC	UN	(x)		pre			DESI	GNATE		TO GEN	ERATOR		

	_												
1	DOC	PPING CUMENT		mber	2 Page 2	(87	gency Response 7) 818-0087				0854	1 62	5
	CHI 132 GOI Gener	rator's Phone:	BDALE WORKI 500 W. H. H. M. 1-2508 L. Cu 6 303 216-2558	SY BIBHOP, BETS CIO, ARECON IN Shref, IC VIIC, KY 4020	и віянор 20	7231	or's Site Address 5 STATE HIG HBURN, W	HWAY					
1	6. Transporter 1 Company Name U.S. EPA ID Number												
	VEC	VEOLIA 55 TECHNICAL SOLUTIONS N J D 0 8 0										13	69
	7. Trar	7. Transporter 2 Company Name U.S. EPA ID Number											
	8. Designated Facility Name and Site Address 1275 MINERAL SPRINGS DRIVE PORT WASHINGTON, WI 53074 I W I D 9										856	65	4 3
	Facilit	y's Phone: 262	243-8900		_								
	9a. HM	9b. U.S. DOT Descri and Packing Group (Shipping Name, Hazard Clas	ss, ID Number,		10. Contain No.	ers Type	11. Total Quantity	12. Unit Wt./Vol.	13. Co	odes	
GENERATOR -	X	^{1.} UN3480, LIT	THIUM ION BAT	TERIES, 9 UNIVER	SAL WASTE		1	DF	116	р	NONE		
- GENEI	X	2. UNB090, LIT WASTE	THIUM METAL	BATTERIES, 9 UNI	VERSAL		1	DF	115	р	NONE		
		3. UNIVERSA	L WASTE-LAM	P8		I	20	CF	1012	р	NONE		
			LATED MATER	lal, non-rcra, n	ION-DOT.		1	DF	515	р	NONE		
		1) ERG: 147 W:(REQUIRED 4) GENERATOR S/OFFEF	679236 A 888L1 W 679246 A 81 ROR S CERTIFICATIO	Interview of the second	contents of this consignm	ent are fully a	(3) W:6792	42 A: 888		18 COU	09	fied, packa	ged,
	Gener	Elizabu	Typed Name M Bis	hip		Signature	line	K/	1/2/01	stat	Month Defus	Day	Year
INT'L -		ernational Shipments porter signature (for ex	Import to		Export fro	m U.S.	Port of ent		Dr		~	5115	
-	-	ansporter Acknowledgm	And the second division of the second divisio	ent	N 8	4	Date leaving	9.0.0.01	-			_	
RTE		orter 1 Printed/Typed N		1		Signature	1				Month	Day	Year
TRANSPORTER	Transp	porter 2 Printed/Typed N	Name	engler		Signature	10	2			Month	Day	19 Year
1	18. Dis	screpancy											-
	18a D	Discrepancy Indication S	Space 🔲 Quant	üty	Туре	St	Residue	Tracking Nur	Partial Reje	ction		Full Rejec	tion
DESIGNATED FACILITY	18b. A	Itemate Facility (or Ger	nerator						U.S. EPA ID N	umber			
FA	Facility	y's Phone:							1				
0		ignature of Alternate Fa	acility (or Generator)						-		Mont	h Day	Year
ATE											1	1	
B	40.0	A Management of	and Onders Concerned	feedback the second	and the second second	-		_				1	
S	19. Re	eport Management Meth	nod Codes (i.e., codes	for treatment, disposal, and r	ecycling systems)	2			1.			_	
ă	1. H	F141		2 HIN		3. HOIO			1410	11			
			er or Operator: Certificat	tion of receipt of shipment ex	cept as noted in Item 18a								
	Printer	WTyped Name Wrchacl Gnt	<i>hace</i>			Signature					Month A	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Year 10

DESIGNATED FACILITY TO GENERATOR

	(continuation snear)	0133447	22. Page 2 of 2	23. Ship	ping Document	Tracking 08546		
	24. Generator's Name	ARREDALE WORKS						
	25. Transporter Company Name				U.S. EPAID N	lumber		
	26. Transporter Company Name				U.S. EPAID N	lumber		
	27a. 27b. U.S. DOT Description (including Proper Shipping Name, Hazard Cla HM and Packing Group (if any))	iss, ID Number,	28. Containe No.	ers Type	29. Total Quantity	30. Unit Wt./Vol.	31. Co	odes
	A NATTERIES, DRY, SHALED, B.O.S., (NICAD BATTERIES) UNIVERSAL WASTE		١	DF	10165	P	NONE	
5								
GENERALOR								
5								
				-				
	32. Special Handling Instructions and Additional Information CU36190	+ 5) W:679235 A:8851NEC	AD	_		1		
II I	33. Transporter Acknowledgment of Receipt of Shipmont Printed/Typed Name	Signature					Mont	h Day Year
NOLON	34. Transporter Acknowledgment of Receipt of Shipment Printed/Typed Name					_		
-		Signature					Mont	h Day Year
	35. Discrepancy							
UESIGNALED FACILIT	36. Report Management Method Codes (i.e., codes for treatment, disposal, and	recycling systems)						
-SIGN	36. Report Management Method Codes (i.e., codes for treatment, disposal, and 5. H /H							
ň	1							

No. of Concession, Name	0-2019	BILL OF LADING Page 1 of 1						of <u>1</u>				
SHIP FROM Name: Chemours Barksdale Works							Bi	ll of Ladin	g Number	:2019-0	01	
Address: 72315 Highway 13 South												
City/State	e/Zip: Was	hbum, WI	54806					B	ARCOD	ESF	ACE	
SID#:					FOB:				VOO	_		
Name: US	Army Corr		ILP TO	Loca	tion #:		•	RRIER NAME	er: 3// /	Tat	4.	
Address:				LUCA	uon #	-		aller number		107		
City/State							-	CAC:	(0).			
CID#:		gi			FOB:		a second second	127 (280) AND (200)	: 77201000-W	/H06-50	07987	
			GHT CHARGES BI	the same same s the		Orben		ture acknowledges receip				
			ormation System	IS		freigh	st only. P	leceived shipment is sub	ect I IIIIIII (BIILI)			II IEBII DIEIN EUDI 11. ma
Address:			20170			the te XPO L	ogistics	written contract, if any, i aditions and limitations o I Freight, Inc. rules tarilf.	(see www.xpa.com)		-4817	(4년 XP 4
City/State SPECIAL		and the second design of the s	03170					erynt Una apaid	Collect		3 rd F	Party X
			g & logistics, s	snecial	services				Master Bill of I			
, ay againe		e estimit	ig a rogionoo, c					(check box)	underlying Bill	s of La	ding	
CUSTOM	ER ORDER	NUMBER	# PKGS	WEIGH		LET/S	LIP	ATION	ADDITIONAL	L SHIP	HIPPER INFO	
					Y	ori	N	Non-Emerge	ncy Number: (303) 2	16-2558	(mail)
	_					-	-		rgency Contac)
						-			gene) eene			
											-	0
GRAND	TOTAL			CA	RRIER IN	EORM	ATIC	N				
GRAND		CKAGE		CA				DITY DES	CRIPTION		LTI	. ONLY
HANDLING			WEIGHT	CA H.M. Ø	Conmolity	OM		DITY DES	tion in handling or slowing portation with ordinary carr	j must be e	LTI NMFC	
HANDLING	UNIT PA		WEIGHT 2.5p	H.M.	Commodule so m UN1354	In required arked and p	MO special (package See	DITY DES or additional cars or after das to ensure suffer trans e Bection 2(e) of NMFC oluene, wetter	tion in handling or slowing portation with ordinary cars them 380 I	i musi ba	And a state of the	
	UNIT PA	TYPE		H.M. 00	Commodule to m UN1354 (with no	COMI a requiring artist and p Trini t less	MO special (package See itroto than	DITY DES or additional cars or after d as to ensure sale trans election 2(a) of NMFC oluene, wetter a 30%water),4	tion in handling or slowing portation with ordinary cars them 380 I	i musi bu	And a state of the	# CLAS
	UNIT PA	TYPE		H.M. 00	Commodule so m UN1354	COMI a requiring artist and p Trini t less	MO special (package See itroto than	DITY DES or additional cars or after d as to ensure sale trans election 2(a) of NMFC oluene, wetter a 30%water),4	tion in handling or slowing portation with ordinary cars them 380 I	i musi ba n	And a state of the	# CLAS
HANDLING T QTY TY 1 5 g	UNIT PA	1 PP	2.5p	H.M. 00	UN1354 (with no (8) 16	Trini t less oz pl	MO special package see throto than asti	DITY DES or alidoonal care or atter d a to ensure use trans- processor allow of NMFC bluene, wetter a 30%water),4 c jars	tion in handting or slowing portation with ordinary care ism 380 J, , 1, 1	t untit par	NMFC	# CLAS
	UNIT PA	TYPE		H.M. 00	UN1354 (with no (8) 16	Trini t less oz pl	MO special itroto than asti	DITY DES or allocarie or ather d as to ensure adde strang election 2(e) el NMFC: bluene, wetter a 30%water),4 c jars el drum Overp	tion in handting or slowing portation with ordinary care them 380 I, .1,1		NMFC	# CLAS
HANDLING T QTY TY 1 5 g	UNIT PA	1 PP	2.5p	H.M. 00	Converted to the test of the test of the test of test	Trini t less oz pl n 1A1 ck of ir	MO special of patchage itroto than asti stee	DITY DES or aliddional care or alter d as to ensure take tima bluene, wetted a 30%water),4 c jars el drum Overp or packages a	tion in handting or slowing portation with ordinary care them 380 I, .1,1		NMFC	# CLAS
HANDLING T QTY TY 1 5 g	UNIT PA	1 PP	2.5p	H.M. 00	Converted to the test of the test of the test of test	Trini t less oz pl n 1A1 ck of ir	MO special of patchage itroto than asti stee	DITY DES or allocarie or ather d as to ensure adde strang election 2(e) el NMFC: bluene, wetter a 30%water),4 c jars el drum Overp	tion in handting or slowing portation with ordinary care them 380 I, .1,1		NMFC	# CLAS
HANDLING T QTY TY 1 5 g	UNIT PA	1 PP	2.5p	H.M. 00	Converted to the test of the test of the test of test	Trini t less oz pl n 1A1 ck of ir	MO spectage itroto than asti stee nterio ages	DITY DES or aliddional care or alter d as to ensure take tima bluene, wetted a 30%water),4 c jars el drum Overp or packages a	tion in handling or slowing portation with ordinary care tieven 380 I, .1,I Dack bove		NMFC	# CLAS 4.1
HANDLING T QTY TY 1 5 g 1 1 4 1 1 A 1 1 A 1 1 A 1 1 A 1 1 A	UNIT PA YPE QTY 2	1 PP	2.5p	H.M. p0 X	Commode som UN1354 (with no (8) 16 55-gallo Overpac all inner	Trini t less oz pl n 1A1 ck of ir	MO spectage itroto than asti stee nterio ages	DITY DES or alidonal care or alter d as to ensure adde time percent action of NMFC allowene, wetter allowwater),4 c jars el drum Overp or packages a c comply RAND TO	tion in handling or slowing portation with ordinary care term ##0 I, .1,1 back hove		NMFC	# CLAS 4.1
HANDLING (QTY T) 15g 115g 11A 1A 1A 1A	UNIT PA YPE QTY 2 2 dependent on value the property as fol echared value of the	1 DM	2.5p 103.5 p 106p	H.M. (2) X	Control of the series of the s	Trini t less oz pl n 1A1 ck of ir	MO spectage itroto than asti stee nterio ages	DITY DES or additional care or ather d as to ensure adde times of an or ensure adde times of a consure adde times a 30% water),4 c jars el drum Overp or packages a c comply RAND TO COD Am Fee Terr	Ion in handling or slowing portalion with ordinary car item ##0 I, .1,1 Deack above FAL FOUNT: \$		NMFC RECE STAM	# CLAS 4.1 IVING PSPAC
HANDLING (QTY T) 1 5 g 1 1 4 1 1 A 1 1 A 1 1 A 1 1 A 1 1 A 1 1 A 1 1 A 1 1 A 1 1 A 1 A	UNIT PA YPE QTY QTY 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	1 DM 1 DM 1 DM 1 DM 1 property is spece	2.5p 103.5 p 106p equired to state specifica	H.M. pt) X	Commoder som UN1354 (with no (8) 16 55-gallo Overpace all inner	Trini t less oz pl n 1A1 ck of ir packa	MO spectage itroto than asti ages GI	DITY DES or alidonal care or after d a to ensure use trans- pection ale or NMFC voluene, wetter a 30%water),4 c jars el drum Overp or packages a comply RAND TO COD Am Fee Terr Cu	Ico in handling or slowing portation with ordinary car item ##0 I, .1,1 Deack Ibove FAL FOUNT: \$ ns: Collect: stomer check		NMFC RECE STAM Prepair	# CLAS 4.1 IVING PSPAC
HANDLING (QTY T) 1 5 g 1 1 5 g 1 1 1 A 1 1 A 1 1 A 1 1 A 1 1 A 1 1 A 1 1 A 1 1 A 1 A	UNIT PA YPE QTY QTY QTY QTY QTY QTY QTY QTY		2.5p 103.5 p 106p equired to state specifica	H.M. p0 X Wy in writing to per to be not this ship en agreed up	Commode som UN1354 (with no (8) 16 55-gallo Overpace all inner all inner exceeding on in writing the agreed or exceeding	Trini t less oz pl n 1A1 ck of ir packa ay be	MO spectary itroto than asti stee difference ages GI	DITY DES or alidonal care or alter d al to ensure use sub- providence and the sub- providence and the sub- alidon and the sub- complexity of the sub- comply RAND TO COD Am Fee Terry Cu licable. See 4	too in handling or slowing portation with ordinary car item ##0 I, .1,1 .1,1 back bove FAL fount: \$	*	NMFC RECE STAM Prepair table:	# CLAS 4.1 IVING PSPAC
HANDLING (QTY T) 1 5 g 1 5 g 1 1 4 1 1 A 1 1 A 1 1 A 1 1 A 1 1 A 1 1 A 1 1 A 1 1 A 1 A	UNIT PA YPE QTY QTY QTY QTY QTY QTY QTY QTY	TYPE PP DM	2.5p 103.5 p 103.5 p 106p equired to state specifica Sifically stated by the ship s or clamage in or contracts that have be rise to the rates, classific- pper, on request, and to sadded, Trailer L sadded, Trailer L	H.M. p0 X X Wy in writing to per to bu not this ship en agroed up attons and rul al applicable padled: Shipper	Converdage so m UN1354 (with no (8) 16 55-gallo Overpace all inner exceeding exceeding exceeding on in writing tes that have is table and for Freight C By Sh	ay be been lipper	MO secard parts of the secard parts of the se	DITY DES or additional care or ather d as to ensure adde times percent action of NMFC a 30%-water),4 c jars el drum Overp or packages a c comply RAND TO COD Am Fee Terr Cu licable. See 4 c carrier shall not n all other tavall, eff	ton in handling or slowing portalion with ordinary car item ##0 I, .1,1 .1,1 back bove FAL fount: \$	accept 206(c)(1 s shipmer	NMFC RECE STAM Prepair table:])(A) and t without par (A) and t without par (A) and t w	# CLAS

Date: 1	10-21-20	19			BIL	L OF LA	DING		Page 1 of 1		
SHIP FROM Name: Chemours Barksdale Works Address: 72315 Highway 13 City/State/Zip: Ashland, WI 54806 SID#:						FOB:	Bill of Lading Number:2019-001				
SHIP TO Name: US Army Corps of Eng S. Larson Address: 3909 Halls Ferry Road City/State/Zip: Vicksburg, MS 39180 CID#:					Loca	tion #:	CARRIER NAME: XPO Trailer number: Seal number(s): SCAC: Pro number: 77201000-WH06-507987				
Addre City/Si SPECI Pay aga	Chemou ss: PO E tate/Zip	urs- c/o (Box 1762 St. Lou FRUCT	Cass Info 8 lis, MO 6 IONS: urcing & I	HT CHARGES El mation System 3178 logistics, specia	al servic	es .	rs, conditions and lim pictics Freight, line, or Prepaid (check be	Collect		XPOLogr	
CUST	OMER OF	DER NU	MBER	# PKGS	WEIG	MER ORDER IN HT PALLET/S Y or	LIP	ADDITIONAL SH	IPPER INFO		
								our emergency contact 424-9300	#		
			KAGE		C,			DESCRIPTION	LTLO	NLY	
QTY	TYPE	QTY	TYPE	WEIGHT 312 p	H.M. (X)	Commodiates requires	special or additional parkaged as to enai- See Section 2	care or effection in handling or situating musit to one safe transportation with ordinary care (a) of NMFC item 360		CLASS 4.1	
1 5 g 04 PP 2 1A2 02 DM			50 p		(with not less	than 30%w interior pa	vater),4.1,1 ackages above	RECEIV	NG		
1		1		362 p			GRAN	D TOTAL		202.00	
declared va	ilue of the prop	erty as follow		quared to state specification of the state specification of the state				D Amount: \$	The second se		
RECEIVED between the established regulations SHIPPE The sub-ent another the sub-part of the sub-parts of another the sub-parts	e canter and at by the canter of	victually deter ipper if applie ind are availant TURE / E termet reasonable policitie regular is subject to your	maneed raties of cable, otherwit date to the ship DATE are properly class is carefulling for down of the DOT existing. By lends	r contracts that have be se to the rates, classific gen, on request, and to Trailer L By :	en agreed u atons and n all applicabl oaded. Shipper	pon in writing uses that have been is state and federal Freight Counte	The carrier and all othe	See 49 U.S.C 14706(shall not make delivery of this ship i lawful charges. CARRIER SIGNAT Caroer addressedges recent of the managemy tempores informations and the statement of the statement of the managemy tempores informations and the statement of the statem	c)(1)(A) and (B). prment without payment Shipper S URE / PICKUP D	ATE Carter cardities in Tres the DOT	

GUIDE FLAMMABLE SOLIDS - TOXIC (WET/DESENSITIZED EXPLOSIVE)

POTENTIAL HAZARDS

DRIED OUT material may explode it exposed to heat, fiame, friction or shock:

Some are loxic and may be fatal if inhaled, swallowed or obsorbed through skin

PUBLIC SAFETY

Isolate spill or teak area immediately for at least 100 maters (330 feet) in all directions

CALL Emergency Response Telephone Number on Shipping Paper first. If

Shipping Paper not available or no answer, refer to appropriate telephone

Keep material wet with water or treat as an explosive (GUIDE 112).

ERG2004 ERG2004

FLAMMABLE SOLIDS - TOXIC GUIDE (WET/DESENSITIZED EXPLOSIVE)

EMERGENCY RESPONSE

FIRE CARGO FILES

- · DO NOT fight fire when fire reaches cargot Cargo may EXPLODE!
- . Stop all traffic and clear the area for at least 800 meters (1/2 mile) in all directions and let burn.

. Do not move cargo or vehicle if cargo has been exposed to hest.

- TIRE or VEHICLE Fires
- · Use plenty of water FLOOD it! if water is not available, use CO., dry chemical or dirt. · If possible, and W-THOUT RISK, use unmanned hose holders or monitor nozzlas from maximum distance to prevent fire from spreading to cargo area.
- · Pay special attention to lite fires as re-ignition may occur. Stand by with extinguisher ready.

SPILL OR LEAK

- · ELIMINATE atl Ignition sources (no smoking, flares, sparka or flamea in immediate area).
- · All equipment used when handling the product must be grounded.
- · Do not louch or welk through spilled material
- Small Splile
- · Flush area with flooding quantities of water
- Large Splits
- · Weldown with water and olke for later disposal
- KEEP 'WETTED' PRODUCT WET BY SLOWLY ADDING FLOODING QUANTITIES OF WATER

FIRST AID

- · Move victim to fresh air · Call 911 or emergency medical service
- Rive artificial respiration if victim is not preathing.
- Administer oxygen if breathing is difficult
- flumove and isolate contaminated clothing and shoes
- In case of contact with substance, immediately flush skin or eyes with running water for
- el inast 20 minutes.
- Finure that medical personnel are aware of the material(s) involved and taxa CARDERS to protect themselves

Structural firelighters' protective clothing will only provide tim ted protection. EVACUATION

Stay upwind

113

HEALTH

FIRE OR EXPLOSION

Flammable/combustible material.

May be ignited by heat, sparks or flames.

Contact may cause burns to skin and eyes

number listed on the Inside back cover.

Keep unauthorized personnel away

PROTECTIVE CLOTHING

Ventilate closed apeces before entering

Runoff to sewer may create fire or explosion hazard

Fire may produce irritating, corrosive and/or loxic gases

Runall from life control or dilution water may cause pollution.

Treat as an explosive (GUIDE 112).

Larga Spill

Consider initial evacuation for 500 meters (1/3 mile) in all directions. Fire

Wear positive pressure self-conteined treathing apparatus (SCBA)

Page 174

 If tank, rati car or tank truck is involved in a fire. (SOLATE for 800 maters (1-2 w) arms) d rections, also, consider initial evacuation for 800 meters (1/2 m/le) in all they times

Hazardous Waste Annual Report 2019

Facility Name : FORMER DUPONT BARKSDALE WORKS Facility ID : 804009140 EPA ID : WIR000133447 DNR Contact : Megan Ballweg e-mail: MeganM.Ballweg@wisconsin.gov Tel : (715) 839-3770

Form Instructions

Submittal and Signature Instructions

Click "Submit" at the top of the form when you have completed and validated your report

Report Preparers cannot submit the form unless they additionally have the Signatory-Certifier rolelf you do not see the "Submit" button, you do not have signatory/certifier credentials. See the Facility Reporting Contacts section below for more information

You will receive an email verification of submittal from WDNR Hazardous Waste reporting sent to the address associated with your facility contact information

The email will include a PDF copy of your report and certification page

If the DNR has a copy of your Switchboard signature page on file, you will see a notification at the bottom with the email address where your Digital Signature information was sent (the email associated with your WAMS ID)

Digitally Signing your Certification

proceed to your email inbox that the verification message indicated your digital signature information was sent and locate the message from DNRSignature@wisconsin.gov

If you do not see the Digital Signature email in your inbox, please check the spam/junk folder

Copy the code provided in the Digital Signature email, and follow the link provided to paste in your code and complete the digital signature process

This code (referred to in the Digital Signature Service as a "Temporary PIN code") is valid for signing the document for 72 hours after you submit the report

If you do not see information about where the digital signature was sent in the verification email, you do not have a signature on file Print and sign the Hazardous Waste Signature PDF from the verification email

send a copy of the signed PDF as an email attachment to DNRHazardousWasteReporting@Wisconsin.gov

Welcome to Wisconsin DNR 2019 Hazardous Waste Annual Reporting.

Tips for Using the Web Reporting System

Save your work frequently with the "Save" button at the top of the form

If you are not able to complete the report in one session, you may return at another time. The data you saved will be presented to you at the new session.

The program will disconnect from your computer if it detects no key action over a 15 minute period. You may prevent this by keeping your session alive when prompted.

This report contains help links at the bottom of the form. Additionally there are help icons which, when clicked, will display information on the corresponding topic.

Instructions and Help for Completing the Report

The DNR's Hazardous waste reporting Web page has general and specific information on completing the hazardous waste annual report for your facility.

Please view Web page help and download written instructions on each component of the Web reporting system.

dnr.wi.gov/topic/Waste/ReportForms.html

For questions and assistance in completing the hazardous waste annual report, contact your regional Environmental Program Associate. dnr.wi.gov/topic/Waste/EPAs.html

If you need a WAMS ID, go to dnr.wi.gov/topic/Switchboard/.

For step-by-step detailed instructions and managing reporting roles, go to dnr.wi.gov/topic/Switchboard/documents/signuphelp.pdf.

Site Details

Site Name : FORMER DUPONT BARKSDALE WORKS Site Land Type : Private Location Address : 72315 STH 13 BARKSDALE WI Mailing Address : Owner : Operator : THE CHEMOURS COMPANY FC LLC 500 WEST JEFFERSON STREET, SUITE 1600 LOUISVILLE, KY Bradley.S.Nave@chemours.com 715-373-2100 HW Contact : BRADLEY NAVE 500 W JEFFERSON ST STE 1600 LOUISVILLE, KY BRADLEY.S.NAVE@CHEMOURS.COM 812-923-1136

This information has been provided by the Federal EPA's RCRAInfo System. If any of this information is incorrect, please update it at RCRAInfo

Environmental Management System

An EMS is a tool to help your organization understand its environmental impacts and systematically operate more efficiently by reducing energy usage, minimizing waste and reducing pollution. Proactively addressing environmental impacts helps your organization protect public health and Wisconsin's natural resources, find and utilize the most cost effective corrective measures and avoid costly noncompliance fees. DNR website for more EMS info: dnr.wi.gov/topic/greentier/ems.html US EPA for more EMS info: www.epa.gov/ems

Do you have a formal environmental management system (EMS)?

🔿 Yes 💿 No

North American Industry Classification System (NAICS)

Enter all NAICS codes (One code must be designated as primary) US EPA - Introduction to NAICS www.census.gov/eos/www/naics/

NAICS Code	Name	Primary
562910	Remediation Services	True

Facility Reporting Contacts

Signatory/Certifier Contact: ELIZABETH BISHOP 17221 W. 17TH PLACE GOLDEN, CO elizabeth.bishop@aecom.com 303-216-2558

Secondary/Preparer Contact: (a list of current secondary contacts is available through the Switchboard App listed below)

Primary (Hazardous Waste), Owner, and Operator Contacts: These contact types are related to facility identification and do not supply reporting roles. Please see the Site Details section above to review and update these records.

You can review and update facility Signatory and Secondary contacts through the DNR's Switchboard System at: dnrx.wisconsin.gov/switchboard/capture.do

Type of Regulated Waste Activity

The DNR database indicates you are a Small Quantity Generator		
Does FORMER DUPONT BARKSDALE WORKS generate hazardous waste?	• Yes	◯ No

Please identify the amount of hazardous waste generated at your facility OR the higher generator status your facility chooses to operate under for the reporting year

- Large Quantity Generator Generate in any calendar month 1,000 kg(2,205 lbs) or more of hazardous waste; or Generate in any calendar month, or Accumulate at any time, more than 1 kg(2.2 lbs) of acute hazardous waste or more than 100 kg(220 lbs) of acute hazardous waste spill cleanup material.
- Small Quantity Generator Generate in every calendar month less than 1,000 kg(2,205 lbs) of hazardous waste; and Accumulate at all times no more than 6,000 kg(13,320 lbs) of hazardous waste; and Generate in every calendar month, and Accumulate at all times, no more than 1 kg(2.2 lbs) of acute hazardous waste and no more than 100 kg(220lbs) of acute hazardous waste spill cleanup material.
- Very Small Quantity Generator Generate in every calendar month no more than 100 kg (220 lbs) of hazardous waste; and Accumulate at all times no more than 1, 000 kg(2, 205 lbs) of hazardous waste; and Generate in every calendar month, and Accumulate at all times, no more than 1 kg(2.2 lbs) of acute hazardous waste and no more than 100 kg(220 lbs) of acute hazardous waste spill cleanup material.

Short-Term Generator	(generates from a short-term or one-time event	Yes	🔿 No
and not from on-going	processes).	0	<u> </u>

Short Term Comment

complies with s. NR 670.001(3)(b)9.

in 2019 the Barksdale site only had one waste shipment comprised of: used oil, asbestos and a universal waste annual pick up

Treater, Storer or Disposer of Hazardous Waste—Note: Part B of a hazardous waste permit is required for these activities)	O Yes	No
Receives Hazardous from Off-site	◯ Yes	No
Recycler of Hazardous Waste	◯ Yes	No
Exempt Boiler and/or Industrial Furnace	◯ Yes	No
Publicly Owned (Wastewater) Treatment Works (POTW) that accepts hazardous waste (via truck, rail, or dedicated pipe) for treatment, and	◯ Yes	No

🔵 No

Permanent Household and Very Small Quantity Generator Hazardous Waste Collection Facility that ships hazardous waste off-site to a licensed or permitted hazardous waste treatment, storage or disposal facility, or to a recycling facility

Waste Codes for Federally Regulated Hazardous Wastes

Please list the waste codes of the federal hazardous wastes handled at your site.

Additional Regulated Waste Activities

Other Waste Activites		
Transporter of Hazardous Waste	◯ Yes	• No
Jnder Ground Injection Control	◯ Yes	No
Jnited States Importer of Hazardous Waste	◯ Yes	• No
Recognized Trader	◯ Yes	• No
mporter/Exporter of Spent Lead⊡Acid Batteries (SLABs) under 40 CFR 266 Subpart G	⊖ Yes	No
Universal Waste Activites		
_arge Quantity Handler of Universal Waste (you accumulate 5,000 kg or more)	⊖ Yes	No
Destination Facility for Universal Waste	Yes	No
Used Oil Activities		
Jsed Oil Transporter	O Yes	No
Jsed Oil Processor and/or Re-refiner	◯ Yes	No
Off-specification Used Oil Burner	◯ Yes	• No
Jsed Oil Fuel Marketer	◯ Yes	No

Eligible Academic Entities with Laboratories-Notification for opting into or withdrawing from managing laboratory hazardous wastes per NR 662 Subchapter K

Opting into or currently operating under NR 662 Subchapter K for the management of hazardous wastes in laboratories	◯ Yes	No						
Withdrawing from 40 CFR 262 Subpart K for the management of hazardous wastes in laboratories	⊖ Yes	No						
Electronic Manifest Broker								
Are you notifying as a person, as defined in 40 CFR 260.10, electing to use the EPA electronic manifest system to obtain, complete, and transmit an electronic manifest under a contractual relationship with a hazardous waste generator?	D 🔾 Yes	No						
To find out more information about the US EPA e-Manifest data system that will be implemented in June 2018 go to www.epa.gov/e-manifest/learn-about-hazardous-waste-electronic-manifest-system-e-manifest								
Regulated Waste Activity Comments								

Comment

Only one shipment of Used Oil, asbestos and Universal waste in 2019.

Exemption Details

 Reason for not generating (Check all that apply)

 Never Generated

 Periodic or Occasional Generator

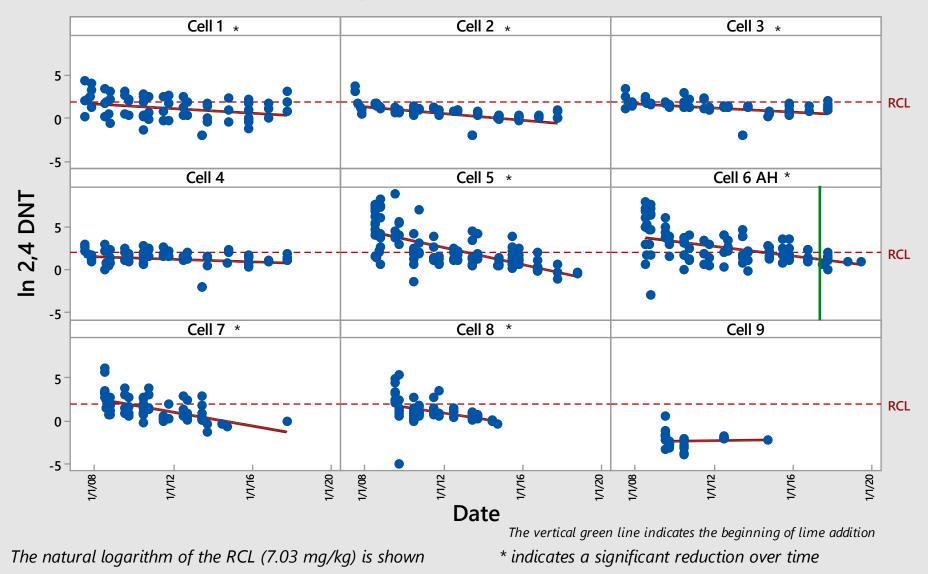
 Out of Business

 Waste Minimization Activity

 Only Excluded or De-listed Waste

 Only Non-Hazardous Waste

 Other Reason (Specify in Comments}

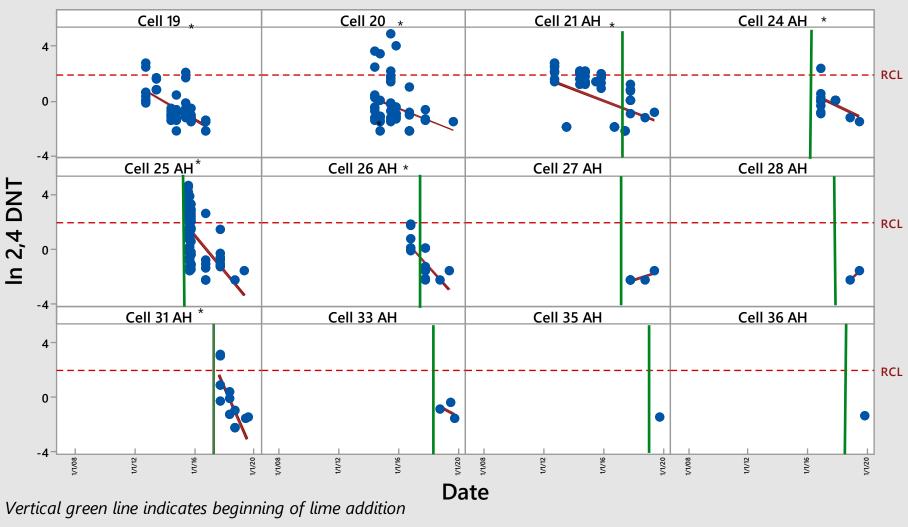

Exemption Comments

Chemours Barksdale continues pilot treatment of environmental media under a WDNR-approved Hazardous Waste Variance (approval May 22, 2012). This has reduced the amount of hazardous waste shipped off-site for treatment and disposal.

Barksdale Summary Graphs 2019 Year End

DNT, TNT, DNX, TNX, NB, Amino DNT

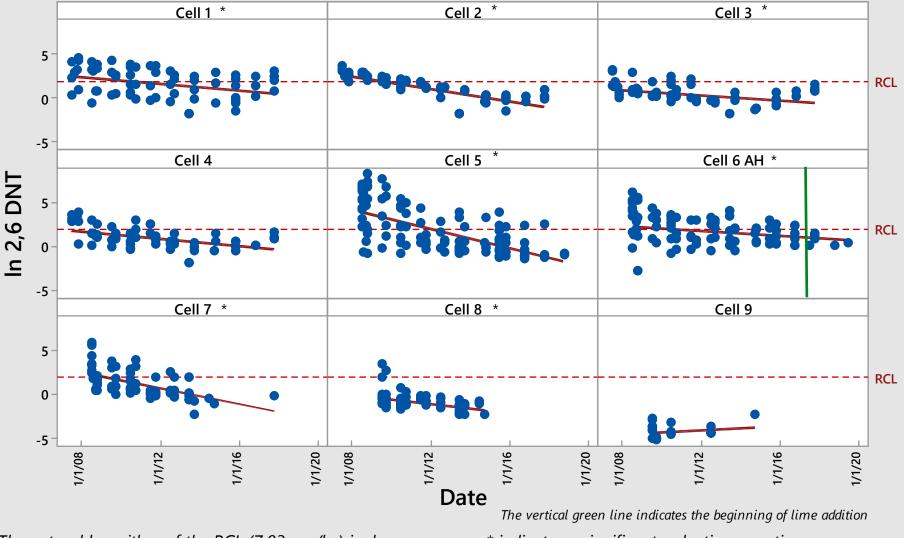
Scatterplot of In 2,4 DNT vs Date



Scatterplot of In 2,4 DNT vs Date

Vertical green line indicates the beginning of lime addition The natural logarithm of the RCL (7.03 mg/kg) is shown

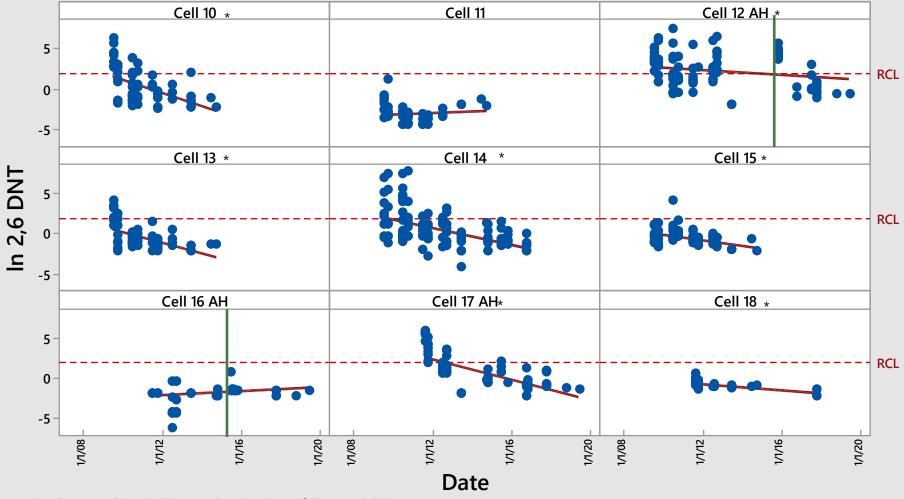
* Indicates a significant reduction over time



Scatterplot of In 2,4 DNT vs Date

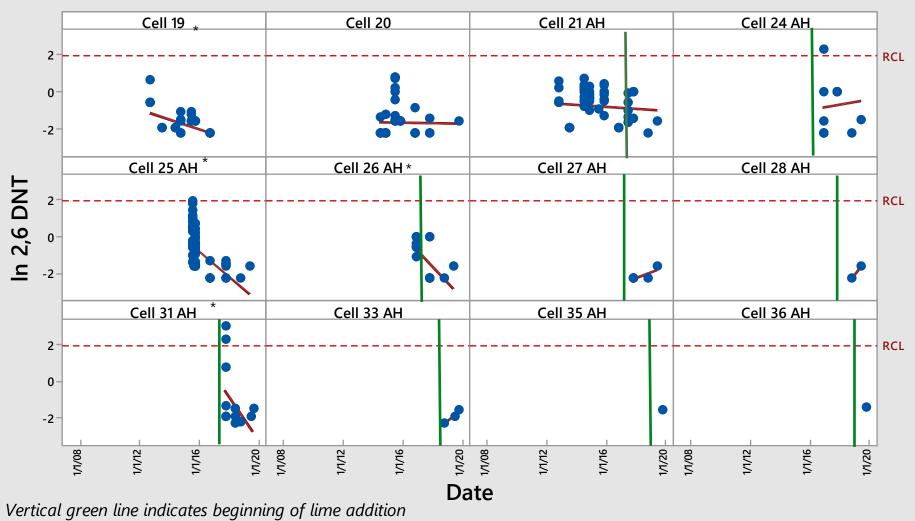
The natural logarithm of the RCL (7.03 mg/kg) is shown.

* Indicates a significant reduction over time


Scatterplot of In 2,6 DNT vs Date

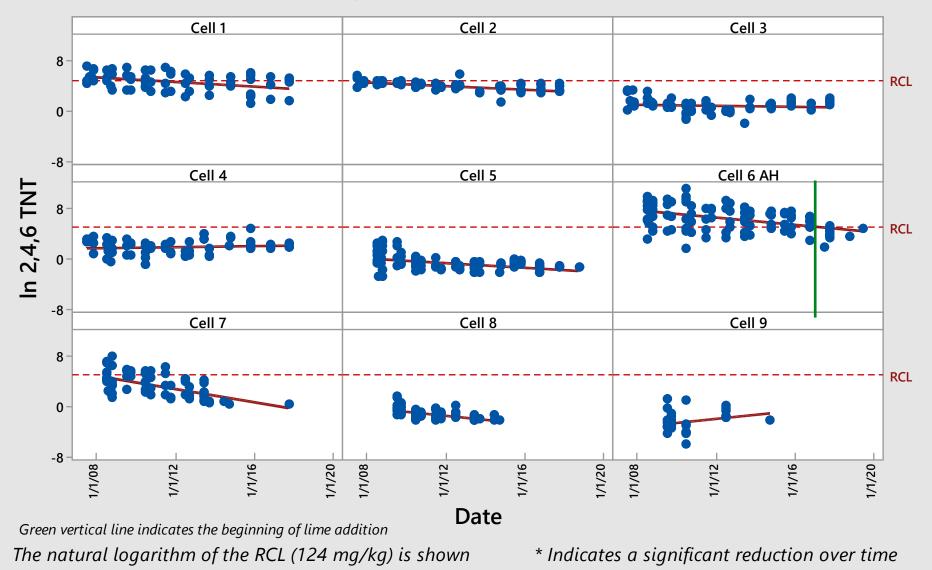
The natural logarithm of the RCL (7.03 mg/kg) is shown

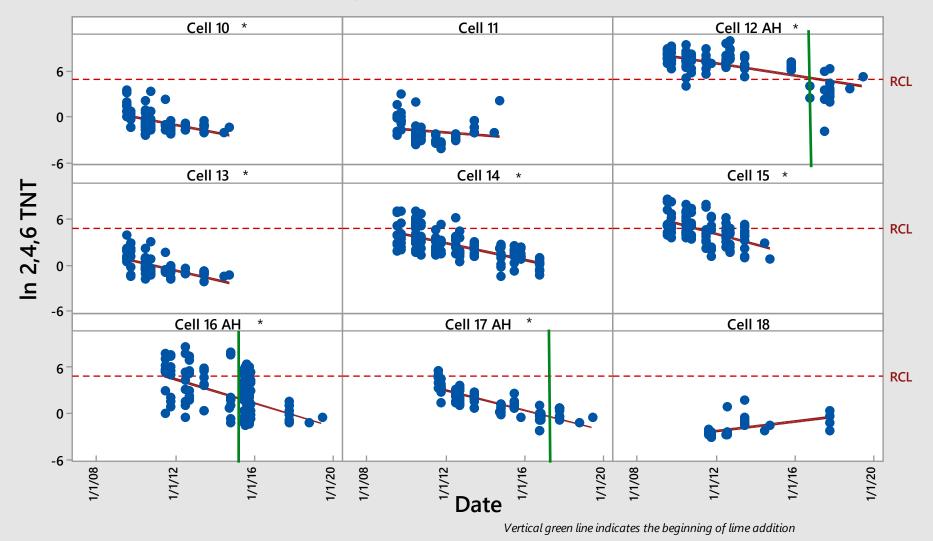
* indicates a significant reduction over time


Scatterplot of In 2,6 DNT vs Date

Vertical green line indicates beginning of lime addition The natural logarithm of the RCL (7.03 mg/kg) is shown.

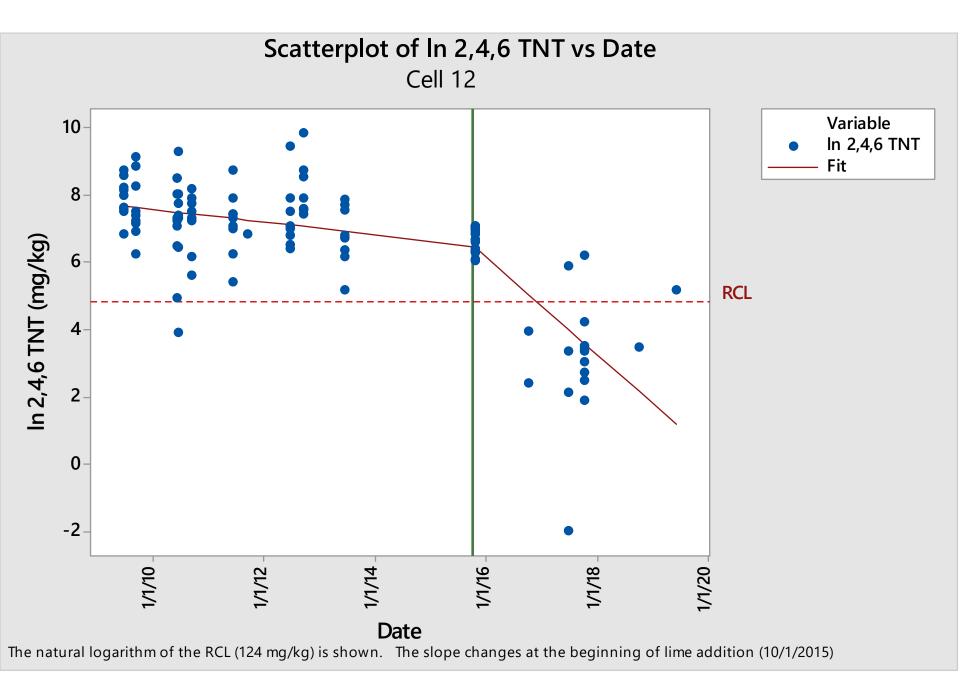
* Indicates a significant reduction over time


Scatterplot of In 2,6 DNT vs Date

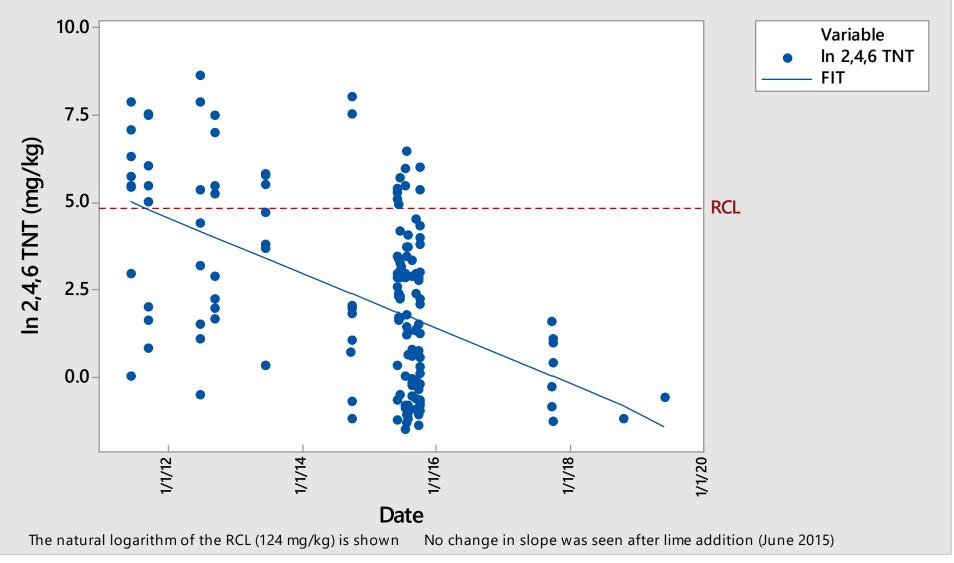

The natural logarithm of the RCL (7.03 mg/kg) is shown.

* Indicates a significant reduction over time

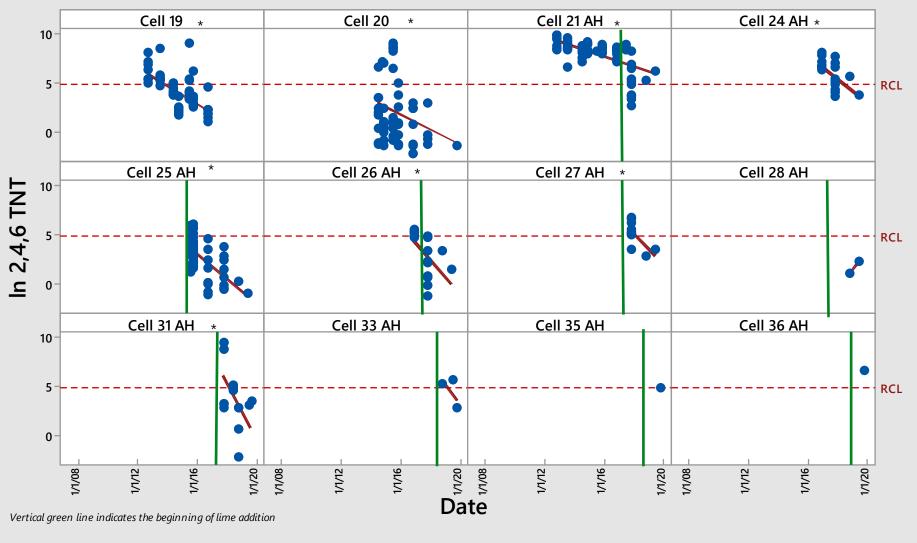
Scatterplot of In 2,4,6 TNT vs Date



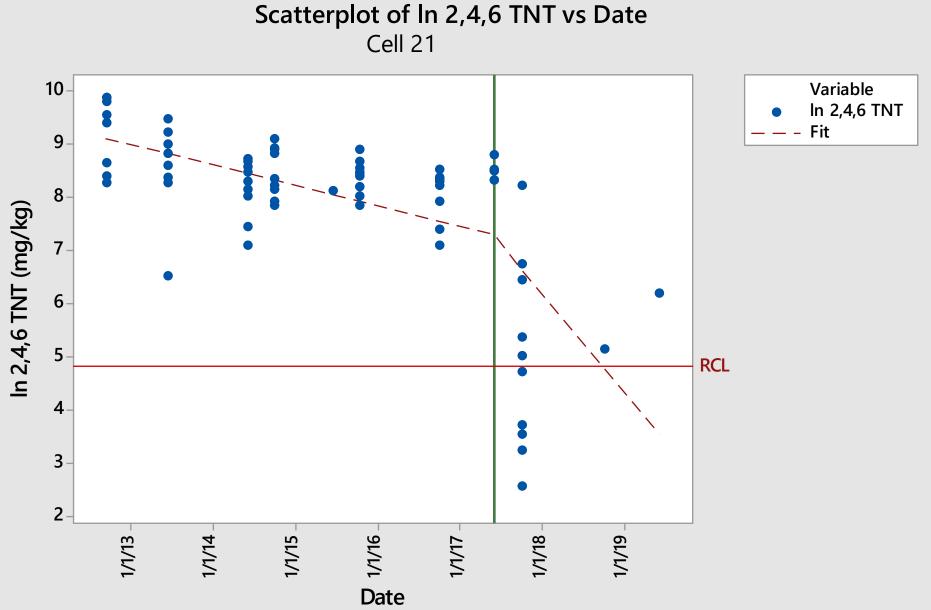
Scatterplot of In 2,4,6 TNT vs Date



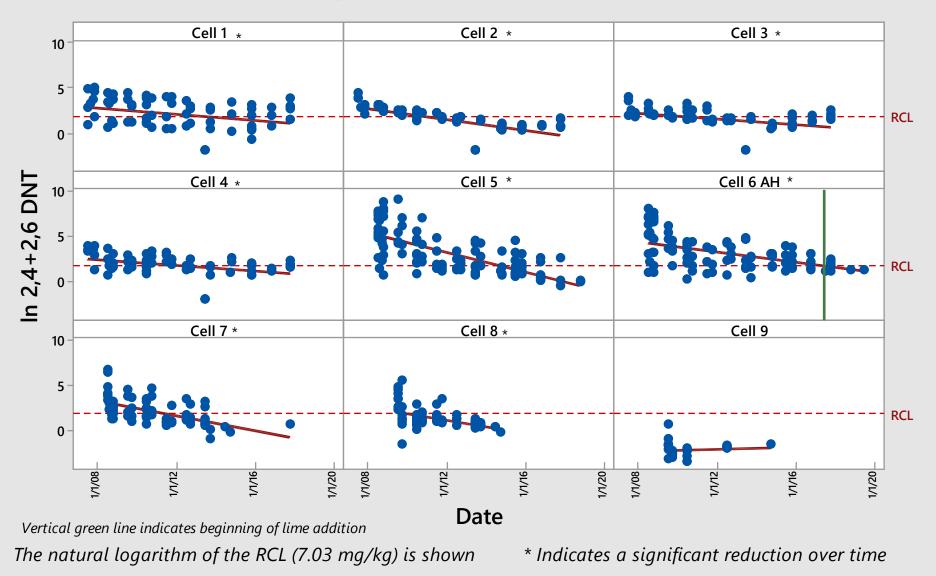
The natural logarithm of the RCL (124 mg/kg) is shown


* indicates a significant reduction over time

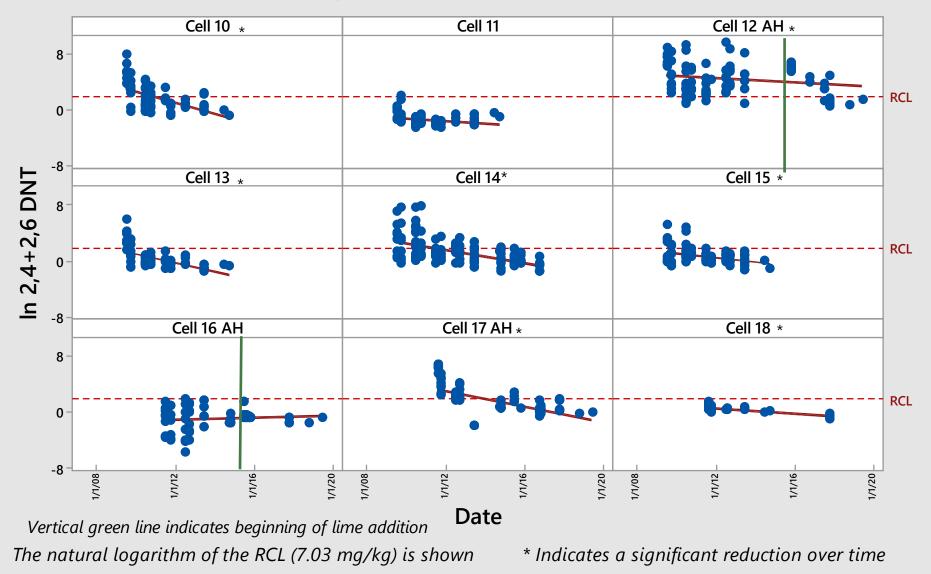
Scatterplot of In 2,4,6 TNT vs Date Cell 16

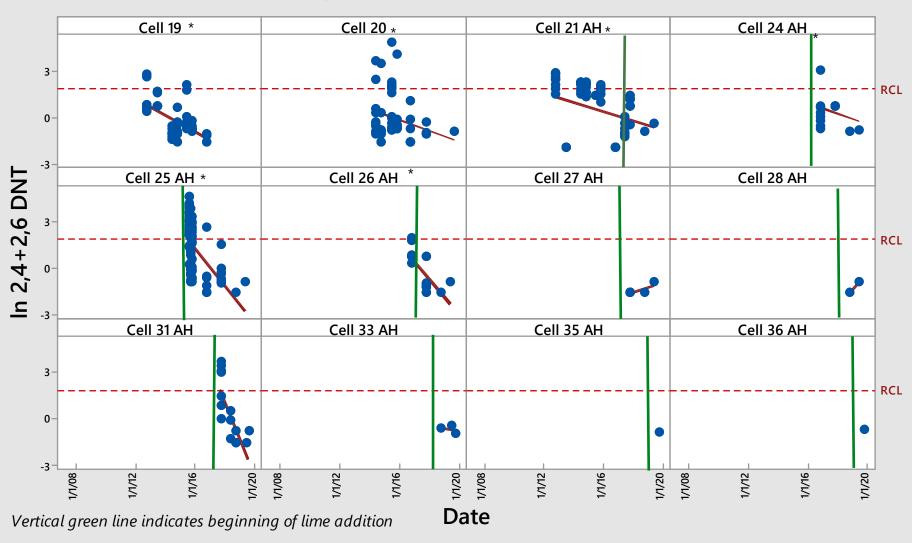


Scatterplot of In 2,4,6 TNT vs Date


The natural logarithm of the RCL (124 mg/kg) is shown

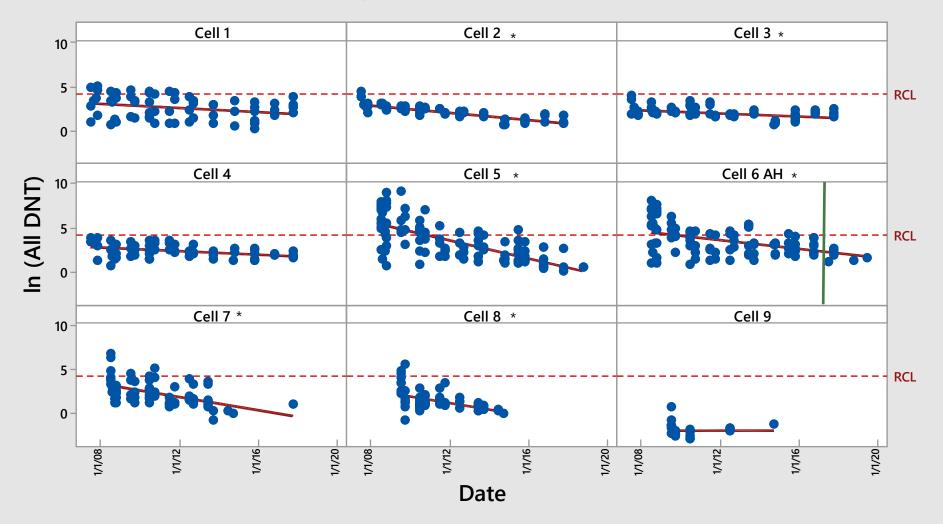
* indicates a significant reduction over time




The natural logarithm of the RCL (124 mg/kg) is shown. The slope changes at the beginning of lime addition (6/1/2017)

Scatterplot of In 2,4+2,6 DNT vs Date

Scatterplot of In 2,4+2,6 DNT vs Date

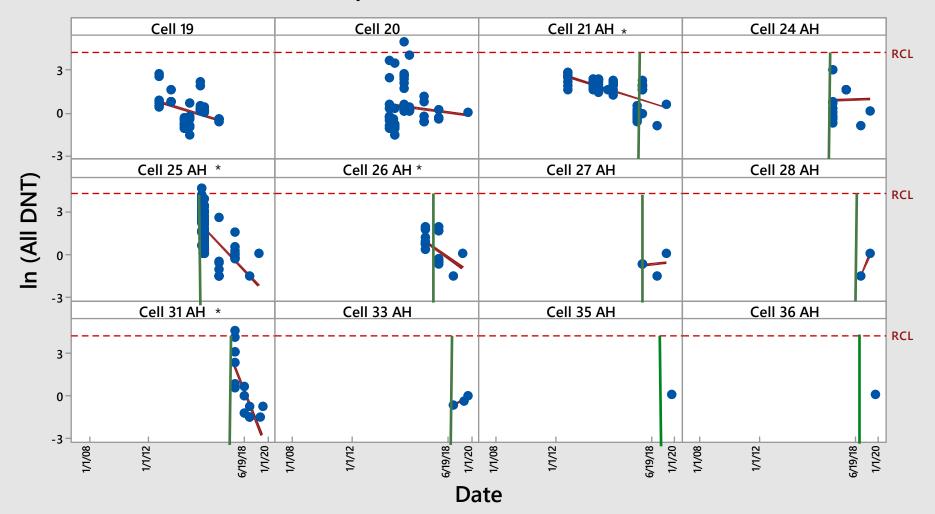


Scatterplot of In 2,4+2,6 DNT vs Date

The natural logarithm of the RCL (7.03 mg/kg) is shown

* Indicates a significant reduction over time

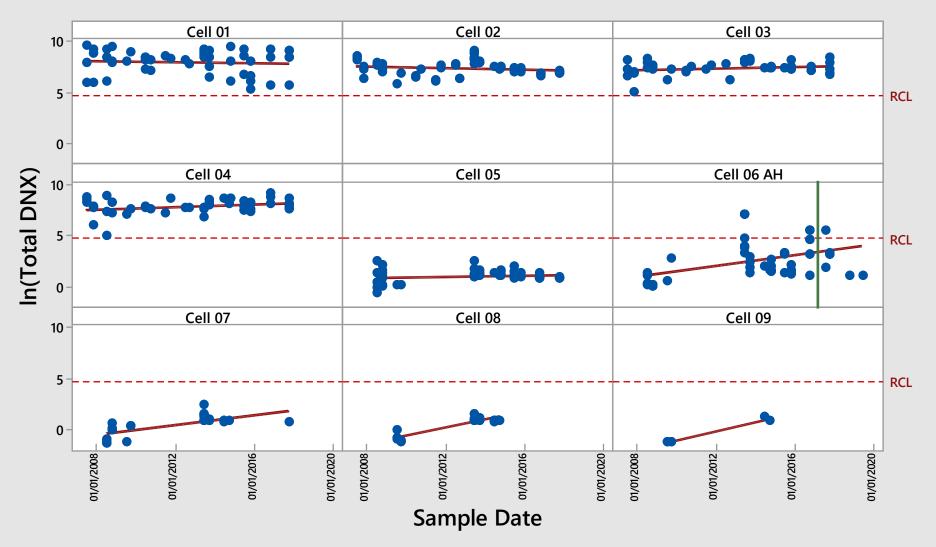
Scatterplot of In (All DNT) vs Date



Green vertical line indicates the beginning of lime addition The logarithm of the RCL (70.3 mg/kg) is shown * indicates a significant reduction over time

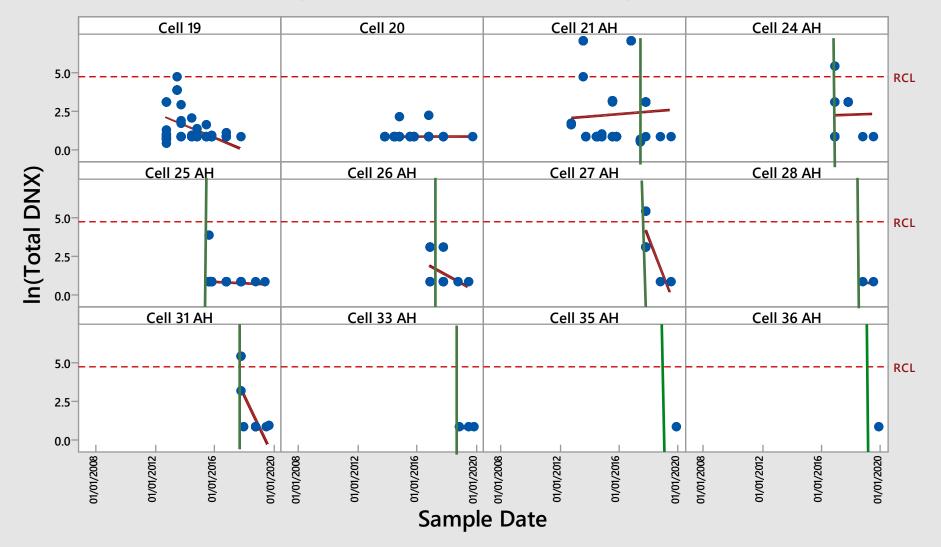
Cell 10 Cell 11 Cell 12 AH * 6 RCL 0 -6 Cell 14 Cell 15 Cell 13 * * In (All DNT) 6 RCL 0 -6 Cell 16 AH Cell 17 AH * Cell 18 6 RCL 0 -6 1/1/08 1/1/20 1/1/08 1/1/20 1/1/20 1/1/12 1/1/16 1/1/12 1/1/16 1/1/08 1/1/12 1/1/16 Date

Scatterplot of In (All DNT) vs Date

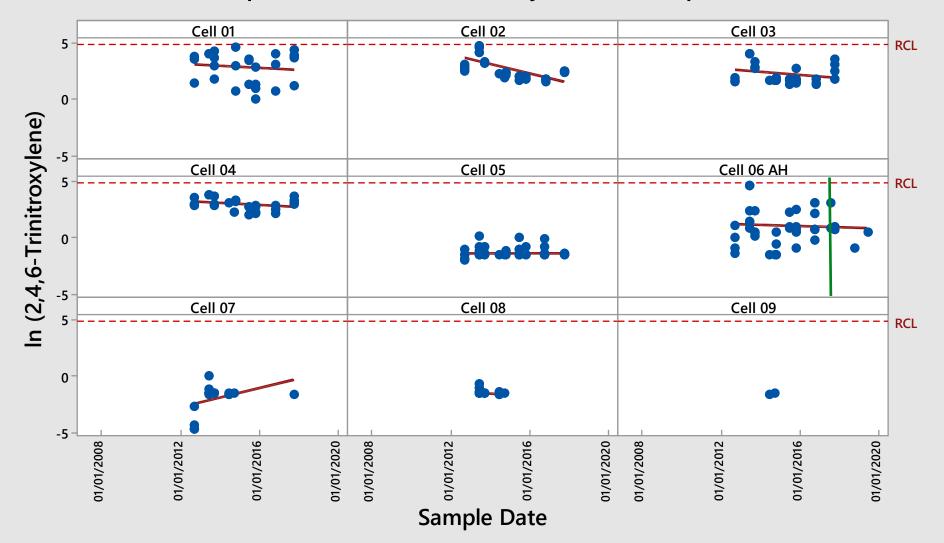

Vertical green line indicates the beginning of lime addition The logarithm of the RCL (70.3 mg/kg) is shown * indicates significant reduction over time

Scatterplot of In (All DNT) vs Date

Vertical green lines indicate the beginning of lime addition The natural logarithm of the RCL (70.3 mg/kg) is shown * indicates a significant reduction over time

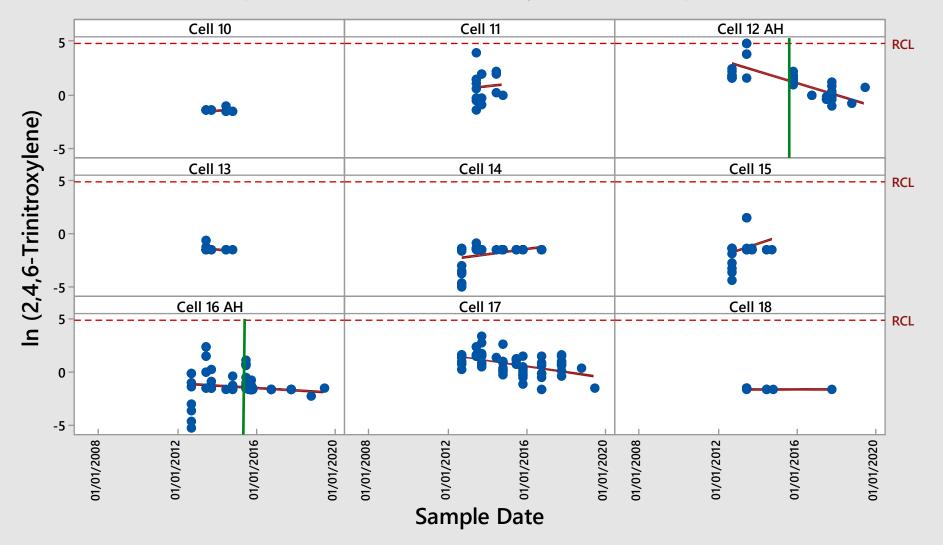

Scatterplot of In(Total DNX) vs Sample Date

The natural logarithm of the RCL (111 mg/kg) is shown Vertical green line indicates the beginning of lime addition

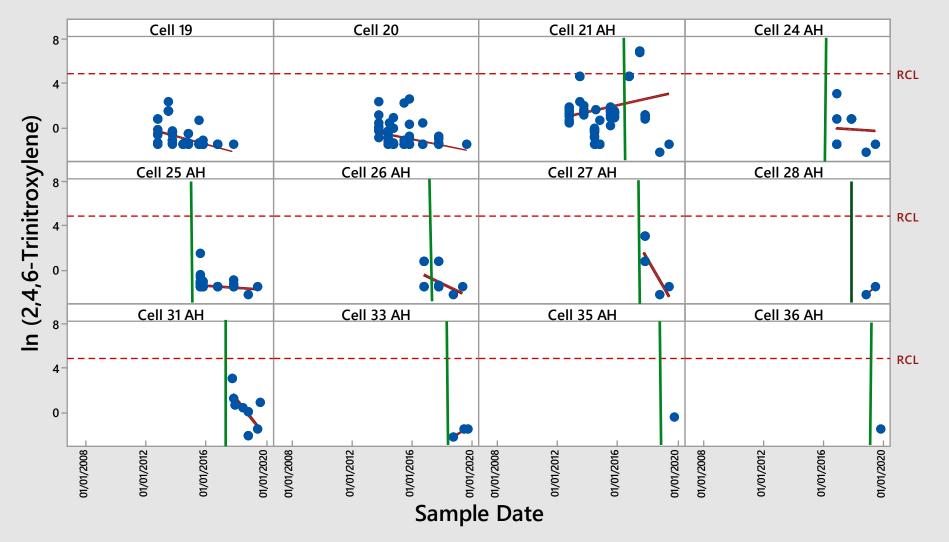

Cell 10 Cell 11 Cell 12 AH 8 RCL 4 0 Cell 13 Cell 14 Cell 15 In(Total DNX) 8 RCL 4 0 Cell 16 AH Cell 17 Cell 18 8 RCL 4 0 -01/01/2020 01/01/2008 01/01/2012 01/01/2020 01/01/2020 01/01/2008 01/01/2016 01/01/2012 01/01/2016 01/01/2008 01/01/2012 01/01/2016 Sample Date The natural logarithm of the RCL (111 mg/kg) is shown Vertical green lines indicate the beginning of lime addition

Scatterplot of In(Total DNX) vs Sample Date

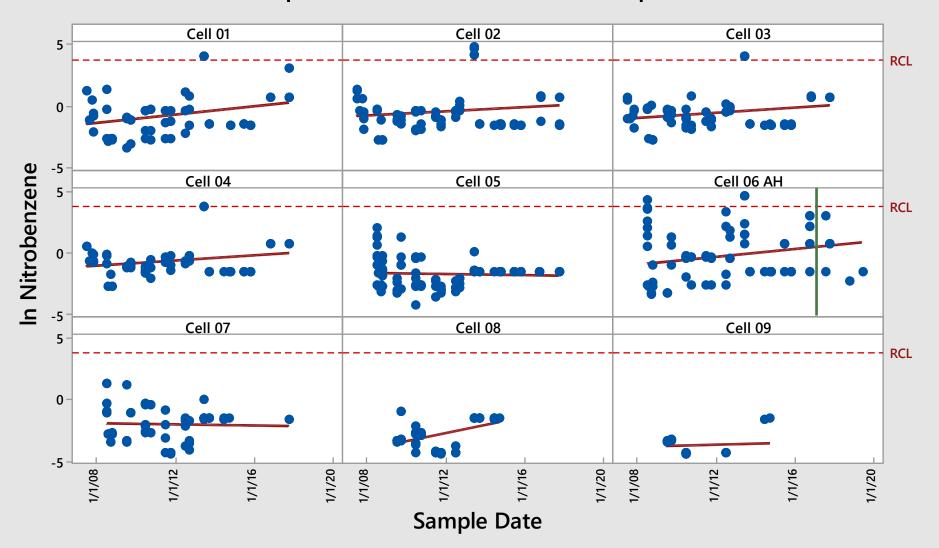
Scatterplot of In(Total DNX) vs Sample Date


The natural logarithm of the RCL (111 mg/kg) is shown

Scatterplot of In (2,4,6-Trinitroxylene) vs Sample Date

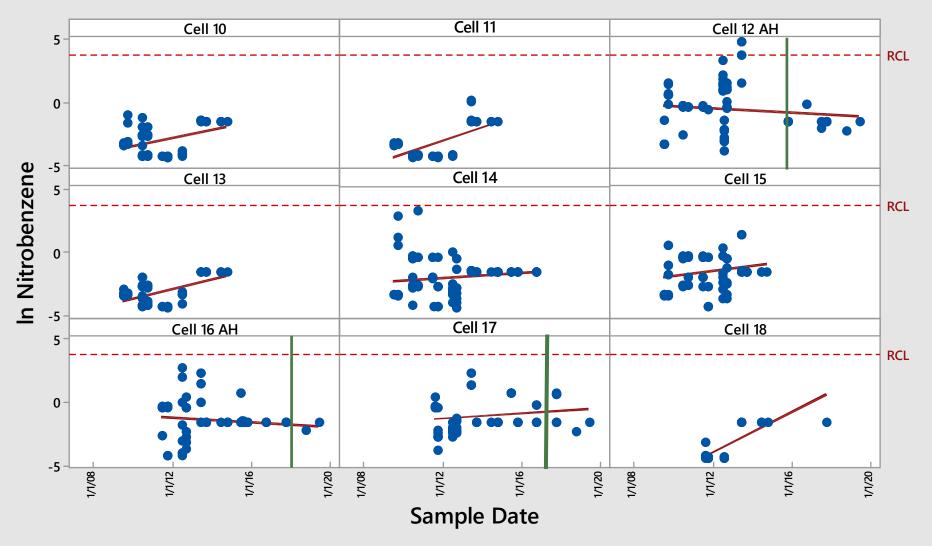

The logarithm of the RCL (124 mg/kg) is shown

Scatterplot of In (2,4,6-Trinitroxylene) vs Sample Date

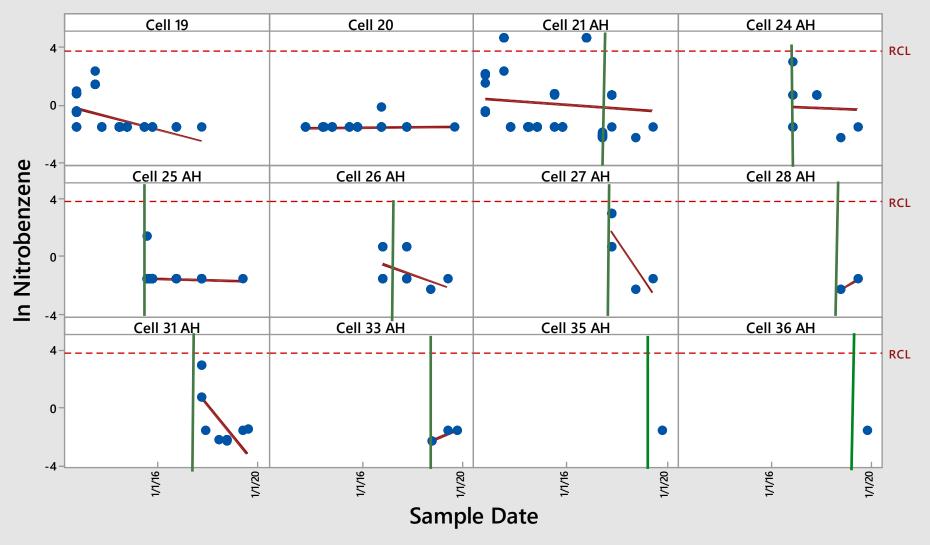


The natural logarithm of the RCL (124 mgm/kg) is shown

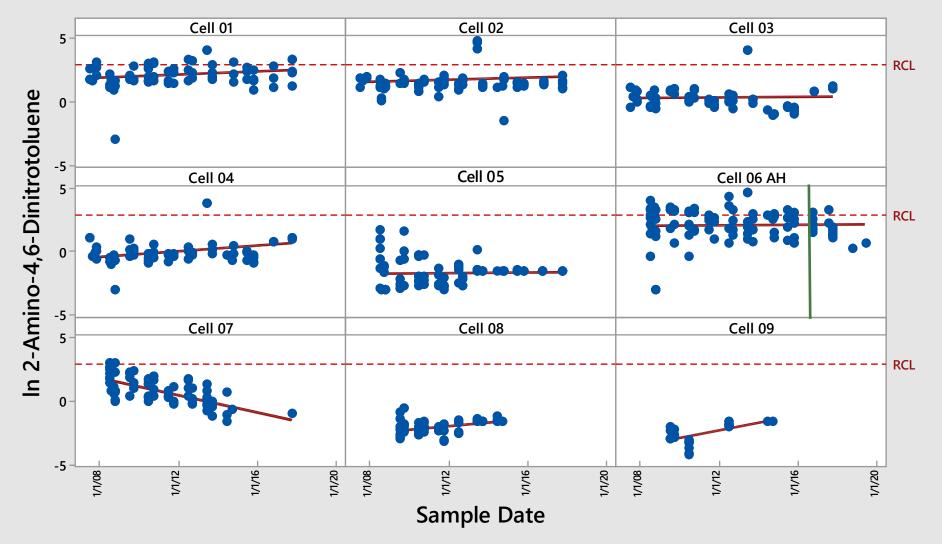
Scatterplot of In 2,4,6-Trinitroxylene vs Sample Date



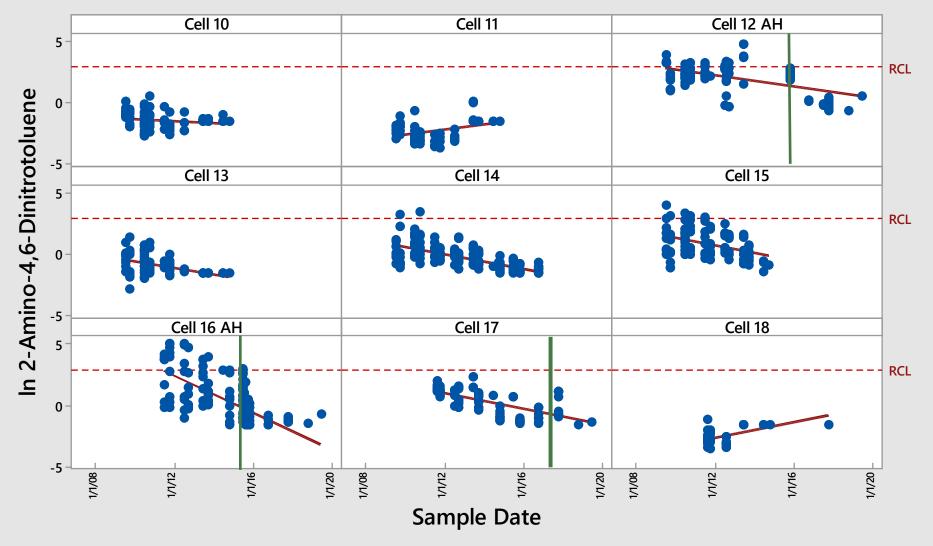
The natural logarithm of the RCL (124 mgm/kg) is shown


Scatterplot of In Nitrobenzene vs Sample Date

The logarithm of the RCL (43.2 mg/kg) is shown


Scatterplot of In Nitrobenzene vs Sample Date

The natural logarithm of the RCL (43.2 mg/kg) is shown


Scatterplot of In Nitrobenzene vs Sample Date

The natural logarithm of the RCL (43.2 mg/kg) is shown

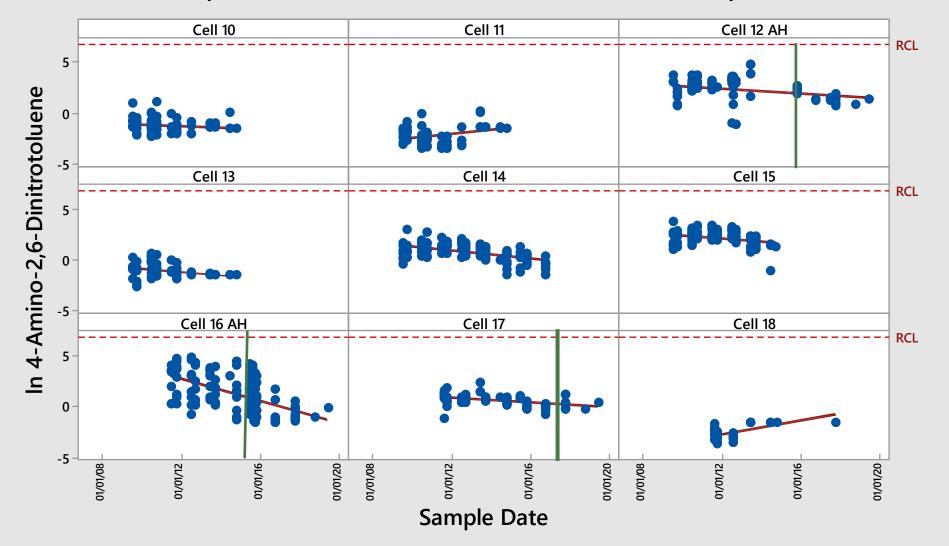
Scatterplot of In 2-Amino-4,6-Dinitrotoluene vs Sample Date

The natural logarithm of the RCL (18.4 mg/kg) is shown

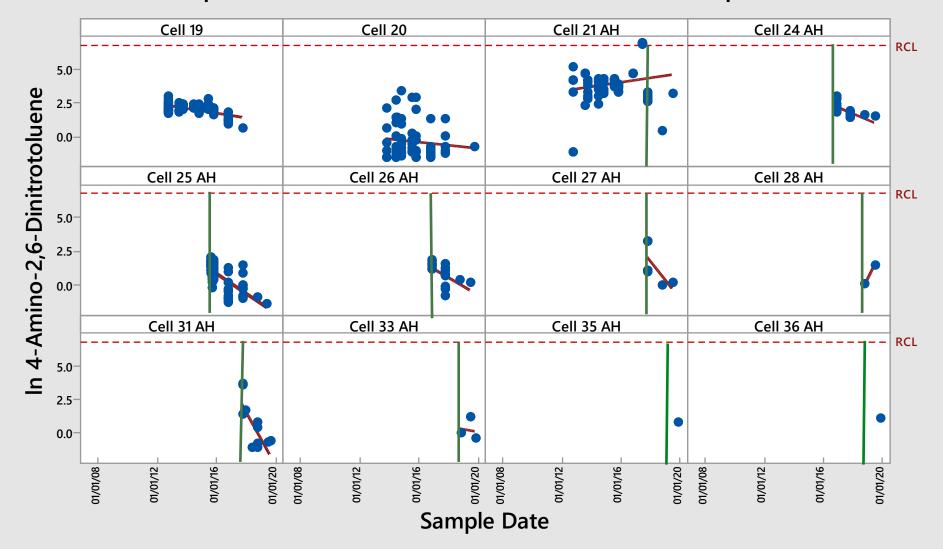
Scatterplot of In 2-Amino-4,6-Dinitrotoluene vs Sample Date

The natural logarithm of the RCL (18.4 mg/kg) is shown

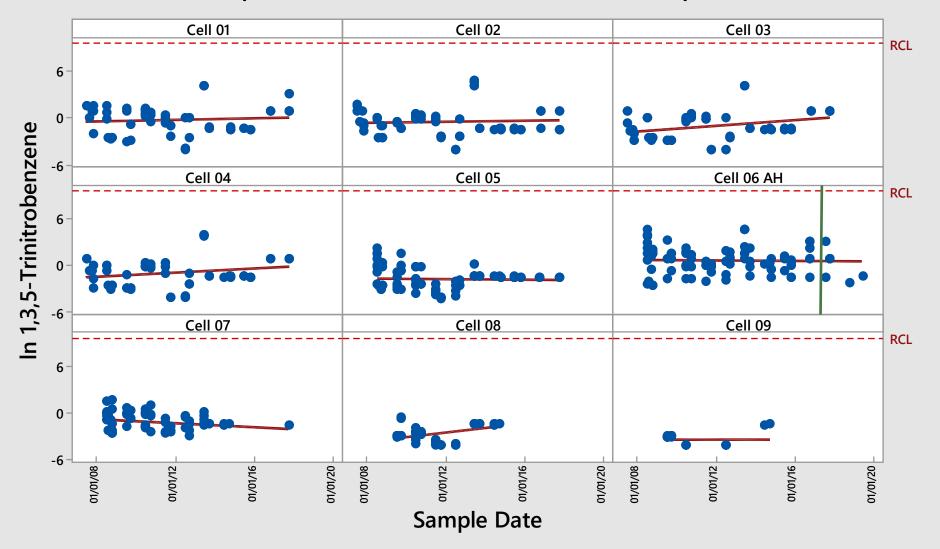
Cell 19 Cell 20 Cell 21 AH Cell 24 AH 8 4 In 2-Amino-4,6-Dinitrotoluene RCL Cell 26 AH Cell 27 AH Cell 25 AH Cell 28 AH RCL 0-Cell 31 AH Cell 36 AH Cell 33 AH Cell 35 AH 4 RCL 0 1/1/12 1/1/20 1/1/12 1/1/16 1/1/20 1/1/12 1/1/20 1/1/08 1/1/12 1/1/16 1/1/20 1/1/16 1/1/08 1/1/08 1/1/16 1/1/08 Sample Date


Scatterplot of In 2-Amino-4,6-Dinitrotoluene vs Sample Date

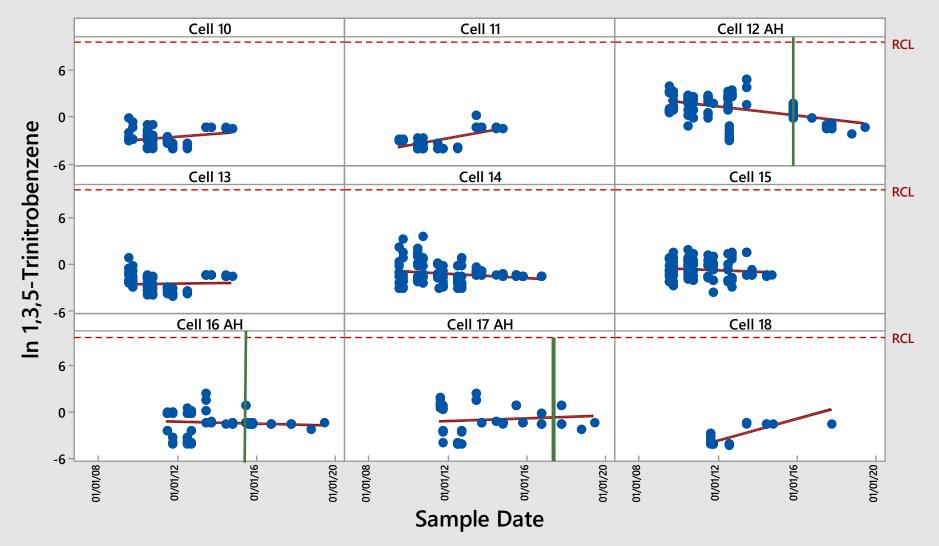
The natural logarithm of the RCL (18.4 mg/kg) is shown


Scatterplot of In 4-Amino-2,6-Dinitrotoluene vs Sample Date

The natural logarithm of the RCL (900 mg/kg) is shown


Scatterplot of In 4-Amino-2,6-Dinitrotoluene vs Sample Date

The natural logarithm of the RCL (900 mg/kg) is shown


Scatterplot of In 4-Amino-2,6-Dinitrotoluene vs Sample Date

The natural logarithm of the RCL (900 mg/kg) is shown

Scatterplot of In 1,3,5-Trinitrobenzene vs Sample Date

The natural logarithm of the RCL (13100 mg/kg) is shown

Scatterplot of In 1,3,5-Trinitrobenzene vs Sample Date

The natural logarithm of the RCL (13100 mg/kg) is shown

Cell 19 Cell 20 Cell 21 AH Cell 24 AH 10 RCL 5 In 1,3,5-Trinitrobenzene 0 Cell 25 AH Cell 26 AH Cell 27 AH Cell 28 AH 10 RCL 5 0 Cell 31 AH Cell 35 AH Cell 33 AH Cell 36 AH 10 RCL 5 0 01/01/16 01/01/08 01/01/12 01/01/16 01/01/20 01/01/08 01/01/16 01/01/20 01/01/08 01/01/12 01/01/20 01/01/08 01/01/12 01/01/16 01/01/20 01/01/12 Sample Date

Scatterplot of In 1,3,5-Trinitrobenzene vs Sample Date

The natural logarithm of the RCL (13100 mg/kg) is shown

Pace Analytical® CS Mobile Lab Services

2525 Advance Road Madison, WI 53718 608.221.8700 Phone 608.221.4889 Fax

July 02, 2019

Sharon Nordstrom AECOM 4051 Ogletown Road Newark, DE 19713 RE: Bio Pilot

Enclosed are the analytical results for the samples received by the laboratory on 06/12/2019.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. These results are in compliance with the 2009 NELAC Standards and the appropriate agencies listed below, unless otherwise noted in the case narrative. This analytical report should be reproduced in its entirety.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

opplied Epold

Jessica Esser

Project Manager

Certification	List		Expires
DODELAP	DOD ELAP Accreditation (A2LA)	3269.01	03/31/2020
ILEPA	Illinois Secondary NELAP Accreditation	004366	04/30/2020
KDHE	Kansas Secondary NELAP Accreditation	E-10384	04/30/2020
LELAP	Louisiana Primary NELAP Accreditation	04165	06/30/2020
NCDEQ	North Carolina Dept. of Environmental Quality Accreditation	688	12/31/2019
NJDEP	New Jersey Secondary NELAP Accreditation	WI004	06/30/2020
ODEQ	Oklahoma Department of Environmental Quality Accreditation	2018-087	08/31/2019
TCEQ	Texas Secondary NELAP Accreditation	T104704504-16-7	11/30/2019
WDNR	Wisconsin Certification under NR 149	113289110	08/31/2019

AECOM 4051 Ogletown Road Newark DE, 19713

Project: Bio Pilot Project Number: 60525839 Project Manager: Sharon Nordstrom

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BPSB-190604-C06-0-1	A192405-01	Soil	06/04/2019	06/12/2019
BPSB-190604-C12-0-1	A192405-02	Soil	06/04/2019	06/12/2019
BPSB-190604-C16-0-1	A192405-03	Soil	06/04/2019	06/12/2019
BPSB-190604-C17-0-1	A192405-04	Soil	06/04/2019	06/12/2019
BPSB-190604-C21-0-1	A192405-05	Soil	06/04/2019	06/12/2019
BPSB-190604-C24-0-1	A192405-06	Soil	06/04/2019	06/12/2019
BPSB-190604-C25-0-1	A192405-07	Soil	06/04/2019	06/12/2019
BPSB-190604-C26-0-1	A192405-08	Soil	06/04/2019	06/12/2019
BPSB-190604-C27-0-1	A192405-09	Soil	06/04/2019	06/12/2019
BPSB-190604-C28-0-1	A192405-10	Soil	06/04/2019	06/12/2019
BPSB-190610-C31-0-1	A192405-11	Soil	06/10/2019	06/12/2019
BPSB-190610-C33-0-1	A192405-12	Soil	06/10/2019	06/12/2019

CASE NARRATIVE

Sample Receipt Information:

12 samples were received on 06/12/2019. Samples were received at 4.3 degrees Celsius. Samples were received in acceptable condition.

Please see the chain of custody (COC) document at the end of this report for additional information.

Continuing Calibration Verification (CCV):

CCV indicates a potential high bias for 1,4-dimethyl-2,5-dinitrobenzene for samples A192405-01 through A192405-12. The upper control limit is 130% and the highest recovery was 187%. Any detections are footnoted with an HC. For the samples where results were less than the reporting limit no further action is required.

CCV indicates a potential high bias for 1,4-dimethyl-2,3-dinitrobenzene for samples A192405-01 through A192405-12. Samples were less than the reporting limit for this analyte so no further action is required.

2525 Advance Road Madison, WI 53718 608.221.8700 Phone 608.221.4889 Fax

AECOM 4051 Ogletown Road Newark DE, 19713		Project N	Project: Bio lumber: 6052 anager: Shar	25839	n			
			SB-190604 A192405-01		ate Sampled /04/2019 15:50			
		Reporting						
Analyte	Result	Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
		Pace A	nalytical -	Madison				
pH by EPA Method 9045					Prepa	aration Batch: A906	5224	
pH	11.7		pH Units	1	06/18/2019	06/18/2019 12:00	EPA 9045D	
			*		р		~	
Explosive Compounds by EPA Method 8270	ND	210	71 1			aration Batch: A906		
1,2-Dimethyl-3,4-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND ND	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene 1,3,5-Trinitrobenzene	ND ND	210 210	ug/kg dry ug/kg dry	1 1	06/26/2019 06/26/2019	06/26/2019 19:56 06/26/2019 19:56	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND 230	210	ug/kg dry				EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	230 ND	210 210	ug/kg dry ug/kg dry	1	06/26/2019 06/26/2019	06/26/2019 19:56 06/26/2019 19:56	EPA 8270D EPA 8270D	
1,3-Dinitrobenzene	ND	210 210	ug/kg dry ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	210 210	ug/kg dry ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	310	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	HC
1,4-Dimethyl-2,6-Dinitrobenzene	ND	210 210	ug/kg dry ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D EPA 8270D	пс
1,5-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	
1,5-Dimethyl-2,5-Dimitrobenzene	350	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	
2,3-Dinitrotoluene	350	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	
2,4,6-Trinitrotoluene	120000	4100	ug/kg dry	20	06/26/2019	06/28/2019 16:27	EPA 8270D	M1, D
2,4-Dinitrotoluene	2500	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	M
2,5-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	
2,6-Dinitrotoluene	1300	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	
2-Amino-4,6-dinitrotoluene	1800	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	
2-Nitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	
3,4-Dinitrotoluene	400	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	
3,5-Dinitroaniline	310	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	
3,5-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	
3-Nitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	
4-Amino-2,6-dinitrotoluene	12000	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	
4-Nitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	
Nitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	1500	210	ug/kg dry	1	06/26/2019	06/26/2019 19:56	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		98.8	% 11	.5-161	06/26/2019	06/26/2019 19:56	EPA 8270D	
Surrogate: Nitrobenzene-d5		92.5	% 65	.1-116	06/26/2019	06/26/2019 19:56	EPA 8270D	
Classical Chemistry Parameters					Prene	aration Batch: A906	5225	
% Moisture	15.9	0.00	% by Weight	1	06/17/2019	06/19/2019 16:52	SM 2540B	
% Solids	96.5	0.00	% by Weight	1	06/27/2019	06/28/2019 08:24	SM 2540B	

AECOM 4051 Ogletown Road			Project: Bio Jumber: 6052					
Newark DE, 19713		•		ron Nordstron	1			
		BPS	SB-190604	-C12-0-1		D	ate Sampled	
		1	A192405-02		/04/2019 15:35			
Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
		Pace A	Analytical -	Madison	*			
pH by EPA Method 9045					Pren	aration Batch: A906	5224	
рН	8.28		pH Units	1	06/17/2019	06/17/2019 13:50	EPA 9045D	
Explosive Compounds by EPA Method 8270					Prepa	aration Batch: A906	5257	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 21:30	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 21:30	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 21:30	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 21:30	EPA 8270D	
1.3.5-Trinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 21:30	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 21:30	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 21:30	EPA 8270D	
1,3-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 21:30	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 21:30	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 21:30	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 21:30	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry ug/kg dry	1	06/26/2019	06/26/2019 21:30	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	210	ug/kg dry ug/kg dry	1	06/26/2019	06/26/2019 21:30	EPA 8270D	
2,3-Dinitrotoluene	ND	210 210			06/26/2019	06/26/2019 21:30	EPA 8270D EPA 8270D	
2,4,6-Trinitrotoluene	180000	4100	ug/kg dry ug/kg dry	1			EPA 8270D EPA 8270D	D
2,4-Dinitrotoluene	3300	210		20	06/26/2019 06/26/2019	06/28/2019 16:58 06/26/2019 21:30	EPA 8270D EPA 8270D	D
2.5-Dinitrotoluene	3300 ND	210 210	ug/kg dry	1	06/26/2019		EPA 8270D EPA 8270D	
2,6-Dinitrotoluene	ND 560	210	ug/kg dry ug/kg dry	1		06/26/2019 21:30		
2-Amino-4,6-dinitrotoluene	1600	210 210		1	06/26/2019 06/26/2019	06/26/2019 21:30	EPA 8270D	
2-Nitrotoluene	ND	210 210	ug/kg dry ug/kg dry	1		06/26/2019 21:30	EPA 8270D	
3,4-Dinitrotoluene	ND ND	210	ug/kg dry ug/kg dry	1	06/26/2019 06/26/2019	06/26/2019 21:30 06/26/2019 21:30	EPA 8270D EPA 8270D	
3,5-Dinitroaniline	ND ND	210					EPA 8270D EPA 8270D	
3,5-Dinitrotoluene	ND ND	210 210	ug/kg dry ug/kg dry	1	06/26/2019 06/26/2019	06/26/2019 21:30 06/26/2019 21:30	EPA 8270D EPA 8270D	
			ug/kg dry	1				
3-Nitrotoluene 4-Amino-2,6-dinitrotoluene	ND 3300	210	ug/kg dry	1	06/26/2019	06/26/2019 21:30	EPA 8270D	
4-Amino-2,o-amitrotoluene 4-Nitrotoluene	3300 ND	210 210	ug/kg dry ug/kg dry	1	06/26/2019 06/26/2019	06/26/2019 21:30	EPA 8270D	
Nitrobenzene		210	ug/kg dry ug/kg dry	1		06/26/2019 21:30 06/26/2019 21:30	EPA 8270D	
	ND 1900	210	ug/kg dry	1	06/26/2019		EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	1900	210	ug/kg dry	1	06/26/2019	06/26/2019 21:30	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		99.2 102		.5-161	06/26/2019	06/26/2019 21:30	EPA 8270D	
Surrogate: Nitrobenzene-d5		103	70 63	5.1-116	06/26/2019	06/26/2019 21:30	EPA 8270D	
Classical Chemistry Parameters	10.0	0.00	0/ 1			aration Batch: A906		
% Moisture	19.8	0.00	% by Weight	1	06/17/2019	06/19/2019 16:52	SM 2540B	
% Solids	97.4	0.00	% by Weight	1	06/27/2019	06/28/2019 08:24	SM 2540B	

AECOM 4051 Ogletown Road			Project: Bio Jumber: 60:					
Newark DE, 19713		-		aron Nordstron	n			
		BPS	5B-190604	4-C16-0-1		D	ate Sampled	
		1	A192405-0		/04/2019 15:20			
Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
		Pace A	Analytical	- Madison				
pH by EPA Method 9045					Prepa	aration Batch: A900	5224	
рН	7.15		pH Units	1	06/17/2019	06/17/2019 13:53	EPA 9045D	
Explosive Compounds by EPA Method 8270					Prepa	aration Batch: A900	5257	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
1,3,5-Trinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
1,3-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
2,3-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
2,4,6-Trinitrotoluene	560	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
2,4-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
2,5-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
2,6-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
2-Amino-4,6-dinitrotoluene	490	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
2-Nitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
3,4-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
3,5-Dinitroaniline	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
3,5-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
3-Nitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
4-Amino-2,6-dinitrotoluene	840	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
4-Nitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
Nitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 22:02	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		102	%	1.5-161	06/26/2019	06/26/2019 22:02	EPA 8270D	
Surrogate: Nitrobenzene-d5		97.0		5.1-116	06/26/2019	06/26/2019 22:02	EPA 8270D	
Classical Chemistry Parameters					Prepa	aration Batch: A90(5225	
% Moisture	25.3	0.00	% by Waight	1	06/17/2019	06/19/2019 16:52	SM 2540B	
% Solids	93.8	0.00	Weight % by Weight	1	06/27/2019	06/28/2019 08:24	SM 2540B	

AECOM 4051 Ogletown Road			Project: Bio lumber: 6052					
Newark DE, 19713		5		ron Nordstron	n			
		BPS	SB-190604	-C17-0-1		D	ate Sampled	
		I	A192405-04	(Soil)		06/	04/2019 16:10	
Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
		Pace A	nalytical -	Madison	1	2		
pH by EPA Method 9045			·		Prepa	aration Batch: A906	5224	
рН	12.1		pH Units	1	06/17/2019	06/17/2019 13:55	EPA 9045D	
Explosive Compounds by EPA Method 8270					Prepa	aration Batch: A906	5257	
1,2-Dimethyl-3,4-Dinitrobenzene	1300	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
1,3,5-Trinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	8900	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
1,3-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	9300	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	HC
1,4-Dimethyl-2,6-Dinitrobenzene	2700	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	25000	410	ug/kg dry	2	06/26/2019	06/28/2019 17:30	EPA 8270D	D
2,3-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
2,4,6-Trinitrotoluene	570	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
2,4-Dinitrotoluene	590	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
2,5-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
2,6-Dinitrotoluene	250	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
2-Amino-4,6-dinitrotoluene	270	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
2-Nitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
3,4-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
3,5-Dinitroaniline	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
3,5-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
3-Nitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
4-Amino-2,6-dinitrotoluene	1500	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
4-Nitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
Nitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	210	ug/kg dry	1	06/26/2019	06/26/2019 23:36	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		104	% 11	.5-161	06/26/2019	06/26/2019 23:36	EPA 8270D	
Surrogate: Nitrobenzene-d5		99.5	% 6.	5.1-116	06/26/2019	06/26/2019 23:36	EPA 8270D	
Classical Chemistry Parameters					Prepa	aration Batch: A906	5225	
% Moisture	21.7	0.00	% by Weight	1	06/17/2019	06/19/2019 16:52	SM 2540B	
% Solids	97.2	0.00	% by Weight	1	06/27/2019	06/28/2019 08:24	SM 2540B	

AECOM 4051 Ogletown Road			Project: Bio Jumber: 6052					
Newark DE, 19713		5		ron Nordstron	1			
		BPS	SB-190604	-C21-0-1				
		1	A192405-05	Date Sampled 06/04/2019 14:48				
Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
		Pace	Analytical -	Madison	1	5		
HI EDAN (L. 10045		I acc r	Maryticai -	Wiauison	D		(224	
pH by EPA Method 9045 pH	8.90		pH Units	1	06/17/2019	aration Batch: A906 06/17/2019 13:58	EPA 9045D	
	0.70		pri onno					
Explosive Compounds by EPA Method 8270		200				aration Batch: A900		
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
1,3,5-Trinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
1,3-Dinitrobenzene	230	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
2,3-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
2,4,6-Trinitrotoluene	480000	8100	ug/kg dry	40	06/26/2019	06/28/2019 18:01	EPA 8270D	D
2,4-Dinitrotoluene	420	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
2,5-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
2,6-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
2-Amino-4,6-dinitrotoluene	5800	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
2-Nitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
3,4-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
3,5-Dinitroaniline	600	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
3,5-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
3-Nitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
4-Amino-2,6-dinitrotoluene	24000	8100	ug/kg dry	40	06/26/2019	06/28/2019 18:01	EPA 8270D	D
4-Nitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
Nitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 00:07	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		109		.5-161	06/26/2019	06/27/2019 00:07	EPA 8270D	
Surrogate: Nitrobenzene-d5		101	% 65	5.1-116	06/26/2019	06/27/2019 00:07	EPA 8270D	
Classical Chemistry Parameters					Prepa	aration Batch: A900	5225	
% Moisture	13.0	0.00	% by Waight	1	06/17/2019	06/19/2019 16:52	SM 2540B	
% Solids	98.2	0.00	Weight % by Weight	1	06/27/2019	06/28/2019 08:24	SM 2540B	

AECOM 4051 Ogletown Road			Project: Bio lumber: 605					
Newark DE, 19713		-		ron Nordstron	ı			
		BPS	SB-190604	-C24-0-1		D	ate Sampled	
		1	A192405-06	06/	/04/2019 14:54			
Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
		Pace A	nalytical -	Madison	-			-
pH by EPA Method 9045			·		Prep	aration Batch: A900	5224	
pH	8.57		pH Units	1	06/17/2019	06/17/2019 14:02	EPA 9045D	
Explosive Compounds by EPA Method 8270					Prepa	aration Batch: A906	6257	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
1,3,5-Trinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
1,3-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
2,3-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
2,4,6-Trinitrotoluene	39000	4100	ug/kg dry	20	06/26/2019	06/28/2019 18:33	EPA 8270D	D
2,4-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
2,5-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
2,6-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
2-Amino-4,6-dinitrotoluene	560	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
2-Nitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
3,4-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
3,5-Dinitroaniline	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
3,5-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
3-Nitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
4-Amino-2,6-dinitrotoluene	4200	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
4-Nitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
Nitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 00:39	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		104	% 1	1.5-161	06/26/2019	06/27/2019 00:39	EPA 8270D	
Surrogate: Nitrobenzene-d5		100	% 6.	5.1-116	06/26/2019	06/27/2019 00:39	EPA 8270D	
Classical Chemistry Parameters					Prepa	aration Batch: A900	5225	
% Moisture	16.2	0.00	% by Weight	1	06/17/2019	06/19/2019 16:52	SM 2540B	
% Solids	97.0	0.00	% by Weight	1	06/27/2019	06/28/2019 08:24	SM 2540B	

AECOM 4051 Ogletown Road			Project: Bio Jumber: 60:					
Newark DE, 19713		-		aron Nordstror	n			
		-	-	4-C25-0-1				
			A192405-0				ate Sampled /04/2019 14:55	
		-		, ()				
Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
		Pace A	Analytical	- Madison				
pH by EPA Method 9045					Prepa	aration Batch: A900	5224	
рН	10.2		pH Units	1	06/17/2019	06/17/2019 14:06	EPA 9045D	
Explosive Compounds by EPA Method 8270					Prepa	aration Batch: A900	5257	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
1,3,5-Trinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
1,3-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
2,3-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
2,4,6-Trinitrotoluene	350	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
2,4-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
2,5-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
2,6-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
2-Amino-4,6-dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
2-Nitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
3,4-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
3,5-Dinitroaniline	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
3,5-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
3-Nitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
4-Amino-2,6-dinitrotoluene	240	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
4-Nitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
Nitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:10	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		83.1	%	1.5-161	06/26/2019	06/27/2019 01:10	EPA 8270D	
Surrogate: Nitrobenzene-d5		99.9	%	5.1-116	06/26/2019	06/27/2019 01:10	EPA 8270D	
Classical Chemistry Parameters					Prepa	aration Batch: A900	5225	
% Moisture	14.5	0.00	% by Weight	1	06/17/2019	06/19/2019 16:52	SM 2540B	
% Solids	98.6	0.00	% by Weight	1	06/27/2019	06/28/2019 08:24	SM 2540B	

AECOM 4051 Ogletown Road Newark DE, 19713		Project N	Project: Bio Jumber: 605 Janager: Sha					
			5B-190604 A192405-03				ate Sampled /04/2019 15:00	
Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
		Pace A	Analytical -	Madison				
pH by EPA Method 9045					Prep	aration Batch: A900	5224	
рН	10.9		pH Units	1	06/17/2019	06/17/2019 14:10	EPA 9045D	
Explosive Compounds by EPA Method 8270					Prep	aration Batch: A900	5257	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
1,3,5-Trinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
1,3-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
2,3-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
2,4,6-Trinitrotoluene	3900	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
2,4-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
2,5-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
2,6-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
2-Amino-4,6-dinitrotoluene	260	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
2-Nitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
3,4-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
3,5-Dinitroaniline	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
3,5-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
3-Nitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
4-Amino-2,6-dinitrotoluene	1100	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
4-Nitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
Nitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 01:42	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		108	% 1	1.5-161	06/26/2019	06/27/2019 01:42	EPA 8270D	
Surrogate: Nitrobenzene-d5		100		5.1-116	06/26/2019	06/27/2019 01:42	EPA 8270D	
Classical Chemistry Parameters					Pren	aration Batch: A900	5225	
% Moisture	19.3	0.00	% by	1	06/17/2019	06/19/2019 16:52	SM 2540B	
% Solids	97.9	0.00	Weight % by	1	06/27/2019	06/28/2019 08:24	SM 2540B	

AECOM 4051 Ogletown Road			Project: Bio lumber: 605					
Newark DE, 19713		Project M	anager: Sha	ron Nordstron	ı			
		BPS	SB-190604	-C27-0-1		D	ate Sampled	
		1	A192405-09	9 (Soil)		06/	/04/2019 14:45	
Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
		Pace A	nalytical -	Madison	*			
nH by EDA Mathad 0045					Dron	aration Batch: A906	(1) 4	
pH by EPA Method 9045 pH	12.1		pH Units	1	06/17/2019	06/17/2019 14:13	EPA 9045D	
			F					
Explosive Compounds by EPA Method 8270		200				aration Batch: A906		
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019 06/26/2019	06/27/2019 02:13	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene 1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg dry	1		06/27/2019 02:13	EPA 8270D	
1,3,5-Trinitrobenzene	ND ND	200 200	ug/kg dry ug/kg dry	1	06/26/2019 06/26/2019	06/27/2019 02:13 06/27/2019 02:13	EPA 8270D EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
1,3-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
2,3-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
2,4,6-Trinitrotoluene	33000	4100	ug/kg dry	20	06/26/2019	06/28/2019 19:04	EPA 8270D	D
2,4-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
2,5-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
2,6-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
2-Amino-4,6-dinitrotoluene	460	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
2-Nitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
3,4-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
3,5-Dinitroaniline	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
3,5-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
3-Nitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
4-Amino-2,6-dinitrotoluene	1200	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
4-Nitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
Nitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg dry	1	06/26/2019	06/27/2019 02:13	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		93.6	% 1	1.5-161	06/26/2019	06/27/2019 02:13	EPA 8270D	
Surrogate: Nitrobenzene-d5		100	% 6	5.1-116	06/26/2019	06/27/2019 02:13	EPA 8270D	
Classical Chemistry Parameters					Prepa	aration Batch: A906	5225	
% Moisture	12.8	0.00	% by Weight	1	06/17/2019	06/19/2019 16:52	SM 2540B	
% Solids	98.5	0.00	% by Weight	1	06/27/2019	06/28/2019 08:24	SM 2540B	

AECOM 4051 Ogletown Road		Project N	Project: Bic Jumber: 605	525839				
Newark DE, 19713		Project M	anager: Sha	aron Nordstron	n			
				4-C28-0-1			ate Sampled	
		1	A192405-1	0 (Soil)		06.	/04/2019 15:00	
Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
		Pace A	Analytical -	- Madison				
pH by EPA Method 9045					Prepa	aration Batch: A900	5224	
рН	12.0		pH Units	1	06/17/2019	06/17/2019 14:20	EPA 9045D	
Explosive Compounds by EPA Method 8270					Prepa	aration Batch: A900	6257	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
1,3,5-Trinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
1,3-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
2,3-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
2,4,6-Trinitrotoluene	10000	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
2,4-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
2,5-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
2,6-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
2-Amino-4,6-dinitrotoluene	800	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
2-Nitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
3,4-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
3,5-Dinitroaniline	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
3,5-Dinitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
3-Nitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
4-Amino-2,6-dinitrotoluene	4000	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
4-Nitrotoluene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
Nitrobenzene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg dry	1	06/26/2019	06/28/2019 15:55	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		96.2	% 1	1.5-161	06/26/2019	06/28/2019 15:55	EPA 8270D	
Surrogate: Nitrobenzene-d5		96.4	% 6	5.1-116	06/26/2019	06/28/2019 15:55	EPA 8270D	
Classical Chemistry Parameters					Prepa	aration Batch: A900	5225	
% Moisture	18.9	0.00	% by	1	06/17/2019	06/19/2019 16:52	SM 2540B	
% Solids	97.9	0.00	Weight % by Weight	1	06/27/2019	06/28/2019 08:24	SM 2540B	

AECOM 4051 Ogletown Road Newark DE, 19713		Project N	Project: Bio Iumber: 605 anager: Sha		1			
			SB-190610 A192405-11				ate Sampled /10/2019 16:00	
Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
		Pace A	Analytical -	Madison				
pH by EPA Method 9045					Prep	aration Batch: A900	5224	
рН	12.1		pH Units	1	06/17/2019	06/17/2019 14:30	EPA 9045D	
Explosive Compounds by EPA Method 8270					Pren	aration Batch: A900	5257	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
1,3,5-Trinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
1,3-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
2,3-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
2,4,6-Trinitrotoluene	21000	410	ug/kg dry	2	06/26/2019	06/28/2019 19:36	EPA 8270D	D
2,4-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
2,5-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
2,6-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
2-Amino-4,6-dinitrotoluene	280	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
2-Nitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
3,4-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
3,5-Dinitroaniline	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
3,5-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
3-Nitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
4-Amino-2,6-dinitrotoluene	500	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
4-Nitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
Nitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:16	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		94.5	% 1	1.5-161	06/26/2019	06/27/2019 03:16	EPA 8270D	
Surrogate: Nitrobenzene-d5		99.3	% 6	5.1-116	06/26/2019	06/27/2019 03:16	EPA 8270D	
Classical Chemistry Parameters					Prepa	aration Batch: A900	5225	
% Moisture	39.7	0.00	% by Weight	1	06/17/2019	06/19/2019 16:52	SM 2540B	
% Solids	97.2	0.00	% by Weight	1	06/27/2019	06/28/2019 08:24	SM 2540B	

AECOM 4051 Ogletown Road		Project N	Project: Bio Jumber: 605	25839				
Newark DE, 19713		Project M	anager: Sha	ron Nordstron	1			
			SB-190610				ate Sampled /10/2019 16:10	
		1	4192405-12	2 (8011)		00/	10/2017 10:10	
Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
		Pace A	Analytical -	Madison				
pH by EPA Method 9045					Prepa	aration Batch: A906	5224	
рН	9.03		pH Units	1	06/17/2019	06/17/2019 14:42	EPA 9045D	
Explosive Compounds by EPA Method 8270					Prepa	aration Batch: A906	5257	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
1,3,5-Trinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
1,3-Dinitrobenzene	220	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
2,3-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
2,4,6-Trinitrotoluene	280000	8200	ug/kg dry	40	06/26/2019	06/28/2019 20:07	EPA 8270D	D
2,4-Dinitrotoluene	630	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
2,5-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
2,6-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
2-Amino-4,6-dinitrotoluene	930	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
2-Nitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
3,4-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
3,5-Dinitroaniline	340	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
3,5-Dinitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
3-Nitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
4-Amino-2,6-dinitrotoluene	3100	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
4-Nitrotoluene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
Nitrobenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	210	ug/kg dry	1	06/26/2019	06/27/2019 03:48	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		103	% 1	1.5-161	06/26/2019	06/27/2019 03:48	EPA 8270D	
Surrogate: Nitrobenzene-d5	99.1	% 6.	5.1-116	06/26/2019	06/27/2019 03:48	EPA 8270D		
Classical Chemistry Parameters					Prepa	aration Batch: A906	5225	
% Moisture	17.6	0.00	% by Weight	1	06/17/2019	06/19/2019 16:52	SM 2540B	
% Solids	97.2	0.00	% by Weight	1	06/27/2019	06/28/2019 08:24	SM 2540B	

Project: Bio Pilot Project Number: 60525839

Project Manager: Sharon Nordstrom

pH by EPA Method 9045 - Quality Control

Analyte	Result	Reporting Limit Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch A906224 - Default Prep GenChem									
Duplicate (A906224-DUP1)	Sourc	e: A192405-01	Prepared: (06/18/2019	Analyzed: (06/18/2019	12:05		
pH	11.3	pH Uni	s	11.7			3.99	20	
Duplicate (A906224-DUP2)	Sourc	e: A192405-11	Prepared: (06/17/2019	Analyzed: (06/17/2019	14:33		
	12.2	pH Uni		12.1			0.304	20	

AECOM 4051 Ogletown Road Newark DE, 19713 Project: Bio Pilot

Project Number: 60525839

Project Manager: Sharon Nordstrom

Explosive Compounds by EPA Method 8270 - Quality Control

Pace Analytical - Madison

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch A906257 - EPA 3570	result	Luint	0	20.01	icourt	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2		2	1.0005
Blank (A906257-BLK1)				Prenared ()6/26/2010	Analyzed (06/26/2019	19.24		
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg wet	Trepared. (0/20/20191	Allalyzeu.	0/20/2019	19.24		
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg wet ug/kg wet							
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg wet ug/kg wet							
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg wet							
1,3,5-Trinitrobenzene	ND	200	ug/kg wet							
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg wet							
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg wet							
1,3-Dinitrobenzene	ND	200	ug/kg wet							
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg wet							
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg wet							
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg wet							
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg wet							
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg wet							
2,3-Dinitrotoluene	ND	200	ug/kg wet							
2,4,6-Trinitrotoluene	ND	200	ug/kg wet							
2,4-Dinitrotoluene	ND	200	ug/kg wet							
2,5-Dinitrotoluene	ND	200	ug/kg wet							
2.6-Dinitrotoluene	ND	200	ug/kg wet							
2-Amino-4,6-dinitrotoluene	ND	200	ug/kg wet							
2-Nitrotoluene	ND	200	ug/kg wet							
3.4-Dinitrotoluene	ND	200	ug/kg wet							
3,5-Dinitroaniline	ND	200	ug/kg wet							
3.5-Dinitrotoluene	ND	200	ug/kg wet							
3-Nitrotoluene	ND	200	ug/kg wet							
4-Amino-2,6-dinitrotoluene	ND	200	ug/kg wet							
4-Nitrotoluene	ND	200	ug/kg wet							
Nitrobenzene	ND	200	ug/kg wet							
1,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg wet							
Surrogate: 2,2'-Dinitrobiphenyl	1030		ug/kg wet	2000		51.3	11.5-161			
Surrogate: Nitrobenzene-d5	1820		ug/kg wet	2000		90.8	65.1-116			
LCS (A906257-BS1)				Prepared: (06/26/2019	Analyzed: (06/26/2019	17:19		
1,3,5-Trinitrobenzene	1100	200	ug/kg wet	2000		55.1	50.6-126			
1,3-Dinitrobenzene	1790	200	ug/kg wet	2000		89.4	52.9-125			
2,4,6-Trinitrotoluene	1750	200	ug/kg wet	2000		87.5	57.1-139			
2,4-Dinitrotoluene	1550	200	ug/kg wet	2000		77.5	67.4-120			
2,6-Dinitrotoluene	1960	200	ug/kg wet	2000		98.2	74.6-116			
2-Amino-4,6-dinitrotoluene	1720	200	ug/kg wet	2000		85.8	65.9-110			
2-Nitrotoluene	1980	200	ug/kg wet	2000		99.2	76 3-114			

99.2 2-Nitrotoluene 1980 200 ug/kg wet 2000 76.3-114 3,4-Dinitrotoluene 1520 200 ug/kg wet 2000 76.0 68.2-117 3.5-Dinitroaniline 1770 200 ug/kg wet 2000 88.7 61.6-115 3-Nitrotoluene 1920 200 ug/kg wet 2000 96.0 77.4-113 2000 4-Amino-2,6-dinitrotoluene 1750 200 ug/kg wet 87.4 57.5-113 4-Nitrotoluene 1970 200 ug/kg wet 2000 98.3 74.8-112 Nitrobenzene 1990 99.6 77-115 200 ug/kg wet 2000 87.5 11.5-161 Surrogate: 2,2'-Dinitrobiphenyl 1750 ug/kg wet 2000

Project: Bio Pilot Project Number: 60525839

Project Manager: Sharon Nordstrom

Explosive Compounds by EPA Method 8270 - Quality Control

		Pace Ar	alytical	- Madiso	n					
	D	Reporting		Spike	Source	0/DEC	%REC	DES	RPD	N -
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch A906257 - EPA 3570										
LCS (A906257-BS1)				Prepared: (06/26/2019	Analyzed:	06/26/2019	17:19		
Surrogate: Nitrobenzene-d5	1910		ug/kg wet	2000		95.6	65.1-116			
Matrix Spike (A906257-MS1)	Sour	ce: A192405	-01	Prepared: (06/26/2019	Analyzed:	06/26/2019 2	20:27		
1,2-Dimethyl-3,4-Dinitrobenzene	ND	210	ug/kg dry		ND		59.9-113			
1,2-Dimethyl-3,5-Dinitrobenzene	ND	210	ug/kg dry		ND		63.5-111			
1,2-Dimethyl-3,6-Dinitrobenzene	ND	210	ug/kg dry		ND		67.8-114			
1,2-Dimethyl-4,5-Dinitrobenzene	ND	210	ug/kg dry		ND		58.4-113			
1,3,5-Trinitrobenzene	1910	210	ug/kg dry	2073	ND	92.0	12.3-150			
1,3-Dimethyl-2,4-Dinitrobenzene	249	210	ug/kg dry		225		63.6-111			
1,3-Dimethyl-2,5-Dinitrobenzene	ND	210	ug/kg dry		ND		70.7-112			
1,3-Dinitrobenzene	1920	210	ug/kg dry	2073	144	85.7	32.8-135			
1,4-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry		ND		58.1-109			
1,4-Dimethyl-2,5-Dinitrobenzene	331	210	ug/kg dry		307		64.1-108			
1,4-Dimethyl-2,6-Dinitrobenzene	125	210	ug/kg dry		120		64.3-107			
1,5-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry		ND		61.6-112			
1,5-Dimethyl-2,4-Dinitrobenzene	396	210	ug/kg dry		349		58-113			
2,3-Dinitrotoluene	433	210	ug/kg dry		353		61.1-127			
2,4,6-Trinitrotoluene	54800	4100	ug/kg dry	2073	122000	NR	38.8-138			M1,
2,4-Dinitrotoluene	5110	210	ug/kg dry	2073	2530	124	44.1-133			,
2,5-Dinitrotoluene	139	210	ug/kg dry		129		58.3-132			
2,6-Dinitrotoluene	3510	210	ug/kg dry	2073	1270	108	52.5-128			
2-Amino-4,6-dinitrotoluene	3850	210	ug/kg dry	2073	1750	101	18-135			
2-Nitrotoluene	2290	210	ug/kg dry	2073	153	103	73.9-113			
3,4-Dinitrotoluene	2250	210	ug/kg dry	2073	405	89.2	52.8-120			
3,5-Dinitroaniline	2440	210	ug/kg dry	2073	305	103	22.9-131			
3,5-Dinitrotoluene	117	210	ug/kg dry	2075	112	100	59.3-135			
3-Nitrotoluene	2100	210	ug/kg dry	2073	ND	101	73.6-116			
4-Amino-2,6-dinitrotoluene	13400	210	ug/kg dry	2073	11900	72.7	10-144			
4-Nitrotoluene	2330	210	ug/kg dry	2073	193	103	71.2-114			
Nitrobenzene	2090	210	ug/kg dry	2073	ND	103	72.5-112			
Surrogate: 2,2'-Dinitrobiphenyl	2050		ug/kg dry	2073		98.8	11.5-161			
Surrogate: Nitrobenzene-d5	2030		ug/kg dry	2073		97.8	65.1-116			
Matrix Spike Dup (A906257-MSD1)	Sour	ce: A192405	-01	Prepared: ()6/26/2019	Analvzed:	06/26/2019 2	20:59		
1,2-Dimethyl-3,4-Dinitrobenzene	ND	210	ug/kg dry		ND		59.9-113		20	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	210	ug/kg dry		ND		63.5-111		20	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	210	ug/kg dry		ND		67.8-114		20	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	210	ug/kg dry		ND		58.4-113		20	
1,3,5-Trinitrobenzene	2280	210	ug/kg dry ug/kg dry	2073	ND	110	12.3-150	18.0	20	
1,3-Dimethyl-2,4-Dinitrobenzene	266	210	ug/kg dry ug/kg dry	2015	225	110	63.6-111	6.53	20 20	
1,3-Dimethyl-2,5-Dinitrobenzene	200 ND	210	ug/kg dry ug/kg dry		ND		70.7-112	0.55	20 20	
1,3-Dinitrobenzene	2000	210	ug/kg dry ug/kg dry	2073	ND 144	89.6	32.8-135	4.16	20 20	
		210		2075		09.0	58.1-109	4.10		
1,4-Dimethyl-2,3-Dinitrobenzene	ND 340		ug/kg dry		ND 207			5 70	20 20	
1,4-Dimethyl-2,5-Dinitrobenzene	349	210	ug/kg dry		307		64.1-108	5.28	20	
1,4-Dimethyl-2,6-Dinitrobenzene	128	210	ug/kg dry		120		64.3-107	2.18	20	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry		ND		61.6-112		20	

AECOM 4051 Ogletown Road Newark DE, 19713 Project: Bio Pilot Project Number: 60525839

Project Manager: Sharon Nordstrom

Explosive Compounds by EPA Method 8270 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch A906257 - EPA 3570										
Matrix Spike Dup (A906257-MSD1)	Sou	rce: A192405	-01	Prepared: (06/26/2019	Analyzed:	06/26/2019	20:59		
1,5-Dimethyl-2,4-Dinitrobenzene	421	210	ug/kg dry		349		58-113	6.14	20	
2,3-Dinitrotoluene	483	210	ug/kg dry		353		61.1-127	11.0	20	
2,4,6-Trinitrotoluene	68100	4100	ug/kg dry	2073	122000	NR	38.8-138	21.6	20	M1, D
2,4-Dinitrotoluene	5580	210	ug/kg dry	2073	2530	147	44.1-133	8.71	20	М
2,5-Dinitrotoluene	138	210	ug/kg dry		129		58.3-132	0.689	20	
2,6-Dinitrotoluene	3840	210	ug/kg dry	2073	1270	124	52.5-128	8.88	20	
2-Amino-4,6-dinitrotoluene	4040	210	ug/kg dry	2073	1750	110	18-135	4.82	20	
2-Nitrotoluene	2380	210	ug/kg dry	2073	153	107	73.9-113	3.67	20	
3,4-Dinitrotoluene	2320	210	ug/kg dry	2073	405	92.2	52.8-120	2.73	20	
3,5-Dinitroaniline	2550	210	ug/kg dry	2073	305	108	22.9-131	4.52	20	
3,5-Dinitrotoluene	119	210	ug/kg dry		112		59.3-135	1.63	20	
3-Nitrotoluene	2170	210	ug/kg dry	2073	ND	105	73.6-116	3.30	20	
4-Amino-2,6-dinitrotoluene	14000	210	ug/kg dry	2073	11900	99.9	10-144	4.12	20	
4-Nitrotoluene	2430	210	ug/kg dry	2073	193	108	71.2-114	4.27	20	
Nitrobenzene	2140	210	ug/kg dry	2073	ND	103	72.5-112	2.30	20	
Surrogate: 2,2'-Dinitrobiphenyl	2050		ug/kg dry	2073		99.0	11.5-161			
Surrogate: Nitrobenzene-d5	2080		ug/kg dry	2073		100	65.1-116			

AECOM		Project: Bi	o Pilot						
4051 Ogletown Road		Project Number: 60	525839						
Newark DE, 19713		Project Manager: Sh	aron Nordstro	om					
	Classical (Chemistry Param	eters - Qua	ality Con	trol				
		Pace Analytical	- Madiso	n					
		Reporting	Spike	Source		%REC		RPD	
Analyte	Result	Limit Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch A906225 - % Solids									
Duplicate (A906225-DUP1)	Sourc	e: A192405-05	Prepared: (6/17/2019	Analyzed: (06/19/2019	16:52		
% Moisture	14.1	0.00 % by Weigh	ıt	13.0			7.51	20	
Batch A906260 - % Solids									
Duplicate (A906260-DUP1)	Sourc	e: A192405-01	Prepared: (6/27/2019	Analyzed: (06/28/2019	08:24		
% Solids	96.6	0.00 % by Weig	t	96.5			0.150	20	

AECOM 4051 Ogletown Road Newark DE, 19713 Project: Bio Pilot Project Number: 60525839 Project Manager: Sharon Nordstrom

Notes and Definitions

- M1 Spike recoveries were not evaluated because of elevated levels of the spiked analyte in the parent sample.
- M The matrix spike and/or matrix spike duplicate recovery was outside of the laboratory control limits.
- HC Results may be biased high because of high continuing calibration verification (CCV).
- D Data reported from a dilution
- ND Analyte NOT DETECTED at or above the reporting limit or limit of detection (if listed).
- NR Not Reported
- dry Sample results reported on a dry weight basis. If the word 'dry' does not appear after the units, results are reported on an as-is basis.
- RPD Relative Percent Difference

Pace Analytical [®] ECCS Mobile Let: Services	Pace Analytical - EC 2525 Advance Road Madison, WI 53718	۰) ۲					IAI			CUS 8439		ODY Pag	e:	of: 2	_	
1	608-221-8700 (phone 608-221-4889 (fax)	?)					Wor Au			~	Report To: Sharon Nordstrom					
				in and the second			Al			Commission and the second s	(Company: A E	COM			
Project Number: 60525		er:							tion Co			Address 1:				
Project Name: <u>Bio</u> Pil	1.						Ana T	alyses I	Reque T	sted	/	Address 2:				
Project Location (City, State):	Barksdale, W				1				3			E-mail Address: 54	wron , no ,	detrom 1	as Alian a	
Turn Around (check one):	🔀 Normal 🗌 Rus	sh			s				6-19		1	nvoice To:				
If Rush, Report Due Date:	1				ainer		+		S T		C	Company:	·····			
Sampled By (Print): Nicl	Sherkey & Dan	Barto	n		Cont	t	Nois	$\left \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \right $	2		4	Address 1:				
	0			×	# of	PH	do moist	3	00		Ľ	Address 2:				
Sample De	scription	Colle Date	ection Time	Matrix	Total # of Containers			NN0C>	0			Commen	te	Lab ID	Lab Receipt Time	
BPSB - 140604-		6/4/19		5	2	X	X	X						0)		
BPSB- 190604 - C			1535	5	2	$\hat{\chi}$	χ	1						02		
BPSB-190604 - C	(0-1)		1520	5	2	X	Х							03		
BPSB - 19 6604 - 6	217 (0-1)		1610	5	2	Х	X							04		
BPSB-190604-0	21 (0-1)		1448	5	2	Х	\mathbf{X}							05		
BPSB-190604 - C	24 (0-1)		1454	S	2	X	Х							06		
BPSB- 196604-C2	15 (0-1)		1455	5	2	X	X	/						07		
BPSB-19 0604 - C	26 (01)		1500	5	2	\mathbf{X}	\mathbf{X}							08		
BPSB- 190604 - C			1445	5	2	$\boldsymbol{\lambda}$	X							09		
BPSB- 190604 - C	28 (0-1)	\checkmark	1500	5	Ц	X	$\boldsymbol{\chi}$							10		
Preservation Codes A=None B=HCL C=H₂SO₄	Other Comments:	Relinquishe	ed By:	Se	Ľ	/		Date: 6 /11 /	/19	Time: 11 :00	2	Received By:	3005	Date:	Time: 1015	
D=HNO ₃ E=EnCore F=Methanol G=NaOH O=Other (Indicate)		Relinquishe	ed By:	0	Ð	<i>c</i>		Date:		Time:		Received By:		Date:	Time:	
Matrix Codes A=Air S=Soil W=Water O=Other		Custody Se	eal:		ot Inta	t		ed Via		Receipt 4.3	Temp 3°C				p Blank:	

Pace Analytical*	Pace Analytical - E 2525 Advance Road Madison, WI 53718 608-221-8700 (phon		sion					N	Jo.	844		Page:	of: 2	.
Ĩ	608-221-4889 (fax)	0)				Lab	Wor	rk Or 19				Report To:		
Project Number: 60525	-839 PO Num	ber:					Pre	eservat	tion Co	odes		Address 1:		
Project Name: Bis Pill	i						Ana	alyses	Reque	sted		Address 2:		
Project Location (City, State):	Barksdale, W.	1							Ð	ĪĪ		E-mail Address:		
Turn Around (check one):	Normal 🗌 Ru								19			Invoice To:		
If Rush, Report Due Date:				1	iners		+		S			Company:		
	The Shovley	-			contai		Maist	N	00			Address 1:		
	1			1	# of C	t d		2	added 06 30			Address 2:		
Sample D	ascription	Coll Date	ection Time	Matrix	Total # of Containers	م	20	NOV	B			Commonto	Lab ID	Lab Receipt Time
		6/10/19		5	2	χ	ス	X		++		Comments		nine
BP5B- 1406 10			<u> </u>		2		$\frac{1}{\sqrt{2}}$	1		┼──┼╴			la	
BPSB- 190610	-C35(0-1)	6/10/19	1610	15	4	χ	ľ.						10	
								L						
· · · · · · · · · · · · · · · · · · ·										+				
		_		1										
									 					
							ļ							
Preservation Codes A=None B=HCL C=H ₂ SO ₄	Other Comments:	Relinquish	ed By:		A	ur y		Date:	1/19	Time:	10	Received By:	Date:	Time:
D=HNO ₃ E=EnCore F=Methanol		Relinquish	ed By:			/		Date:	4-+-	Time:	<u> </u>	Received By:	Date:	Time:
G=NaOH O=Other (Indicate) Matrix Codes		Custody S	eal:				Shipr	ed Via		Receip	it Ten	np: Thermometer #/ Exp. Date:	 Tem	p Blank:
A=Air S=Soil W=Water O=Other			Intact	🗆 N	ot Inta	ct		£Χ		4.	34	C 160142274 07	13-19 ¥Y	N Rev. 12/15

Page 22 of 22 A192405 FINAL 07 02 2019 1251

September 03, 2019

Sharon Nordstrom AECOM 4051 Ogletown Road Newark, DE 19713 RE: Bio Pilot - Barksdale, WI

Enclosed are the analytical results for the samples received by the laboratory on 08/16/2019.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. These results are in compliance with the 2009 NELAC Standards and the appropriate agencies listed below, unless otherwise noted in the case narrative. This analytical report should be reproduced in its entirety.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

opplied Epold

Jessica Esser

Project Manager

Certification L	list		Expires
DODELAP	DOD ELAP Accreditation (A2LA)	3269.01	03/31/2020
ILEPA	Illinois Secondary NELAP Accreditation	004366	04/30/2020
KDHE	Kansas Secondary NELAP Accreditation	E-10384	04/30/2020
LELAP	Louisiana Primary NELAP Accreditation	04165	06/30/2020
NCDEQ	North Carolina Dept. of Environmental Quality Accreditation	688	12/31/2019
NJDEP	New Jersey Secondary NELAP Accreditation	WI004	06/30/2020
TCEQ	Texas Secondary NELAP Accreditation	T104704504-16-7	11/30/2019
WDNR	Wisconsin Certification under NR 149	113289110	08/31/2020

Project: Bio Pilot - Barksdale, WI Project Number: 60525839 Project Manager: Sharon Nordstrom

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BPSB-190814-C31-0-1	A193320-01	Soil	08/14/2019	08/16/2019

CASE NARRATIVE

Sample Receipt Information:

1 sample was received on 08/16/2019. Sample was received at 1.8 degrees Celsius. Sample was received in acceptable condition.

Please see the chain of custody (COC) document at the end of this report for additional information.

Sample Preparation:

Sample A193320-01 had to be re-extracted and re-analyzed for the explosives by GC/MS analysis due to the high pH of the sample. The re-extraction is presented in this report as sample number A193320-01RE1.

AECOM			Project: Bio I	Pilot - Barksd	ale, WI			
4051 Ogletown Road		Project N	Number: 6052	5839				
Newark DE, 19713		Project M	lanager: Sharo	on Nordstron	1			
		BPS	SB-190814-	C31-0-1		D	ate Sampled	
		1	08/	08/14/2019 13:15				
Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifier
		Pace A	Analytical - N	Madison	_			
pH by EPA Method 9045					Prepa	aration Batch: A908	3189	
рН	12.4		pH Units	1	08/21/2019	08/22/2019 09:24	EPA 9045D	
Classical Chemistry Parameters					Prepa	aration Batch: A908	8195	
% Moisture	46.3	0.00	% by Weight	1	08/20/2019	08/21/2019 09:15	SM 2540B	
% Solids	92.8	0.00	% by Weight	1	08/26/2019	08/27/2019 09:17	SM 2540B	

AECOM 4051 Ogletown Road Newark DE, 19713	051 Ogletown Road Project Number: 60525839											
			SB-190814- 93320-01RI				0ate Sampled /14/2019 13:15					
		Reporting		. ,								
Analyte	Result	Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers				
		Pace A	Analytical -]	Madison								
Explosive Compounds by EPA Method 8270					Pren	aration Batch: A90	8224					
1,2-Dimethyl-3,4-Dinitrobenzene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
1,2-Dimethyl-3,5-Dinitrobenzene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
1,2-Dimethyl-3,6-Dinitrobenzene	ND	220	ug/kg dry ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
1,2-Dimethyl-4,5-Dinitrobenzene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
1,3,5-Trinitrobenzene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
1,3-Dimethyl-2,4-Dinitrobenzene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
1,3-Dimethyl-2,5-Dinitrobenzene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
1,3-Dinitrobenzene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
1,4-Dimethyl-2,3-Dinitrobenzene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
1,4-Dimethyl-2,5-Dinitrobenzene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
1,4-Dimethyl-2,6-Dinitrobenzene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
1,5-Dimethyl-2,3-Dinitrobenzene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
1,5-Dimethyl-2,4-Dinitrobenzene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
2,3-Dinitrotoluene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
2,4,6-Trinitrotoluene	34000	1700	ug/kg dry	8	08/28/2019	08/28/2019 19:38	EPA 8270D	D				
2,4-Dinitrotoluene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
2,5-Dinitrotoluene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
2,6-Dinitrotoluene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
2-Amino-4,6-dinitrotoluene	320	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
2-Nitrotoluene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
3,4-Dinitrotoluene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
3,5-Dinitroaniline	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
3,5-Dinitrotoluene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
3-Nitrotoluene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
4-Amino-2,6-dinitrotoluene	530	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
4-Nitrotoluene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
Nitrobenzene	ND	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
1,3,5-Trinitro-2,4-dimethylbenzene	2200	220	ug/kg dry	1	08/28/2019	08/28/2019 19:07	EPA 8270D					
Surrogate: 2,2'-Dinitrobiphenyl		98.5	5% 11.	.5-161	08/28/2019	08/28/2019 19:07	EPA 8270D					

Surrogate: Nitrobenzene-d5

105 %

65.1-116

08/28/2019

08/28/2019 19:07

EPA 8270D

Project: Bio Pilot - Barksdale, WI Project Number: 60525839

Project Manager: Sharon Nordstrom

pH by EPA Method 9045 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch A908189 - Default Prep GenChem										
Duplicate (A908189-DUP1)	Sou	rce: A193320-	01	Prepared: (8/21/2019	Analyzed: (08/22/2019	09:24		

Duplicate (11) 00109 D 011)	Sourcernittee	, 01 110puitui 86	#21/2019 1 maij 2001 00/22/2019 0	····	
pH	12.5	pH Units	12.4	0.900	20

Project: Bio Pilot - Barksdale, WI Project Number: 60525839 Project Manager: Sharon Nordstrom

Explosive Compounds by EPA Method 8270 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch A908224 - EPA 3570										
Blank (A908224-BLK1)				Prepared: (08/28/2019	Analyzed: (08/28/2019	17:02		
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg wet	-						
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg wet							
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg wet							
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg wet							
1,3,5-Trinitrobenzene	ND	200	ug/kg wet							
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg wet							
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg wet							
1,3-Dinitrobenzene	ND	200	ug/kg wet							
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg wet							
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg wet							
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg wet							
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg wet							
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg wet							
2,3-Dinitrotoluene	ND	200	ug/kg wet							
2,4,6-Trinitrotoluene	ND	200	ug/kg wet							
2,4-Dinitrotoluene	ND	200	ug/kg wet							
2,5-Dinitrotoluene	ND	200	ug/kg wet							
2,6-Dinitrotoluene	ND	200	ug/kg wet							
2-Amino-4,6-dinitrotoluene	ND	200	ug/kg wet							
2-Nitrotoluene	ND	200	ug/kg wet							
3,4-Dinitrotoluene	ND	200	ug/kg wet							
3,5-Dinitroaniline	ND	200	ug/kg wet							
3,5-Dinitrotoluene	ND	200	ug/kg wet							
3-Nitrotoluene	ND	200	ug/kg wet							
4-Amino-2,6-dinitrotoluene	ND	200	ug/kg wet							
4-Nitrotoluene	ND	200	ug/kg wet							
Nitrobenzene	ND	200	ug/kg wet							
1,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg wet							
Surrogate: 2,2'-Dinitrobiphenyl	1060		ug/kg wet	2000		52.8	11.5-161			
Surrogate: Nitrobenzene-d5	2090		ug/kg wet	2000		105	65.1-116			
LCS (A908224-BS1)				Prepared: (08/28/2019	Analyzed: (08/28/2019	16:31		
1,2-Dimethyl-3,4-Dinitrobenzene	2000	200	ug/kg wet	2038		98.1	73.6-111			
1,2-Dimethyl-3,5-Dinitrobenzene	1910	200	ug/kg wet	2000		95.6	71.6-112			
1,2-Dimethyl-3,6-Dinitrobenzene	1950	200	ug/kg wet	2000		97.4	76.3-114			
1,2-Dimethyl-4,5-Dinitrobenzene	1990	200	ug/kg wet	2002		99.2	68.8-113			
1,3,5-Trinitrobenzene	1880	200	ug/kg wet	2000		94.0	50.6-126			
1,3-Dimethyl-2,4-Dinitrobenzene	2040	200	ug/kg wet	2000		102	67.9-111			
1,3-Dimethyl-2,5-Dinitrobenzene	1970	200	ug/kg wet	2000		98.6	75-113			
1,3-Dinitrobenzene	2060	200	ug/kg wet	2000		103	52.9-125			
1,4-Dimethyl-2,3-Dinitrobenzene	1990	200	ug/kg wet	2082		95.8	72.6-107			
1,4-Dimethyl-2,5-Dinitrobenzene	1930	200	ug/kg wet	2096		92.3	70.8-106			
1,4-Dimethyl-2,6-Dinitrobenzene	1980	200	ug/kg wet	2066		96.0	68.3-107			
1,5-Dimethyl-2,3-Dinitrobenzene	1970	200	ug/kg wet	2000		98.6	73.3-110			
1,5-Dimethyl-2,4-Dinitrobenzene	1940	200	ug/kg wet	2058		94.2	70.2-109			
2,3-Dinitrotoluene	1990	200	ug/kg wet	2000		99.5	64.2-125			

Project: Bio Pilot - Barksdale, WI Project Number: 60525839 Project Manager: Sharon Nordstrom

Explosive Compounds by EPA Method 8270 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
rnaryw	Kesuit	Liiiit	UIIIIS	Level	Kesun	/0KEU	Liillits	κrD	Liillit	notes
Batch A908224 - EPA 3570										
LCS (A908224-BS1)				Prepared: (08/28/2019	Analyzed:	08/28/2019	16:31		
2,4,6-Trinitrotoluene	2050	200	ug/kg wet	2000		102	57.1-139			
2,4-Dinitrotoluene	2000	200	ug/kg wet	2000		99.8	67.4-120			
2,5-Dinitrotoluene	1960	200	ug/kg wet	2000		98.0	62-124			
2,6-Dinitrotoluene	2070	200	ug/kg wet	2000		104	74.6-116			
2-Amino-4,6-dinitrotoluene	2020	200	ug/kg wet	2000		101	65.9-110			
2-Nitrotoluene	2130	200	ug/kg wet	2000		106	76.3-114			
3,4-Dinitrotoluene	1930	200	ug/kg wet	2026		95.2	68.2-117			
3,5-Dinitroaniline	1920	200	ug/kg wet	2000		96.0	61.6-115			
3,5-Dinitrotoluene	1960	200	ug/kg wet	2000		98.0	70.5-120			
3-Nitrotoluene	2040	200	ug/kg wet	2000		102	77.4-113			
4-Amino-2,6-dinitrotoluene	2100	200	ug/kg wet	2000		105	57.5-113			
4-Nitrotoluene	2000	200	ug/kg wet	2000		99.8	74.8-112			
Nitrobenzene	2000	200	ug/kg wet	2000		100	77-115			
Surrogate: 2,2'-Dinitrobiphenyl	2110		ug/kg wet	2000		106	11.5-161			
Surrogate: 2,2 Similooppicity	2070		ug/kg wet	2000		103	65.1-116			
				-000						
Matrix Spike (A908224-MS1)		rce: A193506	-03	Prepared: (08/28/2019	Analyzed:	08/28/2019	15:28		
1,2-Dimethyl-3,4-Dinitrobenzene	1910	200	ug/kg dry	2088	ND	91.6	59.9-113			
1,2-Dimethyl-3,5-Dinitrobenzene	1820	200	ug/kg dry	2049	ND	88.9	63.5-111			
1,2-Dimethyl-3,6-Dinitrobenzene	2000	200	ug/kg dry	2049	ND	97.5	67.8-114			
1,2-Dimethyl-4,5-Dinitrobenzene	2110	200	ug/kg dry	2051	ND	103	58.4-113			
1,3,5-Trinitrobenzene	1800	200	ug/kg dry	2049	ND	88.1	12.3-150			
1,3-Dimethyl-2,4-Dinitrobenzene	2080	200	ug/kg dry	2049	ND	102	63.6-111			
1,3-Dimethyl-2,5-Dinitrobenzene	2010	200	ug/kg dry	2049	ND	97.9	70.7-112			
1,3-Dinitrobenzene	1760	200	ug/kg dry	2049	ND	85.9	32.8-135			
1,4-Dimethyl-2,3-Dinitrobenzene	2000	200	ug/kg dry	2133	ND	93.9	58.1-109			
1,4-Dimethyl-2,5-Dinitrobenzene	2000	200	ug/kg dry	2148	ND	93.0	64.1-108			
1,4-Dimethyl-2,6-Dinitrobenzene	2040	200	ug/kg dry	2117	ND	96.4	64.3-107			
1,5-Dimethyl-2,3-Dinitrobenzene	1860	200	ug/kg dry	2049	ND	90.9	61.6-112			
1,5-Dimethyl-2,4-Dinitrobenzene	1990	200	ug/kg dry	2109	ND	94.5	58-113			
2,3-Dinitrotoluene	1920	200	ug/kg dry	2049	ND	93.6	61.1-127			
2,4,6-Trinitrotoluene	60400	2000	ug/kg dry	2049	33800	NR	38.8-138			М
2,4-Dinitrotoluene	1990	200	ug/kg dry	2049	144	90.1	44.1-133			
2,5-Dinitrotoluene	2030	200	ug/kg dry	2049	ND	99.1	58.3-132			
2,6-Dinitrotoluene	1970	200	ug/kg dry	2049	ND	96.1	52.5-128			
2-Amino-4,6-dinitrotoluene	2410	200	ug/kg dry	2049	596	88.5	18-135			
2-Nitrotoluene	2050	200	ug/kg dry	2049	ND	100	73.9-113			
3,4-Dinitrotoluene	1890	200	ug/kg dry	2076	ND	90.9	52.8-120			
3,5-Dinitroaniline	1910	200	ug/kg dry	2049	ND	93.3	22.9-131			
3,5-Dinitrotoluene	1950	200	ug/kg dry	2049	ND	95.4	59.3-135			
3-Nitrotoluene	2000	200	ug/kg dry	2049	ND	97.7	73.6-116			
4-Amino-2,6-dinitrotoluene	2870	200	ug/kg dry	2049	687	107	10-144			
4-Nitrotoluene	1980	200	ug/kg dry	2049	ND	96.7	71.2-114			
Nitrobenzene	1960	200	ug/kg dry	2049	ND	95.8	72.5-112			
Surrogate: 2,2'-Dinitrobiphenyl	2430			2049		119	11.5-161			
surrogute. 2,2 -Dintirooipnenyl	2450		ug/kg dry	2049		119	11.3-101			

AECOM 4051 Ogletown Road Newark DE, 19713 Project: Bio Pilot - Barksdale, WI Project Number: 60525839 Project Manager: Sharon Nordstrom

Explosive Compounds by EPA Method 8270 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
r mary t	Kesult	Liinit	Units	Level	result	/0KEU	Limits	NFD.	Liiiit	notes
Batch A908224 - EPA 3570										
Matrix Spike Dup (A908224-MSD1)	Sourc	ce: A193506	-03	Prepared: (08/28/2019	Analyzed:	08/28/2019 1	15:59		
1,2-Dimethyl-3,4-Dinitrobenzene	1980	200	ug/kg dry	2088	ND	94.8	59.9-113	3.49	20	
1,2-Dimethyl-3,5-Dinitrobenzene	1920	200	ug/kg dry	2049	ND	93.9	63.5-111	5.45	20	
1,2-Dimethyl-3,6-Dinitrobenzene	2090	200	ug/kg dry	2049	ND	102	67.8-114	4.42	20	
1,2-Dimethyl-4,5-Dinitrobenzene	2230	200	ug/kg dry	2051	ND	109	58.4-113	5.17	20	
1,3,5-Trinitrobenzene	1960	200	ug/kg dry	2049	ND	95.7	12.3-150	8.26	20	
1,3-Dimethyl-2,4-Dinitrobenzene	2180	200	ug/kg dry	2049	ND	106	63.6-111	4.47	20	
1,3-Dimethyl-2,5-Dinitrobenzene	2080	200	ug/kg dry	2049	ND	101	70.7-112	3.45	20	
1,3-Dinitrobenzene	2050	200	ug/kg dry	2049	ND	100	32.8-135	15.3	20	
1,4-Dimethyl-2,3-Dinitrobenzene	2080	200	ug/kg dry	2133	ND	97.3	58.1-109	3.62	20	
1,4-Dimethyl-2,5-Dinitrobenzene	2080	200	ug/kg dry	2148	ND	97.1	64.1-108	4.27	20	
1,4-Dimethyl-2,6-Dinitrobenzene	2120	200	ug/kg dry	2117	ND	100	64.3-107	3.83	20	
1,5-Dimethyl-2,3-Dinitrobenzene	1970	200	ug/kg dry	2049	ND	96.1	61.6-112	5.58	20	
1,5-Dimethyl-2,4-Dinitrobenzene	2090	200	ug/kg dry	2109	ND	99.1	58-113	4.73	20	
2,3-Dinitrotoluene	2050	200	ug/kg dry	2049	ND	99.9	61.1-127	6.51	20	
2,4,6-Trinitrotoluene	47600	2000	ug/kg dry	2049	33800	676	38.8-138	23.6	20	M1, I
2,4-Dinitrotoluene	2080	200	ug/kg dry	2049	144	94.6	44.1-133	4.55	20	
2,5-Dinitrotoluene	2200	200	ug/kg dry	2049	ND	107	58.3-132	7.92	20	
2,6-Dinitrotoluene	2110	200	ug/kg dry	2049	ND	103	52.5-128	7.07	20	
2-Amino-4,6-dinitrotoluene	2480	200	ug/kg dry	2049	596	91.8	18-135	2.74	20	
2-Nitrotoluene	2220	200	ug/kg dry	2049	ND	109	73.9-113	8.22	20	
3,4-Dinitrotoluene	1970	200	ug/kg dry	2076	ND	94.7	52.8-120	4.12	20	
3,5-Dinitroaniline	1940	200	ug/kg dry	2049	ND	94.4	22.9-131	1.21	20	
3,5-Dinitrotoluene	2090	200	ug/kg dry	2049	ND	102	59.3-135	6.48	20	
3-Nitrotoluene	2120	200	ug/kg dry	2049	ND	103	73.6-116	5.71	20	
4-Amino-2,6-dinitrotoluene	2900	200	ug/kg dry	2049	687	108	10-144	0.834	20	
4-Nitrotoluene	2060	200	ug/kg dry	2049	ND	101	71.2-114	4.13	20	
Nitrobenzene	2060	200	ug/kg dry	2049	ND	101	72.5-112	5.00	20	
Surrogate: 2,2'-Dinitrobiphenyl	2470		ug/kg dry	2049		121	11.5-161			
Surrogate: Nitrobenzene-d5	2120		ug/kg dry	2049		103	65.1-116			

AECOM		Project:	Bio Pilot - Bark	sdale, WI						
4051 Ogletown Road		Project Number:	60525839							
Newark DE, 19713		Project Manager:	Sharon Nordstr	om						
	Classical (Chemistry Para	meters - Qu	ality Con	trol					
		Pace Analytic	al - Madiso	n						
		Reporting	Spike	Source		%REC		RPD		
Analyte	Result	Limit Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch A908195 - % Solids										
Duplicate (A908195-DUP1)	Sourc	e: A193320-01	Prepared: (08/20/2019	Analyzed: (08/21/2019	09:15			
% Moisture	48.4	0.00 % by We	ight	46.3			4.41	20		
Batch A908211 - % Solids										
Duplicate (A908211-DUP1)	Sourc	e: A193320-01	Prepared: (Prepared: 08/26/2019 Analyzed: 08/27/2019 09:17						
% Solids	92.9	0.00 % by We	ight	92.8			0.0561	20		

Project: Bio Pilot - Barksdale, WI Project Number: 60525839 Project Manager: Sharon Nordstrom

Notes and Definitions

- M1 Spike recoveries were not evaluated because of elevated levels of the spiked analyte in the parent sample.
- D Data reported from a dilution
- ND Analyte NOT DETECTED at or above the reporting limit or limit of detection (if listed).
- NR Not Reported

dry Sample results reported on a dry weight basis. If the word 'dry' does not appear after the units, results are reported on an as-is basis.

RPD Relative Percent Difference

C. C.					,	<u> </u>							1	
	ace Analytical - EC	CS Divis	sion		******	úŀ	IAI	IN (OF	CUS	ST	ODY		
Face Analytical [®]	525 Advance Road adison, WI 53718							.]	No.	844	6	Page:	of:	
60	08-221-8700 (phone 08-221-4889 (fax))				Lab	Wo	rk O	rder	#:		Report To: SHARDN NORDS?	nom	
						+	710	13	32	<u>ە</u>		Company: AEcom		
Project Number: 507911/605:	258.39 PO Numb	er:					Pr	eserva	tion Co	odes		Address 1:		
Project Name: BIOPILOT							An	alyses	Reque	ested		Address 2:		
Project Location (City, State): BAR	KSDALE, WE					A	A					E-mail Address:		
3	Normal 🗌 Rus	h			T							Invoice To:		
If Rush, Report Due Date:					iners							Company:		
Sampled By (Print): Servers	UIELSEN				Conta							Address 1:		
					# of (SCs						Address 2:		
Sample Descrip	otion	Colle Date	ection Time	Matrix	Total # of Containers	NNOCS	HC					Comments	Lab ID	Lab Receipt Time
BP53-190814-C31 (0-1)	8/14/19	1315	5	z	×	ア						01	
				-		<u> </u>		1	1	┼──┼─				
									<u> </u>					
·				<u> </u>				ļ	ļ	L				
				1										
				<u> </u>					1					
												· · · · · · · · · · · · · · · · · · ·		
Preservation Codes A=None B=HCL C=H ₂ SO ₄	Other Comments:	Relinquishe	ed By:	. L	Leannand	()	CONCINCIENCE AND POST	Date: &//S	5/Гч	Time: 746	,	Received By: For: A-Killin	Date; 8/16/19	Time:
D=HNO ₃ E=EnCore F=Methanol	ÉDEX	Relinquishe	<u></u>					Date:	<u> </u>	Time:		Received By:	Date:	Time:
G=NaOH O=Other (Indicate) <u>Matrix Codes</u> A=Air S=Soil W=Water O=Other	7759 9029 1478	Custody Se	eal:			t	Shipp	ied Via	1: • •	Receipt	Terr	p: Thermometer #/ Exp. Date; 160/42274	Rolla XY	Blank:

Rev. 12/15

October 31, 2019

Sharon Nordstrom AECOM 4051 Ogletown Road Newark, DE 19713 RE: Bio Pilot - Barksdale, WI

Enclosed are the analytical results for the samples received by the laboratory on 10/17/2019.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. These results are in compliance with the 2009 NELAC Standards and the appropriate agencies listed below, unless otherwise noted in the case narrative. This analytical report should be reproduced in its entirety.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

opplied Epold

Jessica Esser

Project Manager

Certification I	List		Expires
DODELAP	DOD ELAP Accreditation (A2LA)	3269.01	03/31/2020
ILEPA	Illinois Secondary NELAP Accreditation	004366	04/30/2020
KDHE	Kansas Secondary NELAP Accreditation	E-10384	04/30/2020
LELAP	Louisiana Primary NELAP Accreditation	04165	06/30/2020
NCDEQ	North Carolina Dept. of Environmental Quality Accreditation	688	12/31/2019
NJDEP	New Jersey Secondary NELAP Accreditation	WI004	06/30/2020
TCEQ	Texas Secondary NELAP Accreditation	T104704504-16-7	11/30/2019
WDNR	Wisconsin Certification under NR 149	113289110	08/31/2020

Project: Bio Pilot - Barksdale, WI Project Number: 60525839 Project Manager: Sharon Nordstrom

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BPSP-191015-C-33	A194211-01	Soil	10/15/2019	10/17/2019
BPSP-191015-C-35	A194211-02	Soil	10/15/2019	10/17/2019
BPSP-191015-C-36	A194211-03	Soil	10/15/2019	10/17/2019
BPSP-190913-C-20	A194211-04	Soil	09/13/2019	10/17/2019

CASE NARRATIVE

Sample Receipt Information:

4 samples were received on 10/17/2019. Samples were received at 2.3 degrees Celsius. Samples were received in acceptable condition.

Please see the chain of custody (COC) document at the end of this report for additional information.

AECOM 4051 Ogletown Road Newark DE, 19713		Project N	umber: 605	o Pilot - Barks 525839 aron Nordstro				
			PSP-1910 A194211-0				ate Sampled /15/2019 09:21	
Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
-	Result				Tiepareu	Allaryzed	Method	Quaimers
		Pace A	Analytical -	- Madison				
pH by EPA Method 9045					Prepa	aration Batch: A91)284	
рН	11.3		pH Units	1	10/25/2019	10/25/2019 10:38	EPA 9045D	
Explosive Compounds by EPA Method 8270					Prepa	aration Batch: A91()269	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:20	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg dry		10/21/2019	10/22/2019 15:20	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg dry		10/21/2019	10/22/2019 15:20	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg dry		10/21/2019	10/22/2019 15:20	EPA 8270D	
1,3,5-Trinitrobenzene	ND	200	ug/kg dry		10/21/2019	10/22/2019 15:20	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry		10/21/2019	10/22/2019 15:20	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry		10/21/2019	10/22/2019 15:20	EPA 8270D	
1,3-Dinitrobenzene	ND	200	ug/kg dry		10/21/2019	10/22/2019 15:20	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry		10/21/2019	10/22/2019 15:20	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry		10/21/2019	10/22/2019 15:20	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg dry		10/21/2019	10/22/2019 15:20	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry		10/21/2019	10/22/2019 15:20	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry		10/21/2019	10/22/2019 15:20	EPA 8270D	
2,3-Dinitrotoluene	ND	200	ug/kg dry		10/21/2019	10/22/2019 15:20	EPA 8270D	
2,4,6-Trinitrotoluene	17000	200	ug/kg dry		10/21/2019	10/22/2019 15:20	EPA 8270D	
2,4-Dinitrotoluene	ND	200	ug/kg dry		10/21/2019	10/22/2019 15:20	EPA 8270D	
2,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:20	EPA 8270D	
2,6-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:20	EPA 8270D	
2-Amino-4,6-dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:20	EPA 8270D	
2-Nitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:20	EPA 8270D	
3,4-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:20	EPA 8270D	
3,5-Dinitroaniline	ND	200	ug/kg dry		10/21/2019	10/22/2019 15:20	EPA 8270D	
3,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:20	EPA 8270D	
3-Nitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:20	EPA 8270D	
4-Amino-2,6-dinitrotoluene	640	200	ug/kg dry	1	10/21/2019	10/22/2019 15:20	EPA 8270D	
4-Nitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:20	EPA 8270D	
Nitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:20	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:20	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		46.6	1%	1.5-161	10/21/2019	10/22/2019 15:20	EPA 8270D	
Surrogate: Nitrobenzene-d5		55.5	· %	5.1-116	10/21/2019	10/22/2019 15:20	EPA 8270D	S
Classical Chemistry Parameters					Prene	aration Batch: A91(293	
% Moisture	15.1	0.00	% by Weight	1	10/29/2019	10/30/2019 08:53	SM 2540B	
% Solids	98.4	0.00	% by Weight	1	10/22/2019	10/23/2019 09:19	SM 2540B	

		AECOM Project: Bio Pilot - Barksdale, WI 4051 Ogletown Road Project Number: 60525839 Newark DE, 19713 Project Manager: Sharon Nordstrom BPSP-191015-C-35							
			PSP-19101 A194211-02				ate Sampled 15/2019 09:36		
Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers	
		Pace A	Analytical -	Madison					
pH by EPA Method 9045			·		Prens	ration Batch: A910	1784		
pH	12.4		pH Units	1	10/25/2019	10/25/2019 10:50	EPA 9045D		
Explosive Compounds by EPA Method 827	0		-		Prens	ration Batch: A910	260		
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg dry ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D EPA 8270D		
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg dry ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D EPA 8270D		
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
1,3,5-Trinitrobenzene	ND	200	ug/kg dry ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
1,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
1,5-Dimethyl-2,3-Dimitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
2.3-Dinitrotoluene	ND	200	ug/kg dry ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D EPA 8270D		
2,4,6-Trinitrotoluene	130000	4100	ug/kg dry	20	10/21/2019	10/23/2019 21:31	EPA 8270D	D	
2,4-Dinitrotoluene	220	200	ug/kg dry ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D	D	
2,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
2,6-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
2-Amino-4,6-dinitrotoluene	630	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
2-Nitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
3.4-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
3,5-Dinitroaniline	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
3,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
3-Nitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
4-Amino-2,6-dinitrotoluene	2200	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
4-Nitrotoluene	ND	200	ug/kg dry ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
Nitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
1,3,5-Trinitro-2,4-dimethylbenzene	570	200	ug/kg dry	1	10/21/2019	10/22/2019 15:52	EPA 8270D		
Surrogate: 2,2'-Dinitrobiphenyl		50.9		.5-161	10/21/2019	10/22/2019 15:52	EPA 8270D		
Surrogate: Nitrobenzene-d5		57.0		5.1-116	10/21/2019	10/22/2019 15:52	EFA 8270D EPA 8270D	S	
-		2.10		-					
Classical Chemistry Parameters % Moisture	22.8	0.00	% by	1	10/29/2019	10/30/2019 08:53			
% Moisture % Solids	22.8 97.8	0.00	% by Weight % by	1	10/29/2019	10/30/2019 08:53	SM 2540B SM 2540B		

AECOM 4051 Ogletown Road		Project N	umber: 605					
Newark DE, 19713		Project M	anager: Sha	ron Nordstron	1			
			PSP-19101				ate Sampled	
		1	A194211-03	8 (Soil)		10/	/15/2019 09:32	
Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
		Pace A	nalytical -	Madison				
pH by EPA Method 9045					Prepa	aration Batch: A91()284	
рН	12.4		pH Units	1	10/25/2019	10/25/2019 10:55	EPA 9045D	
Explosive Compounds by EPA Method 8270					Prepa	aration Batch: A91()269	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
1,3,5-Trinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
1,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
2,3-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
2,4,6-Trinitrotoluene	740000	8200	ug/kg dry	40	10/21/2019	10/28/2019 14:40	EPA 8270D	D
2,4-Dinitrotoluene	240	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
2,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
2,6-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
2-Amino-4,6-dinitrotoluene	1000	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
2-Nitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
3,4-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
3,5-Dinitroaniline	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
3,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
3-Nitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
4-Amino-2,6-dinitrotoluene	2900	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
4-Nitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
Nitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 16:23	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		90.9	% 1.	1.5-161	10/21/2019	10/22/2019 16:23	EPA 8270D	
Surrogate: Nitrobenzene-d5		93.4	% 6	5.1-116	10/21/2019	10/22/2019 16:23	EPA 8270D	
Classical Chemistry Parameters					Prepa	aration Batch: A91()293	
% Moisture	20.1	0.00	% by Weight	1	10/29/2019	10/30/2019 08:53	SM 2540B	
% Solids	97.9	0.00	% by Weight	1	10/22/2019	10/23/2019 09:19	SM 2540B	

AECOM			Project: Bio	Pilot - Barksd	lale, WI			
4051 Ogletown Road		Project N	umber: 6052	25839				
Newark DE, 19713		Project M	anager: Shar	on Nordstron	1			
		B	PSP-19091	3-C-20		D	ate Sampled	
		1	A194211-04	(Soil)			13/2019 10:12	
		Donortino						
Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifier
		Pace A	Analytical -	Madison				
Explosive Compounds by EPA Method 8270					Prepa	aration Batch: A91(269	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
1,3,5-Trinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
1,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
2,3-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
2,4,6-Trinitrotoluene	220	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
2,4-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
2,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
2,6-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
2-Amino-4,6-dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
2-Nitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
3,4-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
3,5-Dinitroaniline	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
3,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
3-Nitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
4-Amino-2,6-dinitrotoluene	450	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
4-Nitrotoluene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
Nitrobenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg dry	1	10/21/2019	10/22/2019 17:57	EPA 8270D	
urrogate: 2,2'-Dinitrobiphenyl		75.0	% 11	.5-161	10/21/2019	10/22/2019 17:57	EPA 8270D	
urrogate: Nitrobenzene-d5		93.1		5.1-116	10/21/2019	10/22/2019 17:57	EPA 8270D	
5		20.1						
Classical Chemistry Parameters	98.5				Prepa	aration Batch: A91(277	

Weight

4.04

20

AECOM 4051 Ogletown Road Newark DE, 19713 Project: Bio Pilot - Barksdale, WI Project Number: 60525839

Project Manager: Sharon Nordstrom

pH by EPA Method 9045 - Quality Control

Pace Analytical - Madison

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch A910284 - Default Prep GenChem										
Duplicate (A910284-DUP1)	Sour	rce: A194211-	01	Prepared: 1	0/25/2019	Analyzed: 1	0/25/2019	10:45		

pH Units

11.3

11.8

pН

Page 7 of 13 A194211 FINAL 10 31 2019 1310

Project: Bio Pilot - Barksdale, WI Project Number: 60525839 Project Manager: Sharon Nordstrom

Explosive Compounds by EPA Method 8270 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch A910269 - EPA 3570										
Blank (A910269-BLK1)				Prepared: 1	0/21/2019	Analyzed:	0/22/2019	11:55		
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg wet							
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg wet							
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg wet							
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg wet							
,3,5-Trinitrobenzene	ND	200	ug/kg wet							
,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg wet							
,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg wet							
,3-Dinitrobenzene	ND	200	ug/kg wet							
,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg wet							
,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg wet							
,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg wet							
,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg wet							
,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg wet							
2,3-Dinitrotoluene	ND	200	ug/kg wet							
,4,6-Trinitrotoluene	ND	200	ug/kg wet							
,4-Dinitrotoluene	ND	200	ug/kg wet							
,5-Dinitrotoluene	ND	200	ug/kg wet							
,6-Dinitrotoluene	ND	200	ug/kg wet							
-Amino-4,6-dinitrotoluene	ND	200	ug/kg wet							
-Nitrotoluene	ND	200	ug/kg wet							
,4-Dinitrotoluene	ND	200	ug/kg wet							
,5-Dinitroaniline	ND	200	ug/kg wet							
,5-Dinitrotoluene	ND	200	ug/kg wet							
-Nitrotoluene	ND	200	ug/kg wet							
-Amino-2,6-dinitrotoluene	ND	200	ug/kg wet							
-Nitrotoluene	ND	200	ug/kg wet							
Vitrobenzene	ND	200	ug/kg wet							
,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg wet							
urrogate: 2,2'-Dinitrobiphenyl	1030		ug/kg wet	1943		53.0	11.5-161			
Surrogate: Nitrobenzene-d5	1840		ug/kg wet	2000		92.0	65.1-116			
LCS (A910269-BS1)				Prepared: 1	0/21/2019	Analyzed:	0/22/2019	14:49		
,2-Dimethyl-3,4-Dinitrobenzene	1980	200	ug/kg wet	1996		99.4	73.6-111			
,2-Dimethyl-3,5-Dinitrobenzene	1940	200	ug/kg wet	2020		96.0	71.6-112			
,2-Dimethyl-3,6-Dinitrobenzene	2020	200	ug/kg wet	1999		101	76.3-114			
,2-Dimethyl-4,5-Dinitrobenzene	1930	200	ug/kg wet	2026		95.2	68.8-113			
,3,5-Trinitrobenzene	1500	200	ug/kg wet	2000		74.8	50.6-126			
,3-Dimethyl-2,4-Dinitrobenzene	1850	200	ug/kg wet	2020		91.3	67.9-111			
,3-Dimethyl-2,5-Dinitrobenzene	2020	200	ug/kg wet	2002		101	75-113			
,3-Dinitrobenzene	1540	200	ug/kg wet	2000		76.9	52.9-125			
,4-Dimethyl-2,3-Dinitrobenzene	1910	200	ug/kg wet	2006		95.1	72.6-107			
,4-Dimethyl-2,5-Dinitrobenzene	2010	200	ug/kg wet	2026		99.0	70.8-106			
,4-Dimethyl-2,6-Dinitrobenzene	1960	200	ug/kg wet	1996		98.4	68.3-107			
,5-Dimethyl-2,3-Dinitrobenzene	1890	200	ug/kg wet	2012		93.7	73.3-110			
,5-Dimethyl-2,4-Dinitrobenzene	1880	200	ug/kg wet	1966		95.8	70.2-109			
2,3-Dinitrotoluene	2000	200	ug/kg wet	2000		99.9	64.2-125			

Project: Bio Pilot - Barksdale, WI Project Number: 60525839 Project Manager: Sharon Nordstrom

Explosive Compounds by EPA Method 8270 - Quality Control

A polyte	Degult	Reporting	Unito	Spike Level	Source	%PEC	%REC	רוקק	RPD Limit	Note
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Note
Batch A910269 - EPA 3570										
LCS (A910269-BS1)				Prepared:	10/21/2019	Analyzed:	10/22/2019 1	14:49		
2,4,6-Trinitrotoluene	1680	200	ug/kg wet	2000		83.8	57.1-139			
2,4-Dinitrotoluene	1900	200	ug/kg wet	2000		95.2	67.4-120			
2,5-Dinitrotoluene	1810	200	ug/kg wet	2000		90.5	62-124			
2,6-Dinitrotoluene	1890	200	ug/kg wet	2000		94.7	74.6-116			
2-Amino-4,6-dinitrotoluene	1640	200	ug/kg wet	2000		82.2	65.9-110			
2-Nitrotoluene	1720	200	ug/kg wet	2000		86.0	76.3-114			
3,4-Dinitrotoluene	1960	200	ug/kg wet	2000		98.0	68.2-117			
3,5-Dinitroaniline	1790	200	ug/kg wet	2000		89.3	61.6-115			
3,5-Dinitrotoluene	2020	200	ug/kg wet	2000		101	70.5-120			
3-Nitrotoluene	1760	200	ug/kg wet	2000		87.8	77.4-113			
4-Amino-2,6-dinitrotoluene	1660	200	ug/kg wet	2000		82.9	57.5-113			
4-Nitrotoluene	1830	200	ug/kg wet	2000		91.5	74.8-112			
Nitrobenzene	1910	200	ug/kg wet	2000		95.5	77-115			
Surrogate: 2,2'-Dinitrobiphenyl	1680		ug/kg wet	1943		86.5	11.5-161			
Surrogate: Nitrobenzene-d5	1830		ug/kg wei ug/kg wei	2000		91.5	65.1-116			
	1050			2000		21.0				
Matrix Spike (A910269-MS1)		ce: A194211	-	•			10/22/2019 1	18:29		
,2-Dimethyl-3,4-Dinitrobenzene	1960	200	ug/kg dry	2027	ND	96.6	59.9-113			
1,2-Dimethyl-3,5-Dinitrobenzene	1920	200	ug/kg dry	2051	ND	93.5	63.5-111			
,2-Dimethyl-3,6-Dinitrobenzene	2050	200	ug/kg dry	2030	ND	101	67.8-114			
,2-Dimethyl-4,5-Dinitrobenzene	1940	200	ug/kg dry	2057	ND	94.1	58.4-113			
,3,5-Trinitrobenzene	1420	200	ug/kg dry	2031	ND	70.0	12.3-150			
,3-Dimethyl-2,4-Dinitrobenzene	1870	200	ug/kg dry	2051	ND	91.1	63.6-111			
1,3-Dimethyl-2,5-Dinitrobenzene	2050	200	ug/kg dry	2033	ND	101	70.7-112			
1,3-Dinitrobenzene	1590	200	ug/kg dry	2031	ND	78.5	32.8-135			
1,4-Dimethyl-2,3-Dinitrobenzene	1960	200	ug/kg dry	2037	ND	96.1	58.1-109			
1,4-Dimethyl-2,5-Dinitrobenzene	2040	200	ug/kg dry	2057	ND	99.3	64.1-108			
1,4-Dimethyl-2,6-Dinitrobenzene	2010	200	ug/kg dry	2027	ND	99.1	64.3-107			
1,5-Dimethyl-2,3-Dinitrobenzene	1880	200	ug/kg dry	2043	ND	91.8	61.6-112			
1,5-Dimethyl-2,4-Dinitrobenzene	1940	200	ug/kg dry	1996	ND	97.0	58-113			
2,3-Dinitrotoluene	1930	200	ug/kg dry	2031	ND	95.1	61.1-127			
2,4,6-Trinitrotoluene	2430	200	ug/kg dry	2031	221	109	38.8-138			
2,4-Dinitrotoluene	2240	200	ug/kg dry	2031	140	104	44.1-133			
2,5-Dinitrotoluene	1890	200	ug/kg dry	2031	ND	92.9	58.3-132			
2,6-Dinitrotoluene	1990	200	ug/kg dry	2031	ND	97.8	52.5-128			
2-Amino-4,6-dinitrotoluene	1890	200	ug/kg dry	2031	149	85.6	18-135			
2-Nitrotoluene	1790	200	ug/kg dry	2031	ND	88.4	73.9-113			
3,4-Dinitrotoluene	1940	200	ug/kg dry	2031	ND	95.4	52.8-120			
3,5-Dinitroaniline	1710	200	ug/kg dry	2031	ND	84.3	22.9-131			
,5-Dinitrotoluene	2050	200	ug/kg dry	2031	ND	101	59.3-135			
3-Nitrotoluene	1870	200	ug/kg dry	2031	ND	91.8	73.6-116			
-Amino-2,6-dinitrotoluene	2500	200	ug/kg dry	2031	454	101	10-144			
-Nitrotoluene	1910	200	ug/kg dry	2031	ND	94.2	71.2-114			
Vitrobenzene	1970	200	ug/kg dry	2031	ND	97.1	72.5-112			
Surrogate: 2,2'-Dinitrobiphenyl	1730		ug/kg dry	1973		87.7	11.5-161			

Project: Bio Pilot - Barksdale, WI Project Number: 60525839 Project Manager: Sharon Nordstrom

Explosive Compounds by EPA Method 8270 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch A910269 - EPA 3570										
Matrix Spike Dup (A910269-MSD1)	Sou	rce: A194211	-04	Prepared:	10/21/2019	Analyzed:	10/22/2019	19:00		
1,2-Dimethyl-3,4-Dinitrobenzene	1920	200	ug/kg dry	2027	ND	95.0	59.9-113	1.70	20	
1,2-Dimethyl-3,5-Dinitrobenzene	1920	200	ug/kg dry	2051	ND	93.5	63.5-111	0.0730	20	
1,2-Dimethyl-3,6-Dinitrobenzene	2100	200	ug/kg dry	2030	ND	103	67.8-114	2.18	20	
1,2-Dimethyl-4,5-Dinitrobenzene	1920	200	ug/kg dry	2057	ND	93.3	58.4-113	0.842	20	
,3,5-Trinitrobenzene	1430	200	ug/kg dry	2031	ND	70.4	12.3-150	0.565	20	
,3-Dimethyl-2,4-Dinitrobenzene	1910	200	ug/kg dry	2051	ND	93.2	63.6-111	2.25	20	
,3-Dimethyl-2,5-Dinitrobenzene	2070	200	ug/kg dry	2033	ND	102	70.7-112	0.728	20	
,3-Dinitrobenzene	1650	200	ug/kg dry	2031	ND	81.2	32.8-135	3.40	20	
,4-Dimethyl-2,3-Dinitrobenzene	1970	200	ug/kg dry	2037	ND	96.9	58.1-109	0.854	20	
,4-Dimethyl-2,5-Dinitrobenzene	2040	200	ug/kg dry	2057	ND	99.2	64.1-108	0.127	20	
,4-Dimethyl-2,6-Dinitrobenzene	2030	200	ug/kg dry	2027	ND	100	64.3-107	0.944	20	
,5-Dimethyl-2,3-Dinitrobenzene	1880	200	ug/kg dry	2043	ND	92.2	61.6-112	0.452	20	
,5-Dimethyl-2,4-Dinitrobenzene	1960	200	ug/kg dry	1996	ND	98.3	58-113	1.40	20	
,3-Dinitrotoluene	1970	200	ug/kg dry	2031	ND	96.8	61.1-127	1.74	20	
,4,6-Trinitrotoluene	2480	200	ug/kg dry	2031	221	111	38.8-138	2.14	20	
,4-Dinitrotoluene	2430	200	ug/kg dry	2031	140	113	44.1-133	7.90	20	
2,5-Dinitrotoluene	1950	200	ug/kg dry	2031	ND	96.0	58.3-132	3.25	20	
,6-Dinitrotoluene	2060	200	ug/kg dry	2031	ND	102	52.5-128	3.85	20	
2-Amino-4,6-dinitrotoluene	1870	200	ug/kg dry	2031	149	84.9	18-135	0.761	20	
2-Nitrotoluene	1820	200	ug/kg dry	2031	ND	89.7	73.9-113	1.49	20	
,4-Dinitrotoluene	1960	200	ug/kg dry	2031	ND	96.7	52.8-120	1.41	20	
,5-Dinitroaniline	1740	200	ug/kg dry	2031	ND	85.5	22.9-131	1.41	20	
,5-Dinitrotoluene	2060	200	ug/kg dry	2031	ND	102	59.3-135	0.747	20	
-Nitrotoluene	1900	200	ug/kg dry	2031	ND	93.5	73.6-116	1.75	20	
-Amino-2,6-dinitrotoluene	2570	200	ug/kg dry	2031	454	104	10-144	2.65	20	
-Nitrotoluene	1930	200	ug/kg dry	2031	ND	95.1	71.2-114	0.977	20	
litrobenzene	1980	200	ug/kg dry	2031	ND	97.6	72.5-112	0.455	20	
urrogate: 2,2'-Dinitrobiphenyl	1780		ug/kg dry	1973		90.1	11.5-161			
urrogate: Nitrobenzene-d5	1920		ug/kg dry	2031		94.5	65.1-116			

AECOM		Pr	oject: Bio	Pilot - Bark	sdale, WI					
4051 Ogletown Road		Project Nu	mber: 605	25839						
Newark DE, 19713	Project Manager: Sharon Nordstrom									
	Classical	Chemistry	Parame	ters - Qu	ality Con	trol				
		Pace Ana	alytical	- Madiso	n					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch A910277 - % Solids										
Duplicate (A910277-DUP1)	Sour	ce: A194212-1	16	Prepared: 1	0/22/2019	Analyzed: 1	0/23/2019	09:19		
	99.2		6 by Weight		98.9			0.298	20	

Duplicate (A910293-DUP1)	Source: A	194211-01	Prepared: 10/29/2019 Analyzed: 10/30/20		
% Moisture	15.0	0.00 % by Weigh	t 15.1	1.03	20

Project: Bio Pilot - Barksdale, WI Project Number: 60525839 Project Manager: Sharon Nordstrom

Notes and Definitions

- S Surrogate recovery was outside of laboratory control limits.
- D Data reported from a dilution
- ND Analyte NOT DETECTED at or above the reporting limit or limit of detection (if listed).
- NR Not Reported

dry Sample results reported on a dry weight basis. If the word 'dry' does not appear after the units, results are reported on an as-is basis.

RPD Relative Percent Difference

Pace Analytical - E 2525 Advance Road						CHAIN OF CUSTODY insert COC number Page: 1 of: 1								
Pace Analytical* Madison, WI 53718														
608-221-8700 (phone) 608-221-4889 (fax)					Lab Work Order #: A 194211			#:、	R	Report To: Sharon Nordstrom				
)	C	Company: Aecom				
Project Number: 507911/60525839 PO Number:			Preservation Codes - A				es - A	A	Address 1:					
Project Name: Barksdale Bio-pilot				Analyses Requested				sted	A	Address 2:				
Project Location (City, State): Barksdale, WI				A	A A E-mail Address: Sharon.nords					ordstrom@	aecom.com			
Turn Around (check one): V Normal Rush					ν	5		In	Invoice To:					
If Rush, Report Due Date:]	Containers			MOISTUR BID-17-19			С	Company:				
Sampled By (Print): Desmond Nielsen		1	Conta						A	Address 1:				
		1	5						A	ddress 2:		2019		
Sample Description	Colle Date	ection Time	Matrix	Total #	NNOC's	Hd	80				Comments	Lab ID	Lab Receipt	
BPSP-191015-C-33	10/15/19	9:21	s	2	x	x	X			Po	ossible elevated NNOCs	,QZ		
BPSP-191015-C-35	10/15/19	9:36	s	2	x	x	Х			Po	ossible elevated NNOCs	03	OJ R	
BPSP-191015-C-36	10/15/19	9:32	s	2	x	x	X			Po	ossible elevated NNOCs	04	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
BPSP-190913-C-20	09/13/19	10:12	s	1	x					Fr	ozen immediately after collection	05	04	
$\overline{\}$												\backslash	of 10	
													Page 13	
													Pa	
			\setminus					\square						
				\square					\square					
										X	\sim			
		Relinguished By:			nd Nie	nd Nielsen 10/16/19		Time:		LEDICA EDDE	Date:	Time: 0920		
D=HNO ₃ E=EnCore F=Methanol 77672261434	7 Relinquished By:			Desition						<u> </u>	egeived By:	Date:	Time:	
G=NaOH O=Other (Indicate) <u>Copy:</u>	Custody S	eal.				Shinr	ed Via		Receint	t Temp:	Thermometer #/ Evo. Date:	Tom	o Blank:	
Matrix Codes Original (or 2 or 3) A=Air S=Soil W=Water O=Other Original (or 2 or 3)		Intact		ot Inta	t	R	<u>dEi</u>	ò	Receipt	30	Thermometer #/ Exp. Date:	20-19 Day	Biank:	

Rev. 12/15