

AECOM 200 Indiana Avenue Stevens Point, WI 54481 (715) 341 8110 tel (715) 341 7390 fax

Letter of Transmittal

Matt Thompson Attention:

February 21, 2017 Date:

Remediation and Redevelopment Program 1300 W. Clairemont Avenue

Wisconsin Department of Natural Resources

Former Kraft Cleaners (SI & Interim Action) 303-305 S. 2nd Ave Wausau, Wisconsin

Project reference: WDNR BRRTS No. 02-37-000294 Project number: AECOM 60299959

following:	
Number of copies:	Description:
1	2016 SVE System OM&M Report (DNR Form 4400-194) with attachments for period 1/1/2016 thru 12/31/2016
1	2016 SVE System OM&M Report (DNR Form 4400-194) with attachments for period 1/1/2016 thru 12/31/2016
	_

The attached report is submitted on behalf of the Wausau Community Development Authority. The SVE system was shut off for the winter season on November 29, 2016. Confirmation soil borings to check remediation progress are scheduled for April 3, 2017.

the are scheduled Please contact me at (715) 342-3038 if you have any questions or need anything else.

Signature: Kyle W. Wagoner, PG, CHMM State of Wisconsin Department of Natural Resources PO Box 7921, Madison WI 53707-7921 dnr.wi.gov

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 11/14)

Page 1 of 28

GENERAL INSTRUCTIONS, PURPOSE AND APPLICABILITY OF THIS FORM: Completion of this form is required under s. NR 724.13(3), Wis. Adm. Code. A narrative report or letter containing the equivalent information required in this form may be submitted in lieu of the actual form. Failure to submit this form as required is a violation of s. NR 724.13(3), Wis. Adm. Code, and is subject to the penalties in s. 292.99, Wis. Stats. This form must be submitted every six months for soil or groundwater remediation projects that report operation and maintenance progress in accordance with s. NR 724.13(3), Wis. Adm. Code.

Note: Long-term monitoring results submitted in accordance with s. NR 724.17(3), Wis. Adm. Code are required to be submitted within 10 business days of receiving sampling results and are not required to be submitted using this form. However, portions of this form require monitoring data summary information that may be based on information previously submitted in accordance with s. NR 724.17(3), Wis. Adm. Code.

Note: Responsible parties should check with the State Project Manager assigned to the site to determine if this form is required to be submitted at sites responded to under the Federal Comprehensive Environmental Response and Compensation Act (commonly known as Superfund) or an equivalent State lead Superfund response.

Note: Responsible parties should check with the State Project Manager assigned to the site to determine if any of the information required in this form may be omitted or changed and obtain prior written approval for any omissions or changes.

Submittal of this form is not a substitute for reporting required by Department programs such as Waste Water or Air Management. Personally identifiable information on this form is not intended to be used for any other purpose than tracking progress of the remediation by the Bureau for Remediation and Redevelopment.

Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Open Records Law (ss. 19.31-19.39, Wis. Stats.). Unless otherwise noted, all citations refer to Wisconsin Administrative Code.

Note: There is a separate semi-annual report required under s. NR 700.11(1), Wis. Adm. Code. Reporting under that provision is through an internet-based form:

http://dnr.wi.gov/topic/Brownfields/documents/regs/NR700progreport.pdf

Section GI - General Site Information

A. General Information 1. Site name

n one name

Former Kraft Cleaners

2. Reporting period from:	01/01/2016	To:	12/31/201	6	Days in	period:		3	365	
3. Regulatory agency (enter D	NR, DATCP and/o	r other)	4. BRRT	S ID No	. (2 digit pr	ogram-2	digit	county-6	digit site	specific)
DNR			02-37-0	00294						
5. Site location		the transformer								Commenced
Region	County		Addre	SS						
West Central Region	Marathon		303-3	305 S. 2	2nd Avenu	ie				
Municipality name O City () Town () Village				Township	Range	ΘE	Section	1/4	1/4 1/4
Wausau					29 N	7	OW	26	SW	SE
6. Responsible party	and the second		7. Con	sultant		- Margaret			and the second	
Name					e following	informat	tion ha	as chang	ed since	the last
Wausau Community Devel	lopment Authorit	у		omittal					15.00	
Mailing address			Compa	any nam	e					
550 E. Thomas Street, War	usau, WI 54403		AECO							
Phone number			Mailing	addres	s			F	hone nu	mber
) 261-6686		200 Ir	idiana 4	Ave, Steve	ens Poir	nt, W	[(715) 34	42-3038
8. Contaminants										
PCE										
9. Soil types (USCS or USDA)									
Silty fine to medium Sand	(SP, USCS)									
10. Hydraulic conductivity(cm	/sec):		11. Av	erage lin	near velocit	y of grou	undwa	ter (ft/yr)		
6.8 x 10-2 cm/sec			137 ft	/yr						
12. If soil is treated ex situ, is	the treatment locat	ion off site?	O Yes C	No						
If yes, give location: Regio	on			Coun	ty					
Municipality name O C	ity () Town () Vill	age			Township	Range	OE	Section	1/4	1/4 1/4
					N		ÔW			
·······								· · · · · ·		

Site name: Former Kraft Cleaners Reporting period from: 01/01/2016

To: 12/31/2016

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 11/14)

Page 2 of 28

B. Remediation Method

Days in period: 365

Only submit sections that apply to an individual site. Check all that apply:

Groundwater extraction (submit a completed Section GW-1).

- Free product recovery (submit a completed Section GW-1).
- In situ air sparging (submit a completed Section GW-2).
- Groundwater natural attenuation (submit a completed Section GW-3).
- Other groundwater remediation method (submit a completed Section GW-4).
- 🔀 Soil venting (including soil vapor extraction building venting and bioventing submit a completed Section IS-1).
- Soil natural attenuation (submit a completed Section IS-2).
- Other in situ soil remediation method (submit a completed Section IS-3).
- Biopiles (submit a completed Section ES-1).
- Landspreading/thinspreading of petroleum contaminated soil (submit a completed Section ES-2).
- Other ex situ remediation method (submit a completed Section ES-3).
- Site is a landfill (submit a completed Section LF-1).

C. General Effectiveness Evaluation for All Active Systems

If the remediation is active (not natural attentuation), complete this subsection.

1. Is the system operating at design rates and specifications? \odot Yes \bigcirc No

If the answer is no, explain whether or not modifications are necessary to achieve the goal that was previously established in design.

2. Are modifications to the system warranted to improve effectiveness	🔿 Yes 💿 No
If yes, explain:	-

- 3. Is natural attenuation an effective low cost option at this time? O Yes
 No
- 4. Is closure sampling warranted at this time?

 Yes
 No
- 5. Are there any modifications that can be made to the remediation to improve cost effectiveness? O Yes (No If yes, explain:

D. Economic and Cost Data to Date

1. Total investigation cost: \$168,164.00

2. Implementation costs (design,	capital and installation costs, excluding investigation costs:	\$184,433.00
----------------------------------	--	--------------

3. Total costs during the previous reporting period: \$39,963.00

4. Total costs during this reporting period: \$116,164.00

5. Total anticipated costs for the next reporting period: \$30,000.00

6. Are any unusual or one-time costs listed in the reporting periods covered by D.3., D.4. or D.5. above?	🔵 Yes 💽 No
If yes, explain:	

Site name: Former Kraft Cleaners Reporting period from: 01/01/2016

To: <u>12/31/2016</u>

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 11/14)

Page 3 of 28

Days in period: 365

E. Name(s), Signature(s) and Date of Person(s) Submitting Form

Legibly print name, date and sign. Only persons qualified to submit reports under ch. NR 712 Wis. Adm. Code are to sign this form for sites with any ongoing active remediation, monitoring or an investigation. Other persons may sign this form for sites with no response activities during the six month reporting period.

Registered Professional Engineers:

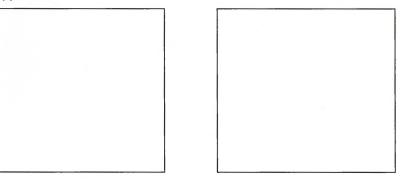
I hereby certify that I am a registered professional engineer in the State of Wisconsin, registered in accordance with the requirements of ch. A-E 4, Wis. Adm. Code; that this document has been prepared in accordance with the rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

e

Hydrogeologists:

I hereby certify that I am a hydrogeologist as that term is defined in s. NR 712.03(1), Wis. Adm. Code, and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

Print name	Title
Kyle W. Wagoner, WI P.G. #718-13	Project Manager
Signature	Date 2/20/2017


Scientists:

I hereby certify that I am a scientist as that term is defined in s. NR 712.03(3), Wis. Adm. Code, and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

Print name	Title	
Signature	Date	
Other Persons:		
Print name	Title	

Signature	Date	

Professional Seal(s), if applicable:

Site name: Former Kraft Cleaners

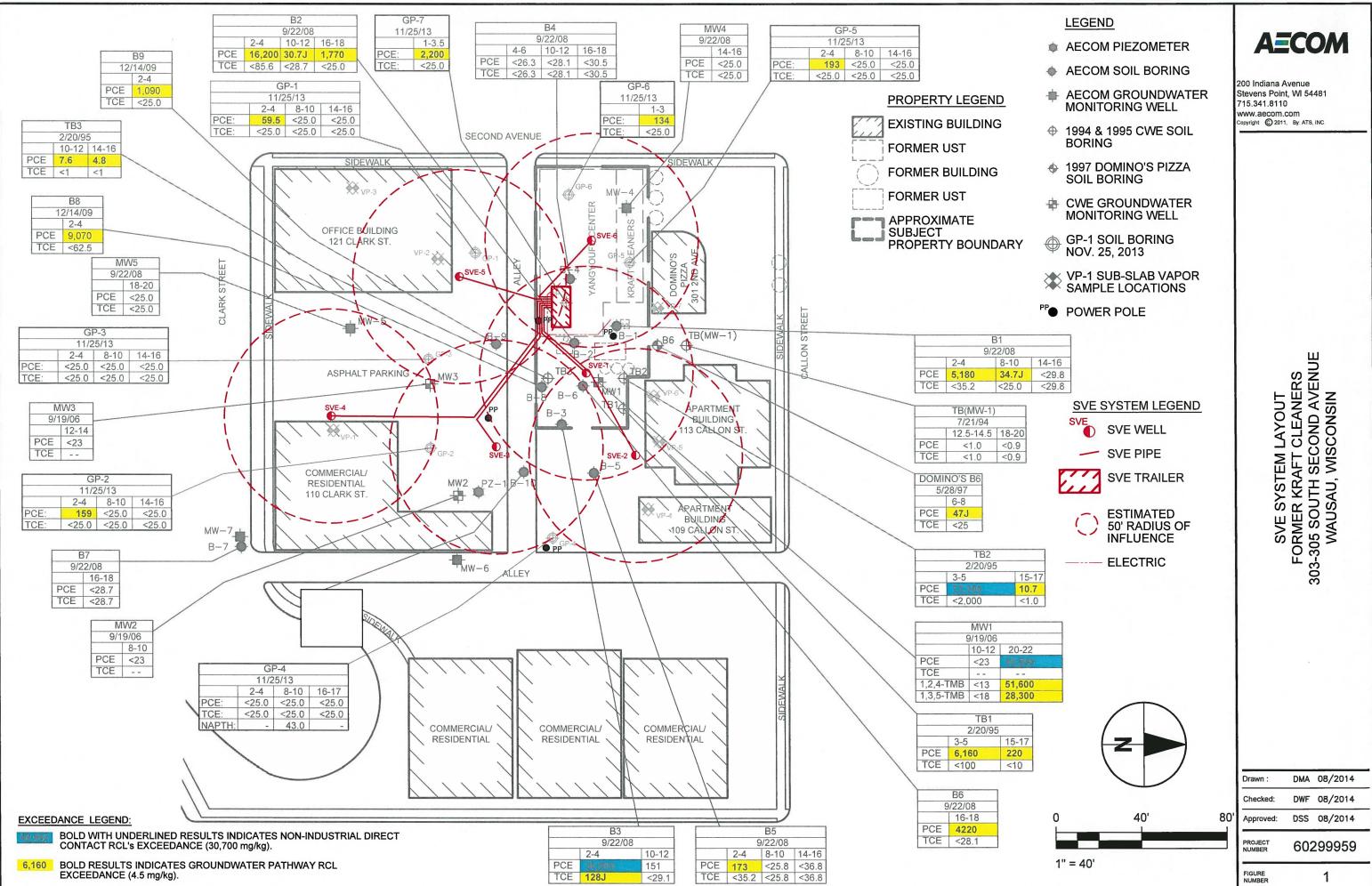
To: <u>12/31/2016</u> Reporting period from: 01/01/2016

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Days in period: <u>365</u>	Form 4400-194 (R 11/14)	Page 9 of 28
Section IS-1, Soil Venting (Including Soil Vapor Extraction A. Soil Venting Operation	n, Building Venting and Bioventing)	
Note: This form is not required for building vapor mitigation syst and are not considered part of ongoing active soil remediation.	ems that are installed proactively to protect build	ding occupants/users
1. Number of air extraction wells available and number of wells a	ctually in use during the period:	6
2. Number of days of operation (only list the number of days the 224	system actually operated, if unknown explain):	
 System utilization in percent (days of operation divided by reputilization was 61.4%. SVE system was off-line from J 2016 until December 31, 2016, due to water vapor freez 	anuary 1, 2016 until April 20, 2016, and free	om November 29,
4. Average depth to groundwater: 18 gpm		
B. Building Basement/Subslab Venting System Operation		
1. Number of venting points available and number of points actua		
2. Number of days of operation (only list the number of days the	system actually operated, if unknown explain):	
3. System utilization in percent (days of operation divided by rep	orting time period multiplied by 100). If < 80%,	explain:
C. Effectiveness Evaluation		
1. Average contaminant removal rate for the entire system:	0.004 pounds per day	
2. Average contaminant removal rate per well or venting point:	0.001 pounds per day	
3. If the average contaminant removal rate is less than one poun rate per well is less than one tenth of a pound per day, evalua		e contaminant removal
a. If contaminants are aerobically biodegradable and confirma	tion borings have not been drilled in the past ye	ar:
i. Oxygen levels in extracted air: percent		
ii. Methane levels in extracted air (ppm _v) If over 10 ppm _v , NA	explain:	
 iii. If methane is not present above 10 ppm_V and if oxygen i Drill confirmation borings during the next reporting pe Or, perform an in situ respirometry test in a zone of h use a gas probe or water table well. If a zero order r then you should drill confirmation borings, if the entir 2 and 10 mg/kg, operate for one more reporting period than 10 mg/kg total hydrocarbons, continue operating 	riod, if the entire site should be considered for or igh contamination. Do not perform the test in a ate of decay based on oxygen depletion is less a site should be considered for closure. If the ra- ad before evaluating further. If the zero order ra	closure. n air extraction well, than 2 mg/kg per day, ate of decay is between te of decay is greater
 b. If contaminants are not aerobically biodegradable and configuration you should drill confirmation borings during the next reporting. c. If soil borings were drilled during the past year and soil configuration of the set year and soil configuration. 	ng period if the entire site should be considered amination remains above acceptable levels, exp	for closure.
D. Additional Attachments		
 Attach the following to this form: Well and soil sample location map indicating all air extra wells. If water table monitoring wells are present at the site, a 	map of well locations.	in use, identify those
 Time versus vapor phase contaminant concentration gr Time versus cumulative contaminant removal graph. 	apri.	
 Groundwater elevations table, if water table wells are p Table of soil contaminant chemistry data. 		
 Soil gas data, if gas probes are used to monitor subsur System operational data table. 	ace conditions in locations other than where air	is extracted.

Site name:	Former	Kraft	Clear	ners

Reporting period from: 01/01/2016 To: <u>12/31/2016</u>


Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 11/14)

Page 7 of 28

Days in period: <u>365</u>	Form 4400-194	(R 11/14)		Page 7 of 28
Section GW-3, Natural Attenuation (Passive Bioremediation) i	n Groundwater			
 A. Effectiveness Evaluation If free product is not present, determine the single contaminant that req PAL. Perform this calculation for all contaminants that were present at concentration measured in any sampling points during reporting period 	the site that have ch.	NR 140 standards	s. Use the highes	st contaminant
a. Contaminant:	PCE			
b. Percent reduction necessary to reach ch. NR 140 ES and PAL:	96 %			
c. Maximum contaminant concentration level in any monitoring well	l of that contaminan	ıt:	128	µg/L
2. Aquifer parameters:				
a. Hydraulic conductivity:			6.8x10-2	cm/sec
b. Groundwater average linear velocity:			1,540	ft/yr
3. Is there a downgradient monitoring well that meets ch. NR 140 star	ndards? Yes 	○ No		
4. Based on water chemistry results, is the plume: O Expanding O	Stabalized Con	ntracting ?		
5. If the answer in 4. (above) is "expanding," is natural attenuation stil If yes, explain:	I the best option?() Yes () No		
6. Biodegradation parameters:				
a. Upgradient (or other site specific background) DO level:			6.95	µg/L
b. DO levels in the part of the plume that is most heavily contamina	ated		2.81	µg/L
7. Is site closure a viable option within 12 months from the date of this	s form? O Yes (No		
8. Are there any modifications that can improve cost effectiveness? If yes, explain:	🔿 Yes 🖲 No			
9. Have groundwater table fluctuations changed the contaminant leve If yes, explain:	I trends over time?	🔿 Yes 💿 No		
10. Has the direction of groundwater flow changed during the reportin	g period?	s 🖲 No		
If yes, approximate change in degrees: B. Additional Attachments				
Attach the following:	and a share			
 Groundwater contour map. Groundwater contaminant distribution map (may be combined When contaminants are aerobically biodegradable, attach a combined with the contaminant data on a single map). Graph of contaminant concentrations versus time for the cor greatest level of contamination. Note: This is the minimum required graph; however, it is concentration graphs as described in the instructions on Graph of contaminant concentrations versus distance. 	dissolved oxygen ir ntaminant listed in A recommended that	n groundwater ma 1.a. (above) for t multiple time vers	the monitoring p	ooint with the

- Groundwater contaminant chemistry table.
- Groundwater biological parameters.
- Groundwater elevations table.

Table 1 SVE System Information and Discharge Results Former Kraft Cleaners Site Wausau Community Development Authority Wausau, Wisconsin WDNR BRRTS No. 02-37-000294 AECOM Project No. 60299959

	Date	6/16/2014	PPH	6/17/2014	PPH	6/18/2014	PPH	6/25/2014	PPH	7/2/2014	PPH	7/9/2014	PPH	8/7/2014	PPH	9/18/2014	PPH	11/21/2014	PPH	12/12/2014	PPH
	Hour Meter	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Vacuum #	1.2	NA	1.2	NA	1.2	NA	1.2	NA	1.2	NA	1.2	NA	1.2	NA	2.9	NA	3	NA	3	NA
	Discharge (SCFM)	38.0	NA	38.0	NA	38.0	NA	38.0	NA	38.0	NA	38.0	NA	38.0	NA	38.0	NA	38.0	NA	38.0	NA
							distant aire com source														
CVOCs (µg)	Emission Thresholds ¹												· · · · · · · · · · · · · · · · · · ·								
Tetrachloroethene (PCE)	9.1 ²	197.0	5.6E-03	70	2.0E-03	74	2.1E-03	53	1.5E-03	56	1.6E-03	62.0	1.8E-03	32	9.1E-04	16.2	4.6E-04	3.5	1.0E-04	2.98	8.5E-05
Trichloroethene (TCE)	14.4 ²	2.25 ^J	6.4E-05	<1.875	NA	<1.875	NA	<1.875	NA	<1.875	NA	<1.875	NA	0.27 ^J	7.7E-06	0.225 ^J	7.7E-06	<0.1875	7.7E-06	<0.1875	7.7E-06
											and the second se							() ·······			
1,2-dichloroethene (1,2-DCE) 4	42.6 ²	<4.125	NA	<4.125	NA	<4.125	NA	<4.125	NA	<4.125	NA	<4.125	NA	<0.4125	NA	<0.4125	NA	<0.4125	NA	<0.4125	NA

	Date	2/19/2015	PPH	4/16/2015	PPH	5/4/2015	PPH	5/5/2015	PPH	5/6/2015	PPH	5/18/2015	PPH	5/27/2015	PPH	6/5/2015	PPH	7/23/2015	PPH	8/28/2015	PPH
	Hour Meter	NA #	NA	399	NA	450	NA	461	NA	471	NA	596	NA	679	NA	762	NA	1,250	NA	1,594	NA
	Vacuum #	1.5	NA	1.5	NA	0.8	NA	0.8	NA	0.8	NA	0.5	NA	0.5	NA	0.5	NA	0.5	NA	0.8	NA
	Discharge (SCFM)	120	NA	120	NA	360	NA	360	NA	360	NA	360	NA	360	NA	358	NA	352	NA	390	NA
CVOCs (μg)	Emission Thresholds ¹																				
Tetrachloroethene (PCE)	9.1 ²	0.55 ^J	4.9E-05	0.50	4.5E-05	2.4	6.5E-04	2.64	7.1E-04	2.36	6.4E-04	2.23	6.0E-04	2.09	6.0E-04	4.00	1.1E-03	4.8	1.3E-03	2.78	8.1E-04
Trichloroethene (TCE)	14.4 ²	<0.1875	2.4E-05	<0.1875	NA	<0.1875	NA	<0.1875	NA	<0.1875	NA	<0.1875	NA	<0.1875	NA	<0.1875	NA	<0.1875	NA	<0.1875	NA
1,2-dichloroethene (1,2-DCE) 4	42.6 ²	<0.4125	NA	<0.4125	NA	<0.4125	NA	<0.4125	NA	<0.4125	NA	<0.4125	NA	<0.4125	NA	<0.4125	NA	<0.4125	NA	<0.4125	NA
					and the second sec	<0.105	NA	<0.105	NA	<0.105		<0.105	NA	<0.105	NA	<0.105	NA	<0.105		<0.0105	NA

	Date	9/28/2015	PPH	10/28/2015	PPH	12/7/2015	PPH	1/6/2016	PPH	5/11/2016	PPH	6/23/2016	PPH	7/29/2016	PPH	8/23/2016	PPH	9/22/2016	PPH	10/21/2016	PPH	11/18/2016	PPH
	Hour Meter	1,901	NA	2,153	NA	2,386	NA	2,677	NA	2,996	NA	3,424	NA		NA	4,037	NA	4,337	NA	4,626	NA	4,907	NA
	Vacuum #	0.8	NA	1.0	NA	2.6	NA	4	NA	1.8	NA	1	NA	NA	NA	3.5	NA	4.0	NA	4.0	NA	4.2	NA
	Discharge (SCFM)	390	NA	381	NA	100	NA	158	NA	273	NA	204	NA	273	NA	232	NA	232	NA	232	NA	213	NA
																							1 (B
CVOCs (µg)	Emission Thresholds ¹														····								
																			the second second second				
Tetrachloroethene (PCE)	9.1 ²	2.03	5.9E-04	0.97	2.8E-04	0.73	5.5E-05	0.51 ^J	6.0E-05	0.33 ^J	6.7E-05	1.63	2.5E-04	1.84	3.8E-04	2.09	3.6E-04	1.45	2.5E-04	1.9	3.3E-04	4.7	7.5E-0
Tetrachloroethene (PCE) Trichloroethene (TCE)	9.1 ² 14.4 ²	2.03 <0.1875	5.9E-04 NA	0.97 <0.1875	2.8E-04 NA	0.73 <0.1875	5.5E-05 NA	0.51 ^J <0.1875	6.0E-05 NA	0.33 ^J <0.1875	6.7E-05 NA	1.63 <0.185	2.5E-04 NA	1.84 <0.1875	3.8E-04 NA	2.09 <0.1875	3.6E-04 NA	1.45 <0.1875	2.5E-04 NA	1.9 <0.1875	3.3E-04 NA	4.7 <0.1875	7.5E-0 NA
		2.03 <0.1875 <0.4125											NIA	1.04				1.45 <0.1875 <0.4125		1.9 <0.1875 <0.4125			

Notes:

The SVE system was expanded from two to six SVE wells in April/May 2015. Operation of the expanded SVE system started on May 4, 2015.

SCFM means Standard Cubic Feet per Minute.

¹ Emission Thresholds for Hazardous Air Contaminaits as listed in Table A, Ch. NR 445.07, March 2012. Value is for emmissions from stacks less than 25 feet tall.

² Value in pounds per hour based on a 24 hour average.

³ Value in pounds per year based on the Lowest Achievable Emmission Rate (LAER), which means the most stringent emmision limitation of a hazardous air contaminant in the air polution regulatory program of any state for this class or category of source.

⁴ Reported value is the combination of *cis* and *trans* 1,2-DCE isomers.

PPH means Pounds per Hour.

[#] means interrim SVE system vacuum measured in inches of mercury, permanent SVE system will also be measured in inches of mercury.

Results based on 5 liter sample volume.

^J means estimated value between the Limit of Detection and the Limit of Quantitation.

One pound equals 453,592,370 micrograms.

One cubic foot equals 28.32 liters.

NA means Not Applicable.

NSC means no sample collected.

means a new system was installed in February 2015 and flow and vacuum devices had not been installed. System was run temporarily due to cold.

P:\60299959\400-Technical\Semi-annual O&M reports\February 2017\[Kraft SVE System Discharge Results_Feb_2017.xlsm]Table 1

Table 2

Subslab Pressure Differential Results **Field Documentation** Former Kraft Cleaners Site Wausau Community Development Authority Wausau, Wisconsin WDNR BRRTS No. 02-37-000294 AECOM Project No. 60299959

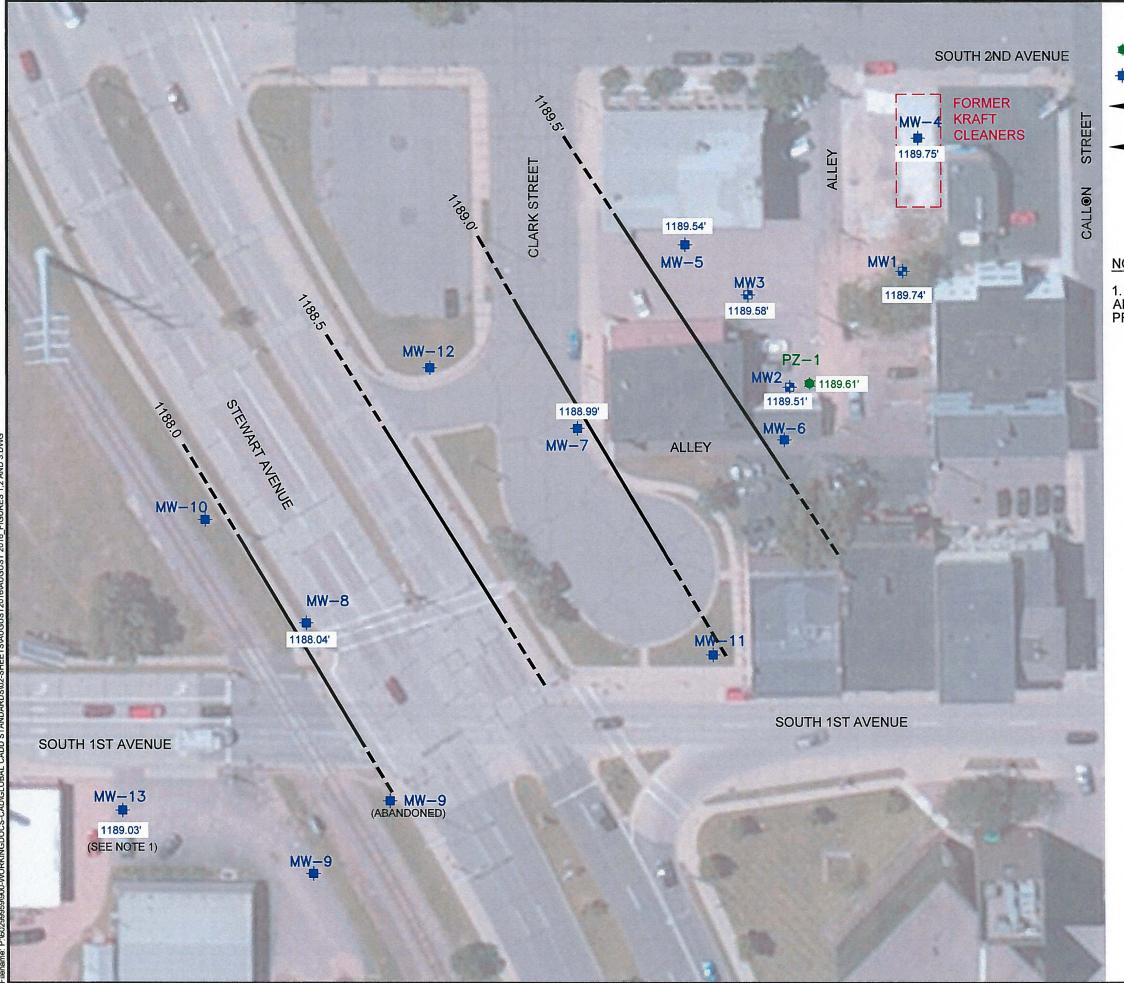
										Sub-Slab	Pressure Diff	erential Sam	pling Point R	esults and Ar	nbient Air P	resssure Rea	dings										
Add	ress	Test	Well	Test	Well	110 Cla	ark St.		120 CI	ark St.		109 Ca	llon St.		113 Ca	llon St.		301 2n	d Ave.	109 Ca	llon St.	113 Ca	llon St.	312 Fir	st Ave.	308 Firs	st Ave.
Date	Vacuum *	SVE-1	Air	SVE-2	Air	VP-1	Air	VP-2	Air	VP-3	Air	VP-4	Air	VP-5	Air	VP-6	Air	VP-7	Air	VP-8	Air	VP-9	Air	VP-10	Air	VP-11	Air
6/18/20104 *	0.0	-0.025	0.0	-0.018	0.0	-0.005	0.0	0.000	0.0	0.000	0.0	-0.009	0.0	-0.234	0.0	-0.025	0.0	0.000	0.0	0.000	0.0	-0.069	0.0	NRT	NRT	NRT	NRT
6/18/2014	1.5	-1.063	0.0	-1.090	0.0	0.000	0.0	-0.006	0.0	0.000	0.0	-0.055	0.0	-0.271	0.0	-0.042	0.0	-0.008	0.0	0.000	0.0	-0.062	0.0	NRT	NRT	NRT	NRT
6/25/2014	1.2	-1.238	0.0	-1.182	0.0	-0.010	0.0	-0.005	0.0	0.000	0.0	-0.053	0.0	-0.279	0.0	-0.037	0.0	0.000	0.0	0.000	0.0	-0.066	0.0	0.000	0.0	0.000	0.0
7/2/2014	1.2	-1.308	0.0	-1.292	0.0	0.000	0.0	0.000	0.0	0.000	0.0	-0.052	0.0	-0.289	0.0	-0.038	0.0	0.000	0.0	-0.006	0.0	-0.075	0.0	0.000	0.0	0.000	0.0
8/8/2014	1.2	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	-0.283	0.0	-0.032	0.0	NRT	NRT	NRT	NRT	-0.078	0.0	NRT	NRT	NRT	NRT
9/18/2014	2.9	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	-0.339	0.0	-0.050	0.0	NRT	NRT	NRT	NRT	-0.073	0.0	NRT	NRT	NRT	NRT
11/21/2014	3.0	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	-0.259	0.0	-0.041	0.0	NRT	NRT	NRT	NRT	-0.051	0.0	NRT	NRT	NRT	NRT
12/12/2014	3.0	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	-0.268	0.0	-0.041	0.0	NRT	NRT	NRT	NRT	-0.049	0.0	NRT	NRT	NRT	NRT
2/17/2015**		NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	-0.150	0.0	-0.015	0.0	NRT	NRT	NRT	NRT	-0.036	0.0	NRT	NRT	NRT	NRT
4/16/2015	1.5	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	-0.304	0.0	-0.056	0.0	NRT	NRT	NRT	NRT	-0.053	0.0	NRT	NRT	NRT	NRT
5/27/2015	0.5	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	-0.410	0.0	-0.104	0.0	NRT	NRT	NRT	NRT	-0.062	0.0	NRT	NRT	NRT	NRT
6/25/2015	0.5	NRT	NRT	NRT	NRT	-0.259	0.0	-0.365	0.0	-0.042	0.0	-0.219	0.0	NRT	NRT	NRT	NRT	-0.012	0.0	0.000	0.0	NRT	NRT	NRT	NRT	NRT	NRT
7/23/2015	0.5	NRT	NRT	NRT	NRT	-0.259	0.0	-0.361	0.0	-0.061	0.0	-0.232	0.0	-0.427	0.0	-0.077	0.0	-0.189	0.0	0.000	0.0	-0.078	0.0	NRT	NRT	NRT	NRT
8/28/2015	0.8	NRT	NRT	NRT	NRT	-0.275	0.0	-0.351	0.0	-0.054	0.0	-0.237	0.0	-0.421	0.0	-0.078	0.0	-0.047	0.0	0.000	0.0	-0.065	0.0	NRT	NRT	NRT	NRT
9/28/2015	0.8	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	-0.434	0.0	-0.089	0.0	NRT	NRT	NRT	NRT	-0.068	0.0	NRT	NRT	NRT	NRT
12/7/2015	2.6	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	-0.319	0.0	-0.072	0.0	NRT	NRT	NRT	NRT	-0.057	0.0	NRT	NRT	NRT	NRT
3/4/2016	0.0	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	NRT	-0.143	0.0	-0.023	0.0	NRT	NRT	NRT	NRT	-0.045	0.0	NRT	NRT	NRT	NRT

Notes:

Operation of the Vapor Mitigation System at 113 Callon Street started on June 3, 2014. Operation of the Soil Vapor Extraction system started on June 16, 2014. Readings obtained using a Test Products International (TPI) digital manomenter.

Readings are in inches of water cloumn. * Reading taken at manifold just before vacuum pump (inches of mercury).

* Readings taken with interrim SVE system off.


NRT means No Reading Taken.

Interim action SVE system started on June 15, 2014.

Interim action SVE system upgraded with silencer on September 5, 2014.

SVE remediation system started on May 4, 2015.

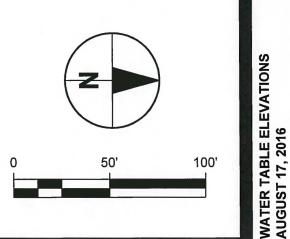
P:\60299959\400-Technical\Semi-annual O&M reports\February 2017\[Kraft Cleaners Subslab Pressure Differential Results_Feb_2017.xlsm]Table 1

oject Management Initials: Designer: KAM Checked:RSR Approved:DSS ANSI B

2016-09-12) Last Plotted: 2016-09-12 Layout Name: FIGURE1 0-WORKINGDDCS:CADIGLOBAL CADD 51ANDARDS02-SHEETS\AUGUST2016AUGUST 2016 FIGURES 1.2 AND 3.DWG

LEGEND

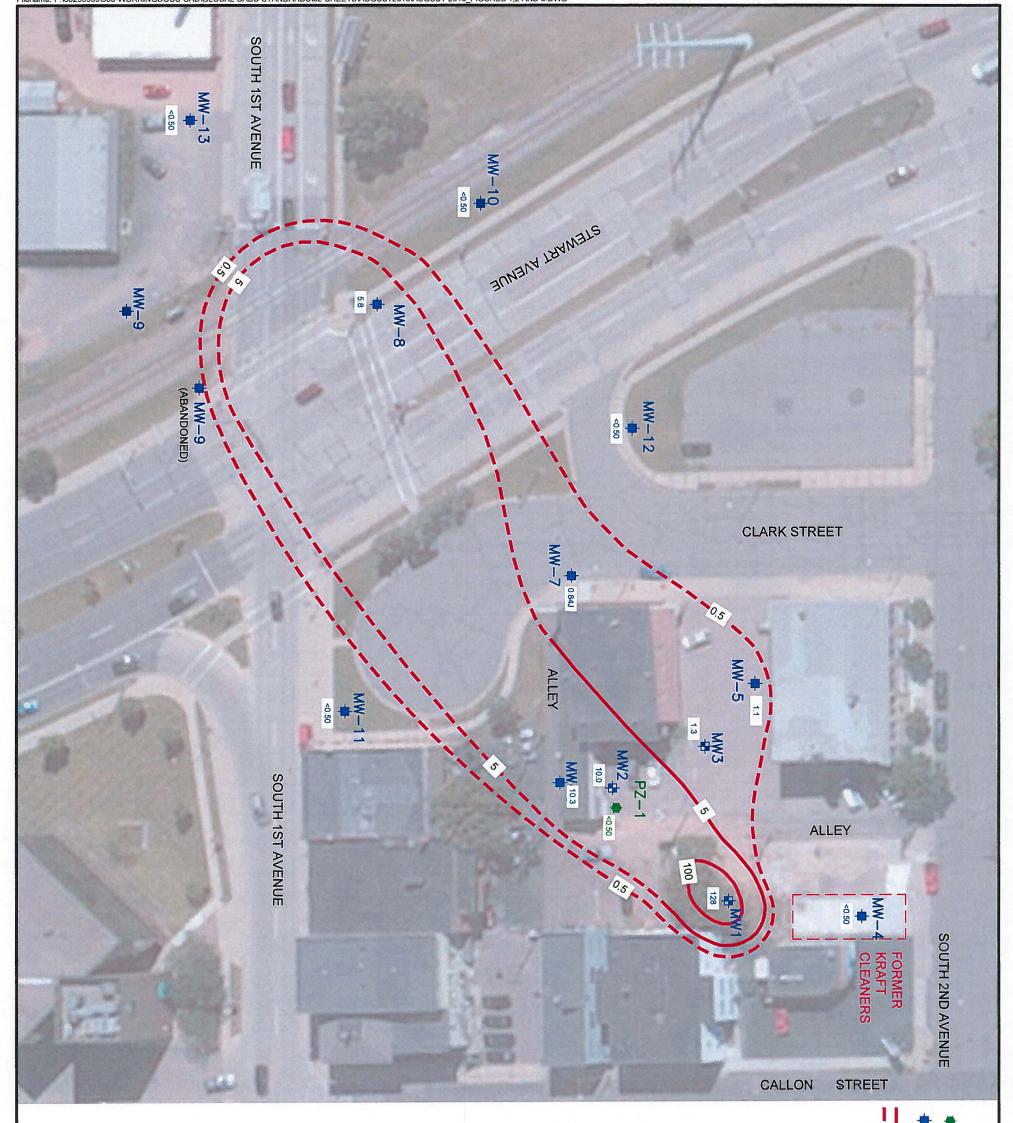
PIEZOMETER

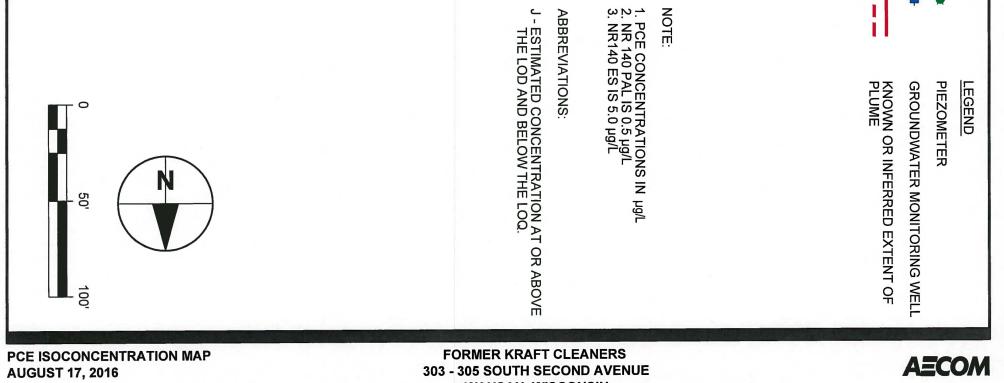

GROUNDWATER MONITORING WELL

ELEVATIONS ARE IN FEET

NOTES:

1. GROUNDWATER ELEVATIONS APPEAR ANOMALYIS AND WAS NOT USED IN PREPARATION OF THIS FIGURE.




FORMER KRAFT CLEANERS 303 - 305 SOUTH SECOND AVENUE WAUSAU, WISCONSIN

VENUE

AECOM FIGURE 8C

WAUSAU, WISCONSIN

FIGURE 9C

Table 1Soil Sample Analytical ResultsSupplemental Site Investigation - Direct Push BoringsFormer Kraft CleanersWausau, WisconsinBRRTS # 02-37-000294

	Sa	ample ID:		GP-1			GP-2			GP-3			GP-4			GP-5		GP-6	GP-7
	Sample Dep	oth (feet):	2.0-4.0	8.0-10.0	14.0-16.0	2.0-4.0	8.0-10.0	14.0-16.0	2.0-4.0	8.0-10.0	14.0-16.0	2.0-4.0	8.0-10.0	16.0-17.0	2.0-4.0	8.0-10.0	14.0-16.0	1.0-3.0	1.0-3.5
	Sam	ple Date:		11/25/2013			11/25/2013			11/25/2013			11/25/2013			11/25/2013		11/25/2013	11/25/20
		PID (i.u):	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Analyte	Non-Industrial D-C RCL	RCL-gw									Results								
/OCs (µg/kg)													· · · · · · · · · · · · · · · · · · ·					1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
Naphthalene	5,150	658.7	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	43.0 ^J	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Tetrachloroethene (PCE)	30,700	4.5	59.5 ^J	<25.0	<25.0	159	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	193	<25.0	<25.0	134	2,220
Trichloroethene (TCE)	1,260	3.6	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0

	Sa	mple ID:	GP-8	GP-9	GP-10	GP-11	GP-12	GP-13		GP-14			GP-15		GP	-16	GP	-17
	Sample Dep	th (feet):	2.0	2.0	2.0	2.5	2.0	2.0	1.5	11.0	18.5	2.0	11.0	19.0	1-2	3-4	1-2	3-4
	Sam	ple Date:	2/24/2015	2/24/2015	2/24/2015	2/24/2015	2/24/2015	2/24/2015		2/24/2015			2/24/2015		4/8/2	2015	4/8/2	2015
		PID (i.u):	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Analyte	Non-Industrial D-C RCL	RCL-gw								Res	ults							
VOCs (µg/kg)																		
Naphthalene	5,150	658.7	<40.0	<40.0	<40.0	<40.0	66.0 ^J	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0
Tetrachloroethene (PCE)	30,700	4.5	103	<25.0	53.6 ^J	<25.0	<25.0	<25.0	57.5 ^J	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Trichloroethene (TCE)	1,260	3.6	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0

	Sa	ample ID:	GP	-18	GP	-19*		GP-20*		GP	·21*	MW-10	MW-11	MW-12	MW-13
	Sample Dep	oth (feet):	1-2	3-4	1-2	3-4	1-2	3-4	7-8	1-2	3-4	18	15	17.5	20.5
	Sam	ple Date:	4/8/2	2015	4/8/	2015		4/8/2015		4/8/2	2015	1/28/2016	1/28/2016	1/28/2016	1/28/2016
and the second second		PID (i.u):	0	0	0	0	0	0	0	0	0	0	0	0	0
Analyte	Non-Industrial D-C RCL	RCL-gw							Results						
VOCs (µg/kg)											1				
Naphthalene	5,150	658.7	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0
Tetrachloroethene (PCE)	30,700	4.5	29.0 ^J	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Trichloroethene (TCE)	1,260	3.6	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0

Notes:

Operation of the Vapor Mitigation System at 113 Callon Street started on June 3, 2014.

Operation of the Soil Vapor Extraction system started on June 16, 2014.

Analytes listed are those reported above the Limit of Detection (LOD) by the laboratory.

Non-Industrial D-C RCL refers to the Not-To-Exceed, non-industrial Direct-Contact Residual Contaminant Levels taken from the WDNR's RCLs spreadsheet, updated January 2015.

RCL-gw refers to the Soil-to-Groundwater Residual Contaminant Level, DF = 2, taken from the WDNR's RCLs spreadsheet, updated January 2015.

Bold result indicates RCL exceedence.

^J means "Estimated concentration below laboratory quantitation level."

* Soil borings GP-19, GP-20, and GP-21 were sampled for the City of Wausau's S. 2nd Avenue construction project.

P:\60299959\400-Technical\Semi-annual O&M reports\February 2017\[Table 1 - Soil Sample Analytical Results_042315.xis]GP-1 - GP-21