

FID#241496530 ERR/ERP

July 3, 1996

Ms. Margaret Graefe Wisconsin Department of Natural Resources 4041 North Richards Street Milwaukee, Wisconsin 53212

Wisconsin Gas Company

626 East Wisconsin Avenue Milwaukee, WI 53202

Dear Ms. Graefe:

Please find attached two copies of the report:

Shallow Soil Predesign Investigation Report (SSPI) Third Ward MGP Site Milwaukee, Wisconsin (RETEC 3-0887-603)

The SSPI report was generated by RETEC in conclusion to investigation work at the Third Ward MGP site during April, 1995 in conjunction with building demolition at the City of Milwaukee property. Submittal of the report was delayed in order to include another round of groundwater sampling data. The major purpose of the SSPI was to evaluate shallow soils and specific impacted soil management options for both the Peter=Johnson property and the City property. In addition, another round of groundwater sampling was conducted at the site to confirm the site hydrogeology.

Evaluation of soils during the demolition activities was performed in support of subsurface demolition work and to minimize exposure of potentially contaminated soils. Representatives of Wisconsin Gas were present in the field during subsurface demolition to monitor the work and make recommendations limiting the extent of excavation.

Soil data from the SSPI was used to develop more accurate remediation proposals through several competing consultants. These proposals were received in February, 1996 and have undergone review at Wisconsin Gas. Selection of proposals for the site will be made during July - August of 1996.

Please also review the attached Quarterly Report regarding the Former Third Ward MGP Site.

Please feel free to call me at 540-5763 (please note this new telephone number) with any questions or comments. Thank you for your attention and assistance.

Very truly yours Art Covi, PE

Research Engineer Wisconsin Gas Company 5400 N. Green Bay Avenue Milwaukee, Wisconsin 53209

ATTACHMENT

DNRJUL96.DOC

JULY, 1996 PROJECT QUARTERLY REPORT THIRD WARD MGP SITE MILWAUKEE, WISCONSIN

PROJECT STATUS

During the period since the March 1996 Project Quarterly Report, Wisconsin Gas has completed the following project activities:

- Finalized and submitted to the WDNR a Shallow Soil Predesign Investigation Report (SSPI) which includes detailed soils evaluation for the site and a second round of groundwater data.
- Received and reviewed proposals for remediation at the site from several qualified consultants.

PLANNED PROJECT ACTIVITIES

Wisconsin Gas is currently finalizing an evaluation of remedial proposals for the site and will make a selection of proposals during July - August, 1996. Final selection will be made pending negotiations with current land-owners.

Upon completion of these efforts, a description of proposed remedial alternatives for the site will be presented to the WDNR.

FID # 241 496 530 ERR/ERP

SHALLOW SOIL PREDESIGN INVESTIGATION REPORT FORMER THIRD WARD MANUFACTURED GAS PLANT SITE

Prepared For:

WISCONSIN GAS COMPANY Milwaukee, Wisconsin

Prepared By:

REMEDIATION TECHNOLOGIES, INC. St. Paul, Minnesota

RETEC Project No. 3-0887-603

MAY 1996

R

SHALLOW SOIL PREDESIGN INVESTIGATION REPORT FORMER THIRD WARD MANUFACTURED GAS PLANT SITE

Prepared For:

WISCONSIN GAS COMPANY Milwaukee, Wisconsin

Prepared By:

REMEDIATION TECHNOLOGIES, INC. St. Paul, Minnesota

RETEC Project No. 3-0887-603

Prepared By: w HM Prepared By: Reviewed By:

I, Jonathan S. Murer, hereby certify that I am a hydrogeologist as that term is defined in s. NR 712.03 (1), Wis. Adm. Code, and that, to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

Signature and Title

Wisconsin P.G. No.

Date

MAY 1996

TABLE OF CONTENTS

SEC	CTION	PAGE
1.0	1.1 Background	
2.0	2.1 Location and Physical Setting2.2 Third Ward MGP Site History	2-1 2-1 2-1 ments
3.0	 3.1 Introduction	3-1 3-1 3-1 3-3 npling Methods 3-3 ng Methods 3-3 Tield Screening 3-5 3-6
	3.3 Groundwater Sampling Progra3.3.1 Groundwater Sampling	m
	3.4 Decontamination Procedures 3.4.1 Soil Sampling Program	3-9
	3.5.1 Soil Sampling Program	3-10 Program
4.0	4.1Geology4.1.1Peters=Johnson Proper4.1.2City Property	4-1 4-1 ty
	4.2 Hydrogeology	4-3
5.0	5.1 Soils 5.1.1 Field Observations 5.1.2 Field Analysis	ORATORY ANALYSES 5-1 5-1 5-1 5-1 5-1 5-7 5-7 Results 5-10
	5.2 Groundwater 5.2.1 Field Observations	5-15

TABLE OF CONTENTS (Continued)

SEC	CTION			PAGE	
6.0	SUMM	ARY AN	JD CONCLUSIONS		6 - 1
	6.1	Geolog	gy and Occurrence of Structures		6-1
		6.1.1	Peters=Johnson Property		6-1
		6.1.2	City Property		6-2
	6.2	Soil C	onditions		6-2
		6.2.1	Field Observations of Impacts		
		6.2.2	Results of Field Analysis		6-3
		6.2.3	Results of Laboratory Analyses		6-4
	6.3	Groun	dwater Conditions		6-5
		6.3.1	Hydrogeology		
		6.3.2	Field Observations of Impacts		
		6.3.3	Results of Laboratory Analyses		6-5
7.0	REFER	ENCES	•••••••••••••••••••••••••••••••••••••••		7-1

LIST OF APPENDICES

APPENDIX A	Test Trench Diagrams
APPENDIX B	Borehole Abandonment Forms
APPENDIX C	Boring Logs
APPENDIX D	Composite Sample Descriptions
APPENDIX E	QA/QC Review
APPENDIX F	Chain-of-Custody Records
APPENDIX G	Tabulated Analytical Data
APPENDIX H	Laboratory Data Sheets
APPENDIX I	Groundwater Sampling Forms
APPENDIX J	Microbial Enumerations Results

LIST OF TABLES

TABL	PAGE
5-1	Field Screening Results - Peters=Johnson Property 5-3
5-2	Field Screening Results - City Property 5-6
5-3	Field Analysis Results - Peters=Johnson Property 5-8
5-4	Field Analysis Results - City Property 5-11

LIST OF FIGURES

FIGURE

PAGE

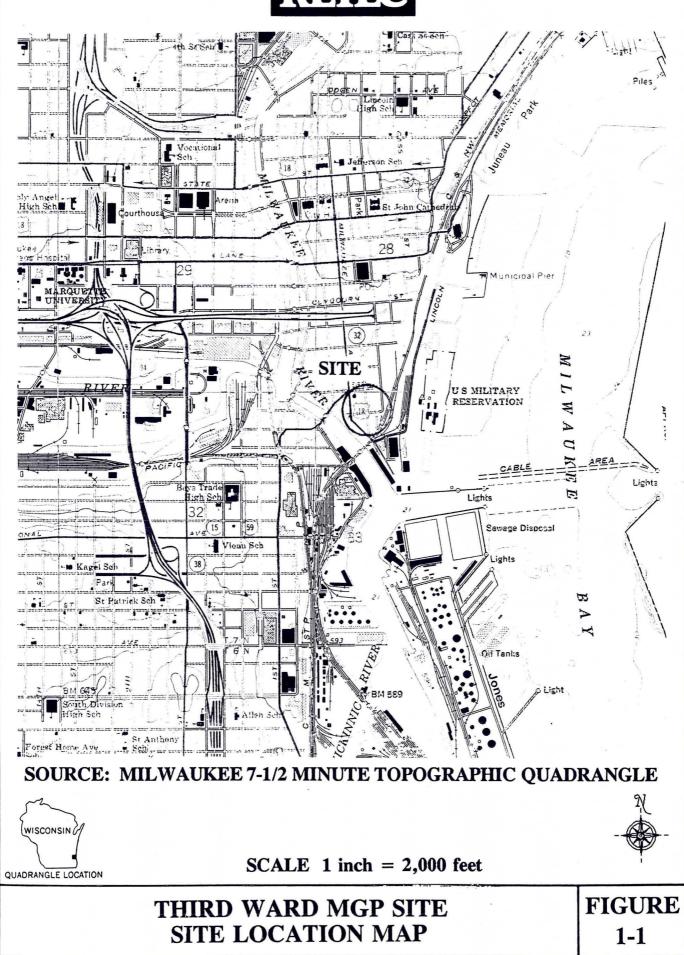
1-1	Site Location Map	1-2
2-1	Location of SSPI Soil Sampling Activities	2-2
2-2	Location of SSPI Groundwater Sampling Activities	2-3
2-3	Selected Former MGP Structures	2-4
3-1	SSPI Soil Investigation Areas	3-2
3-2	SSPI and Previous Investigation Sampling Locations	3-4
4-1	Water Table Contour Map	4-4
5-1	Selected Soil Field and Laboratory Analytical Results - Peters=Johnson Property	5-9
5-2	Selected Soil Field and Laboratory Analytical Results - City Property 5	-12
5-3	Selected Groundwater Analytical Results - October 1995 5	-17

1.0 INTRODUCTION

1.1 Background

This report provides the results of a Shallow Soil Predesign Investigation (SSPI) conducted at the former Third Ward Manufactured Gas Plant (MGP) site located in Milwaukee, Wisconsin (Site). The SSPI was conducted by Remediation Technologies, Inc., (RETEC) at the request of Wisconsin Gas Company (Wisconsin Gas). The SSPI was conducted in accordance with the document, <u>Sampling and Analysis Plan, Shallow Soils Predesign Investigation, Former Third Ward</u> <u>Manufactured Gas Plant Site</u>, dated April 1995 (SAP).

The objectives of the SSPI were as follows:


- to provide data to support the demolition of building foundations on City of Milwaukee property, including Block 158 (City Property);
- to evaluate the extent of impacted soils in the unsaturated zone on Blocks 116 and 157 (Peters=Johnson Property) and on the City Property;
- to collect data for the evaluation of impacted soil management options; and
- to provide additional groundwater quality data.

Another objective of the SSPI is to provide additional data related to non-aqueous phase liquids (NAPL) at the Site. The activities related to this objective will be conducted at a later date.

Information generated during the SSPI supplement data generated during previous investigations of the Site. The information generated during the SSPI will be added to an existing database which will be used to determine the appropriate remedial response for impacted soil, groundwater, and river sediments related to the Site.

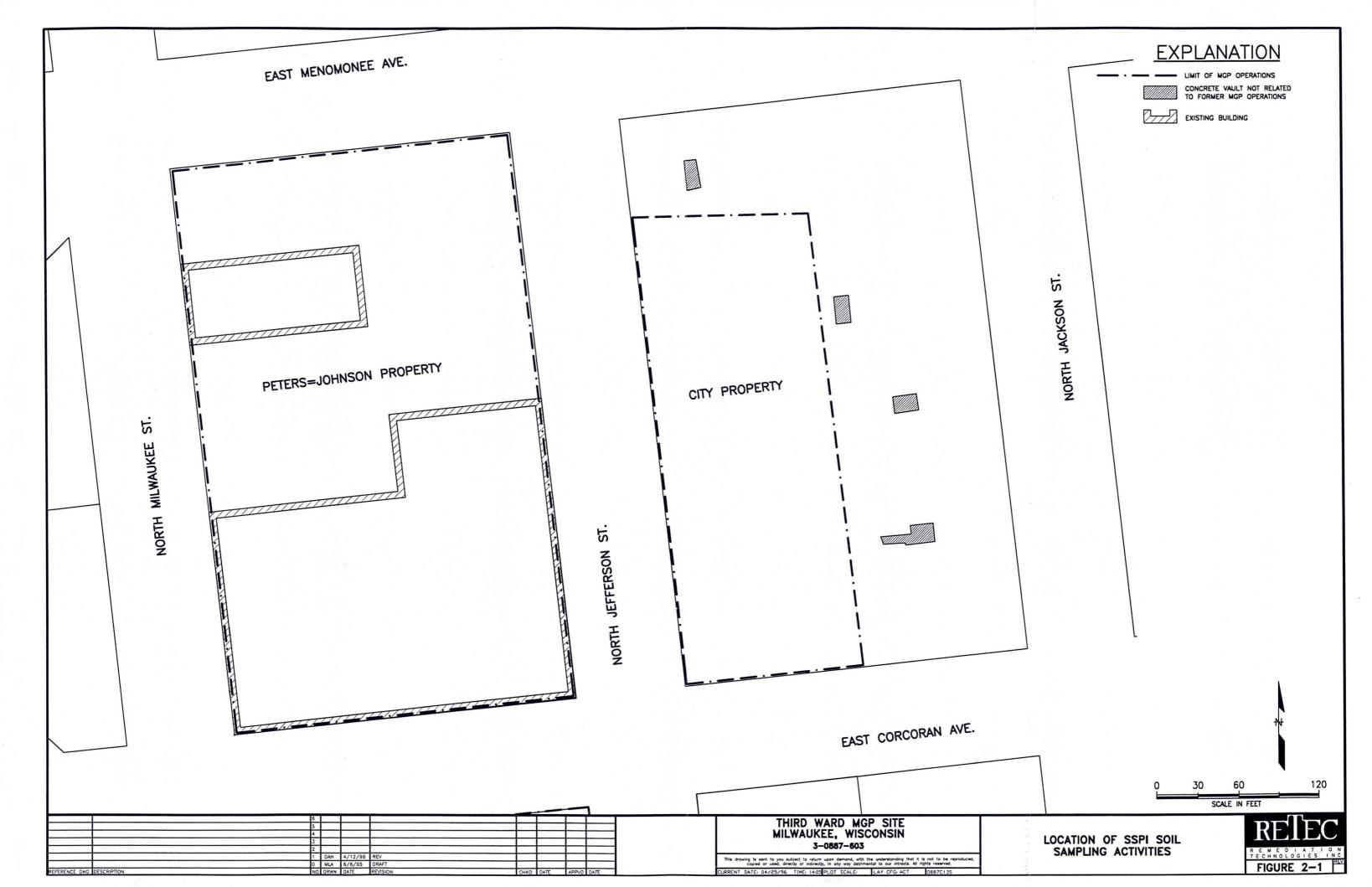
The SSPI was conducted by RETEC with support from three primary subcontractors. Boart Longyear Environmental Drilling (Boart Longyear) provided subsurface drilling services. Dustcoating, Inc. provided excavation services, and Analytical Technologies, Inc. (ATI) provided analytical support services. Figure 1-1 identifies the location of the Site.

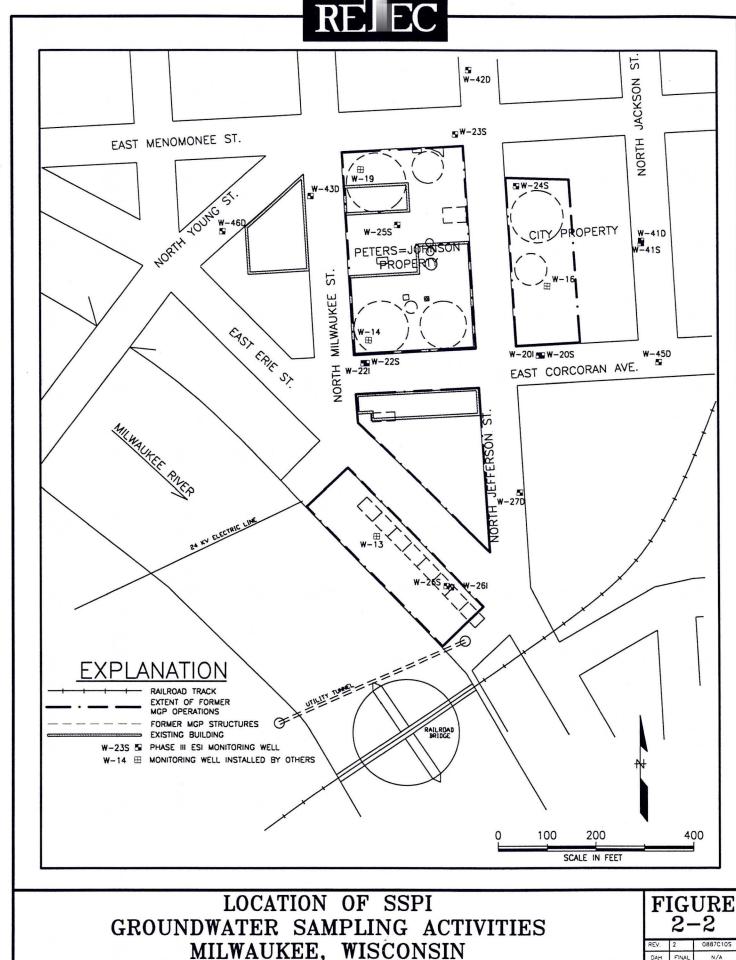
1.2 Report Organization

Section 2.0 of this report provides certain background information related to the Site, including a brief description of previous investigations which have been completed at the Site. Section 3.0 of this report provides a description of the field investigation methods and procedures used during the SSPI. A description of the geologic and hydrogeologic conditions observed during the SSPI field activities is presented in Section 4.0. Section 5.0 of this report presents a summary of field observations and the results of field and laboratory analyses performed on samples collected during the SSPI. Section 6.0 provides a summary and conclusions which result from the SSPI. A list of references utilized during the preparation of this report is provided in Section 7.0.

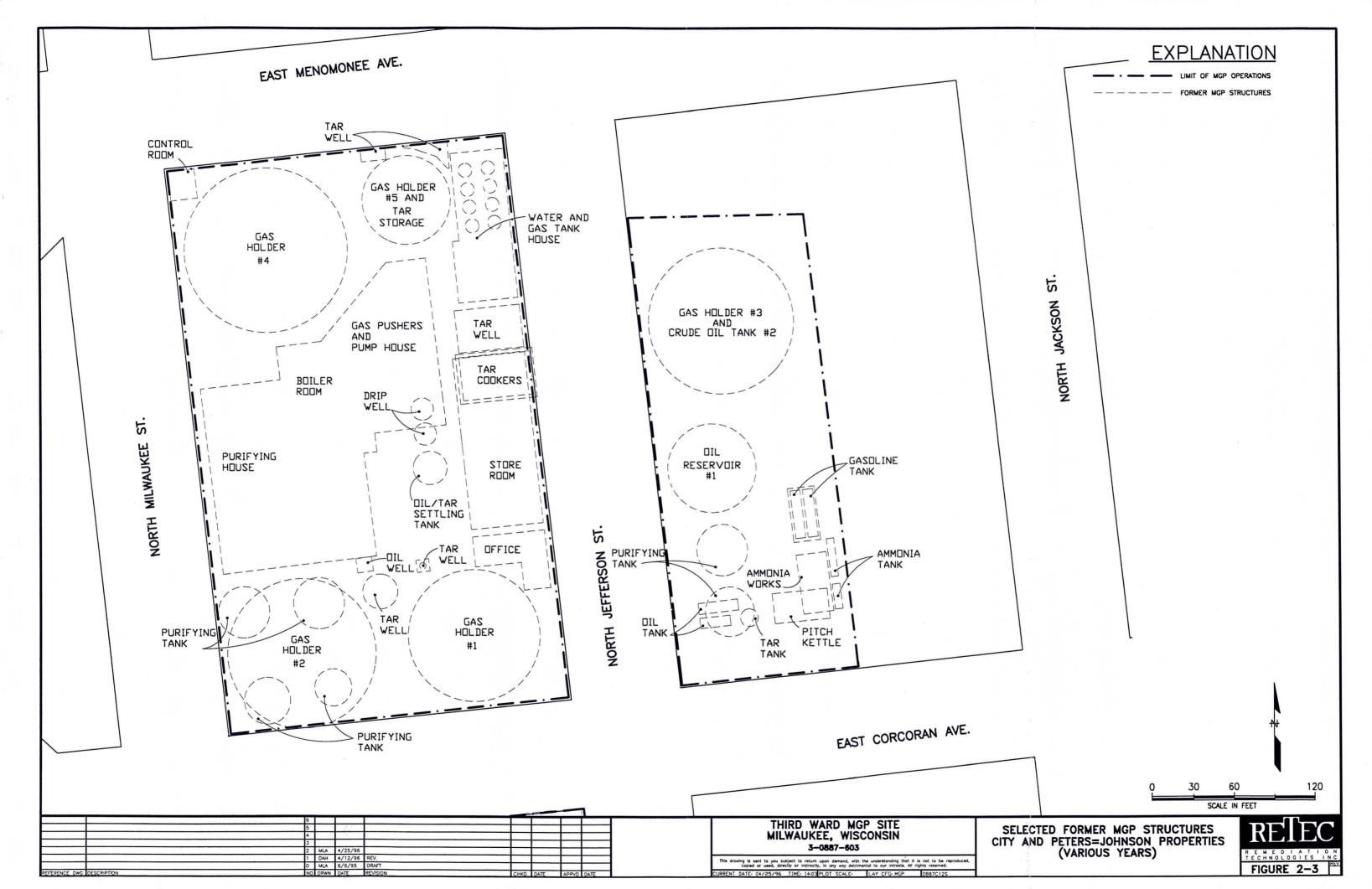
2.0 SITE BACKGROUND

2.1 Location and Physical Setting


The Site is located in a section of Milwaukee known as the Third Ward. The Site is located within the Northwest 1/4 of Section 33, Township 7N, Range 22E. The Site is located in a portion of Milwaukee where historic land use has primarily been for industrial and commercial purposes. Lake Michigan is located 1,000 to 1,500 feet to the east of the Site. The Milwaukee River, which bounds the Site to the southwest, is a tributary of Lake Michigan. The Site is located adjacent to land currently occupied by buildings, parking areas, and other paved areas. Figure 2-1 shows the portion of the Site where SSPI soil investigative activities were conducted. Figure 2-2 shows the location of the monitoring wells at the Site.


Previous investigation and assessment work conducted at the Site is described in the document, <u>Phase III Environmental Site Investigation Report</u>, Former Third Ward Manufactured Gas <u>Plant Site</u>, dated April 1993, prepared by RETEC (Phase III ESI Report). The Phase III ESI Report contains background information for the Site and the surrounding area including topography, geology, hydrogeology, locations of groundwater supply wells, and land use.

2.2 Third Ward MGP Site History


Gas was made at the former Third Ward MGP from the 1850s to the 1950s. The methods used to manufacture gas evolved during the operation of the plant and involved three different gas manufacturing processes. The three MGP processes used coal, coke and oil, and oil as feedstocks.

MGP operations were conducted on land comprising an area of approximately 5.5 acres. All of the land on which the MGP was formerly located was sold to other parties after the decommissioning and demolition of certain facilities in 1959. Figure 2-2 shows selected MGP structures, from various years, which were formerly located at the Site. Figure 2-2 shows the parcels of land on which the former MGP operated. Figure 2-3 provides a detailed layout of the MGP structures formerly located on the City Property and on the Peters=Johnson Property.

2 - 20887C105 N/A

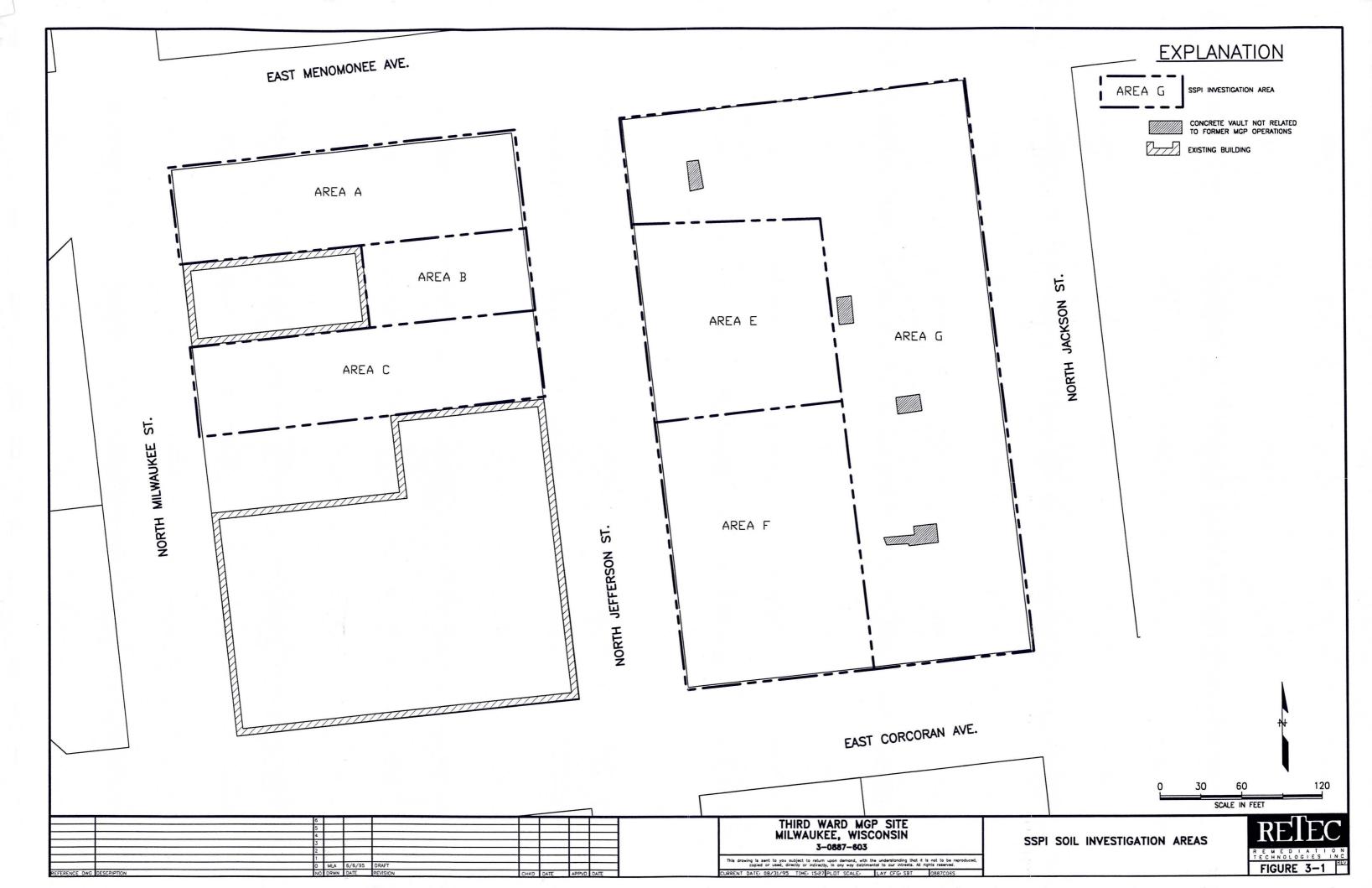
2.3 Previous Environmental Assessments

Three environmental assessments have been conducted at the Site to investigate the extent of impacts resulting from the former Third Ward MGP. The first investigation work consisted of an environmental assessment completed by Warzyn Engineering, Inc. (Warzyn). The Warzyn investigation included the completion of seven soil borings, the installation of four groundwater monitoring wells, and the collection and analyses of soil and groundwater samples. The soil and groundwater samples were analyzed for Polycyclic Aromatic Hydrocarbons (PAHs) and Total Organic Carbon (TOC), as well as other parameters. The results of the Warzyn investigation are presented in the document, <u>Environmental Assessment of a Manufactured Gas Plant Site - Third Ward Site, May 1988</u> (Warzyn Report).

The Phase III ESI, conducted by RETEC in September and October 1992, involved the completion of 36 soil borings, the installation of 16 groundwater monitoring wells, and the collection and analysis of soil and groundwater samples. The soil and groundwater samples collected during the Phase III ESI were analyzed for a number of parameters including PAHs, and benzene, toluene, ethylbenzene, and xylenes (BTEX). A detailed review of historic activities was completed during the Phase III ESI. The Phase III ESI identified impacted soil and groundwater at the Site. The impacts were found to be related to the former Third Ward MGP operations and other non-MGP activities. The results of the Phase III ESI activities are provided in the Phase III ESI Report.

Phase III ESI river sediment sampling activities were conducted by RETEC in September and October 1993. The sediment sampling involved the completion of 11 river sediment borings and the collection of sediment samples for chemical analyses and physical classification. The sediment samples collected were submitted for semivolatile organic compound (SVOC), infrared spectroscopy, and oil and grease analyses. Results of the sediment sampling activities are presented in the document, <u>Addendum No. 1 Phase III Environmental Site Investigation Report Former Third Ward Manufactured Gas Plant Site - River Sediment Sampling Report</u>, dated June 1994 (RSSP Report).

3.0 SAMPLING PROGRAM


The project documents related to the Phase II ESI, including a Quality Assurance Project Plan (QAPP) and Site-Specific Health and Safety Plan (HASP), were used during the SSPI. The QAPP defines sampling procedures and identifies the laboratory quality assurance/quality control (QA/QC) procedures. The SSPI field activities were completed as described in the SAP. The HASP establishes procedures to ensure the safety of the field workers and others working at the Site during the SSPI.

3.1 Introduction

To facilitate field activities and data management for the soil investigation portion of the SSPI, the Peters=Johnson Property and the City Property were subdivided into separate investigation areas. These areas are Areas A, B and C for the Peters=Johnson Property and Areas E, F and G for the City Property. On the Peters=Johnson Property, SSPI activities were completed only on the northern half of the property, north of an existing building. Figure 3-1 shows these investigation areas. Test trenching and soil boring activities were completed between April 25 and April 28, 1995. It should be noted that MGP operations were formerly conducted only on Areas E and F of the City Property.

A RETEC geologist supervised the trenching and drilling operations during the SSPI. Excavation services were provided by Dustcoating, Inc. of Maple Plain, Minnesota. Drilling services were provided by Boart Longyear of Schofield, Wisconsin. Analytical Technologies, Inc. (ATI) of Fort Collins, Colorado, conducted the laboratory analysis of samples. ATI is certified in the State of Wisconsin to perform laboratory analyses (Wisconsin Laboratory ID No. 999889440). RETEC conducted field analyses (i.e., field immunoassay testing) on selected soil samples. After the field soil investigation was completed, the locations of the test trenches and soil borings were surveyed by Land Information Services of Milwaukee, Wisconsin, a Wisconsin registered land surveyor. All drilling, excavation, analytical, surveying services were conducted under terms of subcontract agreements between RETEC and the various subcontractors.

Groundwater sampling activities were conducted between October 11 and October 16, 1995. Groundwater samples were submitted to ATI for analyses.

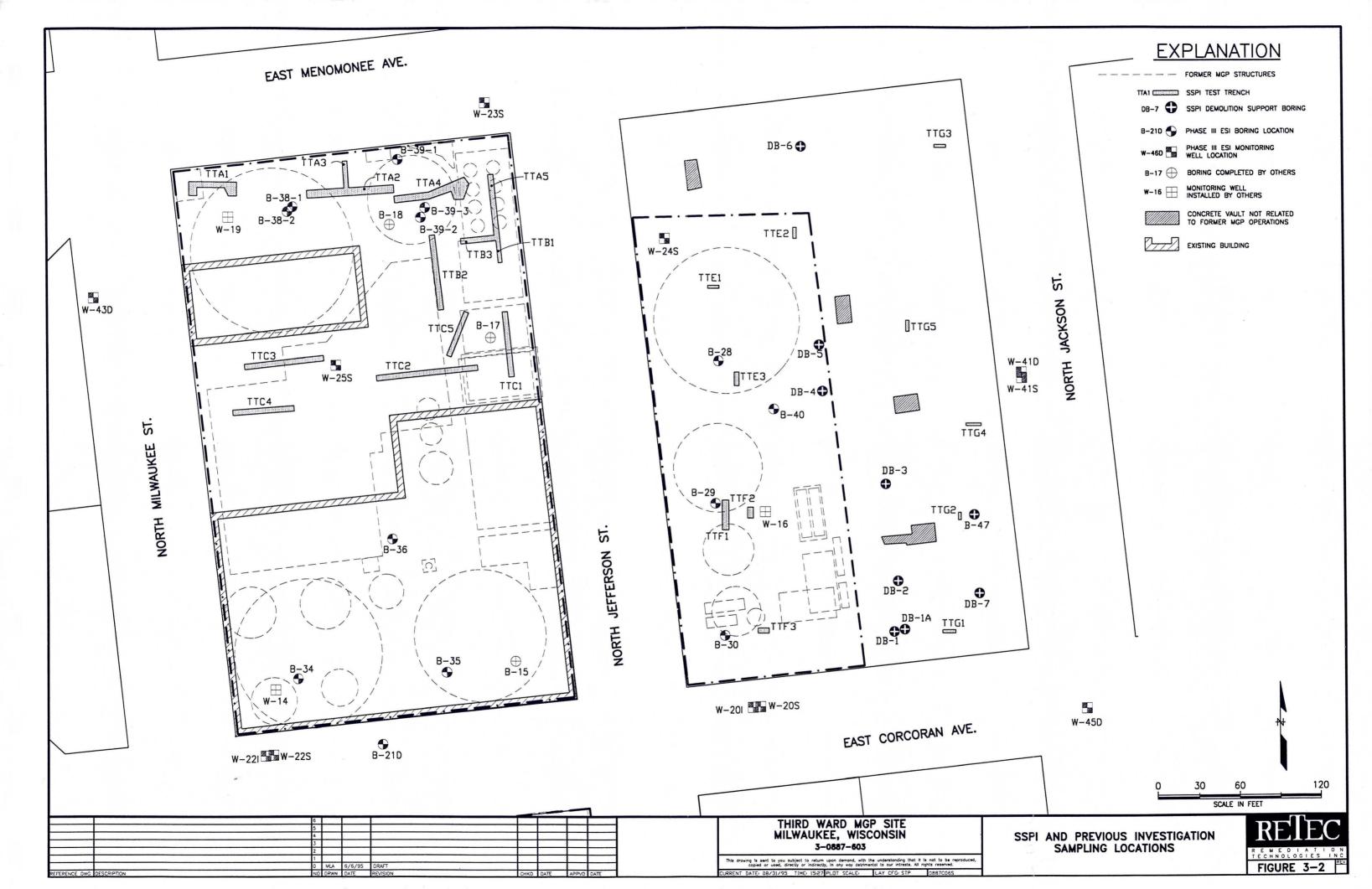
3.2 Soil Sampling Program

This section describes the procedures used during the SSPI to collect and classify soil samples.

3.2.1 Test Trenching and Sampling Methods

Eleven test trenches were completed on the City Property and 13 test trenches were completed on the Peters=Johnson Property. Test trenches were completed into the soils in the unsaturated zone and inside the limits of former MGP structures. The test trenches were completed using a tire mounted backhoe. Figure 3-2 shows the location of the test trenches completed during the SSPI and the locations of certain previous investigation sample locations.

On the Peters=Johnson Property, five test trenches were completed in Area A, three were completed in Area B, and five were completed in Area C. On the City Property, three test trenches were completed in Area E, three were completed in Area F, and five were completed in Area G.


The test trenches were completed to depths ranging from 4 to 14 feet below the ground surface. Each trench was logged and photographed. Test trench diagrams are presented in Appendix A of this report.

During trenching activities, soil samples were collected from soil retrieved by the backhoe bucket. The specific analyses conducted on the soil samples are described in Sections 3.2.4 and 3.2.5 of this report. Upon completion of soil sampling and logging of the trenches, individual test trenches were backfilled with the material removed from the excavation.

3.2.2 Soil Boring and Sampling Methods

Nine soil borings were completed on the City Property using a truck-mounted drill rig equipped with hollow-stem augers. The locations of the SSPI soil borings are shown on Figure 3-2.

The soil borings were completed using 3 1/4-inch inside diameter hollow-stem augers. A 2-foot long, 2-inch diameter split-spoon sampler was used for the retrieval of soil samples from the soil borings. A 2-foot long, 3-inch diameter split-spoon sampler was used when a large sample volume was required. During the advancement of the soil borings, soil samples were typically collected at 2-foot intervals. The blow counts required to drive the split-spoon over a six inch interval were recorded.

All soil borings were abandoned in accordance with Chapter NR 141 of the Wisconsin Administrative Code. Soil borings were abandoned with bentonite chips placed in the borings through the augers. Information related to soil boring abandonment was recorded on Wisconsin Department of Natural Resources (WDNR) Form 3300-5B (Monitoring Well/Drillhole/Borehole Abandonment Form, Rev. 12-91). The borehole abandonment forms generated for the SSPI are provided in Appendix B of this report.

Detailed field notes were maintained for each of the soil borings completed. Stratigraphic information related to each boring was recorded on WDNR Form 4400-122 (Rev. 5-92). Appendix C of this report provides the soil boring logs.

3.2.3 Soil Classification and Field Screening

Soil retrieved from the test trenches and soil borings was classified using the Unified Soil Classification System (USCS) and the Munsell color classification system. Soil samples retrieved from the test trenches and soil borings were screened in the field for the presence of volatile organic vapors using an HNu model DL-101 Photoionization Detector (PID), equipped with an 11.7 eV lamp. Field screening was conducted using the jar headspace technique. Field screening equipment was calibrated at the start of each day of work, or more frequently if considered necessary. Field screening of soil samples was performed to support the identification of samples to be submitted for field and laboratory analyses. During soil boring activities, field screening results were recorded on the boring log forms which are provided in Appendix C. The results of field screening activities completed during test trenching activities were recorded in field notes.

3.2.4 Field Analyses

Selected soil samples collected during trenching and soil boring activities were analyzed in the field for total PAHs using immunoassay screening kits. The immunoassay test kits were calibrated to 1, 10, and 100 parts per million (ppm) total PAHs and were supplied by EnSys, Inc. (i.e., PAH Ris^C test method). These soil samples were selected based on field screening results and visual observations of potential impacts. The results of the field analyses are provided in Section 5.0 of this report.

3.2.5 Laboratory Analyses

Selected soil samples collected from the test trenches and soil borings were submitted to the laboratory for the following analyses:

- PAHs EPA Method 8310;
- BTEX EPA Method 8020;
- total cyanide EPA Method 9010;
- RCRA characterization including ignitability, corrosivity, reactivity, TCLP volatiles, TCLP semivolatiles and TCLP metals Various Methods, and
- remediation parameters including total recoverable petroleum hydrocarbons, alkali content, silica oxide, aluminum oxide, chloride, selected metals, TOC, moisture content, bulk density, and grain size distribution - Various Methods.

Twenty-one discrete soil samples collected during the SSPI were submitted for PAH, BTEX, and total cyanide analyses. The sample identification number for each discrete soil sample submitted for laboratory analyses identifies the trench or soil boring from which the sample was collected and the depth of the sample. For example, sample TTB2-5 (8-9) was a sample collected from test trench TTB2 at a depth of 8 to 9 feet.

Ten soil samples collected during the SSPI were submitted for RCRA characterization analyses. One of these samples was a discrete sample and the remaining nine samples were composite samples. Appendix D contains a summary of the discrete samples used to create the composite samples.

Five soil samples collected during the SSPI were submitted for remediation parameter analyses. All five of these samples were composite samples. Appendix D provides a summary of the discrete samples which were used to create these composite samples.

Soil samples were placed into sample jars supplied by the analytical laboratory. Certain field QA/QC samples including duplicates, equipment rinse blanks, and trip blanks were also submitted for analyses. Two duplicate soil samples and two equipment rinse blanks were submitted to the laboratory for PAH, BTEX and total cyanide analyses. Two trip blanks were submitted for BTEX analyses. Standard RETEC chain-of-custody procedures were followed upon sample collection. The

packaging and shipment of the samples was conducted in accordance with the procedures described in RETEC SOP 110, which is provided in the QAPP for the project.

The methodology utilized by the analytical laboratory for analyses of the soil samples was in substantial compliance with the QAPP. The soil analytical results comply with Level III and Level IV data quality objectives (DQOs). These DQOs are for both Contract Laboratory Program (CLP) and non-CLP analytical procedures. To assess the validity of the soil analytical data generated during the SSPI, RETEC performed a laboratory QA/QC review on the data packages received from the laboratory (i.e., data validation). The results of the data validation are presented in a memorandum provided in Appendix E of this report. Copies of the chain-of-custody forms are provided in Appendix F.

3.3 Groundwater Sampling Program

This section describes the procedures used during the SSPI to collect groundwater samples.

3.3.1 Groundwater Sampling Methods

Groundwater samples were collected from 19 of the 20 monitoring wells at the Site. Figure 2-2 shows the locations of the monitoring wells. One well (i.e., monitoring well W-24S) could not be located during the groundwater sampling program due to building demolition activities recently completed on the City Property.

Prior to purging and sampling the wells, water level and total depth measurements were made as described in the QAPP. Using these measurements, the amount of water to be purged from each well was calculated. Where non-aqueous phase liquid (NAPL) was encountered, its thickness was measured using an electronic interface probe. Thicknesses of NAPL were not included in the calculation of water volumes for purging.

Wells were purged using low-flow peristaltic pumps. During purging, the field parameters of temperature, pH, conductivity, and reduction/oxidation (redox) potential were measured. After three well volumes of water had been removed and the field parameters stabilized, groundwater samples were collected.

Groundwater samples for all parameters except BTEX were collected directly from the pump tubing into appropriately preserved sample bottles supplied by the laboratory. Samples for BTEX analysis were collected using disposable polyethylene bailers after the pump tubing was removed from the well. Samples for dissolved metals, PAH, and cyanide analyses were field-filtered using in-line 0.45 micron filters. Standard RETEC chain-of-custody procedures were followed after sample collection. The packaging and shipment of samples was in accordance with RETEC SOP 110, which is provided in the project QAPP. All disposable sampling materials were discarded after sample collection. Following groundwater sample collection, dissolved oxygen (DO) was measured in each well. All relevant information collected during purging and sampling was recorded on RETEC groundwater sampling forms, which are provided in Appendix I.

QA/QC samples were collected during the groundwater sampling program. The QA/QC samples consisted of two duplicate samples, two equipment rinse blanks, and one trip blank for each cooler used to ship samples for BTEX analysis.

3.3.2 Groundwater Sample Analyses

Groundwater samples were submitted to the laboratory for the following analyses:

- PAHs EPA Method 8310;
- BTEX EPA Method 8020;
- dissolved metals EPA Method 6010;
- total and weak acid dissociable cyanide EPA Method 9010 and Standard Methods No. 4500-I;
- nutrient and inorganic parameters including nitrate nitrogen, ammonia nitrogen, total phosphate phosphorus, soluble phosphorus, sulfide, and sulfate
 Various Methods; and
- microbial enumerations.

Not all groundwater samples were analyzed for all of the above parameters; specifically, the nutrient and inorganic parameters and microbial enumerations analyses were only performed on samples collected from selected wells. Microbial enumerations were performed by RETEC's Seattle, Washington treatability laboratory.

The methodology utilized by the analytical laboratory for the analyses of the groundwater samples was in substantial compliance with the QAPP. The groundwater analytical results comply with Level III and Level IV DQOs. To assess the validity of the groundwater analytical data

generated during the SSPI, RETEC performed a laboratory QA/QC review on the data packages received from the laboratory. The results of the groundwater data validation are presented in a memorandum provided in Appendix E of this report. Copies of the chain-of-custody forms are provided in Appendix F.

3.4 Decontamination Procedures

3.4.1 Soil Sampling Program

The backhoe bucket was steam cleaned as necessary during the test trenching. All downhole drilling equipment was steamed cleaned between borings. All soil sampling equipment utilized by the field geologist (e.g., split-spoons, knives and spoons) was decontaminated in accordance with RETEC SOP 120, which is provided in the project QAPP. In general, the decontamination procedure utilized for the soil sampling equipment consisted of the following steps:

- removal of soil which adhered to the sampling equipment;
- tap water and alconox solution wash;
- distilled water rinse;
- 50% methanol/50% distilled water rinse; and
- final distilled water rinse.

3.4.2 Groundwater Sampling Program

Field instruments used during groundwater sampling were decontaminated according to RETEC SOP 120, which is provided in the project QAPP. Decontamination was not necessary for groundwater sampling devices, because the sampling devices used (tubing and bailers) were disposable and were discarded after use. In general, the decontamination procedure for field instruments consisted of the following steps:

- distilled water rinse;
- 50% methanol/50% distilled water wash; and
- final distilled water rinse.

3.5 Residuals Management

3.5.1 Soil Sampling Program

Soil removed from each test trenched was placed back into the associated trench after soil sampling and logging activities were completed. The trenches completed on the Peters=Johnson Property were backfilled with excavated materials to a depth of three feet below ground surface with periodic compaction of the backfill using the backhoe bucket. Backfilling above a depth of three feet was conducted with a hand-operated tamping unit in approximately 1-foot lifts. The surface of the test trenches completed on the Peters=Johnson Property were capped with new asphalt. The test trenches completed on the City Property were backfilled with excavated materials and periodically compacted with the backhoe. Because building demolition activities were on-going, the test trenches completed on the City Property were not capped with asphalt. Drill cuttings generated during the SSPI were placed on the ground surface adjacent to the associated soil boring.

Decontamination fluids produced during the SSPI soil sampling program were containerized in 55-gallon drums. A total of three drums of decontamination fluids are temporarily being stored at the Site until the appropriate treatment/disposal method is identified.

3.5.2 Groundwater Sampling Program

Water generated during well purging and decontamination was collected and placed into 55-gallon drums and is temporarily being stored at the Site until the appropriate treatment/disposal method is identified.

4.0 GEOLOGY AND HYDROGEOLOGY

The information gathered during the SSPI supplements the geologic/hydrogeologic data presented in the Phase III ESI Report. The geology of the Site is described in detail in the Phase III ESI Report. Soil borings completed during the Phase III ESI were used to develop a description of the geology at the Site. The Phase III ESI Report identified three generalized zones of geology at the Site which are designated as the upper, middle, and lower zones. These zones are described in the Phase III ESI Report as follows:

- Upper Stratigraphic Zone (Upper Zone) this zone is composed of soil and non-soil fill material. The fill material is primarily sandy silty soil with of gravel, wood and brick fragments. The fill was placed in the area prior to the construction of structures;
- Middle Stratigraphic Zone (Middle Zone) this zone is composed of discontinuous beds of sediments including silty sand, silty clay and peat. These deposits are related to estuarine and fluvial depositional environments. The Middle Zone contains a peat layer which is 1 to 2 feet in thickness and is present at depths ranging from 10.5 to 17 feet below the ground surface. The peat layer was not present in a north-south trending area in the western portion of the Site; and
- Lower Stratigraphic Zone (Lower Zone) this zone is composed of a laterally continuous, estuarine clay unit. The clay is present at depths ranging from 30 to 40 feet below the ground surface.

4.1 Geology

4.1.1 Peters=Johnson Property

Thirteen test trenches were completed on the Peters=Johnson Property to depths ranging from 4 to 14 feet. The test trenching activities were completed in a parking area with an approximate thickness of three inches of asphalt. During test trenching activities, the materials encountered outside of subsurface structures were generally consistent with the Upper Zone as defined during the Phase III ESI. Generally, the upper one to two feet of the Upper Zone is composed of compacted silty sand and gravel. Below a depth of two feet, the Upper Zone is composed primarily of brick and concrete debris in a matrix of silty clay, silty sand, or silty gravel containing coal slag, cinder, ash, metal, and wood.

Numerous former subsurface MGP structures were encountered during the test trenching in Areas A, B, and C. The types of former MGP structures encountered include the subsurface portion of a gas holder, a tar well, a gas holder foundation, building foundations, floors, and piping. The locations of the subsurface structures observed during test trenching activities are presented on the test trench diagrams provided in Appendix A of this report.

In some areas of the Peters=Johnson Property, outside of structures, non-soil fill materials (e.g., bricks and concrete) comprised up to 80% of the materials encountered. Inside of Gas Holder #4, located in Area A (Figure 2-3), bricks composed 20 to 70% of the materials encountered. Gas Holder #5, located in Area A, was found to have an approximate 10-foot concrete foundation, indicating that this gas holder was constructed such that gas was stored only above the ground surface. The tar well, located in Areas B and C, was found to contain numerous bricks and other debris.

Outside of structures, the water table was generally encountered at depths of approximately nine feet below the ground surface. Within the tar well, water was found at a depth of approximately 2.5 feet below the ground surface, indicating that water is being held above the water table within the former tar well structure. Within Gas Holder #4, water was encountered at a depth of approximately nine feet below the ground surface (i.e., approximate depth of water table on this property).

4.1.2 City Property

Eleven test trenches and nine soil borings were completed on the City Property during the building demolition. The test trenches ranged in depth from 5 to 13 feet, and the soil borings ranged in depth from 6 to 18 feet. During trenching and soil boring activities, the materials encountered were consistent with the Upper Zone and Middle Zone as defined during the Phase III ESI. Outside of structures, silty clay with sand and gravel was generally encountered in Areas E and F, while silty sand and gravel with less clay was encountered in Area G. Non-soil fill materials including coal slag, ash, cinders, wood, bricks, concrete, and metal debris were observed throughout the property within the Upper Zone to depths ranging from 2 to 12 feet.

The Middle Zone was encountered outside of structures generally at depths at or below the water table. On the City Property, the silty sand and gravels of the Middle Zone were observed at/or below the water table to a depth of approximately 18 feet.

A set of former subsurface MGP structures were encountered during the trenching activities completed in Areas E and F. The types of structures encountered include the subsurface portion of

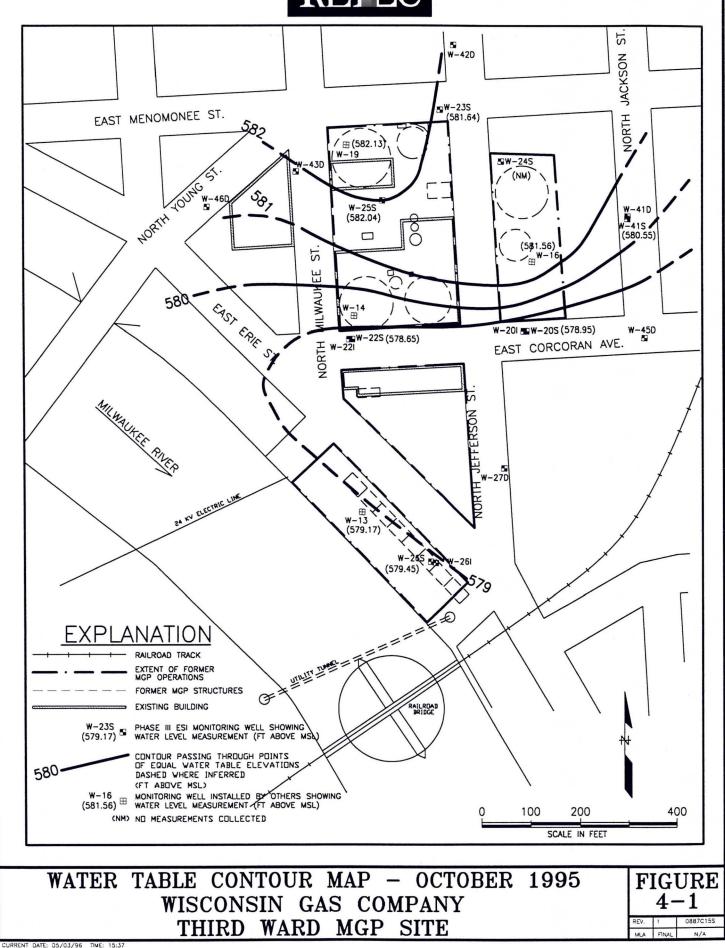
4-2

a former gas holder, a former subsurface oil reservoir, building foundations/ floors, and piping. The locations of the subsurface structures observed during test trenching activities are presented on the test trench diagrams provided in Appendix A of this report.

Outside of structures in Areas E and F, non-soil fill materials were less prevalent than on the Peters=Johnson Property. The fill materials inside of Gas Holder #3 contained only scattered bricks or other large debris. However, significant quantities of bricks and other large debris were observed in Oil Reservoir #1.

In Area G, where no MGP operations existed, no subsurface structures were observed. However, based upon observations made during ongoing demolition activities, concrete footings and concrete vaults exist on this portion of the property. The concrete vaults are assumed to have been related to the operations of an animal feed milling company that formerly operated on this portion of the City Property. The fill materials in the Upper Zone of Area G consisted primarily of silty sand and gravel with scattered non-soil fill materials.

Outside of structures in Areas E, F, and G, water was encountered at depths ranging from 4 to 11 feet below the ground surface. Inside of Gas Holder #3 and Oil Reservoir #1, the depth to water was approximately seven feet.


4.2 Hydrogeology

Groundwater elevations were measured during the SSPI groundwater sampling activities. The water level data collected were generally consistent with measurements made during the Phase III ESI. Figure 4-1 is a water table contour map based on groundwater elevations measured in October 1995. Figure 4-1 represents the inferred configuration of the water table based upon water level elevation data from the shallow wells at the Site. Water level measurements collected during the October 1995 groundwater sampling round are presented on the groundwater sampling forms provided in Appendix I.

Based on the data collected during October 1995 groundwater sampling activities, the direction of groundwater flow at the water table is generally toward the south-southeast.

4-3

5.0 RESULTS OF SAMPLING AND LABORATORY ANALYSES

This section summarizes field observations of potential impacts (e.g., field screening results, odors, sheens, and NAPLs), along with the results of the field and laboratory analyses of soil and groundwater samples. Appendix G provides the tabulated data. Copies of the laboratory data sheets are provided in Appendix H.

To assess the validity of the laboratory analytical data generated during the SSPI, a QA/QC review (i.e., data validation) was performed. The results of the QA/QC review are presented in Appendix E of this report. The results of the QA/QC review indicate that the analytical data generated during the SSPI are valid. Results of certain field QA/QC analyses (i.e., trip blanks and equipment rinse blanks) related to the soil sampling program are summarized in Table G-7. Results of field QA/QC analyses related to the groundwater sampling program are summarized in Table G-8.

During the SSPI, field personnel made several types of observations that provide an indication of the impacts to shallow soils and groundwater at the Site. These observations include field screening results, olfactory indications, and the presence of sheens and NAPLs. Such field observations are noted on the test trench diagrams presented in Appendix A, on the soil boring logs provided in Appendix C, and on the groundwater sampling forms provided in Appendix I. Field observations provide insight as to the presence of chemical compounds and other residues in shallow soils. The field observations supplement the results of the chemical analyses performed during the SSPI.

5.1 Soils

For the purpose of this report, field observations noted during subsurface investigation activities are discussed separately for the Peters=Johnson Property and City Property.

5.1.1 Field Observations

Peterson=Johnson Property

The majority of the soil samples exhibiting a field screening result above background levels were collected from test trenches completed near the following structures:

5-1

- Gas Holder #5 (trenches TTA2, TTA3, TTA4 and TTB2);
- location of former underground storage tank, not related to former MGP operations, (trenches TTA2, TTA3, and TTA4); and
- tar well (trenches TTB2, TTB3, TTC1 and TTC5).

The highest field screening results were measured in samples collected from test trench TTA2 and were associated with gasoline-like odors noted in the soil. Field screening results for Peters=Johnson property are summarized in Table 5-1.

The following is a summary of the odor, sheen and NAPL observations noted for the test trenches completed on the Peters=Johnson Property.

<u>Area A</u>

- Test trench TTA1 no significant odors, sheens or NAPL were noted outside or within Gas Holder #4.
- Test trench TTA2 gasoline-like odors were observed between Gas Holder #4 and Gas Holder #5. The location of former Gas Holder #5 was found to have a concrete pad and footing with approximately one foot of gravel fill material and three inches of asphalt located above the pad and footing. Attempts to break through the concrete pad were unsuccessful. Pipes were observed with in the portion of trench TTA2 on top of the Gas Holder #5 concrete pad. The pipes were present near the area of a former UST, where a relatively new asphalt patch existed. Gray-green colored staining and gasoline-like odors were noted within the fill material on top of the concrete pad.
- Test trench TTA3 a sulfide-like odor was noted from 2 to 6 feet in depth. naphthalene-like odors were noted below a depth of six feet.
- Test trench TTA4 gasoline-like odors and gray-green colored staining were noted within the fill material on top of the Gas Holder #5 pad. On the east side of the Gas Holder #5 pad, gasoline-like odors were noted to a depth of approximately eight feet, and naphthalene-like odors were noted below a depth of eight feet.
- Test trench TTA5 the presence of numerous floor and subfloor structures prevented excavation below one foot depth for the majority of trench TTA5. No significant odors were noted in this trench.

TABLE 5-1 FIELD SCREENING RESULTS PETERS=JOHNSON PROPERTY THIRD WARD MGP SITE

SAMPLE LOCATION	SAMPLE DEPTH (Feet)	FIELD SCREENING RESULTS (ppm) ¹
TTA1-1	3	0.1
TTA1-2	5-6	0.1
TTA1-3	6-8	0.1
TTA2-1	5-6	0.1
TTA2-2	9	0.3
TTA2-3	2	1.0
TTA2-4	7	14.4
TTA2-5	5	59.5
TTA2-6	5	65.0
TTA2-7	1	4.8
TTA3-1	4	1.6
TTA3-2	7	16.1
TTA4-1	1-2	12.0
TTA4-2	7	34.9
TTA4-3	5	26.8
TTB1-1	3	0.1
TTB2-1	3-4	0.2
TTB2-2	5	0.2
TTB2-3	7	24.9
TTB2-4	9	29.4
TTB2-5	8-9	13.0
TTB2-6	5-6	5.4
TTB3-1	3	5.2
TTB3-2	6-7	16.9
TTC1-1	2	0.3
TTC1-2	2-3	9.5
TTC1-3	3	3.1
TTC1-4	3-4	19.7
TTC2-1	3	0.4
TTC2-2	3-4	0.5
TTC2-3	3	0.4
TTC2-4	2.5	0.4
TTC3-1	4	0.3
TTC3-2	3	0.2
TTC3-3	4	2.0
TTC4-1	2.5	0.7
TTC4-2	4-5	0.8
TTC5-1	6-7	0.2
TTC5-2	8-9	10.1
TTC5-3	7	1.4

Notes:

.

(1) PID measurements recorded as above background readings of 0.3 to 1.5 ppm.

<u>Area B</u>

- Test trench TTB1 no significant odors, sheens or NAPL were noted.
- Test trench TTB2 slight to moderate naphthalene-like odors were noted from a depth range of 3 to 7 feet.
- Test trench TTB3 naphthalene-like odors and gray-green colored staining were noted above a brick structure (i.e., footing or floor) encountered at a depth of seven feet.

<u>Area C</u>

- Test trench TTC1- the northern portion of TTC1 was completed within a former tar well. Perched groundwater with a sheen and strong naphthalenelike odors was encountered at approximately 2.5 feet below ground surface within the former tar well. Numerous concrete structures were encountered in this trench which prevented excavation below a depth of 4 feet. Naphthalene-like odors were common in this trench.
- Test trench TTC2 numerous footings and floors prevented excavation below a depth of five feet. Scattered zones of naphthalene-like odors were noted.
- Test trench TTC3 numerous footings and floors prevented excavation below a depth of six feet. No significant odors, sheens or NAPL were noted.
- Test trench TTC4 numerous footings and floors prevented excavation below a depth of six feet. No significant odors, sheens or NAPL were noted.
- Test trench TTC5 numerous pipes and a large concrete footing were encountered during excavation of TTC5. Slight naphthalene-like odors were noted at the southwest end of the trench and more significant naphthalene-like odors were noted at the northeast end of the trench. An 8-inch diameter steel pipe was observed extending from the northeast side of the concrete footing. A viscous tar-like material with strong naphthalene-like odors was observed inside of the open portion of this pipe.

The approximate alignment of structures and the approximate locations where odors and sheens were encountered during test trenching activities completed on the Peters=Johnson Property are presented on the test trench diagrams provided in Appendix A.

City Property

At least one sample from Areas E, F and G exhibited a field screening result above background levels. Generally, the lowest field screening results were found in samples collected from Area F (i.e., 0.0 to 30.0 ppm). Soil samples collected from Areas E and G exhibited higher field screening results (i.e., 0.0 to 67 ppm and 0.0 to 95 ppm, respectively). Field screening results for soil samples collected on the City Property are presented on Table 5-2.

The following is a summary of the odor, sheen, and NAPL observations for the soil borings and test trenches completed on the City Property.

<u>Area E</u>

- Soil borings DB-4 and DB-5 petroleum-like odors were noted at a depth range of 2 to 6 feet. Groundwater was encountered at a depth of 4 to 5 feet below ground surface.
- Test trench TTE1 completed within Gas Holder No. 3, no significant odors, sheens or NAPL were noted.
- Test trench TTE2 decaying organic material with a strong odor was noted from a depth of 1 to 7 feet. Scattered zones of petroleum-like odors were observed at and below a depth of seven feet.
- Test trench TTE3 completed within Gas Holder No. 3, scattered zones of slight petroleum-like odors were noted above the water table at a depth of approximately seven feet. A green colored stain and sheen, with a strong petroleum-like odor, was noted at the water table. Small zones of gold-brown colored oil-like material with a strong petroleum-like odor was observed at and below the water table.

<u>Area F</u>

- Test trench TTF1 the north half of TTF1 was completed within former Oil Reservoir #1. Groundwater was encountered at a depth of five feet inside of the structure. Strong naphthalene and petroleum-like odors and sheens were noted within the structure. A thick concrete floor was encountered at a depth of two feet in this trench outside of Oil Reservoir #1.
- Test trench TTF2 petroleum-like odors were noted above the water table. Groundwater was encountered at a depth of seven feet. An olive-green

TABLE 5-2 FIELD SCREENING RESULTS CITY OF MILWAUKEE PROPERTY AREAS E, F AND G THIRD WARD MGP SITE

SAMPLE LOCATION	SAMPLE DEPTH (Feet)	FIELD SCREENING RESULTS (ppm) ¹
TTE1-2	10-11	0.4
TTE2-1	7	0.2
TTF1-1	5-6	19.5
TTF1-2	8-10	16.5
TTF2-1	3	30.0
TTF2-2	7-8	25.0
TTF3-1	7	3.7
TTF3-2	12	3.5
TTG1-1	4-6	14.0
TTG2-2	5-6	4.3
TTG3-1	7-8	0.7
TTG4-2	6-7	30.0
TTG5-1	4-5	3.2
DB-1A	6-8	75.0
DB-1A	8-10	1.6
DB-2	0-2	0.0
DB-2	2-4	0.0
DB-2	4-6	21.0
DB-2	6-8	22.0
DB-3	0-2	0.0
DB-3	2-4	18.0
DB-3	4-6	95.0
DB-4	0-2	0.0
DB-4	4-6	47.0
DB-4	6-8	67.0
DB-4	8-10	13.0
DB-5	2-4	10.0
DB-5	4-6	18.0
DB-5	6-8	3.3
DB-5	8-10	2.3
DB-6	2-4	18.5
DB-6	4-6	16.0
DB-6	8-10	1.5
DB-7	2-4	0.2
DB-7	4-6	2.9
B-47	0-2	0.0
B-47	4-6	18
B-47	16-18	20

Notes:

'PID measurements recorded as above background (0.3 to 1.5 ppm)

color, semi-transparent, oil-like material and sheen with a strong petroleum-like odor was noted at the water table. Small areas of the olive-green material and strong petroleum-like odors were noted below the water table.

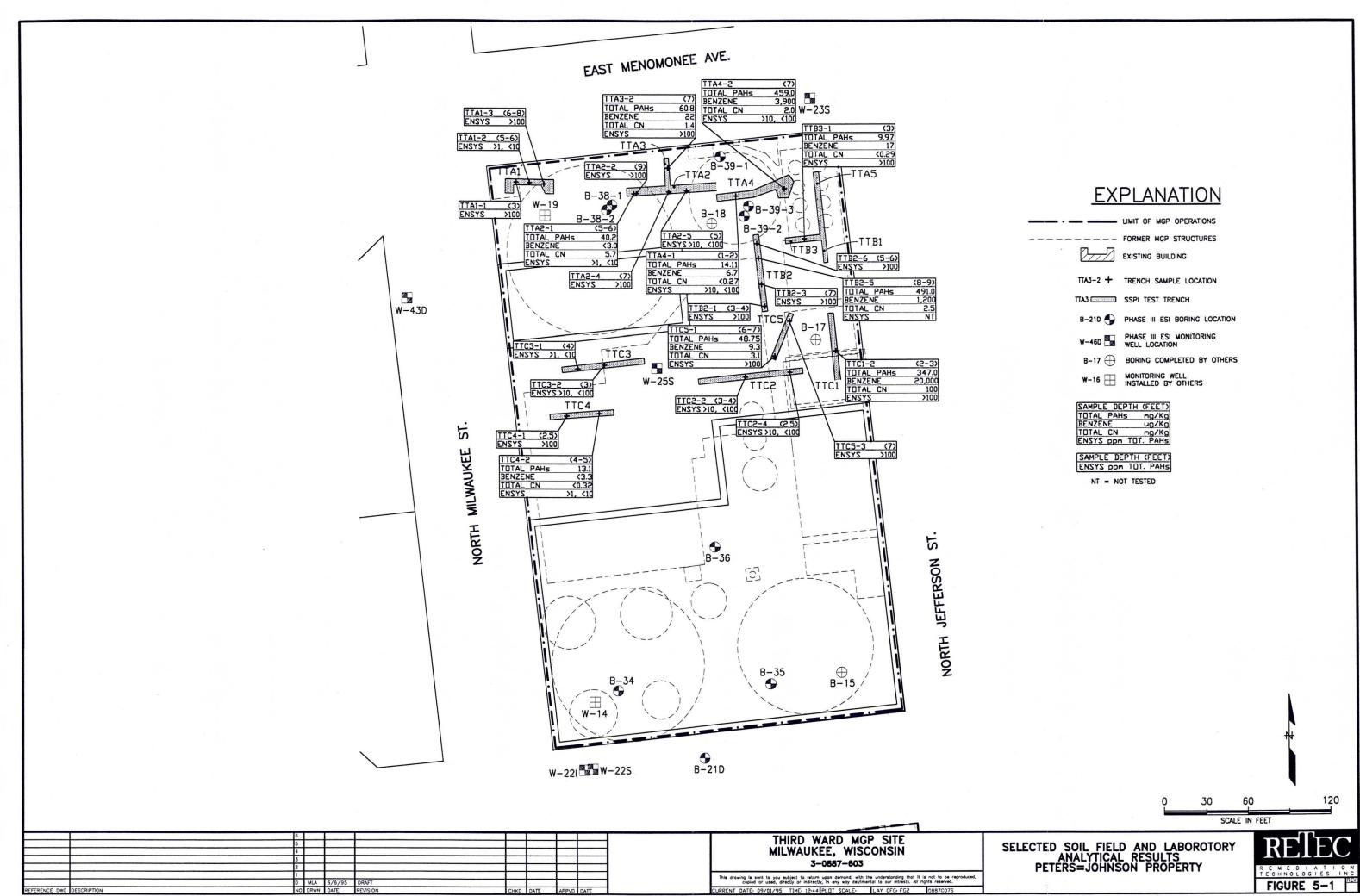
• Test trench TTF3 - greenish stain and strong petroleum-like odors were observed at and below the water table at depths ranging from 5 to 12 feet.

<u>Area G</u>

- Test trench TTG1 petroleum-like odors were noted at and immediately above the water table at a depth of approximately five feet.
- Test trench TTG2 a green colored stain and sheen with a petroleum-like odor was observed at and below the water table which is located at a depth of approximately five feet.
- Test trench TTG3 organic-like odor was noted at and immediately above the water table at a depth of approximately six feet.
- Test trench TTG4 strong petroleum-like odors were noted at and below the water table which is located at a depth of approximately five feet.
- Test trench TTG5 petroleum-like odors were noted at depths ranging from 2 to 5 feet.

5.1.2 Field Analysis

The following subsections described the results of the immunoassay field analysis testing completed during the SSPI.


Peters=Johnson Property

A total of 23 soil samples were collected for field analysis during test trenching activities conducted on the Peters=Johnson Property. All of the soil samples subjected to field analysis were found to contain total PAHs at a level above 1 ppm. Nineteen of the 23 samples exhibited total PAHs at levels between 10 and 100 ppm. Thirteen of the 23 samples exhibited total PAHs at a level above 100 ppm. All of the samples collected from Area B that were subjected to field analysis had total PAH concentrations at or above 100 ppm. Field analysis results for samples collected on the Peters=Johnson Property are summarized in Table 5-3. Figure 5-1 is a plan-view map showing the results of the field and laboratory analyses completed on soil samples collected from the Peters=Johnson Property.

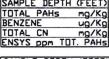


TABLE 5-3 FIELD ANALYTICAL RESULTS PETERS=JOHNSON PROPERTY AREAS A, B AND C THIRD WARD MGP SITE

SAMPLE ID	FIELD ANALYSIS RESULTS			
	1 PPM TOTAL PAHs	10 PPM TOTAL PAHs	100 PPM TOTAL PAHs	
TTA1-1 (3)	yes	yes	yes	
TTA1-2 (5-6)	yes	no	no	
TTA1-3 (6-8)	yes	yes	yes	
TTA2-1 (5-6)	yes	no	no	
TTA2-2 (9)	yes	yes	yes	
TTA2-4 (7)	yes	yes	yes	
TTA2-5 (5)	yes	yes	no	
TTA3-2 (7)	yes	yes	yes	
TTA4-1 (1-2)	yes	yes	no	
TTA4-2 (7)	yes	yes	no	
TTB2-1 (3-4)	yes	yes	yes	
TTB2-3 (7)	yes	yes	yes	
TTB2-6 (5-6)	yes	yes	yes	
TTB3-1 (3)	yes	yes	yes	
TTC1-2 (2-3)	yes	yes	yes	
TTC2-2 (3-4)	yes	yes	no	
TTC2-4 (2.5)	yes	yes	no	
TTC3-1 (4)	yes	no	no	
TTC3-2 (3)	yes	yes	no	
TTC4-1 (2.5)	yes	yes	yes	
TTC4-2 (4-5)	yes	no	no	
TTC5-1 (6-7)	yes	yes	yes	
TTC5-3 (7)	yes	yes	yes	

	LIMIT OF MGP OPERATIONS			
	FORMER MGP STRUCTURES			
	EXISTING BUILDING			
TTA3-2 +	TRENCH SAMPLE LOCATION			
ΠΑ3	SSPI TEST TRENCH			
B-210 🗣	PHASE III ESI BORING LOCATION			
W-46D	PHASE III ESI MONITORING WELL LOCATION			
B-17 🕀	BORING COMPLETED BY OTHERS			
₩-16 💾	MONITORING WELL INSTALLED BY OTHERS			
SAMPLE DEPTH (FEET)				

<u>City Property</u>

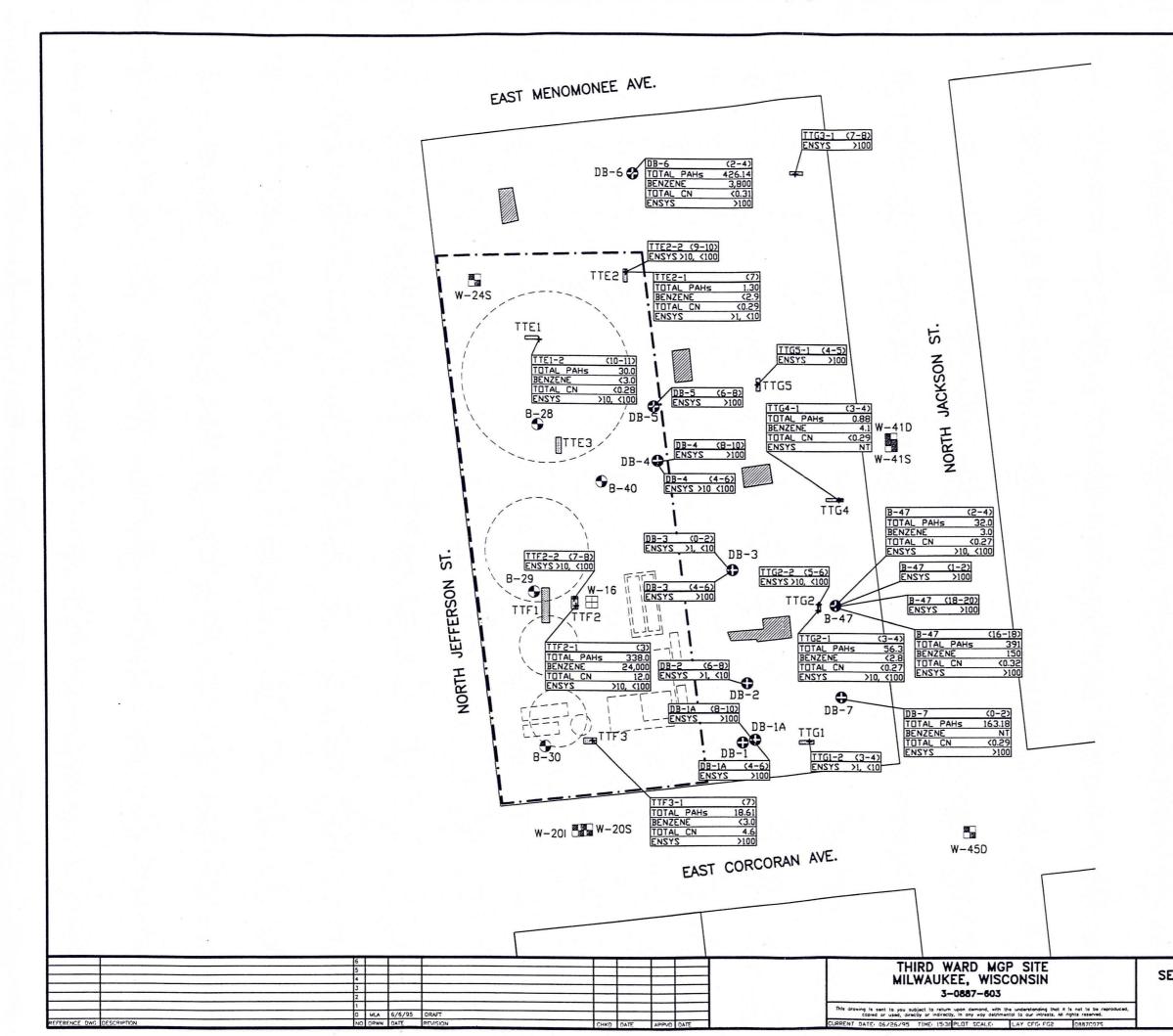
A total of 24 soil samples were collected for field analysis during soil boring and test trenching activities conducted on the City Property. All of the samples subjected to field analysis were found to contain total PAHs at a level above 1 ppm. Twenty of the 24 samples exhibited total PAHs at a level between 10 and 100 ppm. Twelve of the 24 samples exhibited total PAHs at a level at or above 100 ppm. Field analysis results for samples collected from the City Property are summarized in Table 5-4. Figure 5-2 is a plan-view map showing the results of the field and laboratory analyses completed on soil samples collected from the City Property.

5.1.3 Laboratory Analytical Results

The following is a summary of laboratory analytical results for soil samples collected during the SSPI. Tabulated analytical results are provided in Tables G-1 through G-7 of Appendix G. Figure 5-1 and 5-2 are plan-view maps showing the results of the PAH, BTEX, and cyanide analyses completed on soil samples collected from the Peters=Johnson Property and the City Property, respectively.

Peters=Johnson Property

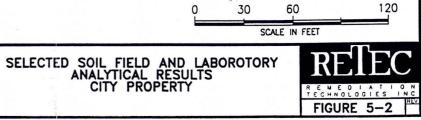
<u>PAHs</u> Ten soil samples were submitted for PAH analysis. The 10 samples included one field duplicate. The results presented in Table G-1 provide the concentrations detected for individual PAH compounds and a summation of total PAHs. Individual PAH compound concentrations are reported in micrograms per kilogram (ug/Kg). Total PAH results are presented in milligrams per kilogram (mg/Kg).


Laboratory analyses indicate the presence of at least one individual PAH compound in all 10 soil samples submitted for analysis. Total PAH concentrations detected ranged from 9.98 to 491 mg/Kg. The highest concentration of total PAHs detected was found in a sample collected from test trench TTB2.

BTEX Ten soil samples were submitted for BTEX analysis. The ten samples included one field duplicate. Analytical results shown in Table G-1 are reported in ug/Kg.

TABLE 5-4 FIELD ANALYTICAL RESULTS CITY OF MILWAUKEE PROPERTY AREAS E, F AND G THIRD WARD MGP SITE

SAMPLE ID	FIELD ANALYSIS RESULTS			
	1 ppm TOTAL PAHs	10 ppm TOTAL PAHs	100 ppm TOTAL PAHs	
TTE1-2 (10-11)	yes	yes	no	
TTE2-1 (7)	yes	no	no	
TTE2-2 (9-10)	yes	yes	no	
DB-4 (4-6)	yes	yes	no	
DB-4 (8-10)	yes	yes	yes	
DB-5 (6-8)	yes	yes	yes	
TTF2-1 (3)	yes	yes	no	
TTF2-2 (7-8)	yes	yes	no	
TTF3-1 (7)	yes	yes	yes	
TTG1-2 (3-4)	yes	no	no	
TTG2-1 (3-4)	yes	yes	no	
TTG2-2 (5-6)	yes	yes	no	
TTG3-1 (7-8)	yes	yes	yes	
TTG5-1 (4-5)	yes	yes	yes	
B-47 (1-2)	yes	yes	yes	
B-47 (2-4)	yes	yes	no	
B-47 (16-18)	yes	yes	yes	
DB-1A (4-6)	yes	yes	yes	
DB-1A (8-10)	yes	yes	yes	
DB-2(6-8)	yes	no	no	
DB-3 (0-2)	yes	no	no	
DB-3 (4-6)	yes	yes	yes	
DB-6 (2-4)	yes	yes	yes	
DB-7 (0-2)	yes	yes	yes	


EXPLANATION

- - -- -- -

	LIMIT OF MGP OPERATIONS
	FORMER MGP STRUCTURES
	EXISTING BUILDING
TTA3-2 +	TRENCH SAMPLE LOCATION
TTA3 COMMENT	SSPI TEST TRENCH
08-1 C	DEMOLITION SOIL BORING
8-21D 🗲	PHASE III ESI BORING LOCATION
W-460	PHASE III ESI MONITORING WELL LOCATION
8-17 🕀	BORING COMPLETED BY OTHERS
₩-16 🔛	MONITORING WELL INSTALLED BY OTHERS
	CONCRETE VAULT - NOT RELATED TO MGP OPERATIONS
TOTAL F BENZENE TOTAL (ug/Kg

SAMPLE DEPTH (FEET) ENSYS ppm TDT. PAHs

NT = NOT TESTED

The laboratory analyses indicated that at least one BTEX compound was detected in nine of the 10 samples submitted for analysis. BTEX compounds were not detected in the sample collected from test trench TTC4 at a depth of 4 to 5 feet. Individual BTEX compounds were detected in the following concentration ranges:

- benzene 6.7 to 20,000 ug/Kg;
- toluene 3.2 to 13,000 ug/Kg;
- ethylbenzene 4.2 to 250,000 ug/Kg; and
- total xylenes 12 to 380,000 ug/Kg.

The highest concentration of BTEX was detected in a sample collected from test trench TTB2.

<u>Cyanide</u> Ten soil samples were submitted to the laboratory for total cyanide analysis. The 10 samples included one field duplicate. Total cyanide results provided in Table G-1 are reported in mg/Kg.

Laboratory analysis indicated the presence of total cyanide in 7 of the 10 samples submitted for analysis. Total cyanide concentrations detected ranged from 1.4 to 100 mg/Kg. The highest concentration of total cyanide detected was found in a sample collected from trench TTC1.

<u>Remediation Parameters</u> Three composite samples (i.e., Composite #11, Composite #12, and Composite #13) collected during test trenching activities conducted on the Peters=Johnson Property were submitted for remediation parameter analyses. A summary of the discrete soil samples used to create the composite samples is provided in Appendix D. Table G-3 provides the results of these analyses.

<u>RCRA Characterization</u> Five samples collected from the Peters=Johnson Property were submitted for hazardous waste characterization analyses. Four samples were composites (i.e., Composite #2, Composite #3, Composite #4, and Composite #5) and one sample was a discrete sample collected from trench TTC1. A summary of the discrete soil samples used to create the composite samples is provided in Appendix D.

As indicated in Table G-5, sample TTC1-4 (3-4) was the only sample which demonstrated a RCRA characteristic (i.e., benzene concentration of 1.0 mg/L).

City Property

<u>PAHs</u> Eleven soil samples were submitted for PAH analysis. The 11 samples included one field duplicate. The results presented in Table G-2 provide the concentrations detected for individual PAH compounds and a summation of total PAHs.

Laboratory analyses indicated the presence of at least one individual PAH compound in all 11 soil samples submitted for analysis. Total PAH concentrations detected ranged from 0.88 to 426 mg/Kg. The highest concentration of total PAHs detected was found in a sample collected from soil boring DB-6.

<u>BTEX</u> Ten soil samples were submitted for BTEX analysis. The 10 samples included one field duplicate.

As shown in Table G-2, laboratory analyses indicated that at least one BTEX compound was detected in eight of the 10 samples submitted for analysis. Individual BTEX compounds were detected in the following concentration ranges:

- benzene 3.0 to 24,000 ug/Kg;
- toluene 5.1 to 1,800 ug/Kg;
- ethylbenzene 3.7 to 110,000 ug/Kg; and
- total xylenes 9.1 to 53,000 ug/Kg.

The highest concentration of BTEX was detected in a sample collected from soil boring DB-6.

Cyanide Eleven soil samples were submitted for total cyanide analysis. The 11 samples included one field duplicate.

Laboratory analysis indicated the presence of total cyanide in 2 of the 11 samples submitted for analysis. Total cyanide was detected at concentrations of 4.6 and 12 mg/Kg in samples collected from test trenches TTF3 and TTF2, respectively.

<u>Remediation Parameters</u> Two composite samples (i.e., Composite #14 and Composite #15) collected during drilling and test trenching activities conducted on the City Property were submitted for treatment parameter analyses as describe din Section 3.0 of this report. A summary of the discrete soil samples used to create the composite samples is provided in Appendix D. Table G-4 provides the results of these analyses.

<u>RCRA Characterization</u> Five soil samples collected from the City Property were submitted for hazardous waste characterization analyses. All five of the samples were composites (i.e., Composite #6 through Composite #10). A summary of the discrete soil samples used to create the composite samples is provide in Appendix D.

As indicated by the results provided in Table G-6, none of the five samples collected on the City Property demonstrated a RCRA characteristic.

5.2 Groundwater

This section presents the field observations made during the groundwater sampling program and the results of laboratory analyses completed on groundwater samples.

5.2.1 Field Observations

Field observations of potential impacts to groundwater include the presence of odors, sheens, or NAPLs. Field observations of impacts to groundwater were recorded on the groundwater sampling forms provided in Appendix I.

Field observations of impacts to groundwater (i.e., odors, sheens, or NAPL) were noted in all of the monitoring wells sampled, with the exception of wells W-42D and W-45D. Tar or naphthalene-like odors were the most commonly noted field indication of impacts, and were observed while purging 10 of the monitoring wells. A sulfur-like odor was noted in monitoring well W-13. Sheens were observed on the surface of water purged from eight monitoring wells. A dense NAPL (DNAPL) and brown material floating on the water surface, was observed in monitoring wells W-20I and W-43D. Light NAPL (LNAPL) was observed in monitoring well W-16. These field observations are generally consistent with observations made during the Phase III ESI groundwater sampling program.

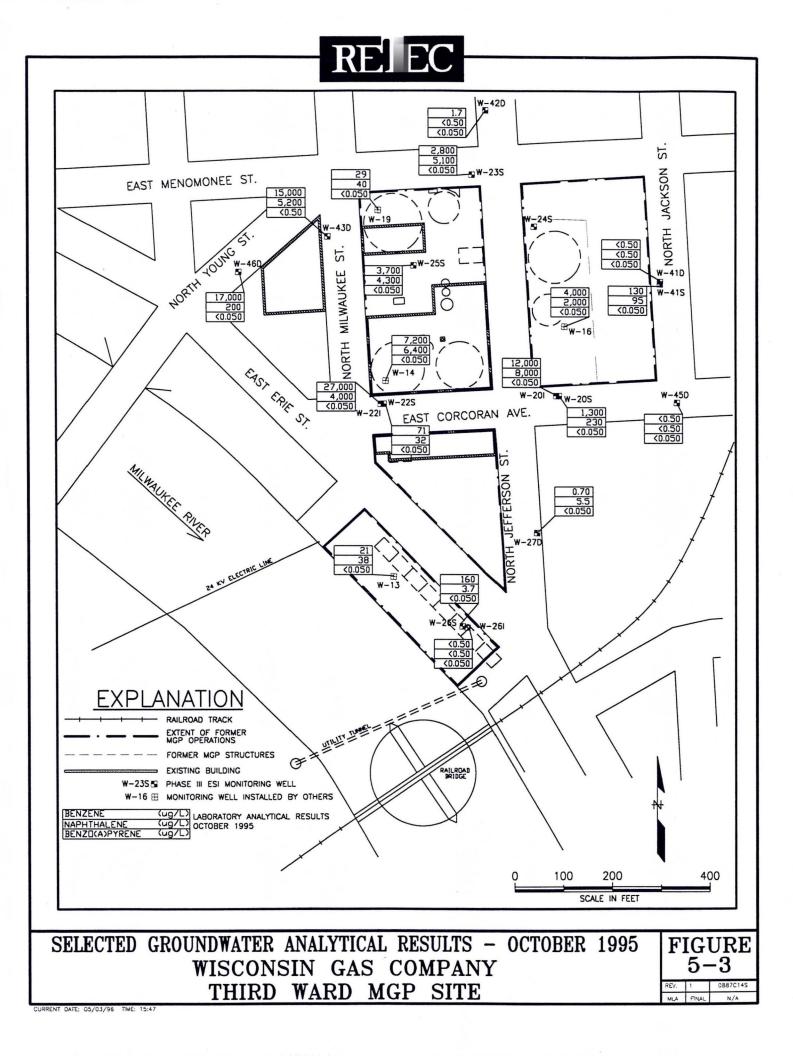
5.2.2 Laboratory Analytical Results

The following is a summary of laboratory analytical results for groundwater samples collected during the SSPI. Tabulated analytical results are provided in Table G-8 of Appendix G. The laboratory data sheets are provided in Appendix H. Figure 5-3 is a plan-view map showing the results of selected analyses completed on groundwater samples.

<u>PAHs</u>

Twenty-one groundwater samples, including two field duplicates, were submitted for PAH analysis. Table G-8 presents the concentrations detected for individual PAH compounds and a summation of total PAHs. Laboratory results for PAHs are reported in micrograms per liter (ug/L). Table G-8 presents the calculated total PAH concentrations in both ug/L and mg/L.

Laboratory analyses indicate the presence of at least one individual PAH compound in 17 of the 21 groundwater samples submitted for analysis. Total PAH concentrations detected ranged from 26 to 9,487 ug/L (0.026 to 9.5 mg/L). The highest concentration of total PAHs was detected in a sample collected from W-20I.


BTEX

Twenty-one groundwater samples, including 2 field duplicates, were submitted for BTEX analysis. Table G-8 presents the BTEX results in ug/L.

Laboratory analyses indicated the presence of at least one BTEX compound in 18 of the 21 groundwater samples submitted for analysis. Individual BTEX compounds were detected in the following concentration ranges:

- benzene 0.7 to 27,000 ug/L;
- toluene 0.7 to 5,500 ug/L;
- ethylbenzene 1.6 to 4,400 ug/L; and
- total xylenes 4.9 to 7,200 ug/L.

The highest concentration of total BTEX was detected in the sample collected from W-22I.

Cyanide

Twenty-one groundwater samples, including two field duplicates, were submitted for total cyanide analysis. If total cyanide was detected in a sample, the sample was then analyzed for weak acid dissociable (WAD) cyanide. Total and WAD cyanide results shown in Table G-8 are reported in mg/L.

Total cyanide was detected in 19 of the 21 groundwater samples analyzed. The total cyanide concentrations reported ranged from 0.018 to 20 mg/L. For these samples, the corresponding WAD cyanide analyses detected WAD cyanide in nine samples at concentrations ranging from 0.008 to 0.13 mg/L. The highest concentrations of total and WAD cyanide were detected in a sample collected from W-26S.

Dissolved Metals

Twenty-one groundwater samples including, 2 field duplicates, were submitted for analysis of dissolved calcium, iron, and magnesium. Table G-8 presents the results of the dissolved metals analyses in ug/L.

Nutrient and Inorganic Parameters

Ten groundwater samples were submitted for nutrient and inorganic parameter analyses. Duplicate samples for these parameters were not collected. Table G-8 presents the results of these analyses in mg/L. As is indicated in Table G-8, certain nitrogen and phosphorus compounds were detected in groundwater at the Site.

Microbial Enumerations

Ten groundwater samples were submitted for microbial enumerations as described in Section 3.0 of this report. Duplicate samples for microbial enumerations were not collected. The results of the microbial enumerations analyses are presented in Appendix J. As is indicated in the data tables provided in Appendix J, microbial populations were detected in 5 of the 10 samples submitted for analysis.

6.0 SUMMARY AND CONCLUSIONS

The following provides a summary of the findings resulting from the SSPI. Summary statements are organized into the following topics:

- geology and occurrence of former subsurface MGP structures;
- soil conditions; and
- groundwater conditions.

6.1 Geology and Occurrence of Structures

6.1.1 Peters=Johnson Property

- Numerous subsurface structures were encountered during test trenching activities.
- In some areas of this property, non-soil fill materials (e.g., bricks and concrete) comprise up to 80% of the materials encountered in the Upper Zone.
- A portion of Gas Holder #4 contained 20 to 70% of brick materials.
- Gas Holder #5 was found to have a concrete foundation which extended to a depth of 10 feet below ground surface.
- Numerous bricks were observed inside of the Area B tar well.
- Inside of Gas Holder #4 water was encountered at a depth of approximately nine feet.
- Inside of the Area B tar well, water was encountered at a depth of approximately 2.5 feet below the ground surface.

6.1.2 City Property

- Below the water table, silty sand and gravel consistent with the Middle Zone was encountered to depths of 18 feet below the ground surface in Area G.
- Numerous subsurface structures (e.g., gas storage structures, floors and piping) were encountered during test trenching activities completed in Areas E and F.
- Concrete vaults and building foundations, not related to former MGP operations, were noted to exist in Area G.
- Non-soil fill materials consisting of bricks, concrete, wood, coal slag, ash and cinders were encountered throughout the Upper Zone.
- Outside of structures the depth to water varied between 4 and 11 feet below the ground surface.
- Inside of Gas Holder #3 and Oil Reservoir #1, the depth to water was approximately seven feet.

6.2 Soil Conditions

6.2.1 Field Observations of Impacts

<u>Peters=Johnson Property</u>

- Gasoline-like odors, gray colored staining, and elevated field screening results were noted above and adjacent to the Gas Holder #5 foundation, which is located in Area A near the location of a former UST which is not related to MGP operations.
- Naphthalene-like odors and elevated field screening results were noted in soil adjacent to and nearby Gas Holder #5 and the Area B tar well.
- Strong naphthalene-like odors and sheen were noted in the debris and water encountered in the Area B tar well.

City Property

- Green colored soils and strong petroleum-like odors were noted in the southern part of Gas Holder #3.
- No significant field screening results, odors, or staining were noted in the northern part of Gas Holder #3.
- Strong odors and sheens were noted at the water table within Oil Reservoir #1.
- Petroleum-like odors and green colored staining was observed at the water table in the southern part of Area E, all of Area F, and the southern three-quarters of Area G.

6.2.2 Results of Field Analysis

Peters=Johnson Property

- Thirteen of the 23 soil samples subjected to field analysis had results greater than 100 ppm total PAHs.
- Five of the 10 samples collected from Area A had results greater than 100 ppm total PAHs.
- All four of the samples collected from Area B had results greater than 100 ppm total PAHs.
- Four of the nine samples collected from Area C had results greater than 100 ppm total PAHs.

City Property

- Twelve of the 24 soil samples subjected to field analysis had results greater than 100 ppm total PAHs.
- Two of the six samples collected from Area E had results greater than 100 ppm total PAHs.
- One of the three samples collected from Area F had results greater than 100 ppm total PAHs.
- Nine of the 15 samples collected from Area G had greater than 100 ppm total PAHs.

6.2.3 Results of Laboratory Analyses

Peters=Johnson Property

- Total PAHs were detected at concentrations ranging from 9.98 to 491 mg/Kg with the highest concentration detected in a sample collected from test trench TTB2.
- Benzene was detected at concentrations ranging from 6.7 to 20,000 ug/Kg with the highest concentration detected in a sample collected from test trench TTC1.
- Total cyanide was detected at concentrations ranging from 1.4 to 100 mg/Kg with the highest concentration detected in a sample collected from test trench TTC1.
- One sample (i.e., sample TTC1-4 (3-4)) collected from the Peters=Johnson Property exhibited the characteristics of hazardous waste according to 40 CFR Part 261.

City Property

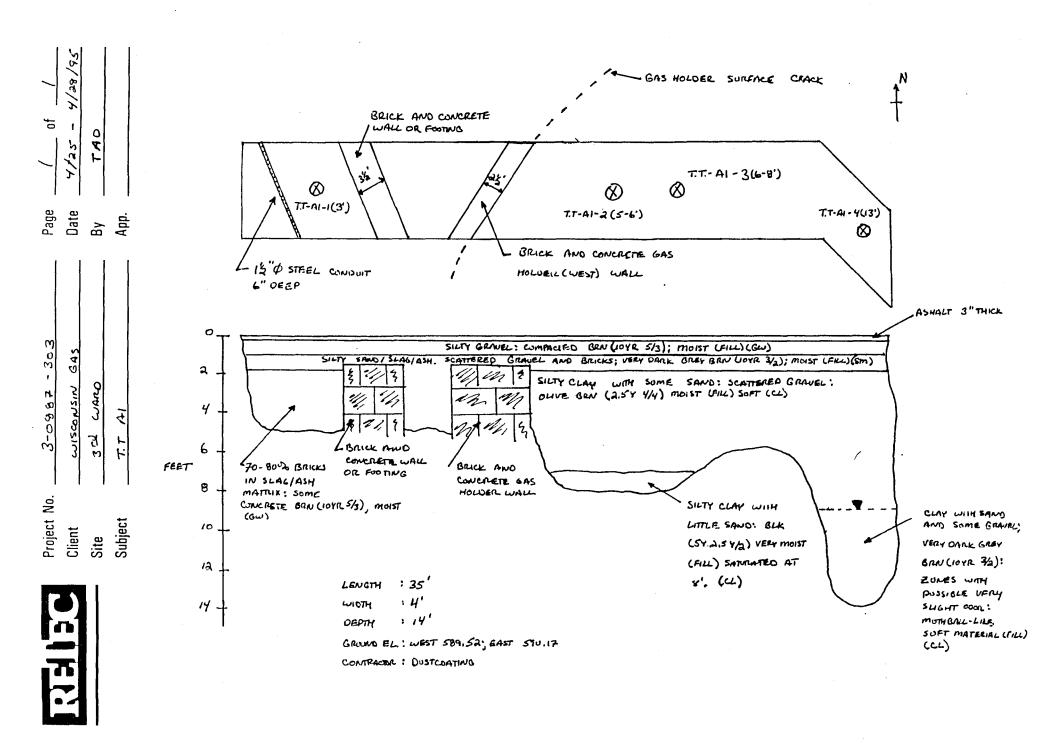
- Total PAHs were detected at concentrations ranging from 0.88 to 426 mg/Kg with the highest concentration detected in a sample collected from soil boring DB-6.
- Benzene was detected at concentrations ranging from 3.0 to 24,000 ug/Kg with the highest concentration detected in a sample collected from test trench TTF2.
- Total cyanide was detected in two samples (i.e., samples collected from trenches TTF3 and TTF2) at concentrations of 4.6 and 12 mg/Kg, respectively.
- None of the five composite samples collected from the City Property exhibited characteristics of a hazardous waste according to 40 CFR Part 261.

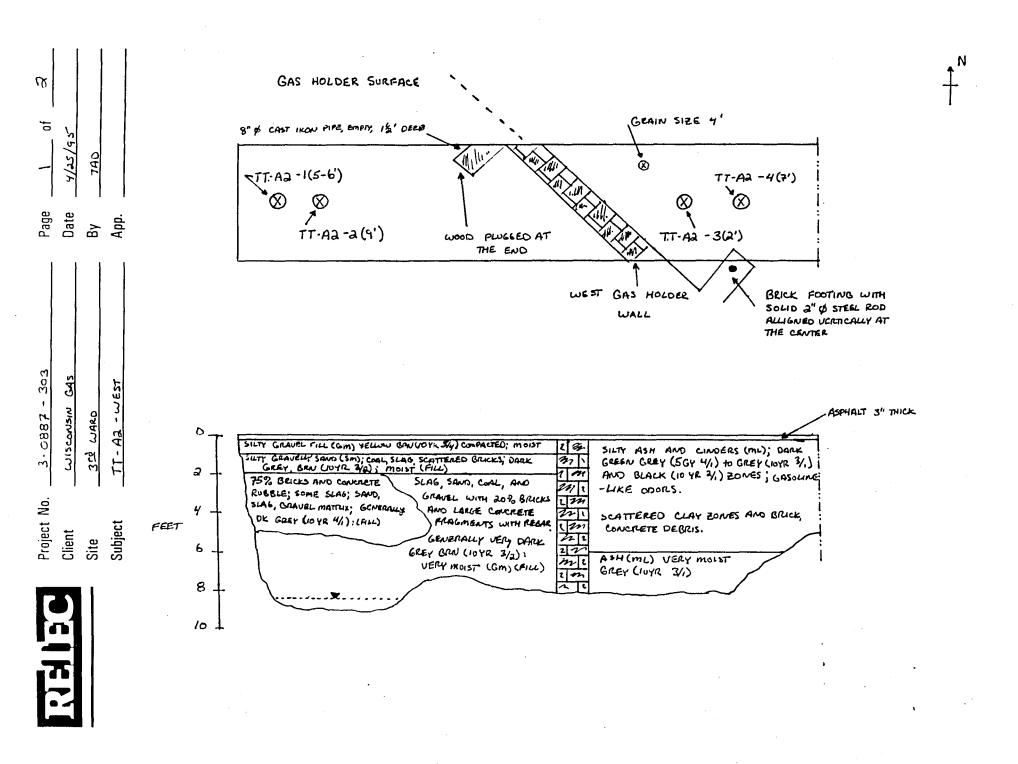
6.3 Groundwater Conditions

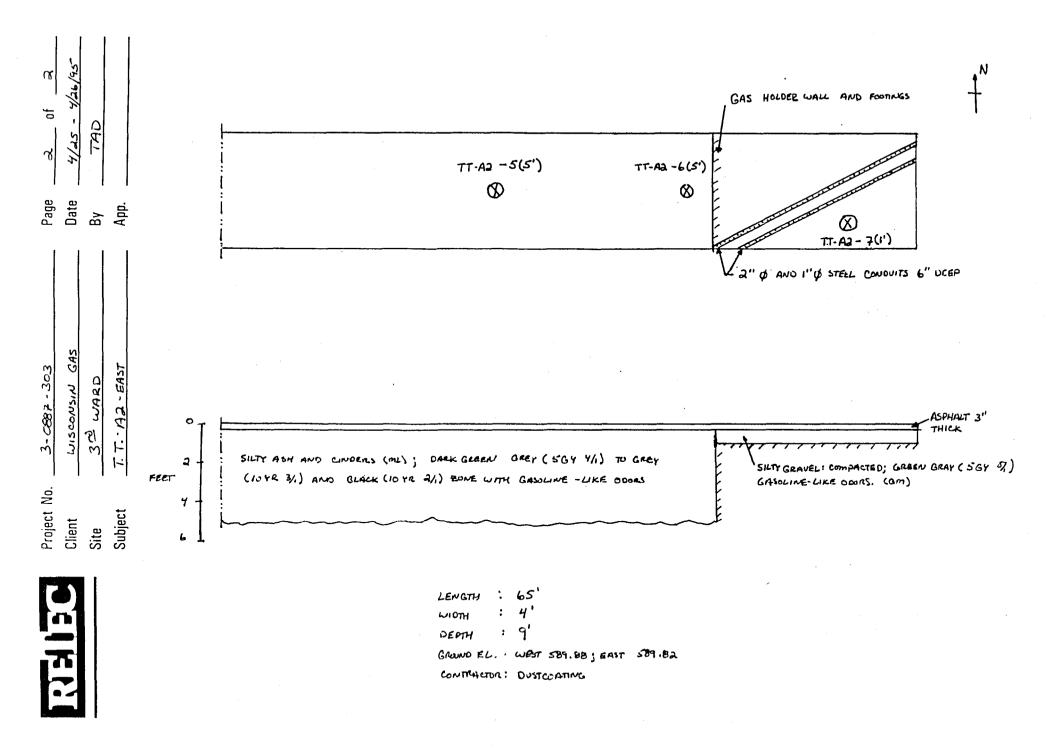
6.3.1 Hydrogeology

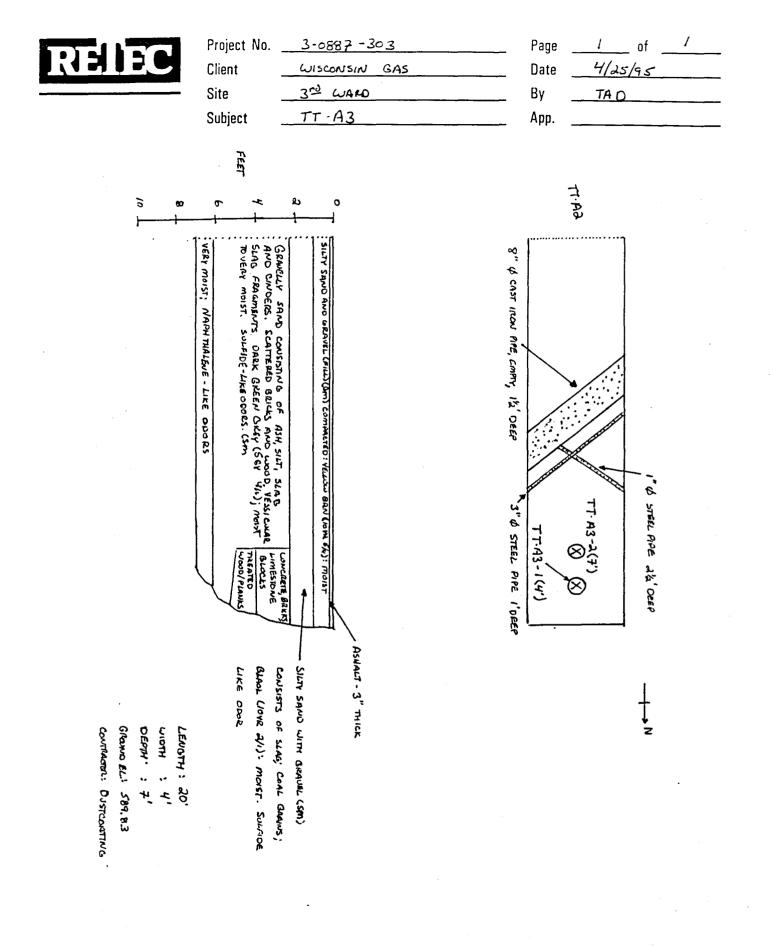
• Water level measurements indicate that the direction of groundwater flow at the water table is generally towards the south-southeast.

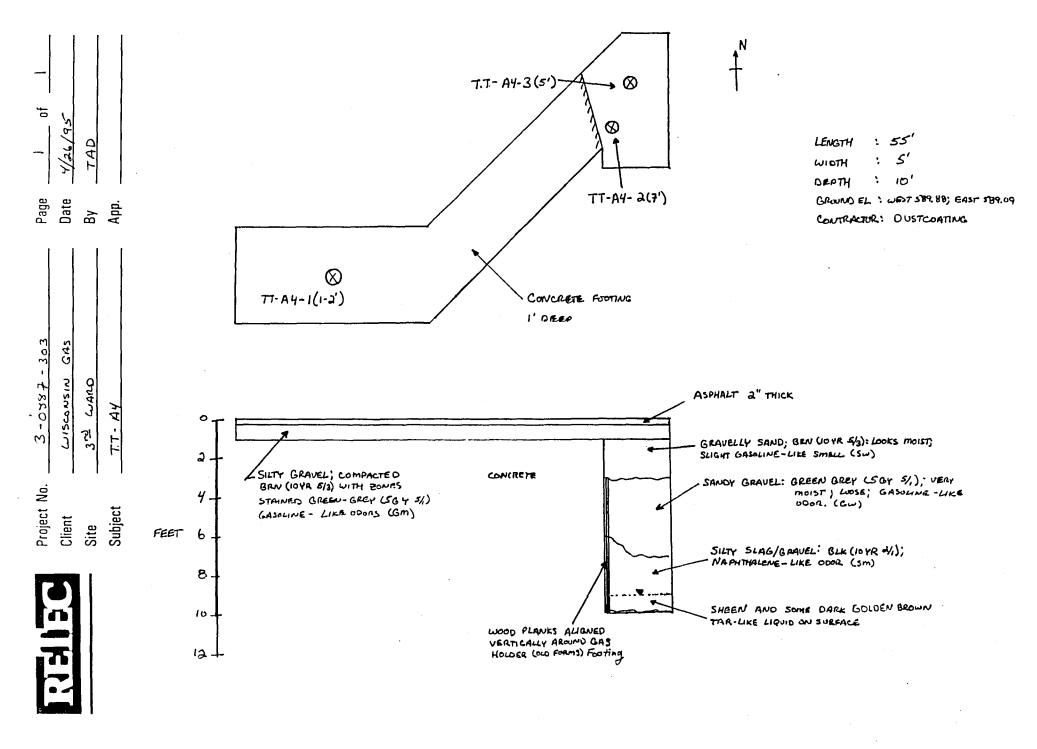
6.3.2 Field Observations of Impacts

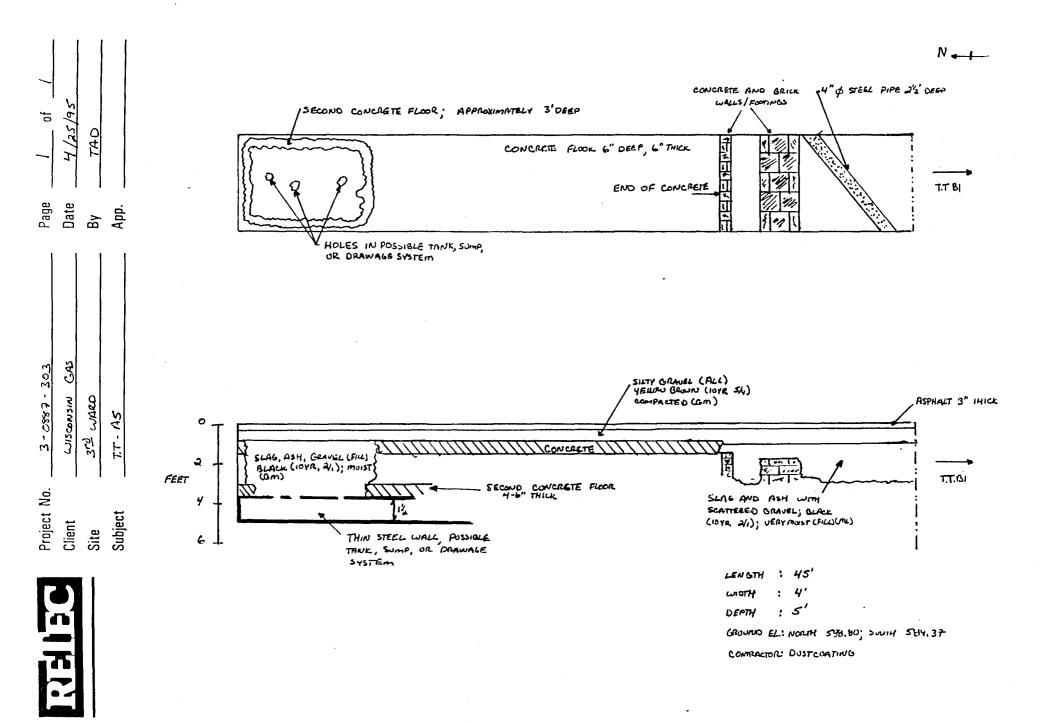

- Field indications of impacts (i.e., odors, sheens, or NAPLs) to groundwater were noted in all of the monitoring wells sampled at the Site with the exception of wells W-42D and W-45D.
- Tar or naphthalene-like odors were the most commonly noted field indication of impacts, and were observed in 10 of the monitoring wells.
- DNAPL was observed in monitoring wells W-20I and W-43D.
- LNAPL was observed in monitoring well W-16.

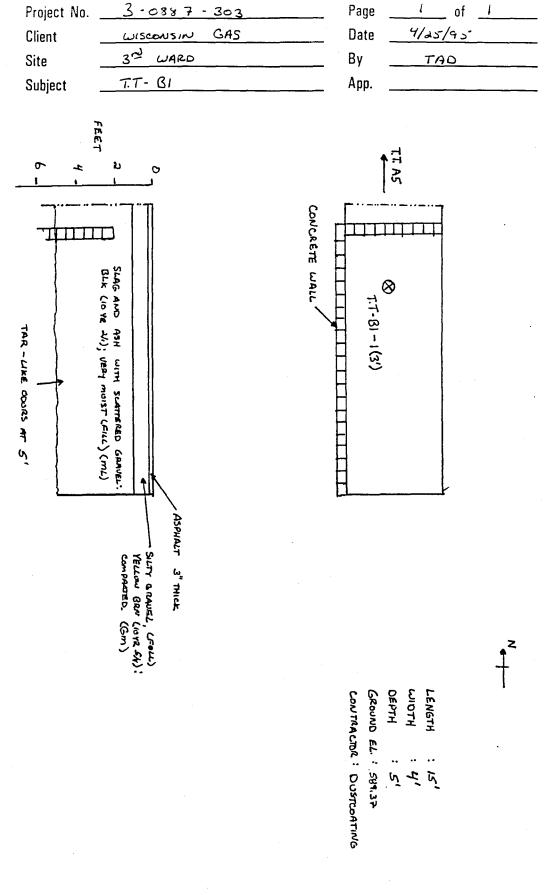

6.3.3 Results of Laboratory Analyses

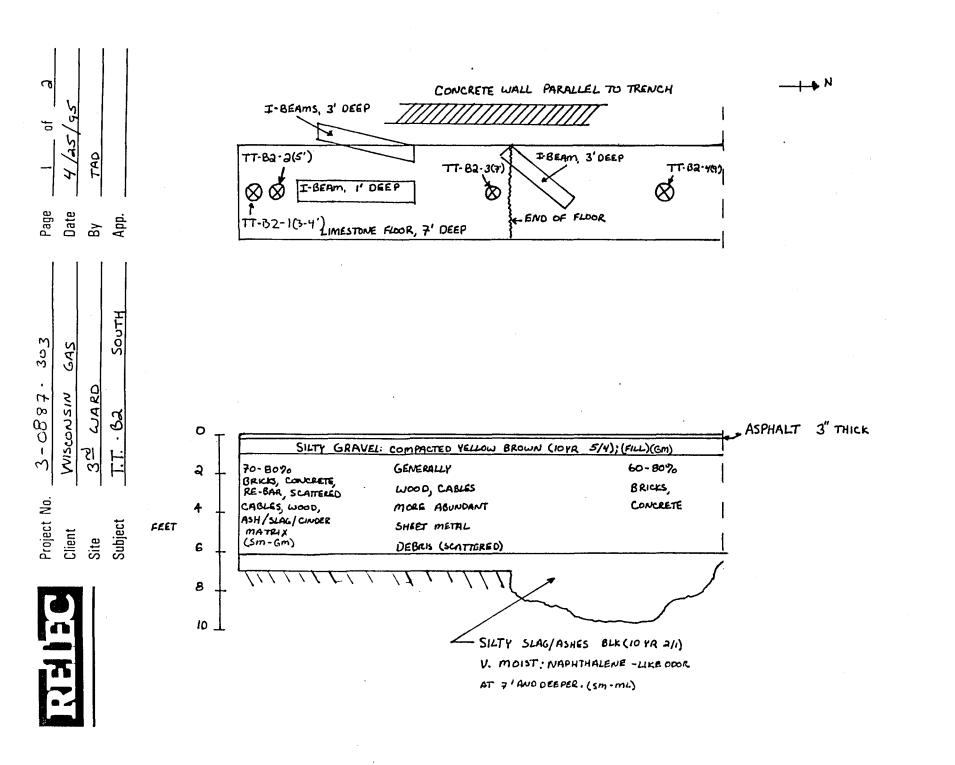

- Total PAH concentrations detected ranged from 26 to 9,487 ug/L (0.026 to 9.5 mg/L). The highest concentration of total PAHs was detected in a sample collected from well W-20I.
- benzene concentrations detected ranged from the 0.7 to 27,000 ug/L. The highest concentration of benzene was detected in the sample collected from well W-22I.
- Total cyanide concentrations detected ranged from 0.018 to 20 mg/L. The corresponding WAD cyanide analyses detected WAD cyanide at concentrations ranging from 0.008 mg/L to 0.13 mg/L. The highest concentrations of total and WAD cyanide were detected in the sample collected from well W-26S.
- Microbial enumerations analyses indicated that microbial populations were detected in 5 of the 10 groundwater samples submitted for this analysis.

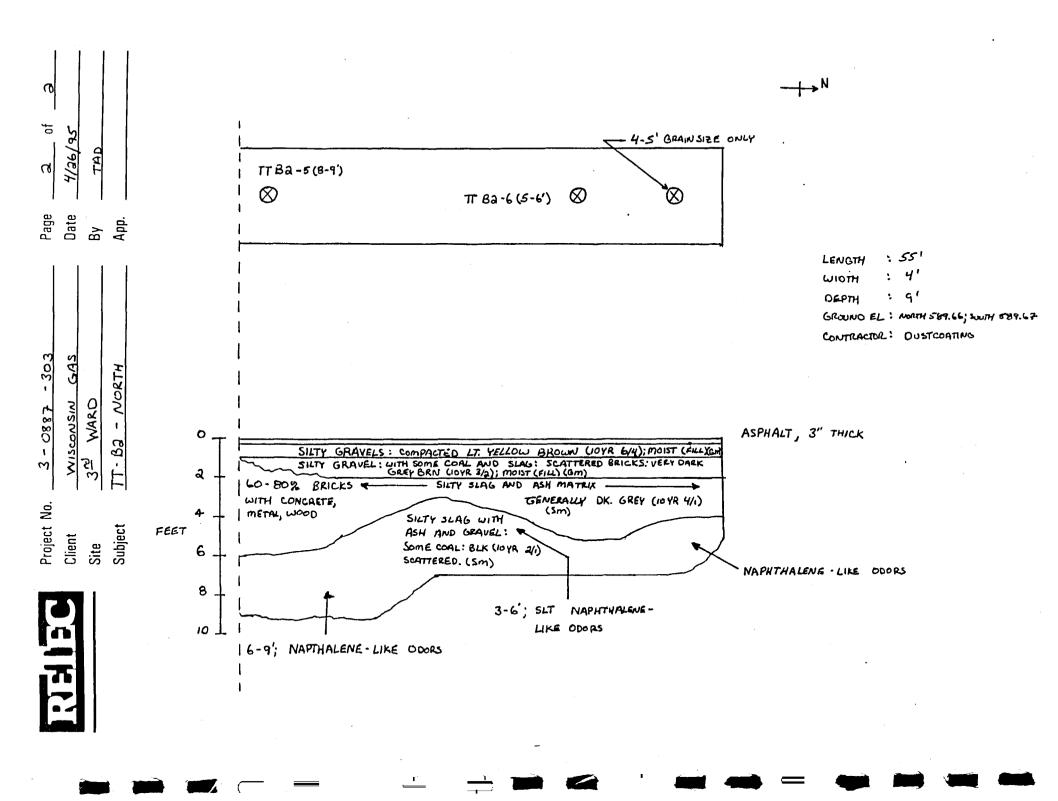

APPENDIX A

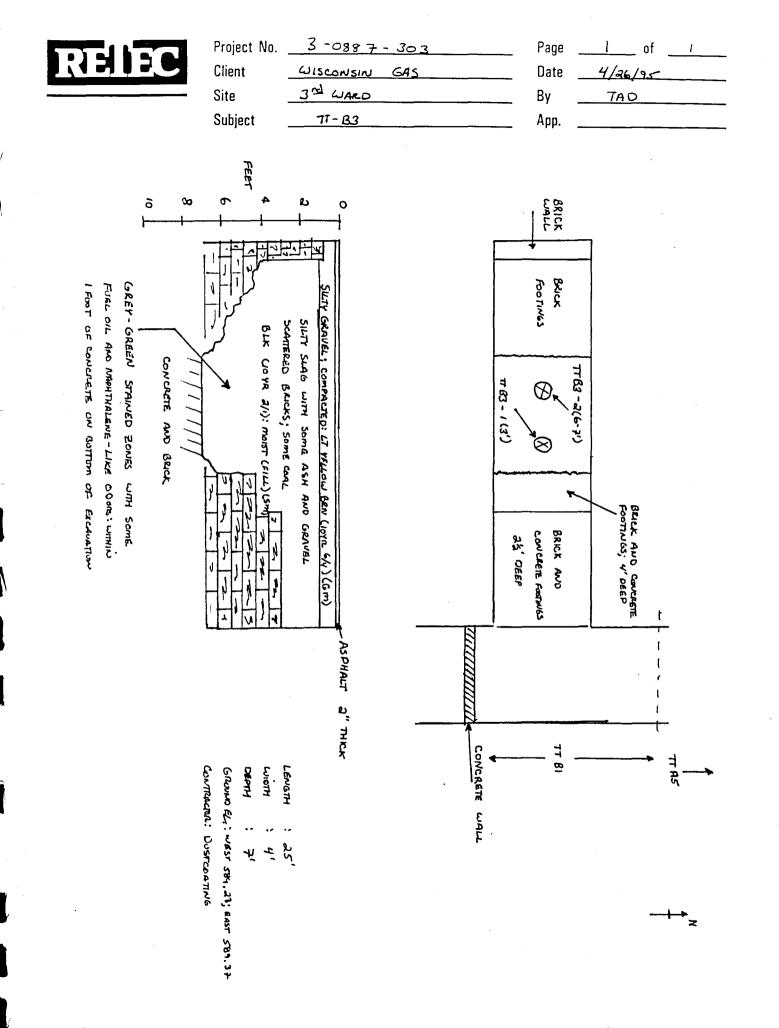

TEST TRENCH DIAGRAMS

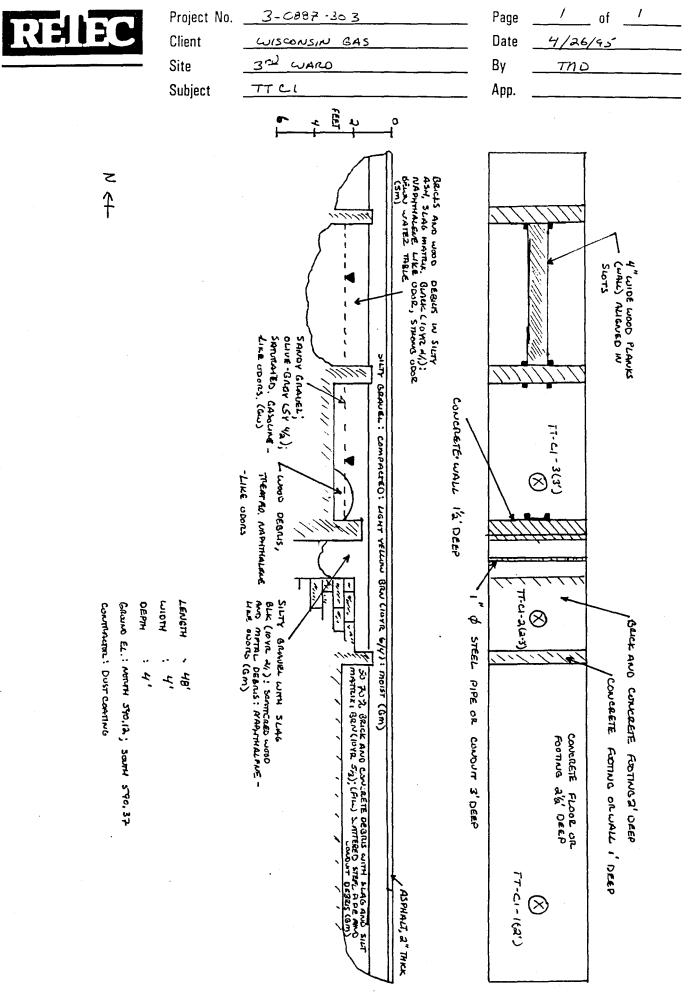


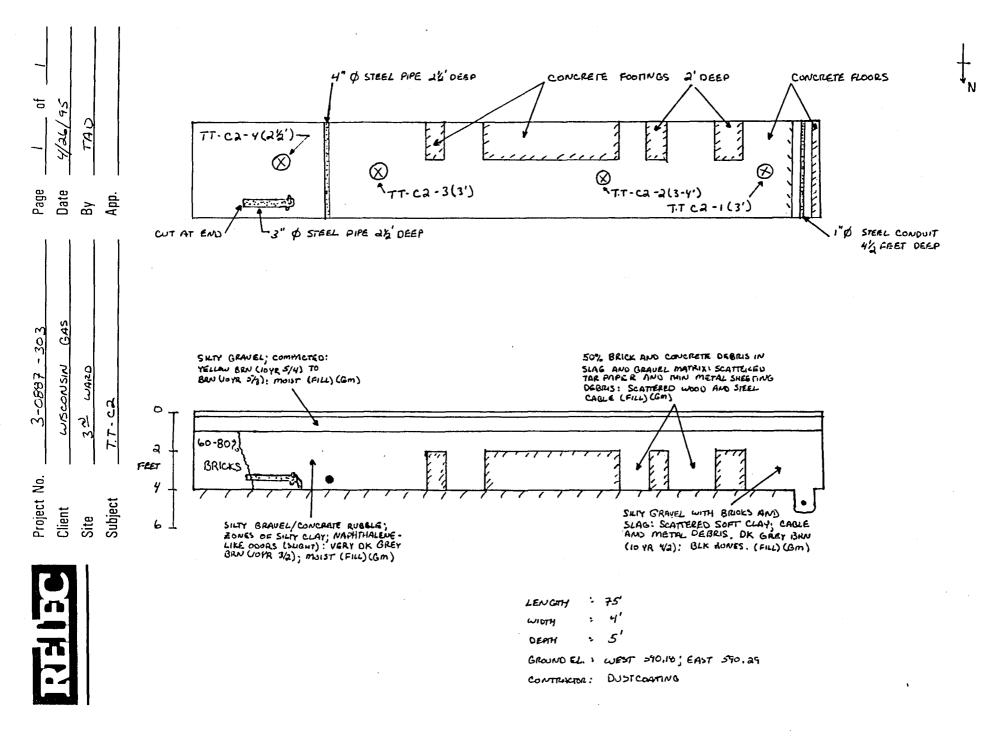


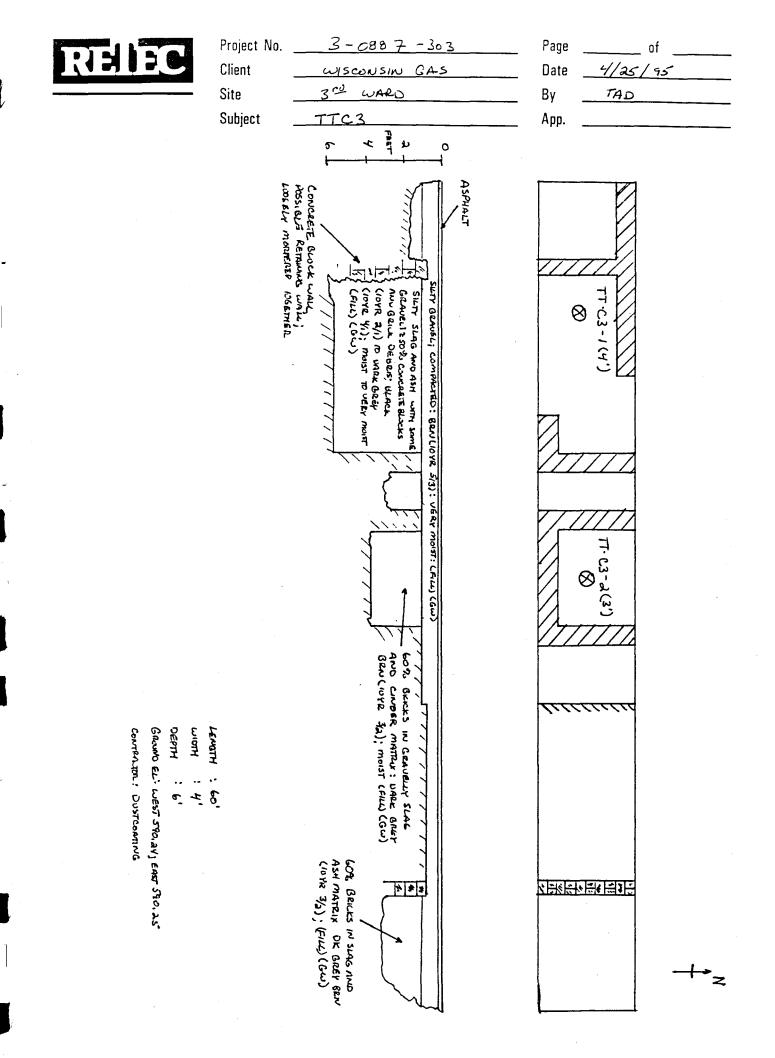

.


н

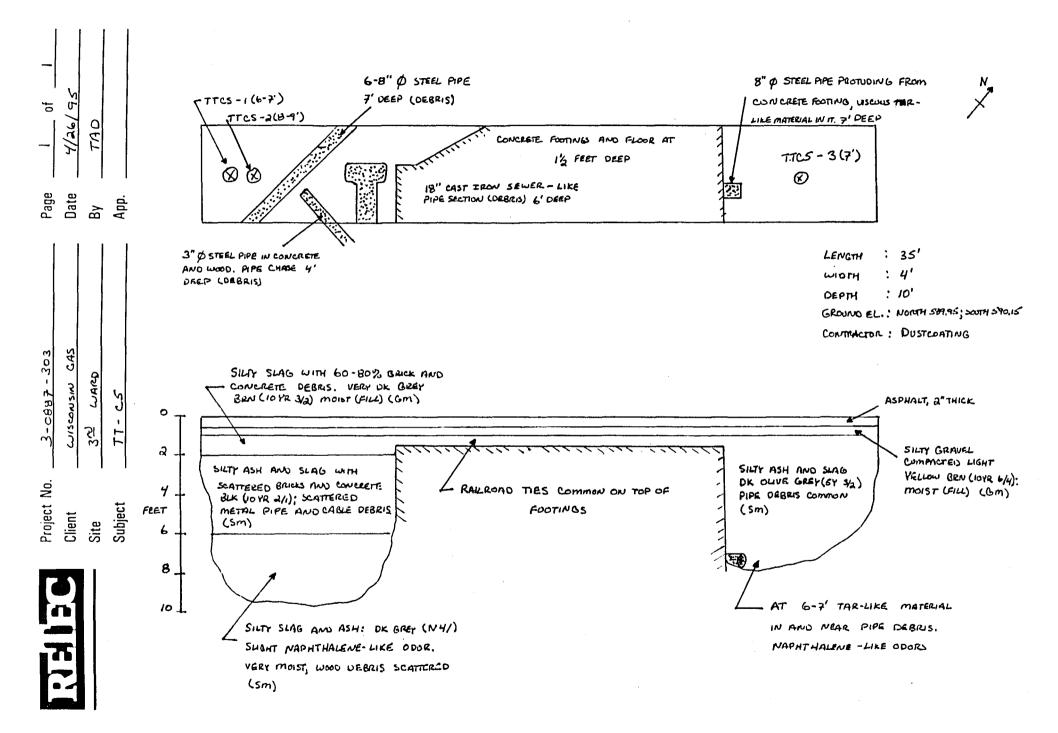


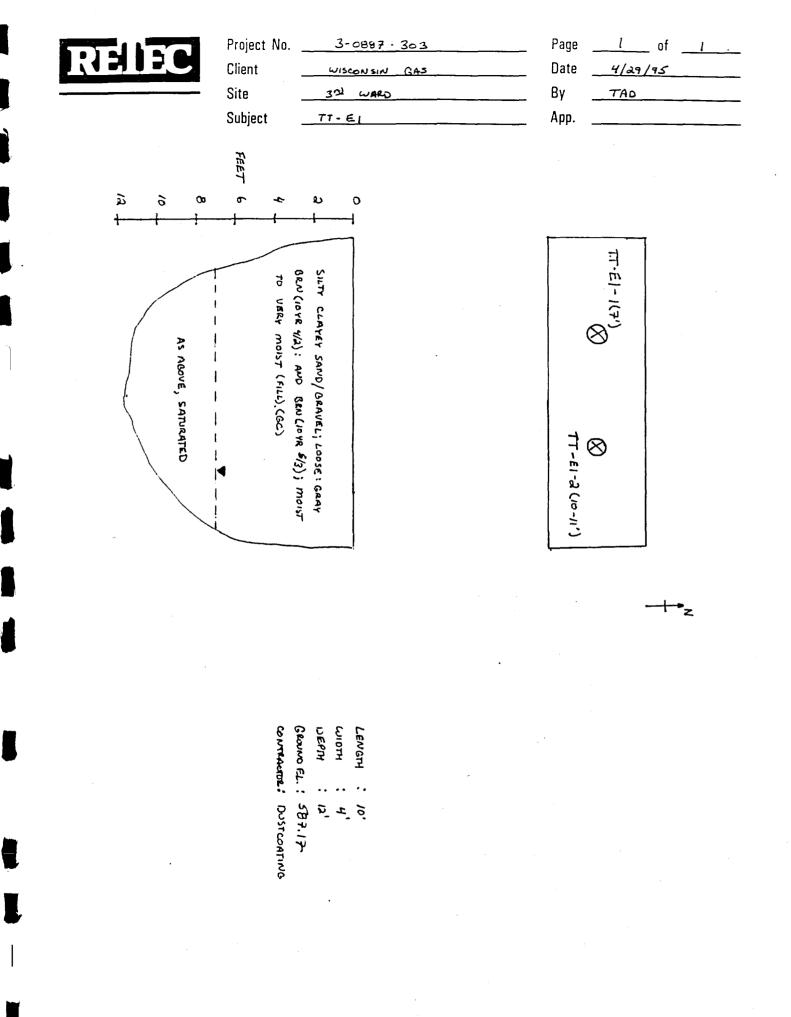


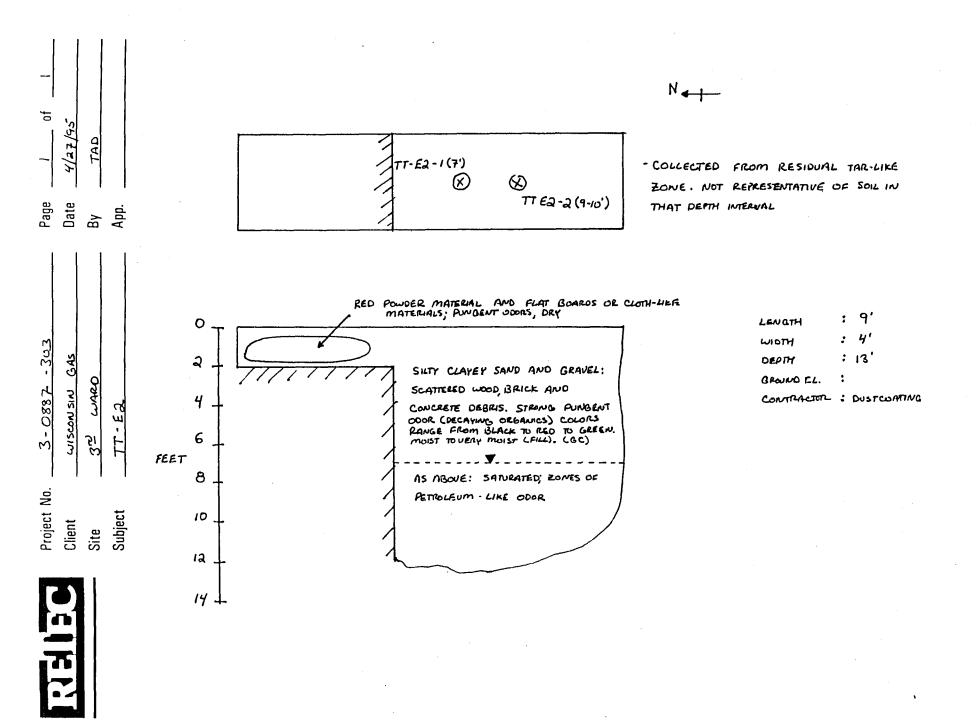


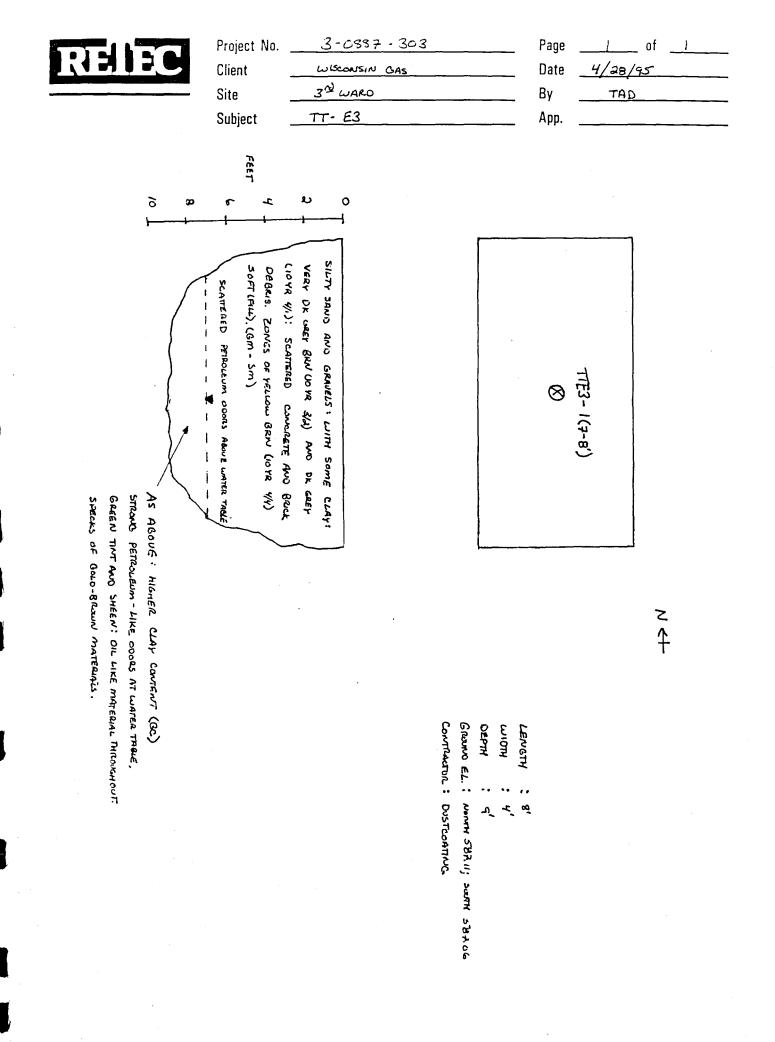


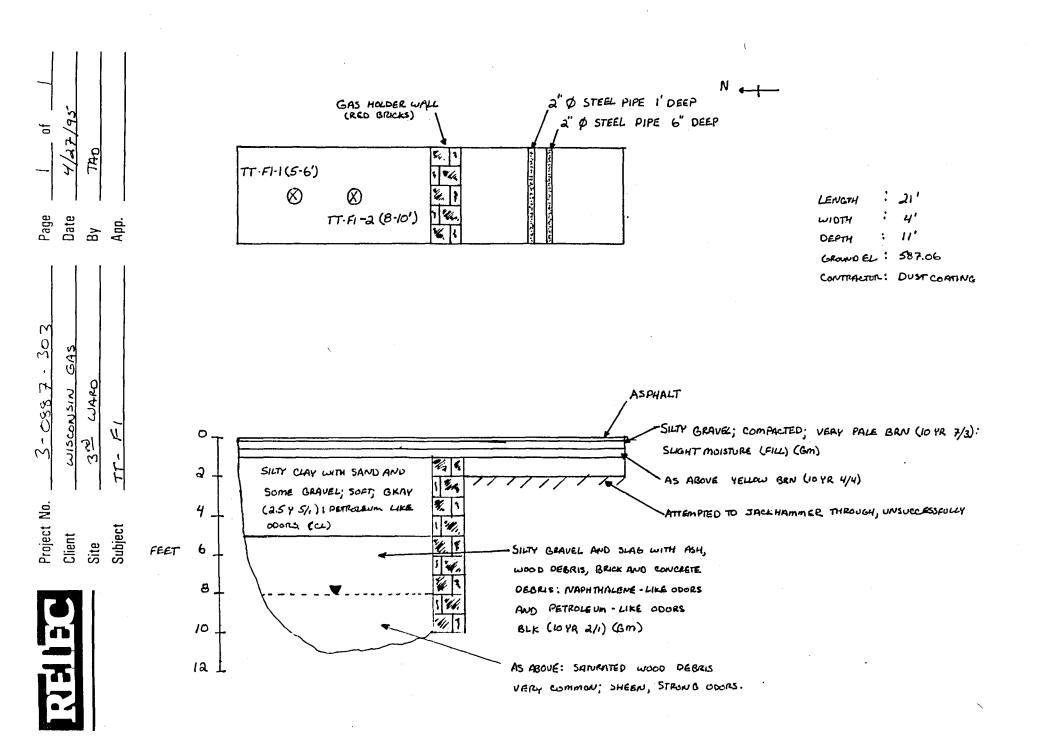
____`

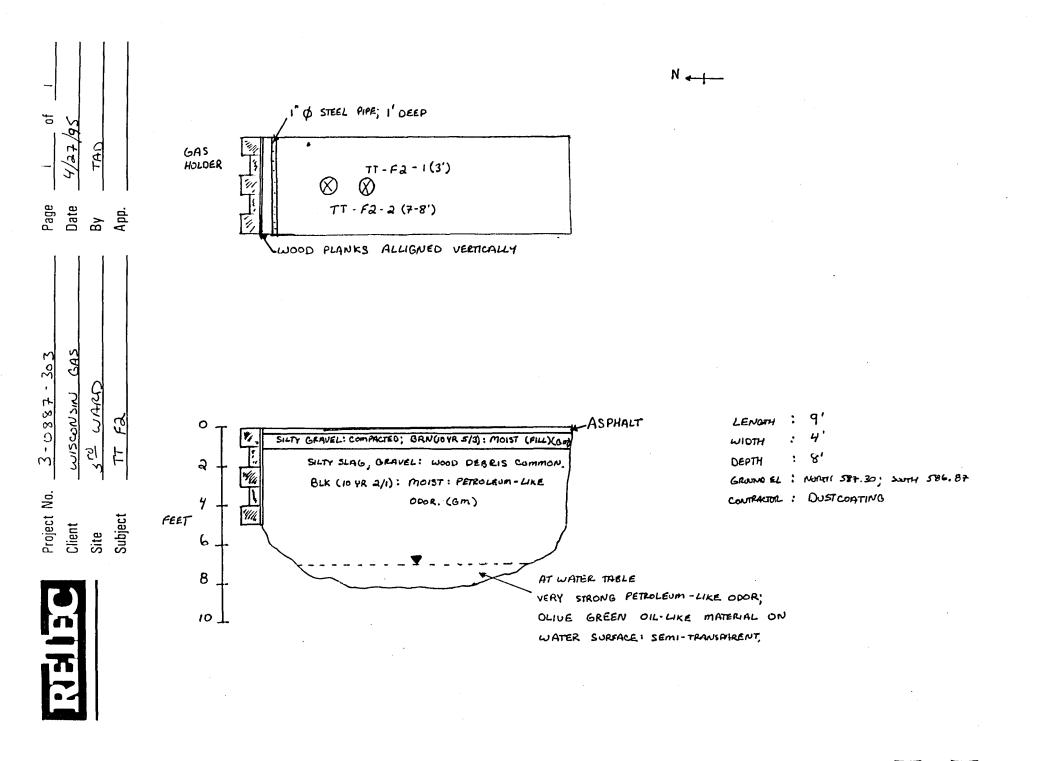


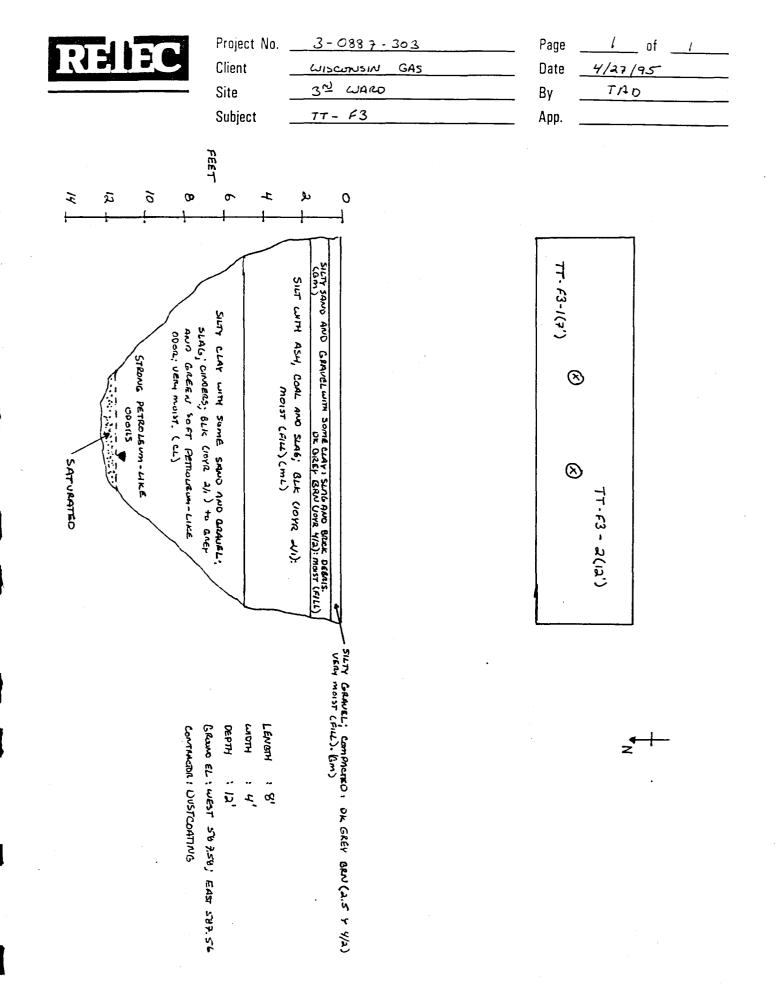


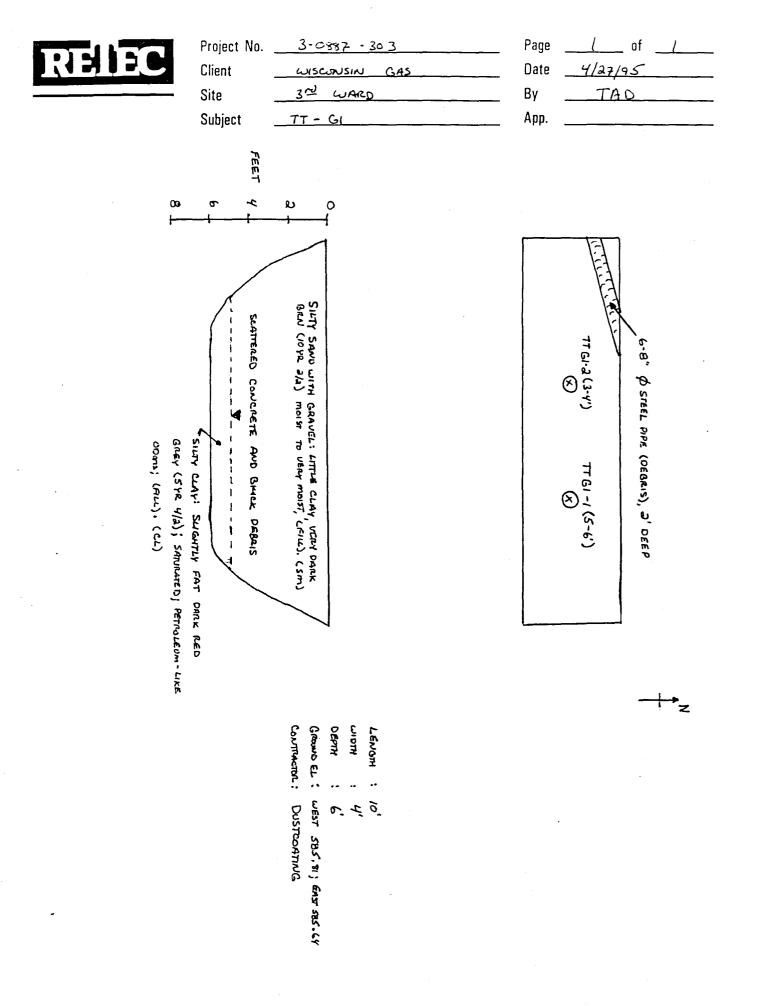


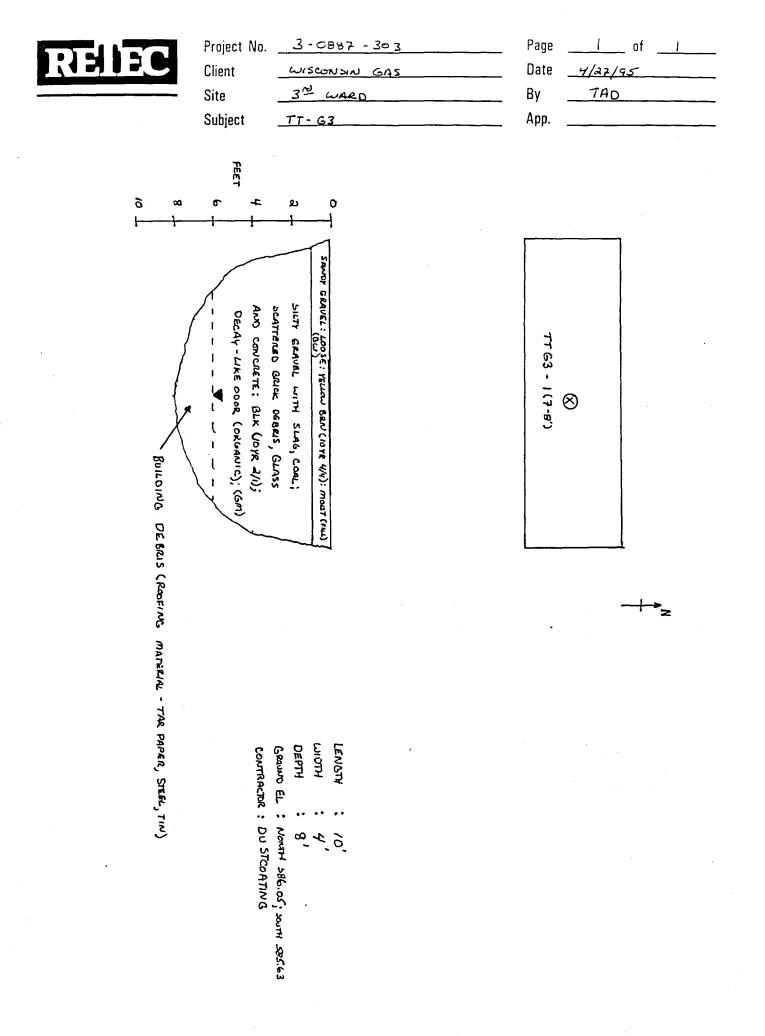

GROWD EL .: WEST SYD, 01; EAST 5 TO. 60

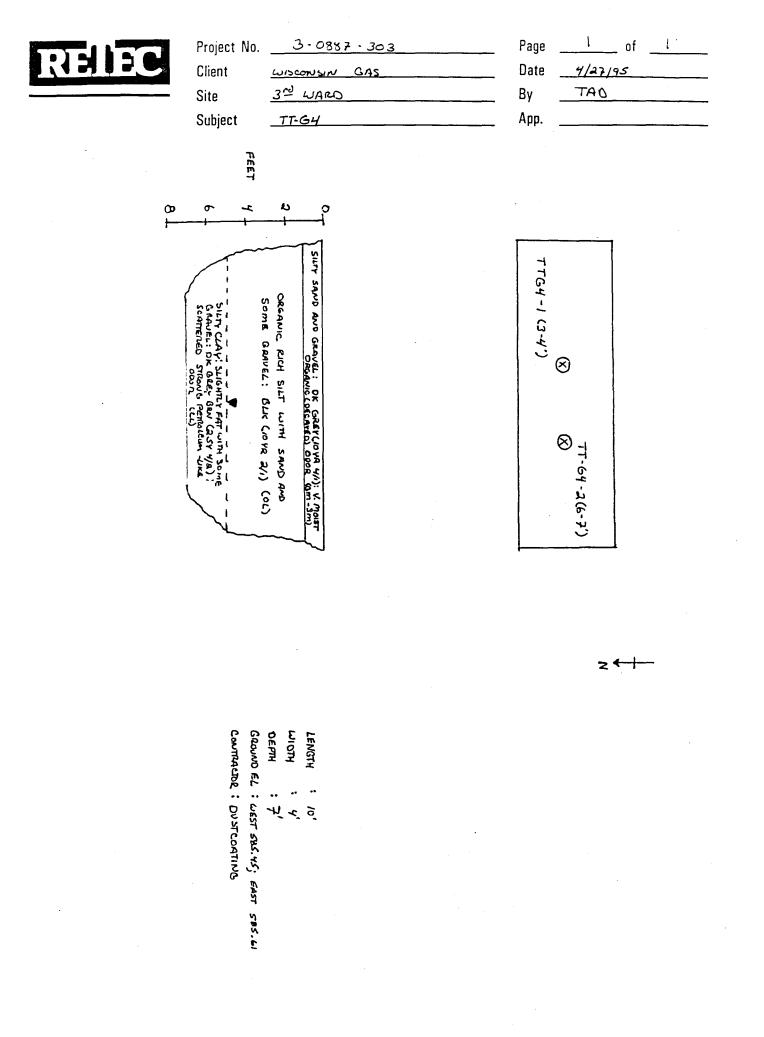

CONTRACION : DUSTODATING

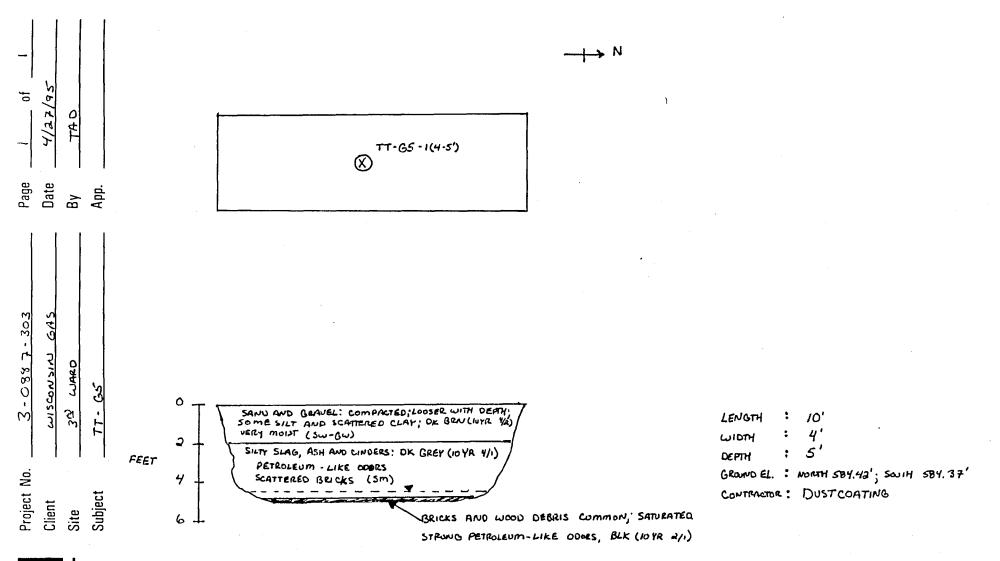












		TT - G2	Арр
Leun-like odor : Saturati Shern at water Tagle. (:	FEET 4 (IOVR 211); MOIST (FILL); (SM- GM) 6 (CONCRESTE DEBRIS IN SLADAWS ASH MARKY;		$\bigotimes \qquad \bigotimes \qquad \bigotimes$ TT·Ga- $2(5-6') \qquad TTGa-1(3-4')$
	CUMPRACTIVE: DUST COATING		2

APPENDIX B

BOREHOLE ABANDONMENT FORMS

(I) GENERAL INFORMATION		(2) FACIL	ITY NAME				
Well/Drillhole/Borehole	County		l Well Owner				
Location	Milwankee	Wisconsin Ges Company					
		Present	Well Owner				
MW 1/4 of MW 1/4 of Sec. 3	3; T. 7 N; R. 22 TW	6.	Scons	in Gas Co	an peas		
(If applicable)		Street o	r Route				
Gov't Lot	Grid Number	54	00 N	Green B	Sh. ALP		
Grid Location			tate, Zip Cod				
	<u>5/22.09ft.</u> E. U.W.				3709		
Civil Town Name		Facility	Well No. and	Vor Name (If Applicab	3209 Die) WI Unique Well No.		
Civil Town Maine		DB		(wi binque wen No.		
Street Address of Well			For Abandon	mast			
Succe Address of Well							
City Willows		25%	Abandonmen	omplete			
City, Village Milwen	kee						
		<u> </u>	2 <i>5–9-</i> 2		ويجمع ومساوي بمناز المراكل المراكلين		
WELL/DRILLHOLE/BOREHOLE		In Death	Water (Fr.				
Original Well/Drillhole/Borehole C	-	1° -	o Water (Feet				
(Date) <u>4-25-9</u>	5		Piping Rem		No 🛛 Not Applicable		
			Removed?		No 🖉 Not Applicable		
Monitoring Well	Construction Report Available?	1	Removed?		No Not Applicable		
🔲 Water Well		-	Left in Place?		⊠ No		
Drillhole	·	If No, E	xplain	Bore Gole			
Borehole	1	-					
		Was Ca	sing Cut Off	Below Surface?	Yes X No		
Construction Type:		Did Sea	ling Material	Rise to Surface?	Yes 🗌 No		
	(Sandpoint) Dug	Did Mai	erial Settle A	fter 24 Hours?	Yes 🗹 No		
Other (Specify)		If Yes	, Was Hole R	etopped?	Yes 🗍 No		
	······································	(5) Required	Method of F	Placing Sealing Materia			
Formation Type:				-			
Unconsolidated Formation	Bedrock		luctor Pipe-G		ctor Pipe-Pumped		
Total Well Depth (ft.) Casing Diameter (ins.)		Dump Bailer Other (Explain)					
		(6) Sealing			r monitoring wells and		
(From groundsurface)			Cement Gro		mitoring well boreholes only		
		. —	•	ncrete) Grout			
Casing Depth (ft.)					Bentonite Pellets		
			-Sand Slurry		Granular Bentonite		
Was Well Annular Space Grouted?			onite-Sand Sl		Bentonite - Cement Grout		
If Yes, To What Depth?	Feet		ped Bentonit	e '			
$\overline{\mathbb{O}}$			m (5.)	No. Yards, (Ciro	cle Mix Ratio		
Sealing Mater	ial Used	From (Ft.)	To (Ft.)	Sacks Sealant One	e) or Mud Weight		
		Surface	2.6				
Bentonite Cl	11/5	Juliace	3.5	1.5x 50 66			
			l				
_							
					{		
		<u> </u>	l	L			
() Comments:							
Name of Person or Firm Doing Sea	ling Work	(10)		DNR OR COUN			
Remedication Technolo		Date	Received/Insp	pected	District/County		
Signature of Person Doing Work	Date Signed						
UN-	6-1-95	Revi	ewer/Inspecto	r I	Complying Work		
Street br Route	Telephone Number		<u></u> _		Noncomplying Work		
#13 Wacouta FT400	(612)222-0841	Follo	w-up Necess	ary			
City, State, Zip Code							
St. Paul MR	55101						

Department of Natural Resources

(1) GENERAL INFORMATION		(2) FACIL	ITY NAME		·····	
Well/Drillhole/Borehole Cour	ity		u Well Owner	(If Known)		
Location	nilwankee	Wis	rcons, 4	Ger	Comp	r 4 L
	_ X z		111	the second distance of the second distance of the second distance of the second distance of the second distance		
1/4 of NW 1/4 of Sec. 33 ;	T. 7 N. R. 22 W	Lui.	scons:	n Ges	Comp	۹
(lf applicable)	······································	Street o	or Route			
Gov't Lot	Grid Number	540	20 N.	Green Be	:5 AV	۲ ८ .
Grid Location		City, S	tate, Zip Cod	e		
<u>4926.82</u> ft. 🛛 N. 🗌 S., <u>5</u>	<u>/29.86</u> ft. 🛛 E. 🗍 W.	M:1	wachee	, WI	5320	9
Civil Town Name		Facility	Well No. and	for Name (If App	licable)	WI Unique Well No.
			-1A			
Street Address of Well			For Abandon			
				Complete		
City, Village			Abandonmen			
Milwankee			25-9.	> 		
WELL/DRILLHOLE/BOREHOLE INI	ORMATION					
3) Original Well/Drillhole/Borehole Constru	iction Completed On	r' ·	o Water (Feel			
(Date) <u>4-25-95</u>			2 Piping Rem			Not Applicable
——————————————————————————————————————	· ·		Removed?			Not Applicable
	truction Report Available?		Removed?		es 🖸 No	
	Yes INo	-	Left in Place?		~ 🖾 No	>
Drillhole		II NO, E	xplain	Bore hole		
🖄 Borehole		West Co	C Off	D.1		
		1	-	Below Surface?		≍ ⊠ No
Construction Type:		1	-	Rise to Surface?		
Drilled Driven (Sand	point) 🔲 Dug	1	, Was Hole R	fter 24 Hours?		≈ ⊠ No
U Other (Specify)						es 🔲 No
		(5) Required	d Method of H	Placing Sealing M	aterial	
Formation Type:			ductor Pipe-G	ravity 🔲 C	onductor Pi	ipe-Pumped
Unconsolidated Formation	Bedrock	Dum	p Bailer		ther (Expla	un)
Total Well Depth (ft.) Casing	Diameter (ins.)	(6) Sealing	Materials		For mon	itoring wells and
(From groundsurface)		🗌 🗌 Neal	t Cement Gro	ut	monitori	ng well boreholes only
		Sand	i-Cement (Co	ncrete) Grout		
Casing Depth (ft.)			crete	1	Bento	onite Pellets
			-Sand Slurry			ılar Bentonite
Was Well Annular Space Grouted?] Yes 🗌 No 📋 Unknown		tonite-Sand Sl	- ,	🔲 Bento	onite - Cement Grout
If Yes, To What Depth?	Feet	🛛 🛛 Chip	ped Bentonit			
(7) Saalia a Matarial IIa				No. Yards,	(Circle	Mix Ratio
(7) Sealing Material Us	ed	From (Ft.)	To (Ft.)	Sacks Sealant or Volume	One)	or Mud Weight
		Surface	10			
Bentonite Chi	r 5	Juitace	10	3 × 5	D []	
				1	1	
				ļ		
					1	
		L	L	L		
(8) Comments:					<u> </u>	
	·	100	- 200-000 - PA P	DND	TINITE T	ISE ON EVERSON
Name of Person or Firm Doing Sealing W		(10)		DNR OR CO		ct/County
Remediction Tech- ignature of Person Doing Work Da	ologies, Inc		Received/Inst			LUCUMILY
Signature of Person Doing Work Da	te Signed	Dam	ewer/Inspecto	restanting and the second s		Complying Work
I what	6-1-95		CACINDIAN	•	S S I LL S S	Noncomplying Work
	lephone Number 6/2) 222-0841	E -11-	w-up Necess			toncomply and the one
		roud	w-up necess	чу		
City, State, Zip Code						
St. Perl MA SSI	0/	1				

hr.	CONFRAL INCODMATION		LON D	ACIL	TVALANC				
17	GENERAL INFORMATION				TYNAME	11011			
	Well/Drillhole/Borehole	County	1	-	Well Owner	-	· _		
	Location	Milwachee			nsin C	ر که د	Conp	544	
			P	resent	Well Owner				
	$\frac{Mh}{(\text{If applicable})}$ 1/4 of $\frac{Mh}{1/4}$ 1/4 of Sec. 3.	3_; T. 7_ N. R. 22_ Tw	14	1.50	onsin	Ges	Com	رديم	•
	(If applicable)	· ·			Route				
	Gov't Lot	Grid Number			00 N.	Gree	· 129	د ۸	1110
	Grid Location				ate, Zip Cod				
				-	-				
_		<u>5/25.03</u> ft. 🛛 E. 🔲 W.	1/1	7.75	Jay kee	<u>~~</u> .	<u>کے ل</u>	520	>7
	Civil Town Name					vor Name (II Applica	uble)	WI Unique Well No.
ï				0B-					
	Street Address of Well		R	eason I	or Abandon	ment			
-			5	Sm.	plins 1	Compl	ere		
	City, Village				Abandonmen				
	Milwanke	· ~			25/95	•			
		المرابا المريد الشاعد ويهات ومستجربي والمراجع	1	1/2					
<u> </u>	ELL/DRILLHOLE/BOREHOLE		1						
R	Original Well/Drillhole/Borehole C	-	(4) D	epth to	Water (Feet	.) _ 8			
	(Date) $4/25/95$	5	P	ump &	Piping Rem	oved?	🔲 Yes		Not Applicable
	· · ·			iner(s) l	Removed?		T Yes		Not Applicable
	Monitoring Well	Construction Report Available?	S	creen R	emoved?			Ни	Not Applicable
	Water Well	Yes No			eft in Place?	•		M N	K Not Applicable
					plain 1				
	Drillhole		1 "	110, 22		ore 40			
	Borehole	-	ا =						
			1		ing Cut Off]				≈ ⊠ No
	Construction Type:			id Seal	ing Material	Rise to Sur	face?		≈ 🔲 №
	Drilled Driven	(Sandpoint) Dug	D	id Mate	erial Settle A	fter 24 Hou	rs?		≈ 🖂 No
	Other (Specify)	(-= <u>F</u> -=) ==	l	If Yes,	Was Hole R	etopped?		ΠY	es 🗍 No
			L	<u> </u>		<u></u>			
	Formation Type:		··· _		Method of F	-	_		
		Bedrock		Cond	uctor Pipe-G	ravity		uctor P	ipe-Pumped
	Unconsolidated Formation	Bedrock		Dum	o Bailer		Othe	r (Expla	ain)
	Total Well Depth (ft.)	Casing Diameter (ins.)	(6) S	ealing N	Aaterials		F	or mon	itoring wells and
	(From groundsurface)			-	Cement Gro	117			ng well boreholes only
	(From groundsurface)			-	-Cement (Co			ioiiiwii	
				-	-		. —	1 n	'. D-11-4-
	Casing Depth (ft.)		_	Conc					onite Pellets
		·			Sand Slurry			-	ular Bentonite
	Was Well Annular Space Grouted?	🗌 Yes 🔲 No 🛄 Unknown		Bento	onite-Sand Sl	lurry	i L	Bento	onite - Cement Grout
	If Yes, To What Depth?	Feet		Chip	ed Bentonite	e	ł		
						No. Ya	rds		
M	Sealing Mater	ial Used	From	ı (Ft.)	To (Ft.)	/SacksSe	alant ````	rcle ne)	Mix Ratio or Mud Weight
		·				or Volu	me C		
			Sur	face	10	3×5	$\sim \prime \prime$		
	Bentonite	Chips			10	2 × 2	26		
_									
			1			1. A 1.			
	· · · · · · · · · · · · · · · · · · ·		<u> </u>			-	,		
			Į						
-					······			-+-	· · · · · · · · · · · · · · · · · · ·
			1						
<u> </u>			<u> </u>			1			
(8)	Comments:								
(9)	Name of Person or Firm Doing Sea	ling Work	1	(10)	FOR	<u>DNR</u> O	RCOU		USE ONLY
~1	Rame Distion Techn		1	Date	Received/Insp	pected		Distri	ict/County
	Signature of Person Doing Work	Date Signed	1						
	Signature of Person Louing Work	(0 - 1 - 95	1	Revie	wer/Inspecto	r			Complying Work
	I WAY	Telephone Number	1					IH®	Noncomplying Work
	Street br Route	(6/2) 222 - 0841	ĺ	<u> </u>					
	413 Waconta # 100	1012/202 -011	4	1.0110	w-up Necess	പു			
	City, State, Zip Code		1			an septembri A	essa de la C	Page 9	
	St. Paul, MIN -	55101			-				

(I) GENERAL INFORMATION		(2) FACILI	TYNAME		
Well/Drillhole/Borehole	County		Well Owner		
Location	Milwankee	L's	consin	<u>n 695</u>	Company
		1	Well Owner		
$\frac{MW}{(lf applicable)} 1/4 \text{ of } Sec. $	<u>83 ; T. 7 N; R. 22 NW</u>	Wi-	scons.	in Ges	Company
		Street or			() - ·
Gov't Lot	Grid Number		ate, Zip Cod	r. Green	Gry Ave.
Grid Location		1 -	-	WI S	2200
Civil Town Name	<u>5/16.28</u> ft. E. U.				cable) WI Unique Well No.
Civil Town Malle		DB-		or realize (in rippin	the onder the rest of
Street Address of Well			For Abandon	ment	
				Complete	
City, Village			Abandonmen		<u> </u>
Milwa	4 kee	1	25-95		
WELL/DRILLHOLE/BOREHOLE	INFORMATION				
(3) Original Well/Drillhole/Borehole C	Construction Completed On	(4) Depth to	Water (Feet)	
(Date) $4/-25-9$	S	Pump &	Piping Rem	oved? 🔲 Yes	s 🔲 No 🔀 Not Applicable
· · · · · · · · · · · · · · · · · · ·		Liner(s)	Removed?		s No Not Applicable
Monitoring Well	Construction Report Available?	1	emoved?		s No Not Applicable
Water Well	Yes No	_	eft in Place?		s 🔀 No
Drillhole		If No, E	xplain <u>(</u>	Pore hole	
Borehole	•	<u> </u>			
			-	Below Surface?	
Construction Type:	(Sandpoint) Dug		-	Rise to Surface? fter 24 Hours?	∑ Yes ☐ № ∏ Yes ⊠ №
	(Sandpoint) U Dug		, Was Hole R		
Other (Specify)					
Formation Type:				lacing Sealing Mat	
Unconsolidated Formation	Bectrock		luctor Pipe-G	· =	nductor Pipe-Pumped
·	—		p Bailer		her (Explain)
	Casing Diameter (ins.)	(6) Sealing I			For monitoring wells and
(From groundsurface)		. —	Cement Gro	ncrete) Grout	monitoring well boreholes only
Casing Donth (ft)			-		Bentonite Pellets
Casing Depth (ft.)			-Sand Slurry		Granular Bentonite
Was Well Annular Space Grouted?	Yes No 🗍 Unknown		onite-Sand Sl	urry	Bentonite - Cement Grout
If Yes, To What Depth?	Feet		ped Bentonite		
			· 	No. Vorda	
') Sealing Mater	rial Used	From (Ft.)	To (Ft.)	Cack Castone	Circle Mix Ratio One) or Mud Weight
Bentonite C.	hips	Surface	10	3× 5069	
· · · · · · · · · · · · · · · · · · ·					
		<u> </u>			
3) Comments:					
	· · · · · · · · · · · · · · · · · · ·	(10)	FOR	DNP OP COI	UNTY USE ONLY
(9) Name of Person or Firm Doing Sea	uing work	1 Linux	Received/Insp		District/County
Remediation Tech Signature of Person Doing Work	Holosics, 44C			~~~~	
Signature of Person Doing Work	Date Signed $(e - 1 - 95)$	Revie	ewer/Inspecto	τ	Complying Work
Street or Route	Telephone Number		-		Noncomplying Work
413 Wacusta # 00	(612) 222-0841	Follo	w-up Necess	ary	
City, State, Zip Code		1 📔			
St. Paul MN	55101				

.

(1)	GENERAL INFORMATION		(2)	FACIL	ITY NAME			
	Well/Drillhole/Borehole	County			Well Owner	(If Known)		
	Location	Milwaukee]	Wi	Scousin	4 Gas	Con	Prny
				Present	Well Owner			
	NW 1/4 of NW 1/4 of Sec. 3	3; T. 7 N. R. 22		her? c	Con C'm	Gor C	on ne	
	(If applicable)			Street or	r Route			· · · · · · · · · · · · · · · · · · ·
	Gov't Lot	Grid Number		$\leq \zeta$	(0) Λ_{2}	Green	Rai	110
	Grid Location	Gira Nulliter		City St	ate, Zip Cod		279	<u>Arc.</u>
			1	•	-		 	200
	Civil Town Name	<u>S ~ 71. 75</u> ft. 🛛 E. 🔲 W.	<u> </u>		Wall No. and	e, hI	<u>ر د</u>	WI Unique Well No.
	Civil Iown Name		1	-		for Name (II App	licable)	WI Unique Well No.
-			I	<u>DB</u>				<u> </u>
	Street Address of Well		1		For Abandon			
						Complete		
	City, Village		[Abandonmen	t –		
_	Milwaukee			<u>4-2</u>	5-95			
WE	ELL/DRILLHOLE/BOREHOLE	INFORMATION						
(3)	Original Well/Drillhole/Borehole C	onstruction Completed On	(4)	Depth to	o Water (Feel) 5		
-	(Date) $4/-25-9$	5		Pump &	Piping Rem	oved? \Box Y	ස 🗖 ්	No 🖂 Not Applicable
					Removed?			
	Monitoring Well	Construction Report Available?			emoved?			No 🕅 Not Applicable
	Water Well	Yes No			Left in Place?	· H.	s X	No K Not Applicable
	Drillhole					Borehol		
	Ξ] '			Dorehol		
	Borehole			Was Car	ing Cut Off	Below Surface?		Ves I d No
			I		-			
	Construction Type:				-	Rise to Surface?		Yes No
		(Sandpoint) 🔲 Dug	1			fter 24 Hours?		Yes 🛛 No
	Other (Specify)			II I es	, Was Hole R	etopped?		Yes 🔲 No
			(5)	Required	Method of H	lacing Sealing M	aterial	······································
	Formation Type:				luctor Pipe-G		onductor	Pipe-Pumped
	Unconsolidated Formation	Bedrock			p Bailer)ther (Exp	-
	M - 137 11 D - 1 (C)	Casing Diameter (ins.)			Materials			onitoring wells and
					Cement Gro			oring well boreholes only
	(From groundsurface)						monute	ing wen obtenoies only
					-	ncrete) Grout		· ' D.11-4-
	Casing Depth (ft.)		!			1		ntonite Pellets
					-Sand Slurry	. 1		inular Bentonite
	Was Well Annular Space Grouted?				onite-Sand S			ntonite - Cement Grout
	If Yes, To What Depth?	Feet		🔏 Chip	ped Bentonite	e '		
7				_		No. Yards,	(Circle	Mix Ratio
-/	Sealing Mater	ial Used	Fro	m (Ft.)	To (Ft.)	Sacks Sealant or Volume	One)	or Mud Weight
								······
	Bentonite C	hirs	Sı	urface	10	3×5016]	
_								
			┣──			<u> </u>		
_								
					<u>}</u>	<u> </u>	<u> </u>	
	•							
₹	Commentation							
⇒)	Comments:				<u></u>			
		· · · · · · · · · · · · · · · · · · ·	r	E(10)-		DNDCODCO	1751757	USE ONEV
(9)	Name of Person or Firm Doing Sea			(10)		DNR OR CO		
	Remediation Techn	ologies Inc.		Date	Received/Ins	Dected	וען אונע	trict/County
	Signature of Person Doing Work	Date Signed				-		Complying Work
	hit have	Date Signed 6 - 1 - 95		Kevi	ewer/Inspecto	I	비니	
	Street dr Route	Telephone Number $(6/2)$ 222-0841	•				니다	Noncomplying Work
	W3 Waconta #400	(012) 202-0871		Follo	w-up Necess	ary		
	City, State, Zip Code							
	St. Paul MR 5	5/0/	ļ					

(I) GENERAL INFORMATION	(2) FACILITY NAME
Well/Drillhole/Borehole County	Original Well Owner (If Known)
Location Milwaukee	Wisconsin Gas Company
NW III C N/M IM OF SIG 33 TO 7 NO 22 DE	Present Well Owner
<u>NW 1/4 of NW 1/4 of Sec. 33 ; T. 7 N. R. 22</u>	Wisconsin Ges Company
(If applicable)	Street or Route
Gov't Lot Grid Number	
Grid Location	City, State, Zip Code
ft. N. S.,ft. E. W.	Milwankee, WI 53209
Civil Town Name	Facility Well No. and/or Name (If Applicable) WI Unique Well No.
	DB-S
Street Address of Weil	Reason For Abandonment
	Sampling Complete
Circ William	Date of Abandonment
City, Village Milwsykee	
, , , , , , , , , , , , , , , , , , , ,	4-25-95
WELL/DRILLHOLE/BOREHOLE INFORMATION	
3) Original Well/Drillhole/Borehole Construction Completed On	(4) Depth to Water (Feet) 4/
(Date) $4 - 2S - 9S$	Pump & Piping Removed? Yes No Not Applicable
(Date) / 23 /	
Monitoring Well Construction Report Available?	Screen Removed? Yes No Not Applicable
🗌 Water Well 🛛 🗹 Yes 🔲 No	Casing Left in Place? Yes No
Drillhole	If No, Explain Bore Lole
Borehole	
	Was Casing Cut Off Below Surface? Yes No
Construction Types	Did Sealing Material Rise to Surface? Xes No
Construction Type:	Did Material Settle After 24 Hours?
Other (Specify)	If Yes, Was Hole Retopped? Yes No
	(5) Required Method of Placing Sealing Material
Formation Type:	
Unconsolidated Formation Bedrock	Conductor Pipe-Gravity
	Dump Bailer Other (Explain)
Total Well Depth (ft.) Casing Diameter (ins.)	(6) Sealing Materials For monitoring wells and
(From groundsurface)	Neat Cement Grout monitoring well boreholes only
	Sand-Cement (Concrete) Grout
Casing Depth (ft.)	Concrete Bentonite Pellets
	Clay-Sand Slurry Granular Bentonite
Was Well Annular Space Grouted? Yes No Unknown	
If Yes, To What Depth? Feet	Chipped Bentonite
	No. Yards, (Circle Mix Ratio
Sealing Material Used	From (Ft.) To (Ft.) To (Ft.) Yards, (Circle Mix Ratio Or Volume One) Or Mud Weight
	or volume
P. M. Chief	Surface 10 $3 \times 50 LL$
Bentonite Chips	
-) Comments:	
(9) Name of Person or Firm Doing Sealing Work	(10) FOR DNR OR COUNTY USE ONLY
Remediation Technologies, Inc.	Date Received/Inspected District/County
Signature of Person Doing Work Date Signed	
(1-1-95	Reviewer/Inspector Complying Work
Street or Route Telephone Number	Noncomplying Work
4/3 W9C04+9 # 400 (612) 222-0841	Follow-up Necessary
113 0100 1	
City, State, Zip Code	
~ 1 Pgul - N 55101	

(1) GENERAL INFORMATION		(2) FACIL	ITY NAME					
Well/Drillhole/Borehole	County		l Well Owner					
Location	Milwankee	Wisconsin Gas Company			· • ~ y			
			Well Owner					
MW 1/4 of MW 1/4 of Sec. 3	<u>'3 ; T. 7 N. R. 22 DW</u>			Gas Com	pany			
(II applicable)	•	Street or						
Gov't Lot	Grid Number			Green Bay.	Ave.			
Grid Location			tate, Zip Cod					
<u></u>	<u>, S= 5 7.98</u> ft. ⊠ E. □ W.			WI 5320				
Civil Town Name		1 -	_	or Name (If Applicable)	WI Unique Well No.			
		DB						
Street Address of Well			For Abandon					
				omplete				
City, Village MilWay		4	Abandonmen					
		4	25-95) 				
WELL/DRILLHOLE/BOREHOL								
3) Original Well/Drillhole/Borehole	-		o Water (Feet					
(Date) 4-25-9	S		: Piping Rem	oved? 🔲 Yes 🗌	No 🛛 Not Applicable			
			Removed?		No 📈 Not Applicable			
Monitoring Well	Construction Report Available?		Removed?		No 🗹 Not Applicable			
Water Well	Yes No	-	Left in Place?		No			
Drillhole		If No, E	xplain <u>1</u> 3	Porchole				
🖂 Borehole	1							
		1	-	Below Surface?	Yes No			
Construction Type:	— -		-		Yes 🔲 No			
🔀 Drilled 🔲 Driver	n (Sandpoint) 🔲 Dug	1		fter 24 Hours?	Yes 🛛 No			
Other (Specify)	-	If Yes	, Was Hole R	letopped?	Yes 🔲 No			
		(5) Required	i Method of I	Placing Sealing Material				
Formation Type:		··		· <u>·</u>	r Pine-Pumped			
Unconsolidated Formation	Unconsolidated Formation 🔲 Bedrock		Conductor Pipe-Gravity Conductor Pipe-Pumped					
Tetal Wall Death (A)	Casing Diameter (ins.)	(6) Sealing Materials For monitoring wells and						
Total Well Depth (ft.) Casing Diameter (ins.) (From groundsurface)		Neat Cement Grout For monitoring wells boreholes only						
(This grounds a fact)				ncrete) Grout				
Casing Depth (ft.)			-		entonite Pellets			
			-Sand Slurry		ranular Bentonite			
Was Well Annular Space Grouted	? 🗌 Yes 🗌 No 🔲 Unknown		conite-Sand S		entonite - Cement Grout			
If Yes, To What Depth?	Feet		ped Bentonit					
			<u></u>					
) Sealing Mate	rial Used	From (Ft.)	To (Ft.)	Sacks Sealant	Mix Ratio or Mud Weight			
				or Volume One)				
Bentonite	Chier	Surface	10	3x 5066				
				<u> </u>	<u></u>			
) Comments:	,,,,,,,,,_							
					· · · · · · · · · · · · · · · · · · ·			
(9) Name of Person or Firm Doing Se	aling Work	(10)	FOF	DNR OR COUNTY	Y USE ONLY			
Benediction Tech		Date	Received/Ins	pected Di	strict/County			
Signature of Person Doing Work	Date Signed							
Lift	6-1-95	Revi	ewer/Inspecto	r IF	Complying Work			
Street or Route	Telephone Number			IE	Noncomplying Work			
4/3 WSCOLLES FF400	(612)222-0841	Follo	w-up Necess	ary				
City, State, Zip Code								
St. "gul WI	55101	يغنينها ا	<u> </u>					

(1) GENERAL INFORMATION		(2) FACIL	ITY NAME					
Well/Drillhole/Borehole	County	Origina	Original Well Owner (If Known)					
Location	Milwankee	wis	consin	Gas Com	pany			
		E Present	Well Owner					
$\frac{MW_{1/4 \text{ of } MW}}{(lf \text{ applicable})} \frac{1/4 \text{ of Sec. } 3}{(lf \text{ applicable})}$	<u>S; T. 7 N. R. 22</u>	W Wis	6045.2	Gas Com	19-5			
(If applicable)			r Route					
Gov't Lot	Grid Number	540	ro k.	Green Ba	25 Ave.			
Grid Location	······································	City, S	tate, Zip Cod	e				
<u>4953.40</u> ft. N. S.,	<u>S185.09</u> ft. 🛛 E. 🗌 V	1. Mil	wanke	e WI S.	3209			
- Civil Town Name		Facility	Well No. and	or Name (If Applicabl	le) WI Unique Well No.			
		D	3-7					
Street Address of Well		Reason	For Abandon	ment				
		Som.	1:43	Complete				
City, Village			Abandonmen	t				
Milwauke	e	4-2.	5-95					
WELL/DRILLHOLE/BOREHOLE					· · · · · · · · · · · · · · · · · · ·			
(3) Original Well/Drillhole/Borehole C	onstruction Completed On	(4) Depth t	o Water (Feet	.)				
(Date) 4-25-9-	5	Pump &	Piping Rem	oved? 🔲 Yes [No 🛛 Not Applicable			
	· · · · · · · · · · · · · · · · · · ·		Removed?		No Not Applicable			
Monitoring Well	Construction Report Available?	Screen I	Removed?	rī y∝ r	No Not Applicable			
Water Well		Casing	Left in Place?					
Drillhole		If No, E	xplain	Borchole				
Borehole	1							
		Was Ca	sing Cut Off 1	Below Surface?]Yes ⊠No			
Construction Type:		Did Sea	ling Material	Rise to Surface?	🛃 Yes 🔲 No			
	(Sandpoint) Dug	Did Ma	terial Settle A	fter 24 Hours?]Yes 🛛 No			
Other (Specify)		If Yes	, Was Hole R	etopped?]Yes []No			
		(5) Require	d Method of F	Placing Sealing Materia				
Formation Type:		1 · · · · · ·	ductor Pipe-G		tor Pipe-Pumped			
Unconsolidated Formation	Bedrock		-					
	Cosing Diamotor (ing)		Dump Bailer Other (Explain) (6) Sealing Materials For monitoring wells and					
Total Well Depth (ft.)		· · ·	t Cement Gro		nitoring well boreholes only			
(From groundsurface)				ncrete) Grout	intering went bereneles only			
Casing Depth (ft.)					Bentonite Pellets			
			-Sand Slurry		Granular Bentonite			
Was Well Annular Space Grouted?	Yes No Unknow		tonite-Sand S		Bentonite - Cement Grout			
If Yes, To What Depth?	Feet		ped Bentonit					
			T					
) Sealing Mater	ial Used	From (Ft.)	To (Ft.)	No. Yards, Sacks Sealant One or Volume One	ble Mix Ratio or Mud Weight			
				or Volume	/			
Bentonite Co	h = C	Surface	6	2× 5016				
DEATON, TE LI			<u> </u>					
	· · · · · · · · · · · · · · · · · · ·			<u> </u>				
		}						
) Comments:								
(9) Name of Person or Firm Doing Sea	ling Work	(10)	FOR	COUN	TY USE ONLY			
Remediation Tech		Date	Received/Insp	pected	District/County			
Signature of Person Doing Work	Date Signed							
fulle	- 6-1-95	Revi	ewer/Inspecto	n	Complying Work			
Street or Route	Telephone Number				Noncomplying Work			
113 Wacouta #itoo	(612) 222-0841	Folk	ow-up Necess	ary				
City, State, Zip Code								
St. Deul Ink -	55101							

St. Paul MR SSIOI

(I) GENERAL INFORMATION			TY NAME		_	
Well/Drillhole/Borehole	County		Well Owner		~	
	Milwankee	wis	היצמכי	Ges (-onro	~~ y
Action of Action on 3	<u>3</u> ; T. 7 N. R. 22	Present	Well Owner			
<u></u>	<u>>; T. Y N; R. 22 W</u>			Gas C	on pon	5
		Street or		C	12 -	4
Gov't Lot	Grid Number		ate, Zip Code	Green	595	AVE.
				~I 53	709	
Civil Town Name	<u>5181.58</u> ft. ⊠ E. □ W.					WI Unique Well No.
		B-		• ••		
Street Address of Well		Reason	For Abandon	ment	ł	
		Samp	Pling	Complete		
City, Village		Date of .	Abandonmen	L		
Milwauk		9-2	6-95		وينت محدور مخدمات	
WELL/DRILLHOLE/BOREHOLE						
(3) Original Well/Drillhole/Borehole C	•	r, .	Water (Feet		_	
(Date) $\frac{1/-26}{-}$	95		Piping Rem		es 🔲 No	
			Removed?			Not Applicable
=	Construction Report Available?		lemoved? Left in Place?		≊ ∐ No ≊ ⊠ No	Not Applicable
Water Well Drillhole	Yes No			Bore hole		
	ł		Aprent	SOLE HOLE		
Borehole		Was Cas	sing Cut Off I	Below Surface?	T Ye	s 🛛 No
Construction Type:		1	-	Rise to Surface?		s 🗍 No
	(Sandpoint) Dug		-	fter 24 Hours?		s 🖾 №
Other (Specify)	(If Yes.	, Was Hole R	etopped?	- T Ye	≍ 🔲 No
		(5) Required	1 Method of P	lacing Sealing Ma	aterial	
Formation Type:	_	· · · · · · · · · · · · · · · · · · ·	luctor Pipe-G			pe-Pumped
Unconsolidated Formation	Bedrock		p Bailer	• ==	ther (Expla	
Total Well Depth (ft.)	Casing Diameter (ins.)	(6) Sealing				itoring wells and
(From groundsurface)	.	🗌 Neat	Cement Gro	ut		ng well boreholes only
		Sand	l-Cement (Cor	ncrete) Grout		
Casing Depth (ft.)				1		onite Pellets
	_ _ _ `		-Sand Slurry	1		lar Bentonite
Was Well Annular Space Grouted?			onite-Sand SI		Bento	onite - Cement Grout
If Yes, To What Depth?	Feet		ped Bentonite			
) Sealing Mater		From (Ft.)	To (Ft.)	No. Yards, Sacks Sealant	(Circle	Mix Ratio
				or Volume	One)	or Mud Weight
P	cl'ac	Surface	18	6×500	16	
Bentonite (_ ~ / / >			0 / -		······································
				[
		}				
		}		Ĩ		
				<u> </u>		
) Comments:						
(9) Name of Person or Firm Doing Sea		(10)		DNR OR CC		
Reprediation /echn	olosies, Inc.	Date	Received/Insp	Dected	Distri	ct/County
Signature of Person Doing Work	Date Signed	Revi	ewer/Inspecto	r		Complying Work
Street or Route	Telephone Number		- , -	-		Noncomplying Work
413 Waconta #100	(612) 222-0841	Folk	w-up Necess	ary		
City, State, Zip Code		1	•	•		
		1				

APPENDIX C

BORING LOGS

Route To:	
🗌 Solid Waste	
Emergency Re	spons
□ Wastewater	

☐ Haz. Waste ☐ Underground Tanks ☐ Water Resources ☐ Other:

Form 4400-122

Rev. 5-92

					pertuna		JUther	•									Page 1 of
Facilit Third	y /Proj e Ward M	ect Na Ianufa	me ctured	Gas Plant Site			Licen	se/Pei	mit/Mor	nitorin	g Numbe	a	Boring DB-1	Numb	er		
Boart	Longye Longye	ear	Firm na	ame and name of crew	chief)		Date 04/2:		Starte	d	Date D 04/25		Comple		Drilling 3.25-in		
DNR F	acility	Well N	o. W]	Unique Well No.	Common Well Na	me	Final Feet		Water I	Level	Surfac 585.85				Borehol 7.25 inc		eter
State			of Sect	ion 33, T 7 N, R 22 E	· · · · · · · · · · · · · · · · · · ·		Lat Long	•			Local (4925.	Grid Lo .12 fee	cation t ⊠ N □ S	(if ap 5122.0	plicable 9 feet	:) ⊠ E □ N	
County Milwau	-		-			DNR (41	County	Code	Civil To <i>Milwauk</i>		ity/ or \	Village					
Sam													Soil	Prope	rties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet	And Ge	ock Description ologic Origin For h Major Unit			nscs	Graphic Log	Well Diaoram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
0-2	60%	4 12 8 12	1	SILTY SAND with ash; gray brown	(10YR 3/2); moist			SM									
2-3.5	100%	9 10 29 3		AS ABOVE; refuse	al at 3.5 feet												
			4 5 6 7 8 9 10 10	E.O.B. at 3.5'													
I here Signa		tif/ ti	hat the	information on this fo	rm is true and co	orrect f	Firm				/	· · ·					
		1	M				/		diate		Tech		// ·				
than s	\$10 nor	more	than \$	y Chapters 144.147 and 5,000 for each violation. Each day of contin	on. Fined not les	ss than	s10 or	r more	than \$1	100 or	impriso	ned no	t less	than 3	0 days,	S	

Route To:	
🗋 Solid Waste	
Emergency Resp	on
🗌 Wastewater	

Haz. Waste Haz. Waste Underground Tanks Water Resources Other:

Form 4400-122 Rev. 5-92

Boring Drilled By (Fire									DB-1A				
Boart Longyear Dan Zielazowski	m name and name of crew	chief)	Date 04/25		Starte	d	Date D 04/25,	rilling		ted	Drilling 3.25-int		
DNR Facility Well No.	WI Unique Well No.	Common Well Name		Static 8 Fee	Water I	.evel	Surfac 585.98				Borehol 7.25 inc		eter
Boring Location State Plane NE 1/4 of NW 1/4 of S	Section 33, T 7 N, R 22 E		Lat Long	•			Local (4926.6	Grid Lo B2 feet	cation	(if ap	plicable 6 feet)	
County Milwaukee		DN 41	IR County	Code	Civil To <i>Milwauk</i>		ty/ or V	'illage					
Sample				A					Soil	Prope	rties		
	⊆ And Geo	ock Description Diogic Origin For h Major Unit		nscs	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
, , , , , , , , , , , , , , , , , , ,	ash; gray brown (2 - AS ABOVE	horizons of cinder a 10YR 3/2); moist (Fi		SM									
	ash, and cinders; 5 moist-damp (Fill)	with coal slag, bottc dark brown (10YR 3,		GM									
6-8 75% 9	.7	-	vered;	CL SM			75						
8-10 85% 5 4	SILTY CLAY with s (10YR 5/1 to 2/1);	sand; gray to black wet; moderate plast or no longer present		CL			1.6						
	E.O.B. at 10.0'												
Signature	the information on this form	m is true and correc	Firm		my kno vedin			hnol	mies	, <i>с</i>	Глс	•	

F	Route To:
۵	Solid Waste
0	Emergency Respons
[Wastewater
0	Superfund

Haz. Waste Underground Tanks Water Resources Other:

Form 4400-122 Rev. 5-92

_

-										<u>-</u>							Page 1 of
		ect Na Ianufac		Gas Plant Site			Licen	se/Per	mit/Mor	nitorin	g Numbe	Ħ	Boring DB-2) Numb	er		
Boart	Drille Longy ielazou	ear	Firm n	ame and name of crew	chief)		Date 04/25		Starte	d	Date D 04/25		Comple	1	Drilling 3.25-in		
DNR F	acility	Well No). W	I Unique Well No.	Common Well Na	эле		Static 3 Feel	Water I t MSL	Level	Surfac 585.63				Borehol 7.25 inc		eter
State			f Seci	tion 33, T 7 N, R 22 E	·		Lat Long	•			Local (4962.4	Grid Lo 46 fee	$t \boxtimes N$	(if ap 5125.0	plicable 03 feet	e) ⊠ E □ N	
County Milwau	y			/		DNR C	County	Code	Civil To Milwauk		ty/ or \	/illage				_ #	
Sam	ple								I				Soil	Prope	rties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet	And Geo	ock Description ologic Origin For h Major Unit			. SOSN	Graphic Log	Well Diagram	PID/FID	Compressive Strength	1		ity	P 200	RQD/ Comments
0-2	75%	5 22 36 27	- 	SILTY SAND; with brown (10YR 6/6) GRAVELLY SAND ash; black (10YR ;	; moist (Fill) with cinder, coal			SM GM	00000		0.0						
2-4	100%	10 6 10 7	2	SILTY SAND and interlayered; yello (10YR 5/4 to 4/1) petroleum-like odd	wish brown to da ; wet with moder		у	SM ML			0.0						
4-6	85%	7 6 4 4		SILT with trace o (10YR 3/1); wet; si							21	-					
6-8	90%	5 50/5"		AS ABOVE				ML			22						
8-10	90%	24 10 11 14	8	CLAYEY SAND; gra petroleum-like odd			et;	SC			-						
			10	E.O.B. at 10.0'													
I here	by cer	tily the	at the	information on this for	m is true and co	rrect t	o the b	est of	my kno	wledg	le.	<u> </u>		L			
Signat		July 1					Firm _	_	diata			hnoi	logies	ر، ۱	Гис.		
than \$	S10 nor	more t	han \$	y Chapters 144.147 and 5,000 for each violatio 5. Each day of continu	n. Fined not les	s than	letion c \$10 or	of this more	report than \$1	is mar 00 or	idatory. imprisor	. Pena ned no	lines: F t less t	orfeit han 30	not les) days,	s	

		ect Nai Ianufac		Gas Plant Site			Licens	e/Per	mit/Mon	itoring) Numbe		Boring DB-3	Numb	er		Page
Boart	Drilleo Longy	ear	irm na	me and name of crew	chief)		Date D 04/25,		Starte	đ	Date D 04/25,		Comple		Drilling I 3.25-ind		
DNR F	acility	Well No). WI	Unique Well No.	Common Well Na	me	Final S 580.60		Water L MSL	.evel	Surfac 585.60	e Eleva Feet			Borehol 7.25 inc		eter
State	Locat		[•] Secti	ion 33, T 7 N, R 22 E			Lat Long	•							plicable ?8 feet		
County Milwau	-					DNR C 41	county (Civil To Milwauk		ty/ or \	/illage					
Sam													Soil	Prope	rties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet	And Ge	ock Description ologic Origin For ch Major Unit			SJSU	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
0-2	75%	6 6 7 10		GRAVELLY SAND material; black (1				GM	0.00.00.00 0.00.00.00 0.00.00.00 0.00.00		0.0						
2-4	65%	23 50/4"	2 3	SILTY SAND with (10YR 2/1); moist (Fill)			dor				18		-				
4-6	70%	19 40 100/5"	4 5 5	AS ABOVE with le petroleum-like oc)		SM			95		·				
6-8	0%	35 34 7 5	6 7	NO RECOVERY; p the split spoon s		front o	f				_						
8-10	0%	15 18 10 10	8	- AS ABOVE							-						
	L <u>en,</u>			E.O.B. at 10.0'								· · ·					
I here	by cei	tify th	- at the	information on this fo	rm is true and co	orrect t	o the b	est o	i my kn	owledg	l je.			l		L I	
Signat			1				C '		ediat			chni	1 、		Fuc.		

ز

.

Route To:
Solid Waste
Emergency Respons
🗆 Wastewater
Superfund

Haz. Waste Ise Underground Tanks Water Resources Other:

Form 4400-122 Rev. 5-92

		ect Na Ianufad		Gas Plant Site			Licen	se/Pei	mit/Mo	nitorin	g Numb	er	Boring	Numb	er		Page 1
Boring Boart	-	d By (ear		me and name of crew	chief)	<u> </u>	Date 04/25) Starte	d	Date I 04/25	Drilling /95			Drilling 3.25-in		
DNR F	acility	Well N	o. WI	Unique Well No.	Common Well Na	ame		Static Feet	Water MSL	Level	Surfac 586.01	e Elev Feet i			Boreho 7.25 inc		eter
State	I Local Plane 4 of NH		f Secti	ion 33, T 7 N, R 22 E			Lat Long	•	<u></u>		Local 5105	Grid Lo .12 fee	$\begin{array}{c} \text{cation} \\ t \boxtimes N \\ \Box S \end{array}$	(if ap 5071.7	p licable 75 feet	e) ⊠ E □ N	
County Ailwau	-					DNR 0 41	County	Code	Civil To Milwauk		ty/ or '	Village					
Sar			++										Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet	And Geo	ck Description ologic Origin For h Major Unit			nscs	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
0-2	75%	10 14		SANDY GRAVEL; v 6/3); moist (Fill)	ery pale brown	(10YR		GP	00000		0.0		:				
0-2	7 3 76	27 25		SILTY SAND; dark (Fill)	brown (10YR 3)	/3); moi	st	SM			0.0						
2-4	0%	16 9 6 5	3	NO RECOVERY 2-2 in front of the spli lithology logged by cuttings	t spoon sampler		e		00000000000000000000000000000000000000		-						-
4-6	25%	8 5 7 6	4	GRAVELLY SAND; I slight petroleum-lii				GM			47			4			
6-8	50%	6 10 17 19	6	AS ABOVE with some and organic-like (5 feet			00000000000000000000000000000000000000		67						
3-10	75%	7 12 12 12	8	AS ABOVE SANDY SILT with t dark gray (10YR 4						13							
				E.O.B. at 10.0'													
		ti y tha	at the	information on this form	n is true and co										L		
Signat	ure	def	u				Firm	Rev	media	tion	1 <u>I</u> .	<u>échn</u>	blogie	13	MC.	-	
han \$	10 nor	more t	han \$5	Chapters 144.147 and ,000 for each violation Each day of continue	n. Fined not les	s than	\$10 or	more	than \$10	00 or i	mprisor	ed not	less t	han 30) days,	S	

	y/Proj			d Gas Plant Site			Licens	se/Per	mit/Mon	itoring) Numbe		Boring DB-5	Numb	er	<u> </u>	Page 1
Boring Boart		i By (i ear		name and name of crew	r chief)		Date 04/25		Starte	d	Date D 04/25)rilling (Drilling I 3.25-ind		
	acility		0.	NI Unique Well No.	Common Well N	ame	Final \$ 582.0		Water L MSL	evel.	Surfac 586.00				Boreholi 7.25 inc.		eter
State	Locat Plane		f Sec	ction 33, T 7 N, R 22 E	- 		Lat Long	•			Local	Grid Lo	cation	(if ap)] E] W	
Count Milwau	y					DNR (41	County		Civil To Milwauk		ty/ or \	/iilage					
San													Soil	Prope	rties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet	Soil/F And Ge Ea	lock Description cologic Origin Foi ch Major Unit	r		nscs	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/
0-2	25%	8 7 7 7		GRAVELLY SAND moist (Fill)	; pale brown (10	YR 6/3));				_						
2-4	25%	14 9 8 7	2	very moist; mode							10					i	
4-6	25%	16 7 15 9									18	-					
6-8	75%	18 10 12 13	6	SILTY SAND with (10YR 4/1); wet v	-		odor				3.3						
8-10	5%	4 1 6 7	8		recovery			SM			2.3						
				E.O.B. at 10.0'													
I here	DV ch	IA TITV TH		e information on this fo	orm is true and c	orrect	to the b	est o	f my kno	wiedo	1 je.			l	<u> </u>		
	ture						Lirm	_	udia ta			chnol			<u> </u>		

Route To:
🗆 Solid Waste
Emergency Resp
🗆 Wastewater

DHaz. Waste

Form 4400-122 Rev. 5-92

		ect Nat Ianufac		d Gas Plant Site			Licens	e/Per	mit/Mor	nitoring) Numbe	Ħ	Boring DB-6	Numb	er		Page
Boart	Drille Longy ielazov	ear	irm n	ame and name of cre	๙ chief)		Date 0 04/25		Starte	ğ	Date D 04/25,		Comple	ted	Drilling 3.25-in		
DNR F	acility	Well No	. W	II Uniqu e Well No.	Common Well Na	ame	Final S 582.00		Water I MSL	Level	Surfac 586.00				Borehol 7.25 inc		eter
State) Loca l Plane 4 of NH		Sec	tion 33, T 7 N, R 22 E			Lat Long	•			Local (5282.	Grid Lo 15 fee	$t \boxtimes N$ $\Box S$	(if ap 5054.9	p licable 98 feet	:) ⊠ E □ N	
County Milwau	-					DNR C 41	ounty (Code	Civii To <i>Milwauk</i>	wn/Cl	ty/ or \	/illage					
Sam													Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet	And G	Rock Description eologic Origin For Ich Major Unit			NSCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	ROD/
0-2	25%	7 12 19 23	-1	GRAVELLY SANE moist (Fill)	; gray brown (10)	YR 5/2);		GM			-						
2-4	75%	31 20 15 6	-2		n some gravel and ; moist with moder dor (Fill)						18.5						
4-6	75%	1 2 1 2	-4	AS ABOVE; wet			SM			16							
6-8	0%	6 7 3 4	-6 7	NO RECOVERY; p split spoon samp		n front d	of				-						
8–10	50%	1 3 5 2	-8	wet	; gray brown (10)	(R 5/2);		GM			1.5						
	1		10 11	E.O.B. at 10.0'													
		tfy tha	t the	e information on this fo	orm is true and co			est of	my kno	wiedg	e.				· ·		
Signat	ure	M	<u> </u>				Firm 7	Zem	ediat	iM	Ter	yn.	logie	12 7	The		
				y Chapters 144.147 ar 5,000 for each violat			etion of	f this	report	is man	datory.	Pena	Ities: F	orfeit	not les	5	

Facilit	y/Proj	ect Ni	ame		uperfund		Other		mit/Mor	ltoring	Numbr	.	Boring	Numb	er		Page 1
Boring Boart	Drillec Longy	i By (ear		d Gas Plant Site name and name of crew	chief)	- <u></u>	<u> </u>	Drilling	Starte		Date [04/25)rilling (DB-7		Drilling		
	ielazon acility		lo. 1	II Unique Well No.	Common Well Na	ame			Water	Levei	Surfac						eter
State	Locat Plane f of Nh		of Sec	tion 33, T 7 N, R 22 E			Lat Long	8 Feet	MSL			Grid Lo	cation	(if ap	oplicable 09 feet	e) ⊠ E	
County Milwau	y					DNR (41	County	Code	Civil To Milwauk		ty/ or \	/illage					
Sar	· .					1			1				Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet	And Ge	ock Description ologic Origin For ch Major Unit			uscs	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
0-2	50%	4 5 7 11		SILTY SAND with some coal; black		er;	SM			-							
2-4	75%	5 6 9 11	3	SILTY CLAY with yellow (7.5YR 6/		eddish		CL			0.2						
4-6	75%	7 12 8 20	4	GRAVELLY SAND brick fragments; 7/1) and dark bro slight petroleum-	mottled light gray wn (10YR 3/3); w	(10YF et with		GM			2.9	•			Drilling Metho 3.25-inch HS. Borehole Diam 7.25 inches pilcable) 09 feet ⊠ E □ N erties		
			6 7 8 9 10 10	E.O.B. at 6.0'													
here ignat		tiry th	iat the	e information on this fo	rm is true and co		otheb Firm		my kno			chuol					

1

State of Wis	consin	
Department	of Natural	Resources

Route To:	
🗌 Solid Waste	9
Emergency	Respons
🗌 Wastewater	•

Haz. Waste Bee Underground Tanks Water Resources

Form 4400-122

			<u>.</u>		uperfund	L] Other	:									Page I o
	y/Proj Ward M			Gas Plant Site			Licen	se/Per	mit/Mor	hitorin	g Numbe	я Я	Boring B-47	Numb	er		
Boring Drilled By (Firm name and name of crew chief) Boart Longyear Dan Zielazowski DNR Facility Well No. WI Unique Well No. Common Well Name Boring Location State Plane NE 1/4 of NW 1/4 of Section 33, T 7 N, R 22 E					04/26/95 0 Final Static Water Level Si 581.12 Feet MSL Si				Date Drilling 04/26/95		Completed		Drilling Method 3.25-inch HSA				
									Surface Elevation 586.12 Feet MSL				Borehole Diameter 7.25 inches				
									Local Grid Location (if applicable) 5011.26 feet 🖾 N 5181.58 feet 🖾 E G S 🗌 N								
County Milwau					······································	DNR C 41	County	Code	Civii To Milwauk		ity/ or \	/illage					
Sam	•						·					Soil Prop			erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet	And Ge	lock Description eologic Origin For ch Major Unit			nscs	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
0-2	85 %		Ē	GRAVELLY SAND W (10YR 7/4); moist	ith trace of silt; pa (Fill)	ale brov	/n /	GW			0.0						
2-4	60%			soft; moist (Fill)	.T; dark brown (10)	YR 3/3)	: г	OL	4		-						
4-6	75%			GRAVELLY SAND W] ; [SM OL SM			18						
				l	T with interlayered												
6-8	25%		E 8	SILTY SAND with t wet with strong pe	race clay; gray (1 troleum-like odor	0YR 5/1):	SM			-						
3-10	25%			slight petroleum-li	rown (IOYR 3/3); si ke odor	heen ar	d				-						
0-12	0%			NO RECOVERY; put	shed a cobble in fr	ont of s	plit				-						
2-14	0%		Ē	NO RECOVERY: pushed wood in front of split spoon sampler							-						
4-16	0%		E 14	NO RECOVERY as above							-						
6-18	100%			SILTY SAND with s wet; strong napht	some shells; gray (nalene —like odor	10YR 5/	1);	SM			20						
				E.O.B. at 18.0'													
			L 22														
	by-t		Ē	information on this fo	rm is true and co	Trect +	a the l	hest of	f my kn	owled							
Signal		My "		information on this fe			Firm	$\overline{\Omega}$	ne di g	1.		ech	nolog	ies.	In	(.	
han §	510 nor	Imore	than \$	/ Chapters 144.147 ar 5,000 for each violat	ion. Fined not les	ss than	\$10 or	of this more	report than \$1	is ma 100 or	ndatory impriso	. Pena	alties:// ot less	orfeit than 3	0 days	3S	<u></u>
r bot	h for i	each v	iolation	h. Each day of contin	nued violation is a	separ	ate off	ense,	pursuar	nt to s	is 144.9	9 and	162.06,	Wis. S	Stats.		

APPENDIX D

COMPOSITE SAMPLE DESCRIPTIONS

REMEDIATION PARAMETERS SUMMARY OF COMPOSITE SAMPLES

Composite #11

Soil and debris inside of Gas Holder #4.

Discrete samples used:

TTA1-2(5-6') TTA1-3(6-8") TTA2-1(5-6') TTA2-2(9') TTA1-4(13')

Composite #12

Soil and debris outside of structures in Areas A, B, and C from depths of 0 to 5 feet.

Discrete samples used:

Composite #13

Discrete samples used:

TTA1-1(3') TTA2-3(2') TTA2-5(5') TTA2-7(1') TTA4-3(5') TTB2-1(3-4) TTC2-2(3-4') TTC4-2(4-5') TTC3-1(4')

Soil and debris outside of structures in Areas A, B, and C from depths of 5 to 9 feet.

TTA2-4(7') TTA4-2(7') TTB3-2(6-7') TTB2-4(9') TTB2-3(7') TTC5-3(7') TTC5-2(8-9') TTC5-1(6-7')

Composite #14

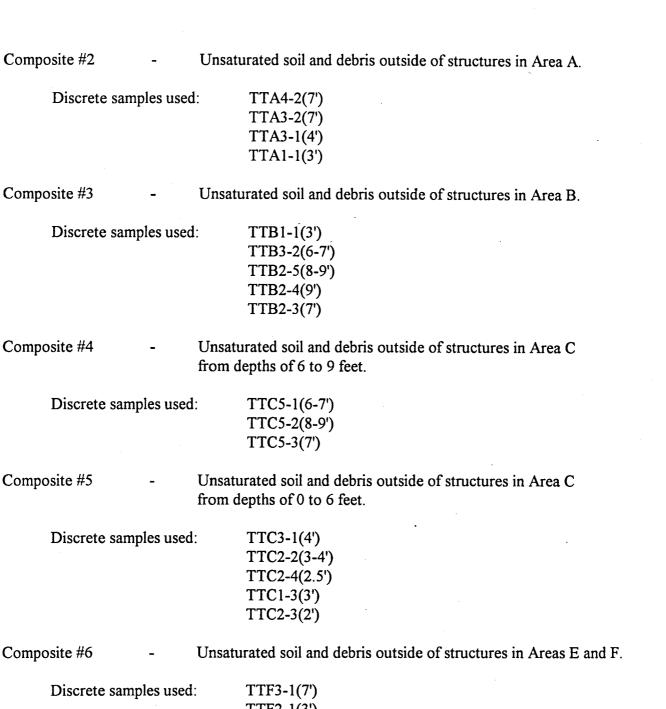
Discrete samples used:

TTE2-1(7') TTF3-1(7') TTF2-1(3') TTG2-1(3-4') TTG1-2(3-4') TTG5-1(4-5')

from depths of 0 to 7 feet.

Soil and debris outside of structures in Areas E, F, and G

Soil and debris inside of Gas Holder #3 on City Property


and tar well on Peters=Johnson Property.

Composite #15

Discrete samples used:

TTC1-4(3-4') TTE1-2(10-11') TTE1-1(7') TTF1-1(5-6') TTF1-2(8-10')

RCRA CHARACTERIZATION SUMMARY OF COMPOSITE SAMPLES

ete samples used: TTF3-1(7') TTF2-1(3') TTE2-1(7')

RELEC

Composite a	#7 -		Saturate	ed soil in C	il Reservoi	r #1.
Disc	rete sample:	s used		TTF1-1(5- TTF1-2(8-	•	
Composite 7	48 -		Saturate	ed soil in G	as Holder a	#3.
Disc	rete sample:	s used		TTE3-1(7- TTE1-1(7' TTE1-2(1()	
Composite #	#9 -		Unsatur	ated soil fr	om Area G	.

Discrete samples used:

TTG4-1(3-4') TTG1-2(3-4') TTG2-1(3-4')

Composite #10

Saturated soil from Area G.

Discrete samples used:

TTG4-2(6-7')	
TTG2-2(5-6')	
TTG1-1(5-6')	

APPENDIX E

QA/QC REVIEW

.

APRIL 1995 SOIL DATA

400 Gilbert B., Ir 413 Wasauta Sr Paul MN 55101 (612) 222-0841 Fax (612) 222-8914

DATA VALIDATION REPORT

TO: Jonathan Murer FROM: Kim Lofgren September 6, 1995 DATE: Review of April 1995 Analytical Data RE:

1.0 GENERAL

PROJECT: Third Ward MGP - SSPI #3-0887-403 **DATE SAMPLED:** April 25-29, 1995 **RECEIVING LAB** Analytical Technologies, Inc. **ANALYTICAL METHODS:** TCLP Semivolatile Organic Analytes (SVOA), SW846-8270 TCLP Volatile Organic Analytes (VOA), SW846-8240 TCLP Metals, SW846-6000/7000 series Polynuclear Aromatic Hydrocarbons (PAH), SW846-8310 Benzene, Toluene, Ethylbenzene, Xylenes Extractables (BTEX), SW846-8020 Total Cyanide (TCN), SW846-9010 Cyanide and Sulfide Reactivity, SW846-9010 and 9030 Corrosivity/pH, SW846-9045 Ignitability, SW846-1010 Grain Size Distribution, Bulk Density, Silicon Oxide, Aluminum Oxide, Total Extractable Petroleum (TEPH), Total Organic Carbon (TOC), Chloride (Cl), and Total Metals

41

37 Soil, 2 Equipment Blanks, and 2 Trip Blanks all samples were extracted within the holding time limits with the exception of sample TTA4-1 (1-2') for PAH analysis

all samples were analyzed within the holding time limits

Hydrocarbons

NUMBER OF SAMPLES: **MATRIX:** DATE(S) EXTRACTED:

DATE(S) ANALYZED:

• All the samples and all of the quality assurance/quality control (A/QC) in this data set have been reviewed with respect to holding times, method blanks, surrogate recoveries, matrix spikes, sample results, and any other QC measures (field blanks, lab blank spikes, field duplicates, etc.).

2.0 VALIDITY AND COMMENTS

2.1 GENERAL COMMENTS

The objectives of this review were to determine the quality of the analytical data collected in April 1995 for the Third Ward MGP site, by examining the level of precision, accuracy, completeness, representativeness, and comparability as stated in the Quality Assurance Project Plan (QAPP). Precision is a measure of the mutual agreement among individual measurements of the same property, usually under prescribed similar conditions. Precision is determined through analysis of field duplicate samples and field blanks. The accuracy of data is the degree of agreement of a measurement with an accepted reference or true value. The level of accuracy is determined by examination of laboratory matrix spike analyses, laboratory control spike analysis, method blanks, and surrogate recoveries for organic analyses. Completeness is determined by assessing the number of samples where valid results are reported versus the number of samples which were submitted to the laboratory for analysis. The overall measure of completeness will be the ratio of valid analyses received compared to the expected amount of data to be obtained under correct or normal conditions. Representativeness is the degree to which data accurately and precisely represent a characteristic population, process control, or an environmental condition. Appropriate sampling procedures ensure sample representative of the environmental matrices sampled. Comparability refers to the degree to which one data set can be compared to another and is controlled through use of appropriate sampling and analytical processes.

The QAPP required that field QC, which measures precision to include, analyses of duplicate samples, equipment rinseate blanks, and trip blanks. Duplicate field QC samples will be collected for 10% of the collected samples and will be analyzed for PAH, TCN, and BTEX. Evaluation of duplicate samples for precision was done using the relative percent difference (RPD). RPD is defined as the difference between two duplicate samples divided by the mean and expressed as a percent. The criteria for acceptable RPD values are 0-50% for soil samples. One equipment blank will be submitted for 20% of the collected samples and analyzed for PAH, TCN, and BTEX. In addition, one trip blank per cooler will be submitted for BTEX analysis to determine shipping, storage, and bottle related contamination.

The QAPP required that Laboratory QC, which measured accuracy, include a method blank (reagent blank) for approximately 20 actual samples for each parameter, a spike/spike duplicate for approximately one out of every 20 samples for each parameter, and analysis of

2

surrogate standards for organic analyses. Method blanks were analyzed to identify compounds which could be introduced during the laboratory extraction or analysis phase (i.e. laboratory contaminants). Matrix spike/spike duplicate (MS/MSD), blank spike/spike duplicate (BS/BSD), or laboratory control spike/spike duplicate (LCS/LCSD), percent recoveries (%Rs) and spike RPD values reported are compared to published QC limits. Surrogates are compounds that are structurally similar to the compounds requested for analysis, but are not generally found in nature (i.e., deuterated compounds). They are analyzed to demonstrate that structurally similar compounds can be recovered and quantified by the lab. Full laboratory data validation packages were included with this data set and are stored in the project file.

The completeness goal was the overall measure of the ratio of samples planned versus the number of samples with valid analyses. The data quality objective for Third Ward MGP-SSPI data was to achieve 90-100% completeness of the data collected.

For the RETEC A/QC process, the chain of custody (COC) records were first checked to ensure that the sample results were complete and the laboratory did not mislabel samples during sample log-in and analysis. The COC records are complete and contain all necessary information for all sets of analytical data. Samples were analyzed by Analytical Technologies, Inc. (ATI), in Fort Collins, Colorado. All appropriate data were found in the forms provided from ATI. The amount extracted, dilution factor and amount analyzed was included for all of the samples in this data set. Soil samples were analyzed for PAHs, BTEX, toxicity characteristic leachate procedure (TCLP) VOA, TCLP SVOA, TCLP metals, TOC, TEPH, chloride (Cl), corrosivity (pH), reactivity, and ignitability. Analytical results comply with EPA Level III and Level IV (EPA, 1987) data, meaning non-Contract Laboratory Program (CLP) and CLP analytical procedures were used, as appropriate. Table 2-1 provides a summary of the soil data. Not all samples were analyzed for each parameter, refer to Table 2-1 for exact analyses completed for each sample. Parameters identified in the A/QC review as outside the control limits are shown in bold and shaded. Parameters identified in the A/QC review as questionable are shown in bold.

2.2 HOLDING TIMES

For the purpose of this review, the holding times stated in SW-846 were used to qualify data. The times and dates for sampling were taken from RETEC's COC. The dates for extraction and analyses were taken from the ATI organic analysis data sheets. All samples met the holding time requirements for the preparation type with the exception of sample TTA4-1 (1-2') for PAH analysis. Sample TTA4-1 (1-2') was extracted 12 days past the recommended holding time, and the results have been qualified as estimated.

3

2.3 POLYNUCLEAR AROMATIC HYDROCARBONS

Twenty-one soil samples and two equipment blanks were reviewed for PAH validity in this data set. Sample TTA4-1 (1-2') was extracted 12 days past the recommended holding time of 14 days for soil samples. The positive results have been qualified with J qualifiers (the associated numerical value is an estimated quantity), and the non-positive with UJ qualifiers (the material was analyzed for, but was not detected, and the sample quantitation limit is an estimated quantity), due to holding time violations. Twenty samples were reanalyzed at higher dilutions due to high analyte concentrations exceeding the linear range of the detector.

2.3.1 Method Blank and Equipment Blank

Method Blank - Four method blanks were extracted, analyzed, and reported with the PAH samples. Target analytes were detected in the method blank associated with the equipment blank samples. The results for target analytes in the two equipment blanks have been qualified with U qualifiers (the material was analyzed for, but was not detected, and the associated numerical value is the sample quantitation limit), based on the 5X rule. The 5X rules states if a sample result is less than five times the blank result, then the sample result is qualified as non-detect.

Equipment Blank - Two equipment blanks (EB1 and EB2) were submitted with the PAH data set. 1-methylnaphthalene, fluorene, phenanthrene, anthracene, fluoranthene, benzo(a)anthracene were detected in EB1 and phenanthrene and 1-methylnaphthalene were detected in EB2. Certain results from each of these samples have been qualified with U qualifiers due to blank contamination.

2.3.2 Surrogate Recovery

Surrogate percent recoveries (%Rs) for chloroanthracene were reported with each sample on the Organics Analysis Data Sheet (Form-1) and on the PAH Surrogate Recovery Form (Form II PAH). The surrogate %R for chloroanthracene was not recovered due to high analyte concentrations in samples TTC4-2 (4-5'), TT3-1 (7'), TTF2-1(3'), TTE1-2 (10-11'), TTG2-1 (3-4'), DB-6 (2-4'), DB-7 (0-2'), B-47 (2-4'), B-47 (16-18'), Duplicate #1, TTA3-2 (7'), TTA2-1 (5-6'), TTB2-5 (8-9'), Duplicate #2, TTC5-1 (6-7'), and TTC1-2 (2-3'). The surrogate %R for chloroanthracene was 91% in sample TTE1-2 (7'), 117% for sample TTG21 (3-4'), 85% in sample EB1, and 99% in sample EB2, which were within acceptable control limits of 15-117%. The Surrogate %R for chloroanthracene in the BSs and BSDs were also within acceptable control limits of 15-117%, indicating acceptable laboratory procedures.

2.3.3 Matrix Spike/Matrix Spike Duplicate (MS/MSD) and Blank Spike/Blank Spike Duplicate (BS/BSD)

MS/MSD - Two sample MS/MSD summary reports (TTE1-2 (10-11') and Duplicate #1) were submitted with the PAH data set. The samples were spiked with a spiking solution

containing five different analytes. These samples contained high concentrations of the analytes of interest; and therefore, the MSs and MSDs were outside acceptable control limits, and should not be used for QC purposes.

BS/BSD - Four BS/BSD reports were submitted with the PAH data set. The samples were spiked with a spiking solution containing five different analytes. The BS %Rs ranged from 41-83%, the BSD %Rs ranged from 38-102%, which were with acceptable control limit of 23-123%. The RPD values ranged from 4-39%. Three RPD values exceeded the upper control limit of 20%. The RPD value was 39% for phenanthrene and 27% for pyrene in SB/BSD 5/1/95; and 23% for phenanthene in SB3,4 5/22/95. All other BS/BSD RPD values were within acceptable control limits of 0-20%. No qualifiers were warranted based on the RPD values and laboratory procedures are considered acceptable.

2.3.4 Field Duplicate

Two "blind" field duplicates were included in this data set. Sample Duplicate #1 is a field duplicate of sample B-47 (2-4') and sample Duplicate #2 is a field duplicate of sample TTB2-5 (8-9'). Thirteen RPD values were calculated ranging from 14-115%. Two RPD values exceeded the upper 50% for field duplicate analysis. Sample non-homogeneity could contribute to the high variable RPD values. Field sampling techniques are acceptable based on the field duplicate analyses.

2.3.5 Overall Assessment of Data

The quantity of soil extracted, the amounts analyzed and the dilution factors were included in this data set for all of the samples. All compounds were reviewed based on the holding time limits, detection limits, method blank, surrogate %Rs, MS/MSD %Rs, BS/BSD %Rs, RPD values, and field duplicates. Sample TTA4-1 (1-2') results have been qualified as estimated, due to holding time violation; and selected results from samples EB1 and EB2 results have been qualified as non-detects due to method blank contamination. The data was found to be acceptable based on the information given.

Field precision has been determined acceptable based on the field blanks and duplicate analyses.

Laboratory accuracy has been determined acceptable based on method blanks, surrogate %Rs, and BS %Rs.

2.4 BENZENE, TOLUENE, ETHYLBENZENE, AND XYLENES EXTRACTABLES

Twenty soil samples, two equipment blanks, and two trip blanks were submitted for BTEX analysis.

2.4.1 Method Blank, Equipment Blank, and Trip Blank

Method Blank - Nine method blanks were extracted, analyzed, and reported for BTEX with this sample set. Target analytes were not detected in the method blanks, indicating acceptable laboratory techniques.

Equipment Blank - Two equipment blanks (EB1 and EB2) were submitted with the BTEX sample for this sample set. Target analytes were not detected in the equipment blanks, indicating acceptable field techniques.

Trip Blank - Two trip blanks were included with the BTEX sample set. Target analytes were not detected in the trip blanks, indicating acceptable field and laboratory techniques.

2.4.2 Surrogate Recoveries

Surrogate %R for trifluorotoluene was reported with each sample on the Organics Analysis Data Sheet (Form I). The surrogate %R for trifluorotoluene was not reported for TTTTE1-2 (10-11')2 (10-12') and EB1 MS and MSD. All other surrogate %Rs were reported and within acceptable control limits of 75-109%.

2.4.3 MS/MSD

Two MS/MSD (TTE1-2 (10-11') and EB1) summary reports were submitted with the BTEX samples. The samples were spiked with a spiking solution containing four different analytes. The MS and MSD %Rs ranged from 97-103% in sample TTE1-2 (10-11'), and 96-102% in sample EB, which were within acceptable control limits 75-135%. The RPD values ranged from 0-3% for sample TTE1-2 (10-11') and 2-3% for EB1, which were within acceptable control limits of 0-22%.

2.4.4 Reference Calibration Check (RCC)

Twelve RCC percent differences (%D) were reported with this data set. The RCC %Ds ranged from 0.6-5%, which were within acceptable control limits of 0-20%.

2.4.5 Field Duplicate

Two "blind" field duplicates were included in this data set. Sample Duplicate #1 is a field duplicate of sample B-47 (2-4') and sample Duplicate #2 is a field duplicate of sample TTB2-5 (8-9'). Eight RPD values were calculated, ranging from 5-131%. The four RPD values calculated for the sample TTB2-5 (8-9')/Duplicate #2 exceeded the upper control limit of 50% for soil samples, suggesting sample non-homogeneity. Field sampling techniques are acceptable based on the results of the B-47 (2-4')/Duplicate #1 field duplicate analysis.

2.4.6 Overall Assessment of Data

The quantity of soil extracted, amounts analyzed and dilution factors were included in this data set for all of the samples. All compounds were reviewed based on the holding time limits, detection limits, method blanks, equipment blanks, trip blanks, MS/MSD %Rs and RPD value, the RCC %D, and field duplicate analyses. The data was found to be acceptable based on the information given.

Field precision has been determined acceptable based on the equipment blanks, trip blanks, and field duplicate analyses.

Laboratory accuracy has been determined acceptable based on method blanks, trip blanks, surrogate %Rs, MS %R, MSD %R, and RPD values, and RCC %Ds.

2.5 TOTAL CYANIDE

Twenty-one soil samples and two equipment blanks were submitted for total cyanide analysis.

2.5.1 Method Blank and Equipment Blank

Method Blank - Five method blanks were extracted, analyzed, and reported for total cyanide with this sample set. Total cyanide was not detected in the method blanks.

Equipment Blank -Two equipment Blanks (EB1 and EB2) were extracted, analyzed, and reported for total cyanide with this sample set. Total cyanide was not detected in the equipment blanks.

2.5.2 Initial Calibration Verification (ICV)

Three ICVs for total cyanide were extracted, analyzed, and reported with this data set. The ICV %Rs ranged from 95-104%, which were within acceptable control limits of 75-125%.

2.5.3 Laboratory Check Sample (LCS)

Two LCSs were reported with the TCN sample set. The LCS %Rs were 87% and 94%, which were within acceptable control limits of 75-125%.

2.5.4 MS

One MS was reported with the TCN sample set. The MS %R for TCN was 118%, which was within the acceptable control limits of 75-125%.

2.5.5 Field Duplicate and Laboratory Duplicate

Field Duplicate - Two "blind" field duplicates were submitted with the TCN sample set. Sample Duplicate #1 is a field duplicate of sample B-47 (2-4') and sample Duplicate #2 is a field duplicate of sample TTB2-5 (8-9'). The RPD value for B-47 (2-4')/Duplicate #1 could not be calculated because TCN was not detected in the sample nor the corresponding duplicate. The RPD value for sample TTB2-5 (8-9')/Duplicate #2 exceeded the upper control limit of 50% for soil samples, suggesting sample non-homogeneity. Table 2-3 summarizes the results of the field duplicates. Field sampling techniques are acceptable based on sample B-47 (2-4')/Duplicate #1 field duplicate analysis.

Laboratory Duplicate - One laboratory duplicate was reported with the TCN sample set. The RPD value could not be calculated because TCN was not detected in the sample nor the corresponding duplicate.

2.5.6 Overall Assessment of the Data

The quantity of soil extracted, amounts analyzed and dilution factors were included in this data set for all of the samples. All compounds were reviewed based on holding time limits, detection limits, method blanks, equipment blanks, ICV %Rs, MS %Rs, LCS %Rs, field duplicates, and laboratory duplicate. The data was found to be acceptable based on the information given.

Field precision has been determined acceptable based on the equipment blanks and field duplicate analyses.

Laboratory accuracy has been determined acceptable based on method blanks, ICV %Rs, MS %Rs, LCS %Rs, and laboratory duplicate analyses.

2.6 TCLP SEMIVOLATILE ORGANIC ANALYTES (SVOC)

Ten samples were submitted for TCLP SVOC analysis.

2.6.1 Method Blank

Two method blanks were extracted, analyzed, and reported with the TCLP SVOC samples. Target analytes were not detected in the method blanks.

2.6.2 Surrogate Recovery

Surrogate percent recoveries (%Rs) for 2-fluorophenol, phenol-d5, nitrobenzene-d5, 2fluorobiphenyl, 2,4,6-tribromophenol, and terphenyl-d14 were reported with each sample on the Organics Analysis Data Sheet (Form-1) and on the SVOC Surrogate Recovery Form (Form II SVOC). The surrogate %R for 2-fluorophenol and 2,4,6-tribromophenol were below the acceptable control limits of 43-116% for 2-fluorophenol 10-123% for 2,4,6-tribromophenol in samples Composite #2, Composite #8, and Composite #9; and the surrogate %R for 2-fluorophenol was below the acceptable control limit of 43% for sample Composite #10. These samples were reextracted and reanalzyed with similar results, confirming matrix interference. Sample Composite #2 was reanalyzed with surrogate %Rs within control limits of 10-141% with all surrogates within acceptable control limits, indicating acceptable laboratory procedures.

2.6.3 MS and BS

MS - One sample MS summary report (Composite #2) was submitted with this sample set. Sample Composite #2 was spiked with a spiking solution containing twelve different analytes. The MS %Rs ranged from 27-75%, which were within acceptable control limits of 1-123% for SVOC MSs.

BS - One BS was submitted with this data set. The BS was spiked with a spiking solution containing twelve different analytes. The BS %Rs ranged from 26-82%, which were with acceptable control limit of 1-111%.

2.6.4 Overall Assessment of Data

The quantity of soil extracted, the amounts analyzed and the dilution factors were included in this data set for all of the samples. All compounds were reviewed based on the holding time limits, detection limits, method blank, surrogate %Rs, MS %Rs, and BS %Rs. The data was found to be acceptable based on the information given.

Laboratory accuracy has been determined acceptable based on method blanks, surrogate %Rs, MS %Rs and BS %Rs.

2.7 TCLP VOLATILE ORGANIC ANALYTES (VOC)

Ten samples were submitted for TCLP VOC analysis. 2.7.1 Method Blank

Four method blanks were extracted, analyzed, and reported with the TCLP VOC samples. Target analytes were not detected in the method blanks.

2.7.2 Surrogate Recovery

Surrogate percent recoveries (%Rs) for 1,2-dichloroethane-d4, toluene-d8, and bromofluorobenzene were reported with each sample on the Organics Analysis Data Sheet (Form-

1). The surrogate %Rs ranged from for 96-105%. All %Rs were within acceptable control limits of 76-114% for 1,2-dichloroethane-d4, 88-110% for toluene-d8, and 86-115% for bromofluorobenzene.

2.7.3 MS and BS

MS - One sample MS summary report (Composite #9) was submitted with the TCLP VOC sample set. Sample Composite #9 was spiked with a spiking solution containing ten different analytes. The MS %Rs ranged from 89-103%, which were within acceptable control limits of 26-156% for VOC MSs.

BS - One BS was submitted with the TCLP VOC sample set. The BS was spiked with a spiking solution containing ten different analytes. The BS %Rs ranged from 26-82%, which were within acceptable control limit of 1-111%.

2.7.4 Overall Assessment of Data

The quantity of soil extracted, the amounts analyzed and the dilution factors were included in this data set for all of the samples. All compounds were reviewed based on the holding time limits, detection limits, method blank, surrogate %Rs, MS %Rs, and BS %Rs. The data was found to be acceptable based on the information given.

Laboratory accuracy and precision have been determined acceptable based on method blanks, MS %Rs and BS %Rs.

2.8 TCLP METALS

Ten samples were submitted for TCLP metals analysis.

2.8.1 Method Blank, Initial Calibration Blank, and Continuing Calibration Blank

Method Blank - Two method blanks were extracted, analyzed, and reported with the TCLP metal samples. Arsenic, barium, cadmium, and lead were detected in the method blanks.

Initial Calibration Blank - One initial calibration blank was submitted with the TCLP metal samples. Barium and cadmium were detected in the initial calibration blank.

Continuing Calibration Blank - Four continuing calibration blanks were submitted with the TCLP metals samples. Arsenic, barium, cadmium, and chromium were detected in the continuing calibration blanks.

2.8.2 Initial Calibration Verification (ICV) and Continuing Calibration Verification (CCV)

Initial Calibration Verification - One ICV sample was submitted with the TCLP metals. The IVC %Rs ranged from 101-107%, which were within the acceptable control limits of 80-120%.

Continuing Calibration Verification - Two CCV samples were submitted with the TCLP metals. The CCV %Rs ranged from 96-104%, which were within the acceptable control limits of 80-120%.

2.8.3 CRDL Standard (CRDLS), ICP Interference Check Sample (ICS), and Laboratory Control Sample (LCS)

CRDL Standard - Two CDRL Standards were submitted with the TCLP metals. The CRDLS %Rs ranged from 80-124%, which were within acceptable control limits of 75-125%.

ICP Interference Check Sample - One ICP ICS was submitted with the TCLP metals. The ICP ICS %Rs ranged from 84-105%, which were within acceptable control limits of 75-125%.

Laboratory Control Sample - One LCS was submitted with the TCLP metals. The LCS %Rs ranged from 90-120%, which were within acceptable control limits of 75-125%.

2.8.4 MS

MS - One sample MS summary report (Composite #9) was submitted with this sample set. Sample Composite #9 was spiked with a spiking solution containing eight different analytes. The MS %Rs ranged from 89-115%, which were within acceptable control limits of 75-125% for TCLP metals.

2.8.5 Laboratory Duplicate and Laboratory Serial Dilution

Laboratory Duplicate - One laboratory duplicate (Composite #2) was submitted with the TCLP metals. The RPD values ranged from 0-200%. Two RPD value were above the acceptable control-limits of 20%. The RPD value for selenium was 200% and arsenic was 74%. No qualifiers were warranted based on diluted RPD values.

Laboratory Serial Dilution - One laboratory serial dilution (Composite #2) was submitted with the TCLP metals. Three % Differences (%D) exceeded the upper control limit of 20%. The %D for selenium was 295%, arsenic was 263%, and cadmium was 459%. No qualifiers were warranted base on the high %Ds; however, the data interpreter should be careful when interpreting this data.

2.8.6 Overall Assessment of Data

The quantity of soil extracted, the amounts analyzed and the dilution factors were included in this data set for all of the samples. All compounds were reviewed based on the holding time limits, detection limits, method blank, initial calibration blank, continuing calibration blanks, ICS %Rs, LCS %Rs, MS %Rs, ICV %Rs, CCV %Rs, CRDLS %Rs, and laboratory duplicate. The data was found to be acceptable based on the information given.

Laboratory accuracy has been determined acceptable based on method blank, initial calibration blank, continuing calibration blanks, ICS %Rs, LCS %Rs, MS %Rs, ICV %Rs, CCV %Rs, CRDLS %Rs, and laboratory duplicate.

2.9 IGNITABILITY, REACTIVITY, AND CORROSIVITY

Ten soil samples were submitted for ignitability, reactivity, and corrosivity analyses. No QA/QC support documentation was submitted with these samples.

2.10 TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS (TEPH)

Five soil samples were submitted for total extractable petroleum hydrocarbon analysis.

2.10.1 Method Blank

One method blank was extracted, analyzed, and reported with the TEPH samples. Target analytes were not detected in the method blank.

2.10.2 MS and BS

MS - MS - One sample MS summary report (Composite #11) was submitted with this sample set. The MS %R was not recovered, due to high target analyte concentration.

BS - One BS was submitted with this data set. The BS %R was 104%, which was with acceptable control limit of 75-125%. indicating acceptable laboratory procedures.

2.10.3 Overall Assessment of Data

The quantity of soil extracted, the amounts analyzed and the dilution factors were included in this data set for all of the samples. All compounds were reviewed based on the holding time limits, detection limits, method blank, MS %R and BS %R. The data was found to be acceptable based on the information given. Laboratory accuracy has been determined acceptable based on method blanks and BS %Rs.

2.11 CHLORIDE (CI)

Five soil samples were submitted for Cl analysis.

2.11.1 Method Blank

One method blank was extracted, analyzed, and reported with the TOC samples. Chloride was not detected in the method blank.

2.11.2 MS

One sample MS summary report (Composite #11) was submitted with this sample set. Sample Composite #11 was spiked with a spiking solution containing chloride. The MS %R was 101%, within acceptable control limits of 75-125%, indicating acceptable laboratory procedures.

2.11.3 Overall Assessment of Data

The quantity of soil extracted, the amounts analyzed and the dilution factors were included in this data set for all of the samples. All compounds were reviewed based on the holding time limits, detection limits, method blank and MSD %R. The data was found to be acceptable based on the information given.

Laboratory accuracy has been determined acceptable based on method blanks and MS

2.12 TOTAL METALS

Five soil samples were submitted for total metals analysis.

2.12.1 Method Blank

One method blank was extracted, analyzed, and reported with the total metals samples. Target analytes were not detected in the method blank.

2.12.2 MS/MSD and Post Digestion Spike (PS)

MS/MSD - One sample MS/MSD summary report (Composite #11) was submitted with this sample set. Sample Composite #11 was spiked with a spiking solution containing twelve

different analytes. The MS %Rs and MSD %Rs were within acceptable control limits of 75-125%, with the exception of antimony. The MS %R was 70%. The RPD value were within acceptable control limits of 0-20% with the exception of lead. The RPD for nickel was 26%.

PS - One PS for antimony and lead was submitted with this data set. The PS %R was 93% for antimony and 85% for lead, which were with acceptable control limit of 75-125%, indicating acceptable laboratory procedures.

2.12.3 Overall Assessment of Data

The quantity of soil extracted, the amounts analyzed and the dilution factors were included in this data set for all of the samples. All compounds were reviewed based on the holding time limits, detection limits, method blank, MS %Rs, MSD %Rs, PS %Rs, and RPD values. The data was found to be acceptable based on the information given.

Laboratory accuracy has been determined acceptable based on method blanks, MS %Rs, MSD %Rs, PS %Rs, and RPD values.

2.13 TOTAL ORGANIC CARBON (TOC)

Five soil samples were submitted for TOC analysis.

2.13.1 Method Blank

One method blank was extracted, analyzed, and reported with the TOC samples. TOC was not detected in the method blank.

2.13.2 MS

One sample MS summary report (Composite #11) was submitted with this sample set. Sample Composite #11 was spiked with a spiking solution containing TOC. The MS %R was 101%, which was within acceptable control limits of 75-125%, indicating acceptable laboratory procedures.

2.13.3 Laboratory Duplicate

One laboratory duplicate (Composite #11) was submitted with the TOC analysis. The RPD value was 16%, which was within acceptable control limits of 0-20%, indicating acceptable laboratory procedures.

2.13.4 Overall Assessment of Data

The quantity of soil extracted, the amounts analyzed and the dilution factors were included in this data set for all of the samples. All compounds were reviewed based on the holding time limits, detection limits, method blank, MS %R, and laboratory duplicate. The data was found to be acceptable based on the information given.

Laboratory accuracy has been determined acceptable based on method blanks, MS %R, and laboratory duplicate RPD value.

3.0 CONCLUSION

Completeness is determined by assessing the number of samples where valid results are reported versus the number of samples that are submitted to the laboratory for analysis. The overall completeness goal is to achieve 90% valid data. A completeness goal of 90% was met for the soil samples. All soil sample results have been determined usable for this data set. Representiveness is the degree to which data accurately and precisely represents a characteristic population, a process control, or an environmental condition. Appropriate sampling procedures ensure samples are representative of the environmental matrices sampled. Comparability refers to the degree to which one data set can be compared to another and is controlled through use of appropriate sampling and analytical processes. Both of these criteria were met for this QA/QC review. Precision and accuracy of the soil data as measured by duplicate samples, surrogate recoveries, blanks, and spike/spike duplicates is determined acceptable.

3.1 FIELD DATA

For field QA/QC, a completeness goal of 90% was obtained for duplicate analyses, equipment blanks, and trip blanks. Two equipment blanks and duplicate samples were submitted with the twenty-one samples submitted for PAH, BTEX, and TCN analyses. Two trip blanks were submitted with twenty BTEX samples. Precision of the data was determined by the analysis of the equipment blanks and duplicate samples. Analytes were detected in the equipment blanks as well as in the associated method blank for PAH analysis, indicating laboratory cross-contamination. Twenty-two RPD values were calculated ranging from 5-133%. Seven RPD values exceeded the upper control limit of 50% for sample TTB2-5 (8-9')/Duplicate #2, indicating sample non-homogeneity. All field data has been determined acceptable based on the available information.

3.2 LABORATORY DATA

For laboratory QA/QC, a completeness goal of 90% was achieved for the method blanks, laboratory duplicates, MS/MSDs, BS/BSDs, and surrogate %Rs. Surrogate recoveries, MS/MSDs, and BS/BSDs, unless otherwise noted, were within control limits. Method blanks and MS/MSDs, BS/BSDs, or LCSs were extracted and analyzed for every sample batch for PAHs, BTEX, TCLP VOA, TCLP SVOA, TCLP metals, TOC, TEPH, and Cl. For PAH analysis, twenty samples required large dilutions for PAH analysis, due to high analyte concentrations. The high levels of PAHs present in these samples precluded surrogate and sample matrix spike recoveries. Certain results from samples EB1 and EB2 PAH analyses were qualified as non-detects, due to method blank contamination. Sample TTA-4 (1-2') results have been qualified as estimated, due to holding time violation. For TEPH, the MS was not recovered due to high analyte concentration. All laboratory data has been found to be acceptable based on the available information.

Explanation of qualifiers:

"U" = The material was analyzed for, but was not detected. The associated numerical value is the sample quantitation limit.

"J" = The associated numerical value is an estimated quantity.

"UJ" = The material was analyzed for, but was not detected. The sample quantitation limit is an estimated quantity.

References:

EPA, 1987 "Data Quality Objectives for Remedial Response Activities; Volume I -Development Process. EPA Document 540-GO/003A, OSWWR - March

EPA has defined five analytical levels as follows:

- <u>Level I</u> Field screening or analysis using portable instruments.
- <u>Level II</u> Field analyses using more sophisticated portable analytical instruments.
- Level III All analyses performed in an off-site analytical laboratory. The laboratory may or may not be a Contract Laboratory Program (CLP) laboratory.

- <u>Level IV</u> CLP routine analytical services.
- Level V Analysis by non-standard methods. The laboratory may or may not be a CLP laboratory.

EPA, 1988. Laboratory Data Validation Functional Guidelines For Evaluating Organics Analyses. Prepared by The USEPA Data Review Work Group.

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	PARAMETERS ANALYZED	COMMENTS
TTC4-2 (4-5')	04/27/95	05/01/95	05/06/95	PAH (8310)	(1) 1:1,000 dilution, 2-Chloroanthracene %R = I, outside QC limits (15-117%),
		05/08/95	05/15/95	TCN (9010)	(1) BDL BDL, Laboratory Duplicate - RPD value = NC MS - %R = 118%, w/in QC limits (75-125%)
		NA	05/03/95	BTEX (8020)	(1) BDL, Trifluorotoluene %R = 83%, w/in QC limits (75-109%)
TTF3-1 (7')	04/27/95	05/01/95	05/09/95	PAH (8310)	(1) 1:100 dilution, 2-Chloroanthracene %R = I, outside QC limits (15-117%),
		05/08/95	05/15/95	TCN (9010)	(1)
			05/05/95	BTEX (8020)	(1) Trifluorotoluene %R = 96%, w/in QC limits (75-109%)
TTF2-1 (3')	04/27/95	05/01/95	05/09/95	PAH (8310)	(1) 1:10,000 dilution; 2-Chloroanthracene %R = I, outside QC limits (15-117%),
		05/08/95	05/15/95	TCN (9010)	(1)
			05/05/95	BTEX (8020)	(1) 1:500 Dilution, Trifluorotoluene %R = 103%, W/in QC limits (75-109%)

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

SAMPLE ID	DATE . SAMPLED	DATE EXTRACTED	DATE ANALYZED	PARAMETERS ANALYZED	COMMENTS
TTE1-2 (10-11')	04/27/95	• 05/01/95	05/06/95	РАН (8310)	 (1) 1:1,000 dilution, 2-Chloroanthracene %R = I, outside QC limits (15-117%), MS - %Rs = 0-2356%, outside QC limits (23-123%) 2-chloroanthracene %R = I, outside QC limits (15-117%) MSD - %Rs = I-25572%, outside QC limits (23-123%) 2-chloroanthracene %R = I, outside QC limits (15-117%) RPD - RPD values = NA- 158% outside QC limits (0-20%)
		05/08/95	05/15/95	TCN (9010)	(1) BDL
			05/03/95	BTEX (8020)	 (1) Trifluorotoluene %R = 93%, W/in QC limits (75-109%) MS - %Rs = 99-101%, w/in QC limits (67-135%) MS - Trifluorotoluene %R = NA, QC limits (75-109%) MSD - %Rs = 97-103%, w/in QC limits (67-135%) MSD - Trifluorotoluene %R = NA, QC limits (75-109%) MSD - RPD values = 0.2-3%, w/in QC limits (0-20%)
TTE2-1 (7')	04/27/95	05/01/95	05/12/95	PAH (8310)	(1) 1:10 Dilution, 2-Chloroanthracene %R = 91%, w/in QC limits (15-117%)
		05/08/95	05/15/95	TCN (9010)	(1)
			05/03/95	BTEX (8020)	(1) BDL, Trifluorotoluene %R = 94%, W/in QC limits (75-109%)
TTG2-1 (3-4')	04/27/95	05/01/95	05/06/95	PAH (8310)	(1) 1:1,000 dilution, 2-Chloroanthracene %R = 1, outside QC limits (15-117%),
		05/08/95	05/15/95	TCN (9010)	(1)
			05/03/95	BTEX (8020)	(1) BDL, Trifluorotoluene %R = 90%, W/in QC limits (75-109%)
TTG4-1 (3-4')	04/27/95		05/12/95	PAH (8310)	(1) 1:10 Dilution, 2-Chloroanthracene %R =117%, w/in QC limits (15-123%)
		05/08/95	05/15/95	TCN (9010)	(1)
			05/05/95	BTEX (8020)	(1) Trifluorotoluene %R = 85%, W/in QC limits (75-109%)
Trip Blank	04/27/95 (Date Submitted)		05/03/95	BTEX (8020)	(1) BDL, Trifluorotoluene %R = 97%, W/in QC limits (75-109%)

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	PARAMETERS ANALYZED	COMMENTS
Composite #1	04/28/95			Reacitvity - CN (9010) Reacitvity - Sulfide (9030)	NA, Called 5/01/95 and cancelled analyses NA
				TCLP VOA (8240)	
				TCLP SVOA (8270)	
				TCLP METALS	
				рН	
				Ignitibility	
Composite #2	04/28/95	05/10/95	05/10/95	Reacitvity - CN (9010)	BDL
		Prep Date		Reacitvity - Sulfide (9030)	BDL
		05/04/95	05/08/95	TCLP VOA (8240) (8240)	(1) BDL, Surrogates %Rs = 99-104%, w/in QC limits (76-115%)
		05/03/95	05/08/95	TCLP SVOA (8270)	 (1) BDL, Surrogates %Rs = 4-69%, 2 outside QC limits (10-141%) 2-Fluorophenol %R = 4% and 2,4,6-tribromophenol %R = 5% MS- %Rs = 27-75%, w/in QC limits (1-123%) MS - Surrogates %Rs = 65-80%, w/in QC limits (10-141%)
		05/09/95	05/11/95		Reanalyzed, BDL, Surrogates %Rs = 55-85%, w/in QC limits (10-141%)
				TCLP METALS	(1)
				(As, Ba, Cd, Cr, Pb,	MS - %Rs = 87.8-114.6%, w/in QC limits (75-125%)
	1			Hg, Se, Ag)	Laboratory Duplicate - RPD values = 0.2-200%, two outside QC limits (0-20%)
					Selenium RPD = 200%, Arsenic = 74.3%
					Serial Dilution - %D = 3.2-458.5%, three outside QC limits (0-20%) Selenium %D = 295%, Arsenic %D = 263%, Cadmium %D = 459%
	• .	NA	05/02/95	pH	
			.		
		NA	05/13/95	Ignitibility	BDL

.

.

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	PARAMETERS ANALYZED	COMMENTS
Composite #3	04/28/95	05/10/95 Prep Date	05/10/95	Reacitvity - CN (9010) Reacitvity - Sulfide (9030)	BDL BDL
		05/04/95	05/08/95	TCLP VOA (8240)	(1) Surrogates %Rs = 99-103%, w/in QC limits (76-115%)
		05/03/95	05/08/95	TCLP SVOA (8270)	(1) BDL, Surrogates %Rs = 63-74%, w/in QC limits (10-141%)
				TCLP METALS (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	(1)
		NA	05/02/95	рН	
		NA	05/13/95	Ignitibility	BDL
TTC1-4 (3-4')	04/26/95	05/10/95 Prep Date	05/10/95	Reacitvity - CN (9010) Reacitvity - Sulfide (9030)	BDL
		05/04/95	05/08/95	TCLP VOA (8240)	(1) Surrogates %Rs = 99-105%, w/in QC limits (76-115%)
		05/03/95	05/08/95	TCLP SVOA (8270)	BDL, Surrogates %Rs = 55-79%, w/in QC limits (10-141%)
				TCLP METALS (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	(1)
		NA	05/02/95	рН	· ·
		NA	05/13/95	Ignitibility	BDL

00 01:38

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	PARAMETERS ANALYZED	COMMENTS
Composite #4	04/28/95	05/10/95 Prep Date	05/10/95	Reacitvity - CN (9010) Reacitvity - Sulfide (9030)	BDL BDL
		05/04/95	05/08/95	TCLP VOA (8240)	(1) Surrogates %Rs = 97-103%, w/in QC limits (76-115%)
		05/03/95	05/08/95	TCLP SVOA (8270)	(1) BDL, Surrogates %Rs = 64-76%, w/in QC limits (10-141%)
				TCLP METALS (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	(1)
		NA	05/02/95	pH	
		NA	05/13/95	Ignitibility	BDL
Composite #5	04/28/95	05/10/95 Prep Date	05/10/95	Reacitvity - CN (9010) Reacitvity - Sulfide (9030)	BDL BDL
		05/04/95	05/08/95	TCLP VOA (8240)	(1) Surrogates %Rs = 98-103%, w/in QC limits (76-115%)
		05/03/95	05/08/95	TCLP SVOA (8270)	(1) BDL, Surrogates %Rs = 43-74%, w/in QC limits (10-141%)
				TCLP METALS (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	(1)
		NA	05/02/95	рН	
		NA	05/13/95	Ignitibility	BDL

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	PARAMETERS ANALYZED	COMMENTS
Composite #6	04/28/95	05/10/95 Prep Date	05/10/95	Reacitvity - CN (9010) Reacitvity - Sulfide (9030)	BDL
		05/04/95	05/08/95	TCLP VOA (8240)	(1) BDL, Surrogates %Rs = 98-103%, w/in QC limits (76-115%)
		05/03/95	05/08/95	TCLP SVOA (8270)	(1) BDL, Surrogates %Rs = 58-78%, w/in QC limits (10-141%)
				TCLP METALS (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	(1) .
		NA	05/02/95	рН	
		NA	05/13/95	Ignitibility	BDL
Composite #7	04/28/95	05/10/95 Prep Date	05/10/95	Reacitvity - CN (9010) Reacitvity - Sulfide (9030)	BDL BDL
		05/04/95	05/08/95	TCLP VOA (8240)	(1) BDL, Surrogates %Rs = 96-103%, w/in QC limits (76-115%)
		05/03/95	05/08/95	TCLP SVOA (8270)	(1) BDL, Surrogates %Rs = 67-78%, w/in QC limits (10-141%)
				TCLP METALS (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	(1)
		NA	05/02/95	рН	
		NA	05/13/95	Ignitibility	BDL

0-01:38

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	PARAMETERS ANALYZED	COMMENTS
Composite #8	04/28/95	05/10/95 Prep Date	05/10/95	Reacitvity - CN (9010) Reacitvity - Sulfide (9030)	BDL BDL
		05/04/95	05/08/95	TCLP VOA (8240)	(1) BDL, Surrogates %Rs = 98-104%, w/in QC limits (76-115%)
		05/03/95	05/08/95	TCLP SVOA (8270)	 BDL, Surrogates %Rs = 5-73%, 2 outside QC limits (10-141%) 2-Fluorophenol %R = 8% and 2,4,6-tribromophenol %R = 5%
				TCLP METALS (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	(1)
		NA	05/02/95	рН	
		NA	05/13/95	Ignitibility	BDL
Composite #9	04/28/95	05/10/95 Prep Date	05/10/95	Reacitvity - CN (9010) Reacitvity - Sulfide (9030)	BDL BDL
		05/05/95	05/08/95	TCLP VOA (8240)	(1) BDL, Surrogates %Rs = 97-104%, w/in QC limits (76-115%) MS - %Rs = 89-103%, w/in QC limits (26-156) Surrogates %Rs = 98-104%, w/in QC limits (76-115%)
		05/03/95	05/08/95	TCLP SVOA (8270)	(1) BDL, Surrogates %Rs =1-67%, 2 outside QC limits (10-141%) 2-Fluorophenol %R = 1% and 2,4,6-tribromophenol %R = 3%
				TCLP METALS (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	
		NA	05/02/95	рН	
		NA	05/13/95	Ignitibility	BDL

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	PARAMETERS ANALYZED	COMMENTS
Composite #10	04/28/95	05/10/95 Prep Date	05/10/95	Reacitvity - CN (9010) Reacitvity - Sulfide (9030)	BDL
-		05/05/95	05/08/95	TCLP VOA (8240)	(1) BDL, Surrogates %Rs = 99-103%, w/in QC limits (76-115%)
· · · · · · · · ·		05/03/95	05/08/95	TCLP SVOA (8270)	(1) BDL, Surrogates %Rs = 5-78%, 1 outside QC limits (10-141%)
				TCLP METALS (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	(1)
		NA	05/02/95	pH	
		NA	05/13/95	Ignitibility	BDL
DB-6 (2-4')	04/25/95	05/03/95	05/10/95	PAH (8310)	(1) 1 ;1000 Dilution, 2-Chloroanthracene %R = 1, outside QC limits (15-117%)
		05/05/95	05/15/95	TCN (9010)	(1) BDL BDL, Laboroatory Duplicate - RPD value = NC MS - %R = 68%, outside QC limits (75-125%)
		NA	05/04/95	BTEX (8020)	(1) Trifluorotoluene %R = 90%, w/in QC limits (75-109%) Headspace
DB-7 (0-2')	04/25/95	05/03/95	05/10/95	PAH (8310)	(1) 1 :1000 Dilution, 2-Chloroanthracene %R = 1, outside QC limits (15-117%)
		05/05/95	05/15/95	TCN (9010)	(1) BDL
				BTEX (8020)	(1)

٩

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	PARAMETERS ANALYZED	COMMENTS
B-47 (2-4')	04/25/95	05/03/95	05/10/95	PAH (8310)	(1) 1 :1000 Dilution, 2-Chloroanthracene %R = I, outside QC limits (15-117%)
		05/05/95	05/15/95	TCN (9010)	(I) BDL
		NA	05/05/95	BTEX (8020)	(1) Trifluorotoluene %R = 80%, w/in QC limits (75-109%)
B-47 (16-18')	04/25/95	05/03/95	05/10/95	PAH (8310)	(1) 1 :10,000 Dilution, 2-Chloroanthracene %R = I, outside QC limits (15-117%)
		05/05/95	05/15/95	TCN (9010)	(1) BDL
		NA	05/04/95	BTEX (8020)	(1) Trifluorotoluene %R = 100%, w/in QC limits (75-109%)
Duplicate #1 Field Duplicate of B-47 (2-4')	04/25/95	05/03/95	05/10/95	PAH (8310)	 (1) 1 :1000 Dilution, 2-Chloroanthracene %R = I, outside QC limits (15-117%) MS - %R = -16944-1%, outside QC limits (23-123%) MS - 2-Chloroanthracene %R = I, outside QC limits (15-117%) MSD - %R = -1922-1%, outside QC limits (23-123%) MSD - 2-Chloroanthracene %R = I, outside QC limits (15-117%)
		05/05/95	05/15/95	TCN (9010)	(1) BDL
		NA	05/03/95	BTEX (8020)	(1) Trifluorotoluene %R = 90%, w/in QC limits (75-109%) Headspace
EB-1 (Split Spoon) Water	04/26/95	05/03/95	05/10/95	PAH (8310)	2-Chloroanthracene %R = 85%, w/in QC limits (15-117%) Acenaphthene 0.098 ug/l, phenanthrene 0.17 ug/l, anthracene 0.024 ug/l, fluoranthene 0.075 ug/l, benzo(a)anthracene 0.018 ug/l, results qualified with "U" due to blank contamination
		05/03/95	05/11/95	TCN (9010)	(1) BDL
		NA	05/03/95	BTEX (8020)	 (1) BDL, Trifluorotoluene %R = 80%, w/in QC limits (78-113%) MS - %Rs = 98-102%, w/in QC limits (75-135%) MS - Trifluorotoluene %R = NA%, w/in QC limits (78-113%) MSD - %Rs = 96-100%, w/in QC limits (75-135%) MS - Trifluorotoluene %R = NA%, w/in QC limits (78-113%) MS/MSD - RPD values = 2-3%, w/in QC limits (0-20%)

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED_	DATE ANALYZED	PARAMETERS ANALYZED	COMMENTS
EB-2 (Sample Spoon) Water	04/26/95	05/03/95	05/10/95	РАН (8310)	(1) 2-Chloroanthracene %R = 99%, w/in QC limits (15-117%) Phenanthrene 0.17 ug/l, result qualified w/ "U" qualifier due to blank contamination
		05/03/95	05/11/95	TCN (9010)	(1) BDL
		NA	05/03/95	BTEX (8020)	(1) BDL, Trifluorotoluene %R = 98%, w/in QC limits (78-113%)
Trip Blank Water	04/26/95 (Date Submitted)	NA	05/03/95	BTEX (8020)	(1) BDL, Trifluorotoluene %R = 97%, w/in QC limits (78-113%)
TTA3-2 (7')	04/25/95	05/03/95	05/10/95	PAH (8310)	(1) 1 :1000 Dilution, 2-Chloroanthracene %R = I, outside QC limits (15-117%)
		05/05/95	05/15/95	TCN (9010)	
		NA	05/05/95	BTEX (8020)	(1) Trifluorotoluene %R = 106%, w/in QC limits (75-109%) Headspace
TTA2-1 (5-6')	04/25/95	05/03/95	05/10/95	PAH (8310)	(1) 1 :1000 Dilution, 2-Chloroanthracene %R = I, outside QC limits (15-117%)
		05/05/95	05/15/95	TCN (9010)	(1)
		NA	05/04/95	BTEX (8020)	(1) Trifluorotoluene %R = 94%, w/in QC limits (75-109%) Headspace
TTB2-5 (8-9')	04/25/95	05/03/95	05/10/95	PAH (8310)	(1) 1 :10,000 Dilution, 2-Chloroanthracene %R = I, outside QC limits (15-117%)
		05/05/95	05/15/95	TCN (9010)	(1)
		NA	. 05/04/95	BTEX (8020)	(1) Trifluorotoluene %R =107%, w/in QC limits (75-109%)
Duplicate #2	04/26/95	05/05/95	05/13/95	PAH (8310)	(1) 1 :2,000 Dilution, 2-Chloroanthracene %R ~ I, outside QC limits (15-117%)
		05/05/95	05/15/95	TCN (9010)	(1)
		NA	05/04/95	BTEX (8020)	(1) Trifluorotoluene %R = 97%, w/in QC limits (75-109%) Headspace

Pa

01:38

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	PARAMETERS ANALYZED	COMMENTS
TTC5-1 (6-7')	04/27/95	05/03/95	05/10/95	PAH (8310)	(1) 1 :1000 Dilution, 2-Chloroanthracene %R = I, outside QC limits (15-117%)
		05/05/95	05/15/95	TCN (9010)	(1)
				BTEX (8020)	(1) Trifluorotoluene %R = 88%, w/in QC limits (75-109%) Headspace
TTA4-2 (7')	04/26/95	05/03/95	05/12/95	PAH (8310)	(1) 1 :10,000 Dilution, 2-Chloroanthracene %R = I, outside QC limits (15-117%)
		05/05/95	05/15/95	TCN (9010)	(1)
		NA	. 05/05/95	BTEX (8020)	(1) Trifluorotoluene %R = 87%, w/in QC limits (75-109%) Headspace
TTB3-1 (3')	04/26/95	05/03/95	05/12/95	PAH (8310)	(1) 1 :1000 Dilution, 2-Chloroanthracene %R = I, outside QC limits (15-117%)
		05/08/95	05/15/95	TCN (9010)	(1) BDL
•		NA	05/03/95	BTEX (8020)	(1) Trifluorotoluene %R = 96%, w/in QC limits (75-109%) Headspace
TTA4-1 (1-2')	04/26/95	05/22/95	05/25/95	PAH (8310)	Holding time violation, exceeded holding time by 12 days Surrogate %Rs = 1, outside QC limits (23-123%), Postive results qualified w/ "J", and non-postive w/ "UJ"
		05/08/95	05/15/95	TCN (9010)	(1) BDL
		NA	05/03/95	BTEX (8020)	(1)
TTC1-2 (2-3')	04/26/95	05/03/95	05/12/95	PAH (8310)	(1) 1 :1000 Dilution, 2-Chloroanthracene %R = I, outside QC limits (15-117%)
		05/08/95	05/15/95	TCN (9010)	(1) BDL
		NA	05/05/95	BTEX (8020)	(1) Trifluorotoluene %R = 104%, w/in QC limits (75-109%) Headspace

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	PARAMETERS ANALYZED	COMMENTS
Composite #11	04/29/95	05/10/95	05/11/95	TEPH (418.1)	(1) MS - %R = NR, Outside QC limits
		NA	05/10/95	Chloride (SM 4500-Cl)	(1) BDL MS - %R = 101%, w/in QC limits (75-125%)
		NA	05/10/95	TOC (9060)	(1) Laboratory Duplicate - RPD value = 16%, w/in QC limits (0-20%) MS - %R = 101%, w/in QC limits (75-125%)
-		05/09/95 Prep Date		Metals (6010) (Sb, As, Ba, Be, Cd, Cr, Cu Pb, Ni, K, Se, Tl)	(1) MS - %Rs = 70-104%, one outside QC limits (75-125%), Antimony %R = 70% MSD - %Rs = 67-157%, two outside QC limits (75-125%), An %R = 67%, Pb %R = 157% MS/MSD - RPD values = 0-26%, one outside QC limits (0-20%), Pb RPD value = 26% PS %Rs = 85% for Pb and 93% for An, w/in QC limits (75-125%)
				Grain Size, Bulk Density, Aluminum and Silcon Oxide, and Alkali Content	
Composite #12	04/29/95	05/10/95	05/11/95	TEPH (418.1)	(1)
		NA	05/10/95	Chloride (SM 4500-Cl)	(1) BDL
		NA	05/10/95	TOC (9060)	(1)
		05/09/95 Prep Date	05/09-12/95	Metals (6010) (Sb, As, Ba, Be, Cd, Cr, Cu Pb, Ni, K, Se, Tl)	(1)
				Grain Size, Bulk Density, Aluminum and Silcon Oxide, and Alkali Content	

1

── 01:3⊱──

.

۰.

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

SAMPLEID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	PARAMETERS ANALYZED	COMMENTS
Composite #13	04/29/95	05/10/95	05/11/95		(1)
		NA	05/10/95	Chloride (SM 4500-Cl)	(1) BDL
		NA	05/10/95	TOC (9060)	(1) .
		05/09/95 Prep Date		Metals (6010) (Sb, As, Ba, Be, Cd, Cr, Cu Pb, Ni, K, Se, Tl)	(1)
				Grain Size, Bulk Density, Aluminum and Silcon Oxide, and Alkali Content	
Composite #14	04/29/95	05/10/95	05/11/95	TEPH (418.1)	(1)
		NA	05/10/95	Chloride (SM 4500-C1)	(1) BDL
		NA	05/10/95	TOC (9060)	(1)
		05/09/95 Prep Date	05/09-12/95	Metals (6010) (Sb, As, Ba, Be, Cd, Cr, Cu Pb, Ni, K, Se, Tl)	(1)
				Grain Size, Bulk Density, Aluminum and Silcon Oxide, and Alkali Content	
Composite #15	04/29/95	05/10/95	05/11/95	TEPH (418.1)	(1)
		NA	05/10/95	Chloride (SM 4500-Cl)	(1) BDL
		NA	05/10/95	TOC (9060)	(1)
		05/09/95 Prep Date		Metals (6010) (Sb, As, Ba, Be, Cd, Cr, Cu Pb, Ni, K, Se, Tl)	(1)
				Grain Size, Bulk Density, Aluminum and Silcon Oxide, and Alkali Content	

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	PARAMETERS ANALYZED	COMMENTS
Reagent Blank SRB1 05/01/95	NA	05/01/95	05/05/95	PAH (8310)	BDL, 2-Chloroanthracene %R = 54%, within QC limits (15-117%)
Soil BS/BSD SBS1/SBS2 Soil	NA	05/01/95	05/09/95	РАН (8310)	BS - %Rs = 41-82% w/in QC limits (23-123%) BS - 2-Chloroanthracene %R = 78%, within QC limits (15-117%) BSD- %Rs = 43-102% w/in QC limits (23-123%) BSD - 2-Chloroanthracene %R = 78%, within QC limits (15-117%) RPD - values range from 4-39%, two outside QC limits (0-20%), Phenanthrene RPD value = 39%, Pyrene RPD value = 27%, no qualifiers warranted
Reagent Blank SRB1 05/03/95 Soil	NA	NA	05/03/95 05/05/95	BTEX (8020) BTEX (8020)	BDL, Trifluorotoluene %R = 99%, w/in QC limits (75-109%) BDL, Trifluorotoluene %R = 98%, w/in QC limits (75-109%)
Methanol Blank MeOH SRB1 05/05/95 Soil	NA	NA	05/05/95	BTEX (8020)	BDL, Trifluorotoluene %R = 100%, w/in QC limits (75-109%)
Reagent Blank WRB1 05/03/91 Water	NA	NA	05/03/95	BTEX (8020)	BDL, Trifluorotoluene %R = 98%, w/in QC limits (78-113%)
Reference Calibration Check	NA	NA	04/26/95	BTEX (8020)	RCC - %Ds = 0.6-3%, w/in QC limits (0-20%)
Reference Calibration Check	NA	NA	05/01/95	BTEX (8020)	RCC - %Ds = 2-5%, w/in QC limits (0-20%)
Reference Calibration Check	NA	NA	05/03/95	BTEX (8020)	RCC - %Ds = 3%, w/in QC limits (0-20%)
Reference Calibration Check	NA	NA	05/03/95	BTEX (8020)	RCC - %Ds = 1-3%, w/in QC limits (0-20%)
Reference Calibration Check	NA	NA	05/04/95	BTEX (8020)	RCC - %Ds = 2-3%, w/in QC limits (0-20%)
Reference Calibration Check	NA	NA	05/05/95	BTEX (8020)	RCC - %Ds = 2-3%, w/in QC limits (0-20%)
Reagent Blank 95-04-222-RB Soil	NA	05/10/95 Prep Date	05/10/95	Reactivity - CN (9010) Reactivity - Sulfide (9030)	BDL BDL
Method Blank TCLPRB1 05/04/95 Water	NA	05/04/95	05/08/95	TCLP VOA (8240)	BDL, Surrogates %Rs = 99-101%, w/in QC limits (76-115%)
Method Blank TCLPRB1 05/05/95 Water	NA	05/04/95	05/09/95	TCLP VOA (8240)	BDL, Surrogates %Rs = 99-103%, w/in QC limits (76-115%)

Pa_11

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

	DATE	DATE	DATE	PARAMETERS	
SAMPLE ID	SAMPLED	EXTRACTED	ANALYZED	ANALYZED	COMMENTS
Method Blank WRB1 05/09/95 Water	NA	NA	05/09/95	TCLP VOA (8240)	BDL, Surrogates %Rs = 99-102%, w/in QC limits (76-115%)
Method Blank WRB1 05/08/95 Water	NA	NA	05/08/95	TCLP VOA (8240)	BDL, Surrogates %Rs = 99-101%, w/in QC limits (76-115%)
CLP Blank RB1 05/03/95 Soil	NA	05/03/95	05/08/95	TCLP SVOA (8270)	BDL, Surrogates %Rs = 88-102%, w/in QC limits (21-141%)
FCLP Blank RX RB1 05/09/95 RX Soil	NA	05/09/95	05/11/95	TCLP SVOA (8270)	BDL, Surrogates %Rs = 51-83%, w/in QC limits (D-141%)
Son Slank Spike SBS1 05/03/95 Soil	NA	05/03/95	05/08/95	TCLP SVOA (8270)	BDL, Surrogates %Rs = 51-83%, w/in QC limits (21-141%) BS - %Rs = 38-78%, w/in QC limits (1-111%)
Blank Spike RX SBSI 05/09/95 RX Soil	NA	05/09/95	05/11/95	TCLP SVOA (8270)	BDL, Surrogates %Rs = 52-89%, w/in QC limits (21-141%) BS - %Rs = 26-82%, w/in QC limits (1-111%)
Reagent Blank Soil	NA	05/10/95	05/11/95	TEPH (418.1)	BDL
Blank Spike Soil	NA	05/10/95	05/11/95	TEPH (418.1)	BS - %R = 104%, w/in QC limits (75-125%)
Reagent Blank RB 95-05-005 Soil	NA	NA	05/10/95	Chloride (SM4500-Cl)	BDL
Reagent Blank RB 95-05-005 Soil	NA	NA	05/10/95	TOC (9060)	BDL
Reagent Blank RB 95-05-005 Soil	. NA	05/09/95 Prep Date	05/09-12/95 •	Metals (6010) (Sb, As, Ba, Be, Cd, Cr, Cu Pb, Ni, K, Se, Tl)	BDL
Reagent Blank 95-04-222-RB Soil	NA	05/08/95 Prep Date	05/15/95	TCN (9010)	BDL
nitial Calibration Verification Soil	NA	05/08/95	05/15/95	TCN (9010)	ICV - %R = 104%, w/in QC limits (90-110%)
Laboratory Control Sample Soil	NA	05/08/95	05/15/95	TCN (9010)	LCS - %R = 94%, w/in QC limits (63-115%)
nitial Calibration Verification	NA	NA	NA	TCLP METALS (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	ICV - %Rs = 101-107%, w/in QC limits (80-120%)

-

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

	DATE	DATE	DATE	PARAMETERS	
SAMPLE ID	SAMPLED	EXTRACTED	<u>ANALYZED</u> NA	ANALYZED TCLP METALS	COMMENTS CCV - %Rs = 96.2-103%, w/in QC limits (80-120%)
Continuing Calibration Verification	NA	NA	, NA	(As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	CCV • %KS = 90.2-103%, W/In QC limits (80-120%)
Continuing Calibration Verification	NA	NA	NA	TCLP METALS (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	CCV - %Rs = 97.1-104%, w/in QC limits (80-120%)
CRDL Standard	NA	NA	NA	TCLP METALS Hg	CRDLS - Mercury %R = 80%, w/in QC limits
CRDL Standard	NA	NA	NA	TCLP METALS (As, Ba, Cd, Cr, Pb, Se, Ag)	CRDLS - %Rs = 97-124%, w/in QC limits
Initial Calibration Blank	NA	NA	NA	TCLP METALS (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	Barium -1.5 ug/l, cadmium 0.8 ug/l
Continuing Calibration Blank 1	NA	NA	NA	TCLP METALS (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	Arsenic 2.4 ug/l , barium 0.6 ug/l, cadmium 1.2 ug/l, chromium 0.7 ug/l
Continuing Calibration Blank 2	. NA	NA	NA	TCLP METALS (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	Arsenic 3.3 ug/l, barium 0.8 ug/l, cadmium 1.3 ug/l, chromium 0.8 ug/l
Continuing Calibration Blank 3	NA	NA	NA	TCLP METALS (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	Arsenic 2.9 ug/l, barium 0.8 ug/l, cadmium 1.3 ug/l, chromium 0.9 ug/l
Preparation Blank	NA	NA	NA	TCLP METALS (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	Arsenic 1.6 ug/l, barium - 0.7 ug/l, cadmium 0.71 ug/l, lead -1.440 ug/l
Continuing Calibration Blank	NA	NA	NA	TCLP METALS (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	Arsenic 2.4 ug/l, barium 0.4 ug/l, cadmium 1.2 ug/l, chromium 0.6 ug/l

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	PARAMETERS ANALYZED	COMMENTS
Preparation Blank	NA	NA	NA	TCLP METALS (As, Ba, Cd, Cr, Pb, Hg, Se, Ag)	Arsenic 23.3 ug/l , barium - 13.6 ug/l, cadmium 6.4 ug/l, lead -11.70 ug/l
ICP Interference Check Sample	NA	NA	NA	TCLP METALS (Ba, Cd, Cr, Pb, Ag)	IICS - %Rs = 88.4-104.8%, w/in QC limits FICS - %Rs = 89.4-105.7%, w/in QC limits
Laboratory Control sample	NA	NA	NA	TCLP METALS (Ba, Cd, Cr, Pb, Ag)	LCS - %Rs = 90-120%, w/in QC limits (75-125%)
Reagent Blank SRB1 05/03/91 Soil	NA	NA	05/03/95	BTEX (8020)	BDL, Trifluorotoluene %R = 99%, w/in QC limits (75-109%)
Reagent Blank SRBI 05/04/91 Soil	NA	NA	05/03/95	BTEX (8020)	BDL, Trifluorotoluene %R = 98%, w/in QC limits (75-109%)
Methanol Blank MeOH SRB1 05/04/95 Soil	NA	NA	05/04/95	BTEX (8020)	BDL, Trifluorotoluene %R = 98%, w/in QC limits (75-109%)
Reagent Blank SRB1 05/05/91 Soil	NA	NA	05/05/95	BTEX (8020)	BDL, Trifluorotoluene %R = 98%, w/in QC limits (75-109%)
Methanol Blank MeOH SRB1 05/05/95 Soil	NA	NA	. 05/04/95	BTEX (8020)	BDL, Trifluorotoluene %R =100%, w/in QC limits (75-109%)
Reagent Blank WRBI 05/03/91 Water	NA	NA	05/03/95	BTEX (8020)	BDL, Trifluorotoluene %R = 98%, w/in QC limits (78-113%)
Reference Calibration Check	NA	NA	04/26/95	BTEX (8020)	RCC - %Ds = 0.6-3%, w/in QC limits (0-20%)
Reference Calibration Check	NA	NA	05/01/95	BTEX (8020)	RCC - %Ds = 2-5%, w/in QC limits (0-20%)
Reference Calibration Check	NA	NA	05/03/95	BTEX (8020)	RCC - %Ds = 3%, w/in QC limits (0-20%)
Reference Calibration Check	NA	NA	05/03/95	BTEX (8020)	RCC - %Ds = 1-3%, w/in QC limits (0-20%)
Reference Calibration Check	NA	NA	05/04/95	BTEX (8020)	RCC - %Ds = 2-3%, w/in QC limits (0-20%)
Reference Calibration Check	NA	NA	05/05/95	BTEX (8020)	RCC - %Ds = 2-3%, w/in QC limits (0-20%)

• •

.

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

•	-	~	~	-	

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	PARAMETERS ANALYZED	COMMENTS
Reagent Blank 95-04-222-RB Soil	NA	05/08/95 Prep Date	05/15/95	TCN (9010)	BDL
Initial Calibration Verification Soil	NA	05/08/95	05/15/95	TCN (9010)	ICV - %R = 95%, w/in QC limits (90-110%)
Laboratory Control Sample Soil	NA	05/08/95	05/15/95	TCN (9010)	LCS - %R = 87%, w/in QC limits (63-115%)
Reagent Blank 95-04-222-RB Soil	NA	05/05/95 Prep Date	05/15/95	TCN (9010)	BDL
Reagent Blank 95-04-222-RB Soil	NA	05/05/95 Prep Date	05/15/95	TCN (9010)	BDL
Initial Calibration Verification Soil	NA	05/03/95	05/11/95	TCN (9010)	ICV - %R =104%, w/in QC limits (90-110%)
Reagent Blank 95-04-222-RB Water	NA	05/03/95 Prep Date	05/15/95	TCN (9010)	BDL
Reagent Blank WRB1 5/3/95 Water	NA	05/03/95	05/10/95	PAH (8310)	2-Chloroanthracene %R = 119%, outside QC llmits (15-117%) Flourene 0.053 ug/l, phenanthrene 0.26 ug/l, anthracene 0.088 ug/l, fluoranthene 1.0 ug/l, benzo (b)fluoranthene 0.30 ug/l, benzo(k)fluranthene 0.15 ug/l, and benzo(a)pyrene 0.43 ug/l
Reagent Blank SRB1 05/03/95 Soil	NA	05/03/95	05/05/95	PAH (8310)	BDL, 2-Chloroanthracene %R = 67%, within QC limits (15-117%)
BS/BSD SBS1/SBS2 Soil	NA	05/03/95	05/10/95	PAH (8310)	BS - %Rs = 43-73%, w/in QC limits (23-123%) BS - 2-Chloroanthracene %R = 78%, within QC limits (15-117%) BSD - %Rs = 38-82%, w/in QC limits (23-123% BSD - 2-Chloroanthracene %R = 100%, within QC limits (15-117%) RPD - values range from 1-12%, w/in QC limits (0-20%),
Reagent Blank SRB1 05/05/95 Soil	NA	05/05/95	05/13/95	PAH (8310)	BDL, 2-Chloroanthracene %R = 70%, within QC limits (15-117%)
WBS1/WBS2 Water	NA	05/03/95	05/10/95	PAH (8310)	BS - %Rs = 76-88%, w/in QC limits (23-123%) BS - 2-Chloroanthracene %R = 88%, within QC limits (15-117%) BSD - %Rs = 89-98%, w/in QC limits (23-123%) BSD - 2-Chloroanthracene %R =100%, within QC limits (15-117%)

۰.

ι

THIRD WARD MGP - SSPI PROJECT # 3-0887-403 SOIL DATA VALIDATION APRIL 1995 ATI LABORATORY

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED	DATE ANALYZED	PARAMETERS ANALYZED	COMMENTS
BS/BSD SBS1/SBS2 Soil	NA	05/05/95	05/12/95	PAH (8310)	BS - %Rs = 40-74%, w/in QC limits (23-123%) BS - 2-Chloroanthracene %R = 100%, within QC limits (15-117%) BSD - %Rs = 38-71%, w/in QC limits (23-123% BSD - 2-Chloroanthracene %R = 67%, within QC limits (15-117%) RPD - values range from 1-12%, w/in QC limits (0-20%),
Reagent Blank SRB32 05/22/95 Soil	NA	05/22/95	05/25/95	PAH (8310)	BDL, 2-Chloroanthracene %R = 85%, within QC limits (15-117%)
BS/BSD SBS3/SBS4 Soil	NA	05/22/95	05/25/95	PAH (8310)	BS - %Rs = 44-57%, w/in QC limits (23-123%) BS - 2-Chloroanthracene %R = 68%, within QC limits (15-117%) BSD - %Rs = 45-68%, w/in QC limits (23-123% BSD - 2-Chloroanthracene %R = 88%, within QC limits (15-117%) RPD - values range from 4-23%, w/in QC limits (0-20%), one exceeded QC limits Phenanthrene RPD value = 23%

ABBEVIATIONS/DEFINITIONS

(1) - Standard QA/QC including methods, analysis, detection limits, holding times, etc., are within QA/QC limits unless otherwise noted.

QA - Quality assurance I - Diluted out QC - Quality control %R - Percent recovery %D - Perecent Difference CN - Cyanide ICP - Inductively Coupled Plasma BTEX - Benzene, toluene, ethyl benzene, xylenes extractables PAH - Polynuclear aromatic hydrocarbons VOA - Volatile organic analytes TCLP - Toxicity Characteristics Leachate Program RCC - Reference calibraton check TEPH - Total extractable petroleum hydrocarbons TOC - Total organic carbon NC - Not calculated TCN - Total cyanide SVOA - Semivolatile organic analytes NR - Not recovered BS - Blank spike NA - Not applicable MS - Matrix spike MSD - Matrix spike duplicate SRM - Standard reference material RPD - Relative percent difference PS - post digestion spike D - Detected

ICP - Inductively Coupled Plasma IICS - Initial Interference Check Sample FICS - Final Interference Check Sample RCC - Reference calibraton check Sb - Antimony, As - Arsenic, Ba - Barium, Be - Beryllium Cd - Cadnium, Cr - Chromium, Cu - Copper Pb - Lead, Hg - Mercury, Ni - Nickel, K- Potassium, Se - Selenium, Ag - Silver, and Tl - Thallium NC - Not calculated NR - Not recovered NA - Not applicable LCS - Laboratory Check/Calibration Check SRM - Standard reference material J - Qualifier denoting an estimated value UJ -Qualifier denoting the sample quantitation limit is an estimated quantity

OCTOBER 1995 GROUNDWATER DATA

QA/QC SUMMARY FOR THIRD WARD MGP - SSPI #3-0887-403 ANALYTICAL LABORATORY DATA OCTOBER 1995

1.0 QA/QC Review - Outline and Objectives

A Quality Assurance/Quality Control (QA/QC) review was performed by Remediation Technologies, Inc. (RETEC) on laboratory data of water samples collected at the Third Ward MGP site in October 1995. The objectives of this review were to determine the level of precision, accuracy and completeness of the laboratory data. Table 1 presents a summary of the QA/QC information. Where data were outside of QC limits, the table is shaded. Where the sample results were reported as below detection limit (BDL), the results are noted as such in the table.

Precision is the measure of variability of individual sample measurements. The level of precision was determined through analysis of equipment rinse blanks, trip blanks, and field duplicate samples. Accuracy is a measure of the system bias. The level of accuracy was determined by examination of instrument calibrations, method blanks, laboratory spike recoveries like those obtained from matrix spike/matrix spike duplicates (MS/MSDs) and blank spike/blank spike duplicates (BS/BSDs), laboratory duplicates, and surrogate recoveries. Completeness is determined by assessing the number of samples with valid results versus the number of samples which were submitted for analysis.

Field QC, which measured precision, included duplicate analysis of 10% of the collected samples and involved submittal of blind field duplicates. Evaluation of duplicates for precision was done using Relative Percent Difference (RPD). The RPD is defined as the difference between two duplicate samples divided by the mean and expressed as a percent. An industry recognized goal of less than 30% RPD was used to evaluate the precision of field duplicates submitted for analysis. In addition, three equipment rinse blanks used to monitor any contamination occurring during sample collection, and three trip blanks, which screen for shipping, field, or bottle related volatile organics contamination, were also submitted for analysis.

Laboratory QC, which measured accuracy, included one method blank for every 20 samples per matrix, an MS/MSD, BS/BSD, or laboratory duplicate analysis for every 20 samples per matrix as required by method, instrument calibrations, and analysis of surrogate standards for organic analyses. Method blanks were analyzed to identify compounds which could be introduced during the extraction process or analytical phase of the method. Spike and duplicate recoveries and RPDs were compared to published or laboratory control charted QC limits, and were analyzed to demonstrate the percent recovery (%R) of the method used by the laboratory. Instrument calibrations were checked to monitor analytical system conformance. Surrogates are compounds that are structurally similar to the compounds requested for analysis, but are generally not found in nature. They were analyzed to demonstrate the %R of the method used by the laboratory. Completeness was the overall measure of the ratio of samples planned versus the number of samples with valid analyses. The data quality objective for the Third Ward MGP site laboratory data was to achieve 90-100% completeness of data collected.

2.0 Data Quality Audit - General Comments

For the QA/QC process, the chain of custody (COC) records were first checked to ensure that sample results were all present and that the laboratory did not mislabel or omit any samples during sample log in and analysis. The COC records were complete and contained all necessary information. The samples were received by the laboratory on ice, intact, and with custody seals in place as noted on the COCs and "Condition of Sample Upon Receipt" forms provided by the laboratory. Samples submitted for BTEX analysis and received by the laboratory on 10/13/95 and 10/14/95 were received with headspace, except for the trip blank received on 10/14/95. Samples W-41D, W-41S, and W-26S submitted for Dissolved Metals were received with a visible precipitate present. Samples W-14, W-25S, Blind Dup 2, W-20I, W-20S, and W-46D also submitted for Dissolved Metals were received with a pH greater than 2. Additional nitric acid (HNO3) was added by the laboratory to bring the pH of these samples within range. Sample W-20S and Equip Rinse Blank collected on 10/13/95 were not scheduled for BTEX analysis on the COC, however, results for BTEX analysis on these two samples were submitted by the laboratory.

Samples were analyzed for Polynuclear Aromatic Hydrocarbons (PAH) by method 8310, BTEX by method 8020, Dissolved Metals (iron, magnesium, and calcium only) by method 6010, Total Cyanide by method 9010, and Weak Acid Dissociable (WAD) Cyanide by method 4500I where applicable. Not all samples were analyzed for every parameter. Please refer to Table 1 for the exact analyses requested for each sample. All samples were analyzed by Analytical Technologies, Inc. of Fort Collins, Colorado.

The analytical data were reviewed for QA/QC compliance. The overall quality of the data has been validated as acceptable. The QA/QC package is complete and covers all applicable areas outlined. Parameters identified as outside of QC limits, or deserving of special note, are bolded and shaded in Table 1 for easy reference. The data qualifier flags used in this review were "J" and "UJ". The "J" flag is used to indicate an estimated value. Results reported as such should be considered as qualitative, not quantitative. The compound reported can be assumed to be present in the sample, but the concentration reported could be imprecise due to its presence below the normal reporting range of the instrument, or due to noncompliance with other QC criteria such as holding time. The "UJ" flag is used to denote a compound that was not detected, however, other factors such as missed holding times or poor surrogate recovery are causing that non-detection to come under suspicion due to a possible low bias by the system towards that compound.

2.1 Holding Times

Holding times were met for all samples except during PAH and Cyanide analyses. For the PAH analysis, samples W-41D, W-14, and W-22S were extracted outside of holding times. Sample W-41D was extracted 5 days outside the method specified holding time of 7 days from sample

collection. The sample was BDL for all compounds. A "UJ" flag has been attributed to the PAH results for this sample to indicate possible low system bias. Samples W-14 and W-22S were extracted one day outside of the method specified holding time. Only the non-detect values for sample W-22S have been "UJ"-flagged. Professional judgement deems that additional flags are unwarranted since the holding time exceedence was so small. For the Total and WAD Cyanide analyses, samples W-27D, W-42D, W-22I, W-16, ERB-2, W-13, W-45D, and W-43D were analyzed 8 to 11 days outside of the method required holding time of 14 days from sample collection. All positive results are qualified with a "J" and all non-detects are qualified with a "UJ". Professional judgement deems that no cyanide data be qualified as unusable since holding times were not exceeded by twice the allotted amount of time.

2.2 Polynuclear Aromatic Hydrocarbons (PAH)

Twenty-one water samples and two equipment rinse blanks were analyzed for PAHs by method 8310. Many samples required dilutions to bring contaminants within instrument calibration range. Sample W-41D was extracted 5 days out of method specified holding times. This sample, which was reported as being BDL, has been "UJ" qualified to denote estimated non-detect values due to possible low system bias. Samples W-14 and W-22S were extracted one day out of holding time. Since sample W-22S was not analyzed undiluted, all non-detect values for this sample have been flagged with a "UJ" qualifier. Positive results for sample W-22S and all results for sample W-14 have not been qualified. Professional judgement deems that additional flags are not necessary since these samples required 1:10 to 1:1000 dilutions due to high sample concentrations, and all other associated QC was within QC criteria. The fluorene value for sample W-27D has been "J"-flagged as an estimated value due to detection below the practical quantitation limit (PQL) of the instrument. The phenanthrene value for sample W-42D has been "J"-flagged as an estimated value due to detection below the PQLs. The chrysene value for sample W-13 has been "J"-flagged as an estimated value due to detection below the PQL.

2.2.1 Instrument Calibration

Retention times (RTs) and percent differences (%D) were acceptable for both detectors for all method 8310 analytical sequences.

2.2.2 Method Blanks and Equipment Rinse Blanks

Method Blanks - Method blanks were extracted and analyzed at an appropriate frequency. All method blanks were BDL for PAH compounds.

Equipment Rinse Blanks - Two equipment rinse blanks were submitted for PAH analysis. The rinse blank collected on 10/13/95 had trace amounts of acenaphthylene, 2-methylnaphthalene, and phenanthrene detected. Acenaphthylene and phenanthrene were "J"-flagged as estimated values due to detection below the PQL. The rinse blank collected on 10/16/95 had trace amounts of

naphthalene, 2-methylnaphthalene, and fluorene detected. All three compounds were "J"-flagged as estimated values due to detection below the PQL.

2.2.3 Surrogate Recovery

Surrogate recoveries were reported for the least-diluted PAH runs of each sample, and for all QC analyses where appropriate. All surrogate recoveries met the QC limits of 15 - 117%. Sample W-45D, which was reported as being BDL, had a low surrogate recovery of 16% due to extraction difficulties. Although still within QC limits, the recovery is low enough to warrant a "UJ" flag for all non-detect compounds due to possible low system bias.

2.2.4 MS/MSD and BS/BSD

MS/MSD - No MS/MSDs were analyzed.

BS/BSD - BS/BSDs were extracted and analyzed at an appropriate frequency. All %Rs were within the QC limits of 23 - 123%. All RPDs were below the QC limit of 20%.

2.2.5 Field Duplicates

Two blind field duplicates were analyzed for PAHs. Sample Blind Dup was a field duplicate of sample W-41S. Sample Blind Dup 2 was a field duplicate of sample W-25S. The only RPDs to meet the QC limit of <30% were acenaphthene (RPD 22.2) for Blind Dup, and naphthalene (RPD 20.5) for Blind Dup 2. Other RPDs ranged from 35.9 to 120 for Blind Dup and 35.3 to 181 for Blind Dup 2. Refer to Table 1 for the exact compounds and RPDs calculated.

2.2.6 Overall Assessment of Data

Extraction benchsheets and analytical report forms contained all necessary dates, extraction and analysis volumes, dilution factors, and detection limits necessary for sample data review. All compounds were reviewed based on holding time, surrogate and spike recoveries, instrument calibration criteria, method blank results, and RPD values for duplicate analyses. Samples W-41D and W-22S have been "UJ"-flagged due to holding time exceedences. Holding times were not exceeded by more than twice the allotted time, and so sample results are deemed useable, but estimated for non-detect values. Samples Equipment Rinse Blank, W-27D, W-42D, W-16, ERB-2, and W-13 contain various compounds which have been "J"-flagged as estimated values due to detection below the PQL. Sample W-45D has been "UJ"-flagged due to low, but still within QC limits, surrogate recovery. All instrument calibrations, method blanks, surrogates, and spikes were within QC criteria.

Field duplicate results had high RPDs for the majority of compounds measured. The QC RPD limit for water samples is <30%. Out of limit RPDs ranged from 35.3 to 181 percent for the two blind field duplicates as indicated in Table 1. Trace amounts of target analytes were found in both equipment rinse blanks submitted for PAH analysis. Field precision is suspect when reviewing field QA/QC data for PAHs.

Laboratory accuracy has been determined to be acceptable based upon favorable calibration, method blank, surrogate, and spike results.

2.3 Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX)

Twenty-one water samples, three equipment rinse blanks and three trip blanks were analyzed for BTEX by method 8020. Many samples required dilutions to bring target compounds within instrument calibration range. The least diluted results that met QC criteria have been reported. All samples received at the laboratory on 10/13/95 and 10/14/95, with the exception of sample Equip Rinse Blank, were received with headspace. BTEX results were provided for samples Equip Rinse Blank and W-20S, even though this analysis was not requested on the COC. These results have been validated. A method deviation was observed in the initial calibration of 09/29/95. Due to a low correlation coefficient for m,p-Xylene, xylene results were quantitated off of a four-point calibration curve rather than a five-point calibration curve. Since all xylene results for the submitted samples fell within the linear, lower range of the calibration curve, professional judgement deems no flags are warranted for the BTEX data.

2.3.1 Instrument Calibration

The correlation coefficient was <0.995 for the five-point m,p-Xylene due to a low response for the high standard. All sample results for xylenes were found to fall within the lower, linear range of the calibration curve. The high standard of the curve was consequently discarded, resulting in a correlation coefficient of 1.000 for the four-point m,p-Xylene curve. Although it is a method deviation to use a four-point instead of a five-point curve, validation requirements state that data qualifiers are not necessary as long as the sample results fall within the linear range of the curve. All continuing calibration verifications met QC criteria. Professional judgement deems no flags warranted.

2.3.2 Method Blanks, Equipment Rinse Blanks, and Trip Blanks

Method Blanks - Method blanks were analyzed at an appropriate frequency and were BDL for all BTEX compounds.

Equipment Rinse Blanks - ERB-1 had all BTEX analytes detected above the PQL. The remaining two equipment rinse blanks (Equip Rinse Blank and ERB-2) were BDL for all target compounds. ERB-1 was received with headspace.

Trip Blanks - All three trip blanks were BDL for BTEX compounds. The trip blank received on 10/13/95 was received with headspace.

2.3.3 Surrogate Recovery

Surrogate recovery was within the QC limits of 78 - 113% for all samples and associated QA/QC.

2.3.4 MS/MSD and BS/BSD

MS/MSD - Three MS/MSD sample pairs were analyzed for BTEX. The Blind Dup 2 MS/MSD had high %Rs for benzene (140%) and ethylbenzene (136)% which exceeded QC limits. The high %Rs have been attributed to matrix interference, since these compounds were observed in the unspiked sample at significant levels. All other MS/MSD %Rs were between 84 - 107 % which met QC limits. All RPDs were between 0 and 9% which were below the 20% limit.

BS/BSD - Three BS/BSD sample pairs were analyzed for BTEX. All %Rs were between 84 - 108% which met QC limits of 80-124% for benzene, 79-125% for toluene, 75-135% for ethylbenzene, and 77-134% for xylenes. All RPDs were between 2 and 5% which were below the 20% limit.

2.3.5 Field Duplicates

Two blind field duplicates were analyzed for BTEX. Sample Blind Dup was a field duplicate of sample W-41S. Sample Blind Dup 2 was a field duplicate of sample W-25S. Toluene exceeded the RPD QC limit of <30% for sample Blind Dup at 40. All RPDs were within QC limits for sample Blind Dup 2. Refer to Table 1 for the exact RPDs calculated.

2.3.6 Overall Assessment of Data

Analytical report forms contained all necessary dates, sample volumes, dilution factors, and detection limits for sample data review. All compounds were reviewed based on holding time, surrogate and spike recoveries, instrument calibration criteria, method blank results, and RPD values for duplicate analyses. All samples were analyzed within holding times. All method blanks, surrogates, and spike recoveries and RPDs met QC objectives. A QC failure involving the m,p-Xylene initial calibration curve was rectified by using a four-point calibration curve rather than a five-point calibration curve. Although a method modification, this procedure is allowed under data validation guidelines since sample data met the required criteria for the modification.

Field precision has been validated as acceptable due to favorable trip blank, equipment rinse blank, and field duplicate results.

Ę

Laboratory accuracy has been validated as acceptable due to favorable method blank, calibration, surrogate, and spike results.

2.4 Dissolved Metals

Twenty-one water samples and one equipment rinse blank were analyzed for Dissolved Metals by method 6010. The metals analyzed were iron, magnesium, and calcium. All samples were field filtered and preserved before receipt at the laboratory. Samples W-41D, W-41S, and W-26S were received at the laboratory with a visible precipitate present. Samples W-14, W-25S, Blind Dup 2, W-20I, W-20S, and W-46D required additional preservation upon laboratory receipt due to a pH value greater than 2. Magnesium and calcium were "J"-flagged in sample Equip Rinse Blank due to detection below the PQL.

2.4.1 Instrument Calibration and Interference Check Sample

All initial and continuing calibration verifications (ICV and CCV) %Rs were within the QC limits of 90 - 110%. All interference check sample (ICS) results were within the QC limits of 80 - 120 %R and ≤ 20 %D. All sample concentrations were below the ICS concentrations.

2.4.2 Method Blanks and Equipment Rinse Blanks

Method Blanks - Method blanks were analyzed at an appropriate frequency and were BDL for all target analytes.

Equipment Rinse Blank - Calcium and magnesium were "J"-flagged as estimated values due to detection below the PQL in sample Equip Rinse Blank.

2.4.3 ICP Serial Dilution

Three serial dilutions were analyzed. The dilution factor was 1:5. All %Ds were below the QC limit of 10%. Refer to Table 1 for the exact %Ds calculated.

2.4.4 **Duplicates and Spikes**

Duplicates - Three duplicates were analyzed. All RPDs were below the QC limit of 20%. Refer to Table 1 for the exact RPDs calculated.

Spikes - Three spikes were analyzed for dissolved iron only. All %Rs were within the QC limits of 75 - 125%. Refer to Table 1 for the exact %Rs calculated.

2.4.5 Field Duplicates

=

Two blind field duplicates were analyzed for Dissolved Metals. Sample Blind Dup was a field duplicate of sample W-41S. Sample Blind Dup 2 was a field duplicate of sample W-25S. All RPDs were below the QC limit of <30% for both field duplicates. Refer to Table 1 for the exact RPDs calculated.

2.4.6 Overall Assessment of Data

Analytical report forms contained all necessary dates, dilution factors, and detection limits for sample data review. All compounds were reviewed based on holding time, instrument calibration criteria, method blank results, and duplicate and spike recoveries and RPDs. Calcium and magnesium were "J"-flagged as estimated values for sample Equip Rinse Blank due to detection below the PQL. All holding times, method blanks, instrument calibrations, serial dilutions, duplicates, and spike recoveries were within QC criteria.

Field precision is validated as acceptable based upon favorable field duplicate and equipment rinse blank results.

Laboratory accuracy is validated as acceptable based upon favorable method blank, instrument calibration, serial dilutions, duplicate, and spike results.

2.5 Total Cyanide

Twenty-one water samples and two equipment rinse blanks were analyzed for Total Cyanide by method 9010. Many samples required dilutions to bring analytes into calibration range of the method. Samples W-22I, W-16, ERB-2, W-45D, and W-43D were analyzed 8 days outside of method required holding times. Samples W-27D, W-42D, and W-13 were analyzed 9 days outside of method required holding times. Since the holding time exceedence was less than twice the holding time allowed, sample results are considered useable, but estimated. All samples analyzed outside of holding times were flagged with a "UJ" for non-detects, and with a "J" for positive results.

2.5.1 Instrument Calibration

All %Rs were within the QC limits of 90 - 110%.

2.5.2 Method Blanks and Equipment Rinse Blanks

Method Blanks - Method blanks were analyzed at an appropriate frequency and were BDL for Total Cyanide.

Equipment Rinse Blanks - Both equipment rinse blanks (Equip Rinse Blank and ERB-2) were BDL for cyanide. ERB-2 was analyzed 8 days outside of method required holding times, and was "UJ"-flagged as an estimated value.

2.5.3 Duplicates and Spikes

Duplicates - Two duplicates were analyzed for Total Cyanide. The RPD value for W-27D Dup was 6 and the RPD value for W-23S Dup was 0 which were both below the QC limit of 30%. Sample W-27D Dup was qualified with a "J" flag due to analysis 9 days outside of required holding times.

Spikes - Two matrix spikes were analyzed for Total Cyanide. The %R for W-27D MS was 108 which was within QC limits of 63 - 114%. This sample was qualified with a "J" flag due to analysis 9 days outside of required holding times. The %R for W-23S MS was 33, which was outside QC limits (low). The spike failure for W-23S MS was due to diluting the spike 1:2.5 without diluting the sample.

2.5.4 Field Duplicates

Two blind field duplicates were analyzed for Total Cyanide. Sample Blind Dup was a field duplicate of sample W-41S. Sample Blind Dup 2 was a field duplicate of sample W-25S. All RPDs were below the QC limit of <30% for both field duplicates. Refer to Table 1 for the exact RPDs calculated.

2.5.5 Overall Assessment of Data

Analytical benchsheets and report forms contained all necessary dates, sample volumes, dilution factors, and detection limits for sample data review. Analytical results were reviewed based on holding time, instrument calibration, method blanks, duplicate RPDs, and spike recoveries. Samples W-22I, W-16, ERB-2, W-45D, W-43D, W-27D, W-42D, and W-13 were flagged "UJ" for non-detects, and "J" for positive results to denote estimated values due to holding time nonconformance. Dilution of the MS for sample W-23S while not diluting the initial sample, resulted in low spike recovery.

Field precision was validated as acceptable based upon favorable field duplicate and equipment rinse blank results.

Laboratory precision was validated as acceptable based on method blanks, calibration criteria, duplicates, and spike recoveries. It should be noted, however, that holding time exceedances, although not excessive, were significant for some samples.

2.6 Weak Acid Dissociable (WAD) Cyanide

Nineteen water samples were analyzed for WAD Cyanide. Samples ERB-2 and W-45D were not analyzed for WAD Cyanide due to BDL values for Total Cyanide. Samples W-27D, W-42D, W-22I, W-16, W-13, and W-43D were analyzed 10 to 11 days outside of method specified holding times. Since the holding time exceedance was less than twice the holding time allowed, sample results are considered useable, but estimated. All samples analyzed outside of holding times were flagged with a "UJ" for non-detects, and with a "J" for positive results.

2.6.1 Instrument Calibration

All %Rs were within the QC limits of 90 - 110%.

2.6.2 Method Blanks and Equipment Rinse Blanks

Method Blanks - Method blanks were analyzed at an appropriate frequency and were BDL for WAD Cyanide.

Equipment Rinse Blanks - One equipment rinse blank (ERB-2) was scheduled for WAD Cyanide analysis. The analysis was not applicable, however, due to a BDL result for Total Cyanide.

2.6.3 **Duplicates and Spikes**

Duplicates - Two duplicates were analyzed for WAD Cyanide. The RPD values for W-27D Dup and the RPD value for W-23S Dup were not applicable due to BDL values in the samples and their duplicates. The BDL result for sample W-27D Dup was flagged with a "UJ" qualifier due to analysis 11 days outside of required holding times.

Spikes - Two matrix spikes were analyzed for WAD Cyanide. The %R for W-27D MS was 106 and the %R for W-23S MS was 111. Both %Rs were within the QC limits of 63 - 114%. The results for sample W-27D MS were flagged with a "UJ" due to analysis 11 days outside of required holding times.

2.6.4 Field Duplicates

Two blind field duplicates were analyzed for WAD Cyanide. Sample Blind Dup was a field duplicate of sample W-41S. Sample Blind Dup 2 was a field duplicate of sample W-25S. Both RPDs were not applicable due to BDL values.

2.6.5 Overall Assessment of Data

Analytical benchsheets and report forms contained all necessary dates, sample volumes, dilution factors, and detection limits for sample data review. Analytical results were reviewed based on holding time, instrument calibration, method blanks, duplicate RPDs, and spike recoveries. Samples W-22I, W-16, ERB-2, W-45D, W-43D, W-27D, W-42D, and W-13 were flagged "UJ" for non-detects, and "J" for positive results to denote estimated values due to holding time nonconformance.

Field precision was validated as acceptable since contamination was not evident in the equipment rinse blank as evidenced by the BDL value for Total Cyanide. Field duplicates, along with their initial samples, were also BDL.

Laboratory precision was validated as acceptable based on method blanks, calibration criteria, duplicates, and spike recoveries.

1

2.7 Data Completeness

The level of completeness was determined by the ratio of samples planned versus the number of samples with valid analyses. As no sample analyses were deemed unusable, the data met the 90-100% completeness criteria and are considered acceptable.

Project : 3-0887-403					OCTOBER 1995		
		DATE	DATE	DATE	PARAMETERS		
SAMPLE ID	MATRIX		PREP/EXT.	ANAL.	ANALYZED	METHOD	COMMENTS
W-41D	Water	10/12/95	10/24/95	10/27/95	РАН	8310	(1) Sample was BDL, extracted 5 days outside of method specified holding times. Flag all results as "UJ" to denote estimated values. Surrogate was within QC limits of 15-117 % R at 92%.
			NA	10/13/95	BTEX	8020	 Sample was BDL. Surrogate was within QC limits of 78-113 %R at 101%. Sample received with headspace.
			NA	10/17/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1) Precipitate present.
			10/17/95	10/17/95	Cyanide, Total	9010	(1) Sample was diluted 1:2.5.
			10/18/95	10/18/95	Cyanide, WAD	4500I	(1)
W-23S	Water	10/12/95	10/19/95	11/08/95	РАН	8310	 (1) Sample was analyzed undiluted except for 1-methylnaphthalene, 2-methylnaphthalene, and fluorene analyzed at a 1:100 dilution; and naphthalene analyzed at a 1:1000 dilution due to high sample concentration. Surrogate was within QC limits of 15-117 %R at 89%
			NA	10/18/95	BTEX	8020	 Sample was diluted 1:100 due to high sample concentration. Surrogate was within QC limits of 78-113% at 100%. Sample received with headspace.
			NA	10/17/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1)
			10/17/95	10/17/95	Cyanide, Total	9010	(1)
			10/18/95	10/18/95	Cyanide, WAD	45001	(1) Sample was BDL.
W-41S	Water	10/12/95	10/19/95	11/08/95	РАН	8310	 (1) Sample was analyzed undiluted except for naphthalene, 1-methylnaphthalene, and fluorene which were analyzed at a 1:10 dilution due to high sample concentration. Surrogate was within QC limits of 15-117 %R at 94%.
			NA	10/13-18/95	BTEX	8020	 Sample was analyzed undiluted except for benzene which was analyzed at a 1:5 dilution due to high sample concentration. Surrogate was within QC limits of 78-113 %R at 116% for the undiluted run, and 103% for the 1:5 run. Sample received with headspace.
			NA	10/17/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1) Precipitate present.
			10/17/95	10/17/95	Cyanide, Total	9010	(1)
			10/18/95	10/18/95	Cyanide, WAD	45001	(1) Sample was BDL.
Blind Dup (Field Dup of W-41S)	Water	10/12/95	10/19/95	11/08/95	РАН	8310	 (1) Sample was analyzed undiluted except for naphthalene which was analyzed at a 1:10 dilution due to high sample concentration. Surrogate was within QC limits of 15-117 %R at 95%. Naphthalene RPD = 95, 1-methylnaphthalene RPD = 35.9, 2-methylnaphthalene RPD = 120, fluorene RPD = 57.1, acenaphthene RPD = 22.2. RPD QC limit is 30%.
			NA	10/13-18/95	BTEX	8020	(1) Sample was analyzed undiluted except for benzene which was analyzed at a 1:5 dilution due to high sample concentration.

Project : 3-0887-403							
AMPLE ID	MATRIX	DATE SAMPLED	DATE PREP/EXT.	DATE ANAL.	PARAMETERS ANALYZED	METHOD	COMMENTS
		SAMI LED	FREI/EAT.	ADAL.	ANALIZED		Surrogate was within QC limits of 78-113 %R at 117% for
							the undiluted run, and 103% for the 1:5 run.
							Benzene RPD = 17; ethylbenzene RPD = 0; xylene RPD = 16;
							toluene RPD = 40. RPD QC limit is 30%.
							Sample received with headspace.
			NA	10/17/95	Dissolved Metals	6010	(1) Fe RPD = 12; Mg RPD = 0.7 ; Ca RPD = 2.5 . All RPDs are
					(Fe, Mg, Ca)		below the QC limit of $<30\%$.
			10/17/95	10/17/95	Cyanide, Total	9010	(1) RPD = 27.3% which is below the QC limit of $<30\%$.
		10/12/05	10/18/95	10/18/95	Cyanide, WAD	45001	(1) Sample was BDL. RPDs are NA.
V-26S	Water	10/12/95	10/19/95	11/08/95	РАН	8310	(1) Sample was analyzed undiluted except for acenaphthene which
							was analyzed at a 1:10 dilution, and fluorene which was analyzed at a 1:100 dilution due to high sample concentration.
							Surrogate was within QC limits of 15-117 %R at 85%.
			NA	10/13-18/95	BTEX	8020	(1) Sample was analyzed undiluted except for benzene which
							was analyzed at a 1:5 dilution due to high sample concentration.
							Surrogate was within QC limits of 78-113 %R at 107% for
			•				the undiluted run, and 100% for the 1:5 run.
							Sample received with headspace.
			NA	10/17/95	Dissolved Metals	6010	(1) Precipitate present.
					(Fe, Mg, Ca)		
			10/17/95	10/17/95	Cyanide, Total	9010	(1) Sample was diluted 1:50.
W-261	Water	10/12/95	<u>10/18/95</u> 10/19/95	<u>10/18/95</u> 11/08/95	Cyanide, WAD PAH	<u>45001</u> 8310	(1) (1) Semple use DDL Suprestance within OCUrrise (15,117,6/D
w-201	water	10/12/95	10/19/95	11/06/95	гап	8310	(1) Sample was BDL. Surrogate was within QC limits of 15-117 %R at 92%.
			NA	10/13/95	BTEX	8020	(1) Sample was BDL. Surrogate was within QC limits of
				10,10,50	DIDI	0020	78-113 %R at 103%.
							Sample received with headspace.
			NA	10/17/95	Dissolved Metals	6010	(1)
					(Fe, Mg, Ca)		
			10/17/95	10/17/95	Cyanide, Total	9010	(1) Sample was diluted 1:12.5.
			10/18/95	10/18/95	Cyanide, WAD	45001	(1)
W-19	Water	10/12/95	10/19/95	11/08/95	PAH	8310	(1) Sample was analyzed undiluted except for naphthalene and
							fluorene which were analyzed at a 1:10 dilution due to high sample
							concentration. Surrogate was within QC limits of 15-117 %R
			NA	10/13/95	BTEX	8020	at 93%. (1) Supports was within OC limits of $78,112$ MP at 1050/
			11/2	10/13/33	DILA	6020	(1) Surrogate was within QC limits of 78-113 %R at 105%. Sample received with headspace.
			NA	10/17/95	Dissolved Metals	6010	(1)
					(Fe, Mg, Ca)	0010	(•)
			10/17/95	10/17/95	Cyanide, Total	9010	(1) Sample was diluted 1:12.5.
			10/18/95	10/18/95	Cyanide, WAD	45001	(1) Sample was BDL.
W-14	Water	10/11/95	10/19/95	11/08/95	РАН	8310	(1) Sample was extracted one day outside of method
	(10/12	2/95 for BTEX)				specified holding times. Professional judgement deems

Project : 3-0887-403

Project : 3-0887-403		DATE	DATE	DATE	PARAMETERS	· · · ·	
SAMPLE ID	MATRIX	SAMPLED		ANAL.	ANALYZED	METHOD	COMMENTS
	·	<u>DAUL DED</u>					no flags warranted.
							Sample was analyzed undiluted except for acenaphthene which was analyzed at a 1:10 dilution; 1-methylnaphthalene, 2-methylnaphthalene and fluorene which were analyzed at a 1:100 dilution; and naphthalene which was analyzed at a 1:1000 dilution. All dilutions were the result of high sample concentration. Surrogate was within QC limits of 15-117 %R at 90%.
			NA	10/13-18/95	BTEX	8020	 (1) Toluene and xylene were analyzed at a 1:20 dilution. Benzene and ethylbenzene were analyzed at a 1:100 dilution. All dilutions were due to high sample concentration. Surrogate was within QC limits of 78-113 %R at 103% for the 1:20 run, and 98% for the 1:100 run. Sample received with headspace.
•			NA	10/17/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1) Received with $pH > 2$. Additional HNO3 added by lab.
			10/17/95	10/17/95	Cyanide, Total	9010	(1) Sample was diluted 1:5.
			10/18/95	10/18/95	Cyanide, WAD	45001	
ERB-1	Water	10/12/95	NA	10/13/95	BTEX	8020	(1) All analytes were detected above the PQL. Surrogate was within QC limits of 78-113 %R at 104%. Sample received with headspace.
W-22S Water	10/11/95	10/19/95	11/08/95	РАН	8310	 (1) Sample was extracted one day outside of method specified holding times. Sample was not analyzed undiluted. Flag all non-detects with "UJ" for estimated values. Positive hits do not warrant a flag. Sample was analyzed at a 1:10 dilution except for fluorene and 1-methylnaphthalene which were analyzed at a 1:100 dilution due to high sample concentration. Surrogate recovery was within QC limits of 15-117 %R at 88%. 	
			NA	10/13/95	BTEX	8020	 Surrogate was within QC limits of 78-113 %R at 106%. Sample received with headspace.
			NA	10/17/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1)
			10/17/95	10/17/95	Cyanide, Total	9010	(1) Sample was diluted 1:12.5.
			10/18/95	10/18/95	Cyanide, WAD	45001	(1)
Trip Blank	Water	NA	NA	10/18/95	BTEX	8020	 Sample was BDL. Surrogate was within QC limits of 78-113 %R at 100%. Sample received with headspace.
W-25S	Water	10/13/95	10/20/95	10/26-31/95	РАН	8310	 Sample was analyzed at a 1:10 dilution except for fluorene, 1-methylnaphthalene, and acenaphthene which were analyzed at at a 1:100 dilution; and naphthalene which was analyzed at a 1:1000 dilution due to high sample concentration. Surrogate
							was within QC limits of 15-117 %R at 87%.

Project : 3-0887-403					UCTOBER 1995		
SAMPLE ID	MATRIX	DATE SAMPLED	DATE PREP/EXT.	DATE ANAL.	PARAMETERS ANALYZED	METHOD	COMMENTS
		SAME DED		<u> </u>		MEMOD	Surrogate was within QC limits of 78-113 %R at 101%. Sample received with headspace.
			NA	10/18/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1) Received with $pH > 2$. Additional HNO3 added by lab.
			10/17/95	10/17/95	Cyanide, Total	9010	(1) Sample was diluted 1:5.
			10/18/95	10/18/95	Cyanide, WAD	45001	(1) Sample was BDL.
Blind Dup 2 (Field Dup of W-25S)	Water	10/13/95	10/20/95	10/26-31/95	РАН	8310	 (1) Sample was analyzed undiluted except for 1-methylnaphthalene and fluorene which were analyzed at a 1:100 dilution; and naphthalene which was analyzed at a 1:1000 dilution due to high sample concentration. Surrogate recovery was within QC limits of 15-117 %R at 91%. 1-Methylnaphthalene RPD = 41; 2-methylnaphthalene RPD = 108; fluorene RPD = 35.3; phenanthrene RPD = 181.
							naphthalene RPD = 20.5 RPD QC limit is 30% .
			NA	10/17/95	BTEX	8020	 (1) Sample was diluted 1:50 due to high sample concentration. Surrogate was within QC limits of 78-113 %R at 100%. Benzene RPD = 2.7; ethylbenzene RPD = 4.4; xylene RPD = 8.7 toluene RPD = 7.2. RPD QC limit is 30%.
			NA	10/18/95	Dissolved Metals (Fe, Mg, Ca)	6010	 Sample received with headspace. (1) Received with pH > 2. Additional HNO3 added by lab. Fe RPD = 6.5; Mg RPD = 2.5; Ca RPD = 1.2. All RPDs are below the QC limit of <30%.
			10/17/95	10/17/95	Cyanide, Total	9010	 (1) Sample was diluted 1:5. RPD = 23% which is below QC limit of <30%.
			10/18/95	10/18/95	Cyanide, WAD	45001	(1) Sample was BDL. RPDs are NA.
Equip. Rinse Blank	Water	10/13/95	10/20/95 NA	10/26/95	РАН ВТЕХ	8310	 Trace amounts of acenaphthylene, 2-methylnaphthalene, and phenanthrene were detected. Acenaphthylene and phenanthrene were "J"-flagged as estimated values found below the PQL. Surrogate was within QC limits of 15-117 %R at 92%. Sample was BDL. Surrogate was within QC limits of
			110	10/17/22	BILA	0020	78-113 %R at 102%. BTEX analysis was not requested on the COC.
			NA	10/18/95	Dissolved Metals (Fe, Mg, Ca)	6010	 (1) Ca and Mg are "J"-flagged as estimated values due to detection below the PQL (CRDL).
			10/17/95	10/17/95	Cyanide, Total	9010	(1) Sample was BDL.
W-20I	Water	10/13/95	10/20/95	10/26-11/03/95	РАН	8310	(1) Sample was analyzed at a 1:10 dilution except for 1-methylnaphthalene, 2-methylnaphthalene, fluorene, and phenanthrene which were analyzed at a 1:100 dilution; and naphthalene which was analyzed at a 1:1000 dilution. Dilutions were due to high sample concentration. Surrogate was within QC limits of 15-117 %R at 87%.

Project : 3-0887-403		•		1	UCTUBER 1995		
SAMPLE ID	MATRIX	DATE SAMPLED	DATE PREP/EXT.	DATE ANAL.	PARAMETERS ANALYZED	METHOD	COMMENTS
			NA	10/17/95	BTEX	8020	 Sample was diluted 1:250 due to high sample concentration. Surrogate was within QC limits of 78-113 %R at 99%. Sample received with headspace.
	•		NA	10/18/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1) Received with $pH > 2$. Additional HNO3 added by lab.
			10/17/95	10/17/95	Cyanide, Total	9010	(1)
			10/18/95	10/18/95	Cyanide, WAD	4500I	(1)
W-20S	Water	10/13/95	10/20/95	10/26-31/95	РАН	8310	 (1) Sample was analyzed undiluted except for 1-methylnaphthalene, acenaphthene, and phenanthrene which were analyzed at a 1:10 dilution; and naphthalene and fluorene which were analyzed at a 1:100 dilution. Dilutions were due to high sample
							concentration. Surrogate was within QC limits of 15-117 %R at 87%.
			NA	10/17/95	BTEX	8020	 Sample was diluted 1:25 due to high sample concentration. Surrogate was within QC limits of 78-113 %R at 100%. Sample received with headspace. BTEX analysis was not requested on the COC.
			NA	10/18/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1) Received with $pH > 2$. Additional HNO3 added by lab.
	•		10/17/95	10/17/95	Cyanide, Total	9010	(1) Sample was diluted 1:25.
			10/18/95	10/18/95	Cyanide, WAD	45001	(1)
W-46D	Water	10/13/95	10/20/95	. 10/26-31/95	РАН	8310	(1) Sample was analyzed undiluted except for 1-methylnaphthalene which was analyzed at a 1:10 dilution, and naphthalene which was analyzed at a 1:100 dilution. Surrogate recovery was within QC limits of 15-117 %R at 85%.
			NA	10/17/95	BTEX	8020	 (1) Sample was analyzed at a 1:10 dilution except for benzene which was analyzed at a 1:250 dilution. All dilutions were due to high sample concentration. Surrogate was within QC limits of 78-113 %R at 98% for both run. Sample received with headspace.
			NA	10/18/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1) Received with $pH > 2$. Additional HNO3 added by lab.
			10/17/95	10/17/95	Cyanide, Total	9010	(1)
			10/18/95	10/18/95	Cyanide, WAD	45001	(1)
Frip Blank	Water	NA	NA	10/17/95	BTEX	8020	 Sample was BDL. Surrogate was within QC limits of 78-113 %R at 102%.
W-27D	Water	10/15/95	10/20/95	10/26/95	РАН	8310	(1) Fluorene is "J"-flagged as estimated value due to detection below the PQL. Surrogate was within QC limits of 15-117 %R at 91%.
			NA	10/20/95	BTEX	8020	(1) Surrogate was within QC limits of 78-113 %R at 101%.
			NA	10/23/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1)
			11/06/95	11/07/95	Cyanide, Total	9010	(1) Sample was analyzed 9 days out of holding time.

Project : 3-0887-403 `					UCTOBER 1993		
		DATE	DATE	DATE	PARAMETERS		
SAMPLE ID	MATRIX	SAMPLED	<u>PREP/EXT.</u>	<u>ANAL.</u>	ANALYZED	METHOD	COMMENTS Result was "J"-flagged to denote an estimated value.
			11/09/95	11/09/95	Cyanide, WAD	4500I	 (1) Sample was BDL - analyzed 11 days out of holding time. Result was "UJ"-flagged to denote an estimated non-detect.
W-42D Water	Water	10/15/95	10/20/95	10/26/95	РАН	8310	 (1) Sample was analyzed undiluted except for 1-methylnaphthalene and fluorene which were analyzed at a 1:10 dilution due to high sample concentration. Surrogate was within limits of 15-117 %R at 91%. Phenanthrene is "J"-flagged as estimated value due
							to detection below the PQL.
			NA	10/20/95	BTEX	8020	(1) Surrogate was within QC limits of 78-113 %R at 102%.
			NA	10/23/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1)
			11/06/95	11/07/95	Cyanide, Total	9010	 Sample was BDL - analyzed 9 days out of holding time. Result was "UJ"-flagged to denote an estimated non-detect.
			11/09/95	11/09/95	Cyanide, WAD	45001	 Sample was BDL - analyzed 11 days out of holding time. Result was "UJ"-flagged to denote an estimated non-detect.
W-22I Water	Water	10/16/95	10/20/95	10/26-31/95	РАН	8310	(1) Sample was analyzed undiluted except for 1-methylnaphthalene which was analyzed at a 1:10 dilution; 2-methylnaphthalene which was analyzed at a 1:100 dilution; and naphthalene which was analyzed at a 1:1000 dilution due to high sample concentra- tion. Surrogate was within QC limits of 15-117 %R at 73%.
			NA	10/24-25/95	BTEX	8020	 (1) Sample was analyzed at a 1:100 dilution except for benzene which was analyzed at a 1:1000 dilution. All dilutions were due to high sample concentration. Surrogate was within QC limits of 78-113 %R at 102% for the 1:100 run and at 105% for the 1:1000 run.
			NA	10/23/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1)
			11/06/95	11/07/95	Cyanide, Total	9010	 Sample was analyzed 8 days out of holding time at a 1:5 dilution. Result was "J"-flagged to denote an estimated value.
			11/09/95	11/09/95	Cyanide, WAD	45001	(1) Sample was analyzed 10 days out of holding time. Result was "J"-flagged to denote an estimated value.
W-16	Water	10/16/95	10/20/95	10/26-11/01/95	РАН	8310	 Sample was analyzed undiluted except for 1-methylnaphthalene and fluorene which were analyzed at a 1:10 dilution; 2-methylnaphthalene and acenaphthene which were analyzed at a 1:100 dilution; and naphthalene which was analyzed at a 1:1000 dilution. All dilutions were due to high sample concentra

TABLE 1	·
QA/QC SUMMARY REVIEW OF	
ANALYTICAL DATA FOR THIRD WARD MGP SITE, SSE	21
OCTOBER 1995	

					OCTOBER 1995		
Project : 3-0887-403		DATE	DATE	DATE	PARAMETERS	METHOD	
SAMPLE ID	<u>MATRIX</u>	SAMPLED	<u>PREP/EXT.</u>	ANAL.	ANALYZED	METHOD	COMMENTS tion. Surrogate was within QC limits of 15-117 %R at 89%. Anthracene and chrysene are "J"-flagged as estimated values due to detection below the PQL.
			NA	10/20-24/95	BTEX	8020	 (1) Sample was analyzed at a 1:10 dilution except for benzene which was analyzed at a 1:100 dilution. All dilutions were due to high sample concentration. Surrogate was within QC limits of 78-113 %R at 109% for the 1:10 run and at 106% for the 1:100 run.
			NA	10/23/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1)
			11/06/95	11/07/95	Cyanide, Total	9010	 Sample was analyzed 8 days out of holding time. Result was "J"-flagged to denote an estimated value.
			11/09/95	11/09/95	Cyanide, WAD	45001	 Sample was BDL - analyzed 10 days out of holding time. Result was "UJ"-flagged to denote an estimated non-detect.
ERB-2	Water	10/16/95	10/20/95	10/26/95	РАН	8310	(1) Trace amounts of naphthalene, 2-methylnaphthalene, and fluorene detected. These three compounds were "J"-flagged as estimated values found below the PQL.
			NA	10/20/95	BTEX	8020	Surrogate was within QC limits of 15-117 %R at 89%. (1) Sample was BDL. Surrogate was within QC limits of 78-113 %R at 101%.
			11/06/95	11/07/95	Cyanide, Total	9010	(1) Sample was BDL - analyzed 8 days out of holding time. Result was "UJ"-flagged to denote an estimated non-detect.
			11/09/95	11/09/95	Cyanide, WAD	4500I	(1) Not analyzed due to BDL value for Total Cyanide.
W-13	Water	10/15/95	10/20/95	10/26-11/01/95	РАН	8310	(1) Sample was analyzed undiluted except for naphthalene, acenaphthene and anthracene which were analyzed at a 1:10 dilution; 1methylnaphthalene, fluorene, and phenanthrene which were analyzed at a 1:100 dilution. All dilutions were due to high sample concentration. Surrogate was within QC limits of 15-117 %R at 92%.
							Chrysene was "J"-flagged as an estimated value due to detection below the PQL.
,			NA	10/24/95	BTEX	8020	 (1) Sample was analyzed undiluted except for ethylbenzene which was analyzed at a 1:5 dilution due to high sample concentration. Surrogate was within QC limits of 78-113 %R at 106% for the undiluted run, and 105% for the 1:5 run.
			NA	10/23/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1)
			11/06/95	11/07/95	Cyanide, Total	9010	(1) Sample was analyzed 9 days out of holding

(1) Sample was analyzed 9 days out of holding time at a 1:5 dilution. Result was "J"-flagged ι

Project : 3-0887-403					OCTOBER 1993		
	MATDIX	DATE	DATE	DATE	PARAMETERS	METHOD	COMMENTS
AMPLE ID	MATRIX	SAMPLED	PREP/EXT.	ANAL.	ANALYZED	METHOD	COMMENTS to denote an estimated value.
	·		11/09/95	11/09/95	Cyanide, WAD	45001	 (1) Sample was BDL - analyzed 11 days out of holding time. Result was "UJ"-flagged to denote
· ·							an estimated non-detect.
W-45D	Water	10/16/95	10/20/95	10/26/95	РАН	8310	 Problems with the extraction caused low surrogate recovery of 16% (still within limits). Sample was BDL. All compounds have been "UJ"-flagged as estimated non-detects, since values could be biased low.
			NA	10/20/95	BTEX	8020	 Sample was BDL. Surrogate was within QC limits of 78-113 %R at 100%.
			NA	10/23/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1)
	•		11/06/95	11/07/95	Cyanide, Total	9010	(1) Sample was BDL - analyzed 8 days out of holding time. Result was "UJ"-flagged to denote an estimated non-detect.
			11/09/95	11/09/95	Cyanide, WAD	4500I	(1) Not analyzed due to BDL value for Total Cyanide.
W-43D Water	Water	10/16/95	10/20/95	10/27-11/01/95	РАН	8310	(1) Sample was analyzed at a 1:10 dilution except for 1-methylnaphthalene, 2-methylnaphthalene, and fluorene which were analyzed at a 1:100 dilution; and naphthalene which was analyzed at a 1:1000 dilution. Dilutions were due to high sample concentration. Surrogate was within QC limits of 15-117 %R at 80%.
			NA	10/24/95	BTEX	8020	 (1) Sample was analyzed at a 1:100 dilution except for benzene which was analyzed at a 1:250 dilution. All dilutions were due to high sample concentration. Surrogate was within QC limits of 78-113 %R at 105% for the 1:100 run and at 104% for the 1:250 run.
			NA	10/23/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1)
			11/06/95	11/07/95	Cyanide, Total	9010	(1) Sample was analyzed 8 days out of holding time. Result was "J"-flagged to denote an estimated value.
			11/09/95	11/09/95	Cyanide, WAD	45001	 Sample was BDL - analyzed 10 days out of holding time. Result was "UJ"-flagged to denote an estimated non-detect.
Trip Blank	Water	NA	NA	10/20/95	BTEX	8020	(1) Sample was BDL. Surrogate was within QC limits of 78-113% at 99%.
Method Blanks	Water	NA	10/19/95	11/07/95	РАН	8310	(1) Blank was BDL. Surrogate within QC limits of 15-117 %R at 89%
	Water	NA	10/20/95	10/26/95	PAH	8310	(1) Blank was BDL. Surrogate within QC limits of 15-117 %R at 91%
	Water	NA	10/24/95	10/27/95	РАН	8310	(1) Blank was BDL. Surrogate within QC limits of 15-117 %R at 58%
	Water	NA	NA	10/13/95	BTEX	8020	(1) Blank was BDL. Surrogate within QC limits of 78-113 %R at 1029
	Water	NA	NA	10/16/95	BTEX	8020	(1) Blank was BDL. Surrogate within QC limits of 78-113 %R at 99%
	Water	NA	NA	10/17/95	BTEX	8020	(1) Blank was BDL. Surrogate within QC limits of 78-113 %R at 99%

н

Project : 3-0887-403					UCTOBER 1995		
		DATE	DATE	DATE	PARAMETERS		
AMPLE ID	MATRIX		PREP/EXT.	ANAL.	ANALYZED	METHOD	COMMENTS
	Water	NA	NA	10/18/95	BTEX	8020	(1) Blank was BDL. Surrogate within QC limits of 78-113 %R at 99%.
	Water	NA	NA	10/20/95	BTEX	8020	(1) Blank was BDL. Surrogate within QC limits of 78-113 %R at 100%
	Water	NA	NA	10/23/95	BTEX	8020	(1) Blank was BDL. Surrogate within QC limits of 78-113 %R at 106%
	Water	NA	NA	10/24/95	BTEX	8020	(1) Blank was BDL. Surrogate within QC limits of 78-113 %R at 105%
	Water	NA	NA	10/25/95	BTEX	8020	(1) Blank was BDL. Surrogate within QC limits of 78-113 %R at 105%
	Water	NA	NA	10/17/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1) Blank was BDL.
	Water	NA	NA	10/18/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1) Blank was BDL.
	Water	NA	NA	10/23/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1) Blank was BDL.
	Water	NA	10/17/95	10/17/95	Cyanide, Total	9010	(1) Blank was BDL.
	Water	NA	11/06/95	11/07/95	Cyanide, Total	9010	(1) Blank was BDL.
	Water	NA	10/18/95	10/18/95	Cyanide, WAD	45001	(1) Blank was BDL.
	Water	NA	11/09/95	11/09/95	Cyanide, WAD	4500I	(1) Blank was BDL.
CV	Water	NA	NA	09/29/95	BTEX	8020	 (1) Correlation coefficient was <0.995 for m,p-xylenes curve due to low response of high standard.
							High standard was omitted, and all xylene results are calculated off of a four point curve rather than a five point curve. No flags warranted.
	Water	NA	NA	10/17/95	Dissolved Metals	6010	(Method deviation) (1) Fe $\%$ R = 103; Mg $\%$ R = 102; Ca $\%$ R = 102. All $\%$ Rs are
					(Fe, Mg, Ca)		within QC limits of 90-110%.
	Water	NA	NA	10/18/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1) Fe $\%$ R = 100; Mg $\%$ R = 100; Ca $\%$ R = 102. All $\%$ Rs are within QC limits of 90-110%.
	Water	NA	NA	10/23/95	Dissolved Metals (Fe, Mg, Ca)	6010	(1) Fe $\%$ R = 106; Mg $\%$ R = 104; Ca $\%$ R = 102. All $\%$ Rs are within QC limits of 90-110%.
CV	Water	NA	10/26/95	10/26/95	PAH	8310	(1) RTs and %Ds were acceptable for both detectors.
	Water	NA	10/26/95	10/26/95	РАН	8310	(1) RTs and %Ds were acceptable for both detectors.
	Water	NA	10/26/95	10/26/95	РАН	8310	(1) RTs and %Ds were acceptable for both detectors.
	Water	NA	10/27/95	10/27/95	PAH	8310	(1) RTs and %Ds were acceptable for both detectors.
	Water	NA	10/27/95	10/27/95	PAH	8310	(1) RTs and %Ds were acceptable for both detectors.
	Water	NA	11/01/95	11/01/95	РАН	8310	(1) RTs and %Ds were acceptable for both detectors.
	Water	NA	11/03/95	11/03/95	РАН	8310	(1) RTs and %Ds were acceptable for both detectors.
	Water	NA	11/08/95	11/08/95	PAH	8310	(1) RTs and %Ds were acceptable for both detectors.
,	Water	NA	11/08/95	11/08/95	PAH	8310	(1) RTs and %Ds were acceptable for both detectors.
	Water	NA	11/08/95	11/08/95	PAH	8310	(1) RTs and %Ds were acceptable for both detectors.
	Water	NA	NA	10/13/95	BTEX	8020	 Benzene %R = 88; toluene %R = 95; ethylbenzene 97; xylenes %R = 103. All %Rs are within QC limits
	Water	NA	NA	10/17/95	BTEX	8020	 All %Ds were below the QC %D limit of 25%. (1) Benzene %R = 91; toluene %R = 100; ethylbenzene 104; xylenes %R = 112. All %Rs are within QC limits All %Ds were below the QC %D limit of 25%.

MPLE ID	MATRIX	DATE SAMPLED	DATE DDED/EVT	DATE ANAL.	PARAMETERS ANALYZED	METHOD	COMMENTS
	Water	NA	NA	10/17/95	BTEX	8020	(1) Benzene $\%$ R = 91; toluene $\%$ R = 99; ethylbenzene
	water	INA	INA	10/17/95	DILA	8020	104; xylenes %R = 110. All %Rs are within QC limits
							All %Ds were below the QC %D limit of 25%.
	Wath	NIA	NA	10/18/95	BTEX	8020	•
	Water	NA	INA	10/18/95	DILA	8020	(1) Benzene %R = 89; toluene %R = 99; ethylbenzene 102: widenee %R = 105 All % Be are within OC limits
							102; xylenes $\%$ R = 105. All $\%$ Rs are within QC limits
	Watan	NIA	NA	10/20/05	BTEX	8020	All %Ds were below the QC %D limit of 25%.
	Water	NA	INA	10/20/95	DICA	8020	(1) Benzene %R = 108; toluene %R = 101; ethylbenzene 100, under se %R = 106 \therefore 10% R = ser within OC limits
							100; xylenes $\%$ R = 106. All $\%$ Rs are within QC limits
	Watan	NIA	NIA	10/24/05	DTEV	8020	All %Ds were below the QC %D limit of 25%.
	Water	NA	NA	10/24/95	BTEX	8020	(1) Benzene %R = 112; toluene %R = 104; ethylbenzene 105; milenze %R = 112. All %R = see within OC limits
							105; xylenes $\Re R = 112$. All $\Re Rs$ are within QC limits
	Water	NIA	NIA	10/24/05	DTEV	8020	All %Ds were below the QC %D limit of 25%.
	Water	NA	NA	10/24/95	BTEX	8020	(1) Benzene %R = 111; toluene %R = 104; ethylbenzene 106; underse %R = 112. All %P = see within OC limits
							106; xylenes $\%$ R = 112. All $\%$ Rs are within QC limits
	Watar	NIA		10/25/05	DTEV	8020	All %Ds were below the QC %D limit of 25%.
	Water	NA	NA	10/25/95	BTEX	8020	(1) Benzene %R = 107; toluene %R = 99; ethylbenzene
				*			99; xylenes $\%$ R = 106. All $\%$ Rs are within QC limits
	Watan	NIA	NIA	10/17/05	Discoluted Matala	6010	All %Ds were below the QC %D limit of 25%.
	Water	NA	NA	10/17/95	Dissolved Metals	6010	(1) Fe %Rs = 100, 96, 98; Mg %Rs = 100, 96, 98; Ca %Rs = 100, 0.000×10^{-10}
	Watan	NIA	NIA	10/10/05	(Fe, Mg, Ca)	(010	96, 98. All %Rs are within QC limits of 90-110%.
	Water	NA	NA	10/18/95	Dissolved Metals	6010	(1) Fe %Rs = 98, 98; Mg %Rs = 99, 99; Ca %Rs = 98, 98.
	Watar	NIA	NIA	10/23/95	(Fe, Mg, Ca)	6010	All %Rs are within QC limits of 90-110%. (1) Fa $(P_{R} = 102, 102)$ Ma $(P_{R} = 102, 102, 02, 00, 00, 00)$
	Water	NA	NA	10/23/93	Dissolved Metals	6010	(1) Fe %Rs = 103, 103; Mg %Rs = 102, 102; Ca %Rs = 99, 99. All 9 / Be are within OC limits f_{000} 1109/
	Water	NA	10/17/95	10/17/95	(Fe, Mg, Ca)	9010	All %Rs are within QC limits of 90-110%.
	Water	NA	10/17/95	· 10/17/95	Cyanide, Total Cyanide, Total	9010	(1) $\%$ R = 98% which is within QC limits of 90-110%.
	Water	NA	11/07/95				(1) $\%$ R = 109% which is within QC limits of 90-110%.
	Water	NA	11/07/95	11/07/95 11/07/95	Cyanide, Total	9010 9010	(1) $\%$ R = 96% which is within QC limits of 90-110%.
	Water	NA	10/18/95	10/18/95	Cyanide, Total	45001	(1) $\%$ R = 99% which is within QC limits of 90-110%.
	Water	NA	10/18/95	10/18/95	Cyanide, WAD		(1) $\%$ R = 104% which is within QC limits of 90-110%.
	Water	NA	11/09/95	11/09/95	Cyanide, WAD	4500I 4500I	(1) $\%$ R = 102% which is within QC limits of 90-110%.
	Water	NA	11/09/95	11/09/95	Cyanide, WAD Cyanide, WAD	43001 45001	(1) %R = 109% which is within QC limits of 90-110%.
CS	Water	NA NA	NA	10/17/95	Dissolved Metals	6010	(1) $\%$ R = 110% which is within QC limits of 90-110%.
25	water	NA.	INA	10/17/95	(Fe, Mg, Ca)	0010	(1) All %Rs are within QC limits of 80-120%. All %Ds are <20%.
	Water	NA	NA	10/18/95	Dissolved Metals	6010	All sample concentrations are below the ICS concentrations.
	water		11/5	10/10/73		6010	(1) All %Rs are within QC limits of 80-120%. All %Ds are <20%.
	Water	NA	NA	10/23/05	(Fe, Mg, Ca)	6010	All sample concentrations are below the ICS concentrations.
	w alci	INA	INA	10/23/95	Dissolved Metals	6010	(1) All %Rs are within QC limits of 80-120%. All %Ds are <20%.
V-41D ICP Serial Dilution	Water	10/12/95	NA	10/17/95	(Fe, Mg, Ca)	6010	All sample concentrations are below the ICS concentrations.
-41D ICF Serial Dilution	water	10/12/93	INA	10/17/95	Dissolved Metals	6010	(1) Sample was diluted 1:5. Fe %D = 1.2; Mg %D = 3.8; Ca 9 (D = 1.0, All % Da are below OC %D is it of 10%)
V-25S ICP Serial Dilution	Woter	10/13/95	NA	10/18/05	(Fe, Mg, Ca)	6010	Ca %D = 1.9. All %Ds are below QC %D limit of 10%.
T-255 ICF SCHALDHULION	W alti	10/13/33	NA	10/18/95	Dissolved Metals	6010	(1) Sample was diluted 1:5. Fe %D = 12.4; Mg %D = 0.8; Ca 9 (D = 2.2, All 9 (D = ore below OC 9 (D limits of 10))
W-27D ICP Serial Dilution	Water	10/15/95	NA	10/23/95	(Fe, Mg, Ca) Dissolved Metals	6010	Ca %D = 2.3. All %Ds are below QC %D limit of 10%.
-27D ICF Serial Dilution	water	10/13/93	INA	10/23/93	Dissolved interais	6010	(1) Sample was diluted 1:5. Fe $%D = 1.3$; Mg $%D = 4.6$;

Ш

1

		DATE	DATE	DATE	PARAMETERS	MANA	
SAMPLE ID	MATRIX	SAMPLED	PREP/EXT.	ANAL.	ANALYZED	METHOD	COMMENTS
		10/10/07		10/17/05	(Fe, Mg, Ca)	(010	Ca %D = 2.2. All %Ds are below QC %D limit of 10%.
W-41D Dup	Water	10/12/95	NA	10/17/95	Dissolved Metals	6010	(1) Fe RPD = 0.7; Mg RPD = 0.5; Ca RPD = 0.8. All RPDs
	337 /	10/12/05	214	10/10/05	(Fe, Mg, Ca)	(010	are below QC RPD limit of <20%.
W-25S Dup	Water	10/13/95	NA	10/18/95	Dissolved Metals	6010	(1) Fe RPD = 8.5; Mg RPD = 0.5; Ca RPD = 0.2. All RPDs
	N <i>V</i> - 4	10/15/05	274	10/02/05	(Fe, Mg, Ca)	(010	are below QC RPD limit of $<20\%$.
W-27D Dup	Water	10/15/95	NA	10/23/95	Dissolved Metals	6010	(1) Fe RPD = 1.1; Mg RPD = 0.6; Ca RPD = 0.9. All RPDs
	XX7 - 4	10/10/05	10/17/05	10/17/05	(Fe, Mg, Ca)	0010	are below QC RPD limit of $<20\%$.
W-23S Dup	Water	10/12/95	10/17/95	10/17/95	Cyanide, Total	9010	(1) RPD = 0% which is below QC limit of 30%.
W-27D Dup	Water	10/15/95	11/06/95	11/07/95	Cyanide, Total	9010	(1) $RPD = 6\%$ which is below QC limit of 30%.
							Sample was analyzed 9 days out of holding time.
							Result was "J"-flagged to denote an estimated
W 220 D	Wata	10/10/05	10/10/02	10/10/05	Oundal MAD	45001	value.
W-23S Dup	Water	10/12/95	10/18/95	10/18/95	Cyanide, WAD	4500I	(1) RPD was NA due to BDL results.
W-27D Dup	Water	10/15/95	11/09/95	11/09/95	Cyanide, WAD	4500I	(1) RPD was NA due to BDL results.
							Sample was analyzed 11 days out of holding
							time. Result was "UJ"-flagged to denote
DO/DOD	117.4		10/10/05	11/00/05	DATI		an estimated non-detect.
BS/BSD	Water	NA	10/19/95	11/08/95	PAH	8310	(1) %Rs were 67-103% which were within QC limits of 23-123%.
					м. А.		RPDs were 0.1-2% which were below the 20% limit.
	Weden	214	10/00/05	10/06/05	DAIL	0210	Surrogate was within QC limits of 15-117 %R at 89 and 92%.
	Water	NA	10/20/95	10/26/95	РАН	8310	(1) %Rs were 66-101% which were within QC limits of 23-123%.
							RPDs were 3-9% which were below the 20% limit.
	N 7-4	27.4	10/24/05	10/21/05	DAT	0010	Surrogate was within QC limits of 15-117 %R at 92 and 88%.
	Water	NA	10/24/95	10/31/95	PAH	8310	(1) %Rs were 65-101% which were within QC limits of 23-123%.
ν.							RPDs were 0.3-10% which were below the 20% limit.
	117.4			10/1 = 10 =			Surrogate was within QC limits of 15-117 %R at 89 and 92%.
	Water	NA	NA	10/17/95	BTEX	8020	(1) %Rs were 84-104% which were within QC limits of 77-135%.
							RPDs were 2-5% which were below the 20% limit.
	Weter	274	214	10/10/05		0000	Surrogate was within QC limits of 78-113 %R at 100 and 99%.
	Water	NA	NA	10/18/95	BTEX	8020	(1) %Rs were 84-105% which were within QC limits of 77-135%.
							RPDs were 4-5% which were below the 20% limit.
	Watar		214	10/20/07	DTEV	0020	Surrogate was within QC limits of 78-113 %R at 100 and 100%.
	Water	NA	NA	10/20/95	BTEX	8020	(1) %Rs were 99-108% which were within QC limits of 77-135%.
							RPDs were 2-3% which were below the 20% limit.
		10/12/05		10/12/02		(010	Surrogate was within QC limits of 78-113 %R at 100 and 100%.
W-41D Post Spike	Water	10/12/95	NA	10/17/95	Dissolved Fe	6010	(1) $\%$ R = 90 which is within QC limits of 75-125%.
W-25S Post Spike	Water	10/13/95	NA	10/18/95	Dissolved Fe	6010	(1) $\%$ R = 93 which is within QC limits of 75-125%.
W-27D Post Spike	Water	10/15/95	NA	10/23/95	Dissolved Fe	6010	(1) $\%$ R = 100 which is within QC limits of 75-125%.
Blind Dup 2 MS/MSD	Water	10/13/95	NA	10/17/95	BTEX	8020	(1) Benzene %Rs in MS and MSD were out of QC
							limits (80-124%) at 140% and 140%.
							Ethlybenzene %R was out of QC limits (75-135%)
							in MSD at 136%.
l · · · ·							All other %Rs were within QC limits.

		DATE	DATE	DATE	PARAMETERS		
SAMPLE ID	MATRIX	SAMPLED	PREP/EXT.	ANAL.	ANALYZED	METHOD	COMMENTS
							RPDs were 0-2% which were below the 20% limit.
		· · · · · · · · · · · · · · · · · · ·					Surrogate was within QC limits of 78-113 %R at 100 and 102%.
W-41D MS/MSD	Water	10/12/95	NA	10/18/95	BTEX	8020	(1) %Rs were 84-104% which were within QC limits.
							RPDs were 2-3% which were below the 20% limit.
							Surrogate was within QC limits of 78-113 %R at 101 and 100%.
ERB-2 MS/MSD	Water	10/16/95	NA	10/20/95	BTEX	8020	(1) %Rs were 93-107% which were within QC limits.
							RPDs were 7-9% which were below the 20% limit.
							Surrogate was within QC limits of 78-113 %R at 101 and 100%.
W-23S MS	Water	10/12/95	10/17/95	10/17/95	Cyanide, Total	9010	(1) $\%$ R = 33 which is outside QC limits of 63-114%
							Spike failure is due to diluting spike without
							diluting sample.
W-27D MS	Water	10/15/95	11/06/95	11/07/95	Cyanide, Total	9010	(1) $\%$ R = 108 which is within QC limits of 63-114%.
							Sample was analyzed 9 days out of holding time.
							Result was "J"-flagged to denote an estimated
·····						· · · · · · · · · · · · · · · · · · ·	value.
<u>W-14 MS</u>	Water	10/11/95	10/18/95	10/18/95	Cyanide, WAD	4500I	(1) $\%$ R = 111 which is within QC limits of 63-114%
W-27D MS	Water	10/15/95	11/09/95	11/09/95	Cyanide, WAD	4500I	(1) $%$ R = 106 which is within QC limits of 63-114%.
							Sample was analyzed 11 days out of holding
							time. Result was "UJ"-flagged to denote
				· · · · · · · · · · · · · · · · · · ·			an estimated non-detect.

(1) Standard QA/QC including: methods for analysis, detection limits, holding times, surrogates, matrix spike/matrix spike duplicate recoveries, laboratory duplicates and laboratory control sample recoveries were within QC limits unless otherwise noted under the comments section. Shaded comments indicate that the QC was outside of control limits or method specifications, or denote occurances warranting extra attention.

Note: All surrogate recoveries reported are from the least diluted analyses for PAH.

П

ABBREVIATIONS AND DEFINITIONS :

BDL - Below Detection Limit **RPD** - Relative Percent Difference **RT** - Retention Time %R - Percent Recovery %D - Percent Difference PQL - Practical Quantitation Limit PAH - Polynuclear Aromatic Hydrocarbons BTEX - Benzene, Toluene, Ethylbenzene, Total Xylenes Fe, Mg, Ca - Iron, Magnesium, Calcium

WAD Cyanide - Weak Acid Dissociable Cyanide NA - Not Applicable

Sample Suffix Designations: Dup/DUP - Duplicate MS, MSD - Matrix Spike, Matrix Spike Duplicate

Project : 3-0887-403

		DATE	DATE	DATE	PARAMETERS		
SAMPLE ID	MATRIX	SAMPLED	PREP/EXT.	ANAL.	ANALYZED	METHOD	COMMENTS
LCS/LCSD - Laboratory Co	ntrol Sample	Laboratory Co	ntrol Sample D	unlicate			

ample Duplicate

ī.

APPENDIX F

CHAIN-OF-CUSTODY RECORDS

0307 No.

No.	030)7			CHAIN O	FCU	STC	DY	RE	COI	RD		95-04-221
SAMPLE	<u>887.3</u>	03 T.I	oject NAR T Vali/, ATJ	AE Lind Ward - : A. Rupert	SSPI	CONTAINERS		(j) / j		() () () () () () () () () () () () () (3 - 14 ⁴⁴
SAMFLE NO.	DATE	TIME		SAMPLE LOCATIO	NN X	NO. OF	RA	(0) 2(0)	NE S	15		Y	REMARKS
	4.25.95	<u> </u>		-6(2-4)	<u>(5) [į</u>	Z,	1	1					City Property RR ROW
	4.25.45 4.26 ^{.4}			$\frac{-7(0-2)}{17(2-4)}$	<u>(s) 2 ^r</u> , (s)	2	1	1	1	<u> </u>	1VC 1EX	Ť.	City Property E. of RR ROW City Property E. of RR ROW
04			15-1	ET (12 too)	B-47 (1(0-18)	172	1.	1					
05	4.25.49			lirade 1	(5)	2	1	١					Duplicate 1
06	4-24 55	1500	EB-1	(splitspan)	(w)	4	2	2			2004		
07	45605	1400	64-2	(Sr.) la sporn) (W)	4	2	2					
08	1			Bknk	(w)	1	<u> </u>	1			I VOA		
09	1 ····································	f	1	3-2 (7')	(5)	2		1	; 		I VON I Ett		
10	1-25-55	·		$\frac{2}{2}$ / (s <')	<u>(s)</u>	2	/_	1					
11	1.76.43	0720		25(85)	(5)	2	<u> '</u> _	/	<u>;</u>		_ _		
	4.2.55		No. 1		(5)	2	<u> '</u>	<u> /</u>	:	<u> </u>	╏╍┠╍┠		
13		12.50	TTAU	$\frac{5-1(6.7)}{2}$	(S) <u>is (S)</u> STT <u>A I I I I I I I I I I I I I I I I I I I</u>		$\frac{1}{1}$	$\frac{1}{1}$	V IVCA				VC Å
14	1			$\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$	$\frac{2}{\sqrt{2}}$	+	<u> /</u>	167	$\frac{2}{2}$	/		
<u> </u>]) Relingui	トレーント shed by:	A		-/()/)//-> Date/Time	Received by: (Signat		<u>_/</u>	/ Reli	L L nquis	hed b	/ iy: (S	/ Signat	ture) Date/Time Received by: (Signature)
				9 1 11 2 10	FED-X					F	CD-	1	- 4-29-95 9:30 The Kelly
Relinqui	shed by:	(Signatu	ire)	Date/Time	Received by: (Signate	ure)		Reli	nquis	hed b	y: (Si	ignat	ure) Date/Time Received by: (Signature)
	shed by:		ļ	1	Received for laboratory (Signature)					Date/T	ime		REMEDIATION TECHNOLOGIE 413 Wacouta Stree
REMAR	KS: SAM SAM	1 DB-	i (z - 4) 7 (o - 2) -	HAS ONLY ONC 2 CONTRIVELS U	CONTAINEL FOR WELE RECEIVED.	ALL I	an.ey	ses_		,			Suite 30 R E M E D I A T I O N St. Paul, MN 5510 TECHNOLOGIES INC (612) 222-084 Fax# (612) 222-891

.

ť

		·				I				1			Julie.		
N⊡	037	6 95	5-04	-222	2	CHA	IN OF CUS	TOD	Y RE	COF	D			19/1/2	Page#1 of 2
SAMPLE	87-203 RS: (Signatu	TIME	hird	/~	MPLE LO		NO. OF CON- TAINERS	6	AH (BA) X	DEL CONCON	Lee Lee	A CAR	Les Sur	RE	MARKS
01	4.27.95	0945	TTO	9-2(4-5)		2	1	1	<u>.</u>			IVON I ENT	P=J/S. OF Care	
02	4.27.95	1345	TT	F3-1	(7)		2	1	1		 		$\left \right $	City S. of hold	A 1
03	<u> 1 </u>	1525	TT	F2-1	(3)	·	2	1	1			 			thery holder
04	1	1620	TT	EI -8		<u></u>	2	1.	11	{ 	 			City in North	
05	<u> ll</u>	1645	L T T	<u>-EZ -</u>		<i>t</i>)	_ 2	1		 		 			of North Holder
06 07 08	11	1230	T.T	<u>-62 -</u>	-1_(3-4)	2	1						City E. of RR	ROW
01	11	1200		<u>- 64 -</u>	-	3-4)	2	1			<u> </u>	 		Adj. to Jack so	1 on City
08			11	p Blan	4	(W	241					[IVOA	Trip Blank	/
09		10900	Cou	mposite	<u>v # 1</u>	Analysis cans per I Huver	A 3		<u> </u>				1510	composited 4-28-	-95
10		1000	$- \omega$	M129 514	0	L	3			1	<u> </u>			//	
<u> </u>	11	1015		mpasite	#	> >	3			(1	_ _		
12		1200	+	<u>1-4</u>	(3-4)		3		ļ					Grab - Tar Nel composited 4	<u>'/</u>
13	4.28.9	5/030	Cer	mposite		4	3			ĻL				composited 4.	-28-95
-17-	-"/-	1100	Cor	<u>mpbsite #</u>	+6	·	3			1			╞╌┼╌┤		
-19		1115		Mposite -	#8		3		<u> </u>	1	Ľ	1			
Ta	Ished by (S	e/III	P	4.2845	/ Time 400 / Time	Received by: (Signatur Fed Ex AF 27585710 Received by: (Signatur	944		inquist	D-	-2	<u> </u>		4-2995 9:30	d by: (Signature)
Relinqui	lshed by: (S	Signature)		Date	/ Time	Received for Laboral (Signature)	tory by:)ate /	Time				N TECHNOLOGIES
REMAR	кs: Plea	n ei	xtract	r TCL	P&I	iocs by Mo	Nday 5-1	95					ЕМЕ	EDIATION BOLOGIESINC St. Par	Centre Building asha Street, Suite 655 ul, MN 55102) 222-0841

		I						T	~			ļ	
No.	051	9	9584-	222	CHAII	N OF CU	STO	DY	RE	COR	RD 、	200	Page 2 of 2
PROJ. N	0. 187-30 RS:	PRC 3			1(2P - 55PI)	OF CONTAINERS					C MARK		
SAMPLE NO.	DATE	TIME	SA	MPLE LOCATIO	N	NO. OF	A		J L		/ ,		REMARKS
	4.28.95 4.2895	1145 1200	Compo	site # 1	7	3	1	/	//				Composited 4/28 - Area G Composited 4/28 Area G (WT)
			X	GM									
IM	<u> </u>	ISignatur	Jel 4.28	1 Date/Time 3-95 14cc Date/Time	Received by: (S FCAFX 2758571 Received by: (S	144			Éej	ned b	<u>×</u>		4-29-551 9:30 The 1. Kenp
<u> </u>		(Signatu (Signatur	·	Date/Time	Received by: (S Received for labo (Signature)					ate/Ti			REMEDIATION TECHNOLOGIES 413 Wacouta Street
REMAR	KS:	·	l				,						A 13 Wacouta Street Suite 300 St. Paul, MN 55101 R E M E D I A T I O N (612) 222-0841 TECHNOLOGIES INC Fax# (612) 222-8914

	0.0.7	0											•••				'syl		-	
Nō	037	8					СНА	IN OF CU	SIC	יטנ	RE	۲00 ا	IJ,			Å		2	15-05	-005
SAMPLE	AS (Signatu	TIME	rd	Wa		MC-	CATION	- NO. OF CON TAINE		41		LOC W - HO	Metals # me	(EPHC)	25.41				REMARKS	
01	4.29.95	1400	(ézm	Posil	le #	//	5		l	1	1	1	ŀ		ATOX LEAT	3 SUB			
02	11	1430		om	20717	e #	12	5		<u> </u>	ĻĻ	<u> !</u>	<u> /</u>	<u> </u>			.]			
03		1500		omp	onte	#17	<u> </u>	5		1	/		/	/		·				
04	11	1530		om	Rose	te #	-14	5		/	/	-/-	<u> /</u>	 ,						
05	-/'-	1600	+-C	2514	4550	10 =	15	5		/				/		· · · · ·	V			
		\uparrow											+	1		fit	X			
	1	\square				······································	<u></u>						1	İ		(2)	TPH	(48	.1)	
						· · · · · · · · · · · · · · · · · · ·										~				
	ļ		¥				· · · · · · · · · · · · · · · · · · ·]	<u> </u>			Y				
		 	<u>A</u>			·											Metals	List	<u>-: 5b,</u>	Ar, Be, Pb, Ni;
<u></u>	<u></u>		+														Ba, (Cd,	Cr, cu,	Pb, Ni,
<u></u>			$+\lambda$	iM		·	<u></u>									-	Se; 7	h		
<u> </u>			\square	<u>/ · · </u>			· _ · · · · · · · · · · · · · ·								[<u> </u>		
M	shed by: (S			5.	1.95	/ Time (230	Received by: (Signatu Fed EX arr 27585	71870	/	ß	(rs	- >	I I: (Sign		I	5.2	· · · · ·	1:00	Received by: (S	1. Kong
Reinqui	hed by: (S	Signature)			Date	/ Time	Received by: (Signate	ure)		Relin	nquist	ned by	 : (Sign	ature)			Date / 1	Fimef fi	Received by: (S	ignature)
Relinqui	shed by: (S	Signature)		-	Date	/ Time	Received for Labora (Signature)	atory by:	1_		[Date /	Time		191					CHNOLOGIES
REMARK	(S:	· · · · · · · · · · · · · · · · · · ·		k			•			·		l		R	ЕM	EDIA			apital Centre th Wabasha S St. Paul, MN (612) 222-	treet, Suite 655 55102

No.	076	3	1.	5-10-12	CHAIN O	F CU	STOD	Y RE	COR				
·m RECEIVII A·	S)-30 RS: VG LABOR TT - DATE	Fort TIME	DJECT NAM Thirs Thirs Collin	1 Ward A F/ Kachel	UU16-f(25)	NO. OF CONTAINERS	PAH,	The state	La Car	150 - LO.			
	(1995)		-				1					REMARKS	
	10/13	17:15	(1)-2	$\frac{n}{n}$		8	H C		$\hat{\mathbf{x}}$	$\frac{\lambda}{\lambda}$	<u> </u>	stensk induce	ales impacts
$\frac{0}{12}$	10/2	13:10		d Dupa pRinse- RUT-	RI- 1-					$\frac{1}{2}$	- ol	ascred in !	he.l.J.
03_ 01	10/2	10.00	Equ	$\overline{\mathcal{A}}$	wink.	$\frac{7}{3}$		$\frac{1}{1}$	$\left \cdot \cdot \cdot \right $		Ru	n total un	un acid clissocialski
65			W-0		· · · · · · · · · · · · · · · · · · ·			-	<u> </u>		CL	kinide only	is to tal aganide
05	· · ·		12-			3		?			۱ <u>۹</u>	s detected	· · · · · · · · · · · · · · · · · · ·
07				PRIAN	K	2		2					
				1							SA	mples for PA	Hs, cyanides, +
					·						- m	rebels engly:	ses wre field -
					· · · · · · · · · · · · · · · · · · ·			_			6	Hered .	
	 		· ·			<u> </u>							
						ļ					<u>S</u>	mplassere	iced immeliable
						<u> </u>	 _				qf	te collection	ad shipped in a
						<u> </u>					C <	voler with i	<u>ce</u> .
	<u> </u>	(0)	r-	Date/Time	Designed have (Circuit							Date/Time	Breathand have (Channel
Mainqui	snea by:	Signature		10/13/25T	Received by: Isignat Fed Ex air bill 27585715			mquisi	neu D)	r: (Signa			Received by: (Signature)
Relinqui	shed by: $f H H$	(Signatur	re)	Date/Time درین از	Received by (Signate		Re	linquis	hed by	: (Signa	iture)	Date/Time	Received by: (Signature)
Relinqui		(Signature	e)	Date/Time	Received for laboratory (Signature)	γ bγ:		D)ate/Tir	ne	राह		REMEDIATION TECHNOLOGIES 413 Wacouta Street
REMAR	KS:		······	·····	•	· ·					REMED	I A T I O N OGIES INC	Suite 300 St. Paul, MN 55101 (612) 222-0841 Fax# (612) 222-8914

No.	075	57	9	5-10-1	٢		CHAIN O	FCU	STO	DDY	' RE	COF	RD		June -					
	87-30 RS: NG LABOF A T	D3 T Frin TATORY: I - F TIME	Rait	ME Ward (- J. Rad. SAMPLE I	<u>.l.C</u>	Alahan	(1-vî.5)	NO. OF CONTAINERS		FILL P.		ALL TOTAL				/	REMARKS			
06	10/3	11:00	12-	-460				5		X	X	\mathbf{X}			* A	isteri	sk indic	ates	impact	5
05	10/13	14:15	12	-205 -201				5	\times	X	X	X					rured in a		-	
64	10/13	14:30	<u> </u>	-aot	•			5	K	\bowtie	\mathbf{N}	Ķ,					· · · · · · · · · · · · · · · · · · ·			
 	ļ			! 				<u> </u>	<u> </u>	<u> </u>		·			<u> </u>	م لئو	ak coid c	issue	able cy	aniste.
						·····				ļ					<u> </u>	lyi	F total ('spinie	le is de	te cto
							····	_	 		 							•		1
										╂-—	┣				Shim	ples	for PAI	ts to	$fal + \omega$	A. D.
			·		<u></u>										Cy	mid	for PAI	stals	were fil	· []
															-ti 1	teiel	<u>(</u>			
						· · · · 24. 4				+										
	1					·					 				~	. 00.	ALLYEAR A	E.L.	•	, Ball
	1						<u> </u>	1			1				alte	1 CE	dection	Leh	Enzel in	
															Cod	Cen.	with 12	- <u>2</u> .	, , , , , , , , , , , , , , , , , , , 	
	. 24	(Signature	e) A	Date/	Time	Code	by: (Signat	-		Relir	nquist	ned b	y: (Signat	ure)		Date/Time	Received	by: (Signatu	ıre)
Relipqu		Signatur		<u>)0/13/15</u> Date U-14-45	/Time راز ا	<u>a75</u>	by: (Signati	6		Reli	nquist	ned by	r: (S	ignatu	ıre)	a	Date/Time	Received	by: (Signatu	ire)
Relinqui		(Signature				Receive (Signature	for laboratory	y by:			D	ate/Ti	me		ति		7	REMED		
REMAR	KS:			- -	L	L							-		R E M E D TECHNOL	LAT	ION	·	St. Paul, M	Suite 300 IN 55101 222-0841

-

N	ο.	075	3		<u> </u>		CHAIN O	F CU	sto	DY	RE	COF	RD	W 95-10-102
Z S R S		87-30 RS: 2010 ABOF	13 Hein TATORY: - FT TIME	DJECT NA Thic Lust xf Cc	- Wird M	s llK		NO. OF CONTAINERS	Pn	A A A				REMARKS USE (Vetion
X		10/12	18:30		-265 *	¥	0.5 06	55	X X).).).).	XX	XX	/	 * asterisk indicates field impacts
	10/13	· ·····					······································							 - Sumples for PAHS Cylinides, + metals field fittered
														- Run weak a ciel dis sociable appliede- may if total cyaiple is defected
														 Estruples were ice d'uninedictel, after collation - shipped in a cost
2	Max	shed by:	The	t	Date/Time 10/12/6551/00 Date/Time	5	by: (Signat ed by: (Signati)	Ed	ج <u>د</u>	 ature) Date/Time Received by: (Signature) Date/Time Received by: (Signature) Date/Time Received by: (Signature)
	Relinqui REMAR	shed by: KS:	(Signatur	e)	Date/Time	Received (Signatur	for laboratory ej	у by:	I		Di	ate/Ti	me	REMEDIATION TECHNOLOGIES 413 Wacouta Street Suite 500 St. Paul, MN 55101 TECHNOLOGIES INC (612) 222-0841

.

No.	0752		CHAIN O	F CUS	יססד	Y REC	CORI	D	95.10.102 Pf 30/4
PROJ. N 3-089 SAMPLE M RECEIVII A- SAMPLE NO.	<u>7-303</u> 7 RS: <u>240777</u> NG LABORATORY: TI - For	DJECT NAME Third Land Mart Candard Mart Callins SAMPLE LOCK		NO. OF CONTAINERS	Parts P.	A LE LE	A Contraction		PJ 3014 REMARKS
	10/11 12:00 10/11 15:15 10/12 16:00	W-14 *	+ 10 08 07	555	X X X				* Asterisk Next to sumple ID indicates impacts observed in field.
			r						Sangles for PAHts, Cyanide, and metals arolyses were field -fittered
······			· · · · · · · · · · · · · · · · · · ·						Run weak acid dissociable cyand only it total cyanide is detected. Samples were iced immediately, after
									Collection of shigged in a couler with ice
<u>// LA [7</u> Relinqui	shed by Signatur The Alt New Co shed by: Signatu	IO/12/45 IO/1 re) Date/Time	e Received by: (Signat	ure)		linguishe	feroi ed by:	(Signa	The All Gov Air
Relinqui REMAR	shed by: <i>(Signatui</i> KS:	e) Date/Time	e Received for laborator (Signature)	у by:		Da	ite/Tim	IÐ	REMEDIATION TECHNOLOG 413 Wacouta Str Suite 3 St. Paul, MN 551 (612) 222-08 Fax# (612) 222-89

No.	075					OF CU	270	ו אח	BEC				
INO.					CITAIN		510			بر). J		95.10.12 pg/e/4
A	87.30 rs: 	ATORY:	DJECT NA Thi L.	ME 1 Wirsto M 2 Noch 0 Ilins		OF CONTAINERS		THE STATE					
NO	(1995)	1 1		SAMPLE LOCATI	ON	NO.	9	7 II) Y	Â		/ /	REMARKS
01	10/12	11:50	ω	-410 #		5	X	X	\times				EXTSUB
DZ	10/12	16:30	L	-235 MM	hes esterisk!	5	X	X	X				Asterisk next to Sample In inducates field observator
		 							_				ndicites field obervitor
					· · · · · · · · · · · · · · · · · · ·								the Simples for PAHS, cyanigh s
				 			$\left - \right $						and wetals field - Giltered -
}									-				Run Wenk acid dissound lie
			/										Equinide only it total
													cyanite is telested
					. <u> </u>		$\left - \right $		_	_			Construction for the start
							┝						after collection I shipped.
					······		┼─┤	-+	-+		$\left - \right $	┝╌╂╌	in a cooler with ice
	<u> </u>						┼─┤	-+				-+-	1
	shed by:	Signature	e) T	Date/Time	Received by: Isig Fed Er a.		-	•	uisher ilc	i by: i	I (Signat	ture)	Date/Time Received by: (Signature)
استطلقه فيسار		(Signatui	re)	Date/Time	Received by: (Sig					d by: /	Signat	ure)	Date/Time Received by: (Signature)
Relinqui	shed by:	(Signature	e)	Date/Time	Received for labora (Signature)	tory by:			Dat	e/Time		5:	REMEDIATION TECHNOLOGIES 413 Wacouta Street
REMAR	KS:	,									1	REI	Suite#00 MEDIATION St. Paul, MN 55101 HNOLOGIESINC (612) 222-0841 Fax# (612) 222-8914

	No.	075	1				CHAIN O	F CUS	STOD	DY R	ECC	DRE			× (5)		95.10	· 102
	RECEIVI	<u>A / TRu</u> NG LABOF	TIME	DJECT NAI Thice <i>Alan</i> Colle	NE MCH Ward-Si & Raadd ns sample locat	2 A		NO. OF CONTAINERS	PAH,	87. 83.	Carl Carl	All the second	Alexandre Alexandre			P Ju		7 7 0 -
	03			IN-L	HISK		03	10	XD	Zβ	X	7						<u> </u>
TT I	04	1 1 2			d Dup		04	8	XX	1D			11					
11	oF	10/12	18.30		265 ×		05	3		<u>ا</u> ل				KAster	Tisk- nort	L to s	sample I	D indicate:
T	ch	10/17.	18:3)	W-	26IX		06	3		<u> </u>							- in fie	
				W-			07	3	Þ	\leq								
	63	10/12	14:15	W-	14 _ *		08	3		\mathbf{X}				Sempl	es for PH	Hs,C	unide a	ad metals
<u>مع</u> لا	AFF.		11.50		41D *	•	0	3		$\left\{ \right\}$				anal	ly ses wi	ent.	field fi	Heredo
Ш	10	10/12	12:20	ER	B-1		09	3		<u>X</u>								
Π	11	10)	lia: J	W-	325 *		10	3		\mathbb{A}				Weak	acid clis	social	le cyania	k Should be
FT	It	10/12	10:45	W-	-415 *		(## Q3	3		\leq			\square	TUn .	only if	tota	l cyani	de is
T	13			TR	IP BLAN	K jā	EII!	2		\mathbb{X}				dete	ected.	·		
$\phi \zeta$	##	0/12	16:30	W-	235		02	3		\mathbb{X}								
PA	×					·····								Semple	S where it	ed im	mediatel	gatter
ŝ	holis					•								collect	ion + st	ipped	in a coo	ler with ice .
	Relinqui	ished by:	(Signatur	e)	Date/Time 0/12/45 10pn	Receive	ed by: (Signation of the second secon	Arb	`//# ^R	-	ished cls_1	•	(Sign	ature)	Date	e/Time I		: (Signature) いいれた チョアにつ
	Relinqui	ished by:	(Signatu	re)	Date/Time		d by: (Signatu		R				(Signa	ature)	Date)/Time		(Signature)
		ished by:	(Signatur	el	Date/Time	Receive (Signatu	d for laboratory ire)	by:			Date	/Time	3	RF		I		ION TECHNOLOGIES 413 Wacouta Stree Suite 200
ļ	REMAR										<u></u>				DIATION LOGIESINC			St. Paul, MN 55101 (612) 222-0841 (ax# (612) 222-8914

No. 0755 CHAIN C									OF CUSTODY RECOP					Jun 95-10-155	
PROJ. NO. 3-0887-303 Third Ward MGP Site SAMPLERS: Marka Standart RECEIVING LABORATORY:									d	N		L'EN.		P3 143	
1	ATI-FOR+COLLINS E DATE TIME (1953) SAMPLE LOCATION						NO. OF CONTAINERS	4		Ĭ	E F F			REMARKS	
Ð	19/15	16:15	ω-	27 D			8	$\underline{\aleph}$	$ \vee$	\times	1	\mathbf{X}		* Asteristic indicates field observation	
20	10/15	17:45	w-	-42 D			8	ŧΧ	X	X	ĮΧ			of impacts.	
	19/16			-99 I	*		8	$ \chi$	X	X	1	ĮΧ	-		
DY		1		-16	k		3		Ø					Run werk avid dissociable cyprick.	
05	10/16	15:15		= 22-1	(MRS)	ERB-2	3		X					only if total cyunder is detected	
06		19:15		-13		,	3		N						
07	19/16	15:45	IN	1-45I)	<u></u>	3		Ø			\square	F	PAH, metals, + Cyanides Sumples	
08	1 1	0/16 18:45 W-430 *							X					11 fie kl - filtered.	
09							2		X			1			
				1	-111_11										
											1	1			
													l	La plat i san algeral and in installing	
	-						1					1		fler collection, + mintained + shipper	
						· · · · · · · · · · · · · · · · · · ·							1 1 1	in a cooler with ico	
						·····		1							
Relinqu	ished by:	(Signature		alin Be	e/Time	Received by: (Signat	ure)	<u>ــــــــــــــــــــــــــــــــــــ</u>	Relin	ı quist	hed b	by: ((Signature)) Date/Time Received by: \(Signature)	
Matthe Ster and 19/16/15 15:00 Air Lill # 2758 57								1572				da		Added is the	
Relinqu	ished by:	(Signatur	e)		te/Time	Received by: (Signate	ure)		Relin	nquist	hed b	y: /S	Signature)	Date/Time Received by: <i>(Signature)</i>	
Relinquished by: (Signature) Date/Time Received for laborator (Signature)								y by:			Date/Time			REMEDIATION TECHNOLOGIES 413 Wacouta Street	
REMAR	iks:												RE	Suite 200 Suite 200 St. Paul, MN 55101 CHNOLOGIES INC Fax# (612) 222-8914	

No.	07!	56				CI	HAIN O	F CU	STO	DDY	RE	COF	RD	ريد م			(951	D-15	5-55
SAMPL	87-30 ERS: MG LABOI		tand		<u> </u>	PSite	<u>ر</u>	NO. OF CONTAINERS		Hr Fr		the form	Certa Maria	A C A	5 7 7			F	y z	<i>z</i> (3
NO.	11915			SAM	IPLE LOCATIO	DN		ž		<u>7</u> F	<u> </u>	<u>7</u> ~	Ž		/		REMARKS	S		
06	10/15	14:15	1)-13	5	·····		5	X	\propto	X	X			* A	steri	, k next	- to 52	male	1.0
04	10/16		_w	1-16	<u>, *</u>			5	X	$ \lambda $	X	X			ind	licate	1 field	obsen	12tin	a es impart
05	19/16	15:15	Ē	RB-				4	X	X	X	·								
	<u> </u>		/		1									$\left - \right $	Khn	Work	Acida	issoci	able	-cepanide is det cter
						· _ · · · · · · · · · · · · · · · · · ·	<u>#</u>		╂—	_−					mly	if to	stal up	anid	یپند	is chet cter
					<u> </u>				┼──	├ ───	┼──			┼─┤						
		{					<u> </u>		-	┼──				┼──┼		<u></u>				
=			-/											$\left - \right $			<u> </u>			
		<u> </u>	1						1									·····		
	<u> </u>	<u> </u>	1															. <u> </u>		
														l l	Sindle	2 KZNE	. aniod	linac	int	es within
															immed	intely	after co	le ctio	r7, 101	entrinold
			1												+ Ehip	ech in	the Lout	be wit	hic.	σ.
		Ĺ	\square		<u> </u>											•				
Relinqui	1. 1	(Signatur	V.	10/17/h	Sate/Time	Received by	1: Signat Signat Signat	ure⊭ ∽⊃_		Relir	nquist	ied b Feel		Signat	ure)		Date/Time	Received	by: /	Signature) 1918-191 130 AFJI
Relinqu		(Signatu			Date/Time	Received by				Reli	nquisl			Signatu	ıre)		 Date/Time	Received		(Signature)
		(Signatur	e)		Date/Time	Received for (Signature)	laboratory	v by:			D	ate/Ti	ime		राज्			REMED		TECHNOLOGIES Wacouta Street
REMAR	KS:														R E M E D TECHNO		O N			Suite 200 Paul, MN 55101 (612) 222-0841 # (612) 222-8914

No.	075	59				СНА	NN OI	FCU	STO	DY	RE	COI	RD	C Ve			95	10-15	5
RECEIVI	Mai IG LABOP	TL TTL	Ju	ME Luicd N nlant rt Collin		Site		OF CONTAINERS		EL. P		(A Thereis		Ter C	¥			Py 3	ゥ
SAMPLE NO.	DATE (1995)	TIME		SAMPLE LOC	CATION			NO.		74	Z		3		/	REM	ARKS		
07-	10/16	15:45	W	-45D				5	X	X	Ý	X			¥ Ast	terisk ind	icate	s field	1 observering
07	10/16	18:45	_W_	-43D *				5	X	X	X	入	 			impacts			
															kun exl-	weak acid	disser cyry	nide	ajande is dot it
															Singl Jap 1	ka were p	laced	inac	ction; +
															mint	rined I sh	reped	in h	cooler with
mas	tão Z	ISignature		Date/Tim 101,1/9 5 101,1/95 101,1/95 Date/Tim Date/Tim		ived by: ect Ex 1 535 ved by: 1	7157	<u>~</u>				Fe	ide	Signat	Ure)		e Rec	eived by:	(Signature) (Oligis ș 1 S.D. Arce (Signature)
	hed by:	(Signature		Date/Tin	ne Receir (Signa	ved for lab ature)	ooratory	by:			D	ate/T	ime		REME		R	41	N TECHNOLOGIES 3 Wacouta Street Suite 700 . Paul, MN 55101 (612) 222-0841

No.	0 7 5	58			СНА	IN OF	CUS	STO				×)		1030	28			
	87-30 RS: NG LABOR	A SUA	DJECT NAME Third Wa That Sacola Sal				NO. OF CONTAINERS	Am. Ter	14 - 1,	Cherry Mina	The start of					REMARK	S		
1	10/16	9:3D	W-20	2I			3	L		FL	-								
2	10/16	18:15	W-43	D	. <u></u>		3	1	-1-	1-	<u> </u>								
3	10/15	19:15	10-13	3			2	V		~						· .			
	ļ																<u> </u>		
			<u> </u>												***				
	 				<u></u>			-										<u></u>	
																<u> </u>	<u> </u>		
																	• <u>•</u> ••••••••••••••••••••••••••••••••••		
														Cim	olea	HAR OF	ncode		
				<u></u>										im	edie	vere pl dely af	PA CEL	le chir	24
					· · · · · · · · · · · · · · · · · · ·							,		i ma:	atre	ned to	hippo:	d jaa	Lalen
														1	ica_				
				` <u> </u>															
1		(Signature		Date/Time	Received by: Fed Ex Mico	(Signatui	re)		Relir	nquist	ned b	y: (Signa	ture)		Date/Time	Received	by: (Sigr	nature)
		SlAnk (Signatur		<u>6/45 [33 Q</u> Date/Time	748 291 Received by: (<u>377</u> Signatur			Relir	nquist	ned by	/: /S	lignat	ure)		Date/Time	Received	by: (Sign	pature)
Relinqui	shed by:	(Signature)	Date/Time	Received for lab	oratory	by:		10		ate/Ti		0	R			REME		CHNOLOGIES acouta Street
REMAR	KS:		·····		······································			<u> </u>	/					R E M E TECHNO	DIAT	1 O N		St. Paul (61	Suite 200 J. MN 55101 2) 222-0841 2) 222-8914

									-								
No .	070	` ¶				CHAIN O	F CU	STO	DDY	RE	DOP	، کر Dr	2	5	10 28	/	
PROJ. N 3-088 SAMPLE Ma RECEIVIN	0. 7-303 RS: VIG LABOR ATT	PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	DJECT NA <u>hird</u> 1 1 1 1 1 1 1 1 1 1 1 1 1	ime Lhrd Ela	MGP { hel Cal	5 te laba Altriks)	NO. OF CONTAINERS	. 70	A C	Level	Leis Mitter		7		/		
SAMPLE NO.	date (1995)	TIME ·		SAM	PLE LOCAT	ION	NO. O		\mathbb{P}_{k}	74					REMA	ARKS	
1	10/13	17:15	W-	-25	S &	-	3	X	$X \times$	X							
2	10/13	14:15	-h)	-20			3	X	12	1χ							
3	10/13	14:30	-12	-20	DI	·	3	X		X							
4	10/3	11:00	Ŭ	-46			3	X		\mathcal{X}				 			
ļ'							<u> </u>	<u> </u>	<u> </u>	_							
									<u> </u>	<u> </u>							·
								╂		₋							
								_									
								₋	╂	<u> </u>				·			
ļ				\					<u> </u>								
				\		 			╂	╂							
														- Sim	des vere	<u>-v</u> 2	ed immediately
							+	╂	┼──	┼				afse	s collect		and immediately and shipped in
									+	╂					olla w	th	
Relinquis	shed by:	(Signatur		10/3	ate/Time	Received by: (Signa) FedEx AirLin L 748291316		1	Reli	nquisl	hed b	 y: (5	Signa	ture)	Date/Tim	18	Received by: (Signature)
Relinqui	shed by:	(Signatui	-1 rel		Date/Time	Received by: (Signat			Reli	nquis	hed by	y: (S	ignat	ture)	Date/Tim	1 0	Received by: (Signature)
Relinqui	shed by:	(Signatur	9)		Date/Time	Received for laboratory (Signature)	y by:		VC	1	ate/Ti		2	राज	FC		REMEDIATION TECHNOLOGIES 413 Wacouta Street
REMAR	KS:					/								REMED	IATION OGIESINC		Suite 300 St. Paul, MN 55101 (612) 222-0841 Fax# (612) 222-8914
				PINK COPY	- Sampler		YELLO	w co	PY - L	aborate	ory				WHITE COP	Y - RE	TEC

, --

....

No.	075	4					CHAIN O	F CU	STC		REC そゝ	COR	D N		5	1025	8
SAMPL	(87-303 ERS: Maith Ming Labor ATI	TORY:		Narg + f	LE LOCATI	20\$	e 2	NO. OF CONTAINERS	Totan	S. Hit James		ALEY THE ELE				REMAR	۲S
	10/12	18:30	W-	26	Ē			3	X	\mathbf{X}	\times						
		10:45	W-	-41	S			3	X	X	Х						
	10/12	6:30	W-	<u>23</u>	, 5			3	X	Х	X						
								ļ	 				\square		<u>.</u>		
	_				<u></u>									_	······	<u></u>	
												-+	-+				
			<u></u>														
				<u>├</u> ───		<u>.</u>		<u> </u>									
					······										Sim	plesmere	iced immediately
																	ction + shipper 1
								<u> </u>							in	a coola	- within
			 .		` <u> </u>			ļ									
Reling	uished by: (Signature	1 7-1		ite/Time 5 /0 pm	Received Fed	Lby: [Signati = k Airbi R 29131	urel 157		Relin	quish	ed by	: (Sig	nature	,	Date/Time	Received by: (Signature)
Relinqu	uished by:	(Signatur	e)	D	ate/Time	Received	by: (Signatu	ire)		Relin	quish	ed by:	(Sig	nature)		Date/Time	Received by: (Signature)
Relinq	uished by: (Signature	<i>.</i> ,	D	ate/Time	Received (Signatur	for laboratory	by:		10,	Da 13 /7	$\frac{1}{5}$	10 1749	ſ	तन्न।		REMEDIATION TECHNOLOGIES 413 Wacouta Stree
REMA	RKS:												-	RE	E M E D I A	ATION	Suite 600 St. Paul, MN 55101 (612) 222-0841 Fax# (612) 222-8914

×	i Cer
No.	0760

Ì

. (j

.

No.	070	5 U				Cł	iain oi	F CU:	STO	DY	RE	COF	ND	þ						
PROJ. N 3-0 SAMPLE 774 RECEIVI	857-3 ERS: 11/12/05 NG LABOR	BOIL RATORY:	thi Thi M,	Rachel	id M Call	NGP Jah(M	<u>دي</u>)	NO. OF CONTAINERS		lex.	- Color					/				
	ате (1995)			SAMPLI	LOCAT	ON		NO. OI	4	3	E C							AARKS		
	19/15	1415	is.	-13				3	r	1	4	ł			5	cono	lural	8 j-	f includ	ad,
	19/16	9:30	ω	- aaj				2	1			Ł			ar	e e	sotra			
	10/13	14:15	w	-205				5	V	7	1-	r								
		17:15		-255				え	V	V	L	ł								
		10:45		-415				1	V	7	12	Y								
	10/13			1-461	>			2	V	-2	v	r								
		14:30	w	-201		· ·	•	e la	V	· V	FL	F								
	10/2	16;30	(<i>J</i>)	-2:35				11	4	~	12	F								
	19/2	18:30	Ŵ	-265				2	L	1	1	7								
		18.45		1-431	>			2		2	C	-							·	<u> </u>
															Suma	Dan	A VEAD	004	calor ic	<u> </u>
															1		i at a l	the se	alle onl	Rection
								1			1					ist a	in d	2	redonic ofter col	
 				· · · · · · · · · · · · · · · · · · ·											_ 	<u>A.)54</u>			with ice	- Porter-
							<u></u>	 					-					مل مح		<u> </u>
Relinqui Mar	shed by:	ISignature Tanka	"	Date 10/16/9-		Received_by 89555	2 (Signat) 5050	₩# %7 %53		Relin	l nquist	l ber	y: (S	Signat	ure)	-	Date/Ti	me	Received by:	Signeture)
		(Signatur		Dat	e/Time	Received by	: (Signatu	are)		Relir	nquisi	hed by	y: (S	ignati	xe)		Date/Tt	me	Received by:	'Signeturc)
Relingui REMAR		(Signatur	»)	Dat		Raceived for (Signaluce)	foorated	bү:/		4	D /17/	ate/Ti			R E M E M	DIA	TION		41: St.	N TECHNOLOGIES 3 Wacouta Sygo Suke730 Paul, MN 55101 (612) 222-084 7 (612) 222-0914
	(PINK COPY - S	ampler			YELL OV	n	/ - La	borate	ory					WHITE CO	PY - RE	ÉTEC Í	

2002/002

٠ •••

04/19/96

07:02

APPENDIX G

TABULATED ANALYTICAL DATA

TABLE G-1 LABORATORY ANALYTICAL RESULTS FOR PAHs, BTEX AND TOTAL CYANIDE PETERS = JOHNSON PROPERTY, AREAS A, B AND C THIRD WARD MGP SITE

RETEC SAMPLE ID LABORATORY ID SAMPLE DEPTH (Feet)	TTA2-1 (5-6') 95-04-221-10 5-6'	TTA3-2 (7') 95-04-221-09 7'	TTA4-1 (1-2') 95-04-221-16 1-2'	TTA4-2 (7') 95-04-221-14 7'	TTB2-5 (8-9') 95-04-221-11 8-9'	Duplicate 2 (1) 95-04-221-12	TTB3-1 (3') 95-04-221-15 3'	TTC1-2 (2-3') 95-04-221-17 2-3'	TTC4-2 (4-5') 95-04-222-01 4-5'	TTC5-1 (6-7') 95-04-221-13 6-7'
PAHS	3-0		1-4							
Method 8310 (ug/Kg)										
Naphthalene	<12000	<12000	<2200 UJ	<140000	250000	67000	<1200	140000	<13000	<12000
Acenaphthylene	<12000	<12000	<2200 UJ	<140000	<150000	<30000	<1200	<130000	<13000	<12000
1-Methylnaphthalene	<12000	<12000	<2200 UJ	<140000	<150000	<30000	<1200	<130000	<13000	<12000
2-Methylnaphthalene	<12000	<12000	<2200 UJ	<140000	<150000	<30000	<1200	<130000	<13000	<12000
Acenaphthene	<20000	<20000	<3600 UJ	<230000	<250000	<49000	<1900	<220000	<22000	<20000
Fluorene	<1600	3500	.500 J	45000	37000	17000	<150	28000	<1800	<1600
Phenanthrene	4700	10000	4800 J	150000	87000	57000	1400	62000	7200	3400
Anthracene	1000	3700	<72 UJ	49000	24000	16000	150	23000	<440	550
Fluoranthene	8100	<1200	<220 UJ	92000	51000	38000	1600	60000	5900	<1200
Pyrene	6700	9400	2900 J	85000	28000	34000	1700	<18000	<1800	14000
Benzo(a)anthracene	3600	5300	1700 J	5200	<5000	13000	750	16000	<440	5000
Chrysene	4200	6400	2400 J	27000	14000	17000	1600	18000	<890	8700
Benzo(b)fluoranthene	2600	5400	<72 UJ	<4600	<5000	4200	620	<4500	<140	3700
Benzo(k)fluoranthene	1300	2900	<72 UJ	<4600	<5000	<990	<39	<4500	<440	<400
Benzo(a)pyrene	3500	8600	<72 UJ	5800	<5000	8700	950	<4500	<440	7100
Dibenzo(a,h)anthracene	<1200	<1200	<220 UJ	<14000	<15000	<3000	<120	<13000	<1300	1200
Benzo(g,h,i)perylene	2400	3100	1100 J	<18000	<20000	4100	1200	<18000	<1800	3100
Indeno(1,2,3-cd)pyrene	2100	2500	710 J	<14000	<15000	3300	<120	<13000	<1300	2000
Total PAHs (mg/Kg)	40.20	60.80	14.11 J	459.00	491.00	279.30	9.97	347.00	13.10	48.75
BTEX Method 8020 (ug/Kg)	1		I		1				1	
Benzene	. <3.0	22	6.7	3900	1200	5000	17	20000	<3.3	9.3
Toluene	3.2	15	4.8	2300	130	620	<2.9	13000	<3.3	22
Ethylbenzene	<3.0	1500	16	84000	8100	16000	4.2	250000	<3.3	4.9
Total Xylenes	<6.0	1600	30	170000	6200	12000	12	380000	<6.6	19
CYANIDE Method 9010 (mg/Kg)										
Total Cyanide	5.7	1.4	<0.27	2.0	2.5	1.4	<0.29	100	<0.32	3.1

Notes:

(1) Duplicate of sample TTB2-5 (8-9')
 J = Result qualified as estimated due to holding time violation.
 UJ = Sample quantitation limit is estimated due to holding time violation.

TABLE G-2

LABORATORY ANALYTICAL RESULTS FOR PAHs, BTEX AND TOTAL CYANIDE CITY PROPERTY THIRD WARD MGP SITE

RETEC SAMPLE ID LABORATORY ID	TTE1-2 (10-11') 95-04-222-04	TTE2-1 (7') 95-04-222-05	TTF2-1 (3') 95-04-222-03	TTF3-1 (7') 95-04-222-02	TTG2-1 (3-4') 95-04-222-06	TTG4-1 (3-4') 95-04-222-07	DB-6 (2-4') 95-04-221-01	DB-7 (0-2') 95-04-221-02	B-47 (2-4') 95-04-221-03	Duplicate 1* 95-04-221-05	B-47 (16-18') 95-04-221-04
SAMPLE DEPTH (Feet)	10-11'	7	3'	7	3-4'	a i gages a star star	2-4'	0-2'	2-4'		16-18'
PAHs											1
Method 8310 (ug/Kg)											
Naphthalene	<12000	<120	<130000	1700	<11000	<120	220000	<12000	<11000	<11000	150000
Acenaphthylene	<12000	<120	<130000	<1200	<11000	<120	<13000	<12000	<11000	<11000	<120000
1-Methylnaphthalene	<12000	<120	<130000	<1200	<11000	<120	49000	<12000	<11000	<11000	<120000
2-Methylnaphthalene	<12000	<120	140000	<1200	<11000	240	75000	<12000	<11000	<11000	<120000
Acenaphthene	<20000	<190	<210000	<2000	<19000	<200	<22000	<20000	<18000	<18000	<210000
Fluorene	<1600	<15	40000	530	<1 500	24	12000	<1600	<1500	<1500	62000
Phenanthrene	3300	160	65000	1700	7200	230	32000	11000	2300	1900	130000
Anthracene	1300	35	18000	800	3200	22	6800	680	<370	<370	27000
Fluoranthene	8300	260	58000	2100	13000	200	26000	30000	7200	5000	<12000
Pyrene	6300	250	<17000	1700	12000	33	<1800	17000	4700	4100	22000
Benzo(a)anthracene	2500	<3.9	17000	760	4700	<3.9	<440	16000	3900	3300	<4100
Chrysene	2700	<1.7	<8500	1200	5600	110	3500	20000	6500	5000	<8200
Benzo(b)fluoranthene	1700	130	<4300	<39	3600	27	890	24000	7400	5700	<4100
Benzo(k)fluoranthene	800	<3.9	<4300	<39	1600	<3.9	<440	6900	<370	1900	<4100
Benzo(a)pyrene	1900	200	<4300	3200	<370	<3.9	950 [·]	14000	<370	3700	<4100
Dibenzo(a,h)anthracene	<1200	<12	<1 3000	420	<1100	<12	<1300	1600	<1100	<1100	<12000
Benzo(g,h,i)perylene	<1600	130	<17000	2600	3000	<16	<1800	11000	<1500	4000	<16000
Indeno(1,2,3-cd)pyrene	1200	100	<13000	1900	2400	<12	<1300	11000	<1100	<1100	<12000
Total PAHs (mg/Kg)	30.00	1.27	338.00	18.61	56.30	0.89	426.14	163.18	32.00	34.60	391.00
BTEX Method 8020 (ug/Kg)			•								
Benzene	<3.0	<2.9	24000	<3.0	<2.8	4.1	3800	NA	3.0	3.8	150
Toluene	5.1	<2.9	1800	9.5	<2.8	15	<66	NA	57	54	180
Ethylbenzene	<3.0	<2.9	110000	88	<2.8	5.1	14000	NA	3.7	4.2	2000
Total Xylenes	<5.9	<5.8	53000	56	<5.6	9.1	29000	NA	10	13	6200
CYANIDE Method 9010 (mg/Kg)	1		I								
Total Cyanide	<0.28	<0.29	12	4.6	<0.27	<0.29	<0.31	<0.29	<0.27	<0.28	<0.32

Notes:

'Duplicate of sample of B-47(2-4')

TABLE G-3 RESULTS OF REMEDIATION PARAMETER ANALYSES PETERS=JOHNSON PROPERTY THIRD WARD MGP SITE¹

PARAMETER	COMPOSITE #11	COMPOSITE #12	COMPOSITE #13
ALKALI CONTENT			
pH (standard units)	7.3	7.5	7.5
SAR (standard units)	1.1	1.2	0.9
EC (mmhos/cm)	3.3	3.4	1.5
Calcium (meq/L)	22	26.4	5.5
Magnesium (meq/L)	15.6	14.0	11.5
Sodium (meq/L)	4.7	5.5	2.7
Potassium (meq/L)	1.9	1.3	2.7
SILICA OXIDE			
SiO2 (%)	65	53	43
ALUMINUM OXIDE			
Al2O3 (%)	8.8	7.1	5.1
CHLORIDE			······································
Chloride (mg/Kg)	<120	<120	<130
TOTAL ORGANIC CARBON			
TOC (%)	1.1	3.3	7.6
PERCENT MOISTURE			
Moisture (%)	16.57	15.29	25.27
FOTAL METALS (mg/Kg)			
Antimony	<3	<2	<3
Arsenic	4	5	5
Barium	50	320	50
Beryllium	<0.6	<0.6	<0.7
Cadmium	<0.6	0.8	<0.7
Chromium	11	13	9
Copper	21	21	24
Lead	36	180	120
Nickel	13	10	7
Potassium	1800	1600	1100
Selenium	1.2	1.0	1.8
Thallium	<2	<1	<1
ТКРН			
TRPH (mg/Kg)	590	1500	5500
GRAIN SIZE DISTRIBUTION			
Sand (%)	68	77	81
Silt (%)	17	11	9
Clay (%)	15	12	10
Texture	Sandy Loam	Sandy Loam	Sandy Loam
BULK DENSITY			
Bulk Density (g/cm ³)	1.7	1.6	1.2

Notes:

'See Appendix D for a description of samples used to create composites.

TABLE G-4 RESULTS OF REMEDIATION PARAMETER ANALYSES CITY PROPERTY THIRD WARD MGP SITE¹

PARAMETER	Composite #14	Composite #15
ALKALI CONTENT		
pH (standard units)	7.7	8.1
SAR (standard units)	1.5	3.2
EC (mmhos/cm)	3.6	1.2
Calcium (meq/L)	12.5	2.4
Magnesium (meq/L)	23.8	4.9
Sodium (meq/L)	6.3	6.2
Potassium (meq/L)	6.3	6.2
SILICA OXIDE		
SiO2 (%)	59	55
ALUMINUM OXIDE		
Al2O3 (%)	. 7.7	8.9
CHLORIDE	_	
Chloride (mg/Kg)	<130	<120
TOTAL ORGANIC CARBON		
TOC (%)	4.0	2.9
PERCENT MOISTURE		
Moisture (%)	20.02	16.24
FOTAL METALS (mg/Kg)		
Antimony	<3	<2
Arsenic	8	7
Barium	50	80
Beryllium	<0.6	<0.6
Cadmium	. 0.6	0.7
Chromium	13	29
Copper	22	40
Lead	780	160
Nickel	14	21
Potassium	1700	1900
Selenium	2.9	1.2
Thallium	<1	<1
ГКРН		
TRPH (mg/Kg)	5800	2200
GRAIN SIZE DISTRIBUTION		
Sand (%)	78	70
Silt (%)	10	10
Clay (%)	12	20
Texture	Sandy Loam	Sandy Loam
BULK DENSITY		
Bulk Density (g/cm ³)	2.0	1.9

Notes:

¹See Appendix D for a description of samples used to create composites.

TABLE G-5 RESULTS OF HAZARDOUS WASTE CHARACTERIZATION ANALYSES PETERS=JOHNSON PROPERTY THIRD WARD MGP SITE

PARAMETER	TTC1-4 (3-4')	Composite #2	Composite #3	Composite #4	Composite #5
IGNITABILITY (°F)	>100	>100	>100	>100	>100
REACTIVITY					
Reactive Sulfide (mg/Kg)	200	<6	<6	<6	<5
Reactive Cyanide (mg/Kg)	< 0.34	< 0.30	<0.32	< 0.31	<0.26
CORROSIVITY (pH St. Units)	9.02	8.79	9.20	9.04	9.44
ΤΟΧΙCITY					
TCLP METALS (ug/L)					
Arsenic	24.5	40.6	21.1	25.5	21.3
Barium	681	994	891	654	824
Cadmium	7.3	6.8	7.9	6.3	7.5
Chromium	<6.0	<6.0	<6.0	<6.0	<6.0
Lead	11.4	<9.0	73.4	58.7	<9.0
Mercury	< 0.80	<0.80	<0.80	<0.80	<0.80
Selenium	<19.0	60.7	19.8	<19.0	<19.0
Silver	<8.0	<8.0	<8.0	<8.0	<8.0
TCLP VOCs (mg/L)	······				
Vinyl Chloride	<0.1	<0.1	<0.1	<0.1	<0.1
1,1-Dichloroethene	<0.1	<0.1	<0.1	<0.1	<0.1
Chloroform	<0.1	<0.1	<0.1	<0.1	0.03 J
1,2-Dichloroethene	<0.1	<0.1	<0.1	<0.1	<0.1
Methyl Ethyl Ketone	<0.1	<0.1	<0.1	<0.1	<0.1
Carbon Tetrachloride	<0.1	<0.1	<0.1	<0.1	<0.1
Trichloroethene	<0.1	<0.1	<0.1	<0.1	<0.1
Benzene	1.0	<0.1	0.03 J ¹	0.08 J	<0.1
Tetrachloroethene	<0.1	<0.1	<0.1	· <0.1	<0.1
Chlorobenzene	<0.1	<0.1	<0.1	<0.1	<0.1
TCLP SVOCs (mg/L)					
o-Cresol	<0.1	<0.1	<0.1	<0.1	<0.1
m-Cresol	<0.1	<0.1	<0.1	<0.1	<0.1
p-cresol	<0.1	<0.1	<0.1	<0.1	<0.1
Total o,m,p-Cresol	<0.1	<0.1	<0.1	<0.1	<0.1
1,4-Dichlorobenzene	<0.1	<0.1	<0.1	<0.1	<0.1
2,4-Dinitrotoluene	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachlorobenzene	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachlorobutadiene	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachloroethane	<0.1	<0.1	<0.1	<0.1	<0.1
Nitrobenzene	<0.1	<0.1	<0.1	<0.1	<0.1
Pentachlorophenol	<0.5	<0.5	<0.5	<0.5	<0.5
Pyridine	<0.1	<0.1	<0.1	<0.1	<0.1
2,4,5-Trichlorophenol	<0.5	<0.5	<0.5	<0.5	<0.5
2,4,6-Trichlorophenol	<0.1	< 0.1	<0.1	<0.1	<0.1

Notes:

'Estimated value, analyte found below detection limit

TABLE G-6 RESULTS OF HAZARDOUS WASTE CHARACTERIZATION ANALYSES CITY PROPERTY THIRD WARD MGP SITE

PARAMETER	Composite #6	Composite #7	Composite #8	Composite #9	Composite #10
IGNITABILITY (°F)	>100	>100	>100	>100	>100
REACTIVITY				· · · · · · · · · · · · · · · · · · ·	
Reactive Sulfide (mg/Kg)	18	<6	<6	<6	120
Reactive Cyanide (mg/Kg)	<0.30	<0.30	<0.29	<0.30	<0.29
CORROSIVITY (pH St. Units)	9.24	9.70	9.37	9.07	9.34
ΓΟΧΙCITY					
TCLP METALS (ug/L)					
Arsenic	<16.0	<16.0	18.2	16.7	20.5
Barium	743	1200	907	776	592
Cadmium	7.7	6.1	8.5	7.6	8.2
Chromium	<6.0	<6.0	<6.0	<6.0	<6.0
Lead	<9.0	<9.0	<9.0	<9.0	31.4
Mercury	<0.80	<0.80	<0.80	<0.80	<0.80
Selenium	<19.0	<19.0	<19.0	<19.0	<19.0
Silver	<8.0	<8.0	<8.0	<8.0	<8.0
TCLP VOCs (mg/L)					
Vinyl Chloride	<0.1	<0.1	<0.1	<0.1	<0.1
1,1-Dichloroethene	<0.1	<0.1	<0.1	<0.1	<0.1
Chloroform	<0.1	<0.1	<0.1	<0.1	<0.1
1,2-Dichloroethene	<0.1	<0.1	<0.1	<0.1	<0.1
Methyl Ethyl Ketone	<0.1	<0.1	<0.1	<0.1	<0.1
Carbon Tetrachloride	<0.1	<0.1	<0.1	<0.1	<0.1
Trichloroethene	<0.1	<0.1	<0.1	<0.1	<0.1
Benzene	<0.1	<0.1	<0.1	<0.1	<0.1
Tetrachloroethene	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorobenzene	<0.1	<0.1	<0.1	<0.1	<0.1
CLP SVOCs (mg/L)					
o-Cresol	<0.1	<0.1	<0.1	<0.1	<0.1
m-Cresol	<0.1	<0.1	<0.1	<0.1	<0.1
p-cresol	<0.1	<0.1	<0.1	<0.1	<0.1
Total o,m,p-Cresol	<0.1	<0.1	<0.1	<0.1	<0.1
1,4-Dichlorobenzene	<0.1	<0.1	<0.1	<0.1	<0.1
2,4-Dinitrotoluene	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachlorobenzene	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachlorobutadiene	<0.1	<0.1	<0.1	<0.1	<0.1
Hexachloroethane	<0.1	<0.1	<0.1	<0.1	<0.1
Nitrobenzene	<0.1	<0.1	<0.1	<0.1	<0.1
Pentachlorophenol	<0.5	<0.5	<0.5	<0.5	<0.5
Pyridine	<0.1	<0.1	<0.1	<0.1	<0.1
2,4,5-Trichlorophenol	<0.5	<0.5	<0.5	<0.5	<0.5
2,4,6-Trichlorophenol	<0.1	<0.1	<0.1	<0.1	<0.1

TABLE G-7 RESULTS OF TRIP BLANK AND EQUIPMENT BLANK ANALYSES THIRD WARD MGP SITE

RETEC SAMPLE ID	Trip Blank	Trip Blank	EB-1	EB-2
LABORATORY ID	95-04-221-08	95-04-222-08	95-04-221-06	95-04-221-07
PAHs				
Method 8310 (ug/Kg)				
Naphthalene	NA ¹	NA	<0.30	<0.30
Acenaphthylene	NA	NA	<0.30	<0.30
1-Methylnaphthalene	NA	NA	0.70	0.86
2-Methylnaphthalene	NA	NA	<0.30	<0.30
Acenaphthene	NA	NA	<0.50	<0.50
Fluorene	NA	NA	0.098 BU	<0.040
Phenanthrene	NA	NA	0.17 BU	0.031 BU
Anthracene	NA	NA	0.024 BU	<0.010
Fluoranthene	NA	NA	0.075 BU	<0.030
Pyrene	NA	NA	<0.040	<0.040
Benzo(a)anthracene	NA	NA	0.018	<0.010
Chrysene	NA	NA	<0.020	<0.020
Benzo(b)fluoranthene	NA	NA	<0.010	<0.010
Benzo(k)fluoranthene	NA	NA	<0.010	<0.010
Benzo(a)pyrene	NA	NA	<0.010	<0.010
Dibenzo(a,h)anthracene	NA	NA	< 0.030	<0.030
Benzo(g,h,i)perylene	NA	NA	<0.040	<0.040
Indeno(1,2,3-cd)pyrene	NA	NA	<0.030	<0.030
BTEX Method 8020 (ug/Kg)		•		
Benzene	<0.5	<0.5	<0.5	<0.5
Toluene	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	<0.5	<0.5	<0.5	<0.5
Total Xylenes	<1.0	<1.0	<1.0	<1.0
CYANIDE Method 9010 (mg/Kg)				
Total Cyanide	NA	NA	<0.005	< 0.005

Notes:

'Not analyzed.

B = Analyte found in laboratory blank.

U = Material analyzed for but has been qualified as not detected due to blank contamination (5X Rule).

SAMPLE LOCATION	W-13	W-14	W-16	W-19	W-201	W-20S
RETEC SAMPLE ID	W-13	W-14	W-16	W-19	W-20I	W-20S
LABORATORY ID	95-10-155-06	95-10-102-08	95-10-155-04	95-10-102-07	95-10-124-04	95-10-124-05
PAHs						
Method 8310 (ug/L)						
Naphthalene	38	6,400	2,000	40	8,000	230
Acenaphthylene	<1.0	<1.0	<1.0	<1.0	<10	<1.0
Acenaphthene	73	46	45 J	1.8	<10	40
Fluorene	29	83	11	2.9	47	72
Phenanthrene	27	0.79	0.62	< 0.050	30	1.3
Anthracene	3.0	<0.10	0.029 J	<0.10	4.3	<0.10
Fluoranthene	<0.10	<0.10	<0.10	<0.10	<1.0	< 0.10
Pyrene	<0.050	< 0.050	<0.050	<0.050	<0.50	<0.050
Benzo(a)anthracene	<0.050	<0.050	<0.050	<0.050	<0.50	<0.050
Chrysene	0.015 J	<0.050	0.012 J	<0.050	<0.50	<0.050
Benzo(b)fluoranthene	<0.10	<0.10	<0.10	<0.10	<1.0	<0.10
Benzo(k)fluoranthene	<0.050	<0.050	<0.050	<0.050	<0.50	<0.050
Benzo(a)pyrene	<0.050	<0.050	<0.050	<0.050	<0.50	<0.050
Dibenzo(a,h)anthracene	<0.10	<0.10	<0.10	<0.10	<1.0	<0.10
Benzo(g,h,i)perylene	<0.10	<0.10	<0.10	<0.10	<1.0	<0.10
Indeno(1,2,3-cd)pyrene	<0.10	<0.10	<0.10	<0.10	<1.0	<0.10
1-Methylnaphthalene	240	480	180	5.2	630	190
2-Methylnaphthalene	<1.0	530	220	2.3	780	<1.0
Total PAHs (ug/L)	407	7,539	2,456	40	9,487	532
Fotal PAHs (mg/L)	0.407	7.539	2.456	0.04	9.487	0.532
BTEX						
Method 8020 (ug/L)						
Benzene	21	7,200	4,000	29	12,000	1,300
Toluene	3.3	81	35	0.7	5,500	<12.5
Ethylbenzene	100	3,300	770	5.3	4,300	750
Total Xylenes	40	1,600	210	6.4	3,900	84
CYANIDE						
Method 9010 and 4500-I						
Total Cyanide (mg/L)	2 J	1.4	0.39	1.1	0.243	1.1
Cyanide, Weak Acid Dissociable (mg/L)	<0.005 J	0.008	<0.005	<0.005	0.009	0.009
DISSOLVED METALS						
Method 6010 (ug/L)						
Calcium	258,000	241,000	135,000	252,000	229,000	344,000
Iron	1,500	915	461	710	17,300	1,250
Magnesium	106,000	371,000	126,000	93,100	84,900	230,000
NUTRIENTS/INORGANICS						
N03 as Nitrogen (mg/L)	<0.1	NA	NA	NA	<0.1	<0.1
Ammonia as Nitrogen (mg/L)	9.6	NA	NA	NA	41	14
Total Phosphate as P (mg/L)	0.35	NA	NA	NA	0.55	1.3
Sulfide (mg/L)	NA	NA	NA	NA	<1	19
Sulfate (mg/L)	NA	NA	NA	NA	<10	330
Phosphate Soluble as P (mg/L)	<1	NA	NA	NA	0.55	1.2

Notes: (1) Equipment Rinse Blank ND = Not detected. J - Value is an estimate. See data validation report.

SAMPLE LOCATION	W-221	W-22S	W-23S	W-25S	W-25S	W-26S
RETEC SAMPLE ID	W-22I	W-22S	W-23S	W-25S	Blind Dup 2	W-26S
LABORATORY ID	95-10-155-03	95-10-102-10	95-10+102+02	95-10-124-01	95-10-124-02	95-10-102-05
РАПя						
Method 8310 (ug/L)						
Naphthalene	4,000	32	5,100	4,300	3,500	3.7
Acenaphthylene	<1.0	<10 J	<1.0	<10	<1.0	<1.0
Acenaphthene	<1.0	95	<1.0	160	<1.0	36
Fluorene	<0.10	30	27	120	84	17
Phenanthrene	0.24	<0.050 J	< 0.050	9.2	0.45	< 0.050
Anthracene	<0.10	<0.10 J	<0.10	<1.0	<0.10	<0.10
Fluoranthene	<0.10	<0.10 J	<0.10	<1.0	<0.10	<0.10
Pyrene	< 0.050	<0.050 J	< 0.050	<0.50	< 0.050	< 0.050
Benzo(a)anthracene	<0.050	<0.050 J	<0.050	<0.50	<0.050	<0.050
Chrysene	< 0.050	<0.050 J	<0.050	<0.50	<0.050	<0.050
Benzo(b)fluoranthene	<0.10	<0.10 J	<0.10	<1.0	< 0.10	<0.10
Benzo(k)fluoranthene	< 0.050	<0.050 J	< 0.050	< 0.50	< 0.050	< 0.050
Benzo(a)pyrene	< 0.050	<0.050 J	<0.050	<0.50	<0.050	<0.050
Dibenzo(a,h)anthracene	<0.10	<0.10 J	<0.10	<1.0	<0.10	< 0.10
Benzo(g,h,i)perylene	<0.10	<0.10 J	<0.10	<1.0	< 0.10	<0.10
Indeno(1,2,3-cd)pyrene	<0.10	<0.10 J	<0.10	<1.0	<0.10	<0.10
1-Methylnaphthalene	170	310	360	470	310	2.6
2-Methylnaphthalene	190	<10 J	460	60	18	<1.0
Total PAHs (ug/L)	4,360	467	5,947	5,110	3,912	53
Total PAHs (mg/L)	4.36	0.467	5.947	5.11	3.912	0.053
BTEX						
Method 8020 (ug/L)						
Benzene	27,000	71	2,800	3,700	3,600	160
Toluene	5,000	2.4	1,200	43	40	0.8
Ethylbenzene	4,400	69	4,100	2,300	2,200	1.6
Total Xylenes	3,600	26	7,200	1,300	1,200	4.9
CYANIDE						
Method 9010 and 4500-I						
Total Cyanide (mg/L)	2.4 J	3.4	0.18	0.525	0.66	20
Cyanide, Weak Acid Dissociable (mg/L)	0.008 J	0.023	<0.005	<0.005	<0.005	0.13
DISSOLVED METALS						
Method 6010 (ug/L)						
Calcium	122,000	108,000	63,200	168,000	170,000	163,000
Iron	2,280	1,910	3,530	335	314	10,700
Magnesium	173,000	99,300	192,000	326,000	318,000	455,000
NUTRIENTS/INORGANICS						
N03 as Nitrogen (mg/L)	<0.1	NA	<0.1	<0.1	NA	NA
Ammonia as Nitrogen (mg/L)	37	NA	5.5	5.5	NA	NA
Total Phosphate as P (mg/L)	1.2	NA	0.95	0.69	NA	NA
Sulfide (mg/L)	15	NA	<1	32	NA	NA
Sulfate (mg/L)	<10	NA	<10	52	NA	NA
Phosphate Soluble as P (mg/L)	1.1	NA	0.87	0.69	NA	NA

Notes: (1) Equipment Rinse Blank ND = Not detected. J - Value is an estimate. See data validation report.

SAMPLE LOCATION	W-261	W-27D	W-41S	W-41S	W-41D	W-42D
RETEC SAMPLE ID	W-26I	W-27D	W-41S	Blind Dup	W-41D	W-42D
LABORATORY ID	95-10-102-06	95-10-155-01	95-10-102+03	95-10-102-04	95-10-102-01	95-10-155-02
PAIIs						
Method 8310 (ug/L)						
Naphthalene	<0.50	5.5	95	69	<0.50 J	<0.50
Acenaphthylene	<1.0	<1.0	<1.0	<1.0	<1.0 J	<1.0
Acenaphthene	<1.0	<1.0	5.5	4.4	<1.0 J	<1.0
Fluorene	<0.10	0.042 J	2.7	1.5	<0.10 J	2.0
Phenanthrene	<0.050	<0.050	<0.050	<0.050	<0.050 J	0.035 J
Anthracene	<0.10	<0.10	<0.10	<0,10	<0.10 J	<0.10
Fluoranthene	<0.10	<0.10	<0.10	<0.10	<0.10 J	< 0.10
Pyrene	<0.050	<0.050	<0.050	< 0.050	<0.050 J	< 0.050
Benzo(a)anthracene	<0.050	<0.050	<0.050	<0.050	<0.050 J	<0.050
Chrysene	<0.050	<0.050	< 0.050	< 0.050	<0.050 J	<0.050
Benzo(b)fluoranthene	<0.10	<0.10	<0.10	<0.10	<0.10 J	<0.10
Benzo(k)fluoranthene	<0.050	<0.050	<0.050	<0.050	<0.050 J	<0.050
Benzo(a)pyrene	<0.050	<0.050	<0.050	<0.050	<0.050 J	< 0.050
Dibenzo(a,h)anthracene	<0.10	<0.10	<0.10	<0.10		<0.10
Benzo(g,h,i)perylene	<0.10	<0.10	<0.10	<0.10	<0.10 J	<0.10
Indeno(1,2,3-cd)pyrene	<0.10	<0.10	<0.10	<0.10	<0.10 J	<0.10
1-Methylnaphthalene	<1.0	<1.0	23	16	<1.0 J	26
2-Methylnaphthalene	<1.0	<1.0	12	3.0	<1.0 J	<1.0
Fotal PAHs (ug/L)	ND	ND	130	85	ND	26
Fotal PAHs (mg/L)	ND	<u>ND</u>	0.13	0.085	ND	0.026
BTEX	1					
Method 8020 (ug/L)					[]	
Benzene	<0.5	0.7	130	110	<0.5	1.7
Toluene	<0.5	<0.5	3.3	2.2	<0.5	< 0.5
Ethylbenzene	<0.5	7.1	13	13	<0.5	<0.5
Total Xylenes	<1.0	6.4	23	20	<1.0	<1.0
CYANIDE					1	
Method 9010 and 4500-I						
Total Cyanide (mg/L)	2.2	0.018 J	0.05	0.038	0.53	<0.005 J
Cyanide, Weak Acid Dissociable (mg/L)	0.038	<0.005 J	< 0.005	<0.005	0.01	<0.005 J
DISSOLVED METALS						
Method 6010 (ug/L)						
Calcium	311,000	166,000	76,500	74,600	172,000	188,000
Iron	4,980	33,900	11,500	10,200	30,700	25,300
Magnesium	98,000	105,000	153,000	152,000	90,900	71,800
NUTRIENTS/INORGANICS						
N03 as Nitrogen (mg/L)	<0.1	NA	<0.1	NA	NA	NA
Ammonia as Nitrogen (mg/L)	85	NA	66	NA	NA	NA
Total Phosphate as P (mg/L)	0.71	NA	2.5	NA	NA	NA
Sulfide (mg/L)	10	NA	<1	NA	NA	NA
Sulfate (mg/L)	1,500	NA	<10	NA	NA	NA
Phosphate Soluble as P (mg/L)	0.66	NA	2.4	NA	NA	NA

Notes:

(1) Equipment Rinse Blank ND = Not detected.

J - Value is an estimate. See data validation report.

SAMPLE LOCATION	W-43D	W-45D	W-46D	Equip. Rinse Blank	ERB-1	ERB-2
RETEC SAMPLE ID	W-43D	W-45D	W-46D	Equip. Rinse Blank	ERB-1	ERB-2
LABORATORY ID	95-10-155-08	95-10-155-07	95-10-124-06	95-10-124-03	95-10-102-09	95-10-155-05
PAHs						
Method 8310 (ug/L)						
Naphthalene	5,200	<0.50 J	200	<0.50	NA	0.44 J
Acenaphthylene	<10	<1.0 J	<1.0	0.65 J	NA	<1.0
Acenaphthene	<10	<1.0 J	<1.0	<1.0	NA	<1.0
Fluorene	54	<0.10 J	<0.10	<0.10	NA	0.051 J
Phenanthrene	9.3	<0.050 J	< 0.050	0.011 J	NA	<0.050
Anthracene	1.0	<0.10 J	<0.10	<0.10	NA	<0.10
Fluoranthene	<1.0	<0.10 J	<0.10	<0.10	NA	<0.10
Pyrene	<0.50	<0.050 J	< 0.050	<0.050	NA	< 0.050
Benzo(a)anthracene	<0.50	<0.050 J	<0.050	<0.050	NA	< 0.050
Chrysene	<0.50	<0.050 J	<0.050	< 0.050	NA	<0.050
Benzo(b)fluoranthene	<1.0	<0.10 J	<0.10	<0.10	NA	<0.10
Benzo(k)fluoranthene	<0.50	<0.050 J	<0.050	< 0.050	NA	<0.050
Benzo(a)pyrene	<0.50	<0.050 J	< 0.050	<0.050	NA	<0.050
Dibenzo(a,h)anthracene	<1.0	<0.10 J	<0.10	<0.10	NA	<0.10
Benzo(g,h,i)perylene	<1.0	<0.10 J	<0.10	<0.10	NA	<0.10
Indeno(1,2,3-cd)pyrene	<1.0	<0.10 J	<0.10	<0.10	NA	<0.10
1-Methylnaphthalene	540	<1.0 J	21	<1.0	NA	<1.0
2-Methylnaphthalene	620	<1.0 J	12	1.3	NA	<u>0.64 J</u>
Total PAHs (ug/L)	6,414	ND	233	ND	NA	ND
Total PAHs (mg/L)	6.414	ND	0.233	ND	NA	ND
BTEX						:
Method 8020 (ug/L)						
Benzene	15,000	<0.5	17,000	<0.5	1.9	<0.5
Toluene	130	<0.5	9.1	<0.5	1.1	<0.5
Ethylbenzene	2,300	<0.5	67	<0.5	1.3	<0.5
Total Xylenes	2,300	<1.0	<10	<1.0	3.3	<1.0
CYANIDE						
Method 9010 and 4500-1						
Total Cyanide (mg/L)	0.24 J	<0.005 J	0.484	<0.005	NA	<0.005 J
Cyanide, Weak Acid Dissociable (mg/L)	<0.005 J	NA	0.013	NA	NA	NA
DISSOLVED METALS						
Method 6010 (ug/L)			100.000			
Calcium	168,000	150,000	183,000	43 J	ND	NA
Iron	7,830	30,900	16,200	<6.8	ND	NA
Magnesium	161,000	91,100	211,000	43 J	ND	NA
NUTRIENTS/INORGANICS						
N03 as Nitrogen (mg/L)	<0.1	NA	<0.1	NA	NA	NA
Ammonia as Nitrogen (mg/L)	11	NA	57	NA	NA	NA
Total Phosphate as P (mg/L)	0.87	NA	2	NA	NA	NA
Sulfide (mg/L)	<1	NA	<1	NA	NA	NA
Sulfate (mg/L)	<10	NA	<10		<u>NA</u>	NA
Phosphate Soluble as P (mg/L)	0.82	NA	1.9	NA	NA	NA

Notes: (1) Equipment Rinse Blank ND = Not detected. J - Value is an estimate. See data validation report.

SAMPLE LOCATION	Trip Blank	Trip Blank	Trip Blank
RETEC SAMPLE ID LABORATORY ID	Trip Blank 95+10-155-09	Trip Blank 95+10-102-11	Trip Blank 95 -10-124-07
PAHs		· · · · · · · · · · · · · · · · · · ·	
Method 8310 (ug/L)			
Naphthalene	NA	NA	<u>NA</u>
Acenaphthylene	NA	NA	NA
Acenaphthene	NA	NA	NA
Fluorene	NA	NA	NA
Phenanthrene	NA	NA	<u>NA</u>
Anthracene	NA	NA	<u>NA</u>
Fluoranthene	NA	NA	NA
Pyrene	NA	NA	NA
Benzo(a)anthracene	NA	NA	NA
Chrysene	NA	NA	NA
Benzo(b)fluoranthene	NA	NA	NA
Benzo(k)fluoranthene	NA	NA	<u>NA</u>
Benzo(a)pyrene	NA	NA	NA
Dibenzo(a,h)anthracene	NA	NA	NA
Benzo(g,h,i)perylene	NA	NA	NA
Indeno(1,2,3-cd)pyrene	NA	NA	NA
1-Methylnaphthalene	NA	NA	NANA
2-Methylnaphthalene	NA	NA	NA
Total PAHs (ug/L)	NA NA	NA NA	NA
Total PAHs (mg/L)	NA	NA	NA
BTEX Method 8020 (ug/L)			
Benzene	<0.5	<0.5	<0.5
Toluene	<0.5	<0.5	<0.5
	<0.5	<0.5	<0.5
Ethylbenzene		<0.5	<0.5
Total Xylenes	<1.0	<u> </u>	<1.0
CYANIDE			
Method 9010 and 4500-I			<u></u> ЪТ 4
Total Cyanide (mg/L)	NA	NA	NA NA
Cyanide, Weak Acid Dissociable (mg/L) DISSOLVED METALS	NA	NA	NA
Method 6010 (ug/L)		NT4	NTA
Calcium	NA	NA NA	NA NA
Iron	NA	NA NA	NA
Agnesium	NA	NA	NA
NUTRIENTS/INORGANICS			
N03 as Nitrogen (mg/L)	NA	NA	NA
Ammonia as Nitrogen (mg/L)	NA	NA	NA
Total Phosphate as P (mg/L)	<u>NA</u>	NA	NA
Sulfide (mg/L)	NA	NA	<u>NA</u>
Sulfate (mg/L)	NA	NA	<u>NA'</u>
Phosphate Soluble as P (mg/L)	NA	NA	NA

Notes:

(1) Equipment Rinse Blank
ND = Not detected.
J - Value is an estimate. See data validation report.

APPENDIX H

.

LABORATORY DATA SHEETS

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-221-10

Sample Matrix: Soil Cleanup: N/A

·2

Results based on dry weight

Sample ID

TTA2-1 (5-6')

Date Collected: 4/25/95 Date Extracted: 05/03/95 Date Analyzed: 05/10/95

Sample Weight: 30.0 g Final Volume: 1000 mL

		Detection
Analyte	Conc (ug/kg)	Limit (ug/kg)
Naphthalene	ND	12000
Acenaphthylene	ND	12000
1-Methylnaphthalene	ND	12000
2-Methylnaphthalene	ND	12000
Acenaphthene	ND	20000
Fluorene	ND	1600
Phenanthrene	4700	1200
Anthracene	1000	400
Fluoranthene	8100	1200
Pyrene	6700	1600
Benzo(a)anthracene	3600	400
Chrysene	4200	800
Benzo(b)fluoranthene	2600	400
Benzo(k)fluoranthene	1300	400
Benzo(a)pyrene	3500	400
Dibenzo(a,h)anthracene	ND	1200
Benzo(g,h,i)perylene	2400	1600
Indeno(1,2,3-c,d)pyrene	2100	1200

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	Ι	15 - 117

ND = Not Detected at or above client requested detection limit.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-221-09

Sample Matrix: Soil Cleanup: N/A

•2

Results based on dry weight

Sample ID

TTA3-2 (7')

Date Collected: 4/25/95 Date Extracted: 05/03/95 Date Analyzed: 05/10/95

Sample Weight: 30.0 g Final Volume: 1000 mL

		Detection
Analyte	Conc (ug/kg)	Limit (ug/kg)
Naphthalene	ND	12000
Acenaphthylene	ND	12000
1-Methylnaphthalene	ND	12000
2-Methylnaphthalene	ND	12000
Acenaphthene	ND	20000
Fluorene	3500	1600
Phenanthrene	10000	1200
Anthracene	3700	410
Fluoranthene	ND	1200
Pyrene	9400	1600
Benzo(a)anthracene	5300	410
Chrysene	6400	810
Benzo(b)fluoranthene	5400	410
Benzo(k)fluoranthene	2900	410
Benzo(a)pyrene	8600	410
Dibenzo(a,h)anthracene	ND	1200
Benzo(g,h,i)perylene	3100	1600
Indeno(1,2,3-c,d)pyrene	2500	1200

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	Ι	15 - 117

ND = Not Detected at or above client requested detection limit.

Method 8310

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-221-16

Sample Matrix: Soil Cleanup: N/A

Results based on dry weight

Sample ID

TTA4-1 (1-2')

Date Collected: 04/26/95 Date Extracted: 05/22/95 Date Analyzed: 05/25/95

Sample Weight: 30.0 g Final Volume: 200 mL

Analyte	Conc (ug/kg)	Detection Limit (ug/kg)
Naphthalene	ND	2200
Acenaphthylene	ND	2200
1-Methylnaphthalene	ND	2200
2-Methylnaphthalene	ND	2200
Acenaphthene	ND	3600
Fluorene	500	290
Phenanthrene	4800	220
Anthracene	ND	72
Fluoranthene	ND	220
Pyrene	2900	290
Benzo(a)anthracene	1700	72
Chrysene	2390	140
Benzo(b)fluoranthene	ND	72
Benzo(k)fluoranthene	ND	· 72
Benzo(a)pyrene	ND	72
Dibenzo(a,h)anthracene	ND	220
Benzo(g,h,i)perylene	1100	290
Indeno(1,2,3-c,d)pyrene	710	220

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	Ι	15 - 117

ND = Not Detected at or above client requested detection limit.

I = Surrogate not recovered/reported due to high sample dilution.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-221-14

Sample Matrix: Soil Cleanup: N/A

•2

Results based on dry weight

Sample ID

TTA4-2 (7')

Date Collected: 4/26/95 Date Extracted: 05/03/95 Date Analyzed: 05/12/95

Sample Weight: 30.0 g Final Volume: 10000 mL

		Detection
Analyte	Conc (ug/kg)	Limit (ug/kg)
Naphthalene	ND	140000
Acenaphthylene	ND	140000
1-Methylnaphthalene	ND	140000
2-Methylnaphthalene	ND	140000
Acenaphthene	ND	230000
Fluorene	45000	18000
Phenanthrene	150000	14000
Anthracene	49000	4600
Fluoranthene	92000	14000
Pyrene	85000	18000
Benzo(a)anthracene	5200	4600
Chrysene	27000	9200
Benzo(b)fluoranthene	ND	4600
Benzo(k)fluoranthene	ND	4600
Benzo(a)pyrene	5800	4600
Dibenzo(a,h)anthracene	ND	14000
Benzo(g,h,i)perylene	ND	18000
Indeno(1,2,3-c,d)pyrene	ND	14000

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	Ι	15 - 117

ND = Not Detected at or above client requested detection limit.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-221-11

Sample Matrix: Soil Cleanup: N/A

-2

Results based on dry weight

Sample ID

TTB2-5 (8-9')

Date Collected: 4/26/95 Date Extracted: 05/03/95 Date Analyzed: 05/12/95

Sample Weight: 30.0 g Final Volume: 10000 mL

Analyte	Conc (ug/kg)	Detection Limit (ug/kg)
Naphthalene	250000	150000
Acenaphthylene	ND	150000
1-Methylnaphthalene	ND	150000
2-Methylnaphthalene	ND	150000
Acenaphthene	ND	250000
Fluorene	37000	20000
Phenanthrene	87000	15000
Anthracene	24000	5000
Fluoranthene	51000	15000
Pyrene	28000	20000
Benzo(a)anthracene	ND	5000
Chrysene	14000	9900
Benzo(b)fluoranthene	ND	5000
Benzo(k)fluoranthene	ND	5000
Benzo(a)pyrene	ND	5000
Dibenzo(a,h)anthracene	ND	15000
Benzo(g,h,i)perylene	ND	20000
Indeno(1,2,3-c,d)pyrene	ND	15000

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	I	15 - 117

ND = Not Detected at or above client requested detection limit.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-221-12 rx

Sample Matrix: Soil Cleanup: Silica gel

- 2

Results based on dry weight

Sample ID

Duplicate 2

Date Collected: 04/26/95 Date Extracted: 05/05/95 Date Analyzed: 05/13/95

Sample Weight: 30.0 g Final Volume: 2000 mL

		Detection
Analyte	Conc (ug/kg)	Limit (ug/kg)
Naphthalene	67000	30000
Acenaphthylene	ND	30000
1-Methylnaphthalene	ND	30000
2-Methylnaphthalene	ND	30000
Acenaphthene	ND	49000
Fluorene	17000	3900
Phenanthrene	57000	3000
Anthracene	16000	990
Fluoranthene	38000	3000
Pyrene	34000	3900
Benzo(a)anthracene	13000	990
Chrysene	17000	2000
Benzo(b)fluoranthene	4200	990
Benzo(k)fluoranthene	ND	990
Benzo(a)pyrene	8700	990
Dibenzo(a,h)anthracene	ND	3000
Benzo(g,h,i)perylene	4100	3900
Indeno(1,2,3-c,d)pyrene	3300	3000

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	I	15 - 117

ND = Not Detected at or above client requested detection limit.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-221-15

Sample Matrix: Soil Cleanup: N/A

·2

Results based on dry weight

Sample ID

TTB3-1 (3')

Date Collected: 4/26/95 Date Extracted: 05/03/95 Date Analyzed: 05/12/95

Sample Weight: 30.0 g Final Volume: 100 mL

		Detection
Analyte	Conc (ug/kg)	Limit (ug/kg)
Naphthalene	ND	1200
Acenaphthylene	ND	1200
1-Methylnaphthalene	ND	1200
2-Methylnaphthalene	ND	1200
Acenaphthene	ND	1900
Fluorene	ND	150
Phenanthrene	1400	120
Anthracene	150	39
Fluoranthene	1600	120
Pyrene	1700	150
Benzo(a)anthracene	750	39
Chrysene	1600	77
Benzo(b)fluoranthene	620	39
Benzo(k)fluoranthene	ND	39
Benzo(a)pyrene	950	39
Dibenzo(a,h)anthracene	ND	120
Benzo(g,h,i)perylene	1200	150
Indeno(1,2,3-c,d)pyrene	ND	120

SURROGATE RECOVERY

Analyte	% Recovery	· % Rec Limits
2-Chloroanthracene	Ι	15 - 117

ND = Not Detected at or above client requested detection limit.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-221-17

Sample Matrix: Soil Cleanup: N/A

12

Results based on dry weight

Sample ID

TTC1-2 (2-3')

Date Collected: 4/26/95 Date Extracted: 05/03/95 Date Analyzed: 05/12/95

Sample Weight: 30.0 g Final Volume: 10000 mL

		Detection
Analyte	Conc (ug/kg)	Limit (ug/kg)
Naphthalene	140000	130000
Acenaphthylene	ND	130000
1-Methylnaphthalene	ND	130000
2-Methylnaphthalene	ND	130000
Acenaphthene	ND	220000
Fluorene	28000	18000
Phenanthrene	62000	13000
Anthracene	23000	4500
Fluoranthene	60000	13000
Pyrene	ND	18000
Benzo(a)anthracene	16000	4500
Chrysene	18000	8900
Benzo(b)fluoranthene	ND	4500
Benzo(k)fluoranthene	ND	4500
Benzo(a)pyrene	ND	4500
Dibenzo(a,h)anthracene	ND	13000
Benzo(g,h,i)perylene	ND	18000
Indeno(1,2,3-c,d)pyrene	ND	13000

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	Ι	15 - 117

ND = Not Detected at or above client requested detection limit.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-222-01

Sample Matrix: Soil Cleanup: Silica Sample ID

TTC4-2 (4-5')

Date Collected: 04/27/95 Date Extracted: 05/01/95 Date Analyzed: 05/06/95

Results based on dry weight

Sample Weight: 30.0 g Final Volume: 1000 mL

Analyte	Conc (ug/kg)	Detection Limit (ug/kg)
Nonhthalana	ND	13000
Naphthalene		
Acenaphthylene	ND	13000
1-Methylnaphthalene	ND	13000
2-Methylnaphthalene	ND	13000
Acenaphthene	ND	22000
Fluorene	ND	1800
Phenanthrene	7200	1300
Anthracene	ND	440
Fluoranthene	5900	1300
Pyrene	ND	1800
Benzo(a)anthracene	ND	440
Chrysene	ND	890
Benzo(b)fluoranthene	ND	440
Benzo(k)fluoranthene	ND	440
Benzo(a)pyrene	ND	440
Dibenzo(a,h)anthracene	ND	1300
Benzo(g,h,i)perylene	ND	1800
Indeno(1,2,3-c,d)pyrene	ND	1300

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	I	15 - 117

ND = Not Detected at or above client requested detection limit.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-221-13

Sample Matrix: Soil Cleanup: N/A

2

Results based on dry weight

Sample ID

TTC5-1 (6-7')

Date Collected: 4/26/95 Date Extracted: 05/03/95 Date Analyzed: 05/10/95

Sample Weight: 30.0 g Final Volume: 1000 mL

		Detection
Analyte	Conc (ug/kg)	Limit (ug/kg)
Naphthalene	ND	12000
Acenaphthylene	ND	12000
1-Methylnaphthalene	ND	12000
2-Methylnaphthalene	ND	12000
Acenaphthene	ND	20000
Fluorene	ND	1600
Phenanthrene	3400	1200
Anthracene	550	400
Fluoranthene	ND	1200
Pyrene	14000	1600
Benzo(a)anthracene	5000	400
Chrysene	8700	800
Benzo(b)fluoranthene	3700	400
Benzo(k)fluoranthene	ND	400
Benzo(a)pyrene	7100	400
Dibenzo(a,h)anthracene	1200	1200
Benzo(g,h,i)perylene	3100	1600
Indeno(1,2,3-c,d)pyrene	2000	1200

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	Ι	15 - 117

ND = Not Detected at or above client requested detection limit.

I = Surrogate not reported due to a high sample dilution.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-222-04

Sample Matrix: Soil Cleanup: Silica

2

Results based on dry weight

Sample ID

TTE1-2 (10-11')

Date Collected: 04/27/95 Date Extracted: 05/01/95 Date Analyzed: 05/06/95

Sample Weight: 30.0 g Final Volume: 1000 mL

		Detection
Analyte	Conc (ug/kg)	Limit (ug/kg)
Naphthalene	ND	12000
Acenaphthylene	ND	12000
1-Methylnaphthalene	ND	12000
2-Methylnaphthalene	ND	12000
Acenaphthene	ND	20000
Fluorene	ND	1600
Phenanthrene	3300	1200
Anthracene	1300	400
Fluoranthene	8300	1200
Pyrene	6300	1600
Benzo(a)anthracene	2500	400
Chrysene	2700	790
Benzo(b)fluoranthene	1700	400
Benzo(k)fluoranthene	800	400
Benzo(a)pyrene	1900	400
Dibenzo(a,h)anthracene	ND	1200
Benzo(g,h,i)perylene	ND	1600
Indeno(1,2,3-c,d)pyrene	1200	1200

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	Ι	15 - 117

ND = Not Detected at or above client requested detection limit.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-222-05

Sample Matrix: Soil Cleanup: Silica

2

Sample ID

TTE2-1 (7')

Date Collected: 04/27/95 Date Extracted: 05/01/95 Date Analyzed: 05/12/95

Results based on dry weight

Sample Weight: 30.0 g Final Volume: 10 mL

		Detection
Analyte	Conc (ug/kg)	Limit (ug/kg)
Naphthalene	ND	120
Acenaphthylene	ND	120
1-Methylnaphthalene	ND	120
2-Methylnaphthalene	ND	120
Acenaphthene	ND	190
Fluorene	ND	15
Phenanthrene	160	12
Anthracene	35	3.9
Fluoranthene	260	12
Pyrene	250	15
Benzo(a)anthracene	ND	3.9
Chrysene	ND	7.7
Benzo(b)fluoranthene	130	3.9
Benzo(k)fluoranthene	ND	3.9
Benzo(a)pyrene	200	3.9
Dibenzo(a,h)anthracene	ND	12
Benzo(g,h,i)perylene	· 130	15
Indeno(1,2,3-c,d)pyrene	100	12

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	91	15 - 117

ND = Not Detected at or above client requested detection limit.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-222-03

Sample Matrix: Soil Cleanup: Silica

Results based on dry weight

Sample ID

TTF2-1 (3')

Date Collected: 04/27/95 Date Extracted: 05/01/95 Date Analyzed: 05/09/95

Sample Weight: 30.0 g Final Volume: 10000 mL

		Detection
Analyte	Conc (ug/kg)	Limit (ug/kg)
Naphthalene	ND	130000
Acenaphthylene	ND	130000
1-Methylnaphthalene	ND	130000
2-Methylnaphthalene	140000	130000
Acenaphthene	ND	210000
Fluorene	40000	17000
Phenanthrene	65000	13000
Anthracene	18000	4300
Fluoranthene	58000	13000
Pyrene	ND	17000
Benzo(a)anthracene	17000	4300
Chrysene	ND	8500
Benzo(b)fluoranthene	ND	4300
Benzo(k)fluoranthene	ND	. 4300
Benzo(a)pyrene	ND	4300
Dibenzo(a,h)anthracene	ND	13000
Benzo(g,h,i)perylene	ND	17000
Indeno(1,2,3-c,d)pyrene	ND	13000

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	I	15 - 117

ND = Not Detected at or above client requested detection limit.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-222-02

Sample Matrix: Soil Cleanup: Silica

·2

Results based on dry weight

Sample ID

TTF3-1 (7')

Date Collected: 04/27/95 Date Extracted: 05/01/95 Date Analyzed: 05/09/95

Sample Weight: 30.0 g Final Volume: 100 mL

Analyte .	Conc (ug/kg)	Detection Limit (ug/kg)
Naphthalene	1700	1200
Acenaphthylene	ND	1200
1-Methylnaphthalene	ND	1200
2-Methylnaphthalene	ND	1200
Acenaphthene	ND	2000
Fluorene	530	160
Phenanthrene	1700	120
Anthracene	800	39
Fluoranthene	2100	120
Pyrene	1700	160
Benzo(a)anthracene	760	39
Chrysene	1200	79.
Benzo(b)fluoranthene	ND	39
Benzo(k)fluoranthene	ND	39
Benzo(a)pyrene	3200	39
Dibenzo(a,h)anthracene	420	120
Benzo(g,h,i)perylene	2600	160
Indeno(1,2,3-c,d)pyrene	1900	120

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	Ι	15 - 117

ND = Not Detected at or above client requested detection limit.

I = Surrogate not reported due to a high sample dilution.

000010

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-222-06

Sample Matrix: Soil Cleanup: Silica

Results based on dry weight

Sample ID

TTG2-1 (3-4')

Date Collected: 04/27/95 Date Extracted: 05/01/95 Date Analyzed: 05/06/95

Sample Weight: 30.0 g Final Volume: 1000 mL

		Detection
Analyte .	Conc (ug/kg)	Limit (ug/kg)
Naphthalene	· ND	11000
Acenaphthylene	ND	11000
1-Methylnaphthalene	ND	11000
2-Methylnaphthalene	ND	11000
Acenaphthene	ND	19000
Fluorene	ND	1500
Phenanthrene	7200	1100
Anthracene	3200	370
Fluoranthene	13000	1100
Pyrene	12000	1500
Benzo(a)anthracene	4700	370
Chrysene	• 5600	750
Benzo(b)fluoranthene	3600	370
Benzo(k)fluoranthene	1600	370
Benzo(a)pyrene	ND	370
Dibenzo(a,h)anthracene	ND	1100
Benzo(g,h,i)perylene	3000	1500
Indeno(1,2,3-c,d)pyrene	2400	1100

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	I	15 - 117

ND = Not Detected at or above client requested detection limit.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-222-07

Sample Matrix: Soil Cleanup: Silica Sample ID

TTG4-1 (3-4')

Date Collected: 04/27/95 Date Extracted: 05/01/95 Date Analyzed: 05/12/95

Results based on dry weight

Sample Weight: 30.0 g Final Volume: 10 mL

Analyte		Detection
Analyte	Conc (ug/kg)	Limit (ug/kg)
Naphthalene	ND	120
Acenaphthylene	ND	120
1-Methylnaphthalene	ND	120
2-Methylnaphthalene	240	120
Acenaphthene	ND	200
Fluorene	24	16
Phenanthrene	230	12
Anthracene	22	3.9
Fluoranthene	200	12
Pyrene	33	16
Benzo(a)anthracene	ND	3.9
Chrysene	110	7.9
Benzo(b)fluoranthene	27	3.9
Benzo(k)fluoranthene	ND	3.9
Benzo(a)pyrene	ND	3.9
Dibenzo(a,h)anthracene	ND	12
Benzo(g,h,i)perylene	ND	16
Indeno(1,2,3-c,d)pyrene	ND	12

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	117	15 - 117

ND = Not Detected at or above client requested detection limit.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-221-01

Sample Matrix: Soil Cleanup: N/A

.5

Results based on dry weight

Sample ID

DB-6 (2-4')

Date Collected: 4/25/95 Date Extracted: 05/03/95 Date Analyzed: 05/10/95

Sample Weight: 30.0 g Final Volume: 1000 mL

Analyte	Conc (ug/kg)	Detection Limit (ug/kg)
Naphthalene	220000	13000
Acenaphthylene	ND	13000
1-Methylnaphthalene	49000	13000
2-Methylnaphthalene	75000	13000
Acenaphthene	ND	22000
Fluorene	12000	2000
Phenanthrene	32000	1300
Anthracene	6800	440
Fluoranthene	26000	1300
Pyrene	ND	1800
Benzo(a)anthracene	ND	440
Chrysene	3500	880
Benzo(b)fluoranthene	890	440
Benzo(k)fluoranthene	ND	440
Benzo(a)pyrene	950	440
Dibenzo(a,h)anthracene	ND	1300
Benzo(g,h,i)perylene	ND	1800
Indeno(1,2,3-c,d)pyrene	ND	1300

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	Ι	15 - 117

ND = Not Detected at or above client requested detection limit.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-221-02

Sample Matrix: Soil Cleanup: N/A

4

Results based on dry weight

Sample ID

DB-7 (0-2')

Date Collected: 4/25/95 Date Extracted: 05/03/95 Date Analyzed: 05/10/95

Sample Weight: 30.0 g Final Volume: 1000 mL

000013

		Detection
Analyte	Conc (ug/kg)	Limit (ug/kg)
Naphthalene	ND	12000
Acenaphthylene	ND	12000
1-Methylnaphthalene	ND	12000
2-Methylnaphthalene	ND	12000
Acenaphthene	ND	20000
Fluorene	ND	1600
Phenanthrene	11000	1200
Anthracene	680	400
Fluoranthene	30000	1200
Pyrene	17000	1600
Benzo(a)anthracene	16000	400
Chrysene	20000	790
Benzo(b)fluoranthene	24000	400
Benzo(k)fluoranthene	6900	400
Benzo(a)pyrene	14000	400
Dibenzo(a,h)anthracene	1600	1200
Benzo(g,h,i)perylene	11000	1600
Indeno(1,2,3-c,d)pyrene	11000	1200

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	Ι	15 - 117

ND = Not Detected at or above client requested detection limit.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-221-03

Sample Matrix: Soil Cleanup: N/A

-2

Results based on dry weight

Sample ID

B-47 (2-4')

Date Collected: 4/26/95 Date Extracted: 05/03/95 Date Analyzed: 05/10/95

Sample Weight: 30.0 g Final Volume: 1000 mL

		Detection
Analyte	Conc (ug/kg)	Limit (ug/kg)
Naphthalene	ND	11000
Acenaphthylene	ND	11000
1-Methylnaphthalene	ND	11000
2-Methylnaphthalene	ND	11000
Acenaphthene	ND	18000
Fluorene	ND	1500
Phenanthrene	2300	1100
Anthracene	ND	370
Fluoranthene	7200	1100
Pyrene	4700	1500
Benzo(a)anthracene	3900	370
Chrysene	6500	740
Benzo(b)fluoranthene	7400	370
Benzo(k)fluoranthene	ND	370
Benzo(a)pyrene	ND	370
Dibenzo(a,h)anthracene	ND	1100
Benzo(g,h,i)perylene	ND	1500
Indeno(1,2,3-c,d)pyrene	ND	1100

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	I	15 - 117

ND = Not Detected at or above client requested detection limit.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-221-05

Sample Matrix: Soil Cleanup: N/A

- 2

Results based on dry weight

Sample ID

Duplicate 1

Date Collected: 4/25/95 Date Extracted: 05/03/95 Date Analyzed: 05/10/95

Sample Weight: 30.0 g Final Volume: 1000 mL

0000

		Detection
Analyte	Conc (ug/kg)	Limit (ug/kg)
Naphthalene	ND	11000
Acenaphthylene	ND	11000
1-Methylnaphthalene	ND	11000
2-Methylnaphthalene	ND	11000
Acenaphthene	ND	18000
Fluorene	ND	1500
Phenanthrene	1900	1100
Anthracene	ND	370
Fluoranthene	5000	1100
Pyrene	4100	1500
Benzo(a)anthracene	3300	370
Chrysene	5000	740
Benzo(b)fluoranthene	5700	370
Benzo(k)fluoranthene	1900	370
Benzo(a)pyrene	3700	370
Dibenzo(a,h)anthracene	ND	1100
Benzo(g,h,i)perylene	4000	1500
Indeno(1,2,3-c,d)pyrene	ND	1100

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	I	15 - 117

ND = Not Detected at or above client requested detection limit.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-221-04

Sample Matrix: Soil Cleanup: N/A

12

Results based on dry weight

Sample ID

B-47 (16-18')

Date Collected: Not Submitted Date Extracted: 05/03/95 Date Analyzed: 05/10/95

Sample Weight: 3.0 g Final Volume: 1000 mL

		Detection
Analyte	Conc (ug/kg)	Limit (ug/kg)
Naphthalene	150000	120000
Acenaphthylene	ND	120000
1-Methylnaphthalene	ND	120000
2-Methylnaphthalene	ND	120000
Acenaphthene	ND	210000
Fluorene	62000	16000
Phenanthrene	130000	12000
Anthracene	27000	4100
Fluoranthene	ND	12000
Pyrene	22000	16000
Benzo(a)anthracene	ND	4100
Chrysene	ND	8200
Benzo(b)fluoranthene	ND	4100
Benzo(k)fluoranthene	ND	4100
Benzo(a)pyrene	ND	4100
Dibenzo(a,h)anthracene	ND	12000
Benzo(g,h,i)perylene	ND	16000
Indeno(1,2,3-c,d)pyrene	ND	12000

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	Ι	15 - 117

ND = Not Detected at or above client requested detection limit.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-221-06

Sample Matrix: Water Cleanup: N/A

·2

Sample ID

EB-1

Date Collected: 4/26/95 Date Extracted: 05/03/95 Date Analyzed: 05/10/95

Sample Volume: 1000 mL Final Volume: 1 mL

		Detection
Analyte	Conc (ug/kg)	Limit (ug/L)
Naphthalene	ND	0.30
Acenaphthylene	ND	0.30
1-Methylnaphthalene	0.70	0.30
2-Methylnaphthalene	ND	0.30
Acenaphthene	ND	0.50
Fluorene	0.098 B	0.040
Phenanthrene	0.17 B	0.030
Anthracene	0.024 B	0.010
Fluoranthene	0.075 B	0.030
Pyrene	ND	0.040
Benzo(a)anthracene	0.018	0.010
Chrysene	ND	0.020
Benzo(b)fluoranthene	ND	0.010
Benzo(k)fluoranthene	ND	0.010
Benzo(a)pyrene	ND	0.010
Dibenzo(a,h)anthracene	ND	0.030
Benzo(g,h,i)perylene	ND	0.040
Indeno(1,2,3-c,d)pyrene	ND	0.030

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	85	15 - 117

ND = Not Detected at or above client requested detection limit.

B = Analyte found in blank. Refer to case narrative.

Lab Name: Analytical Technologies Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward - SSPI Lab Sample ID: 95-04-221-07

Sample Matrix: Water Cleanup: N/A

•2

Sample ID

EB-2

Date Collected: 4/26/95 Date Extracted: 05/03/95 Date Analyzed: 05/10/95

Sample Volume: 1000 mL Final Volume: 1 mL

		Detection
Analyte	Conc (ug/kg)	Limit (ug/L)
Naphthalene	ND	0.30
Acenaphthylene	ND	0.30
1-Methylnaphthalene	0.86	0.30
2-Methylnaphthalene	ND	0.30
Acenaphthene	ND	0.50
Fluorene	ND	0.040
Phenanthrene	0.031 B	0.030
Anthracene	ND	0.010
Fluoranthene	ND	0.030
Pyrene	ND	0.040
Benzo(a)anthracene	ND	0.010
Chrysene	ND	0.020
Benzo(b)fluoranthene	ND	0.010
Benzo(k)fluoranthene	ND	0.010
Benzo(a)pyrene	ND	0.010
Dibenzo(a,h)anthracene	ND	0.030
Benzo(g,h,i)perylene	ND	0.040
Indeno(1,2,3-c,d)pyrene	ND	0.030

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits	
2-Chloroanthracene	99	15 - 117	

ND = Not Detected at or above client requested detection limit.

B= Analyte found in blank. Refer to case narrative.

BTEX ANALYSIS

Modified Method 8020

Lab Name: Analytical Technologies, Inc.

Client Name: Remediation Technologies, Inc.

Client Project ID: 3-0887-303 Third Ward-SSPI

Lab Workorder Number: 95-04-222

Results are reported on a dry weight basis.

Date Collected: 04/27/95

Date Analyzed: 05/03,05/95

Sample Matrix: Soil

[· · · · · · · · · · · · · · · · · · ·		_		Conc.		Surrogate	
		Sample	Conc.	Conc.	Ethyl	Conc.	Percent	%
	Lab Sample	Weight	Benzene	Toluene	Benzene	Xylenes	Recovery	Moist
Sample ID	ID	(g)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(TFT)	
						1		
Reagent Blank	SRB1 05/03/95	1.0	< 2.5	< 2.5	< 2.5	< 5.0	99	N/A
Reagent Blank	SRB1 05/05/95	1.0	< 2.5	< 2.5	< 2.5	< 5.0	98	N/A
Methanol Blank	MeOH SRB1 05/05/95	1.0	< 2.5	< 2.5	< 2.5	< 5.0	100	N/A
TTC4-2 (4-5')	95-04-222-01	1.0	< 3.3	< 3.3	< 3.3	< 6.6	83	25
TTF3-1 (7')	95-04-222-02	1.0	< 3.0	9.5	88	56	96	15
TTF2-1 (3')	95-04-222-03	0.010	24000	1800	110000	53000	103	22
TTE1-2 (10-11')	95-04-222-04	1.0	< 3.0	5.1	< 3.0	< 5.9	93	16
TTE2-1 (7')	95-04-222-05	1.0	< 2.9	< 2.9	< 2.9	< 5.8	94	14
TTG2-1 (3-4')	95-04-222-06	1.0	< 2.8	< 2.8	< 2.8	< 5.6	90	11
TTG4-1 (3-4')	95-04-222-07	1.0	4.1	15	5.1	9.1	85	15

BTEX ANALYSIS Modified Method 8020

4

Lab Name: Analytical Technologies, Inc.

Client Name: Remediation Technologies, Inc.

Client Project ID: 3-0887-303 Third Ward-SSPI

Lab Workorder Number: 95-04-221

Results are reported on a dry weight basis.

Date Collected: 04/25,26/95

Date Analyzed: 05/03,04,05/95

Sample Matrix: Soil

		Somplo	Conc.	Conc.	Conc.	Conc.	Surrogate	· %
	Lab Sample	Sample Weight	Benzene	1	Ethyl Benzene	Xylenes	Percent	
Sample ID		_	1			-	Recovery	WOISt
Sample ID	ID	(g)	(ug/kg)	(ug/kg)	(ug/kg)	(ug/kg)	(TFT)	
Reagent Blank	SRB1 05/03/95	1.0	< 2.5	< 2.5	< 2.5	< 5.0	99	N/A
Reagent Blank	SRB1 05/04/95	1.0	< 2.5	< 2.5	< 2.5	< 5.0	98	N/A
Methanol Blank	MeOH SRB1 05/04/95	1.0	< 2.5	< 2.5	< 2.5	< 5.0	98	N/A
Reagent Blank	SRB1 05/05/95	1.0	< 2.5	< 2.5	< 2.5	< 5.0	98	N/A
Methanol Blank	MeOH SRB1 05/05/95	1.0	< 2.5	< 2.5	< 2.5	< 5.0	100	N/A
DB-6 (2-4')	95-04-221-01	0.050	3800	< 66	14000	29000	90	24
B-47 (2-4')	95-04-221-03	1.0	3.0	57	3.7	10	80	9.5
B-47 (16-18')	95-04-221-04	0.050	150	180	2000	6200	100	19
Duplicate 1	95-04-221-05	1.0	3.8	54	4.2	13	90	9.6
TTA3-2 (7')	95-04-221-09	0.50	22	15	1500	1600	106	18
TTA2-1 (5-6')	95-04-221-10	1.0	< 3.0	3.2	·< 3.0	< 6.0	94	16
TTB2-5 (8-9')	95-04-221-11	0.050	1200	130	8100	6200	107	33
Duplicate 2	95-04-221-12	0.050	5000	620	16000	12000	97	32
TTC5-1 (6-7')	95-04-221-13	1.0	9.3	22	4.9	19	88	17
TTA4-2 (7')	95-04-221-14	0.010	3900	2300	84000	170000	93	28
TTB3-1 (3')	95-04-221-15	1.0	17	< 2.9	4.2	12	87	14
-TTB3-1-(3')-	95-04-221-16	1.0	6.7	4.8	16	30	96	7.0
TTC1-2 (2-3')	95-04-221-17	0.0050	20000	13000	250000	380000	104	26

-TTA4-1(1-2)

BTEX ANALYSIS Modified Method 8020

Lab Name: Analytical Technologies, Inc.

4

Client Name: Remediation Technologies, Inc.

Client Project ID: 3-0887-303 Third Ward-SSPI

Lab Workorder Number: 95-04-221

Date Collected: 04/26/95

Date Analyzed: 05/03/95

Sample Matrix: Water

Sample ID	Lab Sample ID	Sample Volume (ml)	Conc. Benzene (ug/L)	Conc. Toluene (ug/L)	Conc. Ethyl Benzene (ug/L)	Conc. Xylenes (ug/L)	Surrogate Percent Recovery (TFT)
Reagent Blank EB-1 EB-2 Trip Blank	c WRB1 05/03/95 95-04-221-06 95-04-221-07 95-04-221-08	5.0 5.0 5.0 5.0	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5	< 0.5 < 0.5 < 0.5 < 0.5	< 1.0 < 1.0 < 1.0 < 1.0	98 97 98 97

BTEX ANALYSIS Modified Method 8020

Lab Name: Analytical Technologies, Inc.

Client Name: Remediation Technolgies, Inc.

Client Project ID: 3-0887-303 Third Ward-SSPI

Lab Workorder Number: 95-04-222

Date Collected: N/A

Date Analyzed: 05/03/95

Sample Matrix: Water

Sample ID	Lab Sample ID	Sample Volume (ml)	Conc. Benzene (ug/L)	Conc. Toluene (ug/L)	Conc. Ethyl Benzene (ug/L)	Conc. Xylenes (ug/L)	Surrogate Percent Recovery (TFT)
Reagent Blank	WRB1 05/03/95	5.0	< 0.5	< 0.5	< 0.5	< 1.0	98
Trip Blank	95-04-222-08		< 0.5	< 0.5	< 0.5	< 1.0	97

000009

CYANIDE Method 9010

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward-SSPI Lab Workorder Number: 95-04-221 Results are reported on a dry weight basis.

2

Date Collected: 04/25-26/95 Prep Date: 05/05/95 Date Analyzed: 05/15/95 Sample Matrix: Soil

Sample ID	Lab Sample ID	Total Cyanide (mg/kg)	Detection Limit (mg/kg)
Reagent Blank	95-04-222-RB	ND	0.25
DB-6 (2-4')	95-04-221-01	ND	0.31
DB-7 (0-2')	95-04-221-02	ND	0.29
B-47 (2-4')	95-04-221-03	ND	0.27
B-47 (16-18')	95-04-221-04	ND	0.32
Duplicate 1	95-04-221-05	ND	0.28
TTA3-2 (7')	95-04-221-09	1.4	0.34
TTA2-1 (5-6')	95-04-221-10	. 5.7	0.30
TTB2-5 (8-9')	95-04-221-11	2.5	0.34
Duplicate 2	95-04-221-12	1.4	0.38
TTC5-1 (6-7')	95-04-221-13	3.1	0.31
TTA4-2 (7')	95-04-221-14	2.0	0.33

ND = Not Detected

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward-SSPI Lab Workorder Number: 95-04-221 Results are reported on a dry weight basis. Date Collected: 04/26/95 Prep Date: 05/08/95 Date Analyzed: 05/15/95 Sample Matrix: Soil

Sample ID	Lab Sample ID	Total Cyanide (mg/kg)	Detection Limit (mg/kg)
Reagent Blank	95-04-222-RB	ND	0.25
TTB3-1 (3')	95-04-221-15	ND	0.29
TTA4-1 (1-2')	95-04-221-16	ND	0.27
TTC1-2 (2-3')	95-04-221-17	100	0.31

ND = Not Detected

:<u>:</u>

CYANIDE Method 9010

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Prep Date: 05/08/95 Client Project ID: 3-0887-303 Third Ward-SSPI Lab Workorder Number: 95-04-222 Sample Matrix: Soil

Results are reported on a dry weight basis.

Date Collected: 04/27/95 Date Analyzed: 05/15/95

Sample ID	Lab Sample ID	Total Cyanide (mg/kg)	Detection Limit (mg/kg)
Reagent Blank	95-04-222-RB	ND	0.25
TTC4-2 (4-5)	95-04-222-01	ND	0.32
TTF3-1 (7)	95-04-222-02	4.6	0.30
TTF2-1 (3)	95-04-222-03	12	0.33
TTE1-2 (10-11)	95-04-222-04	ND	0.28
TTE2-1 (7)	95-04-222-05	ND	0.29
TTG2-1 (3-4)	95-04-222-06	ND	0.27
TTG4-1 (3-4)	95-04-222-07	ND	0.29

ND = Not Detected

:: `

CYANIDE Method 9010

Lab Name: Analytical Technologies, Inc.Date CollectClient Name: Remediation Technologies, Inc.Prep DateClient Project ID: 3-0887-303 Third Ward-SSPIDate AnalLab Workorder Number: 95-04-221Sample M

Date Collected: 04/26/95 Prep Date: 05/03/95 Date Analyzed: 05/11/95 Sample Matrix: Water

Sample ID	Lab Sample ID	Total Cyanide (mg/L)	Detection Limit (mg/L)
Reagent Blank	95-04-222-RB	ND	0.25
EB-1	95-04-221-06	ND	0.005
EB-2	95-04-221-07	ND	0.005

ND = Not Detected

·::

IGNITABILITY Method 1010

Lab Name: Analytical Technologies, Inc.DaClient Name: Remediation Technologies, Inc.DaClient Project ID: 3-0887-303 Third Ward-SSPISaLab Workorder Number: 95-04-222

4

Date Collected: 04/26-28/95 Date Analyzed: 05/13/95 Sample Matrix: Soil

Sample ID	Lab Sample ID	Ignitable At (deg C)	Non-ignitable Below (deg C)
Composite #2	95-04-222-10		100
Composite #2			
Composite #3	95-04-222-11	{	100
TTCL-4 (3-4)	95-04-222-12		100
Composite #4	95-04-222-13		100
Composite #5	95-04-222-14		100
Composite #6	95-04-222-15		100
Composite #7	95-04-222-16		100.
Composite #8	95-04-222-17		100
Composite #9	95-04-222-18		100
Composite #10	95-04-222-19		100

REACTIVITY Method 9010 (CN) and Method 9030 (Sulfide)

Lab Name: Analytical Technologies, Inc. Date Collected: 04/26,28/95 Client Name: Remediation Technologies, Inc. Prep Date: 05/10/95 Client Project ID: 3-0887-303 Third Ward-SSPI Date Analyzed: 05/10/95 Lab Workorder Number: 95-04-222 Sample Matrix: Soil

Results are reported on a dry weight basis.

		Reactive	Cyanide	Reactive	Sulfide
		Cyanide	Reporting	Sulfide	Reporting
Sample ID	Lab Sample ID	(mg/kg)	Limit (mg/kg)	(mg/kg)	Limit (mg/kg)
Reagent Blank	95-04-222-RB	ND	0.25	ND	5
Composite #2	95-04-222-10	ND	0.30	ND	6
Composite #3 $-\frac{4}{10}$	95-04-222-11	ND	0.32	ND	. 6
-TTCL-4(3-4)	95-04-222-12	ND	0.34	200	7
Composite #4	95-04-222-13	ND	0.31	ND	6
Composite #5	95-04-222-14	ND	0.26	ND	5
Composit #6	95-04-222-15	ND	0.30	18	6
Composite #7	95-04-222-16	ND	0.30	ND	6
Composite #8	95-04-222-17	ND	0.29	ND	6
Composite #9	95-04-222-18	ND	0.30	ND	6
Composite #10	95-04-222-19	ND	0.29	120	6

ND = Not Detected

CORROSIVITY/pH Method 9045

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303 Third Ward-SSPI Lab Workorder Number: 95-04-222

:<u>-</u>

Date Collected: 04/26-28/95 Date Analyzed: 05/02/95 Sample Matrix: Soil

Sample ID	Lab Sample ID	pH
Composite #2	95-04-222-10	8.79
Composite #3	95-04-222-11	9.20
TTCL-4 (3-4)	95-04-222-12	9.02
Composite #4	95-04-222-13	9.04
Composite #5	95-04-222-14	9.44
Composite #6	95-04-222-15	9.24
Composite #7	95-04-222-16	9.70
Composite #8	95-04-222-17	9.37
Composite #9	95-04-222-18	9.07
Composite #10	95-04-222-19	9.34

EPA SAMPLE NO.

1 INORGANIC ANALYSES DATA SHEET

Lab Name: ANALYTICAL_TECHNOLOGIES___ Contract: ______TTC1-4(3-4')Lab Code: NA_____Case No.: ______SAS No.: ______SDG No.: 950422Matrix (soil/water): WATERLab Sample ID: T222-12Level (low/med):LOW_____Date Received: 04/29/95% Solids:0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

Color After: COLORLESS Clarity After: CLEAR Artifacts:		• ·	CAS No.	Analyte	Concentration	ı C	Q	м	
Color After: COLORLESS Clarity After: CLEAR Artifacts:			7440-38-2 7440-39-3 7440-43-9 7440-47-3 7439-92-1 7439-97-6 7782-49-2	Arsenic Barium Cadmium Chromium Lead Mercury Selenium	24.9 68 7.3 6.0 11.4 0.80 19.0				
Comments:	Color	After:			-				N/A

FORM I - IN

EPA SAMPLE NO.

1 INORGANIC ANALYSES DATA SHEET

Lab Name: ANALYTICAL_TECHNOLOGIES__ Contract:COMPOSITE#2Lab Code: NA_____ Case No.:SAS No.:SDG No.: 950422Iatrix (soil/water): WATERLab Sample ID: T222-10Level (low/med):LOW_____Date Received: 04/29/95% Solids:______0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	CAS No.	Analyte	Concentration	c	Q	M
	7440-38-2	Arsenic	40.6			P
	7440-39-3	Barium	994	B		P
	7440-43-9	Cadmium	6.8	в		P_
	7440-47-3	Chromium	6.0	U	······································	P_
	7439-92-1	Lead _	9.0	U		P
	7439-97-6	Mercury	0.80	U		AV
	7782-49-2	Selenium	60.7			P
	7440-22-4	Silver	8.0	ប		P_
				_		
		·		_		
	·		<u> </u>			
						<u> </u>
]
			·	_		
	<u> </u>					
		·		_		
				_		ll
olor Before:	COLORLESS	Clarit	cy Before: CLEA	AR_	_	Texture: N/A_
olor After:	COLORLESS	Clarit	ty After: CLEA	AR_		Artifacts:
• • •			-		•	· · ·
omments:						

EPA SAMPLE NO.

1 INORGANIC ANALYSES DATA SHEET

Lab Name: ANALYTICAL_TECHNOLOGIES__ Contract:COMPOSITE#3Lab Code: NA_____ Case No.:SAS No.:SDG No.: 950422Matrix (soil/water): WATERLab Sample ID: T222-11Level (low/med):LOW_____ Date Received: 04/29/95% Solids:0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

CAS No. Analyte Concentration C 0 М 7440-38-2 Arsenic P 21.1 B 7440-39-3 P⁻ Barium 891 B 7440-43-9 Cadmium 7.9 B P _e.o|u \mathbf{P}^{-} 7440-47-3 Chromium 73.4 7439-92-1 \mathbf{P}^{-} Lead 7439-97-6 AV Mercury 0.80 0 7782-49-2 Selenium 19.8 B Ρ p⁻ 7440-22-4 Silver 8.0 U _ ... Color Before: COLORLESS Clarity Before: CLEAR_ Texture: N/A____ Color After: COLORLESS Clarity After: CLEAR_ Artifacts: _____ Comments:

FORM I - IN

EPA SAMPLE NO.

1 INORGANIC ANALYSES DATA SHEET

 ab Name: ANALYTICAL_TECHNOLOGIES___Contract:
 COMPOSITE#4

 Lab Code: NA_____Case No.:
 SAS No.:
 SDG No.: 950422

 Iatrix (soil/water):
 WATER
 Lab Sample ID: T222-13

 Level (low/med):
 LOW_____
 Date Received: 04/29/95

 Solids:
 ______0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	1			1		<u> </u>	
	CAS No.	Analyte	Concentration	C	Q	М	
	7440-38-2	Arsenic	25.5			P_	
-	7440-39-3	Barium	654			P_	
	7440-43-9	Cadmium	6.3	B		P_	
	7440-47-3	Chromium_	6.0	U		P_	
	7439-92-1	Lead	58.7	1_		P_	
	7439-97-6	Mercury	0.80			AV	
	7782-49-2	Selenium_	19.0	ប		P P	
	7440-22-4	Silver	8.0	U		P	
				1_		11	
				_			
				_			
				_			
	·			_			
x		·		1_		11	
		·				11	
		<u></u>		_			
		[_			
				-]]	
			·	_			
		I		_			
				_			
				_			
					·		
				[I <u></u>		
lor Before:	COLORLESS	Clari	ty Before: CLE	AR_	_	Texture:	N/A
∍lor After:	COLORLESS	Clari	ty After: CLE	AR		Artifacts	
	•		•	-	_		
Comments:							
		· · ·					

FORM I - IN

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

1

Lab Name: ANALYTICAL	TECHNOLOGIES	Contract:	COMPOSITE#5
Lab Code: NA	Case No.:	SAS No.:	SDG No.: 950422
Matrix (soil/water):	WATER	Lab Sample	e ID: T222-14
Level (low/med):	LOW	Date Rece	ived: 04/29/95
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

				_			
	CAS No.	Analyte	Concentration	c	Q	M	
	7440-38-2	Arsenic	21.3	B		P	
	7440-39-3	Barium	824			P_	
	7440-43-9	Cadmium	7.5			P_	
	7440-47-3	Chromium_	6.0	U		P_	
	7439-92-1	Lead	9.0	U		P	
	7439-97-6	Mercury Selenium	0.80	บ บ		AV	
	7440-22-4	Silver	19.0	UU		P P	
	/440-22-4	DITAGE	0.0			P_	
				-			
				-			
				-			
`		·		-			
			•				
			<u></u>	 _]]	
				_			
				_			
		\					
				-			
			<u> </u>	[-]			
lor Before:	COLORLESS	Clari	ty Before: CLEA	AR_	_	Texture	e: N/A_
lor After:	COLORLESS	Clari	ty After: CLEA	AR_		Artifac	cts:

.

EPA SAMPLE NO.

1 INORGANIC ANALYSES DATA SHEET

COMPOSITE#6 ab Name: ANALYTICAL_TECHNOLOGIES___ Contract: Lab Code: NA____ Case No.: ____ SAS No.: ____ SDG No.: 950422 strix (soil/water): WATER Lab Sample ID: T222-15 evel (low/med): LOW____ Date Received: 04/29/95 😵 Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L_

			r	<u> </u>	- -
	CAS No.	Analyte	Concentration	C Q	м
•	7440-38-2	Arsenic			P
l	7440-39-3	Barium	743		P_
	7440-43-9	Cadmium	7.7		P
	7440-47-3	Chromium_	6.0		P
		Lead	9.0		P_
		Mercury	0.80		AV
•	7782-49-2	Selenium_	19.0	ש	P
	7440-22-4	Silver	8.0	ש	P
					- <u></u>
				_	
				_	_]]
				_	_
				_	_
				_	_]]
				_	_
		<u> </u>			
	l]	-]
-					-
				_	- *
					-]]
				_	-
				[-[[
		I]		_ll
olor Before:	COLORLESS	Clari	ty Before: CLEA	AR_	Texture: N/A_
olor After:	COLORLESS	Clarit	ty After: CLEA	AR	Artifacts:
			-		
omments:					
			· · · · · · · · · · · · · · · · · · ·		· · · · · ·

FORM I - IN

Lab Name: ANALYTICAL_TECHNOLOGIES___ Contract: _____

0.0

EPA SAMPLE NO.

1 INORGANIC ANALYSES DATA SHEET

COMPOSITE#7

Lab Code: NA_____ Case No.: _____ SAS No.: _____ SDG No.: 950422

Matrix (soil/water): WATER

Level (low/med): LOW___

Lab Sample ID: T222-16

Date Received: 04/29/95

% Solids:

Concentration Units (ug/L or mg/kg dry weight): UG/L

	CAS No.	Analyte	Concentration	с	Q	M	
	7440-38-2 7440-39-3 7440-43-9	Arsenic Barium Cadmium	16.0 1200 6.1	в		P_ P_ P_ P_	
	7440-47-3 7439-92-1 7439-97-6	Chromium_ Lead Mercury	6.0 9.0 0.80	บ บ บ			
	7782-49-2 7440-22-4	Selenium_ Silver	19.0 8.0			P P	
	·			-			
Color Before:	COLORLESS	Clari	ty Before: CLE	AR_	-	Texture:	N/A_
Color After:	COLORLESS	Clari	ty After: CLE	AR_	_	Artifacts:	

FORM I - IN

EPA SAMPLE NO.

1 INORGANIC ANALYSES DATA SHEET

 Jab Name: ANALYTICAL_TECHNOLOGIES___ Contract: _______
 COMPOSITE#8

 Lab Code: NA_____ Case No.: _____ SAS No.: _____ SDG No.: 950422

 Tatrix (soil/water): WATER
 Lab Sample ID: T222-17

 Level (low/med):
 LOW_____

 Solids:
 _____0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	CAS No.	Analyte	Concentration	С	Q	M	
	7440-38-2 7440-39-3 7440-43-9 7439-92-1 7439-97-6 7782-49-2 7440-22-4		18.2 907 8.5 6.0 9.0 0.80 19.0 8.0 9.0 0.80 19.0 8.0 9.0	ddda B B B B B B B B B B B B B B B B B B		P P P P P P P P P P P P	
lolor Before:	COLORLESS	Clari	ty Before: CLEA	1_1 4R_		Texture:	N/A
	COLORLESS	Clari	ty After: CLEA	٩R_		Artifacts	: ·
Comments:			·	=			
			· · · · · · · · · · · · · · · · · · ·			······································	

FORM I - IN

1

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

- ,

Lab Name: ANALYTICAL	_TECHNOLOGIES	Contract:	COMPOSITE#9
Lab Code: NA	Case No.:	SAS No.:	SDG No.: 950422
Matrix (soil/water):	WATER	Lab Sample	e ID: T222-18
Level (low/med):	LOW	Date Rece	ived: 04/29/95
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	— , — , —	
	CAS No.	Analyte	Concentration	C Q	м	
	7440-38-2	Arsenic	16.7			
	7440-39-3	Barium	776		_ P_	
	7440-43-9	Cadmium	7.6		_ P_	
	7440-47-3	Chromium_	6.0		P	
	7439-92-1	Lead	9.0		P	
	7439-97-6	Mercury	0.80	ש		
	7782-49-2	Selenium	19.0		P	
	7440-22-4	Silver	8.0	U	_ P_	
			- <u></u>]]		
		l				
					_	
	·				_	
			·	_		
]]	_	
				_	!	
					_	
					_	
					_	
]_]	_	
	<u></u>			_	_	
				_]	
				_	_[]	
		<u> </u>			_	
olor Before:	COLORLESS	Clari	ty Before: CLE	AR	Texture:	N/A
olor After:			-	—		
Stor Alter:	COLORLESS	Clari	ty After: CLE	AR_	Artilacts	·
omments:						
·						
					······································	

EPA SAMPLE NO.

1 INORGANIC ANALYSES DATA SHEET

 -ab Name: ANALYTICAL_TECHNOLOGIES____Contract:
 COMPOSITE#10

 Lab Code: NA_____Case No.:
 SAS No.:
 SDG No.: 950422

 atrix (soil/water): WATER
 Lab Sample ID: T222-19

 evel (low/med):
 LOW______Date Received: 04/29/95

 Solids:
 _____0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	CAS No.	Analyte	Concentration	с	Q	м	•
	7440-39-3 7440-43-9 7440-47-3 7439-92-1 7439-97-6	Arsenic Barium Cadmium Chromium Lead Mercury Selenium Selenium Silver 	20.5 592 8.2 6.0 31.4 0.80 19.0 8.0 	B B U U U U			
lolor Before:	COLORLESS	Clarit	y Before: CLEA	AR_		Texture:	N/A
⊃lor After:	COLORLESS	Clarit	ty After: CLEA	AR_		Artifacts:	·
Comments:							·

FORM I - IN

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3 - 0887 - 303 Third Ward - SSPI Lab Sample ID: 95-04-222-12 Sample ID

TTC1-4(3-4')

Date Collected: 04/26/95 Date Extracted: 05/04/95 Date Analyzed: 05/08/95

Sample Matrix: TCLP Leachate Sample Volume: 0.5 mL

EPA HW		CAS		Detection
Number	Analyte	Number	Result (mg/L)	Limit (mg/L)
				·
D043	Vinyl chloride	75-01-4	ND	0.1
D029	1,1-Dichloroethylene	75-35-4	ND	0.1
D022	Chloroform	67-66-3	ND	0.1
D028	1,2-Dichloroethane	107-06-2	ND	0.1
D035	Methyl ethyl ketone	78-93-3	ND	0.1
D019	Carbon tetrachloride	56-23-5	ND	0.1
D040	Trichloroethylene	79-01-6	ND	0.1
D018	Benzene	71-43-2	1.0	0.1
D039	Tetrachloroethylene	127-18-4	ND	0.1
D021	Chlorobenzene	108-90-7	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
1,2-Dichloroethane-d4 Toluene-d8	105 99	76 - 114 88 - 110
Bromofluorobenzene	99	86 - 115

ND = Not Detected

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3 - 0887 - 303 Third Ward - SSPI Lab Sample ID: 95-04-222-10 Sample ID

Composite # 2

Date Collected: 04/28/95 Date Extracted: 05/04/95 Date Analyzed: 05/08/95

Sample Matrix: TCLP Leachate Sample Volume: 0.5 mL

EPA HW		CAS		Detection
Number	Analyte	Number	Result (mg/L)	Limit (mg/L)
D043	Vinyl chloride	75-01-4	ND	0.1
D029	1,1-Dichloroethylene	75-35-4	ND	0.1
D022	Chloroform	67-66-3	ND	0.1
D028	1,2-Dichloroethane	107-06-2	ND	0.1
D035	Methyl ethyl ketone	78-93-3	ND	0.1
D019	Carbon tetrachloride	56-23-5	ND	0.1
D040	Trichloroethylene	79-01-6	ND	0.1
D018	Benzene	71-43-2	ND	0.1
D039	Tetrachloroethylene	127-18-4	ND	0.1
D021	Chlorobenzene	108-90-7	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
1,2-Dichloroethane-d4	104	76 - 114
Toluene-d8	99	88 - 110
Bromofluorobenzene	100	86 - 115

ND = Not Detected

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3 - 0887 - 303 Third Ward - SSPI Lab Sample ID: 95-04-222-11

Sample Matrix: TCLP Leachate Sample Volume: 0.5 mL

Sample ID

Composite # 3

Date Collected: 04/28/95 Date Extracted: 05/04/95 Date Analyzed: 05/08/95

EPA HW		CAS		Detection
Number	Analyte	Number	Result (mg/L)	Limit (mg/L)
D043	Vinyl chloride	75-01-4	ND	0.1
D029	1,1-Dichloroethylene	75-35-4	ND	0.1
D022	Chloroform	67-66-3	ND	0.1
D028	1,2-Dichloroethane	107-06-2	ND	0.1
D035	Methyl ethyl ketone	78-93-3	ND	0.1
D019	Carbon tetrachloride	56-23-5	ND	0.1
D040	Trichloroethylene	79-01-6	ND	0.1
D018	Benzene	71-43-2	0.03 J	0.1
D039	Tetrachloroethylene	127-18-4	ND	0.1
D021	Chlorobenzene	108-90-7	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
1,2-Dichloroethane-d4	103	76 - 114
Toluene-d8	99	88 - 110
Bromofluorobenzene	99	86 - 115

ND = Not Detected

J = Estimated value, analyte found below detection limit

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3 - 0887 - 303 Third Ward - SSPI Lab Sample ID: 95-04-222-13

Sample ID

Composite # 4

Date Collected: 04/28/95 Date Extracted: 05/04/95 Date Analyzed: 05/08/95

Sample Matrix: TCLP Leachate Sample Volume: 0.5 mL

EPA HW		CAS		Detection
Number	Analyte	Number	Result (mg/L)	Limit (mg/L)
D043	Vinyl chloride	75-01-4	ND	0.1
D029	1,1-Dichloroethylene	75-35-4	ND	0.1
D022	Chloroform	67-66-3	ND	0.1
D028	1,2-Dichloroethane	107-06-2	ND	0.1
D035	Methyl ethyl ketone	78-93-3	ND	0.1
D019	Carbon tetrachloride	56-23-5	ND	0.1
D040	Trichloroethylene	79-01-6	ND	0.1
D018	Benzene	71-43-2	0.08 J	0.1
D039	Tetrachloroethylene	127-18-4	ND	0.1
D021	Chlorobenzene	108-90-7	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
1,2-Dichloroethane-d4 Toluene-d8	103	76 - 114 88 - 110
Bromofluorobenzene	100	86 - 115

ND = Not Detected

J = Estimated value, analyte found below detection limit

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3 - 0887 - 303 Third Ward - SSPI Lab Sample ID: 95-04-222-14 Sample ID

Composite # 5

Date Collected: 04/28/95 Date Extracted: 05/04/95 Date Analyzed: 05/08/95

EPA HW		CAS		Detection
Number	Analyte	Number	Result (mg/L)	Limit (mg/L)
D043	Vinyl chloride	75-01-4	ND	0.1
D029	1,1-Dichloroethylene	75-35-4	ND	0.1
D022	Chloroform	67-66-3	0.03 J	0.1
D028	1,2-Dichloroethane	107-06-2	ND	0.1
D035	Methyl ethyl ketone	78-93-3	ND	0.1
D019	Carbon tetrachloride	56-23-5	ND	0.1
D040	Trichloroethylene	79-01-6	ND	0.1
D018	Benzene	71-43-2	ND	0.1
D039	Tetrachloroethylene	127-18-4	ND	0.1
D021	Chlorobenzene	108-90-7	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
1,2-Dichloroethane-d4	103	76 - 114
Toluene-d8	98	88 - 110
Bromofluorobenzene	101	86 - 115

ND = Not Detected

J = Estimated value, analyte found below detection limit

Page 1 of 1

Sample Matrix: TCLP Leachate Sample Volume: 0.5 mL

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3 - 0887 - 303 Third Ward - SSPI Lab Sample ID: 95-04-222-15 Sample ID

Composite # 6

Date Collected: 04/28/95 Date Extracted: 05/04/95 Date Analyzed: 05/08/95

Sample Matrix: TCLP Leachate Sample Volume: 0.5 mL

EPA HW		CAS		Detection
Number	Analyte	Number	Result (mg/L)	Limit (mg/L)
D043	Vinyl chloride	75-01-4	ND	0.1
D029	1,1-Dichloroethylene	75-35-4	ND	0.1
D022	Chloroform	67-66-3	ND	0.1
D028	1,2-Dichloroethane	107-06-2	ND	0.1
D035	Methyl ethyl ketone	78-93-3	ND	0.1
D019	Carbon tetrachloride	56-23-5	ND	0.1
D040	Trichloroethylene	79-01-6	ND	0.1
D018	Benzene	71-43-2	ND	0.1
D039	Tetrachloroethylene	127-18-4	ND	0.1
D021	Chlorobenzene	108-90-7	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
1,2-Dichloroethane-d4	103	76 - 114
Toluene-d8	98	88 - 110
Bromofluorobenzene	101	86 - 115

ND = Not Detected

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3 - 0887 - 303 Third Ward - SSPI

Sample ID

Composite # 7

Date Collected: 04/28/95 Date Extracted: 05/04/95 Date Analyzed: 05/08/95

Sample Matrix: TCLP Leachate Sample Volume: 0.5 mL

Lab Sample ID: 95-04-222-16

EPA HW		CAS		Detection
Number	Analyte	Number	Result (mg/L)	Limit (mg/L)
· · · · · · · · · · · · · · · · · · ·				
D043	Vinyl chloride	75-01-4	ND	0.1
D029	1,1-Dichloroethylene	75-35-4	ND	0.1
D022	Chloroform	67-66-3	ND	0.1
D028	1,2-Dichloroethane	107-06-2	ND	0.1
D035	Methyl ethyl ketone	78-93-3	ND	0.1
D019	Carbon tetrachloride	56-23-5	ND	0.1
D040	Trichloroethylene	79-01-6	ND	0.1
D018	Benzene	71-43-2	ND	0.1
D039	Tetrachloroethylene	127-18-4	ND	0.1
D021	Chlorobenzene	108-90-7	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
1,2-Dichloroethane-d4	103	76 - 114
Toluene-d8	96	88 - 110
Bromofluorobenzene	100	86 - 115

ND = Not Detected

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3 - 0887 - 303 Third Ward - SSPI Lab Sample ID: 95-04-222-17

Sample ID

Composite # 8

Date Collected: 04/28/95 Date Extracted: 05/04/95 Date Analyzed: 05/08/95

Sample Matrix: TCLP Leachate Sample Volume: 0.5 mL

EPA HW		CAS		Detection
Number	Analyte	Number	Result (mg/L)	Limit (mg/L)
·				
D043	Vinyl chloride	75-01-4	ND	0.1
D029	1,1-Dichloroethylene	75-35-4	ND	0.1
D022	Chloroform	67-66-3	ND	0.1
D028	1,2-Dichloroethane	107-06-2	ND	0.1
D035	Methyl ethyl ketone	78-93-3	ND	0.1
D019	Carbon tetrachloride	56-23-5	ND	0.1
D040	Trichloroethylene	79-01-6	ND	0.1
D018	Benzene	71-43-2	ND	0.1
D039	Tetrachloroethylene	127-18-4	ND	0.1
D021	Chlorobenzene	108-90-7	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
1,2-Dichloroethane-d4	104	76 - 114
Toluene-d8	98	88 - 110
Bromofluorobenzene	100	86 - 115

ND = Not Detected

TCLP VOLATILE ORGANICS Method 8240

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3 - 0887 - 303 Third Ward - SSPI Lab Sample ID: 95-04-222-18

Sample ID

Composite # 9

Date Collected: 04/28/95 Date Extracted: 05/05/95 Date Analyzed: 05/08/95

Sample Matrix: TCLP Leachate Sample Volume: 0.5 mL

EPA HW		CAS		Detection
Number	Analyte	Number	Result (mg/L)	Limit (mg/L)
D043	Vinyl chloride	75-01-4	ND	0.1
D029	1,1-Dichloroethylene	75-35-4	ND	0.1
D022	Chloroform	67-66-3	ND	0.1
D028	1,2-Dichloroethane	107-06-2	ND	0.1
D035	Methyl ethyl ketone	78-93-3	ND	0.1
D019	Carbon tetrachloride	56-23-5	ND	0.1
D040	Trichloroethylene	79-01-6	ND	0.1
D018	Benzene	71-43-2	ND	0.1
D039	Tetrachloroethylene	127-18-4	ND	0.1
D021	Chlorobenzene	108-90-7	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits	
1,2-Dichloroethane-d4	104	7 <u>6 - 114</u>	
Toluene-d8	97	88 - 110	
Bromofluorobenzene	101	86 - 115	

ND = Not Detected

TCLP VOLATILE ORGANICS Method 8240

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3 - 0887 - 303 Third Ward - SSPI Lab Sample ID: 95-04-222-19 Sample ID

Composite # 10

Date Collected: 04/28/95 Date Extracted: 05/05/95 Date Analyzed: 05/09/95

Sample Matrix: TCLP Leachate Sample Volume: 0.5 mL

EPA HW		CAS		Detection
Number	Analyte	Number	Result (mg/L)	Limit (mg/L)
D043	Vinyl chloride	75-01-4	ND	0.1
D029	1,1-Dichloroethylene	75-35-4	ND	0.1
D022	Chloroform	67-66-3	ND	0.1
D028	1,2-Dichloroethane	107-06-2	ND	0.1
D035	Methyl ethyl ketone	78-93-3	ND	0.1
D019	Carbon tetrachloride	56-23-5	ND	0.1
D040	Trichloroethylene	79-01-6	ND	0.1
D018	Benzene	71-43-2	ND	0.1
D039	Tetrachloroethylene	127-18-4	ND	0.1
D021	Chlorobenzene	108-90-7	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits	
1,2-Dichloroethane-d4	99	76 - 114	
Toluene-d8	103	88 - 110	
Bromofluorobenzene	99	86 - 115	

ND = Not Detected

Modified Method 8270

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project: 3-0887-303 Third Ward - SSPI Sample Matrix: TCLP Leachate Sample wt/vol: 100 mL Level (Low/Med): Low Extraction (SepF/Cont/Sonc): Cont GPC Cleanup (Y/N): N

Sample ID

TTCI-4 (3-4')

Date Collected: 04-26-95 Date Extracted: 05-03-95 Date Analyzed: 05-08-95 Lab Sample ID: 95-04-222-12 Lab File ID: 50895S07.D Final Volume: 1 mL

EPA HW Number	Analyte	CAS Number	Result (mg/L)	Detection Limit (mg/L)
D023	o-Cresol	95-48-7	ND	0.1
D024	m-Cresol	108-39-4	ND	0.1
D025	p-Cresol	106-44-5	ND	0.1
D026	Total o,m,p-Cresol		ND	0.1
D027	1,4-Dichlorobenzene	106-46-7	ND	0.1
D030	2,4-Dinitrotoluene	121-14-2	ND	0.1
D032	Hexachlorobenzene	118-74-1	ND	0.1
D033	Hexachlorobutadiene	87-68-3	ND	0.1
D034	Hexachloroethane	67-72-1	ND	0.1
D036	Nitrobenzene	98-95-3	ND	0.1
D037	Pentachlorophenol	87-86-5	ND	0.5
D038	Pyridine	110-86-1	ND	0.1
D041	2,4,5-Trichlorophenol	95-95-4	ND	0.5
D042	2,4,6-Trichlorophenol	88-06-2	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
2 Elucrophenol	55	21-110
2-Fluorophenol Phenol-d5	61	10-110
Nitrobenzene-d5	72	35-114
2-Fluorobiphenyl	72	43-116
2,4,6-Tribromophenol	56	10-123
Terphenyl-d14	79	33-141

ND = Not detected

Modified Method 8270

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project: 3-0887-303 Third Ward - SSPI Sample Matrix: TCLP Leachate Sample wt/vol: 100 mL Level (Low/Med): Low Extraction (SepF/Cont/Sonc): Cont GPC Cleanup (Y/N): N

Sample ID

Composite #2

Date Collected: 04-28-95 Date Extracted: 05-03-95 Date Analyzed: 05-08-95 Lab Sample ID.: 95-04-222-10 Lab File ID: 50895S04.D Final Volume: 1 mL

EPA HW Number	Analyte	CAS Number	Result (mg/L)	Detection Limit (mg/L)
D023	o-Cresol	95-48-7	ND	0.1
D024	m-Cresol	108-39-4	ND	0.1
D025	p-Cresol	106-44-5	ND	0.1
D026	Total o,m,p-Cresol		ND	0.1
D027	1,4-Dichlorobenzene	106-46-7	ND	0.1
D030	2,4-Dinitrotoluene	121-14-2	ND	0.1
D032	Hexachlorobenzene	118-74-1	ND	0.1
D033	Hexachlorobutadiene	87-68-3	ND	0.1
D034	Hexachloroethane	67-72-1	ND	0.1
D036	Nitrobenzene	98-95-3	ND	0.1
D037	Pentachlorophenol	87-86-5	ND	0.5
D038	Pyridine	110-86-1	ND	0.1
D041	2,4,5-Trichlorophenol	95-95-4	ND	0.5
D042	2,4,6-Trichlorophenol	88-06-2	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits	
2-Fluorophenol	4*	21-110	
Phenol-d5	13	10-110	
Nitrobenzene-d5	68	35-114	
2-Fluorobiphenyl	69	43-116	
2,4,6-Tribromophenol	. 5*	10-123	
Terphenyl-d14	63	33-141	

ND = Not detected

* = Outside QC Limits

Modified Method 8270

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project: 3-0887-303 Third Ward - SSPI Sample Matrix: TCLP Leachate Sample wt/vol: 100 mL Level (Low/Med): Low Extraction (SepF/Cont/Sonc): Cont GPC Cleanup (Y/N): N

Sample ID

Composite #2 RX

Date Collected: 04-28-95 Date Extracted: 05-09-95 Date Analyzed: 05-11-95 Lab Sample ID.: 95-04-222-10 RX Lab File ID: 51195S05.D Final Volume: 1 mL

EPA HW	1	CAS		Detection
Number	Analyte	Number	Result (mg/L)	Limit (mg/L)
D023	o-Cresol	95-48-7	ND	0.1
D024	m-Cresol	108-39-4	ND	0.1
D025	p-Cresol	106-44-5	ND	0.1
D026	Total o,m,p-Cresol		ND	0.1
D027	1,4-Dichlorobenzene	106-46-7	ND .	0.1
D030	2,4-Dinitrotoluene	121-14-2	ND	0.1
D032	Hexachlorobenzene	118-74-1	ND	0.1
D033	Hexachlorobutadiene	87-68-3	ND	0.1
D034	Hexachloroethane	67-72-1	ND	0.1
D036	Nitrobenzene	98-95-3	ND	0.1
D037	Pentachlorophenol	87-86-5	ND	0.5
D038	Pyridine	110-86-1	. ND	0.1
D041	2,4,5-Trichlorophenol	95-95-4	ND	0.5
D042	2,4,6-Trichlorophenol	88-06-2	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
	55	21.110
2-Fluorophenol	55	21-110
Phenol-d5	59	10-110
Nitrobenzene-d5	62	35-114
2-Fluorobiphenyl	65	43-116
2,4,6-Tribromophenol	· 73	10-123
Terphenyl-d14	85	33-141

ND = Not detected

Modified Method 8270

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project: 3-0887-303 Third Ward - SSPI Sample Matrix: TCLP Leachate Sample wt/vol: 100 mL Level (Low/Med): Low Extraction (SepF/Cont/Sonc): Cont GPC Cleanup (Y/N): N

Sample ID

Composite # 3

Date Collected: 04-28-95 Date Extracted: 05-03-95 Date Analyzed: 05-08-95 Lab Sample ID: 95-04-222-11 Lab File ID: 50895S06.D Final Volume: 1 mL

EPA HW		CAS		Detection
Number	Analyte	Number	Result (mg/L)	Limit (mg/L)
D023	o-Cresol	95-48-7	ND	0.1
D024	m-Cresol	108-39-4	ND	0.1
D025	p-Cresol	106-44-5	ND	0.1
D026	Total o,m,p-Cresol		ND	0.1
D027	1,4-Dichlorobenzene	106-46-7	ND	0.1
D030	2,4-Dinitrotoluene	121-14-2	ND	0.1
D032	Hexachlorobenzene	118-74-1	ND	0.1
D033	Hexachlorobutadiene	87-68-3	ND	0.1
D034	Hexachloroethane	67-72-1	ND	0.1
D036	Nitrobenzene	98-95-3	ND	0.1
D037	Pentachlorophenol	87-86-5	ND	0.5
D038	Pyridine	110-86-1	, ND	0.1
D041	2,4,5-Trichlorophenol	95-95-4	ND	0.5
D042	2,4,6-Trichlorophenol	88-06-2	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
		01.110
2-Fluorophenol	63	21-110
Phenol-d5	67	10-110
Nitrobenzene-d5	66	35-114
2-Fluorobiphenyl	69	43-116
2,4,6-Tribromophenol	70	10-123
Terphenyl-d14	74	33-141

ND = Not detected

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project: 3-0887-303 Third Ward - SSPI Sample Matrix: TCLP Leachate Sample wt/vol: 100 mL Level (Low/Med): Low Extraction (SepF/Cont/Sonc): Cont GPC Cleanup (Y/N): N

Sample ID

Composite #4 Date Collected: 04-28-95 Date Extracted: 05-03-95 Date Analyzed: 05-08-95 Lab Sample ID: 95-04-222-13 Lab File ID: 50895S08.D Final Volume: 1 mL

EPA HW Number	Analyte	CAS Number	Result (mg/L)	Detection Limit (mg/L)
			<u></u>	
D023	o-Cresol	95-48-7	ND	0.1
D024	m-Cresol	108-39-4	ND	0.1
D025	p-Cresol	106-44-5	ND	0.1
D026	Total o,m,p-Cresol		ND	0.1
D027	1,4-Dichlorobenzene	106-46-7	ND	0.1
D030	2,4-Dinitrotoluene	121-14-2	ND	0.1
D032	Hexachlorobenzene	118-74-1	ND	0.1
D033	Hexachlorobutadiene	87-68-3	ND	0.1
D034	Hexachloroethane	67-72-1	ND	0.1
D036	Nitrobenzene	98-95-3	ND	0.1
D037	Pentachlorophenol	87-86-5	ND	0.5
D038	Pyridine	110-86-1	ND	0.1
D041	2,4,5-Trichlorophenol	95-95-4	ND	0.5
D042	2,4,6-Trichlorophenol	88-06-2	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
2-Fluorophenol	64	21-110
Phenol-d5	66	10-110
Nitrobenzene-d5	69	35-114
2-Fluorobiphenyl	71	43-116
2,4,6-Tribromophenol	72	10-123
Terphenyl-d14	76	33-141

ND = Not detected

Modified Method 8270

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project: 3-0887-303 Third Ward - SSPI Sample Matrix: TCLP Leachate Sample wt/vol: 100 mL Level (Low/Med): Low Extraction (SepF/Cont/Sonc): Cont GPC Cleanup (Y/N): N

Sample ID

Composite #5

Date Collected: 04-28-95 Date Extracted: 05-03-95 Date Analyzed: 05-08-95 Lab Sample ID: 95-04-222-14 Lab File ID: 50895S09.D Final Volume: 1 mL

EPA HW Number	Analyte	CAS Number	Result (mg/L)	Detection Limit (mg/L)
D023 ·	o-Cresol	95-48-7	ND	0.1
D024	m-Cresol	108-39-4	ND	0.1
D025	p-Cresol	106-44-5	ND	0.1
D026	Total o,m,p-Cresol		ND	0.1
D027	1,4-Dichlorobenzene	106-46-7	ND	0.1
D030	2,4-Dinitrotoluene	121-14-2	ND	0.1
D032	Hexachlorobenzene	118-74-1	ND	0.1
D033	Hexachlorobutadiene	87-68-3	ND	0.1
D034	Hexachloroethane	67-72-1	ND	0.1
D036	Nitrobenzene	98-95-3	ND	0.1
D037	Pentachlorophenol	87-86-5	ND	0.5
D038	Pyridine	110-86-1	ND	0.1
D041	2,4,5-Trichlorophenol	. 95-95-4	ND	0.5
D042	2,4,6-Trichlorophenol	88-06-2	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
2-Fluorophenol	43	21-110
Phenol-d5	49	10-110
Nitrobenzene-d5	66	35-114
2-Fluorobiphenyl	68	43-116
2,4,6-Tribromophenol	55	10-123
Terphenyl-d14	74	33-141

ND = Not detected

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project: 3-0887-303 Third Ward - SSPI Sample Matrix: TCLP Leachate Sample wt/vol: 100 mL Level (Low/Med): Low Extraction (SepF/Cont/Sonc): Cont GPC Cleanup (Y/N): N

Sample ID

Composite #6 Date Collected: 04-28-95 Date Extracted: 05-03-95 Date Analyzed: 05-08-95 Lab Sample ID: 95-04-222-15 Lab File ID: 50895S10.D Final Volume: 1 mL

EPA HW Number	Analyte	CAS Number	Result (mg/L)	Detection Limit (mg/L)
D023	o-Cresol	95-48-7	ND	0.1
D024	m-Cresol	108-39-4	ND	0.1
D025	p-Cresol	106-44-5	ND	0.1
D026	Total o,m,p-Cresol		ND	0.1
D027	1,4-Dichlorobenzene	106-46-7	ND	0.1
D030	2,4-Dinitrotoluene	121-14-2	ND	0.1
D032	Hexachlorobenzene	118-74-1	ND	0.1
D033	Hexachlorobutadiene	87-68-3	ND	0.1
D034	Hexachloroethane	67-72-1	ND	0.1
D036	Nitrobenzene	98-95-3	ND	0.1
D037	Pentachlorophenol	87-86-5	ND	0.5
D038	Pyridine	110-86-1	ND	0.1
D041	2,4,5-Trichlorophenol	95-95-4	ND	0.5
D042	2,4,6-Trichlorophenol	88-06-2	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
2 Physical	59	21.110
2-Fluorophenol	58	21-110
Phenol-d5	60	10-110
Nitrobenzene-d5	69	35-114
2-Fluorobiphenyl	72	43-116
2,4,6-Tribromophenol	60	10-123
Terphenyl-d14	78	33-141

ND = Not detected

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project: 3-0887-303 Third Ward - SSPI Sample Matrix: TCLP Leachate Sample wt/vol: 100 mL Level (Low/Med): Low Extraction (SepF/Cont/Sonc): Cont GPC Cleanup (Y/N): N

Sample ID

Composite #7 Date Collected: 04-28-95 Date Extracted: 05-03-95 Date Analyzed: 05-08-95 Lab Sample ID: 95-04-222-16 Lab File ID: 50895S11.D Final Volume: 1 mL

EPA HW		CAS	·····	Detection
Number	Analyte	Number	Result (mg/L)	Limit (mg/L)
D023	o-Cresol	95-48-7	ND	0.1
D024	m-Cresol	108-39-4	ND	0.1
D025	p-Cresol	106-44-5	ND	0.1
D026	Total o,m,p-Cresol		ND	0.1
D027	1,4-Dichlorobenzene	106-46-7	ND	0.1
D030	2,4-Dinitrotoluene	121-14-2	ND	0.1
D032	Hexachlorobenzene	118-74-1	ND	0.1
D033	Hexachlorobutadiene	87-68-3	ND	0.1
D034	Hexachloroethane	67-72-1	ND	0.1
D036	Nitrobenzene	98-95-3	ND	0.1
D037	Pentachlorophenol	87-86-5	ND	0.5
D038	Pyridine	110-86-1	ND	0.1
D041	2,4,5-Trichlorophenol	95-95-4	ND	0.5
D042	2,4,6-Trichlorophenol	88-06-2	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
2-Fluorophenol	67	21-110
Phenol-d5	70	10-110
Nitrobenzene-d5	74	35-114
2-Fluorobiphenyl	72	43-116
2,4,6-Tribromophenol	74	10-123
Terphenyl-d14	78	33-141

ND = Not detected

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project: 3-0887-303 Third Ward - SSPI Sample Matrix: TCLP Leachate Sample wt/vol: 100 mL Level (Low/Med): Low Extraction (SepF/Cont/Sonc): Cont GPC Cleanup (Y/N): N

Sample ID

Composite #8

Date Collected: 04-28-95 Date Extracted: 05-03-95 Date Analyzed: 05-08-95 Lab Sample ID: 95-04-222-17 Lab File ID: 50895S12.D Final Volume: 1 mL

EPA HW Number	Analyte	CAS Number	Result (mg/L)	Detection Limit (mg/L)
D023	o-Cresol	95-48-7	ND	0.1
D024	m-Cresol	108-39-4	ND	0.1
D025	p-Cresol	106-44-5	ND	0.1
D026	Total o,m,p-Cresol		ND	0.1
D027	1,4-Dichlorobenzene	106-46-7	ND	0.1
D030	2,4-Dinitrotoluene	121-14-2	ND	0.1
D032	Hexachlorobenzene	118-74-1	ND	0.1
D033	Hexachlorobutadiene	87-68-3	ND	· 0.1
D034	Hexachloroethane	67-72-1	ND	0.1
D036	Nitrobenzene	98-95-3	ND	0.1
D037	Pentachlorophenol	87-86-5	ND	0.5
D038	Pyridine	110-86-1	ND	0.1
D041	2,4,5-Trichlorophenol	95-95-4	ND	0.5
D042	2,4,6-Trichlorophenol	88-06-2	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
2-Fluorophenol	8*	21-110
Phenol-d5	18	10-110
Nitrobenzene-d5	64	35-114
2-Fluorobiphenyl	66	43-116
2,4,6-Tribromophenol	5*	10-123
Terphenyl-d14	73	33-141

ND = Not detected

* = Outside QC limits

Modified Method 8270

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project: 3-0887-303 Third Ward - SSPI Sample Matrix: TCLP Leachate Sample wt/vol: 100 mL Level (Low/Med): Low Extraction (SepF/Cont/Sonc): Cont GPC Cleanup (Y/N): N

Sample ID

Composite #9

Date Collected: 04-28-95 Date Extracted: 05-03-95 Date Analyzed: 05-08-95 Lab Sample ID: 95-04-222-18 Lab File ID: 50895S13.D Final Volume: 1 mL

EPA HW		CAS		Detection
Number	Analyte	Number	Result (mg/L)	Limit (mg/L)
				· · · · ·
D023	o-Cresol	95-48-7	ND	0.1
D024	m-Cresol	108-39-4	ND	0.1
D025	p-Cresol	106-44-5	ND	0.1
D026	Total o,m,p-Cresol		ND	0.1
D027	1,4-Dichlorobenzene	106-46-7	ND	0.1
D030	2,4-Dinitrotoluene	121-14-2	ND	0.1
D032	Hexachlorobenzene	118-74-1	ND	0.1
D033	Hexachlorobutadiene	87-68-3	ND	0.1
D034	Hexachloroethane	67-72-1	ND	0.1
D036	Nitrobenzene	98-95-3	ND	0.1
D037	Pentachlorophenol	87-86-5	ND	0.5
D038	Pyridine	110-86-1	ND	0.1
D041	2,4,5-Trichlorophenol	95-95-4	ND	0.5
D042	2,4,6-Trichlorophenol	88-06-2	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
2 Eluorophenol	1*	21-110
2-Fluorophenol Phenol-d5	10	10-110
Nitrobenzene-d5	55	35-114
2-Fluorobiphenyl	61	43-116
2,4,6-Tribromophenol	3*	10-123
Terphenyl-d14	67	33-141

ND = Not detected

* = Outside QC limits

Page 1 of 1

000019

Modified Method 8270

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project: 3-0887-303 Third Ward - SSPI Sample Matrix: TCLP Leachate Sample wt/vol: 100 mL Level (Low/Med): Low Extraction (SepF/Cont/Sonc): Cont GPC Cleanup (Y/N): N

Sample ID

Composite #10

Date Collected: 04-28-95 Date Extracted: 05-03-95 Date Analyzed: 05-08-95 Lab Sample ID: 95-04-222-19 Lab File ID: 50895S14.D Final Volume: 1 mL

EPA HW Number	Analyte	CAS Number	Result (mg/L)	Detection Limit (mg/L)
				<u>_</u>
D023	o-Cresol	95-48-7	ND	0.1
D024	m-Cresol	108-39-4	ND	0.1
D025	p-Cresol	106-44-5	ND	0.1
D026	Total o,m,p-Cresol		ND	0.1
D027	1,4-Dichlorobenzene	106-46-7	ND	0.1
D030	2,4-Dinitrotoluene	121-14-2	ND	0.1
D032	Hexachlorobenzene	118-74-1	ND	0.1
D033	Hexachlorobutadiene	87-68-3	ND	0.1
D034	Hexachloroethane	67-72-1	ND	0.1
D036	Nitrobenzene	98-95-3	ND	0.1
D037	Pentachlorophenol	87-86-5	ND	0.5
D038	Pyridine	110-86-1	ND	0.1
D041	2,4,5-Trichlorophenol	95-95-4	ND	0.5
D042	2,4,6-Trichlorophenol	88-06-2	ND	0.1

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits	
		01.110	
2-Fluorophenol	5*	21-110	
Phenol-d5	17	10-110	
Nitrobenzene-d5	69	35-114	
2-Fluorobiphenyl	73	43-116	
2,4,6-Tribromophenol	. 24	10-123	
Terphenyl-d14	78	33-141	

ND = Not detected

* = Outside QC limits

000020

ALKALI CONTENT

Lab Name: Analytical Technologies, Inc.

Client Name: Remediation Technologies, Inc.

Client Project ID: 3-0887-303/Third Ward MGP-SSPI

Lab Sample ID: 95-05-005-01.

:<u>:</u> .

Sample ID

Composite 11

Date Collected: 04/29/95

Date Reported: 05/17/95

Analyte	Concentration	Units
pH	7.3	
Electrical Conductivity	3.3	mmhos/cm
Calcium	22	meg/L
Magnesium	15.6	meg/L
Sodium	4.7	meg/L
Potassium	1.9	meg/L
Sodium Adsorption Ratio	1.1	· -

ALKALI CONTENT

Lab Name: Analytical Technologies, Inc.

Client Name: Remediation Technologies, Inc.

Client Project ID: 3-0887-303/Third Ward MGP-SSPI

Lab Sample ID: 95-05-005-02

Sample ID

Composite #12

Date Collected: 04/29/95

Date Reported: 05/17/95

Analyte	Concentration	Units
pH	7.5	
Electrical Conductivity	3.4	mmhos/cm
Calcium	26.4	meg/L
Magnesium	14.0	meg/L
Sodium	5.5	meg/L
Potassium	1.3	meg/L
Sodium Adsorption Ratio	1.2	-

丛

ALKALI CONTENT

Lab Name: Analytical Technologies, Inc.

Client Name: Remediation Technologies, Inc.

Client Project ID: 3-0887-303/Third Ward MGP-SSPI

Lab Sample ID: 95-05-005-03 ·

:<u>-</u>

Sample ID

Composite #13

Date Collected: 04/29/95

Date Reported: 05/17/95

Analyte	Concentration	Units
pH	7.5	
Electrical Conductivity	1.5	mmhos/cm
Calcium	5.5	meg/L
Magnesium	11.5	meg/L
Sodium	2.7	meg/L
Potassium	2.7	meg/L
Sodium Adsorption Ratio	0.9	

ALKALI CONTENT

Lab Name: Analytical Technologies, Inc.

Client Name: Remediation Technologies, Inc.

Client Project ID: 3-0887-303/Third Ward MGP-SSPI

Lab Sample ID: 95-05-005-04

Sample ID

Composite #14

Date Collected: 04/26/95

Date Reported: 05/17/95

Analyte	Concentration	Units	
pH	7.7		
Electrical Conductivity	3.6	mmhos/cm	
Calcium	12.5	meg/L	
Magnesium	23.8	meg/L	
Sodium	6.3	meg/L	
Potassium	6.3	meg/L	
Sodium Adsorption Ratio	1.5		

ALKALI CONTENT

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303/Third Ward MGP-SSPI Lab Sample ID: 95-05-005-05

4

Sample ID

Composite #15

Date Collected: 04/29/95

Date Reported: 05/17/95

Analyte	Concentration	Units
	0.1	
pH	8.1	
Electrical Conductivity	1.2	mmhos/cm
Calcium	2.4	meg/L
Magnesium	4.9	meg/L
Sodium	6.2	meg/L
Potassium	6.2	meg/L
Sodium Adsorption Ratio	3.2	-

SILICON OXIDE

Lab Name: Analytical Technologies, Inc.Date Collected: 04/29/95Client Name: Remediation Technologies, Inc.Date Reported: 05/17/95Client Project ID: 3-0087-303/Third Ward MPG-SSPISample Matrix: SoilLab Workorder Number: 95-05-005Sample Matrix: Soil

Sample ID	Lab Sample ID	Silicon Oxide %
Composite #11	95-05-005-01	65
Composite #12	95-05-005-02	53
Composite #13	95-05-005-03	43
Composite #14	95-05-005-04	59
Composite #15	95-05-005-05	55

ALUMINUM OXIDE

-2

Lab Name: Analytical Technologies, Inc.	Date Collected:	04/29/95
Client Name: Remediation Technologies, Inc.	Date Reported:	05/17/95
Client Project ID: 3-0087-303/Third Ward MPG-SSPI	Sample Matrix:	Soil
Lab Workorder Number: 95-05-005		

Sample ID	Lab Sample ID	Aluminum Oxide %
Composite #11	95-05-005-01	8.8
Composite #12	95-05-005-02	7.1
Composite #13	95-05-005-03	5.1
Composite #14	95-05-005-04	7.7
Composite #15	95-05-005-05	8.9

INORGANIC ANALYSES NONMETALS

Lab Name: Analytical Technologies, Inc.

Client Name: Remediation Technologies, Inc.

Client Project ID: 3-0887-303 / Third Ward MGP-SSPI

Lab Sample ID:95-05-005-01

Sample ID

Composite #11

Date Collected: 04/29/95

Sample Matrix: Soil

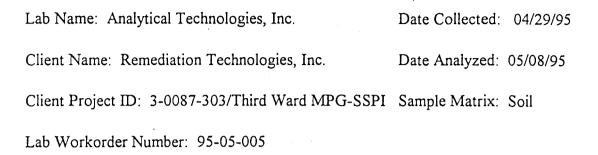
Analyte	Method*	Concentration (mg/kg)**	Detection Limit (mg/kg)	Analysis Date
Chloride	4500-Cl B.	ND	120	05/10/95

ND = Not Detected

* Methods are from Standard Methods for the Examination of Water and Wastewater, 17th edition 1989

TOTAL ORGANIC CARBON

Lab Name: Analytical Technologies, Inc.Date Collected: 04/29/95Client Name: Remediation Technologies, Inc.Date Analyzed: 05/10/95Client Project ID: 3-0887-303 / Third Ward MGP-SSPISample Matrix: SoilLab Workorder Number: 95-05-005Sample Matrix: Soil


Results are reported on a dry weight basis.

Sample ID	Lab Sample ID	TOC %	Reporting Limit %
			0.01
Reagent Blank	95-05-005-RB	ND	0.01
Composite #11	95-05-005-01	1.1	0.01
Composite #12	95-05-005-02	3.3	0.01
Composite #13	95-05-005-03	7.6	0.01
Composite #14	95-05-005-04	4.0	0.01
Composite #15	95-05-005-05	2.9	0.01

ND = Not Detected

: '

PERCENT MOISTURE

Sample ID	Lab Sample ID	% Moisture
Composite #11	95-05-005-01	16.6
Composite #12	95-05-005-02	15.3
Composite #13	95-05-005-03	25.3
Composite #14	95-05-005-04	20.0
Composite #15	95-05-005-05	16.2

丛

INORGANIC ANALYSES NONMETALS

Lab Name: Analytical Technologies, Inc.

Client Name: Remediation Technologies, Inc.

Client Project ID: 3-0887-303 / Third Ward MGP-SSPI

Lab Sample ID:95-05-005-04

:2

Sample ID

Composite #14

Date Collected: 04/29/95

Sample Matrix: Soil

Analyte	Method*	Concentration (mg/kg)**	Detection Limit (mg/kg)	Analysis Date
Chloride	4500-Cl B.	ND	130	05/10/95

ND = Not Detected

* Methods are from Standard Methods for the Examination of Water and Wastewater, 17th edition 1989

INORGANIC ANALYSES NONMETALS

Lab Name: Analytical Technologies, Inc.

Client Name: Remediation Technologies, Inc.

Client Project ID: 3-0887-303 / Third Ward MGP-SSPI

Lab Sample ID:95-05-005-05

Sample ID

Composite #15

Date Collected: 04/29/95

Sample Matrix: Soil

Analyte	Method*	Concentration (mg/kg)**	Detection Limit (mg/kg)	Analysis Date
Chloride	4500-Cl B.	ND	120	05/10/95

ND = Not Detected

* Methods are from Standard Methods for the Examination of Water and Wastewater, 17th edition 1989

丛

INORGANIC ANALYSES NONMETALS

Lab Name: Analytical Technologies, Inc.

Client Name: Remediation Technologies, Inc.

Client Project ID: 3-0887-303 / Third Ward MGP-SSPI

Lab Sample ID:95-05-005-02

-2

Sample ID

Composite #12

Date Collected: 04/29/95

Sample Matrix: Soil

Analyte	Method*	Concentration (mg/kg)**	Detection Limit (mg/kg)	Analysis Date
Chloride	4500-Cl B.	ND	120	05/10/95

ND = Not Detected

* Methods are from Standard Methods for the Examination of Water and Wastewater, 17th edition 1989

INORGANIC ANALYSES NONMETALS

Lab Name: Analytical Technologies, Inc.

Client Name: Remediation Technologies, Inc.

Client Project ID: 3-0887-303 / Third Ward MGP-SSPI

Lab Sample ID:95-05-005-03

Sample ID

Composite #13

Date Collected: 04/29/95

Sample Matrix: Soil

Analyte	Method*	Concentration (mg/kg)**	Detection Limit (mg/kg)	Analysis Date
Chloride	4500-Cl B.	ND	130	05/10/95

ND = Not Detected

* Methods are from Standard Methods for the Examination of Water and Wastewater, 17th edition 1989

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303/Third Ward MGP-SSPI Lab Sample ID: 95-05-005-01 Sample Matrix: Soil

Results are reported on a dry weight basis.

:<u>-</u>

Sample ID
Composite #11
Date Collected: 04/29/95
Prep Date: 05/09/95
Date Analyzed: 05/09,12/95
Percent Solids: 83%

	Modified	Concentration	Detection
Analyte	Method	(mg/kg)	Limits (mg/kg)
Antimony	6010	ND	3
Arsenic	6010	4	2
Barium	6010	50	20
Beryllium	6010	ND	0.6
Cadmium	6010	ND	0.6
Chromium	6010	11	2
Copper	6010	21	2
Lead*	6010	36	0.4
Nickel	6010	13	3
Potassium*	6010	1,800	200
Selenium	6010	1.2	0.6
Thallium	6010	ND	2

ND = Not Detected

丛

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303/Third Ward MGP-SSPI Lab Sample ID: 95-05-005-02 Sample Matrix: Soil

Results are reported on a dry weight basis.

1

Sample ID Composite #12 Date Collected: 04/29/95 Prep Date: 05/09/95 Date Analyzed: 05/09,12/95 Percent Solids: 85%

	Modified	Concentration	Detection
Analyte	Method	(mg/kg)	Limits (mg/kg)
			-
Antimony	6010	ND	2
Arsenic	6010	5	1
Barium	6010	320	20
Beryllium	6010	ND	0.6
Cadmium	6010	0.8	0.6
Chromium	6010	13	1
Copper	6010	21	1
Lead*	6010	180	0.4
Nickel	6010	10	2
Potassium*	6010	1,600	200
Selenium	6010	1.0	0.6
Thallium	6010	ND	1

ND = Not Detected

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303/Third Ward MGP-SSPI Lab Sample ID: 95-05-005-03 Sample Matrix: Soil

Results are reported on a dry weight basis.

:2

Sample ID Composite #13 Date Collected: 04/29/95

Prep Date: 05/09/95

Date Analyzed: 05/09,12/95

Percent Solids: 75%

· ·		Concentration	Detection
Analyte	Method	(mg/kg)	Limits (mg/kg)
Antimony	6010	ND	3
Arsenic	6010	5	1
Barium	6010	50	20
Beryllium	6010	ND	0.7
Cadmium	6010	ND	0.7
Chromium	6010	9	1
Copper	6010	24	1 .
Lead*	6010	120	0.4
Nickel	6010	7	3
Potassium*	6010	1,100	200
Selenium	6010	1.8	0.7
Thallium	6010	ND	1

ND = Not Detected

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303/Third Ward MGP-SSPI Lab Sample ID: 95-05-005-04 Sample Matrix: Soil

Results are reported on a dry weight basis.

1

Sample ID Composite #14 Date Collected: 04/29/95 Prep Date: 05/09/95 Date Analyzed: 05/09,12/95 Percent Solids: 80%

Analyte	Method	Concentration (mg/kg)	Detection Limits (mg/kg)
		(8/8/	
Antimony	6010	ND	3
Arsenic	6010	8	1
Barium	6010	50	20
Beryllium	6010	ND	0.6
Cadmium	6010	0.6	0.6
Chromium	6010	13	1
Copper	6010	22	1
Lead*	6010	780	0.4
Nickel	6010	14	3
Potassium*	6010	1,700	200
Selenium	6010	2.9	0.6
Thallium	6010	ND	1

ND = Not Detected

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0887-303/Third Ward MGP-SSPI Lab Sample ID: 95-05-005-05 Sample Matrix: Soil

Results are reported on a dry weight basis.

::

Sample ID Composite #15 Date Collected: 04/29/95 Prep Date: 05/09/95 Date Analyzed: 05/09,12/95 Percent Solids: 84%

		Concentration	Detection
Analyte	Method	(mg/kg)	Limits (mg/kg)
Antimony	6010	ND	2
Arsenic	6010	7	1
Barium	6010	80	20
Beryllium	6010	ND	0.6
Cadmium	6010	0.7	0.6
Chromium	6010	29	1
Copper	6010	40	1
Lead*	6010	160	0.4
Nickel	6010	21	2
Potassium*	6010	1,900	200
Selenium	6010	1.2	0.6
Thallium	6010	ND	1

ND = Not Detected

TOTAL PETROLEUM HYDROCARBONS BY IR Method 418.1

jr's

Lab Name: Analytical Technologies, Inc.	Date Collected: 04/29/95
Client Name: Remediation Technologies, Inc.	Date Extracted: 05/10/95
Client Project ID: 3-0887-303/Third Ward MGP-SSPI	Date Analyzed: 05/11/95
Lab Workorder Number: 95-05-005	Sample Matrix: Soil

Results are reported on dry weight basis.

-1

Sample ID	Lab Sample ID	Final Volume (mL)	TPH (mg/kg)	Detection Limit (mg/kg)
Reagent Blank	SRB1 05/10/95	40	ND	10
Composite #11	95-05-005-01	400	590	120
Composite #12	95-05-005-02	4000	1500	1200
Composite #13	95-05-005-03	4000	5500	1300
Composite #14	95-05-005-04	400	5800	130
Composite #15	95-05-005-05	400	2200	120

ND=Not detected at or above the client requested detection limit.

GRAIN SIZE

Lab Name: Analytical Technologies, Inc. Client Name: Remediation Technologies, Inc. Client Project ID: 3-0087-303/Third Ward MPG-SSPI Lab Workorder Number: 95-05-005

• 2

Date Collected:04/29/95Date Reported:05/17/95Sample Matrix:Soil

Sample ID	Lab Sample ID	Sand %	Silt %	Clay %	Texture
Composite #11	95-05-005-01	68	17	15	SandyLoam
Composite #12	95-05-005-02	77	11	12	SandyLoam
Composite #13	95-05-005-03	81	9	10	SandyLoam
Composite #14	95-05-005-04	78	10	12	SandyLoam
Composite #15	95-05-005-05	70	10	20	SandyLoam

BULK DENSITY

:1 .

Lab Name: Analytical Technologies, Inc.Date Collected: 04/29/95Client Name: Remediation Technologies, Inc.Date Reported: 05/17/95Client Project ID: 3-0087-303/Third Ward MPG-SSPISample Matrix: SoilLab Workorder Number: 95-05-005Sample Matrix: Soil

Sample ID	Lab Sample ID	Bulk Density g/cm3
	95-05-005-01	17
Composite #11		1.7
Composite #12	95-05-005-02	1.6
Composite #13	95-05-005-03	1.2
Composite #14	95-05-005-04	2.0
Composite #15	95-05-005-05	1.9

POLYNUCLEAR AROMATIC HYDROCARBONS Method 8310

	Sample ID	
Lab Name: Analytical Technologies Inc.		
Client Name: Retec	W-13	
Client Project ID: Third Ward MGP Site 3-0887-303		
Lab Sample ID: 95-10-155-06	Date Collected:	10/15/95
	Date Extracted:	10/20/95

Sample Matrix: Water Cleanup: N/A Date Analyzed: 10/26/95 Date Analyzed: 11/01/95

Sample Volume: 1000 mL Final Volume: 1 mL

Analyte	Conc (ug/L)	Detection Limit (ug/L)
Naphthalene	38 *	5 *
Acenaphthylene	ND	1.0
1-Methylnaphthalene	240 **	100 **
2-Methylnaphthalene	ND	1.0
Acenaphthene	. 73 *	10 *
Fluorene	29 **	10 **
Phenanthrene	27 **	5 **
Anthracene	3.0 *	1.0 *
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	0.015 J	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	92	15 - 117

ND = Not Detected at or above client requested detection limit.

* = Detection limit and sample concentration base on a 1:10 fold dilution of extract.

**= Detection limit and sample concentration base on a 1:100 fold dilution of extract.

J = Estimated value. Below requested detection limits.

Lab Name: Analytical Technologies of Colorado, Inc. Client Name: Retec
Client Project ID: Third Ward MGP Site 3-0887-303
Lab Sample ID: 95-10-102-08

Sample Matrix: Water Cleanup: N/A Sample ID

W-14

Date Collected: 10/11/95 Date Extracted: 10/19/95 Date Analyzed: 11/8/95

Sample Volume: 1000 mL Final Volume: 1 mL

		Detection
Analyte	Conc (ug/L)	Limit (ug/L)
Naphthalene	6400 +	500 +
Acenaphthylene	ND	1.0
1-Methylnaphthalene	480 **	100 **
2-Methylnaphthalene	530 **	100 **
Acenaphthene	46 *	10 *
Fluorene	83 **	10.00 **
Phenanthrene	0.79	0.050
Anthracene	ND	0.10
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	ND	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	90	15 - 117

ND = Not Detected at or above client requested detection limit.

* = Sample concentration and detection limits adjusted for 1:10 fold dilution

** = Sample concentration and detection limits adjusted for 1:100 fold dilution

+ = Sample concentration and detection limits adjusted for 1:1000 fold dilution

0000.0

Method 8310

	Sample I	U
Lab Name: Analytical Technologies Inc. Client Name: Retec	W-16	
Client Project ID: Third Ward MGP Site 3-0887-303		
Lab Sample ID: 95-10-155-04	Date Collected:	10/16/95
	Date Extracted:	10/20/95
Sample Matrix: Water	Date Analyzed	10/26/95

Cleanup: N/A

Date Analyzed: 10/26/95 Date Analyzed: 11/01/95

C.

Sample Volume: 1000 mL Final Volume: 1 mL

Analyte	Conc (ug/L)	Detection Limit (ug/L)
Naphthalene	2000 +	500 +
Acenaphthylene	ND	1.0
1-Methylnaphthalene	180 *	10 *
2-Methylnaphthalene	220 **	100 **
Acenaphthene	45 J**	100 **
Fluorene	11 *	1.0 *
Phenanthrene	0.62	0.050
Anthracene	0.029 J	0.10
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	0.012 J	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	89	15 - 117

ND = Not Detected at or above client requested detection limit.

* = Detection limit and sample concentration base on a 1:10 fold dilution of extract.

** = Detection limit and sample concentration base on a 1:100 fold dilution of extract.

+ = Detection limit and sample concentration base on a 1:1000 fold dilution of extract. 0.0.1.4

J = Estimated value. Below requested detection limits.

Lab Name: Analytical Technologies of Colorado, Inc. Client Name: Retec Client Project ID: Third Ward MGP Site -- 3-0887-303 Lab Sample ID: 95-10-102-07

Sample Matrix: Water Cleanup: N/A Sample ID

W-19

Date Collected: 10/12/95 Date Extracted: 10/19/95 Date Analyzed: 11/8/95

Sample Volume: 1000 mL Final Volume: 1 mL

. 00019

Analyte	Conc (ug/L)	Detection Limit (ug/L)
Naphthalene	40 *	5.0 *
Acenaphthylene	ND	1.0
1-Methylnaphthalene	5.2	1.0
2-Methylnaphthalene	2.3	1.0
Acenaphthene	1.8	1.0
Fluorene	2.9 *	1.0 *
Phenanthrene	ND	0.050
Anthracene	ND	0.10
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	ND	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	93	15 - 117

ND = Not Detected at or above client requested detection limit.

* = Sample concentration and detection limits adjusted for 1:10 fold dilution

Method 8310

Lab Name: Analytical Technologies Inc. Client Name: Retec Client Project ID: Third Ward MGP Lab Sample ID: 95-10-124-05

Sample Matrix: Water Cleanup: N/A Sample ID

W-20S

Date Collected: 10/13/95 Date Extracted: 10/20/95 Date Analyzed: 10/26,31/95

Sample Volume: 1000 mL Final Volume: 1 mL

Analyte	Conc (ug/L)	Detection Limit (ug/L)
Naphthalene	230 **	50 **
Acenaphthylene	ND ND	1.0
1-Methylnaphthalene	190 *	1.0 *
2-Methylnaphthalene	ND	1.0
Acenaphthene	40 *	10 *
Fluorene	72 **	10 **
Phenanthrene	1.3 *	0.50 *
Anthracene	ND	0.10
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	ND	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	87	15 - 117

ND = Not Detected at or above client requested detection limit.

* = Sample concentration and detection limits adjusted for 1:10 fold dilution.

** = Sample concentration and detection limits adjusted for 1:100 fold dilution.

Lab Name: Analytical Technologies Inc. Client Name: Retec Client Project ID: Third Ward MGP Lab Sample ID: 95-10-124-04

Sample Matrix: Water Cleanup: N/A Sample ID

W-201

Date Collected: 10/13/95 Date Extracted: 10/20/95 Date Analyzed: 10/26/95 Date Analyzed: 11/03/95

Sample Volume: 1000 mL Final Volume: 10 mL

		Detection
Analyte	Conc (ug/L)	Limit (ug/L)
Naphthalene	8000 **	500 **
Acenaphthylene	ND	10
1-Methylnaphthalene	630 *	100 *
2-Methylnaphthalene	780 *	100 *
Acenaphthene	ND	10
Fluorene	47 *	10 *
Phenanthrene	30 *	5.0 *
Anthracene	4.3	1.0
Fluoranthene	ND	1.0
Pyrene	ND	0.50
Benzo(a)anthracene	ND	0.50
Chrysene	ND	0.50
Benzo(b)fluoranthene	ND	1.0
Benzo(k)fluoranthene	ND	0.50
Benzo(a)pyrene	ND	0.50
Dibenzo(a,h)anthracene	ND	1.0
Benzo(g,h,i)perylene	ND	1.0
Indeno(1,2,3-c,d)pyrene	ND	1.0

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	87	15 - 117

ND = Not Detected at or above client requested detection limit.

* = Sample concentration and detection limits adjusted for 1:100 fold dilution.

** = Sample concentration and detection limits adjusted for 1:1000 fold dilution.

Lab Name: Analytical Technologies of Colorado, Inc. Client Name: Retec Client Project ID: Third Ward MGP Site -- 3-0887-303 Lab Sample ID: 95-10-102-10

Sample Matrix: Water Cleanup: N/A Sample ID

W-22S

Date Collected: 10/11/95 Date Extracted: 10/19/95 Date Analyzed: 11/8/95

Sample Volume: 1000 mL Final Volume: 10 mL

Analyte	Conc (ug/L)	Detection Limit (ug/L)
Naphthalene	32	5.0
Acenaphthylene	ND	10
1-Methylnaphthalene	310 *	100 *
2-Methylnaphthalene	ND	. 10
Acenaphthene	95	10
Fluorene	30 *	10.0 *
Phenanthrene	ND	0.50
Anthracene	ND	1.0
Fluoranthene	ND	1.0
Pyrene	ND	0.50
Benzo(a)anthracene	ND	0.50
Chrysene	ND	0:50
Benzo(b)fluoranthene	ND	1.0
Benzo(k)fluoranthene	ND	0.50
Benzo(a)pyrene	ND	0.50
Dibenzo(a,h)anthracene	ND	1.0
Benzo(g,h,i)perylene	ND	1.0
Indeno(1,2,3-c,d)pyrene	ND	1.0

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	88	15 - 117

ND = Not Detected at or above client requested detection limit.

* = Sample concentration and detection limits adjusted for 1:10 0 dilution

	Sample I	D
Lab Name: Analytical Technologies Inc.		
Client Name: Retec	W-221	
Client Project ID: Third Ward MGP Site 3-0887-303		
Lab Sample ID: 95-10-155-03	Date Collected:	10/16/9
	Date Extracted	10/20/9

Sample Matrix: Water Cleanup: N/A Date Collected: 10/16/95 Date Extracted: 10/20/95 Date Analyzed: 10/26,31/95

Sample Volume: 1000 mL Final Volume: 1 mL

00013

Analyte	Conc (ug/L)	Detection Limit (ug/L)
Naphthalene	4000 +	500 +
Acenaphthylene	ND	1.0
1-Methylnaphthalene	170 *	10 *
2-Methylnaphthalene	190 **	100 **
Acenaphthene	ND	1.0
Fluorene	ND	0.10
Phenanthrene	0.24	0.050
Anthracene	ND	0.10
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	ND	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	73	15 - 117

ND = Not Detected at or above client requested detection limit.

* = Detection limit and sample concentration base on a 1:10 fold dilution of extract.

****** = Detection limit and sample concentration base on a 1:100 fold dilution of extract.

+ = Detection limit and sample concentration base on a 1:1000 fold dilution of extract.

Method 8310

	Sample ID
Lab Name: Analytical Technologies of Colorado, Inc. Client Name: Retec	W-23S
Client Project ID: Third Ward MGP Site 3-0887-303	
Lab Sample ID: 95-10-102-02	Date Collected: 10/12/95
	Date Extracted: 10/19/95
Sample Matrix: Water Cleanup: N/A	Date Analyzed: 11/8/95

Sample Volume: 1000 mL Final Volume: 1 mL

Analyte	Conc (ug/L)	Detection Limit (ug/L)
Naphthalene	5100 **	500 **
Acenaphthylene	ND	1.0
1-Methylnaphthalene	360 *	100 *
2-Methylnaphthalene	460 *	100 *
Acenaphthene	ND	1.0
Fluorene	27 *	10 *
Phenanthrene	ND	0.050
Anthracene	ND	0.10
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	ND	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	. 0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	89	15 - 117

ND = Not Detected at or above client requested detection limit.

* = Sample concentration and detection limits adjusted for 1:100 fold dilution

** = Sample concentration and detection limits adjusted for 1:1000 fold dilution

. 00014

Sample ID

Method 8310

Lab Name: Analytical Technologies Inc. Client Name: Retec Client Project ID: Third Ward MGP Lab Sample ID: 95-10-124-01

Sample Matrix: Water Cleanup: N/A Sample ID

W-25S

Date Collected: 10/13/95 Date Extracted: 10/20/95 Date Analyzed: 10/26.31/95

Sample Volume: 1000 mL Final Volume: 10 mL

Analyte	Conc (ug/L)	Detection Limit (ug/L)
Naphthalene	4300 **	500 **
Acenaphthylene	ND	10
1-Methylnaphthalene	470 *	100 *
2-Methylnaphthalene	60	10
Acenaphthene	160 *	100 *
Fluorene	120 *	10 *
Phenanthrene	9.2	. 0.50
Anthracene	ND	1.0
Fluoranthene	ND	1.0
Pyrene	ND	0.50
Benzo(a)anthracene	ND	0.50
Chrysene	ND	0.50
Benzo(b)fluoranthene	ND	1.0
Benzo(k)fluoranthene	ND	0.50
Benzo(a)pyrene	ND	0.50
Dibenzo(a,h)anthracene	ND	1.0
Benzo(g,h,i)perylene	ND	1.0
Indeno(1,2,3-c,d)pyrene	ND	1.0

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	87	15 - 117

ND = Not Detected at or above client requested detection limit.

* = Sample concentration and detection limits adjusted for 1:100 fold dilution.

****** = Sample concentration and detection limits adjusted for 1:1000 fold dilution.

Lab Name: Analytical Technologies of Colorado, Inc. Client Name: Retec W-26S Client Project ID: Third Ward MGP Site -- 3-0887-303 Lab Sample ID: 95-10-102-05

Sample Matrix: Water Cleanup: N/A

Sample ID

Date Collected: 10/12/95 Date Extracted: 10/19/95 Date Analyzed: 11/8/95

Sample Volume: 1000 mL Final Volume: 1 mL

- JC 617

Analyte	Conc (ug/L)	Detection Limit (ug/L)
Naphthalene	3.7	0.50
Acenaphthylene	ND	1.0
1-Methylnaphthalene	2.6	1.0
2-Methylnaphthalene	ND	1.0
Acenaphthene	36 *	10 *
Fluorene	17 **	10 **
Phenanthrene	ND	0.050
Anthracene	ND	0.10
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	ND	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	85	15 - 117

ND = Not Detected at or above client requested detection limit.

* = Sample concentration and detection limits adjusted for 1:10 fold dilution

** = Sample concentration and detection limits adjusted for 1:100 fold dilution

	Sample ID	
Lab Name: Analytical Technologies of Colorado, Inc.		
Client Name: Retec	W-261	
Client Project ID: Third Ward MGP Site 3-0887-303		
Lab Sample ID: 95-10-102-06	Date Collected:	10/12/95
	Date Extracted:	10/19/95
Sample Matrix: Water	Date Analyzed:	11/8/95

Cleanup: N/A

Sample Volume: 1000 mL Final Volume: 1 mL

		Detection
Analyte	Conc (ug/L)	Limit (ug/L)
Naphthalene	ND	0.50
Acenaphthylene	ND	1.0
1-Methylnaphthalene	ND	1.0
2-Methylnaphthalene	ND	1.0
Acenaphthene	ND	1.0
Fluorene	ND	0.10
Phenanthrene	ND	0.050
Anthracene	ND	0.10
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	ND	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	92	15 - 117

ND = Not Detected at or above client requested detection limit.

Method 8310 ·

Lab Name: Analytical Technologies Inc.Sample IDClient Name: RetecW-27DClient Project ID: Third Ward MGP Site -- 3-0887-303Date Collected: 10/15/95Lab Sample ID: 95-10-155-01Date Collected: 10/15/95Date Extracted: 10/20/95

Sample Matrix: Water Cleanup: N/A

Sample Volume: 1000 mL Final Volume: 1 mL

Date Analyzed: 10/26/95

Analyte	Conc (ug/L)	Detection Limit (ug/L)
Naphthalene	5.5	0.50
Acenaphthylene	ND	1.0
1-Methylnaphthalene	ND	1.0
2-Methylnaphthalene	ND	1.0
Acenaphthene	ND	1.0
Fluorene	0.042 J	0.10
Phenanthrene	ND	0.050
Anthracene	ND	0.10
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	ND	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	91	15 - 117

ND = Not Detected at or above client requested detection limit.

J = Estimated value. Below requested detection limits.

Method 8310

Lab Name: Analytical Technologies of Colorado, Inc. Client Name: Retec Client Project ID: Third Ward MGP Site -- 3-0887-303 Lab Sample ID: 95-10-102-03

Sample Matrix: Water

Cleanup: N/A

Sample ID

W-41S

Date Collected: 10/12/95 Date Extracted: 10/19/95 Date Analyzed: 11/8/95

Sample Volume: 1000 mL Final Volume: 1 mL

		Detection
Analyte	Conc (ug/L)	Limit (ug/L)
Naphthalene	95 *	5.0 *
Acenaphthylene	ND	1.0
1-Methylnaphthalene	23 *	10 *
2-Methylnaphthalene	12	1.0
Acenaphthene	5.5	1.0
Fluorene	2.7 *	1.0 *
Phenanthrene	ND	0.050
Anthracene	ND	0.10
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	ND	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	.94	15 - 117

ND = Not Detected at or above client requested detection limit.

* = Sample concentration and detection limits adjusted for 1:10 fold dilution

Lab Name: Analytical Technologies of Colorado, Inc. Client Name: Retec Client Project ID: Third Ward MGP Site -- 3-0887-303 Lab Sample ID: 95-10-102-01RX Sample ID

W-41D

Date Collected: 10/12/95 Date Extracted: 10/24/95 Date Analyzed: 10/27/95

Sample Matrix: Water Cleanup: N/A

> Sample Volume: 1000 mL Final Volume: 1 mL

		Detection
Analyte	Conc (ug/L)	Limit (ug/L)
Naphthalene	ND	0.50
Acenaphthylene	ND	1.0
1-Methylnaphthalene	ND	1.0
2-Methylnaphthalene	ND	1.0
Acenaphthene	ND	1.0
Fluorene	ND	0.10
Phenanthrene	ND	0.050
Anthracene	ND	0.10
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	ND	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	92	15 - 117

ND = Not Detected at or above client requested detection limit.

Method 8310

Lab Name: Analytical Technologies Inc.Sample IDClient Name: RetecW-42DClient Project ID: Third Ward MGP Site -- 3-0887-303Date Collected: 10/15/95Lab Sample ID: 95-10-155-02Date Collected: 10/15/95

Sample Matrix: Water Cleanup: N/A Date Collected: 10/15/95 Date Extracted: 10/20/95 Date Analyzed: 10/26/95

Sample Volume: 1000 mL Final Volume: 1 mL

Analyte	Conc (ug/L)	Detection Limit (ug/L)
Naphthalene	ND	0.50
Acenaphthylene	ND	1.0
1-Methylnaphthalene	26 *	10 *
2-Methylnaphthalene	ND	1.0
Acenaphthene	ND	1.0
Fluorene	2.0 *	1.0 *
Phenanthrene	0.035 J	0.050
Anthracene	ND	0.10
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	ND	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	91	15 - 117

ND = Not Detected at or above client requested detection limit.

* = Detection limit and sample concentration base on a 1:10 fold dilution of extract.

J = Estimated value. Below requested detection limits.

Method 8310

	Sample ID	
Lab Name: Analytical Technologies Inc. Client Name: Retec	W-43D	
Client Project ID: Third Ward MGP Site 3-0887-303		
Lab Sample ID: 95-10-155-08	Date Collected:	10/16/95
	Date Extracted:	10/20/95
Samula Matrix: Watar	Date Analyzadi	10/27/05

Sample Matrix: Water Cleanup: N/A Date Analyzed: 10/27/95 Date Analyzed: 11/01/95

Sample Volume: 1000 mL Final Volume: 10 mL

Analyte	Conc (ug/L)	Detection Limit (ug/L)
Naphthalene	5200 **	500 **
Acenaphthylene	ND	10
1-Methylnaphthalene	540 *	100 *
2-Methylnaphthalene	620 *	100 *
Acenaphthene	ND	10
Fluorene	54 *	10 *
Phenanthrene	9.3	0.50
Anthracene	1.0	1.0
Fluoranthene	ND	1.0
Pyrene	ND	0.50
Benzo(a)anthracene	ND	0.50
Chrysene	ND	0.50
Benzo(b)fluoranthene	ND	1.0
Benzo(k)fluoranthene	ND	0.50
Benzo(a)pyrene	ND	0.50
Dibenzo(a,h)anthracene	ND	1.0
Benzo(g,h,i)perylene	ND	1.0
Indeno(1,2,3-c,d)pyrene	ND	1.0

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	80	15 - 117

ND = Not Detected at or above client requested detection limit.

* = Detection limit and sample concentration base on a 1:10 fold dilution of extract.

** = Detection limit and sample concentration base on a 1:100 fold dilution of extract.

Method 8310

Lab Name: Analytical Technologies Inc.Sample IIClient Name: RetecW-45DClient Project ID: Third Ward MGP Site -- 3-0887-303Date Collected:Lab Sample ID: 95-10-155-07Date Collected:

Sample Matrix: Water Cleanup: N/A Sample ID

Date Collected: 10/16/95 Date Extracted: 10/20/95 Date Analyzed: 10/26/95

Sample Volume: 1000 mL Final Volume: 1 mL

Analyte	Conc (ug/L)	Detection Limit (ug/L)
Naphthalene	ND	0.50
Acenaphthylene	ND	1.0
1-Methylnaphthalene	ND	1.0
2-Methylnaphthalene	ND	1.0
Acenaphthene	ND	1.0
Fluorene	ND	0.10
Phenanthrene	ND	0.050
Anthracene	ND	0.10
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	ND	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	16	15 - 117

ND = Not Detected at or above client requested detection limit.

Lab Name: Analytical Technologies Inc. Client Name: Retec Client Project ID: Third Ward MGP Lab Sample ID: 95-10-124-06

Sample Matrix: Water Cleanup: N/A Sample ID

W-46D

Date Collected: 10/13/95 Date Extracted: 10/20/95 Date Analyzed: 10/26,31/95

Sample Volume: 1000 mL Final Volume: 1 mL

Analyte	Conc (ug/L)	Detection Limit (ug/L)
Naphthalene	200 **	50 **
Acenaphthylene	ND	1.0
1-Methylnaphthalene	21 *	10 *
2-Methylnaphthalene	12	1.0
Acenaphthene	ND	1.0
Fluorene	ND	0.10
Phenanthrene	ND	0.050
Anthracene	ND	0.10
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	ND	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
	05	15 117
2-Chloroanthracene	85	15 - 117

ND = Not Detected at or above client requested detection limit.

* = Sample concentration and detection limits adjusted for 1:10 fold dilution.

****** = Sample concentration and detection limits adjusted for 1:100 fold dilution.

Lab Name: Analytical Technologies of Colorado, Inc. Client Name: Retec Client Project ID: Third Ward MGP Site -- 3-0887-303 Lab Sample ID: 95-10-102-04

Sample Matrix: Water Cleanup: N/A Sample ID

Blind Dup

Date Collected: NA Date Extracted: 10/19/95 Date Analyzed: 11/8/95

Sample Volume: 1000 mL Final Volume: 1 mL

Analyte	Conc (ug/L)	Detection Limit (ug/L)
Naphthalene	69 *	5.0 *
Acenaphthylene	ND	1.0
1-Methylnaphthalene	16	1.0
2-Methylnaphthalene	3.0	1.0
Acenaphthene	4.4	1.0
Fluorene	1.5	0.10
Phenanthrene	ND	0.050
Anthracene	ND	0.10
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	ND	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	95	15 - 117

ND = Not Detected at or above client requested detection limit.

* = Sample concentration and detection limits adjusted for 1:10 fold dilution

Lab Name: Analytical Technologies Inc. Client Name: Retec Client Project ID: Third Ward MGP Lab Sample ID: 95-10-124-02

Sample Matrix: Water Cleanup: N/A Sample ID

Blind Dup 2

Date Collected: 10/13/95 Date Extracted: 10/20/95 Date Analyzed: 10/26,31/95

Sample Volume: 1000 mL Final Volume: 1 mL

Analyte	Conc (ug/L)	Detection Limit (ug/L)
Naphthalene	3500 **	500 **
Acenaphthylene	ND	1.0
1-Methylnaphthalene	310 *	100 *
2-Methylnaphthalene	18	1.0
Acenaphthene	ND	1.0
Fluorene	84 *	10 *
Phenanthrene	0.45	0.050
Anthracene	ND	0.10
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	ND	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	91	15 - 117

ND = Not Detected at or above client requested detection limit.

* = Sample concentration and detection limits adjusted for 1:100 fold dilution.

** = Sample concentration and detection limits adjusted for 1:1000 fold dilution.

Method 8310

Lab Name: Analytical Technologies Inc. Client Name: Retec Client Project ID: Third Ward MGP Lab Sample ID: 95-10-124-03

Sample Matrix: Water Cleanup: N/A Sample ID

Equip. Rinse Blank

Date Collected: 10/13/95 Date Extracted: 10/20/95 Date Analyzed: 10/26/95

Sample Volume: 1000 mL Final Volume: 1 mL

م ک کر کر ک

		Detection
Analyte	Conc (ug/L)	Limit (ug/L)
Naphthalene	ND	0.50
Acenaphthylene	0.65 J	1.0
1-Methylnaphthalene	ND	1.0
2-Methylnaphthalene	1.3	1.0
Acenaphthene	ND	1.0
Fluorene	ND	0.10
Phenanthrene	0.011 J	0.050
Anthracene	ND	0.10
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	ND	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	92	15 - 117

ND = Not Detected at or above client requested detection limit.

Method 8310

	Sample ID	
Lab Name: Analytical Technologies Inc.		
Client Name: Retec	ERB-2	
Client Project ID: Third Ward MGP Site 3-0887-303		
Lab Sample ID: 95-10-155-05	Date Collected: 10/16/95	
	Date Extracted: 10/20/95	

Sample Matrix: Water Cleanup: N/A

Sample Volume: 1000 mL

Date Analyzed: 10/26/95

Final Volume: 1 mL

		Detection
Analyte	Conc (ug/L)	Limit (ug/L)
Naphthalene	0.44 J	0.50
Acenaphthylene	ND	1.0
1-Methylnaphthalene	ND	1.0
2-Methylnaphthalene	0.64 J	1.0
Acenaphthene	ND	1.0
Fluorene	0.051 J	0.10
Phenanthrene	ND	0.050
Anthracene	ND	0.10
Fluoranthene	ND	0.10
Pyrene	ND	0.050
Benzo(a)anthracene	ND	0.050
Chrysene	ND	0.050
Benzo(b)fluoranthene	ND	0.10
Benzo(k)fluoranthene	ND	0.050
Benzo(a)pyrene	ND	0.050
Dibenzo(a,h)anthracene	ND	0.10
Benzo(g,h,i)perylene	ND	0.10
Indeno(1,2,3-c,d)pyrene	ND	0.10

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
	· ·	· · · · · · · · · · · · · · · · · · ·
2-Chloroanthracene	89	15 - 117

ND = Not Detected at or above client requested detection limit.

J = Estimated value. Below requested detection limits.

BTEX ANALYSIS Modified Method 8020

Lab Name: Analytical Technologies, Inc.

Client Name: Remediation Technologies, Inc.

Client Project ID: Third Ward MGP

Lab Workorder Number: 95-10-124

Conc. Surrogate Sample Conc. Conc. Ethyl Conc. Percent Volume Benzene Toluene **Xylenes** Lab Sample Benzene Recovery Date Time Sample ID (ml)(ug/L)(ug/L)(ug/L)(ug/L)Analyzed Analyzed ID (TFT) Reagent Blank WRB1 10/16/95 5.0 < 0.5 < 0.5 < 0.5 < 1.0 99 10/17/95 05:49 5.0 < 0.5 < 0.5 < 0.5 < 1.0 Reagent Blank WRB1 10/17/95 99 13:11 10/17/95 W-25S 95-10-124-01 0.10 3700 43 2300 1300 10/17/95 17:26 101 Blind Dup 2 95-10-124-02 0.10 3600 40 2200 1200 100 10/17/95 15:48 Equip. Rinse Blank 95-10-124-03 5.0 < 0.5 < 0.5 < 0.5 < 1.0 102 10/17/95 06:55 W-20I 0.02 12000 5500 4300 3900 99 10/17/95 14:11 95-10-124-04 W-20S 95-10-124-05 0.20 1300 < 12.5 750 84 100 10/17/95 16:21 0.50 3800 E 9.1 67 < 10 98 10/17/95 16:53 W-46D 95-10-124-06 17000 < 125 W-46D 95-10-124-06DL 0.02 < 125 < 250 98 10/17/95 14:43 Trip Blank 95-10-124-07 5.0 < 0.5 < 0.5 < 0.5 < 1.0 102 10/17/95 06:22

 Ξ = Exceeds calibration range. See dilution.

Date Collected: 10/13/95

Date Analyzed: 10/17/95

Sample Matrix: Water

000009

BTEX ANALYSIS

Modified Method 8020

Lab Name: Analytical Technologies, Inc.

Client Name: Remediation Technologies, Inc.

Client Project ID: Third Ward MGP Site

Lab Workorder Number: 95-10-102

Conc. Surrogate Conc. Sample Conc. Ethyl Conc. Percent Lab Sample Volume Benzene Toluene Benzene Xylenes Recovery Date Time Sample ID ID (ml)(ug/L)(ug/L)(ug/L)(ug/L)(TFT) Analyzed Analyzed Reagent Blank WRB1 10/13/95 5.0 < 0.5 < 0.5 < 0.5 < 1.0 102 11/13/95 16:44 < 0.5 < 0.5 < 0.5 < 1.0 11/18/95 Reagent Blank WRB1 10/18/95 5.0 99 12:21 < 0.5 < 0.5 < 0.5 < 1.0 11/13/95 17:17 W-41D 95-10-102-01 5.0 101 W-23S 0.05 2800 1200 4100 7200 100 11/18/95 15:30 .95-10-102-02 W-41S 93 E 3.3 13 23 116 11/13/95 18:22 95-10-102-03 5.0 W-41S 130 4.8 12 18 103 11/18/95 16:02 95-10-102-03DL 1.0 13 5.0 100 E 2.2 20 117 11/13/95 18:55 Blind Dup 95-10-102-04 Blind Dup 95-10-102-04DL 1.0 110 3.5 10 13 103 11/18/95 16:35 W-26S 95-10-102-05 5.0 130 E 0.8 1.6 4.9 107 11/13/95 19:28 < 2.5 < 5.0 W-26S 95-10-102-05DL 1.0 160 < 2.5 100 11/18/95 17:07 W-26I 5.0 < 0.5 < 0.5 < 0.5 < 1.0 103 11/13/95 20:01 95-10-102-06 11/13/95 20:34 W-19 95-10-102-07 5.0 29 0.7 5.3 6.4 105 4500 E 2600 E W-14 0.25 81 1600 103 11/13/95 21:07 95-10-102-08 W-14 95-10-102-08DL 0.05 7200 78 3300 1300 98 11/18/95 17:40 ERB-1 95-10-102-09 5.0 1.9 1.1 1.3 3.3 104 11/13/95 21:40 W-22S 5.0 71 2.4 69 26 106 11/13/95 22:13 95-10-102-10 < 0.5 **Trip Blank** 5.0 < 0.5 < 0.5 < 1.0 100 11/18/95 14:57 95-10-102-11

E = Exceeds calibration range - see dilution

Date Collected: 10/12/95

Date Analyzed: 10/13,18/95

Sample Matrix: Water

000011

BTEX ANALYSIS

Modified Method 8020

Lab Name: Analytical Technologies, Inc.

Client Name: Remediation Technologies, Inc.

Date Collected: 10/15,16/95

Date Analyzed: 10/20,24,25/95

Sample Matrix: Water

Client Project ID: 3-0887-303

ı.

Lab Workorder Number: 95-10-155

					Conc.		Surrogate		
		Sample	Conc.	Conc.	Ethyl	Conc.	Percent		
	Lab Sample	Volume	Benzene	Toluene	Benzene	Xylenes	Recovery	Date	Time
Sample ID	ID	(ml)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(TFT)	Analyzed	Analyzed
Reagent Blank	WRB1 10/20/95	5.0	< 0.5	< 0.5	< 0.5	< 1.0	100	10/20/95	14:32
Reagent Blank	WRB1 10/23/95	5.0	< 0.5	< 0.5	< 0.5	< 1.0	106	10/24/95	02:25
Reagent Blank	WRB1 10/24/95	5.0	< 0.5	< 0.5	< 0.5	< 1.0	105	10/24/95	19:48
Reagent Blank	WRB1 10/25/95	5.0	< 0.5	< 0.5	< 0.5	< 1.0	105	10/25/95	11:19
W-27D	95-10-155-01	5.0	0.7	< 0.5	7.1	6.4	101	10/20/95	15:37
W-42D	95-10-155-02	5.0	1.7	< 0.5	< 0.5	< 1.0	102	10/20/95	16:09
W-22I	95-10-155-03	0.05	21000 E	5000	4400	3600	102	10/24/95	02:58
W-22I	95-10-155-03 DL	0.005	27000	4200	3300	2900	105	10/25/95	12:58
W-16	95-10-155-04	0.5	1500 E	35	770	210	109	10/20/95	18:19
W-16	95-10-155-04 DL	0.05	4000	70	1300	270	106	10/24/95	23:07
ERB-2	95-10-155-05	5.0	< 0.5	< 0.5	< 0.5	< 1.0	101	10/20/95	16:42
W-13	95-10-155-06	5.0	21	3.3	87 E	40	106	10/24/95	05:08
W-13	95-10-155-06 DL	1.0	22	4.1	100	37	105	10/24/95	04:36
W-45D	95-10-155-07	5.0	< 0.5	< 0.5	< 0.5	< 1.0	100	10/20/95	17:14
W-43D	95-10-155-08	0.05	10000 E	130	2300	2300	105	10/24/95	04:03
W-43D	95-10-155-08 DL	0.02	15000	210	2900	2800	104	10/24/95	23:40
Trip Blank	95-10-155-09	5.0	< 0.5	< 0.5	< 0.5	< 1.0	99	10/20/95	15:04

E = Exceeds calibration range. See dilution.

DL = Dilution

Lab Name: Analytical Technologies, Inc.	Date Collected: 10/13/95
Client Name: Retec	Prep Date: 10/17/95
Client Project ID: Third Ward MGP Site	Date Analyzed: 10/17/95
Lab Workorder Number: 95-10-124	Sample Matrix: Water

Sample ID	Lab Sample ID	Cyanide (mg/L)	Detection Limit (mg/L)
Reagent Blank		ND	0.03
W-25S	95-10-124-01	0.525	0.03
Blind Dup 2	95-10-124-02	0.66	0.03
Equip Rinse Blank	95-10-124-03	ND	0.005
W-20I	95-10-124-04	0.243	0.005
W-20S	95-10-124-05	1.10	0.13
W-46D	95-10-124-06	0.484	0.005

ND = Not Detected

NA = Not Applicable

CYANIDE Method 9010

Lab Name: Analytical Technologies, Inc.	Date Collected: 10/12/95
Client Name: Retec	Prep Date: 10/17/95
Client Project ID: Third Ward MGP Site	Date Analyzed: 10/17/95
Lab Workorder Number: 95-10-102	Sample Matrix: Water

Sample ID	Lab Sample ID	Total Cyanide (mg/L)	Detection Limit (mg/L)
Reagent Blank		ND	0.005
W-41D	95-10-102-01	0.53	0.013
W-23S	95-10-102-02	0.18	0.005
W-41S	95-10-102-03	0.050	0.005
Blind Dup	95-10-102-04	0.038	0.005
W-26S	95-10-102-05	20	0.25
W-26I	95-10-102-06	2.2	0.06
W-19	95-10-102-07	1.1	0.06
W-14	95-10-102-08	1.4	0.03
W-22S	95-10-102-10	3.4	0.06

ND = Not Detected

CYANIDE Weak Acid Dissociable Method 4500I

Lab Name: Analytical Technologies, Inc.	Date Collected: 10/12/95
Client Name: Retec	Prep Date: 10/18/95
Client Project ID: Third Ward MGP Site	Date Analyzed: 10/18/95
Lab Workorder Number: 95-10-124	Sample Matrix: Water

Sample ID	Lab Sample ID	W. A. Dissoc. Cyanide(mg/L)	Detection Limit (mg/L)
Reagent Blank		ND	0.005
W-25S	95-10-124-01	ND	0.005
Blind Dup 2	95-10-124-02	ND	0.005
Equip Rinse Blank	95-10-124-03	NA	0.005
W-20I	95-10-124-04	0.009	0.005
W-20S	95-10-124-05	0.009	0.005
W-46D	95-10-124-06	0.013	0.005

ND = Not Detected

NA = Not Analyzed

CYANIDE Weak Acid Dissociable Method 4500I

Lab Name: Analytical Technologies, Inc.	Date Collected: 10/12/95
Client Name: Retec	Prep Date: 10/18/95
Client Project ID: Third Ward MGP Site	Date Analyzed: 10/18/95
Lab Workorder Number: 95-10-102	Sample Matrix: Water

Sample ID	Lab Sample ID	W. A. Dissoc. Cyanide (mg/L)	Detection Limit (mg/L)
Reagent Blank		ND	0.005
W-41D	95-10-102-01	0.01	0.005
W-23S	95-10-102-02	ND	0.005
W-41S	95-10-102-03	ND	0.005
Blind Dup	95-10-102-04	ND	0.005
W-265	95-10-102-05	0.13	0.005
W-26I	95-10-102-06	0.038	0.005
W-19	95-10-102-07	ND	0.005
W-14	95-10-102-08	0.008	0.005
W-22S	95-10-102-10	0.023	0.005

ND = Not Detected

Lab Name: Analytical Technologies, Inc.

Client Name: Retec

Client Project ID: Third Ward MGP Site

Lab Sample ID: 95-10-155-06

Sample ID	
W-13	

Date Collected: 10/15/95 Prep Date: See Reagent Blank Report Date Analyzed: See Reagent Blank Report

Sample Matrix: Water

Analyte	Method	Concentration (mg/L)	Detection Limit (mg/L)
Nilman - N	353.2	ND	0.1
Nitrate as N			0.1
Ammonia as N	350.1	9.6	3
Total Phosphate as P	365.1	0.35	0.05
Sulfide	376.1	NA	1
Sulfate	375.4	NA	10
Soluble Phosphate as P	365.1	ND	1
Total Cyanide	9010	2.0	0.025 *
Cyanide, Weak Acid Dissoc.	4500I	ND	0.005

ND = Not Detected

NA = Not Analyzed

* Diluted 1:5.

5.75

Lab Name: Analytical Technologies, Inc.

Client Name: Retec

Client Project ID: Third Ward MGP Site

Lab Sample ID: 95-10-155-04

Sample ID	
W-16	

Date Collected: 10/16/95 Prep Date: See Reagent Blank Report Date Analyzed: See Reagent Blank Report

Sample Matrix: Water

Analyte	Method	Concentration (mg/L)	Detection Limit (mg/L)
Total Cyanide	9010	0.39	0.005
Cyanide, Weak Acid Dissoc.	4500I	ND	0.005

ND = Not Detected

Lab Name: Analytical Technologies, Inc.

Client Name: Retec

Client Project ID: Third Ward MGP Site

Lab Sample ID: 95-10-102-05

Sample ID	
W-20S	

Date Collected: 10/13/95 Prep Date: See Reagent Blank Report Date Analyzed: See Reagent Blank Report

Sample Matrix: Water

Analyte	Method	Concentration (mg/L)	Detection Limit (mg/L)
Nitrate as N	353.2	ND	0.1
Ammonia as N	350.1	14	3.0
Total Phosphate as P	365.1	1.3	0.05
Sulfide	376.1	19	1
Sulfate	375.4	330	130
Soluble Phosphate as P	365.1	1.2	0.05

NA = Not Applicable

Lab Name: Analytical Technologies, Inc.

Client Name: Retec

Client Project ID: Third Ward MGP Site

Lab Sample ID: 95-10-155-04

Sample ID
W-20I

Date Collected: 10/13/95 Prep Date: See Reagent Blank Report Date Analyzed: See Reagent Blank Report

Sample Matrix: Water

Analyte	Method	Concentration (mg/L)	Detection Limit (mg/L)
Nitrate as N	353.2	ND	0.1
Ammonia as N	350.1	41	3.0
Total Phosphate as P	365.1	0.55	0.05
Sulfide	376.1	ND	1
Sulfate	375.4	ND	10
Soluble Phosphate as P	365.1	0.55	0.05

ND = Not Detected

Lab Name: Analytical Technologies, Inc.

Client Name: Retec

Client Project ID: Third Ward MGP Site

Lab Sample ID: 95-10-102-02

Sample ID
W-23S

Date Collected: 10/12/95 Prep Date: See Reagent Blank Report Date Analyzed: See Reagent Blank Report

Sample Matrix: Water

Analyte	Method	Concentration (mg/L)	Detection Limit (mg/L)
NO3 as N	353.2	ND	0.1
Ammonia as N	350.1	5.5	1.0
Total Phosphate as P	365.1	0.95	0.05
Sulfide	376.1	ND	1.0
Sulfate	375.4	ND	10
Soluble Phosphate as P	365.1	0.87	0.05

ND = Not Detected

NA = Not Applicable

Lab Name: Analytical Technologies, Inc.

Client Name: Retec

Client Project ID: Third Ward MGP Site

Lab Sample ID: 95-10-155-03

Sample ID	
-----------	--

W-22I

Date Collected: 10/16/95 Prep Date: See Reagent Blank Report Date Analyzed: See Reagent Blank Report

Sample Matrix: Water

Analyte	Method	Concentration (mg/L)	Detection Limit (mg/L)
Nitrate as N	353.2	ND	0.1
Ammonia as N	350.1	37	3.0
Total Phosphate as P	365.1	1.2	0.05
Sulfide	376.1	15	1.0
Sulfate	375.4	ND	10
Soluble Phosphate as P	365.1	1.1	0.05
Total Cyanide	9010	2.4	0.025 *
Cyanide, Weak Acid Dissoc.	4500I	0.008	0.005

ND = Not Detected

NA = Not Applicable

* Diluted 1:5.

5-73 115/46

Lab Name: Analytical Technologies, Inc.

Client Name: Retec

Client Project ID: Third Ward MGP Site

Lab Sample ID: 95-10-124-01

Sample ID		
W-25S		

Date Collected: 10/13/95 Prep Date: See Reagent Blank Report Date Analyzed: See Reagent Blank Report

Sample Matrix: Water

Analyte	Method	Concentration (mg/L)	Detection Limit (mg/L)
Nitrate as N	353.2	ND	0.1
Ammonia as N	350.1	5.5	1.0
Total Phosphate as P	365.1	0.69	0.05
Sulfide	376.1	32	1
Sulfate	375.4	52	50
Soluble Phosphate as P	365.1	0.69	0.05

ND = Not Detected

Lab Name: Analytical Technologies, Inc.

Client Name: Retec

Client Project ID: Third Ward MGP Site

Lab Sample ID: 95-10-102-06

Sample ID	
W-26I	

Date Collected: 10/12/95 Prep Date: See Reagent Blank Report Date Analyzed: See Reagent Blank Report

Sample Matrix: Water

Analyte	Method	Concentration (mg/L)	Detection Limit (mg/L)
NO3 as N	353.2	ND	0.1
Ammonia as N	350.1	85	3
Total Phosphate as P	365.1	0.71	0.05
Sulfide	376.1	10	1.0
Sulfate	375.4	1500	500
Soluble Phosphate as P	365.1	0.66	0.05

ND = Not Detected

Lab Name: Analytical Technologies, Inc.

Client Name: Retec

Client Project ID: Third Ward MGP Site

Lab Sample ID: 95-10-155-01

Sample ID

W-27D

Date Collected: 10/15/95 Prep Date: See Reagent Blank Report Date Analyzed: See Reagent Blank Report

Sample Matrix: Water

Analyte	Method	Concentration (mg/L)	Detection Limit (mg/L)
Total Cyanide	9010	0.018	0.005
Cyanide, Weak Acid Dissoc.	4500I	ND	0.005

ND = Not Detected

Lab Name: Analytical Technologies, Inc.

Client Name: Retec

Client Project ID: Third Ward MGP Site

Lab Sample ID: 95-10-102-03

Sample ID	
	l
W-41S	

Date Collected: 10/12/95 Prep Date: See Reagent Blank Report Date Analyzed: See Reagent Blank Report

Sample Matrix: Water

Analyte	Method	Concentration (mg/L)	Detection Limit (mg/L)
NO3 as N	353.2	ND	0.1
Ammonia as N	350.1	66	3
Total Phosphate as P	365.1	2.5	0.05
Sulfide	376.1	ND	1.0
Sulfate	375.4	ND	10
Soluble Phosphate as P	365.1	2.4	0.05

ND = Not Detected

NA = Not Applicable

Lab Name: Analytical Technologies, Inc.

Client Name: Retec

Client Project ID: Third Ward MGP Site

Lab Sample ID: 95-10-102-02

Sample ID	
W-42D	

Date Collected: 10/15/95 Prep Date: See Reagent Blank Report Date Analyzed: See Reagent Blank Report

Sample Matrix: Water

Analyte	Method	Concentration (mg/L)	Detection Limit (mg/L)
Total Cyanide	9010	ND	0.005
Cyanide, Weak Acid Dissoc.	4500I	ND	0.005

ND = Not Detected

Lab Name: Analytical Technologies, Inc.

Client Name: Retec

Client Project ID: Third Ward MGP Site

Lab Sample ID: 95-10-155-08

Sample ID	
W-43D	

Date Collected: 10/16/95 Prep Date: See Reagent Blank Report Date Analyzed: See Reagent Blank Report

Sample Matrix: Water

Analyte	Method	Concentration (mg/L)	Detection Limit (mg/L)
Nitrate as N	353.2	ND	0.1
			0.1
Ammonia as N	350.1	11	3
Total Phosphate as P	365.1	0.87	0.05
Sulfide	376.1	ND	1
Sulfate	375.4	ND	10
Soluble Phosphate as P	365.1	0.82	1
Total Cyanide	9010	0.24	0.005
Cyanide, Weak Acid Dissoc.	4500I	ND	0.005

ND = Not Detected

Lab Name: Analytical Technologies, Inc.

Client Name: Retec

Client Project ID: Third Ward MGP Site

Lab Sample ID: 95-10-155-07

Sample ID	
W-45D	

Date Collected: 10/16/95 Prep Date: See Reagent Blank Report Date Analyzed: See Reagent Blank Report

Sample Matrix: Water

Analyte	Method	Concentration (mg/L)	Detection Limit (mg/L)
Total Cyanide	9010	ND	0.005
Cyanide, Weak Acid Dissoc.	4500I	NA	0.005

ND = Not Detected NA = Not Applicable Lab Name: Analytical Technologies, Inc.

Client Name: Retec

Client Project ID: Third Ward MGP Site

Lab Sample ID: 95-10-155-06

Sample II)
W-46D	

Date Collected: 10/13/95 Prep Date: See Reagent Blank Report Date Analyzed: See Reagent Blank Report

Sample Matrix: Water

Analyte	Method	Concentration (mg/L)	Detection Limit (mg/L)	
Nitrate as N	353.2	ND	0.1	
Ammonia as N	350.1	57	3.0	
Total Phosphate as P	365.1	2.0	0.05	
Sulfide	376.1	ND	1	
Sulfate	375.4	ND	10	
Soluble Phosphate as P	365.1	1.9	0.05	

ND = Not Detected

Lab Name: Analytical Technologies, Inc.

Client Name: Retec

Client Project ID: Third Ward MGP Site

Lab Sample ID: 95-10-155-05

Sample ID	
ERB-2	

Date Collected: 10/16/95 Prep Date: See Reagent Blank Report Date Analyzed: See Reagent Blank Report

Sample Matrix: Water

Analyte	Method	Concentration (mg/L)	Detection Limit (mg/L)
Total Cyanide	9010	ND	0.005
Cyanide, Weak Acid Dissoc.	4500I	NA	0.005

ND = Not Detected NA = Not Applicable

U.,	s.	EPA	-	CLP
-----	----	-----	---	-----

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

Lab Name: ANALYTICA	L_TECHNOLOGIES	Contract:	W-13
Lab Code: NA	Case No.:	SAS No.:	SDG No.: 3-0887
Matrix (soil/water)	: WATER	Lab Sam	ple ID: WS155-06
Level (low/med):	LOW	Date Rec	ceived: 10/18/95
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

•	CAS No.	Analyte	Concentration	С	Q	М
	7440-70-2 7439-89-6 7439-95-4	Calcium_ Iron_ Magnesium	258000 1500 106000			P_ P_ P_
				-		
				-		-
				_		
				-		
				-		
				-		
lor Before:	I	Clarit	 y Before:			Texture:
olor After:		Clarit	ty After:		<u> </u>	Artifacts:
omments:						

-3/90 10011

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

Lab Name: ANALYTICAL	_TECHNOLOGIES	Contract:	W-14
Lab Code: NA	Case No.:	SAS No.:	SDG No.: 3-0887
Matrix (soil/water):	WATER	Lab Sample	e ID: WS102-08
Level (low/med):	LOW	Date Rece	ived: 10/13/95
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	CAS No.	Analyte	Concentration	C Q	М
	7440-70-2 7439-89-6	Calcium Iron	241000		
	7439-95-4	Magnesium			
					_ _
					_
					_
				-	
					- -
				·	
				·	
				·	-
				·	- -
Color Before:	COLORIESS	Clari	ty Before: CLE	AR	Texture: N/A
Color After:			ty After: CLE		Artifacts:
Comments:	0020112200	0-01-			
	<u></u>			<u> </u>	2 /00

FORM I - IN

ſ

U	. S		EPA	- 1	CLP
---	-----	--	-----	-----	-----

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

- 1

ab Name: ANALYTICAL	TECHNOLOGIES	Contract:	W-16
ab Code: NA	Case No.:	SAS No.:	SDG No.: 3-0887
atrix (soil/water):	WATER	Lab Sample	e ID: WS155-04
≥vel (low/med):	LOW	Date Rece	ived: 10/18/95
Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

| 5

	CAS No.	Analyte	Concentration	с	Q	м
	7440-70-2 7439-89-6 7439-95-4	Calcium Iron Magnesium	135000 461 126000			P_ P_ P_
5						
				-		
				- - -		
	^			-		
blor Before:			Ly Before:	-		Texture:
•lor After:			ty After:		_	Artifacts:
Comments:						

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

Lab Name: ANALYTICAL	TECHNOLOGIES	Contract:	W-19
Lab Code: NA	Case No.:	SAS No.:	SDG No.: 3-0887
Matrix (soil/water):	WATER	Lab Sample	e ID: WS102-07
Level (low/med):	LOW	Date Rece	ived: 10/13/95
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	1							
	CAS No.	Analyte	Concentrat	ion	с	Q	м	
	7440-70-2 7439-89-6 7439-95-4	Calcium_ Iron		2000 710 5100				
		Magnesium	93 		_ _		P_ 	
					_			
					_			
					-			
			·		-		 	
olor Before:	COLORLESS	Clari	ty Before:	CLEA	R_		Texture:	N/A
olor After:	COLORLESS	Clari	ty After:	CLEA	R_		Artifacts:	<u> </u>

FORM I - IN

5

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

- ,

Lab Name: ANALYTICAL	_TECHNOLOGIES	Contract:	W-20I
Lab Code: NA	Case No.:	SAS No.:	SDG No.: 3-0887
Matrix (soil/water):	WATER	Lab Sample	e ID: WS124-04
<pre>_evel (low/med):</pre>	LOW	Date Rece	ived: 10/14/95
<pre>% Solids:</pre>	0.0		
Concontra	stion Unita (ua/I	or ma/ka drug up i abt)	

Concentration Units (ug/L or mg/kg dry weight): UG/L_

		·····					
	CAS No.	Analyte	Concentration	С	Q	м	
	7440-70-2 7439-89-6 7439-95-4	Calcium_ Iron_ Magnesium	229000 17300 84900				
·							I
- 							
•							
						- - -	
			· · · · · · · · · · · · · · · · · · ·				
Color Before:	LIGHT_TAN	Clari	ty Before: CLEA	AR_	-	Texture:	N/A
color After:	LIGHT_TAN	Clari	ty After: CLEA	AR_		Artifacts	5:
fomments:	•						
		F	ORM I - IN				3/90

000011

	1		
INORGANIC	ANALYSES	DATA	SHEET

EPA SAMPLE NO.

1

Î

- 1

Lab Name: ANALYTICAL	TECHNOLOGIES	Contract:		W-20S
Lab Code: NA	Case No.:	SAS No.:		SDG No.: 3-0887
Matrix (soil/water):	WATER		Lab Sample	: ID: WS124-05
Level (low/med):	LOW		Date Recei	ved: 10/14/95
% Solids:	0.0			

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	CAS NO.	Analyte	Concentration	с	Q	M	
	7440 70 0		244000	_ -			
	7440-70-2	Calcium	344000	-			
	7439-89-6	Iron	1250	_ -		P	
	7439-95-4	Magnesium	230000	_ -		P_	
				_ -			
			· <u></u> ···	_ _			
				_ _			
				_ _			
				_ _			
]_]_			
				- -			
				- -			
				- -		-	
	······			- -			
				- -			
				- -	<u> </u>		
	1			- -		\ <u> </u>	
				- -			
				-			
		· · · · · · · · · · · · · · · · · · ·		-			
	[-		<u> </u>	
				-			
				-			
		.		_ _			
olor Before:	LIGHT_TAN	Clari	ty Before: CLE	AR_		Texture:	N/A
	LIGHT TAN	Clari	ty After: CLE	7. D		Artifacts:	
DIOI AILEI:	LIGHI_IAN	Ciari	cy Alter: Che	AR_	-	AILIIACLS:	
omments:							

_ |

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

- 1

1

Lab Name: ANALYTICAL	TECHNOLOGIES	Contract:	W-22I
Lab Code: NA	Case No.:	SAS No.:	SDG No.: 3-0887
Matrix (soil/water):	WATER	Lab Sampl	e ID: WS155-03
evel (low/med):	LOW	Date Rece	ived: 10/18/95
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	CAS No.	Analyte	Concentration	С	Q	М	
	7440-70-2 7439-89-6 7439-95-4	Calcium Iron Magnesium	122000 2280 173000			P_ P_ P_ P_	
							· .
							·
••••••••••••••••••••••••••••••••••••••							
i							
Color Before:	<u></u>	Clarit	y Before:		-	Texture:	
olor After:	<u> </u>	Clarit	ty After:	<u>. </u>	-	Artifacts: _	
Gomments:							

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

- 1

1

Lab Name: ANALYTICAL	TECHNOLOGIES	Contract:		W-22S
Lab Code: NA	Case No.:	SAS No.:		SDG No.: 3-0887
Matrix (soil/water):	WATER	I	Lab Sample	: ID: WS102-10
Level (low/med):	LOW	Γ	Date Recei	ved: 10/13/95
% Solids:	0.0			

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	CAS No.	Analyte	Concentration	С	Q	м	
	7440-70-2 7439-89-6	Calcium Iron	108000	-			
	7439-89-8	Magnesium	1910 99300	-		P_ P_	
				-			
				_			
				-			
				[_			
				-			
				-			
				-		<u> </u>	
			· · · · · · · · · · · · · · · · · · ·	-			
				-			
				_			
				-			
		· · · · · · · · · · · · · · · · · · ·					
lor Before:	COLORLESS	Clari	ry Before: CLE	AR	_	Texture:	N,
olor After:	COLORLESS	Clari	ty After: CLE	AR_	_	Artifacts:	:

1 INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

	-	LINURGANIC A	ANALISES DATA :	SHE	- E. T.	, ——	
ab Name: ANALY	TICAL_TECHN	NOLOGIES	Contract:				W-23S
Lab Code: NA	Cas	se No.:	SAS No.	: _		SD	G No.: 3-0887
atrix (soil/wa	ater): WATE	ર		La	ab Sampl	le I	D: WS102-02
Level (low/med)	: LOW_	-		Da	ate Rece	eive	d: 10/13/95
% Solids:	0.(0					
Cor	ncentration	Units (ug,	L or mg/kg dry	7 V	weight):	UG	/L_
	CAS No.	Analyte	Concentration	с	Q	М	÷
	7440-70-2 7439-89-6 7439-95-4	Calcium Iron Magnesium	63200 3530 192000				
				-			
2 · · · · · ·				 			

_

-

FORM I - IN

Color Before: COLORLESS Clarity Before: CLEAR_ Texture: N/A___

olor After: COLORLESS Clarity After: CLEAR_ Artifacts: _____

Comments:

.

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

Lab Name: ANALYTICAL	TECHNOLOGIES	Contract:	W-25S
Lab Code: NA	Case No.:	SAS No.:	SDG No.: 3-0887
Matrix (soil/water):	WATER	Lab Sample	e ID: WS124-01
Level (low/med):	LOW	Date Recei	lved: 10/14/95
% Solids:	0.0		
Concentra	ation Units (ug/L	or mg/kg dry weight):	UG/L_

CAS No. Analyte Concentration C 0 М P P 7440-70-2 Calcium 168000 7439-89-6 Iron 335 7439-95-4 326000 P_ Magnesium _ _ Color Before: LIGHT TAN Clarity Before: CLEAR_ Texture: N/A Color After: LIGHT TAN Clarity After: CLEAR Artifacts: Comments:

U	. S		EPA	-	CLP
---	-----	--	-----	---	-----

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

- -

3/90

Lab Name: ANALYTICAL	_TECHNOLOGIES	Contract:		W-26I
Lab Code: NA	Case No.:	SAS No.:	·	SDG No.: 3-0887
Matrix (soil/water):	WATER		Lab Sample	ID: WS102-06
Level (low/med):	LOW		Date Recei	ved: 10/13/95
% Solids:	0.0			

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	CAS No.	Analyte	Concentratio	on C	Q	М			
	7440-70-2 7439-89-6 7439-95-4	Calcium Iron Magnesium	3110 49 980	80 -					
l									
· · · · · · · · · · · · · · · · · · ·									
• 					`				
Î									
Color Before:	COLORLESS	Clari	ty Before: C	LEAR	-	Tex	cture:	N/A_	
Color After:	COLORLESS	Clari	ty After: C	LEAR	-	Art	tifacts	:	
Comments:									
								<u></u>	

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

Lab Name: ANALYTICAL	TECHNOLOGIES	Contract:	W-26S
Lab Code: NA	Case No.:	SAS No.	: SDG No.: 3-0887
Matrix (soil/water):	WATER		Lab Sample ID: WS102-05
Level (low/med):	LOW		Date Received: 10/13/95
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

•	CA	AS NO.	Analyte	Concentration	с	Q	М	· · · ·	
	74	40-70-2 39-89-6 39-95-4	Calcium Iron Magnesium	163000 10700 455000					
		·····							
					-		_		
		·							
		·······			-		 		
Color Befo	re: CC	LORLESS	Clari	ty Before: CLE	AR	_	Te	xture:	N/A
Color Afte:	r: CC	DLORLESS	Clari	ty After: CLE	AR		Ar	tifacts:	
Comments:								·	
	<u>.</u>								

FORM I - IN

Color

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

1

---- ₁

Lab Name: ANALYTICAL	_TECHNOLOGIES	Contract:	W-27D
Lab Code: NA	Case No.:	SAS No.:	SDG No.: 3-0887
Matrix (soil/water):	WATER	Lab Sampl	e ID: WS155-01
Level (low/med):	LOW	Date Rece	ived: 10/18/95
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L

		· - ·				
	CAS NO.	Analyte	Concentration	C	Q	M
	7440-70-2 7439-89-6	Calcium Iron	166000 33900	-		P_ P_
	7439-95-4	Magnesium	105000	_		P_
				-		
. •				_		
				-		
				-		
				_		
				_		
						—
				_		
				` 		
		[<u></u>	······	-		
				_		
				-		
Color Before:		Clarit	cy Before:			Texture:
Color After:		Clarit	ty After:		_	Artifacts:
					_	
Comments:						

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

Lab Name: ANALYTICAL	_TECHNOLOGIES	Contract:	W-41D
Lab Code: NA	Case No.:	SAS No.:	SDG No.: 3-0887
Matrix (soil/water):	WATER	Lab Sample	e ID: WS102-01
Level (low/med):	LOW	Date Rece:	ived: 10/13/95
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	CAS No.	Analyte	Concentration	С	Q	м		
	7440-70-2 7439-89-6	Calcium_ Iron	172000 30700	-		P P		
	7439-95-4	Magnesium				P_ P_		
				-		<u> </u>		
				-				
				-				
				-				
				-				
				 - -		 		
Color Before:	COLORLESS	Clari	ty Before: CLE	AR_		Tex	cture:	N/A_
Color After:	COLORLESS	Clari	ty After: CLE	AR_		Art	ifacts:	
Comments:								
<u></u>								
	· · · · · · · · · · · · · · · · · · ·		. <u> </u>					

FORM I - IN

31,7618

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

- .

Lab Name: ANALYTICAL	_TECHNOLOGIES	Contract:	W-41S
Lab Code: NA	Case No.:	SAS No.:	SDG No.: 3-0887
Matrix (soil/water):	WATER	Lab Sample	e ID: WS102-03
Level (low/med):	LOW	Date Rece	ived: 10/13/95
 % Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	CAS No.	Analyte	Concentration	с	Q	М	
	7440-70-2 7439-89-6 7439-95-4	Calcium Iron Magnesium	76500 11500 153000			P_ P_ P_	
-				-			
		·		-			
Color Before:	COLORLESS	Clarit	y Before: CLE	AR_	-	Texture:	N/A
Color After:	COLORLESS	Clarit	y After: CLEA	AR_		Artifacts:	

Color

	1		
INORGANIC	ANALYSES	DATA	SHEET

EPA SAMPLE NO.

][

3/90 00015

Lab Name: ANALYTICAL	_TECHNOLOGIES Cor	tract:	W-42D
Lab Code: NA	Case No.:	SAS No.:	SDG No.: 3-0887
Matrix (soil/water):	WATER	Lab Sample	e ID: WS155-02
Level (low/med):	LOW	Date Rece	ived: 10/18/95
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	CAS No.	Analyte	Concentration	С	Q	M	
	CAS No. 7440-70-2 7439-89-6 7439-95-4	Analyte Calcium_ Iron_ Magnesium	188000 188000 25300		Q	M P P P P P M 	
Color Before:	1	Clarit	L	! <u> </u>	<u></u>	Texture:	
Color After:	·		ty After:		_	Artifacts:	
Comments:		v					

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

-- ,

Lab Name: ANALYTICAL	_TECHNOLOGIES	Contract:	W-43D
Lab Code: NA	Case No.:	SAS No.:	SDG No.: 3-0887
Matrix (soil/water):	WATER ,	Lab Sampl	e ID: WS155-08
Level (low/med):	LOW	Date Rece	ived: 10/18/95
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

2	CAS No.	Analyte	Concentration	с	Q	м	
-	7440-70-2 7439-89-6 7439-95-4	Calcium Iron Magnesium	168000 7830 161000	-			
			101000				
-				1 1 1			
				-	· · · · · · · · · · · · · · · · · · ·		
Color Before:		Clarit	ty Before:		_	Texture:	
olor After:		Clarit	ty After:		_	Artifacts:	
Comments:							
·		······································				·	

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

- 1

Lab Name: ANALYTICAL	_TECHNOLOGIES	Contract:	W-45D
Lab Code: NA	Case No.:	SAS No.:	SDG No.: 3-0887
Matrix (soil/water):	WATER	Lab Sample	e ID: WS155-07
Level (low/med):	LOW	Date Rece:	ived: 10/18/95
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

·	CAS No.	Analyte	Concentration	С	Q	M	
	7440-70-2 7439-89-6 7439-95-4	Calcium Iron Magnesium	150000 30900 91100				
							,
				- - -			
				- - -			
Color Before:	<u></u>	Clari	ty Before:		-	Тех	kture: _
Color After:		Clari	ty After:			Art	ifacts: _
Comments:							
			······				

FORM I - IN

[]-

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

- .

Lab Name: ANALYTICAL	_TECHNOLOGIES	Contract:	W-46D
ab Code: NA	Case No.:	SAS No.:	SDG No.: 3-0887
Matrix (soil/water):	WATER	Lab Samp]	le ID: WS124-06
<pre>Jevel (low/med):</pre>	LOW	Date Rece	eived: 10/14/95
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	CAS No.	Analyte	Concentration	C	Q	М		
	7440-70-2	Calcium	183000	-		P_		
	7439-89-6 7439-95-4	Iron Magnesium	16200 16200	-		P_ P		
	`			_		_		:
				_				
		[-	<u> </u>			
				_				
				-				
				_		-		
				_				
				_				
		·		-				
				_				
				-				
				-				
				_				
olor Before:	LIGHT_TAN	Clari	ty Before: CLE	AR	_	Tex	ture:	N/A_
olor After:	LIGHT_TAN	Clari	ty After: CLE	AR		Art	ifacts:	
omments:								
								<u>. </u>
		0 · · · · · · · · · · · · · · · · · · ·	<u></u>		<u></u>			
	·····	· · · · · · · · · · · · · · · · · · ·						
		F	ORM I - IN					3/90

Color

folor

000014

1

EPA SAMPLE NO. INORGANIC ANALYSES DATA SHEET

BLIND DUP Lab Name: ANALYTICAL_TECHNOLOGIES___ Contract: _____ Lab Code: NA_____ Case No.: _____ SAS No.: _____ SDG No.: 3-0887 Matrix (soil/water): WATER Lab Sample ID: WS102-04 Level (low/med): LOW Date Received: 10/13/95 % Solids: 0.0

Concentration Units (ug/L or mg/kg dry weight): UG/L

	CAS No	Anal	yte Co	oncentrat	ionC	Q	м		
	7440-7 7439-8 7439-9	39-6 Iron_			600 200 000				
			 						ï
						· · · · · · · · · · · · · · · · · · ·			
					_ _				
Color Bef	ore: COLORI	LESS C	larity	Before:	CLEAR	·	Tex	ture:	N/A_
Color Aft	er: COLORI	LESS C	larity	After:	CLEAR	·	Art	ifacts:	<u></u>
Comments:									
								· · · · · · · · · · · · · · · · · · ·	

FORM I - IN

3/90

1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO.

1

Lab Name: ANALYTICAL	TECHNOLOGIES	Contract:	BLIND DUP 2
Lab Code: NA	Case No.:	SAS No.:	SDG No.: 3-0887
Matrix (soil/water):	WATER	Lab Sample	e ID: WS124-02
Level (low/med):	LOW	Date Rece	ived: 10/14/95
% Solids:	0.0		

Ì

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	·						
Comments:			·				
olor After:	LIGHT_TAN	Clarit	ty After: CLEA	AR_	_	Artifact	ts:
Color Before:	LIGHT_TAN	Clarit	ty Before: CLEA	AR_	_	Texture	: N/A
				-			
				-			
_							
				-			
				-			
				-			
				-			
				-			
				-			
				-			
	7439-95-4	Magnesium	318000	_		P	
ł	7440-70-2 7439-89-6	Calcium_ Iron	170000	-		P P	
	CAS No.	Analyte	Concentration	С	Q	М	
		1 · · ·				<u> </u>	

1 INORGANIC ANALYSES DATA SHEET

.

Ł

EPA SAMPLE NO.

- 1

Lab Name: ANALYTICAL	_TECHNOLOGIES	Contract:	EQUIP. RB
Lab Code: NA	Case No.:	SAS No.:	SDG No.: 3-0887
Matrix (soil/water):	WATER	Lab Sample	e ID: WS124-03
Level (low/med):	LOW	Date Rece	ived: 10/14/95
% Solids:	0.0		

Concentration Units (ug/L or mg/kg dry weight): UG/L_

	CAS No.	Analyte	Concentration	с	Q	м	
	7440-70-2	Calcium	42.9	B		P	
	7439-89-6	Iron	6.8	ש		P	
	7439-95-4	Magnesium	43.3	в		P_	
				_			;
				_			
				-			
				-			
				-			
				_		 	
		·		_			
				-			
				-			
				-			
				-	<u> </u>		
				-			
				-			
olor Before:	COLORLESS	Clari	ty Before: CLE	AR_		Texture:	N/A
olor After:	COLORLESS	Clari	ty After: CLE	AR_		Artifacts:	
omments:							
Comments:							

3/90 000010

APPENDIX I

GROUNDWATER SAMPLING FORMS

JECT	Third Ward MGF				WELL NO.		,		
JECT NO.	3-0887-303				SAMPLER	S MRS			
WEIT	CONDITION CHEC	VI 187	г						
	Bump posts N/A	KL15	Pro. casir	ng/lock	Good	Surface pad	Good		
	Well visibility (paint)			N/A		Surface plu			
	*** ** * * *			Not pro	esent				
WATEI	R LEVEL MEASURI	FMEN	т						
DATE	11-Oct-95		1		TIME				
	IER CONDITIONS	-	Clear, 50°,	windv		· · · · · · · · · · · · · · · · · · ·			
	Location of measuring	point	,		of inner casing	· · · · · · · · · · · · · · · · · · ·			
	Depth of water table fr		asuring poir			6.40 ft			
	Height of measuring p					0.57 ft			
d.	Total depth of well bel	low me	asuring poin	it		13.05 ft			
e.	Length of water colum	n (line	2d-2b)			6.65 ft			
WFL	PURGING								
DATE	15-Oct-95				TIME				
	IER CONDITIONS	Clear, 50°,	windy						
	Purge method			ted tygon tubi	ησ	· · ·			
	Required purge volume at 3 well volumes				3.3 gallons				
	Volume Removed					T(C)	Appearance		
		20		-	Cond.*	. ,			
	1 gallon		-140	6.72	2370	17.7	Gray		
	1 gallon 1.5 gallons	NM	-140 -225	6.72	2370 2520	<u>17.7</u> <u>17.7</u>	Gray Gray		
SAMPL DATE	1.5 gallons LE COLLECTION 15-Oct-95		-225	7.17	2520	17.7			
SAMPL DATE WEATH	1.5 gallons LE COLLECTION 15-Oct-95 HER CONDITIONS	- (-225 Clear, 50°, w	7.17 ///////////////////////////////////	2520 TIME	17.7 7:15 p.m.	Gray		
SAMPL DATE WEATH a.	1.5 gallons LE COLLECTION 15-Oct-95 IER CONDITIONS Collection Method	- (-225 Clear, 50°, w Peristaltic pu	7.17 /indy imp and c	2520	17.7 7:15 p.m. n tubing	Gray		
SAMPL DATE WEATH a.	1.5 gallons LE COLLECTION 15-Oct-95 IER CONDITIONS Collection Method Meter Calibration:	- (-225 Clear, 50°, w Peristaltic pu Date	7.17 vindy imp and c	2520 TIME	17.7 7:15 p.m. n tubing Model	Gray		
SAMPL DATE WEATH a.	1.5 gallons JE COLLECTION 15-Oct-95 IER CONDITIONS Collection Method Meter Calibration: pH Meter	- (-225 Clear, 50°, w Peristaltic pu Date 15-Oct-	7.17 vindy imp and c 95	2520 TIME	17.7 7:15 p.m. n tubing Model Y.S.I. 3560	Gray		
SAMPL DATE WEATH a. b.	1.5 gallons LE COLLECTION 15-Oct-95 HER CONDITIONS Collection Method Meter Calibration: pH Meter D.O. Meter	- (-225 Clear, 50°, w Peristaltic pu Date 15-Oct- 15-Oct-	7.17 vindy ump and c 95 95	2520 TIME ledicated tygor	17.7 7:15 p.m. n tubing Model Y.S.I. 3560 Y.S.I. 50B	Gray		
SAMPL DATE WEATH a. b.	1.5 gallons JE COLLECTION 15-Oct-95 IER CONDITIONS Collection Method Meter Calibration: pH Meter D.O. Meter Sample Information	- (-225 Clear, 50°, w Peristaltic pu Date 15-Oct- 15-Oct- pH_7	7.17 vindy imp and c 95 95 7.17	2520 TIME ledicated tygor	17.7 7:15 p.m. n tubing Model Y.S.I. 3560 Y.S.I. 50B 2520 T(C)	Gray 		
SAMPL DATE WEATH a. b. c.	1.5 gallons JE COLLECTION 15-Oct-95 IER CONDITIONS Collection Method Meter Calibration: pH Meter D.O. Meter Sample Information Analysis	- (-225 Clear, 50°, w Peristaltic pu Date 15-Oct- 15-Oct- pH_7 Con	7.17 vindy imp and c 95 95 7.17 tainers	2520 TIME ledicated tygor	17.7 7:15 p.m. n tubing Model Y.S.I. 3560 Y.S.I. 50B 2520 T(C) Sample Prep./Prese	Gray 		
SAMPL DATE WEATH a. b. c.	1.5 gallons LE COLLECTION 15-Oct-95 IER CONDITIONS Collection Method Meter Calibration: pH Meter D.O. Meter Sample Information Analysis PAHs 8310/8270**	- (-225 Clear, 50°, w Peristaltic pu Date 15-Oct- 15-Oct- pH_7 Con 2 X 1:	7.17 rindy imp and c 95 95 7.17 tainers -L amber	2520 TIME ledicated tygor	17.7 7:15 p.m. n tubing Model Y.S.I. 3560 Y.S.I. 50B 2520 T(C) Sample Prep./Press Ice, darkness,	Gray Gray		
SAMPL DATE WEATH a. b. c.	1.5 gallons LE COLLECTION 15-Oct-95 HER CONDITIONS Collection Method Meter Calibration: pH Meter D.O. Meter Sample Information Analysis PAHs 8310/8270** BTEX 8020	(-225 Clear, 50°, w Peristaltic pu Date 15-Oct- 15-Oct- pH 7 Con 2 X 14 3 x 40	7.17 vindy imp and c .95 .95 .17 tainers -L amber) mL voa	2520 TIME ledicated tygor	17.7 7:15 p.m. n tubing Model Y.S.I. 3560 Y.S.I. 50B 2520 T(C) Sample Prep./Press Ice, darkness, Ice, darkness,	Gray Gray		
SAMPL DATE WEATH a. b. c.	1.5 gallons LE COLLECTION 15-Oct-95 IER CONDITIONS Collection Method Meter Calibration: pH Meter D.O. Meter Sample Information Analysis PAHs 8310/8270**	(-225 Clear, 50°, w Peristaltic pu Date 15-Oct- 15-Oct- pH7 Con 2 X 1- 3 x 40 2 x 1-	7.17 rindy imp and c 95 95 7.17 tainers -L amber	2520 TIME ledicated tygor	17.7 7:15 p.m. n tubing Model Y.S.I. 3560 Y.S.I. 50B 2520 T(C) Sample Prep./Press Ice, darkness,	Gray Gray		
SAMPL DATE WEATH a. b. c.	1.5 gallons JE COLLECTION 15-Oct-95 IER CONDITIONS Collection Method Meter Calibration: pH Meter D.O. Meter Sample Information Analysis PAHs 8310/8270** BTEX 8020 Total Cyanide 9010** Microbial Enumeration	(-225 Clear, 50°, w Peristaltic pu Date 15-Oct- 15-Oct- pH 7 Con 2 X 1- 3 x 40 2 x 1- 2 x 40	7.17 vindy imp and c 95 95 .17 tainers -L amber) mL voa L plastic	2520 TIME ledicated tygor Cond2	17.7 7:15 p.m. n tubing Model Y.S.I. 3560 Y.S.I. 50B 2520 T(C) Sample Prep./Prese Ice, darkness, Ice, darkness, Ice, darkness	Gray Gray		
SAMPL DATE WEATH a. b. c.	1.5 gallons JE COLLECTION 15-Oct-95 IER CONDITIONS Collection Method Meter Calibration: pH Meter D.O. Meter Sample Information Analysis PAHs 8310/8270** BTEX 8020 Total Cyanide 9010**	- (- (-225 Clear, 50°, w Peristaltic pu Date 15-Oct- 15-Oct- pH7 Con 2 X 1- 3 x 40 2 x 1-	7.17 vindy imp and c 95 95 .17 tainers -L amber) mL voa L plastic) mL voa	2520 TIME ledicated tygor	17.7 7:15 p.m. n tubing Model Y.S.I. 3560 Y.S.I. 50B 2520 T(C) Sample Prep./Prese Ice, darkness, Ice, darkness, Ice, darkness	Gray Gray		

Started pump and well purged dry after removing 0.2 more gallons. Waited 10 minutes - well pumped dr immediately. Let recharge and sample. (Can fill 1/2 of 1 L bottle before well goes dry when sampling).

*umho/cm

**PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310

***If total cyanide is detected, weak acid dissociable cyanide will be analyzed as well

****Total heterotrophs, PAH degraders, and benzene degraders

NM - Not measured

PROJE	ECT	Third Ward MG	2			WELL NO.		W-14		
PROJE	CT NO	3-0887-303				SAMPLER	5	RLC		
1.	WELL	CONDITION CHEC	CKLIST	Γ						
	a.	Bump postsN/A		Pro. casin	g/lock	Good	Su	irface pad	Good	
	b.	Well visibility (paint)		_	N/A					
	с.	Well label			Not pr	esent				
2.	WATE	R LEVEL MEASUR	EMEN	Т						
	DATE	10-Oct-95	_			TIME	2:30 I	o.m.	·	
	WEAT	HER CONDITIONS		Sunny, 75°,						
	a.	Location of measuring				of inner casing				
	b.	Depth of water table f					9.06 ft			
	C .	Height of measuring p								
	d.	Total depth of well be			t		16.54 ft			
	e.	Length of water colum	ın (line	2d-2b)			7.48 ft			
3.		PURGING								
	DATE	<u>11-Oct-95</u>	_			TIME	2:30 I	o.m.		
	WEAT	HER CONDITIONS		Sunny, 75°,			·····		······	
	a.	Purge method				ated tygon tubi				
	b.	Required purge volum					gallons			
		Volume Removed	DO	Redox	pН	Cond.*	T(C)	Appear		
		1.2 gallons		-153	6.86	3190	18.3		gray/odor/sheen	
		2.4 gallons		-157	6.91	2930	17.6		gray/odor/sheen	
		3.6 gallons		-204	6.82	3940	18.2	Green/g	gray/odor/sheen	
							·····			
	CAMD	E COLLECTION					•			
4.		LE COLLECTION					2.15			
	DATE	11-Oct-95 HER CONDITIONS	c	Summer 75º 1	aht hear	TIME	3:15 p.m	•		
		Collection Method		Sunny, 75°, 1 Peristaltic pu		dedicated tygo	tubing	·····		
	а. ь	Meter Calibration:		Date		dedicated tygo	i tuoing	Model		
	b.	pH Meter		11-Oct-						
		D.O. Meter		11-Oct-			Y.S.I. 3560 Y.S.I. 50B			
	•	Sample Information			.82	Cond. 3	<u>1.5.1.</u> 940	 T(C)	18.2	
	С.	Analysis		•	ainers			Prep./Preser		
		PAHs 8310/8270**			amber		-	darkness, fi		
		BTEX 8020		3 vials				darkness, H		
		Total Cyanide 9010**	**		_ plastic				aOH, field-filtered	
		Dissolved Fe, Mg, Ca			plastic				NO ₃ , field-filtered	
		Dissolved re, Mg, Ca		1 . 1 1	- plastic		100,	uarkitess, 1	invos, neiu-intereu	
	d.	Chain of Custody For		ves		COC T	ane s	760		
		Shipping Container		Cooler with i	ce cubes		ape	yes	·	
	e.	Smpping Container						<u></u>		
5.	COM	IENTS: Volatile	e and D	O measurem	ent were	collected on 1	0/12/95	Difficulty of	ollecting volatiles	
J.		mple, the water was bu					0114175.		oncering volatiles	
	5a	inpro, no mater mas du								

*umho/cm

PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310 *If total cyanide is detected, weak acid dissociable cyanide will be analyzed as well

ОЛ	ECT	Third Ward MGP			WELL NO.	W-16			
ОЛ	ECT NO	. 3-0887-303			SAMPLERS	S MRS			
		CONDITION CHE CH							
		CONDITION CHECKI					~ .		
	a.	Bump posts N/A	Pro. casin		Good	Surface pad	Good		
	b.	Well visibility (paint)		N/A					
	С.	Well label		Not pr	esent		. <u> </u>		
	WATE	R LEVEL MEASUREM	IENT						
	DATE	16-Oct-95			TIME				
	WEAT	HER CONDITIONS	Clear, sunn	y, upper	40's				
	a.	Location of measuring po			of inner casing				
	b.	Depth of water table from			¥.	5.18 ft			
	C.	Height of measuring poin				0.47 ft			
,	d.	Total depth of well below			·	14.49 ft			
	e.	Length of water column (9.31 ft			
•									
	WELL	PURGING							
	DATE	16-Oct-95			TIME				
		HER CONDITIONS	Clear, sunn	v unner					
	a.		eristaltic pump a			ng			
	b.	Required purge volume a				allons	_		
	0.		O Redox	pН	Cond.*	T(C)	Appearance		
		1.5 gallons	-225	6.90	1593	17.9	Gray/sheen		
		3.0 gallons	-235	6.95	1616	17.9	Gray/sheen		
		4.5 gallons	-235	6.94	1610	17.9	Gray/clear		
		<u>4.5 ganons</u>	-251	0.74	1022	17.7	Gray/cical		
		·			·		<u>.</u>		
						· · · · · · · ·			
		LE COLLECTION							
	DATE	16-Oct-95			TIME	12:00 p.m.			
	WEAT	HER CONDITIONS	Clear, sunny,						
	a.	Collection Method		-	dedicated tygon		<u>.</u>		
	b.	Meter Calibration:	Date			Model			
		pH Meter	16-Oct-		Y.S.I. 3560				
		D.O. Meter	<u>16-Oct-</u>			Y.S.I. 50B			
	с.	Sample Information	·	.94	Cond. 1	<u>622</u> T(C)	17.9		
		Analysis		ainers		Sample Prep./Preser			
		PAHs 8310/8270**		L amber	r Ice, darkness, field-filtered				
		BTEX 8020		mL voa	a Ice, darkness, HCl				
		Total Cyanide 9010***	2 x 1-	L plastic	· · · · · · · · · · · · · · · · · · ·	Ice, darkness, 1	NaOH		
		Dissolved Fe, Mg, Ca				·			
	d.	Chain of Custody Form	yes		COC Ta	ape yes			
	а. e.	Shipping Container	Cooler with i	ce cubes		<u>,,,,</u>			

brown with strong odor. Sheen, odor in purge water. Black specks initially. Filter clogged after filling PAH and cyanide plus 5/6 of WAD CN.

*umho/cm

**PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310

***If total cyanide is detected, weak acid dissociable cyanide will be analyzed as well

PROJE	ECT	Third Ward MGF)			WELL NO.		W-19		
PROJE	ECT NO					SAMPLER	s	MRS		
1.	WELL	CONDITION CHEC								
	a.	Bump posts N/A		Pro. casin		Good		Surface pad _	Good	
	b.	Well visibility (paint)			N/A					
	C.	Well label		<u> </u>	Not pre	esent			<u> </u>	
2	ST/ A TETE	DIEVEL MEACUD	CATCA							
2.	DATE	R LEVEL MEASURI 12-Oct-95	ENTER	(1		TIME				
		HER CONDITIONS	-	Clear, 70°						
		Location of measuring		Clear, 70	Ton	of inner casing				
	а. ь	-	-			of inner casing	7.77 ft			
	b.	Depth of water table fi								
	С.	Height of measuring p				<u> </u>	Not av			
	d.	Total depth of well be			ι		18.40			
	e.	Length of water colum	in (line	2 d- 2b)	<u> </u>		10.63	<u>it</u>		
3.	WEII	PURGING		•						
5.	DATE	12-Oct-95				TIME				
		HER CONDITIONS	-	Clear, 70°						
	a.	Purge method	Deris		nd dedica	ited tygon tubi	na			
	a. b.	Required purge volum					gallons			
	0.	Volume Removed	DO	Redox	pH		T(C)	Appearance		
		3 gallons	DO	-269	7.24	2260	18.4		n and black speck	
		6 gallons	<u> </u>	-293	7.24	2200	18.2		n and black speck	
		9 gallons	NM	-308	7.27	2630	18.2		n and black speck	
			1 11/1		1.4.1		10.4		II dild black speek	
						·				
4.	SAMP	LE COLLECTION								
	DATE	12-Oct-95	_			TIME	4:00 p	.m.		
	WEAT	HER CONDITIONS		Clear, 70°						
	a.	Collection Method				ledicated tygor	n tubing	5		
	b.	Meter Calibration:		Date				Model 5.I. 3560		
	pH Meter			12-Oct-						
		D.O. Meter		12-Oct-						
	c .	Sample Information		.*	.27	Cond2	2630	T(C)	18.2	
		Analysis			ainers		-	e Prep./Preserv		
		PAHs 8310/8270**		2 X 1-	L amber		Ic	e, darkness, fie	eld-filtered	
		BTEX 8020	3 x 40	3 x 40 mL voa			e, darkness, H	Cl		
		Total Cyanide 9010**	*	2 x 1-1	L plastic		Ic	Ice, darkness, NaOH		
		Microbial Enumeratio		2×40	mL voa		Ic	e, darkness, H	NO3, field-filtered	
	_								·····	
	d.	Chain of Custody For		yes		COC T	ape	yes		
	e.	Shipping Container		Cooler with i	ce cubes					
5.	COMN	MENTS: Odor, sh	een, bl	ack specks.	Purged or	ne more gallon	n after la	ast YSI reading	s, then sampled.	

Well was over purged because of lack of prior sampling history.

*umho/cm

PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310 *If total cyanide is detected, weak acid dissociable cyanide will be analyzed as well NM - Not measured

ROJE	ст	Third Ward MGP				WELL NO.	W	V-20I	
OJECT NO.						SAMPLER	SN	1RS	
		CONDITION CUECU	TIOT						
		CONDITION CHECK Bump posts N/A	LISI	Dro onsir	ag/loolr	Good	S		Carl
	a. b.	W 11 1 11 (() ()		Pro. casir	N/A	0000	Surfac	e pad_	Good
	С.	Well label			Not pr	esent			
	0.				<u></u>		·		
	WATE	R LEVEL MEASURE	MENT						
	DATE	13-Oct-95				TIME			
	WEAT	HER CONDITIONS	C	lear, sunr	iy, upper	70's			
	a.	Location of measuring p	oint		Тор	of inner casing			
	b.	Depth of water table from	m meas	uring poir	nt		6.16 ft		·
	С.	Height of measuring poi	nt belo	w ground	surface		0.32 ft		
	d.	Total depth of well below	w meas	uring poir	nt		20.53 ft		
	e.	Length of water column	(line 20	i-2b)			14.37 ft		
		PURGING							
	DATE	13-Oct-95				TIME	- <u></u>		
		HER CONDITIONS		lear, sunr		/0's			
	a.					ated tygon tubi			
	b.	Required purge volume				gallons	·····		
			00	Redox	pH	Cond.*	T(C)		Appearance
		1.8 gallons		-137	6.63	964	16.7		Gray/sheen
		3.6 gallons		-093	6.45	910	15.7		Gray/sheen
		5.4 gallons		-060	6.30	1748	15.0		Gray/sheen
	SAMP	LE COLLECTION	•						
	DATE	13-Oct-95				TIME	2:30 p.m.		
		HER CONDITIONS	Cl	ear, sunny	unner 7		•		
	a.	Collection Method				dedicated tygor	1 tubing		
	ы. b.	Meter Calibration:		Date				del	
		pH Meter		13-Oct-			Y.S.I. 356		
		D.O. Meter		13-Oct-		Y.S.I. 50B			·····
	C.	Sample Information			5.30	Cond.	748	T(C)	15.0
		Analysis		· ·	tainers		Sample Prep.	• •	
		PAHs 8310/8270**			-L amber		• •		eld-filtered
		BTEX 8020			0 mL voa		Ice, dark		
		Total Cyanide 9010***			L plastic		Ice, dark		
		Microbial Enumerations	****		0 mL voa		Ice, dark		
	d.	Chain of Custody Form	y	es		COC T	ape yes		
	e. ,	Shipping Container	<u> </u>	oler with	ice cubes				

came through tubing.

*umho/cm

- **PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310
- ***If total cyanide is detected, weak acid dissociable cyanide will be analyzed as well
- ****Total heterotrophs, PAH degraders, and benzene degraders

Third Ward MG	P			WELL NO.	. W-20S	
3-0887-303				SAMPLER	S RLC	
		-				
NDITION CHEC			/1 4	a (
posts <u>N/A</u>		-		Good	Surface pad	Good
l visibility (paint)		······	N/A			
			Not pr	esent		
EVEL MEASUR	EMEN	Т				
13-Oct-95				TIME		
CONDITIONS	_	Sunny		· · · · ·		
ation of measuring	g point		Тор	of inner casing	· · · · · · · · · · · · · · · · · · ·	
th of water table f		asuring poin			6.34 ft	
ght of measuring p					0.32 ft	
al depth of well be		-	4		13.98 ft	
gth of water colun			·		7.64 ft	
5 ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··		,				
RGING						
13-Oct-95				TIME		
CONDITIONS		Sunny				
ge method				ated tygon tub	ing	
uired purge volum	ne at 3 v	vell volumes		3.75 gallor	15	
ume Removed	DO	Redox	pH	Cond.*	T(C)	Appearance
gallons		-148	6.74	6280	18.7	Dark gray
) gallons		-175	6.78	3250	18.6	Dark gray
gallons	0.50	-070	6.75	2830	18.6	Dark green/gr
OLLECTION						
13-Oct-95				TIME	2:15 p.m.	
CONDITIONS	- s	Sunny				
ection Method	F	Peristaltic pu	mp and	dedicated tygo	n tubing	
er Calibration:		Date			Model	
oH Meter		13-Oct-	95		Y.S.I. 3560	
D.O. Meter		13-Oct-			Y.S.I. 50B	
ple Information	··		.75	Cond. 2	2830 T(C) 18.6
lysis		·	ainers		Sample Prep./Pres	
Hs 8310/8270**			L amber		Ice, darkness,	
EX 8020			mL voa		Ice, darkness,	
al Cyanide 9010*	**		L plastic		Ice, darkness,	
robial Enumeration			mL voa		Ice, darkness	
in of Custody For		ves			ape ves	
•			ce cubes			
Ping Container	<u> </u>			······		
TS:						
opi	ng Container		ng Container Cooler with i	ng Container Cooler with ice cubes	ng Container Cooler with ice cubes	ng Container Cooler with ice cubes

*umho/cm

**PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310

***If total cyanide is detected, weak acid dissociable cyanide will be analyzed as well

JEC	T	Third Ward MGI	2			WELL NO.	W-22I	
JEC	T NO	. 3-0887-303				SAMPLER	S MRS	
x	VFLI.	CONDITION CHEC	KUIS	Г				
a		Bump posts N/A	ILLIS I	Pro. casi	ng/lock	Good	Surface pad	Good
).	Well visibility (paint)		-	N/A		Surrueo puu	
с		337-11 1-11			Not pro	esent	······································	
Ţ	NATE	R LEVEL MEASUR	FMFN	т				
	DATE	16-Oct-95				TIME	т.	
		HER CONDITIONS	-	Clear, sum	ıv. 40°	· · · · · · · · · · · · · · · · · · ·		
		Location of measuring	point			of inner casing	·····	
).	Depth of water table fi	-	asuring point			7.69 ft	
с		Height of measuring p		• •			0.23 ft	
d	ł.	Total depth of well be					16.59 ft	
e	.	Length of water colum					8.90 ft	
x	VELL	PURGING						
	DATE	16-Oct-95				TIME		
		HER CONDITIONS	-	Clear, sum	w 40°	1 IIVIL		
	1.	Purge method	Perist			ated tygon tubi	na	- <u>.</u>
	•.).	Required purge volum					gallons	
Ū		Volume Removed	DO	Redox	pH	Cond.*	T(C)	Appearance
		1.5 gallons		-170	6.61	2820	14.1	Gray/sheen
		3.0 gallons		-241	6.74	2770	14.1	Gray/sheen
		4.5 gallons	0.33	-278	6.77	2730	14.1	Gray/sheen
	TA NADI					······································		
	DATE	LE COLLECTION 16-Oct-95				TIME	9:30 a.m.	
		HER CONDITIONS	- (Clear, sunny	400		9.50 a.m.	
	WEAL 1.	Collection Method			·	ledicated tygo	, tubing	
	ı. D.	Meter Calibration:	<u> </u>	Date		icultated tygo	Model	
	<i>J</i> .	pH Meter		16-Oct			Y.S.I. 3560	
		D.O. Meter		16-Oct			Y.S.I. 50B	
c) .	Sample Information			5.77	Cond. 2	2730 T(C) 14.1
		Analysis		* <u> </u>	tainers		Sample Prep./Prese	
		PAHs 8310/8270**		2 X 1	-L amber		Ice, darkness,	
		BTEX 8020		3 x 4	mL voa		Ice, darkness,	HC1
		Total Cyanide 9010**	*	2 x 1-	L plastic		Ice, darkness,	NaOH
		Microbial Enumeratio	ns****	2 x 40	0 mL voa		Ice, darkness	
	d.	Chain of Custody For	m	yes		СОС Т	ape yes	
0		Shipping Container		Cooler with	ice cubes			

*umho/cm

**PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310

***If total cyanide is detected, weak acid dissociable cyanide will be analyzed as well

OJECT	Third Ward MGP				WELL NO).	W-22S			
OJECT N	O. <u>3-0887-303</u>				SAMPLE	RS	RLC	•		
WFI.	L CONDITION CHEC	KI 18.	Г							
a.	Bump posts N/A		Pro. casin	ng/lock	Good	S.	urface nod	Good		
и. b.	Well visibility (paint)		- 110. 0031	N/A	0000	5	urface pad _	Good		
0. C.	Well label			Not pr			·			
C.				Not pr	esent					
WAT	ER LEVEL MEASURE	CMEN	Т							
DATE					TIME	10:00) a.m.			
WEA	THER CONDITIONS		Sunny, 75°	[°] , light br	eeze					
a.	Location of measuring	point		Тор	of inner casir	ıg				
b.	Depth of water table fr	om me	asuring poin	nt		7.99 ft				
C.	Height of measuring po	oint be	low ground	surface	······································	0.32 ft				
d.	Total depth of well bel		-			9.86 ft				
e.	Length of water column				<u> </u>	1.87 ft				
WEL DATI	L PURGING E 11-Oct-95				TIME	. 10.0()			
	THER CONDITIONS	-	S) Labe ta		10:00) a.m.			
			Sunny, 75°							
a.	Purge method				ated tygon tu					
b.	Required purge volume					gallons		·		
	Volume Removed	DO	Redox	pH	Cond.*	T(C)	Appear			
	0.9 gallons		123	6.97	6	18.6		lack specks, og		
	1.8 gallons		-177	7.29	5	18.5		lack specks, or		
	2.7 gallons		-178	7.20	2190	18.3		lack specks, or		
	4.5 gallons	0.33	-192	7.14	2270	18.4	Clear/b	lack specks, or		
DATI		-			TIME	12:00 p.	m			
	THER CONDITIONS		Sunny, 75°,				···			
a.	Collection Method	<u> </u>			dedicated tyg	on tubing				
b.	Meter Calibration:		Date				Model			
	pH Meter		11-Oct				. 3560			
	D.O. Meter		11-Oct				. 50B			
С.	Sample Information		·	7.14	Cond.	2270	T(C)	18.4		
	Analysis		Con	tainers		Sample	Prep./Preser	vation		
	PAHs 8310/8270**		2 x 1	L amber		Ice,	darkness, fi	eld-filtered		
	BTEX 8020	•	3 voa			Ice,	darkness, H	IC1		
	Total Cyanide 9010***	k	2 x 1	L plastic		Ice,	darkness, N	laOH		
	Dissolved Fe, Mg, Ca		1 x 1	L plastic		Ice,	darkness, N	laOH		
d.	Chain of Custody Form	n	ves		COC	Tane	yes			
	•			ioo oubca			yes			
e.	Shipping Container _		Cooler with	ice cubes			- 07151			
- CON	IMENTS:									
COM	TIMETAT 2:	· · · · · · · · · · · · · · · · · · ·								

*umho/cm

**PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310

PROJE	CT	Third Ward MGP				WELL NO.	. '	W-23S	
PROJE	CT NO	3-0887-303				SAMPLER		RLC	
	WELL	CONDITION CHEC	VI 167						
l.		CONDITION CHEC Bump posts N/A	KLI3		a /laale	Card	Sf -	1	
	a. b.	Bump posts <u>N/A</u> Well visibility (paint)		Pro. casir	N/A	Good	Suria	ce pad _	Good
	0. C.	Well label			Not pre	cont			
	C.					SCIII	······································		
2.	WATE	R LEVEL MEASURE	EMEN	Т					
	DATE	12-Oct-95				TIME	2:50 p.m.		
	WEAT	HER CONDITIONS	-	Sunny, 80°	, breezy				
	a.	Location of measuring	point	*		of inner casing	ξ		
	b.	Depth of water table fr		asuring poin		`	5.92 ft		
	C.	Height of measuring po					0.31 ft	- -	
	d.	Total depth of well bel					12.33 ft		
	e.	Length of water colum					6.41 ft		
					•				
3.		PURGING							
	DATE		-		_	TIME	2:50 p.m	•	
	WEAT	HER CONDITIONS		Sunny, 80°					
	a.	Purge method				ted tygon tub			
	Ъ.	Required purge volume					gallons		
		Volume Removed	DO	Redox	pH	Cond.*	T(C)	Appea	
		1.1 gallons		-120	7.11	3850	18.7		green/slight odor
		2.0 gallons		-145	7.10	3570	18.3		green/slight odor
		3.1 gallons	0.55	-150	7.14	3540	18.3	Clear/lt	green/slight odor
4.	SAMP	LE COLLECTION							
••	DATE					TIME	4:30 p.m.		
		HER CONDITIONS	- 5	Sunny, 80°, '	breezv		P		
	a.	Collection Method				edicated tygo	n tubing		
	и. b.	Meter Calibration:		Date				odel	
	0.	pH Meter		12-Oct			Y.S.I. 35		
		D.O. Meter		12-Oct			Y.S.I. 50		
	с.	Sample Information			7.14	Cond.	3540	 T(C)	18.3
		Analysis			tainers	·····.	Sample Prep		vation
		PAHs 8310/8270**			1 L amber	•			eld-filtered
		BTEX 8020			40 mL vo			kness, H	
		Total Cyanide 9010**	*		1 L plastic			kness, N	
		Microbial Enumeration			40 mL vo	the second se	Ice, dar		·
		Soluble Phosphorus, N			1 L plastic		Ice, dar		
		Nitrate, Ammonia, Nit					Ice, H ₂		
		Dissolved Fe, Mg			1 L plastic	3	Ice, HN		
	d.	Chain of Custody Forr	n	yes		COCT			
	e.	Shipping Container		Cooler with	ice cubes		·		

5. COMMENTS:

*umho/cm

**PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310

***If total cyanide is detected, weak acid dissociable cyanide will be analyzed as well

PROJI		Third Ward MGP)			WELL NO.	W	-25S an	d Blind Dup-2
PROJ	ECT NO	3-0887-303				SAMPLER	S R	LC	
1	WEIT	CONDITION CHEC	1/1 16'	г					
1.	a.	CONDITION CHEC Bump posts N/A	rli5	Pro. casing	g/lock	Good	Surface		Card
	a. b.	Well visibility (paint)			N/A	0000	Surface	pad _	Good
	о. С.	Well label			Not pre	esent	<u>. </u>		
	•								
2.	WATE	R LEVEL MEASURI	EMEN	T					
	DATE	13-Oct-95				TIME	4:15 p.m.		
	WEAT	HER CONDITIONS		Sunny, 75°,					
	a.	Location of measuring				of inner casing			
	b.	Depth of water table fr					0.53 ft		
	C .	Height of measuring p							
•	d.	Total depth of well bel			t		14.90 ft		· · ·
	e.	Length of water colum	n (line	2d-2b)			7.20 ft		•
`	XX/E2T X	DUDCINC							
3.		PURGING				TIME	4.15		
	DATE	13-Oct-95 HER CONDITIONS	-	Summer 750		TIME	4:15 p.m.	· · · · · ·	· ·
	a.	Purge method	Derist	Sunny, 75°,		ited tygon tubi	ng		
	а. b.	Required purge volume				4.5 gallons			
	0.	Volume Removed	DO	Redox	pH	Cond.*	T(C)		Appearance
		1.5 gallons	20	-130	6.94	2520	19.5		ellow/odor, sheen
		3.0 gallons		-190	7.00	2780	19.0		ellow/odor, sheen
		4.5 gallons	0.50	-223	7.26	2840	19.0		llow/odor, sheen
4.	SAMP	LE COLLECTION							
	DATE	13-Oct-95	_			TIME	5:15 p.m.		
	WEAT	HER CONDITIONS		Sunny, 75°, v			•		<u> </u>
	a.	Collection Method	·]			edicated tygor			**********
	b.	Meter Calibration:		Date			Mo		
		pH Meter		13-Oct-9			Y.S.I. 356		Na
		D.O. Meter		13-Oct-9			Y.S.I. 50B		
	С.	Sample Information		·	.26	Cond2	2840	T(C)	19.0
		Analysis			ainers		Sample Prep./		
		PAHs 8310/8270** BTEX 8020			L amber mL voa		Ice, dark		eld-filtered
		Total Cyanide 9010**	*				Ice, dark		
		Microbial Enumeration			mL voa		Ice, dark		
	d.	Chain of Custody For	<u></u> _	yes		COC T	ape yes		
	u. e.	Shipping Container		Cooler with i	ce cubes	0001	upo <u>yes</u>		,
5.	•					- lots of bubb	les. Collected	Blind D	up-2 at MW-25S
			,						

*umho/cm

**PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310

***If total cyanide is detected, weak acid dissociable cyanide will be analyzed as well

a. b. c. WATEH DATE WEATH a. b. c. d. e. WELL DATE WEATH a.	3-0887-303 CONDITION CHEC Bump posts N/A Well visibility (paint) Well label R LEVEL MEASURE 11-Oct-95 IER CONDITIONS Location of measuring portection of measuring portection of the second point of t	EMEN point om mea oint bel ow mea	Pro. casing 75°, sunny, asuring point ow ground s asuring point	N/A Not pre breezy Top c t urface	Good esent TIME of inner casin	Surfa 5:30 p.m.	RLC	Good
a. b. c. WATEH DATE WEATH a. b. c. d. e. WELL DATE WEATH a.	Bump posts <u>N/A</u> Well visibility (paint) Well label R LEVEL MEASURE <u>11-Oct-95</u> IER CONDITIONS Location of measuring Depth of water table fr Height of measuring po Total depth of well bel Length of water colum PURGING <u>12-Oct-95</u>	EMEN point om mea oint bel ow mea	Pro. casing 75°, sunny, asuring point ow ground s asuring point	N/A Not pre breezy Top c t urface	esent	5:30 p.m.	ace pad	Good
a. b. c. WATEH DATE WEATH a. b. c. d. e. WELL DATE WEATH a.	Bump posts <u>N/A</u> Well visibility (paint) Well label R LEVEL MEASURE <u>11-Oct-95</u> IER CONDITIONS Location of measuring Depth of water table fr Height of measuring po Total depth of well bel Length of water colum PURGING <u>12-Oct-95</u>	EMEN point om mea oint bel ow mea	Pro. casing 75°, sunny, asuring point ow ground s asuring point	N/A Not pre breezy Top c t urface	esent	5:30 p.m.	ace pad	Good
b. c. WATEH DATE WEATH a. b. c. d. e. WELL DATE WEATH a.	Well visibility (paint) Well label <u>R LEVEL MEASURE</u> <u>11-Oct-95</u> IER CONDITIONS Location of measuring Depth of water table fr Height of measuring por Total depth of well bel Length of water colum PURGING 12-Oct-95	point om mea oint bel ow mea	F 75°, sunny, asuring point ow ground s asuring point	N/A Not pre breezy Top c t urface	esent	5:30 p.m.	ace pad _	Good
c. WATEH DATE WEATH a. b. c. d. c. d. e. WELL DATE WEATH a.	Well label R LEVEL MEASURE 11-Oct-95 IER CONDITIONS Location of measuring Depth of water table fr Height of measuring per Total depth of well bel Length of water colum PURGING 12-Oct-95	point om mea oint bel ow mea	75°, sunny, asuring point ow ground s asuring point	Not pre breezy Top c t urface	TIME	ng		
WATEH DATE WEATH a. b. c. d. e. WELL DATE WEATH a.	R LEVEL MEASURE 11-Oct-95 IER CONDITIONS Location of measuring Depth of water table fr Height of measuring por Total depth of well bel Length of water colum PURGING 12-Oct-95	point om mea oint bel ow mea	75°, sunny, asuring point ow ground s asuring point	breezy Top c t urface	TIME	ng		
DATE WEATH a. b. c. d. e. WELL DATE WEATH a.	11-Oct-95 IER CONDITIONS Location of measuring Depth of water table fr Height of measuring per Total depth of well bel Length of water colum PURGING 12-Oct-95	point om mea oint bel ow mea	75°, sunny, asuring point ow ground s asuring point	Top c t urface		ng		
DATE WEATH a. b. c. d. e. WELL DATE WEATH a.	11-Oct-95 IER CONDITIONS Location of measuring Depth of water table fr Height of measuring per Total depth of well bel Length of water colum PURGING 12-Oct-95	point om mea oint bel ow mea	75°, sunny, asuring point ow ground s asuring point	Top c t urface		ng		
WEATH a. b. c. d. e. WELL DATE WEATH a.	IER CONDITIONS Location of measuring Depth of water table fr Height of measuring per Total depth of well bel Length of water colum PURGING 12-Oct-95	point om mea oint bel ow mea	asuring point ow ground s asuring point	Top c t urface		ng		
a. b. c. d. e. WELL DATE WEATH a.	Location of measuring Depth of water table fr Height of measuring po Total depth of well bel Length of water colum PURGING 12-Oct-95	point om mea oint bel ow mea	asuring point ow ground s asuring point	Top c t urface	of inner casi		•	
b. c. d. e. WELL DATE WEATH a.	Depth of water table fr Height of measuring po Total depth of well bel Length of water colum PURGING 12-Oct-95	om mea oint bel ow mea	ow ground s suring point	t urface	of inner casi			
c. d. e. WELL DATE WEATH a.	Height of measuring per Total depth of well bel Length of water colum PURGING 12-Oct-95	oint bel ow mea	ow ground s suring point	urface		7 37 #		
d. e. DATE WEATH a.	Total depth of well bel Length of water colum PURGING 12-Oct-95	low mea	suring point					
e. WELL DATE WEATH a.	Length of water colum PURGING 12-Oct-95			:		0.22 ft		
WELL DATE WEATH a.	PURGING 12-Oct-95	n (line)	2d-2b)			21.48 ft		
DATE WEATH a.	12-Oct-95					14.11 ft		
DATE WEATH a.	12-Oct-95							
WEATE a.						5.20		
a.			750	h	TIME	5:30 p.m.		<u></u>
			75°, sunny,		ated to som to	-him a		
L	Purge method Required purge volume		altic pump an	id dedica		9 gallons		
	Volume Removed	DO	Redox	<u>ה</u>	Cond.*			Annoaranaa
	2.3 gallons	DU	-103	pH 6.71	1570	T(C) 16.7		Appearance Yellow
-	4.6 gallons		-073	7.27	1370	25.1		Yellow
-	6.9 gallons	1.23	-106	6.74	2920	16.4		Yellow
-		1.23	-100	0.74	2720	10.4		
-						······		
SAMPL	E COLLECTION							
DATE	12-Oct-95				TIME	6:30 p.m.		
WEATH	IER CONDITIONS		5°, sunny, bi					
a.	Collection Method	P	eristaltic pu	mp and d	ledicated typ	zon tubing		
b.	Meter Calibration:		Date			N	/lodel	
	pH Meter		12-Oct-9			Y.S.I. 3		
	D.O. Meter		12-Oct-9			Y.S.I. 5		
	Sample Information		·	.74	Cond.	2920	T(C)	16.4
	Analysis			ainers		Sample Pre		
	PAHs 8310/8270**			L amber				eld-filtered
	BTEX 8020			mL voa			rkness, H	
·	Total Cyanide 9010**			_ plastic			<mark>urkness,</mark> N	aOH
	Microbial Enumeration	ns****	2 x 40	mL voa		Ice, da	irkness	
d.	Chain of Custody Forr	n	yes		COC	Tape yes	5	
	Shipping Container		Cooler with i	ce cubes		·		
	11 0 <u> </u>							<u> </u>
COMM	IENTS:							
·								

*umho/cm

**PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310

***If total cyanide is detected, weak acid dissociable cyanide will be analyzed as well

JECT NO	Third Ward MG				WELL NO.	. W-265	5
). <u>3-0887-303</u>		<u> </u>		SAMPLER	S RLC	
WELL	CONDITION CHE	ראו זער	Г				
a.	Bump posts N/A	-NLISI	Pro. casi	ng/lock	Good	Cumfa a a mar	
а. b.	Well visibility (paint)		- 110. casi	N/A	0000	Surface pac	IGood
о. С.	Well label		<u> </u>	Not pr	ecent		
0.				Not pi	esent		
WATI	ER LEVEL MEASUR	EMEN	Т				
DATE	12-Oct-95				TIME	5:30 p.m.	
WEAT	THER CONDITIONS		Sunny, 75	°, breezy			
a.	Location of measuring				of inner casing	5	
b.	Depth of water table f	rom me	asuring poi	int		6.82 ft	
С.	Height of measuring p	oint bel	low ground	surface		0.54 ft	
d.	Total depth of well be	low mea	asuring poi	nt		14.13 ft	
e.	Length of water colum	nn (line	2d-2b)			7.31 ft	
	DUDGING						
						z a a	
DATE		_	0 75	0.1	TIME	5:30 p.m.	
	THER CONDITIONS	Dentat	Sunny, 75		. 1 1		
a.	Purge method				ated tygon tub		
b.	Required purge volun				3.6 gallons		
	Volume Removed	DO	Redox	pH	Cond.*	T(C)	Appearance
	1.20 gallons		-103	7.06	4210	23.0	Green/gray,od
	2.40 gallons 3.60 gallons	0.40	-140 -159	7.23	<u>3280</u> 4350	22.9 22.6	Green/gray,od Green/gray,od
					-1550		Green gruy,ou
SAMP	PLE COLLECTION					·····	
DATE	12-Oct-95				TIME	6:30 p.m.	
WEAT	HER CONDITIONS	- s	unny, 75°,	breezy			
a.	Collection Method				dedicated tygo	n tubing	
b.	Meter Calibration:		Dat	e		Model	
	pH Meter		12-Oct	-95		Y.S.I. 3560	
	D.O. Meter		12-Oct	-95		Y.S.I. 50B	
C.	Sample Information		pH	7.19	Cond.	9350 T(C	C) 22.0
	Analysis		Cor	ntainers	·	Sample Prep./Pres	ervation
	PAHs 8310/8270**		2 X I	-L amber		Ice, darkness	, field-filtered
	BTEX 8020		3 x 4	0 mL voa		Ice, darkness	, HCl
	Total Cyanide 9010*	**	2 x 1	-L plastic		Ice, darkness	, NaOH
	Chain of Custody For		yes		COC T	ape ves	·····
đ	Shipping Container		Cooler with	ice cubes		upo <u> </u>	
d. e	Suppling Collignor					· · · · · · · · · · · · · · · · · · ·	
e.			. •				
e.	MENTS:		. •				

*umho/cm

**PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310

V a b c V U V	l.). :.	3-0887-303 CONDITION CHEC Bump posts N/A Well visibility (paint) Well label R LEVEL MEASURE	KLIST	Pro. casi	ng/lock	SAMPLE					
a b c V E V). :. WATE	Bump posts N/A Well visibility (paint) Well label	KLIST		ng/lock						
a b c V E V). :. WATE	Bump posts N/A Well visibility (paint) Well label			ng/lock						
b c V D V). VATE	Well visibility (paint) Well label		110. 0031	$\frac{112}{100}$	Good	Surface no	d Card			
c V L V	VATE	Well label			N/A	0000	Surface pa	d <u>Good</u>			
V C V	VATE	· · · · · · · · · · · · · · · · · · ·			Not pr		· · · · · · · · · · · · · · · · · · ·				
E V		RIEVEL MEASURE			Not pi	esent					
V	DATE	K LEVEL MEASURE	MEN	Г							
		12-Oct-95	_			TIME					
а		HER CONDITIONS		Sunny, wit	ndy, uppe	r 50's					
u	I.	Location of measuring	point		Тор	of inner casi	ng				
b).	Depth of water table fr	om me:	asuring poi	nt		9.28 ft				
с		Height of measuring po	oint bel	ow ground	surface		0.37 ft				
d	I.	Total depth of well belo	ow mea	suring point	nt		36.20 ft				
e		Length of water column					26.92 ft	····.			
		-									
		PURGING									
	DATE	15-Oct-95		с ·	1	TIME	·····				
		HER CONDITIONS		Sunny, wi							
a		Purge method				ated tygon tu					
b).	Required purge volume					.5 gallons				
		Volume Removed	DO	Redox	pH	Cond.*	T(C)	Appearance			
		4.5 gallons		-110	6.60	1441	13.8	Clear w/black spec			
		9.0 gallons		-114	6.61	1441	13.5	Clear			
		13.5 gallons	0.32	-119	6.61	1443	13.5	Clear			
Ε	DATE	LE COLLECTION 15-Oct-95 HER CONDITIONS		unny, wind	ly unner '	TIME	4:15 p.m.				
		Collection Method				dedicated tyg	on tuhing	·			
	1.).	Meter Calibration:		Dat		ucultated tyg	Model	· · · · · · · · · · · · · · · · · · ·			
U).	pH Meter		15-Oct			Y.S.I. 3560				
		D.O. Meter		15-Oct		<u></u>	Y.S.I. 50B				
		Sample Information			-95 6.61	Cond.		C) 13.5			
C				·	tainers		<u>1443</u> T(
	Analysis					Sample Prep./Pre					
					-L amber			s, field-filtered			
		PAHs 8310/8270**	3 x 40 mL voa				Ice, darkness	s, HCI			
		BTEX 8020					, , ,				
		BTEX 8020 Total Cyanide 9010***	'e		-L plastic		Ice, darkness				
		BTEX 8020	k		-L plastic						
đ	1.	BTEX 8020 Total Cyanide 9010***			-L plastic	COC	Ice, darkness Ice, darkness				

*umho/cm

**PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310

JECT	Third Ward MGP				WELL NC). W-41D)	
JECT N	O. <u>3-0887-303</u>				SAMPLE	RS RLC		
WEL	L CONDITION CHEC							
a.	Bump posts <u>N/A</u>		Pro. casing	-	Good	Surface pad	Good	
b.	Well visibility (paint)			N/A				
c.	Well label			Not pr	esent			
	ER LEVEL MEASURE	CMEN	1					
DATI		-	G G G G G G G G G G		TIME			
	THER CONDITIONS		Sunny, 70°				<u> </u>	
a.	Location of measuring				of inner casin			
b.	Depth of water table fr		• •			5.95 ft		
C.	Height of measuring p		-			0.41 ft		
d.	Total depth of well bel					45.01 ft		
e.	Length of water colum	n (line	2 d- 2b) _			39.06 ft		
WEI	L PURGING					·		
DATI					TIME	8:30 a.m.		
	THER CONDITIONS	-	Sunny, 70°			<u> </u>		
	Purge method	Doriete		d dadia	ated tygon tul	ing		
a. b.	Required purge volume			iu ucuica		2 gallons		
0.	Volume Removed	DO DO	Redox	рH	Cond.*			
	6.4 gallons	DO	-103	рп 6.54	1430	T(C) 13.1	Appearance Gray/green	
	12.5 gallons		-095	6.50	1430	15.6		
	19.2 gallons	0.60	-093	6.50	1500	15.5	Gray/green Gray/green	
	19.2 gailons	0.00	-093	0.50	1500	15.5	Gray/green	
SAM	PLE COLLECTION							
DAT	E 12-Oct-95				TIME	11:50 a.m.		
WEA	THER CONDITIONS	- S	unny, 70°					
a.	Collection Method	P	eristaltic pur	np and o	ledicated tyge	on tubing		
b.	Meter Calibration:		Date			Model		
	pH Meter		12-Oct-9	5		Y.S.I. 3560		
	D.O. Meter		12-Oct-9	95		Y.S.I. 50B		
	Sample Information		pH 6.	50	Cond.	2830 T(C) 15.5	
с.	-		Conta	iners		Sample Prep./Prese		
C.	Analysis			omhar		Ice darkness	field-filtered	
C.	Analysis PAHs 8310/82 7 0**		2 x 1 L amber			Ice, darkness, field-filtered		
C.			$\frac{2 \times 1 L}{3 \text{ vials}}$	amoer		Ice, darkness,	HC1	
C.	PAHs 8310/8270** BTEX 8020	*	3 vials	plastic				
c.	PAHs 8310/8270**	*	3 vials 2 x 1 L			Ice, darkness,	NaOH	
	PAHs 8310/8270** BTEX 8020 Total Cyanide 9010** Dissolved Fe, Mg, Ca		3 vials 2 x 1 L	plastic		Ice, darkness, Ice, darkness, Ice, darkness,	NaOH	
c. d.	PAHs 8310/8270** BTEX 8020 Total Cyanide 9010** Dissolved Fe, Mg, Ca Chain of Custody Form	n	3 vials 2 x 1 L 1 x 1 L yes	plastic plastic	COC	Ice, darkness, Ice, darkness, Ice, darkness,	NaOH	
	PAHs 8310/8270** BTEX 8020 Total Cyanide 9010** Dissolved Fe, Mg, Ca	n	3 vials 2 x 1 L 1 x 1 L	plastic plastic		Ice, darkness, Ice, darkness, Ice, darkness,	NaOH	
d.	PAHs 8310/8270** BTEX 8020 Total Cyanide 9010** Dissolved Fe, Mg, Ca Chain of Custody Form	n	3 vials 2 x 1 L 1 x 1 L yes	plastic plastic		Ice, darkness, Ice, darkness, Ice, darkness,	NaOH	

*umho/cm

PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310 *If total cyanide is detected, weak acid dissociable cyanide will be analyzed as well

PROJE	ЕСТ	Third Ward MGP				WELL NO	0.	W-41S a	nd Blind Dup
PROJE	ECT NO	. 3-0887-303				SAMPLE	RS	RLC	
								······	
1.	WELL	CONDITION CHEC	KLIST	•					
	a.	Bump posts N/A		Pro. casin		Good		Surface pad	Good
	b.	Well visibility (paint)			N/A				
	C .	Well label			Not pr	esent			
2.		R LEVEL MEASURE	EMEN	Г					
	DATE	11-Oct-95	-			TIME	8:3	0 a.m.	
	WEAT	HER CONDITIONS		Sunny, 75°,					
	a.	Location of measuring				of inner casii			
	b.	Depth of water table from					<u>4.20 ft</u>		
	C .	Height of measuring po		-			0.35 ft		<u>.</u>
-	d.	Total depth of well bel			t		14.97		
	e.	Length of water column	n (line	2d-2b)			10.77	ft	
-		DUD GING							
3.		PURGING						•	•
	DATE	11-Oct-95	-	a	•••••	TIME	8:3	0 a.m.	
		HER CONDITIONS		Sunny, 75°,			1 ·	•	.
	a.	Purge method				ated tygon tu			
	b.	Required purge volume					4 gallons		
		Volume Removed	DO	Redox	pH	Cond.*	T(C)	Appear	
		1.8 gallons		-163	7.29	3660	18.7		t gray/green, odor
		3.6 gallons	0.70	-141	7.22	3590	19.1		t gray/green, odor
		5.4 gallons	0.70	-122	6.80	3690	19.1	Sheen/I	t gray/green, odor
				····					
4.	SAMP	LE COLLECTION							
т.	DATE	12-Oct-95				TIME	10:45	a m	
		HER CONDITIONS	- S	unny, 75°, 1	ight hree		10.45		
	a.	Collection Method				dedicated typ	on tubing	· · · · · · · · · · · · · · · · · · ·	
	и. b.	Meter Calibration:	<u>+</u>	Date			,on tuome	Model	
	0.	pH Meter		12-Oct-9			vs	5.I. 3560	
		D.O. Meter		12-Oct-				I. 50B	
	C.	Sample Information			.80	Cond.	3690	T(C)	19.1
	0.	Analysis		·	ainers			e Prep./Preserv	
		PAHs 8310/8270**			amber		-	e, darkness, fi	
		BTEX 8020		3 vials				e, darkness, H	
		Total Cyanide 9010***	*		_ plastic			e, darkness, N	
		Dissolved Fe, Mg, Ca			_ plastic			-,,	
		Nutrients							
	d.	Chain of Custody Form	n	yes		COC	Tape	yes	
	e.	Shipping Container		Cooler with i	ce cubes		- "P"		·
	0.					- <u>.</u>			
5.	COMM	MENTS: Difficulty	z collec	ting volatile	samples	, a lot of air	bubbles in	the water	
<i>.</i> .				sample colle		, a 100 01 ull			
	····		<u></u>			····-			

*umho/cm

**PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310

OJECT	Third Ward MGP)			WELL NO.	W-42D	
OJECT NO	3-0887-303				SAMPLER	S MRS	
			-				
WELL	CONDITION CHEC						
a.	Bump posts N/A		Pro. casir		Good	Surface pad	Good
b.	Well visibility (paint)						
с.	Well label			Not pr	esent		
WATE	R LEVEL MEASURI	MEN	т				
DATE	10-Oct-95	21411214	1		TIME		
	HER CONDITIONS	_	Clear, sunr	w 50'e			
a.	Location of measuring	noint			of inner casing		
a. b.	Depth of water table fr		acuring noi		of finiter cashing	8.42 ft	
	Height of measuring p					0.41 ft	
с. d.	Total depth of well bel		-			29.62 ft	
				IL	······································	29.62 ft 21.20 ft	· · · · · · · · · · · · · · · · · · ·
e.	Length of water colum	n (nne	2 u- 20)	<u>.</u>	k.	21.20 It	
WELL	PURGING						
DATE	15-Oct-95				TIME		
WEAT	HER CONDITIONS	-	Clear, sunr	ıy, 50's	······		
a.	Purge method	Perist			ated tygon tubi	ng	<u> </u>
b.	Required purge volum					gallons	
0.	Volume Removed	DO	Redox	pH	Cond.*	T(C)	Appearance
	3.5 gallons	20	-088	6.54	1700	14.2	Clear/colorles
	7.0 gallons		-082	6.48	1700	14.0	Clear/colorles
	10.5 gallons	0.48	-082	6.56	1699	14.0	Clear/colorles
	[.]						
SAMP	LE COLLECTION						
DATE	15-Oct-95				TIME	5:45 p.m.	
WEAT	HER CONDITIONS	- (Clear, sunny	r, 50's	<u></u>		<u> </u>
a.	Collection Method	Ī	Peristaltic pu	ump and o	ledicated tygor	n tubing	
b.	Meter Calibration:		Date			Model	
	pH Meter		15-Oct	-95		Y.S.I. 3560	
	D.O. Meter		15-Oct			Y.S.I. 50B	
C.	Sample Information			5.56	Cond. 1	699 T(C)	14.0
•.	Analysis		• • • • • • • • • • • • • • • • • • • •	tainers		Sample Prep./Prese	
	PAHs 8310/8270**			-L amber	·	Ice, darkness,	
	BTEX 8020			0 mL voa		Ice, darkness,	
	Total Cyanide 9010**	*		-L plastic		Ice, darkness,	
					·····		
d.	Chain of Custody For	n	ves		COC T	ape yes	
е.	Shipping Container		Cooler with	ice cubes			
						<u>.</u> .	
COM	MENTS:						· · · · ·
					·····		
	-					·····	

*umho/cm

**PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310

CT NO WELL a.	. <u>3-0887-303</u> CONDITION CHEC				CAMPIED		
	CONDITION CUEC				SAMPLER	S MRS	
		VIIC	г				
4.	Bump posts N/A	NLIS	Pro. casin	a/lock	Good	Surface nod	Good
) .	Well visibility (paint)		- 110. casin	N/A	0000	Surface pad	Good
с.	Well label			Not pr	esent		
							•
WATE	R LEVEL MEASURI	EMEN	T				
DATE	16-Oct-95	_			TIME		
WEAT	HER CONDITIONS		Clear, 50°,				
a.	Location of measuring		<u> </u>		of inner casing		
) .	Depth of water table fr					9.99 ft	
C.					. <u></u>	0.35 ft	
1.				t			
Ð.	Length of water colum	n (line	2d-2b)			15.70 ft (see note)	<u>_</u>
WEIT	DUDCINC						
					TIME		
		-	Clear 50°	windy			
		Periot			ated tygon tub	ina	
и. b.							
0.							Appearance
		20		-			Gray/sheen
							Gray/sheen
		NM	-092				Gray/sheen
					.e		
		-	- 		TIME	6:45 p.m.	
						. 1 .	
a.			······································		dedicated tygo		
D .							
	· · · · · · · · · · · · · · · · · · ·	<u> </u>					<u></u>
_					Cond) 13.3
С.			*				
	•						
		*					
						· · · · · · · · · · · · · · · · · · ·	
							<u></u>
d.	Chain of Custody For	n	Yes		COCT	ape Yes	
e.	Shipping Container		Cooler with i	ce cubes			
	VELL DATE VEAT DATE DATE VEAT	Total depth of well bel Length of water colum VELL PURGING DATE 16-Oct-95 VEATHER CONDITIONS Purge method Required purge volum Volume Removed 2.5 gallons 5.0 gallons 7.5 gallons 7.5 gallons Collection Method Meter Calibration: pH Meter D.O. Meter Sample Information Analysis PAHs 8310/8270** BTEX 8020 Total Cyanide 9010** Microbial Enumeration	Total depth of well below method Length of water column (line VELL PURGING DATE 16-Oct-95 VEATHER CONDITIONS Purge method Perist Nequired purge volume at 3 work Volume Removed DO 2.5 gallons 5.0 gallons 7.5 gallons NM 7.5 gallons NM Purge method Purge SAMPLE COLLECTION DATE 16-Oct-95 NM Collection Method DO DO DO DATE 16-Oct-95 NEATHER CONDITIONS DO Collection Method DO DO DO DATE 16-Oct-95 DO DO SAMPLE COLLECTION DATE DATE 16-Oct-95 WEATHER CONDITIONS DATE DO DATE DATE 16-Oct-95 DATE DO DATE DATE 16-Oct-95 DATE DATE DATE DATE 16-Oct-95 DATE DATE DATE DATE 16-Oct-95 DATE DATE DATE D.O. Meter D.O. Meter DATE DATE DATE <td> Total depth of well below measuring poin Length of water column (line 2d-2b) VELL PURGING DATE <u>16-Oct-95</u> VEATHER CONDITIONS <u>Clear, 50°,</u> Purge method <u>Peristaltic pump a</u> Required purge volume at 3 well volumes Volume Removed DO Redox <u>2.5 gallons -087</u> 5.0 gallons <u>-095</u> 7.5 gallons <u>NM -092</u> SAMPLE COLLECTION DATE <u>16-Oct-95</u> WEATHER CONDITIONS <u>Clear, 50°, w</u> Collection Method <u>Peristaltic pump</u> Meter Calibration: Date pH Meter <u>16-Oct-95</u> NM teter <u>16-Oct-95</u> D. Meter Calibration: Date pH Meter <u>16-Oct-95</u> D. Meter Calibration: Date pH Meter <u>16-Oct-95</u> Sample Information pH <u>6</u> Analysis <u>Comparent Comparent Comp</u></td> <td>Image: Solution of the second state /td> <td>Total depth of well below measuring point Length of water column (line 2d-2b) VELL PURGING DATE 16-Oct-95 TIME VEATHER CONDITIONS Clear, 50°, windy Purge method Peristaltic pump and dedicated tygon tub Nequired purge volume at 3 well volumes 7.5 Volume Removed DO Redox pH Cond.* 2.5 gallons -087 6.82 3170 5.0 gallons -095 6.87 2720 7.5 gallons -095 6.87 2720 7.5 gallons NM -092 6.88 2640 Collection Method Peristaltic pump and dedicated tygo b. Collection Method Peristaltic pump and dedicated tygo b. Meter Calibration: Date pH Meter 16-Oct-95 D.0. b. Sample Information pH 6.88 Cond. Analysis Containers PAHs 8310/8270** 2 X 1-L amber BTEX 8020 3 x 40 mL voa Total Cyanide 9010*** 2 x 1-L plastic Microbial Enumerations**** 2 x 40 mL voa</td> <td>Total depth of well below measuring point 29.48 ft Length of water column (line 2d-2b) 15.70 ft (see note) VELL PURGING DATE 16-Oct-95 TIME </td>	 Total depth of well below measuring poin Length of water column (line 2d-2b) VELL PURGING DATE <u>16-Oct-95</u> VEATHER CONDITIONS <u>Clear, 50°,</u> Purge method <u>Peristaltic pump a</u> Required purge volume at 3 well volumes Volume Removed DO Redox <u>2.5 gallons -087</u> 5.0 gallons <u>-095</u> 7.5 gallons <u>NM -092</u> SAMPLE COLLECTION DATE <u>16-Oct-95</u> WEATHER CONDITIONS <u>Clear, 50°, w</u> Collection Method <u>Peristaltic pump</u> Meter Calibration: Date pH Meter <u>16-Oct-95</u> NM teter <u>16-Oct-95</u> D. Meter Calibration: Date pH Meter <u>16-Oct-95</u> D. Meter Calibration: Date pH Meter <u>16-Oct-95</u> Sample Information pH <u>6</u> Analysis <u>Comparent Comparent Comp</u>	Image: Solution of the second state	Total depth of well below measuring point Length of water column (line 2d-2b) VELL PURGING DATE 16-Oct-95 TIME VEATHER CONDITIONS Clear, 50°, windy Purge method Peristaltic pump and dedicated tygon tub Nequired purge volume at 3 well volumes 7.5 Volume Removed DO Redox pH Cond.* 2.5 gallons -087 6.82 3170 5.0 gallons -095 6.87 2720 7.5 gallons -095 6.87 2720 7.5 gallons NM -092 6.88 2640 Collection Method Peristaltic pump and dedicated tygo b. Collection Method Peristaltic pump and dedicated tygo b. Meter Calibration: Date pH Meter 16-Oct-95 D.0. b. Sample Information pH 6.88 Cond. Analysis Containers PAHs 8310/8270** 2 X 1-L amber BTEX 8020 3 x 40 mL voa Total Cyanide 9010*** 2 x 1-L plastic Microbial Enumerations**** 2 x 40 mL voa	Total depth of well below measuring point 29.48 ft Length of water column (line 2d-2b) 15.70 ft (see note) VELL PURGING DATE 16-Oct-95 TIME

Water column height was calculated based on top of DNAPL to top of water.

*umho/cm

- **PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310
- ***If total cyanide is detected, weak acid dissociable cyanide will be analyzed as well
- ****Total heterotrophs, PAH degraders, and benzene degraders

NM - Not Measured

a. E b. V c. V WATER DATE WEATH a. L	3-0887-303 CONDITION CHEC Bump posts N/A Well visibility (paint) Well label	KLIST	Pro. casi	ng/lock	SAMPLERS	MRS		
a. E b. V c. V WATER DATE WEATH a. L	Bump posts <u>N/A</u> Well visibility (paint) Well label	KLIST		ng/look				
a. E b. V c. V WATER DATE WEATH a. L	Bump posts <u>N/A</u> Well visibility (paint) Well label			ng/look				
b. V c. V WATER DATE WEATH a. L	Well visibility (paint) Well label		-	DM/ HOLEK	Good	Surface pad	Good	
c. V WATER DATE WEATH a. L	Well label			N/A			0000	
WATER DATE WEATH a. L				Not pr	esent			
DATE WEATH a. L	LEVEL MEASURE			_				
WEATHI a. L	ER LEVEL MEASUREMENT							
a. L	10-Oct-95	_			TIME			
	ER CONDITIONS		Clear, 50°		·······			
ь г	Location of measuring	-			of inner casing			
	Depth of water table fr			6.44 ft				
	Height of measuring po			0.52 ft				
	Fotal depth of well bel			nt		42.68 ft		
e. L	Length of water colum	2d-2b)		36.24 ft				
WFILE	PURGING							
DATE	16-Oct-95				TIME			
	ER CONDITIONS	-	Clear, 50°	windy				
		Doriate			tad trigon tubin	~		
	Purge methodPeristaltic pump and dedicated tygon tubingRequired purge volume at 3 well volumes18 gallons							
	Volume Removed	DO DO	Redox	pH_	Cond.*			
		DO	-108	рн 6.53	1434	T(C)	Appearance Clear	
	6 gallons		-108	6.54	1434	<u> </u>	Clear	
مدن. م	12 gallons	0.40	-112	6.56	1420	12.3	<u>Clear</u>	
					· · · · · · · · · · · · · · · · · · ·			
SAMPL DATE	MPLE COLLECTION					2.45 m m		
	16-Oct-95 ER CONDITIONS	- 6	Non 509 -		TIME	3:45 p.m.		
			Clear, 50°, v		ledicated tygon	tuhina	<u></u>	
	Collection Method	r	Dat		lealcated tygon	Model	·	
b. N	Meter Calibration:				Y.S.I. 3560			
	pH Meter		16-Oct 16-Oct		Y.S.I. 50B			
	D.O. Meter		····		Cond. 14		12.4	
	Sample Information		· · · · · · · · · · · · · · · · · · ·	5.56		$\frac{127}{2}$ T(C)	12.4	
	Analysis			tainers		Sample Prep./Preser		
_	PAHs 8310/8270**		the second s	-L amber	· · · ·	Ice, darkness, f		
	BTEX 8020	<u>*</u>		0 mL voa	Ice, darkness, HCl Ice, darkness, NaOH			
	Total Cyanide 9010**		2 X 1	L plastic		ice, darkness, i		
- - -	Chain of Creater to F			COC T-				
	Chain of Custody Forr		yes		COC Tape yes			
e	Shipping Container _	(Cooler with	ice cubes				

*umho/cm

**PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310

ROJI	ECT	Third Ward MG	Р			WELL NO		W-46D	
ROJI	ECT NO	. 3-0887-303				SAMPLER		RLC	
		CONDITION		-					
		CONDITION CHEC				Card	0.0		C 1
	a. 1	Bump posts N/A		Pro. casii		Good	Surfa	ice pad _	Good
	b.	Well visibility (paint)			N/A				
	C .	Well label			Not pr	esent			
	WATE	R LEVEL MEASUR	EMEN	T					
	DATE	13-Oct-95				TIME	9:45 a.m	1.	
	WEATI	HER CONDITIONS	_	Sunny, 70 ^d)	·			
	a.	Location of measuring	g point			of inner casing	g		
	b.	Depth of water table f		11.49 ft					
	C.	Height of measuring p		0.26	ft				
	d.	Total depth of well be		27.70 ft					
	e.	Length of water colum		16.21 ft					
	NUTE I	DUDCINC			•				
		PURGING					0.45		
	DATE	13-Oct-95	_	C	,		9:45 a.m	1	
		HER CONDITIONS	D	Sunny, 70°			•	- 12	
		Purge method Peristaltic pump and dedicated tygon tubing							
	b.	Required purge volum					0 gallons		
		Volume Removed	DO	Redox	pН	Cond.*	T(C)	Appear	
		3.3 gallons		-068	6.51		14.9		ellow/slight odd
		6.6 gallons		-071	6.54	3070	15.4		ellow/slight odd
		10.0 gallons	0.60	-079	6.48	2980	15.4	Light ye	ellow/slight odo
	SAMP	LE COLLECTION	÷						
	DATE	13-Oct-95				TIME	11:00 a.m.		
		HER CONDITIONS	_	Sunny, 70°			u		
	a.	Collection Method				dedicated tygo	n tuhing		
	и. b.	Meter Calibration:		Dat				lodel	
	0.	pH Meter		13-Oct		Y.S.I. 3560			
		D.O. Meter		13-Oct		Y.S.I. 50B			
С	c	Sample Information			5.48	Cond.	2980	T(C)	15.4
	υ.	Analysis		p11		tainers	Sample Pre		
		PAHs 8310/8270**				$2 \ge 1 $ L amber	· ·		eld-filtered
		BTEX 8020				3 vials		rkness, H	
		Total Cyanide 9010**	**	· · · · ·		$2 \times 1 L$ plasti			
						2 x 1 L plasticIce, darkness, NaOH2 x 40 mL voaIce, darkness			
						1 x 1 L plastic Ice, darkness, HNO3			
		Dissolved Fe, Mg, Ca							
		Soluble Nitrate, Sulfa	tes		- I X	1 x 1 L plasti			
		Sulfides			·····	000		nc acetate	
	d.	Chain of Custody For		yes Cooler with	ing orther	COCI	fape yes		
	e.	Shipping Container		Cooler with	ice cubes				

*umho/cm

**PAHs will be run by EPA 8270 if high analyte concentrations pose interferences for Method 8310

***If total cyanide is detected, weak acid dissociable cyanide will be analyzed as well

APPENDIX J

MICROBIAL ENUMERATION RESULTS

LABORATORY REPORT

Analysis: Enumeration of Total Heterotroph, Specific Volatile, and PAH Degraders

Project: Third Ward MGP Contract #: 3-0887-303 Project Contact: Martha Steinhart Report Date: 10/26/95 Lab ID: 9510-015

Water samples were received from the Third Ward MGP project on October 17, 1995, and were collected on October 12-16.

METHODS

A. Total Plate Counts:

For each water sample, one mL was placed in 9 mL of saline solution. From this first dilution, each subsample was serially diluted further into sterile saline solution. Aliquots (0.1-ml) were plated on plate count agar from the appropriate dilution tubes. The plates were then incubated at room temperature for approximately 48 hours before being counted ("Agar-Plate Method for Total Microbial Count", F. Clark, <u>Methods of Soil Analysis</u>, vol. 2, pp. 1460-65). The results are shown in Tables 1 and 2.

B. <u>VOA Degraders</u>

Serial dilutions were performed for each water sample as described in section A. Aliquots (0.1-mL) from the appropriate dilution tubes were plated on a minimal salts agar media. The plates were then incubated at room temperature in an atmosphere of benzene vapors as the sole carbon source. The plates were counted with a colony counter after approximately five days. The results are shown in Tables 1 and 2.

C. Specific PAH Degraders

To enumerate PAH degraders, dilutions from water subsamples were plated on an agar medium containing phenanthrene as the sole carbon source. Serial dilutions were performed for each soil sample as described in section A. Aliquots (0.1-mL) from the appropriate dilution tubes were plated on phenanthrene-acetone plates. The plates were prepared by spreading 0.2-mL portions of a phenanthrene-acetone mixture (5 grams/liter phenanthrene) on a prepared media of mineral salts and Noble agar. The acetone was allowed to evaporate overnight. ("Replica Plating Method for Estimating Phenanthrene-Utilizing and Phenanthrene-Cometabolizing Microorganisms", Shiaris M., Cooney J., <u>Applied and Environmental Microbiology.</u> Feb. 1983, vol. 45, no. 2, pp. 706-710.)

The inoculated plates were incubated at room temperature for 5 days. The PAH degrading colonies were identified as having zones of clearing surrounding them. The results are shown in Tables 1 and 2.

TABLE 1

Number of Total Heterotrophs and Specific PAH and Volatile Degraders in Third Ward MGP Water Samples

Sample ID	Total Heterotroph ^b x10 ³ CFU/mL sample	PAH Degrader ^c x10 ³ CFU/mL sample	Volatile Degrader ^d x10 ³ CFU/mL sample
9510-015-01 W-13 mean +/- std. dev.	< 0.10	< 0.10	< 0.10
9510-015-02 W-22I mean +/- std. dev.	5.3 +/- 0.76	< 0.10	2.4 +/- 0.31
9510-015-03 W-20S mean +/- std. dev.	< 0.10	< 0.10	< 0.10
9510-015-04 W-25S mean +/- std. dev.	< 0.10	< 0.10	< 0.10
9510-015-05 W-41S mean +/- std. dev.	0.23 +/- 0.15	< 0.10	< 0.10

NOTE:

^a Results represent the mean value and standard deviation of triplicate platings.

^b Results are reported as colony forming units (CFU)/mL of sample.

° PAH degraders represent the cell growth in the presence of phenanthrene as the sole carbon source.

^d Volatile degraders represent the cell growth in the presence of benzene as the sole carbon source

Released by:

Heidi Raymond Project Scientist

TABLE 2

Number of Total Heterotrophs and Specific PAH and Volatile Degraders in Third Ward MGP Water Samples

Sample ID	Total Heterotroph ^b x10 ³ CFU/mL sample	PAH Degrader ^c x10 ³ CFU/mL sample	Volatile Degrader ^d x10 ³ CFU/mL sample
9510-015-06 W-20I mean +/- std. dev.	0.63 +/- 0.23	< 0.10	< 0.10
9510-015-07 W-23S mean +/- std. dev.	1.9 +/- 0.46	0.70 +/- 0.26	1.9 +/- 0.23
9510-015-08 W-26S mean +/- std. dev.	< 0.10	< 0.10	< 0.10
9510-015-09 W-46D mean +/- std. dev.	< 0.10	< 0.10	< 0.10
9510-015-10 W-43D mean +/- std. dev.	0.35 +/- 0.071	0.10 +/- 0.001	0.35 +/- 0.21

NOTE:

* Results represent the mean value and standard deviation of triplicate platings.

^b Results are reported as colony forming units (CFU)/mL of sample.

^c PAH degraders represent the cell growth in the presence of phenanthrene as the sole carbon source.

^d Volatile degraders represent the cell growth in the presence of benzene as the sole carbon source

Released by: _

Heidi Raymond Project Scientist