

Prepared for: City of Kenosha Kenosha, WI Prepared by: AECOM Milwaukee, WI 60485212 October 2019

Semi-Annual Operation and Monitoring Report, January - June 2019

Former Kenosha Engine Plant, Kenosha, Wisconsin WDNR FID 230004500, BRRTS# 02-30-000327

AECOM 1555 N RiverCenter Drive, Suite 214 Milwaukee, WI 53212 414.944.6080 tel 414.944.6081 fax

October 9, 2019

Mr. Paul Grittner Wisconsin Department of Natural Resources Remediation and Redevelopment Program 141 NW Barstow St., Room 180 Waukesha, WI 53188

Subject: Semi-Annual Operation and Monitoring Report, January - June 2019 Former Kenosha Engine Plant, Kenosha, Wisconsin WDNR FID 230004500, BRRTS# 02-30-000327

Dear Mr. Grittner,

AECOM is transmitting the attached Semi-Annual Remediation Site Progress and Operation, Maintenance, Monitoring and Optimization Report (Form 4400-194) for the former Kenosha Engine Plant (KEP) for the time period January 2019 through June 2019 on behalf of the City of Kenosha.

AECOM continues operation, maintenance, and monitoring (OM&M) of three groundwater remediation systems at the KEP (location shown on Figure 1).

The three systems are:

- The North System: Sump 6
- The Central System: Sumps 18 & 23
- The Southern System: Sumps 7 & 17R

Figure 2 depicts sump locations. Treated groundwater is discharged to the Kenosha Water Utility sanitary system at three different locations near the boundary of the KEP. During this operational period remedial systems have been maintained for continued operation. A review of the current conditions of each of the systems and the measures taken during the reporting period to restore/improve operations are provided below.

System Description and Operational Status

AECOM maintained the operational status of each of the three groundwater remediation systems located at the KEP during the period from January through June 2019. The system component(s) encountered the following operational breakdowns during the period and have been restored back into working order:

- Sump 6 The system has been functioning normally except for the following intermittent interruptions;
 - On May 7th a replacement pump was installed in Sump 6 as a result of normal wear and use.

- Central System The system has been functioning normally except for the following intermittent interruptions;
 - Intermittent temperature alarms have been observed and related to the building temperature sensor. Replacement and calibration occurred in 2018. Troubleshooting the temperature sensor will continue when the drain blockage is removed.
 - During routine monthly site visits on April 8th and May 7th the air compressor was off.
 Schedule maintenance to replace oil, filters, and drive belt followed by an inspection was performed to restore operation to the compressor.
 - During June's monthly site visit, a blockage in the remediation system's discharge line was discovered. The groundwater remediation system was shut down pending repair of the blockage.
- Southern System The system has been operating normally.

The conditions of the system components were reviewed on July 3, 2019 and are summarized here:

North System, Sump 6

- Pump Depth to water and depth to bottom were adequate for continued groundwater removal.
- System is operating.

Central System, Sumps 18 and 23

- Pump Depth to water and depth to bottom were adequate for continued groundwater removal.
- System is operating.

Southern System, Sumps 7 and 17R

- Pumps Depth to water and depth to bottom were adequate for continued groundwater removal.
- System is operating.

Evaluation of Current Monitoring Data

A water table contour map (Figure 2) and a potentiometric map of the deeper groundwater (Figure 3, as measured by KEP piezometers at a depth of approximately 25 feet bgs) for April 2019 are attached. Capture zones for the Southern System (Sumps 7 and 17R) are illustrated by the 613 foot contour located adjacent to the system building. The capture zone for Central System (Sumps 18 and 23) is illustrated by the 618 foot contour located around the system building. The capture zone for Sump 6 is illustrated by the 615 foot contour located around the system building.

Influent (pre-treatment) groundwater samples are collected from each individual sump and effluent (post-treatment) samples are collected from each treatment system. The samples are analyzed for volatile organic compounds (VOCs), diesel range organics (DRO) and gasoline range organics (GRO) in conformance with the Kenosha Water Utility discharge permit. Tables 1 and 2 provide a summary of influent and effluent samples (detected VOCs, DRO and GRO) collected, with the most recent results from March 2019 shown for four operating sumps (Sumps 6, 18, 7, and 17R). Influent samples were not collected in March 2019 at Sump 23 because the pump was not operating at the time of sample collection.

After reviewing the influent concentrations for each sump, generally one contaminant was dominant (as evidenced by its exceedance of the NR 140 Wisconsin Administrative Code groundwater quality Enforcement Standard [ES]) in its concentration over time. The individual contaminants and their trends by sump are:

<u>Sump 6</u>

 Sump 6 – Trichloroethene and vinyl chloride The TCE and vinyl chloride concentrations exceed the ES without an observable trend. Cis-1,2-dichloroethene was reported below the Preventive Action Limit (PAL) for the first time since performance monitoring.

Central System

 Sump 18 – Benzene, cis-1,2 dichloroethene, and vinyl chloride The concentrations of benzene and cis-1,2 dichloroethene exceed the PAL while and vinyl chloride remains above the ES. Although benzene, cis-1,2 dichloroethene and vinyl chloride exceed action limits decreasing trends are observed.

Southern System

- Sump 7 No ES exceedances reported during the March 2019 sampling event. Decreasing trends were observed and are anticipated to continue during future sampling events.
- Sump 17R Cis-1,2 dichloroethene, trans-1,2 dichloroethene, drichloroethene, and vinyl chloride

The concentrations of cis-1,2 dicholorethene, trichloroethene, and vinyl chloride exceed the ES without an observable trend. Trans-1,2-dichloroethene exceeds the PAL at concentrations without an observable trend. Trend analysis will continue during future sampling events.

Table 3 presents a summary of the operational data collected for January through June 2019. The treatment systems reduce influent concentrations to below the effluent concentration permit limits established by the Kenosha Water Utility. Thus, the systems are operating in compliance with discharge requirements.

Plan for Repair, Replacement and Optimization

Sump 6 – The groundwater extraction pump was replaced during the operational period. Biofouling reduction on the pump inlet screen and flow meter are planned during the next operational period to extend the life of the pump and ensure treatment flow is recorded. Biofouling reduction on the pump inlet screen and flow meter will continue during the next operational period to ensure treatment flow is recorded.

Central System – The capture zone from Sump 18 appears to be sufficient at the current time. If the capture zone needs to be increased adjustments to the pumping rate in Sump 18 will take place and evaluate initiating pumping from Sump 23. Biofouling reduction on the pump inlet screen and flow meter will continue during the next operational period to ensure treatment flow is recorded.

Southern System – Biofouling reduction on the pump inlet screen and flow meter are planned during the next operational period to ensure treatment flow is recorded.

Optimization of the three operating groundwater recovery systems will continue for the remainder of 2019 with regular monitoring of flow and evaluation of nearby groundwater elevations for the control of the hydraulic gradient with the least amount of pumping required.

Closing

WDNR form 4400-194 Remediation Site Progress, and Operation, Maintenance, Monitoring & Optimization Report is attached as well as supporting tables and figures as required. The Kenosha Engine Plant groundwater remediation system effectively reduces contaminant concentration in compliance with the wastewater discharge permits.

Yours sincerely,

AECOM Technical Services, Inc.

Jor A. Schul

Tory A. Schultz Team Leader Tory.schultz@aecom.com

Lanette altenbar

Lanette L. Altenbach, P.G., C.P.G. Senior Hydrogeologist Lanette.altenbach@aecom.com

Attachments

WDNR form 4400-194 Remediation site Progress, and Operation, Maintenance, Monitoring & Optimization Report

Table 1 – Influent Summary (Detected VOCs, DRO and GRO)

Table 2 – Effluent Summary

Table 3 – Operational Summary

Figure 1 – Monitoring Well Location Map (April 2019)

Figure 2 – Potentiometric Surface in Water Table Wells (April 2019)

Figure 3 – Potentiometric Surface in Piezometers (April 2019)

Pace Analytical – Laboratory Report Influent and effluent samples

Cc: Shelly Billingsley MBA, PE, Director of Public Works, City of Kenosha Katie Karow, Director of Wastewater Treatment, Kenosha Water Utility State of Wisconsin Department of Natural Resources PO Box 7921, Madison WI 53707-7921 dnr.wi.gov

Remediation Site Operation, Maintenance, **Monitoring & Optimization Report**

Form 4400-194 (R 07/19)

Page 1 of 29

GENERAL INSTRUCTIONS, PURPOSE AND APPLICABILITY OF THIS FORM:

Completion of the applicable portions of this form is required under Wis. Admin. Code § NR 724.13(3). Failure to submit this form as required is a violation of that rule section and is subject to the penalties in Wis. Stats. § 292.99. This form must be submitted every six months for remediation projects that report operation and maintenance progress, in accordance with Wis. Admin. Code §. NR 724.13(3). A narrative report or letter containing the equivalent information required in this form may be submitted in lieu of the actual form. Submittal of this form is not a substitute for reporting required by department programs such as Waste Water or Air Management.

Notes:

- Long-term monitoring results submitted in accordance with Wis. Admin. Code § NR 724.17(3) are required to be submitted within 10 1. business days of receiving sampling results and are not required to be submitted using this form. However, portions of this form require monitoring data summary information that may be based on information previously submitted in accordance with that section of code.
- Responsible parties should check with the department Project Manager assigned to the site to determine if this form is required to be 2. submitted at sites responded to under the Federal Comprehensive Environmental Response and Compensation Act (commonly known as Superfund) or an equivalent state-lead response.
- Responsible parties should check with the department Project Manager assigned to the site to determine if any of the information 3. required in this form may be omitted or changed and should obtain prior written approval for any omissions or changes.
- Responsible parties are required to report separately on a semi-annual basis under Wis. Admin. Code § NR 700.11(1). Reporting 4. under that provision is through an internet-based form. More information can be found at: http://dnr.wi.gov/topic/Brownfields/documents/regs/NR700progreport.pdf.
- 5. Personally identifiable information on this form is not intended to be used for any other purpose than tracking progress of the remediation by Remediation and Redevelopment Program. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Open Records Law (Wis. Stats. §§ 19.31-19.39).

Section GI - General Site Information

A. General Information

1. Site name

Kenosha Engine Plant

2. Reporting period from:	01/01/2019	To: 06/	06/30/2019 Days in period: 181										
3. Regulatory agency (enter DN	IR, DATCP and/or o	other) 4	4. BRRTS ID No. (2 digit program-2 digit county-6 digit site specific)										
DNR		0	02-03-000327										
5. Site location													
Region	County		Address										
Southeast Region	Kenosha		5555 30th Av	venue									
Municipality name	Town 🔿 Village			Township Range OE Secti	on 1/4 1/4 1/4								
City of Kenosha				N OW									
6. Responsible party			7. Consultant										
Name			Select if the following information has changed since the last										
City of Kenosha			Submittal										
Mailing address			Company name										
625 52nd Street			AECOM										
			Mailing address	3	Phone number								
Phone number			1555 N River	Center Dr. Ste 21/ 53212									
(262)	653-4000		1555 W. KIVCI	Center D1, Ste 214, 55212									
8. Contaminants													
VOCs													
9. Soil types (USCS or USDA)													
Fill, Sand, Silty Sand, Silt, C	Clay												
10. Hydraulic conductivity(cm/se	ec):		11. Average line	ear velocity of groundwater (ft	/yr)								
10-2 to 10-4			1 3-1700										

10-2 to 10-4

Site name: Kenosha Engine Plant	_ Remediation Site Operation, Maintenance,										
Reporting period from: 01/01/2019 To: 06/30/2019	Monitoring & Optimization Report										
Days in period: <u>181</u>	Form 4400-194 (R 07/19) Page 2 of 29										
12. If soil is treated ex situ, is the treatment location off site? () Yes () No										
If yes, give location: Region	County	,									
Municipality name 🔿 City 🔿 Town 🔿 Village	T	Township	Range	OE Sec	tion ¼	1/4 1/4					
		Ν		OW							
B. Remediation Method											
Only submit sections that apply to an individual site. Check all that apply:											
Groundwater extraction (submit a completed Section GW-1).											
Free product recovery (submit a completed Section GW-1).											
In situ air sparging (submit a completed Section GW-2).											
Groundwater natural attenuation (submit a completed Section GW-3).											
Other groundwater remediation method (submit a completed Section)	GW-4).										
Soil venting (including soil vapor extraction building venting and biove	nting subm	it a comp	leted Se	ction IS-1).						
Soil natural attenuation (submit a completed Section IS-2).											
Other in situ soil remediation method (submit a completed Section IS-	3).										
Biopiles (submit a completed Section ES-1).											
Landspreading/thinspreading of petroleum contaminated soil (submit a	a completed	d Section	ES-2).								
Other ex situ remediation method (submit a completed Section ES-3).											
Site is a landfill (submit a completed Section LF-1).											
C. General Effectiveness Evaluation for All Active Systems											
If the remediation is active (not natural attentuation), complete this subset	ction.										
1. Is the system operating at design rates and specifications?											
If the answer is no, explain whether or not modifications are necessary	to achieve	the goal	that was	s previous	ly establis	shed in design.					
		0		•	,	5					
2. Are modifications to the system warranted to improve effectiveness											
If ves. explain:											
3 Is natural attenuation an effective low cost option at this time?											
4 Is closure sampling warranted at this time?		10									
5 Are there any modifications that can be made to the remediation to imp	nove cost e	ffectiven	222								
If ves explain.				• res							
The pumping rates of the systems are modified seasonally to acl	hieve optin	mal grou	Indwate	r capture	without	excessive					

wear on the groundwater extraction systems.

Site name: Kenosha Engine Plant		Remediation Site Operation, Maintenance						
Reporting period from: 01/01/2019	To: 06/30/2019	Monitoring & Optimiza	tion Report					
Days in period: <u>181</u>		Form 4400-194 (R 07/19)	Page 3 of 29					
D. Economic and Cost Data to Dat	e							
1. Total investigation cost:								
2. Implementation costs (design, capi	tal and installation costs, exc	luding investigation costs:						
3. Total costs during the previous rep	orting period:							
4. Total costs during this reporting per	riod:							
5. Total anticipated costs for the next	reporting period:							
6. Are any unusual or one-time costs	listed in the reporting periods	covered by D.3., D.4. or D.5. above?	🔿 Yes 💿 No					
If yes, explain:								

7. If closure is anticipated within 12 months, estimated costs for project closeout:

E. Name(s), Signature(s) and Date of Person(s) Submitting Form

Legibly print name, date and sign. Only persons qualified to submit reports under ch. NR 712 Wis. Adm. Code are to sign this form for sites with any ongoing active remediation, monitoring or an investigation. Other persons may sign this form for sites with no response activities during the six month reporting period.

Registered Professional Engineers:

I hereby certify that I am a registered professional engineer in the State of Wisconsin, registered in accordance with the requirements of ch. A-E 4, Wis. Adm. Code; that this document has been prepared in accordance with the rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

Print name	Title
Kevin Brehm	Associate Vice President
Signature	Date
Kan L. Collan	10/9/19
Hydrogeologists:	

Hydrogeologists:

I hereby certify that I am a hydrogeologist as that term is defined in s. NR 712.03(1), Wis. Adm. Code, and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

Print name	Title
Lanette Altenbach	Senior Hydrogeologist/Project Manager II
Signature and and all and and	Date 10-9-19

Scientists:

I hereby certify that I am a scientist as that term is defined in s. NR 712.03(3), Wis. Adm. Code, and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

Print name	Title
Signature	Date
Other Persons:	
Print name	Title
Signature	Date

Site name: Kenosha Engine Plant

Reporting period from: 01/01/2019

Days in period: 181

Professional Seal(s), if applicable Kevin L. Brehm E30567 Milwaukee ALL ENTRA 10

To: 06/30/2019

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 07/19)

Page 4 of 29

Sit	e name: <u>Kenosha Engine Plant</u>		Remediation Site O	peration, Maintenance,
Re	porting period from: <u>01/01/2019</u>	To: <u>06/30/2019</u>	$\frac{1}{10000000000000000000000000000000000$	
Da	lys in period: <u>181</u>		101114400-134 (1007/13)	1 age 3 01 23
Se	ection GW-1, Groundwater Pump an	nd Treat Systems and Fre	e Product Recovery Systems	
A. 1.	Total number of groundwater extraction	wells or trenches available:	10 and the number in	use during period: 4
2.	Number of days of operation (only list the Northern System (Sump 6) - 179 da Central System (Sumps 18 and 23) Southern System (Sumps 7 and 17R	ne number of days the syster lys - 137 days R) - 179 days	n actually operated, if unknown e	»xplain:
3.	System utilization in percent (days of op Northern System (Sump 6) - 98% C Central System (Sumps 18) - 75% C accounted for air compressor shut-d Southern System (Sumps 7 and 17R	Deration divided by reporting Operational (2% accounted Operational (2% accounted lown during March and A R) - 98% Operational (2%	time period multiplied by 100). If for system shut-down during d for system shut-down during pril related to failed temperate accounted for system shut-do	< 80%, explain: (cleaning events) g cleaning events, 23% ure sensor) own during cleaning events)
4.	Quantity of groundwater extracted durin	ng this time period: 2	,136,330.9 gallons	
5.	Average groundwater extraction rate:	8.2 gpm		
6.	Quantity of dissolved phase contaminar	nts removed during this time	period in pounds:	lbs
В.	Free Product Recovery System Ope	eration		
2.	If yes, explain:	ng this time period (enter non	e if none):	gallons
3	Average free product extraction rate:	() ()		
С.	System Effectiveness Evaluation		,prin	-
1.	Is a contaminated groundwater plume If no, explain:	fully contained in the capture	> zone?	● Yes ○ No
2.	If free product is present, is the free pr If no, explain:	oduct fully contained in captu	ire zone?	● Yes () No
3.	If free product is present in any wells a Free product is trapped within the product recovery in the oil/water se	at the site, but free product we saturated zone at concentre eparators associated with the statement of the	as not recovered during reporting ations not recoverable as evic each treatment unit.) period, explain: lenced by little to no free
4.	If free product is not present, determin ES and PAL. Perform this calculation f highest contaminant concentration me PRODUCT" in C.4.a.	e the single contaminant that for all contaminants that were asured in any sampling point	t requires the greatest percent re present at the site that have ch s during reporting period. If free	duction to achieve ch. NR 140 NR 140 standards. Use the product is present, write "FREE
	a. Contaminant:			
	b. Percent reduction necessary to read	ch ch. NR 140 ES and PAL:	%	
	c. Maximum contaminant concentration	n level in any monitoring wel	of that contaminant:	μg/L
	d. Maximum contaminant concentratio	n level in any extraction well	of that contaminant:	μg/L

Reporting period from: 01/01/2019

Remediation Site Operation, Maintenance, Monitoring & Optimization Report

Form 4400-194 (R 07/19)

Page 6 of 29

Days in period: <u>181</u>

e. If the maximum concentration in a monitoring well is more that one order of magnitude above the concentration measured in an extraction well, explain why the extracted groundwater contamination levels are significantly less than the levels at other locations within the aquifer.

D. Additional Attachments

Attach the following to this form:

- Most recent report to the DNR Wastewater Program, if applicable.
- Groundwater contour map with capture zone indicated.
- Groundwater contaminant distribution map (may be combined with contour map).
- Graph of cumulative contaminant removal, if both free product recovery and ground water extraction are used, provide separate graphs.
- Time versus groundwater contaminant concentration graphs for the contaminant listed in C.4.a. (above), as follows:
 Graph of contaminant concentrations versus time for each extraction well in use during the period.

To: 06/30/2019

- -- Graph of contaminant concentrations versus time for the monitoring well with the greatest level of contamination.
- Groundwater contaminant chemistry table.
- Groundwater elevations table.
- System operational data table.

AECOM 60485212

Table 1 Influent Summary KEP Groundwater Remediation Systems Kenosha, Wisconsin

			1,1-			1,1-	1,1,1-	cis-1,2-	trans-1,2-					Tetra-			1,2,4-	1,3,5-			Gasoline	Diesel
Well	Sample	Bonzono	Dichloro-	Chloro-	1,2-Dichloro-	Dichloro-	Trichloro-	Dichloro-	Dichloro-	Ethyl-	Methylene	Nonhthalono	n-Propyl-	chloro-	Toluono	Trichloro-	Trimethyl	Trimethyl	Vinyl	Xylene Totals	Range	Range
Location	Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(mg/L)
Northern S	ystem																					
Sump 6	1/18/11	<2.2	5.4	ND	<3.7	<3.2	ND	600	<u>39</u>	ND	ND	<4	<2.3	<4.8	<2.2	540	<2	<1.6	26	<4	330	0.35
	3/24/11	<29	<29	ND	<29	<29	ND	410	<u>36</u>	ND	ND	<29	<29	<29	<29	830	<29	<29	19	<57	410	0.37
	6/13/11	<1	3.3	ND	<2.5	<2.5	ND	280	17	ND	ND	<1.3	<2.5	<2.5	<2.5	370	<1	<1	6.7	<2.5	190	0.47
	9/19/11	<1	6.1	ND	<2.5	<u>2.8</u>	ND	680	<u>46</u>	ND	ND	<1.3	<2.5	<2.5	<2.5	330	<1	<1	31	<2.5	180	0.23
	1/15/12	<0.2	13	ND	<0.5	<u>3.1</u>	ND	410	<u>47</u>	ND	ND	0.52	<0.5	< 0.5	< 0.5	750	0.39	<0.2	66	0.58	410	1.2
	3/15/12	<1	8.2	ND	<2.5	<u>3.7</u>	ND	620	<u>49</u>	ND	ND	<1.3	<2.5	<2.5	<2.5	890	<1	<1	23	<2.5	470	0.39
	6/21/12	< 0.074	8.3	ND	<0.28	<u>3.8</u>	ND	610	<u>51</u>	ND	ND	<0.16	< 0.13	< 0.17	<0.11	770	<0.14	<0.18	32	< 0.068	420	0.22
	9/17/12	<0.15	9.6	ND	< 0.56	<u>4.3</u>	ND	700	<u>53</u>	ND	ND	< 0.32	< 0.26	< 0.34	<0.22	780	<0.28	< 0.36	49	<0.14	490	0.24
	12/21/12	< 0.074	15	ND	<0.28	0.64	ND	160	6.8	ND	ND	<0.16	< 0.13	< 0.17	<0.11	60	<0.14	<0.18	36	< 0.068	79	0.51
	3/26/13	< 0.074	6.1	ND	<0.28	3	ND	420	<u>47</u>	ND	ND	<0.16	< 0.13	< 0.17	<0.11	1,000	<0.14	<0.18	12	< 0.068	490	0.7
	6/11/13	< 0.074	7.5	ND	<0.28	4	ND	590	<u>59</u>	ND	ND	<0.16	<0.13	<0.17	<0.11	540	<0.14	<0.18	30	< 0.068	380	0.25
	9/24/13	<0.37	< 0.95	ND	<1.4	<1.6	ND	580	<u>54</u>	ND	ND	<0.8	< 0.65	<0.85	<0.55	1,600	<0.7	<0.9	31	< 0.34	630	0.43
	12/20/13	< 0.074	4.1	ND	<0.28	<u>2</u>	ND	330	<u>26</u>	ND	ND	<0.16	<0.13	<0.17	<0.11	220	<0.14	<0.18	38	< 0.068	190	0.17
	1/6/15	<2.5	6.8	ND	<0.84	<u>3.5</u>	ND	568	<u>58.2</u>	ND	ND	<12.5	<2.5	<2.5	<2.5	712	<2.5	<2.5	25	<7.5	388	0.15
	3/6/15	<5.0	5.4 J	ND	<1.7	<4.1	ND	363	35.4	<5.0	ND	<25.0	<5.0	<5.0	<5.0	930	<5.0	<5.0	17	<15.0	342	0.35
	9/24/15	Discharg	e line blo	cked - n	ot operating	at the tin	ne of sam	pie collecti	ion		N.D.	0= 0			F 0	4 6 1 6	E 0	E 0	4= 0	4 = 0	4/2	0.00
	3/9/16	<5.0	3.2 J	ND	<1.7	<4.1	ND	439	<u>43.5</u>	<5.0	ND	<25.0	<5.0	<5.0	<5.0	1,010	<5.0	<5.0	17.3	<15.0	413	0.22
	9/7/16	<5.0	5.0 J	<3.7	<1.7	<4.1	<5.0	733	<u>57.6</u>	<5.0	<2.3	<25.0	<5.0	<5.0	<5.0	931	<5.0	<5.0	38.1	<15.0	539	0.047J
1	3/7/17	<5.0	4.4 J	<3.7	<1.7	<4.1	<5.0	537	<u>54.9</u>	<5.0	<2.3	<25.0	<5.0	<5.0	<5.0	950	<5.0	<5.0	24.1	<15.0	480	0.14
1	10/5/17	<5.0	5.2 J	<3.7	<1.7	<4.1	<5.0	653	<u>50.3</u>	<5.0	<2.3	<25.0	<5.0	<5.0	<5.0	990	<5.0	<5.0	21.9	<15.0	490	0.026J
	3/9/18	<5.0	5.1J	<3.7	<1.7	<4.1	<5.0	483	49.3	<5.0	<2.3	<25.0	<5.0	<5.0	<5.0	/82	<5.0	<5.0	17.2	<15.0	380	0.047J
	10/5/18	<2.5	7.8 J	<13.4	<2.8	2.7 J	<2.4	400	45.1	<2.2	0.3 J	<11.8	<8.1	<3.3	<1.7	9/9	<8.4	<8.7	12	<15.0	410	0.38
Control Su	3/5/19	<0.25	<0.27	<1.3	<0.28	0.40 J	<0.24	03.1	4.8	<0.22	<0.58	<1.2	<0.81	<0.33	<0.17	31.4	<0.84	<0.87	10.2	<1.5	38 J	0.05
Sump 19	2/20/11	22	20	ND	ND	2	ND	240	-67	46	ND	6.2	2	-67	<6.7	-6.7	11	0	22	44	200	11
Sump 16	5/20/11	510	- 39 - 620	ND	ND	<u><</u>	ND	4 900	<0.7	4.0	ND	0.2	-25	<0.7	<0.7	<0.7	96	0 27	23	250	4200	1.1
	0/14/11	74	80	ND	ND	<20	ND	4,000	<u>31</u>	25	ND	17	<20 5.9	<20	<u>450</u>	<10	60	21	1,100	350	4300	1.9
	9/23/11	330	620	ND	ND	5	ND	3 300	22	55	ND	21	1.0	<u> </u>	270	1.0	80	22	1 000	310	3200	1.8
	3/21/12	910	1500	ND	ND	<25	ND	9 300	64	110	ND	35	<25	<25	660	<10	130	40	940	530	8600	2.1
	6/21/12	270	780	ND	ND	13	ND	5,000	41	19	ND	13	<13	<17	140	5	24	24	3 000	170	3100	2.1
	9/17/12	150	900	ND	ND	<6.2	ND	5,000	32	<2.6	ND	-3.2	<2.6	<3.4	72	55	<2.8	31	1 100	77	3100	4.1
	12/27/12	11	45	ND	ND	<0.31	ND	120	<0.25	82	ND	6.2	2	0.71	18	0.48	28	11	1,100	49	760	110
	3/25/13	0.7	17	ND	ND	< 0.31	ND	1	<0.25	6	ND	5.4	2.9	<0.17	4.2	<0.19	33	8.3	<0.1	19	380	23
	6/10/13	150	350	ND	ND	3.9	ND	2.300	14	13	ND	5.2	< 0.65	< 0.85	79	<0.95	15	5.9	260	62	1600	1
	9/24/13	570	970	ND	ND	18	ND	5.500	43	79	ND	29	<1.3	<1.7	370	7.1	73	17	1.600	310	4600	3
	12/20/13	270	720	ND	ND	9.1	ND	3,200	24	41	ND	16	3.4	0.52	170	1.1	43	11	820	180	3	1
	9/11/15	0.56 J	4.2	ND	< 0.17	< 0.41	ND	5	< 0.26	< 0.5	ND	<2.5	< 0.50	< 0.50	< 0.50	0.36 J	< 0.50	< 0.50	0.81 J	<1.5	37.5 J	< 0.081
	3/9/16	357	735	ND	<4.2	<10.3	ND	3,180	44	78	ND	<62.5	<12.5	<12.5	287	<8.3	45.3	12.6 J	2,720	342	3240	2.2
	9/7/16	277	738	37.1	<4.2	<10.3	137	2,110	40.1	45.9	37.5	<62.5	<12.5	<12.5	134	23.0 J	24.2 J	<12.5	1,950	201	2530	1.4
	3/7/17	241	444	60.1	<4.2	<10.3	137	1,670	31.6	61.3	24.1J	<62.5	<12.5	<12.5	178	14.8 J	42.8	<12.5	1,480	286	2700	1.3
	10/5/17	System s	shut off d	uring tim	e of samplir	ng.																
	3/9/18	System s	shut off d	uring tim	e of samplir	ng.															I	
	10/5/18	134	<u>696</u>	19.7 J	<2.8	<u>3.2 J</u>	<u>169</u>	529	14.2 J	34.4	8.7 J	<11.8	<8.1	<3.3	<u>191</u>	<2.6	29.6	<8.7	163	231	1500	0.41
	3/5/19	<u>3.7</u>	21.6	<1.3	<0.28	< 0.24	15.6	<u>26</u>	1.3 J	0.49 J	<0.58	<1.2	< 0.81	< 0.33	1.8 J	<u>0.66 J</u>	0.96 J	< 0.87	3	4.4	50 J	0.4
Sump 23	1/19/11	420	<5	ND	ND	<6.3	ND	930	<6.3	36	ND	<4.7	<4.7	ND	5.9	NPD	16 B	<3.2	500	<12.7	NT	NT
	3/28/11	22	0.41	ND	ND	<1	ND	6.5	<1	1.9	ND	1	0.47	ND	0.19	NPD	0.97	0.56	2.4	2.6	94	0.91
	7/20/11	170	<1	ND	ND	<1	ND	9.2	<1	1.8	ND	1.1	<1	ND	1.5	NPD	3.2	1.2	57	3.8	360	0.63
	9/26/11	23	<0.5	ND	ND	<0.5	ND	1.7	<0.5	<0.5	ND	0.32	<0.5	ND	<0.5	0.42	0.44	<0.2	0.61	< 0.5	31	0.28
	1/24/12	480	<2	ND	ND	<2	ND	930	3.6	32	ND	7.2	2.5	ND	6.9	<0.8	9.2	2.2	530	34	1700	0.78
	3/21/12	470	1.4	ND	ND	<u>1.4</u>	ND	580	3	69	ND	<u>11</u>	6.9	ND	9.5	<0.2	18	1.6	470	51	1700	1.1
	6/21/12	42	1.5	ND	ND	<u>1.6</u>	ND	78	2.6	61	ND	8.6	3.7	ND	7	<0.19	6.5	1.1	68	52	1100	1.2
	9/17/12	180	<0.19	ND	ND	<u>1.1</u>	ND	670	2.4	9.6	ND	3.2	<0.13	ND	2.6	<0.19	1.7	0.64	440	26	760	1.1
	12/27/12	160	2.3	ND	ND	<0.31	ND	530	1.5	21	ND	5.2	1.9	ND	2.7	<0.19	3.1	<0.18	1/0	20	580	0.78
	3/25/13	26	<0.19	ND ND	ND	<0.31	ND	94	<0.25	2.9	ND	2.1	<0.13	ND	0.47	<0.19	<0.14	<0.18	23	2.3	97	0.083
	6/10/13	390	<0.38	ND	ND	<0.62	ND	820	2.8	4/	ND	7.9	4	ND	0.7	<0.38	2.8	<0.36	440	30	1100	0.79
	9/24/13	140	<0.19	ND	ND	1	ND	0.4	Z.4	10	ND	1.0	1.0	ND	2.1	<0.19	2 -0.1.4	<0.18	320	- 18 -0.060	0/0	1./
	6/10/13	<u>1.1</u> Pumping	I	and not		<0.31		<u> </u>		<0.13	fficient Th		<u.13< th=""><th></th><th>U.33</th><th></th><th><u.14< th=""><th><0.10</th><th>12</th><th><0.008</th><th>10</th><th></th></u.14<></th></u.13<>		U.33		<u.14< th=""><th><0.10</th><th>12</th><th><0.008</th><th>10</th><th></th></u.14<>	<0.10	12	<0.008	10	
DALA	0/13/14	. unip inc					40		on ounp	140		a sump was	NE	0.03010	400	001 alea		00*	0.00	400		
FAL FOB		0.5	85	80	0.5	0.7	40	/	20	140	0.5	10	INE	0.5	100	0.5	90"	90"	0.02	400		
E 5				. //////		. /																- INF

AECOM 60485212

Table 1 Influent Summary KEP Groundwater Remediation Systems Kenosha, Wisconsin

Well Location	Sample Date	Benzene (ug/L)	1,1- Dichloro- ethane (ug/L)	Chloro- ethane (ug/L)	1,2-Dichloro- ethane (ug/L)	1,1- Dichloro- ethene (ug/L)	1,1,1- Trichloro- ethane (ug/L)	cis-1,2- Dichloro- ethene (ug/L)	trans-1,2- Dichloro- ethene (ug/L)	Ethyl- benzene (ug/L)	Methylene Chloride (ug/L)	Naphthalene (ug/L)	n-Propyl- benzene (ug/L)	Tetra- chloro- ethene (ug/L)	Toluene (ug/L)	Trichloro- ethene (ug/L)	1,2,4- Trimethyl benzene (ug/L)	1,3,5- Trimethyl benzene (ug/L)	Vinyl chloride (ug/L)	Xylene Totals (ug/L)	Gasoline Range Organics (ug/L)	Diesel Range Organics (mg/L)
Southern 3	System	.0.4.2	0.45	ND	ND	0.40	ND	0.4	0.4	.0.47	ND	ND	ND	ND	.0.4.2	0.00	0.40	.0.000	24	0.4.4	NIT	NIT
Sump /	1/19/11	<0.13	<0.15	ND	ND	<0.19	ND	<u>9.1</u>	0.4	<0.17	ND	ND	ND	ND	<0.13	0.29	<0.12	<0.096	3.1	<0.14	INT	
	3/24/11	<1	<1	ND	ND	<1	ND	6.2	0.39	<1	ND	ND	ND	ND	<1	0.43	<1	<1	2.8	<2	ND	3.3
	6/13/11	<0.2	<0.5	ND	ND	<0.5	ND	10	1.2	<0.5	ND	ND	ND	ND	<0.5	2.0	<0.2	<0.2	2.0	<0.5	ND	3.3
	9/19/11	<0.2	<0.5	ND	ND	<0.5	ND	17	1.2	<0.5	ND	ND	ND	ND	<0.5	<u>2</u>	<0.2	<0.2	2.8	<0.5		14
	1/5/12	<0.20	<0.50	ND	ND	<0.50	ND	<u>12</u>	1.1	<0.50	ND	ND	ND	ND	<0.50	0.35 J	0.20 J	<0.20	3.3	<0.50	24	2.5
	3/20/12	<0.2	<0.5	ND	ND	<0.01	ND	0.0	1.1	<0.12	ND	ND	ND	ND	<0.14	<0.2	<0.2	<0.2	2.0	<0.00		2.1
	6/22/12	<0.074	<0.19	ND	ND	<0.31	ND	<u>8.3</u>	0.96	<0.13	ND	ND	ND	ND	<0.11	<0.19	<0.14	<0.18	2.1	<0.068	<0.9	1.7
	9/18/12	<0.074	<0.19	ND	ND	<0.31	ND	<u>/</u>	0.93	<0.13	ND	ND	ND	ND	<11	<0.19	<0.14	<0.18	4.2	<0.068	10	2.3
	12/27/12	<0.074	<0.19	ND	ND	<0.31	ND	0.7	0.87	<0.13	ND	ND	ND	ND	<0.11	<0.19	<0.14	<0.18	1.3	<0.068	<0.8	4
	3/26/13	<0.074	<0.19	ND	ND	<0.31	ND	4.4	<0.25	<0.13	ND	ND	ND	ND	<0.11	0.43	<0.14	<0.18	<0.1	<0.068	13	5
	6/11/13	<0.074	<0.19	ND	ND	<0.31	ND	<u>12</u>	2 4 F	<0.13	ND	ND	ND	ND	<0.11	<0.19	<0.14	<0.18	2.9	<0.068	10	2.4
	9/23/13	<0.074	<0.19	ND	ND	<0.31	ND	<u>8.7</u>	1.5	<0.13	ND	ND	ND	ND	<0.11	0.3	<0.14	<0.18	1.5	<0.068	24	9.2
	12/20/13	<0.074	<0.19	ND	ND	<0.31	ND	<u>7.9</u>	1.2	<0.13	ND	ND 10.5	ND 10.50	ND 0.50	<0.11	0.42	<0.14	<0.18	1.3	<0.068	<0.0	Z NIT
	6/19/14 0/5/14	<0.50	<0.24	ND	<0.17	<0.41	ND	0.3	1.1	<0.50	ND	<2.5	<0.50	<0.50	<0.50	0.45 J	<0.50	<0.50	<0.18	<1.5	1N I	2.1
	9/5/14	<0.50	<0.24	ND	<0.17	<0.41	ND	10.1	2.2	<0.50	ND	<2.5	<0.50	<0.50	<0.50	< 0.33	<0.50	<0.50	1.5	<1.5	<29.0	3.1
	12/3/14	<0.50	0.32 J	ND	<0.17	<0.41	ND	0.9	1.9	<0.50	ND	<2.5	<0.50	<0.50	<0.50	-0.22	<0.50	<0.50	1.0	<1.5	<29.0	2.0
	9/9/15	<0.50	<0.24	ND	<0.17	<0.41	ND	<u>9</u> 10.4	2.2	<0.50	ND	<2.5	<0.50	<0.50	<0.50	<0.33	<0.50	<0.50	1.2	<1.5	29.9 J	0.30
	3/9/16	<0.50	0.31J	ND	<0.17	<0.41	ND 0.50	10.4	2.0	<0.50	ND -0.22	<2.5	<0.50	<0.50	<0.50	<0.33	<0.50	<0.50	2.3	<1.5	<29.0	1.1
	9/7/16	<0.50	<0.24	<0.50	<0.17	<0.41	<0.50	<u>9</u>	2.1	<0.50	<0.23	<2.5	<0.50	<0.50	<0.50	<0.33	<0.50	<0.50	3.8	<1.5	<29.0	5.4
	3/7/17	<0.50	<0.24	<0.37	<0.17	<0.41	<0.50	0.0	0.76 J	<0.50	<0.23	<2.5	<0.50	<0.50	<0.50	<u>0.80 J</u>	<0.50	<0.50	1.2	<1.5	<30	29.2
	10/5/17	Pump Inc				-0.44	-0 E0	E 0	1.4	<0 E0	-0.02	-0 E	-0 E0	-0 E0	-0 E0	-0.22	-0 E0	-0 E 0	4.4	-1 E	-20	4.6
	3/9/10	<0.30	<0.24	< 0.37	<0.17	<0.41	<0.30	5.0	1.4	<0.00	<0.23	<2.0	<0.50	<0.30	<0.30	<0.33	<0.00	<0.00	1.1	<1.5	<30	4.0
	10/5/16	<0.25	<0.27	<1.3	<0.20	<0.24	<0.24	5.0	1.4 J	<0.22	<0.50	<1.2	<0.01	<0.33	<0.17	<0.20	<0.04	<0.07	1.3	<1.5	<30	2.0
Sumn 1E	3/5/19	<0.23	<0.27	<1.5 ND	<0.20	<0.24	<0.24	-0.17	1.2 J	<0.22	<0.00	<1.2 ND	<0.01	<0.55	<0.17	<0.20	<0.04	<0.07	<0.17	<1.5	<30 NT	IJ.I NT
Sump 15	2/24/11	<0.15	<0.15	ND	ND	<0.15	ND	<0.17	<0.15	ND	ND	ND	ND	ND	<0.15	<0.17	<0.12	ND	<0.22	ND	<100	22
	5/24/11	<0.2	<0.5	ND	ND	<0.5	ND	<0.5	<0.5	ND	ND	ND	ND	ND	<0.5	<0.2	<0.2	ND	<0.2	ND	<100	3.5
	9/19/11	<0.2	<0.5	ND	ND	<0.5	ND	<0.5	<0.5	ND	ND	ND	ND	ND	<0.5	<0.2	<0.2	ND	<0.2	ND	<10	5.0
	1/5/12	<0.20	<0.50	ND	ND	<0.50	ND	<0.50	<0.50	ND	ND	ND	ND	ND	<0.50	<0.2	<0.2	ND	<0.20	ND	18.1	5.9
	3/20/12	<0.20	<0.5	ND	ND	<0.5	ND	<0.5	<0.5	ND	ND	ND	ND	ND	<0.5	<0.20	<0.20	ND	<0.20	ND	<10	3.1
	6/22/12	<0.074	<0.19	ND	ND	<0.31	ND	0.8	<0.25	ND	ND	ND	ND	ND	<0.11	12	<0.14	ND	<0.10	ND	<6.9	4.2
	9/18/12	<0.074	<0.19	ND	ND	< 0.31	ND	<0.12	<0.25	ND	ND	ND	ND	ND	<0.11	0.47	<0.14	ND	<0.1	ND	<6.9	3.7
	12/27/12	<0.074	<0.19	ND	ND	<0.31	ND	<0.12	<0.25	ND	ND	ND	ND	ND	<0.11	0.62	<0.14	ND	<0.1	ND	< 8.8	2.8
	3/26/13	<0.074	<0.19	ND	ND	< 0.31	ND	<0.12	<0.25	ND	ND	ND	ND	ND	<0.11	<0.19	<0.14	ND	<0.1	ND	11	2
	6/11/13	<0.074	<0.19	ND	ND	< 0.31	ND	<0.12	<0.25	ND	ND	ND	ND	ND	<0.11	1.3	<0.14	ND	<0.1	ND	14	21
	9/23/13	<0.074	<0.19	ND	ND	< 0.31	ND	<0.12	<0.25	ND	ND	ND	ND	ND	<0.11	2.8	<0.14	ND	<0.1	ND	43	9.2
	12/20/13	<0.074	<0.19	ND	ND	< 0.31	ND	6.8	<0.25	ND	ND	ND	ND	ND	<0.11	0.26	<0.14	ND	1.1	ND	< 8.8	2.9
1	6/19/14	< 0.50	<0.24	ND	< 0.17	<0.41	ND	<0.26	<0.26	< 0.50	ND	<2.5	< 0.50	< 0.50	<0.50	2	<0.50	<0.50	< 0.18	<1.5	NT	NT
1	9/5/14	0.62 J	<0.24	ND	< 0.17	<0.41	ND	<0.26	<0.26	< 0.50	ND	<2.5	<0.50	< 0.50	<0.50	< 0.33	<0.50	<0.50	<0.18	<1.5	<29.6	6
	12/3/14	< 0.50	<0.24	ND	< 0.17	<0.41	ND	<0.26	<0.26	<0.50	ND	<2.5	<0.50	<0.50	<0.50	< 0.33	<0.50	<0.50	<0.18	<1.5	<29.6	2.6
	9/9/15	< 0.50	< 0.24	ND	< 0.17	< 0.41	ND	< 0.26	<0.26	< 0.50	ND	<2.5	< 0.50	< 0.50	< 0.50	< 0.33	< 0.50	< 0.50	<0.18	<1.5	<29.6	1.3
	3/9/16	Pump inc	perable a	and not s	ampled. S	ump abar	ndoned or	Septemb	er 13, 201	8.							.0100				010	
	2.5/10	0.5	85	80	0.5	0.7	40	7	20	140	0.5	10	NE	0.5	160	0.5	96*	96*	0.02	400	NE	NE
ES ^B	<u> </u>	5	850	400	5	7	200	70	100	700	5	100	NE	5	800	5	480*	480*	0.2	2.000	NE	NE

AECOM 60485212

Table 1 Influent Summary KEP Groundwater Remediation Systems Kenosha, Wisconsin

Well Location	Sample Date	Benzene (ug/L)	1,1- Dichloro- ethane (ug/L)	Chloro- ethane (ug/L)	1,2-Dichloro- ethane (ug/L)	1,1- Dichloro- ethene (ug/L)	1,1,1- Trichloro- ethane (ug/L)	cis-1,2- Dichloro- ethene (ug/L)	trans-1,2- Dichloro- ethene (ug/L)	Ethyl- benzene (ug/L)	Methylene Chloride (ug/L)	Naphthalene (ug/L)	n-Propyl- benzene (ug/L)	Tetra- chloro- ethene (ug/L)	Toluene (ug/L)	Trichloro- ethene (ug/L)	1,2,4- Trimethyl benzene (ug/L)	1,3,5- Trimethyl benzene (ug/L)	Vinyl chloride (ug/L)	Xylene Totals (ug/L)	Gasoline Range Organics (ug/L)	Diesel Range Organics (mg/L)
Sump 17R	1/19/11	ND	<6	ND	ND	<7.6	ND	1100	<u>98</u>	ND	ND	<9.6	ND	ND	<5.2	340	<4.8	ND	24	ND	NT	NT
	3/24/11	ND	<18	ND	ND	<18	ND	300	<u>35</u>	ND	ND	<18	ND	ND	<18	70	<18	ND	<18	ND	150	0.62
	6/13/11	ND	5.4	ND	ND	<2.5	ND	370	<u>34</u>	ND	ND	<1.3	ND	ND	<2.5	160	<1	ND	1.3	ND	80	1.2
	9/19/11	ND	3.1	ND	ND	<1	ND	190	14	ND	ND	<0.5	ND	ND	<1	25	<0.4	ND	13	ND	66	2
	1/5/12	ND	5.6	ND	ND	0.59	ND	270	<u>30</u>	ND	ND	<0.25	ND	ND	< 0.50	110	<0.20	ND	1.2	ND	130	1.6
	3/20/12	ND	7.1	ND	ND	<1	ND	500	<u>39</u>	ND	ND	<0.5	ND	ND	<1	150	<0.4	ND	1.8	ND	260	1.1
	6/22/12	ND	6.3	ND	ND	<u>1.2</u>	ND	700	<u>38</u>	ND	ND	<0.16	ND	ND	<0.11	180	<0.14	ND	2.9	ND	270	1.8
	9/18/12	ND	3.8	ND	ND	< 0.31	ND	180	<u>20</u>	ND	ND	<0.16	ND	ND	<0.11	35	<0.14	ND	17	ND	79	1.7
	12/27/12	ND	6.4	ND	ND	<u>1.2</u>	ND	400	<u>59</u>	ND	ND	<0.16	ND	ND	<0.11	45	<0.14	ND	55	ND	170	2.3
	3/26/13	ND	2	ND	ND	<0.31	ND	190	15	ND	ND	<0.16	ND	ND	<0.11	69	<0.14	ND	3.5	ND	100	1.5
	6/11/13	ND	5.3	ND	ND	<u>0.91</u>	ND	380	<u>33</u>	ND	ND	<0.16	ND	ND	<0.11	120	<0.14	ND	6.6	ND	220	0.88
	9/23/13	ND	5.4	ND	ND	<u>1.8</u>	ND	620	<u>37</u>	ND	ND	<0.16	ND	ND	<0.11	38	<0.14	ND	36	ND	290	1.9
	12/20/13	ND	8.6	ND	ND	<u>1.9</u>	ND	970	<u>79</u>	ND	ND	<0.16	ND	ND	<0.11	91	<0.14	ND	200	ND	360	2.4
	6/19/14	<2.5	5.7	ND	<0.84	2.2 J	ND	702	<u>38.1</u>	<2.5	ND	<12.5	<2.5	<2.5	<2.5	103	<2.5	<2.5	<0.88	<7.5	NT	NT
	9/5/14	<1.2	5.4	ND	<0.42	<1	ND	331	<u>20</u>	<1.2	ND	<6.2	<1.2	<1.2	<1.2	45.4	<1.2	<1.2	38	<3.8	137	2.1
	12/3/14	<2.5	4.6 J	ND	<0.84	<2.1	ND	236	22.9	<2.5	ND	<12.5	<2.5	<2.5	<2.5	57.7	<2.5	<2.5	17.6	<7.5	132	0.78
	9/9/15	<2.5	<0.24	ND	<0.84	<2.1	ND	4.8	1.2	<2.5	ND	<12.5	<2.5	<2.5	<2.5	<u>0.53 J</u>	<2.5	<2.5	0.71 J	<7.5	34.2 J	67
	3/9/16	<5.0	6 J	ND	<1.7	<4.1	ND	982	<u>72.3</u>	<5.0	ND	<25.0	<5.0	<5.0	<5.0	80.3	<5.0	<5.0	148	<15.0	373	0.87
	9/7/16	<1.2	5.5	< 0.94	<0.42	<1.0	<1.2	370	24	<1.2	<0.58	<6.2	<1.2	<1.2	<1.2	35.1	<1.2	<1.2	143	<3.8	143	2.2
	3/7/17	<1.2	6.6	< 0.94	<0.42	<u>1.6 J</u>	<1.2	423	37.3	<1.2	<0.58	<6.2	<1.2	<1.2	<1.2	85.2	<1.2	<1.2	39.2	<3.8	180	0.86
	10/5/17	<1.2	4.6	< 0.94	<0.42	<1.0	<1.2	235	10.6	<1.2	<0.58	<6.2	<1.2	<1.2	<1.2	18.8	<1.2	<1.2	107	<3.8	58	0.62
	3/9/18	< 0.50	2.9	< 0.37	<0.17	0.70J	< 0.50	184	15.6	< 0.50	<0.23	<2.5	< 0.50	< 0.50	<0.50	16.2	< 0.50	< 0.50	47	<1.5	61	1.7
	10/5/18	<0.25	3.2	<1.3	<0.28	0.58 J	<0.24	137	5.5	<0.22	<0.58	<1.2	< 0.81	< 0.33	<0.17	16.6	< 0.84	<0.87	17.1	<1.5	38 J	2.2
	3/5/19	<2.5	7.5 J	<13.4	<2.8	<2.4	<2.4	752	<u>54.3</u>	<2.2	<5.8	<11.8	<8.1	<3.3	<1.7	78.9	<8.4	<8.7	54.4	<15.0	300	1.1
PALA		0.5	85	80	0.5	0.7	40	7	20	140	0.5	10	NE	0.5	160	0.5	96*	96*	0.02	400	NE	NE
ES ^B		5	850	400	5	7	200	70	100	700	5	100	NE	5	800	5	480*	480*	0.2	2,000	NE	NE
Notes: ug/L = microgr PAL - Preventi	Notes: g/L = micrograms per liter *PAL& ES are for combined isomers 2.5 - not detected at the detection limit shown NT=Not Tested al preventive Action Limit Wisconeria Administrative Code NP 140 10 Table 1. Exbrury 2017, eventioner are bad																					

Table 2 Effluent Summary KEP Groundwater Remediation Systems Kenosha, Wisconsin

				trans-1,2-	1,2,4-	1,1,1-		cis-1,2-											Gasoline	Diesel
Well		1,1-Dichloro	1,1-Dichloro	Dichloro	Trimethyl	Trichloro-		Dichloro	Ethyl	Methyl tert-		Isopropyl		N-Propyl	- .	Trichloro	Vinyl	Xylenes,	Range	Range
Location	Sample Date	ethene (ug/L)	ethane (ug/L)	ethene (ug/L)	(ug/L)	ethane (ug/L)	Benzene (ug/L)	ethene (ug/L)	(ug/L)	butyl ether (ug/L)	Methylene Chloride	benzene (ug/L)	Naphthalene (ug/L)	(ug/L)	Toluene (ug/L)	ethene (ug/L)	chloride (ug/L)	Total (ug/L)	Organics (ug/L)	Organics (mg/L)
		(-3)	(-3/	(-3/	(=3.=)	(-3,-/	(-3)	(-3)	(-3)	(-3/		(-3)	(-3,-)	(+3/	(-3/	(-3/	(-3,-)	(-3/	(-3/	(
Sump 6	9/28/2011	ND	ND	1.9 J	ND	ND	ND	42	ND	ND	ND	ND	ND	ND	ND	18	0.81 J	ND	<10	0.22 B
	3/26/2012	1.5 J	4.6	24	ND	ND	ND	320	ND	ND	ND	ND	ND	ND	ND	430	8.5	ND	240	0.35
	7/9/2012	ND	1.7	7.8	ND	ND	ND	140	ND	ND	ND	ND	ND	ND	ND	160	3.4	ND	95	0.18
	10/2/2012	ND	2.8	13	ND	ND	ND	290	ND	ND	ND	ND	ND	ND	ND	280	8.8	ND	170	0.23
	4/4/2013	ND	1.6	9.3	ND	ND	ND	130	ND	ND	ND	ND	ND	ND	ND	230	1.5	ND	110	0.25
	6/25/2013	ND	ND	1.1	ND	ND	ND	19	ND	ND	ND	ND	ND	ND	ND	13	ND	ND	14 J	0.23
	10/10/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.8	ND	ND	<8.8	0.36
	1/8/2014	0.54 J	1.9	9.8	ND	ND	ND	200	ND	ND	ND	ND	ND	ND	ND	110	8.9	ND	96	0.16
	3/6/2015	<0.41	<0.24	<0.26	< 0.50	ND	<0.50	0.53 J	< 0.50	<0.17	ND	<0.14	<2.5	< 0.50	< 0.50	1.2	<0.18	<1.5	<29.6	0.3
	3/9/2016	<0.41	<0.24	2.0	< 0.50	ND	< 0.50	29.3	<0.50	<0.17	ND	<0.14	<2.5	< 0.50	< 0.50	56.5	0.55 J	<1.5	<29.6	0.17
	9/7/2016	<0.41	<0.24	1.5	<0.50	<0.50	<0.50	43.2	<0.50	0.48 J	<0.23	<0.14	<2.5	<0.50	< 0.50	27.8	<0.18	<1.5	<29.6	0.17
	3/7/2017	<0.41	0.94J	8.7	<0.50	<0.50	<0.50	138	<0.50	0.71 J	<0.23	<0.14	<2.5	<0.50	<0.50	175	2.4	<1.5	85	0.26
	10/5/2017	0.47 J	1.8	12.5	<0.50	<0.50	<0.50	234	<0.50	1.0	<0.23	<0.14	<2.5	<0.50	< 0.50	296	4.2	<1.5	120	0.037 J
	3/9/2018	<0.41	<0.24	<0.26	<0.50	<0.50	<0.50	1.1	<0.50	<0.17	<0.23	<0.14	<2.5	<0.50	<0.50	1.2	<0.18	<1.5	<30	0.16
	10/5/2018	<0.24	<0.27	<1.1	<0.84	<0.24	<0.25	2.1	<0.22	<1.2	<0.58	< 0.39	<1.2	<0.81	<0.17	1.8	<0.17	<1.5	<36	0.70
	3/5/2019	<0.24	<0.27	<1.1	<0.84	<0.24	<0.25	20.6	<0.22	10.0	<0.58	<0.39	<1.2	<0.81	<0.17	8.6	1.1	<1.5	<36	0.14
Sumn 18/23	3/30/2012	ND	ND	ND	ND	ND	0.62 1	5.8	ND	ND	ND	ND	0.56 1	ND	ND	ND	0.30 1	ND	26 1	2.5
oump 10/25	7/9/2012	ND	ND	ND	ND	ND	0.02.0	4.1	ND	ND	ND	ND	0.30 3 ND	ND	ND	ND	0.50 5	ND	<u>200</u>	1.6
	10/2/2012	ND	ND	ND	ND	ND	ND	2.8	ND	ND	ND	ND	ND	ND	ND	ND	0.34.1	ND	<6.9	2.3
	4/4/2013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<8.8	0.85
	6/24/2013	ND	ND	ND	ND	ND	1.1	5.5	ND	ND	ND	ND	ND	ND	ND	ND	0.89	ND	<8.8	0.87
	10/10/2013	ND	1.1	ND	ND	ND	0.75	ND	ND	ND	ND	ND	ND	ND	0.26 J	ND	0.76	ND	<8.8	1.4
	1/8/2014	ND	2	ND	ND	ND	0.76	12	ND	ND	ND	ND	ND	ND	0.36 J	ND	0.61	0.32 J	10 J	0.92
	9/11/2015	< 0.41	< 0.24	< 0.26	< 0.50	ND	< 0.50	0.59 J	< 0.50	< 0.17	ND	< 0.14	<2.5	< 0.50	< 0.50	< 0.33	< 0.18	<1.50	<29.6	0.14 J
	3/9/2016	< 0.41	25.9	0.97 J	1.6	ND	8.9	134	1.7	< 0.17	ND	< 0.14	3.1 J	< 0.50	7.1	< 0.33	22.7	10.3	123	1.3
	9/7/2016	< 0.41	15.1	<0.26	< 0.50	1.1	2.6	53.9	< 0.50	< 0.17	1.2	< 0.14	<2.5	< 0.50	0.73 J	< 0.33	6.2	<1.5	29.9 J	1.2
	3/7/2017	< 0.41	17.1	0.76 J	1.1	3.2	5	77	1	< 0.17	1.7	< 0.14	<2.5	< 0.50	3.9	0.48 J	15.1	6.5	75	1.3
	10/5/2017	System off	per localiz	ed groundw	vater treatm	nent study,	no sample	e collected.												
	3/9/2018	System off	per localiz	ed groundv	ater treatm	nent study,	no sample	e collected.												
	10/5/2018	<0.24	21.2	<1.1	<0.84	2.9	2.8	20.2	0.39 J	<1.2	<0.58	<0.39	2.2 J	<0.81	2.9 J	<0.26	1.4	4.5	37 J	0.26
	3/5/2019	<0.24	1.2	<1.1	<0.84	2.4	<0.25	1.4	<0.22	<1.2	<0.58	<0.39	<1.2	<0.81	<0.17	<0.26	<0.17	<1.5	<36	0.19
		1		1				-	1		-	r	1	-				r	r	
Sump																				
//15/1/R	9/28/2011	ND	ND	ND	ND	ND	ND	0.82 J	ND	ND	ND	ND	ND	ND	ND	ND	0.21 J	ND	47 J	1.5 B
	3/30/2012	ND	ND	ND	ND	ND	ND	2.3	ND	ND	ND	ND	ND	ND	ND	0.62 J	ND	ND	<10	1.2
	7/11/2012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 6.9	2.2
	9/28/2012	ND	ND	ND	ND	ND	ND	ND 1.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<0.9	0.71
	6/25/2013	ND	ND	ND	ND	ND	ND	2.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 8.8	23
	10/10/2013	ND	ND	ND	ND	ND	ND	Z.J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 8.8	2.5
	1/8/2014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	< 8.8	1.2
	6/19/2014	<0.41	0.91.1	0.83.1	<0.50	ND	<0.50	22.7	<0.50	<0.17	ND	<0.14	<2.5	<0.50	<0.50	0.94.1	17	<1.5	<29.6	3.1
	9/5/2014	<0.41	0.35.1	2	<0.50	ND	<0.50	28.4	<0.50	<0.17	ND	<0.14	<2.5	<0.50	<0.50	2.0	0.69.1	<1.5	31.8.1	1.3
	12/3/2014	<0.41	< 0.24	< 0.26	< 0.50	ND	< 0.50	<0.26	<0.50	<0.17	ND	<0.14	<2.5	< 0.50	< 0.50	< 0.33	<0.18	<1.5	<29.6	1.4
	9/9/2015	< 0.41	< 0.24	<0.26	< 0.50	ND	< 0.50	< 0.26	< 0.50	< 0.17	ND	< 0.14	<2.5	< 0.50	< 0.50	< 0.33	< 0.18	<1.5	<29.6	0.32
	3/9/2016	< 0.41	< 0.24	<0.26	< 0.50	ND	< 0.50	<0.26	< 0.50	< 0.17	ND	< 0.14	<2.5	< 0.50	< 0.50	< 0.33	<0.18	<1.5	<29.6	1.8
	9/7/2016	< 0.41	< 0.24	<0.26	< 0.50	0.5	< 0.50	<0.26	< 0.50	< 0.17	< 0.23	< 0.14	<2.5	< 0.50	< 0.50	< 0.33	<0.18	<1.5	<29.6	0.54
	3/7/2017	< 0.41	< 0.24	<0.26	< 0.50	< 0.50	< 0.50	<0.26	< 0.50	< 0.17	< 0.23	< 0.14	<2.5	< 0.50	< 0.50	< 0.33	<0.18	<1.5	<30	0.68
	10/5/2017	<0.41	<0.24	<0.26	< 0.50	< 0.50	< 0.50	5.1	< 0.50	< 0.17	< 0.23	<0.14	<2.5	< 0.50	< 0.50	0.40 J	<0.18	<1.5	<30	0.97
	3/9/2018	< 0.41	< 0.24	0.45J	< 0.50	< 0.50	< 0.50	6.6	< 0.50	< 0.17	< 0.23	<0.14	<2.5	< 0.50	< 0.50	0.42 J	0.91 J	<1.5	<30	1.1
	10/5/2018	<0.24	<0.27	<1.1	<0.84	<0.24	<0.25	1.4	<0.22	<1.2	<0.58	<0.39	<1.2	<0.81	<0.17	<0.26	0.20 J	<1.5	<36	1.5
	3/5/2019	<0.24	<0.27	<1.1	< 0.84	<0.24	<0.25	12.6	<0.22	<1.2	<0.58	<0.39	<1.2	< 0.81	<0.17	1.5	0.21 J	<1.5	<36	0.98
		ntration abou	un ofter the l																	

Table 3 Remedial Systems Operational Data Kenosha Engine Plant 5555 30th Ave Kenosha, Wisconsin

		Flow Meter		Permits Li	mit Achieved b	y Effluent?					
Sump	Date	Reading	Total Flow	GRO	DRO	VOC's					
	2/4/2019	5,293,698.10	199,556.40								
	3/5/2019	5,446,934.50	153,236.40								
e	4/8/2019	5,636,974.50	190,040.00	Yes	Yes	Yes					
0	5/7/2019	5,773,798.30	136,823.80								
	7/8/2019*	6,111,732.40	337,934.10								
	2/4/2019	3,949,550.25	13,809.94								
	3/5/2019	3,959,513.05	9,962.80								
10	4/8/2019	3,961,549.60	2,036.55	Yes	Yes	Yes					
10	5/7/2019	3,979,909.15	18,359.55								
	7/8/2019*	4,081,238.40	101,329.25								
	2/4/2019	4,238,580.10	0								
	3/5/2019	4,238,580.10	0	Dumm	Pump not in operation during						
23	4/8/2019	4,238,580.10	0	Pumpi	not in operation	n during					
20	5/7/2019	4,238,580.10	0	No effluent sample.							
	7/8/2019*	4,238,580.10	0								
		4,238,580.10	0								
	2/4/2019	499,294.88	27,526.76								
	3/5/2019	516,913.42	17,618.54								
7	4/8/2019	537,929.89	21,016.47	Yes	Yes	Yes					
'	5/7/2019	553,946.99	16,017.10								
	7/8/2019*	624,552.70	70,605.71								
	2/4/2019	1,759,933.07	197,340.21								
	3/5/2019	1,785,255.90	25,322.83								
17R	4/8/2019	1,835,137.60	49,881.70	Yes	Yes	Yes					
1715	5/7/2019	1,888,174.79	53,037.19		100 100						
	7/8/2019*	1,985,951.90	97,777.11								

Notes:

1) Total flow is difference of current month flow reading minus prior month flow reading, unless otherwise noted.

2) No meter on effluent discharge at any of the systems

3) Total flow covers the time period from 7/6/2016 to 1/8/2018.

* Date of flow meter readings collected during next semi-annual reporting period (July through December 2019).

nap-2018 - October.dwg; 11/1/2018 3:35:33 PM; MACKINNEY, JOEL 08M \\Usmwk1fs001\prod\Data\Projects\60485212\900_Work\CADD\KEP -

1555 RiverCenter Dr Milwaukee, WI 53212 414.944.6080 www.aecom.com Copyright ©2012, By: AECOM USA, Inc. MONITORING WELL LOCATION MAP KENOSHA ENGINE PLANT CITY OF KENOSHA KENOSHA, WISCONSIN

Drawn :	JSM 4/23/2019
Checked:	LLA 5/8/2019
Approved:	LLA 5/8/2019
PROJECT NUMBER	60605022

0&M КЕР

LEGEND

APPROXIMATE SITE BOUNDARY

RAILROAD

EXISTING FENCE

PERIMETER MONITORING WELL LOCATIONS

WATER TABLE CONTOURS

WELLS LOCATED SOUTHEAST OF THE RAILROAD TRACKS (SOUTHEAST OF KEP) ARE UNDER THE INFLUANCE OF THE SOUTHERN GROUNDWATER RECOVERY SYSTEM AND ARE NOT INCLUDED IN THE CONTOURS BECAUSE WATER LEVELS ADJACENT TO THE RECOVERY SYSTEM WERE NOT MEASURED.

NOTES

- 1. AERIAL PHOTOGRAPH FROM GOOGLE EARTH PRO, IMAGE DATED 4/6/2017; DOWNLOADED ON 6/5/2017.
- 2. MW-31 NOT USED FOR CONTOUR MAP

POTENTIOMETRIC SURFACE PERIMETER WATER TABLE MONITORING WELLS - APRIL 2019 KENOSHA ENGINE PLANT CITY OF KENOSHA KENOSHA, WISCONSIN JSM 4/23/2019 Drawn Checked: LLA 5/8/2019 Approved: LLA 5/8/2019 PROJECT NUMBER 60605022 FIGURE NUMBER 2

LEGEND

APPROXIMATE SITE BOUNDARY

RAILROAD

EXISTING FENCE

PERIMETER PIEZOMETER LOCATIONS

WATER TABLE CONTOURS

NOTES 1. AERIAL PHOTOGRAPH FROM GOOGLE EARTH PRO, IMAGE DATED 4/6/2017; DOWNLOADED ON 6/5/2017.

555 RiverCenter Dr Milwaukee, WI 53212 414.944.6080 WWW.aecom.com Copyright ©2012, By: AECOM USA, Inc.

POTENTIOMETRIC SURFACE PERIMETER PIEZOMETERS - APRIL 2019 KENOSHA ENGINE PLANT CITY OF KENOSHA KENOSHA, WISCONSIN Drawn : JSM 4/23/2019 Checked: LLA 5/8/2019 Approved: LLA 5/8/2019 PROJECT NUMBER 60605022 FIGURE NUMBER 3