WARZYI

Report 15151 Soil Investigation Mobil Bulk Plant No. 48-356 Merrill, Wisconsin

> Prepared for: Mobil Oil Corporation Schaumburg, Illinois

Prepared by: Warzyn Engineering Inc. Madison, Wisconsin

July 1990

July 16, 1990

Mr. Peter D. Gates Mobil Oil Corporation Woodfield Engineering Center 600 Woodfield Drive Schaumburg, IL 60196

RE: Soil Investigation Report Mobil Bulk Plant No. 48-356

Dear Pete:

Enclosed are three copies of the soil investigation report for the Mobil Bulk Plant in Merrill, Wisconsin. The results of the investigation and Warzyn's recommendations for further action at the site are outlined on the attached Executive Summary.

Please call if you have any questions or comments concerning this report. Warzyn appreciates this opportunity to provide environmental services to Mobil Oil Corporation.

Sincerely,

WARZYN ENGINEERING INC.

in low 24 DJB

Kevin D. Swanson Hydrogeologist

Douglas J. Bach, P.E. Project Manager

DJB/jkk [jkk-107-72] 15151-MD

cc: L. Smith, Warzyn

Enclosures: As Stated

THE PERFECT BALANCE BETWEEN TECHNOLOGY AND CREATIVITY.

> MADISON ONE SCIENCE COURT P.O. BOX 5385 MADINON, WT 53705 (608) 231-4747 EAX (608) 273-2513

Soil Investigation Mobil Bulk Plant No. 48-356 Merrill, Wisconsin

July 1990

SOIL INVESTIGATION MOBIL BULK PLANT NO. 48-356

EXECUTIVE SUMMARY

Mobil Oil Company (Mobil) retained Warzyn Engineering Inc. (Warzyn) to investigate possible petroleum contamination of soil and groundwater at Mobil Bulk Plant No. 48-356 in Merrill, Wisconsin. The plant had been the site of a 400-gallon fuel oil spill in 1985, and a soil gas survey performed by Target Environmental Services, Inc. in August 1989 indicated that volatile organic compounds were present in soil vapor along the northern and southern edge of the property.

Although the Work Plan had proposed the installation of both monitoring wells and soil borings, shallow bedrock conditions encountered at the time of drilling limited the investigation to soil borings only. Thirteen soil borings were drilled and soils were collected for laboratory analysis of Total Petroleum Hydrocarbons (TPH); benzene, ethyl benzene, toluene and xylene (BETX); and polynuclear aromatic hydrocarbons (PAH).

Soil analytical results indicated that soils with significant concentrations of petroleum hydrocarbons were generally limited to the area south of the aboveground storage tanks and beneath the pipe fill valves. The aboveground tanks and fill pipes are not equipped with secondary containment (e.g., dikes), as required by federal Spill Prevention Control and Countermeasures (SPCC) regulations (40 CFR 112).

Warzyn's field observations and previous investigation reports indicate that a thin layer of groundwater occurs intermittently above shallow granite bedrock. When present, this groundwater may drain to the sewer trench which has been dynamited into bedrock along the south edge of the site.

Based on the results of this investigation, Warzyn recommends the following actions at the site.

• •

- Petroleum affected soils in the area south of the aboveground tanks and fill pipes should be excavated and properly disposed. Before excavation occurs, soils in the immediate vicinity of the aboveground tanks should be sampled and analyzed to determine if petroleum contamination extends to that area.
- If the site is to continue to be used as a bulk plant facility, the present storage and loading facilities should be upgraded to comply with SPCC requirements for secondary containment.

DJB/jkk/MGC [jkk-107-72a] 15151-MD

TABLE OF CONTENTS

Page No.

INTRODUCTION	1
SITE BACKGROUND	1
HYDROGEOLOGIC SETTING	2
SITE INVESTIGATION Soil Borings Soil Sampling and Organic Vapor Field-Screening Well Installation and Groundwater Occurrence Soil Analytical Results	3 3 4 5
CONCLUSIONS	7

TABLES

Table 1	-	Soil Photoionization Detector Results
		Field Headspace Method
		March 5 and 6, 1990
Table 2		Valatila Organia Compounda

- Table 2
 Volatile Organic Compounds
 March 5 and 6, 1990
- Table 3- Summary of Soil Analytical Results
March 5 and 6, 1990
- Table 4 Summary of Soil Analytical Results March 5 and 6, 1990

DRAWINGS

T		1.1.1.1.1.1.1	4 1	n.,	Υ , '	1/
	raw	ing	AI-	Site	Location	Man
~	1 11 11	A A A pros	* **	Cito	Locucion	LILLE

Drawing B1 - Site Features Map

Drawing B2 - Soil Analytical Results

APPENDICES

- Appendix A Field Boring Logs
- Appendix B Well Construction Detail Appendix C Soil Analytical Results

SOIL INVESTIGATION MOBIL BULK PLANT NO. 48-356 MERRILL, WISCONSIN

INTRODUCTION

This report presents the results of the soil investigation at Mobil Bulk Plant No. 48-356 in Merrill, Wisconsin. The investigation was performed by Warzyn Engineering Inc. (Warzyn) in accordance with the October 23, 1989 Work Plan prepared by Warzyn for Mobil and Contract No. 999XL7-9L35 between Mobil and Warzyn. The objective of this investigation was to define the extent of potential petroleum product contamination of soil and groundwater.

Investigation activities performed by Warzyn between March 5 and April 5, 1990 included the following:

- · Soil borings and analytical soil sampling;
- · Installation of a monitoring well;
- Laboratory analysis of soil samples;
- · Evaluation of potential receptors.

SITE BACKGROUND

Mobil Bulk Plant No. 48-356 is located on South Park Street, one block east of U.S. Highway Business 51 in Merrill, Wisconsin (Section 12, T.31N., R.6E.). The site location is shown on Drawing 15151-A1. The site is located in an industrial area and is bordered by railroad tracks and right-of-way (Wisconsin Central Limited) on the north, vacant property on the east, a gravel drive and lumber storage sheds to the south, and an abandoned Standard Oil Bulk Plant to the west. No private residences are located in the immediate vicinity. The ground surface slopes south toward the Wisconsin River, which is located approximately 100 yds from the site.

Aboveground storage tanks are used at the site to store fuel oil and gasoline. Background information provided to Warzyn indicates that approximately 400 gallons of fuel oil spilled from an above ground tank in June of 1985. The tank was removed and soils excavated on June 28, 1985. A Twin City Testing Corp. (TCT) report indicates that the excavation was 10 ft deep with the floor consisting of fractured rock. A well constructed with 12 in. diameter PVC pipe with vertical saw cut perforations was reportedly placed in the excavation before

backfilling with sand. TCT reported that on July 2, 1985 the water in the well was 5.1 ft below ground surface and that a trace of product was present on the surface of a groundwater sample collected the excavation well. As reported by TCT, the water in the excavation well was 7.3 ft below groundwater surface on August 9, 1985. TCT reported that no oil products were apparent on groundwater collected from the excavation well on August 9, 1985.

Several different organic compound vapors were detected in a soil gas survey conducted by Target Environmental Services, Inc. on August 8, 1989. Concentrations of tert-butyl methyl ether (MTBE), toluene, xylenes, benzene and ethyl benzene were elevated along the northern and southern property boundaries.

HYDROGEOLOGIC SETTING

The Mobil Bulk Plant site is located in an area of moderate relief, where glacial drift overlies Precambrian crystalline bedrock. The bedrock is a southern extension of the Precambrian Canadian Shield and consists of igneous and metamorphic rock. In the region around Merrill, the thickness of the glacial drift ranges from zero to over 100 ft. The drift consists of outwash and ice-contact sand and gravel deposits as well as ground moraine till.

Groundwater supplies all communities and most rural domestic needs in the region. Nearly all wells draw water from the glacial drift. The bedrock does not yield much water, though it is tapped locally for small domestic supplies where glacial drift is thin. The City of Merrill municipal wells draw water from the outwash sand and gravel.

The site is located approximately one mile south of the Prairie River which flows into the Wisconsin River one-half mile to the west. A search of well constructors reports available at the Wisconsin Geologic and Natural History Survey (WGNHS) indicates that several Merrill municipal wells draw from unconsolidated glacial deposits in Section 7, T.31N., R.7E., approximately one-half to one mile east and northeast of the bulk plant site. No indication of private residential supply wells on the north side of the Wisconsin River within one half mile of the site were found in the WGNHS records.

Although an observation well network does not exist at the site, groundwater flow is likely to the south, coinciding with regional discharge to the Wisconsin River.

SITE INVESTIGATION

SOIL BORINGS

Thirteen borings were drilled and one well installed by Environmental and Foundation Drilling, Inc. on March 5 and 6, 1990, under the supervision of Warzyn personnel. To minimize the possibility of cross-contamination, the drilling equipment was decontaminated by steam pressure washing prior to drilling each well or, where the previous boring was not advanced below 5 ft and no split spoon samples were taken through the auger flights, with trisodium phosphate detergent followed by a clear water rinse. Each boring was drilled using 4 1/4 in. or 2 1/4 in. inside diameter hollow-stem augers.

The borings were advanced to the point of auger refusal at the weathered bedrock surface, which was shallower than anticipated, based on previous information available to Warzyn. In general, was not possible to advance the boreholes deeper than seven feet. In several cases, the boreholes were advanced less than 4 to 5 ft before auger refusal was reached. Boreholes were abandoned by filling with granular bentonite to within one foot of the ground surface and topping off with native soil or gravel.

Overhead utilities and private water and sewer lines to the Bulk Plant office necessitated adjustments to several proposed boring locations. The boring locations are shown on Drawing 15151-B1.

SOIL SAMPLING AND ORGANIC VAPOR FIELD-SCREENING

Three-inch diameter split spoon samples were collected at 2.5 ft intervals at each boring. Samples were logged for lithologic characteristics and screened for organic vapors with a photoionization detector (PID) using the field headspace analytical technique. Descriptions of the field headspace methodology and PID calibration technique are included in Appendix A. Split spoons and sampling accessories were decontaminated with trisodium phosphate detergent followed by a clear water rinse between samples. Boring logs showing the encountered lithologies and field PID screening results are included in Appendix B. Unconsolidated material overlying the bedrock consists of predominantly clayey, silty fine sand, and is primarily residual weathered granite bedrock.

Field PID screening indicated relatively large headspace concentrations of organic vapors from soil samples south of the existing above ground tanks (borings B2 and B3) and near the truck transport pipe fill lines (boring B4). Lower headspace vapor concentrations were detected in samples from borings W1 and B5. The results of field PID screening are summarized in Table 1. Strong fuel-like odors and apparent residual petroleum product were observed in samples from depths of 3 to 6 ft at borings B2, B3 and B4. No elevated PID detections were observed in soil from borings along the northern perimeter of the site (borings B6, B7, B8 and B9).

Soil samples with headspace PID readings greater than 10 ppm as benzene equivalents were transferred to labelled glass analytical jars. At least one analytical sample was also collected from each boring in which elevated field PID readings were not observed. Samples were stored on ice for transport to the Warzyn analytical laboratory. The samples were analyzed for Total Petroleum Hydrocarbons (TPH), benzene, ethylbenzene, toluene, xylenes (BETX) and Polynuclear Aromatic Hydrocarbons (PAHs).

WELL INSTALLATION AND GROUNDWATER OCCURRENCE

One monitoring well (W1) was installed at the southwest corner of the fenced storage tank area (Drawing 15151-B1). The well was constructed of threaded flush joint, 2 in. inside diameter Schedule 40 PVC. The 4.5 ft well screen (screened from 4.9 to 9.4 ft depth) has 0.010 in. factory cut slots. A uniform washed coarse sand was placed around and extended one foot above the top of the screen slots to serve as a filter pack. Granular bentonite was extended from the filter pack to within one foot of ground surface as an annular space seal. One foot of native soil was placed on top of the bentonite. A locking steel protective casing was placed over the 2 ft of PVC casing stick-up. The well detail is included in Appendix B.

Although groundwater was not encountered in this boring before auger refusal occurred, historic water levels in the TCT well in the former excavation area suggested the possibility

of the water table intersecting the slotted portion of well W1 in the future. It was impossible to advance the boring for W1 any deeper with hollow stem augers. The existing TCT well in the former excavation had no standing water on March 5 and 6, 1990. Groundwater was encountered at 14 ft while drilling boring B5. Boring B5 was located in back-fill for a sewer trench blasted into the bedrock to a reported depth of approximately 20 ft. A well was not installed in boring B5.

The water table at the site exists below the weathered bedrock surface. Unconsolidated glacial deposits are thin to non-existent at the site. The depth of the weathered bedrock zone which could be penetrated by auger drilling methods ranged from less than 1 to approximately 9 ft. The thickness of the weathered bedrock zone is not known, although the inability to advance boreholes to depths greater than 5 to 8 ft suggests that the transition from weathered bedrock to relatively impermeable non-weathered bedrock begins at depths between 5 and 10 feet. This shallow depth to competent bedrock is further supported by the need to dynamite bedrock to install the sanitary sewer line located near the site.

No groundwater was encountered above the depth of auger refusal in any borings performed in natural material. Thus, the volume of shallow groundwater flowing beneath the site above the non-weathered bedrock appears to be small. Shallow groundwater flow may be diverted into and along the sewer line trench backfill, which may have a hydraulic conductivity value orders of magnitude higher than the bedrock itself. Deeper groundwater flow in fractures in the granite should coincide with regional movement south toward the Wisconsin River, located approximately 100 yds to the south (Drawing 15151-A1).

SOIL ANALYTICAL RESULTS

Laboratory analytical results for soil samples analyzed for BETX, TPH and PAH compounds are summarized in Table 2 through Table 4 and are included in Appendix C. Soil analytical results for each boring are summarized schematically on Drawing 15151-B2.

BETX analytical results are summarized in Table 2 and shown on Drawing 15151-B2. Ethylbenzene and/or xylenes were detected in samples from borings B2, B3 and B4 south of

the above ground storage tank and fuel truck transport fill lines. The soils were apparently affected to the bottom of each of these three borings (depths of 6 to 8 ft). Boring B3 split spoon sample 1 (B3-SS1, 1-2.5 ft) and boring B4 split spoon sample 3 (B4-SS3, 6-7.5 ft) had the highest detected xylenes concentrations of 15 and 44.5 mg/kg, respectively. The detected concentrations in the remaining samples from borings B2, B3 and B4 were generally between 0.1 and 1.5 mg/kg. Analytical results also indicated a 0.18 mg/kg xylenes concentration in a boring B6 sample (B6-SS2, 3.5-5 ft), and detectable, but below quantitation limits (<0.05 mg/kg), toluene and xylenes in boring B8 (B8-SS3, 6-7.5 ft). The BETX chromatograms for most of the samples contain unidentified compounds other than benzene, ethylbenzene, toluene or xylenes.

Total petroleum hydrocarbon (TPH) analytical results are summarized in Table 3 and shown on Drawing 15151-B2. TPH results suggest that petroleum hydrocarbon mixtures in soil were generally limited to the area of borings B2, B3 and B4, south of the fill valves and above ground storage tank area (see Drawings 15151-B1 and 15151-B2). TPH mixtures were detected in soil samples taken near the surface to the bottom of each of borings B2, B3 and B4 (6 to 8 ft). Detected concentrations generally increased with depth (see Table 3). Soil TPH concentrations at boring B2 ranged from approximately 5,000 to 7,000 mg/kg calculated as No. 2 fuel oil. Soil TPH concentrations detected at boring B3 ranged from approximately 600 to 4,000 mg/kg, calculated as kerosene. Soil TPH concentrations detected at boring B4 ranged from approximately 100 to 6,000 mg/kg, calculated as No. 2 fuel oil. TPH compounds were also detected in soil sampled from 1 to 1.5 ft at boring B10, approximately 15 ft south of borings B2 and B3. Auger refusal prohibited the sampling of deeper soil in the vicinity of boring B10. Overhead and buried drilling hazards precluded drilling and sampling of soils in the areas south of borings B3 and B4 and east of boring B4. Relatively low concentrations of TPH were detected in soil sampled from 3.5 to 5 ft in borings B5 and B9, (5.36 and 14.2 mg/kg, respectively, as No. 2 fuel oil).

Polynuclear Aromatic Hydrocarbon (PAH) analyses of 16 soil samples (including one field duplicate) were performed by High Performance Liquid Chromatography (HPLC) at Hazelton Laboratories America, Inc. in Madison, Wisconsin. The PAH analytical results are summarized in Table 4 and shown on Drawing 15151-B2. Low levels of PAH compounds

were detected in fourteen of the sixteen samples. With the exception of napthalene in the boring B3 3.5-5 ft sample (B3, SS2), no individual PAH compounds were detected at concentrations greater than one part per million (1000 ug/kg). Soil sample B3, SS2 had a total PAH concentration of 1.3 ppm. Total PAH concentrations of greater than 0.1 ppm (100 ug/kg) in natural soils are limited to samples from borings B2 and B3. Boring B5, SS2 (total PAH of 342 ug/kg) was drilled and sampled in fill (see <u>Well Installation and</u> Groundwater Occurrence section, above).

CONCLUSIONS

Based on the results of its investigation at the Merrill Mobil Bulk Plant Site, Warzyn concludes:

- Soil with significant concentrations of petroleum derived compounds was generally limited to the area south of the above ground storage tanks and pipe fill valves (boring B2, B3, B4 and B10). Soil in this area was apparently affected to depths of at least 7.5 ft. Deeper samples could not be obtained using auger drilling methods. The horizontal extent of potentially affected soil to the south of this area and within the fenced area has not been determined.
- Relatively minor amounts of petroleum hydrocarbon compounds were detected in soil sampled from 3.5 to 5 ft at boring B9 (approximately 14 ppm as No. 2 fuel oil) and in the fill at boring B5 (approximately 5 ppm as No. 2 fuel oil).
- The shallow depth of the bedrock surface prohibited the installation of monitoring wells to evaluate groundwater quality. Previous site investigations and Warzyn soil boring results indicate that a thin layer of shallow groundwater exists only intermittently above the granite bedrock. This groundwater is not a usable source of drinking water supply. This groundwater, when present, may drain to the sewer trench blasted into rock along the south edge of the site. Deeper regional groundwater is located within granite bedrock fractures and reportedly flows south toward the Wisconsin River.

KDS/jkk/MGC [vlr-600-72] 15151-MD

Soil Photoionization Detector Results (1) Field Headspace Method (2) March 5 and 6, 1990 Mobil Bulk Plant, Merrill, Wisconsin

Split	2	Boring No.											
Spoon Sample No.	Depth (ft)	1	B1A	<u>B2</u>	<u>B3</u>	<u>B4</u>	<u>B5</u>	<u>B6</u>	<u>B7</u>	<u>B8</u>	<u>B9</u>	<u>B10</u>	<u>B10A</u>
SS1	1-2.5	0	0	20	140	15	2.0	0	0	0	0	0	
SS2	3.5-5	0		40	200	17	1.5	0	0	0	0		
SS3	6-7.5	0		50	180	180	0			0			
SS4	8.5-10	2.5			-		0						
SS5	13.5-15						0						

Notes:

(1) Values reported in parts per million, as benzene equivalents

(2) A description of field method and calibration procedures is included in Appendix A.

KDS/jkk/TAPB [vlr-400-52] 15151-MD

Summary of Soil Analytical Results Volatile Organic Compounds March 5 and 6, 1990 Mobil Bulk Plant, Merrill, Wisconsin

Boring and Sample No.	Sample Depth (ft)	Benzene ug/kg	Ethylbenzene ug/kg	Toluene ug/kg	Xylenes ug/kg
W1-SS4	8.5-10	Х	Х	Х	Х
B1A-SS1	1-2.5	х	Х	X	Х
B2-SS1(1)	1-2.5	Х	125	Х	307
B2-SS2(1)	3.5-5	Х	Х	Х	58.8
B2-SS3(1)	6-7.0	X	_276	Х	523
B3-SS1(1)	1-2.5	Х	325	X	15,000
B3-SS2(1)	3.5-5	Х	269	X	1,550
B4-SS1(1)	1-2.5	X	Х	Х	81.7
B4-SS2(1)	3.5-5	X	Х	Х	108
B4 SS3(1)(2)	6-7.5	X	5,520	BMQL	44,500
B5-SS2(1)	3.5-5	X	X	Х	Х
B5-SS5(1)	13.5-15	X	Х	Х	Х
B6-SS2(1)	3.5-5	x	Х	Х	182
B7-SS2(1)	3.5-5	X	Х	Х	Х
B8-SS3(1)	6-7.5	X	X	BMQL	BMQL
B9-SS2(1)	3.5-5	X	Х	Х	Х
B10-SS1(1)	1-2.5	X	Х	Х	Х
Reportable Det	ection Limit	25.0	50.0	50.0	50.0

X - Analyzed but not detected.

- BMQL Detected, value below method quantitation limit
 - (1) Sample contains unidentified compounds other than BETX compounds.
 - (2) Elevated detection limits for benzene (500 ug/L) and toluene (1000 ug/L) due to interfering unidentified compounds

KDS/jkk/TAPB [vlr-400-52A] 15151-MD

Summary of Soil Analytical Results Total Petroleum Hydrocarbons Samples Collected March 5 and 6, 1990 Mobil Bulk Plant, Merrill, Wisconsin

	a 1	Reportable		Total Hydr	ocarbon (mg/l	(g) as:
Sample No.	Depth (ft)	Limit	Gasoline	Kerosene	<u>No. 2 Fuel O</u>	<u>il No. 6 Fuel Oil</u>
W1-SS4	8.5-10	А	X	X	Х	Х
B1A-SS1	1-2.5	A	Х	Х	Х	X
B2-SS1	1-2.5	F	Х	X	5,250	Х
B2-SS2	3.5-5	D	X	Х	7,340	Х
B2-SS3	6-7.5	D	Х	Х	6,460	Х
B3-SS1	1-2.5	С	Х	627(1)	Х	Х
B3-SS2	3.5-5	F	Х	4040(1)	Х	Х
B3-SS2 Dup	3.5-5	Е	Х	6280(1)	Х	Х
B4-SS1	1-2.5	В	X	X	122(2)	Х
B4-SS2	3.5-5	С	Х	Х	363	Х
B4-SS3	6-7.5	Е	Х	Х	4,820	Х
B5-SS2	3.5-5	А	Х	X	5.36(2)	Х
B5-SS5	13.5-15	А	X ·	Х	Х	Х
B6-SS2	3.5-5	A	Х	Х	Х	Х
B7-SS2	3.5-5	A	Х	Х	Х	Х
B8-SS3	6-7.5	A	Х	X	Х	Х
B9-SS2	3.5-5	A	Х	Х	14.2(2)	Х
B10-SS1	1-1.5	А	Х	Х	11.2(2)	130(3)
Detection Li	mit A		5.00	5.00	5.00	20.0
	В		25.0	25.0	25.0	100
	С		125	125	125	500
	D		250	250	250	1,000
	Ε·		500	500	500	2,000
	F		625	625	625	2,500

X - Analyzed but not detected.

Notes - (1), (2) and (3) explained on next page.

Explanatory Notes:

- (1) Sample contains what appears to be a hydrocarbon fraction eluting off of the gas chromatograph with a retention time in the range of kerosene. These unknowns do not match any of the reference standards. Estimated concentrations of the unknowns are calculated against a kerosene reference standard.
- (2) Sample contains what appears to be a hydrocarbon fraction eluting off of the gas chromatograph with a retention time in the range of No. 2 fuel oil. These unknowns do not match any of the reference standards. Estimated concentrations of the unknowns are calculated against a No. 2 fuel oil reference standard.
- (3) Sample contains what appears to be a hydrocarbon fraction eluting off of the gas chromatograph with a retention time in the range of No. 6 fuel oil. This unknown does not match any of the reference standards. The estimated concentration of the unknown is calculated against No. 6 fuel oil reference standard.

The concentrations reported are determined against reference standard mixtures. Variables such as differences in petroleum product formulations, weathering and other environmental factors may preclude positive identification as one of the target hydrocarbon standard mixtures.

KDS/jkk/TAPB [vlr-400-52B] 15151-MD

Summary of Soil Analytical Results Polynuclear Aromatic Hydrocarbons Samples Collected March 5 and 6, 1990 Mobil Bulk Plant, Merrill, Wisconsin

14

12 13 12

120 1202

	Boring No., Split Spoon Sample No., and Sampled Interval (ft)															
Compound Name	W1 SS4 <u>8.5-10</u>	B1A SS1 <u>1-2.5</u>	B2 SS1 <u>1-2.5</u>	B2 SS2 <u>3.5-5</u>	B2 SS3 <u>6.5-7</u>	B3 SS1 <u>1-2.5</u>	B3 SS2 <u>3.5-5</u>	84 SS1 <u>1-2.5</u>	B4 SS2 <u>3.5-5</u>	85 SS2 <u>3.5-5</u>	85 SS5 <u>13.5-15</u>	B6 SS2 <u>3.5-5</u>	B7 SS2 <u>3.5-5</u>	88 SS3 <u>6-7.5</u>	89 SS2 <u>3.5-5</u>	B3 Dup SS2 <u>3.5-5</u>
Naphthalene	Х	Х	Х	Х	Х	Х	1300	Х	Х	Х	Х	Х	Х	Х	Х	330
Acenaphthene	Х	Х	Х	Х	Х	Х	900	Х	Х	Х	Х	Х	Х	Х	Х	Х
Fluorene	Х	Х	Х	Х	400	Х	90	Х	Х	Х	Х	X	Х	Х	Х	Х
Phenanthrene	Х	Х	110	27	330	Х	130	Х	X	56	Х	Х	22	Х	Х	93
Anthracene	х	Х	Х	Х	190	Х	Х	Х	Х	х	Х	Х	х	Х	Х	Х
Fluoranthene	2.9	Х	88	22	120	Х	Х	Х	Х	62	3.6	8.6	16	9.0	12	Х
Pyrene	х	Х	Х	Х	640	Х	Х	Х	Х	Х	х	Х	х	Х	Х	Х
Benzo(a)Anthracene	1.1	Х	38	1.5	56	Х	2.1	6.7	5.7	26	1.4	2.8	6.6	3.7	4.0	Х
Chrysene	x	х	Х	Х	Х	Х	Х	Х	Х	38	Х	Х	Х	Х	X	Х
Benzo(b)Flouoranthene	Х	Х	Х	5.2	Х	Х	Х	19	16	51	2.6	4.3	11	4.6	9.6	X
Benzo(k)Fluoranthene	Х	Х	Х	2.8	Х	Х	Х	9.9	6.2	25	1.3	Х	4.9	2.5	4.1	Х
Benzo(a)Pyrene	1.1	Х	Х	3.4	Х	Х	Х	14	8.8	37	1.8	3.2	8.2	4.2	7.6	Х
Benzo(g,h,i)Perylene	Х	Х	Х	3.5	Х	Х	Х	Х	Х	23	2.2	Х	11	4.6	18	X
Indeno(1,2,3-cd)Pyrene	Х	Х	Х	Х	Х	Х	Х	Х	Х	24	Х	Х	Х	Х	11	Х
Total PAH Compounds	5.1	Х	236	65	1736	Х	2422	50	37	342	13	19	80	29	66	423

Concentrations reported in ug/kg.

X - Analyzed but not detected. Detection limits are compound and sample dependent, ranging from 1 to 2000 ug/kg. Calculated total PAH concentrations reflect only those compounds which were detected at or above the compound detection limit. Individual detection limits are given in Appendix C.

Acenaphthylene and Dibenzo(a,h)anthracene were analyzed, but not detected in any of the samples.

Analyses performed by high performance liquid chromatography.

KDS/jkk/TAPB [vlr-400-52c] 15151.00-MD

TELEDYNE POST N40

N40683

APPENDIX A

Field Boring Logs Description of Field PID Procedures PID Calibration Record

PID Screening of Soil Samples

All soil collected in split-spoon samples was screened for the presence of volatile organic vapors using a photoionization detector (PID). Following soil classification, the soil was transferred to a labelled, sealable plastic bag.

The plastic bags were labeled with the boring number, the sample depth and the time of sample collection. The sample was placed out of direct sunlight for several minutes prior to field screening.

Field screening was accomplished by unsealing the plastic bag just enough to allow the PID probe to be inserted into the air space in the sample container. PID screening results were recorded on the soil boring log.

Calibration of PID and Weather Conditions

The PID was calibrated each day using an isobutylene - air mixture of known composition. The calibration record for each day and temperature range during field operations are summarized below.

Date	PID Lamp	PID Calibration	Calibration Gas Concentration [*]	Field Temperature <u>Range</u>
3/5/90	10.2eV	60 ppm	58 ppm	25-30°F
3/6/90	10.2eV	54 ppm	58 ppm	20-30°F

* parts per million as benzene equivalents

KS/jkk [vlr-600-70b] 15151.00-MD

WARZYN ONE SC	LOG OF TEST BORING Project Mobil Bulk Plant S. Park Street Location Merrill, Wisconsin HENCE COURT · P.O. BOX 5385, MAD ISON, WIS. 53705 · T		Boring No. W1 Surface Elevation Job No. 15151.00 Sheet 1 of 1						
SAMPLE	VISUAL CLASSIFICATION		SOIL PROPERTIES						
No. P. (in.) Moist N Depth	and Remarks		qu (qa)	HNu	Explo- sive	Field VOC	lonoto		
	TOPSOIL: Black Clayey Sandy	T			uas	Water			
1 18 D 18_									
	Medium Dense, Brown Silty SAND, Trace Gravel & Clay (SM)			0.0					
2 18 D 38									
	Fine SAND with Cobbles (SM-SC)	y		0.0					
-									
3 18 D-M 57				0.0					
4 14 D-M 100_	(Weathered Granite Bedrock)			25					
				2.5					
	End Boring at 9.5'								
	PID background = 0 ppm								
- 15-						-			
	×								
	,								
WATER	LEVEL OBSERVATIONS	G	ENERA	L NO	TES				
While Drilling ≚ I Time After Drilling	Upon Completion of Drilling Start	t 3/5 ler E&	/90 End &F Chief	3/5/ GN	90 1 R	igCN	IE		
Depth to Water Depth to Cave in	¥ Logg Drill	ger <u>K</u> I 1 Metho	DS Edito d 4 1/4" I	r KD HSA	S	7.5.			
The stratification lines rep types and the transition may	resent the approximate boundary between soil								

¥ 1

WARZYN ONE SC	LOG OF TEST BORING Project Mobil Bulk Plant S. Park Street Location Merrill, Wisconsin CIENCE COURT · P.O. BOX 5385, MAD ISON, WIS. 53705	- TEL.(608) 2	Boring No. B1 Surface Elevation Job No. 15151.00 Sheet 1 of 1				
SAMPLE		N	SOIL	PROPE	RTIES		
No. Rec Moist N Depth	and Remarks		qu (qa)	HNU Siv	o-Field ve VOC Monoto		
	2 1/2" Asphalt Dark Brown Clayey SAND and GRAN (Cobbles-Boulders) End Boring and Auger Refusal at 3.0	VEL	_(tst)				
	End Boring and Auger Refusal at 3.0						
	·						
WATER	LEVEL OBSERVATIONS	GE	NERA	L NOTI	ES		
While Drilling Time After Drilling Depth to Water Depth to Cave in The stratification lines represent types and the transition may	Upon Completion of Drilling S Y I present the approximate boundary between soil be gradual.	Start <u>3/5/9</u> Driller <u>E&I</u> Logger <u>KDS</u> Drill Method	90 End F Chief S Edito	3/5/90 GM r KDS HSA	RigCME 75		

WARZYN ONE SC	LOG OF TEST BORING Project Mobil Bulk Plant S. Park Street Location Merrill, Wisconsin IENCE COURT - P.O. BOX 5385, MAD ISON, WIS. 53705 - TEL.(600	Boring No. B1A Surface Elevation Job No. 15151.00 Sheet 1 of 1						
SAMPLE	VISUAL CLASSIEICATION	SOIL PROPERTIES						
No A Rec Moist N Depth	and Remarks	qu (ga)	HNU	Explo- sive	Field VOC	Monoto		
		(tsf)		Gas	Water			
1 18 D 62	Brown Fine SAND							
	Gravelly SAND (Weathered Granite Bedrock)		0.0					
	End Boring and Auger Refusal at 4.0'							
					×			
			а					
- - - - - - - - - -								
	•							
WATER	LEVEL OBSERVATIONS	GENERA	L NO	TES	5			
While Drilling Time After Drilling Depth to Water Depth to Cave in The stratification lines rep	Upon Completion of Drilling Start 3/ Driller I Logger I Drill Meth	25/90 End E&F Chief XDS Edito nod 4 1/4"	3/5/ GN or KD HSA	/90 1 F S	Cig <u>Ci</u> 75	<u>МЕ</u>		

WARZYN ONE SC	LOG OF TEST BORING Project Mobil Bulk Plant S. Park Street Location Merrill, Wisconsin IENCE COURT • P.O. BOX 5385, MADISON, WIS. 53705 • TEL.(60)	Boring N Surface J Job No. Sheet	Boring No. B2 Surface Elevation Job No. <u>15151.00</u> Sheet <u>1</u> of <u>1</u> 8) 273-0440						
SAMPLE	VISUAL CLASSIFICATION	SOIL	SOIL PROPERTIES						
No. F(in.) Moist N Depth	and Remarks	qu (qa) (tsf)	HNu	sive Gas	Field VOC Water	Monoto			
1 18 D 89_	TOPSOIL Brown Fine SAND and GRAVEL (Pebbles to Boulders)		20.0						
2 16 D/W 100 5	3" Wet Clayey Silty Sand at 4.8' (Fuel Odor) Brown/Gray Fine SAND & Granite Boulder (Fuel Odor)		40.0						
3 12 D 81			50.0						
	End Boring and Auger Refusal at 7'	CENEDA		TES					
VVAIER While Drilling ☑ 1	Jpon Completion of Drilling Start 3.	GENERA	3/5/9	0)				
Time After Drilling Depth to Water Depth to Cave in The stratification lines reputy types and the transition may	Driller Logger Drill Met	E&F Chief KDS Edito hod 4 1/4"]	GM Gr KDS HSA	[R 5	ig <u>CN</u> 75	1E			

	A	R		Y N	7	Pi L	LOG OF TEST BORING roject Mobil Bulk Plant S. Park Street ocation Merrill, Wisconsin	Boring N Surface Job No. Sheet	Boring No. B3 Surface Elevation Job No. 15151.00 Sheet 1 of 1							
~	G	Λ	MDI	F	- ONE SC	CIENC	E COURT · P.O. BOX 5385, MADISON, WIS. 53705 · TEL.(O	SOII	SOIL PROPERTIES							
(JI RE			. L			VISUAL CLASSIFICATION	qu		Explo-	Field					
No.	É(ir	1.)	Moist	N	Depth	1.1.11	and Remarks	(qa) (tsf)		Gas	Water					
1	1	6	D-M	78	-		TOPSOIL Dark Red-Brown Silty Fine SAND with Trace Gravel (Fuel Odor)		140.0							
2	1	8	М	82	 5		Brown Silty Clayey Fine SAND & Granite Pebbles (Fuel Odor) (Granite Boulder at 4.5') Weathered Granite Bedrock		200.0							
		-		(0)	F	1.11			180.0							
					- - - - - - - - - - - - - - - - - - -		End Boring and Auger Refusal at 6.5'									
				WA	TER	R LE	EVEL OBSERVATIONS	GENERA	AL NC	DIES	5					
Whi Tim Dep Dep	le D e A th to th to e str pes a	rill fter o W o C rati	ling r Dril Vater Cave i ificat the ti	≚ ling n ion li	ines rep tion may	Upc prese	on Completion of Drilling Start _3 	5/90 End E&F Chie KDS Edit thod 4 1/4"	3/5/ of GI or KI HSA	/90 \1 F \S	Cig <u>C</u> I 75	ME				

N	/ A R Z	YN		LOG OF TEST BORING Project Mobil Bulk Plant S. Park Street Merrill, Wisconsin			Boring No.B4Surface ElevationJob No.15151.00Sheet1						
~	SAMPI	0N	E SC	IENCE CO	OURT • P.O. BOX 5385, MADISON, WIS. 537	B) 273-0440							
	V Rec Maint	N Depth		ist N Dept			VISUAL CLASSIFICATIO	NC	qu		Explo	Field	Land
NU.	E(in.)	N De	pun				(tsf)	DNN	Gas	Water	Monore		
1	18 D			B B B B B B B B B B B B B B B B B B B	rown Silty Fine SAND, Trace Gra	vel		-			-		
						- M	fedium to Coarse SAND and GRA Cobbles) Trace Silt (Faint Fuel Odd	VEL or)		15.0	-		
2	16 D					B B C	rown Silty Fine to Medium SAND coarse Sand & Gravel (Odor)	with		17.0			
	8 M-W			= D = G = ■	Park Brown Silty Clayey Fine SAN Granite Boulder (Strong Fuel Oil Oc	D & lor)		180.0					
			10-	I N	End Boring and Auger Refusal at a lote: Moisture in Sample 3 is petrol product	8.0' leum			TES				
			ER	LEVI	EL OBSERVATIONS	0	SENERA	LNO	TES	5			
Whil Time Dept Dept	e Drilling After Drill h to Water <u>h to Cave in</u> stratificati	ing 1 on lines	_ U	Jpon C	the approximate boundary between soil	Start 3/2 Driller E Logger K Drill Meth	5/90 End &F Chief DS Edito od 4 1/4"]	3/5/ GN r KD HSA	90 1 F S	Rig <u>CI</u> 75	ME		

a r

W			YN	-ONE SC	Pr Lo	DOG OF TEST BORING oject Mobil Bulk Plant S. Park Street Ocation Merrill, Wisconsin	Boring No. B5 Surface Elevation Job No. 15151.00 Sheet 1 of 1							
\bigcap	SA	MPL	E	0112 00	VICIAL CLACOLFICATION			SOIL PROPERTIES						
No.	¥ Rec	Moist	N	Depth		and Remarks	ЛС	qu (qa)	HNU	Explo	Field	Monoto		
	E(1n.)					Asphalt/Gravel Drive	T.	(tsf)		Gas	Water			
	0	D	100	_		EILL Drown Cilty Eine Sand & Cas			20					
	0		100	-		FILL: DIOWII SIITY FILE Salid & Gra	lver		2.0					
			ŀ	-										
2	18	D	17	-										
-				-					1.5					
				- 5-										
3	8	D	11	-					0.0					
			F	-										
			-	-										
4	12	D-M	12	-										
			F						0.0					
			ł											
	æ		F	-										
			þ	-										
			ŀ	-		• • • • • •								
5	16	W	10	Z					0.0					
				- 15-		а ж			0.0					
			E	-		Â								
			$\left \right $											
			F	-		×								
			ŀ	-	13-6									
			F	-		• End Boring at 18'								
				- 20		e					6			
			WA	TER	LE	VEL OBSERVATIONS	0	SENERAL	<u>. NC</u>	TES	5			
While Time	e Drill After	ing r Drill	<u>¥ 14</u> ling	. <u>0</u> t	Jpor	Completion of Drilling	Start <u>3/</u> Driller <u>E</u>	5/90 End &F Chief	3/6/ GN	(90 1 F	ligCl	1E		
Dept	h to W	ater	n J			Ţ	Logger K	DS Edito	r KE ISA	S	7.5			
The	strati	ficati the tr	on lin	nes rep on may	resen be g	t the approximate boundary between soil radual.		·····						

M	/ A F		YN		LOG OF TEST BORING Project Mobil Bulk Plant S. Park Street Location Merrill, Wisconsin			Boring N Surface I Job No. Sheet	Boring No. B6 Surface Elevation Job No. 15151.00 Sheet 1 of 1						
\geq	0.0		-	-ONE SC		E COURT · P.O. BOX 5385, MADISON, WIS. 5370	05 · TEL.(6	08) 273-0440 -	000	DEF		\leq			
(SA	MPL	.E			VISUAL CLASSIFICATION									
No.	PE(in.)	Moist	N	Depth		and Remarks		(qa) (tsf)	HNu	sive Gas	VOC Water	Monoto			
				-		TOPSOIL									
1	18	D	60			Black Clayey Fine SAND Brown Silty Fine SAND, Trace Coar Sand & Gravel	se		0.0						
2	14	D	100	 5	10 10 10 10 10 10 10 10	Green Silty Fine SAND & GRAVEL (Weathered Schist)			0.0						
				- - - - - - - - - - - - - - - - - - -		End Boring and Auger Refusal at	5'								
While	e Drill	ing 3	WA	- 15- - - - - - - - - - - - - - - - - - -	LE	VEL OBSERVATIONS	Start 3	GENERA /6/90. End	L NC .3/6/	DTES /90	6	-			
Time Dept Dept	Time After Drilling									1E					

т ж

-

.

N	V A F		YN		LOG OF TEST BORING Project Mobil Bulk Plant S. Park Street Location Merrill, Wisconsin				Boring No.B7Surface ElevationJob No.15151.00Sheet1						
>	C A		C	- ONE SC		COURT - P.O. BOX 5385, MADISON, WIS. 5370	5 • TEL.	(608)	<u>\$011</u>	DDO	DEE		ic l		
	J Rec		_15		-	VISUAL CLASSIFICATION			qu		Explo-	Field			
No.	E(in.)	Moist	N	Depth		and Remarks		-	(qa) (tsf)	HNU	Gas	VOC Water	Monoto		
				-	1.11	TOPSOIL									
1	18	D	46	_	1.11	Black Clayey Silty Fine SAND, Trace	e								
					1.11 7.4	Gravel Brown Fine to Medium SAND &				0.0					
				–		GRAVEL (Pebbles to Boulders)	П								
2	15	D	100	-	**	Brown Silty Fine to Medium SAND	&			0.0					
				F	*	GRAVEL (Pebbles to Boulders									
				- 5-		End Boring and Auger Refusal at 4.	.5'								
				-			× 1								
				_											
				–							*				
				-											
				- 10-											
				_											
				-											
				-		10.									
				-											
				- 15											
				-											
				_											
:				-											
				_											
				_		`		-							
				- 20-											
		l	WA	TER	LE	VEL OBSERVATIONS		G	ENERA	LNO	TES	5			
Whil	le Dril	ling	¥		Upor	n Completion of Drilling	Start	3/6	6/90 End	3/6/	90				
Time	e Afte	r Dril Vater	ling			Ţ	Driller	E K	EXE Chief	GN F KD	S F	rig Cl	ME.		
Dep	th to (Cave i	n				Drill M	letho	od 4 1/4"	HSA					
The	e strat pes and	the ti	ion li ransit	ines rep ion may	be g	it the approximate boundary between soil radual.									

.

	AF	R Z Y	YN		LOG OF TEST BORING Project Mobil Bulk Plant S. Park Street Location Merrill, Wisconsin				Boring No. B8 Surface Elevation Job No. 15151.00 Sheet 1 of 1						
>	C 4	B 4153	6 20	- ONE SC	LENCE	COURT - P.O. BOX 5385, MADISON, WIS. 5370	5 • TEL.(60	<u>sou</u>		DEE		ic)			
-	SA	IVIPI	- C	1	-	VISUAL CLASSIFICATIO	N	qu	FRO	Explo-	Field	.5 \			
No.	E(in.)	Moist	N	Depth		and Remarks		(qa) (tsf)	HNu	sive Gas	VOC Water	Monoto			
				-	7.4	TOPSOIL	-								
	18	D		-	4 4 4	Black Clayey Silty SAND & GRAVE	L								
	10			_	* *				0.0						
				+		Brown Silty Fine to Medium SAND &	&								
				-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GRAVEL (Febbles & Boulders)		-							
2	2 10 D		L												
				F _	4 4 4	3			0.0						
					= =										
3	14	M		-		Brown Silty Fine SAND and Weather Granite (Pebbles-Boulders)	ed		0.0						
				F							2				
				+		End Boring and Auger Refusal at 7	7,								
				E		Life boring and Auger Kerusar at 7									
				-											
				- 10-											
				- 10-											
				-											
				Ľ											
				-											
				-											
				Ē.							•				
				F											
				- 15-	1										
				-											
				+											
				Γ.											
				-											
				F		x									
1				F											
				- 20-											
			W	ATER	R LE	VEL OBSERVATIONS		GENERA	LNC	TES	5				
While	e Dril	ling	<u> </u>		Upo	n Completion of Drilling	Start 3/	6/90 End	3/6	/90	in C	IF			
Time	h to V	er Dri Water	lling	-		<u>¥</u>	Logger	KDS Edito	r KI	S	75	1112			
Dept	h to (Cave	in				Drill Met	nod 4 1/4"	HSA						
The	e strat	ificat the t	ion l ransi	ines rep tion may	represent the approximate boundary between soil										

W			YN	*	Pro	LOG OF TEST BORING oject Mobil Bulk Plant S. Park Street ocation Merrill, Wisconsin	Boring No. B9 Surface Elevation Job No. <u>15151.00</u> Sheet <u>1</u> of <u>1</u>						
~	SΛ	MPI	F	-ONE SC		COURT · P.O. BOX 5385, MAUTSON, WIS. 5370	5 · TEL.(00	SOIL PROPERTIES					
	I Rec	IVII L	-	Darrah	-	VISUAL CLASSIFICATIO	N	qu		Explo-	Field	Honoto	
NO.	Ê(in.)	MOISC	N	Depth				(tsf)	ING	Gas	Water		
1	18	D	24		東京演算	Brown Silty Fine to Medium SAND, Trace Gravel (Pebbles-Boulders)			0.0				
2	14	D	73			Brown Silty Sandy Weathered Granite Bedrock	e		0.0				
				- 10- - 10- - 10- - 10- - 15- - 15-		End Boring and Auger Refusal at 5	5'			TE			
	WATER LEVEL OBSERVATIONS							JENERA	LNO	TES	5		
While Time Dept Dept The typ	e Dril Afte h to V h to V strat	ling r Dril Water Cave i ificat the tr	≚ ling n ion li	nes rep	Upor presen	Start 3/8/90 End 3/8/90 Driller E&F Chief GM RigCME Logger KDS Editor KDS 75 Drill Method 4 1/4" HSA							

WARZYN	LOG OF TEST BORING Project Mobil Bulk Plant S. Park Street		Boring No Surface E Job No.	o. B levation 15151	10 .00			
	Location Merrill, Wisconsin		Sheet	<u>1</u> of	1			
ONE SO	IENCE COURT · P.O. BOX 5385, MADISON, WIS. 53705 ·	TEL.(608)	273-0440 —		=			
SAMPLE	VISUAL CLASSIFICATION		SOIL	PROPE	RTIES			
Rec usiat N Death	and Remarks	-	dn (da)	Explo HNU Sive	-Field			
No. p(in.) Morst N Depth			(tsf)	Gas	Water			
	2" Asphalt Brown/Black Silty Medium SAND, Trac Clay & Pebbles	ce		0.0				
	End Boring and Auger Refusal at 1.5'							
- 10-								
- 15-								
20-	-							
WATER	LEVEL OBSERVATIONS	G	ENERAL	NOTE	S			
While Drilling 🖳	Upon Completion of Drilling Sta	irt <u>3/5</u>	/90 End	3/5/90				
Time After Drilling		iller Ed	F Chief	GM 1	Rig <u>CME</u> 75			
Depth to Cave in Drill Method 4 1/4" HSA								
The stratification lines represent the approximate boundary between soil types and the transition may be gradual.								

WARZYN	LOG OF TEST BORING	2	Boring No Surface E	o. B1 levation	0A		
	S. Park Street	Job No	15151	.00			
	Location Merrill, Wisconsin		Sheet	_1of			
ONE SC	IENCE COURT . P.O. BOX 5385, MADISON, WIS. 5370	05 · TEL.(608) 273-0440				
SAMPLE	VISUAL CLASSIFICATIO	N	SOIL	PROPE	RTIES \		
No. Rec Moist N Depth	and Remarks		(qa)	HNU sive	VOC Monoto		
			(tst)	Gas	Water		
·	Auger Refusal at 0.5'						
- 5-							
-							
- 10-							
	4						
15-							
	1 X						
				1373			
			ENEDAL	NOTE	6		
		6		. NOTE	0		
While Drilling ≚	Upon Completion of Drilling	Start 3/6 Driller F	&F Chief	3/6/90 GM	RigCME		
Depth to Water	¥	Logger K	DS Editor	r KDS	75		
Depth to Cave in	resent the approximate boundary between soil	Drill Meth	od <u>4 1/4"</u> H	ISA			
types and the transition may	be gradual.						
APPENDIX B

Well Construction Detail

e of Wisconsin arment of Natural Resources			MONITORING WELL CONS Form 4400-113A	TRUCTION 8-39	
lity/Project Name	ind Location		Well Name)
Mobil Merrill/15151		fr. DN. DS.	W1		
lity License, Permit or Monitoring Number		ft. 🗆 E. 🗆 W.	Wis. Unique Well Number	DNR Well Nur	mber
a of Well Water Table Observation Well M 11	ection Location	5. 1004	Date Well Installed		
Piezometer 12	SW 1/4 of SE 1	/4 of Section 12		$\frac{3}{2}/\frac{0}{2}\frac{5}{2}/\frac{9}{2}\frac{0}{2}$	
ance Well Is From Waste/Source Boundary	т 31 мр б		Well Installed By: (Perso	n's Name and Firm)	
ft.	ocation of Well Relative	to Waste/Source	Kevin Swanson		
ell A Point of Enforcement Std. Application?	 Upgradient Downgradient 	 Sidegradient Not Known 	Warzyn Enginee	ring Inc.	
rotective pipe, top elevation ft.	MSL	1. Cap and	l lock?	Yes D	No
Yell casing, top elevation ft.	MSL	2. Protecti	ve cover pipe:	4 0) :
and purface elevation	MSL	b. Leng	th:	5.0) ft.
	0	c. Mater	rial:	Steel XX	04
urrace seal, bottom IL MSL or _1	-			Other 🛛	
OSCS classification of soil near screen:	a setting	d. Addi	tional protection?	I Yes XI I	No
		I V II yes	, describe:	Bentonite []	30
Bedrock		3. Surface	seal:	Concrete	01
Sieve analysis attached? I Yes I No			Soil	Other XX	
Drilling method used: Rotary D C		4. Material	between well casing and prote	ctive pipe:	2.0
Other 🛛 🔛			Ал	mular space seal	30
				Other	
Drilling fluid used: Water 0 02 Air 0		5. Annular	space seal: Gra	mular Bentonite 🕅	33
Diffining ivind [] () 3 None [] 9		×	Lbs/gal mud weight Bento	mite-sand shurry	35
Drilling additives used? 🛛 Yes 🖾 No			Lbs/gal mud weight I	Bentonite slurry	31
		1.3	Ft ³ volume added for a	ny of the above	10
Describe		How inst	talled;	Tremie 🛛	01
. Source of which (miners and Job).			7	Fremie pumped	02
Josef Contraction and American	📓 🛛			Gravity Er	08
Sentonite seal ton ft. MSL or 1	0 _{ft} ,	6. Bentonit	d in $\square 3/8$ in $\square 1/2$ in B	entonite pellets	33
			NA	Other	
ine sand, top ft. MSL or	- ft	7. Fine san	d material: Manufacturer, pro	oduct name and mesh	size
Filter pack, top ft. MSL or3	8 ft.	Volume	added ft ²	3	
Well screen, top ft. MSL or4	9 ft	8. Filter pa #20 R	ck material: Manufacturer, pr ed Fliht Sand, Eau	oduct name and mesh Claire	ı size
*		Volume	added <u>1,2</u> ft	3	
/ell screen, bottom ft. MSL or _ 9	.4 m.	9. Well ca	sing: Flush threaded PV Flush threaded PV	C schedule 40 XX	23
Filter pack, bottom ft. MSL or8	_6 ft.	<u> </u>		Other	
Borshole bottom ft. MSL or 9	4 ft.	10. Screen r	naterial: <u>SCH 40 PVC</u>	Eactory cut H	11
		Screen	ype: C	Continuous slot	01
Borchole, diameter _ 8 25 in.		a		Other 🛛	ĕ
220		Manufac	turer Northern Air		:
O.D. well casing $\underline{2}, \underline{3}, \underline{0}$ in.		Slot size	ength:	<u>. 91</u> _47	7_ ft.
I.D. well casing 20.0 in.		11. Backfill	material (below filter pack):	None *	
areby certify that the information on this f	form is true and cor	rect to the best of	my knowledge.		
nature	Firm				

ase complete and return both sides of this form as required by chs. 144, 147 and 160, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with 144, Wis Stats., failure to file this form may result in a forfeiture of not less than \$10, nor more than \$5,000 for each day of violation. In accordance h ch. 147, Wis. Stats., failure to file this form may result in a forfeiture of not more than \$10,000 for each day of violation.

APPENDIX C

Soil Analytical Results Benzene, Ethylbenzene, Toluene, Xylenes Polynuclear Aromatic Hydrocarbons

Note:

The Field designation of the well installed on the southwest corner of the tank are as W5 has been changed to W1. The change was prompted by the inability to install the other proposed wells using auger drilling methods.

The designation of lab sample number 695-001 as W5 should be amended to read W1.

WARZYN ENGINEERING, INC. BARB CHRISTEL 1 SCIENCE COURT UNIVERSITY RESEARCH PARK MADISON, WI 53711 SAMPLE NUMBER: 00301561

DATE ENTERED: 03/08/90

REPORT PRINTED: 04/05/90

ω1 (κρς) SOIL: WEI # 695-001; ₩5,SS4; 3/5/90 PROJECT NO. 15151.00695

PURCHASE ORDER NUMBER: PROJ. NO. 15151

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC

COMPOUND NAME	MCG/H	(G	
NAPHTHALENE	LESS	THAN	100
ACENAPHTHYLENE	LESS	THAN	200
ACENAPHTHENE	LESS	THAN	100
FLUORENE	LESS	THAN	20
PHENANTHRENE	LESS	THAN	10
ANTHRACENE	LESS	THAN	10
FLUORANTHENE	2.9		
PYRENE	LESS	THAN	10
BENZO(a)ANTHRACENE	1.1		
CHRYSENE	LESS	THAN	10
BENZO (b) FLOUORANTHENE	LESS	THAN	2
BENZO(k)FLUORANTHENE	LESS	THAN	1
BENZO(a)PYRENE	1.1		
DIBENZO(a,h)ANTHRACENE	LESS	THAN	2
BENZO(g,h,i)PERYLENE	LESS	THAN	2
INDENO(1,2,3-cd)PYRENE	LESS	THAN	5

METHOD REFERENCES

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC DETERMINATION OF POLYNUCLEAR AROMATIC HYDROCARBONS BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY.

PHONE (608) 241-4471 FACSIMILE (608) 241-7227 TELEX TLX 703956 HAZRAL MDS UD

WARZYN ENGINEERING, INC. BARB CHRISTEL 1 SCIENCE COURT UNIVERSITY RESEARCH PARK MADISON, WI 53711 SAMPLE NUMBER: 00301562

DATE ENTERED: 03/08/90

REPORT PRINTED: 04/05/90

SOIL: WEI # 695-002; B1A,SS1; 3/5/90 PROJECT NO. 15151.00695

PURCHASE ORDER NUMBER: PROJ. NO. 15151

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC

COMPOUND NAME	MCG/H	< G	
NAPHTHALENE	LESS	THAN	100
ACENAPHTHYLENE	LESS	THAN	200
ACENAPHTHENE	LESS	THAN	100
FLUORENE	LESS	THAN	20
PHENANTHRENE	LESS	THAN	10
ANTHRACENE	LESS	THAN	10
FLUORANTHENE	LESS	THAN	2
PYRENE	LESS	THAN	10
BENZO(a)ANTHRACENE	LESS	THAN	1
CHRYSENE	LESS	THAN	10
BENZO (b) FLOUORANTHENE	LESS	THAN	2
BENZO(k)FLUORANTHENE	LESS	THAN	1
BENZO(a)PYRENE	LESS	THAN	1
DIBENZO(a,h)ANTHRACENE	LESS	THAN	2
BENZO(g,h,i)PERYLENE	LESS	THAN	2
INDENO(1,2,3-cd)PYRENE	LESS	THAN	5

METHOD REFERENCES

WARZYN ENGINEERING, INC. BARB CHRISTEL 1 SCIENCE COURT UNIVERSITY RESEARCH PARK MADISON, WI 53711 SAMPLE NUMBER: 00301563

DATE ENTERED: 03/08/90

REPORT PRINTED: 04/05/90

SOIL: WEI # 695-003; B2,SS1; 3/5/90 PROJECT NO. 15151.00695

PURCHASE ORDER NUMBER: PROJ. NO. 15151

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC

COMPOUND NAME	MCG/H	< G	
NAPHTHALENE	LESS	THAN	1000
ACENAPHTHYLENE	LESS	THAN	2000
ACENAPHTHENE	LESS	THAN	1000
FLUORENE	LESS	THAN	200
PHENANTHRENE	110		
ANTHRACENE	LESS	THAN	100
FLUORANTHENE	88		
PYRENE	LESS	THAN	100
BENZO(a)ANTHRACENE	38		
CHRYSENE	LESS	THAN	100
BENZO (b) FLOUORANTHENE	LESS	THAN	20
BENZO(k)FLUORANTHENE	LESS	THAN	10
BENZO(a)PYRENE	LESS	THAN	10
DIBENZO(a,h)ANTHRACENE	LESS	THAN	20
BENZO(g,h,i)PERYLENE	LESS	THAN	20
INDENO(1,2,3-cd)PYRENE	LESS	THAN	50

METHOD REFERENCES

WARZYN ENGINEERING, INC. BARB CHRISTEL 1 SCIENCE COURT UNIVERSITY RESEARCH PARK MADISON, WI 53711 SAMPLE NUMBER: 00301564

DATE ENTERED: 03/08/90

REPORT PRINTED: 04/05/90

SOIL: WEI # 695-004; B2,SS2; 3/5/90 PROJECT NO. 15151.00695

PURCHASE ORDER NUMBER: PROJ. NO. 15151

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC

COMPOUND NAME	MCG/k	ΚG	
NAPHTHALENE	LESS	THAN	100
ACENAPHTHYLENE	LESS	THAN	200
ACENAPHTHENE	LESS	THAN	100
FLUORENE	LESS	THAN	20
PHENANTHRENE	27		
ANTHRACENE	LESS	THAN	10
FLUORANTHENE	22		
PYRENE	LESS	THAN	10
BENZO(a)ANTHRACENE	1.5		
CHRYSENE	LESS	THAN	10
BENZO (b) FLOUORANTHENE	5.2		
BENZO(k)FLUORANTHENE	2.8		
BENZO(a)PYRENE	3.4		
DIBENZO(a,h)ANTHRACENE	LESS	THAN	2
BENZO(g,h,i)PERYLENE	3.5		
INDENO(1,2,3-cd)PYRENE	LESS	THAN	5

METHOD REFERENCES

WARZYN ENGINEERING, INC. BARB CHRISTEL 1 SCIENCE COURT UNIVERSITY RESEARCH PARK MADISON, WI 53711 SAMPLE NUMBER: 00301565

DATE ENTERED: 03/08/90

REPORT PRINTED: 04/05/90

SOIL: WEI # 695-005; B2,SS3; 3/5/90 PROJECT NO. 15151.00695

PURCHASE ORDER NUMBER: PROJ. NO. 15151

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC

COMPOUND NAME	MCG/k	ΚG	
NAPHTHALENE	LESS	THAN	100
ACENAPHTHYLENE	LESS	THAN	200
ACENAPHTHENE	LESS	THAN	100
FLUORENE	400		
PHENANTHRENE	330		
ANTHRACENE	190		
FLUORANTHENE	120		
PYRENE	640		
BENZO(a)ANTHRACENE	56		
CHRYSENE	LESS	THAN	50
BENZO (b) FLOUORANTHENE	LESS	THAN	2
BENZO(k)FLUORANTHENE	LESS	THAN	1
BENZO (a) PYRENE	LESS	THAN	1
DIBENZO(a,h)ANTHRACENE	LESS	THAN	2
BENZO(g,h,i)PERYLENE	LESS	THAN	2
INDENO(1,2,3-cd)PYRENE	LESS	THAN	5

METHOD REFERENCES

WARZYN ENGINEERING, INC. BARB CHRISTEL 1 SCIENCE COURT UNIVERSITY RESEARCH PARK MADISON, WI 53711

SOIL: WEI # 695-006; B3,SS1; 3/5/90 PROJECT NO. 15151.00695

PURCHASE ORDER NUMBER: PROJ. NO. 15151

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC

COMPOUND NAME	MCG/KG		
NAPHTHALENE	LESS	THAN	400
ACENAPHTHYLENE	LESS	THAN	800
ACENAPHTHENE	LESS	THAN	400
FLUORENE	LESS	THAN	80
PHENANTHRENE	LESS	THAN	40
ANTHRACENE	LESS	THAN	40
FLUORANTHENE	LESS	THAN	8
PYRENE	LESS	THAN	40
BENZO(a)ANTHRACENE	LESS	THAN	4
CHRYSENE	LESS	THAN	40
BENZO (b) FLOUORANTHENE	LESS	THAN	8
BENZO(k)FLUORANTHENE	LESS	THAN	4
BENZO(a)PYRENE	LESS	THAN	4
DIBENZO(a,h)ANTHRACENE	LESS	THAN	8
BENZO(g,h,i)PERYLENE	LESS	THAN	8
INDENO(1,2,3-cd)PYRENE	LESS	THAN	20

METHOD REFERENCES

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC DETERMINATION OF POLYNUCLEAR AROMATIC HYDROCARBONS BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY.

SAMPLE NUMBER: 00301566

DATE ENTERED: 03/08/90

REPORT PRINTED: 04/05/90

WARZYN ENGINEERING, INC. BARB CHRISTEL 1 SCIENCE COURT UNIVERSITY RESEARCH PARK MADISON, WI 53711 SAMPLE NUMBER: 00301567

DATE ENTERED: 03/08/90

REPORT PRINTED: 04/05/90

SOIL: WEI # 695-007; B3,SS2; 3/5/90 PROJECT NO. 15151.00695

PURCHASE ORDER NUMBER: PROJ. NO. 15151

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC

COMPOUND NAME	MCG/H	ΚG	
NAPHTHALENE	1300		
ACENAPHTHYLENE	LESS	THAN	400
ACENAPHTHENE	900		
FLUORENE	90		
PHENANTHRENE	130		
ANTHRACENE	LESS	THAN	20
FLUORANTHENE	LESS	THAN	10
PYRENE	LESS	THAN	20
BENZO(a)ANTHRACENE	2.1		
CHRYSENE	LESS	THAN	20
BENZO (b) FLOUORANTHENE	LESS	THAN	4
BENZO(k)FLUORANTHENE	LESS	THAN	2
BENZO(a)PYRENE	LESS	THAN	2
DIBENZO(a,h)ANTHRACENE	LESS	THAN	4
BENZO(g,h,i)PERYLENE	LESS	THAN	4
INDENO(1,2,3-cd)PYRENE	LESS	THAN	10

METHOD REFERENCES

WARZYN ENGINEERING, INC. BARB CHRISTEL 1 SCIENCE COURT UNIVERSITY RESEARCH PARK MADISON, WI 53711

SOIL: WEI # 695-008; B4,SS1; 3/5/90 PROJECT NO. 15151.00695

PURCHASE ORDER NUMBER: PROJ. NO. 15151

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC

	MCG/KG		
•	LESS	THAN	400
	LESS	THAN	800
	LESS	THAN	400
	LESS	THAN	80
	LESS	THAN	40
	LESS	THAN	40
	LESS	THAN	8
	LESS	THAN	40
	6.7		
	LESS	THAN	40
	19		
	9.9		
	14		
	LESS	THAN	8
	LESS	THAN	8
	LESS	THAN	20
		MCG/H LESS LESS LESS LESS LESS LESS 6.7 LESS 19 9.9 14 LESS LESS LESS	MCG/KG LESS THAN LESS THAN LESS THAN LESS THAN LESS THAN LESS THAN LESS THAN 6.7 LESS THAN 19 9.9 14 LESS THAN LESS THAN LESS THAN LESS THAN

METHOD REFERENCES

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC DETERMINATION OF POLYNUCLEAR AROMATIC HYDROCARBONS BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY.

SAMPLE NUMBER: 00301568

DATE ENTERED: 03/08/90

REPORT PRINTED: 04/05/90

PHONE (608) 241-4471 FACSIMILE (608) 241-7227 TELEX TLX 703956 HAZRAL MDS UD

WARZYN ENGINEERING, INC. BARB CHRISTEL 1 SCIENCE COURT UNIVERSITY RESEARCH PARK MADISON, WI 53711

SOIL: WEI # 695-009; B4,SS2; 3/5/90 PROJECT NO. 15151.00695

PURCHASE ORDER NUMBER: PROJ. NO. 15151

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC

COMPOUND NAME	MCG/H	< G	
NAPHTHALENE	LESS	THAN	400
ACENAPHTHYLENE	LESS	THAN	800
ACENAPHTHENE	LESS	THAN	400
FLUORENE	LESS	THAN	80
PHENANTHRENE	LESS	THAN	40
ANTHRACENE	LESS	THAN	40
FLUORANTHENE	LESS	THAN	8
PYRENE	LESS	THAN	40
BENZO(a)ANTHRACENE	5.7		
CHRYSENE	LESS	THAN	40
BENZO (b) FLOUORANTHENE	16		
BENZO(k)FLUORANTHENE	6.2		
BENZO(a)PYRENE	8.8		
DIBENZO(a,h)ANTHRACENE	LESS	THAN	8
BENZO(g,h,i)PERYLENE	LESS	THAN	8
INDENO(1,2,3-cd)PYRENE	LESS	THAN	20

METHOD REFERENCES

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC DETERMINATION OF POLYNUCLEAR AROMATIC HYDROCARBONS BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY.

SAMPLE NUMBER: 00301569 DATE ENTERED: 03/08/90 REPORT PRINTED: 04/05/90

HAZLETON LABORATORES AMERICA, N.C. 3301 KINSMAN BLVD., P.O. BOX 7545 MADISON, WI 53707 USA

REPORT OF ANALYSIS

WARZYN ENGINEERING, INC. BARB CHRISTEL 1 SCIENCE COURT UNIVERSITY RESEARCH PARK MADISON, WI 53711 SAMPLE NUMBER: 00301570

DATE ENTERED: 03/08/90

REPORT PRINTED: 04/05/90

.

SOIL: WEI # 695-010; B5,SS2; 3/5/90 PROJECT NO. 15151.00695

PURCHASE ORDER NUMBER: PROJ. NO. 15151

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC

COMPOUND NAME	MCG/H	<g< th=""><th></th></g<>	
NAPHTHALENE	LESS	THAN	200
ACENAPHTHYLENE	LESS	THAN	400
ACENAPHTHENE	LESS	THAN	200.
FLUORENE	LESS	THAN	40
PHENANTHRENE	56		
ANTHRACENE	LESS	THAN	20.
FLUORANTHENE	62		
PYRENE	LESS	THAN	20
BENZO(a)ANTHRACENE	26		
CHRYSENE	38		
BENZO (b) FLOUORANTHENE	51		
BENZO(k)FLUORANTHENE	25		
BENZO(a)PYRENE	37		
DIBENZO(a,h)ANTHRACENE	LESS	THAN	4
BENZO(g,h,i)PERYLENE	23		
INDENO(1,2,3-cd)PYRENE	24		

METHOD REFERENCES

WARZYN ENGINEERING, INC. BARB CHRISTEL 1 SCIENCE COURT UNIVERSITY RESEARCH PARK MADISON, WI 53711

SOIL: WEI # 695-011; B5,SS5; 3/6/90 PROJECT NO. 15151.00695

PURCHASE ORDER NUMBER: PROJ. NO. 15151

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC

COMPOUND NAME		MCG/H	< G	
NAPHTHALENE		LESS	THAN	100
ACENAPHTHYLENE		LESS	THAN	200
ACENAPHTHENE		LESS	THAN	100
FLUORENE		LESS	THAN	20
PHENANTHRENE		LESS	THAN	10
ANTHRACENE		LESS	THAN	10
FLUORANTHENE		3.6		
PYRENE		LESS	THAN	20
BENZO(a)ANTHRACENE		1.4		
CHRYSENE		LESS	THAN	10
BENZO (b) FLOUORANTHENE		2.6		
BENZO(k)FLUORANTHENE		1.3		
BENZO(a)PYRENE		1.8		
DIBENZO(a,h)ANTHRACENE		LESS	THAN	2
BENZO(g,h,i)PERYLENE	0	2.2		
INDENO(1,2,3-cd)PYRENE		LESS	THAN	5

METHOD REFERENCES

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC DETERMINATION OF POLYNUCLEAR AROMATIC HYDROCARBONS BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY.

SAMPLE NUMBER: 00301571 DATE ENTERED: 03/08/90 REPORT PRINTED: 04/05/90

WARZYN ENGINEERING, INC. BARB CHRISTEL 1 SCIENCE COURT UNIVERSITY RESEARCH PARK MADISON, WI 53711

SOIL: WEI # 695-012; B6,SS2; 3/6/90 PROJECT NO. 15151.00695

PURCHASE ORDER NUMBER: PROJ. NO. 15151

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC

COMPOUND NAME	MCG/K	G	
NAPHTHALENE	LESS	THAN	200
ACENAPHTHYLENE	LESS	THAN	400
ACENAPHTHENE	LESS	THAN	200
FLUORENE	LESS	THAN	40
PHENANTHRENE	LESS	THAN	20
ANTHRACENE	LESS	THAN	20
FLUORANTHENE	8.6		
PYRENE	LESS	THAN	20
BENZO(a)ANTHRACENE	2.8		
CHRYSENE	LESS	THAN	20
BENZO (b) FLOUORANTHENE	4.3		
BENZO(k)FLUORANTHENE	LESS	THAN	2
BENZO(a)PYRENE	3.2	÷	
DIBENZO(a,h)ANTHRACENE	LESS	THAN	4
BENZO(g,h,i)PERYLENE	LESS	THAN	4
INDENO(1,2,3-cd)PYRENE	LESS	THAN	10

METHOD REFERENCES

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC DETERMINATION OF POLYNUCLEAR AROMATIC HYDROCARBONS BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY.

SAMPLE NUMBER: 00301572

DATE ENTERED: 03/08/90

REPORT PRINTED: 04/05/90

WARZYN ENGINEERING, INC. BARB CHRISTEL 1 SCIENCE COURT UNIVERSITY RESEARCH PARK MADISON, WI 53711

SOIL: WEI # 695-013; B7,SS2; 3/6/90 PROJECT NO. 15151.00695

PURCHASE ORDER NUMBER: PROJ. NO. 15151

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC

COMPOUND NAME	MCG/K	(G		
NAPHTHALENE	LESS	THAN	200	
ACENAPHTHYLENE	LESS	THAN	400	
ACENAPHTHENE	LESS	THAN	200	
FLUORENE	LESS	THAN	40	
PHENANTHRENE	22			
ANTHRACENE	LESS	THAN	20	
FLUORANTHENE	16			
PYRENE	LESS	THAN	20	
BENZO(a)ANTHRACENE	6.6			
CHRYSENE	LESS	THAN	20	
BENZO (b) FLOUORANTHENE	11			
BENZO(k)FLUORANTHENE	4.9			
BENZO(a)PYRENE	8.2			
DIBENZO(a,h)ANTHRACENE	LESS	THAN	4	
BENZO(g,h,i)PERYLENE	11			
INDENO(1,2,3-cd)PYRENE	LESS	THAN	10	

METHOD REFERENCES

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC DETERMINATION OF POLYNUCLEAR AROMATIC HYDROCARBONS BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY.

DATE ENTERED: 03/08/90

REPORT PRINTED: 04/05/90

SAMPLE NUMBER: 00301573

WARZYN ENGINEERING, INC. BARB CHRISTEL 1 SCIENCE COURT UNIVERSITY RESEARCH PARK MADISON, WI 53711

SOIL: WEI # 695-014; B8,SS3; 3/6/90 PROJECT NO. 15151.00695

PURCHASE ORDER NUMBER: PROJ. NO. 15151

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC

COMPOUND NAME	MCG/k	(G	
NAPHTHALENE	LESS	THAN	100
ACENAPHTHYLENE	LESS	THAN	200
ACENAPHTHENE	LESS	THAN	100
FLUORENE	LESS	THAN	20
PHENANTHRENE	LESS	THAN	10
ANTHRACENE	LESS	THAN	10
FLUORANTHENE	9.0		
PYRENE	LESS	THAN	10
BENZO(a)ANTHRACENE	3.7		
CHRYSENE	LESS	THAN	10
BENZO (b) FLOUORANTHENE	4.6		
BENZO(k)FLUORANTHENE	2.5		
BENZO (a) PYRENE	4.2		
DIBENZO(a,h)ANTHRACENE	LESS	THAN	2
BENZO(g,h,i)PERYLENE	4.6		
INDENO(1,2,3-cd)PYRENE	LESS	THAN	5

METHOD REFERENCES

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC DETERMINATION OF POLYNUCLEAR AROMATIC HYDROCARBONS BY HIGH PERFORMANCE LIQUID. CHROMATOGRAPHY.

DATE ENTERED: 03/08/90

REPORT PRINTED: 04/05/90

SAMPLE NUMBER: 00301574

WARZYN ENGINEERING, INC. BARB CHRISTEL 1 SCIENCE COURT UNIVERSITY RESEARCH PARK MADISON, WI 53711 SAMPLE NUMBER: 00301575

DATE ENTERED: 03/08/90

REPORT PRINTED: 04/05/90

SOIL: WEI # 695-015; B9,SS2; 3/6/90 PROJECT NO. 15151.00695

PURCHASE ORDER NUMBER: PROJ. NO. 15151

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC

.

COMPOUND NAME	MCG/k	ΚG	
NAPHTHALENE	LESS	THAN	200
ACENAPHTHYLENE	LESS	THAN	400
ACENAPHTHENE	LESS	THAN	200
FLUORENE	LESS	THAN	40
PHENANTHRENE	LESS	THAN	20
ANTHRACENE	LESS	THAN	20
FLUORANTHENE	12		
PYRENE	LESS	THAN	20
BENZO(a)ANTHRACENE	4.0		
CHRYSENE	LESS	THAN	20
BENZO (b) FLOUORANTHENE	9.6		
BENZO(k)FLUORANTHENE	4.1		
BENZO(a) PYRENE	7.6		
DIBENZO(a,h)ANTHRACENE	LESS	THAN	4
BENZO(g,h,i)PERYLENE	18		×
INDENO(1,2,3-cd)PYRENE	11		

METHOD REFERENCES

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC DETERMINATION OF POLYNUCLEAR AROMATIC HYDROCARBONS BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY.

PHONE (608) 241-4471 FACSIMILE (608) 241-7227 TELEX TLX 703956 HAZRAL MDS UD LA BORATORIES AMERICA, NC. 3301 KINSMAN BLVD., P.O. BOX 7545 MADISON, WI 53707 USA

REPORT OF ANALYSIS

WARZYN ENGINEERING, INC. BARB CHRISTEL 1 SCIENCE COURT UNIVERSITY RESEARCH PARK MADISON, WI 53711 SAMPLE NUMBER: 00301576

DATE ENTERED: 03/08/90

REPORT PRINTED: 04/05/90

SOIL: WEI # 695-018; B3,SS2 DUP; 3/5/90 PROJECT NO. 15151.00695

PURCHASE ORDER NUMBER: PROJ. NO. 15151

POLYNUCLEAR AROMATIC HYDROCARBONS-HPLC

.

COMPOUND NAME MCG/K	G	
NAPHTHALENE 330		
ACENAPHTHYLENE LESS	THAN	400
ACENAPHTHENE LESS	THAN	200
FLUORENE LESS	THAN	40
PHENANTHRENE 93		
ANTHRACENE LESS	THAN	20
FLUORANTHENE LESS	THAN	4
PYRENE LESS	THAN	20
BENZO(a)ANTHRACENE LESS	THAN	2
CHRYSENE LESS	THAN	20
BENZO (b) FLOUORANTHENE LESS	THAN	4
BENZO(k)FLUORANTHENE LESS	THAN	2
BENZO(a)PYRENE LESS	THAN	2
DIBENZO(a,h)ANTHRACENE LESS	THAN	4
BENZO(g,h,i)PERYLENE LESS	THAN	4
INDENO(1,2,3-cd)PYRENE LESS	THAN	10

METHOD REFERENCES

JAn YI				Unive
	CHAIN C)F CUSTO	DY RECORD	Madison, Wiscom (608) 275
PROJ. NO. PROJ. NO. PROJECT NAME 15/5/ LOCATION: SAMPLERS: (Signature) SAMPLERS: (Signature) LAB NO. DATE TIME 0 CAS-012 3/4/90 IDam X 1-013 3/4/90 IDam X 1-013 3/4/90 II am -014 3/4/90 II am -015 3/4/90 Zpm V-016 3/4/90 Zpm	Molfiel Merrill Merrill WI vansa STATION LOCATION B6, 55, 2 B7, 55, 2 B7, 55, 2 B8, 55, 3 B9, 55, 2 B9, 55, 2 B10, 55, 1 B2, 55, 2 Dup	NO. OF CON- TAINERS 3 3 3 3 3 3 3 3 1 2	A V V Hole V V V Hole V V V V N N C	REMARKS Socil for Analytical request Analysia
Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature)	Date / Time Received by: (Signature, $3/7/g_0 \leq p_m$ Date / Time Received by: (Signature, Date / Time Received for Laborato))))))))))))	Relinquished by: (Signature) Relinquished by: (Signature)	Date / Time Received by: (Signature) Date / Time Received by: (Signature) Date / Time Received by: (Signature)
Remarks	LTJar	<u>r - H</u> :n	PROJECT MANAGER: DO	ug Bach

WARZY						CHAIN C	OF CUSTO	DY R	RECO	RD							U , ; P.c. Madison, Wiscons, [608] 275~
PROJ. NO.	PROJEC	TNA	ME	nobil	Merr	21]				7	1	7	1	11	7		
15151	LOCAT	ION	NV.	lerri 11	WI	<u></u>	NO			/	/	/	/				
SAMPLERS: (Signa	ture)	1		1			1.0.		/	/ /	/ /	1	/				
Kenn	A	va	isi	\sim			OF		/	1.	/	/	/			REMAR	RKS
LABNO. DATE	TIME	COMP.	GRAB	S	TATIONI	OCATION	CON- TAINERS	/A	\$ (B)	Star S	×/	/	/				foil
695-001 3/5/9	0 lom	X		WS,	554		3	1	V	V				Hold fo	1 and	stud r.	exect
1-002 "	2pm	1		BIA,	SS1	•	3	V	V	V						9	8
-003 /'	2 en			B2,5	51		3	V	V	1							
-004 11	3pm			B2,5	552	318120	05 A3	V	V	\checkmark							
-005 "	3pm			B2,	553		3	V	V	V							
-006 11	Yom			B3,	551		3	V	V	V							
-007 11	Yom			B3, :	552	3/8/90	\$3	1	V	V							
-008 11	5pm			BY,	551		3	1	V	V							
-009 11	Spm			B4,	552		3	V	V	V							
-017 .'	Spm			B4,	553		2.	1/	V								
-010 "	. 6pm			B5, 3	552		3	V	V	V							
-011 3/6/9	0 gam	V		B5,	555		3	V	V	V,							
1-018 3/5/9	1 40m	X		63, 5	5 <u>52</u> [Diup	2	V		K							
Relinquished by:	(Signature))	1.	Date	/ Time	Received by: (Signature)	,	Rel	linqui	shed	by: (5	lignatu	re)	Da	te / Time	Received	d by: (Signature)
Sevingtwa	usa	_		7/90	5:00 pm					-							
Relinquished by:	(Signature))		Date	/ Time	Received by: (Signature))	Rel	linqui	shed	by: <i>(s</i>	lignatu	re)	Da	te / Time	Received	d by: (Signature)
Relinquished by:	(Signature))		Date	/ Time	Received for Laborato	ry by: (Signa	ture)	1	·				Da	te / Time		
						Kari.	Ann		for	nle				3/8/90	11:00	am	
Remarks						7		PI	ROJE	CT M	IANA	GER:	: [Doug.	Bach	L	

VOLATILE ORGANIC COMPOUND RESULTS WI LAB CERTIFICATION ID#: 113138300 PROJECT: MOBIL LOCATION: MERRILL, WISCONSIN C#: 15151.00 PAGE 1 OF 9 CK'D:BSCAPP'D:D/E DATE ISSUED:3/27/90 BC

METHOD REFERENCE: SW846, "TEST METHODS FOR EVALUATING SOLID WASTE", SEPTEMBER, 1986. METHOD 8020 WITH MODIFICATIONS.

 BMQL - DETECTED, VALUE BELOW METHOD QUANTITATION LIMIT. X = ANALYZED, BUT NOT DETECTED.

COMPOUND	REPORTABLE DETECTION LIMIT (UG/KG AS REC'D)	695-001 115, SS4 (105) 03/05/90	695-002 B1A,SS1 03/05/90
BENZENE	25.0	. Х	Х
ETHYL BENZENE	50.0	Х	Х
TOLUENE	50.0	Х	Х
XYLENES	50.0	Х	Х

VOLATILE ORGANIC COMPOUND RESULTS WI LAB CERTIFICATION ID#: 113138300 PROJECT: MOBIL LOCATION: MERRILL, WISCONSIN C#: 15151.00 PAGE 2 OF 9 CK'D:B1CAPP'D: 0/E DATE ISSUED: 5/27/90

METHOD REFERENCE: SW846, "TEST METHODS FOR EVALUATING SOLID WASTE", SEPTEMBER, 1986. METHOD 8020 WITH MODIFICATIONS.

 BMQL - DETECTED, VALUE BELOW METHOD QUANTITATION LIMIT. X = ANALYZED, BUT NOT DETECTED.

COMPOUND	REPORTABLE DETECTION LIMIT (UG/KG AS REC'D)	695-003(1) B2,SS1 03/05/90	695-004(1) B2,SS2 03/05/90
BENZENE	25.0	Х	Х
ETHYL BENZENE	50.0	125	Х
TOLUENE	50.0	Х	Х
XYLENES	50.0	307	58.8

PAGE 3 OF 9 CK'D: BJC APP'D: D/F DATE ISSUED: 3/27/90

VOLATILE ORGANIC COMPOUND RESULTS WI LAB CERTIFICATION ID#: 113138300 PROJECT: MOBIL LOCATION: MERRILL, WISCONSIN C#: 15151.00

METHOD REFERENCE: SW846, "TEST METHODS FOR EVALUATING SOLID WASTE", SEPTEMBER, 1986. METHOD 8020 WITH MODIFICATIONS.

 BMQL - DETECTED, VALUE BELOW METHOD QUANTITATION LIMIT. X = ANALYZED, BUT NOT DETECTED.

COMPOUND	REPORTABLE DETECTION LIMIT (UG/KG AS REC'D)	695-005(1) B2,SS3 03/05/90 =======	695-006(1) B3,SS1 03/05/90
BENZENE	25.0	Х	Х
ETHYL BENZENE	50.0	276	325
TOLUENE	50.0	Х	Х
XYLENES	50.0	523	15000

VOLATILE ORGANIC COMPOUND RESULTS WI LAB CERTIFICATION ID#: 113138300 PROJECT: MOBIL LOCATION: MERRILL, WISCONSIN C#: 15151.00 PAGE 4 OF 9 CK'D:BJCAPP'D: DAS DATE ISSUED: 3/27/90

METHOD REFERENCE: SW846, "TEST METHODS FOR EVALUATING SOLID WASTE", SEPTEMBER, 1986. METHOD 8020 WITH MODIFICATIONS.

 BMQL - DETECTED, VALUE BELOW METHOD QUANTITATION LIMIT. X = ANALYZED, BUT NOT DETECTED.

COMPOUND	REPORTABLE DETECTION LIMIT (UG/KG AS REC'D)	695-007(1) B3,SS2 03/05/90	695-008(1) B4,SS1 03/05/90
BENZENE	25.0	Х	Х
ETHYL BENZENE	50.0	269	X
TOLUENE	50.0	Х	Х
XYLENES	50.0	1550	81.7

VOLATILE ORGANIC COMPOUND RESULTS WI LAB CERTIFICATION ID#: 113138300 PROJECT: MOBIL LOCATION: MERRILL, WISCONSIN C#: 15151.00

ï

1

PAGE 5 OF9 CK'D:BJCAPP'D:DATE DATE ISSUED:3/27/90

METHOD REFERENCE: SW846, "TEST METHODS FOR EVALUATING SOLID WASTE", SEPTEMBER, 1986. METHOD 8020 WITH MODIFICATIONS.

 BMQL - DETECTED, VALUE BELOW METHOD QUANTITATION LIMIT. X = ANALYZED, BUT NOT DETECTED.

COMPOUND	REPORTABLE DETECTION LIMIT (UG/KG AS REC'D)	695-009(1) B4,SS2 03/05/90 =======	695-010(1) B5,SS2 03/05/90
BENZENE	25.0	Х	Х
ETHYL BENZENE	50.0	Х	Х
TOLUENE	50.0	Х	Х
XYLENES	50.0	108	Х

VOLATILE ORGANIC COMPOUND RESULTS WI LAB CERTIFICATION ID#: 113138300 PROJECT: MOBIL LOCATION: MERRILL, WISCONSIN C#: 15151.00 PAGE 60F9 CK'D:BICAPP'D:*D/E* DATE ISSUED:3/27/90

METHOD REFERENCE: SW846, "TEST METHODS FOR EVALUATING SOLID WASTE", SEPTEMBER, 1986. METHOD 8020 WITH MODIFICATIONS.

BMQL – DETECTED, VALUE BELOW METHOD QUANTITATION LIMIT. X = ANALYZED, BUT NOT DETECTED.

COMPOUND	REPORTABLE DETECTION LIMIT (UG/KG AS REC'D)		695-011(1) B5,SS5 03/06/90 ======	695-012(1) B6,SS2 03/06/90
BENZENE	25.0	*	Х	Х
ETHYL BENZENE	50.0		X	Х
TOLUENE	50.0		Х	Х
XYLENES	50.0		Х	182

VOLATILE ORGANIC COMPOUND RESULTS WI LAB CERTIFICATION ID#: 113138300 PROJECT: MOBIL LOCATION: MERRILL, WISCONSIN C#: 15151.00 PAGE 7 OF 9 CK'D:BJC APP'D: D/E DATE ISSUED: 3/27/90

METHOD REFERENCE: SW846, "TEST METHODS FOR EVALUATING SOLID WASTE", SEPTEMBER, 1986. METHOD 8020 WITH MODIFICATIONS.

 BMQL - DETECTED, VALUE BELOW METHOD QUANTITATION LIMIT. X = ANALYZED, BUT NOT DETECTED.

(1) SAMPLE CHROMATOGRAM CONTAINS UNIDENTIFIED COMPOUNDS.

4

COMPOUND	REPORTABLE DETECTION LIMIT (UG/KG AS REC'D)	695-013(1) B7,SS2 03/06/90	695-014(1) B8,SS3 03/06/90
BENZENE	25.0	 Х	Х
ETHYL BENZENE	50.0	Х	Х
TOLUENE	50.0	Х	BMQL
XYLENES	50.0	Х	BMQL

.

WARZYN ENGINEERING INC. • ONE SCIENCE COURT • UNIVERSITY RESEARCH PARK • P.O. BOX 5385 • MADISON, WISCONSIN 53705 • (608) 273-0440

VOLATILE ORGANIC COMPOUND RESULTS WI LAB CERTIFICATION ID#: 113138300 PROJECT: MOBIL LOCATION: MERRILL, WISCONSIN C#: 15151.00 PAGE 8 OF 9 CK'D: BICAPP'D: DATE DATE ISSUED: 3/27/90

METHOD REFERENCE: SW846, "TEST METHODS FOR EVALUATING SOLID WASTE", SEPTEMBER, 1986. METHOD 8020 WITH MODIFICATIONS.

BMQL - DETECTED, VALUE BELOW METHOD QUANTITATION LIMIT. ' X = ANALYZED, BUT NOT DETECTED.

COMPOUND	REPORTABLE DETECTION LIMIT (UG/KG AS REC'D)	695-015(1) B9,SS2 03/06/90	695-016(1) B10,SS1 03/06/90
BENZENE	25.0	Х	Х
ETHYL BENZENE	50.0	Х	Х
TOLUENE	50.0	Х	Х
XYLENES	50.0	Х	Х

VOLATILE ORGANIC COMPOUND RESULTS WI LAB CERTIFICATION ID#: 113138300 PROJECT: MOBIL LOCATION: MERRILL, WISCONSIN C#: 15151.00 PAGE 9 OF 9 CK'D:BJC APP'D: D/E DATE ISSUED: 5/27/90

METHOD REFERENCE: SW846, "TEST METHODS FOR EVALUATING SOLID WASTE", SEPTEMBER, 1986. METHOD 8020 WITH MODIFICATIONS.

BMQL - DETECTED, VALUE BELOW METHOD QUANTITATION LIMIT. X = ANALYZED, BUT NOT DETECTED.

(1) SAMPLE CHROMATOGRAM CONTAINS UNIDENTIFIED COMPOUNDS.

(2) ELEVATED DETECTION LIMITS DUE TO INTERFERING UNIDENTIFIED COMPOUNDS.

COMPOUND	REPORTABLE DETECTION LIMIT (UG/KG AS REC'D)	695-017(1)(2) B4,SS3 03/05/90
BENZENE	500	Х
ETHYL BENZENE	1000	5520
TOLUENE	1000	BMQL
XYLENES	1000	44500

TOTAL PETROLEUM HYDROCARBONS WI LAB CERTIFICATION ID#: 113138300 PROJECT: MOBIL LOCATION: MERRILL, WISCONSIN C#: 15151.00 PAGE / OF9 CK'D: B3CAPP'D: PAGE DATE ISSUED: 3/27/80

METHOD REFERENCE:

: SW846, "TEST METHODS FOR EVALUATING SOLID WASTES", SEPTEMBER, 1986. METHOD 3550.

ASTM, "ANNUAL BOOK OF ASTM STANDARDS", 1983. METHOD D-3328 WITH MODIFICATIONS.

COMPOUND	REPORTABLE DETECTION LIMIT (MG/KG AS REC'D)	695-001 ばしが5,SS4 (メンビン) 03/05/90 =======	695-002 B1A,SS1 03/05/90	695-010 B5,SS2 03/05/90
TOTAL HYDROCARBON AS:				
GASOLINE	5.00	Х	Х	Х
KEROSENE	5.00	Х	Х	Х
#2 FUEL OIL	5.00	Х	Х	X(2)
#6 FUEL OIL	20.0	Х	Х	Х

TOTAL PETROLEUM HYDROCARBONS WI LAB CERTIFICATION ID#: 113138300 PROJECT: MOBIL LOCATION: MERRILL, WISCONSIN C#: 15151.00 PAGE 20F9 CK'D:BJCAPP'D:P/F DATE ISSUED:3/27/90

METHOD

REFERENCE: SW846, "TEST METHODS FOR EVALUATING SOLID WASTES", SEPTEMBER, 1986. METHOD 3550.

> ASTM, "ANNUAL BOOK OF ASTM STANDARDS", 1983. METHOD D-3328 WITH MODIFICATIONS.

COMPOUND	REPORTABLE DETECTION LIMIT (MG/KG AS REC'D)	695-003 B2,SS1 03/05/90	695-007 B3,SS2 03/05/90
TOTAL HYDROCARBON AS:			
GASOLINE	625	Х	Х
KEROSENE	625	Х	X(1)
#2 FUEL OIL	625	5250	Х
#6 FUEL OIL	2500	Х	Х

TOTAL PETROLEUM HYDROCARBONS WI LAB CERTIFICATION ID#: 113138300 PROJECT: MOBIL LOCATION: MERRILL, WISCONSIN C#: 15151.00 PAGE 30F 9 CK'D BICAPP'D: D/F DATE ISSUED: 3/27/80

METHOD

REFERENCE: SW846, "TEST METHODS FOR EVALUATING SOLID WASTES", SEPTEMBER, 1986. METHOD 3550.

> ASTM, "ANNUAL BOOK OF ASTM STANDARDS", 1983. METHOD D-3328 WITH MODIFICATIONS.

COMPOUND	REPORTABLE DETECTION LIMIT (MG/KG AS REC'D)		695-004 B2,SS2 03/05/90	695-005 B2,SS3 03/05/90
TOTAL HYDROCARBON AS:				
GASOLINE	250		Х	Х
KEROSENE	250	×	Х	Х
#2 FUEL OIL	250		7340	6460
#6 FUEL OIL	1000		Х	Х

TOTAL PETROLEUM HYDROCARBONS WI LAB CERTIFICATION ID#: 113138300 PROJECT: MOBIL LOCATION: MERRILL, WISCONSIN C#: 15151.00 PAGE 4 OF 9 CK'D:BJCAPP'D:D/F DATE ISSUED:3/27/90

METHOD REFERENCE:

SW846, "TEST METHODS FOR EVALUATING SOLID WASTES", SEPTEMBER, 1986. METHOD 3550.

ASTM, "ANNUAL BOOK OF ASTM STANDARDS", 1983. METHOD D-3328 WITH MODIFICATIONS.

REPORTABLE DETECTION LIMIT (MG/KG AS REC'D)	695-006 B3,SS1 03/05/90 =======	695-009 B4,SS2 03/05/90
125	Х	Х
125	X(1)	Х
125	Х	363
500	Х	Х
	REPORTABLE DETECTION LIMIT (MG/KG AS REC'D) 125 125 125 500	REPORTABLE 695-006 LIMIT B3,SS1 (MG/KG AS REC'D) 03/05/90 125 X 125 X(1) 125 X 500 X

TOTAL PETROLEUM HYDROCARBONS WI LAB CERTIFICATION ID#: 113138300 PROJECT: MOBIL LOCATION: MERRILL, WISCONSIN C#: 15151.00 PAGE 50F9 CK'D:BJCAPP'D:D/E DATE ISSUED:3/27/90

METHOD REFERENCE:

SW846, "TEST METHODS FOR EVALUATING SOLID WASTES", SEPTEMBER, 1986. METHOD 3550.

ASTM, "ANNUAL BOOK OF ASTM STANDARDS", 1983. METHOD D-3328 WITH MODIFICATIONS.

COMPOUND	REPORTABLE DETECTION LIMIT (MG/KG AS REC'D)	695-00 B4,SS 03/05/	08 1 /90 ===
TOTAL HYDROCARBON AS:			
GASOLINE	25.0	Х	
KEROSENE	25.0	Х	
#2 FUEL OIL	25.0	X (2	2)
#6 FUEL OIL	100	X	

TOTAL PETROLEUM HYDROCARBONS WI LAB CERTIFICATION ID#: 113138300 PROJECT: MOBIL LOCATION: MERRILL, WISCONSIN C#: 15151.00 PAGE 6 OF9 CK'D:BJCAPP'D:D/F DATE ISSUED:3/21/70

METHOD

- REFERENCE: SW846, "TEST METHODS FOR EVALUATING SOLID WASTES", SEPTEMBER, 1986. METHOD 3550.
 - ASTM, "ANNUAL BOOK OF ASTM STANDARDS", 1983. METHOD D-3328 WITH MODIFICATIONS.
- NOTE: THE ANALYSIS OF SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS IS A SCREENING PROCEDURE. ANALYTICAL RESULTS ARE COMPARED AND QUANTIFIED AGAINST KNOWN REFERENCE STANDARD MIXTURES. DUE TO VARIABLES SUCH AS DIFFERENCES IN PETROLEUM PRODUCT FORMULATIONS, WEATHERING AND OTHER ENVIRONMENTAL FACTORS, POSITIVE IDENTIFICATION AS ONE OF THE TARGET HYDROCARBON MIXTURES MAY NOT BE POSSIBLE. THE VALUES REPORTED ARE TENTATIVELY IDENTIFIED WITH ESTIMATED CONCENTRATIONS.

COMPOUND		REPORTABLE DETECTION LIMIT (MG/KG AS REC'D)	695-011 B5,SS5 03/06/90	695-012 B6,SS2 03/06/90 =======	695-013 B7,SS2 03/06/90
TOTAL HYDROCARBON	AS:				
GASOLINE		5.00	Х	X r	Х
KEROSENE		5.00	Х	Х	Х
#2 FUEL OIL		5.00	Х	Х	Х
#6 FUEL OIL		20.0	Х	Х	Х

WARZYN ENGINEERING INC. • ONE SCIENCE COURT • UNIVERSITY RESEARCH PARK • P.O. BOX 5385 • MADISON, WISCONSIN 53705 • (608) 273-0440

TOTAL PETROLEUM HYDROCARBONS WI LAB CERTIFICATION ID#: 113138300 PROJECT: MOBIL LOCATION: MERRILL, WISCONSIN C#: 15151.00 PAGE 70F9 CK'D:BJCAPP'D:D/F DATE ISSUED: 7/27/20

METHOD

- REFERENCE: SW846, "TEST METHODS FOR EVALUATING SOLID WASTES", SEPTEMBER, 1986. METHOD 3550.
 - ASTM, "ANNUAL BOOK OF ASTM STANDARDS", 1983. METHOD D-3328 WITH MODIFICATIONS.
- NOTE: THE ANALYSIS OF SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS IS A SCREENING PROCEDURE. ANALYTICAL RESULTS ARE COMPARED AND QUANTIFIED AGAINST KNOWN REFERENCE STANDARD MIXTURES. DUE TO VARIABLES SUCH AS DIFFERENCES IN PETROLEUM PRODUCT FORMULATIONS, WEATHERING AND OTHER ENVIRONMENTAL FACTORS, POSITIVE IDENTIFICATION AS ONE OF THE TARGET HYDROCARBON MIXTURES MAY NOT BE POSSIBLE. THE VALUES REPORTED ARE TENTATIVELY IDENTIFIED WITH ESTIMATED CONCENTRATIONS.

COMPOUND	REPORTABLE DETECTION LIMIT (MG/KG AS REC'D)	695-014 B8,SS3 03/06/90	695-015 B9,SS2 03/06/90	695-016 B10,SS1 03/06/90
TOTAL HYDROCARBON AS:				
GASOLINE	5.00	Х	Х	Х
KEROSENE	5.00	Х	Х	Х
#2 FUEL OIL	5.00	Х	X(2)	X(2)
#6 FUEL OIL	20.0	Х	Х	X(3)

WARZYN ENGINEERING INC. • ONE SCIENCE COURT • UNIVERSITY RESEARCH PARK • P.O. BOX 5385 • MADISON, WISCONSIN 53705 • (608) 273-0440

TOTAL PETROLEUM HYDROCARBONS WI LAB CERTIFICATION ID#: 113138300 PROJECT: MOBIL LOCATION: MERRILL, WISCONSIN C#: 15151.00 PAGE 8 OF 9 CK'D:BJCAPP'D: P/E DATE ISSUED:3/27/90

METHOD REFERENCE:

SW846, "TEST METHODS FOR EVALUATING SOLID WASTES", SEPTEMBER, 1986. METHOD 3550.

ASTM, "ANNUAL BOOK OF ASTM STANDARDS", 1983. METHOD D-3328 WITH MODIFICATIONS.

NOTE: THE ANALYSIS OF SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS IS A SCREENING PROCEDURE. ANALYTICAL RESULTS ARE COMPARED AND QUANTIFIED AGAINST KNOWN REFERENCE STANDARD MIXTURES. DUE TO VARIABLES SUCH AS DIFFERENCES IN PETROLEUM PRODUCT FORMULATIONS, WEATHERING AND OTHER ENVIRONMENTAL FACTORS, POSITIVE IDENTIFICATION AS ONE OF THE TARGET HYDROCARBON MIXTURES MAY NOT BE POSSIBLE. THE VALUES REPORTED ARE TENTATIVELY IDENTIFIED WITH ESTIMATED CONCENTRATIONS.

COMPOUND	REPORTABLE DETECTION LIMIT (MG/KG AS REC'D)	695-017 B4,SS3 03/05/90	695-018 B3,SS2 DUP 03/05/90 =======
TOTAL HYDROCARBON AS:			
GASOLINE	500	Х	Х
KEROSENE	500	Х	X(1)
#2 FUEL OIL	500	4820	Х
#6 FUEL OIL	2000	Х	Х

WARZYN ENGINEERING INC. • ONE SCIENCE COURT • UNIVERSITY RESEARCH PARK • P.O. BOX 5385 • MADISON, WISCONSIN 53705 • (608) 273-0440

TOTAL PETROLEUM HYDROCARBONS WI LAB CERTIFICATION ID#: 113138300 PROJECT: MOBIL LOCATION: MERRILL, WISCONSIN C#: 15151.00

т. т

PAGE 9 OF 9 CK'D:BJCAPP'D:DJE DATE ISSUED:3/27/90

X = ANALYZED, BUT NOT DETECTED. BMQL = DETECTED, VALUE BELOW METHOD QUANTITATION LIMIT.

- (1) SAMPLES 695-006, 695-007, 695-018 CONTAIN WHAT APPEARS TO BE A HYDROCARBON FRACTION ELUTING OFF OF THE GAS CHROMATOGRAPH WITH A RETENTION TIME IN THE RANGE OF KEROSENE. THESE UNKNOWNS DO NOT MATCH ANY OF THE REFERENCE STANDARDS. ESTIMATED CONCENTRATIONS OF THE UNKNOWNS CALCULATED AGAINST A KEROSENE REFERENCE STANDARD ARE 627, 4040 AND 6280 MG/KG, RESPECTIVELY.
- (2) SAMPLES 695-008, 695-010, 695-015 AND 695-016 CONTAIN WHAT APPEARS TO BE A HYDROCARBON FRACTION ELUTING OFF OF THE GAS CHROMATOGRAPH WITH A RETENTION TIME IN THE RANGE OF #2 FUEL OIL. THESE UNKNOWNS DO NOT MATCH ANY OF THE REFERENCE STANDARDS. ESTIMATED CONCENTRATIONS OF THE UNKNOWNS CALCULATED AGAINST A #2 FUEL OIL REFERENCE STANDARD ARE 122, 5.36, 14.2 AND 11.2 MG/KG, RESPECTIVELY.
- (3) SAMPLE 695-016 CONTAINS WHAT APPEARS TO BE A HYDROCARBON FRACTION ELUTING OFF OF THE GAS CHROMATOGRAPH WITH A RETENTION TIME IN THE RANGE OF #6 FUEL OIL. THIS UNKNOWN DOES NOT MATCH ANY OF THE REFERENCE STANDARDS. AN ESTIMATED CONCENTRATION OF THE UNKNOWN CALCULATED AGAINST A #6 FUEL OIL REFERENCE STANDARD IS 130 MG/KG.