

Wisconsin Public Service Corporation

700 North Adams Street P.O. Box 19001 Green Bay, WI 54307-9001

www.wisconsinpublicservice.com

March 15, 2022

Ms. Leah Werner Remedial Project Manager United States Environmental Protection Agency 77 W. Jackson Boulevard Chicago, Illinois 60604-3590

RE: February 2022 Monthly Progress Report Green Bay Former Manufactured Gas Plant Green Bay, Wisconsin Wisconsin Public Service Corporation CERCLA Docket No. V-W-06-C-847, CERCLIS ID – WIN000509948

Dear Ms. Werner:

Wisconsin Public Service Corporation (WPSC) is providing this monthly progress report for the WPSC Former Green Bay Manufactured Gas Plant (MGP) Site.

1) PROGRESS MADE DURING THE PAST MONTH

- Prepared and submitted January 2022 Monthly Progress Report to United States Environmental Protection Agency (USEPA) by February 15, 2022.
- Submitted *Supplemental Investigation Results Memo* on February 18, 2022 summarizing the 2021 December Utility Corridor Investigation and September Sediment, Surface Water and Sheen Sampling Events.

2) ANALYTICAL AND OTHER TESTING RESULTS RECEIVED

• Groundwater sample results collected at SB-608 during the utility corridor investigation.

3) PROJECTED WORK

WPSC Actions

- Submit monthly progress report to USEPA by the 15th of the month.
- Submit a summary data package of Pre-Design Investigation (PDI) and Site-Specific Work Plan (SWWP) investigation results.
- Submit a *Supplemental PDI Work Plan* to address potential data gaps for Early Removal Action planning and redevelopment of the north parking lot. Field work is planned for April 2022.
- Respond to comments and revise *Letter of Intent* (LOI) for and Early Removal Action in the northern portion of the upland OU and incorporate comments into a *Remedial Action Work Plan* (RAWP).

- Continue to evaluate and incorporate PDI data into a *PDI Data Summary Report,* which will be incorporated into the RAWP for the Early Removal Action.
- Prepare to receive comments on the *Supplemental Investigation Results Memo* and incorporate comments into the RAWP for the Early Removal Action.
- Respond to comments on the Sediment OU RI Report, Revision 1.

USEPA Actions

- Review and comment on a *Supplemental Investigation Results Memo* of the 2021 Utility Corridor and Sediment sampling events.
- Prepare to receive *PDI Work Plan, Addendum 2* for additional investigation planned for April 2022.
- Prepare to receive a *Letter of Intent to Conduct and Early Removal Action* in the northern portion of the upland OU.

4) PROBLEMS OR POTENTIAL PROBLEMS ENCOUNTERED

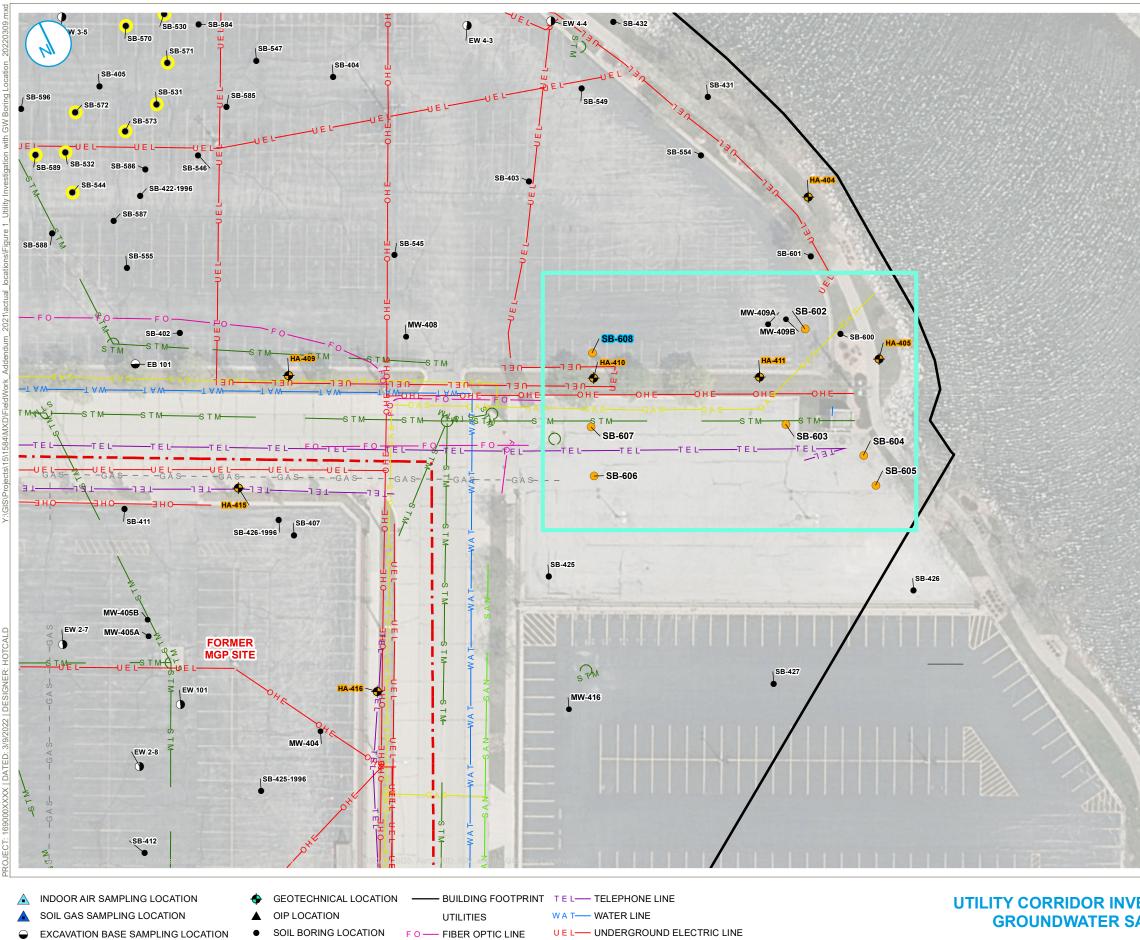
None.

5) ACTUAL OR PLANNED RESOLUTION OF PROBLEMS OR POTENTIAL PROBLEMS

• None.

If you have any questions, please don't hesitate to contact me at (414) 221-2156 or via email at <u>frank.dombrowski@wecenergygroup.com</u>.

Sincerely,


nanderDomini

Frank Dombrowski Principal Environmental Consultant WEC Business Services – Environmental Dept.

Enclosures:

Figure 1. Groundwater Sample Location Table 1. December 2021 Groundwater Analytical Results Compared to the Groundwater SL, the PAL, and Tap Water Criteria Table 2. December 2021 Groundwater Sample Results Compared to VISLs Green Bay MGP February 2022 MPR For distribution to: Ms. Sarah Krueger, WDNR (via US Mail and email) WDNR Northeast Region (via email to <u>DNRRRNER@wisconsin.gov</u>) Ms. Adrienne Korpela, Jacobs (via email) Mr. Dave Klatt, Jacobs (via email) Dr. Staci Goetz, Ramboll (via email)

FIGURES

- EXCAVATION WALL SAMPLING LOCATION
- HAND AUGER SAMPLING LOCATION 50

_ Feet

25


- NAPL OBSERVATION UPLAND SITE BOUNDARY
 - S T M-STORM SEWER LINE FORMER MGP SITE

GAS LINE

- U E L---- UNDERGROUND ELECTRIC LINE OHE OVERHEAD ELECTRIC LINE S A N-SANITARY SEWER LINE G A S- - ABANDONED GAS LINE
 - SOIL BORING (DECEMBER 2021)*
 - INVESTIGATION AREA

UTILITY CORRIDOR INVESTIGATION WITH **GROUNDWATER SAMPLE LOCATION**

PRE-DESIGN INVESTIGATION EVALUATION REPORT FORMER GREEN BAY MANUFACTURED GAS PLANT

NOTES: A GROUNDWATER SAMPLE WAS ALSO COLLECTED AT SB-608

WISCONSIN PUBLIC SERVICE CORPORATION GREEN BAY, WISCONSIN

FIGURE 1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

TABLES

Table 1. December 2021 Groundwater Analytical Results Compared to the Groundwater SL, the PAL, and Tap Water Criteria

December 2021 Monthly Progress Report Wisconsin Public Service Corporation Green Bay Former Manufactured Gas Plant Site 700 N Adams St, Green Bay, Wisconsin BRRTS#: 02-05-000254 USEPA#: WIN000509948

		Ī	PVOC	PVOC	PVOC	PVOC	PVOC	PVOC	PVOC	PVOC	PVOC	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH	PAH
9-digit Code	Sample Location	Sample Date	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Trimethylbenzenes, Total ¹	Benzene	Ethylbenzene	Toluene	Xylene, o	Xylenes, m + p	Xylenes, Total	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a) anthracene	Benzo(a)pyr ene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
	Rep	orting Units:	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
			Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag
	WI Grou	indwater SL:	NS	NS	480	5	700	800	NS	NS	2,000	NS	NS	NS	3,000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	100	3,000	250
	WI Groun	dwater PAL:	NS	<u>NS</u>	<u>96</u>	0.5	<u>140</u>	<u>160</u>	<u>NS</u>	<u>NS</u>	400	<u>NS</u>	<u>NS</u>	<u>NS</u>	<u>600</u>	<u>NS</u>	0.02	0.02	<u>NS</u>	<u>NS</u>	<u>0.02</u>	<u>NS</u>	<u>80</u>	<u>80</u>	<u>NS</u>	<u>10</u>	<u>NS</u>	<u>50</u>
	Тар	Water RSL:	56	60	NS	0.46	1.5	1,100	190	190	190	36	530	530	1,800	0.03	0.025	0.25	120	2.5	25	0.025	800	290	0.25	0.12	1,800	120
	1				1																	1						
122121001/122121002 (N)	SB-608	12/21/2021	0.45 U	0.36 U	0.81 U	0.30 U	0.33 U	0.29 U	0.35 U	0.70 U	1.0 U	0.026	0.043	0.076	0.55	0.22	<u>0.21</u>	<u>0.40</u>	0.26	0.18	<u>0.39</u>	0.052	0.74	0.037	0.19	0.047	0.18	0.64
122121003	TB01	12/21/2021	0.45 U	0.36 U	0.81 U	0.30 U	0.33 U	0.29 U	0.35 U	0.70 U	1.0 U																	

Underline attains or exceeds the WI Groundwater PAL

Italic exceeds the Tap Water RSL

Pink Highlighting Groundwater SL exceedance; results only exceeding the PAL and/or Tap Water criteria are not highlighted.

Results & Flags:

-- = Analysis not performed

U = Concentration was not detected above the reported limit

Acronyms:

Superscripts: 1. Total Trimethylbenzenes were calculated by Ramboll as follows: a. Where no detections were observed, the sum of the reporting limits is presented.

b. Where detections were observed, only the detected results were added together for the total summation.

c. Analytes used for the calculation are 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene.

Screening Levels:

Screening Levels used on this table were presented in the Multi-Site Risk Assessment Framework (RAF) Addendum Revision 6, issued in August 2017. Since that time, nine revisions of the RSLs have been published by EPA through November 2021. The RSLs necessary for the MGP-related constituents evaluated in this table are up to date with the most recent revision.

PAL from WI Administrative Code NR 140 groundwater quality standard revised effective January 2020. Results that attain or exceed the PAL are considered to be in exceedance.

Field parameters were analyzed at time of sampling using an InSitu Aquatroll Multiparameter sonde. Lab comments, additional data qualifiers and definitions can be found in associated laboratory and validation reports.

(N) = Normalized sample locations created from combining parent and field duplicate samples following EPA protocol µg/L = micrograms per liter BRRTS = Bureau for Remediation and Redevelopment Tracking System EPA = Environmental Protection Agency MCL = Maximum Contaminant Level MGP = Manufactured Gas Plant NS = No Screening Level/No Standard PAH = Polycyclic Aromatic Hydrocarbon PAL = Preventive Action Limit PVOC = Petroleum Volatile Organic Compound RSL = Regional Screening Level SL = Screening Level USEPA = United States Environmental Protection Agency WI = Wisconsin

Table 1. December 2021 Groundwater Analytical Results Compared to the Groundwater SL, the PAL, and Tap Water Criteria

December 2021 Monthly Progress Report Wisconsin Public Service Corporation Green Bay Former Manufactured Gas Plant Site 700 N Adams St, Green Bay, Wisconsin BRRTS#: 02-05-000254 USEPA#: WIN000509948

			Metal	Metal	Metal	Metal	Metal	Metal	Metal	Metal	Metal	Metal	Metal	Metal	Metal	Metal	Metal	Metal
9-digit Code	Sample Location	Sample Date	Aluminum, Total	Antimony, Total	Arsenic, Total	Barium, Total	Cadmium, Total	Chromium, Total	Copper, Total	Iron, Total	Lead, Total	Manganese, Total	Mercury, Total	Nickel, Total	Selenium, Total	Silver, Total	Vanadium, Total	Zinc, Total
	Rep	orting Units:	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
			Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result Flag	Result F
	W/I Crow	ndwater SL:	200	6	10	2,000	E	100	1,300	NS	15	300	2	100	50	50	30	NS
				v	10				,		-						30	
		dwater PAL:	<u>40</u>	<u>1.2</u>	<u>1</u>	400	<u>0.5</u>	<u>10</u>	<u>130</u>	<u>150</u>	<u>1.5</u>	<u>60</u>	<u>0.2</u>	<u>20</u>	<u>10</u>	<u>10</u>	<u>0</u>	<u>2,500</u>
	Тар	Water RSL:	20,000	7.8	0.052	3,800	1.8	22,000	800	14,000	15	430	5.7	390	100	94	86	6,000
	1						1								1		1	1
122121001/122121002 (N)	SB-608	12/21/2021	<u>6,030</u>	0.46	<u>3.2</u>	106	0.30 U	<u>12.8</u>	11.8	<u>12,000</u>	<u>16.0</u>	<u>628</u>	0.066 U	7.2	0.63 U	0.25 U	<u>15.4</u>	63.6
122121003	TB01	12/21/2021																
	_														-		[O:CMD 2/8/2	22, C:ECB 3/8/

Underline attains or exceeds the WI Groundwater PAL

Italic exceeds the Tap Water RSL

Pink Highlighting Groundwater SL exceedance; results only exceeding the PAL and/or Tap Water criteria are not highlighted.

Results & Flags:

-- = Analysis not performed

U = Concentration was not detected above the reported limit

Acronyms:

 (N) = Normalized sample locations created from combining parent and field duplicate samples following EPA protocol

 µg/L = micrograms per liter

 BRRTS = Bureau for Remediation and Redevelopment Tracking System

 EPA = Environmental Protection Agency

 MCL = Maximum Contaminant Level

 MGP = Manufactured Gas Plant

 NS = No Screening Level/No Standard

 PAH = Polycyclic Aromatic Hydrocarbon

 PAL = Preventive Action Limit

 PVOC = Petroleum Volatile Organic Compound

 RSL = Regional Screening Level

 SL = Screening Level

 USEPA = United States Environmental Protection Agency

 WI = Wisconsin

Superscripts:

1. Total Trimethylbenzenes were calculated by Ramboll as follows:

a. Where no detections were observed, the sum of the reporting limits is presented.

b. Where detections were observed, only the detected results were added together for the total summation.

c. Analytes used for the calculation are 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene.

Screening Levels:

Screening Levels used on this table were presented in the Multi-Site Risk Assessment Framework (RAF) Addendum Revision 6, issued in August 2017. Since that time, nine revisions of the RSLs have been published by EPA through November 2021. The RSLs necessary for the MGP-related constituents evaluated in this table are up to date with the most recent revision.

PAL from WI Administrative Code NR 140 groundwater quality standard revised effective January 2020. Results that attain or exceed the PAL are considered to be in exceedance.

Field parameters were analyzed at time of sampling using an InSitu Aquatroll Multiparameter sonde. Lab comments, additional data qualifiers and definitions can be found in associated laboratory and validation reports.

Table 2. December 2021 Groundwater Sample Results Compared to VISLs

December 2021 Monthly Progress Report Wisconsin Public Service Corporation Green Bay Former Manufactured Gas Plant Site 700 N Adams St, Green Bay, Wisconsin BRRTS#: 02-05-000254 USEPA#: WIN000509948

			PVO	5	PVOC	PVOC		PVOC		PVOC	PVC	С	PVOC	PVC)C	PVO	С	PAH
9-digit Code	Sample Location	Sample Date	1,2,4-Trimethylbenzene		1, 3, 5- Trimethylbenzene	Trimethylbenzenes, Total ¹		Benzene		Ethylbenzene	Toluene		Xylene, o	Xvlenes, m + p		Xylenes, Total		Naphthalene
	Rep	orting Units:	μg/l		μg/L	μg/L		μg/L		μg/L	μg/	L	μg/L	μg/	Ľ	μg/l	-	μg/L
			Result	Flag	Result Fla	g Result	Flag	Result Flag	R	Result Flag	Result	Flag	Result Flag	Result	Flag	Result	Flag	Result Flag
G	roundwater VISI	, Industrial:	1,04)	733	1,040		6.9	Γ	15	80,7	00	2,070	1,49	90	1,62	0	20
Gr	oundwater VISL,	Residential:	248		175	248		1.6		3.5	19,2	00	492	35	5	385		4.6
122121001/122121002 (N)	SB-608	12/21/2021	0.45	U	0.36 L	0.81	U	0.30 U	0	0.33 U	0.29	U	0.35 U	0.70	С	1.0	U	0.047
122121003	TB01	12/21/2021	0.45	U	0.36 L	0.81	U	0.30 U	0	0.33 U	0.29	U	0.35 U	0.70	U	1.0	U	
																[0:CMD 2	2/8/22	2, C:ECB 3/8/22]

Only parameters with VISL will be presented; please refer to Table 1 for results for other parameters.

Bold	exceeds the Groundwater VISL, Industrial
Underline	exceeds the Groundwater VISL, Residential
Pink Highlighting	result exceeds one or more screening criteria

Results & Flags:

-- = Analysis not performed

U = Concentration was not detected above the reported limit

Acronyms:

(N) = Normalized sample locations created from combining parent and field duplicate samples following EPA protocol

 μ g/L = micrograms per liter BRRTS = Bureau for Remediation and Redevelopment Tracking System

EPA = Environmental Protection Agency

MGP = Manufactured Gas Plant

PAH = Polycyclic Aromatic Hydrocarbon

PVOC = Petroleum Volatile Organic Compound

RSL = Regional Screening Level

TB = Trip Blank

USEPA = United States Environmental Protection Agency

VISL = Vapor Intrusion Screening Level

Superscripts:

1. Total Trimethylbenzenes were calculated by Ramboll as follows:

- a. Where no detections were observed, the sum of the reporting limits is presented.
- b. Where detections were observed, only the detected results were added together for the total summation.
- c. Analytes used for the calculation are 1,2,4-Trimethylbenzene and 1,3,5-Trimethylbenzene.

Screening Levels:

Screening Levels used on this table were presented in the Multi-Site Risk Assessment Framework (RAF) Addendum Revision 6, issued in August 2017. Since that time, nine revisions of the RSLs have been published by EPA through November 2021. The RSLs necessary for the MGP-related constituents evaluated in this table are up to date with the most recent revision.

Lab comments, additional data qualifiers and definitions can be found in associated laboratory and validation reports.

ANALYTICAL LABORATORY REPORTS

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

January 05, 2022

Staci Goetz Ramboll US Consulting, Inc. 234 W. Florida Street Fifth Floor Milwaukee, WI 53204

RE: Project: 1940101253 GREEN BAY FORMER MG Pace Project No.: 40238726

Dear Staci Goetz:

Enclosed are the analytical results for sample(s) received by the laboratory on December 22, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely.

Brian Basten brian.basten@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Phil Brochocki, Ramboll NRT Data, Ramboll Eric Hritsuk, Ramboll Kyle Schaefer, Ramboll Americas Dan Vachon, O'Brien & Gere Engineers, Inc Integrys WI Steve Wiskes, Ramboll

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 1940101253 GREEN BAY FORMER MG

Pace Project No.: 40238726

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 1940101253 GREEN BAY FORMER MG

Pace Project No.: 40238726

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40238726001	122121001	Water	12/21/21 14:35	12/22/21 10:21
40238726002	122121002	Water	12/21/21 14:40	12/22/21 10:21
40238726003	122121003	Water	12/21/21 00:00	12/22/21 10:21

SAMPLE ANALYTE COUNT

Project:1940101253 GREEN BAY FORMER MGPace Project No.:40238726

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40238726001	122121001	EPA 6020B	KXS	15
		EPA 7470	AJT	1
		EPA 8270E by SIM	RJN	19
		EPA 8260	LAP	11
40238726002	122121002	EPA 6020B	KXS	15
		EPA 7470	AJT	1
		EPA 8270E by SIM	RJN	19
		EPA 8260	LAP	11
40238726003	122121003	EPA 8260	LAP	11

PASI-G = Pace Analytical Services - Green Bay

Project: 1940101253 GREEN BAY FORMER MG

Pace Project No.: 40238726

Method: EPA 6020B

Description:6020B MET ICPMSClient:O'Brien & Gere Engineers, Inc Integrys WIDate:January 05, 2022

General Information:

2 samples were analyzed for EPA 6020B by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation: The samples were prepared in accordance with EPA 3010A with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 405198

- D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
 - 122121001 (Lab ID: 40238726001)
 - Silver
 - Cadmium
 - Copper
 - Antimony
 - Selenium
 - Zinc
 - 122121002 (Lab ID: 40238726002)
 - Silver
 - Cadmium

Project: 1940101253 GREEN BAY FORMER MG

Pace Project No.: 40238726

Method: EPA 6020B

Description:6020B MET ICPMSClient:O'Brien & Gere Engineers, Inc. Integrys WIDate:January 05, 2022

Analyte Comments:

QC Batch: 405198

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

- 122121002 (Lab ID: 40238726002)
 - Copper
 - Antimony
 - Selenium
 - Zinc

Project: 1940101253 GREEN BAY FORMER MG

Pace Project No.: 40238726

Method: EPA 7470

Description:7470 MercuryClient:O'Brien & Gere Engineers, Inc. Integrys WIDate:January 05, 2022

General Information:

2 samples were analyzed for EPA 7470 by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7470 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 1940101253 GREEN BAY FORMER MG

Pace Project No.: 40238726

Method: EPA 8270E by SIM

Description:8270E MSSV PAHClient:O'Brien & Gere Engineers, Inc. Integrys WIDate:January 05, 2022

General Information:

2 samples were analyzed for EPA 8270E by SIM by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 404944

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 40238662001

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MSD (Lab ID: 2337351)
 - Acenaphthylene
 - Fluorene
 - Naphthalene
 - Phenanthrene
 - Pyrene
- R1: RPD value was outside control limits.
 - MSD (Lab ID: 2337351)
 - 2-Methylnaphthalene

Project: 1940101253 GREEN BAY FORMER MG

Pace Project No.: 40238726

Method: EPA 8270E by SIM

Description: 8270E MSSV PAH

Client: O'Brien & Gere Engineers, Inc Integrys WI Date: January 05, 2022

QC Batch: 404944

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 40238662001

R1: RPD value was outside control limits.

- Acenaphthene
- Acenaphthylene
- Anthracene
- Benzo(a)anthracene
- Benzo(a)pyrene
- Benzo(b)fluoranthene
- Benzo(g,h,i)perylene
- Benzo(k)fluoranthene
- Chrysene
- Dibenz(a,h)anthracene
- Fluoranthene
- Fluorene
- Indeno(1,2,3-cd)pyrene
- Naphthalene
- Phenanthrene
- Pyrene

Additional Comments:

Project: 1940101253 GREEN BAY FORMER MG

Pace Project No.: 40238726

Method: EPA 8260

Description:8260 MSV USTClient:O'Brien & Gere Engineers, Inc. Integrys WIDate:January 05, 2022

General Information:

3 samples were analyzed for EPA 8260 by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 1940101253 GREEN BAY FORMER MG

Pace Project No.: 40238726

Sample: 122121001	Lab ID:	40238726001	Collected	l: 12/21/21	14:35	Received: 12/	22/21 10:21 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6020B MET ICPMS	Analytical	Method: EPA 6	020B Prepa	aration Met	hod: Ef	PA 3010A			
	Pace Ana	lytical Services	- Green Bay	/					
Aluminum	5780	ug/L	500	117	2	12/29/21 06:05	01/04/22 14:44	7429-90-5	
Antimony	0.38J	ug/L	2.0	0.30	2	12/29/21 06:05			D3
Arsenic	2.9	ug/L	2.0	0.56	2	12/29/21 06:05			
Barium	103	ug/L	4.7	1.4	2	12/29/21 06:05	01/04/22 14:44		
Cadmium	<0.30	ug/L	2.0	0.30	2	12/29/21 06:05	01/04/22 14:44	7440-43-9	D3
Chromium	12.2	ug/L	6.8	2.0	2	12/29/21 06:05	01/04/22 14:44	7440-47-3	
Copper	9.7J	ug/L	12.7	3.8	2	12/29/21 06:05	01/04/22 14:44	7440-50-8	D3
Iron	12000	ug/L	500	116	2	12/29/21 06:05	01/04/22 14:44		-
Lead	14.8	ug/L	2.0	0.47	2	12/29/21 06:05			
Manganese	628	ug/L	8.1	2.4	2	12/29/21 06:05	01/04/22 14:44		
Nickel	6.6	ug/L	2.0	0.57	2	12/29/21 06:05	01/04/22 14:44		
Selenium	<0.63	ug/L	2.1	0.63	2	12/29/21 06:05			D3
Silver	<0.25	ug/L	1.0	0.25	2	12/29/21 06:05			D3
Vanadium	15.0	ug/L	2.1	0.63	2		01/04/22 14:44		20
Zinc	60.6J	ug/L	68.9	20.7	2		01/04/22 14:44		D3
7470 Mercury	Pace Ana	Method: EPA 7 lytical Services	- Green Bay	/				- 400 07 0	
Mercury	<0.066	ug/L	0.20	0.066	1	01/03/22 09:50	01/04/22 07:42	7439-97-6	
8270E MSSV PAH	Analytical	Method: EPA 8	270E by SIM	/ Preparat	ion Me	thod: EPA 3510			
	Pace Ana	lytical Services	- Green Bay	1					
Acenaphthene	0.043J	ug/L	0.046	0.013	1	12/23/21 08:45	12/27/21 11:32	83-32-9	
Acenaphthylene	0.076	ug/L	0.046	0.012	1	12/23/21 08:45	12/27/21 11:32	208-96-8	
Anthracene	0.55	ug/L	0.046	0.017	1		12/27/21 11:32		
Benzo(a)anthracene	0.22	ug/L	0.046	0.013	1		12/27/21 11:32		
Benzo(a)pyrene	0.21	ug/L	0.046	0.018	1		12/27/21 11:32		
Benzo(b)fluoranthene	0.40	ug/L							
	0.40		0.046	0.018	1	12/23/21 08:45	12/27/21 11:32	205-99-2	
		-	0.046 0.046	0.018 0.022	1 1	12/23/21 08:45 12/23/21 08:45			
Benzo(g,h,i)perylene	0.26	ug/L	0.046	0.022	1	12/23/21 08:45	12/27/21 11:32	191-24-2	
Benzo(g,h,i)perylene Benzo(k)fluoranthene	0.26 0.18	ug/L ug/L	0.046 0.046	0.022 0.021	1 1	12/23/21 08:45 12/23/21 08:45	12/27/21 11:32 12/27/21 11:32	191-24-2 207-08-9	
Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene	0.26 0.18 0.39	ug/L ug/L ug/L	0.046 0.046 0.046	0.022 0.021 0.025	1 1 1	12/23/21 08:45 12/23/21 08:45 12/23/21 08:45	12/27/21 11:32 12/27/21 11:32 12/27/21 11:32	191-24-2 207-08-9 218-01-9	
Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene	0.26 0.18 0.39 0.052	ug/L ug/L ug/L ug/L	0.046 0.046 0.046 0.046	0.022 0.021 0.025 0.017	1 1 1 1	12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45	12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32	191-24-2 207-08-9 218-01-9 53-70-3	
Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene	0.26 0.18 0.39 0.052 0.74	ug/L ug/L ug/L ug/L ug/L	0.046 0.046 0.046 0.046 0.046	0.022 0.021 0.025 0.017 0.024	1 1 1 1	12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45	12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32	191-24-2 207-08-9 218-01-9 53-70-3 206-44-0	
Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene	0.26 0.18 0.39 0.052 0.74 0.037J	ug/L ug/L ug/L ug/L ug/L ug/L	0.046 0.046 0.046 0.046 0.046 0.046	0.022 0.021 0.025 0.017 0.024 0.022	1 1 1 1 1	12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45	12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32	191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7	
Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	0.26 0.18 0.052 0.74 0.037J 0.19	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.046 0.046 0.046 0.046 0.046 0.046 0.046	0.022 0.021 0.025 0.017 0.024 0.022 0.014	1 1 1 1 1 1	12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45	12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32	191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5	
Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene	0.26 0.18 0.052 0.74 0.037J 0.19 0.013J	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046	0.022 0.021 0.025 0.017 0.024 0.022 0.014 0.013	1 1 1 1 1 1	12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45	12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32	191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-57-6	
Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene	0.26 0.18 0.052 0.74 0.037J 0.19 0.013J 0.030J	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046	0.022 0.021 0.025 0.017 0.024 0.022 0.014 0.013 0.018	1 1 1 1 1 1 1	12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45	12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32	191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-57-6 91-20-3	
Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene	0.26 0.18 0.39 0.052 0.74 0.037J 0.19 0.013J 0.030J 0.18	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046	0.022 0.021 0.025 0.017 0.024 0.022 0.014 0.013 0.018 0.024	1 1 1 1 1 1 1 1	12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45	12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32	191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-57-6 91-20-3 85-01-8	
Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene	0.26 0.18 0.052 0.74 0.037J 0.19 0.013J 0.030J	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046	0.022 0.021 0.025 0.017 0.024 0.022 0.014 0.013 0.018	1 1 1 1 1 1 1	12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45	12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32	191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-57-6 91-20-3 85-01-8	
Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 2-Methylnaphthalene Naphthalene Phenanthrene	0.26 0.18 0.39 0.052 0.74 0.037J 0.19 0.013J 0.030J 0.18	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046	0.022 0.021 0.025 0.017 0.024 0.022 0.014 0.013 0.018 0.024	1 1 1 1 1 1 1 1	12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45 12/23/21 08:45	12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32 12/27/21 11:32	191-24-2 207-08-9 218-01-9 53-70-3 206-44-0 86-73-7 193-39-5 91-57-6 91-20-3 85-01-8 129-00-0	

Project: 1940101253 GREEN BAY FORMER MG

i iojeci.

Pace Project No.: 40238726

Sample: 122121001	Lab ID:	40238726001	Collected:	12/21/21	14:35	Received: 12/	22/21 10:21 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV UST	Analytical	Method: EPA 8	260						
	Pace Ana	lytical Services	- Green Bay						
Benzene	<0.30	ug/L	1.0	0.30	1		12/28/21 01:53	71-43-2	
Ethylbenzene	<0.30	ug/L	1.0	0.30	1		12/28/21 01:53	-	
Toluene	<0.33	ug/L	1.0	0.33	1		12/28/21 01:53		
1,2,4-Trimethylbenzene	<0.25	ug/L	1.0	0.25	1		12/28/21 01:53		
1,3,5-Trimethylbenzene	<0.36	ug/L	1.0	0.36	1		12/28/21 01:53		
Kylene (Total)	<1.0	ug/L	3.0	1.0	1		12/28/21 01:53		
n&p-Xylene	<0.70	ug/L	2.0	0.70	1		12/28/21 01:53		
o-Xylene	<0.70	ug/L	2.0 1.0	0.70	1		12/28/21 01:53		
Surrogates	<0.55	ug/L	1.0	0.55	1		12/20/21 01.55	93-47-0	
Toluene-d8 (S)	92	%	70-130		1		12/28/21 01:53	2037-26-5	
4-Bromofluorobenzene (S)	91	%	70-130		1		12/28/21 01:53		
1,2-Dichlorobenzene-d4 (S)	112	%	70-130		1		12/28/21 01:53		
,									
Sample: 122121002	Lab ID:	40238726002	Collected:	12/21/21	14:40	Received: 12/	22/21 10:21 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
020B MET ICPMS	Analytical	Method: EPA 6	020B Prepar	ation Meth	nod [.] FF	A 3010A			
		lytical Services			100. EI	//00/0//			
	T ace Ana	•	- Oleen bay						
Aluminum	6030	ug/L	500	117	2	12/29/21 06:05	01/04/22 15:13	7429-90-5	
Antimony	0.46J	ug/L	2.0	0.30	2	12/29/21 06:05	01/04/22 15:13	7440-36-0	D3
Arsenic	3.2	ug/L	2.0	0.56	2	12/29/21 06:05	01/04/22 15:13	7440-38-2	
Barium	106	ug/L	4.7	1.4	2	12/29/21 06:05	01/04/22 15:13	7440-39-3	
Cadmium	<0.30	ug/L	2.0	0.30	2	12/29/21 06:05	01/04/22 15:13	7440-43-9	D3
Chromium	12.8	ug/L	6.8	2.0	2	12/29/21 06:05	01/04/22 15:13	7440-47-3	
Copper	11.8J	ug/L	12.7	3.8	2	12/29/21 06:05	01/04/22 15:13	7440-50-8	D3
ron	12000	ug/L	500	116	2	12/29/21 06:05	01/04/22 15:13	7439-89-6	
₋ead	16.0	ug/L	2.0	0.47	2	12/29/21 06:05	01/04/22 15:13	7439-92-1	
Vanganese	598	ug/L	8.1	2.4	2	12/29/21 06:05	01/04/22 15:13	7439-96-5	
Nickel	7.2	ug/L	2.0	0.57	2	12/29/21 06:05	01/04/22 15:13	7440-02-0	
Selenium	<0.63	ug/L	2.1	0.63	2	12/29/21 06:05	01/04/22 15:13	7782-49-2	D3
Dili yan	<0.25	ug/L	1.0	0.25	2	12/29/21 06:05	01/04/22 15:13	7440-22-4	D3
Silver				0.63	2	12/29/21 06:05	01/04/22 15:13	7440-62-2	
	15.4	ug/L	2.1	0.05		,_0,	01/01/22 10:10		
/anadium	15.4 63.6J	ug/L ug/L	2.1 68.9	20.7	2		01/04/22 15:13		D3
Vanadium Zinc	63.6J Analytical	ug/L Method: EPA 7	68.9 470 Prepara	20.7	2	12/29/21 06:05			D3
Vanadium Zinc 7470 Mercury	63.6J Analytical Pace Ana	ug/L Method: EPA 7 lytical Services	68.9 470 Prepara - Green Bay	20.7 tion Metho	2	12/29/21 06:05 7470	01/04/22 15:13	7440-66-6	D3
/anadium Zinc 7470 Mercury	63.6J Analytical	ug/L Method: EPA 7	68.9 470 Prepara	20.7	2	12/29/21 06:05 7470		7440-66-6	D3
/anadium Zinc 7470 Mercury Mercury	63.6J Analytical Pace Ana <0.066 Analytical	ug/L Method: EPA 7 lytical Services	68.9 470 Prepara - Green Bay 0.20 270E by SIM	20.7 tion Metho 0.066	2 od: EPA 1	12/29/21 06:05 7470 01/03/22 09:50	01/04/22 15:13	7440-66-6	D3
Silver Vanadium Zinc 7470 Mercury Mercury 8270E MSSV PAH Acenaphthene	63.6J Analytical Pace Ana <0.066 Analytical	ug/L Method: EPA 7 lytical Services ug/L Method: EPA 8	68.9 470 Prepara - Green Bay 0.20 270E by SIM	20.7 tion Metho 0.066	2 od: EPA 1	12/29/21 06:05 .7470 01/03/22 09:50 hod: EPA 3510	01/04/22 15:13	7440-66-6 7439-97-6	D3

REPORT OF LABORATORY ANALYSIS

Project: 1940101253 GREEN BAY FORMER MG

Pace Project No.: 40238726

Sample: 122121002	Lab ID:	40238726002	Collected	d: 12/21/2	14:40	Received: 12/	22/21 10:21 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
3270E MSSV PAH	Analytical	Method: EPA 8	270E by SI	M Preparat	ion Me	thod: EPA 3510			
	-	vtical Services	-						
Anthracene	0.38	ug/L	0.045	0.017	1	12/23/21 08:45	12/27/21 11:50	120-12-7	
Benzo(a)anthracene	0.00	ug/L	0.045	0.012	1		12/27/21 11:50		
Benzo(a)pyrene	0.14	ug/L	0.045	0.012	1		12/27/21 11:50		
Benzo(b)fluoranthene	0.24	ug/L	0.045	0.018	1		12/27/21 11:50		
Benzo(g,h,i)perylene	0.16	ug/L	0.045	0.021	1		12/27/21 11:50		
Benzo(k)fluoranthene	0.098	ug/L	0.045	0.020	1		12/27/21 11:50	-	
Chrysene	0.23	ug/L	0.045	0.024	1		12/27/21 11:50		
Dibenz(a,h)anthracene	0.032J	ug/L	0.045	0.016	1		12/27/21 11:50		
Fluoranthene	0.42	ug/L	0.045	0.024	1		12/27/21 11:50		
Fluorene	0.037J	ug/L	0.045	0.024	1		12/27/21 11:50		
ndeno(1,2,3-cd)pyrene	0.0070	ug/L	0.045	0.021	1		12/27/21 11:50		
2-Methylnaphthalene	0.026J	ug/L	0.045	0.014	1		12/27/21 11:50		
Vaphthalene	0.0203	ug/∟ ug/L	0.045	0.013	1		12/27/21 11:50		
Phenanthrene	0.15	ug/L	0.045	0.013	1		12/27/21 11:50		
Pyrene	0.15	-	0.045	0.023	1	12/23/21 08:45	12/27/21 11:50		
Surrogates	0.35	ug/L	0.045	0.020	I	12/23/21 06:45	12/27/21 11:50	129-00-0	
2-Fluorobiphenyl (S)	54	%	10-113		1	12/23/21 08:45	12/27/21 11:50	321-60-8	
erphenyl-d14 (S)	60	%	28-124		1		12/27/21 11:50		
	00	70	20 124			12/20/21 00.40	12/21/21 11:00	1110 01 0	
260 MSV UST	Analytical	Method: EPA 8	260						
	Pace Anal	vtical Services	- Green Ba	у					
Benzene	<0.30	ug/L	1.0	0.30	1		12/28/21 11:20	71-43-2	
Ethylbenzene	<0.33	ug/L	1.0	0.33	1		12/28/21 11:20		
Foluene	<0.29	ug/L	1.0	0.29	1		12/28/21 11:20		
,2,4-Trimethylbenzene	<0.45	ug/L	1.0	0.45	1		12/28/21 11:20		
,3,5-Trimethylbenzene	<0.36	ug/L	1.0	0.36	1		12/28/21 11:20		
(ylene (Total)	<1.0	ug/L	3.0	1.0	1		12/28/21 11:20		
n&p-Xylene	<0.70	ug/L	2.0	0.70	1		12/28/21 11:20		
o-Xylene	<0.35	ug/L	1.0	0.35	1		12/28/21 11:20		
Surrogates		ug/L	1.0	0.00	•		12,20,21 11.20	00 11 0	
Toluene-d8 (S)	91	%	70-130		1		12/28/21 11:20	2037-26-5	
4-Bromofluorobenzene (S)	92	%	70-130		1		12/28/21 11:20		
I,2-Dichlorobenzene-d4 (S)	110	%	70-130		1		12/28/21 11:20		
Sample: 122121003	Lab ID:	40238726003	Collected	d: 12/21/2	00:00	Received: 12/	22/21 10:21 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
3260 MSV UST	Analytical	Method: EPA 8	260						
	Pace Anal	vtical Services	- Green Ba	у					
Benzene	<0.30	ug/L	1.0	0.30	1		12/27/21 23:43	71-43-2	
Ethylbenzene	<0.33	ug/L	1.0	0.33	1		12/27/21 23:43		
Toluene	<0.29	ug/L	1.0	0.29	1		12/27/21 23:43		

REPORT OF LABORATORY ANALYSIS

Project: 1940101253 GREEN BAY FORMER MG

_ _ _

Pace Project No.: 40238726

Sample: 122121003	Lab ID:	40238726003	Collecte	d: 12/21/21	00:00	Received: 12	/22/21 10:21 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST	Analytical	Method: EPA 8	260						
	Pace Anal	ytical Services	- Green Ba	у					
1,2,4-Trimethylbenzene	<0.45	ug/L	1.0	0.45	1		12/27/21 23:43	95-63-6	
1,3,5-Trimethylbenzene	<0.36	ug/L	1.0	0.36	1		12/27/21 23:43	108-67-8	
Xylene (Total)	<1.0	ug/L	3.0	1.0	1		12/27/21 23:43	1330-20-7	
m&p-Xylene	<0.70	ug/L	2.0	0.70	1		12/27/21 23:43	179601-23-1	
o-Xylene	<0.35	ug/L	1.0	0.35	1		12/27/21 23:43	95-47-6	
Surrogates		Ū							
Toluene-d8 (S)	91	%	70-130		1		12/27/21 23:43	2037-26-5	
4-Bromofluorobenzene (S)	94	%	70-130		1		12/27/21 23:43	460-00-4	
1,2-Dichlorobenzene-d4 (S)	113	%	70-130		1		12/27/21 23:43	2199-69-1	

	39537 es: 40238726	001, 40238726002 001, 40238726002	Anal Labo 2	lysis Meth lysis Desc oratory: Matrix:	cription:	EPA 7470 7470 Mercu Pace Analyt	-	es - Green	Вау			
Associated Lab Sample METHOD BLANK: 23	es: 40238726 39537 es: 40238726		Labo 2	oratory:			-	es - Green	Вау			
METHOD BLANK: 23	39537 es: 40238726		2	,		Pace Analyt	ical Service	es - Green	Bay			
METHOD BLANK: 23	39537 es: 40238726			Matrix:								
	es: 40238726	001, 40238726002	2	Matrix:	Water							
Associated Lab Sample		001, 40238726002	2									
	ar											
	r		Bla	ink	Reporting							
Paramete	21	Units	Res	sult	Limit	Analy	/zed	Qualifier	S			
Mercury		ug/L		<0.066	0.2	20 01/04/2	2 07:38					
LABORATORY CONTR	ROL SAMPLE:	2339538	0		00	1.00	0(D					
Paramete)r	Units	Spike Conc.		_CS esult	LCS % Rec	% Re Limi		Qualifiers			
	<u> </u>								Quaimers	_		
Mercury		ug/L		5	5.0	10) 8	35-115				
MATRIX SPIKE & MATI	RIX SPIKE DUP	LICATE: 23395	539		233954	0						
			MS	MSD								
		40238726001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury	ug/L	<0.066	5		5 4.9	5.0	98	99	85-115	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

-	
Project:	1940101253 GREEN BAY FORMER MG

Pace Project No.:	40238726
-------------------	----------

QC Batch:	405198	Analysis Meth	nod: El	PA 6020B				
QC Batch Method:	QC Batch Method: EPA 3010A		Analysis Description: 60		6020B MET			
		Laboratory:	Pa	ace Analytical Servi	ices - Green Bay			
Associated Lab Sam	ples: 40238726001, 402387260	002						
METHOD BLANK:	2338563	Matrix:	Water					
Associated Lab Sam	ples: 40238726001, 402387260	002						
		Blank	Reporting					
Param	eter Units	Result	Limit	Analyzed	Qualifiers			
Aluminum	ug/L	<58.7	250	01/04/22 06:02				
Antimony	ua/l	<0.15	10	01/04/22 06:02				

Antimony	ug/L	<0.15	1.0	01/04/22 06:02
Arsenic	ug/L	<0.28	1.0	01/04/22 06:02
Barium	ug/L	<0.70	2.3	01/04/22 06:02
Cadmium	ug/L	<0.15	1.0	01/04/22 06:02
Chromium	ug/L	<1.0	3.4	01/04/22 06:02
Copper	ug/L	<1.9	6.4	01/04/22 06:02
Iron	ug/L	<58.0	250	01/04/22 06:02
Lead	ug/L	<0.24	1.0	01/04/22 06:02
Manganese	ug/L	<1.2	4.0	01/04/22 06:02
Nickel	ug/L	<0.28	1.0	01/04/22 06:02
Selenium	ug/L	<0.32	1.1	01/04/22 06:02
Silver	ug/L	<0.13	0.50	01/04/22 06:02
Vanadium	ug/L	<0.32	1.0	01/04/22 06:02
Zinc	ug/L	<10.3	34.4	01/04/22 06:02

LABORATORY CONTROL SAMPLE: 2338564

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Aluminum	ug/L	10000	10000	100	80-120	
Antimony	ug/L	250	250	100	80-120	
Arsenic	ug/L	250	259	104	80-120	
Barium	ug/L	250	253	101	80-120	
Cadmium	ug/L	250	262	105	80-120	
Chromium	ug/L	250	250	100	80-120	
Copper	ug/L	250	245	98	80-120	
Iron	ug/L	10000	10200	102	80-120	
Lead	ug/L	250	257	103	80-120	
Manganese	ug/L	250	254	101	80-120	
Nickel	ug/L	250	252	101	80-120	
Selenium	ug/L	250	277	111	80-120	
Silver	ug/L	125	124	99	80-120	
Vanadium	ug/L	250	250	100	80-120	
Zinc	ug/L	250	264	106	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1940101253 GREEN BAY FORMER MG

Pace Project No.: 40238726

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 2338	565		2338566							
			MS	MSD								
		40238726001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Aluminum	ug/L	5780	10000	10000	18200	17900	124	121	75-125	2	20	
Antimony	ug/L	0.38J	250	250	262	256	105	102	75-125	2	20	
Arsenic	ug/L	2.9	250	250	269	263	106	104	75-125	2	20	
Barium	ug/L	103	250	250	377	373	109	108	75-125	1	20	
Cadmium	ug/L	<0.30	250	250	259	252	103	101	75-125	3	20	
Chromium	ug/L	12.2	250	250	258	252	98	96	75-125	2	20	
Copper	ug/L	9.7J	250	250	253	246	97	94	75-125	3	20	
Iron	ug/L	12000	10000	10000	22100	21800	100	98	75-125	1	20	
Lead	ug/L	14.8	250	250	279	272	106	103	75-125	2	20	
Manganese	ug/L	628	250	250	889	886	105	103	75-125	0	20	
Nickel	ug/L	6.6	250	250	252	243	98	94	75-125	4	20	
Selenium	ug/L	<0.63	250	250	278	270	111	108	75-125	3	20	
Silver	ug/L	<0.25	125	125	120	117	96	94	75-125	2	20	
Vanadium	ug/L	15.0	250	250	266	261	100	99	75-125	2	20	
Zinc	ug/L	60.6J	250	250	316	313	102	101	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	1940101253 GRE	EN BAY FORMER	MG			
Pace Project No.:	40238726					
QC Batch:	405043		Analysis Meth	nod: E	PA 8260	
QC Batch Method:	EPA 8260		Analysis Dese	cription: 8	260 MSV UST-WAT	ER
			Laboratory:	Р	ace Analytical Servi	ces - Green Bay
Associated Lab Sar	nples: 40238726	001, 40238726002,	40238726003			
METHOD BLANK:	2337789		Matrix:	Water		
Associated Lab Sar	nples: 40238726	001, 40238726002,	40238726003			
			Blank	Reporting		
Parar	neter	Units	Result	Limit	Analyzed	Qualifiers
1,2,4-Trimethylbenz	ene	ug/L	<0.45	1.0	12/27/21 18:44	
1,3,5-Trimethylbenz	ene	ug/L	<0.36	1.0	12/27/21 18:44	
Benzene		ug/L	<0.30	1.0	12/27/21 18:44	
Ethylbenzene		ug/L	<0.33	1.0	12/27/21 18:44	
m&p-Xylene		ug/L	<0.70	2.0	12/27/21 18:44	
o-Xylene		ug/L	<0.35	1.0	12/27/21 18:44	
Toluene		ug/L	<0.29	1.0	12/27/21 18:44	

<1.0

112

95

93

3.0 12/27/21 18:44

70-130 12/27/21 18:44

70-130 12/27/21 18:44

70-130 12/27/21 18:44

LABORATORY CONTROL SAMPLE: 2337790

ug/L

%

%

%

Xylene (Total)

Toluene-d8 (S)

1,2-Dichlorobenzene-d4 (S)

4-Bromofluorobenzene (S)

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
enzene	ug/L	50	47.7	95	70-132	
hylbenzene	ug/L	50	47.7	95	80-123	
&p-Xylene	ug/L	100	101	101	70-130	
Xylene	ug/L	50	49.8	100	70-130	
luene	ug/L	50	44.9	90	80-121	
ene (Total)	ug/L	150	150	100	70-130	
-Dichlorobenzene-d4 (S)	%			110	70-130	
Bromofluorobenzene (S)	%			99	70-130	
uene-d8 (S)	%			92	70-130	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2337	791		2337792							
			MS	MSD								
		40238833005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	<0.30	50	50	48.1	47.4	96	95	70-132	1	20	
Ethylbenzene	ug/L	<0.33	50	50	48.7	47.4	97	95	80-123	3	20	
m&p-Xylene	ug/L	<0.70	100	100	103	99.2	103	99	70-130	4	20	
o-Xylene	ug/L	<0.35	50	50	49.9	49.4	100	99	70-130	1	20	
Toluene	ug/L	<0.29	50	50	46.0	44.6	92	89	80-121	3	20	
Xylene (Total)	ug/L	<1.0	150	150	153	149	102	99	70-130	3	20	
1,2-Dichlorobenzene-d4 (S)	%						108	106	70-130			
4-Bromofluorobenzene (S)	%						100	97	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1940101253 GREEN BAY FORMER MG Pace Project No.: 40238726

MATRIX SPIKE & MATRIX SI		CATE: 2337	791		2337792	2						
			MS	MSD								
	4	0238833005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Toluene-d8 (S)	%						93	90	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

- ,	0101253 GREEN BAY FORMER M 38726	G			
)4944	Analysis Meth	nod: E	PA 8270E by SIM	
QC Batch Method: EF	PA 3510	Analysis Des	cription 8	270E Water PAH	
Go Baton Mothod. El		Laboratory:		ace Analytical Servi	ces - Green Bay
Associated Lab Samples	s: 40238726001, 40238726002	Laboratory.		ace Analytical Servi	Ces - Oreen Day
METHOD BLANK: 233	7348	Matrix:	Water		
Associated Lab Samples	a: 40238726001, 40238726002				
		Blank	Reporting		
Parameter	· Units	Result	Limit	Analyzed	Qualifiers
2-Methylnaphthalene	ug/L	<0.014	0.050	12/27/21 08:27	
Acenaphthene	ug/L	<0.014	0.050	12/27/21 08:27	
Acenaphthylene	ug/L	<0.013	0.050	12/27/21 08:27	
Anthracene	ug/L	<0.018	0.050	12/27/21 08:27	
Benzo(a)anthracene	ug/L	<0.014	0.050	12/27/21 08:27	
Benzo(a)pyrene	ug/L	<0.020	0.050	12/27/21 08:27	
Benzo(b)fluoranthene	ug/L	<0.020	0.050	12/27/21 08:27	
Benzo(g,h,i)perylene	ug/L	<0.023	0.050	12/27/21 08:27	
Benzo(k)fluoranthene	ug/L	<0.022	0.050	12/27/21 08:27	
Chrysene	ug/L	<0.027	0.050	12/27/21 08:27	
Dibenz(a,h)anthracene	ug/L	<0.018	0.050	12/27/21 08:27	
Fluoranthene	ug/L	<0.026	0.050	12/27/21 08:27	
Fluorene	ug/L	<0.024	0.050	12/27/21 08:27	
Indeno(1,2,3-cd)pyrene	ug/L	<0.016	0.050	12/27/21 08:27	
Naphthalene	ug/L	<0.020	0.050	12/27/21 08:27	
Phenanthrene	ug/L	<0.026	0.050	12/27/21 08:27	
Pyrene	ug/L	<0.023	0.050	12/27/21 08:27	
2-Fluorobiphenyl (S)	%	60	10-113	12/27/21 08:27	
Terphenyl-d14 (S)	%	77	28-124	12/27/21 08:27	

LABORATORY CONTROL SAMPLE: 2337349

	L. 2007040					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Methylnaphthalene	ug/L	2	1.3	67	58-120	
Acenaphthene	ug/L	2	1.6	82	71-120	
Acenaphthylene	ug/L	2	1.6	79	68-120	
Anthracene	ug/L	2	1.8	88	63-108	
Benzo(a)anthracene	ug/L	2	1.5	76	54-95	
Benzo(a)pyrene	ug/L	2	1.7	87	75-120	
Benzo(b)fluoranthene	ug/L	2	1.5	75	59-120	
Benzo(g,h,i)perylene	ug/L	2	1.7	87	78-120	
Benzo(k)fluoranthene	ug/L	2	1.8	91	78-120	
Chrysene	ug/L	2	2.0	100	82-128	
Dibenz(a,h)anthracene	ug/L	2	1.8	89	76-120	
Fluoranthene	ug/L	2	1.7	87	74-120	
Fluorene	ug/L	2	1.6	81	69-120	
ndeno(1,2,3-cd)pyrene	ug/L	2	1.7	84	74-120	
Naphthalene	ug/L	2	1.5	73	60-120	
Phenanthrene	ug/L	2	1.5	75	65-120	
	-					

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1940101253 GREEN BAY FORMER MG

Pace Project No.: 40238726

LABORATORY CONTROL SAMPLE:	2337349					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Pyrene	ug/L	2	1.6	80	70-120	
2-Fluorobiphenyl (S)	%			66	10-113	
Terphenyl-d14 (S)	%			74	28-124	

MATRIX SPIKE & MATRIX S	SPIKE DUPL	ICATE: 2337	350		2337351							
Parameter	Units	40238662001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
2-Methylnaphthalene	ug/L	0.000038J mg/L	2	2	1.3	1.0	65	50	31-120	26	20	R1
Acenaphthene	ug/L	<0.000014 mg/L	2	2	1.6	1.2	81	59	39-120	31	20	R1
Acenaphthylene	ug/L	<0.000013 mg/L	2	2	1.5	1.1	77	56	63-120	32	20	M1,R1
Anthracene	ug/L	<0.000018 mg/L	2	2	1.6	1.2	81	62	39-114	27	20	R1
Benzo(a)anthracene	ug/L	<0.000014 mg/L	2	2	1.5	1.1	77	56	38-106	32	20	R1
Benzo(a)pyrene	ug/L	<0.000020 mg/L	2	2	1.7	1.3	84	64	40-120	26	20	R1
Benzo(b)fluoranthene	ug/L	<0.000020 mg/L	2	2	1.5	1.1	75	55	35-120	31	20	R1
Benzo(g,h,i)perylene	ug/L	<0.000023 mg/L	2	2	1.7	1.3	86	64	41-122	30	20	R1
Benzo(k)fluoranthene	ug/L	<0.000022 mg/L	2	2	1.8	1.3	91	65	45-124	34	20	R1
Chrysene	ug/L	<0.000027 mg/L	2	2	2.0	1.5	99	74	48-139	30	20	R1
Dibenz(a,h)anthracene	ug/L	<0.000018 mg/L	2	2	1.8	1.3	88	66	42-125	29	20	R1
Fluoranthene	ug/L	<0.000026 mg/L	2	2	1.8	1.3	87	63	43-121	32	20	R1
Fluorene	ug/L	<0.000024 mg/L	2	2	1.7	1.2	83	60	65-120	32	20	M1,R1
Indeno(1,2,3-cd)pyrene	ug/L	<0.000016 mg/L	2	2	1.7	1.2	84	62	39-120	31	20	R1
Naphthalene	ug/L	0.000071 mg/L	2	2	1.4	1.1	69	51	57-120	27	20	M1,R1
Phenanthrene	ug/L	<0.000026 mg/L	2	2	1.6	1.1	78	55	64-120	35	20	M1,R1
Pyrene	ug/L	<0.000023 mg/L	2	2	1.7	1.2	85	61	64-120	33	20	M1,R1
2-Fluorobiphenyl (S) Terphenyl-d14 (S)	% %	iiig/L					63 75	43 54	10-113 28-124			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project: 1940101253 GREEN BAY FORMER MG

Pace Project No.: 40238726

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:1940101253 GREEN BAY FORMER MGPace Project No.:40238726

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40238726001	122121001	EPA 3010A	405198	EPA 6020B	405275
40238726002	122121002	EPA 3010A	405198	EPA 6020B	405275
40238726001	122121001	EPA 7470	405422	EPA 7470	405453
40238726002	122121002	EPA 7470	405422	EPA 7470	405453
40238726001	122121001	EPA 3510	404944	EPA 8270E by SIM	404963
40238726002	122121002	EPA 3510	404944	EPA 8270E by SIM	404963
40238726001	122121001	EPA 8260	405043		
40238726002	122121002	EPA 8260	405043		
40238726003	122121003	EPA 8260	405043		

				COC#: 10125	$\frac{-3 - /22/ - \frac{602}{cos}}{Page 1 \text{ of }}$			
(Please Print Clearly)			UPPER MIDWEST REGION	<u></u>	Page 1 of			
Company Name: RAM Bou		_	MN: 612-607-1700 WI: 92	0-469-2436	40235726			
Branch/Location: MILLAUVEE	Pace Ana	Ivtical *	Her	- PM: FRANK I	DMBROWSKIT			
Project Contact: STACE (TET Z	www.pa	iuciaus.com		Quote #:				
Phone: 44-335-356		OF CUSTO	DY Mai	I To Contact:	NTS PAVABLE			
Project Number: 194-0(01253		Preservation Codes D=HNO3 E=DI Water F=Methance	Mail		USTNESS SERVICES ILL			
Project Name: GREEN BAY FARMER N		I=Sodium Thiosulfate J=Other	Mai		X 19800			
Project State: WI	FILTERED? (YES/NO) Y/N	L L L		GREE	N BAV. HI 54307			
Sampled By (Print): DAN VACHON	PRESERVATION Pick B	AD	Invol	ce To Contact:				
Sampled By (Sign):			Invoid	e To Company:				
PO #: Regul Prog			Invoi	ce To Address:				
Data Package Options MS/MSD	Matrix Codes				ane V			
(billable) CALEPA Level III (billable) C = Chan	W = Water DW = Drinking Water coal GW = Ground Water	J A MAR	Invo	ice To Phone:				
EPA Level IV NOT needed on S = Sid your sample S = Sid	SW = Surface Water WW = Waste Water	ALLS LETAL		CLIENT LAB C	OMMENTS Profile #			
		(4) 2	1 1 1		Use Only)			
	21/21 1435 W ×	XX		001				
	21/21 1440 W X	XX		002				
122121003				002				
		h ////						
	MAA							
Rush Turnaround Time Requested - Prelims (Rush TAT subject to approval/surcharge)	Relinquished By	Date/Time: 2/2.2/21 (0) 1021	Received By:	W1212221 1021	PACE Project No.			
Date Needed: STAN DARD	Relinquished By:		Received By:	Date/Time:	40238120			
Transmit Prelim Rush Results by (complete what you want): Email #1: GDSDATA @ ZAMBOLL, COA	Relinguished By:	Date/Time:	Received By:	Date/Time:	Receipt Temp = 2 °C			
Email #2:	·······	Date: Third.	······································		Sample Receipt pH			
Telephone: Fax:	Relinquished By:	Date/Time:	Received By:	Date/Time:	OR / Adjusted Cooler Custody Seal			
Samples on HOLD are subject to	Relinquished By:	Date/Time:	Received By:	Date/Time:	Present / Not Present			
special pricing and release of liability					Intact / Not Intact ge 24 of 26			

ORIGINAL

Client Name:	Ramboll	Sam	ple Preservation R Project # 나이기	eceipt Form
All containers ner	eding preservation have bee	en checked and noted below; Lab Lot# of pH paper:	Kes ⊡No ⊡N/A	f preservation (if pH adjusted):
	Glass	Plastic	Vials	

	Green Bay, V
Initial when	Date/ Time:

																						* (u		59									
				Gla	ass						Plast	ic				Via	Vials				Ja	Jars		Gene		1	(>6mm) *	≤2	Act pH	212	≤2	justed	Volume
Pace _ab #	AG1U	BG1U	AG1H	AG4S	AG4U	AG5U	AG2S	BG3U	BP1U	BP3U	BP3B	BP3N	BP3S	VG9A	DG9T	VG9U	VG9H	VG9M	VG9D	JGFU	JG9U	WGFU	WPFU	SP5T	ZPLC	GN	VOA Vials	H2SO4 pH ≤2	NaOH+Zn Act pH ≥9	NaOH pH ≥12	HNO3 pH ≤	pH after adjusted	(mL)
001						2						1					3														X		2.5/5/10
002						2											3											2.1 mil			メ		2.5/5/10
003																	2																2.5/5/10
004							1 high of																Model Second						() ((((((((((((((((((NA CONTRACTOR	2.5/5/10
005			\square																														2.5/5/10
006			Number of States												North Contraction																		2.5/5/10
007							\square				<u> </u>							1															2.5/5/10
800													9120120												States States								2.5/5/10
009						1					\sim														[2.5/5/10
010							199		(POIEd			-9905							教教 会								$\frac{d^2_{i}}{d^2_{i}} \frac{d^2_{i}}{d^2_{i}} \frac{d^2_{i}}{d^2_{i}} = \frac{1}{2} \frac{d^2_{i}}{d^2_{i}} \frac{d^2_{i}}{d^2$	1					2.5/5/10
011															$ \vdash $																		2.5/5/10
012								1.54.5							h.shri																		2.5/5/10
013					1					1	1																						2.5/5/10
014	10,000							140 Brout		asterna.									100000														2.5/5/10
015				1										1					1/	\geq	1-				1						1		2.5/5/10
016			9 (19 - 1) 8 21			E.A. 19								A BLE						17	K	2											2.5/5/10
017					- risesaidi	- DEPENDENT OF STREET		10.11 40.1														1	12	17									2.5/5/10
018									1910-781 1										P2Sat						10	1-							2.5/5/10
019						0.19 (0.00 (prod)			40.00/2020	1.59	1997 - Dally															Þ						1	2.5/5/10
020																		100 A 10						t Reg						<u> Serie</u>			2.5/5/10
Exce	otions	s to pr	reserv	ation o	heck:	VOA	, Coli	form,	тос,	TOX,	ТОН,	0&G,	WID	RO, F	henol	ics, O	ther:	1.1.1.1. A.M. 10	a mp promi	Head	dspac	e in V	OA Vi	als (>	6mm)	: □Ye	s ⊡No	⊡N/A	∖ *lf ye	s lool	c in hea	dspace	column
G1Ū	1 lite	er an	nber g	lass				BF	21U	1 lite	er pla	stic u	npres	;		V		40 n	nL cle	- ear as	corbi	с		J	GFU	4 oz	z amb	er jai	runpr	es			1

BG1U 1 liter clear glass 250 mL plastic unpres 9 oz amber jar unpres BP3U DG9T 40 mL amber Na Thio JG9U AG1H 1 liter amber glass HCL WGFU 4 oz clear jar unpres BP3B 250 mL plastic NaOH VG9U 40 mL clear vial unpres WPFU 4 oz plastic jar unpres AG4S 125 mL amber glass H2SO4 BP3N 250 mL plastic HNO3 VG9H 40 mL clear vial HCL 120 mL plastic Na Thiosulfate AG4U 120 mL amber glass unpres 250 mL plastic H2SO4 40 mL clear vial MeOH SP5T BP3S VG9M AG5U 100 mL amber glass unpres 40 mL clear vial DI ZPLC ziploc bag VG9D AG2S 500 mL amber glass H2SO4 GN BG3U 250 mL clear glass unpres

F-GB-C-046-Rev.03 (11Feb2020) Sample Preservation Receipt Form

Pace Analytical [®]	Sample C		ment Name: on Upon Receipt (SCUR)	Document Revised: 26Mar2020
1241 Bellevue Street, Green Bay, WI 54302	ENV-I		ument No.: BAY-0014-Rev.00	Author: Pace Green Bay Quality Office
	Ⅰ			
Sample C	Condition	Upo	n Receipt Form (S	CUR)
Client Name: R. mhall			Project #:	
Client Name: Kamboll		-		0#:40238726
Courier: CS Logistics Fed Ex Speede	e 🗖 UPS		Valtco	
Tracking #:			402	238726
Custody Seal on Cooler/Box Present: 🔲 yes 🌶				
Custody Seal on Samples Present: 🔲 yes 🕅				
Packing Material: Bubble Wrap Subb Thermometer Used SR - 107		7	·	Samples on ice, cooling process has begun
Cooler Temperature Uncorr: 2 /Corr:		. Wer	Blue Dry None	Person examining contents:
Temp Blank Present: Kyes I no	Biolo	- ogical 1	lissue is Frozen: 🗖 yes	Date: 12/22/24 nitials: / 1/
Temp should be above freezing to 6°C. Biota Samples may be received at \leq 0°C if shipped on Dry	/ Ice.			Labeled By Initials:
Chain of Custody Present:	¥Yes □No	□n/A	1.	
Chain of Custody Filled Out:	¥Yes □No	□n/A	2.	
Chain of Custody Relinquished:		□n/A	3.	
Sampler Name & Signature on COC:	XYes □No	□n/A	4.	
Samples Arrived within Hold Time:			5.	
- VOA Samples frozen upon receipt	□Yes □No		Date/Time:	
Short Hold Time Analysis (<72hr):	X es □No		6.	
Rush Turn Around Time Requested:			7.	
Sufficient Volume:	Ň		8.	
For Analysis: XIYes □No MS/MSD:	TYes XNo			
Correct Containers Used:	Yes 🗆 No		9.	
-Pace Containers Used:	Xes DNo	□n/A	· · · ·	
-Pace IR Containers Used:	Yes No			
Containers Intact:	Kes 🗆 No		10	
Filtered volume received for Dissolved tests	□Yes □No	X N/A	11.	·
Sample Labels match COC:	Xyes □No	□n/a	12.	
-Includes date/time/ID/Analysis Matrix:/	<u>V</u>			
Trip Blank Present:		□n/a	13.	
Trip Blank Custody Seals Present	Yes DNo	□n/a		
Pace Trip Blank Lot # (if purchased): 410	. <u> </u>		If checked	see attached form for additional comments
Person Contacted:		Date/1		
Comments/ Resolution:				· · · · · · · · · · · · · · · · · · ·

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample login

Page_2_of_2_