414-944-6080 tel 414-944-6081 fax

January 17, 2014

Ms. Kathleen M. McDaniel Assistant City Attorney City of Manitowoc 900 Quay Street Manitowoc, WI 54220

Subject: Yindra Residence Vapor Intrusion Investigation

3518 Hecker Rd., Manitowoc, Wisconsin

AECOM Project No. 60311767

Dear Ms. McDaniel:

This letter documents AECOM Technical Services, Inc.'s (AECOM) vapor intrusion investigation conducted at the Yindra residence, 3518 Hecker Road, Manitowoc, Wisconsin on November 25-26, 2013. The investigation protocol generally followed the Wisconsin Department of Natural Resources' "Addressing Vapor Intrusion at Remediation & Redevelopment Sites in Wisconsin", PUB-RR-800, dated December 2010.

Vapor samples were collected from sub-slab, indoor air, and outdoor air locations and analyzed for volatile organic compounds (VOCs). While there were detectable VOCs present in the vapor samples, none appear to correlate with the VOC compounds observed in the potable well sample results for the residence. Therefore, it appears that contaminants found in the groundwater beneath the Yindra residence are not impacting indoor air quality at the residence

Presented below are a short project background, sampling methodology, field observations, results, and recommendations.

Background

An October 23, 2013, laboratory analysis of water obtained from the private potable well located on the Yindra property indicated the presence of the following VOCs: benzene; 1,2-dichloroethane, 1,1-dichloroethene; cis-1,2-dichloroethene, trans-1,2-dichloroethene, and vinyl chloride (See Attached Synergy Environmental Lab, Inc., Laboratory Data Report – Lab Code 5026009A) . Based upon the potable water analytical results, the Wisconsin Department of Natural Resources (WDNR) requested a vapor intrusion study. AECOM was contracted by the City of Manitowoc to investigate the potential for vapor intrusion of these VOCs into the living space of the Yindra residence.

On November 12, 2013, the Yindra private potable well was disconnected as a drinking water well for the Yindra residence. Once disconnected, the plumber doing the work (Luisier Plumbing, Manitowoc, Wisconsin) sounded the depth of the well. The plumber reported that the depth to water from the top of casing was approximately 24 feet 9½ inches and the depth to the bottom of the well was approximately 49 feet 11¾ inches. The top of the well casing was approximately one foot above the ground surface.

On November 25, 2013, AECOM staff (Mr. Jerry Retzlaff and Mr. Rick Mazurkiewicz) conducted the initial vapor intrusion investigation fieldwork at the Yindra residence. Ms. LuAnn Yindra, the residence owner, reported the house to be over 50 years old. The house has a foot print that is approximately 1,500 square feet with a below grade basement concrete floor that appeared to be in good condition with some minor cracking.

AECOM had previously received WDNR concurrence to not conduct an inventory of chemical products stored on-site. AECOM staff did observe a workshop in the basement and there appeared to be storage of small quantities of paints and solvents. Additionally, Ms. Yindra indicated that she was a regular cigarette smoker and that no recently dry-cleaned clothing was present in the house.

AECOM received agreement from Ms. Yindra to establish one sub-slab sampling port in each the southwest corner and southeast corner of the basement floor.

Methodology

The sampling protocols used in this investigation generally followed the Wisconsin Department of Natural Resources' "Addressing Vapor Intrusion at Remediation & Redevelopment Sites in Wisconsin", PUB-RR-800, dated December 2010. Site specific details are as follows:

General Indoor/Outdoor Ambient Air Parameters

AECOM staff measured some general air parameters using a TSI International, Q-Trak Indoor Air Quality Monitor (Model 8551) during the initial site visit on 11/25/13. The parameters measured included carbon dioxide (CO2), carbon monoxide (CO), temperature (F), percent relative humidity, along with approximate outdoor wind speed and direction.

Ambient Air Sampling Methodology

The collection of one indoor and one outdoor ambient air sample was also initiated on 11/25/13. The indoor sample (IAA-01) was collected in the basement near the location where sub-slab sample SSVP-01 was collected. The outdoor sample (OAA-01) was collected approximately 20 feet away from the southwest corner of the house, next to a small shed.

Each sample was collected approximately 4 to 5 feet above the floor/ground. Samples were collected in a 6-liter Summa canister fitted with a 24-hour flow regulator. The samples were collected for approximately 24 hours or until the can vacuum reached approximately 4 inches Hg. The canisters were left unattended over night at the residence.

Sampling collection parameters were:

	<u>Beginning/Ending</u>		
Sample ID	Vacuum (inches Hg)	Start Time & Date	End Time & Date
IAA-01	29/3	11:45A, 11-25-2013	10:35A, 11-26-2013
OAA-01	26/3.5	11:58A, 11-25-2013	10:47A, 11-26-2013

Sub-Slab Sampling Methodology

On 11/25/13 two slab penetrations were made in the southwest corner (sample point SSVP-01) and southeast corner (sample point SSVP-02) of the basement using a power drill. The penetrations were each 5/8 inches in diameter. A 1.5 inch diameter recess hole was drilled to approximately 2 inches below the floor grade so that the temporary brass sampling "pin" would be recessed below the floor surface. A portable vacuum was used to remove dust during the drilling process and to vacuum any loose dust that remained in the hole after drilling. The basement slab was measured to be approximately 5.5 inches thick at each penetration. The drilling process created an approximately 3 inch deep penetration into the sub-slab material. No sub-slab water was noted in either penetration. The temporary sampling port pins, Cox-Colvin designed Vapor PinTM, were then recessed into the holes.

A hand pump was used to test for sub-slab air flow by checking for vacuum at each sampling location. No notable vacuum was observed and both sampling locations were found to have unrestricted sub-slab air flow to the sampling ports. Sub-slab pressure was also checked at each

sampling port location using a Magnehelic® pressure gage. Sub-slab positive pressure at either sampling port was measured as negligible.

A shut-in test was performed on the sample tubing, in-line particulate filter, and swage-lock connection to each 6-liter Summa canister. Each sampling train held a minimum vacuum of 600 millimeters of mercury (mm Hg) for at least 2 minutes. The sample tubing was then connected to the sampling pin at each location and the Summa canister valves were opened. The Summa canisters were unregulated and were expected to continuously sample for at least 30 minutes, or until the can vacuum reached 4 inches Hg. Sampling collection parameters for sub-slab sample points were:

	Beginning/Ending	
Sample ID	Vacuum (inches Hg)	Start/End Time & Date
SSVP-01	29/4	11:08A/11:46A, 11-25-2013
SSVP-02	26/4	11:42A/12:22P, 11-25-2013

At the end of the sampling period, the can valves were closed and each can opening was capped.

On 11/26/13, at the conclusion of the indoor ambient air sampling, the sub-slab sampling pin/concrete seal was integrity tested using helium as a tracer gas. Helium was released into a plastic shroud (shroud concentration >11% He) that encased the sampling port and immediate vicinity. A tube was fitted to the sampling pin and extended through a small opening in the shroud. A helium detector was connected to the other end of the tube to detect for any helium that may enter the sampling train, thus indicating a compromise in the sub-sample sampling train. No helium was detected in either sampling train during the 2 minute leak test.

At the completion of the sub-slab sampling, each sampling pin was capped with a removable elastic cap. Each sampling penetration was capped with a removable black plastic cap making the floor penetration nearly flush with the floor surface. By capping and leaving the sample pins in-place, the pins are available for future sample collection.

On 11/26/13, the Summa canisters were sent via overnight delivery to Pace Analytical, 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414. The samples were analyzed for VOC compounds, including: benzene; 1,2-dichloroethane, 1,1-dichloroethene; cis-1,2-dichloroethene, trans-1,2-dichloroethene, and vinyl chloride, using EPA Method TO-15.

Results

General Indoor/Outdoor Ambient Air Parameters

The general indoor/outdoor ambient air parameters are summarized below:

<u>Location</u>	CO2 (ppm)	<u>CO (ppm)</u>	Temperature (F)	Relative Humidity (%)
Indoors, near SSVP-01	6000	0	58.9	43.3
Indoors, near SSVP-02	6000	0	57.8	44.3
Outdoors, near OAA-01	109	0	35.0	31.0

AECOM staff observed that the wind was from the northwest at approximately 10 miles per hour.

Ambient Air Sampling Results

_

The ambient air sample results were compared to the WDNR's Residential Vapor Action Levels (VALs)¹. A summary of the ambient air analytical results is provided in Table 1. The table also

¹ See "Addressing Vapor Intrusion at Remediation & Redevelopment Sites in Wisconsin", PUB-RR-800, December 2010. The ambient air VAL is based on U.S. EPA's Regional Vapor Intrusion Screening Level Tables, applying a 1 x 10⁻⁵ excess lifetime cancer risk.

shows the sub-slab analytical results as well as the analytical results for the well water sample collected on October 23, 2013. Each analyte detected in either a sub-slab, ambient air, or well water sample is shown in the table.

A review of the ambient air analytical results indicates that none of the analyzed VOCs were detected at concentrations greater than the WDNR VALs. The analytes 1,1-dichloroethene, Cis-1,2-dichloroethene, and vinyl chloride, which were detected in the well water at concentrations that either exceeded Wisconsin's groundwater Preventative Action Limit (PAL) or Enforcement Standard (ES)² were not detected in either ambient air sample. Benzene, which was detected in the well water at a concentration that exceeded the PAL, was detected in the indoor air sample at a concentration that is less than one-half the VAL. Benzene was not detected in the outdoor air sample.

The detection of benzene, but not 1,1-dichloroethene, cis-1,2-dichloroethene, or vinyl chloride in the indoor air sample appears to indicate that the presence of benzene in the indoor ambient is not related to the presence of benzene in the groundwater, otherwise the other groundwater analytes should have also been detected.

Benzene is a chemical found in many products (paints, solvents, gasoline) and as a constituent in cigarette smoke. It is therefore suggested that the indoor air detection of benzene may be the result of paint, solvent, or gasoline storage in the basement, or due to second hand smoke from cigarettes.

Sub-Slab Sampling Results

The sub-slab air sample results were compared to the WDNR's Sub-Slab Residential Vapor Action Level (VAL)³. A summary of the sub-slab analytical results is provided in Table 1.

A review of the sub-slab analytical results indicates that none of the analyzed VOCs were detected at a concentration greater than the WDNR's Sub-Slab Residential VAL. The analytes 1,1-dichloroethene, cis-1,2-dichloroethene, and vinyl chloride, which were detected in the well water at concentrations that either exceeded their respective PAL or ES limits were not detected in either sub-slab sample. Benzene, which was detected in the well water at a concentration that exceeded the PAL, was detected in both sub-slab samples at concentrations far less than the sub-slab VAL.

The detection of benzene, but not 1,1-dichloroethene, cis-1,2-dichloroethene, or vinyl chloride in the sub-slab samples appears to indicate that the presence of benzene in the sub-slab is not related to the presence of benzene in the groundwater, otherwise the other groundwater analytes should have also been detected.

As noted above, benzene is a chemical found in many products (paints, solvents, gasoline) and as a constituent in cigarette smoke. It is therefore suggested that the sub-slab detection of benzene may be the result of paint, solvent, or gasoline storage in the basement, or due to second hand smoke from cigarettes.

Recommendation

Based on field observations, general indoor/outdoor ambient air parameters, along with the ambient air and sub-slab sampling results, it appears that contaminants found in the groundwater beneath the Yindra residence are not impacting indoor air quality at the residence.

P:\60311767\500-Deliverables\Report - VI Yindras\Final\Yindra VI Report 1-17-2014 Final.docx

² Wisconsin Administration Code NR 140 – Groundwater Quality.

³ See "Addressing Vapor Intrusion at Remediation & Redevelopment Sites in Wisconsin", PUB-RR-800, December 2010. The sub-slab VAL is based on U.S. EPA's Regional Vapor Intrusion Screening Level Tables, applying a 1 x 10⁻⁵ excess lifetime cancer risk and a 0.1 sub-slab vapor to indoor air attenuation factor.

No additional sampling is recommend and the City of Manitowoc requests concurrence from the WDNR that removal of the sub-slab sampling ports from the basement floor of the Yindra residence is appropriate.

If you have any questions regarding this report, please David Henderson (AECOM) at 414-944-6190.

Sincerely,

AECOM Technical Services, Inc.

Gerald Retzlaff
Senior Project Scientist

jerry.retzlaff@aecom.com

Richard Mazurkiewicz Senior Hydrologist

richard.mazurkiewicz@aecom.com

David Henderson

Senior Project Manager

dave.henderson@aecom.com

Encl. Table 1 – Sub-Slab Vapor / Ambient Air Quality Analytical Summary

Pace Analytical, Air Quality Laboratory Analytical Report, Pace Project No. 10250770. Synergy Environmental Lab, Inc., Water Quality Laboratory Analytical Report, Lab Code

5026009A.

cc: Ms. LuAnn Yindra, 3518 Hecker Road., Manitowoc, Wisconsin

TABLE 1

Sub-Slab Vapor / Ambient Air Quality Analytical Summary 3518 Hecker Road, Manitowoc, Wisconsin AECOM Project 60311767-1

		А	mbient Air Vapo	or Results	S	Sub-Slab Vapor Results				
Analyte	CAS	Indoor Air IAA-01 ³ 11/25/2013 (µg/m ³)	Outdoor Air OAA-01 ⁴ 11/25/2013 (μg/m³)	WDNR Residential Vapor Action Level ² (µg/m³)	Sub-Slab SSVP-01 11/25/2013 (μg/m³)	Sub-Slab SSVP-02 11/25/2013 (μg/m³)	WDNR Sub-Slab Residential Vapor Action Level ^{1,2} (μg/m³)	Well Water Sample ⁵ 10/23/2013 (μg/L)		
VOCs										
Acetone	67-64-1	23.1	8.0	320,000	67.2	65.3	3,200,000	NA		
Benzene	71-43-2	1.4	ND	3.1	1.0	1.2	31	1.74		
2-Butanone (MEK)	78-93-3	4.4	ND	5,200	5.2	34.1	52,000	NA		
Chloroform	67-66-3	ND	ND	1.1	4.9	4.7	11	ND		
Chloromethane	74-87-3	2.1	1.2	94	ND	0.71	940	ND		
1,3-Dichlorobenzene	541-73-1	ND	ND	NS	3.0	3.2	NS	ND		
Dichlorodifluoromethane	75-71-8	3.0	2.3	100	3.1	36	1,000	ND		
1,2-Dichloroethane	107-06-2	ND	ND	0.94	ND	ND	9.4	0.42 J		
1,1-Dichloroethene	75-35-4	ND	ND	210	ND	ND	2,100	1.62		
cis-1,2-Dichloroethene	156-59-2	ND	ND	NS	ND	ND	NS	<u>510</u>		
trans-1,2-Dichloroethene	156-60-5	ND	ND	63	ND	ND	630	5.5		
n-Hexane	110-54-3	1.5	ND	730	2.2	3.2	7,300	NA		
Methylene Chloride	75-09-2	16.9	3.6	630	2.8	4.4	6,300	ND		
Naphthalene	91-20-3	ND	ND	0.72	ND	5.5	7.2	ND		
Toluene	108-88-3	17.2	1.5	5,200	11.7	11.4	52,000	ND		
Trichloroethene	79-01-6	1.0	ND	2.1	ND	ND	21	ND		
Trichlorofluoromethane	75-69-4	ND	ND	730	ND	6.3	7,300	ND		
1,2,4-Trimethylbenzene	95-63-6	1.5	ND	7.3	2.0	2.2	73	ND		
Vinyl Chloride	75-01-4	ND	ND	1.6	ND	ND	16	<u>102</u>		
m&p-Xylene	179601-23-1	ND	ND	100	3.4	3.6	1,000	ND		

Notes:

μg/m³ = micrograms per cubic meter

VOCs = Volatile Organic Compounds

J = Compound was detected at a concentration between the limit of detection (LOD) and the limit of quantitation (LOQ).

NA = Not Analyzed.

ND = Not Detected at levels above the Method Detection Limit (MDL). See laboratory report for MDLs.

NS = No Toxilogical Standard Listed.

¹ From "Indoor Air Vapor Action Levels for Various VOCs - Quick Look-Up Table" and US EPA OWSER Vapor Intrusion Assessment Screening Level Calculator Ver 3.1 June 2013.

² Sub-slab Residential Vapor Action Level = Residential Vapor Action Level / 0.1 (Sub-slab residential vapor to indoor air attenuation factor is 0.1.)

³ Indoor ambient air sample was collected in residential basement.

⁴ Outdoor ambient air sample was collected outside of residence.

⁵ Well water sample results includes all detected analytes. Bold indicates a PAL exceedance. Bold and underlining indicates an ES exceedance. μg/L = micrograms per liter

December 10, 2013

Dave Henderson AECOM 1555 N. River Center Dr. Ste 214

RE: Project: 60311767-1 Newton Gr. Pit-Rev.

Pace Project No.: 10250770

Dear Dave Henderson:

Enclosed are the analytical results for sample(s) received by the laboratory on November 27, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

This report was revised to report the complete TO15 analyte list. Initially Vinyl chloride, cis 1,2 DCE and Benzene were reported.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carolynne That

Carolynne Trout

carolynne.trout@pacelabs.com Project Manager

Enclosures

cc: Ric Maz, AECOM-AIR

CERTIFICATIONS

Project: 60311767-1 Newton Gr. Pit-Rev.

Pace Project No.: 10250770

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

A2LA Certification #: 2926.01

Alabama Dept of Environmental Management #40770

Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 5 #WD-15J

EPA Region 8 Certification #: Pace

Florida/NELAP Certification #: E87605 Georgia Certification #: 959 Hawaii Certification #Pace Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Louisiana Certification #: 03086 Louisiana Certification #: LA080009 Maine Certification #: 2007029 Maryland Certification #: 322

Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT CERT0092 Nevada Certification #: MN_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia/DCLS Certification #: 002521 Virginia/VELAP Certification #: 460163 Washington Certification #: C754

West Virginia Certification #: 382

Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: 60311767-1 Newton Gr. Pit-Rev.

Pace Project No.: 10250770

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10250770001	SSVP-01	Air	11/25/13 11:46	11/27/13 09:40
10250770002	SSVP-02	Air	11/25/13 12:22	11/27/13 09:40
10250770003	IAA-01	Air	11/26/13 10:35	11/27/13 09:40
10250770004	OAA-02	Air	11/26/13 10:47	11/27/13 09:40

SAMPLE ANALYTE COUNT

Project: 60311767-1 Newton Gr. Pit-Rev.

Pace Project No.: 10250770

Lab ID	Sample ID	Method	Analysts	Analytes Reported
10250770001	SSVP-01	TO-15	DR1	59
10250770002	SSVP-02	TO-15	DR1	59
10250770003	IAA-01	TO-15	DR1	59
10250770004	OAA-02	TO-15	DR1	59

Project: 60311767-1 Newton Gr. Pit-Rev.

Pace Project No.: 10250770

Date: 12/10/2013 01:10 PM

Sample: SSVP-01	Lab ID: 10250770001	Collected: 11/25/1	3 11:46	Received:	11/27/13 09:40	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Acetone	67.2 ug/m3	0.74	1.55		12/04/13 04:07	7 67-64-1	
Benzene	1.0 ug/m3	0.50	1.55		12/04/13 04:07	7 71-43-2	
Bromodichloromethane	ND ug/m3	2.1	1.55		12/04/13 04:07	7 75-27-4	
Bromoform	ND ug/m3	3.3	1.55		12/04/13 04:07	7 75-25-2	
Bromomethane	ND ug/m3	1.2	1.55		12/04/13 04:07	7 74-83-9	
1,3-Butadiene	ND ug/m3	0.70	1.55		12/04/13 04:07	7 106-99-0	
2-Butanone (MEK)	5.2 ug/m3	0.93	1.55		12/04/13 04:07	7 78-93-3	
Carbon disulfide	ND ug/m3	0.98	1.55		12/04/13 04:07	7 75-15-0	
Carbon tetrachloride	ND ug/m3	0.99	1.55		12/04/13 04:07	7 56-23-5	
Chlorobenzene	ND ug/m3	1.5	1.55		12/04/13 04:07	7 108-90-7	
Chloroethane	ND ug/m3	0.84	1.55		12/04/13 04:07	7 75-00-3	
Chloroform	4.9 ug/m3	1.5	1.55		12/04/13 04:07	7 67-66-3	
Chloromethane	ND ug/m3	0.65	1.55		12/04/13 04:07	7 74-87-3	
Cyclohexane	ND ug/m3	1.1	1.55		12/04/13 04:07	7 110-82-7	
Dibromochloromethane	ND ug/m3	2.7	1.55		12/04/13 04:07		
I,2-Dibromoethane (EDB)	ND ug/m3	2.4	1.55		12/04/13 04:07		
,2-Dichlorobenzene	ND ug/m3	1.9	1.55		12/04/13 04:07		
,3-Dichlorobenzene	3.0 ug/m3	1.9	1.55		12/04/13 04:07		
,4-Dichlorobenzene	ND ug/m3	1.9	1.55		12/04/13 04:07		
Dichlorodifluoromethane	3.1 ug/m3	1.6	1.55		12/04/13 04:07		
1,1-Dichloroethane	ND ug/m3	1.3	1.55		12/04/13 04:07		
,2-Dichloroethane	ND ug/m3	0.64	1.55		12/04/13 04:07		
1,1-Dichloroethene	ND ug/m3	1.3	1.55		12/04/13 04:07		
cis-1,2-Dichloroethene	ND ug/m3	1.3	1.55		12/04/13 04:07		
rans-1,2-Dichloroethene	ND ug/m3	1.3	1.55		12/04/13 04:07		
1,2-Dichloropropane	ND ug/m3	1.5	1.55		12/04/13 04:07		
cis-1,3-Dichloropropene	ND ug/m3	1.4	1.55		12/04/13 04:07		
rans-1,3-Dichloropropene	ND ug/m3	1.4	1.55		12/04/13 04:07		
Dichlorotetrafluoroethane	ND ug/m3	2.2	1.55		12/04/13 04:07		
Ethyl acetate	ND ug/m3	1.1	1.55		12/04/13 04:07		
Ethylbenzene	ND ug/m3	1.4	1.55		12/04/13 04:07		
I-Ethyltoluene	ND ug/m3	1.6	1.55		12/04/13 04:07		
i-Heptane	ND ug/m3	1.3	1.55		12/04/13 04:07		
Hexachloro-1,3-butadiene	ND ug/m3	3.4	1.55		12/04/13 04:07		
n-Hexane	•	3.4 1.1	1.55		12/04/13 04:07		
	2.2 ug/m3						
2-Hexanone	ND ug/m3	1.3	1.55 1.55		12/04/13 04:07		
sopropylbenzene (Cumene)	ND ug/m3	3.9			12/04/13 04:07		
Methylene Chloride	2.8 ug/m3	1.1	1.55		12/04/13 04:07		
I-Methyl-2-pentanone (MIBK)	ND ug/m3	1.3	1.55		12/04/13 04:07		
Methyl-tert-butyl ether	ND ug/m3	1.1	1.55		12/04/13 04:07		
Naphthalene	ND ug/m3	1.7	1.55		12/04/13 04:07		
Propylene	ND ug/m3	0.54	1.55		12/04/13 04:07		
Styrene	ND ug/m3	1.3	1.55		12/04/13 04:07		
,1,2,2-Tetrachloroethane	ND ug/m3	1.1	1.55		12/04/13 04:07		
etrachloroethene	ND ug/m3	1.1	1.55		12/04/13 04:07		
Tetrahydrofuran	ND ug/m3	0.93	1.55		12/04/13 04:07		
Toluene	11.7 ug/m3	1.2	1.55		12/04/13 04:07	7 108-88-3	

Project: 60311767-1 Newton Gr. Pit-Rev.

Pace Project No.: 10250770

Date: 12/10/2013 01:10 PM

Sample: SSVP-01	Lab ID: 10250770001	Collected: 11/25/13	3 11:46	Received: 11	/27/13 09:40 N	/latrix: Air	•
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15						
1,2,4-Trichlorobenzene	ND ug/m3	2.3	1.55		12/04/13 04:07	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.7	1.55		12/04/13 04:07	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.85	1.55		12/04/13 04:07	79-00-5	
Trichloroethene	ND ug/m3	0.85	1.55		12/04/13 04:07	79-01-6	
Trichlorofluoromethane	ND ug/m3	1.8	1.55		12/04/13 04:07	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND ug/m3	2.5	1.55		12/04/13 04:07	76-13-1	
1,2,4-Trimethylbenzene	2.0 ug/m3	1.5	1.55		12/04/13 04:07	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.5	1.55		12/04/13 04:07	108-67-8	
Vinyl acetate	ND ug/m3	1.1	1.55		12/04/13 04:07	108-05-4	
Vinyl chloride	ND ug/m3	0.40	1.55		12/04/13 04:07	75-01-4	
m&p-Xylene	3.4 ug/m3	2.7	1.55		12/04/13 04:07	179601-23-1	
o-Xylene	ND ug/m3	1.4	1.55		12/04/13 04:07	95-47-6	

(612)607-1700

ANALYTICAL RESULTS

Project: 60311767-1 Newton Gr. Pit-Rev.

Date: 12/10/2013 01:10 PM

Sample: SSVP-02	Lab ID: 10250770002	Collected: 11/25/1	3 12:22	Received:	11/27/13 09:40	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-18	5					
Acetone	65.3 ug/m3	0.72	1.49		12/04/13 04:3	7 67-64-1	
Benzene	1.2 ug/m3	0.48	1.49		12/04/13 04:3	7 71-43-2	
Bromodichloromethane	ND ug/m3	2.0	1.49		12/04/13 04:3	7 75-27-4	
Bromoform	ND ug/m3	3.1	1.49		12/04/13 04:3	7 75-25-2	
Bromomethane	ND ug/m3	1.2	1.49		12/04/13 04:3	7 74-83-9	
I,3-Butadiene	ND ug/m3	0.67	1.49		12/04/13 04:3	7 106-99-0	
2-Butanone (MEK)	34.1 ug/m3	0.89	1.49		12/04/13 04:3	7 78-93-3	
Carbon disulfide	ND ug/m3	0.94	1.49		12/04/13 04:3	7 75-15-0	
Carbon tetrachloride	ND ug/m3	0.95	1.49		12/04/13 04:3	7 56-23-5	
Chlorobenzene	ND ug/m3	1.4	1.49		12/04/13 04:3	7 108-90-7	
Chloroethane	ND ug/m3	0.80	1.49		12/04/13 04:3	7 75-00-3	
Chloroform	4.7 ug/m3	1.5	1.49		12/04/13 04:3	7 67-66-3	
Chloromethane	0.71 ug/m3	0.63	1.49		12/04/13 04:3	7 74-87-3	
Cyclohexane	ND ug/m3	1.0	1.49		12/04/13 04:3		
Dibromochloromethane	ND ug/m3	2.6	1.49		12/04/13 04:3		
,2-Dibromoethane (EDB)	ND ug/m3	2.3	1.49		12/04/13 04:3		
,2-Dichlorobenzene	ND ug/m3	1.8	1.49		12/04/13 04:3		
,3-Dichlorobenzene	3.2 ug/m3	1.8	1.49		12/04/13 04:3		
,4-Dichlorobenzene	ND ug/m3	1.8	1.49		12/04/13 04:3		
Dichlorodifluoromethane	36.0 ug/m3	1.5	1.49		12/04/13 04:3		
,1-Dichloroethane	ND ug/m3	1.2	1.49		12/04/13 04:3		
,2-Dichloroethane	ND ug/m3	0.61	1.49		12/04/13 04:3		
,1-Dichloroethene	ND ug/m3	1.2	1.49		12/04/13 04:3		
	ND ug/m3	1.2	1.49		12/04/13 04:3		
sis-1,2-Dichloroethene	•						
rans-1,2-Dichloroethene	ND ug/m3	1.2	1.49		12/04/13 04:3		
,2-Dichloropropane	ND ug/m3	1.4	1.49		12/04/13 04:3		
sis-1,3-Dichloropropene	ND ug/m3	1.4	1.49			7 10061-01-5	
rans-1,3-Dichloropropene	ND ug/m3	1.4	1.49		12/04/13 04:3		
Dichlorotetrafluoroethane	ND ug/m3	2.1	1.49		12/04/13 04:3		
Ethyl acetate	ND ug/m3	1.1	1.49		12/04/13 04:3		
thylbenzene	ND ug/m3	1.3	1.49		12/04/13 04:3		
-Ethyltoluene	ND ug/m3	1.5	1.49		12/04/13 04:3		
-Heptane	ND ug/m3	1.2	1.49		12/04/13 04:3		
lexachloro-1,3-butadiene	ND ug/m3	3.3	1.49		12/04/13 04:3		
-Hexane	3.2 ug/m3	1.1	1.49		12/04/13 04:3	7 110-54-3	
-Hexanone	ND ug/m3	1.2	1.49		12/04/13 04:3		
sopropylbenzene (Cumene)	ND ug/m3	3.7	1.49		12/04/13 04:3		
Methylene Chloride	4.4 ug/m3	1.1	1.49		12/04/13 04:3	7 75-09-2	
-Methyl-2-pentanone (MIBK)	ND ug/m3	1.2	1.49		12/04/13 04:3	7 108-10-1	
Methyl-tert-butyl ether	ND ug/m3	1.1	1.49		12/04/13 04:3	7 1634-04-4	
laphthalene	5.5 ug/m3	1.6	1.49		12/04/13 04:3	7 91-20-3	
Propylene	ND ug/m3	0.52	1.49		12/04/13 04:3	7 115-07-1	
Styrene	ND ug/m3	1.3	1.49		12/04/13 04:3	7 100-42-5	
,1,2,2-Tetrachloroethane	ND ug/m3	1.0	1.49		12/04/13 04:3	7 79-34-5	
etrachloroethene	ND ug/m3	1.0	1.49		12/04/13 04:3		
Tetrahydrofuran	ND ug/m3	0.89	1.49		12/04/13 04:3		
oluene	11.4 ug/m3	1.1	1.49		12/04/13 04:3		

Project: 60311767-1 Newton Gr. Pit-Rev.

Pace Project No.: 10250770

Date: 12/10/2013 01:10 PM

Sample: SSVP-02	Lab ID: 10250770002	Collected: 11/25/1	3 12:22	Received: 11	/27/13 09:40 N	/latrix: Air	•
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15						
1,2,4-Trichlorobenzene	ND ug/m3	2.2	1.49		12/04/13 04:37	120-82-1	
1,1,1-Trichloroethane	ND ug/m3	1.7	1.49		12/04/13 04:37	71-55-6	
1,1,2-Trichloroethane	ND ug/m3	0.82	1.49		12/04/13 04:37	79-00-5	
Trichloroethene	ND ug/m3	0.82	1.49		12/04/13 04:37	79-01-6	
Trichlorofluoromethane	6.3 ug/m3	1.7	1.49		12/04/13 04:37	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND ug/m3	2.4	1.49		12/04/13 04:37	76-13-1	
1,2,4-Trimethylbenzene	2.2 ug/m3	1.5	1.49		12/04/13 04:37	95-63-6	
1,3,5-Trimethylbenzene	ND ug/m3	1.5	1.49		12/04/13 04:37	108-67-8	
Vinyl acetate	ND ug/m3	1.1	1.49		12/04/13 04:37	108-05-4	
Vinyl chloride	ND ug/m3	0.39	1.49		12/04/13 04:37	75-01-4	
m&p-Xylene	3.6 ug/m3	2.6	1.49		12/04/13 04:37	179601-23-1	
o-Xylene	ND ug/m3	1.3	1.49		12/04/13 04:37	95-47-6	

Project: 60311767-1 Newton Gr. Pit-Rev.

Pace Project No.: 10250770

Date: 12/10/2013 01:10 PM

Sample: IAA-01	Lab ID: 10250770003	Collected: 11/26/1	3 10:35	Received:	11/27/13 09:40	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical Method: TO-15						
Acetone	23.1 ug/m3	0.72	1.49		12/04/13 03:06	67-64-1	
Benzene	1.4 ug/m3	0.48	1.49		12/04/13 03:06	71-43-2	
Bromodichloromethane	ND ug/m3	2.0	1.49		12/04/13 03:06	5 75-27-4	
Bromoform	ND ug/m3	3.1	1.49		12/04/13 03:06	5 75-25-2	
Bromomethane	ND ug/m3	1.2	1.49		12/04/13 03:06	6 74-83-9	
1,3-Butadiene	ND ug/m3	0.67	1.49		12/04/13 03:06	6 106-99-0	
2-Butanone (MEK)	4.4 ug/m3	0.89	1.49		12/04/13 03:06	78-93-3	
Carbon disulfide	ND ug/m3	0.94	1.49		12/04/13 03:06	5 75-15-0	
Carbon tetrachloride	ND ug/m3	0.95	1.49		12/04/13 03:06	5 56-23-5	
Chlorobenzene	ND ug/m3	1.4	1.49		12/04/13 03:06	108-90-7	
Chloroethane	ND ug/m3	0.80	1.49		12/04/13 03:06	75-00-3	
Chloroform	ND ug/m3	1.5	1.49		12/04/13 03:06	6 67-66-3	
Chloromethane	2.1 ug/m3	0.63	1.49		12/04/13 03:06		
Cyclohexane	ND ug/m3	1.0	1.49		12/04/13 03:06		
Dibromochloromethane	ND ug/m3	2.6	1.49		12/04/13 03:06		
1,2-Dibromoethane (EDB)	ND ug/m3	2.3	1.49		12/04/13 03:06		
I,2-Dichlorobenzene	ND ug/m3	1.8	1.49		12/04/13 03:06		
,3-Dichlorobenzene	ND ug/m3	1.8	1.49		12/04/13 03:06		
,4-Dichlorobenzene	ND ug/m3	1.8	1.49		12/04/13 03:06		
Dichlorodifluoromethane	3.0 ug/m3	1.5	1.49		12/04/13 03:06		
1,1-Dichloroethane	ND ug/m3	1.2	1.49		12/04/13 03:06		
,,1-Dichloroethane	ND ug/m3	0.61	1.49		12/04/13 03:06		
1,1-Dichloroethene	ND ug/m3	1.2	1.49		12/04/13 03:06		
cis-1,2-Dichloroethene	ND ug/m3	1.2	1.49		12/04/13 03:06		
rans-1,2-Dichloroethene	•	1.2	1.49		12/04/13 03:06		
1,2-Dichloropropane	ND ug/m3 ND ug/m3	1.4	1.49		12/04/13 03:06		
	ND ug/m3	1.4	1.49		12/04/13 03:06		
cis-1,3-Dichloropropene	_						
rans-1,3-Dichloropropene	ND ug/m3	1.4	1.49		12/04/13 03:06		
Dichlorotetrafluoroethane	ND ug/m3	2.1	1.49		12/04/13 03:06		
Ethyl acetate	ND ug/m3	1.1	1.49		12/04/13 03:06		
Ethylbenzene	ND ug/m3	1.3	1.49		12/04/13 03:06		
4-Ethyltoluene	ND ug/m3	1.5	1.49		12/04/13 03:06		
n-Heptane	ND ug/m3	1.2	1.49		12/04/13 03:06		
Hexachloro-1,3-butadiene	ND ug/m3	3.3	1.49		12/04/13 03:06		
n-Hexane	1.5 ug/m3	1.1	1.49		12/04/13 03:06		
2-Hexanone	ND ug/m3	1.2	1.49		12/04/13 03:06		
sopropylbenzene (Cumene)	ND ug/m3	3.7	1.49		12/04/13 03:06		
Methylene Chloride	16.9 ug/m3	1.1	1.49		12/04/13 03:06		
I-Methyl-2-pentanone (MIBK)	ND ug/m3	1.2	1.49		12/04/13 03:06	5 108-10-1	
Methyl-tert-butyl ether	ND ug/m3	1.1	1.49		12/04/13 03:06		
Naphthalene	ND ug/m3	1.6	1.49		12/04/13 03:06		
Propylene	ND ug/m3	0.52	1.49		12/04/13 03:06		
Styrene	ND ug/m3	1.3	1.49		12/04/13 03:06		
,1,2,2-Tetrachloroethane	ND ug/m3	1.0	1.49		12/04/13 03:06	79-34-5	
etrachloroethene	ND ug/m3	1.0	1.49		12/04/13 03:06	6 127-18-4	
Tetrahydrofuran	ND ug/m3	0.89	1.49		12/04/13 03:06	5 109-99-9	
Toluene	17.2 ug/m3	1.1	1.49		12/04/13 03:06	108-88-3	

Project: 60311767-1 Newton Gr. Pit-Rev.

Pace Project No.: 10250770

Date: 12/10/2013 01:10 PM

Sample: IAA-01	Lab ID: 10250770003	Collected: 11/26/1	3 10:35	Received: 11/27/13 09:40	Matrix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qual
TO15 MSV AIR	Analytical Method: TO-15				
1,2,4-Trichlorobenzene	ND ug/m3	2.2	1.49	12/04/13 03:0	6 120-82-1
1,1,1-Trichloroethane	ND ug/m3	1.7	1.49	12/04/13 03:0	6 71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.82	1.49	12/04/13 03:0	6 79-00-5
Trichloroethene	1.0 ug/m3	0.82	1.49	12/04/13 03:0	6 79-01-6
Trichlorofluoromethane	ND ug/m3	1.7	1.49	12/04/13 03:0	6 75-69-4
1,1,2-Trichlorotrifluoroethane	ND ug/m3	2.4	1.49	12/04/13 03:0	6 76-13-1
1,2,4-Trimethylbenzene	1.5 ug/m3	1.5	1.49	12/04/13 03:0	6 95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.5	1.49	12/04/13 03:0	6 108-67-8
Vinyl acetate	ND ug/m3	1.1	1.49	12/04/13 03:0	6 108-05-4
Vinyl chloride	ND ug/m3	0.39	1.49	12/04/13 03:0	6 75-01-4
m&p-Xylene	ND ug/m3	2.6	1.49	12/04/13 03:0	6 179601-23-1
o-Xylene	ND ug/m3	1.3	1.49	12/04/13 03:0	6 95-47-6

Project: 60311767-1 Newton Gr. Pit-Rev.

Pace Project No.: 10250770

Date: 12/10/2013 01:10 PM

Sample: OAA-02	Lab ID: 10250770004	Collected: 11/26/13	3 10:47	Received:	11/27/13 09:40	Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Method: TO-15						
Acetone	8.0 ug/m3	0.69	1.44		12/04/13 03:36	6 67-64-1	
Benzene	ND ug/m3	0.47	1.44		12/04/13 03:36	5 71-43-2	
Bromodichloromethane	ND ug/m3	2.0	1.44		12/04/13 03:36	5 75-27-4	
Bromoform	ND ug/m3	3.0	1.44		12/04/13 03:36	5 75-25-2	
Bromomethane	ND ug/m3	1.1	1.44		12/04/13 03:36	74-83-9	
1,3-Butadiene	ND ug/m3	0.65	1.44		12/04/13 03:36	5 106-99-0	
2-Butanone (MEK)	ND ug/m3	0.86	1.44		12/04/13 03:36	78-93-3	
Carbon disulfide	ND ug/m3	0.91	1.44		12/04/13 03:36	75-15-0	
Carbon tetrachloride	ND ug/m3	0.92	1.44		12/04/13 03:36	5 56-23-5	
Chlorobenzene	ND ug/m3	1.4	1.44		12/04/13 03:36	6 108-90-7	
Chloroethane	ND ug/m3	0.78	1.44		12/04/13 03:36	5 75-00-3	
Chloroform	ND ug/m3	1.4	1.44		12/04/13 03:36	6 67-66-3	
Chloromethane	1.2 ug/m3	0.60	1.44		12/04/13 03:36	6 74-87-3	
Cyclohexane	ND ug/m3	1.0	1.44		12/04/13 03:36	6 110-82-7	
Dibromochloromethane	ND ug/m3	2.5	1.44		12/04/13 03:36	6 124-48-1	
1,2-Dibromoethane (EDB)	ND ug/m3	2.2	1.44		12/04/13 03:36	5 106-93-4	
1,2-Dichlorobenzene	ND ug/m3	1.8	1.44		12/04/13 03:36	95-50-1	
1,3-Dichlorobenzene	ND ug/m3	1.8	1.44		12/04/13 03:36	5 541-73-1	
,4-Dichlorobenzene	ND ug/m3	1.8	1.44		12/04/13 03:36	6 106-46-7	
Dichlorodifluoromethane	2.3 ug/m3	1.5	1.44		12/04/13 03:36		
1,1-Dichloroethane	ND ug/m3	1.2	1.44		12/04/13 03:36		
1,2-Dichloroethane	ND ug/m3	0.59	1.44		12/04/13 03:36		
1,1-Dichloroethene	ND ug/m3	1.2	1.44		12/04/13 03:36		
cis-1,2-Dichloroethene	ND ug/m3	1.2	1.44		12/04/13 03:36		
trans-1,2-Dichloroethene	ND ug/m3	1.2	1.44		12/04/13 03:36		
1,2-Dichloropropane	ND ug/m3	1.4	1.44		12/04/13 03:36		
cis-1,3-Dichloropropene	ND ug/m3	1.3	1.44		12/04/13 03:36		
trans-1,3-Dichloropropene	ND ug/m3	1.3	1.44		12/04/13 03:36		
Dichlorotetrafluoroethane	ND ug/m3	2.0	1.44		12/04/13 03:36		
Ethyl acetate	ND ug/m3	1.1	1.44		12/04/13 03:36		
Ethylbenzene	ND ug/m3	1.3	1.44		12/04/13 03:36		
4-Ethyltoluene	ND ug/m3	1.4	1.44		12/04/13 03:36		
n-Heptane	ND ug/m3	1.2	1.44		12/04/13 03:36		
Hexachloro-1,3-butadiene	ND ug/m3	3.2	1.44		12/04/13 03:36		
n-Hexane	ND ug/m3	1.0	1.44		12/04/13 03:36		
2-Hexanone	ND ug/m3	1.2	1.44		12/04/13 03:36		
sopropylbenzene (Cumene)	ND ug/m3	3.6	1.44		12/04/13 03:36		
Methylene Chloride	3.6 ug/m3	1.0	1.44		12/04/13 03:36		
4-Methyl-2-pentanone (MIBK)	ND ug/m3	1.2	1.44		12/04/13 03:36		
	•						
Methyl-tert-butyl ether	ND ug/m3 ND ug/m3	1.1	1.44		12/04/13 03:36		
Naphthalene Propylogo	· ·	1.5	1.44		12/04/13 03:36		
Propylene	ND ug/m3	0.50	1.44		12/04/13 03:36		
Styrene	ND ug/m3	1.3	1.44		12/04/13 03:36		
1,1,2,2-Tetrachloroethane	ND ug/m3	1.0	1.44		12/04/13 03:36		
Tetrachloroethene	ND ug/m3	0.99	1.44		12/04/13 03:36		
Tetrahydrofuran	ND ug/m3	0.86	1.44		12/04/13 03:36		
Toluene	1.5 ug/m3	1.1	1.44		12/04/13 03:36	108-88-3	

Project: 60311767-1 Newton Gr. Pit-Rev.

Pace Project No.: 10250770

Date: 12/10/2013 01:10 PM

Sample: OAA-02	Lab ID: 10250770004	Collected: 11/26/1	3 10:47	Received: 11/27/13 09:40	Matrix: Air
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qu
TO15 MSV AIR	Analytical Method: TO-15				
1,2,4-Trichlorobenzene	ND ug/m3	2.2	1.44	12/04/13 03:3	6 120-82-1
1,1,1-Trichloroethane	ND ug/m3	1.6	1.44	12/04/13 03:3	6 71-55-6
1,1,2-Trichloroethane	ND ug/m3	0.79	1.44	12/04/13 03:3	6 79-00-5
Trichloroethene	ND ug/m3	0.79	1.44	12/04/13 03:3	6 79-01-6
Trichlorofluoromethane	ND ug/m3	1.6	1.44	12/04/13 03:3	6 75-69-4
1,1,2-Trichlorotrifluoroethane	ND ug/m3	2.3	1.44	12/04/13 03:3	6 76-13-1
1,2,4-Trimethylbenzene	ND ug/m3	1.4	1.44	12/04/13 03:3	6 95-63-6
1,3,5-Trimethylbenzene	ND ug/m3	1.4	1.44	12/04/13 03:3	6 108-67-8
Vinyl acetate	ND ug/m3	1.0	1.44	12/04/13 03:3	6 108-05-4
Vinyl chloride	ND ug/m3	0.37	1.44	12/04/13 03:3	6 75-01-4
m&p-Xylene	ND ug/m3	2.5	1.44	12/04/13 03:3	6 179601-23-1
o-Xylene	ND ug/m3	1.3	1.44	12/04/13 03:3	6 95-47-6

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

QUALITY CONTROL DATA

Project: 60311767-1 Newton Gr. Pit-Rev.

Pace Project No.: 10250770

Date: 12/10/2013 01:10 PM

QC Batch: AIR/18849 Analysis Method: TO-15

QC Batch Method: TO-15 Analysis Description: TO15 MSV AIR Low Level

Associated Lab Samples: 10250770001, 10250770002, 10250770003, 10250770004

METHOD BLANK: 1588494 Matrix: Air

Associated Lab Samples: 10250770001, 10250770002, 10250770003, 10250770004

.		Blank	Reporting		o
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	1.1	12/04/13 01:33	
1,1,2,2-Tetrachloroethane	ug/m3	ND	0.70	12/04/13 01:33	
1,1,2-Trichloroethane	ug/m3	ND	0.55	12/04/13 01:33	
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	1.6	12/04/13 01:33	
1,1-Dichloroethane	ug/m3	ND	0.82	12/04/13 01:33	
1,1-Dichloroethene	ug/m3	ND	0.81	12/04/13 01:33	
1,2,4-Trichlorobenzene	ug/m3	ND	1.5	12/04/13 01:33	
1,2,4-Trimethylbenzene	ug/m3	ND	1.0	12/04/13 01:33	
1,2-Dibromoethane (EDB)	ug/m3	ND	1.6	12/04/13 01:33	
1,2-Dichlorobenzene	ug/m3	ND	1.2	12/04/13 01:33	
1,2-Dichloroethane	ug/m3	ND	0.41	12/04/13 01:33	
1,2-Dichloropropane	ug/m3	ND	0.94	12/04/13 01:33	
1,3,5-Trimethylbenzene	ug/m3	ND	1.0	12/04/13 01:33	
1,3-Butadiene	ug/m3	ND	0.45	12/04/13 01:33	
1,3-Dichlorobenzene	ug/m3	ND	1.2	12/04/13 01:33	
1,4-Dichlorobenzene	ug/m3	ND	1.2	12/04/13 01:33	
2-Butanone (MEK)	ug/m3	ND	0.60	12/04/13 01:33	
2-Hexanone	ug/m3	ND	0.83	12/04/13 01:33	
4-Ethyltoluene	ug/m3	ND	1.0	12/04/13 01:33	
4-Methyl-2-pentanone (MIBK)	ug/m3	ND	0.83	12/04/13 01:33	
Acetone	ug/m3	ND	0.48	12/04/13 01:33	
Benzene	ug/m3	ND	0.32	12/04/13 01:33	
Bromodichloromethane	ug/m3	ND	1.4	12/04/13 01:33	
Bromoform	ug/m3	ND	2.1	12/04/13 01:33	
Bromomethane	ug/m3	ND	0.79	12/04/13 01:33	
Carbon disulfide	ug/m3	ND	0.63	12/04/13 01:33	
Carbon tetrachloride	ug/m3	ND	0.64	12/04/13 01:33	
Chlorobenzene	ug/m3	ND	0.94	12/04/13 01:33	
Chloroethane	ug/m3	ND	0.54	12/04/13 01:33	
Chloroform	ug/m3	ND	0.99	12/04/13 01:33	
Chloromethane	ug/m3	ND	0.42	12/04/13 01:33	
cis-1,2-Dichloroethene	ug/m3	ND	0.81	12/04/13 01:33	
cis-1,3-Dichloropropene	ug/m3	ND	0.92	12/04/13 01:33	
Cyclohexane	ug/m3	ND	0.70	12/04/13 01:33	
Dibromochloromethane	ug/m3	ND	1.7	12/04/13 01:33	
Dichlorodifluoromethane	ug/m3	ND	1.0	12/04/13 01:33	
Dichlorotetrafluoroethane	ug/m3	ND	1.4	12/04/13 01:33	
Ethyl acetate	ug/m3	ND	0.73	12/04/13 01:33	
Ethylbenzene	ug/m3	ND	0.88	12/04/13 01:33	
Hexachloro-1,3-butadiene	ug/m3	ND	2.2	12/04/13 01:33	
m&p-Xylene	ug/m3	ND	1.8	12/04/13 01:33	
Methyl-tert-butyl ether	ug/m3	ND	0.73	12/04/13 01:33	

(612)607-1700

QUALITY CONTROL DATA

Project: 60311767-1 Newton Gr. Pit-Rev.

Pace Project No.: 10250770

Date: 12/10/2013 01:10 PM

METHOD BLANK: 1588494 Matrix: Air

Associated Lab Samples: 10250770001, 10250770002, 10250770003, 10250770004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
n-Heptane	ug/m3	ND	0.83	12/04/13 01:33	
n-Hexane	ug/m3	ND	0.72	12/04/13 01:33	
Naphthalene	ug/m3	ND	1.1	12/04/13 01:33	
o-Xylene	ug/m3	ND	0.88	12/04/13 01:33	
Propylene	ug/m3	ND	0.35	12/04/13 01:33	
Styrene	ug/m3	ND	0.87	12/04/13 01:33	
Tetrachloroethene	ug/m3	ND	0.69	12/04/13 01:33	
Tetrahydrofuran	ug/m3	ND	0.60	12/04/13 01:33	
Toluene	ug/m3	ND	0.77	12/04/13 01:33	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	12/04/13 01:33	
trans-1,3-Dichloropropene	ug/m3	ND	0.92	12/04/13 01:33	
Trichloroethene	ug/m3	ND	0.55	12/04/13 01:33	
Trichlorofluoromethane	ug/m3	ND	1.1	12/04/13 01:33	
Vinyl acetate	ug/m3	ND	0.72	12/04/13 01:33	
Vinyl chloride	ug/m3	ND	0.26	12/04/13 01:33	

Parameter Units Spike Conc. LCS Result LCS % Rec Limits Qualifiers 1,1,1-Trichloroethane ug/m3 55.5 61.8 111 69-131 1,1,2-Trichloroethane ug/m3 55.5 58.5 105 68-132 1,1,2-Trichloroethane ug/m3 55.5 58.5 105 68-132 1,1,2-Trichlorotrifluoroethane ug/m3 77.9 76.5 98 65-130 1,1-Dichloroethane ug/m3 41.2 41.5 101 66-131 1,1-Dichloroethane ug/m3 75.5 87.2 116 30-150 1,2,4-Trichlorobenzene ug/m3 75.5 87.2 116 30-150 1,2,4-Trimethylbenzene ug/m3 78.1 88.9 114 72-132 1,2-Dichlorobenzene ug/m3 61.2 65.3 107 68-148 1,2-Dichloropenzene ug/m3 41.2 45.8 111 66-136 1,2-Dichloropenzene ug/m3 50 59.9 120	LABORATORY CONTROL SAMPLE:	1588495					
1,1,1-Trichloroethane ug/m3 55.5 61.8 111 69-131 1,1,2,2-Tetrachloroethane ug/m3 69.8 75.1 108 66-135 1,1,2-Trichloroethane ug/m3 55.5 58.5 105 68-132 1,1,2-Trichloroethane ug/m3 77.9 76.5 98 65-130 1,1-Dichloroethane ug/m3 41.2 41.5 101 66-131 1,1-Dichloroethene ug/m3 40.3 40.6 101 64-136 1,2,4-Trichlorobenzene ug/m3 75.5 87.2 116 30-150 1,2,4-Trimethylbenzene ug/m3 50 57.1 114 71-135 1,2-Dichlorobenzene ug/m3 78.1 88.9 114 72-132 1,2-Dichlorobenzene ug/m3 41.2 45.8 111 66-136 1,2-Dichloroperopane ug/m3 47 48.7 104 68-133 1,3-Birimethylbenzene ug/m3 50 59.9 120 69-136 1,3-Birimethylbenzene ug/m3 61.2 75.0 123 70-134			Spike	LCS	LCS	% Rec	
1,1,2,2-Tetrachloroethane ug/m3 69.8 75.1 108 66-135 1,1,2-Trichloroethane ug/m3 55.5 58.5 105 68-132 1,1,2-Trichloroethane ug/m3 77.9 76.5 98 65-130 1,1-Dichloroethane ug/m3 41.2 41.5 101 66-131 1,1-Dichloroethane ug/m3 40.3 40.6 101 64-136 1,2,4-Trichlorobenzene ug/m3 75.5 87.2 116 30-150 1,2,4-Trimethylbenzene ug/m3 50 57.1 114 71-135 1,2-Dibromoethane (EDB) ug/m3 78.1 88.9 114 72-132 1,2-Dichlorobenzene ug/m3 61.2 65.3 107 68-148 1,2-Dichlorobenzene ug/m3 41.2 45.8 111 66-136 1,2-Dichloropopane ug/m3 47 48.7 104 68-133 1,3-Firmethylbenzene ug/m3 50 59.9 120 69-136 1,3-Butadiene ug/m3 61.2 75.0 123 70-134	Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,2-Trichloroethane ug/m3 55.5 58.5 105 68-132 1,1,2-Trichlorotrifluoroethane ug/m3 77.9 76.5 98 65-130 1,1-Dichloroethane ug/m3 41.2 41.5 101 66-131 1,1-Dichloroethane ug/m3 40.3 40.6 101 64-136 1,2,4-Trichlorobenzene ug/m3 75.5 87.2 116 30-150 1,2,4-Trimethylbenzene ug/m3 50 57.1 114 71-135 1,2-Dibromoethane (EDB) ug/m3 78.1 88.9 114 72-132 1,2-Dichlorobenzene ug/m3 61.2 65.3 107 68-148 1,2-Dichloropropane ug/m3 41.2 45.8 111 66-136 1,2-Dichloropropane ug/m3 47 48.7 104 68-133 1,3-Butadiene ug/m3 50 59.9 120 69-136 1,3-Butadiene ug/m3 61.2 75.0 123 70-134 1,4-Dichlorobenzene ug/m3 61.2 75.0 123 70-134 1,4-Poichlorobenzene ug/m3 30 33.8 113 69-141 2-Hexanone ug/m3 41.7 50.5 <td>1,1,1-Trichloroethane</td> <td>ug/m3</td> <td>55.5</td> <td>61.8</td> <td>111</td> <td>69-131</td> <td></td>	1,1,1-Trichloroethane	ug/m3	55.5	61.8	111	69-131	
1,1,2-Trichlorotrifluoroethane ug/m3 77.9 76.5 98 65-130 1,1-Dichloroethane ug/m3 41.2 41.5 101 66-131 1,1-Dichloroethene ug/m3 40.3 40.6 101 64-136 1,2,4-Trichlorobenzene ug/m3 75.5 87.2 116 30-150 1,2,4-Trimethylbenzene ug/m3 50 57.1 114 71-135 1,2-Dibromoethane (EDB) ug/m3 78.1 88.9 114 72-132 1,2-Dichlorobenzene ug/m3 61.2 65.3 107 68-148 1,2-Dichlorobenzene ug/m3 41.2 45.8 111 66-136 1,2-Dichloropropane ug/m3 47 48.7 104 68-133 1,3-S-Trimethylbenzene ug/m3 50 59.9 120 69-136 1,3-Butadiene ug/m3 22.5 25.4 113 69-134 1,3-Dichlorobenzene ug/m3 61.2 75.0 123 70-134 1,4-Dichlorobenzene ug/m3 61.2 63.4 104 66-134 <td>1,1,2,2-Tetrachloroethane</td> <td>ug/m3</td> <td>69.8</td> <td>75.1</td> <td>108</td> <td>66-135</td> <td></td>	1,1,2,2-Tetrachloroethane	ug/m3	69.8	75.1	108	66-135	
1,1-Dichloroethane ug/m3 41.2 41.5 101 66-131 1,1-Dichloroethene ug/m3 40.3 40.6 101 64-136 1,2,4-Trinchlorobenzene ug/m3 75.5 87.2 116 30-150 1,2,4-Trinchlorobenzene ug/m3 50 57.1 114 71-135 1,2-Dibromoethane (EDB) ug/m3 78.1 88.9 114 72-132 1,2-Dichlorobenzene ug/m3 61.2 65.3 107 68-148 1,2-Dichloroethane ug/m3 41.2 45.8 111 66-136 1,2-Dichloropropane ug/m3 47 48.7 104 68-133 1,3-Futadiene ug/m3 50 59.9 120 69-136 1,3-Butadiene ug/m3 61.2 75.0 123 70-134 1,4-Dichlorobenzene ug/m3 61.2 75.0 123 70-134 1,4-Dichlorobenzene ug/m3 61.2 63.4 104 66-134 2-Butanone (MEK) ug/m3 30 33.8 113 69-141 2	1,1,2-Trichloroethane	ug/m3	55.5	58.5	105	68-132	
1,1-Dichloroethene ug/m3 40.3 40.6 101 64-136 1,2,4-Trichlorobenzene ug/m3 75.5 87.2 116 30-150 1,2,4-Trimethylbenzene ug/m3 50 57.1 114 71-135 1,2-Dibromoethane (EDB) ug/m3 78.1 88.9 114 72-132 1,2-Dichlorobenzene ug/m3 61.2 65.3 107 68-148 1,2-Dichloroptopane ug/m3 41.2 45.8 111 66-136 1,2-Dichloroptopane ug/m3 47 48.7 104 68-133 1,3-S-Trimethylbenzene ug/m3 50 59.9 120 69-136 1,3-Butadiene ug/m3 22.5 25.4 113 69-134 1,3-Dichlorobenzene ug/m3 61.2 75.0 123 70-134 1,4-Dichlorobenzene ug/m3 61.2 63.4 104 66-134 2-Butanone (MEK) ug/m3 30 33.8 113 69-141 2-Hexanone ug/m3 41.7 50.5 121 74-132 4	1,1,2-Trichlorotrifluoroethane	ug/m3	77.9	76.5	98	65-130	
1,2,4-Trichlorobenzene ug/m3 75.5 87.2 116 30-150 1,2,4-Trimethylbenzene ug/m3 50 57.1 114 71-135 1,2-Dibromoethane (EDB) ug/m3 78.1 88.9 114 72-132 1,2-Dichlorobenzene ug/m3 61.2 65.3 107 68-148 1,2-Dichloropthane ug/m3 41.2 45.8 111 66-136 1,2-Dichloroptopane ug/m3 47 48.7 104 68-133 1,3-Dichloroptopane ug/m3 50 59.9 120 69-136 1,3-Butadiene ug/m3 61.2 75.0 123 70-134 1,3-Dichlorobenzene ug/m3 61.2 75.0 123 70-134 1,4-Dichlorobenzene ug/m3 61.2 63.4 104 66-134 2-Butanone (MEK) ug/m3 30 33.8 113 69-141 2-Hexanone ug/m3 41.7 50.5 121 74-132 4-Ethyltoluene ug/m3 41.7 46.9 113 74-131 Acetone </td <td>1,1-Dichloroethane</td> <td>ug/m3</td> <td>41.2</td> <td>41.5</td> <td>101</td> <td>66-131</td> <td></td>	1,1-Dichloroethane	ug/m3	41.2	41.5	101	66-131	
1,2,4-Trimethylbenzene ug/m3 50 57.1 114 71-135 1,2-Dibromoethane (EDB) ug/m3 78.1 88.9 114 72-132 1,2-Dichlorobenzene ug/m3 61.2 65.3 107 68-148 1,2-Dichloroethane ug/m3 41.2 45.8 111 66-136 1,2-Dichloropropane ug/m3 47 48.7 104 68-133 1,3,5-Trimethylbenzene ug/m3 50 59.9 120 69-136 1,3-Butadiene ug/m3 61.2 75.0 123 70-134 1,3-Dichlorobenzene ug/m3 61.2 75.0 123 70-134 1,4-Dichlorobenzene ug/m3 61.2 63.4 104 66-134 2-Butanone (MEK) ug/m3 30 33.8 113 69-141 2-Hexanone ug/m3 41.7 50.5 121 74-132 4-Ethyltoluene ug/m3 50 56.3 113 71-134 4-Methyl-2-pentanone (MIBK) ug/m3 41.7 46.9 113 74-131 Ben	1,1-Dichloroethene	ug/m3	40.3	40.6	101	64-136	
1,2-Dibromoethane (EDB) ug/m3 78.1 88.9 114 72-132 1,2-Dichlorobenzene ug/m3 61.2 65.3 107 68-148 1,2-Dichloroethane ug/m3 41.2 45.8 111 66-136 1,2-Dichloropropane ug/m3 47 48.7 104 68-133 1,3,5-Trimethylbenzene ug/m3 50 59.9 120 69-136 1,3-Butadiene ug/m3 22.5 25.4 113 69-134 1,3-Dichlorobenzene ug/m3 61.2 75.0 123 70-134 1,4-Dichlorobenzene ug/m3 61.2 63.4 104 66-134 2-Butanone (MEK) ug/m3 30 33.8 113 69-141 2-Hexanone ug/m3 41.7 50.5 121 74-132 4-Ethyltoluene ug/m3 41.7 46.9 113 71-134 4-Methyl-2-pentanone (MIBK) ug/m3 41.7 46.9 113 74-131 Acetone ug/m3 32.5 35.1 108 72-136 Bromodichlorom	1,2,4-Trichlorobenzene	ug/m3	75.5	87.2	116	30-150	
1,2-Dichlorobenzene ug/m3 61.2 65.3 107 68-148 1,2-Dichloroethane ug/m3 41.2 45.8 111 66-136 1,2-Dichloropropane ug/m3 47 48.7 104 68-133 1,3,5-Trimethylbenzene ug/m3 50 59.9 120 69-136 1,3-Butadiene ug/m3 22.5 25.4 113 69-134 1,3-Dichlorobenzene ug/m3 61.2 75.0 123 70-134 1,4-Dichlorobenzene ug/m3 61.2 63.4 104 66-134 2-Butanone (MEK) ug/m3 30 33.8 113 69-141 2-Hexanone ug/m3 41.7 50.5 121 74-132 4-Ethyltoluene ug/m3 50 56.3 113 71-134 4-Methyl-2-pentanone (MIBK) ug/m3 41.7 46.9 113 74-131 Acetone ug/m3 32.5 35.1 106 62-142 Benzene ug/m3 68.2 74.5 109 69-135 Bromoform ug/m3 </td <td>1,2,4-Trimethylbenzene</td> <td>ug/m3</td> <td>50</td> <td>57.1</td> <td>114</td> <td>71-135</td> <td></td>	1,2,4-Trimethylbenzene	ug/m3	50	57.1	114	71-135	
1,2-Dichloroethane ug/m3 41.2 45.8 111 66-136 1,2-Dichloropropane ug/m3 47 48.7 104 68-133 1,3,5-Trimethylbenzene ug/m3 50 59.9 120 69-136 1,3-Butadiene ug/m3 22.5 25.4 113 69-134 1,3-Dichlorobenzene ug/m3 61.2 75.0 123 70-134 1,4-Dichlorobenzene ug/m3 61.2 63.4 104 66-134 2-Butanone (MEK) ug/m3 30 33.8 113 69-141 2-Hexanone ug/m3 41.7 50.5 121 74-132 4-Ethyltoluene ug/m3 50 56.3 113 71-134 4-Methyl-2-pentanone (MIBK) ug/m3 41.7 46.9 113 74-131 Acetone ug/m3 32.5 35.1 108 72-136 Bromodichloromethane ug/m3 68.2 74.5 109 69-135 Bromoform ug/m3 39.5 40.2 102 65-125	1,2-Dibromoethane (EDB)	ug/m3	78.1	88.9	114	72-132	
1,2-Dichloropropane ug/m3 47 48.7 104 68-133 1,3,5-Trimethylbenzene ug/m3 50 59.9 120 69-136 1,3-Butadiene ug/m3 22.5 25.4 113 69-134 1,3-Dichlorobenzene ug/m3 61.2 75.0 123 70-134 1,4-Dichlorobenzene ug/m3 61.2 63.4 104 66-134 2-Butanone (MEK) ug/m3 30 33.8 113 69-141 2-Hexanone ug/m3 41.7 50.5 121 74-132 4-Ethyltoluene ug/m3 50 56.3 113 71-134 4-Methyl-2-pentanone (MIBK) ug/m3 41.7 46.9 113 74-131 Acetone ug/m3 24.2 28.1 116 62-142 Benzene ug/m3 32.5 35.1 108 72-136 Bromodichloromethane ug/m3 105 131 125 72-133 Bromomethane ug/m3 39.5 40.2 102 65-125	1,2-Dichlorobenzene	ug/m3	61.2	65.3	107	68-148	
1,3,5-Trimethylbenzene ug/m3 50 59.9 120 69-136 1,3-Butadiene ug/m3 22.5 25.4 113 69-134 1,3-Dichlorobenzene ug/m3 61.2 75.0 123 70-134 1,4-Dichlorobenzene ug/m3 61.2 63.4 104 66-134 2-Butanone (MEK) ug/m3 30 33.8 113 69-141 2-Hexanone ug/m3 41.7 50.5 121 74-132 4-Ethyltoluene ug/m3 50 56.3 113 71-134 4-Methyl-2-pentanone (MIBK) ug/m3 41.7 46.9 113 74-131 Acetone ug/m3 24.2 28.1 116 62-142 Benzene ug/m3 32.5 35.1 108 72-136 Bromodichloromethane ug/m3 68.2 74.5 109 69-135 Bromomethane ug/m3 39.5 40.2 102 65-125	1,2-Dichloroethane	ug/m3	41.2	45.8	111	66-136	
1,3-Butadiene ug/m3 22.5 25.4 113 69-134 1,3-Dichlorobenzene ug/m3 61.2 75.0 123 70-134 1,4-Dichlorobenzene ug/m3 61.2 63.4 104 66-134 2-Butanone (MEK) ug/m3 30 33.8 113 69-141 2-Hexanone ug/m3 41.7 50.5 121 74-132 4-Ethyltoluene ug/m3 50 56.3 113 71-134 4-Methyl-2-pentanone (MIBK) ug/m3 41.7 46.9 113 74-131 Acetone ug/m3 24.2 28.1 116 62-142 Benzene ug/m3 32.5 35.1 108 72-136 Bromodichloromethane ug/m3 68.2 74.5 109 69-135 Bromomethane ug/m3 39.5 40.2 102 65-125	1,2-Dichloropropane	ug/m3	47	48.7	104	68-133	
1,3-Dichlorobenzene ug/m3 61.2 75.0 123 70-134 1,4-Dichlorobenzene ug/m3 61.2 63.4 104 66-134 2-Butanone (MEK) ug/m3 30 33.8 113 69-141 2-Hexanone ug/m3 41.7 50.5 121 74-132 4-Ethyltoluene ug/m3 50 56.3 113 71-134 4-Methyl-2-pentanone (MIBK) ug/m3 41.7 46.9 113 74-131 Acetone ug/m3 24.2 28.1 116 62-142 Benzene ug/m3 32.5 35.1 108 72-136 Bromodichloromethane ug/m3 68.2 74.5 109 69-135 Bromomethane ug/m3 39.5 40.2 102 65-125	1,3,5-Trimethylbenzene	ug/m3	50	59.9	120	69-136	
1,4-Dichlorobenzene ug/m3 61.2 63.4 104 66-134 2-Butanone (MEK) ug/m3 30 33.8 113 69-141 2-Hexanone ug/m3 41.7 50.5 121 74-132 4-Ethyltoluene ug/m3 50 56.3 113 71-134 4-Methyl-2-pentanone (MIBK) ug/m3 41.7 46.9 113 74-131 Acetone ug/m3 24.2 28.1 116 62-142 Benzene ug/m3 32.5 35.1 108 72-136 Bromodichloromethane ug/m3 68.2 74.5 109 69-135 Bromomethane ug/m3 39.5 40.2 102 65-125	1,3-Butadiene	ug/m3	22.5	25.4	113	69-134	
2-Butanone (MEK) ug/m3 30 33.8 113 69-141 2-Hexanone ug/m3 41.7 50.5 121 74-132 4-Ethyltoluene ug/m3 50 56.3 113 71-134 4-Methyl-2-pentanone (MIBK) ug/m3 41.7 46.9 113 74-131 Acetone ug/m3 24.2 28.1 116 62-142 Benzene ug/m3 32.5 35.1 108 72-136 Bromodichloromethane ug/m3 68.2 74.5 109 69-135 Bromomethane ug/m3 105 131 125 72-133 Bromomethane ug/m3 39.5 40.2 102 65-125	1,3-Dichlorobenzene	ug/m3	61.2	75.0	123	70-134	
2-Hexanone ug/m3 41.7 50.5 121 74-132 4-Ethyltoluene ug/m3 50 56.3 113 71-134 4-Methyl-2-pentanone (MIBK) ug/m3 41.7 46.9 113 74-131 Acetone ug/m3 24.2 28.1 116 62-142 Benzene ug/m3 32.5 35.1 108 72-136 Bromodichloromethane ug/m3 68.2 74.5 109 69-135 Bromoform ug/m3 105 131 125 72-133 Bromomethane ug/m3 39.5 40.2 102 65-125	1,4-Dichlorobenzene	ug/m3	61.2	63.4	104	66-134	
4-Ethyltoluene ug/m3 50 56.3 113 71-134 4-Methyl-2-pentanone (MIBK) ug/m3 41.7 46.9 113 74-131 Acetone ug/m3 24.2 28.1 116 62-142 Benzene ug/m3 32.5 35.1 108 72-136 Bromodichloromethane ug/m3 68.2 74.5 109 69-135 Bromoform ug/m3 105 131 125 72-133 Bromomethane ug/m3 39.5 40.2 102 65-125	2-Butanone (MEK)	ug/m3	30	33.8	113	69-141	
4-Ethyltoluene ug/m3 50 56.3 113 71-134 4-Methyl-2-pentanone (MIBK) ug/m3 41.7 46.9 113 74-131 Acetone ug/m3 24.2 28.1 116 62-142 Benzene ug/m3 32.5 35.1 108 72-136 Bromodichloromethane ug/m3 68.2 74.5 109 69-135 Bromoform ug/m3 105 131 125 72-133 Bromomethane ug/m3 39.5 40.2 102 65-125	2-Hexanone	ug/m3	41.7	50.5	121	74-132	
4-Methyl-2-pentanone (MIBK) ug/m3 41.7 46.9 113 74-131 Acetone ug/m3 24.2 28.1 116 62-142 Benzene ug/m3 32.5 35.1 108 72-136 Bromodichloromethane ug/m3 68.2 74.5 109 69-135 Bromoform ug/m3 105 131 125 72-133 Bromomethane ug/m3 39.5 40.2 102 65-125	4-Ethyltoluene		50	56.3	113	71-134	
Benzene ug/m3 32.5 35.1 108 72-136 Bromodichloromethane ug/m3 68.2 74.5 109 69-135 Bromoform ug/m3 105 131 125 72-133 Bromomethane ug/m3 39.5 40.2 102 65-125	4-Methyl-2-pentanone (MIBK)		41.7	46.9	113	74-131	
Benzene ug/m3 32.5 35.1 108 72-136 Bromodichloromethane ug/m3 68.2 74.5 109 69-135 Bromoform ug/m3 105 131 125 72-133 Bromomethane ug/m3 39.5 40.2 102 65-125	Acetone	ug/m3	24.2	28.1	116	62-142	
Bromodichloromethane ug/m3 68.2 74.5 109 69-135 Bromoform ug/m3 105 131 125 72-133 Bromomethane ug/m3 39.5 40.2 102 65-125	Benzene		32.5	35.1	108	72-136	
Bromoform ug/m3 105 131 125 72-133 Bromomethane ug/m3 39.5 40.2 102 65-125	Bromodichloromethane		68.2	74.5	109	69-135	
Bromomethane ug/m3 39.5 40.2 102 65-125	Bromoform		105	131	125	72-133	
	Bromomethane		39.5	40.2	102	65-125	
	Carbon disulfide	-	31.7	35.5	112	68-127	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project: 60311767-1 Newton Gr. Pit-Rev.

Pace Project No.: 10250770

Date: 12/10/2013 01:10 PM

LABORATORY CONTROL SAMPLE:	1588495					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Carbon tetrachloride	ug/m3	64	81.1	127	64-133	
Chlorobenzene	ug/m3	46.8	51.0	109	65-135	
Chloroethane	ug/m3	26.8	27.9	104	63-129	
Chloroform	ug/m3	49.7	53.7	108	66-129	
Chloromethane	ug/m3	21	23.5	112	57-135	
cis-1,2-Dichloroethene	ug/m3	40.3	47.8	119	73-135	
cis-1,3-Dichloropropene	ug/m3	46.2	49.2	107	75-137	
Cyclohexane	ug/m3	35	39.8	114	73-139	
Dibromochloromethane	ug/m3	86.6	105	121	73-130	
Dichlorodifluoromethane	ug/m3	50.3	50.6	101	64-131	
Dichlorotetrafluoroethane	ug/m3	71.1	77.7	109	64-131	
Ethyl acetate	ug/m3	36.6	45.5	124	73-136	
Ethylbenzene	ug/m3	44.2	53.4	121	74-136	
Hexachloro-1,3-butadiene	ug/m3	108	135	125	30-150	
m&p-Xylene	ug/m3	44.2	54.2	123	72-135	
Methyl-tert-butyl ether	ug/m3	36.7	41.3	113	71-134	
Methylene Chloride	ug/m3	35.3	43.6	123	59-140	
n-Heptane	ug/m3	41.7	45.7	110	73-136	
n-Hexane	ug/m3	35.8	34.7	97	67-136	
Naphthalene	ug/m3	53.3	63.8	120	30-150	
o-Xylene	ug/m3	44.2	54.8	124	74-135	
Propylene	ug/m3	17.5	16.7	95	66-138	
Styrene	ug/m3	43.3	50.8	117	73-135	
Tetrachloroethene	ug/m3	69	75.4	109	66-135	
Tetrahydrofuran	ug/m3	30	33.3	111	73-130	
Toluene	ug/m3	38.3	41.6	108	71-134	
trans-1,2-Dichloroethene	ug/m3	40.3	41.2	102	68-129	
trans-1,3-Dichloropropene	ug/m3	46.2	52.8	114	75-129	
Trichloroethene	ug/m3	54.6	58.6	107	68-134	
Trichlorofluoromethane	ug/m3	57.1	58.0	101	61-134	
Vinyl acetate	ug/m3	35.8	41.1	115	70-139	
Vinyl chloride	ug/m3	26	28.1	108	64-134	

QUALIFIERS

Project: 60311767-1 Newton Gr. Pit-Rev.

Pace Project No.: 10250770

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

SAMPLE QUALIFIERS

Sample: 10250770001

[1] The internal standard recoveries associated with this sample exceed the lower control limit. The reported results should be considered estimated values.

Sample: 10250770003

Date: 12/10/2013 01:10 PM

[1] The internal standard recoveries associated with this sample exceed the lower control limit. The reported results should be considered estimated values.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 60311767-1 Newton Gr. Pit-Rev.

Pace Project No.: 10250770

Date: 12/10/2013 01:10 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10250770001	SSVP-01	TO-15	AIR/18849		
10250770002	SSVP-02	TO-15	AIR/18849		
10250770003	IAA-01	TO-15	AIR/18849		
10250770004	OAA-02	TO-15	AIR/18849		

AIR. CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Client Information:	Section B Required Project Information:	Section C Invoice Information	17997 Page: of /
Company: A FCO M	Report To: Dave Henderson	KHAID MEANTHICKING & 9	ያ Program
Address: CCR N River Only		Company Name: M ECC. M	UST Superfund Emissions Clean Air Act
W W 4254		Address: 1555 N R. Wer Center Dru Ste 214	Voluntary Clean Up Dry Clean C RCRA Other
Howard area of colors	Purchase Order No.: In OracleSS	Pace Quote Reference:	Location of Reporting Units ug/m² mg/m² —
Phone: 44 6190 Pax: 944 6081	Project Name: ルセッナロ	Pace Project Manager/Sales Rep	PPBVOther
At 3 day burn	Project Number: 60311767 (Pace Profile #:	Report Level II. W. Other
nformation ID	TAR.	COLLECTED	mber
SSVP-01	WAIE	39 4-0708818	X
	1/28	112,12,216 4 11485279	× × ×
	182//-	29 2058FC2	2 2
10-AA-01	- 1/25/3	10:10 26 3.51622FC3	Z X
0			
9			
7			
707			
The second secon			
i2	RELINGUISHED BY / AI	AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION	TION DATE SAMPLE CONDITIONS
		From 123, 4.3 WK (suren	
10-15- and 12/ 10-1			\$ \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
C/S- 12-0 Chlorothes o			N/A N/A
			N/A N/A
Page 11 Page	zeuth.	AND SIGNATURE R.C. M.W.Z. / L	O° rii qmi no bevied on localer (ved over localer (ved over localer lo
12/4/3	### ### ### ### ### ### ### ### ### ##	SIGNATURE of SAMPLER: DATE Signed	89S)
JANIST TO THE STATE OF THE STAT			

Pace Analytical*

Document Name: Air Sample Condition Upon Receipt

> Document No.: F-MN-A-106-rev.08

Document Revised: 19Sep2013 Page 1 of 1

Issuing Authority: Pace Minnesota Quality Office

ir Sample Condition (Upon Receipt	Client Name:		Project #:	uM	#:102507	70
- Francis	A ECOM		diad	WUI	10 (01) (01)	
· ·	Fed Ex UPS Commercial Pace	Other:	lient			
	ZAQE 813c	1 9406 441	06	1025	770	
Custody Seal on Cooler,	/Box Present? Yes	No Seals I	ntact? Ye	s 🗐 No	Optional: Proj. Due Date:	Proj. Name:
Packing Material:	Bubble Wrap Bubble	Bags Foam	None	Other:		
Temp. (TO17 and TO13 san		Corrected Temp (°C):		rmom. Used: e & Initials of I	B88A912167504 B88A9132521491 Person Examining Contents:	□72337080 □80512447 €44 i (-27.1
					Comments:	
Chain of Custody Preser	nt?	☑Yes □No	□N/A 1.			-
Chain of Custody Filled (Out?	Yes No	□N/A 2.			
Chain of Custody Reling	uished?	Yes No	□N/A 3.			
Sampler Name and/or S	ignature on COC?	Yes No	□N/A 4.			
Samples Arrived within	Hold Time?	Yes No	N/A 5.			
Short Hold Time Analys	is (<72 hr)?	□Yes ☑No	□n/A 6.			
Rush Turn Around Time	Requested?	☐Yes ☐No	N/A 7.			· · · · · · · · · · · · · · · · · · ·
Sufficient Volume?		■Yes □No	□N/A 8.			
Correct Containers Used	4?	ØYes □No	□N/A 9.			
-Pace Containers Use	d?	■Yes □No	□N/A			
Containers Intact?		□Yes □No	□N/A 10).		
Media: A.V. C	?a		11			· · · · · · · · · · · · · · · · · · ·
Sample Labels Match CO	DC?	Yes No	□N/A 12	2.		
Samples Received:	4 Air Cu	4 Air Flows	"ontrelles			
	nisters		/ Controllers		Stand	Alone G
Sample Number	Can ID	Sample Number		an ID	Sample Number	Can ID
SSUP-01	PACE 0708		508			
55VP-02	1485	1, 0630				
144-01	·· 2058	1.0222				
044-01	1. 1622	1.0366				
			,			
CLIENT NOTIFICATION/I Person Con	RESOLUTION Itacted:		Dat	e/Time:	Field Data Required	?
	olution:			-		
						77/77 50 5774
						,
Project Manager Review		Marijaning		Date:	11/27/13	
rroject ivianager keviev	N. CAIVO			Date:	CNI	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

Synergy Environmental Lab, INC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

LISA SMITH AECOM 1555 N RIVER CENTER DRIVE MILWAUKEE, WI 53212

Report Date 05-Nov-13

Project Name FMR NEWTON GRAVEL PIT Invoice # E26009

 Project #
 60135471

 Lab Code
 5026009A

 Sample ID
 PW-3518

 Sample Matrix
 water

 Sample Date
 10/23/2013

	Result	Unit	LOD 1	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
Organic										
VOC's										
Benzene	1.74	ug/l	0.24	0.77	1	8260B		10/31/2013	CJR	1
Bromobenzene	< 0.32	ug/l	0.32	1	1	8260B		10/31/2013	CJR	1
Bromodichloromethane	< 0.37	ug/l	0.37	1.2	1	8260B		10/31/2013	CJR	1
Bromoform	< 0.35	ug/l	0.35	1.1	1	8260B		10/31/2013	CJR	1
tert-Butylbenzene	< 0.36	ug/l	0.36	1.2	1	8260B		10/31/2013	CJR	1
sec-Butylbenzene	< 0.33	ug/l	0.33	1	1	8260B		10/31/2013	CJR	1
n-Butylbenzene	< 0.35	ug/l	0.35	1.1	1	8260B		10/31/2013	CJR	1
Carbon Tetrachloride	< 0.33	ug/l	0.33	1.1	1	8260B		10/31/2013	CJR	1
Chlorobenzene	< 0.24	ug/l	0.24	0.77	1	8260B		10/31/2013	CJR	1
Chloroethane	< 0.63	ug/l	0.63	2	1	8260B		10/31/2013	CJR	1
Chloroform	< 0.28	ug/l	0.28	0.88	1	8260B		10/31/2013	CJR	1
Chloromethane	< 0.81	ug/l	0.81	2.6	1	8260B		10/31/2013	CJR	1
2-Chlorotoluene	< 0.21	ug/l	0.21	0.66	1	8260B		10/31/2013	CJR	1
4-Chlorotoluene	< 0.21	ug/l	0.21	0.68	1	8260B		10/31/2013	CJR	1
1,2-Dibromo-3-chloropropane	< 0.88	ug/l	0.88	2.8	1	8260B		10/31/2013	CJR	1
Dibromochloromethane	< 0.22	ug/l	0.22	0.7	1	8260B		10/31/2013	CJR	1
1,4-Dichlorobenzene	< 0.3	ug/l	0.3	0.96	1	8260B		10/31/2013	CJR	1
1,3-Dichlorobenzene	< 0.28	ug/l	0.28	0.89	1	8260B		10/31/2013	CJR	1
1,2-Dichlorobenzene	< 0.36	ug/l	0.36	1.2	1	8260B		10/31/2013	CJR	1
Dichlorodifluoromethane	< 0.44	ug/l	0.44	1.4	1	8260B		10/31/2013	CJR	1
1,2-Dichloroethane	0.42 "J"	ug/l	0.41	1.3	1	8260B		10/31/2013	CJR	1
1,1-Dichloroethane	< 0.3	ug/l	0.3	0.97	1	8260B		10/31/2013	CJR	1
1,1-Dichloroethene	1.62	ug/l	0.4	1.3	1	8260B		10/31/2013	CJR	1
cis-1,2-Dichloroethene	510	ug/l	3.8	12	10	8260B		11/4/2013	CJR	1
trans-1,2-Dichloroethene	5.5	ug/l	0.35	1.1	1	8260B		10/31/2013	CJR	1
1,2-Dichloropropane	< 0.32	ug/l	0.32	1	1	8260B		10/31/2013	CJR	1
2,2-Dichloropropane	< 0.36	ug/l	0.36	1.2	1	8260B		10/31/2013	CJR	8
1,3-Dichloropropane	< 0.33	ug/l	0.33	1	1	8260B		10/31/2013	CJR	1
Di-isopropyl ether	< 0.23	ug/l	0.23	0.73	1	8260B		10/31/2013	CJR	1
EDB (1,2-Dibromoethane)	< 0.44	ug/l	0.44	1.4	1	8260B		10/31/2013	CJR	1
Ethylbenzene	< 0.55	ug/l	0.55	1.7	1	8260B		10/31/2013	CJR	1
Hexachlorobutadiene	< 1.5	ug/l	1.5	4.8	1	8260B		10/31/2013	CJR	1
Isopropylbenzene	< 0.3	ug/l	0.3	0.96	1	8260B		10/31/2013	CJR	1

Project Name FMR NEWTON GRAVEL PIT Invoice # E26009

Project # 60135471

Lab Code5026009ASample IDPW-3518Sample MatrixwaterSample Date10/23/2013

	Result	Unit	LOD	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Code
p-Isopropyltoluene	< 0.31	ug/l	0.31	0.98	1	8260B		10/31/2013	CJR	1
Methylene chloride	< 0.5	ug/l	0.5	1.6	1	8260B		10/31/2013	CJR	1
Methyl tert-butyl ether (MTBE)	< 0.23	ug/l	0.23	0.74	1	8260B		10/31/2013	CJR	1
Naphthalene	< 1.7	ug/l	1.7	5.5	1	8260B		10/31/2013	CJR	1
n-Propylbenzene	< 0.25	ug/l	0.25	0.81	1	8260B		10/31/2013	CJR	1
1,1,2,2-Tetrachloroethane	< 0.45	ug/l	0.45	1.4	1	8260B		10/31/2013	CJR	1
1,1,1,2-Tetrachloroethane	< 0.33	ug/l	0.33	1.1	1	8260B		10/31/2013	CJR	1
Tetrachloroethene	< 0.33	ug/l	0.33	1.1	1	8260B		10/31/2013	CJR	1
Toluene	< 0.69	ug/l	0.69	2.2	1	8260B		10/31/2013	CJR	1
1,2,4-Trichlorobenzene	< 0.98	ug/l	0.98	3.1	1	8260B		10/31/2013	CJR	1
1,2,3-Trichlorobenzene	< 1.8	ug/l	1.8	5.8	1	8260B		10/31/2013	CJR	1
1,1,1-Trichloroethane	< 0.33	ug/l	0.33	1	1	8260B		10/31/2013	CJR	1
1,1,2-Trichloroethane	< 0.34	ug/l	0.34	1.1	1	8260B		10/31/2013	CJR	1
Trichloroethene (TCE)	< 0.33	ug/l	0.33	1	1	8260B		10/31/2013	CJR	1
Trichlorofluoromethane	< 0.71	ug/l	0.71	2.3	1	8260B		10/31/2013	CJR	1
1,2,4-Trimethylbenzene	< 2.2	ug/l	2.2	6.9	1	8260B		10/31/2013	CJR	1
1,3,5-Trimethylbenzene	< 1.4	ug/l	1.4	4.5	1	8260B		10/31/2013	CJR	1
Vinyl Chloride	102	ug/l	0.18	0.57	1	8260B		10/31/2013	CJR	1
m&p-Xylene	< 0.69	ug/l	0.69	2.2	1	8260B		10/31/2013	CJR	1
o-Xylene	< 0.63	ug/l	0.63	2	1	8260B		10/31/2013	CJR	1
SUR - Toluene-d8	97	REC %			1	8260B		10/31/2013	CJR	1
SUR - 1,2-Dichloroethane-d4	92	REC %			1	8260B		10/31/2013	CJR	1
SUR - 4-Bromofluorobenzene	95	REC %			1	8260B		10/31/2013	CJR	1
SUR - Dibromofluoromethane	89	REC %			1	8260B		10/31/2013	CJR	1

[&]quot;J" Flag: Analyte detected between LOD and LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

- 1 Laboratory QC within limits.
- 8 Closing calibration standard not within established limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Muchaelyllul

Authorized Signature

Nº 4025

Chain of Custody Record

Sample LD. Date Time a line of the content of the c	Contact Person Dave Henderson	XVC H	tend	55	8					S.	Special Handling Request	Laboratory	Keco	Kecord Number	Inrougn
Sample I.D. Date Trime by Sample I.D. Date Christope by Time by Christope by Time by T	Phone No. 414 9	14.60	8	15	Office	0					Verhal	Contact Pers	son		
Sample I.D. Date Trav met Nocustron Car avel Print Car avel Print Sample I.D. Date Time Geover by: Sample I.D. Date Trav met Nocustron: Sample I.D. Date Trav met Nocustron: Sample I.D. Date Trav met Nocustron: Sample I.D. Date Trav Nocustron: Sample I.D. Date Trav Nocustron: Field Data Field Data Analysis Request Analysis Ana	100	114:			PO	No.						Phone No.			
Sample LD. Date Time (20 of Control 1990) Fig. 1990 Fig.	721		trasa		D	vel	+				Omer	Results Due			
Sample LD. Date Time & Sample LD. Time & Sample LD. Time & Sample LD. Date Time & Sample LD. Time & Sample LD. Date Secented by: Control of the by Ch. Control of the by Ch. Date Date Time Date					SJe	.,	uo		Field	Data					
Time Date 16/26/3 Time Colors Belinquished by: Date Date 16/26/3 Time Relinquished by: Date Date 16/26/3 Time Relinquished by: Date Date Time Date Time Date Date Date Time Relinquished by: Date Date Time Relinquished by: Date Date 16/26/3 Time Date Date Date Time Relinquished by: Date Date Date 16/26/3 Time Date Comments Only: Seals Intact Upon Receipt? XYes \(\text{IN} \) \(\text{IN}				Composite	No. of Containe	iis, fios ,tetsW)	116V192914	F tneidmA				nalysis Request		Comments o (Include Major C	on Sample Contaminants)
Cation C		Style 8-8	1 1 1 1 1 1		3	CALL						500		Arralysis	Per Contra
Time Date Time Relinquished by: Date Time Date Time Relinquished by: Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Date Date Date Date Date Date Dat										1				4)	dwater
Time Date 19/2s/13 Time Co.8.5% Delivery by: Date Date Time Relinquished by: Date Time Relinquished by: Date Time Relinquished by: Date Time Relinquished by: Date Time Date Time Relinquished by: Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Date Time Comments Only: Seals Intact Upon Receipt? XYes IN O IN/A Comments Only: Receipt Date Time Time Date Date Time Date Time Date Time Date Time Date Time Date Date Time Date Date Date Date Date Date Date Dat								1	1					/0	
Date 16/25/13 Time CSSS Delivery by: Date Date Time Date Date Time Date Date							1								
Date 10/26/13 Time CSS Delivery by: Date Time Relinquished by: Date Time Time Date Time Date 10/26/13 Time © ! 0,0 Relinquished by: Date Time Time Comments Only: Seals Intact Upon Receipt? XYes IN N/A Comments Only: Precautions, Hazards):			- C		A	3							10	\	
Date 16/23/13 Time C2850 Delivery by: Date Time Pelinquished by: At M. M. & Date Time Date Time Relinquished by: Date Time Date Time Relinquished by: Date Time Date Time Relinquished by: Date Time Time Comments Only: Seals Intact Upon Receipt? XYes IN O IN/A Comments Only: Precautions, Hazards):			7/	1	3								3		
Date 19/26/13 Time CSSQ Delivery by: Date Time Relinquished by: Date 10/26/13 Time Relinquished by: Date Time Date Time No. Weather Conditions, Precautions, Hazards):		/	1	1								7	5		
Date 19/2/13 Time 0.850 Delivery by: Date Date Time Time Relinquished by: Date Time Time Relinquished by: Date Time Tim		\	-									1			
Time Charles and the charles are some and the conditions, Hazards): It was a some and the charles are some and the conditions, Hazards): It was a some and the charles are some and the conditions, Hazards): It was a some and the conditions, Hazards): It was a some and the charles are some and the conditions, Hazards): It was a some and the charles are some and the conditions, Hazards):	1										/				
Date Date Time Date Date Time Date Date Time Date Date Time Date Time Date Time Date Time Date	H	3	Par				13		Time	800		25	۵	ate	Time
Date Date Time Pelinquished by: Date Time © ! oo Relinquished by: Date Dat	Received by:	2				ate			Time	40	Relinquishe	1	Wilker	5	211
b by: One Date Time Relinquished by: Date $\log 2 \log $	Received by:					ate			Time	as.	Relinquishe	d by:	٥	ate	Time
b by: Onc Date 10/26//3 Time 10.00 Relinquished by: Date mments Only: Seals Intact Upon Receipt? XYes INO IN/A Comments (Weather Conditions, Precautions, Hazards):	Received by:					ate			Time	ats.	Relinquishe	d by:	O	ate	Time
mments Only: Seals Intact Upon Receipt? XYes No	Received for lab by:(Mr. P.	¥				6/13	ig.	Time	1010		d by:	۵	ate	Time
	Laboratory Comme	its Only		Sies	Intac	t Upon Re	ceipt?	X	Yes						
	Final Disposition:										Comments	(Weather Conditions,	Precautions	s, Hazards):	

Distribution: Original and Canary - Laboratory Pink - STS Project File Instructions to Laboratory: Forward completed original to STS with analytical results.