
GIS REGISTRY Cover Sheet

Source Property Information CLOSURE DATE: 05/03/2004 02-51-000163 **BRRTS #:** FID #: 851039310 ACTIVITY NAME: FLAMBEAU PAPER-MILL & WOODYARD AREA DATCP #: NA PROPERTY ADDRESS: 200 FIRST AVE N NA COMM #: PARK FALLS MUNICIPALITY: PARCEL ID #: 271-1105-02

Please check as appropriate: (BRRTS Action Code)

Contaminated	d Media:
Groundwater Contamination > ES (236)	Soil Contamination > *RCL or **SSRCL (232)
Contamination in ROW	Contamination in ROW
Off-Source Contamination	Off-Source Contamination
(note: for list of off-source properties see "Impacted Off-Source Property")	(note: for list of off-source properties see "Impacted Off-Source Property")
Land Use Co	ontrols:
🔀 Soil: maintain industrial zoning (220)	Cover or Barrier (222)
(note: soil contamination concentrations between residential and industrial levels)	(note: maintenance plan for groundwater or direct contact)
Structural Impediment (224)	Vapor Mitigation (226)
X Site Specific Condition (228)	Maintain Liability Exemption (230)
	(note: local government or economic development corporation)
Monitoring wells properly	abandoned? (234)
● Yes ○ No	◯ N/A

* Residual Contaminant Level **Site Specific Residual Contaminant Level

GIS REGISTRY INFORMATION

SITE NAME:	FLAMBEAU PAPER-I	MILL & WOO	DYARD AREA		
BRRTS #:	02-51-000163	FID # (if a	ppropriate): 85103	9310	1
COMMERCE # (if appropriate):	NA				-
CLOSURE DATE:	05/03/2004				
STREET ADDRESS:	200 First Ave N				_
CITY:	Park Falls				_
SOURCE PROPERTY GPS COOR WTM91 projection):	DINATES (meters in	x= 485667	<u>у</u> ү	= 607782	-
CONTAMINATED MEDIA:	Groundwater		Soil 🕽	K Bot	h
OFF-SOURCE GW CONTAMINAT	ION >ES:	Yes	2	(No	
OFF-SOURCE SOIL CONTAMINA Specific RCL (SSRCL):	TION >Generic or Site-	Yes	>	(No	
CONTAMINATION IN RIGHT OF V	VAY:	Yes	2	K No	
DOCUMENTS NEEDED:	•				_
Closure Letter, and any conditional of	closure letter or denial letter	issued			Χ
Copy of any maintenance plan refere	enced in the final closure lett	er.			NA
Copy of (soil or land use) deed notic	e if any required as a conditi	ion of closure			Χ
Copy of most recent deed, including	legal description, for all affe	ected properties			Χ
Certified survey map or relevant por	tion of the recorded plat map) (if referenced in	the legal description)	for all affected properties	NA
County Parcel ID number, if used for	^r county, for all affected prop	erties PIN: 271	-1105-02		Χ
Location Map which outlines all propertie parcels to be located easily (8.5x14" if paper potable wells within 1200' of the site.			• • • • •	•	x
Detailed Site Map(s) for all affected p and potable wells. (8.5x14", if paper copy) relation to the source property and in relation ch. NR 720 generic or SSRCLs.	This map shall also show the locat	tion of all contamina	ated public streets, highv	vay and railroad rights-of-way in	x
Tables of Latest Groundwater Analy	tical Results (no shading or e	cross-hatching)			NA
Tables of Latest Soil Analytical Resu	Its (no shading or cross-hat	ching)			Χ
Isoconcentration map(s), if required and extent of groundwater contamination de					NA
GW: Table of water level elevations,	with sampling dates, and fre	ee product note	d if present		NA
GW: Latest groundwater flow direct greater than 20 degrees)	ion/monitoring well location	map (should be	2 maps if maximum	variation in flow direction is	° NA
SOIL: Latest horizontal extent of co	ntamination exceeding gene	ric or SSRCLs, v	with one contour		Χ
Geologic cross-sections, if required	for SI. (8.5x14' if paper copy)				
RP certified statement that legal des	criptions are complete and a	ccurate			Χ
Copies of off-source notification lett	ers (if applicable)				NA
Letter informing ROW owner of resid	lual contamination (if applica	able)(public, high	way or railroad ROW))	NA

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

1

Jim Doyle, Governor Scott Hassett, Secretary John Gozdzialski, Regional Director Northern Region Headquarters 107 Sutliff Ave. Rhinelander, Wisconsin 54501-3349 Telephone 715-365-8900 FAX 715-365-8932 TTY Access via relay - 711

May 10, 2004

Ms. Kristen Palecek Fraser Papers, Inc PO Box 340 Park Falls, WI 54552

> SUBJECT: Final Case Closure By Closure Committee Fraser Papers, Inc – Woodyard Site, 200 First Ave N, Park Falls, WI WDNR BRRTS #:02-51-000163

Dear Ms. Palecek:

On August 7, 2003, your site as described above was reviewed for closure by the Northern Closure Committee. This committee reviews environmental remediation cases for compliance with state laws and standards to maintain consistency in the closure of these cases. On August 13, 2003, you were notified that the Closure Committee had granted conditional closure to this case.

On May 3, 2004, the Department received correspondence indicating that you have complied with the conditions of closure, specifically, final documents required for the GIS Registry. Based on the correspondence and data provided, it appears that your case has been remediated to Department standards in accordance with s. NR 726.05, Wis. Adm. Code. The Department considers this case closed and no further investigation, remediation or other action is required at this time. Furthermore, the NR 140.28 PAL exemption described in the conditional closure letter dated August 14, 2003 is now in effect.

Your site will be listed on the DNR Remediation and Redevelopment GIS Registry of Closed Remediation Sites. Information that was submitted with your closure request application will be included on the registry. To review the sites on the GIS Registry web page, visit <u>http://gomapout.dnr.state.wi.us/org/at/et/geo/gwur/index.htm</u>. Department approval is required before construction or reconstruction of a well on a property listed on the GIS Registry, in accordance with s. NR 812.09(4)(w). To obtain approval, Form 3300-254 needs to be completed and submitted to the DNR Drinking and Groundwater program's regional water supply specialist. This form can be obtained on-line at the web address listed above.

Please be aware that this case may be reopened pursuant to s. NR 726.09, Wis. Adm. Code, if additional information regarding site conditions indicates that contamination on or from the site poses a threat to public health, safety or welfare, or the environment.

The Department appreciates your efforts to restore the environment at this site. If you have any questions regarding this letter, please contact me at 715-365-8990.

Sincerely, NORTHERN REGION

anda avet 4

Janet Kazda U Remediation & Redevelopment Program ţ

1

cc: File

Robert Mottl STS Consultants, Ltd 1035 Kepler Dr Green Bay, WI 54311

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

ţ

1

Jim Doyle, Governor Scott Hassett, Secretary William H. Smith, Regional Director Northern Region Headquarters 107 Sutliff Ave. Rhinelander, Wisconsin 54501 Telephone 715-365-8900 FAX 715-365-8932 TDD 715-365-8957

August 14, 2003

Fraser Papers, Inc PO Box 340 Park Falls, WI 54552

Subject:

Conditional Case Closure Fraser Papers, Inc - Woodyard Site, 200 First Ave N, Park Falls, WI WDNR BRRTS # 02-51-000163

To Whom It May Concern:

On August 7, 2003, your request for closure of the case described above was reviewed by the Northern Region Closure Committee. The Closure Committee reviews environmental remediation cases for compliance with state rules and statutes to maintain consistency in the closure of these cases. After careful review of the closure request, the Closure Committee has determined that the contamination on the site appears to have been investigated and remediated to the extent practicable under site conditions. Your case has been remediated to Department standards in accordance with s. NR 726.05, Wis. Adm. Code and will be closed if the following conditions are satisfied:

1. The monitoring wells at the site must be properly abandoned in compliance with ch. NR 141, Wis. Adm. Code. Documentation of well abandonment must be submitted to me on Form 3300-5B found at <u>www.dnr.state.wi.us/org/water/dgw/gw/</u> or provided by the Department of Natural Resources.

2. To close this site, the Department requires that a deed restriction be signed and recorded to address the issue of contaminated soil on the site. The purpose of the restriction is to require that the owner of the property investigate any soil that is excavated in the future. If it is found to be contaminated, this soil must be removed from the site and disposed of or treated in accordance with Department of Natural Resources' rules, Further, the deed restriction must require the property owner to maintain the fencing around the property to limit access to the site and maintain the industrial zoning designation for the property.

Your consultant has submitted a draft deed restriction for the property. However, before Department attorneys can review this draft, you must submit a copy of the most recent deed for the property, as well. This will be used to compare the legal descriptions. After the Department of Natural Resources has reviewed the draft document for completeness, you should sign it if you own the property, or have the appropriate property owner sign it, and have it recorded by the Price County Register of Deeds. Then you must submit a copy of the recorded document, with the recording information stamped on it, to me. Please be aware that if a deed restriction is recorded for the wrong property because of an inaccurate legal description that you have provided, you will be responsible for recording corrected documents at the Register of Deeds

Office to correct the problem.

3. Materials for the GIS Registry must be resubmitted. The materials that were included in the bound report will not be accepted, as they would have to be unbound prior to scanning. Further, the materials submitted were incomplete. A brief review of the materials revealed that a copy of the most recent deed for the property, which is required for the GIS Registry, was not included. The soil sample table must be resubmitted without shaded heading. Please ask your consultant to review the attached list of items necessary for the GIS Registry. These items should be sent to me at the above address.

When the above conditions have been satisfied, please submit a letter to let me know that applicable conditions have been met, and your case will be closed. Your site will be listed on the DNR Remediation and Redevelopment GIS Registry of Closed Remediation Sites. Information that was submitted with your closure request application will be included on the registry. To review the sites on the GIS Registry web page, visit http://gomapout.dnr.state.wi.us/org/at/et/geo/gwur/index.htm.

Recent groundwater monitoring data at this site indicates exceedances of the ch. NR 140, Wis. Adm. Code, Preventive Action Limit (PAL) for iron at Monitoring Well # MW-1, MW-2, MW-3, MW-4, and MW-5. The Department may grant an exemption for a substance of public welfare concern, or nitrate, pursuant to s. NR 140.28(3)(a), Wis. Adm. Code, if actions have been taken to achieve the lowest possible concentration for that substance which is technically and economically feasible and the existing or anticipated increase in the concentration of that substance does not present a threat to public health or welfare.

Based on the information you provided, the Department believes that the above criteria have been or will be met. Therefore, pursuant to s. NR 140.28(3)(a), Wis. Adm. Code, an exemption to the PAL for iron at MW-1, MW-2, MW-3, MW-4, and MW-5. This letter serves as your exemption.

Recent groundwater monitoring data at this site indicates exceedances of the ch. NR 140, Wis. Adm. Code, Enforcement Standard (ES) for iron at MW-1, MW-2, MW-3, MW-4, and MW-5. The Department may grant an exemption for a substance of public welfare concern, or nitrate, pursuant to s. NR 140.28(4)(a), Wis. Adm. Code, if actions have been taken to achieve the lowest possible concentration for that substance which is technically and economically feasible and the existing or anticipated increase in the concentration of that substance does not present a threat to public health or welfare.

Based on the information you provided, the Department believes that the above criteria have been or will be met. Therefore, pursuant to s. NR 140.28(4)(a), Wis. Adm. Code, an exemption to the ES for iron at MW-1, MW-2, MW-3, MW-4, and MW-5. This letter serves as your exemption.

Pursuant to s. NR 140.28(4)(c), Wis. Adm. Code, the department shall take action under s. NR 140.26 if it determines that an increase in concentration of iron causes an increased threat to public health or welfare or it determines that the incremental increase in the concentration of iron, by itself, exceeds the preventive action limit.

If this is a PECFA site, section 101.143, Wis. Stats., requires that PECFA claimants seeking reimbursement of interest costs, for sites with petroleum contamination, submit a final reimbursement claim within 120 days after they receive a closure letter on their site. For claims not received by the PECFA Program within 120 days of the date of this letter, interest costs after 60 days of the date of this letter will not be eligible for PECFA reimbursement.

Please be aware that the case may be reopened pursuant to s. NR 726.09, Wis. Adm. Code, if additional information regarding site conditions indicates that contamination on or from the site poses a threat to public health, safety, or welfare or to the environment.

We appreciate your efforts to restore the environment at this site. If you have any questions regarding this letter, please contact me at 715-365-8990.

Sincerely, NORTHERN REGION

anda

Janet Kazda Remediation and Redevelopment Program

File Bill Phelps, DG/2

C:

Robert Mottl STS Consultants, Ltd 1035 Kepler Dr Green Bay, WI 54311

SPECIAL WARRANTY DEED

213767

CAPITAL CITIES MEDIA, INC., a New York corporation of New York County, New York, CONVEYS and, as herein limited, WARRANTS to FLAMBEAU PAPER CORP., a Wisconsin corporation, of Price County, Wisconsin, for the sum of One (\$1.00) Dollar and other good and valuable consideration, all real property and estates, rights, flowage rights, powers, privileges, franchises, permits, easements and interests, and rights therein, in Price County, Wisconsin, owned by GRANTOR on June 25, 1978, herein referred to as "the Premises", SPECIFICALLY INCLUDING BUT NOT LIMITED TO, the said property interests as set forth and described in Exhibit A attached hereto and made a part hereof, and if any such property is not specifically described herein, such omission is an oversight, and Grantor agrees to convey such property to Grantee, its successors and assigns, upon demand.

Grantor will forever WARRANT and DEFEND, the quiet and peaceable possession of Grantee, its successors and assigns, in "the Premises" against all persons lawfully claiming the whole or any part thereof, by, through or under said Grantor, AND NONE OTHER. This warranty is limited to claims arising from acts of Grantor from and after February 15, 1977.

Dated this 31st day of July, 1978.

TRANSFER

\$ 1,200.00

FEE

REGISTER OF DEEDS OFFICE PRICE COUNTY, WIS. Received for Record

AUG 2 1 1978

9:30 A M. DAV HICOMOLO IN 222 OF RECORDS. ON PAGE 37 Mary King and HICSITE OF MILLS

> STATE OF NEW YORK)) ss. COUNTY OF NEW YORK)

CAPITAL CITIES MEDIA, INC. Bν John E.Shuff, Jr. 11 (1-President COUNTERSIGNED:

Bv Gerald Dickler Secretary

Personally came before me, this 31st day of July, 1978, $M = \frac{2}{2} \frac{1}{2} \frac{1}{2}$

<u>Paul G. Whitby</u> Notary Public, New York My Commission

This Instrument Was Drafted By: Terwilliger, Wakeen, Piehler, Conway & Klingberg, S. C. Wausau, Wisconsin 54401

PAUL G. WHITBY NOTARY HUBIC, State of New York No. 31-42-12600 Quallud on New York County Commission Express March 30, 197

Parcel 183

Government Lot 5, Section 13, Township 40 North, Range 1 West.

Parcel 184

Government Lot 6, Section 13, Township 40 North, Range 1 West.

Parcel 185

Government Lot 7, Section 13, Township 40 North, Range 1 West.

Parcel 186

Government Lot 3, Section 13, Township 40 North, Range 1 West.

Parcel 187

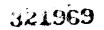
The North 1/2 of the North West 1/4, Section 13, Township 40 North, Range 1 West.

Parcel 188

The South West 1/4 of the North West 1/4, Section 13, Township 40 North, Range 1 West.

Parcel 189

The North East 1/4 of the South East 1/4, Section 13, Township 40 North, Range 1 West.


All being in the County of Price, State of Wisconsin.

All as created by instruments recorded in the office of the Register of Deeds for Price County, Wisconsin in Volume 1 of Miscellaneous on page 556, Volume 1 of Miscellaneous on page 557, Volume 6 of Miscellaneous on page 54, Volume 7 of Miscellaneous on page 497, Volume 36 of Deeds on page 157, Volume 8 of Miscellaneous on page 330, Volume 44 of Deeds on page 152, Volume 6 of Miscellaneous on page 68, Volume 7 of Miscellaneous on page 313, Volume 8 of Miscellaneous on page 255, Volume 122 of Deeds on page 31.

Parcel 190

The right and easement to flow by water raised and set back thereon over the following described property:

All that part of Government Lot Four (4), Section Thirteen (13), Township Forty (40) North, Range One (1) West, County of Price, State of Wisconsin, which is described as follows: Beginning at a point 1,173 feet west of the quarter section line, running north and south through Section

DEED RESTRICTION

Document Title

SS

1

Document Number

Declaration of Restrictions

In Re: See Exhibit A.

STATE OF WISCONSIN)
COUNTY OF PRICE)

. . . .

WHEREAS, Fraser Papers, Inc. is the owner of the property described in Exhibit A.

WHEREAS, one or more discharges of semi-volatile organic compounds and metals have occurred on this property and impacted soil remains on the property.

WHEREAS, it is the desire and intention of the property owner to impose on the property restrictions which will make it unnecessary to conduct further remediation activities on the property at the present time.

REGISTER OF DEEDS OFFICE PRICE COUNTY, WIS. Received for Record OCT 3 1 2003 9:20 M. DULY BECO OCLOOK AT VOL538 REGISTER OF DEEDS Recording Area

Hame and Return Address

Kristin Palecek Fraser Papers 200 First Avenue, North Park Falls, WI 54552

271-1105-02

Parcel Identification Number (PIN)

NOW THEREFORE, the owner hereby declares that all of the property described above is held and shall be held, conveyed or encumbered, leased, rented, used, occupied and improved subject to the following limitation and restrictions:

The property described above may not be used or developed for a residential, commercial, agricultural or other non-industrial use, unless (at the time that the non-industrial use is proposed) an investigation is conducted, to determine the degree and extent of semivolatile organic compound and metal contamination that remains on the property, and remedial action is taken as necessary to meet all applicable non-industrial soil cleanup standards. If soil that remains on the

QBMKE\5434578.1

1700

property in the location or locations described above is excavated in the future, it will have to be sampled and analyzed, may be considered solid or hazardous waste if residual contamination remains, and must be stored, treated and disposed in compliance with applicable statutes and rules. Public access to the property shall be restricted, including the maintenance of existing fencing.

This restriction is hereby declared to be a covenant running with the land and shall be fully binding upon all persons acquiring the above-described property whether by descent, devise, purchase or otherwise. This restriction inures to the benefit of and is enforceable by the Wisconsin Department of Natural Resources, its successors or assigns. The Department, its successors or assigns, may initiate proceedings at law or in equity against any person or persons who violate or are proposing to violate this covenant, to prevent the proposed violation or to recover damages for such violation.

Any person who is or becomes owner of the property described above may request that the Wisconsin Department of Natural Resources or its successor issue a determination that one or more of the restrictions set forth in this covenant is no longer required. Upon the receipt of such a request, the Wisconsin Department of Natural Resources shall determine whether or not the restrictions contained herein can be extinguished. If the Department determines that the restrictions can be extinguished, an affidavit, attached to a copy of the Department's written determination, may be recorded by the property owner or other interested party to give notice that this deed restriction, or portions of this deed restriction, are no longer binding.

QBMKE\5434578.1

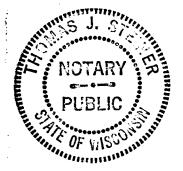
-2-

By signing this document, $M_{11/2} B_{1EU1}$ asserts that her or she is duly authorized to sign this document on behalf of Fraser Papers, Inc.

IN WITNESS WHEREOF, the owner of the property has executed this Declaration of Restrictions, this 27 day of Odobr 20 Ob.

Signature: Wille Bleven

Printed Name: Willis Blevins


Title: MIDINEST GENERAL MANAGER

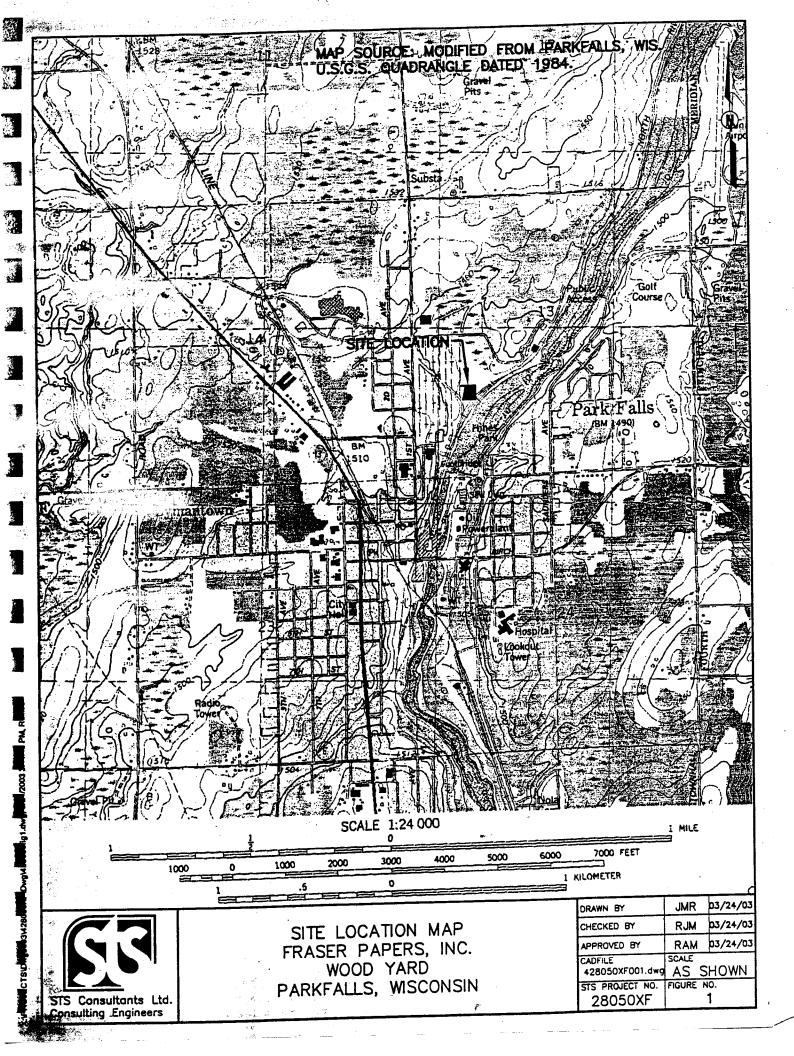
Subscribed and sworn to before me this 27A day of October, 20 05.

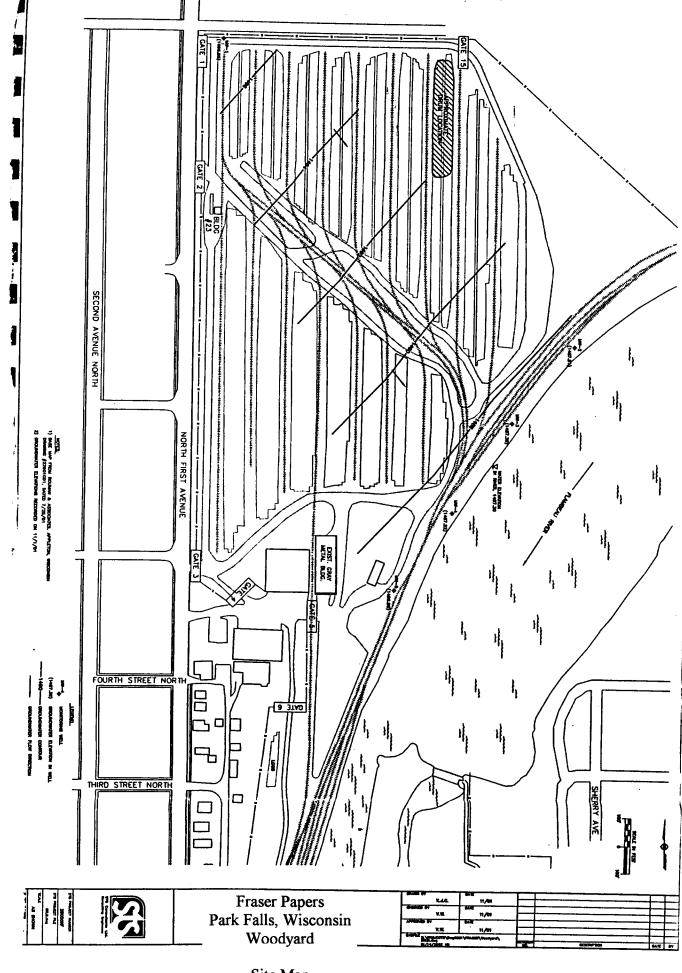
thomas Steven

Notary Public, State of Wisconin

My commission offered Oct. 24, 2004

This document was drafted by:

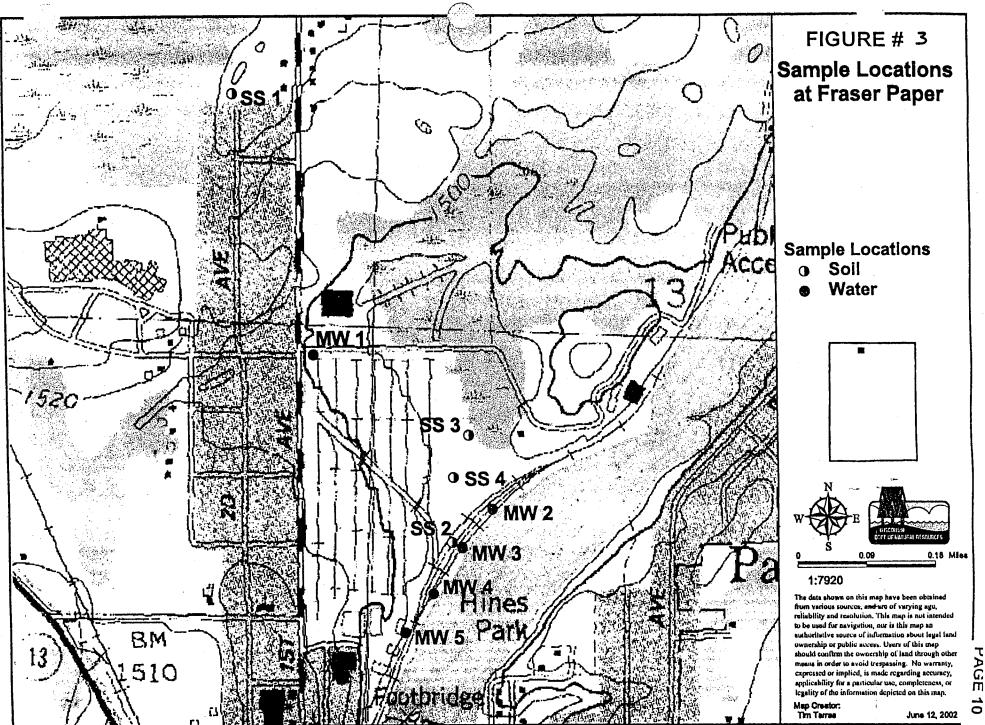

Thomas P. McElligott, Esq. Quarles & Brady LLP 411 East Wisconsin Avenue Milwaukee, WI 53202


EXHIBIT A

1

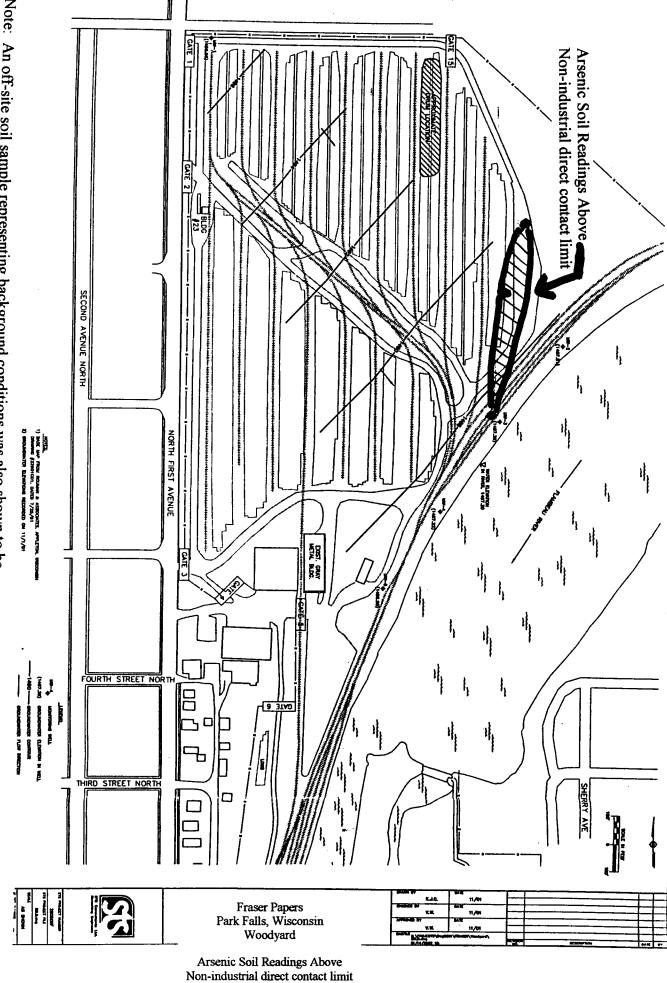
A parcel of land in Government Lot Six (6) and of Section Thirteen (13), Township Forty (40) North, Range One (1) West, in the City of Park Falls, Price County, Wisconsin, described as follows:

Commencing at the West 1/4 corner of said Section 13, Township 40 North, Range 1 West; thence N 89°07'40" E along the East-West 1/4 line 723.38 feet to a 3/4" iron rod which is the Point of Beginning; thence N 89°07'40" E continuing along the East-West 1/4 line 300.08 feet to a 3/4" iron rod; thence S 00°25'41" W, 600.15 feet to a point; thence S 89°07'40" W, 300.08 feet to a 3/4" iron rod; thence N 00°25'41" E, 600.15 feet to the Point of Beginning.



Site Map

P


4

Drawing obtained from Figure 5 of WDNR September 2002 Report

0

τ

P

Note: An off-site soil sample representing background conditions was also shown to be over the non-industrial direct contact limit

4

Analytical Results (Qualified Data) SDG : E1YJ8 FLAMBEAU PAPER CORP ENVSYS

A Number of Soil Samples: 5 Number of Water Samples: 0

Date:										
• • •	Backgro	bund					Re-anal			
Sample Number :	E1YJ8		E1YJ9		E1YK0	ł	E1YK0	RE	E1YK1	
Sampling Location :	SS-1	· ·	SS-2		SS-3	;	SS-3	, '	SS-4	
Matrix :	Soil		Soil		Soil		Soil		Soil	
Units :	ug/Kg		ug/Kg		ug/Kg	1	ug/Kg		ug/Kg	
Date Sampled :	05/21/2	2002	05/21/2	2002	05/21/2	2002	05/21/2	.002	05/21/2	:002
Time Sampled :	10:30		11:10		12:25		12:25		11:40	
%Moisture :	9		11		18		18		11	
pH:	ł									
Dilution Factor :	1.0		1.0		1.0		1.0		1.0	
Volatile Compound	Result	Flag	Result		Result	Flag	Result	Flag	Result	Flag
Dichlorodifluoromethane	10	W	10	$\overline{\mathbf{w}}$	14	UU	- 14-	÷	10	Ωj
Chloromethane	10	ω	10		14	ω	- 14-		10	W
Vinyl Chloride	10	U	10	υ	. 14	U	-14-	÷	10	U
Bromomethane	10	υ	10	U	14	υ	14-		. 10	U
Chloroethane	10	υ	10	UJ	14	UJ		÷	10	ω
Trichlorofluoromethane	10	υ	10	U	14	U	- 14-	- U	10	U
1,1-Dichloroethene	10	υJ	10	UJ	14	UJ		-111	10	UJ
1,1,2-Trichloro-1,2,2-trifluoroethane	10	UJ	10	υJ	14	ບມ	- 14-		10	ω
Acetone	10	W	2	J	22	J	42	-J. ·	27	J
Carbon Disulfide	10	υJ	10	UJ _	14	υJ		-00	10	UJ
Methyl Acetate	10	U	· 10		14	U	- 14-	Ъ-	10	U
Methylene Chloride	16	υ	17	U	26	υ	-14	-U	23	U
trans-1,2-Dichloroethene	10	U	10	U	14	·U	. 14-	-₩	10	U
Methyl tert-Butyl Ether	10	U	. 10	U	14	U	- 14-	÷	i 10	υ
1,1-Dichloroethane	10	U	10	U	14	U		Ъ.	10	U
cis-1,2-Dichloroethene	10	U	10	U	- 14	U		Ъ,	10	U
2-Butanone	. 10	U	10	U	5	J	-11-	J	6	J
Chloroform	.10	U	· 10	υ	14	U	- 14-		10	U
1,1,1-Trichloroethane	10	υ	10	υ	14	U	- 14-	Ъ.	10	U
Cyclohexane	. 10	U	10	υ	14	U	-14-	÷	. 10	U
Carbon Tetrachloride	- 10	U	10	U	14	U	-14-	÷	10	U.
Benzene	10	υ	10	U	14	U	-14-	÷	10	U
1,2-Dichloroethane	10	U	10	U ·	14	U	. 14-	-U	10	U
Trichloroethene	10	υ	10	U	14	U	-14-	÷	. 10	U
Methylcyclohexane	10	υ	10	U	14	U		-U	10	U.
1,2-Dichloropropane	10	υ	10	U	14	υ÷		-U-	10	U
Bromodichloromethane	10	U	10	U	-14	U		-U	10	U
cis-1,3-Dichloropropene	10	υ	10	U	14	U		-U	10	U
4-Methyl-2-pentanone	10	Ū	10	U	. 14	UJ		-W .	_10	U
Toluene	10	Ū	10	υ	14	ÚĴ	4-	-J	10	υ
trans-1,3-Dichloropropene	10	U [.]	.10	U	14	U	- 14-	-9	10	υ
1,1,2-Trichloroethane	10	Ũ	10	U	14	U	44-	-U	10	υ
Tetrachloroethene	10	U .	10	U	14	UJ	- 14-	-111	10	υ.

(

Analytical Results (Qualified Data) SDG : E1YJ8 FLAMBEAU PAPER CORP ENVSYS

в

Date :	Backgro	ound		••			Re-anal			
Sample Number :	E1YJ8		E1YJ9		E1YK0	ł.	E1YK0	RE	E1YK1	
Sampling Location :	SS-1		SS-2		SS-3	11	SS-3	, '	SS-4	
Matrix :	Soil		Soil		Soil		Soil		Sofi	
Units :	ug/Kg		ug/Kg		ug/Kg	1	ug/Kg		ug/Kg	
Date Sampled :	05/21/2	002 ·	05/21/2	002	05/21/2	002	05/21/2	002	05/21/2	002
Time Sampled :	10:30		11:10		12:25		12:25		11:40	
%Moisture :	9		11		18		18		11	
pH:		•					1. <u>.</u>			
Dilution Factor:	1.0		1.0		1.0		1.0		1.0	
Volatile Compound	Result	Flag	Result		Result		Result		Result	
2-Hexanone	10	U	10	U	14			.	10	0
Dibromochloromethane	10	U	10	U.	14	U	- 14-	-0	10	
1,2-Dibromoethane	. 10	υ.	10	U	14	υJ	- 14	-00	10	
Chlorobenzene	10	U.	10	U	14	UJ	- 14-		10	0
Ethylbenzene	10	U.	10	U	. 14	UJ		- UJ -	10	0
Xylenes (total)	10	υ	10	U	- 14	UJ			10	
Styrene	10	U	10	U	14	ω		-Ш.	10	
Bromoform	10	U	10	U	14	U	- 14-		10	0
Isopropylbenzene	- 10	U	. 10	U	14	UJ			10	U
1,1,2,2-Tetrachloroethane	10	U	10	U	14	υJ	- 14-		10	U
1,3-Dichlorobenzene	10	υ	10	U	14	υJ		-tti	10	U
1,4-Dichlorobenzene	10	υ	10	U	14	υJ		÷₩	10	
1,2-Dichlorobenzene	10	υ	10	U	14	Ũ	- 14-		. 10	2
1,2-Dibromo-3-chloropropane	10	R	10	R	14	R	- 14-		10	R
1,2,4-Trichlorobenzene	· 10	UJ	10	IJ	14	UJ	14	Ψ	10	IJ

Analytical Results (Qualified Data) SDG : E1YJ8 FLAMBEAU PAPER CORP ENVSYS

Α

Date :							Lab blank		Lab biank	
Sample Number :	E1YK1	MS		E1YK1MSD		E1YK2		VBLKFQ		F3
Sampling Location :	SS-4		SS-4			SS-DUP		1. S.		
Matrix :	Soil		Soil		Soil	•	Soil		\$oil	
Units :	ug/Kg		ug/Kg		ug/Kg	•	ug/Kg		ug/Kg	
Date Sampled :	05/21/2	002	05/21/2	2002	05/21/2	2002				
Time Sampled :	11:40		11:40		12:45		I .			
%Moisture :	11		11		11		N/A		0	
pH:					1		·		1	
Dilution Factor :	1.0		1.0		1.0		1.0		1.0	
Volatile Compound	Result	Flag	Result		Result		Result	Flag	Result	Flag
Dichlorodifluoromethane	10	ໜ	12		11	UJ UJ	10	UJ	10	UJ U
Chloromethane	10	UJ	12		11	UJ	10	UJ	10	IJ
Vinyl Chloride	10	U	12	U	- 11	U	10	U	· 10	υ
Bromomethane	10	IJ	12	UJ	11	UJ	10	U	.10	UJ
Chloroethane	10	υ	12	w	11	ω	· 10	UJ.	10	IJ
Trichlorofluoromethane	10	U	12	U	11	U'	10	U	10	υ
1,1-Dichloroethene	51	J	67	J	11	υJ	10	UJ_	10	UJ -
1,1,2-Trichloro-1,2,2-trifluoroethane	10	ພ	12	ω	11	ω	10	IJ	10	UJ
Acetone	18	J	: 31	J	23	J	10	ບປ	10	UJ
Carbon Disulfide	10	ພ	12	UJ UJ	11	UJ -	- 10	UJ	i 10	IJ
Methyl Acetate	. 10	U	12	U	11	U	10	U	10	U
Methylene Chloride	26	U	36	U	11	U	- 11		10	U
trans-1,2-Dichloroethene	10	U	12	U	11	U	10	υ.	10	U
Methyl tert-Butyl Ether	10	U	12	U	11	U	10	U	10	U
1,1-Dichloroethane	10	U	12	U	11	U	10	U	10	U
cis-1,2-Dichloroethene	- 10	U	12	U	11	U	10	U	10	υ
2-Butanone	4	J	6	J	11	υ	10	Ų	10	U
Chioroform	10	υ	12	U	11	υ	10	Ú	10	υ
1,1,1-Trichloroethane	10	U	12	υ	11	U	10	U	10	U
Cyclohexane	10	U	12	υ.	11	U	10	U	10	U
Carbon Tetrachloride	10	U	12	U	. 11	U	10	U	10	U
Benzene	39		46		11	U	10	U	10	U
1,2-Dichloroethane	10	U.	12	U	11	U	10	U	10	U
Trichloroethene	32		37		11	U	10	υ	10	U
Methylcyclohexane	10	U	. 12	U	11	U	10	U	10	U.
1,2-Dichloropropane	10	U	12	U	11	U	10	U	10	U
Bromodichloromethane	10	U	12	U	11	U	10	υ	. 10	V
cis-1,3-Dichloropropene	10	ປ	12	U	11	U	10	U	10	U
4-Methyl-2-pentanone	10	U	12	U	11	U	10	U	10	U
Toluene	37		46		11	U	10	υ	10-	U
trans-1,3-Dichloropropene	10	U	12	U · U	11	U	10	U	10	U·
1,1,2-Trichloroethane	10	U	12	υ	11	U° i	10	U	10	U
Tetrachloroethene	10	Ŭ -	12	U.	11	U	10	U	10	υ

JUILO LULUUUUUU -----SDG: E1YJ8 в Case #: 30529 Site : FLAMBEAU PAPER CORP ENVSYS Lab.: **Reviewer:** Date : Lab QC Lab QC Field duplicate Lab blank Lab blank E1YK1MS VBLKFQ E1YK1MSD E1YK2 VHBLKF3 Sample Number : SS-DUP SS-4 SS-4 Sampling Location : Soil Soil Soil Soil \$oil Matrix : ug/Kg ug/Kg ug/Kg ug/Kg ug/Kg Units : 05/21/2002 Date Sampled : 05/21/2002 05/21/2002 12:45 Time Sampled : 11:40 11:40 N/A 0 11 %Moisture : 11 11 pH: 1.0 1.0 1.0 1.0 **Dilution Factor:** 1.0 Flag Volatile Compound Result Flag Result | Flag Result Flag Result Result Flag υ υ 10 10 2-Hexanone 10 υ 12 υ 11 U U Ú 12 U 10 10 U Dibromochloromethane U 11 10 U 10 υ 10 12 U 11 U 1,2-Dibromoethane 10 U U 11 U 10 10 U Chlorobenzene 37 32 Ethylbenzene U 12 U 11. U 10 U 10 U 10 10 U υ 10 Xylenes (total) 10 υ 12 U 11 υ 10 U 10 U. U 11 U U 12 Styrene 10 U 11 U 10 U 10 U υ 12 Bromoform 10 U U 11 U 10 10 U Isopropylbenzene 10 υ 12

12 U

12 U

12 υ

12 U

12

12 UJ

R

11 U

11 U

11 U

11

11

11 U

U

R

10 U

10 U

10 U

10 U

10 R

10 W 10 U

10 U

10

10 U

10 U

10 R

IJ

10 U

10 U

10 U

10 υ

10 R

10

U

1,1,2,2-Tetrachloroethane

1,2-Dibromo-3-chloropropane

1.3-Dichlorobenzene

1.4-Dichlorobenzene

1,2-Dichlorobenzene

1,2,4-Trichlorobenzene

ρ	nalytical	Kesuits	(Qualified	Data)

SDG : E1YJ8 FLAMBEAU PAPER CORP ENVSYS

A Number of Soil Samples : 5 Number of Water Samples : 0

Date .	Backgrou	nd							Lab QC	
Sample Number :	E1YJ8		E1YJ9		E1YK0	ł	E1YK1		E1YK1M	S
Sampling Location :	SS-1		SS-2		SS-3	;	SS-4	, '	SS-4	
Matrix :	Soil		Soil		Soil		Soil		Soil	
Units :	ug/Kg		ug/Kg		ug/Kg	1	ug/Kg		ug/Kg	
Date Sampled :	05/21/20	02	05/21/20	02	05/21/20	02	05/21/20	02	05/21/20	02
Time Sampled :	10:30		11:10		12:25		11:40		11:40	
%Moisture :	9		11		18		11		11	
pH:	5.8		5.2		5.5		6.0		6.0	
Dilution Factor :	1.0		1.0		1.0		1.0		1.0	
Semivolatile Compound	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
Benzaldehyde	360	υŤ	370	UJ	400	IJ	370	UJ	370	IJ
Phenol	360	υ	370	UJ	400	U	370		1900	
bis-(2-Chloroethyl) ether	360	υ	370	UJ	400	U	370	U	370	U
2-Chlorophenol	360	U	370	υJ	400	U.	370	U	1900	
2-Methylphenol	360	U	370	υJ	400	υ	370	υ	370	U
2,2'-oxybis(1-Chloropropane)	360	U	370	UJ	400	U	370	U	370	υ
Acetophenone	360	υ	370	UJ .	70	J	370	U.	52	J
4-Methylphenol	360	U .	370	UJ	400	U	370	U.	370	U
N-Nitroso-di-n-propylamine	360	U	370	UJ	· 400	U	370	U	900	
Hexachloroethane	360	U	370	UJ	400	υ	370	U	370	υ
Nitrobenzene	360	U·	370	UJ	400	U	370	U.	370	υ.
Isophorone	360	บ	370	UJ	400	U	370	U	370	U
2-Nitrophenol	360	U	370	UJ	400	U	370	U	370	U
2,4-Dimethylphenol	360	U	370	UJ	400	U	370	U	370	υ
bis(2-Chloroethoxy)methane	360	U.	370	UJ -	400	U	- 370	υ	370	U
2,4-Dichlorophenol	360	υ	370	UJ	400	U	370	U	370	U
Naphthalene	360	U.	370	UJ	400	υ	370	U	370	U.
4-Chloroaniline	360	U	370	UJ	400	υ	370	U	370	U
Hexachlorobutadiene	360	U	370	UJ	400	υ	370	U	370	U
Caprolactam	360	υ	370	υJ	400	U	370	U	370	U
4-Chloro-3-methylphenol	360	υ	370	UJ.	400	U	370	U	2300	
2-Methylnaphthalene	360	U	370	UJ	400	U	370	U	370	U
Hexachlorocyclopentadiene	360	UJ	370	UJ	400	UJ	370	UJ	370	UJ
2,4,6-Trichlorophenol	360	υ	370	UJ	400	U	370	U.	370	U
2,4,5-Trichlorophenol	910	U	930	UJ	1000	U	930	U	. 930	U.
1,1'-Biphenyl	360	U	370	UJ	400	U	370	U	.370	U
2-Chloronaphthalene	360	U	370	UJ	400	U	370	U	370	U
2-Nitroaniline	910	U	930	UJ	1000	U	930	U	930	U
Dimethylphthalate	360	U	370	UJ	400	U	. 370	U	370	U
2,6-Dinitrotoluene	360	U 🕤	370	UJ	400	U	. 370	U	370	U
Acenaphthylene	360	υ.	. 370	UJ	400	U	370	U	370	U
3-Nitroaniline	910	υ	-930	UJ	1000	U	930	U	930	U
Acenaphthene	360	U	370	UJ	400	U :	.370	U	1300	

В

Case #: 30529 Site : Lab. : Reviewer : Date :

 \bigcirc

Analytical Results (Qualified Data) SDG : E1YJ8 FLAMBEAU PAPER CORP ENVSYS

Lab CC Sample Number: ETYJB ETYKB STYKI ETYKB ETYKB SS-4 SS-4 SS-4 Sampling Location : SS-1 SS-2 SS-3 SS-4 SS-4 SS-4 SS-4 Matrix : Soil Soil Soil Soil Soil Boil Soil Boil Date Sampled : 05/21/2002 05/21/2004 05/21/2004 05/21/2004 <th>Dale.</th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Dale.		_								
Sampling Location : SS-1 SS-2 SS-3 SS-4 SS-4 Matrix : Soil Soil<	<u> </u>		ind	• <u>••••</u> •••••••••						Lab QC	_
Matrix : Soil Ug/Kg Ug/Kg<											IS
Units: ug/Kg ug/Kg <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>;</td><td></td><td>, `</td><td></td><td></td></t<>							;		, `		
Date Sampled : Og/2 i/2002 Og/2 i/2002	Matrix :										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ug/Kg		ug/Kg						ug/Kg	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			02		02		02		02		62
pH : 5.8 5.2 5.5 6.0 5.0 Dilution Factor : 1.0 1.0 1.0 1.0 1.0 1.0 1.0 Semivolatile Compound Result Flag Result Fla	Time Sampled :	10:30		11:10		12:25		11:40		11:40	
Dilution Factor : 1.0 1.0 1.0 1.0 1.0 1.0 Semivolatile Compound Result Flag Result Table JJ Stotdut JJ Stotdut JStotu		9		11		18		11		11	
Semivolatile Compound Result Flag Fl		5.8	1								
2.4-Dinitrophenol 910 UJ 930 UJ 1000 UJ 930 UJ 230 UJ 4-Nitrophenol 910 U 930 UJ 1000 U 930 U 2900 Dibenzofuran 360 U 370 UJ 400 U 370 U 1300 U 1300 U 1300 U 1300 U 1300 U 1300 U 370 U 1300 U 370 U											
4-Nitrophenol 910 U 930 UJ 1000 U 930 U 2900 Dibenzofuran 360 U 370 UJ 400 U 370 U 370 U 2,4-Dinitrotoluene 360 U 370 UJ 400 U 370 U 1300 Diethylphthalate 360 U 370 UJ 400 U 370 U 370 U Fluorene 360 U 370 UJ 400 U 370 U 370 U 4-Nitroaniline 910 U 930 UJ 930 U 930 U 930 U 4,6-Dinitro-2-methylphenol 910 U 930 UJ 930 U 930						Result			Flag		
Dibenzofuran 360 U 370 UJ 400 U 370 U 370 U 2,4-Dinitrotoluene 360 U 370 UJ 400 U 370 U 1300 Diethylphthalate 360 U 370 UJ 400 U 370 U 370 U Achlorophenyl-phenyl ether 360 U 370 UJ 400 U 370 U 370 U 4-Chlorophenyl-phenyl ether 360 U 370 UJ 400 U 370 U 430 U 370 U 430 U 370 U 4370 U 430 U 370 U 4370 U 370 U 4370 U 370 U 4370 U 370 U 370 <td>2,4-Dinitrophenol</td> <td>910.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>UJ</td> <td></td> <td>UJ</td>	2,4-Dinitrophenol	910.							UJ		UJ
2,4-Dinitrotoluene 360 U 370 UJ 400 U 370 U 1300 Diethylphthalate 360 U 370 UJ 400 U 370 U 370 U Fluorene 360 U 370 UJ 400 U 370 U 370 U 4-Chlorophenyl-phenyl ether 360 U 970 UJ 400 U 370 U 370 U 4-Nitroaniline 910 U 930 UJ 1000 U 930 U 930 U 460 U 370 U 460 U 370 U 460 U 370 U 470 U 370 U 370 U 370 U <td>4-Nitrophenol</td> <td>910</td> <td>U</td> <td>930</td> <td>UJ</td> <td>1000</td> <td></td> <td>930</td> <td></td> <td>2900</td> <td>]</td>	4-Nitrophenol	910	U	930	UJ	1000		930		2900]
Diethylphthalate 360 U 370 UJ 400 U 370 U 370 U Fluorene 360 U 370 UJ 400 U 370 U 370 U 4-Chlorophenyl-phenyl ether 360 U 370 UJ 400 U 370 U 370 U 4-Nitroaniline 910 U 930 UJ 1000 U 930 U 930 U 4,6-Dinitro-2-methylphenol 910 U 930 U 930 U 930 U 930 U 4,6-Dinitro-2-methylphenol 910 U 930 U 370 U 370 U 370 U 400 U 370 U 470 U 370 U 470 U 370 U 470 U 370 U 370 U 370 U 370 U 370 U 370 <	Dibenzofuran	360									U
Fluorene 360 U 370 UJ 400 U 370 U 370 U 4-Chlorophenyl-phenyl ether 360 U 370 UJ 400 U 370 U 370 U 4-Nitroaniline 910 U 930 UJ 1000 U 930 U 930 U 4-bitroaniline 910 U 930 UJ 1000 U 930 U 930 U 4-bitrosodiphenyl-phenylether 360 U 370 UJ 400 U 370 U 370 U 4-Bromophenyl-phenylether 360 U 370 UJ 400 U 370 U 370 U Atrazine 360 U 370 UJ 400 U 370 U 370 U Actrazine 360 U 370 UJ 350 J 370 U 370 U	2,4-Dinitrotoluene	360	U	370	UJ	400	υ	370		1300	
4-Chlorophenyl-phenyl ether 360 U 370 UJ 400 U 370 U 370 U 4-Nitroaniline 910 U 930 UJ 1000 U 930 U 930 U 4-Bromophenylamine 360 U 370 UJ 400 U 370 U 370 U 4-Bromophenyl-phenylether 360 U 370 UJ 400 U 370 U 370 U 4-Bromophenyl-phenylether 360 U 370 UJ 400 U 370 U 370 U 4-bromophenyl-phenylether 360 U 370 UJ 400 U 370 U 370 U Atrazine 360 U 370 UJ 400 U 370 U 370 U Atrazine 360 U 370 UJ 350 J 370 U 370 U Athracene 360 U 370 UJ 370 U 37	Diethylphthalate	360	U	370	UJ	. 400		370		370	U
4-Nitroaniline 910 U 930 UJ 1000 U 930 U 930 U 4,6-Dinitro-2-methylphenol 910 U 930 UJ 1000 U 930 U 370	Fluorene	360		370		400	U				-
4-Nitroaniline 910 U 930 UJ 1000 U 930 U 930 U 4,6-Dinitro-2-methylphenol 910 U 930 UJ 1000 U 930 U 370	4-Chlorophenyl-phenyl ether	360	υ	370	UJ	400	U	370		370	U
N-Nitrosodiphenylamine 360 U 370 UJ 400 U 370 U 370 U 4-Bromophenyl-phenylether 360 U 370 UJ 400 U 370 U 370 U 370 U Hexachlorobenzene 360 U 370 UJ 400 U 370 U 370 U Atrazine 360 U 370 UJ 400 U 370 U 370 U Pentachlorophenol 910 U 930 UJ 1000 U 930 U 3000 P Anthracene 360 U 370 UJ 350 J 370 U 370 U Carbazole 360 U 370 UJ 400 U 370 U <td></td> <td>910</td> <td>υ</td> <td>930</td> <td>UJ</td> <td>1000</td> <td>U</td> <td>930</td> <td>U</td> <td>930</td> <td>U</td>		910	υ	930	UJ	1000	U	930	U	930	U
N-Nitrosodiphenylamine 360 U 370 UJ 400 U 370 U 370 U 4-Bromophenyl-phenylether 360 U 370 UJ 400 U 370 U 370 U Hexachlorobenzene 360 U 370 UJ 400 U 370 U 370 U Atrazine 360 U 370 UJ 400 U 370 U 370 U Pentachlorobenol 910 U 930 UJ 1000 U 930 U 3000 Phenanthrene 360 U 370 UJ 370 U	4,6-Dinitro-2-methylphenol	910	U	930	υJ	1000	U	930	U	930	U. ·
4-Bromophenyl-phenylether 360 U 370 UJ 400 U 370 U 370 U Hexachlorobenzene 360 U 370 UJ 400 U 370 U 370 U Atrazine 360 U 370 UJ 400 U 370 U 370 U Pentachlorophenol 910 U 930 UJ 1000 U 930 U 370 U </td <td></td> <td>360</td> <td>U</td> <td>370</td> <td>UJ</td> <td>400</td> <td>U</td> <td>370</td> <td></td> <td>370</td> <td>υ</td>		360	U	370	UJ	400	U	370		370	υ
Hexachlorobenzene 360 U 370 UJ 400 U 370 U 370 U Atrazine 360 U 370 UJ 400 U 370 U 370 U Pentachlorophenol 910 U 930 UJ 1000 U 930 U 370 U 370 U Phenanthrene 360 U 370 UJ 350 J 370 U 97 J Anthracene 360 U 370 UJ 85 J 370 U 370 U Carbazole 360 U 370 UJ 400 U 370 U	4-Bromophenyl-phenylether	360	U	370	UJ	400	U	370	U	370	υ
Pentachlorophenol 910 U 930 UJ 1000 U 930 U 3000 Phenanthrene 360 U 370 UJ 350 J 370 U 97 J Anthracene 360 U 370 UJ 85 J 370 U 97 J Carbazole 360 U 370 UJ 85 J 370 U 370 U Di-n-butylphthalate 360 U 370 UJ 56 J 370 U 370 U Fluoranthene 360 U 370 UJ 470 80 J 110 J Pyrene 360 U 370 UJ 630 92 J 2000 J Butylbenzylphthalate 360 UJ 370		360	υ	370	UJ	400	U	370	U	370	U
Phenanthrene 360 U 370 UJ 350 J 370 U 97 J Anthracene 360 U 370 UJ 85 J 370 U 370 U <td>Atrazine</td> <td>360</td> <td>U</td> <td>370</td> <td>UJ</td> <td>400</td> <td>U</td> <td>370</td> <td>U</td> <td>370</td> <td>U ·</td>	Atrazine	360	U	370	UJ	400	U	370	U	370	U ·
Phenanthrene 360 U 370 UJ 350 J 370 U 97 J Anthracene 360 U 370 UJ 85 J 370 U 370 U <td>Pentachlorophenol</td> <td>[•] 910</td> <td>U</td> <td>930</td> <td>UJ</td> <td>1000</td> <td>U</td> <td>930</td> <td>U</td> <td>3000</td> <td></td>	Pentachlorophenol	[•] 910	U	930	UJ	1000	U	930	U	3000	
Carbazole 360 U 370 UJ 400 U 370 U 370 U Di-n-butylphthalate 360 U 370 UJ 56 J 370 U 370 U Fluoranthene 360 U 370 UJ 470 80 J 110 J Pyrene 360 U 370 UJ 430 U 370 UJ 370	-	360	U	370	IJ	350	J	370	U	97	J
Carbazole 360 U 370 UJ 400 U 370 U 370 U Di-n-butylphthalate 360 U 370 UJ 56 J 370 U 370 U Fluoranthene 360 U 370 UJ 470 80 J 110 J Pyrene 360 U 370 UJ 470 80 J 110 J Butylbenzylphthalate 360 U 370 UJ 400 U 370 UJ 370 </td <td>Anthracene</td> <td>360</td> <td>U</td> <td>370</td> <td>UJ</td> <td>85</td> <td>J</td> <td>370</td> <td>U</td> <td>370</td> <td>U</td>	Anthracene	360	U	370	UJ	85	J	370	U	370	U
Fluoranthene 360 U 370 UJ 470 80 J 110 J Pyrene 360 U 370 UJ 630 92 J 2000 J 370 U 370 U 370 U 370 U 370 U 370 UJ 370 UJ 370 UJ 370 UJ 370 U 370 U 370 U 370 U 370 U 370 U 370 UJ 370 UJ </td <td>Carbazole</td> <td>360</td> <td>υ</td> <td>370</td> <td>UJ</td> <td>400</td> <td>υ</td> <td>·370</td> <td>U-</td> <td>370</td> <td>U</td>	Carbazole	360	υ	370	UJ	400	υ	·370	U-	370	U
Pyrene 360 U 370 UJ 630 92 J 2000 Butylbenzylphthalate 360 U 370 UJ 400 U 370 U 370 U 3,3'-Dichlorobenzidine 360 UJ 370 UJ 400 UJ 370 UJ 370 UJ Benzo(a)anthracene 360 U 370 UJ 270 J 370 U 370 U Chrysene 360 U 370 UJ 330 J 370 U 370 U bis(2-Ethylhexyl)phthalate 360 U 410 J 400 UJ 370 UJ 370 UJ Di-n-octylphthalate 360 UJ 370 UJ 330 J 370 UJ 370 UJ Benzo(b)fluoranthene 360 U 370 UJ 230 J 31 J J J J J	Di-n-butylphthalate	360	U	370	UJ	56	J	370	U	370	υ
Butylbenzylphthalate 360 U 370 UJ 400 U 370 U 370 U 3,3'-Dichlorobenzidine 360 UJ 370 UJ 400 UJ 370 U 370 UJ 370 <td< td=""><td>Fluoranthene</td><td>360</td><td>υ</td><td>370</td><td>UJ</td><td>470</td><td>1</td><td>80</td><td>J</td><td>110</td><td>J</td></td<>	Fluoranthene	360	υ	370	UJ	470	1	80	J	110	J
3,3'-Dichlorobenzidine 360 UJ 370 UJ 400 UJ 370 UJ 370 UJ Benzo(a)anthracene 360 U 370 UJ 270 J 370 U 370 U Chrysene 360 U 370 UJ 330 J 370 U 370 U bis(2-Ethylhexyl)phthalate 360 U 410 J 400 UJ 370 UJ 370 UJ Di-n-octylphthalate 360 U 410 J 400 UJ 370 UJ 370 UJ Benzo(b)fluoranthene 360 U 370 UJ 330 J 370 UJ 370 UJ Benzo(k)fluoranthene 360 U 370 UJ 330 J 39 J 51 J Benzo(a)pyrene 360 U 370 UJ 280 J 370 U 51 J Indeno(1,2,3-cd)pyrene 360 U 370 UJ 240 J </td <td>Pyrene</td> <td>360</td> <td>U</td> <td>370</td> <td>υJ</td> <td>630</td> <td></td> <td>92</td> <td>J</td> <td>2000</td> <td></td>	Pyrene	360	U	370	υJ	630		92	J	2000	
3,3'-Dichlorobenzidine 360 UJ 370 UJ 400 UJ 370 UJ 370 UJ Benzo(a)anthracene 360 U 370 UJ 270 J 370 U 370 U Chrysene 360 U 370 UJ 330 J 370 U 370 U bis(2-Ethylhexyl)phthalate 360 U 410 J 400 UJ 370 UJ 370 UJ Di-n-octylphthalate 360 U 410 J 400 UJ 370 UJ 370 UJ Benzo(b)fluoranthene 360 U 370 UJ 330 J 370 UJ 370 UJ Benzo(k)fluoranthene 360 U 370 UJ 250 J 39 J 44 J Benzo(a)pyrene 360 U 370 UJ 280 J 370 U 51 J Indeno(1,2,3-cd)pyrene 360 U 370 UJ 240 J </td <td>Butylbenzylphthalate</td> <td>360</td> <td>U</td> <td>370</td> <td>υJ</td> <td>400</td> <td>υ</td> <td>370</td> <td>U</td> <td>· 370</td> <td>υ `</td>	Butylbenzylphthalate	360	U	370	υJ	400	υ	370	U	· 370	υ `
Benzo(a)anthracene 360 U 370 UJ 270 J 370 U 370 U Chrysene 360 U 370 UJ 330 J 370 U 370 U bis(2-Ethylhexyl)phthalate 360 U 410 J 400 UJ 370 UJ 370 UJ Di-n-octylphthalate 360 U 410 J 400 UJ 370 UJ 370 UJ Benzo(b)fluoranthene 360 U 370 UJ 330 J 370 UJ 370 UJ Benzo(k)fluoranthene 360 U 370 UJ 250 J 39 J 44 J Benzo(a)pyrene 360 U 370 UJ 280 J 370 U 51 J Indeno(1,2,3-cd)pyrene 360 U 370 UJ 240 J 370 U 370 U		360	υJ	370	υJ	400	UJ	370	UJ	370	UJ
Chrysene 360 U 370 UJ 330 J 370 U 370 U bis(2-Ethylhexyl)phthalate 360 U 410 J 400 UJ 370 UJ 370 UJ 370 UJ Di-n-octylphthalate 360 UJ 370 UJ 400 UJ 370 UJ 370 UJ Benzo(b)fluoranthene 360 U 370 UJ 330 J 399 J 51 J Benzo(k)fluoranthene 360 U 370 UJ 250 J 39 J 444 J Benzo(a)pyrene 360 U 370 UJ 280 J 370 U 51 J Indeno(1,2,3-cd)pyrene 360 U 370 UJ 240 J 370 U 370 U Dibenzo(a,h)anthracene 360 U 370 UJ 400 U 370 U<			υ	370	υJ	270	J	·370	U	370	υ
bis(2-Ethylhexyl)phthalate 360 U 410 J 400 UJ 370 UJ 370 UJ Di-n-octylphthalate 360 UJ 370 UJ 370 UJ 370 UJ Benzo(b)fluoranthene 360 U 370 UJ 330 J 370 UJ 370 UJ Benzo(k)fluoranthene 360 U 370 UJ 330 J 39 J 51 J Benzo(k)fluoranthene 360 U 370 UJ 250 J 39 J 44 J Benzo(a)pyrene 360 U 370 UJ 280 J 370 U 51 J Indeno(1,2,3-cd)pyrene 360 U 370 UJ 240 J 370 U 370 U Dibenzo(a,h)anthracene 360 U 370 UJ 400 U 370 U 370 U			Ú I	370	UJ		J	370	Ū	370	υ
Di-n-octylphthalate 360 UJ 370 UJ 400 UJ 370 UJ 370 UJ Benzo(b)fluoranthene 360 U 370 UJ 330 J 39 J 51 J Benzo(b)fluoranthene 360 U 370 UJ 250 J 39 J 44 J Benzo(a)pyrene 360 U 370 UJ 280 J 370 U 51 J Indeno(1,2,3-cd)pyrene 360 U 370 UJ 240 J 370 U 370 U Dibenzo(a,h)anthracene 360 U 370 UJ 240 J 370 U 370 U			U I	410	J	400	UJ I	370	UJ	370	UJ
Benzo(b)fluoranthene 360 U 370 UJ 330 J 39 J 51 J Benzo(k)fluoranthene 360 U 370 UJ 250 J 39 J 44 J Benzo(a)pyrene 360 U 370 UJ 280 J 370 U 51 J Indeno(1,2,3-cd)pyrene 360 U 370 UJ 240 J 370 U 370 U Dibenzo(a,h)anthracene 360 U 370 UJ 400 U 370 U 370 U							υJ	370	UJ		υJ
Benzo(k)fluoranthene 360 U 370 UJ 250 J 39 J 44 J Benzo(a)pyrene 360 U 370 UJ 280 J 370 U 51 J Indeno(1,2,3-cd)pyrene 360 U 370 UJ 240 J 370 U 370 U Dibenzo(a,h)anthracene 360 U 370 UJ 400 U 370 U 370 U					UJ I		J I	39	J	· 51	J
Benzo(a)pyrene 360 U 370 UJ 280 J 370 U 51 J Indeno(1,2,3-cd)pyrene 360 U 370 UJ 240 J 370 U 370			- 1						J		J
Indeno(1,2,3-cd)pyrene 360 U 370 UJ 240 J 370 U 370 U Dibenzo(a,h)anthracene 360 U 370 UJ 400 U 370 U 370 U 370 U							-	370	υ		-
Dibenzo(a,h)anthracene 360 U 370 UJ 400 U 370 U 370 U			-						υI		
			- 1	L L			-		-		-
							-				
			- 1				<u> </u>		المست		I

SDG : E1YJ8 FLAMBEAU PAPER CORP ENVSYS

Case #: 30529	
Site :	
Lab.:	
Reviewer:	
Date :	

(

Date :	Lab QC		Field dup	licata	Lab blank	•				
Sample Number :	E1YK1M	<u>en</u>	E1YK2	licate	SBLK05	1	<u> </u>			
	SS-4	30	SS-DUP			* ;				
Sampling Location : Matrix :	Soil		Soil		Soil	2		, -	1	
Units :	ug/Kg		ug/Kg		ug/Kg	•			4	
Date Sampled :	05/21/20	02	05/21/20	02	uging .	· í				
	11:40	02	12:45	02						
Time Sampled : %Moisture :	11.40		11		N/A		1			
pH:	6.0		6.6							
Dilution Factor :	1.0		1.0		1.0					-
Semivolatile Compound	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
Benzaldehyde	370	UJ	370		330	UJ				
Phenoi	2000	00	370		330	υ				·
bis-(2-Chloroethyl) ether	370	υ	370		330	Ŭ.				
2-Chlorophenol	2000	U	370	Ŭ	330	Ŭ				
	370	υ	370	1 -	330	Ŭ				
2-Methylphenol 2,2'-oxybis(1-Chloropropane)		υ	370		330	Ŭ		, i	·	
	64	J	370	Ŭ	330	Ŭ		·		
Acetophenone		U	370	-	330	Ŭ.				
4-Methylphenol	370 1000	U	370	Ŭ	330	υ				
N-Nitroso-di-n-propylamine	370	υ	370	Ŭ	330	Ŭ				
Hexachloroethane		υ	370	-	330	Ŭ ·				
Nitrobenzene	370	-	370	υ	330	U				
Isophorone	370	U U	370	Ŭ	330	Ŭ			. •	
2-Nitrophenol	370	υ	370	-	330	U				
2,4-Dimethylphenol	370	-	370		330	U U				,
bis(2-Chloroethoxy)methane	370	U			330	Ŭ				• 1
2,4-Dichlorophenol	370	U	370	-	330	υ		1. A.		
Naphthalene	370		370	U U	330	U		·		
4-Chloroaniline	370	U	370	-	330	υ				
Hexachlorobutadiene	370	U	370		330	U U				
Caprolactam	370	U	370	U U	330	U U				
4-Chloro-3-methylphenol	2700		370	-		U U			1	
2-Methylnaphthalene	370	υ	370	U	330 330	UJ				
Hexachlorocyclopentadiene	370	UJ	370	ŬĴ			•			
2,4,6-Trichlorophenol	. 370	U	370	U	330	U				
2,4,5-Trichlorophenol	930	Ų	930	U	830	U				
1,1'-Biphenyl	370	U	370	U	330	U				
2-Chloronaphthalene	370	U	370	U	330	U	•	- X - 1		
2-Nitroaniline	-930	U	930	U	830	U				
Dimethylphthalate	370	Ut.	370	U	330	U				
2,6-Dinitrotoluene	370	υ	370	U	330	U				
Acenaphthylene	370	U	370	U	330	U				
3-Nitroaniline	930	υ	930	U	830	U				
Acenaphthene	1400		370	U	330	U				

Ì

 $\langle x \rangle$

SDG : E1YJ8 FLAMBEAU PAPER CORP ENVSYS ----,

Date :										
	Lab QC		Field dup	licate	Lab blank					
Sample Number :	E1YK1M	SD	E1YK2		SBLK05	1				
Sampling Location :	SS-4		SS-DUP			;		, [′]		
Matrix :	Soil		Soil		Soil					
Units :	ug/Kg		ug/Kg		ug/Kg	· •			1	
Date Sampled :	05/21/20	02	05/21/20	02						
Time Sampled :	11:40		12:45							
%Moisture :	11		11		N/A					· · [
pH:	6.0		6.6							
Dilution Factor :	1.0		1.0		1.0				· ·	
Semivolatile Compound	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
2,4-Dinitrophenol	930	UJ	930	IJ	830	UJ		•		
4-Nitrophenol	3000		930	U	830	U				
Dibenzofuran	370	U	.370	U	330	U				
2,4-Dinitrotoluene	1400		370	U	330	U				· · [
Diethylphthalate	370	U	370	υ	330	U		•		
Fluorene	370	U	370	U	330	U				
4-Chlorophenyl-phenyl ether	370	Ū	370	U	330	Ų				
4-Nitroaniline	930	U	930	U	830	U				
4,6-Dinitro-2-methylphenol	930	U	930	U	830	U				
N-Nitrosodiphenylamine	370	U	370	U	330	U				
4-Bromophenyl-phenylether	370	U	370	U	330	U				
Hexachlorobenzene	370	U	370	U	´ 330	U ·				
Atrazine	370	U	370	U	330	U				•
Pentachlorophenol	3100		930	U	830	U				
Phenanthrene	68-	J	370	U	330	U				
Anthracene	370	U	370	U	330	U				
Carbazole	370	U	370	υ	330	U	, N			
Di-n-butylphthalate	370	U	370	υ	330	U		-		
Fluoranthene	65	J	82	J	330	U				
Pyrene	2300 [.]		140	J	330	U.				
Butylbenzylphthalate	370	υ	370	U	330	U			•	
3,3'-Dichlorobenzidine	370	UJ	370	UJ	330	UJ				
Benzo(a)anthracene	370	U	370	U	330	U				
Chrysene	370	υ	-370	υ	330	U			•	·
bis(2-Ethylhexyl)phthalate	370	υJ	370	ເມ ເ	36	J				
Di-n-octylphthalate	370	UJ	370	UJ	330	UJ		·		
Benzo(b)fluoranthene	41	J	370	U	330	U				
Benzo(k)fluoranthene	370	U	370	υ	330	U				
Benzo(a)pyrene	370	U	370	U	330	U				
Indeno(1,2,3-cd)pyrene	370	U	370	υ	330	U				
Dibenzo(a,h)anthracene	370	U	370	U	330	U				
Benzo(g,h,i)perylene	370	ับ	370	U	330	U				·

		АГ	алупсал не	suits (uuaimeu u	aia)					
Case #: 30529	SDG : E1Y	′J8									
Site :	FLAMBEA	U PAPI	ER CORP						Samples :		
Lab. :	ENVSYS						Number of	f Water	Samples:	0	
Reviewer :											
Date :						-	;				
	Backgroun	d					•		Lab QC		
Sample Number :	E1YJ8		E1YJ9		E1YK0	ł	E1YK1		E1YK1MS	S	
Sampling Location :	SS-1		SS-2		SS-3	. 1	SS-4	,	SS-4		
Matrix :	Soil		Soil		Soil		Soil		Soil		
Units :	ug/Kg		ug/Kg		ug/Kg	1	ug/Kg		uģ/Kg		
Date Sampled :	05/21/200	2	05/21/200	2	05/21/200	2	05/21/200	2	05/21/200	2	
Time Sampled :	10:30		11:10		12:25		11:40		11:40		
%Moisture :	9		11		18		11		11		
pH:	5.8		5.2		5.5		6.0		6.0		
Dilution Factor :	1.0		1.0		1.0		1.0		1.0		
Pesticide/PCB Compound	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	
alpha-BHC	1.9	U	1.9	U	2.1	0	1.9	0	1.9	U	
beta-BHC	1.9	υ	1.9	U	2.1	U	1.9	U	1.9	U	
delta-BHC	1.9	U	1.9	U	2.1	U	1.9	U	1.9	U	
gamma-BHC (Lindane)	1.9	U	1.9	U	2.1	U	. 1.9	U	9.6	J	
Heptachlor	1.9	U	1.9	U	2.1	U	1.9	U.	14		
Aldrin	1.9	U	1.9	U	2.1	U	1.9	U	15		
Heptachlor epoxide	1.9	U.	1.9	U	2.1	υ.	1.9	U·	1.9	Ų.	
Endosulfan I	1.9	U	1.9	U	2.1	U	1.9	U	1.9	Ú	
Dieldrin	3.6	υ	3.7	U	4.0	υ	3.7	U	27		
4.4'-DDE	3.6	U	3.7	U	4.0	U	3.7	U	3.7	U	
Endrin	3.6	Ū	3.7	U	4.0	υ	3.7	U	33		
Endosulfan II	3.6	υ	3.7	υ	4.0	U	. 3.7	U	3.7	υ	
4.4'-DDD	3.6	υ	3.7	υ	4.0	U	3.7	U	3.7	U	
Endosulfan sulfate	3.6	υ	3.7	U	4.0	U	3.7	U	3.7	U	
4.4'-DDT	3.6	υ	3.7	U	4.0	U	3.7	U	• . 29		
Methoxychlor	19	υ	19	υ	21	U	19	Ų	-19	U	
Endrin ketone	3.6	U.	3.7	U	· 4.0	U	3.7	U	3.7	U	
Endrin aldehyde	3.6	υ	. 3.7	υ	4.0	U ·	3.7	U	3.7	υ	
alpha-Chlordane	1.9	Ú	1.9	U	· 2.1	U	1.9	U	1.9	υ	
gamma-Chlordane	1.9	υ	1.9	υ	2.1	υ	1.9	U	1.9	U	
Toxaphene	190	U	190	υ	210	υ	190	U	190	υ	
Aroclor-1016	. 36	Ū	37	υ	40	U	37	U	37	U	
Aroclor-1221	74	υ	75	υ	82	U.	75	U	75	U	
Aroclor-1232	36	Ū	37	U	40	υ	37	U	37	U	
Aroclor-1242	. 36	Ŭ	37	Ŭ	40	U	37	υ	37	υ	
Aroclor-1248	36	Ŭ	37	Ū	40	Ŭ	37	υ	37	.U	
Aroclor-1254	36	Ŭ	37	Ŭ -	40	U	37	U	37	υ	
Arocior-1260	· 36	Ŭ	37	Ŭ	40	U	37	U	·37	U	

SDG : E1YJ8 FLAMBEAU PAPER CORP ENVSYS

Date :										
	Lab QC		Field duplic	cate :	Lab blank					
Sample Number :	E1YK1MS	D	E1YK2		PBLK88	1	1			
Sampling Location :	SS-4		SS-DUP					, ^{, ,} ,		
Matrix :	Soil		Soil		Soil		1		1	
Units :	ug/Kg		ug/Kg		ug/Kg				-	
Date Sampled :	05/21/2002		05/21/2002		1		ł			
Time Sampled :	11:40		12:45							
%Moisture :	11		11		N/A		· ·			
pH:	6.0		6.6		6.0					
Dilution Factor :	1.0		1.0		1.0					
Pesticide/PCB Compound		Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
alpha-BHC	1.9	U	1.9	U	1.7	U]
beta-BHC	1.9	U	1.9	υ	1.7	U]
delta-BHC	1.9	υ	1.9	U	1.7	U	1 ·			1 1
gamma-BHC (Lindane)	11	•	1.9	U	1.7	U		1		
Heptachlor	· 13		1.9	U	1.7	U			-	
Aldrin	13		1.9	U	1.7	U				
Heptachlor epoxide	1.9	U	1.9	U	1.7	U				
Endosulfan I	1.9	U.	1.9	U	1.7	U				
Dieldrin	24		3.7	บ	⁻ 3.3	U	•			
4,4'-DDE	3.7	U	3.7	U	3.3	U				
Endrin	29		3.7	U	3.3	U				
Endosulfan II	3.7	U	3.7	U	3.3	U	-		•	
4,4'-DDD	. 3.7	U	3.7	U	3.3	U	· ·			· · ·
Endosulfan sulfate	3.7	U	3.7	U	3.3	U			·	
4,4'-DDT	26		3.7	U	3.3	U				·
Methoxychlor	19	U	. 19	υ	17	U				
Endrin ketone	3.7	υ	3.7	υ	3.3	υ				
Endrin aldehyde	3.7	U	3.7	U	3.3	υ				
alpha-Chlordane	1.9	U	1.9	U	1.7	U				
gamma-Chlordane	1.9	U	1.9	U	1.7	U				
Toxaphene	190	U	190	U	170	U		· · · .		· ·
Aroclor-1016	- 37	U	37	U	. 33	U				
Aroclor-1221	75	U	75	U	67	U				e
Aroclor-1232	37	U	37	υ	. 33	U				
Aroclor-1242	37	U	37	U	33	υ.				
Aroclor-1248	· 37	U	37	U	33	U				
Aroclor-1254	37	U :	37	U	33	U				l '
Aroclor-1260	37	U	37	U	33	U				

8

Analytical Results	(Qualified Data)
--------------------	------------------

SDG : ME1YJ8 FLAMBEAU PAPER CORP LIBRTY

J. GANZ

Number of Soil Samples: 5 Number of Water Samples: 0

TIBVIEWET .	J. GANZ										
Date :	JULY 24, 200	02									
	Background								Field duplicat	le	
Jampie Number :	ME1YJ8		ME1YJ9		ME1YK0		ME1YK1		ME1YK2		
Sampling Location :	SS-1		SS-2		SS-3		SS-4 '		SS-DUP		
Matrix :	Soil		Soil		Soil	•	Soil		Soil		
Units :	mg/Kg		mg/Kg		mg/Kg		mg/Kg ¹		mg/Kg		
Date Sampled :	05/21/2002		05/21/2002		05/21/2002		05/21/2002		05/21/2002		
Time Sampled :	10:30	10:30		11:10 ^{**}		12:25		11:40		11:40	
%Solids:	93.0	93.0		84.3		81.8		87.9		89.2	
Dilution Factor :	1.0		1.0		1.0		1.0		1.0		
ANALYTE	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Besult	Flag	
ALUMINUM	9450		6510		6480		6180		6940		
ANTIMONY	0.34	J	0.36	ω	0.62	J	0.53	9 -	0.33	ω	
ARSENIC	0.86	U	1.3		1.6	ł	0.96	U	0.92		
BARIUM	41.3		44.0		142		43.9		42.3	l ·	
BERYLLIUM	0.30	J	0.29	J	0.44	J	0.37	J	0.28	J	
CADMIUM	0.061	U ·	0.068	υ	0.073	U	0.068	U	0.062	υ	
CALCIUM	2360		2900		9710		6180		6230		
CHROMIUM	· 17.6		11.8		16.1		12.9		13.6	1	
COBALT	6.4		- 4.8		4.4	1	6.1		7.6	1	
COPPER	17.8		19.5		22.8		26.5		28.0		
IRON	14200		12100		14000	ŀ	13000		13600		
LEAD	2.9	J	4.9	J	13.1	J.	. 15.9	J ·	8.1	J	
MAGNESIUM	3830		2760		1940		3910		4520		
MANGANESE	223		125	•	237		293		283		
MERCURY	0.040	U	0.052	υ	0.083		0.057	U	0.047	υ	
NICKEL -	17.2		12.1		12.7		. 15.1	:	18.9		
POTASSIUM	269	J	367	J	683	J	396	J	414	J	
SELENIUM	1.1	J	. 1.1	J	1.0	J .	0.52	J	. 0.61	J	
SILVER	0.14	υ	0.16	υ	0.17	U	0.16	υ	0.14	υ	
NODIUM	136	J	168	J	246	J	216	J -	289	J	
LLIUM	0.68	R	0.75	R	0.81	R	0.75	R	0.68	R	
VANADIUM	33.2		31.2	·	39.4		31.6	· · .	33.2		
ZINC	27.0		23.2		42.8		. 39.9		34.0		
CYANIDE	0.049	J	0.035	เม	0.036	J	0.034	υJ	0.034	UJ .	

Soil Limits

.

			•		
	NR 720 Non- industrial direct contcat o	NR 720 Industrial lirect contcat	EPA Soil Screening Level - Ingestion	EPA Soil Screening Level - Inhalation	EPA Soil Screening Level - Groundwater Pathway
	mg/Kg	mg/Kg	mg/Kg	mg/Kg	mg/Kg
Aluminum					
			31		5
Antimony	0.039	1.6	0.4	750	29
Arsenic	0.059		5500	690000	1600
Barium			0.1	1300	63
Beryllium	8	510	78	1800	8
Cadmium	0	510			
Calcium	40000		390	270	38
Chromium	16000		-		
Cobait		-			
Copper		-		-	-
Iron		500	400		
Lead	50	500	400		
Magnesium			-		
Manganese					
Mercury			1600	13000	130
Nickel		*=	1000	10000	
Potassium					**
Sodium			390		5
Selenium	· +-		390 390		34
Silver					0.7
Thallium				· -	6000
Vanadium			550		12000
Zinc			23000		40
Cyanide			1600	,	70

STATEMENT OF PROPERTY LEGAL DESCRIPTION

As required by s.NR726.05(3) of the Wisconsin Administrative Code, I am providing this signed statement that to the best of my knowledge the legal descriptions that are attached to this statement are complete and accurate for the Fraser Papers Inc., Woodyard site located at 200 First Avenue, Park Falls, Wisconsin.

al Х

Date___7/24/03

1 ÷

1

i

(Signature)

(RISTIN PALECEK

(Name)

(Title) (Title) Frasce Papers (Company)