AECOM

June 1, 2021

Mr. Bradley S. Nave Principal Project Manager The Chemours Company, FC, LLC c/o AECOM 500 West Jefferson Street Suite 1600 Louisville, KY 40202

Re: Waste Management Progress Report No. 9 For Period May 19, 2020 to May 18, 2021 Bioremediation Pilot Test – 2020 Field Season Former DuPont Barksdale Works Site FID No.: 804009140 EPA ID No.: WIR000133447 BRRTS No. 02-04-000156

Dear Mr. Nave:

This letter report provides a summary of work conducted in 2020 in conjunction with the ongoing Bioremediation Pilot Test Program (BPTP) at the Former E. I. du Pont de Nemours and Company (DuPont) Barksdale Works site (Figure 1). This letter and its attachments are provided for your communication to the Wisconsin Department of Natural Resources (WDNR) so that The Chemours Company, FC, LLC (Chemours) may fulfill Condition 7 of the Hazardous Waste Remediation Variance for Biodegradation of Contaminants and Removal of Residual Product and Debris (HWRV), which was originally issued for the site on May 22, 2012 and renewed on May 18, 2017. Approval for an extension for COVID-related schedule impact and modification of the HWRV to allow testing of soil heating enhanced alkaline hydrolysis was issued by the WDNR on December 3, 2020. Condition 7 requires that annual progress reports be submitted to the department in accordance with s. NR 724.13(3), Wis. Adm. Code. The annual reports are required until the variance ends on May 18, 2023 and are due on or before June 1st of each year.

1.0 BACKGROUND INFORMATION

1.1 REQUIREMENTS OF THE VARIANCE

Condition 7 of the variance specifies that the progress reports shall be submitted annually in accordance with s. NR 724.13(3), and shall include:

- a. Documentation of the type and amount of product residuals and debris removed from biopilot cells. Documentation of any characterization and container storage of product residuals and debris removed from biopilot cells. Documentation of disposal of any product residuals and debris removed from the biopilot cells including manifest copies.
- b. Documentation of any management, including consolidation, of discrete areas where impacted soil is located within narrow locations such as former ditches or locations that are contorted by the layout of former building features. Documentation of the location of those areas and the amount of soil that is moved. Documentation of the location of areas where the soil combined from discrete source areas is managed.

c. Documentation of any alternative treatment of large debris that facilitates management, including washing and physical resizing of large debris for off-site disposal. Documentation of management of all impacted waste streams generated by these activities, including amounts and volumes of waste treated and generated.

Certified laboratory analytical testing for effectiveness, waste collection, management, and disposal associated with construction and operation of the BPTP are addressed in this progress report. Laboratory reports for 2020 data referenced in this report are included in Appendix E.

1.2 Bioremediation Pilot Test Program History

The Barksdale BPTP is focused on biodegradation of nitroaromatic and nitramine organic compounds (NNOCs) in soil. The BPTP began in 2007 with the construction of four, small in-situ till areas (cells) intended to evaluate the effect of water, oxygen, and pH on the rate of in-situ microbial degradation of 2,4- and 2,6-dinitrotoluene (DNT) in site soil as a possible alternative to conventional remedies. These original cells are identified as cell locations C01 through C04 on Figure 2 and in total encompassed an area approximately 50 feet by 20 feet or 100 square feet.

Early results indicated that degradation of these two primary DNT isomers was feasible; however, the presence of various other NNOCs was observed to affect degradation rates. As such, the program was expanded in 2008 to evaluate the range of this observed effect by adding three more cells that contained less complex NNOC mixtures. After initiating tilling, several of the 2008 cells were found to contain solid pieces of residual product that resulted in cell heterogeneity and limited the analysis of the test results. As a result, six additional cells within similar trinitrotoluene (TNT)/DNT ratios were constructed in 2009 at locations where the majority of such solids could be removed manually prior to tilling. Also, in 2009, one of the 2008 cells was expanded to four times its original size with the construction of two contiguous new cells in order to evaluate potential economies of scale in cell operation. The cells constructed in 2008 and 2009 are identified as C05 through C15 on Figure 2.

In 2010, the investigation of new areas of the site discovered NNOCs within a sandy soil matrix. Because all cells constructed prior to 2010 had been in clayey soil, three additional cells were added in 2011 to evaluate degradation in the new soil types. These cells are identified as C16 through C18 on Figure 2. All debris and product residues encountered during development of the first 18 cells was collected, containerized, and shipped off-site for incineration.

Prior to the HWRV, there were several limitations with respect to construction, soil and waste handling, and test evaluation for the first 18 cells. These limitations included:

- Having to incinerate soil removed during cell construction, which would have otherwise been amenable to biodegradation.
- Having to remove product either by bulk removal prior to cell construction or by manually removing product solids on a periodic basis from the cell surface after tilling was initiated.
- Not having permission to consolidate disjointed areas for testing.
- Having limitations on the ability to control water content within the cells driven by the fact that all cells had to be constructed in-situ.

To address these constraints on the BPTP, Chemours, at the suggestion of WDNR, requested a hazardous waste remediation variance in July 2010. Following Chemours response to several sets of comments by the department, WDNR issued the HWRV on May 22, 2012. The permit specifies that a total of 10,000 cubic yards (yd³) of soil may be treated as part of the operations permitted under the HWRV.

Mr. Bradley S. Nave The Chemours Company FC, LLC June 1, 2021 Page 3 of 10

Since June of 2012, 19 additional cells have been constructed within the area of concern (AOC). Cells C19, C20, C21, and C22 were constructed in 2012 to accommodate and evaluate material removed in and around areas investigated.

Cell C23 was constructed in 2013 to run a study in conjunction with the United States Army Corp of Engineers (USACE) that addressed degradation of TNT and other NNOCs by introducing additional stimuli (including hydrated lime) to accelerate the waste degradation process. The study on cell C23 was completed in 2014 and waste soils were subsequently removed from the cell and stored for further study or to await treatment or incineration. While the cell structure is still present, it has been unused since 2014. Soils stored from the cell were placed in treatment cells C12, C17, and C22 during the 2017 field season.

Further site investigation during 2014 to 2020 identified soil that contained varying concentrations of fine grained (i.e., sand sized or smaller) TNT. Cells C24 through C37 were constructed between 2015 and 2020 to store, test, and treat with methods developed as a direct result of the C23 study.

Table 1 lists the cells currently in place and includes information regarding their volume, status, and contaminant mass. Pilot test activities performed under the HWRV are conducted within the designated AOC. Any debris or product removed from cells is handled in accordance with Resource Conservation and Recovery Act (RCRA) rules, including land disposal restrictions (LDRs) and Best Demonstrated Available Technology (BDAT) requirements.

2.0 REPORTING REQUIRED BY THE VARIANCE

This section provides the information stipulated in HWRV.

2.1 Progress of the Bioremediation Pilot Test Program

2.1.1 Contaminant Removal

Table 1 includes estimates of contaminant mass removed within the biopilot test program over the calendar year and to date, as well as, estimated contaminant mass remaining for each cell and constituent of potential concern (COPC). The estimated masses indicated in Table 1 are based on averaged values for all samples collected in a given cell at the first sampling of a COPC (typically 8 to 12 samples per cell) and in the most recent events that included that COPC (typically multiple locations within a cell to form a composite sample). Observations on contaminant removal during the past pilot test season are provided below.

- Distribution of COPCs in the soil in the cells is heterogeneous. As a result, the concentrations of a few COPCs are shown to have increased over time on Table 1. However, statistical analysis based on data collected across the full duration of the program show overall concentrations are decreasing. Such heterogeneity effects are more apparent in the single season product removal estimates than in the long-term, overall removal values. The apparent mass increases shown on Table 1 are generally on the order of a few micrograms per kilogram (µg/kg) and many of the apparent increases are due to changes in reporting limits within the duration of the project.
- To date, an estimated total of 12,645 pounds (lbs) of COPCs in soil has been destroyed/removed via on-site treatment efforts in the entirety of the BPTP (Table 1).
- Over ninety percent of the COPCs being tracked have shown decreases over the life of the pilot program.
- Laboratory reporting limits (RLs) were compared to Residual Contaminant Levels (RCLs) for direct contact as shown on Table 4. This comparison shows that the

Mr. Bradley S. Nave The Chemours Company FC, LLC June 1, 2021 Page 4 of 10

laboratory RLs are below the direct contact RCLs and are considered suitable for making risk management decisions.

2.1.2 Reporting Period Operational Issues

No operational issues were encountered during the reporting period.

2.1.3 Evaluation of System Effectiveness

In general, the BPTP results continually show that the approaches being tested show promise for remediation of affected site soil, but the evaluation is on-going to determine if the process will be effective in reaching site-wide remedial goals for the varying COPC mixtures found in site soil.

Because this is a pilot test program, the activities do not address all impacted areas on the site; therefore, discussion of site-wide monitored natural attenuation and case closure are not applicable.

An evaluation of soil concentrations of primary COPCs (TNT, 2,4-DNT, and 2,6-DNT) in cells in comparison to site-specific recreational RCLs for direct contact is included in the summary below:

		рН	Soil			
	Sampled	Adjustment	Volume in	TNT	2,4-DNT	2,6-DNT
Cell	in 2020	Cell	Cell (yd ³)	Below RCL	Below RCL	Below RCL
C01	No	No	13.6	No	No	No
C02	No	No	13.6	Yes	Yes	Yes
C03	No	No	13.6	Yes	Yes	Yes
C04	No	No	13.6	Yes	Yes	Yes
C05	No	No	432.9	Yes	Yes	Yes
C06	Yes	Yes	68.4	Yes	Yes	Yes
C07	No	No	189.4	Yes	Yes	Yes
C08	No	No	115.4	Yes	Yes	Yes
C09	No	No	229.2	Yes	Yes	Yes
C10	No	No	392.5	Yes	Yes	Yes
C11	No	No	244.4	Yes	Yes	Yes
C12	No	Yes	300.9	No	No	Yes
C13	No	No	369.4	Yes	Yes	Yes
C14	No	No	189.4	Yes	Yes	Yes
C15	No	No	468.5	Yes	Yes	Yes
C16	No	Yes	0.0	Yes	Yes	Yes
C17	No	Yes	136.6	Yes	Yes	Yes
C18	No	No	57.0	Yes	Yes	Yes
C19	No	No	106.5	Yes	Yes	Yes
C20	Yes	No	76.0	Yes	Yes	Yes
C21	No	Yes	41.1	No	Yes	Yes
C22	No	No	1.5			
C23	No	No	0.0			
C24	Yes	Yes	263.0	No	Yes	Yes
C25	No	Yes	335.0	Yes	Yes	Yes
C26	No	Yes	307.0	Yes	Yes	Yes
C27	Yes	Yes	527.0	Yes	Yes	Yes
C28	Yes	Yes	850.0	TBD	TBD	TBD

Cell Status and Summary

Mr. Bradley S. Nave The Chemours Company FC, LLC June 1, 2021 Page 5 of 10

Cell	Sampled in 2020	pH Adjustment Cell	Soil Volume in Cell (yd³)	TNT Below RCL	2,4-DNT Below RCL	2,6-DNT Below RCL
C29	No	No	0.0			
C30	No	No	0.0			
C31	Yes	Yes	11.4	TBD	TBD	TBD
C32	No	No	0.0			
C33	Yes	Yes	292.0	No	TBD	TBD
C34	No	No	66.6	NS	NS	NS
C35	Yes	Yes	564.0	TBD	TBD	TBD
C36	Yes	Yes	577.8	TBD	TBD	TBD
C37	No	Yes	144.0	NS	NS	NS

Notes:

yd3: cubic yards

RCL: Site-specific recreational direct contact RCL. Soil concentrations are considered to be below the RCL if the calculated 95% upper confidence level for the analyte is below the RCL.

TBD: To be determined. Additional sampling is planned to refine the statistical analysis.

NS: Not sampled

Additional detail regarding the status of the cells during the reporting period is as follows:

- Except for C20, existing biodegradation test cells C01 to C05, C07 to C11, C13 to C15, C18, C19, C22, C23, C29, C30, C32 and C34 were not mixed or actively tested in 2020.
 - Control cell C01 was not sampled 2020 because historical analytical testing has showed that COPC concentrations have generally stabilized and were not responding to the previous treatment approach.
 - COPC concentrations in cells C02 through C05, C07 through C11, C13 through C15, and C18 through C20, were below site-specific recreational RCLs for direct contact on average. These cells were seeded prior to 2020 and observed for vegetation regrowth, which was successful. Photos of select cells showing examples of vegetation cover are included in Appendix D.
 - A composite soil sample was collected from cell C20 in 2020 to obtain additional data for statistical analysis.
 - Cell C22 has not yet been loaded with soil, with the exception of approximately 1 yd³ of soil.
 - The soil tested in cell C23 was containerized at the close of the 2013 field season and has remained empty. The soil formerly located in C23 was spread in C22 (1 yd³ of impacted soils), C12 (0.9 yd³ of impacted soils), and C17 (0.8 yd³ of impacted soils) in spring 2017 based on the similarities of the constituents.
 - Cells C29, C30, and C32 have not yet been loaded with soil.
 - Cell C34 was partially loaded and it is anticipated that lime addition, mixing and sampling will occur after the cell has been loaded to capacity.
 - Willow trees were planted in cell C09 prior to 2020 to evaluate the ability of the trees to control pore water. COPC concentrations fell below site-specific recreational RCLs for direct contact in 2010.
- Cells C06, C12, C17, C21, C24 through C28, C31, C33, C35, C36 and C37 are alkaline hydrolysis (AH) cells. These cells have been treated with hydrated lime to adjust soil pH as allowed under the HWRV to treat elevated NNOC concentrations in soil.
 - Composite soil samples were collected from cells C06, C24, C27, C28, C31, C33, C35, and C36 in 2020.

- COPC concentrations in cell C17 and C26 were below site-specific RCLs for direct contact on average and therefore not sampled.
- Soil samples were not collected from cells C12 and C21 in 2020 as the cell contents are planned to be excavated as part of ongoing site investigation work.
- Soil from cell C16 was excavated and placed in C25 in 2020 to access a former drainage ditch for site investigation work. Approximately 335 yd³ of soil was removed from cell C16 and placed in cell C25. The soil removed from cell C16 included the cell contents (approximately 177 yd³) and portions of the cell base and berm that were in contact with the cell material.
- Cell C37 was constructed and partially loaded in 2020. Approximately 144 yd³ of soil was added to C37 in 2020. The cell was mixed with an excavator bucket, following the application of lime.

With the completion of the 2020 field season, the total volume of soil currently loaded into cells is 7,411 yd³. Approximately 4,287 yd³ of the 7,411 yd³ total of soil referenced above is located in cells that are considered to be below site-specific recreational RCLs for direct contact. The remaining 3,124 yd³ of soil are considered to be currently under treatment. The maximum amount of soil allowed to be treated under the scope of the HWVR is 10,000 yd³.

See Figure 5 for the general design of cells C1 through C22. See Figure 6 for the general design of cells C24 through C37 (ex-situ, lime addition cells).

2.1.4 System Status and Recommended Future Work

The bioremediation project has treated approximately 12,645 lbs of site contaminants to date (Table 1). The initial quantity of contaminants placed in all cells was approximated at 14,313 lbs. With the addition of 2020 contaminated soils, the approximated quantity of COPCs in current treatment cells is estimated to be 1,667 lbs. A visual representation of the cell data is provided in Appendix C.

Work proposed for the 2021 field season includes:

- Results of the vegetative regrowth in cells C05, C07, C08, C10, C11, C13 through C15, and C18 through C20 will continue to be evaluated, and re-seeding will be conducted if necessary.
- Alkaline hydrolysis (via pH adjustment) cells C06, C24, C26, C28, C31, C33, C35, and C36 will continue to receive monitoring, if necessary.
- Cells C29, C30, and C32 are currently empty and may be utilized as needed in 2020.
- Cell C34 and C37 will continue to be loaded with soil, as needed, and sampled if cell capacity is reached.
- Up to two new cells (C38 and C39) are proposed for construction in 2021. These cells will be built using the general design depicted in Figure 6. The cells will be constructed to contain soil generated during site investigation work. The specific locations of the new cells have not yet been determined.

An additional 100 to 1,500 yd³ of soil is anticipated to be treated under the HWRV at the end of 2021. With the anticipated additional soil added in 2021, the total amount of soil treated under the HWRV will be within the permitted maximum of 10,000 yd³.

2.2 Site Maps

Site maps are provided in Figures 1 through 5. Figures 2 through 4 provide the locations of the test cells. Figures 6 and 7 provide details of the construction of the existing cells.

Mr. Bradley S. Nave The Chemours Company FC, LLC June 1, 2021 Page 7 of 10

2.3 Data Presentation

Table 1 provides data indicating the progress of soil bioremediation. Table 2 lists debris and residuals removed in the reporting period. Table 3 lists the source and quantities of soil moved to cells in the reporting period. Table 4 provides a comparison of RCLs to laboratory reporting limits.

Prior to 2015, data represented in tables assumed non-detected concentrations as half the laboratory reporting limit (RL). Subsequent reports assumed a concentration of zero for analyte concentrations below the RL. This report has re-aligned the "initial analyte" table to reflect the zero value for analyte concentrations below the RL.

2.4 Data Documentation

Manifests for waste materials removed from site are attached in Appendix B. Scatter plots for contaminant trend monitoring are attached in Appendix C. Laboratory analytical reports are attached in Appendix E.

2.5 Reporting Form

A completed copy of WDNR Form 4400-194: "Remediation Site Operation, Maintenance, Monitoring & Optimization Report" is attached in Appendix A.

2.6 Product Residuals and Debris Removed from Bioremediation Pilot Cells [Condition 7a]

The cited variance condition requires:

- Documentation of the type and amount of product residuals and debris removed from biopilot cells.
- Documentation of any characterization and container storage of product residuals and debris removed from biopilot cells.
- Documentation and disposal of any product residuals and debris removed from the biopilot cells including manifest copies.

No residual solid product was manually removed from cells within the reporting period.

2.7 Product Residuals and Debris Removed as part of site investigation work

Debris managed and/or removed by site investigation work during the current reporting period included metal, concrete, and RSP from historical operations within the AOC. Debris was screened in the field using an amplifying fluorescent polymer meter (FIDO[®]) and/or a colorimetric identification spray (Expray[®]). Debris removal locations are indicated on Figures 4 and 5. Table 2 provides a summary of debris handled on-site during the 2020 field season.

2.7.1 Residual Solid Product

RSP, identified by visual evidence and field screening, was encountered during the current reporting period in the Use Area PAJ drainage ditch PAJD0005 in 2020 (Table 2). Approximately 22.7 lbs of RSP was removed from Use Area PAJ in 2020. The RSP was containerized, wetted, and placed in the on-site magazine.

The magazine currently contains material from both 2019 and 2020. Total RSP remaining in the designated on-site magazine includes 124 lbs of TNT. The total weight of the RSP, soil, added water, and containers remaining in the magazine is 254 lbs. This material is being retained to support the soil heating evaluation permitted in the last HWRV modification.

Mr. Bradley S. Nave The Chemours Company FC, LLC June 1, 2021 Page 8 of 10

2.7.2 Concrete

Concrete was encountered in the Use Area PAJ excavation area in 2020. The concrete moved during the investigation work was managed within the AOC. Field screening of the concrete encountered in 2020 did not indicate the presence of NNOCs. The concrete remains in the excavation area.

2.7.3 Metal

Metallic debris, including pipes, were encountered in site investigation areas in Use Area PAJ in 2020. The pipes had visible internal channels that allowed for field screening. Metallic debris for which field screening did not indicate the presence of NNOCs was transported to a metal stockpile area (PAK-SP01). Metal debris that screened positive for NNOCs was moved to cell C28 and cleaned prior to moving to PAK-SP01. A total of 4,120 pounds of metallic debris was removed by Chicago Iron and Supplies, Inc in Ashland, Wisconsin on October 19, 2020 for recycling. Additional information related to metallic debris handing is included in Section 2.9.

2.7.4 Wood

Impacted wood was not encountered in 2020.

2.7.5 Vitrified Clay Pipes (VCP)

A small fragment (less than 1 linear ft) of VCP was encountered in in Use Area PAJ in 2020. Field screening of the VCP excavated in 2020 did not indicate the presence of NNOCs. The VCP was placed into an existing VCP stockpile in Use Area PAJ after screening.

2.7.6 Nitrocellulose Drum

An intact steel drum containing nitrocellulose was encountered within the Boyd Creek valley in Use Area PAM (Figure 5). The drum was thicker gauge than modern drums and appeared to be remaining from the former operational time period of the plant. The drum was still intact and in generally good condition. Evidence of a release from the drum was not observed. The drum was placed into a steel overpack/salvage drum and transported to the site magazine (PAK-WP01) and then to the accumulation pad (SAJ-WP01) to prepare the material for shipping. The material in the drum was removed, wetted, and placed into three separate steel drums (two new drums and original drum inside the overpack) for shipping. The material was picked up by Veolia on October 28, 2020 under manifest 001761413 to the Veolia Trade Waste Incinerator in Sauget, IL (EPA ID number ILD098642424) for destruction by incineration. The shipping weight of the nitrocellulose, added water, and drums totaled 1,134 pounds.

2.7.7 Suspect Asbestos Containing Material

Suspect asbestos containing material was not encountered in excavations in 2020; however, a suspect asbestos containing gasket was identified in the nitrocellulose drum discussed in Section 2.7.6. and as indicated on Table 2. The material was removed from the drum and placed in a labeled bag. The gasket is currently stored on-site pending additional accumulation of asbestos for off-site disposal.

2.7.8 Water

As part of site investigation work, approximately 700 gallons of decontamination water (e.g. hand and boot washes and equipment/tool decontamination) was applied to test cells. The water was used to hydrate soil in alkaline hydrolysis cells. The on-site wastewater treatment unit was not operated in 2020.

Mr. Bradley S. Nave The Chemours Company FC, LLC June 1, 2021 Page 9 of 10

2.7.9 Other

An estimated 536 lbs of debris consisting of used personal protective equipment (PPE), plastic buckets, tarps, sampling/decon supplies, jars were consolidated into a site-designated roll-off container (SAJ-WP01) in 2020. The roll-off container was only partially full following the 2020 field season. The waste in the roll-off container will be shipped off-site for incineration following the accumulation of additional debris.

2.8 Movement of Soil into Pilot Cells [Condition 7b]

The cited variance condition requires:

- Documentation of any management, including consolidation, of discrete areas where impacted soil is located within narrow locations such as former ditches or locations that are contorted by the layout of former building features.
- Documentation of the location of those areas and the amount of soil that is moved.
- Documentation of the location of areas where the soil combined from discrete source areas is managed.

A total of 144 yd³ of soil was placed into test cell C37 in 2020. In addition, approximately 335 yd³ of soil was removed from cell C16 and placed in cell C25. The soil removed from cell C16 included the cell contents (approximately 177 yd³) and portions of the cell base and berm that were in contact with the cell material. Table 3 lists the source areas and destinations of the soil managed during the current reporting period, and locations are provided on Figure 3.

2.9 Alternative Treatment of Large Debris [Condition 7c]

The cited variance condition requires:

- Documentation of any alternative treatment of large debris that facilitates management, including washing and physical resizing of large debris for off-site disposal.
- Documentation of management of all impacted waste streams generated by these activities, including amounts and volumes of waste treated and generated.

This section describes alternative treatment of debris that potentially contained RCRA hazardous constituents. As detailed in Section 2.7, field screening of some of the debris did not indicate the presence of hazardous constituents and was therefore managed as non-regulated debris. Some non-regulated debris may be stored and resized to facilitate on-site reuse as aggregate or to meet off-site industrial facility acceptance requirements.

2.9.1 Alternative Treatment and Management of Metallic Debris

In 2020, impacted metallic debris was decontaminated on a decontamination pad constructed within cell C28. Water from the decontamination was used to hydrate the soil within cell C28 to aid with alkaline hydrolysis. The debris was cleaned with water using a pressure washer until no solid product was detected using colorimetric field screening (Expray[®].) After cleaning, the metallic debris was transported to a metal stockpile area for accumulation and recycling (PAK-SP01).

2.9.2 Alternative Treatment and Management of Concrete Debris

In 2020, no impacted concrete debris was encountered. Approximately five cubic feet of concrete was encountered in the excavation area and remains in the area.

Mr. Bradley S. Nave The Chemours Company FC, LLC June 1, 2021 Page 10 of 10

2.9.3 Alternative Treatment and Management of Decontamination Water

See Section 2.7.7.

2.10 Other Waste

Approximately 445 lbs of soil impacted with hydraulic fluid from a release from a skid steer hydraulic line was containerized in a steel 55-gallon drum. The soil and hydraulic oil was classified as RCRA non-hazardous per the Safety Data Sheet (SDS) for hydraulic fluid. The drum was picked up by Veolia on October 28, 2020 under manifest ZZ00947839 to Veolia in Menomonee Falls, WI (EPA ID number WID003967149) for disposal. The amount of hydraulic fluid released to the soil was estimated to be less than one gallon.

3.0 SUMMARY

The information contained within this report will allow Chemours to comply with the reporting requirements of the May 18, 2017 Hazardous Waste Remediation Variance issued for the Former DuPont Barksdale Works site and this report should be included with the filing.

Should you have any questions or comments, please do not hesitate to contact us.

Sincerely,

F.CSI .It

Eric Schmidt, P.E. Project Engineer

Attachments:

Table 1: 2020 Contaminant Progress Summary

Table 2: 2020 Debris and Residuals Removed

Table 3: 2020 Soil Moved to Test Cells

Table 4: Comparison of Pace Analytical Detection Limits to RCLs

C.E. "CAm" Pole P.G.

C. E. "Cary" Pooler, P.G. Associate Vice President

Figure 1: Regional Site Location Figure 2: Site Layout and Bio-Cell Locations Figure 3: 2020 Impacted Soil Recovery Locations Figure 4: Debris Removal Locations Figure 5: Typical Biopilot Sites Operation Stage 2007-2010 Figure 6: General pH Adjustment Cell Configuration

Appendix A: WDNR Form 4400-194: Remediation Site Operation, Maintenance, Monitoring & Optimization Report

- Appendix B: Shipping Documentation/Manifests State of Wisconsin Annual Hazardous Waste Report
- Appendix C: Barksdale Summary Graphs 2020 Year End
- Appendix D: Cell Photographs
- Appendix E: Biodegradation Evaluation Lab Data Pace Analytical Reports A203525 Final 09112020 1318 (August 2020 Cell Soil Samples) A204321 Final 11052020 1434 (October 2020 Cell Soil Samples)

 Table 1

 D202 Contaminant Progress Summary

 Waste Management Progress Report No. 9

 For Period May 18, 2020 to May 18, 2021

 Hazardous Waste Remediation Variance Approval of May 22, 2012

 Hazardous Waste Remediation Variance Renewal Approval of May 18, 2017

 Former Barksdale Works

 Bayfield County, Wisconsin

Analyte	Amount remaining as of 2020 (Ibs)	Initial Amount (Ibs)	Amount Decreased from 2019 to 2020 (Ibs)	Amount Decreased to Date for all Cells (lbs)
2,4,6-TNT	1141.0	9404.0	537.9	8263.0
2-A-4,6-DNT	5.4	60.2	4.3	54.8
4-A-2,6-DNT	20.4	71.3	17.5	50.8
2,3-DNT	0.8	102.4	0.1	101.6
2,4-DNT	7.6	2565.7	0.1	2558.1
2,5-DNT	0.3	0.5	0.0	0.2
2,6-DNT	4.7	908.2	0.2	903.5
3,4-DNT	1.4	136.0	0.1	134.6
3,5-DNT	0.1	2.8	0.0	2.7
Total DNT ¹	14.8	3716.9	0.4	3702.1
1,2-DM-3,4-DNB	39.4	92.8	0.0	53.4
1,2-DM-3,5-DNB	36.3	92.8	0.0	56.5
1,2-DM-3,6-DNB	9.2	23.5	0.0	14.3
1,2-DM-4,5-DNB	12.3	29.1	0.0	16.8
1,3-DM-2,4-DNB	98.8	255.0	0.0	156.3
1,3-DM-2,5-DNB	0.3	0.0	0.0	(0.3)
1,4-DM-2,3-DNB	60.6	145.0	0.0	84.5
1,4-DM-2,5-DNB	11.4	12.3	0.1	1.0
1,4-DM-2,6-DNB	28.7	25.3	0.0	(3.4)
1,5-DM-2,3-DNB	3.3	5.8	0.0	2.6
1,5-DM-2,4-DNB	178.8	349.8	0.1	171.0
Total DNX	478.9	1031.6	0.2	552.7
2,4,6-TNX	6.6	14.2	0.7	7.6
1,3,5-TNB	0.0	4.8	0.0	4.8
1,3-DNB	0.1	6.9	0.0	6.8
NB	0.0	0.6	0.0	0.6
3-NT	0.0	1.7	0.0	1.7
4-NT	0.0	0.4	0.0	0.4
2-NT	0.0	1.2	0.0	1.2
NG	0.0	0.0	NA	0.0
HMX	0.0	0.0	NA	NA
3,5-Dinitroaniline	0.1	0.3	0.1	0.2
All Analyte Totals	1,667.4	14312.7	561.0	12645.3

NOTES:

¹Total DNT calculated by adding 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-DNT isomers.

Red Data (#.#)	Denotes an increase over time. Many of the apparent increases are due to changes in detection limits within the duration of the project and heterogeneity effects. 2-A-4,6 DNT and 4-A-2,6 DNT increases may be associated with the anaerobic degradation of TNT.

Data Compilation Summary

If multiple samples were analyzed from a single cell during a single sampling event, the average concentration of the samples was calculated.

Results reported below the reporting limit have been rounded to zero to compare varying/changing limits: over multiple years, using different laboratories, concentration dilutions, etc.

To calculate analyte weights, the following formula was used:

Analyte Concentration (mg/kg)	х	Volume of Soil in Cell (cuyd)	x	Estimated Soil Weight per Cubic Yard of Soil (2,700 lbs / cuyd)	х	Soil Concentration Conversion Factor from Parts Per Million (1 kg / 1,000,000 mg)	=	Recorded Analyte Concentration per Cell in Pounds (lbs)	
------------------------------------	---	---------------------------------------	---	---	---	--	---	--	--

2020 Contaminant Progress Summary

Analytes Remaining in 2020

Waste Management Progress Report No. 9 For Period May 18, 2020 to May 18, 2021

Hazardous Waste Remediation Variance Approval of May 22, 2012 Hazardous Waste Remediation Variance Renewal Approval of May 18, 2017

Former Barksdale Works

Bayfield County, Wisconsin

Cell	C01	C02	C03	C04	C05	C06	C07	C08	C09	C10	C11	C12	C13	C14		C16 ^A (Original C16)	C25 ^B (Former C16)	C17	C18	C19	C20	C21	C22	C23*	C24	C25 ^C (Original C25)	C26	C27 ^D (Original C27)	C27 ^E (Original C27 plus Former C25)	C28	C2
Sampled in 2020	No	No	No	No	No	Yes	No	No	No	No	No	Yes	No	No	No	Yes		No		Yes	Yes	N									
Mixed in 2020	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No		No		No	No	N
pH Adjustment Cell	No	No	No	No	No	Yes	No	No	No	No	No	Yes	No	No	No	Yes	Yes	Yes	No	No	No	Yes	No	No	Yes		Yes		Yes	Yes	N
Hydrated Lime Added in 2020	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No		No		No	No	N
Debris Removed 2020 (lbs)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.0
Soil Added to Cell 2020 (cuyd)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	335.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0		0.0	0.0	0.
Soil Removed from Cell 2020 (cuyd)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	176.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
Soil Volume in Cell (cuyd)	13.6	13.6	13.6	13.6	432.9	68.4	189.4	115.4	229.2	392.5	244.4	300.9	369.4	189.4	468.5	0.0	335.0	136.6	57.0	106.5	76.0	41.1	1.5	0.0	263.0		307.0		527.0	850.0	0.0

																C16 ^A	C25 ^B									C25 ^c		C27 ^D	C27 ^E (Original											
Cell	C01	C02	C03	C04	C05	C06	C07	C08	C09	C10	C11	C12	C13	C14			(Former C16)	C17	C18	C19	C20	C21	C22	C23*	C24	(Original C25)	C26	(Original C27)	C27 plus Forme C25)	r C28	C29	C30	C31	C32	C33	C34	C35	C36	C37	Total for All Cells
Sampled in 2020	No				No			No	No	No	No	No	No	No	No	No	No	No				No		No	Yes		No		Yes	Yes	No	No	Yes	No	Yes	No	Yes	Yes	No	
Mixed in 2020	No				No		No		No	No	No	No	No	No	No	No	No	No		No		No		No	No		No		No	No	No	No	No	No	No	No	No	No	Yes	
pH Adjustment Cell	No		No	No	No			No		No	No		No	No	No	Yes	Yes	Yes				Yes		No	Yes		Yes		Yes	Yes	No	No	Yes	No	Yes		Yes	Yes	Yes	
Hydrated Lime Added in 2020	No		No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No		No		No		No	No		No		No	No	No	No	No	No	No	No	No	No	Yes	
Debris Removed 2020 (lbs)	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	No	0.0	0.0		0.0	0.0	0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Soil Added to Cell 2020 (cuyd) Soil Removed from Cell 2020 (cuyd)		0.0	0.0		0.0			0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	335.0					0.0		0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	144.0	479.0
Soil Volume in Cell (cuyd)	/		0.0	0.0	0.0 432.9		0.0	0.0	0.0 229.2	0.0	0.0	0.0	0.0 369.4	0.0 189.4	0.0 468.5	176.8 0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0 263.0	0.0	0.0 307.0	0.0	0.0 527.0	0.0 850.0	0.0	0.0	0.0	0.0	0.0 292.0	0.0 66.6	0.0 564.0	0.0 577.8	0.0	176.8 7411.4
	10.0	15.0	15.0	15.0	432.3	00.4	103.4	113.4	223.2	552.5	277.7	300.3	503.4	103.4	400.0	0.0	555.0	130.0	57.0	100.5	70.0	71.1	1.5	0.0	205.0		507.0		321.0	000.0	0.0	0.0	11.4	0.0	232.0	00.0	304.0	311.0	144.0	7411.4
																	_											_	_											
Analytes remaining (lbs) 2020															(C16 ^A Original	C25 ^B (Former									C25 ^C (Original		C27 ^D (Original	C27 ^E (Original C27 plus Forme											
(Averages of subcells)	C01	C02	C03	C04	C05	C06	C07	C08	C09	C10	C11	C12	C13	C14		C16)	C16)	C17	C18	C19	C20	C21	C22	C23*	C24	C25)	C26	C27)	C25)	C28	C29	C30	C31	C32	C33	C34	C35	C36	C37	Total for All Cells
2,4,6-TNT	5.0	1.2	0.2	0.3	0.3	2.8	0.7	0.0	0.0	0.2	0.0	146.2	0.2	2.2	2.4	^A	0.3	0.2	0.0	0.4	0.0	53.3	NA	NA	2.8	^C	3.2	D	37.0	11.9	NA	NA	0.5	NA	744.0	NA	21.3	104.5	NA	1141.0
2-A-4,6-DNT	0.5	0.1	0.1	0.1	0.0	0.1	0.2	0.0	0.0	0.0	0.0	1.3	0.0	0.1	0.5	^A	0.2	0.1	0.0	0.1	0.0	0.6	NA	NA	0.0	^C	0.2	^D	0.3	0.0	NA	NA	0.0	NA	0.3	NA	0.0	0.5	NA	5.4
4-A-2,6-DNT	0.4		0.1	0.1	0.3	0.7	0.3	0.0	0.0	0.2	0.0	2.7	0.0	0.6	4.3	A	0.4	0.6	0.0	0.5	0.0	2.7		NA	0.6	^c	0.9	^D	0.5	1.3	NA	NA	0.0	NA	0.5	NA	1.0	1.6	NA	20.4
2,3-DNT	0.0	0.0	0.0	0.1	0.2	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	^A	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	^C	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.8
2,4-DNT	0.3	0.0	0.1	0.1	0.9	0.1	0.5	0.2	0.0	0.3	0.0	2.7	0.2	0.4	0.3	^A	0.0	0.2	0.0	0.1	0.0	0.0	NA	NA	0.0	^C	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.9	NA	0.0	0.0	NA	7.6
2,5-DNT	0.0	0.0	0.0	0.0	0.2	0.0	0.1	0.0	ND	0.0	0.0	0.0	0.0	0.0	0.0	^A	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	^C	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.3
2.6-DNT	0.4	0.0	0.0	0.1	2.0	0.1	0.4	0.0	0.0	0.2	0.2	0.5	0.3	0.3	0.0	^A	0.0	0.1	0.0	0.0	0.0	0.0	NA	NA	0.0	^c	0.0	D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	4.7
3,4-DNT	0.0	0.0	0.0	0.0	0.3	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.8	0.0	A	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	1.4
3.5-DNT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	A	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	c	0.0	D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.1
Total DNT ¹	0.7	0.1	0.2	0.3	3.6	0.2	1.5	0.2	0.0	0.6	0.2	3.1	0.5	2.0	0.3	A	0.0	0.3	0.1	0.1	0.0	0.0	NA	NA	0.0	C	0.0	D	0.0	0.0	NA	NA	0.0	NA	0.9	NA	0.0	0.0	NA	14.8
1.2-DM-3.4-DNB	-	3.9	5.5		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	A	0.0	0.5		0.0	0.0	0.0	NA	NA	0.0	^c	0.0	D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	39.4
1,2-DM-3,5-DNB	-	3.8	3.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	A	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	c	0.0	D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	36.3
1,2-DM-3,6-DNB	4.9		1.1		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	A	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	^C	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	9.2
1,2-DM-4,5-DNB	6.0		1.6		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	A	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	^C	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	12.3
1.3-DM-2.4-DNB	54.3		11.6		0.0	0.0	0.0	0.0	0.0	0.5	0.8	0.0	0.9	0.0	0.0	A	0.0	3.3	0.0	0.0	0.0	0.0	NA	NA	0.0	^C	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	98.8
1.3-DM-2.5-DNB	0.1		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	A	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	^C	0.0	D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.3
1,4-DM-2,3-DNB	-	5.5	8.8		0.0	0.0	0.0	0.0	0.0	0.4	0.4	0.0	0.5	0.0	0.0	A	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	^C	0.0	D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	60.6
1.4-DM-2.5-DNB	4.6		0.7		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	A	0.0	3.4	0.0	0.0	0.0	0.0	NA	NA	0.0	C	0.0	D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	11.4
1,4-DM-2,6-DNB	14.7		3.5	-	0.0	0.0	0.0	0.0	0.0	0.2	0.2	0.0	0.3	0.0	0.0	A	0.0	1.0		0.0	0.0	0.0	NA	NA	0.0	c	0.0	D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	28.7
1,5-DM-2,3-DNB	1.6	-	0.5		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	A	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	c	0.0	D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	3.3
1,5-DM-2,4-DNB	88.6		24.3		0.2	0.0	0.0	0.0	0.0	1.0	0.9	0.0	0.8	0.0	0.0	A	0.0	9.2	0.0	0.0	0.0	0.0	NA	NA	0.0	^C	0.0	D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	178.8
Total DNX		39.9	-		0.3	0.0	0.0	0.0	0.0	2.2	2.3	0.0	2.5		0.0	A	0.0	17.4		0.0	0.0	0.0	NA	NA	0.0	^C	0.0	D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	478.9
2.4.6-TNX		0.4			0.2	0.0	0.0	0.0	0.0	0.0	0.6	1.5	0.0	0.0	0.0	A	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	^C	0.0	D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.5	0.0	NA	6.6
1.3.5-TNB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	A	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	C	0.0	D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
1,3-DNB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	A	0.0	0.0	0.0	0.0	0.0	0.0		NA	0.0	C	0.0	D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
NB	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	A	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	C	0.0	D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
<u>NB</u> 3-NT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	A	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	C	0.0	D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
3-NT 4-NT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	A	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	C	0.0	 ^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
4-NT 2-NT	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	A	0.0	0.0	0.0	0.0	0.0	0.0	NA	NA	0.0	C	0.0	 D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
2-N1 NG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	0.0	0.0	0.0	 ^A	0.0	0.0	0.0	0.0	0.0	0.0			0.0	C	0.0	 D	0.0	0.0			0.0	-	0.0		0.0	0.0		0.0
NG HMX	NA	NA	NA	NA	NA	0.0	NA	0.0	0.0	0.0	0.0		0.0	0.0	0.0	A	NA	NA		NA	NA	NA		NA	NA	^c	NA	D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	NA	NA	NA	NA	NA	NA	NA	0.0	0.0	0.0	0.0	NA	0.0	0.0	0.0	A	NA	NA	NA	NA	NA	NA		NA	NA	°	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0
3,5-Dinitroaniline	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	^`	0.0	0.0	0.0	0.0	0.0	0.1	NA	NA	0.0	~	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.1
																																								1667.4

NOTES:

1: Total DNT calculated by adding 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-DNT isomers.

0.0 Values: The constituent was not detected above the Reporting Limit (RL) and was rounded down to zero.
NA: Not analyzed/applicable
Gray cells with numbers (#.#): These cells were not sampled in 2020. Most recent data for each cell is shown.

C23*: Cell was emptied in 2014. The remaining contents from the C23 stored soils were placed in cells C12, C17, and C22 in 2017.

C16^A: Cell was emptied in 2020. Contents of C16 (approximately 177 cubic yards) and portions of the cell base and berm that were in contact with the cell contents (approximately 158 cubic yards) were placed in emptied cell C25 in 2020.

C25^B: Cell C25 was filled with material from Cell C16 in 2020.

C25^C: Material originally placed in cell C25 (approximately 250 cubic yards of soil) was added to cell C27 in 2019.

 $C27^{D}$: Material originally placed in cell C27 prior to cell C25 contents being added in 2019.

C27^E: Material originally placed in cell C27 plus material added from cell C25 in 2019.

Table 1 2020 Contaminant Progress Summary

Initial Analyte Concentrations Waste Management Progress Report No. 9 For Period May 18, 2020 to May 18, 2021 Hazardous Waste Remediation Variance Approval of May 22, 2012 Hazardous Waste Remediation Variance Renewal Approval of May 18, 2017 Former Barksdale Works Bayfield County, Wisconsin

C27^D C27^E (Original C16^A C25^B C25^C Analytes. Initial readings starting (Original (Former (Original (Original C27 plus Former C02 C03 C04 C05 C06 C07 C08 C09 C10 C11 C12 C13 C14 C15 C17 C18 C19 C20 C01 C16) C21 C22 C23* C24 C26 C28 in 2007 (Averages of subcells) C16) C25) C27) C25) _A 2,4,6-TNT 15.8 5.5 0.6 0.6 3.2 991.0 171.0 0.5 0.3 9.0 0.7 1472.7 9.4 144.9 1553.9 294.6 47.0 0.0 130.4 24.9 1332.4 NA NA 874.3 119.1 137.8 251.7 370.8 6.7 1.7 6.2 0.0 0.0 0.5 0.1 0.0 0.9 0.8 5.4 --^A 2-A-4,6-DNT 0.2 14.8 1.7 0.0 0.8 0.2 2.7 NA NA 4.0 3.1 2.2 10.1 13.2 0.6 __A 4-A-2 6-DNT 0.3 0.1 0.0 0.4 5.9 0.1 0.0 0.7 0.1 0.5 0.7 6.4 11.4 11 0.0 2.0 0.3 63 NA NA 64 3.0 3.6 10.1 13.1 2.3 __A 2,3-DNT 0.0 0.0 0.1 50.4 1.4 2.6 0.1 0.0 15.2 0.0 2.7 10.0 7.9 0.2 11.6 0.0 NA NA 0.1 __A
 1.0
 1.1
 0.5
 0.5
 854.1
 129.8
 60.4
 13.6
 0.2
 427.8
 0.5
 789.5
 56.3
 17.6
 39.2
 2.4-DNT 0.4 132.9 0.2 0.7 5.0 1.1 NA NA 0.5 29.5 1.5 29.5 2,5-DNT 0.0 0.0 0.1 0.0 NA 0.0 0.0 0.0 0.0 0.4 0.0 0.0 0.0 NA NA ___A
 0.8
 1.0
 0.6
 0.8
 447.9
 20.9
 54.0
 1.7
 0.0
 147.3
 0.1
 32.3
 21.9
 79.4
 2 6-DNT 1.5 95.7 0.1 0.0 0.0 0.0 NA NA 0.0 1.9 0.2 19 ___A 3,4-DNT 0.2 0.1 0.0 0.1 55.3 2.4 4.0 0.1 0.0 21.3 0.0 6.2 14.1 13.8 0.4 17.8 0.0 0.0 NA NA 0.1 0.1 ,5-DNT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.6 1.1 А 0.2 NA NA 0.1 0.1 0.1 0.0 0.1 2.1 2.2 1.2 1.5 1407.7 154.6 121.1 15.6 0.3 612.0 0.7 830.7 102.9 120.1 41.4 -^A 0.4 0.7 5.2 NA NA 0.6 31.5 Total DNT 0.4 258.1 1.2 1.7 31.5 0.0 __A 1.2-DM-3.4-DNB 18.3 14.7 6.5 16.6 0.3 0.0 0.0 0.0 36.3 0.0 NA NA A ,2-DM-3,5-DNB 17.8 14.2 6.5 16.3 0.3 0.0 0.0 0.0 37.4 0.1 NA NA 0.2 4.7 2.0 1.9 2.2 0.1 0.0 _A 1,2-DM-3,6-DNB 12.5 0.0 NA NA A .2-DM-4.5-DNB 5.5 4.3 1.9 5.3 0.1 0.0 0.0 0.0 12.0 0.0 NA NA __A 1.3-DM-2.4-DNB 56.5 40.0 17.8 43.8 1.4 0.0 0.0 0.0 0.1 0.0 0.4 0.6 94.0 0.3 NA NA 0.0 ,3-DM-2,5-DNB A NA 0.0 0.0 0.0 NA Α .4-DM-2.3-DNB 24.8 11.2 29.7 0.6 0.0 0.0 0.0 47.1 NA NA 31.0 0.1 0.2 0.3 __A 1,4-DM-2,5-DNB 6.0 1.7 2.2 0.0 2.4 NA NA __A ,4-DM-2,6-DNB 4.9 3.8 1.6 3.8 0.3 0.0 0.0 0.0 10.8 0.0 NA NA А ,5-DM-2,3-DNB 1.2 0.9 0.4 0.9 2.6 0.0 NA NA 0.0 84.2 58.7 25.1 61.1 1.6 0.1 0.0 0.1 __A 1.5-DM-2.4-DNB 0.2 0.0 0.6 0.5 0.0 0.3 0.1 NA NA 117.3 Total DNX 230.1 165.0 75.1 179.6 4.9 0.2 0.1 0.2 0.5 0.0 1.2 1.5 0.0 372.4 0.9 0.1 NA NA 0.0 __A 2,4,6-TNX 1.0 0.6 0.2 0.8 0.2 0.2 0.0 0.0 5.0 2.6 0.1 0.0 0.0 0.1 1.3 0.0 0.5 0.4 NA NA 0.2 0.2 __A 1,3,5-TNB 0.0 0.1 0.5 0.5 0.7 0.9 1.2 0.0 0.2 0.0 0.3 NA NA 0.0 0.0 1.3-DNB 0.3 1.3 0.4 0.3 0.1 0.3 0.1 3.2 0.0 0.0 0.5 NA NA 0.2 A 0.0 0.0 0.1 0.0 0.1 0.4 NA NA NB A 3-NT 0.3 0.1 0.0 0.1 0.0 0.1 0.9 0.0 0.0 NA 0.0 0.0 0.0 NA А 4-NT 0.1 0.1 0.0 0.1 0.1 NA NA 0.1 ___A 2-NT 0.1 0.2 0.0 0.3 0.0 0.0 0.5 0.0 NA NA 0.0 A NA NA NA NA NA NA NA NA NA NG А нмх NA NA NA NA NA NA NA NA NA __A PETN NA NA NA NA NA NA NA NA NA ___A 0.0 0.0 0.0 0.0 NA NA NA NA NA NA RDX 0.0 0.0 NA NA NA NA NA NA A NA NA NA NA NA NA Fetryl 3,5-Dinitroanilin 0.0 NA NA 0.1 0.0 0.0

NOTES:

¹: Total DNT calculated by adding 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-DNT isomers.

Initial analyte concentrations: Not all analytes were initially sampled for each cell. TNX, some DNX & DNT isomers and 3,5-Dinitroaniline were added to the sampling program at later dates. The initial reading for each analyte included on this table are from the earliest recorded data set for each analyte. 0.0 Values: The constituent was not detected above the Reporting Limit (RL) and was rounded down to zero.

NA: Not analyzed/applicable

C23*: Cell was emptied in 2014. The remaining contents from the C23 stored soils were placed in cells C12, C17, and C22 in 2017.

C16^A: Cell was emptied in 2020. Contents of C16 (approximately 177 cubic yards) and portions of the cell base and berm that were in contact with the cell contents (approximately 158 cubic yards) were placed in emptied cell C25 in 2020.

C25^B: Cell C25 was filled with material from Cell C16 in 2020.

C25^C: Material originally placed in cell C25 (approximately 250 cubic yards of soil) was added to cell C27 in 2019. Totals shown in this column not included in "Total for All Cells" column.

C27^D: Material originally placed in cell C27 prior to cell C25 contents being added in 2019. Totals shown in this column not included in "Total for All Cells" column.

C27^E: Material originally placed in cell C27 plus material added from cell C25 in 2019. Totals shown in this column are included in "Total for All Cells" column.

C29	C30	C31	C32	C33	C34	C35	C36	C37	Total for All Cells
NA	NA	318.6	NA	135.3	NA	198.0	1154.4	NA	9404.0
NA	NA	1.2	NA	0.5	NA	1.0	1.6	NA	60.2
NA	NA	1.2	NA	0.7	NA	3.4	4.5	NA	71.3
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	102.4
NA	NA	0.7	NA	0.3	NA	0.3	0.4	NA	2565.7
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.5
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	908.2
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	136.0
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	2.8
NA	NA	0.7	NA	1.0	NA	0.6	0.7	NA	3716.9
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	92.8
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	92.8
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	23.5
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	29.1
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	255.0
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	145.0
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	12.3
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	25.3
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	5.8
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	349.8
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	1031.6
NA	NA	0.0	NA	0.0	NA	0.9	0.0	NA	14.2
NA	NA	0.4	NA	0.0	NA	0.0	0.0	NA	4.8
NA	NA	0.0	NA	0.2	NA	0.0	0.0	NA	6.9
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.6
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	1.7
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.4
NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	1.2
NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0
NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0
NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0
NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0
NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0
NA	NA	0.1	NA	0.0	NA	0.0	0.0	NA	0.3

2020 Contaminant Progress Summary

Analyte Decrease 2019 to 2020

Waste Management Progress Report No. 9 For Period May 18, 2020 to May 18, 2021

Hazardous Waste Remediation Variance Approval of May 22, 2012 Hazardous Waste Remediation Variance Renewal Approval of May 18, 2017

Former Barksdale Works

Bayfield County, Wisconsin

																C16A	C25B									C25C		C27D	C27 ^E (Original											
Analytes decrease (lbs) 2019 to																	сzэв al (Forme									(Origina	a		C27 (Original C27 plus Forme											
2020 (Averages of subcells)	C01	C02	C03	C04	C05	C06	C07	C08	3 C09	C10	C1	1 C1	2 C13	C14	C15			C17	C18	C19	C20	C21	C22	C23*	C24	C25)	" C26	C27)	C27 plus Politie C25)	C28	C29	C30	C31	C32	C33	C34	C35	C36	C37	Total for All Cells
2.4.6-TNT	NA	NA	NA	NA	NA	19.4	NA	NA	NA	NA	NA	N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	24.9	NA	NA	NA	(12.1)	11.0	NA	NA	0.6	NA	(732.5)	NA	176.6	1049.9	NA	537.9
2-A-4,6-DNT	NA	NA	NA	NA	NA	0.3	NA	NA	NA	NA	NA	N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.4	NA	NA	NA	0.0	1.8	NA	NA	0.0	NA	(0.3)	NA	1.0	1.1	NA	4.3
4-A-2,6-DNT	NA	NA	NA	NA	NA	1.5	NA	NA	NA	NA	NA	N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.1	NA	NA	NA	2.4	NA	NA	NA	0.5	7.8	NA	NA	0.0	NA	(0.1)	NA	2.3	3.0	NA	17.5
2,3-DNT	NA	NA	NA	NA	NA	0.1	NA	NA	NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.1
2,4-DNT	NA	NA	NA	NA	NA	0.3	NA	NA	NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	(0.9)	NA	0.3	0.4	NA	0.1
2,5-DNT	NA	NA	NA	NA	NA	0.0	NA	NA	NA	NA	NA	N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
2,6-DNT	NA	NA	NA	NA	NA	0.2	NA	NA	NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.2
3,4-DNT	NA	NA	NA	NA	NA	0.1	NA	NA	NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.1
3,5-DNT	NA	NA	NA	NA	NA	0.0	NA	NA	. NA	NA	NA	N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
Total DNT	NA	NA	NA	NA	NA	0.6	NA	NA	NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	(0.9)	NA	0.3	0.4	NA	0.4
1,2-DM-3,4-DNB	NA	NA	NA	NA	NA	0.0	NA	NA	NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
1,2-DM-3,5-DNB	NA	NA	NA	NA	NA	0.0	NA	NA	NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
1,2-DM-3,6-DNB	NA	NA	NA	NA	NA	0.0	NA	NA	. NA	NA	NA	N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
1,2-DM-4,5-DNB	NA	NA	NA	NA	NA	0.0	NA	NA	NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
1,3-DM-2,4-DNB	NA	NA	NA	NA	NA	0.0	NA	NA	. NA	NA	NA	N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
1,3-DM-2,5-DNB	NA	NA	NA	NA	NA	0.0	NA	NA	NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
1,4-DM-2,3-DNB	NA	NA	NA	NA	NA	0.0	NA	NA	NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
1,4-DM-2,5-DNB	NA	NA	NA	NA	NA	0.1	NA	NA	NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.1
1,4-DM-2,6-DNB	NA	NA	NA	NA	NA	0.0	NA	NA	. NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
1,5-DM-2,3-DNB	NA	NA	NA	NA	NA	0.0	NA	NA	NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
1,5-DM-2,4-DNB	NA	NA	NA	NA	NA	0.1	NA	NA	. NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.1
Total DNX	NA	NA	NA	NA	NA	0.2	NA	NA	NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.2
2,4,6-TNX	NA	NA	NA	NA	NA	0.3	NA	NA	. NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.1	NA	0.0	NA	0.4	0.0	NA	0.7
1,3,5-TNB	NA	NA	NA	NA	NA	0.0	NA	NA	NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
1,3-DNB	NA	NA	NA	NA	NA	0.0	NA	NA	. NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
NB	NA	NA	NA	NA	NA	0.0	NA	NA	NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
3-NT	NA	NA	NA	NA	NA	0.0	NA	NA	. NA	NA	NA	\ N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
4-NT	NA	NA	NA	NA	NA	0.0	NA	NA	NA	NA	NA	N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
2-NT	NA	NA	NA	NA	NA	0.0	NA	NA	NA	NA	NA	N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.0
NG	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N/	A NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
HMX	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N/	A NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
3,5-Dinitroaniline	NA	NA	NA	NA	NA	0.1	NA	NA	NA	NA	NA	N/	A NA	NA	NA	NA	NA	NA	NA	NA	0.0	NA	NA	NA	0.0	NA	NA	NA	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.1
																																								561.0

NOTES:

¹: Total DNT calculated by adding 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-DNT isomers.

0.0 Values: The constituent was not detected above the Reporting Limit (RL) and was rounded down to zero.

Red Data (#.#): Denotes an increase over time. Many of the apparent increases are due to changes in detection limits within the duration of the project and heterogeneity effects. 2-A-4,6 DNT and 4-A-2,6 DNT increases may be associated with the anaerobic degradation of TNT. NA: Not analyzed in 2019 and/or 2020

C23*: Cell was emptied in 2014. The remaining contents from the C23 stored soils were placed in cells C12, C17, and C22 in 2017.

C16^A. Cell was emptied in 2020. Contents of C16 (approximately 177 cubic yards) and portions of the cell base and berm that were in contact with the cell contents (approximately 158 cubic yards) were placed in emptied cell C25 in 2020.

C25^B: Cell C25 was filled with material from Cell C16 in 2020.

C25^C: Material originally placed in cell C25 (approximately 250 cubic yards of soil) was added to cell C27 in 2019.

C27^D: Material originally placed in cell C27 prior to cell C25 contents being added in 2019.

C27^E: Material originally placed in cell C27 plus material added from cell C25 in 2019.

2020 Contaminant Progress Summary Analyte Decrease Initial to 2020

Waste Management Progress Report No. 9 For Period May 18, 2020 to May 18, 2021 Hazardous Waste Remediation Variance Approval of May 22, 2012 Hazardous Waste Remediation Variance Renewal Approval of May 18, 2017 Former Barksdale Works

Bayfield County, Wisconsin

																	C16A	C25E	3									C25 ^c		C27 ^D	C27 ^E (Original											
Analytes decrease (lbs) Initial to																	(Origina	al (Form	er									(Original		(Original	C27 plus Forme	ər										
2020 (Averages of subcells)	C01	C02	C03	C04	C05	C0	6 C	C07 C0	18 CO	09 C [.]	10	C11	C12	C13	C14	C15	C16)	C16)	C17	7 C18	B C1	9 C2	20 C2	1 C:	22	C23*	C24	C25)	C26	C27)	C25)	C28	C29	C30	C31	C32	C33	C34	C35	C36	C37	Total for All Cells
2,4,6-TNT	10.8	4.3	0.5	0.3	2.9	988.	.2 17	0.3 0.5	5 0.3	3 8.	8	0.7 1	1326.5	9.2	142.7	1551.5	^A	294.3	46.8	3 0.0	130.	0 24	.9 1279	9.1 N	A	NA	871.5	^c	134.6	^D	333.8	(5.3)	NA	NA	318.1	NA	(608.7)	NA	176.6	1049.9	NA	8263.0
2-A-4,6-DNT	(0.3)	(0.1)	(0.1)	(0.1)	0.0	1.6	6 6	6.0 0.0	0.0	0 0.	5	0.1	(1.3)	0.9	0.7	4.9	^A	14.6	1.6	0.0	0.6	0.	2 2.1	I N	A	NA	4.0	^c	2.0	^D	12.9	0.6	NA	NA	1.2	NA	0.2	NA	1.0	1.1	NA	54.8
4-A-2,6-DNT	(0.1)	(0.0)	(0.1)	(0.1)	(0.3)	(0.4	4) 5	5.6 0.1	1 0.0	0 0.	5	0.1	(2.7)	0.5	0.2	2.1	^A	11.0	0.5	0.0	1.4	0.	3 3.7	7 N	A	NA	5.8	^c	2.7	^D	12.6	1.0	NA	NA	1.1	NA	0.2	NA	2.3	3.0	NA	50.8
2,3-DNT	0.1	0.0	0.0	0.0	50.2	1.4	4 2	2.4 0.1	1 0.0	0 15	.2	0.0	2.7	10.0	7.7	0.2	^A	0.0	11.6	6 0.0	0.0	0.	0.0	N	A	NA	0.0	^c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	101.6
2,4-DNT	0.7	1.0	0.4	0.3	853.1	129.	.7 59	9.9 13.	4 0.2	2 427	7.5	0.5	786.8	56.1	17.1	39.0	^A	0.4	132.	7 0.2	0.6	5.	0 1.1	I N	A	NA	0.5	^c	1.5	^D	29.5	0.0	NA	NA	0.7	NA	(0.6)	NA	0.3	0.4	NA	2558.1
2,5-DNT	0.0	0.0	(0.0)	0.0	(0.2)	0.0) (0).1) 0.0	N	A 0.	0	0.0	0.0	0.0	0.4	0.0	^A	0.0	0.0	0.0	0.0	0.	0.0	N	A	NA	0.0	^c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.2
2,6-DNT	0.4	0.9	0.5	0.7	446.0	20.8	8 53	3.5 1.7	7 0.0	0 147	7.1 ((0.0)	31.8	21.7	79.0	1.5	^A	0.0	95.7	7 0.1	0.0	0.	0.0) N	A	NA	0.0	^c	0.2	^D	1.9	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	903.5
3,4-DNT	0.2	0.1	0.0	0.1	55.0	2.4	ь з	3.8 0.1	1 0.0	0 21	.3	0.0	6.2	14.1	12.9	0.4	^A	0.0	17.8	3 0.0	0.0	0.	0.0) N	A	NA	0.0	^c	0.0	^D	0.1	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	134.6
3,5-DNT	0.0	0.0	0.0	0.0	0.0	0.0) 0	0.0 0.0) 0.0	0.	4	0.0	0.0	0.6	1.0	0.1	^A	0.0	0.0	0.0	0.0	0.	2 0.1	I N	A	NA	0.1	c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	2.7
Total DNT	1.4	2.1	1.0	1.2	1404.1	154.	.3 11	9.6 15.	4 0.3	3 611	1.4	0.5	827.5	102.4	118.2	41.1	^A	0.4	257.	8 0.3	0.7	5.	2 1.2	2 N	A	NA	0.6	c	1.7	^D	31.5	0.0	NA	NA	0.7	NA	0.1	NA	0.6	0.7	NA	3702.1
1,2-DM-3,4-DNB	(1.5)	10.7	1.0	6.9	0.3	0.0	0	0.0 0.0	0.0	0.	0	0.0	0.0	0.0	0.0	0.0	^A	0.0	35.8	3 0.0	0.0	0.	0.0	N	A	NA	0.0	^c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	53.4
1,2-DM-3,5-DNB	(3.9)	10.3	3.5	8.5	0.3	0.0) 0	0.0 0.0	0.0	0.	0	0.0	0.0	0.2	0.0	0.0	^A	0.0	37.4	4 0.1	0.0	0.	0.0	N	A	NA	0.0	^c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	56.5
1,2-DM-3,6-DNB	(0.2)	1.2	0.8	(0.2)	0.1	0.0) 0	0.0 0.0).0	0 0.	0	0.0	0.0	0.0	0.0	0.0	^A	0.0	12.5	5 0.0	0.0	0.	0.0	N	A	NA	0.0	^c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	14.3
1,2-DM-4,5-DNB	(0.5)	3.0	0.3	1.8	0.1	0.0) 0	0.0 0.0).0	0 0.	0	0.0	0.0	0.0	0.0	0.0	^A	0.0	12.0	0.0	0.0	0.	0.0	N	A	NA	0.0	^c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	16.8
1,3-DM-2,4-DNB	2.2	33.5	6.2	22.9	1.4	0.0) 0	0.0 0.0).0	0 (0.	.4) ((0.8)	0.4	(0.3)	0.0	0.0	^A	0.0	90.7	7 0.3	0.0	0.	0.0	N	A	NA	0.0	^c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	156.3
1,3-DM-2,5-DNB	(0.1)	(0.0)	(0.0)	(0.1)	0.0	0.0) ()	0.0	0.0	0 0.	0	0.0	0.0	0.0	0.0	0.0	^A	0.0	0.0	0.0	0.0	0.	0.0	N	A	NA	0.0	^c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	(0.3)
1,4-DM-2,3-DNB	0.2	19.4	2.5	15.4	0.6	0.0) 0	0.0 0.0) 0.0	0 (0 .	.3) ((0.4)	0.3	(0.5)	0.0	0.0	^A	0.0	47.1	1 0.2	0.0	0.	0.0	N	A	NA	0.0	^c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	84.5
1,4-DM-2,5-DNB	1.4	1.1	1.5	(2.0)	0.0	0.0) ()	0.0 0.0).0	0 0.	0	0.0	0.0	0.0	0.0	0.0	^A	0.0	(1.0) 0.0	0.0	0.	0.0	N	A	NA	0.0	c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	1.0
1,4-DM-2,6-DNB	(9.8)	1.8	(1.9)	(3.0)	0.3	0.0) ()	0.0).0	0 (0 .	.2) ((0.2)	0.0	(0.3)	0.0	0.0	^A	0.0	9.8	0.0	0.0	0.	0.0	N	A	NA	0.0	^c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	(3.4)
1,5-DM-2,3-DNB	(0.4)	0.6	(0.1)	(0.0)	0.0	0.0) 0	0.0	0.0	0 0.	0	0.0	0.0	0.0	0.0	0.0	^A	0.0	2.6	0.0	0.0	0.	0.0	N	A	NA	0.0	^c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	(3.4) 2.6
1,5-DM-2,4-DNB	(4.3)	43.5	0.7	22.7	1.4	0.1	0	0.0 0.4	0.0	0 (0 .	.9) ((0.9)	0.6	(0.3)	(0.0)	0.0	^A	0.0	108.	1 0.3	0.1	0.	0.0	N	A	NA	0.0	^c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	171.0
Total DNX	(16.9)	125.1	14.5	72.9	4.6	0.2	2 0	0.1 0.2	2 0.0	0 (1.	.7) ((2.3)	1.2	(1.1)	(0.0)	0.0	^A	0.0	355.	0 0.9	0.1	0.	0.0	N	A	NA	0.0	^c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	552.7
2,4,6-TNX	(1.0)	0.2	(0.2)	(0.1)	0.1	0.2	2 0	0.0 0.0).0	0 0.	0	4.5	1.0	0.1	0.0	0.0	^A	0.1	1.3	0.0	0.0	0.	5 0.4	1 N	A	NA	0.0	^c	0.0	^D	0.2	0.0	NA	NA	(0.0)	NA	0.0	NA	0.4	0.0	NA	7.6
1,3,5-TNB	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0).0	0 0.	1	0.0	0.5	0.5	0.7	0.9	^A	0.0	1.2	0.0	0.2	0.	0 0.3	3 N	A	NA	0.0	^c	0.0	^D	0.0	0.0	NA	NA	0.4	NA	0.0	NA	0.0	0.0	NA	4.8
1,3-DNB	0.0	(0.0)	(0.0)	(0.0)	1.3	0.0) ()	0.0 0.0).0	0.	3	0.0	0.4	0.3	0.1	0.3	^A	0.1	3.2	0.0	0.0	0.	0 0.5	5 N	A	NA	0.2	^c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.2	NA	0.0	0.0	NA	6.8
NB	0.0	(0.0)	0.0	0.0	0.0	0.0) ()	0.0 0.0	0.0	0 0.	0	0.0	0.0	0.0	0.0	0.0	^A	0.0	0.1	0.0	0.1	0.	0 0.4	I N	A	NA	0.0	^c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.6
3-NT	0.0	0.0	0.0	0.0	0.0	0.0) ()	0.0 0.3	3 0.0	0 0.	.1	0.0	0.1	0.0	0.1	0.0	^A	0.0	0.9	0.0	0.0	0.	0.0	N	A	NA	0.0	^c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	1.7
4-NT	0.0	0.0	0.0	0.0	0.0	0.0) ()	.0 0. *	1 0.0	0 0.	1	0.0	0.0	0.1	0.1	0.0	^A	0.0	0.1	0.0	0.0	0.	0.0	N	A	NA	0.0	^c	0.0	^D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	0.4
2-NT	0.0	0.0	0.0	0.0	0.0	0.0) ()	.0 0. *	0.0	0.	2	0.0	0.3	0.0	0.0	0.0	^A	0.0	0.5	0.0	0.0	0.	0.0	N	A	NA	0.0	^c	0.0	D	0.0	0.0	NA	NA	0.0	NA	0.0	NA	0.0	0.0	NA	1.2
NG	NA	NA	NA	NA	NA	NA	1 4	NA 0.0	0.0	0 0.	0	0.0	NA	0.0	0.0	0.0	^A	NA	NA	NA	NA	N N	A NA	A N	A	NA	NA	^c	NA	^D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0
НМХ	NA	NA	NA	NA	NA	NA	1 4	NA 0.0	0.0	0 0.	0	0.0	NA	0.0	0.0	0.0	^A	NA	NA	NA	NA	N N	A NA	A N	A	NA	NA	^c	NA	^D	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0
3,5-Dinitroaniline	0.0	0.0	0.0	0.0	0.0	0.0) ()	0.0 0.0	0.0	0 0.	0	0.0	0.0	0.0	0.0	0.0	^A	0.0	0.0	0.0	0.0	0.	0 (0 .*	1) N	A	NA	0.1	^c	0.0	^D	0.0	0.0	NA	NA	0.1	NA	0.0	NA	0.0	0.0	NA	0.2
																																										12645.3

NOTES:

¹: Total DNT calculated by adding 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-DNT isomers.

0.0 Values: The constituent was not detected above the Reporting Limit (RL) and was rounded down to zero.

Red Data (#.#): Denotes an increase over time. Many of the apparent increases are due to changes in detection limits within the duration of the project and heterogeneity effects. 2-A-4,6 DNT and 4-A-2,6 DNT increases may be associated with the anaerobic degradation of TNT.

 NA:
 NA:
 Not analyzed/applicable

 Gray cells with numbers (##):
 These cells were not sampled in 2020. Decreases shown are from initial reading to the most recent data available for each cell.

 C23*:
 Cell was emptied in 2014. The remaining contents from the C23 stored soils were placed in cells C12, C17, and C22 in 2017.

C16^A: Cell was emptied in 2020. Contents of C16 (approximately 177 cubic yards) and portions of the cell base and berm that were in contact with the cell contents (approximately 158 cubic yards) were placed in emptied cell C25 in 2020.

C25^B: Cell C25 was filled with material from Cell C16 in 2020.

C25^C: Material originally placed in cell C25 (approximately 250 cubic yards of soil) was added to cell C27 in 2019.

C27^D: Material originally placed in cell C27 prior to cell C25 contents being added in 2019.

C27^E: Material originally placed in cell C27 plus material added from cell C25 in 2019.

2020 Debris and Residuals Removed Waste Management Progress Report No. 9 For Period May 18, 2020 to May 18, 2021 Hazardous Waste Remediation Variance Renewal Approval of May 22, 2012 Hazardous Waste Remediation Variance Renewal Approval of May 18, 2021

Former Barksdale Works

Bayfield County, Wisconsin

Debris and Residuals Removed						
Source	Material Description	Approximate Quantity (cf)	Approximate Weight (lbs)	On-Site Holding Location	Off-Site Destination	Shipping Number/Manifest
RSP						
PAJ 2020 Investigation areas	TNT / soil mix	1	22.7 (weight including added water and storage container = 60.9 lbs)	Magazine	NA (currently stored onsite)	
Pipe, Metal		-				
PAJ Ditch 5 (PAJD0005)	Assorted steel rods, pipes and sheet metal		120			
PAJ Ditch 12 (PAJD0012)	Riveted steel tube		10			
PAJ RTWGH	Assorted steel rods and pipes		452		.	Chicago Iron Reciept
PAJ RTSH	Assorted steel rods and pipes		770	PAR-SP01	Chicago Iron, Ashland, WI	No.335618
Decon Area	Fifteen modern empty clean 55-gallon steel drums (no longer being used, in storage)		750			
Miscellaneous accumulated steel scrap from previous field seasons	Assorted steel rods and pipes, misc		2,018			
Other						
Introduced materials	Sampling/decon supplies, used PPE (e.g. gloves, coveralls), tarps, 5-gallon buckets		536	Lined and covered roll-off container (SAJ-WP01)	NA (currently stored onsite)	
Onsite equipment	Non-Regulated Material - Soil/gravel mixed with hydraulic oil	8	445	55-gallon drum stored inside shed (SAJ-WP01)	Veolia, Menomonee Falls, WI	Veolia Shipping Document No. ZZ00947839
Nitrocellulose drum found in Use Area PAM	UN2555, Waste nirocellulose with water with not less than 25 percent water by mass	8	1,134	Magazine	Veolia, Sauget, IL	Veolia Shipping Document No. 001761413
Nitrocellulose drum found found in Use Area PAM	Suspect asbestos drum gasket	<1	2	PAR-SP01	NA (currently stored onsite)	

Items Not Requiring Off-Site Disposal						
Source	Material Description	Approximate Quantity (cf)	Approximate Weight (lbs.)	On-Site Holding Location	Off-Site Destination	Manifest
Concrete						
PAJ Ditch 5 (PAJD0005)	non-contaminated concrete (screened below background)	5		Returned to general source location	NA	
Other						
PAJ Ditch 12 (PAJD0012)	Vitrified clay pipe fragment	<1		Stockpile in PAJ	NA	

Notes:

: not applicable or not measured	RSP: Residual Solid Product
cf: cubic feet	RTSH: Refined Triton Screening House
ft: feet	RTWGH: Refined Triton West Graining House
lbs: pounds	TNT: trinitrotoluene
NA: Not applicable	
PAJ: Use Area PAJ	

Table 32020 Soil Moved to Test Cells

Waste Management Progress Report No. 9 For Period May 18, 2020 to May 18, 2021 Hazardous Waste Remediation Variance Approval of May 22, 2012 Hazardous Waste Remediation Variance Renewal Approval of May 18, 2017 Former Barksdale Works Bayfield County, Wisconsin

Source	Destination Cell	Volume (CY)	Date
Cell C16 and portions of the cell base and berm that were in contact with the cell material	C25	335	8/5/2020 - 9/1/2020
Total for C25	C25	335	
Refined Triton Ditch 12 (PAJD0012)	C37	4	9/1/2020
Refined Triton Ditch 6 (PAJD0006)	C37	3	9/1/2020
RT Tank Storage Houses and adjacent ditch (PAJB0005/PAJB0003/PAJD0005)	C37	137	9/1/20 - 10/15/20
Total for C37	C37	144	
Total for 2020		479	

Notes:

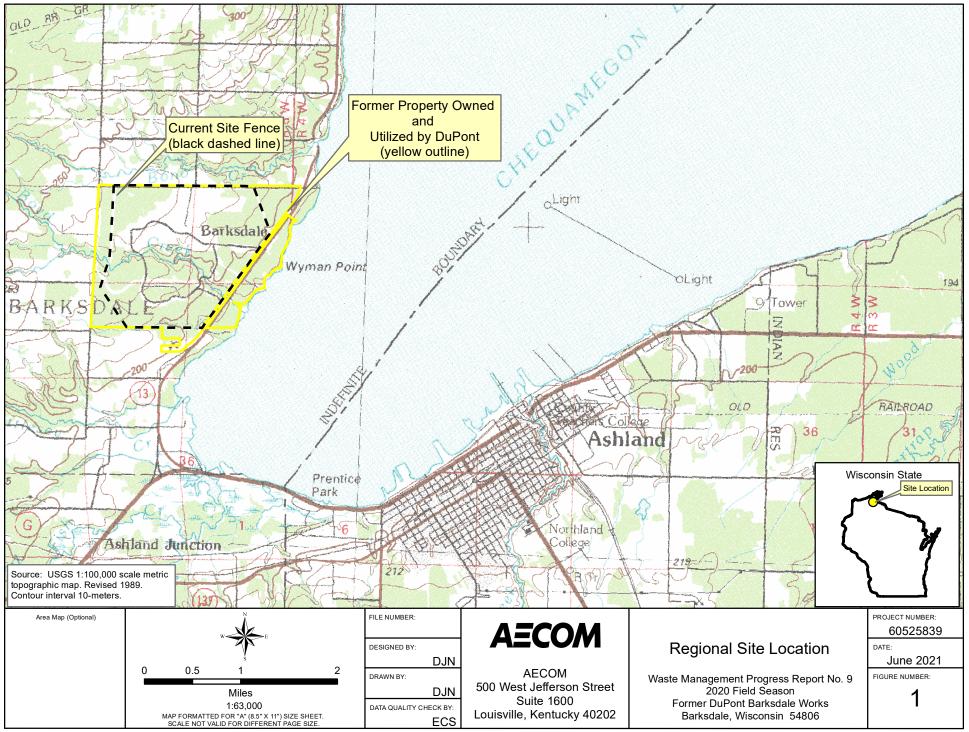
CY: cubic yards C: Cell

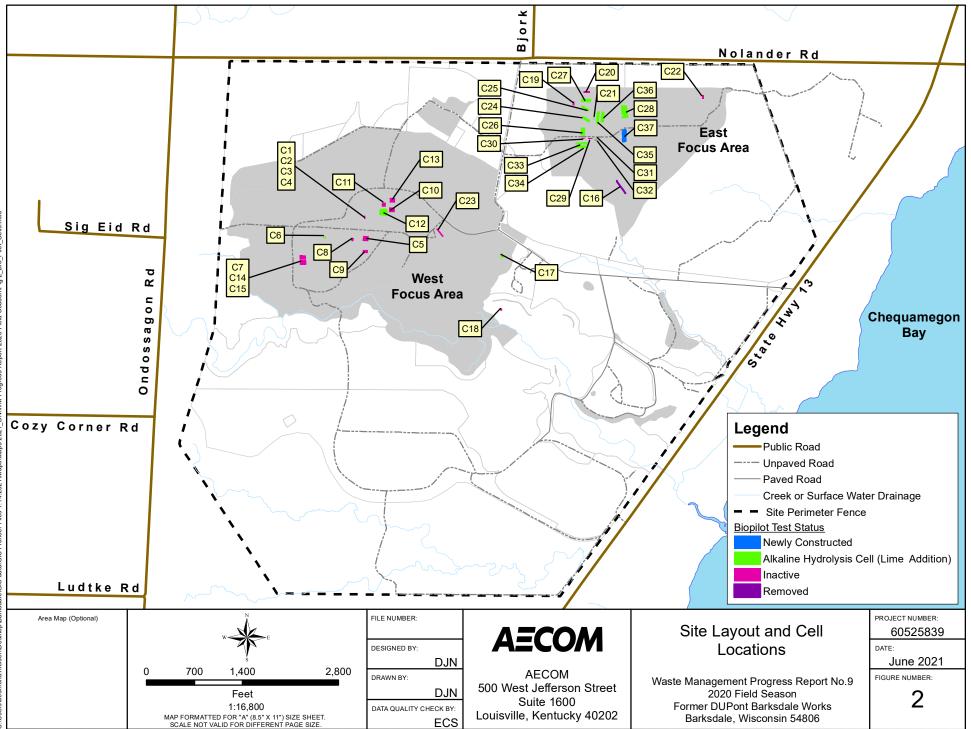
Table 4 Comparison of Pace Analytical Reporting Limits to RCLs Waste Management Progress Report No. 9

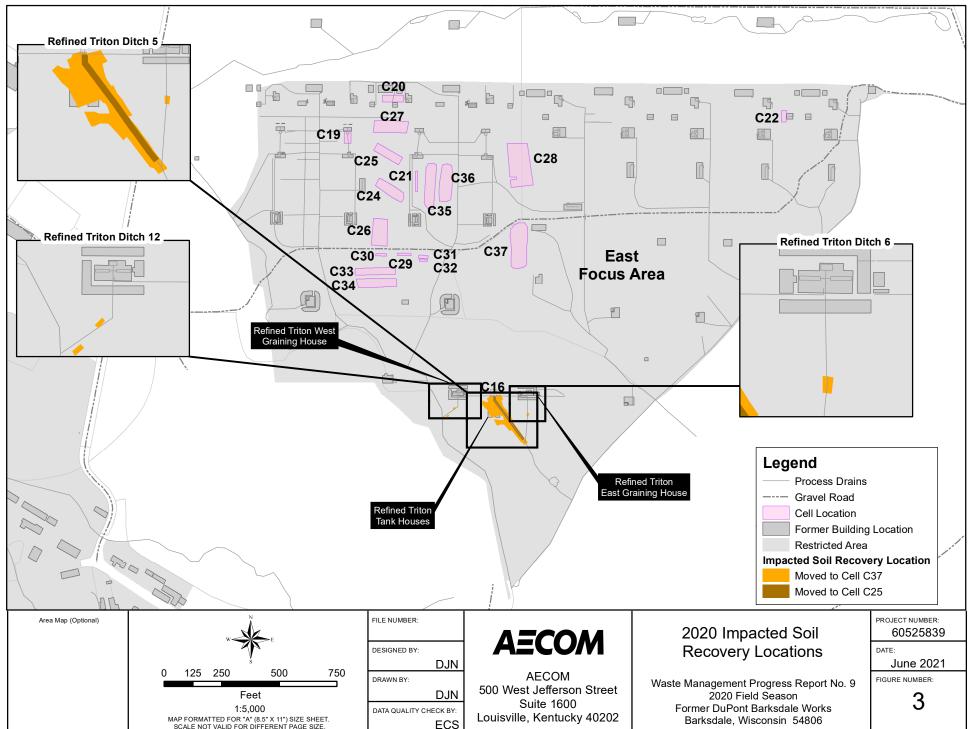
For Period May 18, 2020 to May 18, 2021 Hazardous Waste Remediation Variance Approval of May 22, 2012 Hazardous Waste Remediation Variance Renewal Approval of May 18, 2017 Former Barksdale Works

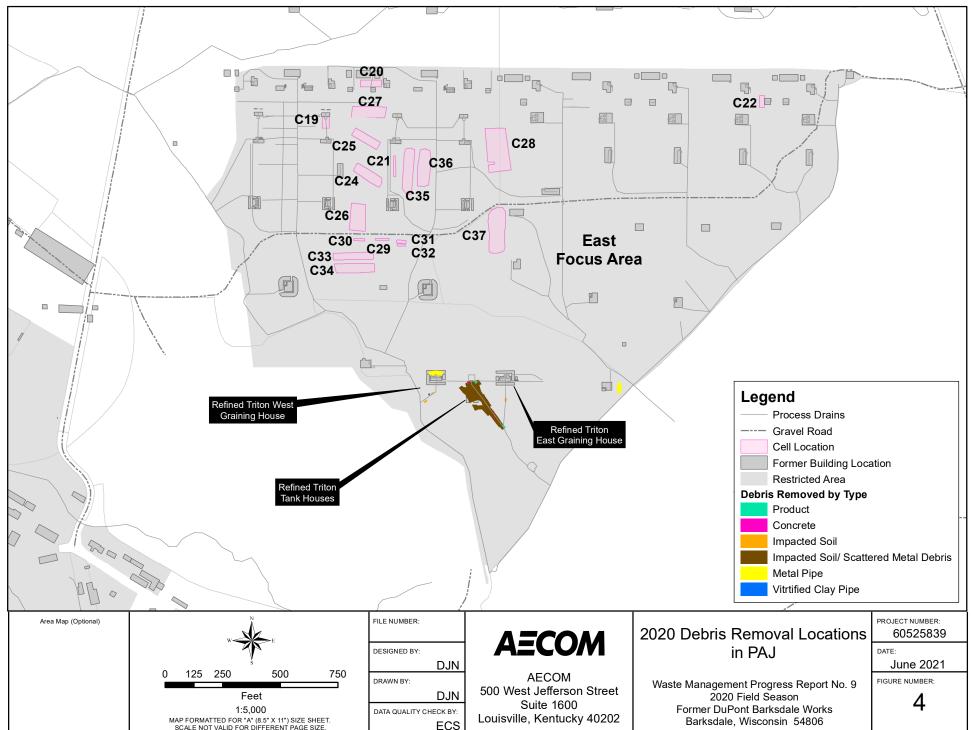
Bayfield County, Wisconsin

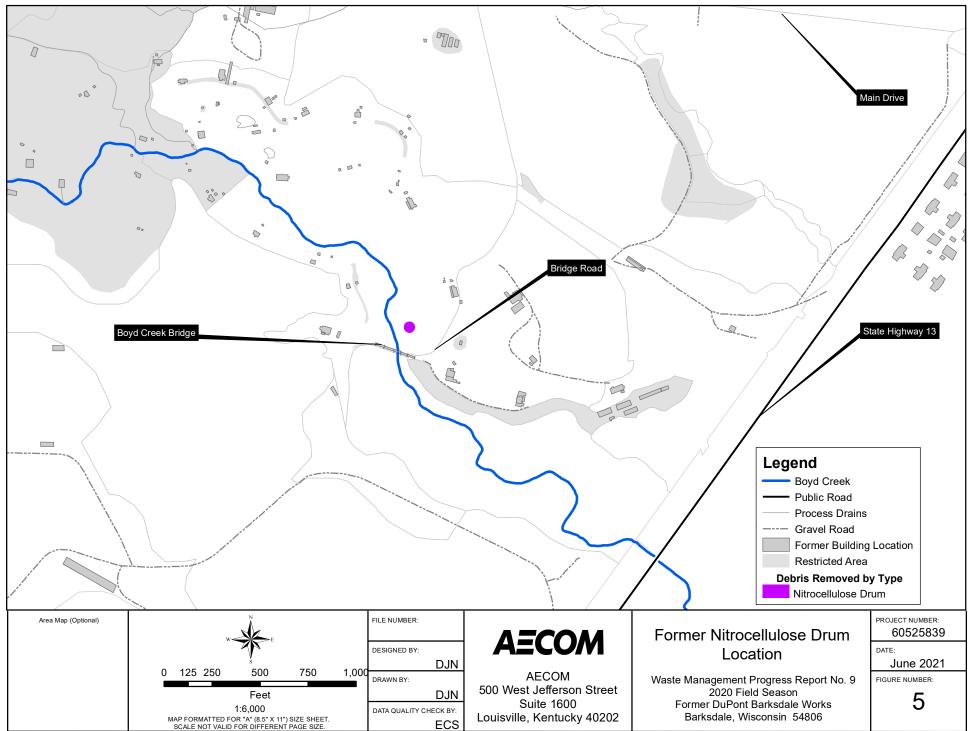
CAS		Non-Industrial RCL	Industrial RCL	Site-Specific Recreational RCL	2020 Pace Analytical Laboratory Reporting Limit
Number	Chemical Constituent	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg) ¹
99-35-4	1,3,5-Trinitrobenzene	2,250	32,400	13,100	0.2
99-65-0	1,3-Dinitrobenzene	6.32	82.1	36.9	0.2
118-96-7	2,4,6-Trinitrotoluene	21.3	96	124	0.2
121-14-2	2,4-Dinitrotoluene	1.21	5.11	7.03	0.2
606-20-2	2,6-Dinitrotoluene	1.21	5.11	7.03	0.2
35572-78-2	2-Amino-4,6-Dinitrotoluene	7.71	114	45	0.2
88-72-2	2-Nitrotoluene	3.16	14.9	18.4	0.2
99-08-1	3-Nitrotoluene	6.32	82.1	36.9	0.2
19406-51-0	4-Amino-2,6-Dinitrotoluene	7.66	113	44.7	0.2
99-99-0	4-Nitrotoluene	33.9	144	198	0.2
98-95-3	Nitrobenzene	7.41	32.4	43.2	0.2
2691-41-0	НМХ	3,860	57,000	22,500	Not analyzed
78-11-5	PETN	126	574	737	Not analyzed
121-82-4	RDX	8.34	38.4	48.6	Not analyzed
479-45-8	Tetryl	156	2,330	911	Not analyzed
55-63-0	Nitroglycerin	6.32	82.1	36.9	Not analyzed
602-01-7	2,3-Dinitrotoluene	1.21	5.11	7.03	0.2
618-85-9	3,5-Dinitrotoluene	1.21	5.11	7.03	0.2
610-39-9	3,4-Dinitrotoluene	1.21	5.11	7.03	0.2
619-15-8	2,5-Dinitrotoluene	1.21	5.11	7.03	0.2
632-92-8	2,4,6-Trinitro-3-Xylene	21.3	96	124	0.2
616-69-3	1,2-Dimethyl-3,5-Dinitrobenzene	19	247	111	0.2
603-02-1	1,3-Dimethyl-2,4-Dinitrobenzene	19	247	111	0.2
711-41-1	1,4-Dimethyl-2,6-Dinitrobenzene	19	247	111	0.2
65151-56-6	1,5-Dimethyl-2,3-Dinitrobenzene	19	247	111	0.2
616-72-8	1,5-Dimethyl-2,4-Dinitrobenzene	19	247	111	0.2
EVS0672	1,2-Dimethyl-3,4-Dinitrobenzene	19	247	111	0.2
EVS0709	1,2-Dimethyl-3,6-Dinitrobenzene	19	247	111	0.2
EVS0670	1,2-Dimethyl-4,5-Dinitrobenzene	19	247	111	0.2
EVS0708	1,3-Dimethyl-2,5-Dinitrobenzene	19	247	111	0.2
EVS0671	1,4-Dimethyl-2,3-Dinitrobenzene	19	247	111	0.2

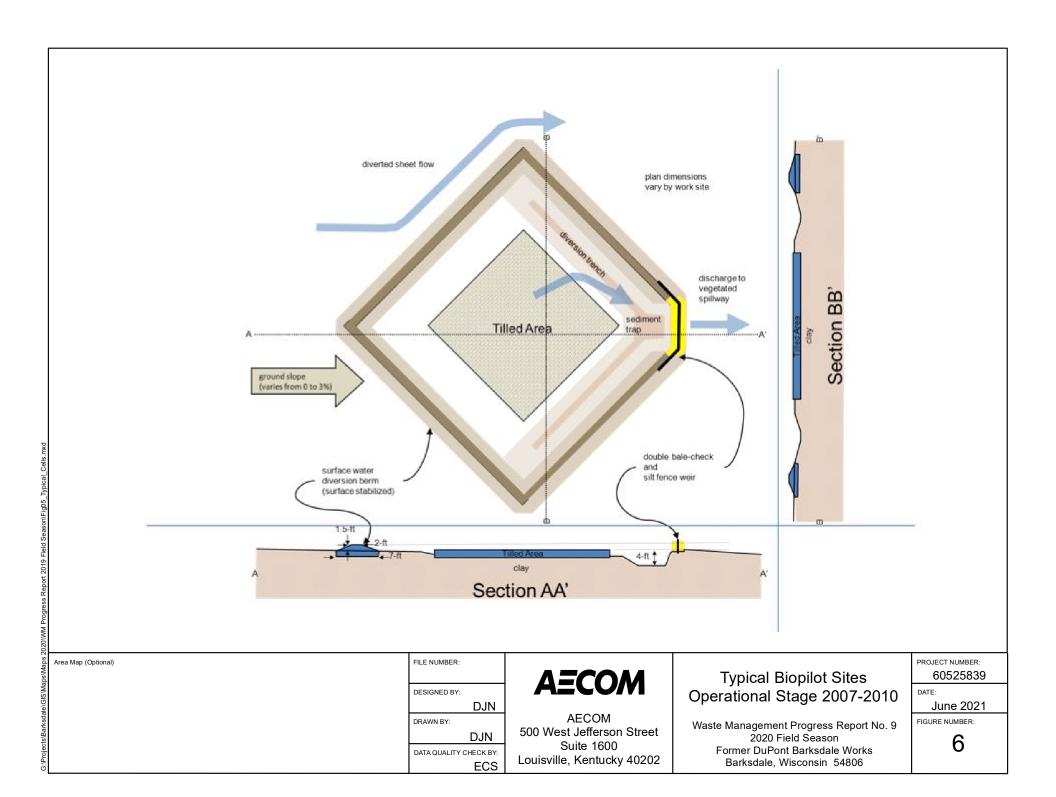

Notes:


¹: Reporting limits ranged from 0.20 to 0.21 mg/kg when laboratory dilution was equal to 1. Reporting limits were higher where dilution was required.


Not analyzed = With the exception of nitroglycerin, the compounds listed as not analyzed were not used or manufactured on-site. This is supported by historical analytical sampling for these compounds. Nitroglycerin was manufactured on-site; however, the manufacturing operation was located in the Boyd Creek valley and not associated with the bio-pilot test cells.


RCL = Residual Contaminant Level for direct contact


Figures



Area Map (Optionei)	Basin Basin	The boot of the second se		PROJECT NUMBER:
	DESIGNED BY: DJN DRAWN BY: DJN DATA QUALITY CHECK BY: ECS	AECOM 500 West Jefferson Street Suite 1600 Louisville, Kentucky 40202	General pH Adjustment Cell Configuration Waste Management Progress Report No. 9 2020 Field Season Former DuPont Barksdale Works Barksdale, Wisconsin 54806	60525839 DATE: June 2021 FIGURE NUMBER: 7

Appendix A

WDNR Form 4400-194: Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 06/20)

Page 1 of 29

GENERAL INSTRUCTIONS. PURPOSE AND APPLICABILITY OF THIS FORM:

Completion of the applicable portions of this form is required under Wis. Admin. Code § NR 724.13(3). Failure to submit this form as required is a violation of that rule section and is subject to the penalties in Wis. Stats. § 292.99. This form must be submitted every six months for remediation projects that report operation and maintenance progress, in accordance with Wis. Admin. Code §. NR 724.13(3). A narrative report or letter containing the equivalent information required in this form may be submitted in lieu of the actual form. Submittal of this form is not a substitute for reporting required by department programs such as Waste Water or Air Management.

Notes:

- Long-term monitoring results submitted in accordance with Wis. Admin. Code § NR 724.17(3) are required to be submitted within 10 1. business days of receiving sampling results and are not required to be submitted using this form. However, portions of this form require monitoring data summary information that may be based on information previously submitted in accordance with that section of code.
- Responsible parties should check with the department Project Manager assigned to the site to determine if this form is required to be 2 submitted at sites responded to under the Federal Comprehensive Environmental Response and Compensation Act (commonly known as Superfund) or an equivalent state-lead response.
- Responsible parties should check with the department Project Manager assigned to the site to determine if any of the information 3 required in this form may be omitted or changed and should obtain prior written approval for any omissions or changes.
- Responsible parties are required to report separately on a semi-annual basis under Wis. Admin. Code § NR 700.11(1). Reporting 4 under that provision is through an internet-based form. More information can be found at: http://dnr.wi.gov/topic/Brownfields/documents/regs/NR700progreport.pdf.
- Personally identifiable information on this form is not intended to be used for any other purpose than tracking progress of the 5. remediation by Remediation and Redevelopment Program. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Public Records Law (Wis. Stats. §§ 19.31–19.39).

Section GI - General Site	Information							
A. General Information								
1. Site name								
Former DuPont Barksdal	le Works							
2. Reporting period from:	05/22/2020 T	o: 05/	21/2021	Days in	period:		365	
3. Regulatory agency (enter	r DNR, DATCP and/or oth	er) 4	. BRRTS ID No	. (2 digit pr	ogram-2 digit	county-6	digit site	specific)
WDNR		0	02-04-000156					
5. Site location			1					
Region	County		Address					
Northern Region	Bayfield		72315 Highv	way 13				
Municipality name O City	/ 💽 Town 🔿 Village			Township	Range O E	Section	1/4	1/4 1/4
Barksdale				48 N	5 🖲 W	24	NW	
6. Responsible party			7. Consultant		·			
Name			Select if the following information has changed since the last					
Mr. Bradley S. Nave, Pro	oject Director, Chemour	rs	Submittal					
Mailing address			Company nam					
1007 Market St, PO Box	2047, Wilmington, DE	E 19899	AECOM - At		Cary Pooler			
Phone number			Mailing address Phone number					nber
(812) 923-1136			500 W Jefferson, Louisville KY 40202 (502) 252-58				52-5878	
8. Contaminants Nitramine and Nitroarom	natic Organic Compoun	ds (NNOCs)	including TN	T, DNT, I	DNX, TNX,	NT		
9. Soil types (USCS or USE CL / SM-ML / SC	DA)							
10. Hydraulic conductivity(c	m/sec):		11. Average linear velocity of groundwater (ft/yr)					
NA			NA					

Site name:	Former	DuPont	Barksdale	Works

Reporting period from: 05/22/2020

Days in period: <u>365</u>

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 06/20)

Page 2 of 29

() Yes () No

• Yes • No

Yes No

Yes NoYes No

12. If soil is treated ex situ, is the treatment location off site?		() Yes 🤇	No No	
If yes, give location: Region	County				
Municipality name O City O Town O Village	Township	Range O E W	Section	1/4	1/4 1/4

B. Remediation Method

Landspreading/thinspreading of petroleum contaminated soil (submit a completed Section ES-2).

To: 05/21/2021

Other ex situ remediation method (submit a completed Section ES-3).

Site is a landfill (submit a completed Section LF-1).

Biopiles (submit a completed Section ES-1).

Other in situ soil remediation method (submit a completed Section IS-3).

Soil natural attenuation (submit a completed Section IS-2).

Soil venting (including soil vapor extraction building venting and bioventing submit a completed Section IS-1).

Other groundwater remediation method (submit a completed Section GW-4).

Groundwater natural attenuation (submit a completed Section GW-3).

In situ air sparging (submit a completed Section GW-2).

Free product recovery (submit a completed Section GW-1).

Groundwater extraction (submit a completed Section GW-1).

C. General Effectiveness Evaluation for All Active Systems

If the remediation is active (not natural attentuation), complete this subsection.

1. Is the system operating at design rates and specifications?

If the answer is no, explain whether or not modifications are necessary to achieve the goal that was previously established in design.

2. Are modifications to the syste	em warranted to improve effectiveness
-----------------------------------	---------------------------------------

If yes, explain:

Results of prior seasons' testing are used to improve system performance in subsequent test cells. Current data indicate that elevated (above ground) cells and adjustments to pH are likely to accelerate remediation; however, data are still being acquired to support this finding.

3. Is natural attenuation an effective low cost option at this time	?
---	---

4. Is closure sampling warranted at this time?

5.	Are there any modifications that can be made to the remediation to improve cost effectiveness	?
	f yes, explain:	

Site name: Former DuPont Barksdale Works		Remediation Site Operation, Maintenance			
Reporting period from: 05/22/2020 To: 05/21/2021		Monitoring & Optimization Report			
Days in period: <u>365</u>		Form 4400-194 (R 06/20)	Page 3 of 2		
D. Economic and Cost Data to Dat	e				
1. Total investigation cost:					
2. Implementation costs (design, capit	al and installation costs, exc	luding investigation costs:			
3. Total costs during the previous repo	orting period:				

• Yes • No

- 4. Total costs during this reporting period:
- 5. Total anticipated costs for the next reporting period:
- 6. Are any unusual or one-time costs listed in the reporting periods covered by D.3., D.4. or D.5. above?

If yes, explain: System is a pilot test. Economic and cost data is not applicable.

7. If closure is anticipated within 12 months, estimated costs for project closeout:

E. Name(s), Signature(s) and Date of Person(s) Submitting Form

Legibly print name, date and sign. Only persons qualified to submit reports under ch. NR 712 Wis. Adm. Code are to sign this form for sites with any ongoing active remediation, monitoring or an investigation. Other persons may sign this form for sites with no response activities during the six month reporting period.

Registered Professional Engineers:

I hereby certify that I am a registered professional engineer in the State of Wisconsin, registered in accordance with the requirements of ch. A-E 4, Wis. Adm. Code; that this document has been prepared in accordance with the Rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

Print name	Title
Eric C. Schmidt	Project Engineer, P.E. 38842-6
Signature	Date
E.C.S. H	May 27, 2021

Hydrogeologists:

I hereby certify that I am a hydrogeologist as that term is defined in s. NR 712.03(1), Wis. Adm. Code, am registered in accordance with the requirements of ch. GHSS 2, Wis. Adm. Code, or licensed in accordance with the requirements of ch. GHSS 3, Wis. Adm. Code, and that, to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

Print name	Title
Carroll E. Pooler, III	Project Manager, P.G. 1265
Signature O. E. Can Poolen, III	Date May 27, 2021

Scientists:

I hereby certify that I am a scientist as that term is defined in s. NR 712.03(3), Wis. Adm. Code, and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

Print name	Title	
Signature	Date	
Other Persons:		
Print name	Title	
Signature	Date	

Reporting period from: 05/22/2020

Days in period: <u>365</u>

Professional Seal(s), if applicable:

To: 05/21/2021

Form 4400-194 (R 06/20)

Page 4 of 29

Site name: Former DuPont Barksdale Works		Remediation Site Operation, Maintenance,	
Reporting period from: <u>05/22/2020</u> To	00/21/2021	Optimization Report	
Days in period: <u>365</u>	Form 4400-194 (R 06/2	20) Page 5 of 29	
-	eat Systems and Free Product Recovery Sy	vstems	
A. Groundwater Extraction System Operati			
1. Total number of groundwater extraction wells	or trenches available: and the nun	nber in use during period:	
2. Number of days of operation (only list the num	mber of days the system actually operated, if unk	xnown explain:	
3. System utilization in percent (days of operation	on divided by reporting time period multiplied by 7	100). lf < 80%, explain:	
4. Quantity of groundwater extracted during this	s time period:	gallons	
5. Average groundwater extraction rate:		gpm	
6. Quantity of dissolved phase contaminants rel	moved during this time period in pounds:	lbs	
B. Free Product Recovery System Operatio	on		
1. Is free product (nonaqueous phase liquid) be If yes, explain:	ing recovered at this site?	◯ Yes ◯ No	
2. Quantity of free product extracted during this	s time period (enter none if none):	gallons	
3. Average free product extraction rate:		gpm	
C. System Effectiveness Evaluation			
1. Is a contaminated groundwater plume fully o If no, explain:	contained in the capture zone?	🔿 Yes 🔿 No	
 If free product is present, is the free product If no, explain: 	Ifully contained in capture zone?	🔿 Yes 🔿 No	
3. If free product is present in any wells at the	site, but free product was not recovered during re	eporting period, explain:	

4. If free product is not present, determine the single contaminant that requires the greatest percent reduction to achieve ch. NR 140 ES and PAL. Perform this calculation for all contaminants that were present at the site that have ch. NR 140 standards. Use the highest contaminant concentration measured in any sampling points during reporting period. If free product is present, write "FREE PRODUCT" in C.4.a.

a. Contaminant:

b. Percent reduction necessary to reach ch. NR 140 ES and PAL:	%
c. Maximum contaminant concentration level in any monitoring well of that contaminant:	μg/L
d. Maximum contaminant concentration level in any extraction well of that contaminant:	µg/L

Site name: Former DuPont Barksdale Works

Reporting period from: 05/22/2020

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Days in period: 365

Form 4400-194 (R 06/20)

Page 6 of 29

e. If the maximum concentration in a monitoring well is more that one order of magnitude above the concentration measured in an extraction well, explain why the extracted groundwater contamination levels are significantly less than the levels at other locations within the aquifer.

D. Additional Attachments

Attach the following to this form:

- Most recent report to the DNR Wastewater Program, if applicable.
- Groundwater contour map with capture zone indicated.
- Groundwater contaminant distribution map (may be combined with contour map).

To: 05/21/2021

- Graph of cumulative contaminant removal, if both free product recovery and ground water extraction are used, provide separate graphs.
- Time versus groundwater contaminant concentration graphs for the contaminant listed in C.4.a. (above), as follows:
 Graph of contaminant concentrations versus time for each extraction well in use during the period.
 - -- Graph of contaminant concentrations versus time for the monitoring well with the greatest level of contamination.
- Groundwater contaminant chemistry table.
- · Groundwater elevations table.

· System operational data table.

Reporting period from: 05/22/2020

Days in period: 365

Section GW-2, In Situ Air Sparging Systems

A. In Situ Air Sparging System Operation

- 1. Number of air injection wells at the site and the number actually in use during the period:
- 2. Number of days of operation (only list the number of days the system actually operated, if unknown explain):

To: 05/21/2021

3. System utilization in percent (days of operation divided by reporting time period multiplied by 100). If < 80%, explain:

B. System Effectiveness Evaluation

- 1. If free product is not present, determine the single contaminant that requires the greatest percent reduction to achieve ch. NR 140 ES and PAL. Perform this calculation for all contaminants that were present at the site that have ch. NR 140 standards. Use the highest contaminant concentration measured in any sampling points during reporting period. If free product is present, write "FREE PRODUCT" in B.1.a.

C. Additional Attachments

Attach the following to this form:

- Groundwater contour map.
- Groundwater contaminant distribution map (may be combined with contour map).
- When contaminants are aerobically biodegradable, attach a dissolved oxygen in groundwater map (dissolved oxygen may be combined with the contaminant data on a single map).
- Site map with all air injection wells and groundwater monitoring points.
- Graph of contaminant concentrations versus time for the contaminant listed in B.1.a. (above) for the monitoring point with the greatest level of contamination.
- Groundwater contaminant chemistry table.
- Groundwater elevations table.
- System operational data table.

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 06/20)

Page 7 of 29

Site name:	Former DuPont Barksdale Works	
Reporting p	period from: 05/22/2020	

To: 05/21/2021

Days in period: 365

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 06/20)

Page 8 of 29

Section GW-3, Natural Attenuation (Passive Bioremediation) in Groundwater A. Effectiveness Evaluation		_
 If free product is not present, determine the single contaminant that requires the greatest percent re PAL. Perform this calculation for all contaminants that were present at the site that have ch. NR 140 concentration measured in any sampling points during reporting period. If free product is present, w) standards. Use the highest co	ontaminan
a. Contaminant:		
b. Percent reduction necessary to reach ch. NR 140 ES and PAL:		%
c. Maximum contaminant concentration level in any monitoring well of that contaminant:		μg/L
2. Aquifer parameters:		_
a. Hydraulic conductivity:		cm/sec
b. Groundwater average linear velocity:		ft/yr
3. Is there a downgradient monitoring well that meets ch. NR 140 standards?	O Yes O No	_
4. Based on water chemistry results, is the plume: \bigcirc Expanding \bigcirc Stabalized \bigcirc Contracting] ?	
5. If the answer in 4. (above) is "expanding," is natural attenuation still the best option? If yes, explain:	() Yes () No	
6. Biodegradation parameters:		
a. Upgradient (or other site specific background) DO level:		µg/L
b. DO levels in the part of the plume that is most heavily contaminated		μg/L
7. Is site closure a viable option within 12 months from the date of this form?	O Yes O No	
8. Are there any modifications that can improve cost effectiveness? If yes, explain:	◯ Yes ◯ No	
9. Have groundwater table fluctuations changed the contaminant level trends over time? If yes, explain:	◯ Yes ◯ No	
10. Has the direction of groundwater flow changed during the reporting period?	◯ Yes ◯ No	
If yes, approximate change in degrees: B. Additional Attachments		
Attach the following:		

- Groundwater contour map.
- Groundwater contaminant distribution map (may be combined with contour map).
- When contaminants are aerobically biodegradable, attach a dissolved oxygen in groundwater map (dissolved oxygen may be combined with the contaminant data on a single map).
- Graph of contaminant concentrations versus time for the contaminant listed in A.1.a. (above) for the monitoring point with the greatest level of contamination.

Note: This is the minimum required graph; however, it is recommended that multiple time versus contamination concentration graphs as described in the instructions on page 24 for Natural Attenuation of Groundwater be submitted.

- Graph of contaminant concentrations versus distance.
- Groundwater contaminant chemistry table.
- Groundwater biological parameters.
- Groundwater elevations table.

Site name: Former DuPont Barksdale Works		Remediation Sit
Reporting period from: 05/22/2020	To: 05/21/2021	Monitoring & O
Days in period: <u>365</u>		Form 4400-194 (R 06/20

te Operation, Maintenance, ptimization Report

0)

Page 9 of 29

Section GW-4, Other Groundwater Remediation Methods A. Effectiveness Evaluation

1. If free product is not present, determine the single contaminant that requires the greatest percent reduction to achieve ch. NR 140 ES and PAL. Perform this calculation for all contaminants that were present at the site that have ch. NR 140 standards. Use the highest contaminant concentration measured in any sampling points during reporting period. If free product is present, write "FREE PRODUCT" in A.1.a.

a. Contaminant:	
b. Percent reduction necessary:	%
c. Maximum contaminant concentration level in any monitoring well:	μg/L
2. Is the size of the plume: O Increasing O Stabalized O Decreasing ?	
3. Describe the method used to remediate groundwater at the site:	
4. List any additional information required by the DNR for this method for this site: B. Additional Attachments	
Attach the following:	

Attach the following:

- Groundwater contour map.
- Groundwater contaminant distribution map (may be combined with contour map).
- When contaminants are aerobically biodegradable, attach a dissolved oxygen in groundwater map (dissolved oxygen may be combined with the contaminant data on a single map).
- Graph of contaminant concentrations versus time for the contaminant listed in A.1.a. (above) for the monitoring point with the greatest level of contamination.
- Groundwater contaminant chemistry table.
- Groundwater elevations table.
- Any other attachments required by the DNR for this remediation method.

Site name: Former DuPont Barksdale Wor
--

Days in period: 365

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 06/20)

Page 10 of 29

Section IS-1, Soil Venting (Including Soil Vapor Extraction, Building Venting and Bioventing) A. Soil Venting Operation

To: 05/21/2021

Note: This form is not required for building vapor mitigation systems that are installed proactively to protect building occupants/users and are not considered part of ongoing active soil remediation.

1. Number of air extraction wells available and number of wells actually in use during the period:

2. Number of days of operation (only list the number of days the system actually operated, if unknown explain):

3. System utilization in percent (days of operation divided by reporting time period multiplied by 100). If < 80%, explain:

4. Average depth to groundwater:

B. Building Basement/Subslab Venting System Operation

1. Number of venting points available and number of points actually in use during the period:

2. Number of days of operation (only list the number of days the system actually operated, if unknown explain):

3. System utilization in percent (days of operation divided by reporting time period multiplied by 100). If < 80%, explain:

C. Effectiveness Evaluation

1. Average contaminant removal rate for the entire system:	pounds per day
2. Average contaminant removal rate per well or venting point.	pounds per day

- 3. If the average contaminant removal rate is less than one pound per day for the entire system, or if the average contaminant removal rate per well is less than one tenth of a pound per day, evaluate the following:
 - a. If contaminants are aerobically biodegradable and confirmation borings have not been drilled in the past year:
 - i. Oxygen levels in extracted air:

____ percent

gpm

ii. Methane levels in extracted air (ppmv) If over 10 ppmv, explain:

iii. If methane is not present above 10 ppm_V and if oxygen is greater than 20 percent in extracted air, you should either:

- Drill confirmation borings during the next reporting period, if the entire site should be considered for closure.
- Or, perform an in situ respirometry test in a zone of high contamination. Do not perform the test in an air extraction well, use a gas probe or water table well. If a zero order rate of decay based on oxygen depletion is less than 2 mg/kg per day, then you should drill confirmation borings, if the entire site should be considered for closure. If the rate of decay is between 2 and 10 mg/kg, operate for one more reporting period before evaluating further. If the zero order rate of decay is greater than 10 mg/kg total hydrocarbons, continue operating the system in a manner than maximizes aerobic biodegradation.
- b. If contaminants are not aerobically biodegradable and confirmation borings have not been recently drilled during the past year, you should drill confirmation borings during the next reporting period if the entire site should be considered for closure.
- c. If soil borings were drilled during the past year and soil contamination remains above acceptable levels, explain if the system effectiveness can be increased and/or if other options need to be considered to achieve cleanup criteria.

D. Additional Attachments

Attach the following to this form:

- Well and soil sample location map indicating all air extraction wells. If forced air injection wells are also in use, identify those wells.
- If water table monitoring wells are present at the site, a map of well locations.
- Time versus vapor phase contaminant concentration graph.
- Time versus cumulative contaminant removal graph.
- Groundwater elevations table, if water table wells are present at the site; also list screen lengths and elevations.
- Table of soil contaminant chemistry data.
- Soil gas data, if gas probes are used to monitor subsurface conditions in locations other than where air is extracted.
- System operational data table.

Site name: Former DuPont Barksdale Works	N	Remediation Site Ope Monitoring & Optimiz	eration, Maintenance,
Reporting period from: <u>05/22/2020</u>	00/21/2021	form 4400-194 (R 06/20)	Page 11 of 29
Days in period: <u>365</u>			Tage Troizo
Section IS-2, Natural Attenuation (Pas	ssive Bioremediation) in Soil		
A. Effectiveness Evaluation			
1. Soil gas information in the soil that is me			water table monitoring well(s).
a. Hydrocarbon levels:	ppm, with an FI)	
b. Oxygen levels:	percent		
c. Carbon dioxide levels(specify ppm or	percent):		
d. Methane levels:	ppm		
2. Soil gas information in background (unc	contaminated soil) from permanent	ly installed gas probe(s)or wa	ater table monitoring well(s):
a. Hydrocarbon levels:	ppm, with an FI)	
b. Oxygen levels:	percent		
c. Carbon dioxide levels(specify ppm or	percent):		
d. Methane levels:	ppm		
date those samples were collected. Sin to this reporting period. Since this data from prior sampling events.a. Total hydrocarbons (Specify if GRO and the same section of the same section of	is used to assess progress based		
			µg/kg
b. Specific compounds (μg/kg):			
i. Benzene:	µg/kg	<i>Y</i>	
ii. 1,2 Dichloroethane:	µg/kg		
iii. Ethylbenzene:	µg/kg		
iv. Toluene:	µg/kg		
v. Total xylenes:	µg/kg		
4. Is there any evidence that contaminants			◯ Yes ◯ No
If the answer is yes and if groundwater			
5. Is site closure a viable option within 12			○ Yes ○ No
6. Are there any modifications that can be	made to the remediation to improv	ve cost effectiveness?	○ Yes ○ No
If yes, explain:			

B. Additional Attachments

Attach the following to this form:

- Well and soil sample location map.
- Cross sections showing the water table, soil sampling locations, screened intervals for gas probes or water table wells, geologic contacts, and any former excavation boundaries.
- Graphs of contaminant concentrations, oxygen, carbon dioxide and methane levels over time.
- Groundwater elevations table, if water table wells are present at the site.
- Table of soil contaminant chemistry.
- Table of soil gas readings.

Site name: Former DuPont Barksdale Works	
Reporting period from: 05/22/2020	To: <u>05/21/202</u>
Davs in period: 365	

Form 4400-194 (R 06/20)

Page 12 of 29

Section IS-3, Other In Situ Soil Remediation Methods

A. Effectiveness Evaluation

1. Describe the method used to remediate soil at the site:

The Bioremediation Pilot Test program is a preliminary evaluation of the efficacy of enhanced attenuation of NNOCs using periodic soil mixing with moisture and pH adjustment. The test program, initiated June 16, 2007, is currently evaluating alternate till bed configurations, mixing frequencies, and cell construction methods. Analytical data is currently being collected to evaluate the effects of soil moisture, pH and various NNOC mixtures on degradation pathways and is anticipated to provide information needed to implement a full scale program within several years.

2. List all information required by the DNR for this remediation method for this site:

This form is attached to a Waste Management Progress Report, which required to support the Remediation Variance issued by WDNR for the Bioremediation PilotTest program. Methods to achieve remediation are currently not fully evaluated and will not be available until the test program is completed. Until such time, annual progress reports \will provide waste tracking data requested by the Remediation Variance for the following topics:

Product Residuals and Debris Removed from Bioremediation Pilot Cells

Movement of Impacted Soils into Bioremediation Pilot Cells

Alternative Treatment of Large Debris

Multiple pilot cells have been constructed at the site. Detailed information regarding the cells is included in the annual Waste Management Progress Report.

B. Additional Attachments

Attach the following to this form:

Any other attachments required by the DNR for this remediation method.

Site name:	Former	DuPont	Barksdale	Works

Days in period: 365

Section ES-1, Ex Situ Soil Treatment Using Biopiles

A. Effectiveness Evaluation

1. Volume of soil in the biopile (if multiple biopiles, list number of piles and total volume):

2. Monitoring used to assess progress and verify optimal conditions for biodegradation.

a. Vapor phase measurements of gases (average of all readings from most recent sampling event):

To: 05/21/2021

i. VOCs by FID: ppm ii. Oxygen: percent iii. Carbon dioxide: percent iv. Methane: ppm °F b. Soil temperature: c. Soil moisture sensors, if used: percent 3. Treatment amendments added to the soil during construction: a. Artificial nutrients, excluding manure. i. Types and total pounds added: ii. Nitrogen and phosphorous content of the added amendment: percent

b. Manure:

c. Natural organic materials (straw, wood chips, etc.)(type and total pounds):

4. Forced air biopiles only answer the following:

a. Total air flow rate of the ventilation system:

- b. Average contaminant removal rate:
- c. Average biodegradation rate based on oxygen utilization:

5. If soil samples have been taken to monitor progress, list results. Only list the most recent results. If none collected enter NA.

a. Total hydrocarbons. Specify if GRO and/or DRO:		_µg/kg
b. Specific compounds (μg/kg):		
i. Benzene:	µg/kg	
ii. 1,2 Dichloroethane:	µg/kg	
iii. Ethylbenzene:	µg/kg	
iv. Toluene:	_µg/kg	
v. Total xylenes:	µg/kg	

B. Additional Attachments

Attach the following to this form:

- Figure showing the construction details of the biopile and any sampling locations within the biopile.
- Table of soil contaminant chemistry data.
- Table of operational data.

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

total pounds

pounds per day

pounds per day

scfm

Form 4400-194 (R 06/20)

Page 13 of 29

Site name: Former DuPont Barksdale Works	Remediation Site Operation, Maintenance,
Reporting period from: <u>05/22/2020</u> To: <u>05/21/2021</u>	Monitoring & Optimization Report
Days in period: <u>365</u>	Form 4400-194 (R 06/20) Page 14 of 29
Section ES-2, Ex Situ Soil Treatment Using Landspreadin A. Effectiveness Evaluation	g/Thinspreading
1. Method used: O landspreading O thinspreading	
	t of contaminated soil on native topsoil, incorporation of that soil into term "thinspreading" refers to placing contaminated soil on an
2. Was any progress monitoring using field screening on soil cond	ducted during this reporting period? O Yes O No
3. If the answer to A.2. (above) is yes:	
i. List monitoring method:	
ii. List monitoring results:	
4. Is there any evidence of soil erosion at the landspreading/thins	preading location? O Yes O No
5. Spreading thickness: inche	25
6. Type of crop planted (if thinspreading with no crop planted, so	state):
7. Confirmation sampling date: Anticip	pated confirmation sampling date:
8. Most recent soil sample results, if soil samples for laboratory a result of the most recent sampling round. If no samples have b	nalysis have been collected to monitor progress. Only list the highest been collected, enter NA.
a. Total hydrocarbons. Specify if GRO and/or DRO:	hð\kð
b. Specific compounds (μg/kg):	
i. Benzene: µg/kg	
ii. 1,2 Dichloroethane: µg/kg	
iii. Ethylbenzene:	
iv. Toluene: µg/kg	
v. Total xylenes: µg/kg	
B. Additional Attachments	

- Attach the following to this form: Map of the landspreading/thinspreading area. If soil samples have been collected, specify locations of samples and dates of . sampling.
 - ٠
 - Table of soil contaminant chemistry data. Table of any field screening results with dates of sample collection. •

Site name: Former DuPont Barksdale Works

Reporting period from: 05/22/2020

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 06/20)

Page 15 of 29

Section ES-3, Landfills

Note: Reporting forms or reporting requirements in a Department approved Operation and Maintenance Plan for a landfill may take the place of this form.

To: 05/21/2021

the place of this form.			
Specific Inspection Items	Potential Problem Areas	Status	Notes
Perimeter Security Fencing	Broken or missing wood slats, torn chain link fabric, barbed wire, other - list		
Entrance Gate and Locking Mechanism	Lock broken/missing, mechanism inoperative.		
Monitoring Wells and Wellhead Covers	Signs of tampering, casing damaged, lock missing.		
Final Cover Vegetation	Bare spots, stressed vegetation, deep rooted vegetation.		
Final Cover Slope (explain below)	Gullies, lack of vegetation, subsidence, ponding.		
Evidence of Burrowing Animals	Damage to final cover, evidence of waste.		
Stormwater Drainage Channels	Gullies, erosion, debris, culvert blocked.		
Passive Landfill Gas Venting System	Damaged or blocked vent risers, stressed vegetation.		
Active Landfill Gas Extraction System	Damaged or blocked piping, cleanouts, other blower flare, knockouts, etc.		
Leachate Collection System	collection system piping, extraction wells, collectiontanks, tanker truck loadingsystem or sanitary sewer discharge piping.		
Access Road Cover Mowing; Tall Vegetation Removal	Ponding, rutting, erosion, cracked or damaged pavement. Mowing and tallvegetation removal done tospecified vegetation.		

Summary of Deficiencies and/or Corrective Actions:

Days in period: <u>365</u>

Site name: Former DuPont Barksdale Works

Reporting period from: 05/22/2020

Days in period: <u>365</u>

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 06/20)

Page 16 of 29

B. Additional Attachments Attach the following to this form:

• Any photographs documenting problems and maintenance activities.

To: 05/21/2021

- Maps, drawings showing site features requiring maintenance.
- Records for leachate pumping/discharge/hauling.
- Records for active gas extraction volumes.

To:05/21/2021

Days in period: 365

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 06/20)

Page 17 of 29

Section INS- 1, Section by Section Instructions and Information

Specific Section by Section Instructions for This Form. The site name and reporting period is listed on every page. Then if the pages are inadvertently separated, that information can be used to determine which pages form the report.

General Site Information

- -- A.1. List the name as it appears on the DNR tracking system. If the person filling out the form does not know what the name on the tracking system is, use the name that the DNR used in the most recent correspondence.
- -- A.2. The reporting period should be either from January 1 to June 30 or July 1 to December 31 for active systems. For passive systems, use a calendar year basis. If however the report covers a newly installed system, list the actual startup date instead of January 1 or July 1. For new passive systems, use the first date that monitoring data is available as the date of startup.
- -- A.3. Enter all regulatory agencies that regulate the site.
- -- A.4. This form is a DNR form. For that reason, list the DNR site number. If there are other agencies regulating the site, listing identification numbers for other agencies is also recommended, but not mandatory, unless specified by those other agencies.
- -- A.5. If the information listed for the site location is not sufficient information for a person to use to drive to a site (example: no street address in a rural area), also include a map that is sufficient for a person to use to drive to the site. A U.S.G.S. topographic map that shows the site location may be used.
- -- A.8. List the contaminants that have at one time exceeded the PALs or Table Values in ch. NR 720. If GRO and/or DRO exceed the ch. NR 720 standards, also list GRO and/or DRO. Do not list other contaminants that have never exceeded state standards at the site. If more room is necessary, write "SEE ATTACHED SHEETS" and list all contaminants on a separate sheet.
- -- A.9. List the predominant soil types that are contaminated. If there is both contaminated soil and groundwater at the site, list soil types both above and below the water table. If only some soil is contaminated, do not list the soil types that are uncontaminated. If the site soils meet soil cleanup criteria, but groundwater is contaminated, so state that. Specify if the USCS or USDA system is used for soil descriptions. This line specifies soil because the vast majority of contaminated sites do not have contaminated bedrock. If bedrock is contaminated, also list that bedrock type.
- -- A.10. If the groundwater meets ch. NR 140 standards, enter "NA NO NR 140 EXCEEDANCES". Otherwise, list the estimated hydraulic conductivity and the method used to estimate it (bail-down tests, calculations based on grain size, pumping test, etc.) If the hydraulic conductivity has not been determined, state when the tests are to be conducted. When a number of test results are available, list the range of results and the geometric mean. If however some results have a low level of accuracy and some results have a high level of accuracy, you should only list the most accurate results. See the Section on aquifer testing in the *Guidance on Design, Installation and Operation of Ground Water Extraction and Product Recovery Systems* for more information.
- -- A.11.If the groundwater meets ch. NR 140 standards, enter "NA NO NR 140 EXCEEDANCES". Otherwise, enter groundwater average linear velocity as a function of hydraulic conductivity, effective porosity and the groundwater gradient. You should use the geometric mean from A.11. (above) and the most representative value for the gradient at the site. Estimate the effective porosity based on soil types and geologic origin of the soil. If there are reasons to believe that the average liner velocity estimate is less than the actual rate at the site, so state that reason. Secondary porosity effects, flow through submerged utility trenches, widespread contaminant distribution in low permeability soils, etc., are reasons to assume that the actual migration rate is much greater than the predicted average linear velocity. In such cases, you should explain the reasoning for doubting the predicted average linear velocity.
- -- A.12.If the information listed for the soil treatment location is not sufficient information for a person to use to drive to a site, also include a map that is sufficient for a person to use to drive to the site. A U.S.G.S. topographic map or a plat map that shows the site location may be used.

Site name: Former DuPont Barksdale Works	
Reporting period from: 05/22/2020	To: 05/21/2021
Days in period: 365	

Form 4400-194 (R 06/20)

Page 18 of 29

- -- B. Check all methods used at a site. For example, if groundwater extraction, free product recovery and soil venting are used, check all three methods and submit the additional pages for those methods. If dual-phase or bioslurping are used, these methods extract both air and groundwater, check boxes for and attach additional pages for both soil venting and pump and treat.
- -- C. Remediation systems that use any form of enhancement are considered "active" and sites where there are no enhancements of any kind are considered "passive" forms of remediation. For purposes of these forms, natural attenuation (also called naturally occurring bioremediation) is "passive" and all other remediation methods are "active" methods.
- -- C.1. Design flow rates refers to flow rates such as gallons per minute extracted by a ground water extraction system, standard cubic feet per minute extracted by a soil venting system, standard cubic feet per minute injected by an in situ air sparging system, etc. If the actual flow rate is within 80 percent of the rate predicted in the design, consider that as meeting the design specification.
- -- D. The cost data in this section is used by DNR staff to evaluate whether or not the selected remedy is the most cost effective remedy and whether or not system modifications may be warranted to improve efficiency and/or cost effectiveness. Responsible parties and consultants are encouraged to submit cost information so that DNR staff may assist responsible parties and consultants accomplish environmental cleanups in the most cost effective manner.

Total costs for past costs are all costs to date. This information is for all costs that were incurred to investigate and/ or remediate the site. These costs include but are not limited to: consulting labor and supplies, laboratory testing, transportation, equipment, etc. If the consultant does not pass all costs through the consulting firm, the consultant will need to contact their client for other non-consulting costs to determine total costs. Exceptions include costs for attorney fees, accounting, claim assistance in preparing claims to state reimbursement funds, or other indirect expenses that are not essential to remediating the site.

- -- D.2. The initial implementation costs are all costs that are incurred to start implementing a remedy at a site. Costs for the investigation however are excluded because those costs are incurred prior to remedy selection. Since costs for treatability and/or pilot testing are used to procure data for remedial design and are specific to different remediation methods, these costs should be included in implementation costs and not investigation costs. Startup or shakedown costs are also considered implementation costs and should not be considered operation and maintenance costs.
- -- D.3. Costs for implementation or investigation should not be repeated here or they will be double counted.
- -- D.4. Costs for implementation or investigation should not be repeated here or they will be double counted.
- -- D.5. Costs for implementation or investigation should not be repeated here or they will be double counted.
- -- D.6. Examples of one-time or unusual costs include the following:
 - Replacing a burned out motor on a pump.
 - Replacement of a well that was destroyed by a snowplow.
 - Confirmation sampling to determine if the site meets closeout criteria. This type of cost is considered an unusual cost because this type of sampling is not conducted during most reporting periods.
- -- D.7. This estimate of costs is for all costs to close out a site minus the salvage value of any remediation equipment. Pertinent costs include items such as well abandonment, equipment removal from the site, consulting costs associated with these items, etc. Do not include any costs that will not be paid by a state reimbursement fund, such as repaving.

Site name: Former DuPont Barksdale Works	
Reporting period from: 05/22/2020	To: 05/21/2021
Days in period: 365	

Form 4400-194 (R 06/20)

Page 19 of 29

Section GW-1, Groundwater Extraction and Product Recovery

- -- A.1. List two numbers, the total number of extraction wells at the site and the number that were in actual use during the period. If all wells were in use, state that on the form.
- -- A.2. The number of days of operation are the number of days that the system was actually operated. If the system was shut down for reasons such as: repairs were necessary, piping froze, shut down to provide time for subsurface conditions to equilibrate before sampling, etc., do not list those days as being in operation.
- -- A.3. System utilization is a measure of the amount of time that the system operated relative to the amount of time that it could have operated.
- -- A.5. The average is for the entire site, not per well or trench. For purposes of determining the average ground water extraction rate, calculate the average based on the total volume of groundwater extracted divided by the time of the reporting period. For example, if the system operated at 10 gallons per minute for one month, the amount of water extracted would be approximately 432,000 gallons. If the reporting period was six months long, then the time period is approximately 260,000 minutes. Therefore, the average flow rate over six months is 432,000 divided by 260,000 minutes for an average flow rate of 1.67 gallons per minute (gpm).
- -- A.6. Calculate the total dissolved contaminants removed in pounds. If the estimate is a sum of BTEX and not based on a total hydrocarbon test (GRO and/or DRO), so state that on the form.
- -- B.3. The average should be based on the entire site over the entire reporting period. See instructions above for A.5. List the free product recovery rate as gallons per day (gpd), not gallons per minute (gpm).
- -- C.1. To answer this question, a thorough evaluation of water levels and chemical analyses in all monitoring points at the site is necessary.
- -- C.2. If the capture zone has not been determined mathematically, it will need to be determined to answer this question. See the *Guidance on Design, Installation and Operation of Ground Water Extraction and Product Recovery Systems* for and any recent update or errata sheets for more information on plume capture.
- C.4. When free product is present, line C.4.a. should state "FREE PRODUCT" and lines C.4.b. through C.4.d. are left blank. Otherwise, complete the following calculations. There typically are several compounds at most contaminated sites that exceed the standards in ch. NR 140. The purpose of this question is to focus on the single contaminant that requires the most treatment to achieve groundwater quality standards on a percent reduction basis. For example, the most recent round of sampling at an example site demonstrated the highest levels of contaminants were 1,000 µg/L benzene and 1,000 µg/L toluene in the most heavily contaminated monitoring well. The ES and PAL for benzene is 5 µg/L and 0.5 µg/L (respectively) and for toluene the ES and PAL is 343 µg/L and 68.6 µg/L (ES and PAL data as of August 1995). Therefore the percent reduction to meet the ES and PAL for benzene is 99.5 and 99.95 percent and for toluene it is 65.7 and 93.14 percent. For that reason, the single contaminant that is most critical to reaching state groundwater standards is benzene. Therefore benzene is entered on line a. In this example, 99.5 and 99.95 percent is entered on line b. In this example, 1,000 µg/L is entered on line c. In this example, benzene is the driving factor, therefore enter the maximum benzene level in the single most heavily contaminated extraction well during the most recent sampling period on line d.
- -- D. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

Section GW-2, In Situ Air Sparging

- -- B.1. See instructions for Section GW-1, Item C.4.
- -- C. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

Site name: Former DuPont Barksdale Works	
Reporting period from: 05/22/2020	To: <u>05/21/2021</u>
Days in period: 365	

Form 4400-194 (R 06/20)

Page 20 of 29

Section GW-3, Natural Attenuation in Groundwater

- -- A.1. See instructions for Section GW-1, Item C.4.
- -- A.2.a. List the estimated hydraulic conductivity that was listed on line A.11 in Section GI-1.
- -- A.2.b. List the groundwater average linear velocity that was listed on line A.12 in Section GI-1.
- -- A.3. Assess the monitoring well network to determine if there is a down gradient well that has not been impacted by the contaminants. Consider the possibility of a submerged (or diving) plume in that assessment. If all evidence indicates that the plume does not extend to the farthest "clean" downgradient well, indicate "YES" on the form. Otherwise indicate "NO" on the form. If there are not plans to install such a well, explain.
- -- A.4. Based on the contaminant distribution, evaluate whether or not the plume is expanding, stabilized, or contracting. When making this determination, consider the contaminant that requires the greatest percent reduction to achieve ch. NR 140 standards.
- -- A.5. If the plume is expanding and a justification is necessary, add additional sheets justifying why natural attenuation is still the appropriate remedy. If it is not, further describe in the explanation the plans to use a different remedy.
- -- A.6.a. Enter the upgradient dissolved oxygen (DO) level(s). If however there are contaminants measured in the upgradient well, it is not a true background measurement. In that case enter "UNKNOWN" on the form.
- -- A.6.b. Enter the range of DO values measured in wells within the plume.
- -- B. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

Section GW-4, Other Groundwater Remediation Methods

- -- A.1. See instructions for Section GW-1, Item C.4.
- -- A.2. Self explanatory.
- -- A.3-4. Enter the information specified by the DNR for this method at this site.

Section IS-1, Soil Venting (Including both Soil Vapor Extraction and Bioventing)

-- B.3. This subsection is used as a trigger for determining if the system requires an evaluation for future activities, such as improvements, converting the site to monitoring for natural attenuation, closure, etc. If an in situ respiration test must be performed, see Hinchee, R.E. and Ong, S.K. 1992. A Rapid In Situ Respiration Test for Measuring Aerobic Biodegradation Rates of Hydrocarbons in Soil. *Journal of the Air and Waste Management Association*. Volume 42, Number 10. Pages 1305 to 1312 for general procedures. For a discussion of methane monitoring, see the instructions for Section IS-2, item A.1.d., below. If the contaminant extraction rate in B.3. is greater than the trigger levels, leave lines B.3.a.i. and B.3.a.ii. blank.

- C. See the generic discussion at the end of the instructions (below) for figures, graphs and tables, starting on page INS-2.

Site name. Former DuPont Barksdale Work	Site name:	Former DuPont Barksdale	Work
---	------------	-------------------------	------

Days in period: 365

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 06/20)

Page 21 of 29

Section IS-2, Natural Attenuation in Soil

-- A.1. This data is used to assess subsurface conditions based on soil gas data. Whenever possible, a permanently installed gas probe should be used. If at all possible, the gas probe should be located in the part of the site that is most heavily contaminated, since that is the part of the site that is likely to take the longest amount of time to meet ch. NR 720 standards. Water table wells that have screen exposed above the water table are also good measuring points. When installing permanent gas probes, you should install the screen deep enough that a true measure of the most heavily contaminated soil is possible, but install the screen shallow enough to assure that it is not submerged by groundwater table fluctuations. In some situations where the depth of contamination is variable, consideration should be given to using nested gas probes instead of only using probes at a single depth. Measuring points that should not be used include temporary gas probes because these points are less repeatable from one monitoring event to the next. Also, if there has been an active soil venting system in use at the site, the air extraction wells should not be used because these wells are in locations that have had much more aggressive treatment than the rest of the site.

To: 05/21/2021

- -- A.1.a. A flame ionization detector (FID) is specified instead of a photo ionization detector (PID) because PIDs often read inaccurately in moist oxygen deficient/carbon dioxide rich atmospheres. Also, PIDs do not detect some petroleum compounds.
- -- A.1.d. Methane readings are used to measure for anaerobic conditions. When the original product that is lost is a refined petroleum product (not crude oil), there should not be any methane within the product. Methane however may be produced under very anaerobic conditions. Any method may be used for measuring methane provided that the detection limit is less than a few ppm_V. One convenient method is to use an FID that is equipped with a granular activated carbon filter to filter out non-methane components. Some instrument manufacturers make these filters available as options. In some cases an FID will flame out due to an oxygen deficiency. Some instrument manufacturers offer a dilution device as an accessory that is designed to prevent flameouts and also raises the upper limit of measurement to 10,000 ppm_V or higher. If the meter "pegs" at 10,000 ppm_V (or one percent), enter ">10,000 ppm_V."
- -- A.2. The background monitoring point is predominantly used to measure natural oxygen and carbon dioxide levels in soil over time. For this reason, the background monitoring point should be reasonably close to the site, but not so close that the conditions are no longer representative. Considerable variations over time can occur, this background point should be measured during every sample event. Considerations for determining if a background point is representative include:
 - If an on-site background point has minor levels of VOCs in it due to gas phase diffusion, that is acceptable, but if the levels are high, it may not be representative of true background conditions.
 - Background oxygen and carbon dioxide levels vary with soil type and natural organic carbon content. For this reason, if at all possible, the soil types should be identical within the screened interval of all gas probes.
 - The same depths should be used for all gas probes to allow comparison from one location to the next. If the depth to water varies greatly across the site, a certain amount of confusion in the data is likely. In this case, use professional judgement to provide the best data possible at a reasonable cost.
- -- A.3. Enter this data for petroleum fuel sites. For other sites, provide the data that is most appropriate for the situation.
- -- B. Cross sections are self explanatory, see the generic discussion at the end of the instructions (below) for other attachments.

Section IS-3, Other In Situ Soil Treatment Methods

-- A.2. Enter the information specified by the DNR for this method at this site.

Site name: Former DuPont Barksdale Works	
Reporting period from: 05/22/2020	To: <u>05/21/2021</u>
Davs in period: 365	

Form 4400-194 (R 06/20)

Page 22 of 29

Section ES-1, Ex Situ Soil Treatment Using Biopiles

- -- A.3.a. The term "artificial nutrients" essentially means agricultural fertilizers or any other fertilizer products.
- -- A.3.a.i. The types of fertilizers that are added should be listed here by chemical names, not by vendor trade names.
- A.3.a.ii. List nitrogen content as N, list phosphorous content as phosphoric acid (P2O5). Note: Fertilizer ratings are based not on actual content of N, P and K, but on nitrogen (as N), phosphorous (as P2O5) and potassium (as K2O).
- -- A.4.c. See example calculations at the end of this set of instructions.
- -- A.5. Enter this data for petroleum fuel sites. For other sites, provide the data that is most appropriate for the situation.
- -- B. The figure is self explanatory. See the generic discussion at the end of the instructions (below) for instructions for the tables.

Section ES-2, Ex Situ Soil Treatment Using Landspreading/Thinspreading

-- B. A map to scale of the landspreading location including and landmarks or benchmarks. When samples have been collected, the distances to any landmarks or benchmarks should be indicated.

Section ES-3, Other Ex Situ Soil Treatment Methods

-- A.2. Enter the information specified by the DNR for this method at this site.

To: 05/21/2021

Days in period: 365

Section INS- 2, Figures, Graphs and Tables

When figures and graphs are specified, they should at a minimum contain the following information, or an explanation as to why the information is not necessary.

Maps. All maps should include the applicable information specified in s. NR 724.11(6), Wis. Adm. Code. In most cases, all information can be combined into a single map. There are times that a single map will have so much data that it is essentially unreadable. The consultant should use professional judgement when determining if a single map or multiple maps best portray the information necessary.

- Groundwater Contour Map Guidelines.
 - -- List groundwater elevations for each measuring point on the map.
 - -- Use the most recent data available.
 - -- For water table maps, do not use data from deeper piezometers. If piezometer data is shown, use a different symbol for the piezometers than used for water table wells.
 - -- If any wells are dry, indicate that on the map.
 - -- If free product is present at site, shade the area where free product is estimated to be present.
 - -- If groundwater is extracted with a pump and treat system, also denote plume capture zone.
 - -- If in situ air sparging or soil venting is in use, specify on the map if the system was operating or shut down during the water level measurements. See the Subsection on water table maps in the *Guidance on Design, Installation and Operation of Ground Water Extraction and Product Recovery Systems* for more information on this topic.
- Groundwater Contaminant Distribution Map Guidelines.
 - -- Only contaminants that exceed the ch. NR 140 ES or PAL should be shown on the map. When contaminants are above the PAL or ES at some data points and below the PAL or ES at other data points, list the data for all locations to portray which areas of the site meet ch. NR 140 groundwater quality standards.
 - -- If a well is not sampled due to the presence of free product indicate "FREE PRODUCT" at those data points.
 - -- If more than five contaminants exceed ch. NR 140 ES, only the five contaminants that require the greatest percent reduction to achieve ch. NR 140 ES or PAL should be shown on the map.
 - -- Drawing isoconcentration lines is optional, unless specified for the site on a site specific basis.
 - -- If the contamination has crossed the property line, that property line should be clearly denoted on the map.
 - -- If in situ air sparging is used, water samples from ch. NR 141 type monitoring wells may not represent aquifer water quality as a whole. For that reason, groundwater data should be obtained from driven probes with no filter pack. If there are no driven probes and conventional ch. NR 141 monitoring wells are used, shut down the air injection system at least two weeks prior to collecting groundwater samples. See the *Guidance on Design, Installation and Operation of In Situ Air Sparging Systems* and the August 1995 update sheets for more information on this topic.
- Dissolved Oxygen Map Guidelines.
 - -- Dissolved oxygen data may be shown on the contaminant concentration graphs or on a separate graph.
 - -- Dissolved oxygen maps are optional for ground water extraction and product recovery systems.
 - -- When in situ air sparging is used, monitoring points may not represent aquifer water quality as a whole. For that reason, groundwater data should be obtained from driven probes with no filter pack. If there are no driven probes and conventional ch. NR 141 monitoring wells are used, shut down the air injection system at least two weeks prior to
 - collecting groundwater samples for DO. See the *Guidance on Design, Installation and Operation of In Situ Air Sparging Systems* and the August 1995 update sheets for more information on this topic.
- Well and Soil Sample Location Map Guidelines. Well and sample location maps for all methods should clearly indicate the location(s) of the release or the area where soil contamination historically has been highest. Also, if part of the contamination has been excavated, the pit boundaries.

The recommended documentation for each remedial method is as follows:

- -- Groundwater Extraction and Product Recovery separate well location maps should not be provided, instead the wells should be indicated on the groundwater contour and contaminant distribution maps.
- -- In Situ Air Sparging the map should indicate all air injection wells, soil venting extraction wells, and all groundwater monitoring points.

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 06/20)

Page 23 of 29

Site name: Former DuPont Barksdale Works		_
Reporting period from: 05/22/2020	To: <u>05/21/2021</u>	_
Days in period: <u>365</u>		

Form 4400-194 (R 06/20)

Maps (Continued).

- -- Natural Attenuation in Groundwater separate well location maps should not be provided, instead the wells should be indicated on the groundwater contour maps.
- -- Soil Venting indicate all air extraction wells. If any gas probes are used to assess subsurface conditions in either contaminated zones or background locations, also indicate those data points with a different symbol. If soil samples have been collected recently to track progress, indicate those locations with the date of sampling noted on the map.
- -- Natural Attenuation in Soil show all monitoring points. Indicate which data points are background measuring points. If soil samples have been collected recently to track progress, indicate those locations with the date of sampling noted on the map. If the site was previously treated by soil venting, the locations of former air extraction wells should also be shown since these are areas where aggressive treatment has been applied. Also show area(s) of paved and unpaved ground surface. If pavement is significantly broken to allow significant water infiltration and air diffusion, map that area as broken pavement.

Graphs. All graphs that show time versus contaminant concentration or cumulative contaminant removal should be based on total time, not only operation time. All graphs that denote cumulative removal should use pounds of contaminant removed. Graphs should accurately show the time period(s) when the system was not operating. Plot time on the X axis, concentration or cumulative removal data on the Y axis.

- <u>Time Versus Cumulative Removal.</u> The recommended documentation for each remedial method is as follows:
 - -- Groundwater Extraction and Product Recovery separate graphs should be used for free product recovery and dissolved phase recovery. A single graph for each phase is adequate, per well graphs are only necessary when specified by the Department on a site specific basis.
 - -- In Situ Air Sparging no graph is necessary (removal data is shown on the graphs for the soil venting system).
 - -- Natural Attenuation in Groundwater no graph is necessary.
 - -- Soil Venting provide a graph of cumulative removal for total VOCs for the total system.
 - -- Natural Attenuation in Soil no graph is necessary.
 - -- Ex Situ Soil Treatment Using Biopiles Provide two graphs, one showing cumulative removal of total VOCs and a second graph showing total contaminant biodegradation over time.
 - -- Ex Situ Soil Treatment Using Landspreading/Thinspreading no graphs are needed.
- <u>Time Versus Contamination Concentration Graphs.</u> Create graphs with contamination level on the y axis (semilog scale) and time on the x axis (linear scale). If free product is present, time versus contamination concentration graphs are not necessary.

The recommended documentation for each remedial method is as follows:

- -- Groundwater Extraction and Product Recovery graph the contaminant level over time for the groundwater that is extracted by the extraction system. List all compounds that exceed ch. NR 140 ES or PAL. If over five contaminants exceed ch. NR 140 ES or PAL, only list the five contaminants that exceed ch. NR 140 standards by the greatest percent.
- -- In Situ Air Sparging provide a graph for the single monitoring well that is most heavily contaminated. If over five contaminants exceed ch. NR 140 ES or PAL, only list the five contaminants that exceed ch. NR 140 standards by the greatest percent.
- -- Natural Attenuation in Groundwater provide a graph for all monitoring wells that contain any compounds that exceed ch. NR 140 standards. If over five contaminants exceed ch. NR 140 ES or PAL, only list the five contaminants that exceed ch. NR 140 standards by the greatest percent.
- Soil Venting provide a graph of contaminant concentration over time for the entire system for total VOCs. If any gas
 probes are used to assess subsurface conditions in either contaminated zones, also provide a graph with the data from
 the most heavily contaminated gas probe.
- -- Natural Attenuation in Soil provide a graph of contaminant concentration over time for total vapor phase VOCs as measured with an FID, oxygen, carbon dioxide and methane in an gas probe.
- -- Ex Situ Soil Treatment Using Biopiles no graph is necessary.
- -- Ex Situ Soil Treatment Using Landspreading/Thinspreading no graphs are needed.

Site name: Former DuPont Barksdale Works	
Reporting period from: 05/22/2020	To: 05/21/2021
Days in period: <u>365</u>	

Form 4400-194 (R 06/20)

Page 25 of 29

Graphs (Continued).

<u>Graph of Contaminant Concentrations Versus Distance.</u> If free product is present, a graph of contaminant concentrations versus distance is not necessary.

The recommended documentation for each remedial method is as follows:

- -- Groundwater Extraction and Product Recovery no graph is necessary.
- -- In Situ Air Sparging and Natural Attenuation in Groundwater plot a graph with distance (on the x axis, linear scale) and contaminant concentrations (y axis, log scale) from the upgradient measurement point to the farthest downgradient data point along the centerline of the plume. List the same contaminants as shown on the Time Versus Contaminant Concentration Graphs. Clearly show the source area on the graph. If free product has been present, label the data points that previously contained free product. For in situ air sparging, see comments above about samples collected from conventional monitoring wells with filter packs versus driven probes.

Tables. Whenever possible, data over the life of the project should be listed.

The recommended documentation for each type of table is as follows:

Groundwater Contaminant Chemistry Data.

List:

- -- Contamination levels for all contaminants that exceed ch. NR 140 standards.
- -- Dissolved oxygen levels if applicable.
- -- Other biological parameters, if applicable (nitrogen, phosphorous, manganese, sulphate, iron, dissolved methane, redox potential, pH, microbial population size, etc.). See instructions for page GW-3 for more information on these parameters. Also, list the dates the samples were collected and the standard methods used to analyze the samples.
- Groundwater Biological Parameters.

For natural attenuation in groundwater only, these measurements should be listed (if known) to provide information on biodegradation. This table is not necessary for free product extraction, groundwater extraction or in situ air sparging.

Provide a table that includes any results of tests conducted for dissolved oxygen, nitrate, manganese, iron, sulphate, methane, redox potential, heterotrophic and/or hydrocarbon degrading microorganism populations. Identify on the table if the monitoring locations are upgradient, side gradient, downgradient, or within the plume, dates of sampling, and the analytical methods used for those parameters. Include all data for the life of the project. Since some of these tests are only conducted once, or periodically - enter "NS" in the table for not sampled for any parameters that were not sampled during a particular round of sampling.

When asked to list the standard methods, list the method if a standard method exists. There are however some tests (for example dissolved methane) where there are no official standard laboratory or field methods. In this case the laboratory will have to create their own standard procedures. In these cases list the name of the laboratory and that laboratory's name for that test.

Specific considerations for each parameter are as follows:

- -- Dissolved oxygen (mg/L). The most efficient mechanism for natural or enhanced biodegradation of petroleum compounds is aerobic biodegradation.
- -- Nitrate (mg/L as N). Nitrate (NO3⁻¹) is a potential electron acceptor for denitrification and also serves as a nutrient for heterotrophic microbial populations to enhance aerobic biodegradation. Decreasing nitrate levels from background wells to wells within the plume are an indication of either aerobic or anaerobic biodegradation.
- -- Manganese as Mn⁺² (mg/L). Manganese as Mn⁺⁴ is converted to soluble manganese as Mn⁺² under anaerobic biodegradation. For this reason, total manganese analysis is not appropriate, only soluble manganese as Mn⁺². When the levels of soluble manganese are higher in wells within the plume than in background wells, that is an indication of anaerobic biodegradation.
- -- Iron as Fe⁺² (mg/L). Iron as Fe⁺³ is converted to soluble iron as Fe⁺² under anaerobic biodegradation. For this reason, total iron analysis is not appropriate, only soluble iron as Fe⁺². When the levels of soluble iron are higher in wells within the plume than in background wells, that is an indication of anaerobic biodegradation.

Site name: Former DuPont Barksdale Works	
Reporting period from: 05/22/2020	To: 05/21/2021
Days in period: 365	

Form 4400-194 (R 06/20)

Tables (Continued).

- -- Dissolved sulphate (SO4⁻², mg/L). Sulphate (SO4⁻²) is a potential electron acceptor. Decreasing sulphate levels from background wells to wells within the plume are an indication of anaerobic biodegradation.
- Dissolved methane (mg/L). Methane is produced under anaerobic conditions. Since background methane levels can usually be assumed to be zero, in most cases only measurements within the plume are used. Exceptions are when the natural soils have very high levels of TOC (for example peat), background methane levels are also warranted. When the contaminant is crude oil instead of a refined petroleum product, methane measurements may however cause erratic results. Significant amounts of methane may be created when other electron acceptors (NO3⁻¹, Mn⁺⁴, Fe⁺³ and SO4⁻²) are exhausted. For this reason, significant levels of methane are indicative of very very anaerobic conditions.
- -- Redox potential (millivolts, include + or sign). Redox potential is another measure of the level of aerobic/anaerobic conditions, however it is a much more sensitive measurement than DO at very low levels of DO.
- -- Heterotrophic and hydrocarbon degrading microorganism populations (CFU/mL). Heterotrophic and specific hydrocarbon degrader population sizes should be listed for both background locations and locations within the plume, if there is information available. There is disagreement by many of the experts within the field as to the merits of sampling for this parameter. Refer to other DNR guidance documents on natural attenuation (or passive bioremediation) for more information on this topic.

Soil Gas Data.

The recommended documentation for each remedial method is as follows:

- -- When natural attenuation in soil is used, provide a graph of all soil gas readings over time for every data point.
- -- When soil venting is used, if a gas probe is used to assess subsurface conditions over time in a location where air is not extracted, provide that data in a table.
- System Operational Data.

The recommended documentation for each remedial method is as follows:

- -- Groundwater Extraction and Product Recovery:
 - Well by well flow rates in gpm for each extraction well. If a well is off line, list flow rate as "ZERO." Clearly denote on the table periods of system shutdown.
- -- In Situ Air Sparging:
 - Air pressure and injection flow rates in scfm for each well. If a well is off line, list flow rate as "ZERO." Clearly denote on the table periods of system shutdown.
- -- Natural Attenuation in Groundwater no table needed.
- -- Soil Venting:
 - Vacuum readings and extraction rates in scfm for each well. If a well is off line, list flow rate as "ZERO." Clearly denote on the table periods of system shutdown.
 - Air concentrations in ppm_V or in mg/L for total VOCs.
 - Total system contaminants removed in pounds and the pounds per day removal rate.
- -- Natural Attenuation in Soil no table needed.

	Site	name:	Former	DuPont	Barksdale	Work
--	------	-------	--------	--------	-----------	------

Days in period: 365

Tables (Continued).

- -- Ex Situ Soil Treatment Using Biopiles:
 - If forced air ventilation is used:
 - System extraction rates in scfm.
 - Air concentrations in ppm_V for total VOCs.
 - Total system contaminants removed in pounds and the pounds per day removal rate.
 - Temperature.
 - If passive ventilation is used, a table of temperatures.
- -- Ex Situ Soil Treatment Using Landspreading/Thinspreading no table is needed.

To:05/21/2021

Acronyms and Abbreviations:

CFU/mL colony forming units per milliliter cm/sec centimeters per second

- DATCP Department of Agriculture, Trade and Consumer Protection
- DCOM Department of Commerce
- DNR Department of Natural Resources
- DO Dissolved Oxygen
- DRO Diesel Range Organics
- ES Enforcement Standards in NR 140
- FID Flame Ionization Detector
- ft/yr feet per year
- gpd gallons per day
- gpm gallons per minute
- GRO Gasoline Rage Organics
- mg/kg milligrams per kilogram
- mg/L milligrams per liter
- NR prefix for rules established by the DNR
- P.E. Registered Professional Engineer
- P.G. Registered Professional Geologist
- PAL Preventative Action Limit in NR 140

PECFA the state sponsored cleanup fund for certain petroleum contaminated sites

- ppmv parts per million by volume (vapor phase only)
- scfm standard cubic feet per minute
- TOC Total Organic Carbon
- USCS Unified Soil Classification System
- USDA United States Department of Agriculture
- µg/kg micrograms per kilogram
- µg/mL micrograms per milliliter
- VOC Volatile Organic Compounds
- Y/N Yes or No

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 06/20)

Page 27 of 29

Site name:	Former	DuPont	Barksdale	Work

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 06/20)

Page 28 of 29

Days in period: 365

Section INS-3, Example Calculations for Determining the Biodegradation Rate on Forced Air Biopiles

To: 05/21/2021

Important Note: This page uses a nonproportional font and characters that are unique to WordPerfect. If the user received this document electronically, this page may need to be converted to a different font for the formulas to print correctly. The original font used for this page was prestige elite with 16.67 characters per inch.

Assumptions:

- The measurements at the stack are as follows:
 - -- Average flow rate is 20 scfm.
 - -- Average oxygen level extracted from biopile is 14.0 percent by volume.
 - -- Average carbon dioxide level extracted from biopile is 3.5 percent by volume or 35,000 ppmv.
- Atmospheric air contains 21 percent oxygen by volume and 400 ppm_V (or 0.04 percent) carbon dioxide. (Note: On each site visit, the consultant should check atmospheric air to assure that the instrument is spanned correctly.)
- Atmospheric air weight 0.0763 pounds per cubic foot at standard temperature and pressure (Gibbs, 1971).
- Average molecular weight of air is 28.97 (Gibbs, 1971) which is rounded off to 29, molecular weight of O₂ is 32, molecular weight of CO₂ is 44.
- For every pound of contaminants biodegraded, 3.3 pounds of oxygen is utilized and up to 3.2 pounds of carbon dioxide is generated.
 - -- The stoichiometry of aerobic benzene biodegradation can be described as follows:

C6H6 + 7.5 O2 -- -- > 6 CO2 + 3 H2O

Based on this, benzene biodegradation requires that 3.07 pounds of oxygen are utilized to fully oxidize one pound of benzene, assuming no electron acceptors other than oxygen are used. Assuming no biomass is produced and no geochemical reactions consume carbon dioxide, 3.38 pounds of carbon dioxide is generated from one pound of benzene.

-- The stoichiometry of aerobic hexane biodegradation can be described as follows:

C6H14 + 9.5 O2 -- -- > 6 CO2 + 7 H2O

Based on the above assumptions, hexane biodegradation requires 3.52 pounds of oxygen and generates up to 3.06 pounds of carbon dioxide.

Other hydrocarbons also require a similar ratio of oxygen for aerobic biodegradation. For purposes of this guidance it is assumed that a pound of petroleum contamination requires 3.3 pounds of oxygen and generates up to 3.2 pounds of carbon dioxide and 1.1 pounds of water in the biodegradation reaction.

Calculations:

Oxygen utilization rate:

Carbon dioxide production rate:

Site name: Former DuPont Barksdale Works

Reporting period from: 05/22/2020

Days in period: 365

To: 05/21/2021

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 06/20)

Page 29 of 29

Calculations (Continued):

Biodegradation rate based on oxygen:

7.07 / 3.3 = 2.1 pounds per hour

Biodegradation rate based on carbon dioxide:

Since the biodegradation rate is based on oxygen utilization and/or carbon dioxide generation, it is a measure of the overall biodegradation rate of all carbon sources, including natural organic carbon and any organic materials that were added. For this reason, the biodegradation rate is not specific to hydrocarbons and it is likely that the measured biodegradation rate will overestimate the rate of contaminant reduction.

Commonly the measured biodegradation rate based on carbon dioxide generation is less than the rate estimated with oxygen. Because of geochemical interferences and biomass formation, estimates based on carbon dioxide measurements are often low. If however the biodegradation rate estimate based on carbon dioxide is significantly greater than the estimate based on oxygen, it is likely that there is a measurement or calculation error. In this way, the carbon dioxide measurements can be used to double check the oxygen measurements and calculations.

4.81 / 3.2 = 1.5 pounds per hour

Appendix B

Shipping Documentation/Manifests State of Wisconsin Annual Hazardous Waste Report

9		ENVIRONMENT	AL SERVICES	19.14									
1		PPING CUMENT	1. Generator ID Number	133447	2, Page	(87	gency Response 7) 818-0057		Z	Ζ	Tracking Num		9
	CHI 172 GOI	nerator's Name and Mail EMOURS BARKI 21 W 17TH FL LDEN, CO 80401 rator's Phone:	DALE WORKS	'BISHOP, BETSY BIS	HOP	7231	or's Site Address 5 STATE HI IHBURN, W	GHWAY					
	VEC	nsporter 1 Company Nar OLIA ES TECHNI nsporter 2 Company Nar	CAL SOLUTIONS						U.S. EPAID I N J I U.S. EPAID I	0 0	063	1 3	69
	8. Des	signated Facility Name a	W124	ia es technicial so N9451 Boundary Monee Falls, WI					U.S. EPAID I				1
	9a.	of there,		ping Name, Hazard Class, ID No	umber,		10. Conta	1	W I I 11. Total Quantity	0 0 0 12. Unit Wt./Vol.	3 9 6	7 1 Codes	4 9
LATOR	НМ			L, NON-RCRA, NON-I)OT.,			Type D M	445	P	NONB		
GENERATOR		2.											
	1	3.	2										
		4.											
1	Har	Chemou	rs CRG P	an initial transporter to a $\#9900296$	962								
	r	marked and labeled/plac	arded, and are in all respe	hereby declare that the content cts in proper condition for transp	s of this consignation of the second ing to a	signature	ind accurately de	tional governm	ental regulations	(Ja	1		Year
	15.1	Liza both temational Shipments	Bishar		Export fr		Port of er		xng	Coran	WAR 10	28	120
	17. Tra		orts only): nt of Receipt of Shipment		2-m	Signatura	Date leav	ring U.S.:			Mon	th Day	Year
TRANSPORTER		porter 1 Printed/Typed N Dr'i Q V porter 2 Printed/Typed N	1 KLOS	1		Signature	nan	Rh	PC-		1/0 Mor) 128	2/) Year
¥ ↑		screpancy Discrepancy Indication St											
				L_] Tyj	pe	S	Residue	nt Tracking Nu	mber: U.S. EPA ID I		L] Full Reju	iction
DESIGNATED FACILITY	Facilit	Vitemate Facility (or Generative Second		P				•		tornore:			
GNATED	18c. S	Signature of Allemate Fac									Mo	nth Day	Year
- DESA	19 Re	eport Management Meth	ou Lodes (I.e., codes for t 2.	reatment, disposal, and recycling	y systems)	3.			4.				
ļ		asignated Facility Owner d/Typed Name	or Operator: Certification	of receipt of shipment except as	noted in Item 18	a Signature					Mo	nth Day	Year

GENERATOR / SHIPPER'S INITIAL COPY

		The main sector of		The second second			4 86-16-4	FUI	itropiorea.	OMB No.	
W	FORM HAZARDOUS	1. Generator ID Number WIR00013		1	(877) 018-0	087			141	3 VI	ES
CH 172 60	enerator's Name and Maili EMOURS BARKS 221 W 17TH PL XLDEN, CO 80401 prator's Phone:	DALE WORKS	iop, betsy dishof		72315 STAT WASHBUR	E HIGHW		955)			
	ansporter 1 Company Nan						U.S. EPA ID	Number		11	1044
	OLIA ES TECHNI						N J		0 6 3	8 1 3	6 9
7. Tra	ansporter 2 Company Nan	18	1	i i			U.S. EPA ID	Number			
0.00	isignated Facility Name ar	7 MOBILE A	TECHNICAL SOLUT AVENUE , 62201-1069	TIONS			U.S. EPAID	Number D 0 9	864	124	2 4
9a.		ion (including Proper Shipping Nan	me, Hazard Class, ID Number,		10.	Containers	11. Total	12. Unit	1		-
HM	and Packing Group (if			< l	No.	Тур		Wt./Vol.	13.	Waste Code	5
X	1. LIN2555, WA	STE NITROCELLULOS	E WITH WATER WI	TH NOT					D003		
	(NITROCELL	2) PERCENT WATER, I JULOSE)	by MA88, 4.1, 11, RQ		3	וס	1134	P	D001	1.9ml	
	2.					Sec. 1		1		1000	
	3	10			- Cont	and Salara			To solo	1	1.00
	sum 7 cities							1000	and the state of the	0.000	
		(AN 20)		1.00	1 (1 ()		-				
	4.			in the second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1000			
14. S	pecial Handling Instruction	ns and Additional Information agency suthority on initi 488 A:TW1985488	ER Service Cont iel transporter to add o	racted by Vi r substitute (91.2	ESTS + OG additional tran	36210 + sporters on	Contract retains generator's bah	ed by alf - - 1)		V 21	
15.	pecial Handling Instruction progrator conference BRG: 113 W:985- CMCM b La GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the l certify that the waste min rateg's/Offeror's Printed/To	CAC PO# R'S CERTIFICATION: I hereby di rided, and are in all respects in pro- contents of this consignment confer- imization statement identified in 4 /ped Name La D	declare that the contents of this oper condition for transport account to the attraction	s consignment a cording to applica ed EPA Acknowle ge quantity gene	are fully and accura able International a	ely described a id national govi	ove by the proper s mmental regulations	hipping nam s. If export st	e, and are clas	am the Prim	lary
15. Gene	pecial Handling Instruction permater conference BRG: [13 W:9854 CMC(M b lat GENERATOR'S/OFFERO marked and labeled/placa Exporter, I certify that the I certify that the waste min	S CAL POT I R'S CERTIFICATION: I hereby divided, and are in all respects in pro- contents of this consignment conference of the consignment conference of the consignment conference of the construction of	declare that the contents of this oper condition for transport account to the attraction	s consignment a cording to applica ed EPA Acknowle ge quantity gene	are fully and accura able international a edgment of Conser arator) for (b) (if I am nature	ely described a id national govi	ove by the proper s mmental regulations	hipping nam s. If export st	e, and are clas		lary
15. Gene	pecial Handling Instruction progrator conference BRG 113 W:985- CMCM b La GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the l certify that the waste mire restor's/Offeror's Printed i certify that the waste mire restor's Printed i certify that the waste mire i certify t	R'S CRTIFICATION: I hereby or rrded, and are in all respects in pro- contents of this consignment confor- imization statement identified in 4 rped NBS Shop	declare that the contents of this oper condition for transport account to the attraction	910:X s consignment a cording to applica ed EPA Acknowk ge quantity gene Sign	are fully and accura able international a edgment of Conser erator) for (b) (if I an nature MM	ely described a ad national gove a small guantit	ove by the proper s mmental regulations	hipping nam s. If export st	e, and are clas	am the Prim	lary
15. Gene 16. In Trans	pecial Handling Instruction personator conference BRG 113 W:985- CMCM b La GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mir retury's/Offeror's Printed I certify that the waste mir retury's offeror's Pr	R'S CERTIFICATION: I hereby or rided, and are in all respects in pro- contents of this consignment confor- imization statement identified in 4 rped NBS Shop Import to U.S. orts only): at of Receipt of Materials	declare that the contents of this oper condition for transport account to the attraction	9000 s consignment a cording to applici d EPA Acknowk ge quantity gene Sign L	are fully and accura able international a edgment of Conser erator) for (b) (if I an nature MM	ely described a ad national govern a small guantit a small guantit a of entry/exit	ove by the proper s mmental regulations	hipping nam s. If export st	e, and are clas	am the Prim	Ye Z
15. Gene 16. In Trans	pecial Handling Instruction percentator conference BRG 113 W:985- CMCM b La GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the l certify that the waste mire restor's/Offeror's Printed international Shipments sporter signature (for exportansporter Acknowledgmer	B CAG PO#F DR'S CERTIFICATION: I hereby de rded, and are in all respects in pro- contents of this consignment contra- imization statement identified in 4 (ped Name S S by p Import to U.S. orts only): at of Receipt of Materials make LOS	declare that the contents of this oper condition for transport account to the attraction	9000 s consignment a cording to applic ed EPA Acknowk ge quantity gene Sign Export from U	are fully and accura able international a edgment of Conser erator) br (b) (if I arr nature I.S. Poi Dat	ely described a ad national govern a small guantit a small guantit a of entry/exit	ove by the proper s mmental regulations	hipping nam s. If export st	e, and are clas ripment and I		
15. Gene 16. In Trans Trans	pecial Handling Instruction personator conference ERG 113 W:985- CMCM b La GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the tertify that the waste min- rectify that the waste min- rectify that the waste min- rectify that the waste min- ternational Shipments sporter signature (for expo- nasporter Acknowledgmer- porter 1 Pfinted/Typed Na- porter 2 Printed/Typed Na-	B CAG PO#F DR'S CERTIFICATION: I hereby de rded, and are in all respects in pro- contents of this consignment contra- imization statement identified in 4 (ped Name S S by p Import to U.S. orts only): at of Receipt of Materials make LOS	declare that the contents of this oper condition for transport account to the attraction	9000 s consignment a cording to applic ed EPA Acknowk ge quantity gene Sign Export from U	are fully and accura able finternational a edgment of Conser erator), br (b) (if I am hature M.S. Poi Dat	ely described a ad national govern a small guantit a small guantit a of entry/exit	ove by the proper s mmental regulations	hipping nam s. If export st	e, and are classification of the second seco		
15. Generation 16. In Trans Trans Trans 18. Di	pecial Handling Instruction pecial Handling Instruction PRG: [13 W:9854 CMCM b La GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mir mator's/Offeror's Printed I CA Structure I CA Structure ternational Shipments sporter signature (for export ansporter Acknowledgmer porter 1 Pfinted/Typed Na	B CAG PO# P DR'S CERTIFICATION: I hereby de rded, and are in all respects in pro- contents of this consignment contra- imization statement identified in 4 ped Name S S S S S S S S S S S S S S S S S S S	declare that the contents of this oper condition for transport account to the attraction	9000 s consignment a cording to applic ed EPA Acknowk ge quantity gene Sign Export from U	are fully and accura able finternational a edgment of Conser erator), br (b) (if I am hature M.S. Poi Dat	ely described a di national govi a small guantit di of entry/exit: b leaving U.S.:	ove by the proper s mmental regulations	hipping nam s. If export sh Shuff Shumu	e, and are classification of the second seco		Ye Ye Ye
15. Gene 16. In Trans 17. Tr Trans 18. Di 18. Di	pecial Handling Instruction generator confers ERG: 113 W:9854 CMCM b La GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mir rator's/Offeror's Printed/T L 22 Supervisional Shipments sporter signature (for export ransporter Acknowledgmer porter 1 Pfinted/Typed Na sporter 2 Printed/Typed Na iscrepancy	CAG PO# 1 DR'S CERTIFICATION: I hereby of rided, and are in all respects in pro- contents of this consignment contra- imization statement identified in 4 (ped Name Signature) Disport to U.S. orts only): Int of Receipt of Materials mc LOS imme ace Quantity	4900296 declare that the contents of thi oper condition for transport acc orm to the terms of the attache to CFR 262.27(a) (if I am a lar	9000 s consignment a cording to applic ed EPA Acknowk ge quantity gene Sign Export from U	are fully and accura able international a edgment of Conser erator), or (b) (if I am nature U.S. Poi Dat nature Residu	ely described a di national govi a small guantit di of entry/exit: b leaving U.S.:	pove by the proper s mmental regulations generator) & true. M Of the M Of t	hipping nam s. If export sh Ghuit Ghunt yection	e, and are classification of the second seco	am the Prin nth 22 nth Day I Day	Ye Ye Ye
15. Gene 16. In Trans 17. Tr Trans 18. Di 18. Di	pecial Handling Instruction percent of conference ERG 113 W:985- CMCM b La GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mire rectify the the waste mire rectify that the waste mire recti	B CAG PO# DR'S CERTIFICATION: I hereby of orded, and are in all respects in procontents of this consignment confininization statement identified in 4 (ped NB: Shup) Import to U.S. Import to Quantity ace Quantity rator)	4900296 declare that the contents of thi oper condition for transport acc orm to the terms of the attache to CFR 262.27(a) (if I am a lar	9000 s consignment a cording to applic ed EPA Acknowk ge quantity gene Sign Export from U	are fully and accura able international a edgment of Conser erator), or (b) (if I am nature U.S. Poi Dat nature Residu	ely described a di national govi a small guantit DRU to f entry/exit: e leaving U.S.:	pove by the proper s remental regulations generator) is true.	hipping nam s. If export sh Ghuit Ghunt yection	e, and are clas itipment and I Mor Mor Mor	am the Prin 10 21 10 22 10 22 10 23 10	Ye Ye
15. Gene 16. In Trans 17. Tr Trans 18. Di 18. Di	pecial Handling Instruction permatter conference ERG 113 W:985- CMCM b La GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mire ratio's/Offeror's Printed/ I certify that the waste mire ratio's/Offeror's Printed/ porter signature (for exponents asporter Acknowledgmer porter 1 Printed/Typed Na iscrepancy Discrepancy Indication Sp Alternate Facility (or Gene	B CAG PO# DR'S CERTIFICATION: I hereby of orded, and are in all respects in procontents of this consignment confininization statement identified in 4 (ped NB: Shup) Import to U.S. Import to Quantity ace Quantity rator)	4900296 declare that the contents of thi oper condition for transport acc orm to the terms of the attache to CFR 262.27(a) (if I am a lar	9000 s consignment a cording to applic ed EPA Acknowk ge quantity gene Sign Export from U	are fully and accura able international a edgment of Conser erator), or (b) (if I am nature U.S. Poi Dat nature Residu	ely described a di national govi a small guantit DRU to f entry/exit: e leaving U.S.:	pove by the proper s remental regulations generator) is true.	hipping nam s. If export sh Ghuit Ghunt yection	e, and are clas itipment and I Mor Mor Mor	am the Prin nth 22 nth Day I Day	Ye Ye
15. Gene 16. In Trans 17. Tr Trans 18. Di 18. Di	pecial Handling Instruction generator conferen- BRG: 113 W:9854 CMCM b Let GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mir- mathy's/Offeror's Printed/ Lettify that the waste mir- mathy's/Offeror's Printed/ Sporter signature (for expo- mansporter Acknowledgemer porter 1 Printed/Typed Na Sporter 2 Printed/Typed Na iscrepancy Discrepancy Indication Sp Alternate Facility (or Gener- ty's Phone: Signature of Alternate Facility	Bit Council Potential DR'S CERTIFICATION: I hereby ordered, and are in all respects in procordents of this consignment configuration statement identified in 4 Index of this consignment configuration statement identified in 4 Import NBIS hop Import to U.S. Import	4900296 declare that the contents of thi oper condition for transport acc orm to the terms of the attache to CFR 262.27(a) (if I am a lar	Sign Export from U	are fully and accura able international a edgmerit of Conservation of the international international international internations (b) (if I arrivation of the international of the	ely described a di national govi a small guantit USAU t of entry/exit: eleaving U.S.:	pove by the proper s remental regulations generator) is true.	hipping nam s. If export sh Ghuit Ghunt yection	e, and are clas itipment and I Mor Mor Mor	am the Prin 10 21 10 22 10 22 10 23 10	Ye Ye ection
15. Gene 16. In Trans 17. Tr Trans 18. Di 18. C 18b. A Facilit 18c. S	pecial Handling Instruction generator conferen- BRG: 113 W:9854 CMCM b Let GENERATOR'S/OFFERC marked and labeled/placa Exporter, I certify that the I certify that the waste mir- mathy's/Offeror's Printed/ Lettify that the waste mir- mathy's/Offeror's Printed/ Sporter signature (for expo- mansporter Acknowledgemer porter 1 Printed/Typed Na Sporter 2 Printed/Typed Na iscrepancy Discrepancy Indication Sp Alternate Facility (or Gener- ty's Phone: Signature of Alternate Facility	B CAG PO# DR'S CERTIFICATION: I hereby of orded, and are in all respects in procontents of this consignment confininization statement identified in 4 (ped NB: Shup) Import to U.S. Import to Quantity ace Quantity rator)	4900296 declare that the contents of thi oper condition for transport acc orm to the terms of the attache to CFR 262.27(a) (if I am a lar	Sign Export from U	are fully and accura able international a edgmerit of Conservation of the international international international internations (b) (if I arrivation of the international of the	ely described a di national govi a small guantit USAU t of entry/exit: eleaving U.S.:	pove by the proper s remental regulations generator) is true.	hipping nam s. If export sh Ghuit Ghunt yection	e, and are clas itipment and I Mor Mor Mor	am the Prin 10 21 10 22 10 22 10 23 10	Ye Ye

-

1

Land Disposal Restriction Notification Form

Generator Name	CHEMOURS BARKSDALE WORK	(S		
EPA ID Number	WIR000133447	Manifest	001761413VES	

es al

This notice is being provided in accordance with 40 CFR 268.7 to inform you that this shipment contains waste restricted from land disposal by the USEPA under the land disposal restriction program. Identified below for each container is the designation of the waste as a wastewater or non-wastewater, the Clean Weter Act (CWA) permit status associated with the treatment/disposal facility, applicable waste codes and any corresponding subcategories, list of any F001-F005 solvent constituents that are present in the waste, and any underlying hazardous constituents (UHC) that are present.

Container NumberWY-3379528000-001 (1/ 1)

 $\hat{\mathbf{A}}$

WIP / Approval Code	985488 / TWI985488
Form Designation / CWA Status:	Non-Wastewater / Non-CWA
Waste Codes (Subcategories):	D001 (IGNITABLE CHARACTERISTIC WASTE, OTHER THAN LIQUIDS >=10% TOC (INCLUDES ALL IGN. GASES, FLAMMABLE SOLIDS & OXIDIZERS)), D003 (OTHER REACTIVES BASED ON 261.23(a)(1) INCLUDES AIR REACTIVES)

Constituents (F001 - F005): UHC's Present: Treatment Requirements: Additional Notices: None None

Restricted waste requires treatment to applicable standards.

I hearby certify that all information in this and associated land disposal restriction documents is complete and accurate to the pest of my knowledge and information

Signature

Title

by hat hemours Date /0-

Transportation Activit Report BT Acrit ID (Cus#)14503 (620285)	JOB NO: 3379528000 BILL DOC NO: WV01022460 SL Acnt ID (Gen#): 37935 (62326	
BILL TO: CHEMOURS COMPANY, F.C., LLC 974 CETNRE RD. PO BOX 2900 CHESTNUT RUN PLAZA 735 3255-6 WILMINGTON, DE 19805 (302) 892-6739 CONTACT: GLENN JOHNSON	JOB SITE: CHEMOURS B/ 72315 STATE F WASHBURN, V (303) 216-2558 CONTACT: BETSY BISHOP	ARKSDALE WORKS IIGHWAY 13 VI 54891
MANIFEST NUMBER(S): 001761413VES, 2200947839 CUSTOMER P.O. NUMBER PROJECT NUMBER	SHIP DATE 10/22/20/	
TOTAL AUDION	HOUT: YES / NO END	TOTAL UNLOADING DEMURRAGE (HRS) RT TIME: TIME: AL (HRS):
CUSTOMER HEAMER BOCK	CHEMOUKS	ратея ; 10/~ 8/~0 10-28-20

an we

Customer authorizes Contractor to make changes on Customer's behalf in regards to transporters used and to perform the Services, including adding or changing transporters listed on manifests. If Customer provides an approved transporter list in writing to Contractor at the time Customer executes this Agreement, Contractor shall select only those transporters on that list when providing transportation services to Customer. If Customer does not provide an approved transporter list in writing to Contractor at the time Customer executes this Agreement, Customer does not provide an approved transporter list in writing to Contractor at the time Customer executes this Agreement, Customer authorizes Contractor to select any permitted transporter to provide transportation services to Customer.

Veolia ES Technical Solutions, L.L.C. is permitted for and has capacity to accept waste listed above in container quantities

2 of 2

ESTABLISH	HED 1903		701 22nd AVENUE EAST • P.O. Box 673 ASHLAND, WISCONSIN 54806					FAX (715) 682-4391 Phone 682-3011		
AIRCO Products		s Chi	cago J	ron &	Supr	plies.	Inc.	Steel &	Supplies	
			SCRAP IR	ON - METAL	- MEDICA	L GASES	NG SUPPLIES	No.	335618	
SOLD	AECO						DATE ORDER NO.	11- EM	17-20 C	
	,							utik	,	
	TAX no	o. CASH	CHARGE	ON ACCT.		R CLERK	оноле <u>96</u> јов7	20-62	1-3878 73-2100	
QUANTITY ORDERED	QUANTITY SHIPPED	D	ESCRIPTION	Λ		FEET	WEIGHT	PRICE	TOTAL	
	/	2000(36:340	-32,22	(Uren	$ \rightarrow $		9/204	80Ton	164.80	
10-15-5	e dil	iver to	Forme	e Du	pont	(site				
			.315 f	twy 13	- B	uksd	lak >		/64.30	
10-19-	20	pick u	1 tra	ter O	Dupe	nt sia	te /		-0-	
			D el			100° 4			NO ChARGE	
	OU	Morm	or cha	ige chu	NY IS	100 4	241			

RECEIVED BY:

Hazardous Waste Annual Report 2020

Facility Name : FORMER DUPONT BARKSDALE WORKS Facility ID : 804009140 EPA ID : WIR000133447 DNR Contact : Megan Ballweg e-mail: MeganM.Ballweg@wisconsin.gov Tel : (715) 839-3770

Form Instructions

Submittal and Signature Instructions

Click "Submit" at the top of the form when you have completed and validated your reportReport Preparers cannot submit the form unless they additionally have the Signatory role

You will receive an email from DNRHazardousWasteReporting@Wisconsin.gov.The email will include a PDF copy of your report and the Hazardous Waste Signature PDF.If you have met the requirements for Digital Signature, the email address to which the link for Digital Signature was sent is displayed at the bottom of the email. The email will have been sent to the email address associated with your WAMS ID and may not be the email to which a copy of the report is sent.

You must either complete the Digital Signature process OR physically sign and return the Signature Form. To complete the Digital Signature, locate the message from DNRSignature@Wisconsin.gov. Copy the code in the email, follow the link, and then paste or enter the code to complete the digital signature. The code is only valid for 72 hours. If you are unable to digitally sign, you must print, sign, and return the Hazardous Waste Signature PDF you received by email when you submitted the report. Email the signed PDF as an attachment to DNRHazardousWasteReporting@Wisconsin.gov

Welcome to Wisconsin DNR 2020 Hazardous Waste Annual Reporting.

Tips for Using the Web Reporting SystemSave your work frequently with the "Save" button at the top of the formIf you are not able to complete the report in one session, you may return at another time. The data you saved will be presented to you at the new session. The program will disconnect from your computer if it detects no key action over a 15 minute period. You may prevent this by keeping your session alive when prompted. This report contains help links below. Additionally there are help icons which, when clicked, will display information on the corresponding topic.

Instructions and Help for Completing the ReportThe DNR's Hazardous waste reporting Web page has general and specific information on completing the hazardous waste annual report for your facility. For step-by-step detailed instructions and managing reporting roles, go to dnr.wisconsin.gov/topic/Switchboard/Help.html.If you cannot find the answer to your question using the above resources, please contact the Environmental Program Associate indicated at the top of this form.

Site Details

Site Name : FORMER DUPONT BARKSDALE WORKS Site Land Type : Private Location Address : 72315 STH 13 BARKSDALE WI Mailing Address : 500 W JEFFERSON ST STE 1600 LOUISVILLE KY,40202 Owner : BRETTING DEVELOPMENT CORP 3401 LAKE PARK RD ASHLAND, WI 715-682-5231 Operator : THE CHEMOURS COMPANY FC LLC 500 WEST JEFFERSON STREET, SUITE 1600 LOUISVILLE, KY Bradley.S.Nave@chemours.com 715-373-2100 HW Contact : BRADLEY NAVE 500 W JEFFERSON ST STE 1600 LOUISVILLE, KY BRADLEY.S.NAVE@CHEMOURS.COM 812-923-1136

This information has been provided by the Federal EPA's RCRAInfo System. If any of this information is incorrect, please update it at RCRAInfo or by submitting a RCRA 8700-12 Form. The completed RCRA 8700-12 Form should be emailed to the DNR contact listed at the top of this report.

Environmental Management System

An EMS is a tool to help your organization understand its environmental impacts and systematically operate more efficiently by reducing energy usage, minimizing waste and reducing pollution. Proactively addressing environmental impacts helps your organization protect public health and Wisconsin's natural resources, find and utilize the most cost effective corrective measures and avoid costly noncompliance fees. DNR website for more EMS info: dnr.wi.gov/topic/greentier/ems.html US EPA for more EMS info: www.epa.gov/ems

Do you have a formal environmental management system (EMS)?

\bigcirc	Yes	No

North American Industry Classification System (NAICS)

Enter all NAICS codes (One code must be designated as primary) US EPA - Introduction to NAICS www.census.gov/eos/www/naics/

	NAICS Code	Name	Primary
--	------------	------	---------

A facility may have several users with reporting roles who can open, fill, save, and validate this form. The Signatory, however is the only person who can open, fill, save, validate, submit and sign this report.

The Signatory Role must be current and correct for the facility to complete the Annual Hazardous Waste Reporting process.

Your Facilities current Signatory for this report: ELIZABETH BISHOP 17221 W. 17TH PLACE GOLDEN, CO elizabeth.bishop@aecom.com 303-216-2558

Signatory contact updates are requested through the DNR Switchboard System (dnrx.wisconsin.gov/switchboard/capture.do). The system will show all the people who have reporting roles for this facility (including secondary contacts who can also open, update, and save data to the report).

Updates to contact information and requests for these roles must be done by the person for whom the request is being made (individuals can request roles for themselves, and request updates to their own contact information). Any person with Switchboard access to a facility can request removal of people who are no longer associated with the facility.

Type of Regulated Waste Activity

The DNR database indicates you are a Small Quantity Generator

Does FORMER DUPONT BARKSDALE WORKS generate hazardous	• Yes	🔿 No
waste?	0	0

Please identify the amount of hazardous waste generated at your facility OR the higher generator status your facility chooses to operate under for the reporting year

Large Quantity Generator - Generate in any calendar month 1,000 kg(2,205 lbs) or more of hazardous waste; or Generate in any calendar month, or Accumulate at any time, more than 1 kg(2.2 lbs) of acute hazardous waste or more than 100 kg(220 lbs) of acute hazardous waste spill cleanup material.

Small Quantity Generator - Generate in every calendar month less than 1,000 kg(2,205 lbs) of hazardous waste; and Accumulate at all times no more than 6,000 kg(13,320 lbs) of hazardous waste; and Generate in every calendar month, and Accumulate at all times, no more than 1 kg(2.2 lbs) of acute hazardous waste and no more than 100 kg(220lbs) of acute hazardous waste spill cleanup material.

O Very Small Quantity Generator - Generate in every calendar month no more than 100 kg (220 lbs) of hazardous waste; and Accumulate at all times no more than 1, 000 kg(2, 205 lbs) of hazardous waste; and Generate in every calendar month, and Accumulate at all times, no more than 1 kg(2.2 lbs) of acute hazardous waste and no more than 100 kg(220 lbs) of acute hazardous waste spill cleanup material.

Treater, Storer or Disposer of Hazardous Waste—Note: Part B of a hazardous waste permit is required for these activities) Should be TSD Display	No	
Receives Hazardous Waste from Off-site	◯ Yes	🖲 No
Recycler of Hazardous Waste	◯ Yes	No
Exempt Boiler and/or Industrial Furnace	◯ Yes	No
Publicly Owned (Wastewater) Treatment Works (POTW) that accepts hazardous waste (via truck, rail, or dedicated pipe) for treatment, and complies with s. NR 670.001(3)(b)9.	⊖ Yes	No
Permanent Household and Very Small Quantity Generator Hazardous Waste Collection Facility that ships hazardous waste off-site to a licensed or permitted hazardous waste treatment, storage or disposal facility, or to a recycling facility	⊖ Yes	• No

Waste Codes for Regulated Hazardous Wastes

Please list the waste codes of the hazardous wastes handled at your site.

D030, D001, D003

Additional Regulated Waste Activities

Other Waste Activites		
Transporter of Hazardous Waste	O Yes	No
Under Ground Injection Control	O Yes	● No
United States Importer of Hazardous Waste	O Yes	No
Recognized Trader	O Yes	• No
Importer/Exporter of Spent Lead-Acid Batteries (SLABs) under 40 CFR 266 Subpart G	Yes	No
Universal Waste Activites		
Large Quantity Handler of Universal Waste (you accumulate 5,000 kg or more)	◯ Yes	No
Destination Facility for Universal Waste	◯ Yes	No
Used Oil Activities		
Used Oil Transporter	O Yes	No
Used Oil Processor and/or Re-refiner	O Yes	No
Off-specification Used Oil Burner	O Yes	• No
Used Oil Fuel Marketer	◯ Yes	No
Pharmaceutical Activities		
Operating under NR 666, Subchapter P for the management of hazardous waste pharmaceuticals) Yes	No

Eligible Academic Entities with Laboratories-Notification for opting into or withdrawing from managing laboratory hazardous wastes per NR 662 Subchapter K

Opting into or currently operating under NR 662 Subchapter K for the Yes management of hazardous wastes in laboratories	No
Withdrawing from NR 662 Subpart K for the management of hazardous O Yes wastes in laboratories	No
Electronic Marifest Declars	
Electronic Manifest Broker	

To find out more information about the US EPA e-Manifest data system go to

www.epa.gov/e-manifest/learn-about-hazardous-waste-electronic-manifest-system-e-manifest

Regulated Waste Activity Comments

Comment

Site is undergoing remediation under a WDNR-approved Hazardous Waste Variance. The site generates low volumes of RCRA hazardous waste during seasonal investigations.

Fee Worksheet

A. Identified Generator Status During Report Year:

Base Fee for generator status reported

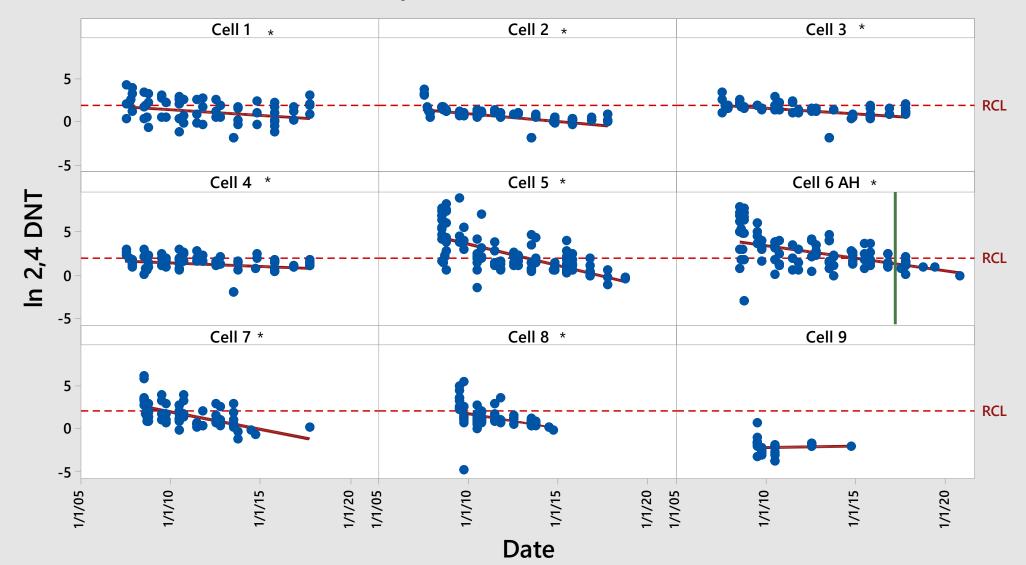
B. Amounts generated and tonnage fee exempted	
 Total amount of hazardous waste generated at your site during the reporting year (in lbs.) 	1,134.00
2. Amount(s) of waste exempted from tonnage fee. Please answer the following:	
2a: Was any of the generated hazardous waste recovered for recycling Yes or reuse (including hazardous wastes burned for the purpose of energy recovery)?	No
2b: Was any of the generated hazardous waste a leachate that was Yes transported to a wastewater treatment plant or discharged directly to a sewer pipe?	No
2c: Was any of the generated hazardous waste removed from the site Yes to repair environmental pollution?	No
Amount Removed (in Ibs)	1,134.00
2d: Was any of the generated hazardous waste collected by a Yes municipality under its household hazardous waste collection program or by a county under its agricultural chemical waste collection program?	No
Total Exemptions	1,134.00
Net Waste (Generated minus Exemptions) (in lbs.)	0.00
Tonnage Fee Estimate	0.00
Total Fee Estimate (Base plus Tonnage)	350.00

Digital Signature Receipt

This is the electronic signature receipt. This receipt contains information about the document submitted, who signed it, when it was signed, and other technical information that may be used by the Department of Natural Resources to prove the authenticity of the document. This receipt is securely stored in the electronic signature system with the submitted document and neither the document nor this receipt can be altered. Electronic signatures are authorized under Wis. Stat. ch. 137 and have the same legal recognition as ink signatures on paper.

Document ID: 26ZKB Document Description: Test Signature File File Name: HazardousWaste_Annual_28065.pdf File Size [KB]: 75 Wisconsin User ID Barksdale (WAMS): User Name: Elizabeth Bishop User Verified Status: Temporary PIN Sent To: elizabeth.bishop@aecom.com Signature ID: 26ZHJ Signature Date/Time: 2/24/2021 6:49:18 PM Certification Statement: I certify, under penalty of law, that the information provided in this document is, to the best of my knowledge and belief, true, accurate, and complete. I understand that there are significant civil and criminal penalties, including fines, imprisonment, or both, for submitting false, inaccurate, or incomplete information.

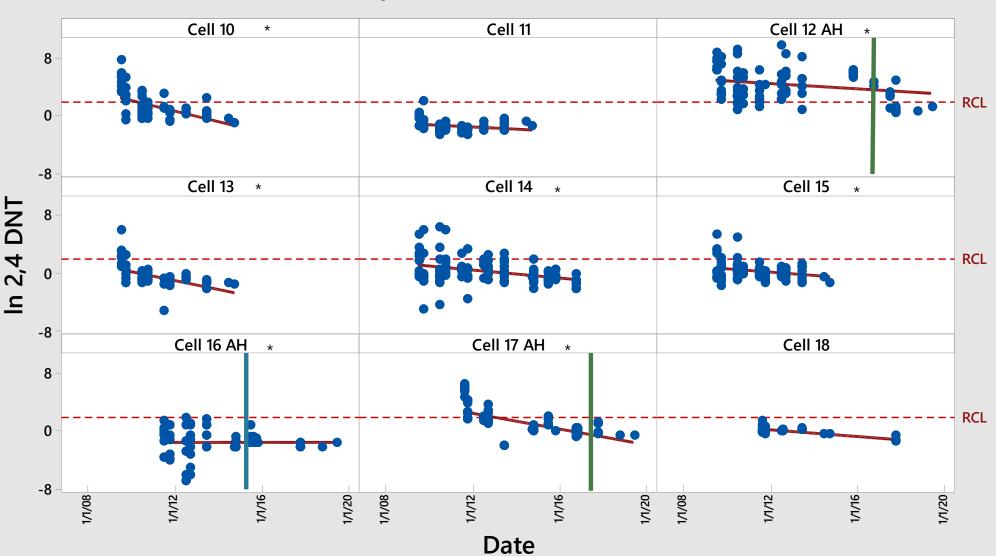
For DNR Use Only:


User IP Address:	34.99.89.222	Public Key Type:	RSA-2048	Hash Type: SHA-512
Temporary PIN Hash Value:	F5E4684EF2B032F01 CCCE09AD6EA13DC	756FC03FFC691E D3101D125603B0	87F5EAFF713C9F7D2 6F252EB7D1BFD6E20	E7D485D6505D7AEED6EB92)C7E682D949F03
Public Key Value:	67FFF73A7547F8E35 CB959A51C893B7D1 E008D2FDBBA85DE0 A553022961A92042A C36C8B55BDFC31CE F0F472E0BBEEE23C	EB0E859314F140 70ECFC74D1ED33 C74F6E28FFCE93 A1B09DF738D5EA E496E30E8467DEF 68695256FA309E	D72B8B2D912D434AE 30DFA220C011ED3C8 4020E13227C7358D71 AF5463103FD845E914 FF32D1FADCF9C7C2E 1D31A761D0617065BE	1EC0621562456821BC40A45 77E74EDB1C155182B6E67A 8ED2C2BBEE0D9C599F30C 7C3FFFD445349108A732DD 0056A8E9758ED0ACB5B3FF 5B83E4B4AA1407338B1963A D0434829A39176504BA3E760 1DFB48459AF1B1EE99
	5E075DB920DDDA7E 1520C70B5A1A85E8F			FB01B24DFDC8383B20EF630 429DE6E7024F9
	E60847FD44062A272 FF0693166621D6B54 E8D0610029EBBE87 06CB1D1335704F874 D647AADCC1FD51D4	E11F000A3B2DCI 828E41558E73F5I 38E2CCEFC5C0F6 5E9201003994FE 4BF7486586688C0 CFD895558588F9	DF2D8E34E49FF5B85 E5939B940B9C0F5F4I 64D7D0ADC4DD184E 0049B78DC43E299CB)7329472E4BFE4F6BE	C7F065CA7A84A07FD8F7D6 F0F27BF27C680D08BE6E414 BD2C29455CEA2BBA2F3683 7DF434EEA230AE592355CAA A021DA8D33B77BF4FADE1A E4D115031A6A7DCD835718C EF91AD9575CC88CDF01234

Appendix C

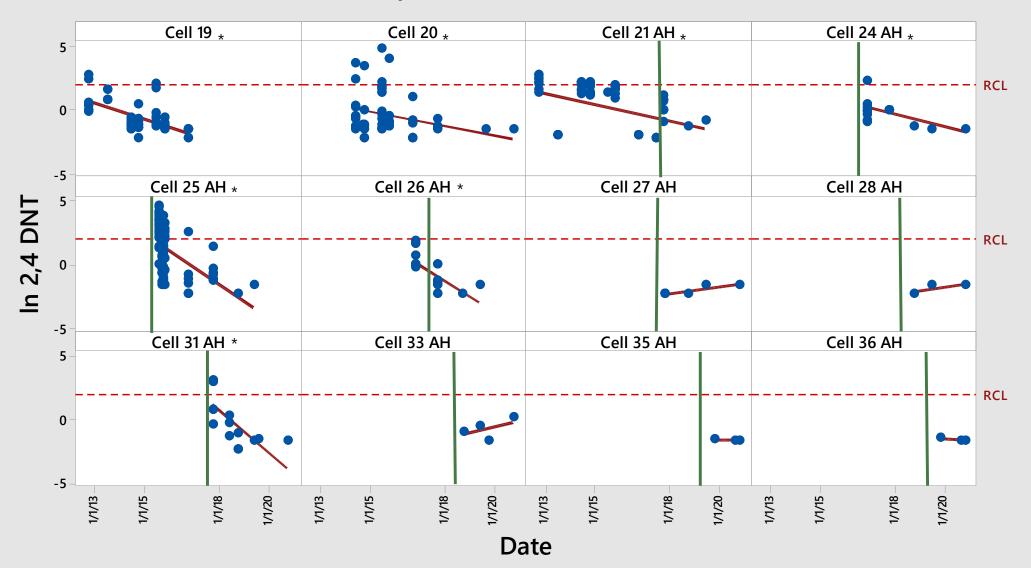
Barksdale Summary Graphs 2020 Year End

Barksdale Summary Graphs 2020 Year End


DNT, TNT, DNX, TNX, NB, Amino DNT

Scatterplot of In 2,4 DNT vs Date

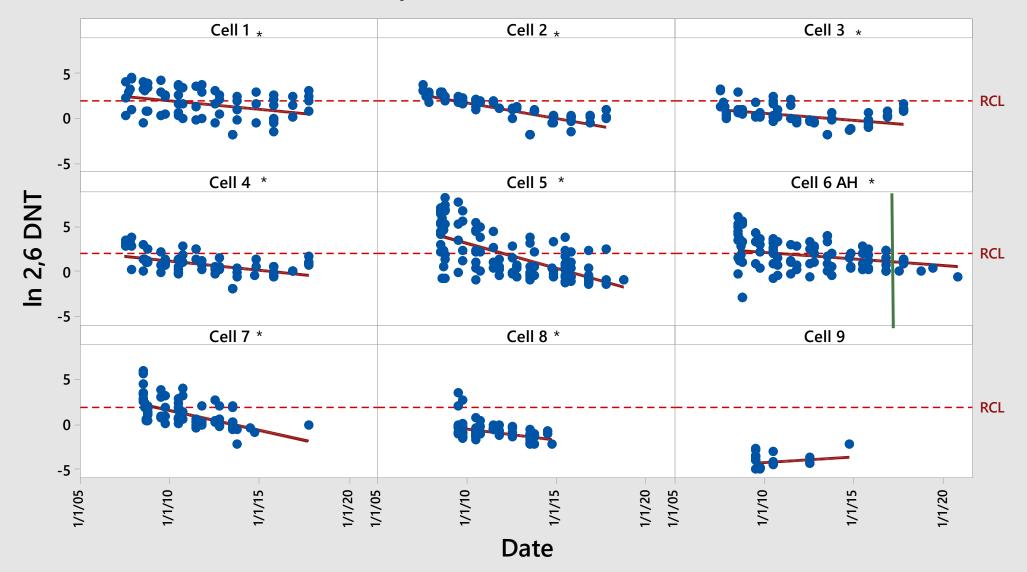
Vertical green line indicates the beginning of lime addition The logarithm of the RCL (7.03 mg/kg) is shown * indicates a s


* indicates a significant reduction over time

Scatterplot of In 2,4 DNT vs Date

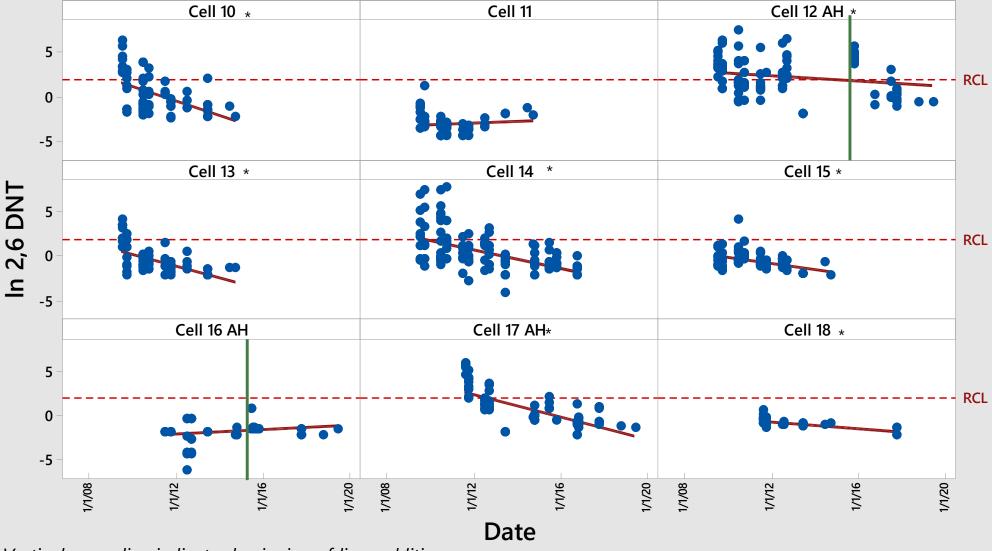
Vertical green line indicates the beginning of lime addition The natural logarithm of the RCL (7.03 mg/kg) is shown

* Indicates a significant reduction over time



Scatterplot of In 2,4 DNT vs Date

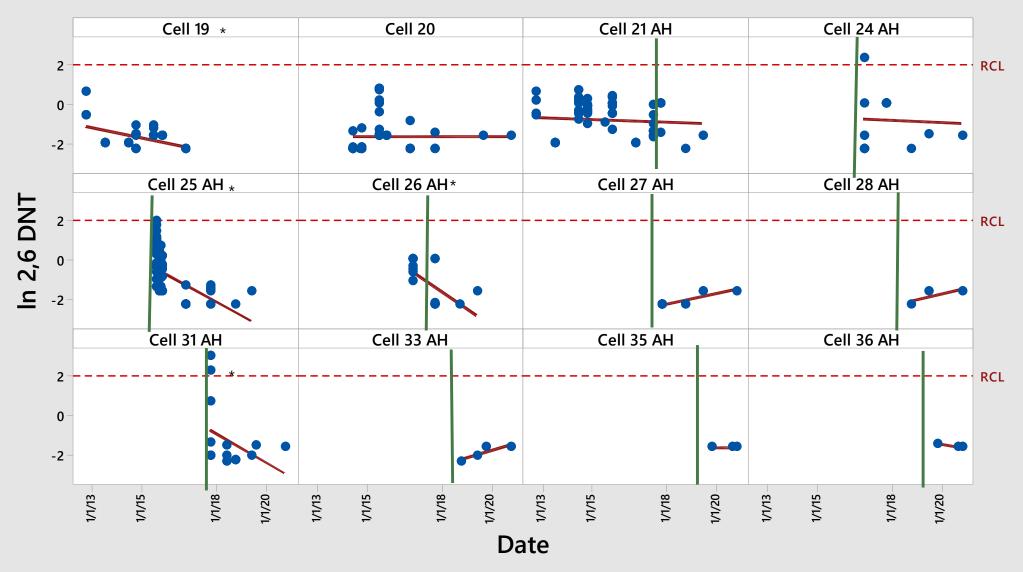
Vertical green line indicates the beginning of lime addition The natural logarithm of the RCL (7.03 mg/kg) is shown


* indicates a significant reduction over time

Scatterplot of In 2,6 DNT vs Date

Vertical green line indicates the beginning of lime addition The logarithm of the RCL (7.03 mg/kg) is shown

* indicates a significant reduction over time

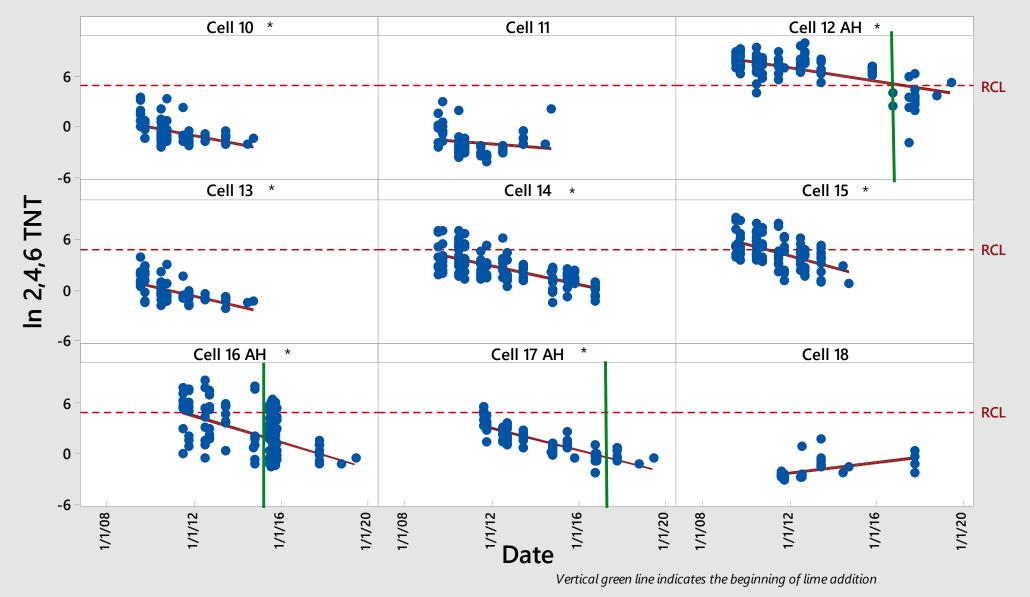


Scatterplot of In 2,6 DNT vs Date

Vertical green line indicates beginning of lime addition The natural logarithm of the RCL (7.03 mg/kg) is shown.

* Indicates a significant reduction over time

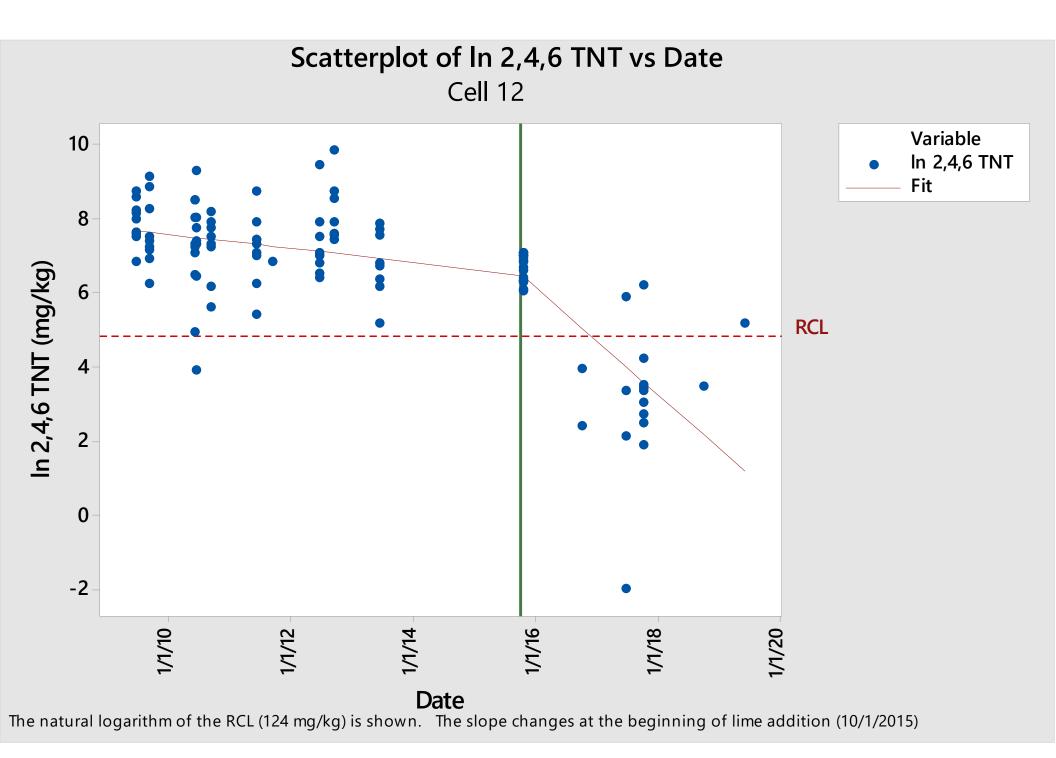
Scatterplot of In 2,6 DNT vs Date



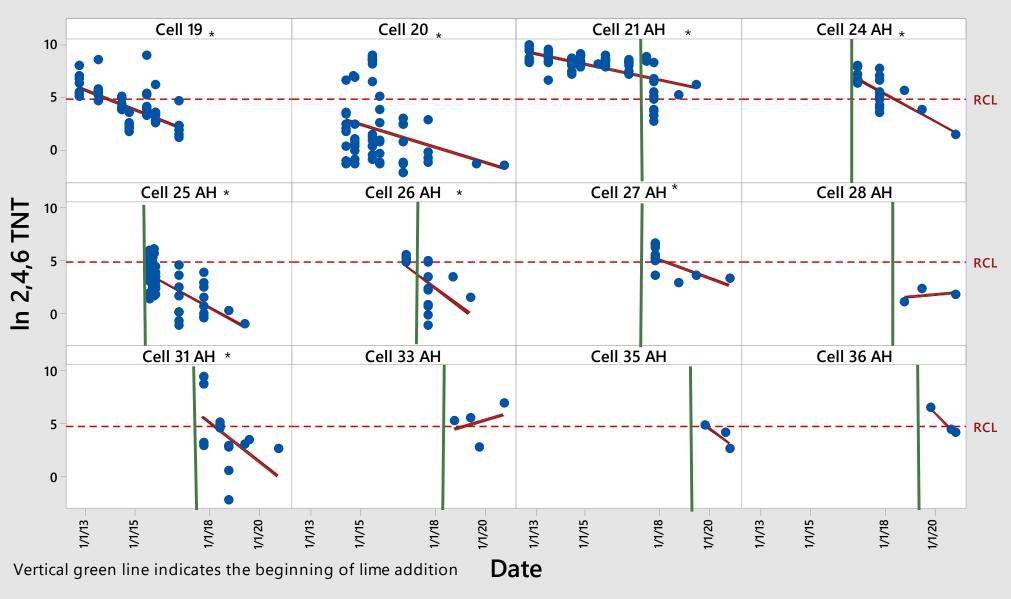
Vertical green line indicates the beginning of lime addition The natural logarithm of the RCL (7.03 mg/kg) is shown

* indicates a significant reduction over time

Cell 2 * Cell 1 Cell 3 * 8 RCL 0 -8 Cell 5 * Cell 4 Cell 6 AH In 2,4,6 TNT 8 RCL 0 -8 Cell 7 * Cell 8 * Cell 9 8 RCL 0 -8 1/1/05 -1/1/10 1/1/15 1/1/20 1/1/05 1/1/10 1/1/15 |/1/20 1/1/05 1/1/10 1/1/15 1/1/20 Date Green vertical line indicates the beginning of lime addition * indicates a significant reduction over time The natural logarithm of the RCL (124 mg/kg) is shown

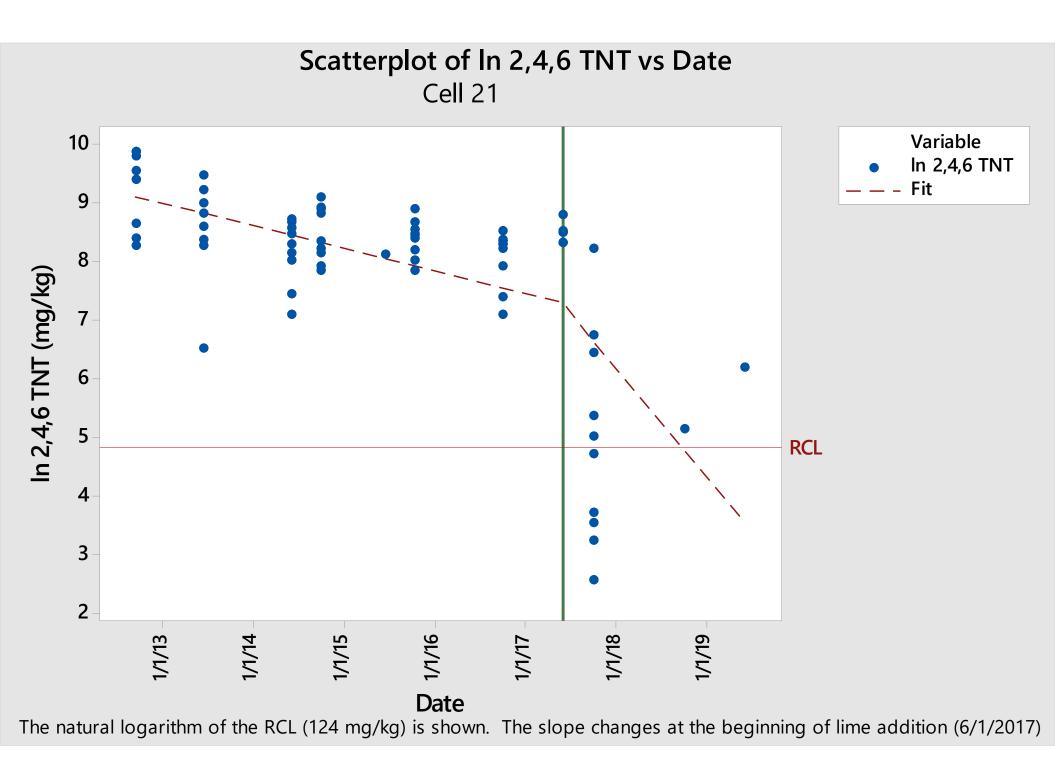

Scatterplot of In 2,4,6 TNT vs Date

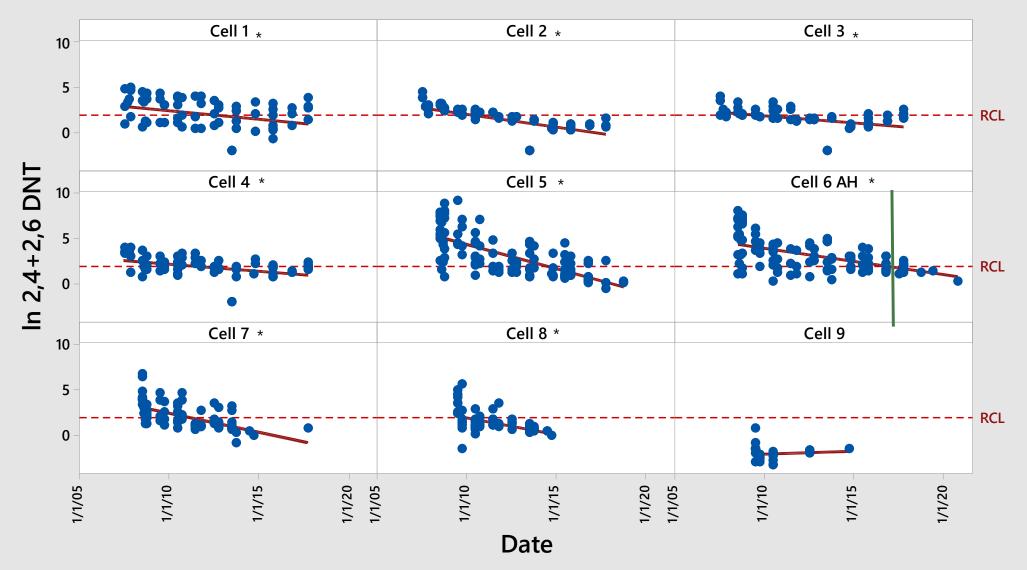

Scatterplot of In 2,4,6 TNT vs Date


The natural logarithm of the RCL (124 mg/kg) is shown

* indicates a significant reduction over time

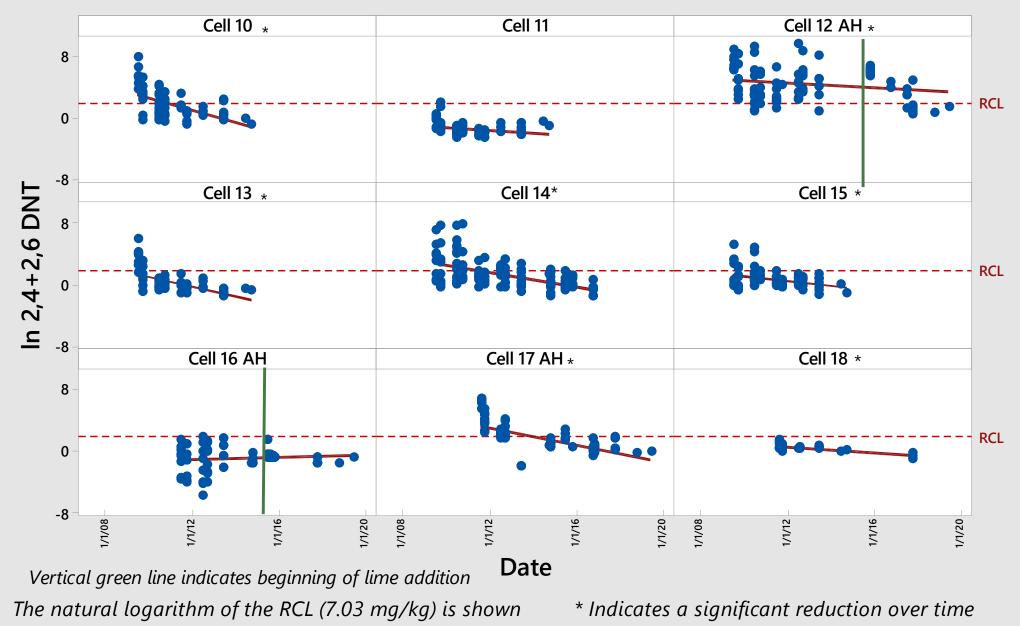
Scatterplot of In 2,4,6 TNT vs Date Cell 16



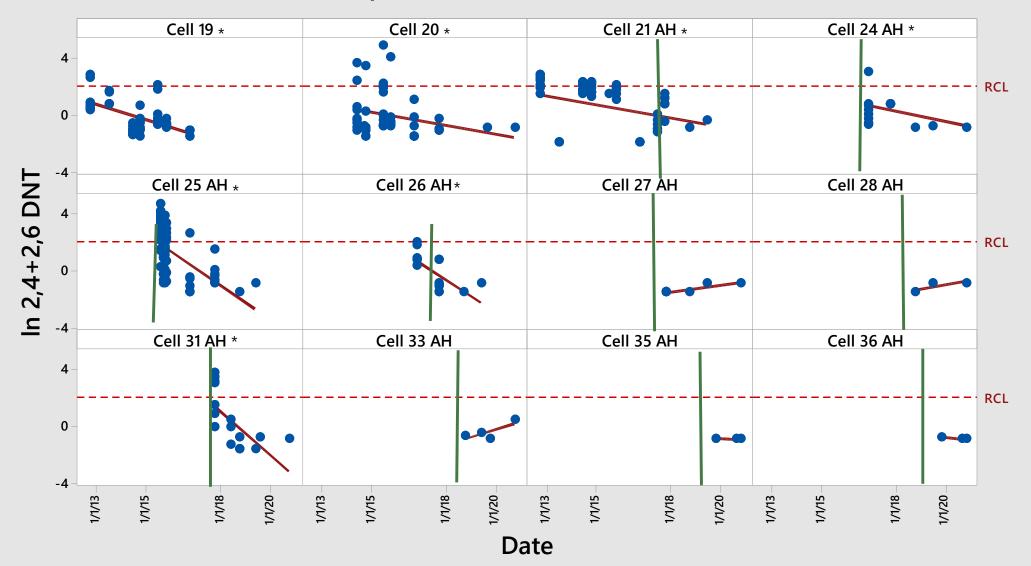

The natural logarithm of the RCL (124 mg/kg) is shown

* indicates a significant reduction over time

Scatterplot of In 2,4,6 TNT vs Date

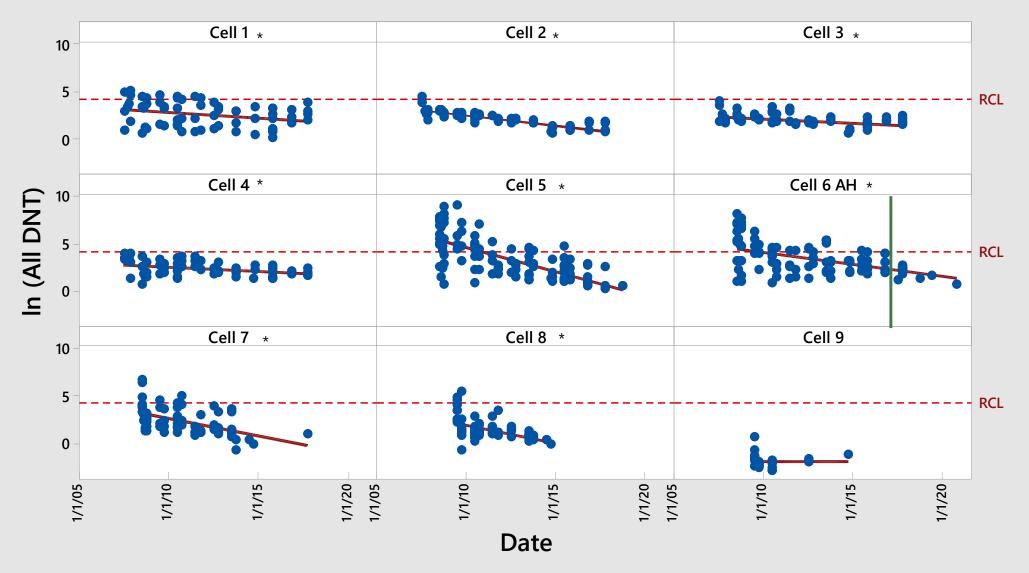


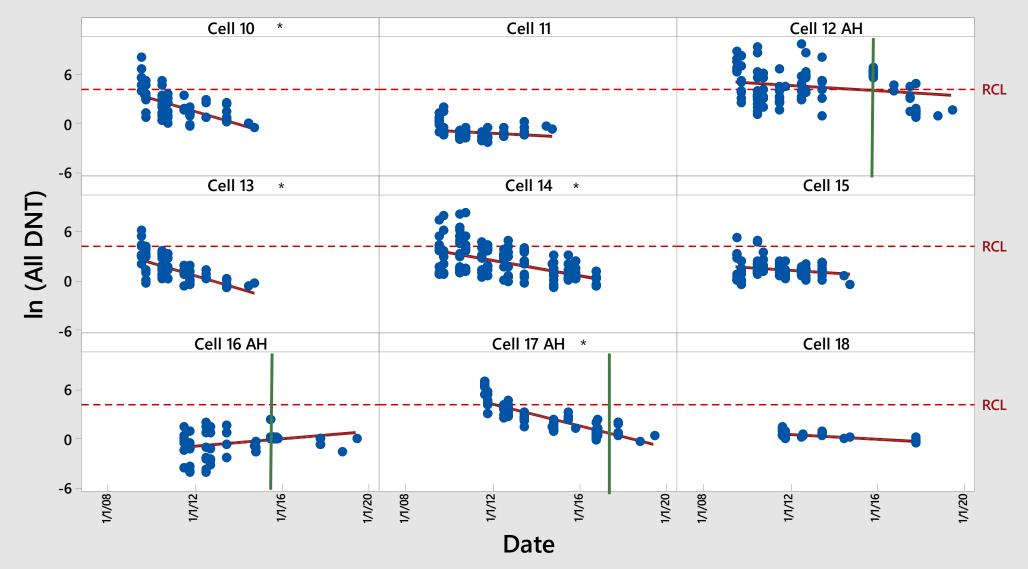
Scatterplot of In 2,4+2,6 DNT vs Date



Vertical green line indicates the beginning of lime addition The logarithm of the RCL (7.03 mg/kg) is shown

* indicates a significant reduction over time


Scatterplot of In 2,4+2,6 DNT vs Date


Scatterplot of In 2,4+2,6 DNT vs Date

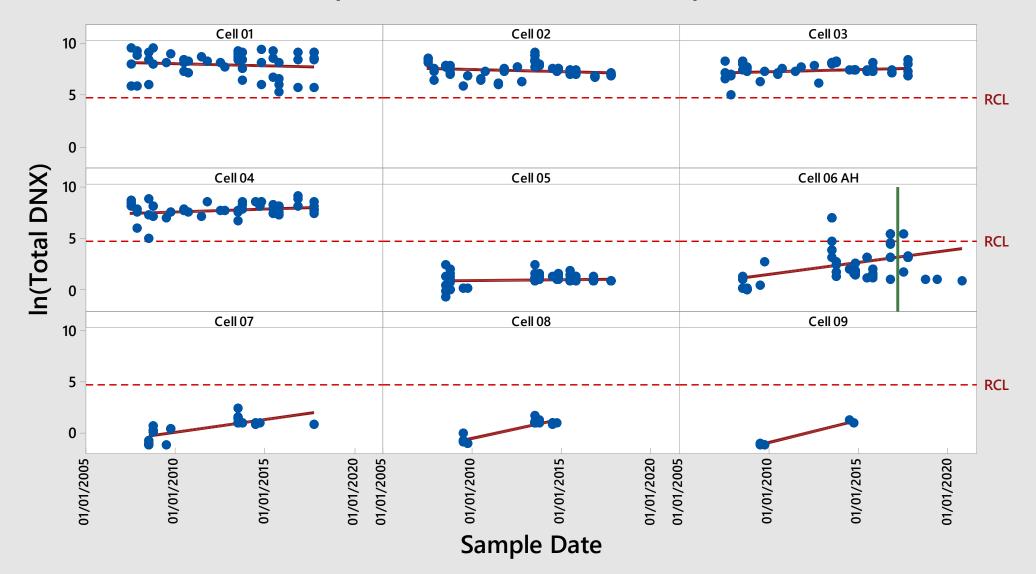
Vertical green line indicates the beginning of lime addition The natural logarithm of the RCL (7.03 mg/kg) is shown * indicates a significant reduction over time

Scatterplot of In (All DNT) vs Date

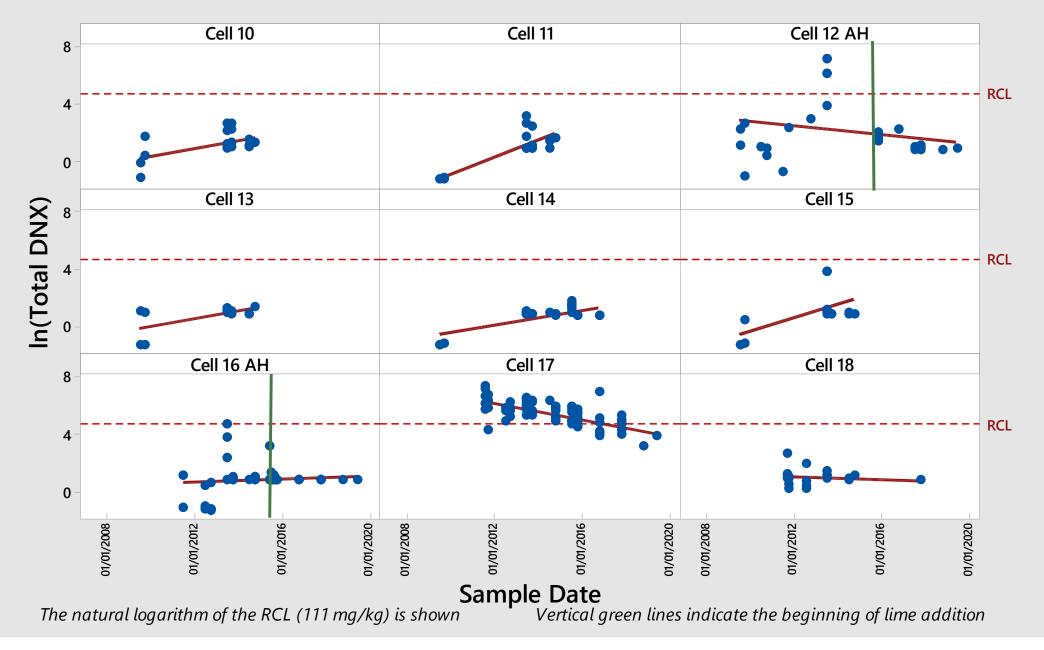
The vertical green line indicates the beginning of lime addition The natural logaritm of the RCL (70.3 mg/kg) is shown * indicates a significant reduction over time

Scatterplot of In (All DNT) vs Date

Vertical green line indicates the beginning of lime addition The logarithm of the RCL (70.3 mg/kg) is shown * indicates significant reduction over time


Cell 19 * Cell 20 Cell 21 AH * Cell 24 AH * RCL 4 0 -4 Cell 25 AH * Cell 26 AH * Cell 27 AH Cell 28 AH In (All DNT) RCL 4 0 -4 Cell 31 AH* Cell 33 AH Cell 35 AH Cell 36 AH RCL 4 0 -4 1/1/13 1/1/18 1/1/13 1/1/15 1/1/18 1/1/20 1/1/13 1/1/15 1/1/20 1/1/13 1/1/15 1/1/18 1/1/20 1/1/15 1/1/18 1/1/20 Date

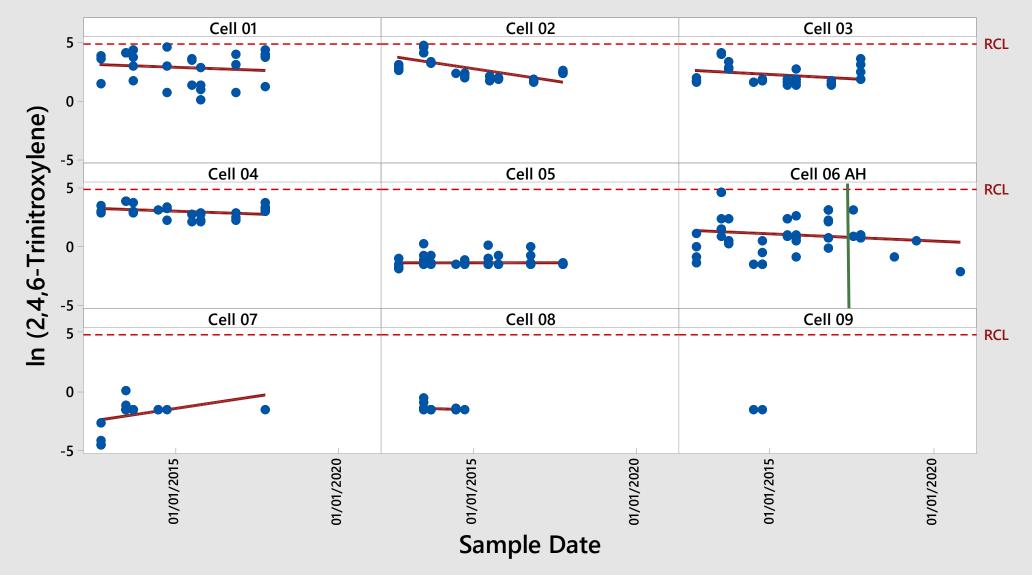
Scatterplot of In (All DNT) vs Date


Vertical green lines indicate the beginning of lime addition The natural logarithm of the RCL (70.3 mg/kg) is shown * ind

* indicates a significant reduction over time

Scatterplot of In(Total DNX) vs Sample Date

Vertical green line indicates the beginning of lime addition The natural logarithm of the RCL (111 mg/kg) is shown



Scatterplot of In(Total DNX) vs Sample Date

Cell 19 Cell 20 Cell 21 AH Cell 24 AH 5.0 RCL 2.5 0.0 In(Total DNX) Cell 26 AH Cell 27 AH Cell 25 AH Cell 28 AH 5.0 RCL 2.5 0.0 Cell 31 AH Cell 33 AH Cell 35 AH Cell 36 AH 5.0 RCL 2.5 0.0 01/01/2015 01/01/2020 01/01/2015 01/01/2020 01/01/2015 01/01/2020 01/01/2015 01/01/2020 Sample Date

Scatterplot of In(Total DNX) vs Sample Date

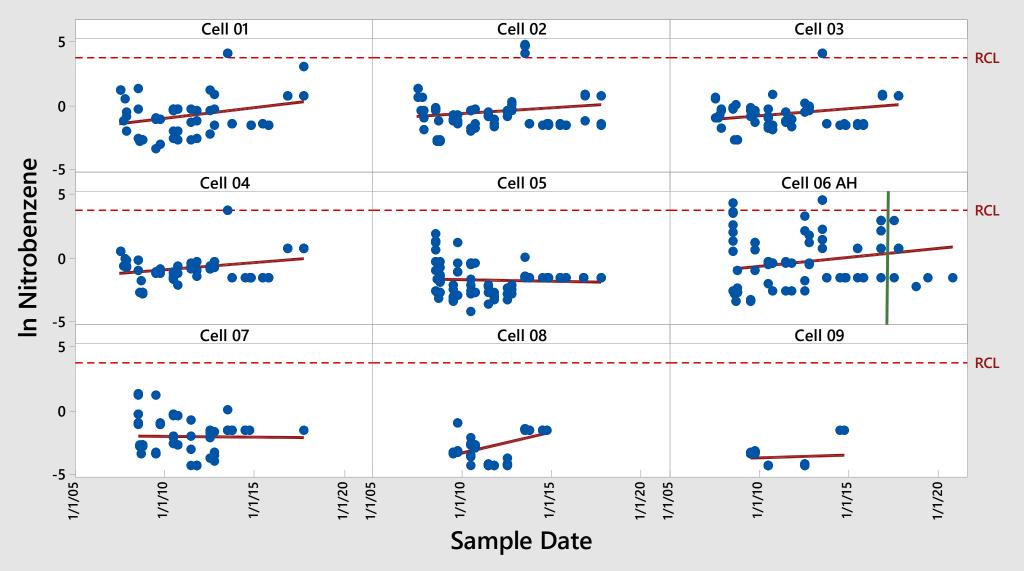
Vertical green lines indicate the beginning of lime addition The natural logarithm of the RCL (111 mg/kg) is shown

Scatterplot of In (2,4,6-Trinitroxylene) vs Sample Date

The vertical green line indidates the beginning of lime addition The natural logarithm of the RCL (124 mg/kg/) is shown

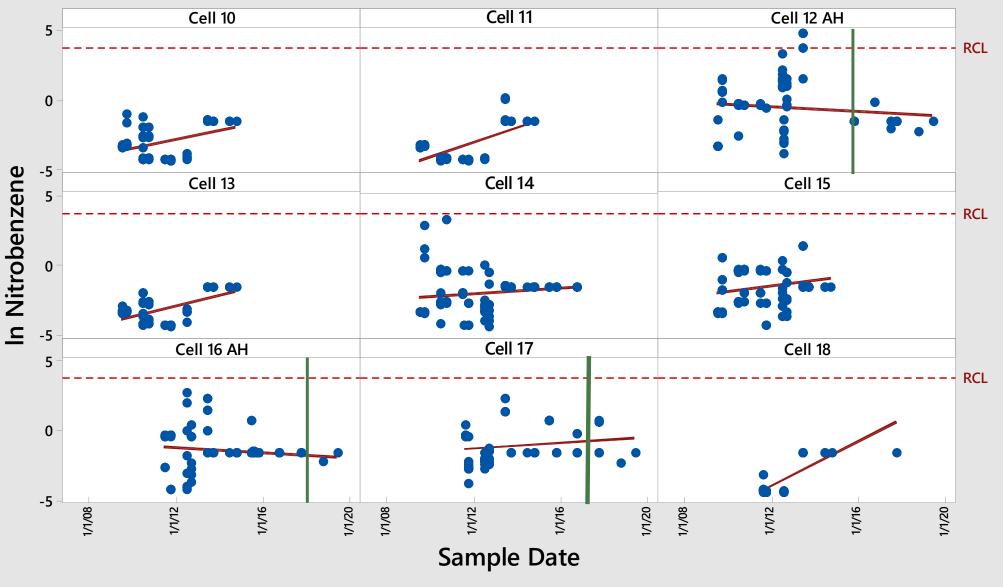
Cell 10 Cell 11 Cell 12 AH 5 RCL 0 In (2,4,6-Trinitroxylene) -5 Cell 14 Cell 13 Cell 15 RCL 0 -5 Cell 16 AH Cell 17 Cell 18 5 RCL 0 -5 01/01/2008 01/01/2016 01/01/2020 01/01/2008 01/01/2016 01/01/2020 01/01/2008 01/01/2016 01/01/2020 01/01/2012 01/01/2012 01/01/2012 Sample Date

Scatterplot of In (2,4,6-Trinitroxylene) vs Sample Date


The natural logarithm of the RCL (124 mgm/kg) is shown

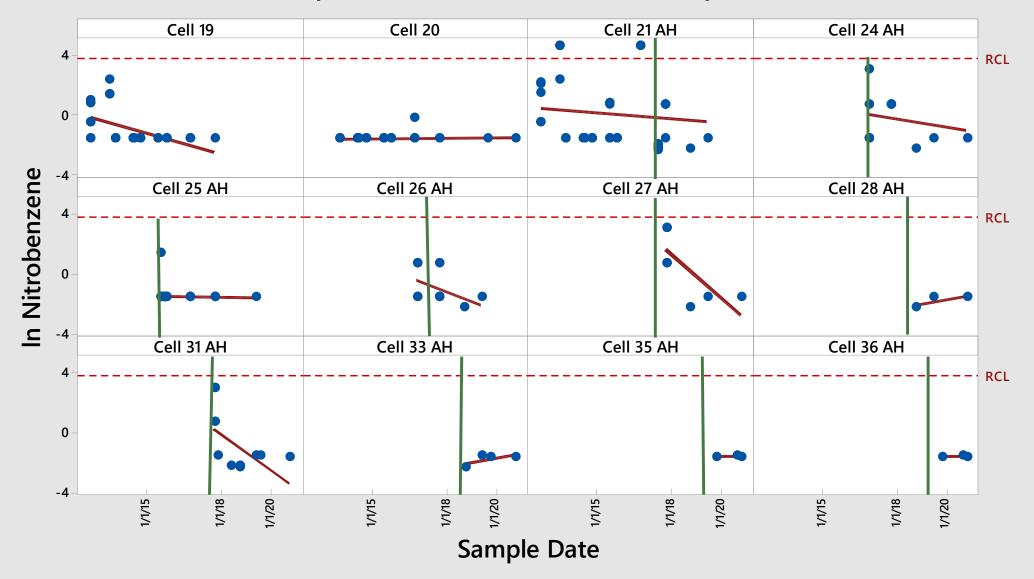
Vertical lines indicate the beginning of lime addition

Cell 19 Cell 20 Cell 21 AH Cell 24 AH 8 RCL 4 In (2,4,6-Trinitroxylene) 0 Cell 26 AH Cell 27 AH Cell 25 AH Cell 28 AH 8 RCL 4 0 Cell 31 AH Cell 33 AH Cell 35 AH Cell 36 AH RCL 4 0 01/01/2018 01/01/2020 01/01/2020 01/01/2018 01/01/2018 01/01/2015 01/01/2015 01/01/2015 01/01/2020 01/01/2015 01/01/2018 01/01/2020 Sample Date

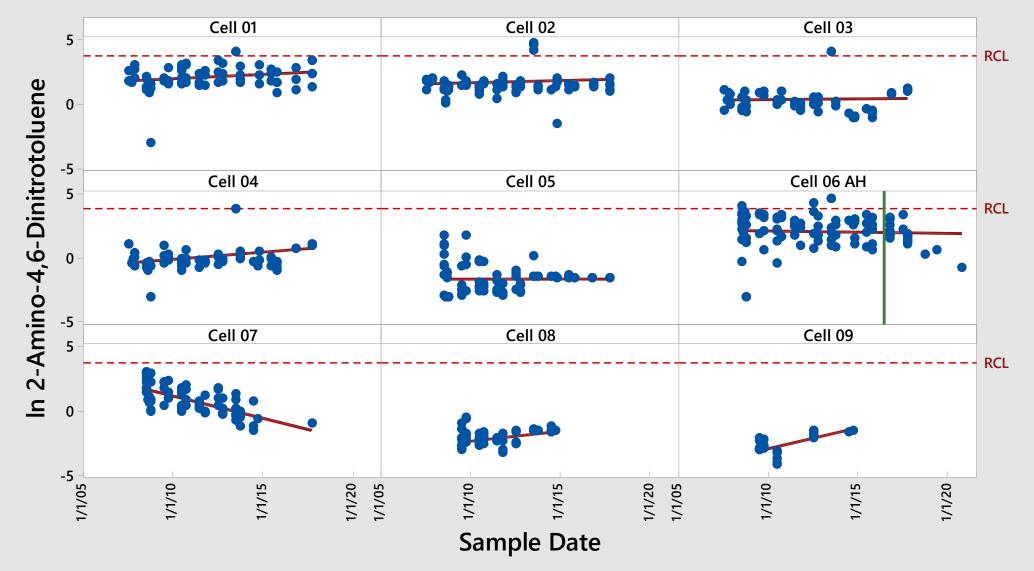

Scatterplot of In (2,4,6-Trinitroxylene) vs Sample Date

The vertical green lines indicate the beginning of lime addition The logarithm of the RCL (124 mg/kg) is shown

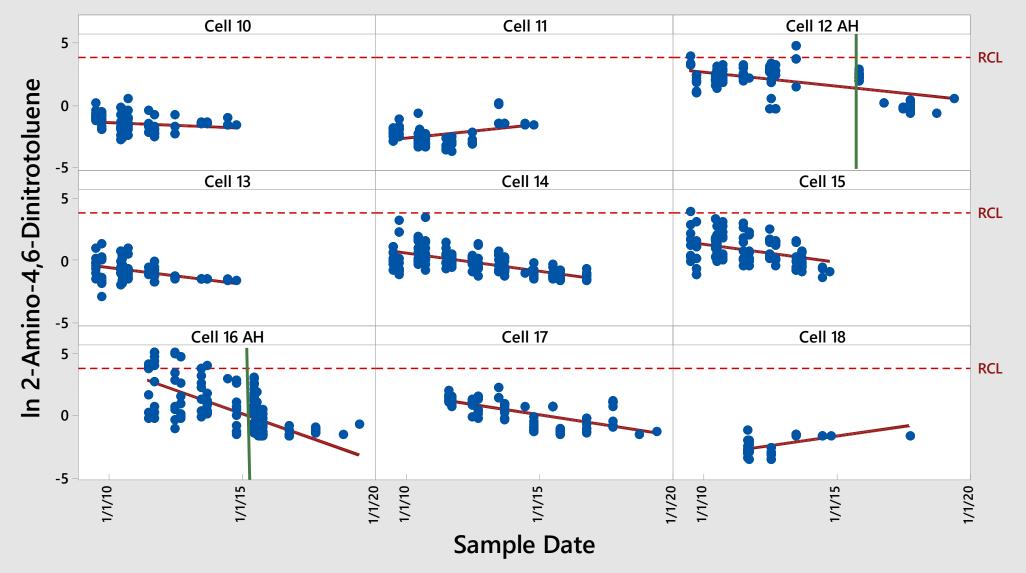
Scatterplot of In Nitrobenzene vs Sample Date


The vertical green line indicates the beginning of lime addition The natural logarithm of the RCL (43.2 mg/kg) is shown

Scatterplot of In Nitrobenzene vs Sample Date


The natural logarithm of the RCL (43.2 mg/kg) is shown

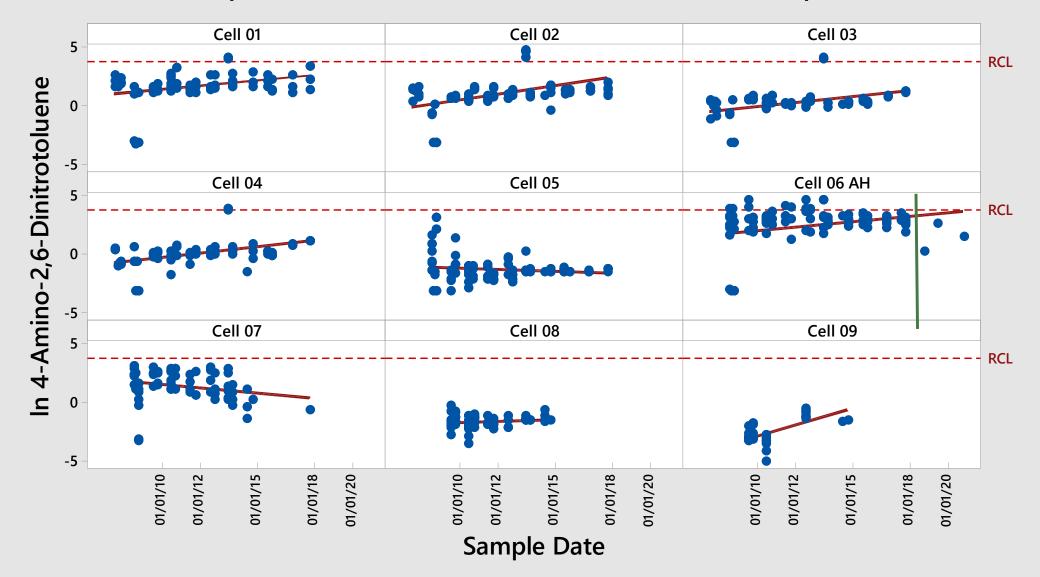
Vertical green lines indicate the beginning of lime addition


Scatterplot of In Nitrobenzene vs Sample Date

Vertical green lines indicate the beginning of lime addition The natural logarithm of the RCL (43.2 mg/kg) is shown

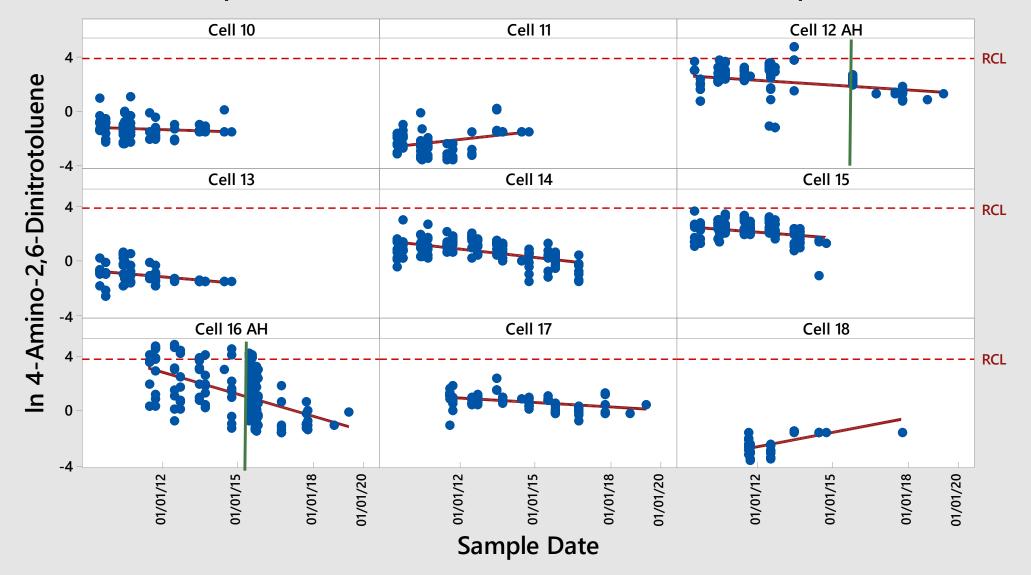
Scatterplot of In 2-Amino-4,6-Dinitrotoluene vs Sample Date

Vertical green line indicates the beginning of lime addition The natural logarithm of the RCL(45 mg/kg) is shown


Scatterplot of In 2-Amino-4,6-Dinitrotoluene vs Sample Date

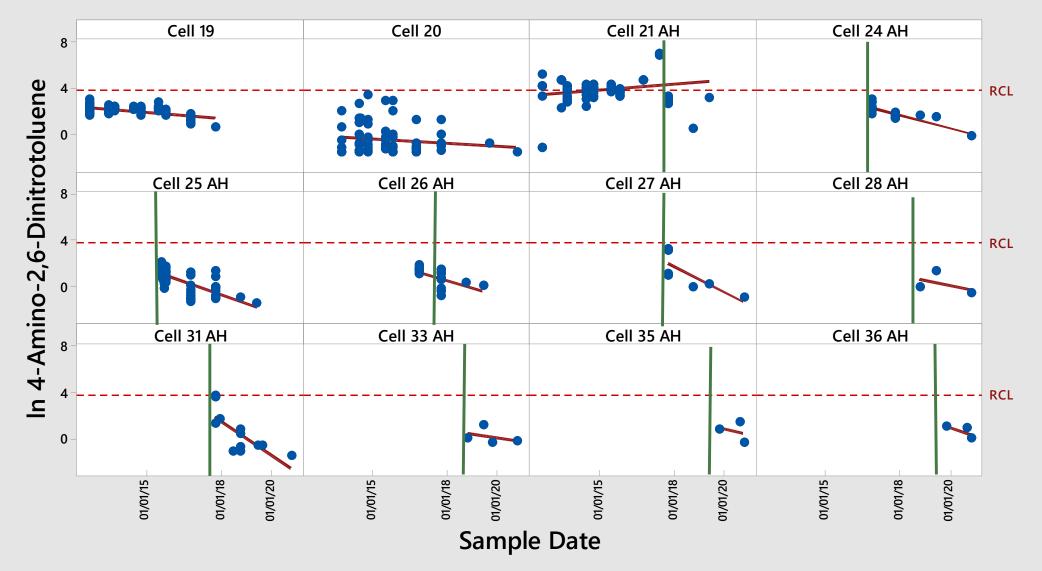
Vertical green lines indicate the beginning of lime addition The natural logarithm of the RCL (45 mg/kg) is shown

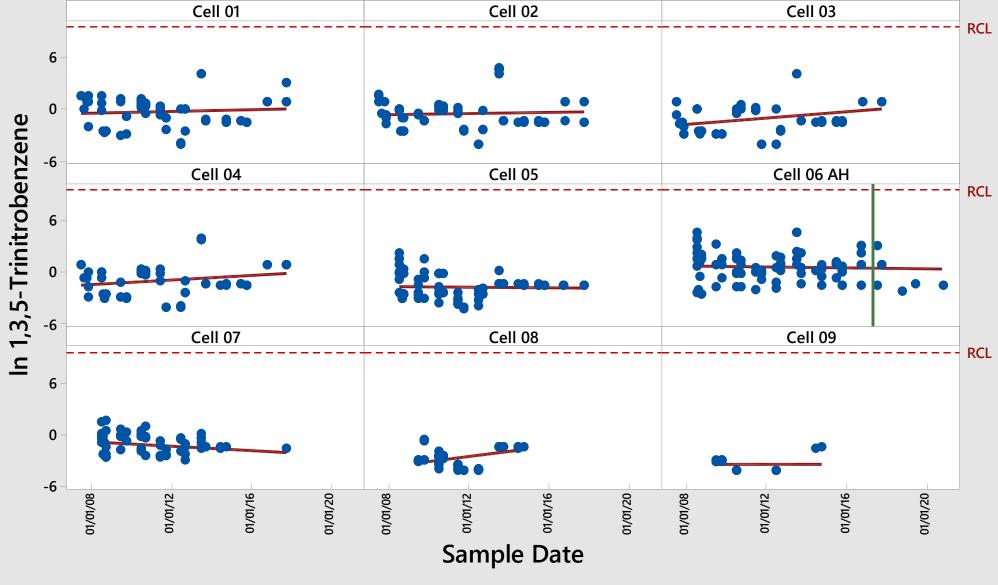
Cell 19 Cell 20 Cell 21 AH Cell 24 AH 8 4 In 2-Amino-4,6-Dinitrotoluene RCL 0 Cell 25 AH Cell 26 AH Cell 27 AH Cell 28 AH 8 RCL 0 Cell 31 AH Cell 33 AH Cell 35 AH Cell 36 AH 8 RCL 0 1/1/15 1/1/20 1/1/15 1/1/20 1/1/15 1/1/20 1/1/15 1/1/20 Sample Date


Scatterplot of In 2-Amino-4,6-Dinitrotoluene vs Sample Date

Vertical green lines indicate the beginning of lime addition The natural logarithm of the RCL (45 mg/kg) is shown

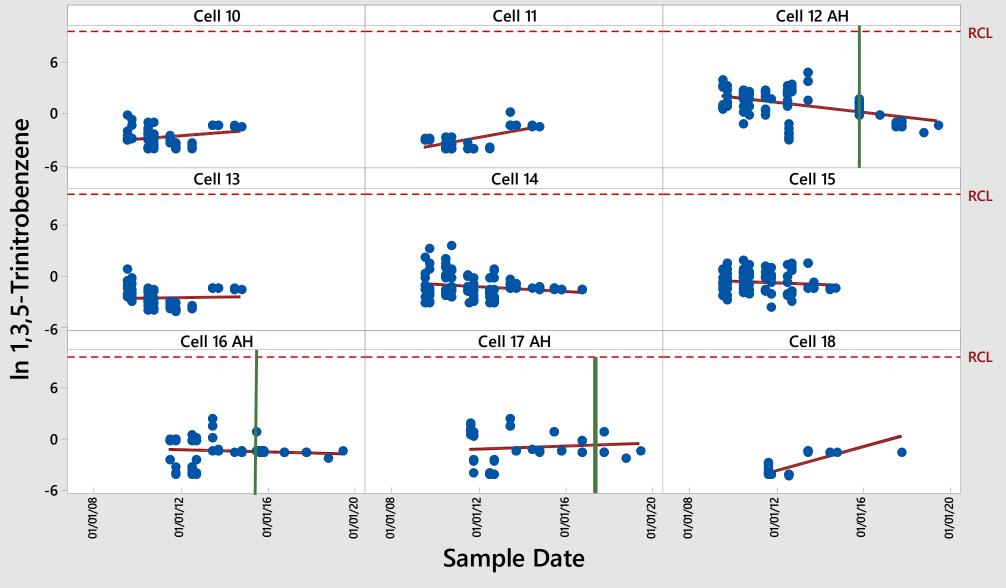
Scatterplot of In 4-Amino-2,6-Dinitrotoluene vs Sample Date


Vertical green line represents the beginning of lime addition The natural logarithm of the RCL (45 mg/kg) is shown


Scatterplot of In 4-Amino-2,6-Dinitrotoluene vs Sample Date

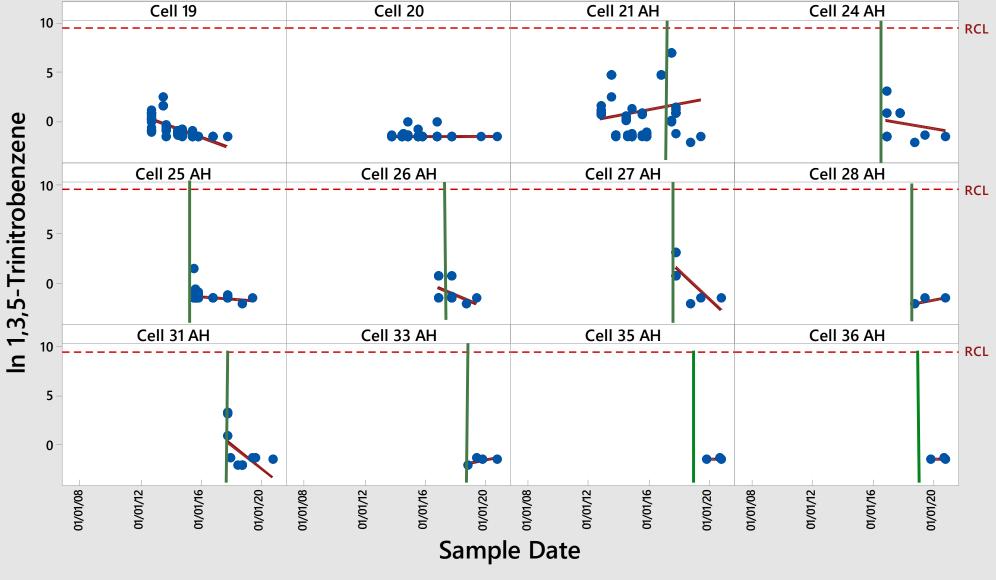
Vertical green lines represent the beginning of lime addition The natural logarithm of the RCL (45 mg/kg) is shown

Scatterplot of In 4-Amino-2,6-Dinitrotoluene vs Sample Date


Vertical green lines represent the beginning of lime addition The natural logarithm of the RCL (45 mg/kg) is shown

Scatterplot of In 1,3,5-Trinitrobenzene vs Sample Date

The natural logarithm of the RCL (13100 mg/kg) is shown


Vertical green line indicates the beginning of lime addition

Scatterplot of In 1,3,5-Trinitrobenzene vs Sample Date

The natural logarithm of the RCL (13100 mg/kg) is shown

Vertical green lines indicate the beginning of lime addition

Scatterplot of In 1,3,5-Trinitrobenzene vs Sample Date

The natural logarithm of the RCL (13100 mg/kg) is shown

Vertical green lines indicate the beginning of lime addition

Appendix D

Cell Photographs

SITE PHOTOGRAPHS	
Former Barksdale Works	
Date: 10/29/2020 Direction: Southwest Description: View of cell C07 showing vegetation cover at the end of summer growing season.	
Date: 10/29/2020 Direction: Northeast Description: View of cell C13 showing vegetation cover at the end of summer growing season.	

Appendix E

Pace Analytical Reports

2525 Advance Road Madison, WI 53718 608.221.8700 Phone 608.221.4889 Fax

September 11, 2020

Sharon Nordstrom AECOM 4051 Ogletown Road Newark, DE 19713 RE: Bio Pilot - Barksdale, WI

Enclosed are the analytical results for the samples received by the laboratory on 08/27/2020.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. These results are in compliance with the 2009 NELAC Standards and the appropriate agencies listed below, unless otherwise noted in the case narrative. This analytical report should be reproduced in its entirety.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

ICA

Jessica Esser

Project Manager

Certification L	ist		Expires
DODELAP	DOD ELAP Accreditation (A2LA)	3269.01	03/31/2021
ILEPA	Illinois Secondary NELAP Accreditation	004366	04/30/2021
KDHE	Kansas Secondary NELAP Accreditation	E-10384	04/30/2021
LELAP	Louisiana Primary NELAP Accreditation	04165	06/30/2021
NJDEP	New Jersey Secondary NELAP Accreditation	WI004	06/30/2021
TCEQ	Texas Secondary NELAP Accreditation	T104704504-16-7	11/30/2020
WDNR	Wisconsin Certification under NR 149	113289110	08/31/2021

Project: Bio Pilot - Barksdale, WI Project Number: 60525839 Project Manager: Sharon Nordstrom

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BPSP-200817-C-35-0-2	A203525-01	Soil	08/17/2020	08/27/2020
BPSP-200817-C-36-0-2	A203525-02	Soil	08/17/2020	08/27/2020

CASE NARRATIVE

Sample Receipt Information:

Two samples were received on 08/27/2020. Samples were received in acceptable condition.

Please see the chain of custody (COC) document at the end of this report for additional information.

Date Sampled 08/17/2020 10:15

AECOM 4051 Ogletown Road Newark DE, 19713

Project: Bio Pilot - Barksdale, WI Project Number: 60525839

Project Manager: Sharon Nordstrom

BPSP-200817-C-35-0-2

A203525-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifier
		Pace A	nalytical -	Madison				
pH by EPA Method 9045			•		Prep	aration Batch: A009	9113	
Lab pH	11.3		pH Units	1	09/03/2020	09/03/2020 10:41	EPA 9045D	
Explosive Compounds by EPA Method 8270					Prepa	aration Batch: A009	9121	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
1,3,5-Trinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
1,3-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
2,3-Dinitrotoluene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
2,4,6-Trinitrotoluene	67000	1700	ug/kg dry	8	09/09/2020	09/09/2020 18:24	EPA 8270D	D
2,4-Dinitrotoluene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
2,5-Dinitrotoluene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
2,6-Dinitrotoluene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
2-Amino-4,6-dinitrotoluene	950	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
2-Nitrotoluene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
3,4-Dinitrotoluene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
3,5-Dinitroaniline	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
3,5-Dinitrotoluene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
3-Nitrotoluene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
4-Amino-2,6-dinitrotoluene	4300	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
4-Nitrotoluene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
Nitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	1100	210	ug/kg dry	1	09/09/2020	09/09/2020 17:53	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		83.6	%	0-150	09/09/2020	09/09/2020 17:53	EPA 8270D	
Surrogate: Nitrobenzene-d5		92.1	%	70-114	09/09/2020	09/09/2020 17:53	EPA 8270D	
Classical Chemistry Parameters					Prep	aration Batch: A009	9126	
% Solids	93.9	0.00	% by	1	09/10/2020	09/11/2020 09:03	SM 2540B	

Weight

Project: Bio Pilot - Barksdale, WI Project Number: 60525839

Project Manager: Sharon Nordstrom

BPSP-200817-C-36-0-2

Date Sampled 08/17/2020 10:25

			A203525-02	08/17/2020 10:25				
Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
		Pace A	Analytical -	Madison				
pH by EPA Method 9045					Prepa	aration Batch: A009	0113	
Lab pH	12.3		pH Units	1	09/03/2020	09/03/2020 10:44	EPA 9045D	
Explosive Compounds by EPA Method 8270					Prep	aration Batch: A009	0121	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
1,3,5-Trinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
1,3-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
2,3-Dinitrotoluene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
2,4,6-Trinitrotoluene	92000	1700	ug/kg dry	8	09/09/2020	09/09/2020 18:56	EPA 8270D	D
2,4-Dinitrotoluene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
2,5-Dinitrotoluene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
2,6-Dinitrotoluene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
2-Amino-4,6-dinitrotoluene	1100	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
2-Nitrotoluene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
3,4-Dinitrotoluene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
3,5-Dinitroaniline	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
3,5-Dinitrotoluene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
3-Nitrotoluene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
4-Amino-2,6-dinitrotoluene	2300	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
4-Nitrotoluene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
Nitrobenzene	ND	210		1	09/09/2020	09/10/2020 11:25	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	210	ug/kg dry	1	09/09/2020	09/10/2020 11:25	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		77.0)% 1	0-150	09/09/2020	09/10/2020 11:25	EPA 8270D	
Surrogate: Nitrobenzene-d5		87.9		70-114	09/09/2020	09/10/2020 11:25	EPA 8270D	
Classical Chemistry Parameters					Prepa	aration Batch: A009	0126	
% Solids	96.9	0.00	% by	1	09/10/2020	09/11/2020 09:03	SM 2540B	

Weight

Project: Bio Pilot - Barksdale, WI Project Number: 60525839

Project Manager: Sharon Nordstrom

pH by EPA Method 9045 - Quality Control

Pace Analytical - Madison

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch A009113 - Default Prep GenChem										
Duplicate (A009113-DUP1)	Sou	rce: A203525-0	02	Prepared: (9/03/2020	Analyzed: (09/03/2020	10:47		
Lab pH	12.3		pH Units		12.3			0.520	20	

Page 5 of 11 A203525 FINAL 09 11 2020 1318

Project: Bio Pilot - Barksdale, WI Project Number: 60525839

Project Manager: Sharon Nordstrom

Explosive Compounds by EPA Method 8270 - Quality Control

Pace Analytical - Madison

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch A009121 - EPA 3570										
Blank (A009121-BLK1)				Prepared: 0	9/09/2020	Analyzed: (09/09/2020	19:27		
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg wet							
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg wet							
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg wet							
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg wet							
1,3,5-Trinitrobenzene	ND	200	ug/kg wet							
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg wet							
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg wet							
1,3-Dinitrobenzene	ND	200	ug/kg wet							
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg wet							
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg wet							
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg wet							
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg wet							
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg wet							
2,3-Dinitrotoluene	ND	200	ug/kg wet							
2,4,6-Trinitrotoluene	ND	200	ug/kg wet							
2,4-Dinitrotoluene	ND	200	ug/kg wet							
2,5-Dinitrotoluene	ND	200	ug/kg wet							
2,6-Dinitrotoluene	ND	200	ug/kg wet							
2-Amino-4,6-dinitrotoluene	ND	200	ug/kg wet							
2-Nitrotoluene	ND	200	ug/kg wet							
3,4-Dinitrotoluene	ND	200	ug/kg wet							
3,5-Dinitroaniline	ND	200	ug/kg wet							
3,5-Dinitrotaluene	ND	200	ug/kg wet							
3-Nitrotoluene	ND	200	ug/kg wet ug/kg wet							
4-Amino-2,6-dinitrotoluene	ND	200	ug/kg wet							
4-Nitrotoluene	ND	200	ug/kg wet							
Vitrobenzene	ND	200								
			ug/kg wet ug/kg wet							
1,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg wet							
Surrogate: 2,2'-Dinitrobiphenyl	932		ug/kg wet	1943		48.0	10-150			
Surrogate: Nitrobenzene-d5	1780		ug/kg wet	2000		88.8	70-114			
LCS (A009121-BS1)				Prepared: 0	9/09/2020	Analyzed: (09/09/2020	19:58		
1,2-Dimethyl-3,4-Dinitrobenzene	1830	200	ug/kg wet	1996		91.8	79.8-107			
1,2-Dimethyl-3,5-Dinitrobenzene	1890	200	ug/kg wet	2020		93.8	77.4-105			
1,2-Dimethyl-3,6-Dinitrobenzene	1890	200	ug/kg wet	1999		94.6	82.4-108			
1,2-Dimethyl-4,5-Dinitrobenzene	1820	200	ug/kg wet	2026		89.8	72.5-113			
1,3,5-Trinitrobenzene	1730	200	ug/kg wet	2000		86.3	41.7-129			
1,3-Dimethyl-2,4-Dinitrobenzene	1740	200	ug/kg wet	2020		86.3	74.2-108			
1,3-Dimethyl-2,5-Dinitrobenzene	1780	200	ug/kg wet	2002		89.0	81.2-108			
1,3-Dinitrobenzene	1660	200	ug/kg wet	2000		82.8	54.1-119			
I,4-Dimethyl-2,3-Dinitrobenzene	1800	200	ug/kg wet	2006		89.6	78.2-104			
1,4-Dimethyl-2,5-Dinitrobenzene	1800	200	ug/kg wet	2026		88.7	75.3-106			
1,4-Dimethyl-2,6-Dinitrobenzene	1820	200	ug/kg wet	1996		91.1	73.6-108			
1,5-Dimethyl-2,3-Dinitrobenzene	1950	200	ug/kg wet	2012		96.7	79.6-105			
I,5-Dimethyl-2,4-Dinitrobenzene	1750	200	ug/kg wet	1966		89.3	75.5-106			
2,3-Dinitrotoluene	1820	200	ug/kg wet	2000		91.1	72.1-113			
2,4,6-Trinitrotoluene	1960	200	ug/kg wet ug/kg wet	2000		98.2	65.6-124			
2,4-Dinitrotoluene	1830	200	ug/kg wet	2000		91.5	68.7-120			

Page 6 of 11 A203525 FINAL 09 11 2020 1318

Project: Bio Pilot - Barksdale, WI Project Number: 60525839

Project Manager: Sharon Nordstrom

Explosive Compounds by EPA Method 8270 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch A009121 - EPA 3570								_		
Batch A009121 - EPA 5570				Prenared (09/09/2020	Analyzed	09/09/2020 1	10.58		
2,5-Dinitrotoluene	1700	200	ug/kg wet	2000	JJ/0J/2020	84.9	70.5-109	17.50		
2,6-Dinitrotoluene	1810	200	ug/kg wet ug/kg wet	2000		90.6	78.1-111			
2-Amino-4,6-dinitrotoluene	1810	200	ug/kg wet	2000		90.0 90.7	65.3-107			
2-Nitrotoluene	1710	200	ug/kg wet	2000		85.3	76.5-115			
3,4-Dinitrotoluene	1840	100	ug/kg wet	2000		91.8	70.5-115			
3,5-Dinitroaniline	1840	200	ug/kg wet	2000		91.6	63.8-110			
3,5-Dinitrotoluene	1760	200	ug/kg wet	2000		88.2	80.5-109			
3-Nitrotoluene	1700	200	ug/kg wet	2000		88.6	80-110			
4-Amino-2,6-dinitrotoluene	1760	200	ug/kg wet	2000		87.8	55.1-112			
4-Nitrotoluene	1780	200	ug/kg wet	2000		88.8	80.6-109			
Nitrobenzene	1780	200	ug/kg wet	2000		89.0	82.1-112			
		200								
Surrogate: 2,2'-Dinitrobiphenyl	1660		ug/kg wet	1943		85.6	10-150			
Surrogate: Nitrobenzene-d5	1720		ug/kg wet	2000		85.8	70-114			
Matrix Spike (A009121-MS1)	Sou	rce: A203615	5-05	Prepared: (09/09/2020	Analyzed:	09/09/2020 2	20:30		
1,2-Dimethyl-3,4-Dinitrobenzene	1890	200	ug/kg dry	2012	ND	94.1	67.1-109			
1,2-Dimethyl-3,5-Dinitrobenzene	1940	200	ug/kg dry	2036	ND	95.2	68.4-108			
1,2-Dimethyl-3,6-Dinitrobenzene	1870	200	ug/kg dry	2015	ND	93.0	72.5-113			
1,2-Dimethyl-4,5-Dinitrobenzene	1780	200	ug/kg dry	2042	ND	87.4	64-114			
1,3,5-Trinitrobenzene	1750	200	ug/kg dry	2016	ND	86.7	10.7-145			
1,3-Dimethyl-2,4-Dinitrobenzene	1790	200	ug/kg dry	2036	ND	87.8	70.3-111			
1,3-Dimethyl-2,5-Dinitrobenzene	1830	200	ug/kg dry	2018	ND	90.6	75.4-111			
1,3-Dinitrobenzene	1720	200	ug/kg dry	2016	ND	85.2	45.5-120			
1,4-Dimethyl-2,3-Dinitrobenzene	1850	200	ug/kg dry	2022	ND	91.7	65.1-109			
1,4-Dimethyl-2,5-Dinitrobenzene	1850	200	ug/kg dry	2042	ND	90.8	68.4-110			
1,4-Dimethyl-2,6-Dinitrobenzene	1830	200	ug/kg dry	2012	ND	91.0	69.5-110			
1,5-Dimethyl-2,3-Dinitrobenzene	1920	200	ug/kg dry	2028	ND	94.9	67-109			
1,5-Dimethyl-2,4-Dinitrobenzene	1780	200	ug/kg dry	1981	ND	89.9	64.6-113			
2,3-Dinitrotoluene	1850	200	ug/kg dry	2016	ND	92.0	61.7-112			
2,4,6-Trinitrotoluene	1990	200	ug/kg dry	2016	ND	98.7	27.1-169			
2,4-Dinitrotoluene	1850	200	ug/kg dry	2016	ND	91.7	57-126			
2,5-Dinitrotoluene	1760	200	ug/kg dry	2016	ND	87.3	64.6-108			
2,6-Dinitrotoluene	1840	200	ug/kg dry	2016	ND	91.3	66.2-116			
2-Amino-4,6-dinitrotoluene	1780	200	ug/kg dry	2016	ND	88.5	26.4-130			
2-Nitrotoluene	1730	200	ug/kg dry	2016	ND	85.9	73.2-116			
3,4-Dinitrotoluene	1840	100	ug/kg dry	2016	ND	91.3	59.8-115			
3,5-Dinitroaniline	1810	200	ug/kg dry	2016	ND	90.0	31.2-124			
3,5-Dinitrotoluene	1800	200	ug/kg dry	2016	ND	89.3	69.5-111			
3-Nitrotoluene	1830	200	ug/kg dry	2016	ND	90.9	75.4-115			
4-Amino-2,6-dinitrotoluene	1760	200	ug/kg dry	2016	ND	87.1	20.6-139			
4-Nitrotoluene	1830	200	ug/kg dry	2016	ND	90.6	76.9-112			
Nitrobenzene	1830	200	ug/kg dry	2016	ND	90.9	74-115			
Surrogate: 2,2'-Dinitrobiphenyl	1660		ug/kg dry	1958		84.6	10-150			
Surrogate: Nitrobenzene-d5	1800		ug/kg dry	2016		89.4	70-114			

Project: Bio Pilot - Barksdale, WI Project Number: 60525839

Project Manager: Sharon Nordstrom

Explosive Compounds by EPA Method 8270 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch A009121 - EPA 3570										
Matrix Spike Dup (A009121-MSD1)	Sour	ce: A203615	-05	Prepared: 09/09/2020 Analyzed: 09/09/2020 21:01						
1,2-Dimethyl-3,4-Dinitrobenzene	1900	200	ug/kg dry	2012	ND	94.3	67.1-109	0.214	20	
1,2-Dimethyl-3,5-Dinitrobenzene	1900	200	ug/kg dry	2036	ND	93.4	68.4-108	1.81	20	
1,2-Dimethyl-3,6-Dinitrobenzene	1890	200	ug/kg dry	2015	ND	93.7	72.5-113	0.693	20	
1,2-Dimethyl-4,5-Dinitrobenzene	1810	200	ug/kg dry	2042	ND	88.7	64-114	1.53	20	
1,3,5-Trinitrobenzene	1770	200	ug/kg dry	2016	ND	88.0	10.7-145	1.48	20	
1,3-Dimethyl-2,4-Dinitrobenzene	1800	200	ug/kg dry	2036	ND	88.4	70.3-111	0.709	20	
1,3-Dimethyl-2,5-Dinitrobenzene	1820	200	ug/kg dry	2018	ND	90.0	75.4-111	0.652	20	
1,3-Dinitrobenzene	1750	200	ug/kg dry	2016	ND	86.7	45.5-120	1.67	20	
1,4-Dimethyl-2,3-Dinitrobenzene	1830	200	ug/kg dry	2022	ND	90.6	65.1-109	1.16	20	
1,4-Dimethyl-2,5-Dinitrobenzene	1830	200	ug/kg dry	2042	ND	89.7	68.4-110	1.16	20	
1,4-Dimethyl-2,6-Dinitrobenzene	1830	200	ug/kg dry	2012	ND	91.0	69.5-110	0.0143	20	
1,5-Dimethyl-2,3-Dinitrobenzene	1930	200	ug/kg dry	2028	ND	95.4	67-109	0.590	20	
1,5-Dimethyl-2,4-Dinitrobenzene	1770	200	ug/kg dry	1981	ND	89.6	64.6-113	0.397	20	
2,3-Dinitrotoluene	1870	200	ug/kg dry	2016	ND	92.7	61.7-112	0.774	20	
2,4,6-Trinitrotoluene	2010	200	ug/kg dry	2016	ND	99.6	27.1-169	0.849	20	
2,4-Dinitrotoluene	1880	200	ug/kg dry	2016	ND	93.4	57-126	1.85	20	
2,5-Dinitrotoluene	1750	200	ug/kg dry	2016	ND	87.1	64.6-108	0.276	20	
2,6-Dinitrotoluene	1870	200	ug/kg dry	2016	ND	92.8	66.2-116	1.55	20	
2-Amino-4,6-dinitrotoluene	1800	200	ug/kg dry	2016	ND	89.4	26.4-130	0.964	20	
2-Nitrotoluene	1750	200	ug/kg dry	2016	ND	86.8	73.2-116	0.930	20	
3,4-Dinitrotoluene	1860	100	ug/kg dry	2016	ND	92.4	59.8-115	1.23	20	
3,5-Dinitroaniline	1870	200	ug/kg dry	2016	ND	92.6	31.2-124	2.82	20	
3,5-Dinitrotoluene	1810	200	ug/kg dry	2016	ND	89.6	69.5-111	0.363	20	
3-Nitrotoluene	1840	200	ug/kg dry	2016	ND	91.1	75.4-115	0.205	20	
4-Amino-2,6-dinitrotoluene	1780	200	ug/kg dry	2016	ND	88.2	20.6-139	1.24	20	
4-Nitrotoluene	1820	200	ug/kg dry	2016	ND	90.1	76.9-112	0.559	20	
Nitrobenzene	1840	200	ug/kg dry	2016	ND	91.2	74-115	0.390	20	
Surrogate: 2,2'-Dinitrobiphenyl	1660		ug/kg dry	1958		84.6	10-150			
Surrogate: Nitrobenzene-d5	1800		ug/kg dry	2016		89.2	70-114			

Project: Bio Pilot - Barksdale, WI Project Number: 60525839

Project Manager: Sharon Nordstrom

Classical Chemistry Parameters - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch A009126 - % Solids										
Duplicate (A009126-DUP1)	Sourc	ce: A203615-(05	Prepared: 0	9/10/2020	Analyzed: (9/11/2020	09:03		
% Solids	99.6	0.00 %	6 by Weight		99.6			0.0414	20	

Project: Bio Pilot - Barksdale, WI Project Number: 60525839 Project Manager: Sharon Nordstrom

Notes and Definitions

D Data reported from a dilution

ND Analyte NOT DETECTED at or above the reporting limit or limit of detection (if listed).

NR Not Reported

dry Sample results reported on a dry weight basis. Detection limits (if listed) and reporting limits have been adjusted for the solids content. If the word 'dry' does not appear after the units, results are reported on an as-is basis.

RPD Relative Percent Difference

Detection limits (if listed) and reporting limits have been adjusted for dilutions, if reported.

2525 A	Consulting Services, Inc. 2525 Advance Road Madison, WI 53718						1/-11									
608-22	21-8700 (phone)					Lab		rk O				Mail Report To: Sharon Nordstr	om			
	21-4889 (fax)	•					A	20	35	25	•	Company: AECOM				
Project Number: 3:0 P	:lot						Pr	eserva	tion Co	odes		Address: 4051 Ogletown Rd				
Project Name: Barksdale							An	alyses	Reque	ested		Newark, DE 19	713			
Project Location: Barksdale,	WI		A A E-mail Add				E-mail Address: sharon.nordstro	om@aecon	n.com							
Turn Around (check one): 🛛 No	ormal 🔲 5 BDs 🛄 3 BDs [2 BDs	24 hrs									Invoice To:				
If Rush, Report Due Date:					lers							Company: AECOM				
Sampled By (Print): Desmor	nd Nielsen				Containers							Address:				
Samples Froz	Placed in				6	S										
Sampled By (Print): DeSMOI Samp (-1.5 Froz Fruzer after Sample Des	r co Nector	Colle Date	ection Time	Matrix	Total #	NNOCS	H					_	Lab	Lab Receipt		
			1									Comments	ID	Time		
BPSP-200817-C-35 (0	·	8/17/2020	10:15	S	2	\mathbf{X}	\mathbf{X}						01			
BPSP-200817-C-36 (0)-2)	8/17/2020	10:25	S	2	\mathbf{X}	\mathbf{X}						02			
													_			
	unine Lange, d. f. f. g. examples as the Antonio Control of the second state of the second state of the second													······································		
·	******											· · · · · · · · · · · · · · · · · · ·		. /		
Preservation Codes A=None B=HCL C=H ₂ SO ₄	5 Business Days = 1.5x	Relinquishe	R IL	M	/			Date:	120	Time: / 1.0			Date: HZT/20	Time:		
D=HNO ₃ E=EnCore F=Methanol G=NaOH O=Other (Indicate)	3 Business Days = 2x 2 Business Days = 2.25x	Relinquishe	d By:					Date:		Time:		Received By:	Date:	Time:		
<u>Matrix Codes</u> A=Air S=Soil W=Water O=Other Download this form at www.eccsm	24 Hours = 2.5x *must be pre-arranged* obilelab.com	Custody Se	Present	Abs] Not			diz	Shipped Via: Receipt Ter Receipt Ter Shipped Via: Receipt Ter Shipped Via: Shipped Via: Shi		Blank: Y		

Page 1 of 1

Environmental Chemistry

ŧ

CHAIN OF CUSTODY

2525 Advance Road Madison, WI 53718 608.221.8700 Phone 608.221.4889 Fax

November 05, 2020

Sharon Nordstrom AECOM 4051 Ogletown Road Newark, DE 19713 RE: Bio Pilot - Barksdale, WI

Enclosed are the analytical results for the samples received by the laboratory on 10/22/2020.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. These results are in compliance with the 2009 NELAC Standards and the appropriate agencies listed below, unless otherwise noted in the case narrative. This analytical report should be reproduced in its entirety.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

ICA

Jessica Esser

Project Manager

Certification I	ist		Expires
DODELAP	DOD ELAP Accreditation (A2LA)	3269.01	03/31/2021
ILEPA	Illinois Secondary NELAP Accreditation	004366	04/30/2021
KDHE	Kansas Secondary NELAP Accreditation	E-10384	04/30/2021
LELAP	Louisiana Primary NELAP Accreditation	04165	06/30/2021
NJDEP	New Jersey Secondary NELAP Accreditation	WI004	06/30/2021
TCEQ	Texas Secondary NELAP Accreditation	T104704504-16-7	11/30/2020
WDNR	Wisconsin Certification under NR 149	113289110	08/31/2021

Project: Bio Pilot - Barksdale, WI Project Number: 60525839 Project Manager: Sharon Nordstrom

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BPSB-201019-C20-0-1.5	A204321-01	Soil	10/19/2020	10/22/2020
BPSB-201019-C28-0-1.5	A204321-02	Soil	10/19/2020	10/22/2020
BPSB-201019-C27-0-1.5	A204321-03	Soil	10/19/2020	10/22/2020
BPSB-201019-C24-0-1.5	A204321-04	Soil	10/19/2020	10/22/2020
BPSB-201019-C33-0-1.5	A204321-05	Soil	10/19/2020	10/22/2020
BPSB-201019-C31-0-1	A204321-06	Soil	10/19/2020	10/22/2020
BPSB-201019-C35-0-2	A204321-07	Soil	10/19/2020	10/22/2020
BPSB-201019-C36-0-2	A204321-08	Soil	10/19/2020	10/22/2020
BPSB-201019-C06-0-1.5	A204321-09	Soil	10/19/2020	10/22/2020

CASE NARRATIVE

Sample Receipt Information:

Nine samples were received on 10/22/2020. Samples were received in acceptable condition.

Please see the chain of custody (COC) document at the end of this report for additional information.

2525 Advance Road Madison, WI 53718 608.221.8700 Phone 608.221.4889 Fax

Date Sampled 10/19/2020 13:20

AECOM 4051 Ogletown Road Newark DE, 19713

% Solids

Project: Bio Pilot - Barksdale, WI Project Number: 60525839

Project Manager: Sharon Nordstrom

BPSB-201019-C20-0-1.5

A204321-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
					1	,		
		Pace A	nalytical -	Madison				
Explosive Compounds by EPA Method 8270					Prepa	aration Batch: A01(0218	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
1,3,5-Trinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
1,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
2,3-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
2,4,6-Trinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
2,4-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
2,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
2,6-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
2-Amino-4,6-dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
2-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
3,4-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
3,5-Dinitroaniline	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
3,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
3-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
4-Amino-2,6-dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
4-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
Nitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 04:49	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		66.9		0-150	10/28/2020	10/31/2020 04:49	EPA 8270D	
Surrogate: Nitrobenzene-d5		85.3		0-114	10/28/2020	10/31/2020 04:49	EPA 8270D	
Classical Chemistry Parameters					Prens	aration Batch: A01(231	
Chussical Chemistry I arameters					11000	and Butchi A010		

0.00 % by Weight

98.8

1

10/29/2020

10/30/2020 13:28

SM 2540B

Project: Bio Pilot - Barksdale, WI

Project Number: 60525839

Project Manager: Sharon Nordstrom

BPSB-201019-C28-0-1.5

Date Sampled 10/19/2020 13:40

			A204321-0	2 (Soil)		10	/19/2020 13:40	
Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
		Pace A	Analytical	- Madison				
pH by EPA Method 9045					Prepa	aration Batch: A01	1098	
Lab pH	12.5		pH Units	1	11/04/2020	11/04/2020 16:21	EPA 9045D	
Explosive Compounds by EPA Method 8270					Prepa	aration Batch: A01	0218	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:21	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
1,3,5-Trinitrobenzene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
1,3-Dinitrobenzene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
2,3-Dinitrotoluene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
2,4,6-Trinitrotoluene	5200	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
2,4-Dinitrotoluene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
2,5-Dinitrotoluene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
2,6-Dinitrotoluene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
2-Amino-4,6-dinitrotoluene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
2-Nitrotoluene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
3,4-Dinitrotoluene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
3,5-Dinitroaniline	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
3,5-Dinitrotoluene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
3-Nitrotoluene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
4-Amino-2,6-dinitrotoluene	580	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
4-Nitrotoluene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
Nitrobenzene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg dry		10/28/2020	10/31/2020 05:21	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		71.7	7 %	10-150	10/28/2020	10/31/2020 05:21	EPA 8270D	
Surrogate: Nitrobenzene-d5		85.0		70-114	10/28/2020	10/31/2020 05:21	EPA 8270D	
Classical Chemistry Parameters					Prepa	aration Batch: A01)231	
% Solids	98.7	0.00	% by	1	10/29/2020	10/30/2020 13:28	SM 2540B	

Weight

Project: Bio Pilot - Barksdale, WI

Project Number: 60525839

Project Manager: Sharon Nordstrom

BPSB-201019-C27-0-1.5 A204321-03 (Soil)

Date Sampled 10/19/2020 14:00

Pace Analytical - Madison Preparation Batch: A011098 Lab pH 7.17 pH Units 1 11/04/2020 11/04/2020 16/21 EN 6945D Explosive Compounds by EPA Method 8270 Preparation Batch: A010218 Preparation Batch: A010218 L2-Dimethyl-3,4-Dinitrobenzene ND 200 ug/kg dry 1 10/28/200 10/31/2020 65:52 EPA 8270D 1,2-Dimethyl-3,6-Dinitrobenzene ND 200 ug/kg dry 1 10/28/200 10/31/2020 65:52 EPA 8270D 1,3-Dimethyl-3,6-Dinitrobenzene ND 200 ug/kg dry 1 10/28/200 10/31/2020 65:52 EPA 8270D 1,3-Dimethyl-2,4-Dinitrobenzene ND 200 ug/kg dry 1 10/28/200 10/31/2020 65:52 EPA 8270D 1,3-Dimethyl-2,4-Dinitrobenzene ND 200 ug/kg dry 1 10/28/200 10/31/2020 65:52 EPA 8270D 1,3-Dimethyl-2,4-Dinitrobenzene ND 200 ug/kg dry 1 10/28/200 10/31/2020 65:2 </th <th></th> <th></th> <th></th> <th>A204321-03</th> <th></th> <th></th> <th colspan="5">10/17/2020 11:00</th>				A204321-03			10/17/2020 11:00				
Phy PPA Method 904S Preparation Batch: A01109E Lab pH 7.17 pH Units 1 1104/2020 1104/2020 16/21 EPA 9045D Explosive Compounds by EPA Method 8270 Preparation Batch: A01021E Preparation Batch: A01021E 1.2-Dimethyl-3.4-Dimitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 65:32 EPA 8270D 1.2-Dimethyl-3.6-Dimitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 65:32 EPA 8270D 1.3-Dimethyl-4.5-Dimitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 65:32 EPA 8270D 1.3-Dimethyl-2.4-Dimitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 65:32 EPA 8270D 1.3-Dimethyl-2.4-Dimitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 65:32 EPA 8270D 1.4-Dimethyl-2.3-Dimitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 65:32 EPA 8270D	Analyte	Result		Units	Dilution	Prepared	Analyzed	Method	Qualifier		
Labpil pH Unix			Pace A	Analytical -]	Madison						
Labpil pH Unix	pH by EPA Method 9045					Prepa	aration Batch: A011	098			
1.2-Dimethyl-3,4-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 05:52 EPA 8270D 1.2-Dimethyl-3,5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 05:52 EPA 8270D 1.2-Dimethyl-4,5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 05:52 EPA 8270D 1.3-Dimethyl-4,5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 05:52 EPA 8270D 1.3-Dimethyl-2,5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 05:52 EPA 8270D 1.3-Dimethyl-2,5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 05:52 EPA 8270D 1.4-Dimethyl-2,5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 05:52 EPA 8270D 1.4-Dimethyl-2,6-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 05:52 EPA 8270D 1.5-Dimethyl-2,6-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 05:52 EPA 8270D		7.17		pH Units	1						
1.2-Dimethyl-3.5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 1.2-Dimethyl-4.5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 1.2-Dimethyl-4.5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 1.3-Dimethyl-2.4-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 1.3-Dimethyl-3.5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 1.3-Dimethyl-2.5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 1.4-Dimethyl-2.5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 1.5-Dimethyl-2.5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 1.5-Dimethyl-2.4-Dinitrobenzene ND 200	Explosive Compounds by EPA Method 8270					Prepa	aration Batch: A01()218			
1.2-Dimethyl-3,6-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 05:52 EPA 8270D 1.3-Dimethyl-4,5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 05:52 EPA 8270D 1.3-Dimethyl-2,4-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 05:52 EPA 8270D 1.3-Dimethyl-2,5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 05:52 EPA 8270D 1.4-Dimethyl-2,5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 05:52 EPA 8270D 1.4-Dimethyl-2,5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 05:52 EPA 8270D 1.4-Dimethyl-2,6-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 05:52 EPA 8270D 1.5-Dimethyl-2,4-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 1031/2020 05:52 EPA 8270D 2,5-Dinitroblence ND 200 ug/kg dry	1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
1.2-Dimethyl-4,5-Dimitrobenzene ND 200 ug/kg dry 1 1028/2020 10.31/2020 05.52 EPA 8270D 1.3-Jiniethyl-2,4-Dimitrobenzene ND 200 ug/kg dry 1 1028/2020 10.31/2020 05.52 EPA 8270D 1.3-Dimethyl-2,4-Dimitrobenzene ND 200 ug/kg dry 1 1028/2020 10.31/2020 05.52 EPA 8270D 1.3-Dimitrobenzene ND 200 ug/kg dry 1 1028/2020 10.31/2020 05.52 EPA 8270D 1.4-Dimethyl-2,3-Dimitrobenzene ND 200 ug/kg dry 1 1028/2020 10.31/2020 05.52 EPA 8270D 1.4-Dimethyl-2,3-Dimitrobenzene ND 200 ug/kg dry 1 1028/2020 10.31/2020 05.52 EPA 8270D 1.5-Dimethyl-2,3-Dimitrobenzene ND 200 ug/kg dry 1 1028/2020 10.31/2020 05.52 EPA 8270D 1.4-Dimethyl-2,4-Dimitrobenzene ND 200 ug/kg dry 1 1028/2020 10.31/2020 05.52 EPA 8270D 2,3-Dimitrobluene ND 200 ug/kg dry	1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
1,3,5-Trinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:32 EPA 8270D 1,3-Dimitobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:32 EPA 8270D 1,3-Dimitobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:32 EPA 8270D 1,4-Dimethyl-2,3-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:32 EPA 8270D 1,4-Dimethyl-2,3-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:32 EPA 8270D 1,4-Dimethyl-2,3-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:32 EPA 8270D 1,5-Dimitryl-2,4-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:32 EPA 8270D 2,3-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:32 EPA 8270D 2,4-Dinitroblenze ND 200 ug/kg dry 1 1028/2020	1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
1.3-Dimethyl-2,4-Dimitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 1.3-Dimethyl-2,5-Dimitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 1.3-Dimethyl-2,5-Dimitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 1.4-Dimethyl-2,5-Dimitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 1.4-Dimethyl-2,5-Dimitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 1.5-Dimethyl-2,3-Dimitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2.5-Dimitrobluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2.4-GTrimitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2.4-GTrimitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D	1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
1,3-Dimethyl-2,5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 1,4-Dimethyl-2,3-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 1,4-Dimethyl-2,3-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 1,4-Dimethyl-2,3-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 1,5-Dimethyl-2,3-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 2,3-Dinitrotoluene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 2,4-Dinitrotoluene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 2,4-Dinitrotoluene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 2,4-Dinitrotoluene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 2,4-Dinitrotoluene	1,3,5-Trinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
1,3-Dimethyl-2,5-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 1,4-Dimethyl-2,3-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 1,4-Dimethyl-2,3-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 1,4-Dimethyl-2,3-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 1,5-Dimethyl-2,3-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 2,3-Dinitrotoluene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 2,4-Dinitrotoluene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 2,4-Dinitrotoluene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 2,4-Dinitrotoluene ND 200 ug/kg dry 1 1028/2020 10/31/2020 05:52 EPA 8270D 2,4-Dinitrotoluene	1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
1.4-Dimethyl-2,3-Dinitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 1.4-Dimethyl-2,5-Dinitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 1.4-Dimethyl-2,3-Dinitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 1,5-Dimethyl-2,3-Dinitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,3-Dinitrobuene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,4-Grinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,6-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,6-Dinitrotoluene	1,3-Dimethyl-2,5-Dinitrobenzene	ND	200		1	10/28/2020	10/31/2020 05:52	EPA 8270D			
1,4-Dimethyl-2,5-Dinitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 1,4-Dimethyl-2,6-Dinitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 1,5-Dimethyl-2,3-Dinitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,3-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,6-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,6-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,6-Dinitrotoluene ND	1,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
1.4-Dimethyl-2,6-Dinitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 1,5-Dimethyl-2,3-Dinitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,3-Dinitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,3-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,6-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,5-Dinitrotoluene ND 20	1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
1.5-Dimethyl-2,3-Dinitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 1,5-Dimethyl-2,4-Dinitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,3-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,6-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,6-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020	1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
1,5-Dimethyl-2,3-Dinitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 1,5-Dimethyl-2,4-Dinitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,3-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,6-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,6-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitrotoluene ND 2	1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
1,5-Dimethyl-2,4-Dinitrobenzene ND 200 ug/kg dry 1 1028/2020 10/31/2020 55:25 EPA 8270D 2,3-Dinitrotoluene ND 200 ug/kg dry 4 10/28/2020 10/31/2020 05:52 EPA 8270D 2,4-Dinitrotoluene ND 200 ug/kg dry 4 10/28/2020 11/02/2020 13:22 EPA 8270D 2,4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,6-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,6-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,6-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 <	1,5-Dimethyl-2,3-Dinitrobenzene	ND	200		1	10/28/2020	10/31/2020 05:52	EPA 8270D			
2.4,6-Trinitrotoluene 26000 800 ug/kg dry 4 10/28/2020 11/02/2020 13:28 EPA 8270D 2.4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2.5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2.6-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2.Amino-4,6-dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3.4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3.5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3.5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3.5-Dinitrotoluene ND 200 <t< td=""><td>1,5-Dimethyl-2,4-Dinitrobenzene</td><td>ND</td><td>200</td><td></td><td>1</td><td>10/28/2020</td><td>10/31/2020 05:52</td><td>EPA 8270D</td><td></td></t<>	1,5-Dimethyl-2,4-Dinitrobenzene	ND	200		1	10/28/2020	10/31/2020 05:52	EPA 8270D			
2.4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2.5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2.6-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2.Amino-4.6-dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2.Amino-4.6-dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2.Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3.4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3.5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3.5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 4-Amino-2,6-dinitrotoluene ND 200	2,3-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
2,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2,6-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2.Amino-4,6-dinitrotoluene 210 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 4-Amino-2,6-dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 4-Nitrotoluene ND 200 <t< td=""><td>2,4,6-Trinitrotoluene</td><td>26000</td><td>800</td><td>ug/kg dry</td><td>4</td><td>10/28/2020</td><td>11/02/2020 13:28</td><td>EPA 8270D</td><td>D</td></t<>	2,4,6-Trinitrotoluene	26000	800	ug/kg dry	4	10/28/2020	11/02/2020 13:28	EPA 8270D	D		
Z,6-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2-Amino-4,6-dinitrotoluene 210 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 2-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitroaniline ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 4-Amino-2,6-dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 4-Nitrotoluene ND 200	2,4-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
Z-Amino-4,6-dinitrotoluene Z10 200 ug/kg dry 1 10/28/2020 10/31/2020 552 EPA 8270D 2-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 4-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52	2,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
2-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 4-Amino-2,6-dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 4-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D Nitrobenzene ND 200 ug/kg dry	2,6-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
3,4-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitroaniline ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 4-Amino-2,6-dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 4-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D Nitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D Nitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D Surrogate: 2,2'-Dinitrobiphenyl 76.1 % 10-150 1	2-Amino-4,6-dinitrotoluene	210	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
3,5-Dinitroaniline ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 4-Amino-2,6-dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 4-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 4-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D Nitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 1,3,5-Trinitro-2,4-dimethylbenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D Surrogate: 2,2'-Dinitrobiphenyl 76.1 % 10-150 10/28/2020 10/31/2020 05:52 EPA 8	2-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
3,5-Dinitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 3-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 4-Amino-2,6-dinitrotoluene 380 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 4-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 4-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 4-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D Nitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 1,3,5-Trinitro-2,4-dimethylbenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D Surrogate: 2,2'-Dinitrobiphenyl 76.1 % 10-150 10/28/2020 10/31/2020 05:52 EPA 8270D Surrogate: Nitrobenzene-d5 83.8 % 70-114 10/28/2020 <td>3,4-Dinitrotoluene</td> <td>ND</td> <td>200</td> <td>ug/kg dry</td> <td>1</td> <td>10/28/2020</td> <td>10/31/2020 05:52</td> <td>EPA 8270D</td> <td></td>	3,4-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
3-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 5:52 EPA 8270D 4-Amino-2,6-dinitrotoluene 380 200 ug/kg dry 1 10/28/2020 10/31/2020 5:52 EPA 8270D 4-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 5:52 EPA 8270D 4-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 5:52 EPA 8270D Nitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 5:52 EPA 8270D 1,3,5-Trinitro-2,4-dimethylbenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 5:52 EPA 8270D Surrogate: 2,2 '-Dinitrobiphenyl 76.1 % 10-150 10/28/2020 10/31/2020 5:52 EPA 8270D Surrogate: Nitrobenzene-d5 83.8 % 70-114 10/28/2020 10/31/2020 5:52 EPA 8270D Classical Chemistry Parameters Preparation Batch: A010231	3,5-Dinitroaniline	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
4-Amino-2,6-dinitrotoluene 380 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 4-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D Nitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 1,3,5-Trinitro-2,4-dimethylbenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 1,3,5-Trinitro-2,4-dimethylbenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D Surrogate: 2,2'-Dinitrobiphenyl 76.1 % 10-150 10/28/2020 10/31/2020 05:52 EPA 8270D Surrogate: Nitrobenzene-d5 83.8 % 70-114 10/28/2020 10/31/2020 05:52 EPA 8270D Classical Chemistry Parameters Preparation Batch: A010231	3,5-Dinitrotoluene	ND	200		1	10/28/2020	10/31/2020 05:52	EPA 8270D			
4-Nitrotoluene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 55:52 EPA 8270D Nitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 1,3,5-Trinitro-2,4-dimethylbenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D Surrogate: 2,2'-Dinitrobiphenyl 76.1 % 10-150 10/28/2020 10/31/2020 05:52 EPA 8270D Surrogate: Nitrobenzene-d5 83.8 % 70-114 10/28/2020 10/31/2020 05:52 EPA 8270D Classical Chemistry Parameters Preparation Batch: A010231	3-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
Nitrobenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D 1,3,5-Trinitro-2,4-dimethylbenzene ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D Surrogate: 2,2'-Dinitrobiphenyl 76.1 % 10-150 10/28/2020 10/31/2020 05:52 EPA 8270D Surrogate: Nitrobenzene-d5 83.8 % 70-114 10/28/2020 10/31/2020 05:52 EPA 8270D Classical Chemistry Parameters Preparation Batch: A010231	4-Amino-2,6-dinitrotoluene	380	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D Surrogate: 2,2'-Dinitrobiphenyl 76.1 % 10-150 10/28/2020 10/31/2020 05:52 EPA 8270D Surrogate: Nitrobenzene-d5 83.8 % 70-114 10/28/2020 10/31/2020 05:52 EPA 8270D Classical Chemistry Parameters Preparation Batch: A010231	4-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 05:52	EPA 8270D			
ND 200 ug/kg dry 1 10/28/2020 10/31/2020 05:52 EPA 8270D Surrogate: 2,2 '-Dinitrobiphenyl 76.1 % 10-150 10/28/2020 10/31/2020 05:52 EPA 8270D Surrogate: Nitrobenzene-d5 83.8 % 70-114 10/28/2020 10/31/2020 05:52 EPA 8270D Classical Chemistry Parameters Preparation Batch: A010231	Nitrobenzene	ND	200		1	10/28/2020	10/31/2020 05:52	EPA 8270D			
Surrogate: Nitrobenzene-d5 83.8 % 70-114 10/28/2020 10/31/2020 05:52 EPA 8270D Classical Chemistry Parameters Preparation Batch: A010231	1,3,5-Trinitro-2,4-dimethylbenzene	ND	200		1	10/28/2020	10/31/2020 05:52	EPA 8270D			
Surrogate: Nitrobenzene-d5 83.8 % 70-114 10/28/2020 10/31/2020 05:52 EPA 8270D Classical Chemistry Parameters Preparation Batch: A010231	Surrogate: 2,2'-Dinitrobiphenyl		76.1	1% 1	0-150	10/28/2020	10/31/2020 05:52	EPA 8270D			
•											
	Classical Chemistry Parameters					Prepa	aration Batch: A01()231			
% Solids 98.9 0.00 % by 1 10/29/2020 10/30/2020 13:28 SM 2540B	% Solids	98.9	0.00	% by	1	10/29/2020	10/30/2020 13:28	SM 2540B			

Weight

Date Sampled 10/19/2020 14:20

AECOM 4051 Ogletown Road Newark DE, 19713 Project: Bio Pilot - Barksdale, WI

Project Number: 60525839

Project Manager: Sharon Nordstrom

BPSB-201019-C24-0-1.5

A204321-04 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifier
<u>.</u>	Result				Tiepureu	T mary 200	method	Quanner
		Pace A	Analytical - 1	Madison				
pH by EPA Method 9045					Prepa	aration Batch: A011	098	
Lab pH	11.6		pH Units	1	11/04/2020	11/04/2020 16:21	EPA 9045D	
Explosive Compounds by EPA Method 8270					Prepa	aration Batch: A01()218	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
1,3,5-Trinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
1,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
2,3-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
2,4,6-Trinitrotoluene	4000	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
2,4-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
2,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
2,6-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
2-Amino-4,6-dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
2-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
3,4-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
3,5-Dinitroaniline	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
3,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
3-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
4-Amino-2,6-dinitrotoluene	890	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
4-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
Nitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:23	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		88.0	% 1	0-150	10/28/2020	10/31/2020 06:23	EPA 8270D	
Surrogate: Nitrobenzene-d5		83.9	% 7	0-114	10/28/2020	10/31/2020 06:23	EPA 8270D	
Classical Chemistry Parameters					Pren	aration Batch: A01(231	
% Solids	98.3	0.00	% by	1	10/29/2020	10/30/2020 13:28	SM 2540B	
				-				

Weight

Date Sampled 10/19/2020 14:40

AECOM 4051 Ogletown Road Newark DE, 19713

Project: Bio Pilot - Barksdale, WI

Project Number: 60525839

Project Manager: Sharon Nordstrom

BPSB-201019-C33-0-1.5

A204321-05 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
	Result				Trepared	Anaryzeu	Wethod	Quanner
		Pace A	nalytical -	Madison				
oH by EPA Method 9045					Prepa	aration Batch: A011	.098	
Lab pH	11.6		pH Units	1	11/04/2020	11/04/2020 16:21	EPA 9045D	
Explosive Compounds by EPA Method 8270					Prepa	aration Batch: A01(218	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
1,3,5-Trinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
1,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
2,3-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
2,4,6-Trinitrotoluene	1100000	20000	ug/kg dry	100	10/28/2020	11/02/2020 13:59	EPA 8270D	D
2,4-Dinitrotoluene	1300	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
2,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
2,6-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
2-Amino-4,6-dinitrotoluene	400	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
2-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
3,4-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
3,5-Dinitroaniline	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
3,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
3-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
4-Amino-2,6-dinitrotoluene	730	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
4-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
Nitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 06:55	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		93.3	% 1	0-150	10/28/2020	10/31/2020 06:55	EPA 8270D	
Surrogate: Nitrobenzene-d5		82.5	% 7	0-114	10/28/2020	10/31/2020 06:55	EPA 8270D	
Classical Chemistry Parameters					Prepa	aration Batch: A01(231	
% Solids	98.3	0.00	% by	1	10/29/2020	10/30/2020 13:28	SM 2540B	

Date Sampled 10/19/2020 15:00

AECOM 4051 Ogletown Road Newark DE, 19713

Project: Bio Pilot - Barksdale, WI

Project Number: 60525839

Project Manager: Sharon Nordstrom

BPSB-201019-C31-0-1

A204321-06 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifier
		Pace A	Analytical -	Madison	*			
		I ace F	maryticai -	Wiauison	р			
oH by EPA Method 9045	10.1		** ** *.			aration Batch: A011		
Lab pH	12.4		pH Units	1	11/04/2020	11/04/2020 16:21	EPA 9045D	
Explosive Compounds by EPA Method 8270					Prepa	aration Batch: A01()218	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
1,3,5-Trinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
1,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
2,3-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
2,4,6-Trinitrotoluene	15000	800	ug/kg dry	4	10/28/2020	11/02/2020 14:31	EPA 8270D	D
2,4-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
2,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
2,6-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
2-Amino-4,6-dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
2-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
3,4-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
3,5-Dinitroaniline	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
3,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
3-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
4-Amino-2,6-dinitrotoluene	210	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
4-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
Nitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	220	200	ug/kg dry	1	10/28/2020	10/31/2020 07:26	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		83.3	% 1	0-150	10/28/2020	10/31/2020 07:26	EPA 8270D	
urrogate: Nitrobenzene-d5		<i>87.3</i>	% 7	0-114	10/28/2020	10/31/2020 07:26	EPA 8270D	
Classical Chemistry Parameters					Prepa	aration Batch: A01()231	
% Solids	98.1	0.00	% by	1	10/29/2020	10/30/2020 13:28	SM 2540B	

Weight

Date Sampled 10/19/2020 16:00

AECOM 4051 Ogletown Road Newark DE, 19713

Project: Bio Pilot - Barksdale, WI

Project Number: 60525839

Project Manager: Sharon Nordstrom

BPSB-201019-C35-0-2

A204321-07 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
	result				Topulou			Zuunner
		raceA	Analytical -		Б		000	
pH by EPA Method 9045	13.2		#II II	1		aration Batch: A011		
Lab pH	12.3		pH Units	1	11/04/2020	11/04/2020 16:21	EPA 9045D	
Explosive Compounds by EPA Method 8270					Prepa	aration Batch: A01()218	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
1,3,5-Trinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
1,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
2,3-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
2,4,6-Trinitrotoluene	14000	790	ug/kg dry	4	10/28/2020	11/02/2020 15:02	EPA 8270D	D
2,4-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
2,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
2,6-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
2-Amino-4,6-dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
2-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
3,4-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
3,5-Dinitroaniline	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
3,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
3-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
4-Amino-2,6-dinitrotoluene	680	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
4-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
Nitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	330	200	ug/kg dry	1	10/28/2020	10/31/2020 07:58	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		81.4	%	10-150	10/28/2020	10/31/2020 07:58	EPA 8270D	
Surrogate: Nitrobenzene-d5		85.4	%	70-114	10/28/2020	10/31/2020 07:58	EPA 8270D	
Classical Chemistry Parameters					Prepa	aration Batch: A01()231	
% Solids	98.3	0.00	% by	1	10/29/2020	10/30/2020 13:28	SM 2540B	

Date Sampled 10/19/2020 16:20

AECOM 4051 Ogletown Road Newark DE, 19713

Project: Bio Pilot - Barksdale, WI

Project Number: 60525839

Project Manager: Sharon Nordstrom

BPSB-201019-C36-0-2

A204321-08 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
		Pace A	nalytical -	Madison	1			
		I acc F	liary ticar -	Maulson	n			
pH by EPA Method 9045						ration Batch: A011		
Lab pH	11.7		pH Units	1	11/04/2020	11/04/2020 16:21	EPA 9045D	
Explosive Compounds by EPA Method 8270					Prepa	ration Batch: A010	0218	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
1,3,5-Trinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
1,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
2,3-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
2,4,6-Trinitrotoluene	67000	4100	ug/kg dry	20	10/28/2020	10/31/2020 02:44	EPA 8270D	D
2,4-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
2,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
2,6-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
2-Amino-4,6-dinitrotoluene	320	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
2-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
3,4-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
3,5-Dinitroaniline	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
3,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
3-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
4-Amino-2,6-dinitrotoluene	1000	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
4-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
Nitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 08:29	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		87.4	% 1	0-150	10/28/2020	10/31/2020 08:29	EPA 8270D	
Surrogate: Nitrobenzene-d5		84.1	% 7	0-114	10/28/2020	10/31/2020 08:29	EPA 8270D	
Classical Chemistry Parameters					Prepa	ration Batch: A010	231	
% Solids	98.3	0.00	% by	1	10/29/2020	10/30/2020 13:28	SM 2540B	

Weight

Date Sampled 10/19/2020 16:40

AECOM 4051 Ogletown Road Newark DE, 19713

Project: Bio Pilot - Barksdale, WI

Project Number: 60525839

Project Manager: Sharon Nordstrom

BPSB-201019-C06-0-1.5

A204321-09 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Prepared	Analyzed	Method	Qualifier
		Pace A	alytical -	Madison				
pH by EPA Method 9045			j erem		Prone	aration Batch: A011	008	
Lab pH	10.9		pH Units	1	11/04/2020	11/04/2020 16:21	EPA 9045D	
	10.7		pri Olitis	1	11/04/2020	11/04/2020 10.21	EIA 9043D	
Explosive Compounds by EPA Method 8270					Prepa	ration Batch: A01(218	
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
1,3,5-Trinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
1,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
2,3-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
2,4,6-Trinitrotoluene	15000	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
2,4-Dinitrotoluene	790	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
2,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
2,6-Dinitrotoluene	480	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
2-Amino-4,6-dinitrotoluene	440	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
2-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
3,4-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
3,5-Dinitroaniline	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
3,5-Dinitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
3-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
4-Amino-2,6-dinitrotoluene	3900	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
4-Nitrotoluene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
Nitrobenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
1,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg dry	1	10/28/2020	10/31/2020 09:01	EPA 8270D	
Surrogate: 2,2'-Dinitrobiphenyl		89.8	% 1	0-150	10/28/2020	10/31/2020 09:01	EPA 8270D	
'urrogate: Nitrobenzene-d5		82.9	% 7	0-114	10/28/2020	10/31/2020 09:01	EPA 8270D	
Classical Chemistry Parameters					Prepa	ration Batch: A01(231	
% Solids	97.6	0.00	% by	1	10/29/2020	10/30/2020 13:28	SM 2540B	

Weight

Project: Bio Pilot - Barksdale, WI Project Number: 60525839

Project Manager: Sharon Nordstrom

pH by EPA Method 9045 - Quality Control

Pace Analytical - Madison

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch A011098 - Default Prep GenChem										
Duplicate (A011098-DUP1)	Sou	rce: A204321-(02	Prepared: 1	1/04/2020	Analyzed: 1	1/04/2020	16:21		
Lab pH	12.5		pH Units		12.5			0.456	20	

Page 12 of 18 A204321 FINAL 11 05 2020 1434

Project: Bio Pilot - Barksdale, WI Project Number: 60525839

Project Manager: Sharon Nordstrom

Explosive Compounds by EPA Method 8270 - Quality Control

Pace Analytical - Madison

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch A010218 - EPA 3570										
Blank (A010218-BLK1)				Prepared: 1	0/28/2020	Analyzed:	10/30/2020	20:28		
1,2-Dimethyl-3,4-Dinitrobenzene	ND	200	ug/kg wet							
1,2-Dimethyl-3,5-Dinitrobenzene	ND	200	ug/kg wet							
1,2-Dimethyl-3,6-Dinitrobenzene	ND	200	ug/kg wet							
1,2-Dimethyl-4,5-Dinitrobenzene	ND	200	ug/kg wet							
1,3,5-Trinitrobenzene	ND	200	ug/kg wet							
1,3-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg wet							
1,3-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg wet							
1,3-Dinitrobenzene	ND	200	ug/kg wet							
1,4-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg wet							
1,4-Dimethyl-2,5-Dinitrobenzene	ND	200	ug/kg wet							
1,4-Dimethyl-2,6-Dinitrobenzene	ND	200	ug/kg wet							
1,5-Dimethyl-2,3-Dinitrobenzene	ND	200	ug/kg wet							
1,5-Dimethyl-2,4-Dinitrobenzene	ND	200	ug/kg wet							
2,3-Dinitrotoluene	ND	200	ug/kg wet							
2,4.6-Trinitrotoluene	ND	200	ug/kg wet							
2,4-Dinitrotoluene	ND	200	ug/kg wet							
2,5-Dinitrotoluene	ND	200	ug/kg wet							
2,6-Dinitrotoluene	ND	200	ug/kg wet							
2-Amino-4,6-dinitrotoluene	ND	200	ug/kg wet							
2-Nitrotoluene	ND	200	ug/kg wet							
3,4-Dinitrotoluene	ND	200	ug/kg wet							
3,5-Dinitroaniline	ND	200	ug/kg wet							
3,5-Dinitrotoluene	ND	200	ug/kg wet							
3-Nitrotoluene	ND	200	ug/kg wet							
4-Amino-2,6-dinitrotoluene	ND	200	ug/kg wet							
4-Nitrotoluene	ND	200	ug/kg wet							
Nitrobenzene	ND	200	ug/kg wet ug/kg wet							
1,3,5-Trinitro-2,4-dimethylbenzene	ND	200	ug/kg wet ug/kg wet							
··· ·		200								
Surrogate: 2,2'-Dinitrobiphenyl	1160		ug/kg wet	1943		59.4	10-150			
Surrogate: Nitrobenzene-d5	1680		ug/kg wet	2000		84.2	70-114			
LCS (A010218-BS1)				Prepared: 1	0/28/2020	Analyzed:	10/30/2020	18:23		
1,2-Dimethyl-3,4-Dinitrobenzene	1730	200	ug/kg wet	1996		86.8	79.8-107			
1,2-Dimethyl-3,5-Dinitrobenzene	1730	200	ug/kg wet	2020		85.7	77.4-105			
1,2-Dimethyl-3,6-Dinitrobenzene	1690	200	ug/kg wet	1999		84.5	82.4-108			
1,2-Dimethyl-4,5-Dinitrobenzene	1790	200	ug/kg wet	2026		88.3	72.5-113			
1,3,5-Trinitrobenzene	1470	200	ug/kg wet	2000		73.4	41.7-129			
1,3-Dimethyl-2,4-Dinitrobenzene	1740	200	ug/kg wet	2020		85.9	74.2-108			
1,3-Dimethyl-2,5-Dinitrobenzene	1750	200	ug/kg wet	2002		87.7	81.2-108			
1,3-Dinitrobenzene	1480	200	ug/kg wet	2000		74.1	54.1-119			
1,4-Dimethyl-2,3-Dinitrobenzene	1740	200	ug/kg wet	2006		86.5	78.2-104			
1,4-Dimethyl-2,5-Dinitrobenzene	1750	200	ug/kg wet	2026		86.5	75.3-106			
1,4-Dimethyl-2,6-Dinitrobenzene	1760	200	ug/kg wet	1996		88.0	73.6-108			
1,5-Dimethyl-2,3-Dinitrobenzene	1730	200	ug/kg wet	2012		85.8	79.6-105			
1,5-Dimethyl-2,4-Dinitrobenzene	1670	200	ug/kg wet	1966		84.9	75.5-106			
2,3-Dinitrotoluene	1600	200	ug/kg wet	2000		80.2	72.1-113			
2,3-Dimutotoluene	1740	200	ug/kg wet ug/kg wet	2000		86.8	65.6-124			
2,4-Dinitrotoluene	1810	200	ug/kg wet	2000		90.7	68.7-120			

Page 13 of 18 A204321 FINAL 11 05 2020 1434

Project: Bio Pilot - Barksdale, WI Project Number: 60525839

Project Manager: Sharon Nordstrom

Explosive Compounds by EPA Method 8270 - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
-	105417		omo	20101	Ttebuit	, mille	Linito	10.0	2	110100
Batch A010218 - EPA 3570 LCS (A010218-BS1)				Prepared: 1	10/28/2020	Analyzadi	10/30/2020 1	8.73		
2.5-Dinitrotoluene	1560	200	ug/kg wet	2000	10/28/2020 /	78.0	70.5-109	10.23		
2,6-Dinitrotoluene	1660	200	ug/kg wet	2000		82.8	78.1-111			
2-Amino-4,6-dinitrotoluene	1600	200	ug/kg wet	2000		79.9	65.3-107			
2-Nitrotoluene	1700	200	ug/kg wet	2000		85.1	76.5-115			
3.4-Dinitrotoluene	1700	200	ug/kg wet	2000		85.5	72.6-111			
3.5-Dinitroaniline	1570	200	ug/kg wet	2000		78.3	63.8-110			
3,5-Dinitrotoluene	1670	200	ug/kg wet	2000		83.6	80.5-109			
3-Nitrotoluene	1700	200	ug/kg wet	2000		84.8	80-110			
4-Amino-2,6-dinitrotoluene	1520	200	ug/kg wet	2000		76.2	55.1-112			
4-Nitrotoluene	1710	200	ug/kg wet	2000		85.5	80.6-109			
Nitrobenzene	1710	200	ug/kg wet	2000		86.5	82.1-112			
		200								
Surrogate: 2,2'-Dinitrobiphenyl	1670		ug/kg wet	1943		85.9	10-150			
Surrogate: Nitrobenzene-d5	1670		ug/kg wet	2000		83.5	70-114			
Matrix Spike (A010218-MS1)	Sou	rce: A204318	-21	Prepared: 1	10/28/2020	Analyzed:	10/30/2020 1	8:54		
1,2-Dimethyl-3,4-Dinitrobenzene	1790	200	ug/kg dry	2025	ND	88.6	67.1-109			
,2-Dimethyl-3,5-Dinitrobenzene	1790	200	ug/kg dry	2050	ND	87.6	68.4-108			
,2-Dimethyl-3,6-Dinitrobenzene	1740	200	ug/kg dry	2028	ND	85.6	72.5-113			
1,2-Dimethyl-4,5-Dinitrobenzene	1810	200	ug/kg dry	2056	ND	88.1	64-114			
,3,5-Trinitrobenzene	1420	200	ug/kg dry	2030	ND	70.2	10.7-145			
,3-Dimethyl-2,4-Dinitrobenzene	1820	200	ug/kg dry	2050	ND	88.7	70.3-111			
,3-Dimethyl-2,5-Dinitrobenzene	1820	200	ug/kg dry	2032	ND	89.6	75.4-111			
1,3-Dinitrobenzene	1470	200	ug/kg dry	2030	ND	72.4	45.5-120			
1,4-Dimethyl-2,3-Dinitrobenzene	1770	200	ug/kg dry	2036	ND	86.9	65.1-109			
1,4-Dimethyl-2,5-Dinitrobenzene	1820	200	ug/kg dry	2056	ND	88.5	68.4-110			
1,4-Dimethyl-2,6-Dinitrobenzene	1830	200	ug/kg dry	2025	ND	90.5	69.5-110			
1,5-Dimethyl-2,3-Dinitrobenzene	1770	200	ug/kg dry	2042	ND	86.6	67-109			
1,5-Dimethyl-2,4-Dinitrobenzene	1710	200	ug/kg dry	1995	ND	85.6	64.6-113			
2,3-Dinitrotoluene	1640	200	ug/kg dry	2030	ND	80.9	61.7-112			
2,4,6-Trinitrotoluene	2410	200	ug/kg dry	2030	564	90.9	27.1-169			
2,4-Dinitrotoluene	1890	200	ug/kg dry	2030	ND	93.4	57-126			
2,5-Dinitrotoluene	1620	200	ug/kg dry	2030	ND	79.7	64.6-108			
2,6-Dinitrotoluene	1720	200	ug/kg dry	2030	ND	84.7	66.2-116			
2-Amino-4,6-dinitrotoluene	1710	200	ug/kg dry	2030	198	74.7	26.4-130			
2-Nitrotoluene	1780	200	ug/kg dry	2030	ND	87.7	73.2-116			
3,4-Dinitrotoluene	1750	200	ug/kg dry	2030	ND	86.3	59.8-115			
3,5-Dinitroaniline	1440	200	ug/kg dry	2030	ND	70.7	31.2-124			
3,5-Dinitrotoluene	1710	200	ug/kg dry	2030	ND	84.2	69.5-111			
3-Nitrotoluene	1780	200	ug/kg dry	2030	ND	87.5	75.4-115			
4-Amino-2,6-dinitrotoluene	1780	200	ug/kg dry	2030	237	75.8	20.6-139			
4-Nitrotoluene	1790	200	ug/kg dry	2030	ND	88.2	76.9-112			
Nitrobenzene	1830	200	ug/kg dry	2030	ND	90.0	74-115			
Surrogate: 2,2'-Dinitrobiphenyl	1690		ug/kg dry	1972		85.6	10-150			
Surrogate: Nitrobenzene-d5	1770		ug/kg dry	2030		87.2	70-114			

Project: Bio Pilot - Barksdale, WI Project Number: 60525839 Project Manager: Sharon Nordstrom

Explosive Compounds by EPA Method 8270 - Quality Control

Analyte	Result	Reporting Limit	T.L. ite	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
	Kesuit	Limit	Units	Level	Result	70KEC	Limits	KPD	Limit	INOLES		
Batch A010218 - EPA 3570												
Matrix Spike Dup (A010218-MSD1)	Sour	-21	Prepared: 1									
1,2-Dimethyl-3,4-Dinitrobenzene	1730	200	ug/kg dry	2029	ND	85.4	67.1-109	3.48	20			
1,2-Dimethyl-3,5-Dinitrobenzene	1730	200	ug/kg dry	2054	ND	84.4	68.4-108	3.48	20			
1,2-Dimethyl-3,6-Dinitrobenzene	1700	200	ug/kg dry	2033	ND	83.8	72.5-113	1.94	20			
1,2-Dimethyl-4,5-Dinitrobenzene	1790	200	ug/kg dry	2060	ND	86.8	64-114	1.37	20			
1,3,5-Trinitrobenzene	1420	200	ug/kg dry	2034	ND	70.0	10.7-145	0.0430	20			
1,3-Dimethyl-2,4-Dinitrobenzene	1790	200	ug/kg dry	2054	ND	87.0	70.3-111	1.79	20			
1,3-Dimethyl-2,5-Dinitrobenzene	1800	200	ug/kg dry	2036	ND	88.5	75.4-111	0.943	20			
1,3-Dinitrobenzene	1470	200	ug/kg dry	2034	ND	72.4	45.5-120	0.310	20			
1,4-Dimethyl-2,3-Dinitrobenzene	1760	200	ug/kg dry	2040	ND	86.2	65.1-109	0.668	20			
1,4-Dimethyl-2,5-Dinitrobenzene	1790	200	ug/kg dry	2060	ND	87.1	68.4-110	1.47	20			
1,4-Dimethyl-2,6-Dinitrobenzene	1800	200	ug/kg dry	2029	ND	88.9	69.5-110	1.58	20			
,5-Dimethyl-2,3-Dinitrobenzene	1710	200	ug/kg dry	2046	ND	83.4	67-109	3.59	20			
,5-Dimethyl-2,4-Dinitrobenzene	1720	200	ug/kg dry	1999	ND	86.0	64.6-113	0.725	20			
2,3-Dinitrotoluene	1650	200	ug/kg dry	2034	ND	81.3	61.7-112	0.683	20			
2,4,6-Trinitrotoluene	2400	200	ug/kg dry	2034	564	90.4	27.1-169	0.243	20			
2,4-Dinitrotoluene	1820	200	ug/kg dry	2034	ND	89.4	57-126	4.18	20			
2,5-Dinitrotoluene	1620	200	ug/kg dry	2034	ND	79.5	64.6-108	0.115	20			
2,6-Dinitrotoluene	1690	200	ug/kg dry	2034	ND	82.9	66.2-116	2.04	20			
2-Amino-4,6-dinitrotoluene	1740	200	ug/kg dry	2034	198	75.6	26.4-130	1.28	20			
2-Nitrotoluene	1770	200	ug/kg dry	2034	ND	87.0	73.2-116	0.516	20			
3,4-Dinitrotoluene	1700	200	ug/kg dry	2034	ND	83.7	59.8-115	2.86	20			
3,5-Dinitroaniline	1500	200	ug/kg dry	2034	ND	73.6	31.2-124	4.24	20			
3,5-Dinitrotoluene	1680	200	ug/kg dry	2034	ND	82.4	69.5-111	1.88	20			
-Nitrotoluene	1760	200	ug/kg dry	2034	ND	86.8	75.4-115	0.643	20			
-Amino-2,6-dinitrotoluene	1800	200	ug/kg dry	2034	237	77.1	20.6-139	1.65	20			
-Nitrotoluene	1780	200	ug/kg dry	2034	ND	87.6	76.9-112	0.458	20			
Vitrobenzene	1810	200	ug/kg dry	2034	ND	89.0	74-115	0.870	20			
Surrogate: 2,2'-Dinitrobiphenyl	1630		ug/kg dry	1976		82.4	10-150					
Surrogate: Nitrobenzene-d5	1750		ug/kg dry	2034		86.0	70-114					

Project: Bio Pilot - Barksdale, WI Project Number: 60525839

Project Manager: Sharon Nordstrom

Classical Chemistry Parameters - Quality Control

Pace Analytical - Madison

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch A010231 - % Solids										
Duplicate (A010231-DUP1)	Sourc	Source: A204318-21			0/29/2020	Analyzed: 1	xed: 10/30/2020 13:28			
% Solids	98.2	0.00 %	% by Weight		98.2			0.0584	20	

Page 16 of 18 A204321 FINAL 11 05 2020 1434

Project: Bio Pilot - Barksdale, WI Project Number: 60525839 Project Manager: Sharon Nordstrom

Notes and Definitions

D Data reported from a dilution

ND Analyte NOT DETECTED at or above the reporting limit or limit of detection (if listed).

NR Not Reported

dry Sample results reported on a dry weight basis. Detection limits (if listed) and reporting limits have been adjusted for the solids content. If the word 'dry' does not appear after the units, results are reported on an as-is basis.

RPD Relative Percent Difference

Detection limits (if listed) and reporting limits have been adjusted for dilutions, if reported.

2525 Advance Road	Environmental Chemistry Consulting Services, Inc.						CHAIN OF CUSTODY							
2525 Advance Road Madison WL 53718							104	36	21		FEDEX 7718 3574 6157			
Madison, WI 53718 608-221-8700 (phone)														
est, 1991 608-221-4889 (fax)						Mach Zice d					Company: AECOM			
Project Number: BioPilot, 60525839, PO 126648							eserval				Address: 4051 Ogletown Rd			
Deulee de la						An	alyses	Reque	sted		Newark, DE 19713			
Project Name: Barksdale Project Location: Barksdale, WI						A	,				E-mail Address: sharon.nordstrom@aecom.com			
n Around (check one): 🛛 Normal 🗌 5 BDs 🗌 3	BDs 2 BDs 7	24 hrs			<u>†</u>	[[[Invoice To:			
ush, Report Due Date:			1	sis							Company: AECOM			
npled By (Print): Eric Schmidt			1	ntaine							Address:			
ampled By (Print): Life Communication					ŝ						Address.			
	Colle	ection	ĬŢ	Total # of Containers	NNOCS	_						Lab	Lab Recei	
Sample Description	Date	Time	Matrix	Tot	ź	Hd	ļ			ļ	Comments	ID	Time	
PSB-201019-C20 (0-1.5)	10/19/2020	13:20	s	1	\boxtimes							01		
PSB-201019-C28 (0-1.5)	10/19/2020	13:40	s	2	\mathbf{X}	\boxtimes						02		
PSB-201019-C27 (0-1.5)	10/19/2020	14:00	s	2	\boxtimes	X						03		
PSB-201019-C24 (0-1.5)	10/19/2020	14:20	s	2	X							04		
PSB-201019-C33 (0-1.5)	10/19/2020	14:40	s	2	X	X						05		
PSB-201019-C31 (0-1)	10/19/2020	15:00	s	2	X	X						06		
PSB-201019-C35 (0-2)	10/19/2020	16:00	s	2	X	X						07		
PSB-201019-C36 (0-2)	10/19/2020	16:20	s	2	\mathbf{X}	X						013		
PSB-201019-C06 (0-1.5)	10/19/2020	16:40	s	2	\mathbf{X}	\boxtimes						09		
				1										
Preservation Codes Rush TAT Multiplie A=None B=HCL C=H ₂ SO ₄ 5 Business Days = 1		Relinquished By:					Date: Time:			Received By:	Date:	Time: 15:43		
HNO3 E=EnCore F=Methanol 3 Business Days = 2 G=NaOH O=Other (Indicate) 2 Business Days = 2.	2x Relinquishe	Relinquished By:					Date:		Time:		Received By	Date:	Time:	
Matrix Codes 24 Hours = 2.5x Air S=Soil W=Water O=Other *must be pre-arrange vnload this form at www.eccsmobilelab.com	Custody Se	Custody Seal:								ts: N/X		Temp: Temp (A)(C)(42274 Cry (2)(4/27 Cry (2)(4/27 Cry (2)(4/27 Cry (2)(4/27 Cry (2)(4/27) Cry (2)(4/	Blank Y N Rev. 5/11	

Page 18 of 18 A204321 FINAL 11 05 2020 1434