

Mr. Christopher Saari Wisconsin Department of Natural Resources 2501 Golf Course Road Ashland, WI 54806

Subject:

Supplemental Off-Property Investigation Summary Report Former Koppers Inc. Facility – Superior, WI WDNR BRRTs No: 02-16-000484 WDNR Facility ID: 816009810

Dear Mr. Saari:

On behalf of Beazer East, Inc. (Beazer), ARCADIS is submitting to the Wisconsin Department of Natural Resources (WDNR) two copies of the *Supplemental Off-Property Investigation Summary Report*, which presents the results of supplemental investigation activities completed within the off-property portion of the Former Koppers Inc. Facility in Superior, Wisconsin (the Site) between August 2013 and January 2014. Investigation activities were completed in accordance the *Work Plan for Supplemental Off-Property Investigations*, which was submitted to WDNR on June 28, 2013, and conditionally approved by WDNR in a letter to Beazer dated July 3, 2013. A few proposed additions/modifications to the approved scope of work were discussed with and approved by WDNR during an October 18, 2013 conference call.

Should you have any questions or comments regarding the enclosed document, please contact me (218-89-4607) or Jane Patarcity of Beazer (412-208-8813).

Sincerely,

ARCADIS U.S., Inc.

David Bessingpas

David Bessingpas Sr. Project Manager

Copies: John Robinson, WDNR Jane Patarcity, Beazer Jeff Holden, ARCADIS Stu Messur, Anchor QEA ARCADIS U.S., Inc. 6602 Excelsior Road Baxter Minnesota 56425 Tel 218 829 4607 www.arcadis-us.com

ENVIRONMENT

Date: April 15, 2014

Contact: David Bessingpas

Phone: 218-829-4607

Email: david.bessingpas@ arcadis-us.com

Our ref: B0039290.0000.00003

Imagine the result

Beazer East, Inc.

Supplemental Off-Property Investigation Summary Report

Former Koppers Inc. Facility Superior, Wisconsin

April 2014

ARCADIS

Supplemental Off-Property Investigation Summary Report

Former Koppers Inc. Facility Superior, Wisconsin

Prepared for: Beazer East, Inc.

Prepared by: ARCADIS U.S., Inc. 430 First Avenue North Suite 720 Minneapolis Minnesota 55401 Tel 612 339 9434 Fax 612 336 4538

Our Ref.: B0039290.0000.00003

Date: April 2014

ARCADIS

Table of Contents

1.	Introdu	ction		1
2.	Scope	of Work		2
	2.1	Overview		2
	2.2	Hand Auger So	il Borings/Soil Sampling and Analysis	2
	2.3	Direct Push Sc	il Borings/Soil Sampling and Analysis	3
	2.4	Temporary Mo	nitoring Wells	4
	2.5	Groundwater S	ampling and Analysis	5
3.	Results			6
	3.1	Hand Auger So	bil Borings	6
		3.1.1 Boring	Depths and Visual Observations	6
		3.1.2 Soil Sa	ampling and Analysis	6
		3.1.2.1	Investigation Objectives Evaluation	6
	3.2	Direct Push Sc	il Borings	8
		3.2.1 Boring	Depths and Visual Observations	8
		3.2.1.1	Investigation Objectives Evaluation	9
		3.2.2 Soil Sa	ampling and Analysis	13
	3.3	Temporary Mo	nitoring Wells	14
	3.4	Groundwater S	ampling and Analysis	15
		3.4.1 Invest	gation Objectives Evaluation	15
4.	Summa	ry and Concl	usions	18
5.	Refere	ces		21

Table of Contents

Tables

	1	Scope of Work Summary
	2	Groundwater Sampling Scope Summary
	3	Hand Auger Soil Boring Summary
	4	Hand Auger Soil Sample Analytical Results
	5	Direct Push Soil Boring Summary
	6	Direct Push Soil Sample Analytical Results
	7	Temporary Monitoring Well Construction Summary
	8	Temporary Monitoring Well Development Summary
	9	Groundwater Level Measurements
	10	Groundwater Sample Analytical Results
Figur	es	
	1A	Investigation Locations (Historical and New)
	1B	Investigation Locations (New Only)
	2	Surficial (0-1') Bank/Floodplain Material Analytical Results – PAHs
	3	Surficial (0-1') Bank/Floodplain Material Analytical Results – PCDDs/PCDFs
	4	Summary of Visual Observations for Subsurface Materials
Арре	ndices	
	А	Soil Boring and Monitoring Well Construction Logs

B Data Validation Reports (provided on CD)

ARCADIS

1. Introduction

On behalf of Beazer East, Inc. (Beazer), ARCADIS has prepared this *Supplemental Off-Property Investigation Summary Report* to present the results of supplemental investigation activities completed within the off-property portion of the Former Koppers Inc. Facility in Superior, Wisconsin (the Site) between August 2013 and January 2014. Investigation activities were completed in accordance the *Work Plan for Supplemental Off-Property Investigations* (Work Plan; ARCADIS, 2013a), which was submitted to the Wisconsin Department of Natural Resources (WDNR) on June 28, 2013, and conditionally approved by WDNR in a letter to Beazer dated July 3, 2013 (WDNR, 2013a). A few proposed additions/modifications to the approved scope of work were discussed with and approved by WDNR during an October 18, 2013 conference call.

The overall objective of the investigation activities was to address "data gaps" identified by WDNR based on their review of the historical investigation data presented in the *Off-Property Data Summary Report* (Blasland, Bouck & Lee, Inc., 2006). These data gaps were indicated in a letter from WDNR to Beazer dated October 9, 2012 (WDNR, 2012). The following specific investigation objectives were identified in the Work Plan:

- Assess the presence of impacts at higher flood elevations at the edges of the Crawford Creek floodplain
- Assess the presence of impacts in certain low-lying/ponded areas and other WDNRspecified areas within the Crawford Creek floodplain
- Delineate the horizontal and vertical extent of visible impacts at certain historical investigation locations
- Assess polycyclic aromatic hydrocarbon (PAH) concentrations in visibly unimpacted soils located below visibly impacted soils
- · Assess groundwater concentrations within, below, and outside of visibly impacted areas

2. Scope of Work

2.1 Overview

As outlined in the Work Plan, the supplemental investigation activities included the advancement of soil borings (hand auger and direct push), collection and analysis of soil samples, installation of temporary monitoring wells, and collection and analysis of groundwater samples. Table 1 summarizes the scope of work proposed in the Work Plan as well as the actual completed scope of work. Investigation activities were conducted in accordance with the procedures outlined in the Work Plan, and the *Standard Operating Procedure for Collecting Soil Samples, Cleaning Field Equipment, and Collecting Equipment Blank Samples* (ARCADIS, 2013b), which was submitted to WDNR via e-mail on August 19, 2013. Surveyed investigation locations are shown on Figures 1A and 1B. Figure 1A shows sample locations from this supplemental investigation as well as prior investigations, whereas Figure 1B shows the new locations only.

Hand auger borings, soil sampling, and groundwater sampling were conducted by ARCADIS. Direct push soil boring and temporary monitoring well installation were conducted by Matrix Environmental, LLC of Morris, Minnesota, under the direction of ARCADIS. Survey of the borings and wells was conducted by LHB, Inc. of Duluth, Minnesota.

Investigation-derived wastes (e.g., disposable investigation equipment, disposable personal protective equipment, soil cuttings from direct push soil borings and monitoring well installations, equipment cleaning fluids, purge water from well development and groundwater sampling) were containerized in drums and shipped off-Site for disposal.

Additional details regarding the completed investigation scope of work are provided in the subsections below.

2.2 Hand Auger Soil Borings/Soil Sampling and Analysis

Hand auger soil borings were advanced at 13 locations (HA-1 through HA-13; Figures 1A and 1B) along four transects, as proposed in the Work Plan (Table 1). The hand auger borings were advanced along transects oriented perpendicular to the edge of the Crawford Creek floodplain, targeting specific flood elevations, as summarized in the following table:

Boring ID	Below 2-Year Flood Elev. (612.6 ft AMSL)	Between 2- and 25-Year Flood Elev. (612.6-617.2 ft AMSL)	Between 25- and 100-Year Flood Elev. (617.2-619.0 ft AMSL)	Above 100-Year Flood Elev. (619.0 ft AMSL)
HA-1				Х
HA-2			Х	
HA-3		Х		
HA-4				Х
HA-5			Х	
HA-6		Х		
HA-7				Х
HA-8			Х	
HA-9				Х
HA-10			Х	
HA-11		Х		
HA-12	Х			
HA-13		Х		

Notes: Flood elevations for Crawford Creek based on Nemadji River flood flows and water surface elevations obtained from *Flood Frequency Characteristics of Wisconsin Streams* (U.S. Geological Survey [USGS], 2003), adjusted to correlate with Federal Emergency Management Agency 100year flood elevation (NGVD 29).

ft AMSL = feet above mean sea level

The hand auger soil boring locations proposed in the Work Plan were modified as necessary to correlate to the targeted elevations specified in the table above. Recovered soils from each boring were screened with a photoionization detector (PID) and logged for soil type and visual/olfactory evidence of impacts as a function of depth. All hand auger borings were backfilled with soil cuttings upon completion. As further discussed in Section 3.1.1, no visible impacts were observed at any of the hand auger boring locations. Accordingly, no step-out hand auger borings were necessary.

At hand auger boring locations HA-1, HA-4, HA-7, and HA-9, soil samples were collected from the 0- to 0.5-foot and 0.5- to 1-foot depth intervals. Samples were submitted to TestAmerica in Pittsburgh, Pennsylvania for laboratory analysis of PAHs (United States Environmental Protection Agency [USEPA] Method 8270) and to Vista Analytical Laboratory in El Dorado Hills, California for analysis of polychlorinated dibenzo-pdioxins/polychlorinated dibenzofurans (PCDDs/PCDFs; USEPA Method 8290).

2.3 Direct Push Soil Borings/Soil Sampling and Analysis

A total of 29 direct push soil borings were advanced at 23 locations¹ (SB-1 through SB-23; Figures 1A and 1B), including 14 locations as proposed in the Work Plan, plus nine additional/step-out locations. The step-out locations were added to achieve the delineation

¹ Multiple borings were advanced at locations designed for shallow and deep monitoring well pairs.

objectives for certain locations as outlined in the Work Plan (Table 1)². An all-terrain vehicle (ATV)-mounted Geoprobe[®] direct push rig was used to complete the soil borings.

Recovered soils from each boring were screened with a PID and logged for soil type and visual/olfactory evidence of impacts as a function of depth. As further discussed in Section 2.4, 13 of the 29 borings were completed as temporary monitoring wells. At three of the 13 borings where wells were installed, no visible impacts were observed in the initial deep boring, and the adjacent boring for the shallow well was blind drilled (i.e., no soil logging was performed). Borings that were not completed as temporary monitoring wells were tremie grouted upon completion.

At soil boring locations SB-2, SB-3, SB-12, SB-16, SB-18, and SB-22, soil samples were collected from two consecutive 0.5-foot visibly unimpacted intervals below the deepest observed visibly impacted interval. Samples were submitted to TestAmerica in Pittsburgh, Pennsylvania for laboratory analysis of PAHs by USEPA Method 8270. The uppermost samples were all analyzed, and the deeper samples were held pending the results of the upper samples. As discussed in Section 3.2.2, based on the results of the uppermost samples, only one deeper sample was released for analysis.

2.4 Temporary Monitoring Wells

A total of 13 temporary monitoring wells were installed, consisting of the following (Figures 1A and 1B):

- TMW-2A and TMW-12A shallow wells screened across visibly impacted soil zones (intermittent clay fractures with creosote-like product)
- TMW-2 and TMW-12C deep wells screened across visibly unimpacted soil zones located below visibly impacted soil zones
- TMW-12B intermediate well screened across intermittent, thin sand seams with creosote-like product
- TMW-5A, TMW-8A, and TMW-11A shallow wells screened across visibly unimpacted soil zones
- TMW-5, TMW-8, and TMW-11 deep wells screened across visibly unimpacted soil zones
- TMW-19C and TMW-23 deep wells screened across visibly unimpacted soil zones located downgradient of and installed as replacement wells for TMW-12C and TMW-2, respectively³

² The step-out boring approach was outlined in the WDNR-approved Work Plan. Additional step-out borings were proposed and approved by WDNR during an October 18, 2013 conference call.

With the exception of TMW-12C, TMW-19C, and TMW-23, the wells were installed within direct push boreholes. At the above-referenced three wells, the direct push boreholes were overdrilled with hollow-stem augers, and the wells were installed through the augers. All of the wells were developed following installation and prior to sampling. The development process involved surging the well screens for 10 minutes, followed by repeated bailing or pumping dry and allowing the well to recharge.

Well TMW-12C was abandoned on November 20, 2013, following installation of the replacement well TMW-19C. Wells TMW-8/8A, TMW-11/11A, TMW-12A/B, and TMW-19C were abandoned on April 8 and 9, 2014. The remaining wells (TMW-2/2A, TMW-5/5A, and TMW-23) could not be accessed in April due to flooding conditions, and will be abandoned as soon as field conditions allow.

2.5 Groundwater Sampling and Analysis

Two groundwater sampling events were conducted: 1) from October 23 through 28, 2013 and 2) from January 12 through 14, 2014. Groundwater samples were submitted to TriMatrix Laboratories, Inc. of Grand Rapids, Michigan for laboratory analysis of volatile organic compounds (VOCs; USEPA Method 8021B/8260B) and semivolatile organic compounds (SVOCs; USEPA Method 8270C). As discussed with WDNR during an October 18, 2013 conference call, and confirmed via an October 22, 2013 e-mail from WDNR (WDNR, 2013b), both filtered and unfiltered samples were collected for both VOCs and SVOCs to assess potential turbidity effects due to the anticipated inability to conduct low-flow sampling.

During both sampling events, static water levels were unable to be sustained during lowflow pumping, so the wells were pumped dry and samples were collected following recharge. Most wells required several iterations of pumping and recharge to obtain the volume of groundwater necessary to fill all of the sample containers. At certain wells, only a minimal volume of water was able to be collected for certain analyses, and at two wells (TMW-11A in October 2013 and TMW-5A in January 2014), all of the samples could not be collected due to insufficient recharge during the mobilization. Table 2 summarizes the completed sampling scope during each event.

³ As further discussed in Section 3.3, wells TMW-2 and TMW-12C were replaced based on well development observations that indicated a bad annular seal or drag-down of impacts from shallower intervals. This was discussed with and approved by WDNR during a conference call on October 18, 2013.

3. Results

3.1 Hand Auger Soil Borings

3.1.1 Boring Depths and Visual Observations

Hand auger soil borings were advanced at 13 locations (HA-1 through HA-13; Figures 1A and 1B). The total depth of each boring, maximum PID readings, and intervals where visual/olfactory impacts were observed are summarized in Table 3. With the exception of HA-10, all hand auger borings achieved the targeted depth of 4 feet below ground surface (bgs). At HA-10, equipment refusal was encountered at 2.9 feet bgs. Maximum PID readings ranged from 0.8 to 23.5 parts per million. As indicated in Table 3, no visual/ olfactory impacts were observed at any of the 13 hand auger borings.

3.1.2 Soil Sampling and Analysis

Soil samples were collected from the 0- to 0.5-foot and 0.5- to 1-foot depth intervals at hand auger boring locations HA-1, HA-4, HA-7, and HA-9 (Figures 1A and 1B) for laboratory analysis of PAHs and PCDDs/PCDFs. The analytical results are summarized in Table 4, and data validation reports (including laboratory analytical data sheets) are provided in Appendix B. The spatial distribution of PAHs and PCDDs/PCDF in surficial (0- to 1-foot depth interval) floodplain materials (for 2013 and prior samples) is depicted on Figures 2 and 3, respectively.

As indicated in Table 4, one or more PAHs was detected in five of the eight samples collected in 2013, with total PAH concentrations in the five samples ranging from 0.021 to 1.21 milligrams per kilogram (mg/kg). One or more PCDD/PCDF congener was detected in all eight samples, with 2,3,7,8-tetrachlorodibenzo-*p*-dioxin (TCDD) toxicity equivalent (TEQ) concentrations ranging from 0.00001 to 0.00194 micrograms per kilogram (μ g/kg). The concentrations in the 2013 samples are generally consistent with or lower than concentrations in "background" samples collected in 2005 (see Figures 2 and 3).

3.1.2.1 Investigation Objectives Evaluation

The following bullets/tables summarize the hand auger soil sample analytical results with respect to the location-specific delineation objectives outlined in the Work Plan:

 HA-1 delineation objective: delineate PAHs beyond 1999 sample FP-15-175'R and PCDDs/PCDFs beyond 2005 sample SOIL-T24:

Delineation Results for HA-1

	Total PAH Co	onc. (mg/kg)	TCDD-TEQ Conc. (µg/kg)		
	Previous Step-Out		Previous	Step-Out	
Sample ID:	FP-15-175'R	HA-1	SOIL-T24	HA-1	
0-0.5'	69.5	0.021	2.3E-1	5.9E-4	
		[0.127]		[3.2E-4]	
0.5-1'	1,080	ND	NA	4.2E-5	

Notes: ND = not detected, NA = not analyzed, [] = duplicate result

• HA-4 delineation objective: delineate PAHs beyond 1999 sample FP-14-5'L:

Delineation Results for HA-4

	Total PAH Conc. (mg/kg) Previous Step-Out			
Sample ID:	FP-14-5'L	HA-4		
0-0.5'	183	0.078		
0.5-1'	36.7	ND		

Note: ND = not detected

 HA-7 delineation objective: delineate PAHs beyond 1999 sample FP-15-125'L and PCDDs/PCDFs beyond 2005 sample SOIL-T23:

Delineation Results for HA-7

	Total PAH Conc. (mg/kg)		TCDD-TEQ Conc. (µg/kg)	
	Previous Step-Out		Previous	Step-Out
Sample ID:	FP-15-125'L	HA-7	SOIL-T23	HA-7
0-0.5'	15.8	0.173	1.5E-1	1.1E-3
0.5-1'	348	ND	NA	1.7E-4

Notes: ND = not detected, NA = not analyzed

• HA-9 delineation objective: delineate PCDDs/PCDFs beyond 2005 sample SOIL-T1:

Delineation Results for HA-9

	TCDD-TEQ Conc. (µg/kg)			
	Previous Step-Out			
Sample ID:	SOIL-T1	HA-9		
0-0.5'	1.4E-1	3.4E-4		
0.5-1'	l' NA ·			

Note: NA = not analyzed

As indicated above, all of the location-specific delineation objectives were achieved, with PAH and PCDD/PCDF concentrations in the 2013 step-out samples ranging from two to five orders of magnitude lower than the corresponding concentrations in the previous samples from 1999 and 2005.

3.2 Direct Push Soil Borings

3.2.1 Boring Depths and Visual Observations

Twenty-nine direct push soil borings were advanced at 23 locations (SB-1 through SB-23; Figures 1A and 1B). Appendix A includes detailed soil boring logs for each of the 29 borings and Table 5 summarizes the total depth of each boring and intervals where visual/olfactory impacts were observed. The spatial distribution of visual impacts observed in subsurface floodplain materials (for 2013 and prior investigation locations) is depicted on Figure 4.

As indicated in Table 5, 23 of the 29 soil borings were advanced to depths ranging from 20 to 41 feet bgs. Five borings, where shallow temporary monitoring wells were installed, were advanced to depths ranging from 12 to 15 feet bgs. One boring was terminated at 10 feet bgs to avoid drag-down of visual impacts observed at shallower depths.

Consistent with the protocol developed and used for previous investigations for the Site, the recovered soils were characterized as follows:

- Type 1 contains creosote-like product (typically in clay fractures or sand/organic seams)
- Type 2 exhibits a creosote-like odor, staining and/or sheen, but does not contain creosote-like product
- Type 3 does not exhibit visual evidence of impacts (i.e., no staining, sheens, or product) or creosote-like odor

In summary, visual/olfactory impacts were encountered at 11 of the 29 direct push soil borings (Table 5). At eight of the 11 borings, creosote-like product was encountered, either in clay fractures or in thin organic/sand seams (Type 1). At the other three borings, creosote-like odors, staining, and/or sheens were encountered, but not creosote-like product (Type 2).

The following table summarizes the borings/intervals where Type 1 and 2 material was observed in the 11 borings (important: see note below table):

			Туре 1	Type 2
ID	Total Depth (feet bgs)	Creosote-Like Product in Clay Fractures (feet bgs)	Creosote-Like Product in Organic/Sand Seams (feet bgs)	Creosote-Like Odor, Staining, or Sheens (feet bgs)
SB-2	30	11.3-11.4	7.1 (organics)	0-6.2 (odor/stain/sheen) 15-20.1 (odor/stain)
SB-2A	15	1.2-1.8, 5-14.3	N/A	0-1.8, 6.3-7.1, 10-15 (odor/stain)
SB-3	25	5.6-7.5	N/A	0-15.8 (odor/stain/sheen) 1.5-2.2, 10-14.5 (stain)
SB-12	40	5.1-10, 25.4-30	5.2-5.3, 5.6-5.7, 5.8-6.6 (organics) 26.6-26.8, 27.4-27.8 (clayey sand)	0-30 (odor) 0.8, 5.1-15, 25.4-30 (stain)
SB-12A	15	5-14	N/A	0-15 (odor/stain/sheen)
SB-12B	30	5.8-10, 11.3-14	15.9-16.2, 20.1-20.7, 26.8-27.6 (sand)	0-30 (odor) 0.4-0.7, 5-16.8, 20.1- 27.6 (stain) 22.3, 26.6 (sheen)
SB-13	30	N/A	N/A	2.5 (odor, stain)
SB-16	35	N/A	16.2-16.5 (sand)	0.6-30 (odor) 0.6-0.8, 16.2-16.8, 20.2-21.3, 27.4-27.5 (stain) 10.5-10.8, 26-26.1 (sheen)
SB-18	40	N/A	N/A	28.3-32.2 (odor) 29.1, 30.9-31.1 (stain)
SB-21	10	5-10	N/A	0-10 (odor/stain/sheen)
SB-22	30	N/A	N/A	0.6-21.1 (odor) 0.4-15 (stain/sheen) 16.7-20.3 (stain)

Summary of Soil Borings with Type A and B Materials*

*Notes: For simplicity, intervals in this table represent the general intervals within which the described condition was observed – impacted materials were generally present in thin, sporadic fractures or seams, not continuously throughout the denoted intervals. Refer to Table 5 and boring logs in Appendix A for additional details.

N/A = not applicable

3.2.1.1 Investigation Objectives Evaluation

The following bullets summarize the 2013 soil boring visual observations with respect to the location-specific delineation/assessment objectives outlined in the Work Plan (refer to Figure 4 for locations):

 SB-1, SB-3, SB-4, SB-6, SB-7, SB-8, and SB-14 assessment objective: assess the presence of visible impacts in various low-lying/ponded areas and/or at locations requested by WDNR

- In 2013 borings SB-1, SB-6, SB-7 and SB-8, advanced in low-lying/ponded areas and/or at locations requested by WDNR on the west side of Crawford Creek, no visible impacts or odors were observed. Boring depths ranged from 25-30 feet.
- In 2013 boring SB-3, advanced in a low-lying/ponded area on the west side of Crawford Creek, creosote-like product was observed in clay fractures (Type 1) within the 5.6-7.5 foot interval, and creosote-like odors, staining, and/or sheens were observed within the 0-15.8 foot interval. Boring depth was 25 feet – no visible impacts or odors were observed from 15.8-25 feet.
- In 2013 boring SB-4, advanced as a step-out from SB-3, no visible impacts or odors were observed. Boring depth was 20 feet.
- In 2013 boring SB-14, advanced at a location requested by WDNR on the east side of Crawford Creek, no visible impacts or odors were observed. Boring depth was 25 feet.
- SB-2 and SB-23 delineation objective: delineate vertical extent of visible impacts observed at 2003 test pits N2-1, N3-1, and N3-3

2003 Results

- In 2003 test pit N2-1, a black stained layer (Type 2) was observed from 1-3.5 feet, creosote-like product in clay fractures (Type 1) was observed from 3.5-7 foot interval, and odor/sheens (Type 2) were observed within the 7-10 foot interval. Test pit depth was 10 feet.
- In 2003 test pit N3-1, creosote-like product in clay fractures (Type 1) was observed within the 5-12 foot interval. Test pit depth was 12 feet.
- In 2003 test pit N3-3, a black stained layer (Type 2) was observed from 0.5-1.5 feet, and creosote-like product in clay fractures (Type 1) was observed within the 1.5-12 foot interval. Test pit depth was 12 feet.

2013 Results

- In 2013 boring SB-2, advanced between N2-1, N3-1, and N3-3, creosote-like product was observed in a thin organics seam (Type 1) at 7.5 feet, creosote-like product was observed in clay fractures (Type 1) from 11.3-11.4 feet, and creosote-like odors, staining, and/or sheens were observed intermittently within the 0-20.1 foot interval. Boring depth was 30 feet no visible impacts or odors were observed from 20.1-30 feet.
- In 2013 boring SB-23, advanced as a step-out from SB-2, no visible impacts or odors were observed. Boring depth was 30 feet.

SB-5 delineation objective: delineate horizontal extent of visible impacts observed at 2003 test pit N3-4

2003 Results

 In 2003 test pit N3-4, creosote-like product in clay fractures (Type 1) was observed within the 0-6.5 foot interval. Test pit depth was 9 feet.

2013 Results

- In 2013 boring SB-5, advanced as a step-out from N3-4, no visible impacts or odors were observed. Boring depth was 30 feet.
- SB-9 and SB-10 delineation objective: delineate horizontal/vertical extent of visible impacts observed at 2003 test pits S23-4, S24-4, and S25-3

2003 Results

- In 2003 test pit S23-4, a black stained layer (Type 2) was observed from 1-5 feet, and creosote-like product in clay fractures (Type 1) was observed within the 5-14 foot interval. Test pit depth was 14 feet.
- In 2003 test pit S24-4, a black stained layer (Type 2) was observed from 0.5-5 feet, and creosote-like product in clay fractures (Type 1) was observed within the 5-11 foot interval. Test pit depth was 14 feet.
- In 2003 test pit S25-3, a black stained layer with creosote-like product seams (Type 1) was observed from 3-8 feet, and creosote-like product in clay fractures (Type 1) was observed within the 8-11 foot interval. Test pit depth was 14 feet.

2013 Results

- In 2013 boring SB-9, advanced as a step-out from (and between) S24-4 and S25-3, no visible impacts or odors were observed. Boring depth was 25 feet.
- In 2013 boring SB-10, advanced as a step-out from (and between) S23-4 and S24-4, no visible impacts or odors were observed. Boring depth was 25 feet.
- SB-11 delineation objective: delineate horizontal extent of visible impacts observed at 2003 test pits S21-4 and S22-4

2003 Results

- In 2003 test pit S21-4, a black stained layer (Type 2) was observed from 2-3 feet. Test pit depth was 9 feet.
- In 2003 test pit S22-4, a black stained layer (Type 2) was observed from 2-3 feet, and creosote-like product in clay fractures (Type 1) was observed within the 3-10 foot interval. Test pit depth was 12 feet.

2013 Results

- In 2013 boring SB-11, advanced as a step-out from (and between) S21-4 and S22-4, no visible impacts or odors were observed. Boring depth was 25 feet.
- SB-15 and SB-16 delineation objective: delineate vertical extent of visible impacts observed at 2003 test pit S11-1

2003 Results

 In 2003 test pit S11-1, a black stained layer (Type 2) was observed from 2.5-5 feet, and creosote-like product in clay fractures (Type 1) was observed within the 5-17 foot interval. Test pit depth was 17 feet.

2013 Results

- In 2013 boring SB-15, advanced approximately 20 feet east of S11-1, no visible impacts or odors were observed. Boring depth was 25 feet.
- In 2013 boring SB-16, advanced adjacent to S11-1, creosote-like product was observed in a thin sand seam (Type 1) from 16.2-16.5 feet and creosote-like odors, staining, and/or sheens were observed intermittently within the 0.6-30 foot interval. Boring depth was 35 feet no visible impacts or odors were observed from 30-35 feet.
- SB-17 delineation objective: delineate horizontal extent of visible impacts observed at 2003 test pits S3-2 and S4-2

2003 Results

- In 2003 test pit S3-2, creosote-like product in clay fractures (Type 1) was observed within the 4-9 foot interval. Test pit depth was 11 feet.
- In 2003 test pit S4-2, creosote-like product in clay fractures (Type 1) was observed within the 4-9 foot interval. Test pit depth was 11.5 feet.

2013 Results

 In 2013 boring SB-17, advanced as a step-out from (and between) S3-2 and S4-2, no visible impacts or odors were observed. Boring depth was 25 feet.

In addition to the assessment/delineation objectives specified in the Work Plan and summarized above, additional delineation borings (SB-13 and SB-18 through SB-22) were advanced based on the observations in 2013 soil borings SB-12/12A/12B. In 2013 soil borings SB-12/12A/12B, creosote-like product was observed in intermittent clay fractures (Type 1) within the 5-14 and 25.4-30 foot intervals; creosote-like product was observed in intermittent, thin organics seams (Type 1) within the 5.2-6.6 foot interval; creosote-like

product was observed in intermittent, thin sand seams (Type 1) within the 15.9-27.8 foot interval; and creosote-like odors, staining, and/or sheens (Type 2) were intermittently observed within the 0-30 foot interval. Boring depths for SB-12/12A/12B ranged from 15-40 feet – no visible impacts or odors were observed from 30-40 feet. The horizontal extent of Type 1 material (creosote-like product in clay fractures and sand/organics seams) observed at SB-12/12A/12C was delineated by SB-13 to the northeast; SB-18 and SB-19 to the northwest; SB-20 to the southwest; and SB-22 to the southeast (refer to Table 5 and Figure 4).

In summary, as indicated in the information presented above and as shown on Figure 4, the horizontal and vertical extent of visibly impacted materials within the targeted floodplain investigation areas has been delineated.

3.2.2 Soil Sampling and Analysis

Soil samples were collected from two consecutive 0.5-foot visibly unimpacted (i.e., Type 3) intervals below the deepest observed visibly impacted interval at borings SB-2, SB-3, SB-12, SB-16, SB-18, and SB-22 (Figures 1A and 1B) for laboratory analysis of PAHs. The uppermost samples were all analyzed, while the deeper samples were held pending the results of the upper samples. Based on the results of the uppermost samples, only one deeper sample (SB-12, 30.5-31') was released for analysis. The analytical results are summarized in Table 6, and data validation reports (including laboratory analytical data sheets) are provided in Appendix B.

As indicated in in Table 6, one or more PAHs was detected in five of the seven samples, with total PAH concentrations in the five samples ranging from 0.031 to 40.4 mg/kg. It should be noted that the sample with the highest concentration (SB-12, 30-30.5') was collected from a depth interval immediately below Type 1 material (creosote-like product in clay fractures). Also, the duplicate sample collected from SB-12 (30-30.5') had significantly lower concentrations (0.823 mg/kg total PAHs), compared to the parent sample (40.4 mg/kg total PAHs). All samples had total PAH concentrations below the previously calculated average of 91 mg/kg for Type 3 samples (based on the pre-2013 dataset), and with the exception of the sample SB-12 (30-30.5'), all samples had total PAH concentrations below the previously calculated median of 4.5 mg/kg for Type 3 samples. Accordingly, the 2013 soil sampling data support the previously presented visual/analytical data correlation for PAHs (i.e., visibly impacted materials have relatively higher PAH concentrations).

3.3 Temporary Monitoring Wells

Thirteen temporary monitoring wells were installed (Figures 1A and 1B). Detailed well construction logs for each of the 13 wells are provided in Appendix A. Well construction and survey information are also summarized in Table 7, along with the soil zone screened by each well.

The temporary monitoring wells were constructed using 3/4-inch Schedule 40, polyvinyl chloride materials, with 0.010-inch slot pre-packed screens. Screen lengths were 10 feet, except for TMW-12B, TMW-12C, and TMW-19C, where 5-foot-long screens were used to target specific soil zones. The remaining annular space around the pre-paced well screens was filled with Red Flint #15 or 40 Well Pack, to the extent possible. The annular space above the sand pack was filled with bentonite.

Well development information/observations are summarized in Table 8. All of the wells were developed by surging the well screens for 10 minutes, followed by repeated bailing or pumping dry and allowing to recharge. One to five well volumes of groundwater were purged from each well during development.

As indicated in Table 8, odor, sheens, and product were observed in the purge water or on bailers/tubing during development of TMW-2 and TMW-12C, which were screened in visibly unimpacted zones below visibly impacted zones. These observations indicated either that a proper annular seal was not achieved, or that drag-down of impacts from shallower intervals occurred during drilling. Accordingly, these two wells were re-installed at the same depth intervals at visibly unimpacted locations downgradient of the original well locations.⁴

At well TMW-12B (screened across thin, creosote-impacted sand seams observed within the 25-30 foot depth interval), creosote-like product was observed during gauging on September 23, 2013, prior to attempting development. Attempts were made to measure the thickness of accumulated product in the well using an oil/water interface probe and weighted measuring tape, but an accurate measurement could not be obtained. Approximately 6.5 gallons of a product/silt/clay mixture was removed from TMW-12B using a peristaltic pump between September 24 and 25, 2013. An additional approximately 5.5 gallons of product/silt/clay was removed from TMW-12B between October 23 and 25, 2013 during the first groundwater sampling event. Another approximately 3 gallons of a product/silt/clay was removed from TMW-12B on April 8, 2014 prior to abandoning the well.

⁴ Replacement of TMW-2 and TMW-12C was discussed with and approved by WDNR during an October 18, 2013 conference call.

3.4 Groundwater Sampling and Analysis

Two groundwater sampling events were conducted: 1) from October 23 through 28, 2013 and 2) from January 12 through 14, 2014. A round of water level measurements was conducted at all temporary monitoring wells prior to sampling during each event (October 23, 2013 and January 12, 2014); the associated data are summarized in Table 9.

The analytical results for both groundwater sampling events are summarized in Table 10, and data validation reports (including laboratory analytical data sheets) are provided in Appendix B. Table 10 also compares the analytical results to WDNR Preventive Action Limits (PALs) and Enforcement Standards (ESs), in order to gauge the relative magnitude of the detected concentrations.

PALs/ESs for Site-related constituents⁵ were exceeded in samples from TMW-2A (benzene, naphthalene, other PAHs, and pentachlorophenol), TMW-11A (naphthalene), and TMW-12A (benzene, naphthalene, and other PAHs).

Groundwater analytical results were generally consistent between the October 2013 and January 2014 sampling events. One exception was the increased PAH concentrations in the unfiltered sample collected at TMW-12A. The increased concentrations are attributable to the presence of trace blebs of creosote-like product that were observed in the purge water from this well during the January 2014 sampling event.

Concentrations in filtered samples were generally lower than in unfiltered samples for both sampling events, indicating that at least some portion of the constituents was associated with the soil particulates.

3.4.1 Investigation Objectives Evaluation

The following bullets summarize the groundwater sample analytical results with respect to the location-specific objectives outlined in the Work Plan (refer to Figures 1A and 1B for well locations):

 TMW-2A/23 objective: assess groundwater conditions within (TMW-2A) and below (TMW-23) visibly impacted soils

⁵ 2,6-dinitrotoluene and bis(2-ethylhexyl)phthalate concentrations exceeded ESs in TMW-23 (January 2014 filtered sample) and TMW-11A (January 2014 filtered sample), respectively; but these constituents are not considered to be Site-related.

- TMW-2A, screened from 5-15 feet bgs within Type 1 soils, had total BTEX⁶ concentrations ranging from 58 to 174 µg/L and total PAH concentrations ranging from 3,044 to 5,800 µg/L
- $_{\odot}$ TMW-23, screened from 20-30 feet bgs within Type 3 soils (located below and downgradient of the TMW-2A screened interval), had total BTEX concentrations ranging from non-detect to 0.21 μ g/L and total PAH concentrations ranging from non-detect to 0.04 μ g/L
- TMW-5A/5 objective: assess groundwater conditions in "shallow" (TMW-5A) and "deep" (TMW-5) visibly unimpacted (i.e., Type 3) soils
 - TMW-5A, screened from 2-12 feet bgs within Type 3 soils, had total BTEX concentrations ranging from non-detect to 0.35 μg/L and total PAH concentrations ranging from 0.14 to 0.55 μg/L
 - TMW-5, screened from 20-30 feet bgs within Type 3 soils, had total BTEX concentrations ranging from non-detect to 2.92 µg/L and total PAH concentrations ranging from non-detect to 0.05 µg/L
- TMW-8A/8 objective: assess groundwater conditions in "shallow" (TMW-8A) and "deep" (TMW-8) visibly unimpacted (i.e., Type 3) soils
 - TMW-8A, screened from 2-12 feet bgs within Type 3 soils, had total PAH concentrations ranging from non-detect to 0.07 µg/L (BTEX were not detected)
 - $_{\odot}$ TMW-8, screened from 20-30 feet bgs within Type 3 soils, had total PAH concentrations ranging from non-detect to 0.12 μ g/L (BTEX were not detected)
- TMW-11A/11 objective: assess groundwater conditions in "shallow" (TMW-11A) and "deep" (TMW-11) visibly unimpacted (i.e., Type 3) soils
 - TMW-11A, screened from 2-12 feet bgs within Type 3 soils, had total BTEX concentrations ranging from non-detect to 1.89 μg/L and total PAH concentrations ranging from non-detect to 136 μg/L
 - TMW-11, screened from 20-30 feet bgs within Type 3 soils, had total PAH concentrations ranging from non-detect to 0.62 µg/L (BTEX were not detected)
- TMW-12A/19C objective: assess groundwater conditions within (TMW-12A) and below (TMW-19C) visibly impacted soils
 - TMW-12A, screened from 5-15 feet bgs within Type 1 soils, had total BTEX concentrations ranging from 118 to 316 μg/L and total PAH concentrations ranging from 4,030 to 206,080 μg/L

⁶ Total BTEX equals the sum of the concentrations of benzene, toluene, ethylbenzene, and xylenes.

 TMW-19C, screened from 35-40 feet bgs within Type 3 soils (located below and downgradient of the TMW-12A screened interval), had total PAH concentrations ranging from 1.9 to 3.4 µg/L (BTEX were not detected)

As indicated in the bullets above and the data summarized in Table 10, wells screened in visibly unimpacted (Type 3) soil zones – both below and adjacent to visibly impacted soil zones – had total BTEX and total PAH concentrations that ranged from one to seven orders of magnitude lower than concentrations in wells screened in visibly impacted (Type 1) soil zones. These data indicate that groundwater impacts are present only in the immediate vicinity of visibly impacted soil zones (i.e., impacted groundwater does not migrate significant distances either laterally or vertically from the visibly impacted soil zones). This finding is consistent with the low-permeability nature of the predominately clay soils, and also the groundwater fate and transport characteristics for the on-property portion of the Site, where similar geology is present.

4. Summary and Conclusions

This section summarizes the completed supplemental off-property investigation activities, notes whether modifications to the conceptual site model have occurred based on the supplemental investigation results, and discusses whether the investigation objectives outlined in the Work Plan were achieved.

Assess the presence of impacts at higher flood elevations at the edges of the Crawford Creek floodplain.

Hand auger soil borings were advanced at 13 locations along four transects oriented perpendicular to the edge of the Crawford Creek floodplain, targeting specific flood elevations. No visual/olfactory impacts were observed at any of the 13 borings. Eight soil samples were collected from four locations (above the 100-year flood elevation at each transect). One or more PAHs was detected in five of the eight samples, and one or more PCDD/PCDF congener was detected in all eight samples. The concentrations in the 2013 samples are generally consistent with or lower than concentrations in "background" samples collected in 2005 (see Figures 2 and 3). In addition, all of the location-specific delineation objectives specified in the Work Plan were achieved, with PAH and PCDD/PCDF concentrations in the 2013 step-out samples ranging from two to five orders of magnitude lower than the corresponding concentrations in the previous samples from 1999 and 2005.

Based on the 2013 investigations, Site-related impacts are not present at higher flood elevations at the edges of the Crawford Creek floodplain, and the horizontal extent of PAH and PCDD/PCDF impacts within the floodplain has been adequately delineated.

Assess the presence of impacts in certain low-lying/ponded areas and other WDNRspecified areas within the Crawford Creek floodplain and delineate the horizontal and vertical extent of visible impacts at certain historical investigation locations.

Twenty-nine direct push soil borings were advanced at 23 locations, including the 14 locations proposed in the Work Plan, plus additional step-out borings as needed to achieve the delineation objectives. Visual/olfactory impacts were encountered at 11 of the 29 direct push soil borings. Creosote-like product was encountered at eight of the 11 borings, either in clay fractures or in organic/sand seams. At the other three borings, creosote-like odors, staining, and/or sheens were encountered, but not creosote-like product. In general, visual observations from the 2013 direct push soil borings support the previous conceptual site model for the nature and extent of impacted materials within the Crawford Creek floodplain, with two exceptions:

- Creosote-like product was observed in isolated clay fractures to depths of up to 30 feet bgs. Previously, the maximum depth that these conditions were observed to be present was 17 feet bgs (based on equipment limitations during test pit excavations in 2003).
- 2. In three of the 29 direct push soil borings advanced in the floodplain in 2013, creosotelike product was observed in thin, isolated sand seams, at depths ranging from 15.9 to 27.8 feet bgs. Although not previously encountered in the Crawford Creek floodplain (likely because previous investigations did not reach depths were sand seams are present), the presence of thin, isolated sand seams is consistent with observations from historical soil borings advanced in the on-property portion of the Site (*RCRA Facility Investigation Report* [Fluor Daniel GTI, 1997]).

The horizontal and vertical extent of visibly impacted materials within the targeted floodplain investigation areas has been adequately delineated.

Assess PAH concentrations in visibly unimpacted soils located below visibly impacted soils.

Seven soil samples were collected from the direct push borings from the visibly unimpacted soils located below visibly impacted soils. One or more PAHs was detected in five of the seven samples. All samples had total PAH concentrations below the previously calculated average of 91 mg/kg for Type 3 samples (based on the pre-2013 dataset), and with the exception of the sample SB-12 (30-30.5'), all samples had total PAH concentrations below the previously calculated median of 4.5 mg/kg for Type 3 samples. Accordingly, the 2013 soil sampling data support the previously presented visual/analytical data correlation for PAHs (i.e., visibly impacted materials have relatively high PAH concentrations).

Assess groundwater concentrations within, below and outside of visibly impacted areas.

Thirteen temporary monitoring wells were installed, and two rounds of groundwater sampling were conducted. Shallow (screen intervals ranging from 2 to 15 feet bgs) and deep (screen intervals ranging from 20-40 feet bgs) wells were installed. Soil zones screened by the wells included visibly impacted (two shallow wells and one intermediate well), visibly unimpacted below visibly impacted (two deep wells, and two replacement wells), and visibly unimpacted (three shallow/deep well pairs). Creosote-like product accumulated in one of the wells (TMW-12B, screened across visibly impacted seams from 25 to 30 feet bgs); approximately 15 gallons of a product/silt/clay mixture were removed from this well over the course of three removal events. Trace blebs of creosote-like product were also observed in the purge water from well TMW-12A (screened across visibly impacted clay fractures from 5 to 15 feet bgs, and located immediately adjacent to TMW-12B).

Supplemental Off-Property Investigation Summary Report Former Koppers Inc. Facility Superior, Wisconsin

Wells screened in visibly unimpacted soil zones – both below and adjacent to visibly impacted soil zones – had total BTEX and total PAH concentrations that ranged from one to seven orders of magnitude lower than concentrations in wells screened in visibly impacted soil zones. These data indicate that groundwater impacts are present only in the immediate vicinity of visibly impacted soil zones (i.e., impacted groundwater does not migrate significant distances either laterally or vertically from the visibly impacted soil zones). This finding is consistent with the low-permeability nature of the predominately clay soils, and also the groundwater fate and transport characteristics for the on-property portion of the Site, where similar geology is present.

The supplemental investigation activities described herein have achieved the investigation objectives outlined in the Work Plan, and have addressed the "data gaps" identified in an October 9, 2012 letter from WDNR to Beazer. The supplemental investigations, combined with previous investigations, have adequately characterized the nature and extent of impacts in the off-property investigation area to proceed with a Corrective Measures Study.

5. References

ARCADIS, 2013a. Work Plan for Supplemental Off-Property Investigations. June 28, 2013.

ARCADIS, 2013b. Standard Operating Procedure for Collecting Soil Samples, Cleaning Field Equipment, and Collecting Equipment Blank Samples. August 19, 2013.

Blasland, Bouck & Lee, Inc., 2006. Off-Property Data Summary Report. February 2006.

Fluor Daniel GTI, 1997. RCRA Facility Investigation Report. June 1997.

USGS, 2003. *Flood Frequency Characteristics of Wisconsin Streams*. Water Resourced Investigations Report 03-4250.

WDNR, 2012. Letter to Beazer: Off-Property Contamination at the Koppers Inc. Facility. October 9, 2012.

WDNR, 2013a. Letter to Beazer: Conditional Approval – Work Plan for Supplemental Off-Property Investigations. July 3, 2013.

WDNR, 2013b. Email from Christopher Saari to David Bessingpas of ARCADIS: *Filtering Groundwater Samples*. October 22, 2013.

Tables

Work Plan ID	Field ID	Location Description	Objective(s)	Work Plan Scope	Actual Scope
A	HA-6	Step-out from former sample location FP- 14-5'L, between 2- and 25-year flood elevations	- Assess visual impacts at higher flood elevations	- Hand auger boring to 4' (deeper if impacts observed at bottom) - visual	- Hand auger boring to 4'
В	HA-5	Step-out from HA-6 (A), between 25- and 100-year flood elevations	- Assess visual impacts at higher flood elevations	 Hand auger boring to 4' (deeper if impacts observed at bottom) - visual 	- Hand auger boring to 4'
C	HA-4	Step-out from HA-5 (B), above 100-year flood elevation/debris line	 Assess visual impacts and PAH/dioxin concentrations in surface soils at higher flood elevations (delineate PAHs beyond FP-14-5'L) 	 Hand auger boring to 4' (deeper if impacts observed at bottom) - visual (additional step-out boring(s) if visible impacts observed) Sample 0-0.5' and 0.5-1' intervals for PAHs and dioxins (at this location, or first visibly unimpacted step-out boring, if applicable) 	- Hand auger boring to 4' - Sample 0-0.5' and 0.5-1' intervals for PAHs and dioxins/furans
D	SB-10	Step-out from (and between) former test pits S23-4 and S24-4, between 2- and 25- year flood elevations	 Delineate horizontal/vertical extent of visible impacts observed at former test pits S23-4 and S24 Assess PAH concentrations in visibly unimpacted soils located below visibly impacted soils 	 Direct push boring to ~25' - visual (additional stepout boring(s) if visual impacts observed) If visible impacts observed, sample 0.5' visibly unimpacted soil interval immediately below deepest observed visibly impacted interval for PAHs (applies to original location only; not step-outs) 	
E	SB-9	Step-out from (and between) former test pits S24-4 and S25-3, below 2-year flood elevation (near former location FP-15- 175'R)	 Delineate horizontal extent of visible impacts observed at former test pits S24-4 and S25-3 Assess visual impacts at higher flood elevations Assess PAH concentrations in visibly unimpacted soils located below visibly impacted soils 	 Direct push boring to ~25' - visual (additional step- out boring(s) if visual impacts observed) If visible impacts observed, sample 0.5' visibly unimpacted soil interval immediately below deepest observed visibly impacted interval for PAHs 	
F	HA-3	Step-out from SB-9 (E), between 2- and 25-year flood elevations	- Assess visual impacts at higher flood elevations	 Hand auger boring to 4' (deeper if impacts observed at bottom) - visual 	- Hand auger boring to 4'
G	HA-2	Step-out from HA-3 (F), between 25- and 100-year flood elevations	- Assess visual impacts at higher flood elevations	 Hand auger boring to 4' (deeper if impacts observed at bottom) - visual 	- Hand auger boring to 4'
Н	HA-1	Step-out from HA-2 (G), above 100-year flood elevation/debris line	- Assess visual impacts and PAH/dioxin concentrations at higher flood elevations (delineate PAHs beyond FP-15-175'R and dioxins beyond SOIL-T24)	 Hand auger boring to 4' (deeper if impacts observed at bottom) - visual (additional step-out boring(s) if visible impacts observed) Sample 0-0.5' and 0.5-1' intervals for PAHs and dioxins (at this location, or first visibly unimpacted step-out boring, if applicable) 	- Hand auger boring to 4.2' - Sample 0-0.5' and 0.5-1' intervals for PAHs and dioxins/furans
I	SB-11, SB-11A (TMW-11, TMW-11A)	Step-out from (and between) former test pits S21-4 and S22-4, below 2-year flood elevation	 Delineate horizontal extent of visible impacts observed at former test pits S21-4 and S22-4 Assess visual impacts at higher flood elevations Assess groundwater concentrations outside visible impacted area Assess PAH concentrations in visibly unimpacted soils located below visibly impacted soils 	 Direct push boring to ~30' - visual (additional stepout boring(s) if visual impacts observed) Shallow and deep temporary well pair (at original boring location, or first step out where no visible impacts observed) If visible impacts observed, sample 0.5' visibly unimpacted soil interval immediately below deepest observed visibly impacted interval for PAHs 	- Direct push borings to 30' (SB-11) and 12' (SB-11A) - Wells screened from 20-30' (TMW-11) and 2-12' (TMW-11A)
J	HA-13	Step-out from SB-11 (I), between 2- and 25-year flood elevations	- Assess visual impacts at higher flood elevations	- Hand auger boring to 4' (deeper if impacts observed at bottom) - visual	- Hand auger boring to 4'
К	HA-8	Step-out from HA-13 (J), between 25- and 100-year flood elevations	- Assess visual impacts at higher flood elevations	 Hand auger boring to 4' (deeper if impacts observed at bottom) - visual 	- Hand auger boring to 4'

Work Plan ID	Field ID	Location Description	Objective(s)	Work Plan Scope	Actual Scope
L	HA-7		-Assess visual impacts and PAH/dioxin concentrations at higher flood elevations (delineate PAHs beyond FP-15-125'L and dioxins beyond SOIL-T23)	 Hand auger boring to 4' (deeper if impacts observed at bottom) - visual (additional step-out boring(s) if visible impacts observed) Sample 0-0.5' and 0.5-1' intervals for PAHs and dioxins (at this location, or first visibly unimpacted step-out boring, if applicable) 	- Hand auger boring to 4' - Sample 0-0.5' and 0.5-1' intervals for PAHs and dioxins/furans
Μ	SB-12, SB-12A, SB-12B (TMW-12C, TMW-12A, TMW-12B)	Between former test pits S21-1 and S20-3 (in former tributary flowpath area)	 Assess groundwater concentrations within/below visibly impacted area Assess PAH concentrations in visibly unimpacted soils located below visibly impacted soils 	 Direct push boring to ~30' - visual Shallow and deep temporary well pair (one screened within visibly impacted zone, one below visibly impacted zone) If visible impacts observed, sample 0.5' visibly unimpacted soil interval immediately below deepest observed visibly impacted interval for PAHs 	 Direct push borings to 15' (SB-12A), 30' bgs (SB-12B) and 40' (SB-12/12C) Wells screened from 5-15' (TMW-12A), 25-30' (TMW-12B) and 35-40' (TMW-12C) Sample 30-30.5' and 30.5-31' intervals (SB-12/12C) for PAHs
	SB-13	Step-out from SB-12; approx. 107' NE	Horizontal delineation of visible impacts observed at SB-12	N/A (step-out)	- Direct push boring to 30'
	SB-18		Horizontal delineation of visible impacts observed at SB-12	N/A (step-out)	- Direct push boring to 40' - Sample 34-34.5' and 34.5-35' intervals for PAHs
	SB-20		Horizontal delineation of visible impacts observed at SB-12	N/A (step-out)	- Direct push boring to 30'
	SB-19 (TMW-19C)	Step-out from SB-18; approx. 41' NW	Horizontal delineation of visible impacts observed at SB-12/SB-18; install replacement well for TMW- 12C in visibly clean/downgradient location	N/A (step-out)	 Direct push/hollow-stem auger boring to 41' Well screened from 35-40'
	SB-21		Horizontal delineation of visible impacts observed at SB-12	N/A (step-out)	 Direct push boring to 10' (impacts were observed, so boring was terminated and another step-out was performed)
	SB-22	Step-out from SB-21; approx. 56' E/SE	Horizontal delineation of visible impacts observed at SB-12/SB-21	N/A (step-out)	- Direct push boring to 30' - Sampled 21.2-21.7' and 21.7-22.2' intervals for PAHs
Ν	SB-15	Near former test pit S11-1	 Delineate vertical extent of visible impacts observed at former test pit S11-1 Assess PAH concentrations in visibly unimpacted soils located below visibly impacted soils 	 Direct push boring to ~25' - visual If visible impacts observed, sample 0.5' visibly unimpacted soil interval immediately below deepest observed visibly impacted interval for PAHs 	- Direct push boring to 25'
	SB-16	Step-out from SB-15; approx. 14' W/NW (towards creek and test pit S11-1)	Same as SB-15; step-out added because no impacts were observed at SB-15, so vertical delineation objective was not achieved	N/A (step-out)	- Direct push boring to 35' - Sample 30-30.5' and 30.5-31' intervals for PAHs
0	SB-17	Step-out from (and between) former test pits S3-2 and S4-2	 Delineate horizontal extent of visible impacts observed at former test pits S3-2 and S4-2 Assess PAH concentrations in visibly unimpacted soils located below visibly impacted soils 	 Direct push boring to ~25' - visual (additional stepout boring(s) if visual impacts observed) If visible impacts observed, sample 0.5' visibly unimpacted soil interval immediately below deepest observed visibly impacted interval for PAHs 	- Direct push boring to 25'

Work Plan ID	Field ID	Location Description	Objective(s)	Work Plan Scope	Actual Scope
Ρ	SB-2, SB-2A (TMW-2, TMW-2A)	Between former test pits N2-1, N3-1 and N3-3 (in former beaver pond area)	 Delineate vertical extent of visible impacts observed at former test pit N2-1, N3-1 and N3-3 Assess groundwater concentrations within/below visibly impacted area Assess PAH concentrations in visibly unimpacted soils located below visibly impacted soils 	 Direct push boring to ~30' - visual Shallow and deep temporary well pair (one screened within visibly impacted zone, one below visibly impacted zone) If visible impacts observed, sample 0.5' visibly unimpacted soil interval immediately below deepest observed visibly impacted interval for PAHs 	 Direct push borings to 30' (SB-2) and 15' (SB-2A) Wells screened from 20-30' (TMW-2) and 5-15' (TMW-2A) Sample 25-25.5' and 25.5-26' intervals (SB-2) for PAHs
	SB-23 (TMW-23)	Step-out from SB-2; approx. 54' N/NW	Install replacement well for TMW-2 in visibly clean/downgradient location	N/A (step-out)	 Direct push/hollow-stem auger boring to 30' Well screened from 20-30'
Q	SB-5, SB-5A (TMW-5, TMW-5A)	Step out from former test pit N3-4	 Delineate horizontal extent of visible impacts observed at former test pit N3-4 (former beaver pond area) Assess groundwater concentrations outside visible impacted area Assess PAH concentrations in visibly unimpacted soils located below visibly impacted soils 	 Direct push boring to ~30' - visual (additional stepout boring(s) if visual impacts observed) Shallow and deep temporary well pair (at original boring location, or first step out where no visible impacts observed) If visible impacts observed, sample 0.5' visibly unimpacted soil interval immediately below deepest observed visibly impacted interval for PAHs 	(SB-5A) - Wells screened from 20-30' (TMW-5) and 2-12' (TMW-5A)
R	HA-12	Step-out from SOIL-T1, below 2-year flood elevation	- Assess visual impacts at higher flood elevations	 Hand auger boring to 4' (deeper if impacts observed at bottom) - visual 	- Hand auger boring to 4'
S	HA-11	Step-out from HA-12 (R), between 2- and 25-year flood elevations	- Assess visual impacts at higher flood elevations	 Hand auger boring to 4' (deeper if impacts observed at bottom) - visual 	- Hand auger boring to 4'
Т	HA-10	Step-out from HA-11 (S), between 25- and 100-year flood elevations	- Assess visual impacts at higher flood elevations	 Hand auger boring to 4' (deeper if impacts observed at bottom) - visual 	- Hand auger boring to 2.85' (equipment refusal)
U	HA-9	Step-out from HA-10 (T), above 100-year flood elevation/debris line	- Assess visual impacts and PAH/dioxin concentrations at higher flood elevations (delineate dioxins beyond SOIL-T1)	 Hand auger boring to 4' (deeper if impacts observed at bottom) - visual (additional step-out boring(s) if visible impacts observed) Sample 0-0.5' and 0.5-1' intervals for PAHs and dioxins (at this location, or first visibly unimpacted step-out boring, if applicable) 	 Hand auger boring to 4' Sample 0-0.5' and 0.5-1' intervals for PAHs and dioxins/furans
V	SB-8, SB-8A (TMW-8, TMW-8A)	Along west side of Crawford Creek, approx. midway between confluence with Tributary and RR embankment, in low- lying/ponded area, near 2005 composite sample transect SOIL-T13	 Assess visual impacts in low-lying/ponded area Assess groundwater concentrations outside visible impacted area Assess PAH concentrations in visibly unimpacted soils located below visibly impacted soils 	 Direct push boring to ~30' - visual (additional stepout boring(s) if visual impacts observed) Shallow and deep temporary well pair (at original boring location, or first step out where no visible impacts observed) If visible impacts observed, sample 0.5' visibly unimpacted soil interval immediately below deepest observed visibly impacted interval for PAHs 	bgs (SB-8A) - Wells screened from 20-30' (TMW-8) and 2-12' (TMW-8A)
W	SB-6	Along west side of Crawford Creek, in low- lying/ponded area, between 2005 composite sample transects SOIL-T10 and SOIL-T12	 Assess visual impacts in low-lying/ponded area Assess PAH concentrations in visibly unimpacted soils located below visibly impacted soils 	 Direct push boring to ~25' - visual (additional step- out boring(s) if visual impacts observed) If visible impacts observed, sample 0.5' visibly unimpacted soil interval immediately below deepest observed visibly impacted interval for PAHs 	

Work Plan ID	Field ID	Location Description	Objective(s)	Work Plan Scope	Actual Scope
X	SB-3	Along west side of Crawford Creek, in low- lying/ponded area, near 2005 composite sample transect SOIL-T6		 Direct push boring to ~25' - visual (additional step- out boring(s) if visual impacts observed) If visible impacts observed, sample 0.5' visibly unimpacted soil interval immediately below deepest observed visibly impacted interval for PAHs 	- Sample 15.5-16' and 16-16.5' intervals for PAHs
	SB-4		Horizontal delineation of visible impacts observed at SB-3	N/A (step-out)	- Direct push boring to 20'
Y	SB-1	Along west side of Crawford Creek, in low- lying/ponded area, near 2005 composite sample transect SOIL-T1	 Assess visual impacts in low-lying/ponded area Assess PAH concentrations in visibly unimpacted soils located below visibly impacted soils 	 Direct push boring to ~25' - visual (additional step- out boring(s) if visual impacts observed) If visible impacts observed, sample 0.5' visibly unimpacted soil interval immediately below deepest observed visibly impacted interval for PAHs 	
Z	SB-14	flowpath (as shown on a 1973 aerial	 Assess visual impacts in previously uninvestigated area Assess PAH concentrations in visibly unimpacted soils located below visibly impacted soils 	 Direct push boring to ~25' - visual (additional step- out boring(s) if visual impacts observed) If visible impacts observed, sample 0.5' visibly unimpacted soil interval immediately below deepest observed visibly impacted interval for PAHs 	
AA	SB-7	V and W	 Assess visual impacts in previously uninvestigated area Assess PAH concentrations in visibly unimpacted soils located below visibly impacted soils 	 Direct push boring to ~25' - visual (additional step- out boring(s) if visual impacts observed) If visible impacts observed, sample 0.5' visibly unimpacted soil interval immediately below deepest observed visibly impacted interval for PAHs 	

Notes:

bgs - below ground surface PAHs - polycyclic aromatic hydrocarbons N/A - not applicable

Table 2 - Groundwater Sampling Scope SummarySupplemental Off-Property InvestigationFormer Koppers Inc. Facility - Superior, WI

		October 2	5-28, 2013		January 12-14, 2014				
	Filtered		Unfiltered		Filtered		Unfiltered		
Well ID	VOCs	SVOCs	VOCs	SVOCs	VOCs	SVOCs	VOCs	SVOCs	
TMW-2A	Х	Х	Х	Х	Х	Х	Х	Х	
TMW-2	N/A - not	sampled (bad sea	II, install replace	ment well)	N/A - s	instead			
TMW-5A	Х	Х	Х	Х	Х	Х	Note 3	Note 3	
TMW-5	Х	Х	Х	Х	Х	Х	Х	Х	
TMW-8A	Х	Х	Х	Х	Х	Х	Х	Х	
TMW-8	Х	Х	Х	Х	Х	Х	Х	Х	
TMW-11A	Х	Х	Х	Note 3	Х	Х	Х	Х	
TMW-11	Х	Х	Х	Х	Х	Х	Х	Х	
TMW-12A	Х	Х	Х	Х	Х	Х	Х	Х	
TMW-12B			N/A - not s	ampled due to pre	esence of free pro	oduct in well	-		
TMW-12C	NA - not sampled (bad seal, install replacement well)				N/A - sampled replacement well TMW-19C instead				
TMW-19C ¹	N/A - well not installed yet			Х	Х	Х	Х		
TMW-23 ²		N/A - well not	installed yet		Х	Х	Х	Х	

Notes:

N/A - not applicable

SVOCs - semivolatile organic compounds (USEPA Method 8270)

USEPA - United States Environmental Protection Agency

VOCs - volatile organic compounds (USEPA Method 8021B/8260B)

1. TMW-19C installed as a replacement well for TMW-12C.

2. TMW-23 installed as a replacement well for TMW-2.

3. Certain samples were not able to be collected due to slow recharge rates encountered during sampling.

Table 3 - Hand Auger Soil Boring SummarySupplemental Off-Property InvestigationFormer Koppers Inc. Facility - Superior, WI

ID	Work Plan ID	Date Completed	Ground Surface Elevation (feet AMSL)	Total Depth (feet bgs)	Analytical Sample Intervals (feet bgs)	Max. PID Reading (ppm)	Visual/Olfactory Impacts
HA-1	Н	8/20/13	621.69	4.2	0-0.5, 0.5-1	10.5	None
HA-2	G	8/20/13	617.20	4.0	N/A	1.4	None
HA-3	F	8/20/13	615.08	4.0	N/A	14.8	None
HA-4	С	8/20/13	620.71	4.0	0-0.5, 0.5-1	4.2	None
HA-5	В	8/20/13	618.10	4.0	N/A	3.7	None
HA-6	Α	8/20/13	615.98	4.0	N/A	4.2	None
HA-7	L	8/20/13	620.12	4.0	0-0.5, 0.5-1	0.8	None
HA-8	K	8/20/13	618.29	4.0	N/A	10.9	None
HA-9	U	8/21/13	621.82	4.0	0-0.5, 0.5-1	3.9	None
HA-10	Т	8/21/13	618.49	2.9	N/A	23.5	None
HA-11	S	8/21/13	614.55	4.0	N/A	1.6	None
HA-12	R	8/21/13	610.62	4.0	N/A	1.4	None
HA-13	J	8/21/13	615.01	4.0	N/A	2.0	None

Notes:

AMSL - above mean sea level (NAVD 88)

bgs - below ground surface

PID - photoionization detector

ppm - parts per million

N/A - not applicable

Table 4 - Hand Auger Soil Sample Analytical ResultsSupplemental Off-Property InvestigationFormer Koppers Inc. Facility - Superior, WI

Location ID:		HA-1	HA-1	HA-4	HA-4	HA-7	HA-7
Depth (feet bgs):		0 - 0.5	0.5 - 1	0 - 0.5	0.5 - 1	0 - 0.5	0.5 - 1
Date Collected:	Units	8/20/13	8/20/13	8/20/13	8/20/13	8/20/13	8/20/13
PAHs				-			
Acenaphthene	mg/kg	0.0084 U [0.0079 U]	0.008 U	0.0081 U	0.0079 U	0.0081 U	0.008 U
Acenaphthylene	mg/kg	0.01 U [0.0094 U]	0.0096 U	0.0097 U	0.0094 U	0.0097 U	0.0095 U
Anthracene	mg/kg	0.0086 U [0.0081 U]	0.0082 U	0.0083 U	0.008 U	0.0083 U	0.0081 U
Benzo(a)anthracene	mg/kg	0.011 U [0.012 J]	0.01 U	0.011 U	0.01 U	0.018 J	0.01 U
Benzo(a)pyrene	mg/kg	0.0088 U [0.012 J]	0.0084 U	0.0085 U	0.0082 U	0.011 J	0.0083 U
Benzo(b)fluoranthene	mg/kg	0.014 U [0.017 J]	0.013 U	0.018 J	0.013 U	0.025 J	0.013 U
Benzo(g,h,i)perylene	mg/kg	0.0087 U [0.015 J]	0.0083 U	0.012 J	0.0082 U	0.017 J	0.0083 U
Benzo(k)fluoranthene	mg/kg	0.018 U [0.017 U]	0.017 U	0.017 U	0.017 U	0.017 U	0.017 U
Chrysene	mg/kg	0.011 J [0.016 J]	0.01 U	0.01 U	0.0098 U	0.031 J	0.0099 U
Dibenzo(a,h)anthracene	mg/kg	0.0098 U [0.0092 U]	0.0093 U	0.0094 U	0.0091 U	0.0094 U	0.0092 U
Fluoranthene	mg/kg	0.01 J [0.015 J]	0.0089 U	0.013 J	0.0088 U	0.022 J	0.0089 U
Fluorene	mg/kg	0.012 U [0.011 U]	0.011 U	0.011 U	0.011 U	0.011 U	0.011 U
Indeno(1,2,3-cd)pyrene	mg/kg	0.009 U [0.011 J]	0.0086 U	0.011 J	0.0085 U	0.013 J	0.0086 U
Naphthalene	mg/kg	0.0076 U [0.0071 U]	0.0072 U	0.0073 U	0.0071 U	0.0073 U	0.0072 U
Phenanthrene	mg/kg	0.014 U [0.018 J]	0.013 U	0.014 J	0.013 U	0.021 J	0.013 U
Pyrene	mg/kg	0.0089 U [0.011 J]	0.0085 U	0.01 J	0.0083 U	0.015 J	0.0084 U
Total PAHs	mg/kg	0.021 J [0.127 J]	ND	0.078 J	ND	0.173 J	ND
PCDDs/PCDFs							
1,2,3,4,6,7,8-HpCDD	µg/kg	0.0142 [0.00806]	0.00121 J	0.0408	0.00262	0.0287	0.00171 J
1,2,3,4,6,7,8-HpCDF	µg/kg	0.0036 [0.00207 J]	0.000292 J	0.00881	0.000634 J	0.00736	0.000701 J
1,2,3,4,7,8,9-HpCDF	µg/kg	0.000308 UX [0.000177 UX]	0.0000378 U	0.000843 J	0.0000513 UX	0.000771 J	0.0000961 U
1,2,3,4,7,8-HxCDD	µg/kg	0.000194 J [0.000172 U]	0.000156 U	0.000613 J	0.0000682 U	0.000249 J	0.000221 U
1,2,3,4,7,8-HxCDF	µg/kg	0.000444 J [0.000247 J]	0.0000475 J	0.000951 J	0.000062 U	0.000872 J	0.0000934 U
1,2,3,6,7,8-HxCDD	µg/kg	0.00067 J [0.000433 J]	0.00016 U	0.0018 J	0.000191 J	0.00102 J	0.000195 J
1,2,3,6,7,8-HxCDF	µg/kg	0.000265 J [0.000135 UX]	0.0000407 U	0.000338 UX	0.0000613 U	0.00035 J	0.0000986 J
1,2,3,7,8,9-HxCDD	µg/kg	0.0005 J [0.000321 J]	0.000173 U	0.00123 J	0.000146 J	0.0005 J	0.000254 U
1,2,3,7,8,9-HxCDF	µg/kg	0.000078 U [0.0000617 U]	0.0000429 U	0.000244 U	0.0000261 U	0.000181 UX	0.000148 U
1,2,3,7,8-PeCDD	µg/kg	0.000144 UX [0.000163 UX]	0.0000543 UX	0.000639 J	0.0000907 U	0.000181 J	0.000109 J
1,2,3,7,8-PeCDF	µg/kg	0.000112 UX [0.000112 UX]	0.0000415 UX	0.000189 J	0.0000644 U	0.000153 UX	0.000126 U
2,3,4,6,7,8-HxCDF	µg/kg	0.000335 J [0.00022 J]	0.0000478 U	0.000529 J	0.0000757 U	0.000439 J	0.000117 U
2,3,4,7,8-PeCDF	µg/kg	0.000398 J [0.000227 J]	0.0000598 J	0.000403 J	0.0000621 U	0.000345 J	0.000103 U
2,3,7,8-TCDD	µg/kg	0.0000552 U [0.0000772 U]	0.0000889 U	0.000132 UX	0.0000511 U	0.0000571 U	0.000105 U
2,3,7,8-TCDF	µg/kg	0.0002 UX [0.000106 U]	0.0000975 U	0.000213 J	0.000057 U	0.000216 J	0.000101 U
OCDD	µg/kg	0.171 [0.074]	0.0133	0.428	0.0313	0.349 J	0.0171
OCDF	µg/kg	0.0143 [0.0076]	0.000524 J	0.0407	0.00231 J	0.0315	0.00136 J
TOTAL HpCDD	µg/kg	0.0292 [0.0162]	0.00237	0.0949	0.00592	0.0585	0.00366
TOTAL HpCDF	µg/kg	0.0137 [0.00724]	0.000292	0.0367	0.00215	0.0308	0.00159
TOTAL HxCDD	µg/kg	0.00639 [0.00254]	0.000507	0.0227	0.00132	0.00825	0.000645
TOTAL HxCDF	µg/kg	0.00563 [0.00325]	0.000307	0.013	0.000671	0.0104	0.000848
TOTAL PeCDD	µg/kg	0.00226 [0.000795]	0.000345	0.00667	0.0000624	0.00123	0.000746
TOTAL PeCDF	µg/kg	0.00295 [0.00126]	0.000111	0.00278	0.0000633	0.00283	0.000675
TOTAL TCDD	µg/kg	0.0011 [0.000273]	0.000382 U	0.000578	0.000366	0.00254	0.000432
TOTAL TCDF	µg/kg	0.0026 [0.000736]	0.000174	0.000376	0.000408	0.00381	0.000404
TCDD TEQ (NDs=0)	µg/kg	0.000594 [0.000316]	0.0000419	0.00194	0.0000763	0.00113	0.000168

See Notes on Page 3.

Table 4 - Hand Auger Soil Sample Analytical ResultsSupplemental Off-Property InvestigationFormer Koppers Inc. Facility - Superior, WI

Location ID: HA-9 HA							
Depth (feet bgs):		0 - 0.5	0.5 - 1				
Date Collected:	Units	8/21/13	8/21/13				
PAHs							
Acenaphthene	mg/kg	0.0083 U	0.0079 U				
Acenaphthylene	mg/kg	0.019 J	0.0094 U				
Anthracene	mg/kg	0.015 J	0.008 U				
Benzo(a)anthracene	mg/kg	0.13	0.011 J				
Benzo(a)pyrene	mg/kg	0.098	0.0082 U				
Benzo(b)fluoranthene	mg/kg	0.15	0.013 U				
Benzo(g,h,i)perylene	mg/kg	0.059 J	0.0082 U				
Benzo(k)fluoranthene	mg/kg	0.035 J	0.017 U				
Chrysene	mg/kg	0.13	0.0098 U				
Dibenzo(a,h)anthracene	mg/kg	0.023 J	0.0091 U				
Fluoranthene	mg/kg	0.26	0.015 J				
Fluorene	mg/kg	0.011 U	0.011 U				
Indeno(1,2,3-cd)pyrene	mg/kg	0.059 J	0.0085 U				
Naphthalene	mg/kg	0.0074 U	0.0071 U				
Phenanthrene	mg/kg	0.055 J	0.013 U				
Pyrene	mg/kg	0.18	0.012 J				
Total PAHs	mg/kg	1.21 J	0.038 J				
PCDDs/PCDFs							
1,2,3,4,6,7,8-HpCDD	µg/kg	0.00503	0.000576 J				
1,2,3,4,6,7,8-HpCDF	µg/kg	0.00121 J	0.000294 J				
1,2,3,4,7,8,9-HpCDF	µg/kg	0.000126 U	0.0000451 U				
1,2,3,4,7,8-HxCDD	µg/kg	0.000223 U	0.000218 U				
1,2,3,4,7,8-HxCDF	µg/kg	0.000205 J	0.0000598 U				
1,2,3,6,7,8-HxCDD	µg/kg	0.000341 J	0.00024 U				
1,2,3,6,7,8-HxCDF	µg/kg	0.000179 UX	0.0000599 U				
1,2,3,7,8,9-HxCDD	µg/kg	0.000354 J	0.00024 U				
1,2,3,7,8,9-HxCDF	µg/kg	0.0000879 U	0.000095 U				
1,2,3,7,8-PeCDD	µg/kg	0.000151 J	0.0000888 U				
1,2,3,7,8-PeCDF	µg/kg	0.0000991 UX	0.0000856 U				
2,3,4,6,7,8-HxCDF	µg/kg	0.000214 J	0.0000725 U				
2,3,4,7,8-PeCDF	µg/kg	0.000194 UX	0.0000835 U				
2,3,7,8-TCDD	µg/kg	0.000105 U	0.0000975 U				
2,3,7,8-TCDF	µg/kg	0.000139 U	0.000053 U				
OCDD	µg/kg	0.0426 J	0.00375 J				
OCDF	µg/kg	0.00225 J	0.000171 J				
TOTAL HpCDD	µg/kg	0.011	0.00131				
TOTAL HpCDF	µg/kg	0.00249	0.000294				
TOTAL HxCDD	µg/kg	0.00373	0.000503				
TOTAL HxCDF	µg/kg	0.002	0.0000706 U				
TOTAL PeCDD	µg/kg	0.000873	0.0000852				
TOTAL PeCDF	µg/kg	0.00123	0.000168 U				
TOTAL TCDD	µg/kg	0.00276	0.000583				
TOTAL TCDF	µg/kg	0.00319	0.000568 U				
TCDD TEQ (NDs=0)	µg/kg	0.000338	0.00001				

See Notes on Page 3.

Table 4 - Hand Auger Soil Sample Analytical ResultsSupplemental Off-Property InvestigationFormer Koppers Inc. Facility - Superior, WI

Notes:

bgs - below ground surface mg/kg - milligrams per kilogram µg/kg - micrograms per kilogram PAHs - polycyclic aromatic hydrocarbons (USEPA Method 8270C) PCDDs/PCDFs - polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (USEPA Method 8290) TCDD TEQ - 2,3,7,8 tetrachlorinated dibenzo-p-dioxin toxic equivalent (calculated with WHO-2005 toxic equivalency factors [TEFs]; assumes non-detects have a concentration of zero) USEPA - United States Environmental Protection Agency [] - duplicate sample result J - indicates an estimated value U - not detected above reporting limit shown UX - elevated detection limit as estimated maximum possible concentration (EMPC)

ND - not detected

Table 5 - Direct Push Soil Boring SummarySupplemental Off-Property InvestigationFormer Koppers Inc. Facility - Superior, WI

				Analytical Sample	Visual/Olfact	ory Impacts ¹		
ID	Work Plan ID	Date Completed	Total Depth (feet bgs)	Analytical Sample Intervals (feet bgs)	Туре 1	Туре 2	TMW ID	
SB-1	Y	8/21/13	25	N/A	None	None	N/A	
SB-2	Ρ	8/21/13	30	25-25.5, 25.5-26	 Organics seam with creosote-like product at 7.1' Creosote-like product in clay fractures from 11.3- 11.4' 	 Creosote-like odor and sheen from 0-5' Black staining from 0.5-0.6', 6-6.2' Creosote-like odor and black staining from 15-20.1' 	TMW-2	
SB-2A		8/21/13	15	N/A	- Creosote-like product in clay fractures at/from 1.2- 1.8', 5-10', 10.8', 11.2', 11.5-11.8', 12', 12.3', 12.5- 12.7', 13.2-13.3', 13.7-13.8', and 13.9-14.3'	 Creosote-like odor and black/brown staining from 0- 1.8' Creosote-like odor and staining from 6.3-7.1' and 10- 15' 	TMW-2A	
SB-3	X	8/21/13	25	15.5-16, 16-16.5	- Creosote-like product in clay fractures at/from 5.6- 5.7', 6.1-6.3', 6.7-6.8', and 7.3-7.5'	- Creosote-like odor 0-15.8' - Sheen from 0-15' - Black staining from 1.5-2.2' and 10-14.5'	N/A	
SB-4	N/A	8/21/13	20	N/A	None	None	N/A	
SB-5	Q	8/21/13	30	N/A	None	None	TMW-5	
SB-5A		8/21/13	12	N/A	N/A - blind drill for shallow well installation	N/A - blind drill for shallow well installation	TMW-5A	
SB-6	W	8/22/13	25	N/A	None	None	N/A	
SB-7	AA	8/22/13	25	N/A	None	None	N/A	
SB-8	V	8/22/13	30	N/A	None	None	TMW-8	
SB-8A		8/22/13	12	N/A	N/A - blind drill for shallow well installation	N/A - blind drill for shallow well installation	TMW-8A	
SB-9	E	8/22/13	25	N/A	None	None	N/A	
SB-10	D	8/22/13	25	N/A	None	None	N/A	
SB-11	I	8/22/13	30	N/A	None	None	TMW-11	
SB-11A		8/22/13	12	N/A	N/A - blind drill for shallow well installation	N/A - blind drill for shallow well installation	TMW-11A	
SB-12	М	8/23/13	40	30-30.5, 30.5-31	 Creosote-like product in clay fractures from 5-10' and 25.4-30' Creosote-like product in organics from 5.2-5.3', 5.6- 5.7', and 5.8-6.6' Creosote-like product in clayey sand from 26.6-26.8' and 27.4-27.8' 	- Creosote-like odor from 0-30' - Black/brown staining at/from 0.8', 5.1-15', and 25.4- 30'	TMW-12C	
SB-12A		9/12/13	15	N/A	- Creosote-like product in clay fractures from 5-14'	- Creosote-like odor from 0-15' - Black/brown staining from 0.8-14' - Sheen from 0.8-1.2' and 5-14'	TMW-12A	
SB-12B		9/12/13	30	N/A	- Creosote-like product in clay fractures from 5.8-10' and 11.3-14' - Creosote-like product in sand from 15.9-16.2, 20.1- 20.7', and 26.8-27.6'	- Creosote-like odor from 0-30' - Black/brown staining from 0.4-0.7', 5-16.8', and 20.1- 27.6' - Sheen at 22.3' and 26.6'	TMW-12B	
SB-13	N/A	9/12/13	30	N/A	None	- Creosote-like odor and black staining at 2.5'	N/A	
SB-14	Z	9/13/13	25	N/A	None	None	N/A	

Table 5 - Direct Push Soil Boring SummarySupplemental Off-Property InvestigationFormer Koppers Inc. Facility - Superior, WI

					Visual/Olfac	tory Impacts ¹	
ID	Work Plan ID	Date Completed	Total Depth (feet bgs)	Analytical Sample Intervals (feet bgs)	Туре 1	Туре 2	TMW ID
SB-15	Ν	9/13/13	25	N/A	None	None	N/A
SB-16		9/13/13	35	30-30.5, 30.5-31	- Creosote-like product in sand from 16.2-16.5'	 Creosote-like odor from 0.6-30' (not continuous) Black staining from 0.6-0.8', 16.2-16.8, 20.2-21.3', and 27.4-27.5' Sheen from 10.5-10.8' and 26-26.1' 	N/A
SB-17	0	9/13/13	25	N/A	None	None	N/A
SB-18	N/A	11/19/13	40	34-34.5. 34.5-35	None	- Creosote-like odor from 28.3-29.3' and 30-32.2' - Sheen at/from 29.1' and 30.9-31.1'	N/A
SB-19	N/A	11/19/13	41	N/A	None	None	TMW-19C (replacement for TMW-12C)
SB-20	N/A	11/19/13	30	N/A	None	None	N/A
SB-21	N/A	11/19/13	10	N/A	- Creosote-like product in clay fractures from 5-10' Note: Boring was terminated at 10' to avoid potential drag-down of shallow impacts	 Creosote-like odor from 0-10' Black/brown staining from 0.3-10' Sheen from 5-10' Note: Boring was terminated at 10' to avoid potential drag-down of shallow impacts 	N/A
SB-22	N/A	11/20/13	30	21.2-21.7, 21.7-22.2	None	- Creosote-like odor from 0.6-21.1' - Sheen from 0.4-15' - Black/brown staining from 0.4-15' and 16.7-20.3	N/A
SB-23	N/A	12/18/13	30	N/A	None	None	TMW-23 (replacement for TMW-2)

Notes:

bgs - below ground surface

N/A - not applicable

TMW - temporary monitoring well

¹ Type 1 - creosote-like product in clay fractures or sand/organic seams

Type 2 - creosote-like odor, staining and/or sheens, but no product

Type 3 - no visible impacts

Location ID:		SB-2	SB-3	SB-12	SB-12	SB-16	SB-18	SB-22
Depth (feet bgs):		25 - 25.5	15.5 - 16	30 - 30.5	30.5 - 31	30 - 30.5	34 - 34.5	21.2 - 21.7
Date Collected:	Units	8/21/13	8/21/13	8/23/13	8/23/13	9/13/13	11/19/13	11/20/13
PAHs								
Acenaphthene	mg/kg	0.0085 U	0.0088 U	4.1 J [0.063 J]	0.0098 U	0.0098 J	0.0092 U	0.0087 U
Acenaphthylene	mg/kg	0.01 U	0.01 U	0.081 J [0.012 U]	0.012 U	0.01 U	0.011 U	0.01 U
Anthracene	mg/kg	0.0087 U	0.0089 U	1.1 J [0.023 J]	0.01 U	0.0085 U	0.0094 U	0.0088 U
Benzo(a)anthracene	mg/kg	0.011 U	0.011 U	1.2 J [0.039 J]	0.013 U	0.011 U	0.012 U	0.011 U
Benzo(a)pyrene	mg/kg	0.0088 U	0.0091 U	0.43 J [0.015 J]	0.01 U	0.0087 U	0.0096 U	0.009 U
Benzo(b)fluoranthene	mg/kg	0.014 U	0.014 U	0.68 J [0.025 J]	0.016 U	0.014 U	0.015 U	0.014 U
Benzo(g,h,i)perylene	mg/kg	0.0088 U	0.0091 U	0.15 [0.011 U]	0.01 U	0.0086 U	0.0096 U	0.009 U
Benzo(k)fluoranthene	mg/kg	0.018 U	0.018 U	0.2 [0.021 U]	0.021 U	0.018 U	0.019 U	0.018 U
Chrysene	mg/kg	0.011 U	0.011 U	0.91 J [0.03 J]	0.012 U	0.01 U	0.011 U	0.011 U
Dibenzo(a,h)anthracene	mg/kg	0.0098 U	0.01 U	0.067 J [0.012 U]	0.011 U	0.0097 U	0.011 U	0.01 U
Fluoranthene	mg/kg	0.0095 U	0.0098 U	5.9 J [0.17 J]	0.011 U	0.032 J	0.01 U	0.0096 U
Fluorene	mg/kg	0.012 U	0.012 U	3.6 J [0.018 J]	0.013 U	0.011 U	0.013 U	0.012 U
Indeno(1,2,3-cd)pyrene	mg/kg	0.0091 U	0.0094 U	0.15 [0.011 U]	0.011 U	0.009 U	0.0099 U	0.0093 U
Naphthalene	mg/kg	0.0076 U	0.089 J	8.7 J [0.1 J]	0.031 J	0.0075 U	0.058 J	0.0078 U
Phenanthrene	mg/kg	0.014 U	0.015 U	9.5 J [0.23 J]	0.016 U	0.045 J	0.015 U	0.014 U
Pyrene	mg/kg	0.0089 U	0.0092 U	3.6 J [0.11 J]	0.01 U	0.022 J	0.0097 U	0.0091 U
Total PAHs	mg/kg	ND	0.089 J	40.4 J [0.823 J]	0.031 J	0.1088 J	0.058 J	ND

Notes:

bgs - below ground surface

mg/kg - milligrams per kilogram

ND - not detected

PAHs - polycyclic aromatic hydrocarbons (USEPA Method 8270C)

[] - duplicate sample result

J - indicates an estimated value

U - not detected above reporting limit shown

Table 7 - Temporary Monitoring Well Construction SummarySupplemental Off-Property InvestigationFormer Koppers Inc. Facility - Superior, WI

Well ID	Date Installed	Ground Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Stickup Height (feet ags)	Well/Screen Material	Well/ Screen Diameter (inches)	Screen Slot Size (inches)	Screen Interval (feet bgs)	Screen Length (feet)	Soil Zone Screened ³
TMW-2A	8/21/13	604.30	606.22	1.92	Schd. 40 PVC	3/4	0.010	5-15	10	Type 1 (clay, organics)
TMW-2	8/21/13	603.65	607.63	3.98	Schd. 40 PVC	3/4	0.010	20-30	10	Type 3 (clay), below Type 1
TMW-5A	8/21/13	610.36	613.31	2.95	Schd. 40 PVC	3/4	0.010	2-12	10	Type 3 (clay)
TMW-5	8/21/13	610.60	613.44	2.84	Schd. 40 PVC	3/4	0.010	20-30	10	Type 3 (clay)
TMW-8A	8/22/13	605.29	608.30	3.01	Schd. 40 PVC	3/4	0.010	2-12	10	Type 3 (clay)
TMW-8	8/22/13	605.27	609.07	3.80	Schd. 40 PVC	3/4	0.010	20-30	10	Type 3 (clay)
TMW-11A	8/22/13	610.37	613.33	2.96	Schd. 40 PVC	3/4	0.010	2-12	10	Type 3 (clay)
TMW-11	8/22/13	611.01	614.19	3.18	Schd. 40 PVC	3/4	0.010	20-30	10	Type 3 (clay)
TMW-12A	9/12/13	608.42	611.63	3.21	Schd. 40 PVC	3/4	0.010	5-15	10	Type 1 (clay)
TMW-12B	9/12/13	608.28	612.02	3.74	Schd. 40 PVC	3/4	0.010	25-30	5	Type 1 (sand)
TMW-12C	9/12/13	608.42	611.93	3.51	Schd. 40 PVC	3/4	0.010	35-40	5	Type 3 (clay), below Type 1
TMW-19C ^{1,4}	12/17/13	608.76	612.26	3.50	Schd. 40 PVC	3/4	0.010	35-40	5	Type 3 (clay), below/ downgradient of Type 1
TMW-23 ²	12/18/13	604.88	607.25	2.37	Schd. 40 PVC	3/4	0.010	20-30	10	Type 3 (clay), below/ downgradient of Type 1

Notes:

ags - above ground surface

AMSL - above mean sea level (NAVD 88)

bgs - below ground surface

TOC - top of casing

1. TMW-19C installed as a replacement well for TMW-12C.

2. TMW-23 installed as a replacement well for TMW-2.

3. Type 1 - creosote-like product in clay fractures or sand/organic seams

Type 2 - creosote-like odor, staining and/or sheens, but no product

Type 3 - no visible impacts

4. TMW-19C originally installed on 11/19/13, but due to borehole collapse preventing good bentonite seal placement, overdrilled (with augers) and re-installed on 12/17/13.

Table 8 - Temporary Monitoring Well Development SummarySupplemental Off-Property InvestigationFormer Koppers Inc. Facility - Superior, WI

Well ID	Date Developed	Measured Depth to Water (feet bTOC)	Measured Total Well Depth (feet bTOC)	Water Column (feet)	Vol. Water in Well (gallons)	# Times Bailed/ Pumped Dry	Total Vol. Water Removed (gallons)	# Well Volumes Removed	Purge Water Description
TMW-2A	9/23,25/13	3.12	16.80	13.68	0.36	2	1	3	Light brown, turbid, no sheen, slight odor
TMW-2	9/23-25/13	4.41	33.18	28.77	0.75	3	3.5	5	Light brown, turbid, very slight sheen and odor, product on bailer
TMW-5A	9/23/13	10.97	15.09	4.12	0.11	1	0.25	2	Light brown, turbid, no sheen , no odor
TMW-5	9/23-25/13	9.80	32.03	22.23	0.58	3	1.25	2	Light brown, turbid, no sheen , no odor
TMW-8A	9/23-25/13	3.52	14.98	11.46	0.30	3	1.5	5	Light brown, turbid, no sheen, no odor, eventually turned clear
TMW-8	9/23-25/13	4.58	33.10	28.52	0.74	3	5	7	Light gray, turbid, no sheen, no odor, eventually turned less turbid
TMW-11A	9/24/13	10.86	15.10	4.24	0.11	1	0.25	2	Light brown, turbid, no sheen, no odor
TMW-11	9/24-25/13	7.00	33.06	26.06	0.68	2	1	1	Light brown, turbid, no sheen, no odor
TMW-12A	9/24-25/13	7.64	20.02	12.38	0.32	2	1.25	4	Light brown, turbid, odor and sheen present, product on tubing
TMW-12B				N/A - dio	d not develop o	lue to the pres	sence of free pro	oduct in the w	ell
TMW-12C	9/24/13	7.79	45.12	37.33	0.97	2	1.75	2	Light brown, turbid, odor and sheen present, some product also present
TMW-19C ¹	12/19/13	9.48	43.60	34.12	0.89	2	1.5	2	Light brown, turbid, no sheen, no odor
TMW-23 ²	1/4/14	17.90	32.92	15.02	0.39	1	2	5	Light brown, turbid, no sheen, no odor

Notes:

bTOC - below top of casing

N/A - not applicable

1. TMW-19C installed as a replacement well for TMW-12C.

2. TMW-23 installed as a replacement well for TMW-2.

Table 9 - Groundwater Level MeasurementsSupplemental Off-Property InvestigationFormer Koppers Inc. Facility - Superior, WI

Well ID	Date	TOC Elevation (feet AMSL)	Depth to Water (feet bTOC)	Groundwater Elevation (feet AMSL)
TMW-2A	10/23/13	606.22	2.14	604.08
	1/12/14	606.22	2.64	603.58
TMW-2	10/23/13	607.63	3.42	604.21
	1/12/14	607.63	4.15	603.48
TMW-5A	10/23/13	613.31	4.49	608.82
	1/12/14	613.31	10.66	602.65
TMW-5	10/23/13	613.44	9.91	603.53
	1/12/14	613.44	9.14	604.30
TMW-8A ¹	10/23/13	608.30	2.20	606.10
	1/12/14	608.30	3.57	604.73
TMW-8 ¹	10/23/13	609.07	4.19	604.88
	1/12/14	609.07	3.71	605.36
TMW-11A	10/23/13	613.33	9.78	603.55
	1/12/14	613.33	7.89	605.44
TMW-11	10/23/13	614.19	8.51	605.68
	1/12/14	614.19	6.64	607.55
TMW-12A	10/23/13	611.63	3.71	607.92
	1/12/14	611.63	5.89	605.74
TMW-12B	10/23/13	612.02	5.50	606.52
	1/12/14	612.02	5.51	606.51
TMW-12C	10/23/13	611.93	4.95	606.98
	1/12/14	Well	abandoned on 11/	20/13
TMW-19C	1/12/14	612.26	5.18	607.08
TMW-23	1/12/14	607.25	8.25	599.00

Notes:

AMSL - above mean sea level (NAVD 88)

bTOC - below top of casing

TOC - top of casing

1. 1/12/14 measurements at TMW-8A and TMW-8 made after breaking through

ice in well casing.

Well ID:					тми	TMW-23 ¹				
Screen Interval (feet bgs):						20-	-30			
Seil Zene Sevened							Type 3 (cla	ay), below/		
Soil Zone Screened:				Type 1 (clay, organics)				DG of Type 1		
Filtered/Unfiltered:		WDNR		Unfilt		Filte		Unfiltered	Filtered	
Sampling Event:	Units	PAL [∗]	ES⁼	Oct-13	Jan-14	Oct-13	Jan-14	Jan-14	Jan-14	
Volatile Organic Compounds										
1,1,1-Trichloroethane	µg/L	40	200	1 U	50 U	1 U	20 U	1 U	1 U	
1,2,4-Trimethylbenzene	µg/L	96	480	37	24 J	8.7	10 J	1 U	1 U	
1,3,5-Trimethylbenzene	µg/L	00		15	11 J	3.5	5 J	1 U	1 U	
Benzene	µg/L	0.5	5	7	50 U	4	20 U	1 U	1 U	
Chlorobenzene	μg/L			NA	50 U	NA	20 U	1 U	1 U	
Chloromethane	µg/L	3	30	1 U	NA	1 U	NA	NA	NA	
Ethylbenzene	µg/L	140	700	40	30 J	12	16 J	1 U	1 U	
Methyl(tert)butyl ether	µg/L	12	60	5 U	250 U	5 U	100 U	5 U	5 U	
N-butylbenzene	µg/L			1 U	50 U	1 U	20 U	1 U	1 U	
N-propylbenzene	µg/L			0.93 J	50 U	1 U	20 U	1 U	1 U	
Styrene	µg/L	10	100	1 U	50 U	1 U	20 U	1 U	1 U	
Toluene	µg/L	160	800	25	26 J	11	16 J	1 U	1 U	
M&P-xylene	µg/L	400	2,000	70	50 J	20	28 J	2 U	0.21 J	
O-xylene	µg/L	400	2,000	32	26 J	11	15 J	1 U	1 U	
Naphthalene	µg/L	10	100	12,000 DJ	7,900	6,400 DJ	2,800	1 U	1 U	
Total BTEX	µg/L			174	143	58	75	ND	0.21	
Semivolatile Organic Compounds										
3-methylcholanthrene	µg/L			21 U	200 UJ	21 U	310 UJ	2.3 U	2 U	
4,6-dinitro- 2-methylphenol	µg/L			53 U	500 UJ	53 U	780 UJ	5.8 U	5.6 UJ	
4-chlorophenylphenyl- ether	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 UJ	
1,2,4-Trichlorobenzene	µg/L	14	70	5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 U	
1,2-Dichlorobenzene	μg/L	60	600	5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 U	
1,3-Dichlorobenzene	μg/L	120	600	5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 U	
1,4-Dichlorobenzene	µg/L	15	75	5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 U	
1-Methylnaphthalene	µg/L			170	150 J	94	69 J	0.58 U	0.5 U	
2,3,4,6-Tetrachlorophenol	µg/L			53 U	500 UJ	53 U	780 UJ	5.8 U	5.6 UJ	
2,3,5,6-Tetrachlorophenol	μg/L			110 U	1,000 UJ	110 U	1,600 UJ	12 UJ	11 UJ	
2,4,5-Trichlorophenol	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 U	0.56 UJ	
2,4,6-Trichlorophenol	μg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 U	0.56 UJ	
2,4-Dichlorophenol	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 U	0.56 UJ	
2,4-Dimethylphenol	µg/L			170	120 J	170	180 J	1.2 U	1.1 UJ	
2,4-Dinitrophenol	μg/L			53 U	500 UJ	53 U	780 UJ	5.8 UJ	5.6 UJ	
2.4-Dinitrotoluene	µg/L	0.005	0.05	5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 U	
2,6-dinitrotoluene	µg/L	0.005	0.05	5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.11 J	
2-Chloronaphthalene	μg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 UJ	
2-Chlorophenol	μg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.56 UJ	
2-Methylnaphthalene	µg/L			320 D	260 J	150	110 J	0.58 UJ	0.5 UJ	
2-Methylphenol	µg/L			40	19 J	44	39 J	0.58 UJ	0.56 UJ	
2-Nitroaniline	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 U	0.5 U	
2-Nitrophenol	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 U	0.56 UJ	
3.3'-dichlorobenzidine	μg/L			11 U	100 UJ	11 U	160 UJ	1.2 UJ	1 UJ	
3-nitroaniline	µg/L			11 U	100 UJ	11 U	160 UJ	1.2 U	1 U	
4-bromophenyl phenylether	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 UJ	
4-chloro-3-methylphenol	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.56 UJ	
4-chloroaniline	μg/L			11 U	100 UJ	11 U	160 UJ	1.2 UJ	1 U	
4-methylphenol	μg/L			100	56 J	88	130 J	0.58 UJ	0.56 UJ	
4-nitroaniline	μg/L			11 UJ	100 UJ	11 UJ	160 UJ	1.2 U	1 U	
4-nitrophenol	μg/L			53 U	500 UJ	53 U	780 UJ	5.8 UJ	5.6 UJ	

Well ID:					тмм	I-2A		TMW-23 ¹		
Screen Interval (feet bgs):					5-1	15		20	-30	
Soil Zone Screened:					Type 1 (clay	/, organics)		Type 3 (clay), below/ DG of Type 1		
Filtered/Unfiltered:		WDNR	WDNR	Unfil	tered	Filtered		Unfiltered	Filtered	
Sampling Event:	Units	PAL [≭]	ES⁺	Oct-13	Jan-14	Oct-13	Jan-14	Jan-14	Jan-14	
Acenaphthene	µg/L			270 D	240 J	110	98 J	0.58 UJ	0.5 UJ	
Acenaphthylene	µg/L			0.85 J	50 UJ	0.43 J	78 UJ	0.58 UJ	0.5 UJ	
Anthracene	µg/L	600	3,000	9.5	21 J	5.3 U	78 UJ	0.58 UJ	0.5 UJ	
Benzo (a) anthracene	µg/L			6.6	12 J	5.3 U	78 UJ	0.58 UJ	0.5 UJ	
Benzo (a) pyrene	µg/L	0.02	0.2	2.4 J	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 U	
Benzo (b) fluoranthene	µg/L	0.02	0.2	3.8 J	6.3 J	5.3 U	78 UJ	0.58 UJ	0.5 U	
Benzo (g,h,i) perylene	µg/L			0.74 J	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 UJ	
Benzo (k) fluoranthene	µg/L			1.6 J	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 U	
Benzoic acid	µg/L			36 J	R	37 J	R	R	R	
Benzyl alcohol	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 U	
Bis (2-chloroethoxy)- methane	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 U	
Bis (2-chloroethyl) ether	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 U	
Bis (2-chloroisopropyl)-ether	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 UJ	
Bis (2-ethylhexyl)- phthalate	µg/L	0.6	6	5.3 U	50 UJ	5.3 U	78 UJ	0.58 UBJ	0.5 UBJ	
Butyl benzyl phthalate	µg/L			11 U	100 UJ	11 U	160 UJ	1.2 UJ	1 UJ	
Chrysene	µg/L	0.02	0.2	4.8 J	8.4 J	5.3 U	78 UJ	0.58 UJ	0.5 U	
Dibenzo (a,h) anthracene	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 UJ	
Dibenzofuran	µg/L			120	100 J	15	30 J	0.58 UJ	0.5 UJ	
Diethylphthalate	µg/L			1.2 J		1.5 J	78 UJ	0.58 UBJ	0.58 UB	
Dimethylphthalate	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.1 J	0.12 J	
Di-n-butylphthalate	µg/L			11 U	100 UJ	11 U	160 UJ	2.3 UB	1 UB	
Di-n-octylphthalate	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 UJ	
Fluoranthene	µg/L	80	400	34	46 J	5.3 U	78 UJ	0.58 U	0.5 U	
Fluorene	µg/L	80	400	110	100 J	16	27 J	0.58 UJ	0.5 UJ	
Hexachlorobenzene	µg/L	0.1	1	5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 UJ	
Hexachlorobutadiene	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 UJ	
Hexachlorocyclopentadiene	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.56 UJ	
Hexachloroethane	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 U	
Indeno (1,2,3-cd) pyrene	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 UJ	
Isophorone	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	1.7	1.6	
Naphthalene	µg/L	10	100	5,200 D	5,000 DJ	4,100 D	2,900 J	0.58 UJ	0.04 J	
Nitrobenzene	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 UJ	
N-nitrosodi-n-propylamine	µg/L			5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.5 U	
N-nitroso-di-phenylamine	µg/L	0.7	7	5.3 U	50 UJ	5.3 U	78 UJ	0.58 UJ	0.56 UJ	
Pentachlorophenol	µg/L	0.1	1	5.3 U	50 UJ	2.9 J	78 UJ	0.58 U	0.56 UJ	
Phenanthrene	µg/L			130	140 J	0.53 J	19 J	0.58 UJ	0.5 UJ	
Phenol	µg/L	400	2,000	11	50 UJ	11	78 UJ	0.58 UJ	0.56 UJ	
Pyrene	µg/L	50	250	26	36 J	5.3 U	78 UJ	0.58 UJ	0.5 U	
Total PAHs	µg/L			5,800 J	5,610 J	4,227J	3,044 J	ND	0.04 J	

Well ID:		1		т	MW-5A			TM	W-5	
Screen Interval (feet bgs):				2-12				20		
Soil Zone Screened:				Тур	be 3 (clay)			B (clay)	
Filtered/Unfiltered:		WDNR WDNR Unfiltered Filtered Unfiltered		Linfiltered Filtered		Itered	Filtered			
Sampling Event:	Units	PAL	ES⁼	Oct-13	Oct-13	Jan-14	Oct-13	Jan-14	Oct-13	Jan-14
Volatile Organic Compounds										
1,1,1-Trichloroethane	µg/L	40	200	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,2,4-Trimethylbenzene	µg/L		100	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1,3,5-Trimethylbenzene	µg/L	96	480	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Benzene	µg/L	0.5	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chlorobenzene	µg/L			NA	NA	1 U	NA	1 U	NA	1 U
Chloromethane	µg/L	3	30	1 U	1 UJ	NA	1 U	NA	1 U	NA
Ethylbenzene	µg/L	140	700	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Methyl(tert)butyl ether	µg/L	12	60	5 U	5 U	5 U	5 U	5 U	5 U	5 U
N-butylbenzene	µg/L			1 U	1 U	1 U	1 U	1 U	1 U	1 U
N-propylbenzene	µg/L			1 U	1 U	1 U	1 U	1 U	1 U	1 U
Styrene	µg/L	10	100	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Toluene	µg/L	160	800	1 U	1 U	0.35 J	1 U	1 U	1 U	2.3
M&P-xylene	µg/L	400	0.000	2 U	2 U	2 U	2 U	2 U	2 U	0.38 J
O-xylene	µg/L	400	2,000	1 U	1 U	1 U	1 U	1 U	1 U	0.24 J
Naphthalene	µg/L	10	100	1 UJ	1 U	1 U	1 UJ	1 U	1 UJ	1 U
Total BTEX	µg/L			ND	ND	0.35	ND	ND	ND	2.92
Semivolatile Organic Compounds										
3-methylcholanthrene	µg/L			2.2 U	5.7 U	3.2 U	2 U	2.4 U	2.2 U	2.3 U
4,6-dinitro- 2-methylphenol	µg/L			5.6 U	14 U	R	5 U	5.9 U	5.6 U	5.7 U
4-chlorophenylphenyl- ether	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U
1,2,4-Trichlorobenzene	µg/L	14	70	0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U
1,2-Dichlorobenzene	µg/L	60	600	0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U
1,3-Dichlorobenzene	µg/L	120	600	0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U
1,4-Dichlorobenzene	µg/L	15	75	0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U
1-Methylnaphthalene	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U
2,3,4,6-Tetrachlorophenol	µg/L			5.6 U	14 U	R	5 U	5.9 U	5.6 U	5.7 U
2,3,5,6-Tetrachlorophenol	µg/L			11 U	29 U	R	10 U	12 U	11 U	11 U
2,4,5-Trichlorophenol	µg/L			0.56 U	1.4 U	R	0.5 U	0.59 U	0.56 U	0.57 U
2,4,6-Trichlorophenol	µg/L			0.56 U	1.4 U	R	0.5 U	0.59 U	0.56 U	0.57 U
2,4-Dichlorophenol	µg/L			0.56 U	1.4 U	R	0.5 U	0.59 U	0.56 U	0.57 U
2,4-Dimethylphenol	µg/L			1.1 U	2.9 U	R	1 U	1.2 U	1.1 U	1.1 U
2,4-Dinitrophenol	µg/L			5.6 U	14 U	R	5 U	5.9 U	5.6 U	5.7 U
2,4-Dinitrotoluene	µg/L	0.005	0.05	0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U
2,6-dinitrotoluene	µg/L	0.005	0.05	0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U
2-Chloronaphthalene	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U
2-Chlorophenol	µg/L			0.56 U	1.4 U	R	0.5 U	0.59 U	0.56 U	0.57 U
2-Methylnaphthalene	µg/L			0.56 U	1.4 U	0.032 J	0.5 U	0.59 U	0.56 U	0.57 U
2-Methylphenol	µg/L			0.56 U	1.4 U	R	0.5 U	0.59 U	0.56 U	0.57 U
2-Nitroaniline	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U
2-Nitrophenol	µg/L			0.56 U	1.4 U	R	0.5 U	0.59 U	0.56 U	0.57 U
3,3'-dichlorobenzidine	µg/L			1.1 U	2.9 U	1.6 U	1 U	1.2 U	1.1 U	1.1 U
3-nitroaniline	µg/L			1.1 U	2.9 U	1.6 U	1 U	1.2 U	1.1 U	1.1 U
4-bromophenyl phenylether	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U
4-chloro-3-methylphenol	µg/L			0.56 U	1.4 U	R	0.5 U	0.59 U	0.56 U	0.57 U
4-chloroaniline	µg/L			1.1 U	2.9 U	1.6 U	1 U	1.2 U	1.1 U	1.1 U
4-methylphenol	µg/L			0.56 U	1.4 U	R	0.5 U	0.59 U	0.56 U	0.57 U
4-nitroaniline	µg/L			1.1 U	2.9 U	1.6 U	1 U	1.2 U	1.1 U	1.1 U
4-nitrophenol	µg/L			5.6 UJ	14 UJ	R	5 UJ	5.9 UJ	5.6 UJ	5.7 UJ

Well ID:	Well ID: TMW-5A							TMW-5				
Screen Interval (feet bgs):					2-12			20	-30			
Soil Zone Screened:				Тур	be 3 (clay)	Type 3 (clay)					
Filtered/Unfiltered:		WDNR	WDNR	Unfiltered	Filt	Filtered		Unfiltered		ered		
Sampling Event:	nt: Units PAL [*] ES [*] Oct-13 Oct-13 Jan-14		Oct-13	Jan-14	Oct-13	Jan-14						
Acenaphthene	µg/L			0.56 U	1.4 U	0.11 J	0.5 U	0.59 U	0.56 U	0.57 U		
Acenaphthylene	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Anthracene	µg/L	600	3,000	0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Benzo (a) anthracene	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Benzo (a) pyrene	µg/L	0.02	0.2	0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Benzo (b) fluoranthene	µg/L	0.02	0.2	0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Benzo (g,h,i) perylene	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Benzo (k) fluoranthene	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Benzoic acid	µg/L			R	R	R	R	R	R	R		
Benzyl alcohol	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Bis (2-chloroethoxy)- methane	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Bis (2-chloroethyl) ether	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Bis (2-chloroisopropyl)-ether	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Bis (2-ethylhexyl)- phthalate	µg/L	0.6	6	0.29 J	0.49 J	0.81 UB	0.15 J	0.59 UB	0.19 J	0.57 UB		
Butyl benzyl phthalate	µg/L			0.11 J	0.17 J	1.6 U	1 U	1.2 U	1.1 U	1.1 UB		
Chrysene	µg/L	0.02	0.2	0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Dibenzo (a,h) anthracene	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Dibenzofuran	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Diethylphthalate	µg/L			0.56 UB	1.4 UB	0.95 UB	0.5 UB	0.59 UB	0.5 UB	0.57 UB		
Dimethylphthalate	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Di-n-butylphthalate	µg/L			0.57 J	0.77 J	3.7 UB	0.24 J	1.7 UB	0.16 J	2.5 UB		
Di-n-octylphthalate	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Fluoranthene	µg/L	80	400	0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Fluorene	µg/L	80	400	0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Hexachlorobenzene	µg/L	0.1	1	0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Hexachlorobutadiene	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Hexachlorocyclopentadiene	µg/L			0.56 U	1.4 U	R	0.5 U	0.59 UJ	0.56 U	0.57 UJ		
Hexachloroethane	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Indeno (1,2,3-cd) pyrene	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Isophorone	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Naphthalene	µg/L	10	100	0.56 U	1.4 U	0.34 J	0.053 J	0.59 U	0.56 U	0.57 U		
Nitrobenzene	µg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
N-nitrosodi-n-propylamine	μg/L			0.56 U	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
N-nitroso-di-phenylamine	µg/L	0.7	7	0.56 U	1.4 U	R	0.5 U	0.59 U	0.56 U	0.57 U		
Pentachlorophenol	µg/L	0.1	1	0.56 U	1.4 U	R	0.5 U	0.59 U	0.56 U	0.57 U		
Phenanthrene	µg/L			0.067 J	0.14 J	0.097 J	0.5 U	0.59 U	0.56 U	0.57 U		
Phenol	µg/L	400	2,000	0.56 U	2.8	R	0.5 U	0.59 U	0.18 J	0.57 U		
Pyrene	µg/L	50	250	0.11 J	1.4 U	0.81 U	0.5 U	0.59 U	0.56 U	0.57 U		
Total PAHs	µg/L			0.177 J	0.14 J	0.547 J	0.053 J	ND	ND	ND		

Well ID:					тм	V-8A				
Screen Interval (feet bgs):				2-12						
Soil Zone Screened:				Type 3 (clay)						
Filtered/Unfiltered:		WDNR	WDNR	Unfiltere	d	Filtered				
Sampling Event:	Units	PAL [*]	ES⁼	Oct-13	Jan-14	Oct-13	Jan-14			
Volatile Organic Compounds										
1,1,1-Trichloroethane	µg/L	40	200	1 U [1 U]	1 U	1 U [1 U]	1 U			
1,2,4-Trimethylbenzene	µg/L	96	480	0.69 J [1 U]	1 U	1 U [1 U]	1 U			
1,3,5-Trimethylbenzene	µg/L	30	400	1 U [1 U]	1 U	1 U [1 U]	1 U			
Benzene	µg/L	0.5	5	1 U [1 U]	1 U	1 U [1 U]	1 U			
Chlorobenzene	µg/L			NA	1 U	NA	1 U			
Chloromethane	µg/L	3	30	1 U [1 U]	NA	1 U [1 U]	NA			
Ethylbenzene	µg/L	140	700	1 U [1 U]	1 U	1 U [1 U]	1 U			
Methyl(tert)butyl ether	µg/L	12	60	5 U [5 U]	5 U	5 U [5 U]	5 U			
N-butylbenzene	µg/L			1 U [1 U]	1 U	1 U [1 U]	1 U			
N-propylbenzene	µg/L			1 U [1 U]	1 U	1 U [1 U]	1 U			
Styrene	µg/L	10	100	1 U [1 U]	1 U	1 U [1 U]	1 U			
Toluene	µg/L	160	800	1 U [1 U]	1 U	1 U [1 U]	1 U			
M&P-xylene	µg/L	400	2,000	2 U [2 U]	2 U	2 U [2 U]	2 U			
O-xylene	µg/L		·	1 U [1 U]	1 U	1 U [1 U]	1 U			
Naphthalene	µg/L	10	100	1 UJ [1 UJ]	1 U	1 UJ [1 UJ]	1 U			
Total BTEX	µg/L			ND [ND]	ND	ND [ND]	ND			
Semivolatile Organic Compounds										
3-methylcholanthrene	µg/L			2 U [2 U]	2.4 U	2 U [2 U]	2.5 U			
4,6-dinitro- 2-methylphenol	µg/L			5 U [5 U]	5.9 U	5 U [5 U]	6.2 U			
4-chlorophenylphenyl- ether	µg/L			0.5 U [0.052 J]	0.59 U	0.5 U [0.5 U]	0.62 U			
1,2,4-Trichlorobenzene	µg/L	14	70	0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
1,2-Dichlorobenzene	µg/L	60	600	0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
1,3-Dichlorobenzene	µg/L	120	600	0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
1,4-Dichlorobenzene	µg/L	15	75	0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
1-Methylnaphthalene	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
2,3,4,6-Tetrachlorophenol	µg/L			5 U [5 U]	5.9 U	5 U [5 U]	6.2 U			
2,3,5,6-Tetrachlorophenol	µg/L			10 U [10 U]	12 U	10 U [10 U]	12 U			
2,4,5-Trichlorophenol	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
2,4,6-Trichlorophenol	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
2,4-Dichlorophenol	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
2,4-Dimethylphenol	µg/L			1 U [1 U]	1.2 U	1 U [1 U]	1.2 U			
2,4-Dinitrophenol	µg/L			5 U [5 U]	5.9 UJ	5 U [5 U]	6.2 UJ			
2,4-Dinitrotoluene	µg/L	0.005	0.05	0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
2,6-dinitrotoluene	µg/L	0.005	0.05	0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
2-Chloronaphthalene	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
2-Chlorophenol	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
2-Methylnaphthalene	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
2-Methylphenol	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
2-Nitroaniline	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
2-Nitrophenol	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
3,3'-dichlorobenzidine	µg/L			1 U [1 U]	1.2 U	1 U [1 U]	1.2 U			
3-nitroaniline	µg/L			1 U [1 U]	1.2 U	1 U [1 U]	1.2 U			
4-bromophenyl phenylether	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
4-chloro-3-methylphenol	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
4-chloroaniline	µg/L			1 U [1 U]	1.2 U	1 U [1 U]	1.2 U			
4-methylphenol	µg/L			0.5 U [0.5 U]	0.59 U	0.89 [0.24 J]	0.62 U			
4-nitroaniline	µg/L			1 U [1 U]	1.2 U	1 U [1 U]	1.2 U			
4-nitrophenol	µg/L			5 UJ [5 UJ]	5.9 UJ	5 UJ [5 UJ]	6.2 UJ			

Well ID:				TMW-8A						
Screen Interval (feet bgs):					2	-12				
Soil Zone Screened:					Туре	3 (clay)				
Filtered/Unfiltered:		WDNR	WDNR	Unfiltere		Filtered				
Sampling Event:	Units	PAL [∓]	ES⁼	Oct-13	Jan-14	Oct-13	Jan-14			
Acenaphthene	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Acenaphthylene	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Anthracene	µg/L	600	3,000	0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Benzo (a) anthracene	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Benzo (a) pyrene	µg/L	0.02	0.2	0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Benzo (b) fluoranthene	µg/L	0.02	0.2	0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Benzo (g,h,i) perylene	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Benzo (k) fluoranthene	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Benzoic acid	µg/L			R [R]	R	R [R]	R			
Benzyl alcohol	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Bis (2-chloroethoxy)- methane	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Bis (2-chloroethyl) ether	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Bis (2-chloroisopropyl)-ether	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Bis (2-ethylhexyl)- phthalate	µg/L	0.6	6	0.18 J [0.24 J]	0.59 UB	0.21 J [0.42 J]	0.62 UB			
Butyl benzyl phthalate	µg/L			1 U [0.072 J]	1.2 UB	1 U [0.063 J]	1.2 UB			
Chrysene	µg/L	0.02	0.2	0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Dibenzo (a,h) anthracene	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Dibenzofuran	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Diethylphthalate	µg/L			0.5 UB [0.5 UB]	0.59 UB	0.5 UB [0.5 UB]	0.62 UB			
Dimethylphthalate	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Di-n-butylphthalate	µg/L			1 U [0.15 J]	1.2 U	0.16 J [0.18 J]	1.2 U			
Di-n-octylphthalate	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Fluoranthene	µg/L	80	400	0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Fluorene	µg/L	80	400	0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Hexachlorobenzene	µg/L	0.1	1	0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Hexachlorobutadiene	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Hexachlorocyclopentadiene	µg/L			0.5 U [0.5 U]	0.59 UJ	0.5 U [0.5 U]	0.62 UJ			
Hexachloroethane	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Indeno (1,2,3-cd) pyrene	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Isophorone	µg/L			0.5 U [0.5 U]	0.094 J	0.13 J [0.5 U]	0.099 J			
Naphthalene	µg/L	10	100	0.5 U [0.5 U]	0.59 U	0.071 J [0.053 J]	0.049 J			
Nitrobenzene	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
N-nitrosodi-n-propylamine	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
N-nitroso-di-phenylamine	µg/L	0.7	7	0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Pentachlorophenol	µg/L	0.1	1	0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Phenanthrene	µg/L			0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Phenol	µg/L	400	2,000	0.5 U [0.5 U]	0.59 U	0.14 J [0.5 U]	0.62 U			
Pyrene	µg/L	50	250	0.5 U [0.5 U]	0.59 U	0.5 U [0.5 U]	0.62 U			
Total PAHs	µg/L			ND [ND]	ND	0.071 J [0.053 J]	0.049 J			

Well ID:					тм	W-8	
Screen Interval (feet bgs):						-30	
Soil Zone Screened:					Туре 3	3 (clay)	
Filtered/Unfiltered:		WDNR	WDNR		Unfiltered		Filtered
Sampling Event:	Units	PAL ⁺	ES⁼	Oct-13	Jan-14	Oct-13	Jan-14
Volatile Organic Compounds							
1,1,1-Trichloroethane	µg/L	40	200	1 U	1 U [1 U]	1 U	1 U [1 U]
1,2,4-Trimethylbenzene	µg/L		100	1 U	1 U [1 U]	1 U	1 U [1 U]
1,3,5-Trimethylbenzene	µg/L	96	480	1 U	1 U [1 U]	1 U	1 U [1 U]
Benzene	µg/L	0.5	5	1 U	1 U [1 U]	1 U	1 U [1 U]
Chlorobenzene	µg/L			NA	1 U [1 U]	NA	1 U [1 U]
Chloromethane	µg/L	3	30	1 U	NA	1 U	NA
Ethylbenzene	µg/L	140	700	1 U	1 U [1 U]	1 U	1 U [1 U]
Methyl(tert)butyl ether	µg/L	12	60	5 U	5 U [5 U]	5 U	5 U [5 U]
N-butylbenzene	µg/L			1 U	1 U [1 U]	1 U	1 U [1 U]
N-propylbenzene	µg/L			1 U	1 U [1 U]	1 U	1 U [1 U]
Styrene	µg/L	10	100	1 U	1 U [1 U]	1 U	1 U [1 U]
Toluene	µg/L	160	800	1 U	1 U [1 U]	1 U	1 U [1 U]
M&P-xylene	µg/L	400	2 000	2 U	2 U [2 U]	2 U	2 U [2 U]
O-xylene	µg/L	400	2,000	1 U	1 U [1 U]	1 U	1 U [1 U]
Naphthalene	µg/L	10	100	1 UJ	1 U [1 U]	1 UJ	1 U [1 U]
Total BTEX	µg/L			ND	ND [ND]	ND	ND [ND]
Semivolatile Organic Compounds							
3-methylcholanthrene	µg/L			2.2 U	2.6 U [2.6 U]	2.2 U	2 U [2.2 U]
4,6-dinitro- 2-methylphenol	µg/L			5.5 U	6.5 U [6.4 U]	5.6 U	5 UJ [5.6 U]
4-chlorophenylphenyl- ether	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
1,2,4-Trichlorobenzene	µg/L	14	70	0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
1,2-Dichlorobenzene	µg/L	60	600	0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
1,3-Dichlorobenzene	µg/L	120	600	0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
1,4-Dichlorobenzene	µg/L	15	75	0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
1-Methylnaphthalene	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
2,3,4,6-Tetrachlorophenol	µg/L			5.5 U	6.5 U [6.4 U]	5.6 U	5 UJ [5.6 U]
2,3,5,6-Tetrachlorophenol	µg/L			11 U	13 U [13 U]	11 U	10 UJ [11 U]
2,4,5-Trichlorophenol	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 UJ [0.56 U]
2,4,6-Trichlorophenol	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 UJ [0.56 U]
2,4-Dichlorophenol	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 UJ [0.56 U]
2,4-Dimethylphenol	µg/L			1.1 U	1.3 U [1.3 U]	1.1 U	1 UJ [1.1 U]
2,4-Dinitrophenol	µg/L			5.5 U	6.5 U [6.4 UJ]	5.6 U	5 UJ [5.6 UJ]
2,4-Dinitrotoluene	µg/L	0.005	0.05	0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
2,6-dinitrotoluene	µg/L	0.005	0.05	0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
2-Chloronaphthalene	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
2-Chlorophenol	µg/L			0.55 U	0.65 U [0.64 U]	0.56 UJ	0.5 UJ [0.56 U]
2-Methylnaphthalene	µg/L			0.55 U	0.65 U [0.64 U]	0.033 J	0.5 U [0.56 U]
2-Methylphenol	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 UJ [0.56 U]
2-Nitroaniline	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
2-Nitrophenol	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 UJ [0.56 U]
3,3'-dichlorobenzidine	μg/L			1.1 U	1.3 U [1.3 U]	1.1 U	1 U [1.1 U]
3-nitroaniline	µg/L			1.1 U	1.3 U [1.3 U]	1.1 U	1 U [1.1 U]
4-bromophenyl phenylether	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
4-chloro-3-methylphenol	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 UJ [0.56 U]
4-chloroaniline	µg/L			1.1 U	1.3 U [1.3 U]	1.1 U	1 U [1.1 U]
4-methylphenol	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 UJ [0.56 U]
4-nitroaniline	µg/L			1.1 U	1.3 U [1.3 U]	1.1 UJ	1 U [1.1 U]
4-nitrophenol	μg/L			5.5 UJ	6.5 UJ [6.4 UJ]	5.6 U	5 UJ [5.6 UJ]

Well ID:					тм	W-8	
Screen Interval (feet bgs):						-30	
· · · · · · · · · · · · · · · · · · ·					T	(-1)	
Soil Zone Screened:					Туре	3 (clay)	
Filtered/Unfiltered:		WDNR	WDNR		Unfiltered		Filtered
Sampling Event:	Units	PAL [∓]	ES⁼	Oct-13	Jan-14	Oct-13	Jan-14
Acenaphthene	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Acenaphthylene	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Anthracene	µg/L	600	3,000	0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Benzo (a) anthracene	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Benzo (a) pyrene	µg/L	0.02	0.2	0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Benzo (b) fluoranthene	µg/L	0.02	0.2	0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Benzo (g,h,i) perylene	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Benzo (k) fluoranthene	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Benzoic acid	µg/L			R	R [R]	1.4 J	R [R]
Benzyl alcohol	µg/L			0.55 U	0.31 J [0.64 U]	0.56 UJ	0.5 U [0.56 U]
Bis (2-chloroethoxy)- methane	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Bis (2-chloroethyl) ether	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Bis (2-chloroisopropyl)-ether	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Bis (2-ethylhexyl)- phthalate	µg/L	0.6	6	0.15 J	0.65 UB [0.64 UB]	0.56 U	0.5 UB [0.56 UB]
Butyl benzyl phthalate	µg/L			1.1 U	1.3 UB [1.3 UB]	1.1 U	1 U [1.1 UB]
Chrysene	µg/L	0.02	0.2	0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Dibenzo (a,h) anthracene	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Dibenzofuran	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Diethylphthalate	µg/L			0.55 UB	0.65 UB [0.64 UB]	0.56 UB	0.57 UB [0.56 UB]
Dimethylphthalate	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Di-n-butylphthalate	µg/L			0.16 J	1.4 UB [4.8 UB]	0.18 J	1 UB [3.7 UB]
Di-n-octylphthalate	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Fluoranthene	µg/L	80	400	0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Fluorene	µg/L	80	400	0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Hexachlorobenzene	µg/L	0.1	1	0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Hexachlorobutadiene	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Hexachlorocyclopentadiene	µg/L			0.55 U	0.65 UJ [0.64 UJ]	0.56 U	0.5 UJ [0.56 UJ]
Hexachloroethane	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Indeno (1,2,3-cd) pyrene	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Isophorone	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Naphthalene	µg/L	10	100	0.077 J	0.65 U [0.64 U]	0.12 J	0.5 U [0.56 U]
Nitrobenzene	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
N-nitrosodi-n-propylamine	µg/L			0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
N-nitroso-di-phenylamine	µg/L	0.7	7	0.55 U	0.65 U [0.64 U]	0.56 U	0.5 UJ [0.56 U]
Pentachlorophenol	µg/L	0.1	1	0.55 U	0.65 U [0.64 U]	0.56 U	0.5 UJ [0.56 U]
Phenanthrene	µg/L			0.55 U	0.078 J [0.064 J]	0.56 U	0.5 U [0.56 U]
Phenol	µg/L	400	2,000	0.55 U	0.65 U [0.64 U]	0.56 UJ	0.5 UJ [0.56 U]
Pyrene	µg/L	50	250	0.55 U	0.65 U [0.64 U]	0.56 U	0.5 U [0.56 U]
Total PAHs	µg/L			0.077 J	0.078 J [0.064 J]	0.12 J	ND [ND]

Well ID:	Well ID: TMW-11A									TMW-11				
Screen Interval (feet bgs):						-12				-30				
Soil Zone Screened:						3 (clay)				3 (clay)				
Filtered/Unfiltered:		WDNR	WDNR		tered	Filte			Itered		ered			
Sampling Event:	Units	PAL [™]	ES⁺	Oct-13	Jan-14	Oct-13	Jan-14	Oct-13	Jan-14	Oct-13	Jan-14			
Volatile Organic Compounds	-	-	-		-					-				
1,1,1-Trichloroethane	µg/L	40	200	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
1,2,4-Trimethylbenzene	µg/L	96	480	1 U	1 U	0.9 J	1 U	1 U	1 U	1 U	1 U			
1,3,5-Trimethylbenzene	µg/L			1 U	1 U	0.49 J	1 U	1 U	1 U	1 U	1 U			
Benzene	µg/L	0.5	5	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
Chlorobenzene	µg/L			NA	1 U	NA	1 U	NA	1 U	NA	1 U			
Chloromethane	µg/L	3	30	1 UJ	NA	1 UJ	NA	1 UJ	NA	1 U	NA			
Ethylbenzene	µg/L	140	700	1 U	1 U	0.45 J	1 U	1 U	1 U	1 U	1 U			
Methyl(tert)butyl ether	µg/L	12	60	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U			
N-butylbenzene	µg/L			1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
N-propylbenzene	µg/L			1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
Styrene	µg/L	10	100	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U			
Toluene	µg/L	160	800	1 U	0.39 J	1 U	1 U	1 U	1 U	1 U	1 U			
M&P-xylene	µg/L	400	2,000	2 U	0.36 J	0.9 J	2 U	2 U	2 U	2 U	2 U			
O-xylene	µg/L			1 U	1 U	0.54 J	1 U	1 U	1 U	1 U	1 U			
Naphthalene	µg/L	10	100	1 U	1 U	410 DJ	1 U	1 U	1 U	1 UJ	0.56 J			
Total BTEX	µg/L			ND	0.75	1.89	ND	ND	ND	ND	ND			
Semivolatile Organic Compounds		-	-											
3-methylcholanthrene	µg/L			NA	15 U	2.7 U	2 U	2 U	3.2 U	2 U	2.3 U			
4,6-dinitro- 2-methylphenol	µg/L			NA	38 U	6.7 U	R	5 U	8.1 U	5 U	5.8 U			
4-chlorophenylphenyl- ether	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U			
1,2,4-Trichlorobenzene	µg/L	14	70	NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U			
1,2-Dichlorobenzene	µg/L	60	600	NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U			
1,3-Dichlorobenzene	µg/L	120	600	NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U			
1,4-Dichlorobenzene	µg/L	15	75	NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U			
1-Methylnaphthalene	µg/L			NA	3.8 U	8.5	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U			
2,3,4,6-Tetrachlorophenol	µg/L			NA	38 U	6.7 U	R	5 U	8.1 U	5 U	5.8 U			
2,3,5,6-Tetrachlorophenol	µg/L			NA	77 U	13 U	R	10 U	16 U	10 U	12 U			
2,4,5-Trichlorophenol	µg/L			NA	3.8 U	0.67 U	R	0.5 U	0.81 U	0.5 U	0.58 U			
2,4,6-Trichlorophenol	µg/L			NA	3.8 U	0.67 U	R	0.5 U	0.81 U	0.5 U	0.58 U			
2,4-Dichlorophenol	µg/L			NA	3.8 U	0.67 U	R	0.5 U	0.81 U	0.5 U	0.58 U			
2,4-Dimethylphenol	µg/L			NA	7.7 U	1.2 J	R	1 U	1.6 U	1 U	1.2 U			
2,4-Dinitrophenol	µg/L			NA	38 UJ	6.7 U	R	5 U	8.1 UJ	5 U	5.8 U			
2,4-Dinitrotoluene	µg/L	0.005	0.05	NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U			
2,6-dinitrotoluene	µg/L	0.005	0.05	NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U			
2-Chloronaphthalene	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U			
2-Chlorophenol	µg/L			NA	3.8 U	0.67 U	R	0.5 U	0.81 U	0.5 U	0.58 U			
2-Methylnaphthalene	µg/L			NA	3.8 U	9.3	0.5 U	0.5 U	0.048 J	0.5 U	0.023 J			
2-Methylphenol	µg/L			NA	3.8 U	0.67 U	R	0.5 U	0.81 U	0.5 U	0.58 U			
2-Nitroaniline	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U			
2-Nitrophenol	µg/L			NA	3.8 U	0.67 U	R	0.5 U	0.81 U	0.5 U	0.58 U			
3,3'-dichlorobenzidine	µg/L			NA	7.7 U	1.3 U	1 U	1 U	1.6 U	1 U	1.2 U			
3-nitroaniline	µg/L			NA	7.7 U	1.3 U	1 U	1 U	1.6 U	1 U	1.2 U			
4-bromophenyl phenylether	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U			
4-chloro-3-methylphenol	µg/L			NA	3.8 U	0.67 U	R	0.5 U	0.81 U	0.5 U	0.58 U			
4-chloroaniline	µg/L			NA	7.7 U	1.3 U	1 U	1 U	1.6 U	1 U	1.2 U			
4-methylphenol	µg/L			NA	3.8 U	0.67 U	R	0.5 U	0.81 U	0.5 U	0.58 U			
4-nitroaniline	µg/L			NA	7.7 U	1.3 U	1 U	1 U	1.6 U	1 U	1.2 U			
4-nitrophenol	µg/L			NA	38 UJ	6.7 UJ	R	5 UJ	8.1 UJ	5 UJ	5.8 UJ			

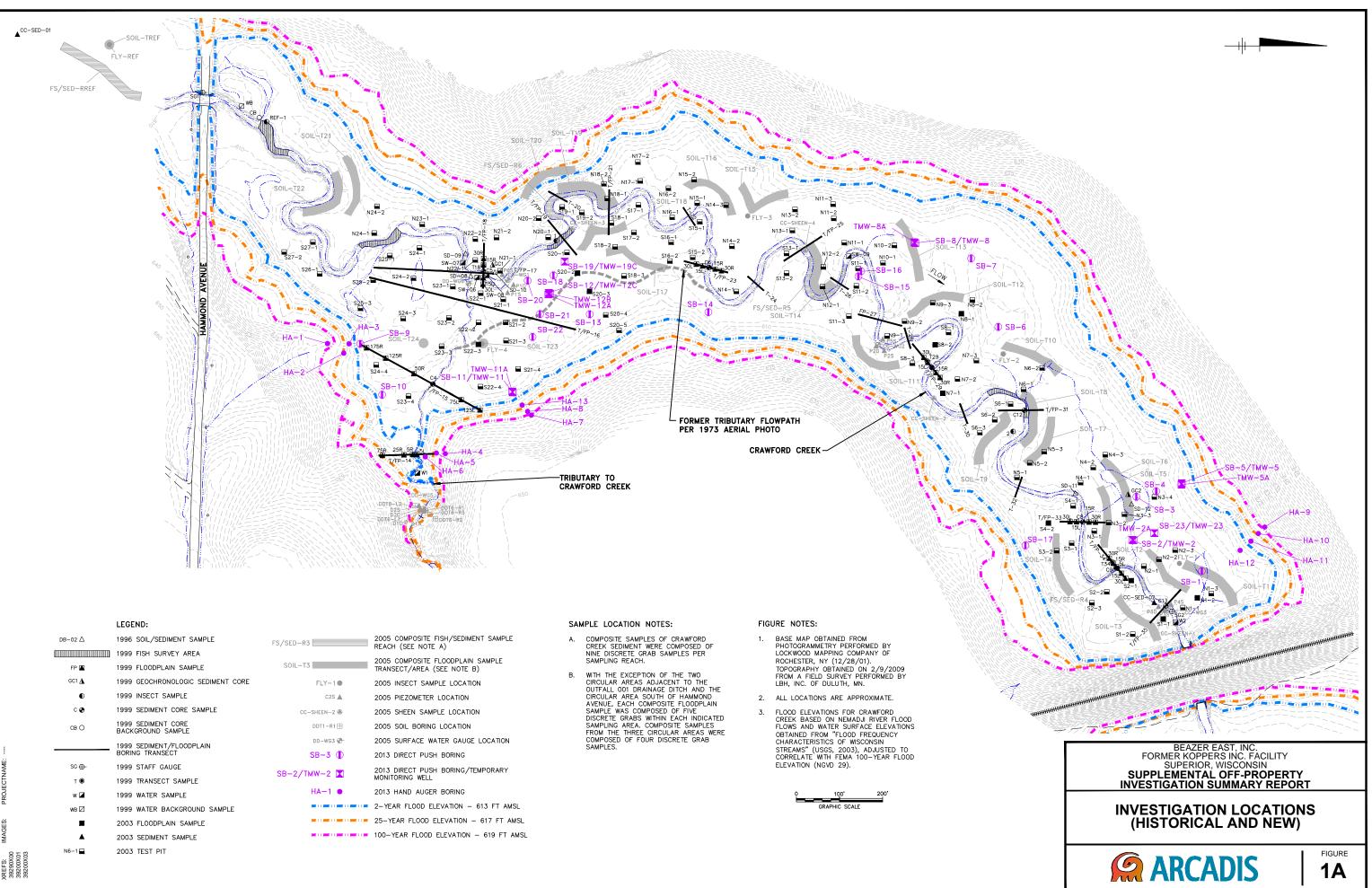
Well ID:					TMV	V-11A			TM	W-11	
Screen Interval (feet bgs):					2	-12			20	-30	
Soil Zone Screened:					Туре	3 (clay)			Туре	3 (clay)	
Filtered/Unfiltered:		WDNR	WDNR	Unfil	tered	Filte	red	Unfi	Itered	Filt	ered
Sampling Event:	Units	PAL ⁺	ES⁼	Oct-13	Jan-14	Oct-13	Jan-14	Oct-13	Jan-14	Oct-13	Jan-14
Acenaphthene	µg/L			NA	3.8 U	19	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Acenaphthylene	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Anthracene	µg/L	600	3,000	NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Benzo (a) anthracene	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Benzo (a) pyrene	µg/L	0.02	0.2	NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Benzo (b) fluoranthene	µg/L	0.02	0.2	NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Benzo (g,h,i) perylene	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Benzo (k) fluoranthene	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Benzoic acid	µg/L			NA	R	R	R	R	R	R	R
Benzyl alcohol	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.21 J	0.5 U	0.58 U
Bis (2-chloroethoxy)- methane	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Bis (2-chloroethyl) ether	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Bis (2-chloroisopropyl)-ether	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Bis (2-ethylhexyl)- phthalate	µg/L	0.6	6	NA	220 D	0.2 J	0.5 UB	0.2 J	1.5 UB	0.12 J	0.58 UB
Butyl benzyl phthalate	µg/L			NA	3.9 J	1.3 U	1 U	1 U	1.6 UB	0.061 J	1.2 U
Chrysene	µg/L	0.02	0.2	NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Dibenzo (a,h) anthracene	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Dibenzofuran	µg/L			NA	3.8 U	3.8	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Diethylphthalate	µg/L			NA	1.6 J	0.67 UB	0.5 UB	0.5 UB	0.81 UB	0.5 UB	0.58 UB
Dimethylphthalate	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Di-n-butylphthalate	µg/L			NA	17 UB	0.21 J	1 UB	0.14 J	1.6 UB	0.14 J	1.2 UB
Di-n-octylphthalate	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Fluoranthene	µg/L	80	400	NA	3.8 U	0.67 U	0.5 U	0.5 U	0.15 J	0.5 U	0.58 U
Fluorene	µg/L	80	400	NA	3.8 U	5.9	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Hexachlorobenzene	µg/L	0.1	1	NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Hexachlorobutadiene	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Hexachlorocyclopentadiene	µg/L			NA	3.8 UJ	0.67 U	R	0.5 U	0.81 UJ	0.5 U	0.58 UJ
Hexachloroethane	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Indeno (1,2,3-cd) pyrene	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
Isophorone	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.081 J	0.5 U	0.58 U
Naphthalene	µg/L	10	100	NA	3.8 U	110 D	0.12 J	0.5 U	0.13 J	0.5 U	0.45 J
Nitrobenzene	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
N-nitrosodi-n-propylamine	µg/L			NA	3.8 U	0.67 U	0.5 U	0.5 U	0.81 U	0.5 U	0.58 U
N-nitroso-di-phenylamine	µg/L	0.7	7	NA	3.8 U	0.67 U	R	0.5 U	0.81 U	0.5 U	0.58 U
Pentachlorophenol	µg/L	0.1	1	NA	3.8 U	0.67 U	R	0.5 U	0.81 U	0.5 U	0.58 U
Phenanthrene	µg/L			NA	3.8 U	0.76	0.5 U	0.5 U	0.19 J	0.5 U	0.58 U
Phenol	µg/L	400	2,000	NA	3.8 U	0.67 U	R	0.5 U	0.81 U	0.5 U	0.58 U
Pyrene	µg/L	50	250	NA	3.8 U	0.67 U	0.5 U	0.5 U	0.15 J	0.5 U	0.58 U
Total PAHs	µg/L			NA	ND	135.66	0.12 J	ND	0.62 J	ND	0.45 J

Well ID:					TMW-	12A ³		TMW	-19C ²
Screen Interval (feet bgs):					5-1	5		35-	-40
Soil Zone Screened:					Type 1	(clay)		Type 3 (cla	
Filtered/Unfiltered:		WDNR	WDNR	Unfil		Filte	red	DG of Unfiltered	Filtered
Sampling Event:	Units	PAL [*]	ES⁼	Oct-13	Jan-14	Oct-13	Jan-14	Jan-14	Jan-14
Volatile Organic Compounds									
1,1,1-Trichloroethane	µg/L	40	200	1 U	100 U	1 U	20 U	1 U	1 U
1,2,4-Trimethylbenzene	µg/L		100	32	61 J	41	12 J	1 U	1 U
1,3,5-Trimethylbenzene	µg/L	96	480	12	25 J	16	5.6 J	1 U	1 U
Benzene	µg/L	0.5	5	22	39 J	30	25	1 U	1 U
Chlorobenzene	µg/L			NA	100 U	NA	20 U	1 U	1 U
Chloromethane	µg/L	3	30	1 U	NA	1 U	NA	NA	NA
Ethylbenzene	μg/L	140	700	32	47 J	34	14 J	1 U	1 U
Methyl(tert)butyl ether	µg/L	12	60	5 U	500 U	5 U	100 U	5 U	5 U
N-butylbenzene	µg/L			1 U	100 U	1 U	20 U	1 U	1 U
N-propylbenzene	μg/L			0.86 J	100 U	0.95 J	20 U	1 U	10
Styrene	μg/L	10	100	1 U	100 U	1.4	20 U	1 U	1 U
Toluene	μg/L	160	800	42	66 J	45	31	1 U	1 U
M&P-xylene	µg/L	400	0.000	61	110 J	69	33 J	2 U	2 U
O-xylene	μg/L	400	2,000	30	54 J	36	15 J	1 U	10
Naphthalene	µg/L	10	100	9,200 DJ	13,000	6,700 DJ	3,800	1 U	1 U
Total BTEX	µg/L			187	316	214	118	ND	ND
Semivolatile Organic Compounds									
3-methylcholanthrene	µg/L			22 U	430 UJ	20 U	400 UJ	2.3 U	2.5 U
4,6-dinitro- 2-methylphenol	μg/L			56 U	1,100 UJ	50 U	1,000 UJ	5.8 U	6.3 U
4-chlorophenylphenyl- ether	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
1,2,4-Trichlorobenzene	µg/L	14	70	5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
1,2-Dichlorobenzene	µg/L	60	600	5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
1,3-Dichlorobenzene	µg/L	120	600	5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
1,4-Dichlorobenzene	μg/L	15	75	5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
1-Methylnaphthalene	µg/L			210	8,600 DJ	98	110 J	0.12 J	0.11 J
2,3,4,6-Tetrachlorophenol	µg/L			56 U	1,100 UJ	50 U	1,000 UJ	5.8 U	6.3 U
2,3,5,6-Tetrachlorophenol	µg/L			110 U	2,100 UJ	100 U	2,000 UJ	12 U	13 U
2,4,5-Trichlorophenol	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
2,4,6-Trichlorophenol	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
2,4-Dichlorophenol	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
2,4-Dimethylphenol	µg/L			880 D	2,100 J	990 D	2,500 J	1.2 U	1.3 U
2,4-Dinitrophenol	µg/L			56 U	1,100 UJ	50 U	1,000 UJ	5.8 U	6.3 U
2,4-Dinitrotoluene	µg/L	0.005	0.05	5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
2,6-dinitrotoluene	µg/L	0.005	0.05	5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
2-Chloronaphthalene	µg/L			1.1 J	110 UJ	0.82 J	100 UJ	0.58 U	0.63 U
2-Chlorophenol	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
2-Methylnaphthalene	µg/L			370 D	18,000 DJ	150	210 J	0.14 J	0.14 J
2-Methylphenol	µg/L			230	510 J	170	460 J	0.58 U	0.63 U
2-Nitroaniline	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
2-Nitrophenol	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
3,3'-dichlorobenzidine	µg/L			11 U	210 UJ	10 U	200 UJ	1.2 U	1.3 U
3-nitroaniline	µg/L			11 U	210 UJ	10 U	200 UJ	1.2 U	1.3 U
4-bromophenyl phenylether	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
4-chloro-3-methylphenol	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
4-chloroaniline	µg/L			11 U	210 UJ	10 U	200 UJ	1.2 U	1.3 U
4-methylphenol	µg/L			750 D	2,300 J	780 D	2,500 J	0.58 U	0.63 U
4-nitroaniline	µg/L			11 UJ	210 UJ	10 UJ	200 UJ	1.2 U	1.3 U
4-nitrophenol	µg/L			56 U	1,100 UJ	50 U	1,000 UJ	5.8 UJ	6.3 UJ

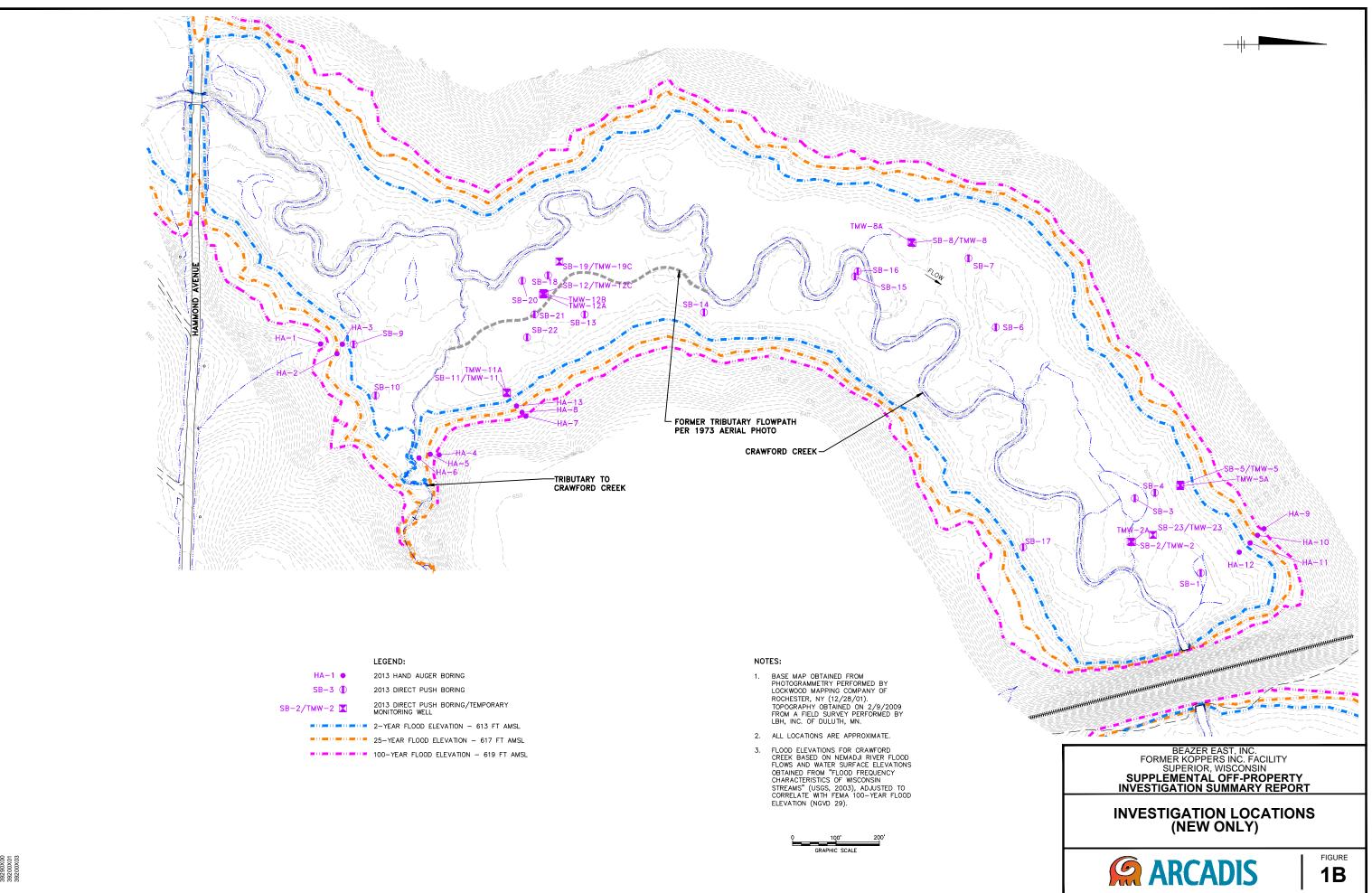
Well ID:					TMW-	12A ³		TMW	-19C ²
Screen Interval (feet bgs):					5-1	5		35	-40
					Turne 4	(alaw)		Type 3 (cla	ay), below/
Soil Zone Screened:					Type 1	(clay)		DG of	Type 1
Filtered/Unfiltered:		WDNR	WDNR	Unfil	tered	Filte	red	Unfiltered	Filtered
Sampling Event:	Units	PAL [™]	ES⁼	Oct-13	Jan-14	Oct-13	Jan-14	Jan-14	Jan-14
Acenaphthene	µg/L			250	18,000 DJ	84	140 J	0.058 J	0.076 J
Acenaphthylene	µg/L			6	220 J	2.1 J	100 UJ	0.58 U	0.63 U
Anthracene	µg/L	600	3,000	11	3,100 J	1.4 J	100 UJ	0.12 J	0.089 J
Benzo (a) anthracene	µg/L			3.4 J	3,900 J	5 U	100 UJ	0.07 J	0.63 U
Benzo (a) pyrene	µg/L	0.02	0.2	1.3 J	1,600 J	5 U	100 UJ	0.58 U	0.63 U
Benzo (b) fluoranthene	µg/L	0.02	0.2	1.9 J	2,400 J	5 U	100 UJ	0.58 U	0.63 U
Benzo (g,h,i) perylene	µg/L			5.6 U	490 J	5 U	100 UJ	0.58 U	0.63 U
Benzo (k) fluoranthene	µg/L			0.89 J	1,300 J	5 U	100 UJ	0.58 U	0.63 U
Benzoic acid	µg/L			R	R	R	R	R	R
Benzyl alcohol	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.53 J	0.38 J
Bis (2-chloroethoxy)- methane	µg/L			5.6 U	110 UJ	1.2 J	100 UJ	0.58 U	0.63 U
Bis (2-chloroethyl) ether	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
Bis (2-chloroisopropyl)-ether	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
Bis (2-ethylhexyl)- phthalate	µg/L	0.6	6	5.6 U	110 UJ	5 U	100 UJ	0.58 UB	0.63 UB
Butyl benzyl phthalate	µg/L			11 U	210 UJ	10 U	200 UJ	1.2 U	1.3 U
Chrysene	µg/L	0.02	0.2	2.4 J	2,400 J	5 U	100 UJ	0.58 U	0.63 U
Dibenzo (a,h) anthracene	µg/L			5.6 U	180 J	5 U	100 UJ	0.58 U	0.63 U
Dibenzofuran	µg/L			140	12,000 DJ	12	68 J	0.047 J	0.63 U
Diethylphthalate	µg/L			1.1 J	110 UJ	2 J	100 UJ	0.72 UB	0.84 UB
Dimethylphthalate	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.081 J	0.089 J
Di-n-butylphthalate	µg/L			11 U	210 UJ	10 U	200 UJ	1.4 UB	1.3 UB
Di-n-octylphthalate	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
Fluoranthene	µg/L	80	400	24	22,000 DJ	5 U	100 UJ	0.43 J	0.089 J
Fluorene	µg/L	80	400	120	15,000 DJ	10	54 J	0.14 J	0.13 J
Hexachlorobenzene	µg/L	0.1	1	5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
Hexachlorobutadiene	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
Hexachlorocyclopentadiene	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.58 UJ	0.63 UJ
Hexachloroethane	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
Indeno (1,2,3-cd) pyrene	µg/L			5.6 U	490 J	5 U	100 UJ	0.58 U	0.63 U
Isophorone	µg/L			5.6 U	110 UJ	5 U	100 UJ	2.4	2.3
Naphthalene	µg/L	10	100	6,700 D	78,000 DJ	4,100 D	3,800 J	0.19 J	0.27 J
Nitrobenzene	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
N-nitrosodi-n-propylamine	µg/L			5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
N-nitroso-di-phenylamine	µg/L	0.7	7	5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
Pentachlorophenol	µg/L	0.1	1	5.6 U	110 UJ	5 U	100 UJ	0.58 U	0.63 U
Phenanthrene	µg/L			130	41,000 DJ	0.71 J	36 J	2	1.3
Phenol	µg/L	400	2,000	42	62 J	23	62 J	0.58 U	0.63 U
Pyrene	µg/L	50	250	15	16,000 DJ	5 U	100 UJ	0.35 J	0.63 U
Total PAHs	µg/L			7,266 J	206,080 J	4,198 J	4,030 J	3.358 J	1.954 J

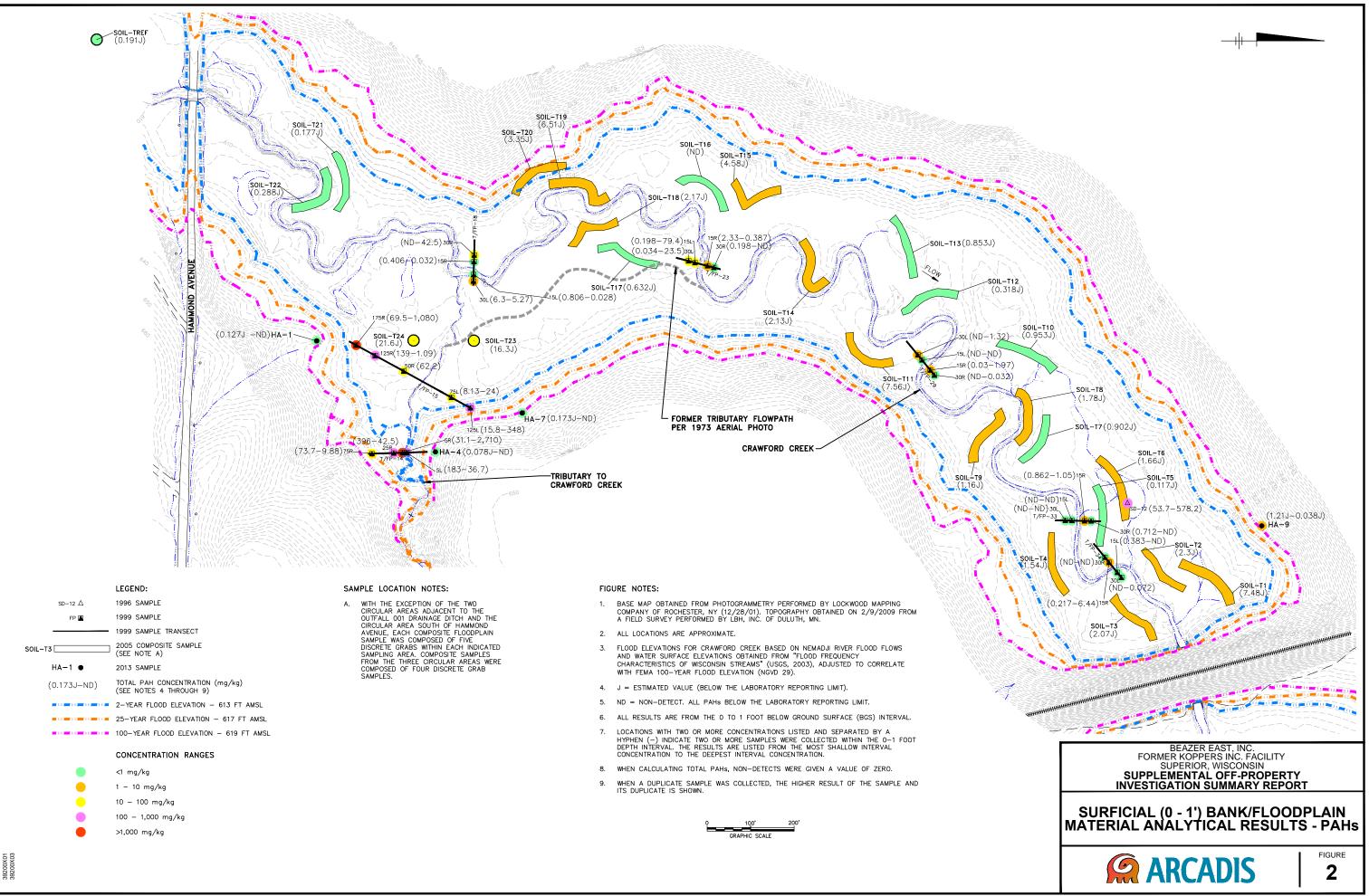
Notes:

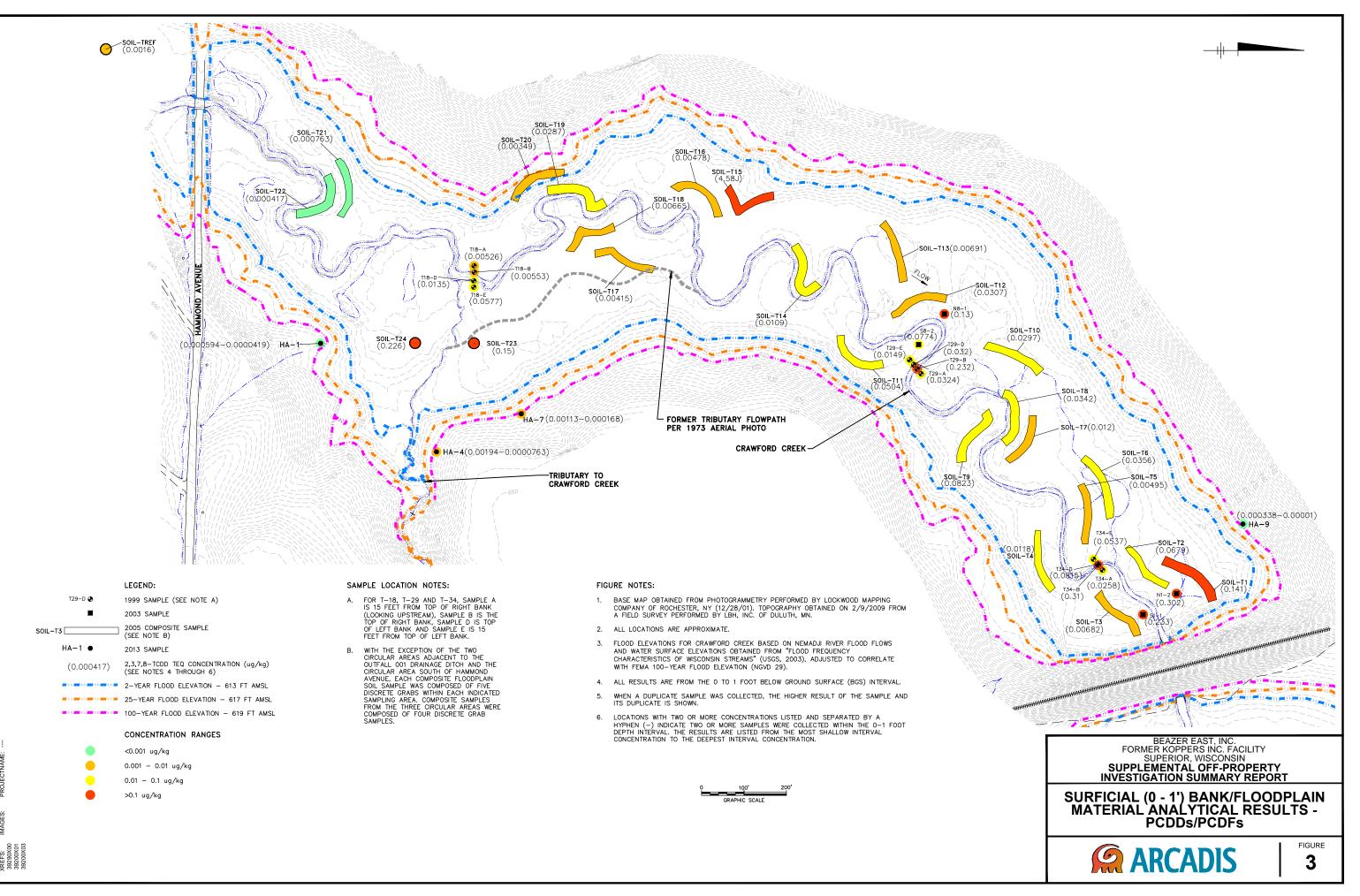
bgs - below ground surface

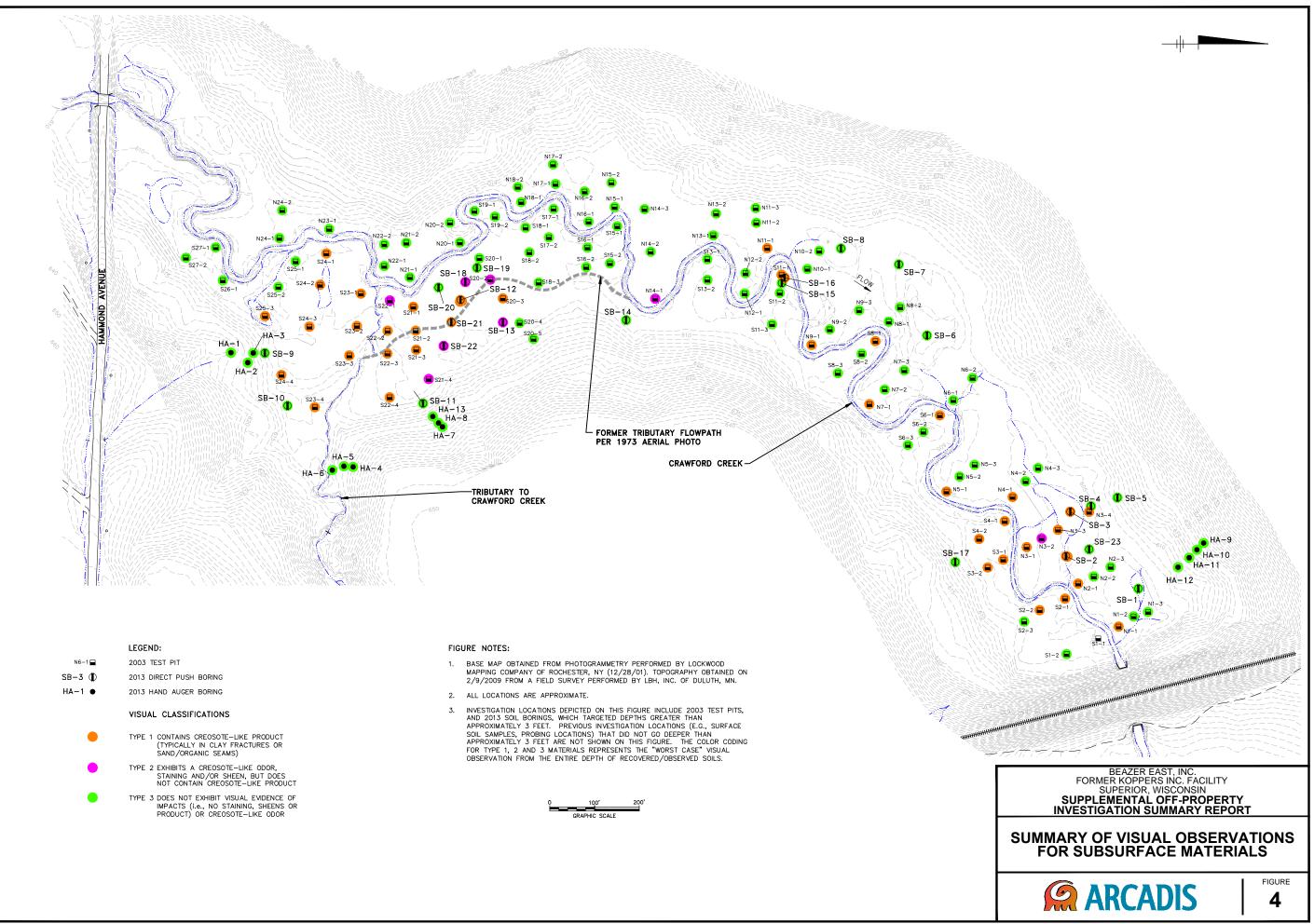

- BTEX benzene, toluene, ethylbenzene, xylenes
- DG downgradient
- ES Enforcement Standard (Wisconsin Administrative Code, Chapter NR 140, Appendix I to Table 1)
- NA not analyzed
- ND not detected
- PAHs polycyclic aromatic hydrocarbons
- PAL Preventive Action Limit (Wisconsin Administrative Code, Chapter NR 140, Appendix I to Table 1)
- WDNR Wisconsin Department of Natural Resources
- µg/L micrograms per liter
- J indicates an estimated value
- U not detected above the reporting limit shown
- UB compound considered non-detect at the listed value due to associated blank contamination
- UJ the compound was not detected above the reported sample quantitation limit; however, the reported limit is approximate and may or may not represent the actual limit of quantitation
- D concentration is based on a diluted sample analysis
- DJ concentration is based on a diluted sample analysis; estimated value
- R the sample results are rejected (refer to Data Validation Report for details)
- [] duplicate sample results
- Bold/light shading indicates result above PAL

Bold/dark shading - indicates result above ES


- 1. Replacement well for TMW-2.
- 2. Replacement well for TMW-12C.
- 3. Trace blebs of creosote-like product were present in the purge water at TMW-12A during the January 2014 sampling event.
- 4. Type 1 creosote-like product in clay fractures or sand/organic seams Type 2 - creosote-like odor, staining and/or sheens, but no product
 - Type 3 no visible impacts


Figures




db-02 \triangle	1996 SOIL/SEDIMENT SAMPLE	FS/SED-R3	2005 COMPOSITE FISH/SEDIMENT SAMPLI REACH (SEE NOTE A)
	1999 FISH SURVEY AREA		2005 COMPOSITE FLOODPLAIN SAMPLE
FP 🔼	1999 FLOODPLAIN SAMPLE	SOIL-T3	TRANSECT/AREA (SEE NOTE B)
GC1 🛦	1999 GEOCHRONOLOGIC SEDIMENT CORE	FLY-1	2005 INSECT SAMPLE LOCATION
Ð	1999 INSECT SAMPLE	C2S 🛦	2005 PIEZOMETER LOCATION
с	1999 SEDIMENT CORE SAMPLE	CC-SHEEN-2	2005 SHEEN SAMPLE LOCATION
св О	1999 SEDIMENT CORE BACKGROUND SAMPLE	DDT1-R1 🖽	2005 SOIL BORING LOCATION
	1999 SEDIMENT/FLOODPLAIN	DD-WG3 🕀-	2005 SURFACE WATER GAUGE LOCATION
	BORING TRANSECT	SB-3 🌓	2013 DIRECT PUSH BORING
SG ⊕-	1999 STAFF GAUGE	SB-2/TMW-2 🔀	2013 DIRECT PUSH BORING/TEMPORARY
т 🌒	1999 TRANSECT SAMPLE	30 27 milli 2 🛋	MONITORING WELL
w 🗖	1999 WATER SAMPLE	HA-1 •	2013 HAND AUGER BORING
WB 🛛	1999 WATER BACKGROUND SAMPLE		2-YEAR FLOOD ELEVATION - 613 FT AM
m	2003 FLOODPLAIN SAMPLE		25-YEAR FLOOD ELEVATION - 617 FT A
A	2003 SEDIMENT SAMPLE		100-YEAR FLOOD ELEVATION - 619 FT
N6-1 🗖	2003 TEST PIT		

PIC: J. HOLDEN PM: D. BESSINGPAS TM: D. BESSINGPAS LYR: ON="; OFF="REF 2290G05.DWG LAYOUT: 1B SAVED: 4/11/2014 3:39 PM ACADVER: 18.13 (LMS TE RAKER LD:

PIC: J. HOLDEN PM: D. BESSINGPAS TM: D. BESSINGPAS LYR: ON=*, OFF=*REF* 3290G04.DWG LAYOUT: 4 SAVED: 4/11/2014 3:54 PM ACADVER: 18.15 (LMS TECF

FORAKER LD:

DB: L

Appendices

Appendix A

Soil Boring and Monitoring Well Construction Logs

Date Start/Finish: 8/21/13 Northing:549255.61 Well/Boring ID: SB-1 Drilling Company: Matrix Environmental, LLC Driller's Name: Cord Anderson Direct Push Drilling Method: Direct Push Borehole Depth: 25' bgs Borehole Depth: 25' bgs Auger Size: NA Borehole Depth: 25' bgs Location: Former Koppers Inc. Facility Surface Elevation: 605.00' AMSL Descriptions By: Kelly Hoehn Location: Former Koppers Inc. Facility Image: Barbon Superior, WI Descriptions By: Kelly Hoehn Easting: Elevation: 605.00' AMSL													
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigraphi		Well/Boring Construction			
-	- - 605												
-		MC-1	0-5	2.8	0.0		medium to hi Organics at 1	lish brown LEAN to FAT CLAY, litt gh plasticity, no dilatancy, soft, mo 0" bgs (black coloring). reddish brown from 1.7 to 2.1' bgs	pist.	um Sand,			
-	600 - - -	MC-2	5-10	5.0	0.0		dilatancy, me Gray coloratio Gray coloratio	itsh brown LEAN to FAT CLAY, tra edium stiff, moist. In from 6.1 to 6.3' bgs. In from 7.8 to 8.7' bgs.	ace Silt, medium to high p	olasticity, no	Boreho backfill to grad	ed (grout	
-	- 595 - - -	MC-3	10-15	5.0	0.0		dilatancy, sti	tish brown LEAN to FAT CLAY, tra f, moist. loration from 10 to 10.6' bgs.	ace Silt, medium to high p	olasticity, no			
- 15	590 -						soft to mediu 2.5YR 4/4 red	tish brown LEAN to FAT CLAY, me m stiff; 5Y 4/1 dark gray coloration dish brown from 15 to 15.8' bgs. arks: bgs = below groun	n throughout.	-	ot applicable; ppm = parts per r	million:	
Infra	struc	mber:	B00392	- Enviro	onmen	t - Buildir	ngs	PID = photoionizat macrocore. g_well HSA 2007 analytic Date: 4/15/2014	tion detector; AMS	ited by: RAS	ean sea level (NAVD 88); MC =	-	

Client: Beazer East, Inc.	Well/Boring	ID: SB-1									
Site Location: Former Koppers Inc. Facility Superior, WI	Borehole De	epth: 25' bgs									
DEPTH ELEVATION Sample Run Number Sample/Int/Type Recovery (feet) PID Headspace (ppm)	Stratigraphic Description	Well/Boring Construction									
MC-4 15-20 5.0 0.0											
20 585 0.0	5YR 4/3 reddish brown (20 to 22.7' bgs with 5Y 4/1 dark gray coloration throughout) LEAN to FAT CLAY, little to trace Silt, medium to high plasticity, no dilatancy, very soft to medium stiff. 10YR 4/1 dark gray from 22.7 to 24' bgs. 5YR 4/4 reddish brown from 24 to 25' bgs.	Borehole backfilled (grout to grade).									
- 25 500	End of Boring at 25' bgs.										
-35 570 ARCADIS Remarks: bgs = below ground surface; NA = not available/not applicable; ppm = parts per million; PID = photoionization detector; AMSL = above mean sea level (NAVD 88); MC = macrocore. Project Number:B0039290.0000.00003 Template:boring_well HSA 2007 analytical.ldfx Page: 2 of 2 Data File: SB-1.dat Date: 4/15/2014 Created/Edited by: RAS											

Dri Dri Dri Aug Rig	lling (ller's lling M ger Si Type	Comp Name Metho ze: N : Geo	: Coro d: Dir	/latrix I d Ande ect Pu	erson sh	nmental,	LLC	Northing:549094.00 Easting: 1446628.93 Casing Elevation: 60 Borehole Depth: 30' Surface Elevation: 60 Descriptions By: Kel	bgs 03.65' AMSL	Well/Boring ID: SB-2/TMW-2 Client: Beazer East, Inc. Location: Former Koppers Inc. Facility Superior, WI				
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigrap	Well/Boring Construction					
-	- 605 -										 3.98' Stickup Height (ags) 			
-	- - - - - -	MC-1	0-5	2.9	8.7 14.0		dilatancy, ve (sheen) evid	reddish brown LEAN to FAT C y soft to soft, moist; strong crec ent throughout recovery. e to fine Sand, black staining fro	osote-like odor, creosote-like	gh plasticity, no ∋ product			 2.25" diameter borehole 	
- 5	_ 595 _	MC-2	5-10	4.2	18.1			rown staining from 6.0 to 6.2' by	-				 1" Sch. 40 PVC riser (3.98' ags- 20' bgs) Bentonite Granules (0' bgs- 19' bgs) 	
- 10			10-15	1.6	26.0		-	lium dense from 10 to 15' bgs. product leaching from Clay fron	n 11.3 to 11.4' bgs.					
			R				dilatancy, so	sea level (NAVE	odor, minimal black staining	g throughout. elow ground : PID = photoior re.	nization dete	ector; AMSI		
Proje	ect Nu	mber:		290.00		003 Tem		g_well HSA 2007 analyt Date: 4/15/2014	tical.ldfx Created/Edi	ted by: RAS		Pa	ge: 1 of 2	

	Client	: Bea	zer Eas	st, Inc.			Well/Boring ID: SB-2/TMW-2							
	Sito I	ocatio					Borehole De	epth: 30' bgs						
	Forr	ner Ko	oppers	Inc. Fa	acility									
	Sup	erior,	WI											
		mber	<i>a</i>		mqq)	c.								
	z	n Nu	Type	(feet)	oace	olum		Well/Boring						
т	ATIO	e Ru	e/Int	very (eads	gic C	Stratigraphic Description	Construction						
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column								
	ш	0	0)											
Ļ	-				0.7			Bentonite						
	_	MC-4	15-20	3.5				Granules (0' bgs- 19' bgs)						
F					0.6		Wood pieces with strong creosote-like odor at 17.8' bgs.	1" Sch. 40 PVC riser (3.98' ags-						
Ļ	585 -							20' bgs)						
	_	-					10YR 3/3 dark brown LEAN CLAY, little Silt, medium plasticity, no dilatancy, soft,							
- 20							/ moist; black staining, slight creosote-like odor.							
Ļ	-						stiff to stiff, moist; dark greenish gray coloration (GLEY 1 4/10Y) at 20.8 to 21.2', 21.7 to 22.3', 22.7 to 23.5', 24.1 to 24.2' and 24.7 to 24.9' bgs.							
	_	-			1.6									
-								Sand Pack - Red						
L	-	MC-5	20-25	5.0				bgs-30' bgs)						
	580 -	-			1.6									
-														
- 25	-							1" Sch. 40 PVC						
	_	-					5YR 4/4 reddish brown LEAN CLAY, little Silt, medium plasticity, no dilatancy, medium stiff to stiff, moist.	Screen Slot Size 0.01" (20' bgs-30'						
ŀ								bgs) with pre- pack screen						
	-				0.1									
	-	MC-6	25-30	5.0										
ŀ														
-	575 -				2.2									
	-	-												
- 30-							End of Boring at 30' bgs.	<u> </u> •••₩••¶						
-	-													
	-													
[
F	_													
	570 -	-												
	_													
- 35														
	_													
							Remarks: ags = above ground surface; bgs = below ground supplicable; ppm = parts per million; PID = photoior	surface; NA = not available/not nization detector; AMSL = above mean						
(5	٨	R	~	D	N	sea level (NAVD 88); MC = macrocore.	,						
							Analytical samples collected from 25-25.5' bgs and	1 25.5-26' bgs.						
Infi	astruc	cture -	Water	Envir	onmen	t Buildii	ngs							

Dril Dril Dril Aug Rig	ling C ler's I ling M Jer Sia Type	Compa Name Metho ze: N : Geo	: Coro d: Dir A oprobe		erson sh	nmental,	ЩС	Northing:549097.19 Easting: 1446630.1 Casing Elevation: Borehole Depth: 1 Surface Elevation: Descriptions By: K	4 606.22' AMSL 5' bgs 604.3' AMSL	Client: Bea	g ID: SB-2A/TMW-2A azer East, Inc. Former Koppers Inc. Facility Superior, WI				
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratig	raphic Description		Well/Boring Construction				
-	- 605 -									■ 1.92' Stickup Height (ags)					
-	600 -	MC-1	0-5	1.8	499.1		soft, moist; s	reddish brown LEAN CLAY rong creosote-like odor and product leaching out of Clay	, little Silt, medium plasticity, n staining (black/brown) through from 1.2 to 1.8' bgs.	o dilatancy, tout.		 1" Sch. 40 PV/riser (1.92' agg bgs) Bentonite Granules (0' b 4 bgs) 2.25" diameter borehole 	gs-5' bgs-		
- 5	_ _ 595 —	MC-2	5-10	3.4	28.5 90.3			product leaching out of Clay	-			Sand Pack - R Flint #40 (4' bg 15' bgs)	ogs-		
_ 10 _ _	- - 590 -	MC-3	10-15	5.0	15.5		10.8' bgs), m (sheen) throu	edium stiff (10.8 to 13.3' bgs ghout. creosote-like product 9.8', 11.2', 11.5 to 11.8', 12',	⁷ , medium plasticity, no dilatand s), stiff (13.3 to 15' bgs); creosc t leaching out of Clay - heavy o 12.3', 12.5 to 12.7', 13.2 to 13.	ote-like staining creosote-like		1" Sch. 40 PV Screen Slot Si 0.01" (5' bgs) bgs) with pre- pack screen	Size •15'		
Infr	astruc	ture -	Water	- Envir	onmer	IS nt - Buildir	ngs	arks: ags = above g applicable; pp	VD 88); MĊ = macroco	PID = photoior		⊣ ector; AMSL = above me Page: 1 of 1	ean		

Date Start/Finish: 8/21/13 Drilling Company: Matrix Environmental, LLC Driller's Name: Cord Anderson Drilling Method: Direct Push Auger Size: NA Rig Type: Geoprobe Sampling Method: Macrocore								Northing:549103.44 Easting: 1446529.56 Casing Elevation: NA Borehole Depth: 25' bgs Surface Elevation: 603.55' AMSL Descriptions By: Kelly Hoehn		Well/Boring ID: SB-3 Client: Beazer East, Inc. Location: Former Koppers Inc. Facility Superior, WI			
DEPTH ELEVATION Sample/Int/Type Recovery (feet) PID Headspace (ppm) Geologic Column						Geologic Column		Stratigraphic Description		Well/Boring Construction			
-	- 605												
-	- 600	MC-1	0-5	2.2	23.8		to very soft, Black silt sea Black staining	reddish brown LEAN CLAY, little Silt, medium p noist, creosote-like sheen/odor throughout. n at 4" bgs. from 1.5 to 2.2' bgs. pieces with strong creosote-like odor/black stain			Borehole backfilled (grout to grade).		
	- - 595 -	MC-2	5-10	3.1	27.1		to very soft, product leac	reddish brown LEAN CLAY, little Silt, medium p noist to very moist; heavy creosote-like sheen th res out of clay with heavy creosote-like free prod 7' to 6.8' and 7.3' to 7.5' bgs.	nroughout,	creosote-like			
- 10	_ _ 590 _	MC-3	10-15	4.5	18.4		to medium s minor black s Medium Sanc Black staining Medium Sanc Black staining	sreddish brown LEAN CLAY, little Silt, medium p iff, moist to wet, strong creosote-like odor and m staining from 10 to 13.3' bgs. seams with heavy creosote-like staining and od with strong creosote-like odor in Clay from 13.5 seams with heavy creosote-like staining and od with strong creosote-like odor in Clay from 14.1	lor from 13. to 13.8' bg lor from 13. to 14.5' bg	throughout, 3 to 13.5' bgs. Is. 8 to 14.1' bgs. Is.			
	InvR 3/3 dark brown LEAN CLAY, little Silt, medium plasticity, no dilatancy, soft to medium stiff, moist; minor creosote-like odor from 15 to 15.8' bgs. InvR 3/3 dark brown LEAN CLAY, little Silt, medium plasticity, no dilatancy, soft to medium stiff, moist; minor creosote-like odor from 15 to 15.8' bgs. InvR 3/3 dark brown LEAN CLAY, little Silt, medium plasticity, no dilatancy, soft to medium stiff, moist; minor creosote-like odor from 15 to 15.8' bgs. InvR 3/3 dark brown LEAN CLAY, little Silt, medium plasticity, no dilatancy, soft to medium stiff, moist; minor creosote-like odor from 15 to 15.8' bgs. InvR 3/3 dark brown LEAN CLAY, little Silt, medium plasticity, no dilatancy, soft to medium stiff, moist; minor creosote-like odor from 15.8' bgs. InvR 3/3 dark brown LEAN CLAY, little Silt, medium plasticity, no dilatancy, soft to medium stiff, moist; minor creosote-like odor from 15.8' bgs. InvR 3/3 dark brown LEAN CLAY, little Silt, medium plasticity, no dilatancy, soft to medium stiff, moist; minor creosote-like odor from 15.5' bgs. Intrastructure - Water - Environment - Buildings Analytical samples collected from 15.5-16' bgs and 16-16.5' bgs.												
Proje	Project Number:B0039290.0000.00003 Template:boring_well HSA 2007 analytical.ldfx Page: 1 of 2 Data File: SB-3.dat Date: 4/15/2014 Created/Edited by: RAS									ted by: RAS			

Client: Beazer East, Inc. Well/Boring ID: SB-3									
Site Location: Former Koppers Inc. Facility Superior, WI	Borehole De	epth: 25' bgs							
DEPTH ELEVATION Sample Run Number Sample/Int/Type Recovery (feet) PID Headspace (ppm) Geologic Column	Stratigraphic Description	Well/Boring Construction							
- MC-4 15-20 5.0 3.0									
- 20 	5YR 4/4 reddish brown LEAN to FAT CLAY, little Silt, medium to high plasticity, no dilatancy, soft, moist.	Borehole backfilled (grout to grade).							
	End of Boring at 25' bgs.								
-35 -35 -36 -35 -37 -35 -37 -35 -37 -35 -37 -									
Project Number:B0039290.0000.00003 Te Data File: SB-3.dat	mplate:boring_well HSA 2007 analytical.ldfx Date: 4/15/2014 Created/Edited by: RAS	Page: 2 of 2							

Date Start/Finish: 8/21/13 Drilling Company: Matrix Environmental, LLC Driller's Name: Cord Anderson Drilling Method: Direct Push Auger Size: NA Rig Type: Geoprobe Sampling Method: Macrocore								Northing:549149.67 Easting: 1446514.96 Casing Elevation: NA Borehole Depth: 20' bgs Surface Elevation: 604.80' A Descriptions By: Kelly Hoe		Client: Bea	Well/Boring ID: SB-4 Client: Beazer East, Inc. Location: Former Koppers Inc. Facility Superior, WI		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigraphic De	escription	Well/Boring Construction			
- -	- 605 -												
-		MC-1	0-5	2.5	0.0		Topsoil. 5YR 4/4 redo no dilatancy,	lish brown LEAN to FAT CLAY, little to tr soft, moist.	race Silt, medium t	o high plasticity,	у.		
- 5	- - 595 -	MC-2	5-10	5.0	0.0		dilatancy, me 10YR 4/3 bro 10YR 3/3 darl	wish red LEAN to FAT CLAY, trace Silt, dium stiff, moist. vn colorations from 8.8 to 8.9' bgs. s brown fine to medium silty Sand (dry) a vn colorations from 9.7 to 9.9' bgs.		asticity, no	Borehole backfilled (grout to grade).		
- 10 5YR 4/4 reddis dilatancy, medi 10YR 4/2 dark g 0.0 0.0 0.0 0.0 0.0 0.0				ish brown LEAN to FAT CLAY, trace Silt, medium to high plasticity, no dium stiff, moist. . grayish brown coloration from 10 to 13' bgs.									
Infra	SYR 4/4 reddish brown FAT CLAY, trace Silt, high plasticity, no dilatancy, medium stiff, moist; GLEY 1 5/10Y greenish gray colorations from 16.2 to 16.5', 17.3 to 17.6', 18 to 18.7' and 19.4 to 19.8' bgs. Remarks: bgs = below ground surface; NA = not available/not applicable; ppm = parts per million; PID = photoionization detector; AMSL = above mean sea level (NAVD 88); MC = macrocore. Project Number:B0039290.0000.00003 Template:boring_well HSA 2007 analytical.ldfx Page: 1 of 2												

Data File: SB-4.dat

	Client	: Beaz	zer Eas	st, Inc.			Well/Boring ID: SB-4				
	Site	ocatio	n.				Borehole Depth: 20' bgs				
	Site Location: Former Koppers Inc. Facility Superior, WI										
		5			(L						
		Sample Run Number	Ō	(j	PID Headspace (ppm)	uu					
	NO	n N	Sample/Int/Type	Recovery (feet)	space	Geologic Column	Stratigraphic Description	Well/Boring			
Η	ELEVATION	ple R	ple/Ir	overy	Head	logic	Straugraphic Description	Construction			
DEPTH	ELE	Sam	Sam	Rec	FID F	Geo					
F											
F	-	MC-4	15-20	5.0	0.0			Borehole backfilled (grout			
	_	-			0.0			to grade).			
20	585 -					===	End of Boring at 20' bgs.				
ļ	-										
	-	-									
F	-										
	-	-									
	E00 -										
- 25	580 -										
ŀ	-										
	-	-									
F	-	-									
	-										
	575 -										
- 30	575										
-	-	-									
	-										
ŀ	-										
ļ	-										
	570 -										
- 35	-										
	- - Remarks: bgs = below ground surface; NA = not available/not applicable; ppm = parts per million;										
	PID = photoionization detector; AMSL = above mean sea level (NAVD 88); MC =										
	ARCADIS macrocore.										
						nt - Buildi	ngs				
1											
		Project Number:B0039290.0000.00003 Template:boring_well HSA 2007 analytical.ldfx Page: 2 of 2 Data File: SB-4.dat Date: 4/15/2014 Created/Edited by: RAS									

Date Start/Finish: 8/21/13 Northing:549209.17 Well/Boring ID: SB-5/TMW-5 Drilling Company: Matrix Environmental, LLC Easting: 1446497.78 Casing Elevation: 613.44' AMSL Drilling Method: Direct Push Borehole Depth: 30' bgs Client: Beazer East, Inc. Auger Size: NA Borehole Depth: 30' bgs Surface Elevation: 610.60' AMSL Barphing Method: Macrocore Descriptions By: Kelly Hoehn Location: Former Koppers Inc. Facility													
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigraph	hic Description			Well/Bo Constru	-
-	-												— 2.84' Stickup Height (ags)
-	610 -	MC-1	0-5	2.3	0.0		\	rOPSOIL), some Organics, crum		, stiff, moist.			— 2.25" diameter borehole
- 10	605 - - -	MC-2	5-10	5.0	0.0		Large angular Gray coloratic	ttle to trace Silt, high plasticity, no Pebbles, dry at 8 to 8.2' and 8.4' n at 8.5 and 8.8' bgs. Pebbles, dry at 9.8' bgs.		o stiff, moist.			 Bentonite Granules (0' bgs- 10' bgs) 1" Sch. 40 PVC riser (2.84' ags- 20' bgs)
- 10 	600 — _ _ _	MC-3	10-15	5.0	0.0		Dark gray colo	oration from 10 to 15' bgs. gular Pebbles at 10.7' bgs.					— Sand Pack - Red Flint #40 (10' bgs-30' bgs)
Proje	astruc	mber:		- Envin	onmen	t · Buildir	dilatancy, me to 17.8', 18.3 Rem		ation at 15.2 to 15.8', 16.2 und surface; bgs = b = parts per million; F 88); MC = macroco cal.ldfx	elow ground PID = photoior	surface; NA	ector; AMS	lable/not SL = above mean age: 1 of 2

	Client	: Bea	zer Eas	st, Inc.			Well/Boring	ID: SB-5/TMW-5
:	Site L Forr Sup		oppers	Inc. Fa	acility		Borehole De	epth: 30' bgs
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	-	MC-4	15-20	5.0	0.0			1" Sch. 40 PVC riser (2.84' ags- 20' bgs)
- 20	590 - - -	MC-5	20-25	5.0	0.0		10YR 4/4 dark yellowish brown LEAN to FAT CLAY, trace Silt, medium to high plasticity, no dilatancy, soft, moist; 10YR 4/1 dark gray mottling from 20 to 22.8' bgs. 10YR 4/1 dark gray from 22.8 to 23.8' bgs.	Sand Pack - Red Flint #40 (10' bgs-30' bgs)
- 25	585 - - -	MC-6	25-30	5.0	0.0		10YR 4/4 dark yellowish brown LEAN to FAT CLAY, trace Silt, medium to high plasticity, no dilatancy, soft, moist.	1" Sch. 40 PVC Screen Slot Size 0.01" (20' bgs) with pre- pack screen
- 30-	580 - - -					E	End of Boring at 30' bgs.	
- 35	- 575 -						Remarks: ags = above ground surface; bgs = below ground	surface; NA - not available/not
			R				applicable; ppm = parts per million; PID = photoion sea level (NAVD 88); MC = macrocore.	iization detector; AMSL = above mean

Created/Edited by: RAS

Dril Dril Dril Aug Rig	ling (ler's ling N jer Si Type	Compa Name Metho ze: N : Geo	: Coro d: Dir	/latrix I d Ande ect Pu	erson sh	nmental,	LLC	Northing:549208.48 Easting: 1446501.06 Casing Elevation: 6 Borehole Depth: 12 Surface Elevation: 6 Descriptions By: Ke	6 313.31' AMSL 2' bgs 610.36' AMSL	Client: Bea	Well/Boring ID: SB-5A/TMW-5A Client: Beazer East, Inc. Location: Former Koppers Inc. Facility Superior, WI		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column					Well/Borin Constructio	-	
- -	-								2.95' Stickup Height (ags) 1" Sch. 40 PVC riser (2.95' ags-2' bgs)				
-	610 - - -	MC-1	0-5	2.2	0.0		<u> </u>	rOPSOIL), some Organics, cr		, stiff, moist.			Bentonite Granules (0' bgs- 1' bgs) 2.25" diameter borehole
- 5	605 — _ _ _	MC-2	5-10	5.0	0.0		Large angular Gray coloratio	ttle to trace Silt, high plasticity Pebbles, dry at 8 to 8.2' and a n at 8.5 and 8.8' bgs.		o stíff, moist.			Sand Pack - Red Flint #40 (1' bgs- 12' bgs) 1" Sch. 40 PVC Screen Slot Size 0.01" (2' bgs-12' bcs) with pre-
- 10	bas) with pre-												
- 15	595 -												
Infr	Remarks: ags = above ground surface; bgs = below ground surface; NA = not available/not applicable; ppm = parts per million; PID = photoionization detector; AMSL = above mean sea level (NAVD 88); MC = macrocore. Soil descriptions from SB-5/TMW-5.												

Data File: SB-5A_TMW-5A.dat Date: 4/15/2014

Drii Drii Drii Aug Rig	lling (ller's lling N ger Si Type	Comp Name Metho ze: N : Geo	: Coro d: Dir	Matrix I d Ande ect Pu	rson sh core	nmental,	LLC	Northing:548783.19 Easting: 1446135.27 Casing Elevation: NA Borehole Depth: 25' by Surface Elevation: 604 Descriptions By: Kelly	4.67' AMSL	Well/Boring ID: SB-6 Client: Beazer East, Inc. Location: Former Koppers Inc. Facility Superior, WI		
DEPTH BLEVATION Sample Run Number Sample/Int/Type Recovery (feet) PID Headspace (ppm) Geologic Column Geologic Column										Well/Boring Construction		
- -												
-	- - 600 -	• MC-1	0-5	2.0	0.0		no dilatancy	reddish brown LEAN to FAT CL/ very soft, moist. k reddish brown Organics from 0		igh plasticity,		
-	- - 595 -	- MC-2	5-10	3.1	0.1		dilatancy, ve	iish brown LEAN to FAT CLAY, tr ry soft to medium stiff, moist. reddish brown Organics from 5.7		lasticity, no	Borehole backfilled (grout to grade).	
 ³⁵⁵ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹¹ <l< td=""><td></td><td>r, no dilatancy,</td><td></td></l<>									r, no dilatancy,			
Infi	SYR 3/3 dark reddish brown LEAN to FAT CLAY, little Silt, trace Organics, medium to high plasticity, no dilatancy, soft to medium stiff. Sync ARCADIS Infrastructure - Water - Environment - Buildings Project Number:B0039290.0000.00003 Template:boring_well HSA 2007 analytical.ldfx											

Data File: SB-6.dat

Client: Beazer East, Inc.	Well/Boring	ID: SB-6						
Site Location: Former Koppers Inc. Facility Superior, WI	Borehole De	epth: 25' bgs						
DEPTH ELEVATION Sample Run Number Sample/Int/Type Recovery (feet) PID Headspace (ppm) Geologic Column	Stratigraphic Description	Well/Boring Construction						
- MC-4 15-20 1.3 0.1								
- 20 - MC-5 20-25 1.1 0.1	5YR 3/3 dark reddish brown LEAN to FAT CLAY, little Silt, trace fine to medium Sand, medium to high plasticity, no dilatancy, soft. 5YR 3/3 dark reddish brown, LEAN CLAY, little Silt to medium Sand, medium plasticity, no dilatancy, soft. Round to subround medium poorly graded SAND, some Clay to Silt, medium dense, well sorted, moist.	Borehole backfilled (grout to grade).						
	End of Boring at 25' bgs. PID Remarks: bgs = below ground surface; NA = not available/no PID = photoionization detector; AMSL = above me	t applicable; ppm = parts per million; an sea level (NAVD 88); MC =						
macrocore. Infrastructure - Water - Environment - Buildings roject Number:B0039290.0000.00003 Template:boring_well HSA 2007 analytical.ldfx Page: 2 of 2 rata File: SB-6.dat Date: 4/15/2014 Created/Edited by: RAS								

Drii Drii Drii Aug Rig	lling (ller's lling N ger Si Type	Compa Name Metho ze: N :: Geo	: Coro d: Diro	/latrix I d Ande ect Pu	erson sh	nmental,	LLC	Northing:548720.10 Easting: 1445976.39 Casing Elevation: NA Borehole Depth: 25' bgs Surface Elevation: 606.12 Descriptions By: Kelly Ho		Well/Boring ID: SB-7 Client: Beazer East, Inc. Location: Former Koppers Inc. Facility Superior, WI		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigraphic Description			Well/Boring Construction	
-	_											
-	- 605 - - -	MC-1	0-5	0.7	0.0		5YR 3/3 dark	reddish brown LEAN to FAT CLAY, li r, no dilatancy, stiff to medium stiff, mo	ttle Silt, trace Organi	cs, medium to		
- 5	- 600 - -	MC-2	5-10	5.0	0.0		dilatancy, so	ish brown LEAN to FAT CLAY, little S t to medium stiff, moist. ring and Organics from 5.7 to 6.1' bgs		asticity, no	Borehole backfilled (grout to grade).	
- 10	_ 595 — _ _	MC-3	10-15	5.0	0.0		dilatancy, so Slight dark gra	lish brown LEAN to FAT CLAY, little S t to medium stiff, moist. ay coloring 10 to 12.1' bgs. , some to little Silt, trace Organics (wo				
Infr	SYR 4/3 reddish brown LEAN to FAT CLAY, little Silt, medium to high plasticity, no Siltancy, medium stiff to stiff, moist. Remarks: bgs = below ground surface; NA = not available/not applicable; ppm = parts per million; PID = photoionization detector; AMSL = above mean sea level (NAVD 88); MC = macrocore. Project Number:B0039290.0000.00003 Template:boring_well HSA 2007 analytical.ldfx Page: 1 of 2											

Data File: SB-7.dat

	Client: Beazer East, Inc. Well/Boring ID: SB-7 Site Location: Borehole Depth: 25' bgs												
				Inc. 5			Borehole De	epth: 25' bgs					
	Former Koppers Inc. Facility Superior, WI												
		Number	be	et)	ce (ppm)	uur							
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction					
-	- 590 	MC-4	15-20	5.0	0.0								
- 20 - -	- 20 - 20												
	-	MC-5	20-25	5.0	0.0		End of Boring at 25' bgs.						
-	580 - - -												
- 30 -	- 575 -												
-													
- 35	- 35												
In	frastruc	cture -	Water	Enviro	onmen	IS at - Buildi		an sea level (NAVD 88); MC =					
	ect Nu a File: :			290.00	00.000	003 Tem	nplate:boring_well HSA 2007 analytical.ldfx Date: 4/15/2014 Created/Edited by: RAS	Page: 2 of 2					

Drilling Company:Matrix Environmental, LLCEasting:1445940.49Client:Bassing:Bassing:1445940.49Client:Bassing:Bassing:1445940.49Client:Bassing:Bassing:1445940.49Client:Bassing:Bassing:1445940.49Client:Bassing:Bassing:1445940.49Client:Bassing:1445940.49Client:Bassing:Bassing:1445940.49Client:Bassing:Bassing:1445940.49Client:Bassing:Bassing:1445940.49Client:Bassing:Bassing:Bassing:Bassing:1445940.49Client:Bassing:Bass											izer East, In	nc. pers Inc. Facility
DEPTH	Image: Second system Image: Second system Image: Second system Well/Boring Image: Second system Image: Second system Image: Second system Well/Boring Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second sy								-			
-	_											
-	605 -	MC-1	0-5	2.4	0.0		5YR 3/3 darl medium to h	reddish brown LEAN to FAT CLAY, little gh plasticity, no dilatancy, soft, moist.	e Silt and Organics	(wood pieces),		2.25" diameter borehole
- 5	600 — — — —	MC-2	5-10	4.6	0.0		to trace Silt, Brown/black V Organics (woo	rk reddish brown (mottled black/reddish ł medium to high plasticity, no dilatancy. Vood pieces, wet from 5.4 to 5.5' bgs. od) at 6.3' bgs. reddish brown from 7.6 to 10' bgs.	brown) LEAN to F.	AT CLAY, little		 1" Sch. 40 PVC riser (3.80' ags- 20' bgs) Bentonite Granules (0' bgs- 16.5' bgs)
- 10	595 — — — —	MC-3	10-15	5.0	0.0			lish brown LEAN to FAT CLAY, little to tra medium stiff to stiff, moist; dark gray cold 14.' bgs.				
- 15	590 -	A	R	CA	D	IS	medium to hi mottling thro	arks: ags = above ground su	soft, moist; slight rface; bgs = b s per million; F	elow ground s PID = photoior	surface; NA nization dete	. = not available/not ector; AMSL = above mear
Infi Proje	astruc	mber:	Water	- Envin	onmen	t · Buildii		g_well HSA 2007 analytical.ldf Date: 4/15/2014		ited by: RAS		Page: 1 of 2

	Client	: Bea	zer Ea	st, Inc.			Well/Boring	ID: SB-8/TMW-8			
		mer Ko	oppers	Inc. Fa	acility		Borehole De	epth: 30' bgs			
	Sup	erior,	WI			·					
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction			
-	-	MC-4	15-20	5.0	0.0			Bentonite Granules (0' bgs- 16.5' bgs) 1" Sch. 40 PVC riser (3.80' ags- 20' bgs)			
- 20 - -	585 - - - -	MC-5	20-25	5.0	0.0		LEAN to FAT CLAY, little Silt, medium to high plasticity, no dilatancy, medium stiff to stiff, moist; 5YR 4/3 reddish brown at 20 to 20.1', 20.2 to 20.8' and 21.4 to 21.8' bgs; 5YR 3/3 dark reddish brown at 23.9 to 25' bgs; and 10YR 4/1 dark gray at 20.1 to 20.2', 20.8 to 21.4' and 21.8 to 23.9' bgs. Slightly moist to dry from 21.8 to 23.9' bgs. .arge Pebbles at 22.4' bgs.	Sand Pack - Red Flint #40 (16.5' bgs-30' bgs)			
- 25	580 - - - -	MC-6	25-30	5.0	0.0		5YR 4/4 reddish brown LEAN to FAT CLAY, little Silt, medium to high plasticity, no dilatancy, soft, moist.	1" Sch. 40 PVC Screen Slot Size 0.01" (20' bgs-30' bgs) with pre- pack screen			
- 30	575 - 575 - 577 -										
Inf	rastru	cture -	Water	-Envir	onmen		Remarks: ags = above ground surface; bgs = below ground s applicable; ppm = parts per million; PID = photoion sea level (NAVD 88); MC = macrocore.	surface; NA = not available/not nization detector; AMSL = above mean Bage: 2 of 2			

Dril Dril Dril Auç Rig San	ling (ler's l ling M ger Si Type npling	Comp Name Metho ze: N : Geo	: Coro d: Dir	/latrix I d Ande ect Pu	erson sh	Geologic Column	MSL AMSL hn	Client: Bea				
DEPTH	ELEVATION	Sampl	Sampl	Recov	PID He	Geolo						
-												1° Sch. 40 PVC riser (3.01' ags-2' bgs)
0 605 5YR 3/3 dark reddish brown LEAN to FAT CLAY, little Silt and Organics (wood pieces) medium to high plasticity, no dilatancy, soft, moist. MC-1 0-5 2.4 0.0												Bentonite Granules (0' bgs- 1' bgs) 2.25" diameter borehole
- 5	600 -	MC-2	5-10	4.6	0.0		to trace Silt, Brown/black \ Organics (wo	YR 2.5/2 dark reddish brown (mottled black/reddish brown) LEAN to FAT CLAY, little b trace Silt, medium to high plasticity, no dilatancy. own/black Wood pieces, wet from 5.4 to 5.5' bgs. rganics (wood) at 6.3' bgs. /R 3/3 dark reddish brown from 7.6 to 10' bgs.				Sand Pack - Red Flint #40 (1' bgs- 12' bgs)
- 10	- 595 - -	NA	10-12	NA	0.0			ish brown LEAN to FAT CLAY, little to tr medium stiff to stiff, moist.	race Silt, medium t	o high plasticity,		0" Sch. 40 PVC Screen Slot Size 0.01" (2' bgs-12' bgs) with pre- pack screen
- 15	- -											
Infr	astruc	cture -	Water	- Enviro	onmen	IS at Buildin	ngs	arks: ags = above ground su applicable; ppm = parts sea level (NAVD 88); N Soil descriptions from S g_well HSA 2007 analytical.ldf	s per million; F //C = macroco SB-8/TMW-8.	PID = photoior	u surface; NA = n nization detector	ot available/not ;; AMSL = above mean <i>Page: 1 of 1</i>

Dril Dril Dril Aug Rig	lling C ller's I lling N ger Siz Type	Comp Name Metho ze: N : Geo	: Coro d: Diro	/latrix I d Ande ect Pu	erson sh	nmental,	ЦС	Northing:547302.72 Easting: 1446174.66 Casing Elevation: 1 Borehole Depth: 2 Surface Elevation: Descriptions By: K	8 NA 5' bgs 611.29' AMSL	Well/Boring ID: SB-9 Client: Beazer East, Inc. Location: Former Koppers Inc. Facility Superior, WI		
рертн	DEPTH ELEVATION Sample Run Number Sample/Int/Type Recovery (feet) PID Headspace (ppm) Geologic Column							Well/Boring Stratigraphic Description Construction				
-												
-	- 610 -	MC-1	0-5	3.3	0.0		2.5YR 4/4 re	FOPSOIL) and Organics, no ddish brown, LEAN to FAT C edium stiff to stiff, moist.	plasticity, no dilatancy, dry.	ih plasticity, no		
	- 605 - - -	MC-2	5-10	5.0	0.0				AY, trace Silt to medium Sand edium to high plasticity, no dil		Borehole backfilled (grout to grade).	
- 10	- 600 - - -	MC-3	10-15	5.0	0.0		plasticity, no	tish brown, LEAN to FAT CL dilatancy, medium stiff, mois en coloration from 12 to 12.2		to high		
Infi	astruc	cture -		Envir	onmen	t · Buildir	dilatancy, m Medium Pebb Rem	edium stiff, moist. les at 15.4' bgs. arks: bgs = below g	nization detector; AMS	ot available/no	pt applicable; ppm = parts per million; ean sea level (NAVD 88); MC = Page: 1 of 2	

	Client	: Beaz	zer Eas	st, Inc.			Well/Boring	ID: SB-9		
	Site L Forr		on: oppers	Inc. F	acility		Borehole De	epth: 25' bgs		
	Sup	erior,	WI		,					
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction		
-	595 - - -	- MC-4	15-20	5.0	0.0		Medium Pebbles at 17.1' bgs.			
- 20 - -	- 590 - -	MC-5	20-25	5.0	0.0		5YR 4/3 reddish brown, FAT CLAY, little Silt, medium to high plasticity, no dilatancy, soft, moist to very moist.	Borehole backfilled (grout to grade).		
- 25	-	-					End of Boring at 25' bgs.			
-	585 - - -	-								
-	- 580 - -	-								
- 35	- 35									
Proj	PID = photoionization detector; AMSL = above mean sea level (NAVD 88); MC = macrocore.									
Data	a File:	SB-9.0	lat				Date: 4/15/2014 Created/Edited by: RAS			

Drilling Company:Matrix Environmental, LLCEasting:14466292.55Client:Beazer East, Inc.Driller's Name:Cord AndersonDrilling Method:Direct PushBorehole Depth:25' bgsLocation:Former KoppersAuger Size:NABorehole Depth:25' bgsSurface Elevation:611.9' AMSLLocation:Former KoppersRig Type:GeoprobeBescriptions By:Kelly HoehnKelly HoehnKelly Hoehn										Former Koppers Inc. Facility	
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigraphi	ic Description		Well/Boring Construction
- -	-										
-	- 610 - -	MC-1	0-5	2.3	0.0		5YR 4/4 redo	TOPSOIL), trace Organics, crumbl ish brown LEAN to FAT CLAY, tra edium stiff, moist.		olasticity, no	
- 10	- 605 - -	MC-2	5-10	5.0	0.0			itsh brown LEAN to FAT CLAY, litt bles, medium to high plasticity, no			Borehole backfilled (grout to grade).
600 MC-3 10-15 4.2 0.0 SYR 4/4 redish brown LEAN to FAT CLAY, little Silt, medium to high plasticity, no dilatancy, medium stiff to stiff, moist; dark grayish green coloration at 10.1 to 10.2', 10.5 to 10.7', 12.4 to 12.8', 13 to 13.1' and 13.8 to 14.2' bgs. 600 MC-3 10-15 4.2 Large Pebbles from 11.1 to 11.2' bgs. 15 0.0 0.0 Image Pebbles from 11.7 to 12' bgs. 15 7.5YR 4/2 brown (with dark gray mottling) FAT CLAY, little Silt, high plasticity, no											
Infra	astruc	cture -	Water	- Enviro		t · Buildir	dilatancy, m Medium stiff f Rem	oist to very moist. rom 15 to 15.9' bgs. arks: bgs = below groun	nd surface; NA = no tion detector; AMS	ot available/no	pot applicable; ppm = parts per million; ean sea level (NAVD 88); MC = Page: 1 of 2

Data File: SB-10.dat

	Client	t: Bea	zer Ea	st, Inc.			Well/Boring	ID: SB-10
	Forr	.ocatio mer Ko erior,	oppers	Inc. F	acility		Borehole De	pth: 25' bgs
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	595 - - -	MC-4	15-20	4.7	0.0		5YR 3/3 dark reddish brown, soft from 15.9 to 19.7' bgs. 10YR 3/2 very dark grayish brown, soft from 19.6 to 20' bgs.	
- 20	- 590 - -	MC-5	20-25	5.0	0.0		2.5Y 4/1 dark gray LEAN to FAT CLAY, little Silt, medium to high plasticity, no dilatancy, medium stiff, moist. 5YR 4/3 reddish brown LEAN CLAY, some to little fine to medium Sand and Silt, trace coarse Sand to small Pebbles, subround to subangular, medium plasticity, no dilatancy, medium stiff to stiff, moist.	Borehole backfilled (grout to grade).
- 25-	- 585 - -	-					End of Boring at 25' bgs.	
- 30 - -	- 580 -	-						
- 35	-	-						
						IS at-Buildin	Remarks: bgs = below ground surface; NA = not available/no PID = photoionization detector; AMSL = above mea macrocore.	t applicable; ppm = parts per million; an sea level (NAVD 88); MC =

Dri Dri Aug Rig	Drilling Company: Matrix Environmental, LLC Driller's Name: Cord AndersonEasting: 1446287.34 Casing Elevation: 614.19' AMSLClient: Beazer East, Inc.Drilling Method: Direct Push Auger Size: NA Rig Type: Geoprobe Sampling Method: MacrocoreBorehole Depth: 30' bgs Surface Elevation: 611.01' AMSLLocation: Former Koppers Inc. Facility Superior, WI								pers Inc. Facility			
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigraphic I	Description			Well/Boring Construction
-	-											3.18' Stickup Height (ags)
- 5	610 - - -	MC-1	0-5	3.5	0.0		5YR 4/4 rede slightly mois	OPSOIL), trace Organics (roots), cru lish brown LEAN CLAY, trace Silt, me reddish brown with Roots from 1 to 1.	dium plasticity, no dil	•		2.25" diameter borehole
-	- 605 - - -	MC-2	5-10	5.0	0.0			ddish brown LEAN to FAT CLAY, trac nedium to high plasticity, no dilatancy				
- 10	- 600 - - -	MC-3	10-15	5.0	0.0		Pebbles, sut	lish brown LEAN to FAT CLAY, little S angular, medium to high plasticity, no brown CLAYEY SAND, medium to co oles, subround to angular, dense, slig	dilatancy, medium si	tiff, moist.		
15		A	R	CA	D	IS	5YR 4/4 redo Pebbles, sub moist.	ish brown LEAN to FAT CLAY, little S angular, medium to high plasticity, no arks: ags = above ground	Silt, trace medium Sau dilatancy, soft to me surface; bgs = b urts per million; F	dium stiff, below ground s PID = photoior	surface; NA	a = not available/not ector; AMSL = above mea
Proje	ect Nu	mber:	Water	- Envin	onmer	t · Buildii		g_well HSA 2007 analytical. Date: 4/15/2014		ited by: RAS		Page: 1 of 2

	Client	: Bea	zer Eas	st, Inc.			Well/Boring	ID: SB-11/TMW-11
	Site L	ocatio	nn.				Borehole De	epth: 30' bgs
	Form	ner Ko	oppers	Inc. Fa	acility			
	Sup	erior,	VVI					
					Ê			
		mbe	۵		udd)	Ľ		
	N	ער חיי N	t/Typ	Recovery (feet)	pace	Colun		Well/Boring
Ξ	'ATIC	le Rı	le/Int	very	eads	ogic (Stratigraphic Description	Construction
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Reco	PID Headspace (ppm)	Geologic Column		
-	-							Bentonite Granules (0' bgs-
		MC-4	15-20	5.0	0.0			19' bgs)
F	-							1" Sch. 40 PVC riser (3.18' ags-
					0.0			20' bgs)
[_							
20	_							
							Soft, very moist from 20 to 25' bgs.	
ł	590 -							
					0.0			
F	-							Sand Pack - Red
		MC-5	20-25	5.0				bgs-30' bgs)
-	_				0.0			
- 25	_						5YR 4/4 reddish brown LEAN to FAT CLAY, little Silt, medium to high plasticity, no	1" Sch. 40 PVC
							dilatancy, soft, very moist; 5YR 4/3 reddish brown from 26.3 to 27.1' bgs.	0.01" (20' bgs-30' bgs) with pre-
Ī	585 -							pack screen
-	_				0.0			
		MC-6	25-30	4.8			7.5YR 4/1 dark gray (mottled with reddish brown) LEAN to FAT CLAY, little Silt, medium to high plasticity, no dilatancy, medium stiff, moist.	
ł	_			-				
					0.0		5YR 4/3 reddish brown LEAN to FAT CLAY, little Silt, medium to high plasticity, no	
Ē.	-						dilatancy, medium stiff, moist.	
- 30						===		
							End of Boring at 30' bgs.	
t	580 -	1						
-	_							
ŀ	-							
†	-							
- 35	_							
		1		1	1	1	Remarks: ags = above ground surface; bgs = below ground s	surface; NA = not available/not
				-			applicable; ppm = parts per million; PID = photoior sea level (NAVD 88); MC = macrocore.	nization detector; AMSL = above mean
6	9	Δ	R			IS		
int	rastruc	ture	water	- Envir	onmen	nt - Buildii	ngs	
Ļ	(male i d	00000	000.00	00.000	000 -	nplate:boring_well HSA 2007 analytical.ldfx	Page: 2 of 2

Dril Dril Dril Aug Rig	ling C ler's I ling M jer Sia Type	Compa Name Metho ze: N : Geo g Meth	: Coro d: Dir	Matrix I d Ande ect Pu	erson sh core	nmental,	LLC					pers Inc. Fa	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigra	aphic Description			Well/Bori Construct	-
-	-												 2.96' Stickup Height (ags) 1" Sch. 40 PVC riser (2.96' ags-2' bgs)
-	610 -	MC-1	0-5	3.5	0.0		5YR 4/4 rede slightly mois	•	bots), crumbly, dry. e Silt, medium plasticity, no di m 1 to 1.3' and 1.9 to 2.0' bg				 Bentonite Granules (0' bgs- 1' bgs) 2.25" diameter borehole
- 10	605 — — — —	MC-2	5-10	5.0	0.0				AY, trace Silt and medium S dilatancy, very stiff to stiff, mo				 Sand Pack - Red Flint #40 (1' bgs- 12' bgs) 1" Sch. 40 PVC Screen Slot Size 0.01" (2' bgs-12' bgs) with pre-
-	600 -	NA	10-12	NA	0.0			angular, medium to high plas	NY, little Silt, trace medium Sa sticity, no dilatancy, medium s				pack screen
						IS nt - Buildin		applicable; pp sea level (NA\	rround surface; bgs = I m = parts per million; I /D 88); MC = macroco ns from SB-11/TMW-1	PID = photoio pre.	surface; NA nization dete	= not availa ctor; AMSL	able/not . = above mean

Dril Dril Dril Aug Rig	ling C ler's I ling N jer Si Type	Compa Name Metho ze: N : Geo	: Coro d: Dir	/latrix I d Ande ect Pu	erson sh	nmental,	LLC	Northing:547739.33 Easting: 1446059.83 Casing Elevation: 61 Borehole Depth: 15 Surface Elevation: 60 Descriptions By: Kell	bgs 08.42' AMSL		c. bers Inc. F	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigrap	ohic Description		Well/Bc Constru	Ũ
-	- 610 -											— 3.21' Stickup Height (ags)
-		MC-1	0-5	1.6	97.7		Black SILT, s odor; sheen, 5YR 3/2 dark	reddish brown LEAN to FAT C t to medium stiff, moist; mild cre come Clay, Organics, low plastic black/brown staining on Organi reddish brown LEAN to FAT C , no dilatancy, soft, moist; creo	eosote-like odor. city, no dilatancy; moderate ics. :LAY, little Silt, trace Organio	creosote-like		 — 1" Sch. 40 PVC riser (3.21' ags-5' bgs) — Bentonite Granules (0' bgs- 3.5' bgs) — 2.25" diameter borehole
- 10	- - - - -	MC-2	5-10	3.5	84.9 80.0		dilatancy, so throughout; s	reddish brown LEAN to FAT C t to medium stiff, moist; black/b tong creosote-like odor, creoso g, black, fibrous, strong creosot	rown staining and moderate te-like product leaching out.	sheen		— Sand Pack - Red Flint #40 (3.5' bgs-15' bgs)
								— 1" Sch. 40 PVC Screen Slot Size 0.01" (5' bgs-15' bgs) with pre- pack screen				
Infr	astruc	ture -	Water	- Enviro	onmen	IS at Buildin	ngs	arks: ags = above gro applicable; ppm	= parts per million; F 0 88); MC = macroco	PID = photoior	ctor; AMS	

Dri Dri Dri Aug Rig	lling (ller's lling M ger Si Type	Compa Name Metho ze: N : Geo	: Coro d: Diro	/latrix I d Ande ect Pu	erson sh	nmental,	LLC	Northing:547743.12 Easting: 1446058.36 Casing Elevation: 612.02' AM Borehole Depth: 30' bgs Surface Elevation: 608.28' AM Descriptions By: Kelly Hoehn	28' AMSL Location: Former Koppers Inc. Facility Superior, WI						
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigraphic Desc	cription			Well/Boring Construction			
-	- 610 -											3.74' Stickup Height (ags)			
-	- 605 -	MC-1	0-5	0.8	226		very soft, mo odor, staining 10YR 3/3 da	k brown LEAN CLAY, Organics, medium p ist to wet; slight creosote-like odor; 10YR 2 visible from 0.4 to 0.8' bgs. k brown LEAN CLAY, Organics, medium p ist to wet; slight creosote-like odor.	/1 black, strong	creosote-like		2.25" diameter borehole			
- 5	- - 600 -	MC-2	5-10	2.8	278		to medium st Minor creosot Organics, stro	e-like odor/staining from 5 to 5.8' bgs. ng creosote-like odor/staining at 5.8' bgs. erate black/brown creosote-like staining, cr				 — 1" Sch. 40 PVC riser (3.74' ags 25' bgs) — Bentonite Granules (0' bg 23' bgs) 			
- 10	_ 595 _	MC-3	10-15	4.9	309 388		no dilatancy, odor from 10 Moderate to h 11.3 to 14' bg Aerated, mino	eavy black/brown staining (creosote-like pr s. r black/brown staining from 14 to 15' bgs. reddish brown LEAN CLAY, some fine to r	wn staining and oduct leaching f medium Sand, tr	creosote-like rom Clay) from race coarse					
\$						IS at · Buildin	soft to very s bgs.	ules, round to subangular, frace organics, r oft, moist to wet; black/brown staining, creo arks: ags = above ground surfa applicable; ppm = parts p sea level (NAVD 88); MC	ace; bgs = b ber million; F	elow ground : PID = photoior	surface; NA nization dete	A = not available/not ector; AMSL = above mea			

Former Koppers Inc. Facility Superior, WI

Borehole Depth: 30' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	- 590 -	MC-4	15-20	3.1	53.9		Coarse SAND, trace fine to medium Sand and very coarse Sand, subround to subangular, saturated with creosote-like product; heavy creosote-like odor and black/brown staining. 5YR 3/3 dark reddish brown LEAN CLAY, some fine to medium Sand, trace coarse Sand to granules, round to subangular, trace Organics, medium plasticity, no dilatancy, soft to very soft, moist to wet; organics, wet; creosote-like odor from 16.8 to 17.0' bgs. 5YR 3/3 dark reddish brown LEAN CLAY, little Silt to fine Sand, trace medium to coarse Sand and Organics with creosote-like odor, medium plasticity, no dilatancy, aerated, medium stiff, moist. Some medium to very coarse Sand, subangular to angular from 18 to 18.1' bgs.	. Bentonite Granules (0' bgs- 23' bgs)
- 20 - - - 25	- 585	MC-5	20-25	3.1	419		 Medium SAND to GRANULES, little Clay to very fine Sand, poorly sorted, loose, wet; heavy black/brown staining, saturated with creosote-like product. LEAN to FAT CLAY, some to little fine to medium Sand, medium to high plasticity, no dilatancy, aerated, soft, moist; minor creosote-like odor; organics, strong creosote-like odor, black staining at 21.7 to 21.8' bgs. Medium Sand parting, wet; creosote-like odor, minor sheen at 22.3' bgs. Organics, strong creosote-like odor at 22.6 to 22.7' bgs. 	1" Sch. 40 PVC riser (3.74' ags- 25' bgs)
	- - 580 -	MC-6	25-30	5.0	444		5YR 3/3 dark reddish brown LEAN to FAT CLAY, some to little fine to medium Sand, medium to high plasticity, no dilatancy, aerated, soft, moist, creosote-like odor; medium Sand, moist; creosote-like odor, sheen at 26.6' bgs. Organics (wood), wet, creosote-like odor, minimal black staining at 25.1', 25.4' and 25.6 to 25.8' bgs. Medium to coarse SAND, little very coarse Sand, subround to subangular, well sorted, very loose, wet; very heavy black staining, saturated with creosote-like product, strong creosote-like odor. 5YR 3/3 dark reddish brown LEAN to FAT CLAY, little Silt, trace very fine Sand, medium to high plasticity, no dilatancy, medium stiff to soft, moist; very minor creosote- like odor.	1" Sch. 40 PVC Screen Slot Size 0.01" (25 bgs-30' bgs) with pre- pack screen
- 35							End of Boring at 30' bgs.	
			RO			IS t-Buildir	Remarks: ags = above ground surface; bgs = below ground s applicable; ppm = parts per million; PID = photoioni sea level (NAVD 88); MC = macrocore.	

Date Sta Drilling Driller's Drilling Auger S Rig Type Samplin	Comp Name Metho ize: N e: Geo	any: M : Coro d: Dir A/10" (oprobe/	/latrix E d Ande ect Pu OD; 4.2 /Track-	rson sh/Holl 25" ID Mount	ow-Sten ed Rig		Northing:547740.30 Easting: 1446056.04 Casing Elevation: 611.93' Al Borehole Depth: 40' bgs Surface Elevation: 608.42' A Descriptions By: Kelly Hoeh	MSL	Well/Boring ID: SB-12/TMW-12C Client: Beazer East, Inc. Location: Former Koppers Inc. Facility Superior, WI			
DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigraphic Des	scription			Well/Boring Constructio	0
610 -	-											3.51' Stickup Height (ags)
- - - - - - - - - - - - - - - - - - -	MC-1	0-5	1.5	39.3		Black SILT, I bgs. 5YR 3/3 dark	reddish brown LEAN CLAY, Organics, m to stiff, slightly moist; creosote-like odor. (ttle Clay, Organics, soft, moist; creosote- reddish brown LEAN to FAT CLAY, little ry soft to soft, moist; creosote-like odor.	like odor, black sta	aining at 0.8'			10" diameter borehole
5 - - - - - - - - - - - - - - - - - -	MC-2	5-10	4.2	60 49.4		dilatancy, so creosote-like	brown LEAN to FAT CLAY, little Silt, me it to medium stiff, moist; black/brown stair product leaching out of Clay. creosote-like product leaching out, strong to 6.6' bgs.	ning, strong creoso	ote-like odor,			1" Sch. 40 PVC riser (3.51' ags- 35' bgs) Bentonite Granules (0' bgs- 31.5' bgs)
- 10 	- 98.0 Aerated, little very fine to fine Sand from 14.2 to 14.5' bgs.											
- 15	_					Organics, me creosote-like		soft, moist to very	moist, minor			
							arks: ags = above ground sur applicable; ppm = parts mean sea level (NAVD diameter. Analytical samples colle completed 9/12/13.	s per million; f 88); MC = ma	PID = photoio acrocore; ID =	nization dete inside diam	ector; AMSL ieter; OD = o	= above outside
Project Nu Data File:						plate:borin	g_well HSA 2007 analytical.ldfx Date: 4/15/2014	c Created/Edi	ted by: RAS		Page	e: 1 of 3

Client:	Beazer	East,	Inc.
---------	--------	-------	------

Former Koppers Inc. Facility Superior, WI

Well/Boring ID: SB-12/TMW-12C

Borehole Depth: 40' bgs

					2	<u>i 1</u>						
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description				Well/Bo Construc	•
-	- 590 -	MC-4	15-20	1.9	6.3		Medium Sand seam at 16.5 to 16.6' bgs.					
- 20 	- - 585 -	MC-5	20-25	1.7	5.8		5YR 3/3 dark reddish brown LEAN to FAT CLAY, some Silt to medium Sand, little Organics, medium to high plasticity, no dilatancy, very soft to soft, moist, slight creosote-like odor.			_		 Bentonite Granules (0' bgs- 31.5' bgs)
25 - -	- - 580 -	MC-6	25-30	5.0	41.6 70.7		5YR 3/2 dark reddish brown LEAN to FAT CLAY, some fine to medium Sand, medium to high plasticity, no dilatancy, very soft, moist; interbedded with CLAYEY SAND, fine to medium, little coarse, trace very coarse Sand to large Pebbles, round to subangular, loose to very loose; black/brown staining, strong creosote-like dor; saturated with creosote-like product - heaviest from 26.6 to 26.8' and 27.4 to 27.8' bgs. 5YR 3/3 dark reddish brown LEAN to FAT CLAY, little Silt, medium to high plasticity, no dilatancy, soft, moist; creosote-like odor and minor creosote-like product leaching out of Clay (black/brown staining).					- 1" Sch. 40 PVC riser (3.51' ags- 35' bgs)
- 30 - - - 35	- 575 -	MC-7	30-35	5.0	5.2		5YR 3/3 dark reddish brown LEAN to FAT CLAY, little Silt, medium to high plasticity, no dilatancy, soft.					- Sand Pack - Red Flint #40 (31.5' bgs-40' bgs) - 1" Sch. 40 PVC Screen Slot Size 0.01" (35' bgs-40'
			R			IS t · Buildir	Remarks: ags = above ground surface; bgs = below ground applicable; ppm = parts per million; PID = photoio mean sea level (NAVD 88); MC = macrocore; ID = diameter. Analytical samples collected from 30-30.5' bgs and completed 9/12/13.	nization c inside di	lete arr	ecto ietei	r; AMSI '; OD =	bgs) with pre- able/not L = above outside
Proje	ct Nu	mber:		290.00	00.000)03 Tem		100.0-01	Dį	<u>j</u> s.		ge: 2 of 3

	Client	: Beaz	zer Eas	st, Inc.			Well/Boring	ID: SB-12/TMW-12C
:	Site Lo Forn Supe		oppers	Inc. F	acility		Borehole Do	epth: 40' bgs
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	_	MC-8	35-38	3.0	2.5 2.6			pack screen 1" Sch. 40 PVC Screen Slot Size 0.01" (35' bgs-40' bgs) with pre- pack screen
	570 -	NA	38-40	NA	NA		Blind augered to 40' bgs.	Sand Pack - Red Flint #40 (31.5' bgs-40' bgs)
-	- 565 -						End of Boring at 40' bgs.	
- 45	-							
-	560 -							
50 	-							
- 55	555 - -							
Infi	rastruc	ture -	Water	-Envir		t - Buildii	Remarks: ags = above ground surface; bgs = below ground applicable; ppm = parts per million; PID = photoio mean sea level (NAVD 88); MC = macrocore; ID = diameter. Analytical samples collected from 30-30.5' bgs and completed 9/12/13.	nization detector; AMSL = above inside diameter; OD = outside

Data File: SB-12_12C_TMW-12C.dat

Dril Dril Dril Aug Rig	ling C ler's I ling N jer Si Type	Comp Name Aetho ze: N : Geo	: Coro d: Diro	/latrix I d Ande ect Pu	erson sh core	nmental,	LLC	Northing:547835.17 Easting: 1446105.82 Casing Elevation: NA Borehole Depth: 30' bgs Surface Elevation: 608.14' AMSL Descriptions By: Kelly Hoehn	Client: Bea	ng ID: SB-13 azer East, Inc. Former Koppers Inc. Facility Superior, WI					
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigraphic Description		Well/Boring Construction					
-	- 610 - -						5YR 4/4 reddish brown LEAN to FAT CLAY, trace Silt, medium to high plasticity, no dilatancy, soft to medium stiff.								
-		MC-1	0-5	2.8	0.0		dilatancy, so Black SILT, C Black colorati		igh plasticity, no						
	- 600 -	MC-2	5-10	5.0	0.0			itsh brown LEAN to FAT CLAY, trace Silt to very fine S m to high plasticity, no dilatancy, medium stiff to stiff, r		Borehole backfilled (grout to grade).					
- 10 - - -	- - 595 -	MC-3	10-15	5.0	0.0		2.5YR 4/4 re high plasticit	ddish brown LEAN to FAT CLAY, trace Silt to very fine y, no dilatancy, medium stiff to stiff.	Sand, medium to						
Infr	astruc	ture -	Water	-Enviro	onmen	IS at - Buildin	ngs	arks: bgs = below ground surface; NA PID = photoionization detector; A macrocore. g_well HSA 2007 analytical.ldfx	= not available/n MSL = above me	ot applicable; ppm = parts per million; ean sea level (NAVD 88); MC =					

Data File: SB-13.dat

Clien	Client: Beazer East, Inc. Well/Boring ID: SB-13									
For	L ocatio mer Ko perior,	oppers	Inc. Fa	acility		Borehole De	epth: 30' bgs			
DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction			
- 590	- MC-4 -	15-20	5.0	0.0	10 no	YR 4/2 dark grayish brown LEAN to FAT CLAY, little Silt, medium to high plasticity, dilatancy, soft; 10YR 4/1 dark gray and 2.5YR 4/4 reddish brown mottling.				
- 20 - - - 585	- - - - - - - - - -	20-25	5.0	0.0	5Y	t to medium stiff (dry lenses) from 20 to 22.4' bgs. R 4/3 reddish brown LEAN to FAT CLAY, some to little Silt, medium to high asticity, soft, moist.	Borehole backfilled (grout to grade).			
- 25	 MC-6	25-30	5.0	0.0						
- 575	-				Enc	l of Boring at 30' bgs.				
	icture -	Water	-Enviro	onmen	t - Buildings	Remarks: bgs = below ground surface; NA = not available/nd PID = photoionization detector; AMSL = above me macrocore. te:boring_well HSA 2007 analytical.ldfx	ot applicable; ppm = parts per million; an sea level (NAVD 88); MC = Page: 2 of 2			

Drill Drill Drill Aug Rig	ling (ler's ling N ler Si Type	Compa Name Aetho ze: N : Geo	: Coro d: Dir	/atrix I d Ande ect Pu	erson sh	nmental,	ШС	Northing:548110.59 Easting: 1446100.96 Casing Elevation: NA Borehole Depth: 25'b Surface Elevation: 60 Descriptions By: Kelly	ogs 7.49' AMSL	Well/Boring ID: SB-14 Client: Beazer East, Inc. Location: Former Koppers Inc. Facility Superior, WI		
рертн	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigraphic Description			Well/Boring Construction	
610												
-	- 605 - -	MC-1	0-5	2.7	1.3		<u> </u>	some Roots, medium plasticity, lish brown LEAN CLAY, trace Sil ist; 5YR 3/2 dark reddish brown f		/		
	- 600 - -	MC-2	5-10	5.0	0.8		2.5YR 4/4 re dilatancy, sti	ddish brown LEAN to FAT CLAY f to medium stiff, moist; trace Org	, little Silt, medium to high ganics from 5 to 5.3' bgs.	plasticity, no	Borehole backfilled (g to grade).	grout
-10 -												
Infra	astruc	ture -	Water	Enviro	onmen	IS It Buildin	Rem	ddish brown LEAN to FAT CLAY t to medium stiff, moist. arks: bgs = below grou PID = photoioniza macrocore. g_well HSA 2007 analyti	ind surface; NA = no ation detector; AMS	ot available/no	ot applicable; ppm = parts per milli ean sea level (NAVD 88); MC = Page: 1 of 2	ion;

Data File: SB-14.dat

	Client: Beazer East, Inc. Well/Boring ID: SB-14										
	Site L						Borehole De	epth: 25' bgs			
	Forr Sup	ner Ko erior, ¹	oppers WI	Inc. Fa	acility						
		-			Ê	İ					
		Numbe	ed,	et)	oe (ppr	um					
_	TION	Run	/Int/Ty	ery (fee	adspac	ic Colt	Stratigraphic Description	Well/Boring Construction			
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column					
	-		0,		<u> </u>						
F	590 -	MC-4	15-20	4.0	1.0						
F		1010-4	15-20	4.8	1.8						
	-				2.2						
	-	-									
- 20	-						5YR 4/4 reddish brown CLAY, little Silt, trace medium to coarse Sand, subangular, medium to high plasticity, no dilatancy, soft to medium stiff.	Borehole			
-							median to high plasticity, no dilatancy, sort to median stin.	backfilled (grout to grade).			
	-	-			2.2						
	585 -	MC-5	20-25	5.0							
F	_						Mottled 5YR 4/2 dark reddish gray and 5YR 4/4 reddish brown from 22 to 25' bgs.				
-					2.5						
-25		-					Dark gray seam, dry from 24.7 to 24.8' bgs.				
	-	-					End of Boring at 25' bgs.				
F	-	-									
-											
	580 -										
	-	-									
F	-	-									
- 30											
	-	-									
	-	-									
f	575 -	-									
ŀ											
	-	-									
	-	-									
- 35	-	-									
							Remarks: bgs = below ground surface; NA = not available/no	ot applicable; ppm = parts per million			
			D		D		PID = photoionization detector; AMSL = above me macrocore.	an sea level (NAVD 88); MC =			
	2	A	K	LA	D	IS					
						t - Buildi	ngs				
								_			
	ect Nu a File:			290.00	00.000	003 Tem	plate:boring_well HSA 2007 analytical.ldfx Date: 4/15/2014 Created/Edited by: RAS	Page: 2 of 2			

Dril Dril Dril Aug Rig	ling C ler's I ling M er Si Type	Compa Name Metho ze: N : Geo g Meth	: Coro d: Dir	/latrix I d Ande ect Pu	Enviror erson sh core	nmental,	ШС	Surface Elevation: 60	Easting: 1446018.08		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Well/Boring Stratigraphic Description Construction			
-	- 10										
-	- 605 - -	MC-1	0-5	2.9	0.0		2.5YR 4/3 re dilatancy, me from 0 to 0.5	ddish brown LEAN to FAT CLAY dium stiff to stiff, moist; aerated bgs.	/, little Silt, medium to high , Organics throughout; blac	plasticity, no k colorations	
- 5	- 600 -	MC-2	5-10	1.2	0.0		5YR 4/3 redd dilatancy, so	lish brown LEAN to FAT CLAY, t, moist (sticky), aerated.	little Silt, medium to high pl	asticity, no	Borehole backfilled (grout to grade).
MC-3 10-15 1.4 0.0											
Infra	astruc	cture -	Water	-Envir	onmen	IS at Buildir	Rem	reddish brown LEAN to FAT Cl gh plasticity, no dilatancy, soft, r arks: bgs = below grou PID = photoioniz macrocore. g_well HSA 2007 analyt	noist; Organics throughout und surface; NA = no ation detector; AMS	ot available/no	pt applicable; ppm = parts per million; ean sea level (NAVD 88); MC = Page: 1 of 2

Data File: SB-15.dat

Client:	Beazer	East,	Inc.
---------	--------	-------	------

Former Koppers Inc. Facility Superior, WI

Borehole Depth: 25' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	- 590 -	MC-4	15-20	1.9	0.0		Some to little Silt to coarse Sand, subround to angular, wet from 15.5 to 16' bgs.	
- 20 - - -	- 585 - -	MC-5	20-25	4.8	0.0		5YR 3/3 dark reddish brown LEAN to FAT CLAY, little Silt to medium Sand, trace Organics, medium to high plasticity, no dilatancy, soft, very moist to wet. 5YR 3/3 dark reddish brown LEAN to FAT CLAY, little Silt, medium to high plasticity, no dilatancy, very soft to soft, very moist to wet. Organics (wood/roots) from 23 to 23.2' and 23.3 to 23.7' bgs. Little medium Sand, Organics from 24.2 to 24.5' bgs.	Borehole backfilled (grout to grade).
- 25-	- 580 - -	-					End of Boring at 25' bgs.	
- 30 - - -	- 575 - -							
						IS at-Buildir	Remarks: bgs = below ground surface; NA = not available/no PID = photoionization detector; AMSL = above mea macrocore.	t applicable; ppm = parts per million; an sea level (NAVD 88); MC =
		mber: SB-15		290.00	000.000	003 Tem	plate:boring_well HSA 2007 analytical.ldfx Date: 4/15/2014 Created/Edited by: RAS	Page: 2 of 2

Drii Drii Drii Aug Rig	lling (ller's lling N ger Si Type	Compa Name Metho ze: N : Gec	: Coro d: Dir	/latrix I d Ande ect Pu	erson sh	nmental,	LLC	Northing:548464.97 Easting: 1446006.08 Casing Elevation: NA Borehole Depth: 35' bg Surface Elevation: 606. Descriptions By: Kelly b	54' AMSL	Location:	g ID: SB-16 nzer East, Inc. Former Koppers Inc. Facility Superior, WI	
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigraphi	c Description		Well/Boring Construction	
- - - <td></td>												
-	- 605 -	MC-1	0-5	1.1	0.0		dilatancy, me Trace Organie	reddish brown LEAN to FAT CLA dium stiff, moist; Organics from 0 t s, black staining and creosote-like 0.8 to 1.1' bgs.	o 0.3' bgs.			
-	- 600 - - -	MC-2	5-10	1.7	0.0			reddish brown LEAN to FAT CLA m to high plasticity, no dilatancy, so out.			Borehol backfille to grade	d (grout
595 - MC-3 10-15 1.9 0.0 Creasite-like odor from to Creasite-like odor from the coarse Wood chunk from 11.6 Medium Sand seam at									y, very soft, very moist. en from 10.5 to 10.8' bgs	5.		
Infi	astruc	cture -	Water	- Enviro	onmen	IS at Buildin	Rem	gh plasticity, no dilatancy, soft, ver arks: bgs = below groun	y moist; aerated, moist fr d surface; NA = no ion detector; AMS collected from 30	rom 15.3 to ot available/no L = above me	ot applicable; ppm = parts per m ean sea level (NAVD 88); MC = d 30.5-31' bgs.	

. Data File: SB-16.dat

Former Koppers Inc. Facility Superior, WI

Borehole Depth: 35' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
5	590 — — — —	MC-4	15-20	2.8	0.0 0.0		Medium SAND, round to subround, some Organics, well sorted, loose, wet; Black staining, creosote-like product and strong creosote-like odor from 16.2 to 16.5 bgs. 5YR 3/3 dark reddish brown LEAN to FAT CLAY, little Silt to fine Sand, medium to high plasticity, no dilatancy, soft, moist, creosote-like odor and staining; medium Sand seam at 16.8' bgs. 5YR 3/3 dark reddish brown LEAN to FAT CLAY, little Silt, medium to high plasticity, no dilatancy, slightly aerated, medium stiff to stiff, moist.	
- 20		MC-5	20-25	2.8	0.0		5YR 3/3 dark reddish brown LEAN to FAT CLAY, trace Silt, medium to high plasticity, no dilatancy, soft to medium stiff, aerated, moist. Minor black/brown staining, slight creosote-like odor from 20.2 to 21.3' bgs. Organics at 22' bgs. Organics at 22.7' bgs.	
5	- 580	MC-6	25-30	3.0	9.2		5YR 3/3 dark reddish brown LEAN to FAT CLAY, little Silt to coarse Sand, subround to angular, medium to high plasticity, no dilatancy, soft, moist. Slight sheen, creosote-like odor, wet from 26 to 26.1' bgs; little very coarse Sand from 26.1 to 26.3' bgs. SVR 3/3 dark reddish brown LEAN CLAY, some Silt to coarse Sand, medium plasticity, no dilatancy, medium stiff, moist. Medium to coarse SAND, round to subangular, well-sorted, dense; minor creosote-like odor and black staining. 5YR 3/3 dark reddish brown LEAN to FAT CLAY, little Silt to fine Sand, trace medium Sand to granules, medium to high plasticity, no dilatancy; very large Pebbles (angular) at 27.7 and 27.9' bgs.	Borehole backfilled (grout to grade).
30 5		MC-7	30-35	5.0	0.0		5YR 4/3 reddish brown LEAN to FAT CLAY, little Silt, medium to high plasticity, no dilatancy, stiff to medium stiff, moist.	
					Donmen	IS t-Buildir	End of Boring at 35' bgs. Remarks: bgs = below ground surface; NA = not available/not ap PID = photoionization detector; AMSL = above mean macrocore. Analytical samples collected from 30-30.5' bgs and 30	sea level (NAVD 88); MC =

Data File: SB-16.dat

Dril Dril Dril Aug Rig	lling C ller's I lling N ger Siz Type	Compa Name Metho ze: N : Geo	: Coro d: Dir	/latrix I d Ande ect Pu	Enviror erson sh	nmental,	LLC	Northing:548846.27 Easting: 1446642.26 Casing Elevation: NA Borehole Depth: 25' bgs Surface Elevation: 610.33' AMSL Descriptions By: Kelly Hoehn	Client: Be	ng ID: SB-17 azer East, Inc. Former Koppers Inc. Facility Superior, WI		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigraphic Description Construction				
- -	_											
-	610 -	MC-1	0-5	3.1	0.0		2.5YR 4/4 re	EAN CLAY, little Silt, Organics, medium plasticity, no				
- 5	605 — _ _ _	MC-2	5-10	5.0	0.0			o stiff from 5 to 10' bgs. ims at 9.4 and 9.5' bgs.		Borehole backfilled (grout to grade).		
- 10 - - - - 15	600 - - - - 595 -	MC-3	10-15	5.0	0.0		dilatancy, me	tish brown LEAN to FAT CLAY, little Silt, medium to h dium stiff, moist; dark gray mottling at 10.2 to 10.3', o 14.4' and 14.8 to 15' bgs.				
Infr	astruc	cture -	Water	- Enviro	onmen	IS It Buildin	ngs	arks: bgs = below ground surface; NA PID = photoionization detector; / macrocore. g_well HSA 2007 analytical.ldfx	= not available/n AMSL = above m	ot applicable; ppm = parts per million; ean sea level (NAVD 88); MC = Page: 1 of 2		

Data File: SB-17.dat Date: 4/15/2014

Former Koppers Inc. Facility Superior, WI

Borehole Depth: 25' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	-	MC-4	15-20	3.1	0.0		Dark gray mottling at 16 to 16.1', 16.4 to 16.5', 16.8', 16.9' and 17.2 to 18.1' bgs. Very stiff, drier from 17.3 to 17.6' bgs.	
- 20	590 - - -	MC-5	20-25	4.8	0.0		 7.5YR 3/1 very dark gray LEAN to FAT CLAY, little Silt, medium to high plasticity, no dilatancy, soft, moist. 7.5YR 3/1 very dark gray and 5YR 4/3 reddish brown mottling from 22.5 to 22.8' bgs. 5YR 4/3 reddish brown LEAN to FAT CLAY, little Silt, medium to high plasticity, no dilatancy, soft, moist. Very dark gray coloration (7.5YR 3/1) from 23.5 to 23.8' bgs. 	Borehole backfilled (grout to grade).
- 25	585 -						End of Boring at 25' bgs.	
- 30	- 580 -							
- 35	- 575 -							
						IS at-Buildii	Remarks: bgs = below ground surface; NA = not available/no PID = photoionization detector; AMSL = above mea macrocore.	t applicable; ppm = parts per million; an sea level (NAVD 88); MC =
Projec Data				290.00	000.000	003 Tem	plate:boring_well HSA 2007 analytical.ldfx Date: 4/15/2014 Created/Edited by: RAS	Page: 2 of 2

Dri Dri Dri Aug Rig	ling (ler's l ling N jer Si Type	Compa Name Metho ze: N : Geo	: Coro d: Dir	/latrix I d Ande ect Pu	Enviror erson sh	nmental,	LLC	Northing:547751.18 Easting: 1446015.70 Casing Elevation: N Borehole Depth: 40 Surface Elevation: 6 Descriptions By: Ke	IA IA 9' bgs 608.25' AMSL	Well/Boring ID: SB-18 Client: Beazer East, Inc. Location: Former Koppers Inc. Facility Superior, WI		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigra	Stratigraphic Description			
- -	- 610 - -											
-	- - 605 -	MC-1	0-5	1.2	0.0		high plasticit Roots/Wood f Some to little	reddish brown LEAN to FAT , no dilatancy, soft, moist; org rom 0 to 0.2' bgs. Silt from 0.4 to 0.6' bgs. on from 1.0 to 1.2' bgs.		d, medium to		
-	- - 600 -	MC-2	5-10	4.1	0.0		medium to h Root/Peat pa Scattered Ro	eddish brown LEAN to FAT gh plasticity, no dilatancy, ver ting at 5.2' bgs. ts/Organics from 5.0 to 6.8' by ed Organics from 8.8 to 9.1' b	y soft to soft, moist, aerated gs.	ery fine Sand,	Boring backfilled with grout to grade (0-40' bgs).	
- 10 - - - 15	- - 595 -	MC-3	10-15	1.7	0.0		medium to h throughout.	reddish brown LEAN to FAT gh plasticity, no dilatancy, ver	y soft, moist to wet, aerated	; Órganics		
					0.7		/ medium to h	gh plasticity, no dilatancy, ver arks: bgs = below gr	y soft, moist to wet, aerated	; Organics	ot applicable; ppm = parts per million; ean sea level (NAVD 88); MC =	
Proje	astruc	cture -	B00392	- Enviro	onmer	nt - Buildii		macrocore.	ples collected from 3-			

Former Koppers Inc. Facility Superior, WI

Borehole Depth: 40' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction	
DE	ELI	Sar	Sar	Re	DIG	Ğ		V 71	
-	_				0.0		throughout. 5YR 3/3 dark reddish brown LEAN CLAY, some Silt to medium Sand, medium plasticity, no dilatancy, very soft, wet.		
	_	MC-4	15-20	5.0	0.0	·····	7.5YR 3/4 dark brown well graded SAND, Silt to coarse Sand, some to little very coarse Sand to small Pebbles, poorly sorted, subround to subangular, loose, wet.		
	590 -						5YR 3/3 dark reddish brown LEAN CLAY, some Silt to medium Sand, Roots, medium plasticity, no dilatancy, soft, moist to wet.		
-	_						5YR 3/3 dark reddish brown LEAN to FAT CLAY, little Silt to very fine Sand, trace Roots, medium to high plasticity, no dilatancy, soft to medium stiff, moist, slightly aerated; trace black colorations.		
- 20	_								
-	_						Wood piece at 21.2' bgs.		
-	- 585	MC-5	20-25	3.9	0.0				
-	-								
- 25	-						5YR 3/2 dark reddish brown LEAN to FAT CLAY, little Silt to very fine Sand, medium to		
-	_						high plasticity, no dilatancy, soft to medium stiff, slightly aerated.	Boring backfilled with grout to grade (0-40' bgs).	
-		MC-6	25-30	4.3	0.0		Fine Sand seam (approx. 1/8" thick) at 27.8' bgs; subround to subangular.		
	580 -						Creosote-like odor from 28.3 to 29.3' bgs. Roots, black colorations from 28.5 to 29.3' bgs.		
30	_						Slight creosote-like sheen (wet) at 29.1' bgs; stronger creosote-like odor, fine to medium Sand parting (subround to subangular), moist to wet, Wood pieces.		
-	-						5YR 3/3 dark reddish brown LEAN to FAT CLAY, little Silt, trace very fine Sand, medium to high plasticity, no dilatancy, very soft to soft, moist. Large subangular Pebble at 30' bgs; black/brown creosote-like staining. Fine Sand parting at 30.8' bgs, subround to subangular.		
-							Creosote-like odor from 30 to 32.2' bgs; strong creosote-like odor, very minor sheen at 30.9 to 31.1' bgs.		
-	- 575 -	MC-7	30-35	3.3	20.4				
-	-								
- 35	-						5YR 3/3 dark reddish brown LEAN CLAY, some Silt, medium plasticity, no dilatancy,		
							soft, moist.		
	Remarks: bgs = below ground surface; NA = not available/not applicable; ppm = parts per million; PID = photoionization detector; AMSL = above mean sea level (NAVD 88); MC = macrocore.								
1.1	Macrocore. Analytical samples collected from 34-34.5' bgs and 34.5-35' bgs.								

Data File: SB-18.dat

	Client	: Beaz	zer Eas	st, Inc.			Well/Boring ID: SB-18				
Site Location:							Borehole Depth: 40' bgs				
	Site Location: Former Koppers Inc. Facility Superior, WI										
		er l			(F						
		Sample Run Number	e	t)	PID Headspace (ppm)	uu					
	NO	n N	Sample/Int/Type	Recovery (feet)	space	Geologic Column	Stratigraphic Description	Well/Boring			
DEPTH	ELEVATION	ple F	iple/Ir	over	Head	logic		Construction			
DEF	ELE	Sam	Sam	Rec	DID	Geo					
	-	-									
-	-	MC-8	35-40	4.6	0.0						
-	570 -	IVIC-8	35-40	4.0	0.0			Boring backfilled with grout to			
								with grout to grade (0-40' bgs).			
	-										
40	_						End of Boring at 40' bgs.				
-	-	-									
-											
	-										
	565 -	-									
-	-	-									
- 45											
	-	-									
	-	-									
-	_	-									
	560 -										
-	-	-									
- 50	-	-									
	-	-									
F	-	-									
ŀ	555 -										
	-	-									
- 55	-	-									
Remarks: bgs = below ground surface; NA = not available/not applicable; ppm = parts per million;											
PID = photoionization detector; AMSL = above mean sea level (NAVD 88); MC =											
ARCADIS							Analytical samples collected from 34-34.5' bgs and 34.5-35' bgs.				
Infrastructure - Water - Environment - Buildings											
	Project Number:B0039290.0000.00003 Template: Data File: SB-18.dat						nplate:boring_well HSA 2007 analytical.ldfx Date: 4/15/2014 Created/Edited by: RAS	Page: 3 of 3			

Dril Dril Dril Aug Rig	ling C ler's I ling M jer Siz Type	Compa Name Metho ze: N : Geo	: Coro d: Dir A/10" (Natrix E d Ande ect Pus DD; 4.2 Track-	Enviror rson sh/Holl 25" ID Mount	nmental, low-Sten ed Rig A		Northing:547777.41 Easting: 1445983.59 Casing Elevation: 61 Borehole Depth: 41' Surface Elevation: 6 Descriptions By: Ke	bgs 08.76' AMSL	Well/Boring ID: SB-19/TMW-19C Client: Beazer East, Inc. Location: Former Koppers Inc. Facility Superior, WI			
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigraphic Description			Well/Boring Construction		
-	- 610 -											3.5' Stickup Height (ags)	
-	- 605 -	MC-1	0-5	1.8	0.0			tish brown LEAN to FAT CLAY y, no dilatancy, soft (N = 1.0-1.2				10" diameter borehole	
- 5	- - 600 -	MC-2	5-10	2.9	0.0		high plasticit	r reddish brown LEAN to FAT C y, no dilatancy, very soft, moist nots from 6.7 to 7' bgs.	CLAY, little Silt to very fine S , aerated; Roots scattered th	and, medium to roughout.			
- 10		MC-3	10-15	2.8	0.0		high plasticit	reddish brown LEAN to FAT C y, no dilatancy, very soft to soft ots/Organics with black colorati	, moist, aerated.				
Infr	astruc	ture -		Enviro	onmen	t - Buildii	ngs	photoionization	SL = above mean sea detector; MC = macr d with Geoprobe on 7 /13.	a level (NAVD ocore; ID = in	88); ppm = side diamete	= not available/not parts per million; PID = er; OD = outside diameter. Illed well with hollow-stem Page: 1 of 3	

Site Location:

Former Koppers Inc. Facility Superior, WI

Well/Boring ID: SB-19/TMW-19C

Borehole Depth: 41' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description			Vell/Boring onstruction
DE	EL	Sar	Sar	Re	PID	9 				
-	- 590 -	MC-4	15-20	4.6	0.0		5YR 3/3 dark reddish brown LEAN to FAT CLAY, little Silt to medium Sand, subround to subangular, medium to high plasticity, no dilatancy, very soft, moist. Trace coarse Sand to Granules from 16.3 to 16.8' bgs. Trace coarse Sand to Granules from 17.1 to 17.3' bgs. 5YR 3/3 dark reddish brown well graded fine to very coarse SAND to CLAYEY SAND, little Granules and Clay, subround to subangular, poorly sorted, loose, moist to wet. 5YR 4/3 reddish brown LEAN to FAT CLAY, little to trace Silt and fine Sand, medium to high plasticity, soft to medium stiff, moist. Fine Sand seam (1/8 to 1/4" thick) at 18.5' bgs.	-	_	Bentonite Slurry (0' bgs-33' bgs)
- 20 - -	- - 585 -	MC-5	20-25	3.5	0.0		5YR 3/3 dark reddish brown LEAN to FAT CLAY, little Silt to very fine Sand, trace fine Sand, subround, medium to high plasticity, no dilatancy, medium stiff, moist. Slightly aerated from 20 to 22.3' bgs. Trace black colorations from 20 to 22' bgs. Roots from 21.7 to 22' bgs.			
25 - -	- - 580 -	MC-6	25-30	5.0	0.0		5YR 4/4 reddish brown LEAN to FAT CLAY, little to trace Silt to fine Sand, subround (N = 1-1.75), medium to high plasticity, no dilatancy, soft to very soft, moist. Silt content increases with depth. Wood piece at 28.2' bgs.			1" Sch. 40 PVC riser (3.5' ags-35' bgs)
- 30 - - - 35	- - 575 -	MC-7	30-35	5.0	0.0		at 29.7' bgs. 5YR 3/3 dark reddish brown (top 8" 5YR 4/3 reddish brown) LEAN to FAT CLAY, some to little Silt, trace very fine to fine Sand (N = 0.75-1), medium to high plasticity, no dilatancy, very soft, moist.			Bentonite Chips (33' bgs-34' bgs) Sand Pack - Red Flint #15 (34' bss-41' brs)
			R			IS t · Buildir	Remarks: ags = above ground surface; bgs = below ground s applicable; AMSL = above mean sea level (NAVD photoionization detector; MC = macrocore; ID = ins Boring advanced with Geoprobe on 11/19/13; over auger on 12/17/13.	88); ppm = side diame	e parte ter; O	s per million; PID = D = outside diameter.

Data File: SB-19_TMW-19C.dat

Date: 4/15/2014

Client	Client: Beazer East, Inc. Well/Boring ID: SB-19/TMW-19C										
For	.ocatic mer Ko perior, '	oppers	Inc. Fa	acility		Borehole Do	epth: 41' bgs				
DEPTH ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction				
570 -	MC-8	35-40	5.0	0.0			1" Sch. 40 PVC Screen Slot Size 0.01" (35' bgs-40' bgs) with pre- pack screen Sand Pack - Red Flint #15 (34' bgs-41' bgs)				
	NA	40-41	NA	NA		Blind augered to 41' bgs.					
	-										
560 - - - 50 - -	-										
Infrastru Project Nu	Remarks: ags = above ground surface; bgs = below ground surface; NA = not available/not applicable; AMSL = above mean sea level (NAVD 88); ppm = parts per million; PID = photoionization detector; MC = macrocore; ID = inside diameter; OD = outside diameter. Boring advanced with Geoprobe on 11/19/13; overdrilled/installed well with hollow-stem auger on 12/17/13. oject Number:B0039290.0000.00003 Template:boring_well HSA 2007 analytical.ldfx Page: 3 of 3 ta File: SB-19_TMW-19C.dat Date: 4/15/2014 Created/Edited by: RAS										

			sh: 1					Northing:547691.23	Well/Borin	ring ID: SB-20		
			any: N : Cord			nmental,	LLC	Easting: 1446028.01 Casing Elevation: NA	Client: Bea	azer East, Inc.		
			d: Dir					-				
		ze: N			0.1			Borehole Depth: 30' bgs Surface Elevation: 608.66' AMSL	Location:	Former Koppers Inc. Facility		
	-		probe							Superior, WI		
			nod:	Macro	core			Descriptions By: Kelly Hoehn				
				1	1	1				1		
		ber			(mg							
		Iumt	be	Û.	e (b	L L L						
	NO	⊿ un	it/Ty	(fee	spac	Colu		Stratigraphic Description		Well/Boring Construction		
Ξ	ATI0	ole R	ole/Ir	very	lead	ogic		Stratigraphic Description		Construction		
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column						
	ш	0	0)		<u> </u>	0						
	_											
	610											
F	610 -											
	_											
							5YR 4/3 red	dish brown LEAN CLAY, little Silt, trace very fine Sand, me dilatancy, very soft to soft, moist, aerated; Roots from 0 to	edium to high			
ŀ	-						plasticity, no		0.2 bys.			
	_											
F												
	-	MC-1	0-5	1.9	0.0							
Ē.												
Ļ	605 -											
	_											
- 5						====	5YR 3/3 darl	reddish brown LEAN to FAT CLAY, little Silt, trace very f	ine Sand,			
	-						medium to h throughout.	igh plasticity, no dilatancy, very soft, moist, aerated; Roots	scattered			
ŀ	_											
	_	MC-2	5-10	2.9	0.0							
F										Boring backfilled with grout to		
	600 -									grade (0-30' bgs).		
	_											
- 10							5YR 3/3 darl	reddish brown LEAN CLAY, little Silt to very fine Sand, n	nedium plasticity.			
	_						no dilatancy,	soft to medium stiff, moist, slightly aerated.				
							Trace Organi	cs from 10 to 11' bgs.				
F	-											
	-	MC-3	10-15	5.0	0.0							
F												
	595 -											
	_											
- 15												
	_						Little Silt to fir	ne Sand from 15.4 to 15.8' bgs; Wood from 15.6 to 15.7' b	gs			
							Rem	arks: bgs = below ground surface; NA = r	ot available/n	ot applicable; ppm = parts per million;		
	0		D		D			PID = photoionization detector; AMS macrocore.	SL = above me	ean sea level (NAVD 88); MC =		
	2	A	K	A		IS		-				
						nt - Buildir	nas					
		a set o da				ar se traeff						
Proie	ect Nu	mber:	B00392	290.00	00.00	003 Tem	plate:borin	g_well HSA 2007 analytical.ldfx		Page: 1 of 2		

Data File: SB-20.dat

Site Location:

Former Koppers Inc. Facility Superior, WI

Borehole Depth: 30' bgs

	oup	chor,						
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	- 590 -	MC-4	15-20	1.7	0.0		Clayey fine to medium Sand, little coarse to very coarse Sand, trace Granules to large Pebbles, subround to subangular, loose, moist from 15.9 to 16.2' bgs.	
- 20 - - -	- - 585 -	MC-5	20-25	1.8	0.0		5YR 3/3 dark reddish brown LEAN CLAY, little Silt to very fine Sand, medium plasticity, no dilatancy, very soft to soft, moist, slightly aerated. Wood/Roots at 20.7, 20.8 and 21.3 to 21.8' bgs. Minor black colorations from 20.3 to 20.8' and 21.3 to 21.7' bgs.	Boring backfilled with grout to grade (0-30' bgs).
25 - - -	_ _ 580 _	MC-6	25-30	5.0	0.0		5YR 4/3 reddish brown LEAN CLAY, some to little Silt, trace very fine Sand, medium plasticity, no dilatancy, very soft, moist. Coarse Sand, little fine to medium Sand, trace very coarse Sand, subround to angular, loose moist from 25 to 25.1' bgs.	
- <u>30</u> - - -							End of Boring at 30' bgs.	V X
- 35	575 - -						Remarks: bgs = below ground surface; NA = not available/not PID = photoionization detector; AMSL = above mea	an sea level (NAVD 88); MC =
Proje	astruc	mber:	Water	Envir	onmen	DO3 Terr	macrocore.	Page: 2 of 2

Dri Dri Dri Aug Rig	Iling (Iler's I Iling N ger Si Type	Compa Name Metho ze: N : Geo	any: M : Coro d: Dir A probe	1/19/13 Matrix I d Ande ect Pu Macro	Enviror rson sh core	nmental,	LLC	Northing:547719.77 Easting: 1446105.62 Casing Elevation: NA Borehole Depth: 10' bgs Surface Elevation: 608.28' AMSL Descriptions By: Kelly Hoehn	Client: Bea	i g ID: SB-21 azer East, Inc. Former Koppers Inc. Facility Superior, WI			
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigraphic Description		Well/Boring Construction			
- -	- 610 - -												
-	- 605 -	MC-1	0-5	2.0	0.0		5YR 4/2 dark little Wood, r like odor; mo	tish brown LEAN CLAY, medium plasticity, no dilatancy lout; creosote-like odor.	, some Roots/Peat, heavy creosote-	Boring backfilled			
-	- - 600 -	MC-2	5-10	3.3	8.8 50.0		high plasticit throughout; f Creosote-like	-	e-like odor aining with sheen).	with grout to grade (0-10' bgs).			
- 15	- - 595 -						End of Boring	at 10' bgs.					
Infi	Image: Second surface in the second												

Dril Dril Dril Aug Rig	ling C ler's I ling M ler Siz Type	Compa Name Metho ze: N : Geo g Meth	: Coro d: Diro	/atrix I d Ande ect Pu	Enviror rrson sh core	nmental,	LLC	Northing:547702.67 Easting: 1446158.65 Casing Elevation: NA Borehole Depth: 30' bgs Surface Elevation: 608.37' AMS Descriptions By: Kelly Hoehn	SL	Well/Boring ID: SB-22 Client: Beazer East, Inc. Location: Former Koppers Inc. Facility Superior, WI			
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigraphic Descri	Well/Boring Construction				
- -	- 610 - -												
-		MC-1	0-5	2.7	3.2		dilatancy, ve 7.5YR 2.5/1 7.5YR 3/3 da plasticity, no leaches out o	rk brown LEAN CLAY, little Silt to very fine S y soft, moist to wet. black ORGANICS, Wood, Roots, dry to moist rk brown LEAN to FAT CLAY, trace Organics dilatancy, very soft to medium stiff, moist, cre f clay throughout; minor black/brown staining s to 5YR 4/4 reddish brown at 1.3' bgs.	, slight creoso s (Roots), med cosote-like odd	te-like odor.			
-	- 600 -	MC-2	5-10	5.0	19.4 22.8		plasticity, no	lish brown LEAN to FAT CLAY, trace Silt and dilatancy, medium stiff, moist; creosote-like o staining throughout (mostly within cracks - ae	dor and mode	rate	Boring b with grou grade (0 bgs).	ut to	
10 0.0 5YR 4/4 reddish brown LEAN to FAT CLAY, little Silt to very fine Sand, medium to high plasticity, no dilatancy, soft, moist; very minor creosote-like odor, minor sheen (black/brown staining) leaches out of clay, slightly aerated. 595 MC-3 10-15 2.4 595 MC-3 10-15 2.4 595 SYR 3/3 dark reddish brown LEAN to FAT CLAY, little Silt to very fine Sand, medium to high plasticity, no dilatancy, very soft, moist; slight creosote-like odor, scattered Roots.													
Infr	Remarks: bgs = below ground surface; NA = not available/not applicable; ppm = parts per million; PID = photoionization detector; AMSL = above mean sea level (NAVD 88); MC = macrocore. Analytical samples collected from 21.2-21.7' bgs and 21.7-22.2' bgs.												

Data File: SB-22.dat

Site Location:

Former Koppers Inc. Facility Superior, WI

Borehole Depth: 30' bgs

	Sup	erior, \	Ŵİ								
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction			
-	- 590 - -	MC-4	15-20	1.8	0.3		Trace Roots/Wood, black colorations, creosote-like odor. 5YR 3/3 dark reddish brown SANDY LEAN CLAY, fine to medium Sand, subround to subangular, trace coarse to very coarse Sand, medium plasticity, no dilatancy, very soft to soft, moist, black/brown creosote-like staining, creosote-like odor.				
- 20 - -	- - 585 -	MC-5	20-25	5.0	3.8 0.2 0.0		 5YR 3/3 dark reddish brown LEAN to FAT CLAY, little Silt to very fine Sand, little to trace Roots, trace fine Sand, medium to high plasticity, no dilatancy, very soft to soft, moist; slight creosote-like odor. 5YR 4/4 reddish brown LEAN to FAT CLAY, little Silt, trace very fine Sand, medium to high plasticity, no dilatancy, medium stiff, moist. Large Pebble (broken up) at 21 to 21.2' bgs. Very coarse Sand seam at 45-degree angle; little Granules and medium Sand, wet, loose to medium dense form 24.2 to 24.4' bgs. 	Boring backfilled with grout to grade (0-30' bgs).			
- 25	_ 	MC-6	25-30	1.3	0.0		5YR 3/3 dark reddish brown well graded GRAVEL with SAND and CLAY, small to medium Pebbles, little Clay to very fine Sand, little fine to medium Sand, trace coarse Sand to Granules, angular to subround, loose, wet, poorly sorted. 5YR 3/3 dark reddish brown LEAN to FAT CLAY, little to trace Silt to very fine Sand, medium to high plasticity, no dilatancy, very soft to soft, moist.				
- 30- - - - 35							End of Boring at 30' bgs.				
Infr	Remarks: bgs = below ground surface; NA = not available/not applicable; ppm = parts per million; PID = photoionization detector; AMSL = above mean sea level (NAVD 88); MC = macrocore. Analytical samples collected from 21.2-21.7' bgs and 21.7-22.2' bgs. oject Number:B0039290.0000.00003 Template:boring_well HSA 2007 analytical.ldfx Page: 2 of 2										

Dri Dri Dri Aug Rig	lling (ller's lling N ger Si Type	Compa Name Metho ze: N e: Geo	: Eric d: Dir A/10" (Aatrix E A./Kev ect Pu DD; 4.2 Track-	Enviror /in B. sh/Hol 25" ID Mount	nmental, low-Sten ed Rig IA		Northing:549145.64 Easting: 1446613.57 Casing Elevation: 607. Borehole Depth: 30' bg Surface Elevation: 604 Descriptions By: Kelly	gs I.88' AMSL	Well/Boring ID: SB-23/TMW-23 Client: Beazer East, Inc. Location: Former Koppers Inc. Facility Superior, WI					
DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column		Stratigraphic Description				Well/Boring Construction			
-	- - 605 -											economic 2.37' Stickup Height (ags)			
-	- - -	MC-1	0-5	2.8	0.1		Sand, mediu aerated; Org	iish brown LEAN to FAT CLAY, litt m to high plasticity, no dilatancy, s anics throughout. ons from 2.1 to 2.3' bgs.				10" diameter borehole			
- 5		MC-2	5-10	5.0	0.1		medium to h	ish brown LEAN to FAT CLAY, litt gh plasticity, no dilatancy, mediur anics and dark gray colorations.	tle to trace Silt to very fin h stiff, moist, very slightly	e Sand, aerated;		 1" Sch. 40 PVC riser (2.37' ags- 20' bgs) Bentonite Slurry (0' bgs-18' bgs) 			
- 10		MC-3	10-15	5.0	0.2		-	s to 2.5YR 4/4 reddish brown at 12 im Pebble at 14.8' bgs.	2' bgs.						
Infi	astruc	cture -		Enviro	onmen	t · Buildii	Rem	sea level (NAVD 8	nd surface; bgs = b parts per million; F 38); MC = macroco with Geoprobe on 7 3.	n stiff, moist; pelow ground s PID = photoior re; ID = inside	nization dete diameter; (= not available/not ector; AMSL = above mean DD = outside diameter. alled well with hollow-stem Page: 1 of 2			

Site Location:

Former Koppers Inc. Facility Superior, WI

Well/Boring ID: SB-23/TMW-23

Borehole Depth: 30' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction				
- 20	- - 585 -	MC-4	15-20	5.0	0.2		Some very fine to fine Sand (Sandy Lean Clay seam) at 18.4' bgs. GLEY1 5/10Y greenish gray seam at 19.6' bgs.	Bentonite Slurry (0' bgs-18' bgs) 1" Sch. 40 PVC riser (2.37' ags- 20' bgs) Bentonite Chips (18' bgs-18.5' bgs)				
-	- - 580 -	MC-5	20-25	5.0	0.1		2.5YR 4/4 reddish brown LEAN to FAT CLAY, little Silt to very fine Sand, medium to high plasticity, no dilatancy, soft to medium stiff, moist; trace gray (GLEY1 5/5GY greenish gray) colorations throughout. GLEY1 4/10Y dark greenish gray at 24.3 to 24.4' bgs.	Sand Pack - Red Flint #15 (18.5' bgs-30' bgs)				
- 25		MC-6	25-30	5.0	0.1		 2.5YR 4/4 reddish brown LEAN to FAT CLAY, little Silt, trace very fine Sand, medium to high plasticity, no dilatancy, soft, moist. Color changes to 2.5Y 4/1 dark gray at 25.3' bgs. Color changes to 2.5YR 4/4 reddish brown at 28.4' bgs. Color changes to 2.5Y 4/1 dark gray at 29.2' bgs. 	1" Sch. 40 PVC Screen Slot Size 0.01" (20' bgs-30' bgs) with pre- pack screen				
35							End of Boring at 30' bgs.					
	Remarks: ags = above ground surface; bgs = below ground surface; NA = not available/not applicable; ppm = parts per million; PID = photoionization detector; AMSL = above mean sea level (NAVD 88); MC = macrocore; ID = inside diameter; OD = outside diameter. Boring advanced with Geoprobe on 12/18/13; overdrilled/installed well with hollow-stem auger on 12/19/13.											

Appendix B

Data Validation Reports

Beazer East, Inc.

Supplemental Off-Property Investigation

Data Review

SUPERIOR, WISCONSIN

SEMIVOLATILE ANALYSES

SDG# 180-24484

Analyses Performed By: TestAmerica Laboratories, Inc. Pittsburgh, Pennsylvania

Report: # 20283R Review Level: Tier III Project: B0039278.0000.00003

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 180-24484 for samples collected in association with the Beazer East, Inc., Supplemental Off-Property Investigation. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			0		Analysis				
Sample ID	Lab ID	Matrix	Sample Collection Date	Parent Sample	VOC	SVOC	PEST/ PCB	MET	MISC
HA-1 (0-0.5')	180-24484-1	Soil	8/20/2013			Х			
HA-1 (0.5-1')	180-24484-2	Soil	8/20/2013			Х			
HA-4 (0-0.5')	180-24484-3	Soil	8/20/2013			Х			
HA-4 (0.5-1')	180-24484-4	Soil	8/20/2013			Х			
HA-7 (0-0.5')	180-24484-5	Soil	8/20/2013			Х			
HA-7 (0.5-1')	180-24484-6	Soil	8/20/2013			Х			
HA-9 (0-0.5')	180-24484-7	Soil	8/21/2013			Х			
HA-9 (0.5-1')	180-24484-8	Soil	8/21/2013			Х			
DUP-1	180-24484-9	Soil	8/21/2013	HA-1 (0-0.5')		Х			
RB-082013	180-24484-10	Water	8/20/2013			Х			
SB-02 (25-25.5')	180-24484-11	Soil	8/21/2013			Х			
SB-03 (15.5-16')	180-24484-13	Soil	8/21/2013			Х			

Note:

1. Matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location HA-4 (0-0.5').

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted		mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		х		х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		х		Х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8270C. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- · Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is

that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

SEMI-VOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270C	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cooled to <6°C
300-040 62700	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cooled to <6°C

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method, trip, and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure contamination of samples during shipment. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Surrogate	Recovery
	Nitrobenzene-d5	AC
RB-082013	2-Fluorobiphenyl	AC
	Terphenyl-d14	<ll but="">10%</ll>
LL Lower control limit		

AC Acceptable

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results associated with the deviant fraction are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action
	Detect	J
< LL but > 10%	Non-detect	UJ
	Detect	J
< 10%	Non-detect	R
	Detect	J

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations were the compounds concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and the RPD between the MS/MSD results were acceptable.

8. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Benzo[a]anthracene	88 U	12 J	AC
	Benzo[a]pyrene	88 U	12 J	AC
	Benzo[b]fluoranthene	88 U	17 J	AC
HA-1 (0-0.5')/	Benzo[g,h,i]perylene	88 U	15 J	AC
DUP-1	Chrysene	11 J	16 J	AC
	Fluoranthene	10 J	15 J	AC
	Indeno[1,2,3-cd]pyrene	88 U	11 J	AC
	Phenanthrene	88 U	18 J	AC
	Pyrene	88 U	11 J	AC

Results (in ug/kg) for duplicate samples are summarized in the following table.

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270	Rep	Reported		Performance Acceptable	
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROM	ETRY (GC/	MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks		Х		Х	
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R		х		х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate(MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х	Х		
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		х	
D. Transcription/calculations acceptable		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation		Х		Х	

%R RPD

Percent recovery Relative percent difference Percent difference

%D

VALIDATION PERFORMED BY:

Jeffrey L. Davin

SIGNATURE:

). Ht

DATE: September 25, 2013

PEER REVIEW: Dennis Capria

DATE: October 11, 2013

\\arcadis-us.com\OfficeData\Syracuse-NY\Project_Data\AIT_PVU\2013\19001-19500\19374\20283R (rev 020414).docx

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

\\arcadis-us.com\OfficeData\Syracuse-NY\Project_Data\AIT_PVU\2013\19001-19500\19374\20283R (rev 020414).docx

Analytical Data

Client Sample ID:	HA-1 (0-0.5')					
Lab Sample ID:	180-24484-1				[Date Sampled: 08/20/2013 1147
Client Matrix:	Solid	% Moisture:	23.9		[Date Received: 08/24/2013 0925
		8270C Semivolatile Org	janic Compou	Inds (GC/MS)	
Analysis Method:	8270C	Analysis Batch:	180-81895	Inst	trument ID:	731
Prep Method:	3541	Prep Batch:	180-81753	Lab	File ID:	V0827018.D
Dilution:	1.0			Initi	al Weight/Volum	e: 15.0 g
Analysis Date:	08/27/2013 1930			Fina	al Weight/Volum	e: 5.0 mL
Prep Date:	08/27/2013 0345				ection Volume:	2 uL
Analyte	DryWt Corrected	l: Y Result (ug	/Kg)	Qualifier	MDL	RL
Acenaphthene		ND	0,		8.4	88
Acenaphthylene		ND			10	88
Anthracene		ND			8.6	88
Benzo[a]anthracene	•	ND			11	88
Benzo[a]pyrene		ND			8.8	88
Benzo[b]fluoranthen	e	ND			14	88
Benzo[g,h,i]perylene	9	ND			8.7	88
Benzo[k]fluoranthen	e	ND			18	88
Chrysene		11		J	10	88
Dibenz(a,h)anthrace	ene	ND			9.8	88
Fluoranthene		10		J	9.4	88
Fluorene		ND			12	88
Indeno[1,2,3-cd]pyre	ene	ND			9.0	88
Naphthalene		ND			7.6	88
Phenanthrene		ND			14	88
Pyrene		ND			8.9	88
Surrogate		%Rec		Qualifier	Acce	eptance Limits
Nitrobenzene-d5		64			25 -	104
2-Fluorobiphenyl		57			35 -	105
Terphenyl-d14		65			25 -	127

Analytical Data

Client Sample ID:	HA-1 (0.5-1')						
Lab Sample ID:	180-24484-2					Date Sam	pled: 08/20/2013 1200
Client Matrix:	Solid	% Moisture	20.8			Date Rece	eived: 08/24/2013 0925
		8270C Semivolatile Or	ganic Compou	unds (GC/MS)			
Analysis Method:	8270C	Analysis Batch:	180-81895	Instr	ument ID:	73	1
Prep Method:	3541	Prep Batch:	180-81753	Lab	File ID:	VC)827019.D
Dilution:	1.0			Initia	l Weight/Volu	me: 15	i.1 g
Analysis Date:	08/27/2013 1958			Fina	I Weight/Volu	me: 5.0	0 mL
Prep Date:	08/27/2013 0345			Injec	tion Volume:	2	uL
Analyte	DryWt Corrected	l: Y Result (u	g/Kg)	Qualifier	MDL		RL
Acenaphthene		ND			8.0		84
Acenaphthylene		ND			9.6		84
Anthracene		ND			8.2		84
Benzo[a]anthracene		ND			10		84
Benzo[a]pyrene		ND			8.4		84
Benzo[b]fluoranthen	e	ND			13		84
Benzo[g,h,i]perylene	9	ND			8.3		84
Benzo[k]fluoranthen	e	ND			17		84
Chrysene		ND			10		84
Dibenz(a,h)anthrace	ene	ND			9.3		84
Fluoranthene		ND			8.9		84
Fluorene		ND			11		84
Indeno[1,2,3-cd]pyre	ene	ND			8.6		84
Naphthalene		ND			7.2		84
Phenanthrene		ND			13		84
Pyrene		ND			8.5		84
Surrogate		%Rec		Qualifier	Ac	ceptance Li	imits
Nitrobenzene-d5		67			25	- 104	
2-Fluorobiphenyl		60			35	- 105	
Terphenyl-d14		68			25	- 127	

Analytical Data

Client Sample ID:	HA-4 (0-0.5')					
Lab Sample ID:	180-24484-3					Date Sampled: 08/20/2013 1620
Client Matrix:	Solid	% Moisture	: 21.1			Date Received: 08/24/2013 0925
	8	270C Semivolatile Org	ganic Compou	unds (GC/M	S)	
Analysis Method:	8270C	Analysis Batch:	180-81895	In	strument ID:	731
Prep Method:	3541	Prep Batch:	180-81753	La	ab File ID:	V0827003.D
Dilution:	1.0			In	iitial Weight/Volu	me: 15.0 g
Analysis Date:	08/27/2013 1517				inal Weight/Volur	-
Prep Date:	08/27/2013 0345				jection Volume:	2 uL
Thep Build.					jeodon volume.	
Analyte	DryWt Corrected:	Y Result (ug	g/Kg)	Qualifier	MDL	RL
Acenaphthene		ND			8.1	85
Acenaphthylene		ND			9.7	85
Anthracene		ND			8.3	85
Benzo[a]anthracene	2	ND			11	85
Benzo[a]pyrene		ND			8.5	85
Benzo[b]fluoranthen	ie	18		J	13	85
Benzo[g,h,i]perylene	e	12		J	8.4	85
Benzo[k]fluoranthen	e	ND			17	85
Chrysene		ND			10	85
Dibenz(a,h)anthrace	ene	ND			9.4	85
Fluoranthene		13		J	9.0	85
Fluorene		ND			11	85
Indeno[1,2,3-cd]pyre	ene	11		J	8.7	85
Naphthalene		ND			7.3	85
Phenanthrene		14		J	13	85
Pyrene		10		J	8.6	85
Surrogate		%Rec		Qualifier	Acc	ceptance Limits
Nitrobenzene-d5		71			25	- 104
2-Fluorobiphenyl		62			35	- 105
Terphenyl-d14		70			25	- 127

Analytical Data

Client Sample ID:	HA-4 (0.5-1')					
Lab Sample ID:	180-24484-4					Date Sampled: 08/20/2013 1625
Client Matrix:	Solid	% Moisture	: 18.7			Date Received: 08/24/2013 0925
	8	270C Semivolatile Org	ganic Compou	unds (GC/MS)		
Analysis Method:	8270C	Analysis Batch:	180-81895	Instr	ument ID:	731
Prep Method:	3541	Prep Batch:	180-81753	Lab	File ID:	V0827020.D
Dilution:	1.0	·		Initia	I Weight/Volu	ume: 15.0 g
Analysis Date:	08/27/2013 2026				l Weight/Volu	-
Prep Date:	08/27/2013 0345				tion Volume:	
Analyte	DryWt Corrected:	Y Result (ug	g/Kg)	Qualifier	MDL	RL
Acenaphthene		ND	, ,,		7.9	82
Acenaphthylene		ND			9.4	82
Anthracene		ND			8.0	82
Benzo[a]anthracene		ND			10	82
Benzo[a]pyrene		ND			8.2	82
Benzo[b]fluoranthen	e	ND			13	82
Benzo[g,h,i]perylene	9	ND			8.2	82
Benzo[k]fluoranthen	e	ND			17	82
Chrysene		ND			9.8	82
Dibenz(a,h)anthrace	ene	ND			9.1	82
Fluoranthene		ND			8.8	82
Fluorene		ND			11	82
Indeno[1,2,3-cd]pyre	ene	ND			8.5	82
Naphthalene		ND			7.1	82
Phenanthrene		ND			13	82
Pyrene		ND			8.3	82
Surrogate		%Rec		Qualifier	Ac	cceptance Limits
Nitrobenzene-d5		70			25	5 - 104
2-Fluorobiphenyl		61			35	5 - 105
Terphenyl-d14		68			25	5 - 127

Analytical Data

Client Sample ID:	HA-7 (0-0.5')					
Lab Sample ID:	180-24484-5				D	ate Sampled: 08/20/2013 1913
Client Matrix:	Solid	% Mo	isture: 21.6		C	ate Received: 08/24/2013 0925
		8270C Semivolat	ile Organic Com	pounds (GC/M	S)	
Analysis Method:	8270C	Analysis Bat	ch: 180-8189	95 In	strument ID:	731
Prep Method:	3541	Prep Batch:	180-817	53 La	ab File ID:	V0827021.D
Dilution:	1.0			In	itial Weight/Volume	e: 15.1 g
Analysis Date:	08/27/2013 2054				inal Weight/Volume	•
Prep Date:	08/27/2013 0345				jection Volume:	2 uL
Analyte	DryWt Correcte	ed: Y Res	ult (ug/Kg)	Qualifier	MDL	RL
Acenaphthene		ND			8.1	85
Acenaphthylene		ND			9.7	85
Anthracene		ND			8.3	85
Benzo[a]anthracene	•	18		J	11	85
Benzo[a]pyrene		11		J	8.5	85
Benzo[b]fluoranthen	e	25		J	13	85
Benzo[g,h,i]perylene	e	17		J	8.4	85
Benzo[k]fluoranthen	e	ND			17	85
Chrysene		31		J	10	85
Dibenz(a,h)anthrace	ene	ND			9.4	85
Fluoranthene		22		J	9.0	85
Fluorene		ND			11	85
Indeno[1,2,3-cd]pyre	ene	13		J	8.7	85
Naphthalene		ND			7.3	85
Phenanthrene		21		J	13	85
Pyrene		15		J	8.6	85
Surrogate		%R	ec	Qualifier	Acce	ptance Limits
Nitrobenzene-d5		68			25 - 1	104
2-Fluorobiphenyl		61			35 - 1	105
Terphenyl-d14		68			25 - 2	127

Analytical Data

Client Sample ID:	HA-7 (0.5-1')					
Lab Sample ID:	180-24484-6					Date Sampled: 08/20/2013 1918
Client Matrix:	Solid	% Moisture	: 20.2			Date Received: 08/24/2013 0925
	8	270C Semivolatile Or	ganic Compou	unds (GC/MS)		
Analysis Method:	8270C	Analysis Batch:	180-81895	. ,	ument ID:	731
Prep Method:	3541	Prep Batch:	180-81753		File ID:	V0827022.D
Dilution:	1.0	Thep Daten.	100-01733		al Weight/Volu	
	08/27/2013 2121					
Analysis Date:	08/27/2013 0345				I Weight/Volu	
Prep Date:	00/27/2013 0345			injed	ction Volume:	2 uL
Analyte	DryWt Corrected:	Y Result (u	g/Kg)	Qualifier	MDL	RL
Acenaphthene		ND			8.0	83
Acenaphthylene		ND			9.5	83
Anthracene		ND			8.1	83
Benzo[a]anthracene		ND			10	83
Benzo[a]pyrene		ND			8.3	83
Benzo[b]fluoranthen	e	ND			13	83
Benzo[g,h,i]perylene	9	ND			8.3	83
Benzo[k]fluoranthen	e	ND			17	83
Chrysene		ND			9.9	83
Dibenz(a,h)anthrace	ene	ND			9.2	83
Fluoranthene		ND			8.9	83
Fluorene		ND			11	83
Indeno[1,2,3-cd]pyre	ene	ND			8.6	83
Naphthalene		ND			7.2	83
Phenanthrene		ND			13	83
Pyrene		ND			8.4	83
Surrogate		%Rec		Qualifier	Ac	ceptance Limits
Nitrobenzene-d5		67			25	- 104
2-Fluorobiphenyl		59			35	- 105
Terphenyl-d14		68			25	- 127

Analytical Data

Client Sample ID:	HA-9 (0-0.5')					
Lab Sample ID:	180-24484-7				Γ	Date Sampled: 08/21/2013 0900
Client Matrix:	Solid	% Moisture:	22.5		[Date Received: 08/24/2013 0925
	٤	3270C Semivolatile Org	janic Compou	inds (GC/MS)		
Analysis Method:	8270C	Analysis Batch:	180-81895	Inst	rument ID:	731
Prep Method:	3541	Prep Batch:	180-81753	Lab	File ID:	V0827023.D
Dilution:	1.0			Initia	al Weight/Volum	e: 15.0 g
Analysis Date:	08/27/2013 2149				al Weight/Volum	-
Prep Date:	08/27/2013 0345				ction Volume:	2 uL
Analyte	DryWt Corrected	Y Result (ug	/Kq)	Qualifier	MDL	RL
Acenaphthene	,	ND	0/		8.3	87
Acenaphthylene		19		J	9.9	87
Anthracene		15		J	8.4	87
Benzo[a]anthracene)	130			11	87
Benzo[a]pyrene		98			8.6	87
Benzo[b]fluoranther	ie	150			14	87
Benzo[g,h,i]perylene	e	59		J	8.6	87
Benzo[k]fluoranthen	ie	35		J	17	87
Chrysene		130			10	87
Dibenz(a,h)anthrace	ene	23		J	9.6	87
Fluoranthene		260			9.2	87
Fluorene		ND			11	87
Indeno[1,2,3-cd]pyre	ene	59		J	8.9	87
Naphthalene		ND			7.4	87
Phenanthrene		55		J	14	87
Pyrene		180			8.7	87
Surrogate		%Rec		Qualifier	Acce	eptance Limits
Nitrobenzene-d5		65			25 -	104
2-Fluorobiphenyl		58			35 -	105
Terphenyl-d14		65			25 -	127

Analytical Data

Client Sample ID:	HA-9 (0.5-1')									
Lab Sample ID:	180-24484-8					Date Sampled: 08/21/2	013 0905			
Client Matrix:	Solid	% Moisture	: 18.9			Date Received: 08/24/2013 0				
		8270C Semivolatile Org	ganic Compou	unds (GC/N	MS)					
Analysis Method:	8270C	Analysis Batch:	180-81895	I	nstrument ID:	731				
Prep Method:	3541	Prep Batch:	180-81753	L	ab File ID:	V0827024.D				
Dilution:	1.0	·		1	nitial Weight/Volu	me: 15.0 g				
Analysis Date:	08/27/2013 2217				-inal Weight/Volu	-				
Prep Date:	08/27/2013 0345				njection Volume:	2 uL				
Analyte	DryWt Corrected	d: Y Result (ug	g/Kg)	Qualifier	MDL	RL				
Acenaphthene		ND			7.9	83				
Acenaphthylene		ND			9.4	83				
Anthracene		ND			8.0	83				
Benzo[a]anthracene	•	11		J	10	83				
Benzo[a]pyrene		ND			8.2	83				
Benzo[b]fluoranthen	e	ND			13	83				
Benzo[g,h,i]perylene	9	ND			8.2	83				
Benzo[k]fluoranthen	e	ND			17	83				
Chrysene		ND			9.8	83				
Dibenz(a,h)anthrace	ene	ND			9.1	83				
Fluoranthene		15		J	8.8	83				
Fluorene		ND			11	83				
Indeno[1,2,3-cd]pyre	ene	ND			8.5	83				
Naphthalene		ND			7.1	83				
Phenanthrene		ND			13	83				
Pyrene		12		J	8.3	83				
Surrogate		%Rec		Qualifier	Ac	ceptance Limits				
Nitrobenzene-d5		64			25	- 104				
2-Fluorobiphenyl		57				- 105				
Terphenyl-d14		66			25	- 127				

Analytical Data

Lab Sample ID: 180-24484-9 Date Sampled: 08/21. Client Matrix: Solid % Moisture: 19.1 Date Received: 08/24. 8270C Semivolatile Organic Compounds (GC/MS)	
	2013 0925
8270C Semivolatile Organic Compounds (GC/MS)	
Analysis Method: 8270C Analysis Batch: 180-82034 Instrument ID: 731	
Prep Method: 3541 Prep Batch: 180-81753 Lab File ID: V0828023.D	
Dilution: 1.0 Initial Weight/Volume: 15.0 g	
Analysis Date: 08/28/2013 2312 Final Weight/Volume: 5.0 mL	
Prep Date: 08/27/2013 0345 Injection Volume: 2 uL	
Analyte DryWt Corrected: Y Result (ug/Kg) Qualifier MDL RL	
Acenaphthene ND 7.9 83	
Acenaphthylene ND 9.4 83	
Anthracene ND 8.1 83	
Benzo[a]anthracene 12 J 10 83	
Benzo[a]pyrene 12 J 8.3 83	
Benzo[b]fluoranthene 17 J 13 83	
Benzo[g,h,i]perylene 15 J 8.2 83	
Benzo[k]fluoranthene ND 17 83	
Chrysene 16 J 9.8 83	
Dibenz(a,h)anthracene ND 9.2 83	
Fluoranthene 15 J 8.8 83	
Fluorene ND 11 83	
Indeno[1,2,3-cd]pyrene 11 J 8.5 83	
Naphthalene ND 7.1 83	
Phenanthrene 18 J 13 83	
Pyrene 11 J 8.3 83	
Surrogate %Rec Qualifier Acceptance Limits	
Nitrobenzene-d5 61 25 - 104	
2-Fluorobiphenyl 60 35 - 105	
Terphenyl-d14 61 25 - 127	

Analytical Data

Client Sample ID:	RB-082013							
Lab Sample ID:	180-24484-10				D	ate Sampled: 08/20/2013 1825		
Client Matrix:	Water	D	ate Received: 08/24/2013 0925					
		8270C Semivolatile Or	ganic Compou	unds (GC/MS)				
Analysis Method:	8270C	Analysis Batch:	180-82081	Instr	ument ID:	722		
Prep Method:	3520C	Prep Batch:	180-81625	Lab	File ID:	F0829024.D		
Dilution:	1.0			Initia	I Weight/Volume	e: 930 mL		
Analysis Date:	08/29/2013 0932				Weight/Volume			
Prep Date:	08/26/2013 0733				tion Volume:	2 uL		
Analyte		Result (u	n/l)	Qualifier	MDL	RL		
Acenaphthene		ND	y, L)	Quaimer	0.15	2.2		
Acenaphthylene		ND			0.16	2.2		
Anthracene		ND			0.17	2.2		
Benzo[a]anthracene)	ND			0.16	2.2		
Benzo[a]pyrene		ND			0.14	2.2		
Benzo[b]fluoranther	ie	ND			0.17	2.2		
Benzo[g,h,i]perylene	e	ND			0.16	2.2		
Benzo[k]fluoranthen	e	ND			0.59	2.2		
Chrysene		ND			0.15	2.2		
Dibenz(a,h)anthrace	ene	ND			0.17	2.2		
Fluoranthene		ND			0.17	2.2		
Fluorene		ND			0.23	2.2		
Indeno[1,2,3-cd]pyre	ene	ND			0.21	2.2		
Naphthalene		ND			0.15	2.2		
Phenanthrene		ND			0.46	2.2		
Pyrene		ND			0.17	2.2		
Surrogate		%Rec		Qualifier	Acce	ptance Limits		
Nitrobenzene-d5		72			37 - 1	104		
2-Fluorobiphenyl		69		35 - 1	- 108			
Terphenyl-d14		19		Х	25 - 1	130		

Analytical Data

Client Sample ID:	SB-02 (25-25.5')											
Lab Sample ID:	180-24484-11					Date Sampled: 08/21/2013 1130						
Client Matrix:	Solid	% Moisture	24.6			Date Received: 08/24/2013 0925						
8270C Semivolatile Organic Compounds (GC/MS)												
Analysis Method:	8270C	Analysis Batch:	180-82034	Instr	ument ID:	731						
Prep Method:	3541	Prep Batch:	180-81753	Lab	File ID:	V0828024.D						
Dilution:	1.0	•		Initia	l Weight/Volum	ne: 15.0 g						
Analysis Date:	08/28/2013 2340				l Weight/Volum	-						
Prep Date:	08/27/2013 0345				tion Volume:	2 uL						
				,								
Analyte	DryWt Corrected:	Y Result (ug	g/Kg)	Qualifier	MDL	RL						
Acenaphthene		ND			8.5	89						
Acenaphthylene		ND			10	89						
Anthracene		ND			8.7	89						
Benzo[a]anthracene		ND			11	89						
Benzo[a]pyrene		ND			8.8	89						
Benzo[b]fluoranther	ie	ND			14	89						
Benzo[g,h,i]perylene	9	ND			8.8	89						
Benzo[k]fluoranthen	e	ND			18	89						
Chrysene		ND			11	89						
Dibenz(a,h)anthrace	ene	ND			9.8	89						
Fluoranthene		ND			9.5	89						
Fluorene		ND			12	89						
Indeno[1,2,3-cd]pyre	ene	ND			9.1	89						
Naphthalene		ND			7.6	89						
Phenanthrene		ND			14	89						
Pyrene		ND			8.9	89						
Surrogate		%Rec		Qualifier	Acc	eptance Limits						
Nitrobenzene-d5		67			25 -							
2-Fluorobiphenyl		65			35 -	05						
Terphenyl-d14		66			25 -	127						

Analytical Data

Client Sample ID:	SB-03 (15.5-16')												
Lab Sample ID:	180-24484-13					Date Sampled: 08/21/2013 1425							
Client Matrix:	Solid	% Moisture	: 28.0			Date Received: 08/24/2013 0925							
8270C Semivolatile Organic Compounds (GC/MS)													
Analysis Method:	8270C	Analysis Batch:	180-82083	Ins	strument ID:	731							
Prep Method:	3541	Prep Batch:	180-81753	La	b File ID:	V0829001.D							
Dilution:	1.0	-		Ini	tial Weight/Volu	ıme: 15.2 g							
Analysis Date:	08/29/2013 1151				al Weight/Volu	•							
Prep Date:	08/27/2013 0345				ection Volume:	2 uL							
Thep Date.	00/21/2010 0010			ii ij	cettori volume.	2 02							
Analyte	DryWt Corrected: `	Y Result (ug	g/Kg)	Qualifier	MDL	RL							
Acenaphthene		ND			8.8	92							
Acenaphthylene		ND			10	92							
Anthracene		ND			8.9	92							
Benzo[a]anthracene	•	ND			11	92							
Benzo[a]pyrene		ND			9.1	92							
Benzo[b]fluoranthen		ND			14	92							
Benzo[g,h,i]perylene	9	ND			9.1	92							
Benzo[k]fluoranthen	e	ND			18	92							
Chrysene		ND			11	92							
Dibenz(a,h)anthrace	ene	ND			10	92							
Fluoranthene		ND			9.8	92							
Fluorene		ND			12	92							
Indeno[1,2,3-cd]pyre	ene	ND			9.4	92							
Naphthalene		89		J	7.9	92							
Phenanthrene		ND			15	92							
Pyrene		ND			9.2	92							
Surrogate		%Rec		Qualifier	Ac	ceptance Limits							
Nitrobenzene-d5		65			25	- 104							
2-Fluorobiphenyl		61			35	5 - 105							
Terphenyl-d14		63			25	- 127							

Chain of Custody Record		Temperature on Receipt Drinking Water? Yes □ No 🏹						TestAme THE LEADER IN ENVIRONME							180-24484 Chain of Custody				
Client Beazer (Jane Patore	+v)	Project N		B	0<5	uar	Vari	()	ARCA		:\		Date		112	T	Chain of Custo	dy Number 8209	08/
Address		Telephor	ne Num		a Coo	le)/Fax l								Number	~~		Page		2
City Pittsburgh PA Zip	Code	Site Con	tact			Lab C Vera		, B	er tot	t				Attach e is nee					
Project Name and Location (State) Beazer - Superior, WI		Carrier/V Fed				293				/or c	(2)3						Enor	ial Instruct	tional
Contract/Purchase Order/Quote No.				Matrix			Con	tainer servat	's &	, , , , , , , , , , , , , , , , ,								itions of R	
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Air Aqueous	Sed. Soll		Unpres.	HNO3	HCI	NaOH ZnAc/ NaOH		FA []3								
HA-1 (0-0.5')	gizo	1147		X	(i					(
HA-1 (0.5-11)	8120	1200				1				1							-	;	
HA-4 (0-0.5')	8/20	1620				3											MSIM	50	628
HA-4 (0.5-1')	8/22	1625				1							-						ц Ч Ч
HA-7 (0-0.5')	8/20	1913	-			1												<u>.</u>	9
HA-7 (0.5-1)	8/20	1918					_											:	8 <u>7</u>
HA-9 (0-0.5')	8/21	0900				1												<u> </u> - -	ag 6
HA-9 (0.5-1')	8/21	0905				i													<u></u> н
DUP-1						ì													
RB-082013	8170	1825	X			2					, ,							1	
Possible Hazard Identification				le Dispo									_		faceman		ssed if samples	lana ratainad	
Non-Hazard Flammable Skin Irritant	Poison B	Unknown		eturn To	Clien						chive Fo	r	<i>Mor</i>	nths Ioi	nger than	n 1 month))		
Turn Around Time Required 24 Hours 48 Hours 7 Days 14 Day	vs 🕅 21 Davs	🗌 Othe	r.				C Reqi	uireme	ents (Spe	ecify)									
1. Relinquished By		Date 8/2			00		0.1 -	h	ne	\mathcal{M}	Abs	5h					Pate N-1	3	:25
2. Relinquished By		Date		Time		2.	Receiv	ved By	/								Date	Time	
3. Relinquished By		Date		 Time		3.	Receiv	ved By	,								Date	Time	
Comments						1										-		· · · · · · · · · · · · · · · · · · ·	

DISTRIBUTION: WHITE - Returned to Client with Report; CANARY - Stays with the Sample; PINK - Field Copy

			_		uin of			Rec	ord									Te	∋stA	<u>۲m</u>	erico	а,
т	estAmerica Labora	tory location:	<u> </u>	ttsbu I DW	194													тн	E LEADER IN	ENVIRON	MENTAL TEST	
	Regulat	ory program:] DW		NPDES	Ż	K RCI	RA	[Othe	er					_		Teathma	mino I o	anotonian l	
Client Contact Company Name:	Client Project N	Aanager:	(10	CADIS	Site	Contact:						La	b Conta	et:							ooratories, l	
Beazer East, Inc.			CAP	، دېږې	ר י							· ·	Vere	ила	Bo	-tn+				25	512	
Address:	Telephone:	Bessin	3P"		Tele	phone:	-				<u> </u>		ephone								Z cocs	\neg
		829-71																		_ of	COCs	
City/State/Zip:					<u> </u>	و العرب ا			02.07	201-2024 100-40-10		3							18 S			
Pitsburgh, PA	david. b	essinanas	0010	ad 13 -	5	Ana	ysis Tu (in I	irnarom SUS days)	id Time						An	alyses			Fortab	use only		
Phone: 412-208-8813		essingpes	<u> </u>	,cor	7	TAT if di													Walk-ir Lab pic	i client kup		
Project Name:	Method of Ship				\neg				eeks				5							apling		
Project Name: Begzer-Superior, WI	Fed E	X] 1w				- I r							14			
Project Number:	Shipping/Track	ing No:		_	-		[2 da	iys		2		ρ						Job/SD	G Nota		
	7965	2930	6581	6] I da	-		S.	5 2	5									
PO#				latrix	3 S.	Cor	tainers	& Prese	vatives	The f	The s									10 20		land a
						ТТ			T		Filtered Sample (Y / N)		FA 113						6		ecific Notes /	
		Sample Time	sticotts	her:	H2SO4	HN03	-	NaOH ZnAc/	Unpres	her:	Iter		5								structions:	
Sample Identification	Sample Date	Sample Time	Air A	Sed Sol	H2	É	HCI	Zn Zn	Ϋ́Σ Ϋ́Σ	ŏ	Σ. (5	<u> </u>									
5B-02 (25-25.5')	8/z1	1130		X					X										*P	ush	TAT	
5B-02 (25.5-26')	8/21	1132																	**	itold	**	
58-03 (15.5-16')	8/21	1425																	¥₽	-254	TAT	* ;
58-03 (16-16.5')	\$1Z1	1426		$ \downarrow\rangle$					$ \downarrow$				\boldsymbol{k}						**	Hold	**	_
9																					<u> </u>	
																				i		
												1-	-									
Possible Hazard Identification	Skin Irritant	Poison B] Unkno	wn		eturn to	o Client		🚺 Dist	posal By	y L ab		Are	r than 1 m hive For _			Mor	nths	1		
Special Instructions/QC Requirements & Comments:	e to mak	e decisi	ion o u	0-0	lysr3	of	L	wid	san	ies of	50	efi	re	ĥðle	イオル	ځ هم	erpi	re.		1		
tox Hold > how pending mst	roctions t	Fron A	FCAI	>15 .					~											 		
Relinquished by: Dat B5	Company:	AD15	Date/	Time: [23/1	3	150		Received	De	Wr.	N	h	lat	20	Con	pany: TX	P)	Date/Fi	5-J	4-13	8
Relinquished by:	Company:		Date/	Time:				Received	by:						Con	pany:			Date/Ti	me:		
Relinquished by:	Company:		Date/	Time:			F	Received	in Labo	ratory b	oy:				Con	ipany:			Date/Ti	ime:		
©2008, TestAmerica Laboratories, Inc. All rights reserved. TestAmerica & Design.™ are trademarks of TestAmerica taboratories. Inc.	<u>_</u>				<u> </u>										. <u> </u>				TA	L 001	8-1 (04/10))

Beazer East, Inc.

Supplemental Off-Property Investigation

Data Review

SUPERIOR, WISCONSIN

SEMIVOLATILE ANALYSES

SDG# 180-24488

Analyses Performed By: TestAmerica Laboratories, Inc. Pittsburgh, Pennsylvania

Report: # 20284R Review Level: Tier III Project: B0039278.0000.00003

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 180-24488 for samples collected in association with the Beazer East, Inc., Supplemental Off-Property Investigation. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

					Analysis								
Sample ID	Lab ID	Matrix	Sample Collection Date	Parent Sample	VOC	SVOC	PEST/ PCB	MET	MISC				
SB-12_30-30.5	180-24488-1	Soil	8/23/2013			Х							
SB-12_30.5-31	180-24488-2	Soil	8/23/2013			Х							
DUP- 01 (20130823)	180-24488-3	Soil	8/23/2013	SB-12_30- 30.5		х							

Note: 1.

Matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location SB-12_30.5-31.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted		mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		х		х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		х		Х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8270C. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- · Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is

that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

SEMI-VOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270C	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cooled to <6°C
300-040 62700	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cooled to <6°C

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method, trip, and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure contamination of samples during shipment. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations were the compounds concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and the RPD between the MS/MSD results were acceptable.

8. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS/LCSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS/LCSD analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Acenaphthene	4100	63 J	NC
	Acenaphthylene	81 J	110 U	AC
	Anthracene	1100	23 J	NC
	Benzo[a]anthracene	1200	39 J	NC
	Benzo[a]pyrene	430	15 J	NC
	Benzo[b]fluoranthene	680	25 J	NC
	Benzo[g,h,i]perylene	150	110 U	AC
SB-12_30-30.5/ DUP- 01 (20130823)	Benzo[k]fluoranthene	200	110 U	AC
DUF- 01 (20130623)	Chrysene	910	30 J	NC
	Dibenz(a,h)anthracene	67 J	110 U	AC
	Fluoranthene	5900	170	NC
	Fluorene	3600	18 J	NC
	Indeno[1,2,3-cd]pyrene	150	110 U	AC
	Naphthalene	8700	100 J	NC
	Phenanthrene	9500	230	NC
	Pyrene	3600	110	NC

Results (in ug/kg) for duplicate samples are summarized in the following table.

AC Acceptable

NC Not Compliant

U Not Detected

The compounds Acenaphthene, Anthracene, Benzo[a]anthracene, Benzo[a]pyrene,

Benzo[b]fluoranthene, Chrysene, Fluoranthene, Fluorene, Naphthalene, Phenanthrene and Pyrene associated with sample locations SB-12_30-30.5 and DUP- 01 exhibited a field duplicate RPD greater than the control limit. The associated sample results from sample locations for the listed analyte were qualified as estimated.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270	Rep	orted	Perfor Accep		Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROM	TRY (GC/	MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks		•			•
A. Method blanks		Х		Х	
B. Equipment blanks		Х		Х	
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R		х		х	
LCS/LCSD Precision (RPD)		Х		Х	
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate(MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field Duplicate (RPD)		Х	Х		
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		х	
D. Transcription/calculations acceptable		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation		х		х	

%R RPD

Percent recovery Relative percent difference Percent difference

%D

VALIDATION PERFORMED BY:

Jeffrey L. Davin

SIGNATURE:

H). χď.

DATE: September 29, 2013

PEER REVIEW: Dennis Capria

DATE: October 11, 2013

\\arcadis-us.com\OfficeData\Syracuse-NY\Project_Data\AIT_PVU\2013\19001-19500\19374\20284R (rev 020414).docx

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

\\arcadis-us.com\OfficeData\Syracuse-NY\Project_Data\AIT_PVU\2013\19001-19500\19374\20284R (rev 020414).docx

Client: ARCADIS U.S. Inc

Analytical Data

Job Number: 180-24488-1

Client Sample ID:	SB-12_30-30.5 (2013082	23)							
Lab Sample ID:	180-24488-1				C	Date Sampled: 08/23/2013 0857			
Client Matrix:	Solid	% Moisture:	34.8		Ε	Date Received: 08/24/2013 0925			
	٤	3270C Semivolatile Orga	anic Compou	nds (GC/MS)				
Analysis Method:	8270C	Analysis Batch:	180-82034	Ins	trument ID:	731			
Prep Method:	3541	Prep Batch:	180-81753	Lat	o File ID:	V0828020.D			
Dilution:	1.0			Init	ial Weight/Volum	e: 15.0 g			
Analysis Date:	08/28/2013 2148				al Weight/Volume	-			
Prep Date:	08/27/2013 0345				ection Volume:	2 uL			
Analyte	DryWt Corrected	Y Result (ug/	Ka)	Qualifier	MDL	RL			
Acenaphthene	,	4100	0,	J	9.8	100			
Acenaphthylene		81		J	12	100			
Anthracene		1100		J	10	100			
Benzo[a]anthracene		1200		J	13	100			
Benzo[a]pyrene		430		J	10	100			
Benzo[b]fluoranthen	e	680		J	16	100			
Benzo[g,h,i]perylene		150			10	100			
Benzo[k]fluoranthen	e	200			21	100			
Chrysene		910		J	12	100			
Dibenz(a,h)anthrace	ne	67		J	11	100			
Fluoranthene		5900		J	11	100			
Fluorene		3600		J	13	100			
Indeno[1,2,3-cd]pyre	ene	150			11	100			
Naphthalene		8700		J	8.8	100			
Phenanthrene		9500		J	16	100			
Pyrene		3600		f	10	100			
Surrogate		%Rec		Qualifier	Acce	ptance Limits			
Nitrobenzene-d5		67			25 -	104			
2-Fluorobiphenyl		62			35 -	105			
Terphenyl-d14		61			25 -	127			

Client: ARCADIS U.S. Inc

Analytical Data

Job Number: 180-24488-2

Client Sample ID:	SB-12_30.5-31 (201308	23)				
Lab Sample ID:	180-24488-2					Date Sampled: 08/23/2013 0900
Client Matrix:	Solid	% Moisture:	35.2			Date Received: 08/24/2013 0925
		8270C Semivolatile Org	janic Compou	unds (GC/MS)		
Analysis Method:	8270C	Analysis Batch:	180-82429	Instr	rument ID:	732
Prep Method:	3541	Prep Batch:	180-82141	Lab	File ID:	D0903020.D
Dilution:	1.0			Initia	al Weight/Volun	ne: 15.1 g
Analysis Date:	09/03/2013 1930			Fina	al Weight/Volum	ie: 5.0 mL
Prep Date:	08/30/2013 0410			Injed	ction Volume:	2 uL
Analyte	DryWt Corrected	: Y Result (ug	/Kg)	Qualifier	MDL	RL
Acenaphthene		ND			9.8	100
Acenaphthylene		ND			12	100
Anthracene		ND			10	100
Benzo[a]anthracene)	ND			13	100
Benzo[a]pyrene		ND			10	100
Benzo[b]fluoranthen	ie	ND			16	100
Benzo[g,h,i]perylene	e	ND			10	100
Benzo[k]fluoranthen	e	ND			21	100
Chrysene		ND			12	100
Dibenz(a,h)anthrace	ene	ND			11	100
Fluoranthene		ND			11	100
Fluorene		ND			13	100
Indeno[1,2,3-cd]pyre	ene	ND			11	100
Naphthalene		31		J	8.8	100
Phenanthrene		ND			16	100
Pyrene		ND			10	100
Surrogate		%Rec		Qualifier	Acc	eptance Limits
Nitrobenzene-d5		76				104
2-Fluorobiphenyl		73				105
Terphenyl-d14		71			25 -	127

Client: ARCADIS U.S. Inc

Analytical Data

Job Number: 180-24488-3

Client Sample ID:	DUP- 01 (20130823)									
Lab Sample ID:	180-24488-3				1	Date Sampled: 08/23/2013 0000				
Client Matrix:	Solid	% Moisture:	35.9		l	Date Received: 08/24/2013 0925				
	8	270C Semivolatile Orç	ganic Compou	unds (GC/MS	5)					
Analysis Method:	8270C	Analysis Batch:	180-81895	Ins	strument ID:	731				
Prep Method:	3541	Prep Batch:	180-81753	La	b File ID:	V0827017.D				
Dilution:	1.0	·		Ini	tial Weight/Volum	ne: 14.7 g				
Analysis Date:	08/27/2013 1902				nal Weight/Volum	-				
Prep Date:	08/27/2013 0345				ection Volume:	2 uL				
Trop Bate.				,		2 42				
Analyte	DryWt Corrected:	Y Result (ug	J/Kg)	Qualifier	MDL	RL				
Acenaphthene		63		J	10	110				
Acenaphthylene		ND			12	110				
Anthracene		23		J	10	110				
Benzo[a]anthracene		39		J	13	110				
Benzo[a]pyrene		15		J	11	110				
Benzo[b]fluoranthen	ie	25		J	17	110				
Benzo[g,h,i]perylene	9	ND			11	110				
Benzo[k]fluoranthen	e	ND			21	110				
Chrysene		30		J	13	110				
Dibenz(a,h)anthrace	ene	ND			12	110				
Fluoranthene		170		J	11	110				
Fluorene		18		J	14	110				
Indeno[1,2,3-cd]pyre	ene	ND			11	110				
Naphthalene		100		J	9.2	110				
Phenanthrene		230		J	17	110				
Pyrene		110		J	11	110				
Surrogate		%Rec		Qualifier	Acce	eptance Limits				
Nitrobenzene-d5		64			25 -	104				
2-Fluorobiphenyl		56			35 -	105				
Terphenyl-d14		64			25 -	127				

TestAmerica Pittsburgh 301 Alpha Drive RIDC Park		Chain	of Cus			
Pillsborgh, PA 15238 Phone: 412.963.7058 Fax:					180-24488 C	Chain of Custody
rinuit: \$12.303.7630 f32.	Regulatory Program:	DW NPDES	RCRA	Other:		· · · · · · · · · · · · · · · · · · ·

									Other:					240). CA-C-WI-002, Rev. 4.2, d	ated 04/02/2013	~
Client Contact	Project M	anager: [218-82	love Bess	ingpas		Site	e Co	ontact	:Dave &	2551	nge	S Dat	te: g	<u>sps</u>	13				Cs	80
Company Name: Beazer	Tel/Fax:	<u>218-81</u> Analysis T	4-460+			Lat	b Co	ntact	Veron	nce	Bortoi	- Cai	rrier:	<u>rd</u>	<u> </u>				UCS	
Address: City/State/Zip: Plitsburgh, PA		IDAR DAYS		RKING DAYS		$\left\{ \right\}$		j						1				Sampler: For Lab Use Only:		
Phone: 412-209 -8813		T if different fr			iner V	-	-	्राम्										Walk-in Client:		
Fax:			weeks	<u>av ro</u> n	j -		Z [-										Lab Sampling:		
Project Name: Beater - Superior Wi			weeks			Z	≿િ	L G												
Site: Superior WI			2 days				8	3 5										Job / SDG No.:		
PO#			. days . day			ble	Perform MS / MSD (Y/N)	Deresture												
	<u>+</u>	T	Sample	T I		la l	§∣≤	의 5	1 1. 1									<u> </u>		
			Туре			eq.	E -	± 3						1					1	
Sample Identification	Sample Date	Sample Time	(C=Comp, G≕Grab)	Matrix	# of Cont.	iltei	ert 6	Ξþ										Sample Specific I	lotes:	
Sample Identification	- <u> </u>					<u> </u>					+			_				Sample Specific I	Notes.	
SB-12_30-30,5 (20130823)	9/23/13	0857	G		1	N	N											RUSH TAT		
(D1) 3053, (0,000)	8/23/13	0900	G		Ą	N	NI												i.e	
30-16-30.5-31 (WI30862)		0.00							┟─┼╍┼		+-+-		\vdash					Hold for Analys		
SB-12-30.5-31 (20130823) DUP-01 (20130823) Temp Blonk	8/23/13	<i>a</i>	G		1	N												Std 3 WKS		2
Ten a floor	-	-	G		١	N	ฟ									Į.				382
iono piere			<u> </u>	+			<u> </u>		┟─┼─┼		┼┼				++					of
		<u> </u>				\square				_								·		0
																				381
						+	+		┝╾┝─┟		┽┈┽╴									ñ
		ļ				\square			╞─┼┼		\downarrow	_			╞╌╞					ð
																				Page
				++		11	-†-	-	╞╼┼╴┼							_				щ
			<u>_</u>			\square		_	┝─┼┼											
	1					Π														
						\square	+		╞╌╀╴┼			_				_				
	·																			
Preservation Used: 1= Ice, 2= HCI: 3= H2SO4; 4=HNO3	5=NaOH;	6= Other					843	$\leq 1/2$											and the state of the second second second second second second second second second second second second second	
Possible Hazard Identification:							Sam	ple D	isposal ((Afee	e may l	be ass	sesse	d if sa	mple	s are i	retaine	d longer than 1 month)		
Are any samples from a listed EPA Hazardous Waste? Plea Comments Section if the lab is to dispose of the sample.	se List any	EPA Waste	Codes for	the samp	le in th	1e														
jerneral	Poisor		Vinter				5	7.0.00	the Clinet		\checkmark	Disposi		1.	Г	Arch	ivo for	Months		
Non-Hazard Flammable Skin Irritant		<u>ل</u> ا ا	XUnkn				. L		n to Client		X	DISPOS	al Dy La	U			VC 101			
Special Instructions/QC Requirements & Comments:	0-5 1	david	bescin	ancela	arri	di	r-4	us. 1	am											
Emmil results to Dave Bessing	ပုံသ ·	(Jacob 1 (Jac) 1 (Jacob 1 (Jac) 1 (Jacob 1 (Jac) 1 (Jacob 1 (Jac) 1 (Jacob 1 (Jac) 1 (Jacob 1 (Jacob 1 (Jac) 1 (Jacob 1 (Jacob 1 (Jac) 1 (Jacob 1 (Jacob 1 (Jacob 1 (Jacob 1 (Jacob 1 (Jacob 1 (Jacob 1 (Jacob 1 (Jacob 1 (Jacob 1 (Jacob 1 (Jacob 1 (Jacob 1 (Jacob 1 (Jacob 1 (Jac) 1 (Jacob 1 (Jacob 1 (Jacob 1 (Jacob 1 (Jacob 1 (Jacob 1 (J	- 	JP C				-07.5	~~~~											
Custody Seals Intact: Yes No	Custody S								Cooler 7		(°C): C	Obs'd:_			Corr'd:			Therm ID No.:		
Relinquished by:	Company			Date/Tir			Rece	ei yed	Me	111	-tr	~	<u> </u>	ompa	ny:	1.1	\mathcal{F}	Date/Time: 8-01-13 9		
Allen all	PRC	ADIS		173						<u>IN</u>	N	11			Δ	tT			25	
Relinquished by:	Company	:		Date/Tir	ne:		Rece	eived	by:				C	ompá	ny:			Date/Time:	-	
			. <u> </u>																	
Relinquished by:	Company	i		Date/Tin	ne:	ļ	Rece	eived	in Labora	atory b	y:		ļc	compa	ny:			Date/Time:		
																		<u> </u>		

estAmerica

08/29/2013 E LEADER IN ENVIRONMENTAL TESTING estAmerica Laboratories, Inc.

9

Imagine the result

Beazer East Inc.

Supplemental Off-Property Investigation

Data Review

SUPERIOR, WISCONSIN

DIOXIN ANALYSES

SDG # 1300593

Analyses Performed By: Vista Analytical Laboratories El Dorado Hills, California

Report # 20285R Review Level: Tier III Project: B0039278.0000.00003

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 1300593 for samples collected in association with the Beazer East, Inc., Supplemental Off-Property Investigation. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets and chain of custody. Analyses were performed on the following samples:

			Sample		Analysis
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	Dioxins/Furans
HA-1 (0-0.5')	1300593-01	Soil	8/20/2013		Х
HA-1 (0.5-1')	1300593-02	Soil	8/20/2013		Х
HA-4 (0-0.5')	1300593-04	Soil	8/20/2013		Х
HA-4 (0.5-1')	1300593-04	Soil	8/20/2013		Х
HA-7 (0-0.5')	1300593-05	Soil	8/20/2013		Х
HA-7 (0.5-1')	1300593-06	Soil	8/20/2013		Х
HA-9 (0-0.5')	1300593-07	Soil	8/21/2013		Х
HA-9 (0.5-1')	1300593-08	Soil	8/21/2013		Х
DUP-1	1300593-09	Soil	8/21/2013	HA-1 (0-0.5')	Х
RB-082013	1300593-10	Water	8/20/2013		Х

1. The matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location HA-4 (0-0.5').

2. Sample results were reported on a dry-weight basis.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted		mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		Х		Х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		X		х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8290. Data were reviewed in accordance with USEPA National Functional Guidelines of January 2005.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- · Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- · Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- · Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected as unusable. The analyte may or may not be present in the sample.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

POLYCHLORINATED DIBENZODIOXINS AND POLYCHLORINATED DIBENZOFURANS (PCDD/PCDF) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8290	Water	30 days from collection to extraction and 45 days from extraction to analysis	Cool to <6 °C
300-040 0290	Soil	30 days from collection to extraction and 45 days from extraction to analysis	Cool to <6 °C

The samples were received at the laboratory at acceptable temperatures and all samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e. laboratory method blanks and equipment rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Equipment rinse blanks also measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable; system performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

A maximum relative standard deviation (RSD) of 20% is allowed for all non-labeled compounds (target) and 30% is allowed for all labeled compounds (internal standards and recovery standards)

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibited percent difference (%D) less than the control limit (20%).

All initial and continuing calibration criteria were within the control limits.

5. Internal Standard Performance

All samples to be analyzed for PCDD/PCDF compounds are spiked with internal standards prior to extraction. Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria require the internal standard compounds exhibit recoveries within the control limits of 40% to 135%.

Sample locations associated with internal standards exhibiting responses outside of the control limits are presented in the following table.

Sample Locations	Internal Standard	Response
HA-7 (0-0.5')	¹³ C-OCDD	>UL
HA-9 (0-0.5')	¹³ C-OCDD	>UL
HA-9 (0.5-1')	¹³ C-1,2,3,7,8-PeCDD	>UL

The criteria used to evaluate the internal standard responses are presented in the following table. In the case of an internal standard deviation, the compounds quantitated under the deviant internal standard are qualified as documented in the table below.

Control limit	Sample Result	Qualification
s the upper control limit (III.)	Non-detect	No action
> the upper control limit (UL)	Detect	J
a the lower control limit (11) but ~ 400	Non-detect	J
< the lower control limit (LL) but > 40%	Detect	J
< 25%	Non-detect	R
< 23%	Detect	J

6. Recovery Standard Performance

The recovery standard (³⁷CI-2,3,7,8-TCDD) is added to the sample extract prior to the extract clean-up steps. The concentrations of the labeled standards (internal standards) are determined using the recovery standard.

All recovery standard recoveries were acceptable.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds spiked in the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent differences (RPDs) between the MS and MSD must be within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compounds concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit recoveries within the laboratory-established acceptance limits.

All compounds associated with the LCS analyses exhibited recoveries within the control limits.

9. Field Duplicate Sample Analysis

Field duplicate analysis is used to assess the precision of the field sampling procedures and analytical method. A control limit of 100% for soil matrices is applied to the RPD between the parent and the field duplicate samples. In the case where the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of three times the RL is applied for soil matrices.

Results (in ug/kg) for the field duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	1,2,3,4,7,8-HxCDD	0.000194 J	0.000172 U	AC
	1,2,3,6,7,8-HxCDD	0.00067 J	0.000433 J	AC
	1,2,3,7,8,9-HxCDD	0.0005 J	0.000321 J	AC
	1,2,3,4,6,7,8-HpCDD	0.0142	0.00806	AC
	OCDD	0.171	0.074	79.1%
	2,3,4,7,8-PeCDF	0.000398 J	0.000227 J	AC
	1,2,3,4,7,8-HxCDF	0.000444 J	0.000247 J	AC
HA-1 (0-0.5')/ DUP-1	1,2,3,6,7,8-HxCDF	0.000265 J	0.000135 U	AC
DUF-1	2,3,4,6,7,8-HxCDF	0.000335 J	0.00022 J	AC
	1,2,3,4,6,7,8-HpCDF	0.00360	0.00207 J	AC
	OCDF	0.0143	0.0076	AC
	Total TCDD	0.0011	0.000273	AC
	Total PeCDD	0.00226	0.000795	AC
	Total HxCDD	0.00639	0.00254	AC
	Total HpCDD	0.0292	0.0162	AC
	Total TCDF	0.0026	0.000736	AC

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
	Total PeCDF	0.00295	0.00126	AC
	Total HxCDF	0.00563	0.00325	AC
	Total HpCDF	0.0137	0.00724	AC

AC Acceptable

U Not detected

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

PCDD/PCDF compounds are identified by using the compound's ion abundance ratios, signal-to-noise ratios, and retention times relative to the internal standards'.

An estimated maximum possible concentration (EMPC) designation is given to compounds which have signals eluting within the established retention time window which would, if positively identified, be greater than the detection limit. The signals do not, however, meet the ion abundance ratio criteria and therefore cannot be identified as the compound of interest. The EMPC value is the estimated concentration of the interferant quantitated "as the compound of interest". This value should be considered an elevated detection limit based on potential compound identification and quantitation interference. The "UX" qualifier has been added to the following sample results (in ug/kg) to indicate the elevated detection limit as EMPC.

Sample ID	Compound	Laboratory Result	Reported Result
	1,2,3,7,8-PeCDD	0.000144 EMPC	0.000144 UX
HA-1 (0-0.5')	2,3,7,8-TCDF	0.0002 EMPC	0.0002 UX
HA-1 (0-0.5)	1,2,3,7,8-PeCDF	0.000112 EMPC	0.000112 UX
	1,2,3,4,7,8,9-HpCDF	0.00030 EMPC	0.00030 UX
	1,2,3,7,8-PeCDD	0.0000543 EMPC	0.0000543 UX
HA-1 (0.5-1')	1,2,3,7,8-PeCDF	0.0000415 EMPC	0.0000415 UX
	2,3,7,8-TCDD	0.000132 EMPC	0.000132 UX
HA-4 (0-0.5')	1,2,3,6,7,8-HxCDF	0.000338 EMPC	0.000338 UX
HA-4 (0.5-1')	1,2,3,4,7,8,9-HpCDF	0.0000513 EMPC	0.0000513 UX
	1,2,3,7,8-PeCDF	0.000153 EMPC	0.000153 UX
HA-7 (0-0.5')	1,2,3,7,8,9-HxCDF	0.000181 EMPC	0.000181 UX
	1,2,3,7,8-PeCDF	0.0000991 EMPC	0.0000991 UX
HA-9 (0-0.5')	2,3,4,7,8-PeCDF	0.000194 EMPC	0.000194 UX
	1,2,3,6,7,8-HxCDF	0.000179 EMPC	0.000179 UX
	1,2,3,7,8-PeCDD	0.000163 EMPC	0.000163 UX
DUP-1	1,2,3,7,8-PeCDF	0.000112 EMPC	0.000112 UX
	1,2,3,6,7,8-HxCDF	0.000135 EMPC	0.000135 UX
	1,2,3,4,7,8,9-HpCDF	0.000177 EMPC	0.000177 UX

11. System Performance and Overall Assessment

Please note that when individual compounds are qualified as estimated (J) during validation, this qualification is applied to the totals as well.

Overall system performance was acceptable. Except for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR PCDD/PCDF

PCDDs/PCDFs; SW-846 8290	Repo	orted		mance ptable	Not Required	
	No	Yes	No	Yes	Nequireu	
GAS CHROMATOGRAPHY/MASS SPECTROMET	'RY (GC/I	MS)				
Tier II Validation						
Holding times		Х		Х		
Reporting limits (units)		Х		Х		
Blanks						
A. Method blanks		Х		Х		
B. Equipment blanks		Х		Х		
Laboratory Control Sample (LCS) Accuracy (%R)		Х		Х		
Laboratory Control Sample Duplicate (LCSD) %R					Х	
LCS/LCSD Precision (RPD)					Х	
Matrix Spike (MS) %R		Х		Х		
Matrix Spike Duplicate (MSD) %R		Х		Х		
MS/MSD RPD		Х		Х		
Field/Laboratory Duplicate Sample RPD		Х		Х		
Dilution Factor		Х		Х		
Moisture Content		Х		Х		
Tier III Validation						
System performance and column resolution		Х		Х		
Initial calibration %RSDs		Х		Х		
Continuing calibration %Ds		Х		Х		
Instrument tune and performance check		Х		Х		
Ion abundance criteria for each instrument used		Х		Х		
Signal-to-noise ratio > 10:1		Х		Х		
Internal standard performance		Х	Х			
Recovery standard performance		Х		Х		
Resolution mix $\leq 25\%$		Х		Х		
Compound identification and quantitation						
A. Reconstructed ion chromatograms		Х		Х		
B. Quantitation Reports		Х		Х		
C. RT of sample compounds within the established RT windows		Х		Х		
D. Transcription/calculation errors present		Х		Х		
E. Reporting limits adjusted to reflect sample dilutions		Х		Х		

RSD – relative standard deviation %R - percent recovery RPD - relative percent difference

%D – difference

VALIDATION PERFORMED BY: Jeffrey L. Davin

SIGNATURE:

Jeffry d. • R

DATE: September 30, 2013

PEER REVIEW: Dennis Capria

DATE: October 11, 2013

CHAIN OF CUSTODY / CORRECTED SAMPLE ANALYSIS DATA SHEETS

Sample ID: HA-1 (0-0.5')							EPA M	ethod 8290
	ADIS er-Superior, WI ug-2013 11:47	Sample D Matrix: Sample S % Solids	Soil Size: 13.2 g		Lat QC	boratory Data o Sample: 1300593-01 Batch: B310027 te Analyzed : 09-Sep-13 20:2	Date Extra	acted: 24-Aug-2013 acted: 30-Aug-2013 a-5MS Analyst: ANP	
Analyte Co	onc. (pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.0552			IS	13C-2,3,7,8-TCDD	84.6	40 - 135	
1,2,3,7,8-PeCDD	ND		0.144	UX		13C-1,2,3,7,8-PeCDD	120	40 - 135	
1,2,3,4,7,8-HxCDD	0.194			J		13C-1,2,3,4,7,8-HxCDD	96.4	40 - 135	
1,2,3,6,7,8-HxCDD	0.670			J		13C-1,2,3,6,7,8-HxCDD	94.2	40 - 135	
1,2,3,7,8,9-HxCDD	0.500			J		13C-1,2,3,7,8,9-HxCDD	99.0	40 - 135	
1,2,3,4,6,7,8-HpCDD	14.2					13C-1,2,3,4,6,7,8-HpCDD	109	40 - 135	
OCDD	171					13C-OCDD	128	40 - 135	
2,3,7,8-TCDF	ND		0.200	UX		13C-2,3,7,8-TCDF	59.9	40 - 135	
1,2,3,7,8-PeCDF	ND		0.112	UX		13C-1,2,3,7,8-PeCDF	107	40 - 135	
2,3,4,7,8-PeCDF	0.398			J		13C-2,3,4,7,8-PeCDF	109	40 - 135	
1,2,3,4,7,8-HxCDF	0.444			J		13C-1,2,3,4,7,8-HxCDF	100	40 - 135	
1,2,3,6,7,8-HxCDF	0.265			J		13C-1,2,3,6,7,8-HxCDF	99.7	40 - 135	
2,3,4,6,7,8-HxCDF	0.335			J		13C-2,3,4,6,7,8-HxCDF	94.0	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.0780				13C-1,2,3,7,8,9-HxCDF	95.5	40 - 135	
1,2,3,4,6,7,8-HpCDF	3.60					13C-1,2,3,4,6,7,8-HpCDF	105	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND		0.308	UX		13C-1,2,3,4,7,8,9-HpCDF	99.0	40 - 135	
OCDF	14.3					13C-OCDF	109	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	86.0	40 - 135	
						Toxic Equivalent Quotient (TE	Q) Data		
						TEQMinWHO2005Dioxin	0.594		
TOTALS									
Total TCDD	1.10		1.23						
Total PeCDD	2.26		2.58						
Total HxCDD	6.39		6.54						
Total HpCDD	29.2								
Total TCDF	2.60		3.29						
Total PeCDF	2.95		3.38						
Total HxCDF	5.63								
Total HpCDF DL - Sample specifc est	13.7		14.0						

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: HA-1 (0.5-1')							EPA M	ethod 8290
	ADIS er-Superior, WI ug-2013 12:00	Sample I Matrix: Sample % Solid	Soil Soil Size: 12.8 g		Lat QC	boratory Data o Sample: 1300593-02 c Batch: B3I0027 te Analyzed : 09-Sep-13 21:1	Date Extra	ived: 24-Aug-2013 cted: 30-Aug-2013 -5MS Analyst: ANP	
Analyte Co	onc. (pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.0889			IS	13C-2,3,7,8-TCDD	72.1	40 - 135	
1,2,3,7,8-PeCDD	ND		0.0543	UX		13C-1,2,3,7,8-PeCDD	103	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.156				13C-1,2,3,4,7,8-HxCDD	82.1	40 - 135	
1,2,3,6,7,8-HxCDD	ND	0.160				13C-1,2,3,6,7,8-HxCDD	83.9	40 - 135	
1,2,3,7,8,9-HxCDD	ND	0.173				13C-1,2,3,7,8,9-HxCDD	84.9	40 - 135	
1,2,3,4,6,7,8-HpCDD	1.21			J		13C-1,2,3,4,6,7,8-HpCDD	97.5	40 - 135	
OCDD	13.3					13C-OCDD	115	40 - 135	
2,3,7,8-TCDF	ND	0.0975				13C-2,3,7,8-TCDF	50.6	40 - 135	
1,2,3,7,8-PeCDF	ND		0.0415	UX		13C-1,2,3,7,8-PeCDF	89.8	40 - 135	
2,3,4,7,8-PeCDF	0.0598			J		13C-2,3,4,7,8-PeCDF	93.2	40 - 135	
1,2,3,4,7,8-HxCDF	0.0475			J		13C-1,2,3,4,7,8-HxCDF	86.8	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.0407				13C-1,2,3,6,7,8-HxCDF	85.1	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.0478				13C-2,3,4,6,7,8-HxCDF	84.7	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.0429				13C-1,2,3,7,8,9-HxCDF	86.6	40 - 135	
1,2,3,4,6,7,8-HpCDF	0.292			J		13C-1,2,3,4,6,7,8-HpCDF	92.0	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.0378				13C-1,2,3,4,7,8,9-HpCDF	93.3	40 - 135	
OCDF	0.524			J		13C-OCDF	99.0	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	88.0	40 - 135	
						Toxic Equivalent Quotient (TE	Q) Data		
						TEQMinWHO2005Dioxin	0.0419		
TOTALS									
Total TCDD	ND		0.382						
Total PeCDD	0.345		0.671						
Total HxCDD	0.507		0.771						
Total HpCDD	2.37								
Total TCDF	0.174								
Total PeCDF	0.111		0.424						
Total HxCDF	0.307		0.364						
Total HpCDF	0.292		0.568						

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: HA-4 (0-0.5')							EPA M	ethod 8290
•	ADIS er-Superior, WI ug-2013 16:20	Sample Matrix Sample % Soli	Soil Soil Size: 13.2 g		Lab QC	boratory Data 5 Sample: 1300593-03 2 Batch: B3I0027 te Analyzed : 11-Sep-13 14:03	Date Extra	ived: 24-Aug-2013 acted: 30-Aug-2013 -5MS Analyst: ANP	
Analyte Co	onc. (pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND		0.132	UX	IS	13C-2,3,7,8-TCDD	89.4	40 - 135	
1,2,3,7,8-PeCDD	0.639			J		13C-1,2,3,7,8-PeCDD	125	40 - 135	
1,2,3,4,7,8-HxCDD	0.613			J		13C-1,2,3,4,7,8-HxCDD	101	40 - 135	
1,2,3,6,7,8-HxCDD	1.80			J		13C-1,2,3,6,7,8-HxCDD	96.0	40 - 135	
1,2,3,7,8,9-HxCDD	1.23			J		13C-1,2,3,7,8,9-HxCDD	97.0	40 - 135	
1,2,3,4,6,7,8-HpCDD	40.8					13C-1,2,3,4,6,7,8-HpCDD	111	40 - 135	
OCDD	428					13C-OCDD	129	40 - 135	
2,3,7,8-TCDF	0.213			J		13C-2,3,7,8-TCDF	56.8	40 - 135	
1,2,3,7,8-PeCDF	0.189			J		13C-1,2,3,7,8-PeCDF	117	40 - 135	
2,3,4,7,8-PeCDF	0.403			J		13C-2,3,4,7,8-PeCDF	116	40 - 135	
1,2,3,4,7,8-HxCDF	0.951			J		13C-1,2,3,4,7,8-HxCDF	108	40 - 135	
1,2,3,6,7,8-HxCDF	ND		0.338	UX		13C-1,2,3,6,7,8-HxCDF	99.4	40 - 135	
2,3,4,6,7,8-HxCDF	0.529			J		13C-2,3,4,6,7,8-HxCDF	100	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.244				13C-1,2,3,7,8,9-HxCDF	101	40 - 135	
1,2,3,4,6,7,8-HpCDF	8.81					13C-1,2,3,4,6,7,8-HpCDF	112	40 - 135	
1,2,3,4,7,8,9-HpCDF	0.843			J		13C-1,2,3,4,7,8,9-HpCDF	115	40 - 135	
OCDF	40.7					13C-OCDF	115	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	90.4	40 - 135	
						Toxic Equivalent Quotient (TE	Q) Data		
						TEQMinWHO2005Dioxin	1.94		
TOTALS									
Total TCDD	0.578		1.84						
Total PeCDD	6.67		8.38						
Total HxCDD	22.7								
Total HpCDD	94.9								
Total TCDF	0.376		1.73						
Total PeCDF	2.78		3.15						
Total HxCDF	13.0		13.5						
Total HpCDF	36.7								

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: HA-4 (0.5-1')							EPA M	ethod 8290
	ADIS er-Superior, WI ug-2013 16:25	Sample Da Matrix: Sample S % Solids:	Soil		Lal QC	boratory Data o Sample: 1300593-04 c Batch: B310027 te Analyzed : 09-Sep-13 22:0	Date Extra	ived: 24-Aug-2013 acted: 30-Aug-2013 -5MS Analyst: ANP	
Analyte Co	onc. (pg/g)	DL 1	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.0511			IS	13C-2,3,7,8-TCDD	84.4	40 - 135	
1,2,3,7,8-PeCDD	ND	0.0907				13C-1,2,3,7,8-PeCDD	122	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.0682				13C-1,2,3,4,7,8-HxCDD	94.2	40 - 135	
1,2,3,6,7,8-HxCDD	0.191			J		13C-1,2,3,6,7,8-HxCDD	92.0	40 - 135	
1,2,3,7,8,9-HxCDD	0.146			J		13C-1,2,3,7,8,9-HxCDD	92.4	40 - 135	
1,2,3,4,6,7,8-HpCDD	2.62					13C-1,2,3,4,6,7,8-HpCDD	104	40 - 135	
OCDD	31.3					13C-OCDD	118	40 - 135	
2,3,7,8-TCDF	ND	0.0570				13C-2,3,7,8-TCDF	53.7	40 - 135	
1,2,3,7,8-PeCDF	ND	0.0644				13C-1,2,3,7,8-PeCDF	104	40 - 135	
2,3,4,7,8-PeCDF	ND	0.0621				13C-2,3,4,7,8-PeCDF	111	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.0620				13C-1,2,3,4,7,8-HxCDF	97.7	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.0613				13C-1,2,3,6,7,8-HxCDF	96.1	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.0757				13C-2,3,4,6,7,8-HxCDF	92.9	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.0261				13C-1,2,3,7,8,9-HxCDF	92.5	40 - 135	
1,2,3,4,6,7,8-HpCDF	0.634			J		13C-1,2,3,4,6,7,8-HpCDF	101	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND		0.0513	UX		13C-1,2,3,4,7,8,9-HpCDF	98.0	40 - 135	
OCDF	2.31			J		13C-OCDF	104	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	84.5	40 - 135	
						Toxic Equivalent Quotient (TE	Q) Data		
						TEQMinWHO2005Dioxin	0.0763		
TOTALS									
Total TCDD	0.366		0.703						
Total PeCDD	0.0624		0.386						
Total HxCDD	1.32		1.50						
Total HpCDD	5.92								
Total TCDF	0.408		0.525						
Total PeCDF	0.0633								
Total HxCDF	0.671								
Total HpCDF	2.15		2.20						

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: HA-7 (0-0.5')							EPA N	lethod 8290
•	ADIS er-Superior, WI ag-2013 19:13	Sample D Matrix: Sample S % Solids	Soil Size: 13.4 g		Lab QC	boratory Data o Sample: 1300593-05 Batch: B310027 te Analyzed : 09-Sep-13 22:5	Date Extr	eived: 24-Aug-2013 acted: 30-Aug-2013 3-5MS Analyst: ANP	
Analyte Co	onc. (pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.0571			IS	13C-2,3,7,8-TCDD	105	40 - 135	
1,2,3,7,8-PeCDD	0.181			J		13C-1,2,3,7,8-PeCDD	133	40 - 135	
1,2,3,4,7,8-HxCDD	0.249			J		13C-1,2,3,4,7,8-HxCDD	101	40 - 135	
1,2,3,6,7,8-HxCDD	1.02			J		13C-1,2,3,6,7,8-HxCDD	95.1	40 - 135	
1,2,3,7,8,9-HxCDD	0.500			J		13C-1,2,3,7,8,9-HxCDD	100	40 - 135	
1,2,3,4,6,7,8-HpCDD	28.7					13C-1,2,3,4,6,7,8-HpCDD	115	40 - 135	
OCDD	349			J		13C-OCDD	137	40 - 135	Н
2,3,7,8-TCDF	0.216			J		13C-2,3,7,8-TCDF	94.8	40 - 135	
1,2,3,7,8-PeCDF	ND		0.153	UX		13C-1,2,3,7,8-PeCDF	112	40 - 135	
2,3,4,7,8-PeCDF	0.345			J		13C-2,3,4,7,8-PeCDF	114	40 - 135	
1,2,3,4,7,8-HxCDF	0.872			J		13C-1,2,3,4,7,8-HxCDF	104	40 - 135	
1,2,3,6,7,8-HxCDF	0.350			J		13C-1,2,3,6,7,8-HxCDF	100	40 - 135	
2,3,4,6,7,8-HxCDF	0.439			J		13C-2,3,4,6,7,8-HxCDF	100	40 - 135	
1,2,3,7,8,9-HxCDF	ND		0.181	UX		13C-1,2,3,7,8,9-HxCDF	101	40 - 135	
1,2,3,4,6,7,8-HpCDF	7.36					13C-1,2,3,4,6,7,8-HpCDF	113	40 - 135	
1,2,3,4,7,8,9-HpCDF	0.771			J		13C-1,2,3,4,7,8,9-HpCDF	107	40 - 135	
OCDF	31.5					13C-OCDF	119	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	110	40 - 135	
						Toxic Equivalent Quotient (TE	Q) Data		
						TEQMinWHO2005Dioxin	1.13		
TOTALS									
Total TCDD	2.54								
Total PeCDD	1.23		2.24						
Total HxCDD	8.25								
Total HpCDD	58.5								
Total TCDF	3.81		3.87						
Total PeCDF	2.83		3.27						
Total HxCDF	10.4		10.8						
Total HpCDF	30.8								

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: HA-7 (0.5-1')						EPA M	ethod 8290
•	ADIS er-Superior, WI ug-2013 19:18	Sample DataMatrix:SoilSample Size:13.2 g% Solids:76.6		Lal QC	boratory Data o Sample: 1300593-06 c Batch: B3I0027 te Analyzed : 09-Sep-13 23:44	Date Extra	ved: 24-Aug-2013 cted: 30-Aug-2013 -5MS Analyst: DMS	
Analyte Co	onc. (pg/g)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.105		IS	13C-2,3,7,8-TCDD	92.2	40 - 135	
1,2,3,7,8-PeCDD	0.109		J		13C-1,2,3,7,8-PeCDD	126	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.221			13C-1,2,3,4,7,8-HxCDD	92.3	40 - 135	
1,2,3,6,7,8-HxCDD	0.195		J		13C-1,2,3,6,7,8-HxCDD	87.6	40 - 135	
1,2,3,7,8,9-HxCDD	ND	0.254			13C-1,2,3,7,8,9-HxCDD	90.2	40 - 135	
1,2,3,4,6,7,8-HpCDD	1.71		J		13C-1,2,3,4,6,7,8-HpCDD	107	40 - 135	
OCDD	17.1				13C-OCDD	128	40 - 135	
2,3,7,8-TCDF	ND	0.101			13C-2,3,7,8-TCDF	93.7	40 - 135	
1,2,3,7,8-PeCDF	ND	0.126			13C-1,2,3,7,8-PeCDF	99.8	40 - 135	
2,3,4,7,8-PeCDF	ND	0.103			13C-2,3,4,7,8-PeCDF	101	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.0934			13C-1,2,3,4,7,8-HxCDF	89.8	40 - 135	
1,2,3,6,7,8-HxCDF	0.0986		J		13C-1,2,3,6,7,8-HxCDF	91.6	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.117			13C-2,3,4,6,7,8-HxCDF	87.1	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.148			13C-1,2,3,7,8,9-HxCDF	91.0	40 - 135	
1,2,3,4,6,7,8-HpCDF	0.701		J		13C-1,2,3,4,6,7,8-HpCDF	103	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.0961			13C-1,2,3,4,7,8,9-HpCDF	99.9	40 - 135	
OCDF	1.36		J		13C-OCDF	113	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	108	40 - 135	
					Toxic Equivalent Quotient (TE	Q) Data		
					TEQMinWHO2005Dioxin	0.168		
TOTALS								
Total TCDD	0.432	0.540						
Total PeCDD	0.746	1.27						
Total HxCDD	0.645	1.65						
Total HpCDD	3.66							
Total TCDF	0.404	0.476						
Total PeCDF	0.675							
Total HxCDF	0.848	1.03						
Total HpCDF	1.59							

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Sample ID: HA-9 (0-0.5')							EPA N	lethod 8290
•	ADIS er-Superior, WI ug-2013 9:00	Sample I Matrix: Sample % Solic	Soil Size: 13.3 g		Lab QC	Doratory Data 9 Sample: 1300593-07 Batch: B3I0027 e Analyzed : 10-Sep-13 00:2	Date Extra	ived: 24-Aug-2013 icted: 30-Aug-2013 -5MS Analyst: DMS	11:09
Analyte Co	onc. (pg/g)	DL	EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.105			IS	13C-2,3,7,8-TCDD	98.0	40 - 135	
1,2,3,7,8-PeCDD	0.151			J		13C-1,2,3,7,8-PeCDD	122	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.223				13C-1,2,3,4,7,8-HxCDD	94.4	40 - 135	
1,2,3,6,7,8-HxCDD	0.341			J		13C-1,2,3,6,7,8-HxCDD	93.7	40 - 135	
1,2,3,7,8,9-HxCDD	0.354			J		13C-1,2,3,7,8,9-HxCDD	94.1	40 - 135	
1,2,3,4,6,7,8-HpCDD	5.03					13C-1,2,3,4,6,7,8-HpCDD	117	40 - 135	
OCDD	42.6			J		13C-OCDD	137	40 - 135	Н
2,3,7,8-TCDF	ND	0.139				13C-2,3,7,8-TCDF	93.6	40 - 135	
1,2,3,7,8-PeCDF	ND		0.0991	UX		13C-1,2,3,7,8-PeCDF	96.2	40 - 135	
2,3,4,7,8-PeCDF	ND		0.194	UX		13C-2,3,4,7,8-PeCDF	110	40 - 135	
1,2,3,4,7,8-HxCDF	0.205			J		13C-1,2,3,4,7,8-HxCDF	92.0	40 - 135	
1,2,3,6,7,8-HxCDF	ND		0.179	UX		13C-1,2,3,6,7,8-HxCDF	94.6	40 - 135	
2,3,4,6,7,8-HxCDF	0.214			J		13C-2,3,4,6,7,8-HxCDF	91.3	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.0879				13C-1,2,3,7,8,9-HxCDF	96.7	40 - 135	
1,2,3,4,6,7,8-HpCDF	1.21			J		13C-1,2,3,4,6,7,8-HpCDF	110	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.126				13C-1,2,3,4,7,8,9-HpCDF	109	40 - 135	
OCDF	2.25			J		13C-OCDF	122	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	99.3	40 - 135	
						Toxic Equivalent Quotient (TE	Q) Data		
						TEQMinWHO2005Dioxin	0.338		
TOTALS									
Total TCDD	2.76								
Total PeCDD	0.873		1.34						
Total HxCDD	3.73								
Total HpCDD	11.0								
Total TCDF	3.19		3.52						
Total PeCDF	1.23		2.01						
Total HxCDF	2.00		2.18						
Total HpCDF	2.49								

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Sample ID: HA-9 (0.5-1')						EPA N	lethod 8290
	ADIS er-Superior, WI ug-2013 9:05	Sample DataMatrix:SoilSample Size:12.7 g% Solids:79.3		Lal QC	boratory Data b Sample: 1300593-08 C Batch: B310027 tte Analyzed : 10-Sep-13 01:1	Date Extra	eived: 24-Aug-2013 acted: 30-Aug-2013 B-5MS Analyst: DMS	11:09
Analyte Co	onc. (pg/g)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.0975		IS	13C-2,3,7,8-TCDD	104	40 - 135	
1,2,3,7,8-PeCDD	ND	0.0888			13C-1,2,3,7,8-PeCDD	136	40 - 135	Н
1,2,3,4,7,8-HxCDD	ND	0.218			13C-1,2,3,4,7,8-HxCDD	96.4	40 - 135	
1,2,3,6,7,8-HxCDD	ND	0.240			13C-1,2,3,6,7,8-HxCDD	99.0	40 - 135	
1,2,3,7,8,9-HxCDD	ND	0.240			13C-1,2,3,7,8,9-HxCDD	99.1	40 - 135	
1,2,3,4,6,7,8-HpCDD	0.576		J		13C-1,2,3,4,6,7,8-HpCDD	115	40 - 135	
OCDD	3.75		J		13C-OCDD	132	40 - 135	
2,3,7,8-TCDF	ND	0.0530			13C-2,3,7,8-TCDF	99.3	40 - 135	
1,2,3,7,8-PeCDF	ND	0.0856			13C-1,2,3,7,8-PeCDF	105	40 - 135	
2,3,4,7,8-PeCDF	ND	0.0835			13C-2,3,4,7,8-PeCDF	120	40 - 135	
1,2,3,4,7,8-HxCDF	ND	0.0598			13C-1,2,3,4,7,8-HxCDF	103	40 - 135	
1,2,3,6,7,8-HxCDF	ND	0.0599			13C-1,2,3,6,7,8-HxCDF	95.5	40 - 135	
2,3,4,6,7,8-HxCDF	ND	0.0725			13C-2,3,4,6,7,8-HxCDF	95.7	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.0950			13C-1,2,3,7,8,9-HxCDF	100	40 - 135	
1,2,3,4,6,7,8-HpCDF	0.294		J		13C-1,2,3,4,6,7,8-HpCDF	113	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND	0.0451			13C-1,2,3,4,7,8,9-HpCDF	105	40 - 135	
OCDF	0.171		J		13C-OCDF	116	40 - 135	
				CRS	37Cl-2,3,7,8-TCDD	112	40 - 135	
					Toxic Equivalent Quotient (TE	Q) Data		
					TEQMinWHO2005Dioxin	0.00988		
TOTALS								
Total TCDD	0.583							
Total PeCDD	0.0852	0.163						
Total HxCDD	0.503							
Total HpCDD	1.31							
Total TCDF	ND	0.568						
Total PeCDF	ND	0.168						
Total HxCDF	ND	0.0706						
Total HpCDF	0.294							

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Sample ID: DUP-1								EPA M	ethod 8290
•	ADIS er-Superior, WI ug-2013 0:00	Sample Dat Matrix: Sample Siz % Solids:	Soil		Lab QC	boratory Data o Sample: 1300593-09 Batch: B3I0027 te Analyzed : 11-Sep-13 13:13	Date Extr	eived: 24-Aug-2013 acted: 30-Aug-2013 B-5MS Analyst: ANP	
Analyte Co	onc. (pg/g)	DL E	MPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
2,3,7,8-TCDD	ND	0.0772			IS	13C-2,3,7,8-TCDD	108	40 - 135	
1,2,3,7,8-PeCDD	ND		0.163	UX		13C-1,2,3,7,8-PeCDD	134	40 - 135	
1,2,3,4,7,8-HxCDD	ND	0.172				13C-1,2,3,4,7,8-HxCDD	98.5	40 - 135	
1,2,3,6,7,8-HxCDD	0.433			J		13C-1,2,3,6,7,8-HxCDD	93.9	40 - 135	
1,2,3,7,8,9-HxCDD	0.321			J		13C-1,2,3,7,8,9-HxCDD	95.9	40 - 135	
1,2,3,4,6,7,8-HpCDD	8.06					13C-1,2,3,4,6,7,8-HpCDD	109	40 - 135	
OCDD	74.0					13C-OCDD	119	40 - 135	
2,3,7,8-TCDF	ND	0.106				13C-2,3,7,8-TCDF	98.9	40 - 135	
1,2,3,7,8-PeCDF	ND		0.112	UX		13C-1,2,3,7,8-PeCDF	117	40 - 135	
2,3,4,7,8-PeCDF	0.227			J		13C-2,3,4,7,8-PeCDF	118	40 - 135	
1,2,3,4,7,8-HxCDF	0.247			J		13C-1,2,3,4,7,8-HxCDF	105	40 - 135	
1,2,3,6,7,8-HxCDF	ND		0.135	UX		13C-1,2,3,6,7,8-HxCDF	98.4	40 - 135	
2,3,4,6,7,8-HxCDF	0.220			J		13C-2,3,4,6,7,8-HxCDF	99.6	40 - 135	
1,2,3,7,8,9-HxCDF	ND	0.0617				13C-1,2,3,7,8,9-HxCDF	102	40 - 135	
1,2,3,4,6,7,8-HpCDF	2.07			J		13C-1,2,3,4,6,7,8-HpCDF	111	40 - 135	
1,2,3,4,7,8,9-HpCDF	ND		0.177	UX		13C-1,2,3,4,7,8,9-HpCDF	108	40 - 135	
OCDF	7.60					13C-OCDF	111	40 - 135	
					CRS	37Cl-2,3,7,8-TCDD	110	40 - 135	
						Toxic Equivalent Quotient (TE	Q) Data		
						TEQMinWHO2005Dioxin	0.316		
TOTALS									
Total TCDD	0.273		0.724						
Total PeCDD	0.795		1.84						
Total HxCDD	2.54		3.73						
Total HpCDD	16.2								
Total TCDF	0.736		1.38						
Total PeCDF	1.26		1.96						
Total HxCDF	3.25		3.47						
Total HpCDF	7.24		7.42						

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL- Lower control limit - upper control limit

The results are reported in dry weight. The sample size is reported in wet weight.

Min-The TEQ is calculated using zero for the concentration of congeners that are not detected.

Vista		C	HAIN OF C	U	S7	۲C	D	Y				FOR L Laborat Storage				13 E1	005			Storage Secured Yes No 🗆 emp 🕖 . 9
Project I.D.: Beazer-S	Superior	-, wI	E P.O.#					_ Sam	pler	:_C	R 55	/ D B (Nai	ne)				Rush (ard: (surcł	• 2 harge): 1 Days : may apply): / days_Specify:
nvoice to: Name Jone Pat	Con	npany	Beazer East, Ad	dress						С	ity Pitt	shurs	Stat	e PA	Zip		Ph# 7	12-2	108.	Fax# - \$ \$ 13
Relinquished by: (Signature and Printed	David	Bess	Date: 8/2. Date:	3/13	Tin Tin		500	R R	eceiv eceiv	ved by ved by	: (Signatur): (Signatur): (Signatur	e and Print	ed Name	<u>)) /</u>	anl					<u>Y/13</u> Time: 09 : /\^
			See "Sample Log-in	Che	ckli	st"	for a	additi	ona	l sa	mple i	nforr	natio	n						
SHIP TO: Vista Analytical L 1104 Windfield W El Dorado Hills, C (916) 673-1520 • F ATTN: Marthe Ma	ay A 95762 Fax (916) 67	3-0106	Method of Shipment: Fed E x Tracking No.: 7965 2891 0133		Cont	aine	r(s)	Request	L	7	100 00 000 000 000 000 000 000 000 000	\$	22 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	Å	STILL CO	ap 100	100 100 100 100 100 100 100 100 100 100	22 22 22 22 22 22 22 22 22 22 22 22 22		
Sample ID	Date	Time	Location/Sample Description	1/	3 ²⁸ / ~	3%/-	ALANT C	\$ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ę	-25 ¹⁰		2	\$ ⁸ /4	3/2	578	12			\$	
HA-1 (0-0.51)	8/20	1147		1	G	50	Í	Ť	Ť	Ť	X	Í	Í			T	T	T	Í	
+A-((0.5-1')	8120	1200		i	1	11					1							Τ		
+ A- 4 (0-0.5')	8/20	1620		3																MSIMSD
+A-4 (0.5-1')	8/20	1625		1																
+A-7 LO-0.5')	8120	1913		1																
+A-7 (0.5-1')	\$120	1918		1	\square															
A-9 (0-0.5')	8/21	0900		1				-												
A-9 (0.5-1')	8121	0905		1		Ц														
DUP-1 RB-082013		-		1	4	V			\perp									_		
KB-082013	8/20	1825		2	A	AQ					V									
pecial Instructions/Comments:								S CUM ID RE		TAT:		Con Add City Pho	npany ress:_ : ne:Z	600 600	PCAD DZ er 327 ·	Ex Ex	507	o∡ <u>−</u> Fa	<u>N</u> Z ax:	Zip: <u>56425</u>
ontainer Types: A = 1 Liter Amber, = PUF, T = MM5 Train, O= Other_			*Bottle Preser O = Othe					ulfate,				Matri SD =	x Type Sedim	s: [ent, S	DW = D L = Slu	rinkin Idge,	g Water SO = S	, EF = oil, W	Effluer W = Wa	nt, PP = Pulp/Paper, astewater, B = Blood/Serum
ject 1300593	WH	ITE - OR	IGINAL YE	LLO	W - Al	RCHI	VE			P	NK - CO		Aqueo	us, C) = Othe	er				Page 23 of 79

Beazer East, Inc.

Supplemental Off-Property Investigation

Data Review

SUPERIOR, WISCONSIN

Semivolatile Analyses

SDG #180-27391-1

Analyses Performed By: TestAmerica Laboratories, Inc. Pittsburgh, Pennsylvania

Report: # 21032R Review Level: Tier III Project: B0039290.0000.00003

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) # 180-27391-1 for samples collected in association with the Beazer East, Inc., Supplemental Off-Property Investigation. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

							Analysis	\$	
Sample ID	Lab ID	Matrix	Sample Collection Date	Parent Sample	VOC	SVOC	PEST/ PCB	MET	MISC
SB-18-34-34.5 (20131119)	180-27391-1	Soil	11/19/2013			х			
SB-22-21.2-21.7 (20131120)	180-27391-3	Soil	11/20/2013			х			

Note:

1. Samples SB-18-34.5-35 (20131119) and SB-22-21.7-22.2 (20131120) listed on the chain of custody were placed on hold and were not analyzed by the laboratory.

2. Matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample locations SB-18-34-34.5 (20131119) and SB-22-21.2-21.7 (20131120).

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted		mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		х		х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		х		Х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8270C. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- · Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- · Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is

that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

SEMI-VOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270C	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6°C
300-040 62700	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cool to <6°C

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method, trip, and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure contamination of samples during shipment. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations were the compounds concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and the RPD between the MS/MSD results were acceptable.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Field duplicate analysis was not performed on a sample location within this SDG.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270	Rep	orted	Perfor Accep		Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROM	ETRY (GC/	MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		Х	
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate(MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field Duplicate (RPD)					Х
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content		Х		Х	
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х		Х	
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation	·		-	·	
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		х	
D. Transcription/calculations acceptable		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation		х		х	

%R8L %R RPD %D

Percent recovery Relative percent difference Percent difference

VALIDATION PERFORMED BY:

Jennifer Singer

SIGNATURE:

knnifer Ainger

DATE: January 14, 2014

PEER REVIEW: Dennis Capria

DATE: January 16, 2014

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

TestAmerica Pittsburgh 301 Alpha Drive

Chain of Custody Record

008320 THE LEADER IN ENVIRONMENTAL TESTING TestAmerica Laboratories, Inc.

A Other:	Sampler: For Lab Use Only: Walk-In Client: Lab Sampling: Job / SDG No.: Sample Specific Notes: Rus H TAT Heid for analysis RUS H TAT
act: Veronice Borto-Carrier: FED	Sampler: For Lab Use Only: Walk-in Client: Lab Sampling: Job / SDG No.: Sample Specific Notes: Rus H TAT Heid for analysis RUS H TAT
Kungetræterre	For Lab Use Only: Walk-in Client: Lab Sampling: Job / SDG No.: Sample Specific Notes: Rush TAT Heid for analysis Rush TAT
temperature	Walk-In Client: Lab Sampling: Job / SDG No.: Sample Specific Notes: Rus H TAT Heid for analysis RUS H RUS H
- Compressione	Lab Sampling: Job / SDG No.: Sample Specific Notes: Rus H TAT Heid for analysis Rus H TAT
fernyresture	Job / SDG No.: Sample Specific Notes: Rus H TAT Hoid to- analysis Rus H TAT
tempresture	Sample Specific Notes: Rus H TAT Heid to- analysis RUS H TAT
temperatu	Sample Specific Notes: Rus H TAT Heid to- analysis RUS H TAT
tempere	Rush TAT Hold to- analysis RUSH TAT
tempe	Rush TAT Heid to- analysis RUSH TAT
<u>इ</u>	Rush TAT Hold to- analysis RUSH TAT
	Rush TAT Hold to- analysis RUSH TAT
	Hoid to- analysis RUSIT TAT
	RUSH TAT
	RUSH TAT
	Hold for analysis
1	
E E 5 12 12 12 12 12 12 12 12 12 12 12 12 12	
le Disposal (A fee may be assessed if san	
Return to Client Disposal by Lab	Archive for Months
	orr'd: Therm ID No.:
Cooler Temp (°C): Obs'd: C	0 u/ruliz ons
Cooler Temp (°C): Obs'd:C Compan Compan	
Cooler Temp (°C): Obs'd: C	
1	S - MS . 40 m

DATA REPORTING QUALIFIERS

Client: ARCADIS U.S. Inc

Job Number: 180-27391-1

Lab Section	Qualifier	Description
GC/MS Semi VOA	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Client: ARCADIS U.S. Inc

Analytical Data

Job Number: 180-27391-1

Client Sample ID:	SB-18-34-34.5 (2013111	9)				
Lab Sample ID:	180-27391-1				D	ate Sampled: 11/19/2013 1113
Client Matrix:	Solid	% Moisture	: 31.2		D	ate Received: 11/21/2013 0920
	8	270C Semivolatile Org	ganic Compou	unds (GC/MS	5)	
Analysis Method:	8270C	Analysis Batch:	180-91113	Ins	strument ID:	732
Prep Method:	3541	Prep Batch:	180-90999	La	ıb File ID:	D1127012.D
Dilution:	1.0			Ini	tial Weight/Volume	e: 15.1 g
Analysis Date:	11/27/2013 1613			Fir	nal Weight/Volume	e: 5.0 mL
Prep Date:	11/27/2013 0215			Inj	ection Volume:	2 uL
Analyte	DryWt Corrected:	Y Result (ug	g/Kg)	Qualifier	MDL	RL
Acenaphthene	-	ND			9.2	97
Acenaphthylene		ND			11	97
Anthracene		ND			9.4	97
Benzo[a]anthracene	•	ND			12	97
Benzo[a]pyrene		ND			9.6	97
Benzo[b]fluoranther	e	ND			15	97
Benzo[g,h,i]perylene	9	ND			9.6	97
Benzo[k]fluoranthen	e	ND			19	97
Chrysene		ND			11	97
Dibenz(a,h)anthrace	ene	ND			11	97
Fluoranthene		ND			10	97
Fluorene		ND			13	97
Indeno[1,2,3-cd]pyre	ene	ND			9.9	97
Naphthalene		58		J	8.3	97
Phenanthrene		ND			15	97
Pyrene		ND			9.7	97
Surrogate		%Rec		Qualifier	Acce	ptance Limits
Nitrobenzene-d5		64			25 - 1	04
2-Fluorobiphenyl		54			35 - 1	05
Terphenyl-d14		66			25 - 1	27

Client: ARCADIS U.S. Inc

Analytical Data

Job Number: 180-27391-1

Client Sample ID:	SB-22-21.2-2	1.7 (20131120)						
Lab Sample ID:	180-27391-3						Date S	Sampled: 11/20/2013	0845
Client Matrix:	Solid		% Moisture	: 27.0			Date F	Received: 11/21/2013	0920
		8270	C Semivolatile Or	ganic Compou	unds (GC/N	IS)			
Analysis Method:	8270C		Analysis Batch:	180-91134	Ir	nstrument ID:		732	
Prep Method:	3541		Prep Batch:	180-91105	L	ab File ID:		D1128009.D	
Dilution:	1.0				Ir	nitial Weight/Vol	ume:	15.2 g	
Analysis Date:	11/28/2013 115	0			F	inal Weight/Volu	ume:	5.0 mL	
Prep Date:	11/27/2013 154	5			Ir	njection Volume	:	2 uL	
Analyte	DryWt	Corrected: Y	Result (u	g/Kg)	Qualifier	MDL		RL	
Acenaphthene	-		ND	,		8.7		91	
Acenaphthylene			ND			10		91	
Anthracene			ND			8.8		91	
Benzo[a]anthracene			ND			11		91	
Benzo[a]pyrene			ND			9.0		91	
Benzo[b]fluoranthen	е		ND			14		91	
Benzo[g,h,i]perylene			ND			9.0		91	
Benzo[k]fluoranthen	e		ND			18		91	
Chrysene			ND			11		91	
Dibenz(a,h)anthrace	ene		ND			10		91	
Fluoranthene			ND			9.6		91	
Fluorene			ND			12		91	
Indeno[1,2,3-cd]pyre	ene		ND			9.3		91	
Naphthalene			ND			7.8		91	
Phenanthrene			ND			14		91	
Pyrene			ND			9.1		91	
Surrogate			%Rec		Qualifier		•	ce Limits	
Nitrobenzene-d5			77				5 - 104		
2-Fluorobiphenyl			62				5 - 105		
Terphenyl-d14			68			25	5 - 127		

Beazer East, Inc.

Supplemental Off-Property Investigation

Data Review

SUPERIOR, WISCONSIN

Volatile and Semivolatile Analyses

SDGs #1310562 and 1310588

Analyses Performed By: TriMatrix Laboratories Grand Rapids, Michigan

Report: # 21033R Review Level: Tier III Project: B0039290.0000.00003

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Groups (SDGs) # 1310562 and 1310588 for samples collected in association with the Beazer East, Inc., Supplemental Off-Property Investigation. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Comula				Analysis	5	
Sample ID	Lab ID	Matrix	Sample Collection Date	Parent Sample	voc	SVOC	PEST/ PCB	MET	MISC
TMW-05	1310562-01	Water	10/24/2013		Х	Х			
TMW-05 (Filtered)	1310562-02	Water	10/24/2013		Х	Х			
Duplicate	1310562-03	Water	10/24/2013	TMW-8A	Х	Х			
Duplicate (Filtered)	1310562-04	Water	10/24/2013	TMW-8A	Х	Х			
TMW-12A	1310562-05	Water	10/24/2013		Х	Х			
TMW-8A	1310562-06	Water	10/24/2013		Х	Х			
TMW-8A (Filtered)	1310562-07	Water	10/24/2013		Х	Х			
TMW-2A	1310562-08	Water	10/24/2013		Х	Х			
TMW-05A	1310562-09	Water	10/24/2013		Х	Х			
TMW-11 (Filtered)	1310562-10	Water	10/24/2013		Х	Х			
TMW-05A (Filtered)	1310562-11	Water	10/24/2013		Х				
TMW-11A	1310562-12	Water	10/25/2013		Х				
TMW-11	1310562-13	Water	10/24/2013		Х				
TMW-2A (Filtered)	1310562-14	Water	10/24/2013		Х				
TMW-12A (Filtered)	1310562-15	Water	10/24/2013		Х	Х			
TMW-08 (Filtered)	1310562-16	Water	10/24/2013		Х	Х			
TMW-08	1310562-17	Water	10/24/2013		Х	Х			
Trip Blank	1310562-18	Water	10/24/2013		Х				
TMW-02A (Filtered)	1310588-01	Water	10/28/2013			Х			
TMW-05A (Filtered)	1310588-02	Water	10/24/2013			Х			
TMW-11	1310588-03	Water	10/24/2013			Х			
TMW-11A (Filtered)	1310588-04	Water	10/25/2013		Х	Х			

Note:

1. Matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample locations TMW-08 (Filtered) and TMW-08.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

			orted		mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		х		х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		х		Х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8021B and 8270C. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- · Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- · Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is

that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

HALOGENATED AND AROMATIC VOLATILES ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8021	Water	14 days from collection to analysis	Cool to <6 °C; preserved to a pH of less than 2 s.u.

The samples that exceeded the holding times are presented in the following table.

Sample Locations	Holding Time	Criteria
Dilutions: TMW-12A TMW-2A TMW-2A (Filtered) TMW-12A (Filtered)	15 days	<14 days
Dilution: TMW-11A (Filtered)	22 days	

Sample results associated with sample locations analyzed by analytical method SW-846 8021 were qualified, as specified in the table below. All other holding times were met.

	Qualification		
Criteria	Detected Analytes	Non-detect Analytes	
Analysis completed less than two times holding time	J	UJ	

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were detected in the associated QA blanks; however, the associated sample results were greater than the BAL. Therefore, sample results greater than the BAL resulted in the removal of the laboratory qualifier (B). No other qualification of the sample results was required.

3. System Performance

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
TMW-05 TMW-05 (Filtered) Duplicate Duplicate (Filtered) TMW-12A TMW-8A	CCV %D	Naphthalene	239%
TMW-8A (Filtered) TMW-2A TMW-05A TMW-11 (Filtered) TMW-08 (Filtered) TMW-08 Trip Blank		Chloromethane	64.3%
TMW-2A (Filtered)		Naphthalene	83.9%
TMW-12A (Filtered)		Chloromethane	34.9%
TMW-05A (Filtered) TMW-11A TMW-11 TMW-11A (Filtered)		Chloromethane	-21.4%

Sample Locations	Initial/Continuing	Compound	Criteria
Diluted analysis: TMW-12A			
TMW-2A		Naphthalene	28.6%
TMW-2A (Filtered)			
TMW-12A (Filtered)			

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
		Non-detect	R
	RRF <0.05	Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration	KKF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	KKF >0.05 01 KKF >0.01	Detect	NO ACIION
	%RSD > 15% or a correlation	Non-detect	UJ
Initial Calibration	coefficient <0.99	Detect	J
		Non-detect	R
	%RSD >90%	Detect	J
		Non-detect	No Action
	%D >20% (increase in sensitivity)	Detect	J
Continuing Colibration		Non-detect	UJ
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)	Detect	J

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

Note: The naphthalene CCV exhibiting a %D >90% was attributed by the laboratory due to a high concentration of naphthalene in several of the field samples. The high concentrations in the samples caused the instrumentation carryover between the analyses of QA/QC samples and site samples. Any detections in the site samples were reanalyzed. The naphthalene results for samples TMW-05, TMW-05 (Filtered), Duplicate, Duplicate (Filtered), TMW-8A, TMW-8A (Filtered), TMW-05A, TMW-11 (Filtered), TMW-08 (Filtered), TMW-08, and Trip Blank were qualified as estimated "UJ" rather than rejected "R".

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. The analysis requires surrogate compounds exhibit recoveries within the laboratory-established acceptance limits.

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Surrogate	Recovery
TMW-8A TMW-8A (Filtered)	1,2-Dichloroethane-d4	> UL
TMW-05A TMW-05A TMW11A (Filtered)	a,a,a-Trifluorotoluene	AC

UL Upper control limit

AC Acceptable

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results associated with the deviant fraction are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action
	Detect	J
< LL but > 10%	Non-detect	UJ
< LL Dui > 10%	Detect	J
- 109/	Non-detect	R
< 10%	Detect	J
Surrogates diluted below the calibration curve due to the	Non-detect	ı ¹
high concentration of a target compounds	Detect	J

Note: ¹ A more concentrated analysis was not performed with surrogate compounds within the calibration range therefore no determination of extraction efficiency could be made.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery
TMW-08 (Filtered)	Chloromethane	>UL	>UL
TMW-08	Naphthalene	>0L	>0L

AC Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
	Detect	J
a the lower control limit (11) but $> 10%$	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
< 10 %	Detect	J
Parent sample concentration > four times the MS/MSD	Detect	No Action
spiking solution concentration (D).	Non-detect	NU ACIION

Sample locations associated with MS/MSD recoveries exhibiting an RPD greater than the control limit are presented in the following table.

Sample Locations	Compound
TMW-08 (Filtered)	Naphthalene

The criteria used to evaluate the RPD between the MS/MSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	UJ
	Detect	J

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices is applied to the RPD between the parent

sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
TMW-8A/ Duplicate	1,2,4-Trimethylbenzene	0.69 J	1.0 U	AC
TMW-8A (Filtered)/ Duplicate (Filtered)	All compounds	U	U	AC

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

The retention times of all quantitated peaks must fall within the calculated retention time windows. All identified compounds met the specified criteria.

Sample results associated with compounds that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
TMW-12A	Naphthalene	400 E	9,200 D	9,200 D
TMW-2A	Naphthalene	390 E	12,000 D	12,000 D
TMW-2A (filtered)	Naphthalene	410 E	6,400 D	6,400 D
TMW-12A (filtered)	Naphthalene	390 E	6,700 D	6,700 D
TMW-11A (filtered)	Naphthalene	310 E	410 D	410 D

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

The final reported sample results are qualified as documented in the table below.

Reported Sample Results	Qualification
Diluted sample result within calibration range	D
Diluted sample result less than the calibration range	DJ
Diluted sample result greater than the calibration range	EDJ
Original sample result greater than the calibration range	EJ

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR HALOGENATED AND AROMATIC VOLATILES

VOCs: SW-846 8021	Rep	orted		mance ptable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY (GC)					
Tier II Validation					
Holding times		Х	Х		
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х	Х		
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate(MSD) %R		Х	Х		
MS/MSD Precision (RPD)		Х	Х		
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation	•			•	•
Initial calibration %RSDs		Х		Х	
Continuing calibration %Ds		Х	Х		
System performance and column resolution		Х		Х	
Compound identification and quantitation		I			
A. Quantitation Reports		Х		Х	
B. RT of sample compounds within the established RT windows		Х		х	
C. Pattern identification		Х		Х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions %RSD – relative standard deviation %R - percent		Х		х	

%RSD - relative standard deviation, %R - percent recovery, RPD - relative percent difference,

%D – difference

SEMI-VOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270C	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6°C

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method, trip, and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure contamination of samples during shipment. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B). Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analytes	Sample Result	Qualification
TMW-05 TMW-05 (Filtered) Duplicate Duplicate (Filtered) TMW-8A TMW-8A (Filtered) TMW-05A TMW-05A TMW-08 (Filtered) TMW-08 TMW-05A (Filtered) TMW-05A (Filtered) TMW-11 TMW-11A (Filtered)	Diethyl phthalate	Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl>	"UB" at the RL

RL Reporting limit

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
TMW-05 TMW-05 (Filtered) Duplicate Duplicate (Filtered)		Benzoic Acid	-34.0%
TMW-8A TMW-8A (Filtered) TMW-05A TMW-11 (Filtered)		4-Nitrophenol	-36.2%
TMW-08 TMW-05A (Filtered) TMW-11 TMW-11A (Filtered)	CCV %D	2,3,5,6-Tetrachlorophenol	21.3%
TMW-12A TMW-2A TMW-12A (Filtered) TMW-08 (Filtered) TMW-02A (Filtered)		4-Nitroaniline	-20.1%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	NNF <0.05	Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration	RRF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	KKF 20.05 01 KKF 20.01	Detect	NO ACIION
	%RSD > 15% or a correlation	Non-detect	UJ
Initial Calibration	coefficient <0.99	Detect	J
		Non-detect	R
	%RSD >90%	Detect	J
		Non-detect	No Action
	%D >20% (increase in sensitivity)	Detect	J
Continuing Colibration	0(D > 200((decrease in consitivity))	Non-detect	UJ
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)	Detect	J

RRF of 0.01 only applies to compounds which are typically poor responding compounds

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. **Internal Standard Performance**

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations were the compounds concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery
TMW-08 (Filtered)	Phenol	<ll but="">10%</ll>	AC

AC Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
	Detect	J
the lower control limit (11) but (100/	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
< 10%	Detect	J
Parent sample concentration > four times the MS/MSD	Detect	No Action
spiking solution concentration.	Non-detect	NO ACION

Sample locations associated with MS/MSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

Sample Locations	Compound
TMW-08 (Filtered)	Benzyl Alcohol
	2-Chlorophenol
	Phenol

The criteria used to evaluate the RPD between the MS/MSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	UJ
	Detect	J

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

Sample locations associated with LCS analysis exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Compound	LCS Recovery
TMW-05 TMW-05 (Filtered) Duplicate Duplicate (Filtered) TMW-12A TMW-8A TMW-8A (Filtered) TMW-2A TMW-05A TMW-05A (Filtered) TMW-05A (Filtered) TMW-11A TMW-11 TMW-2A (Filtered) TMW-2A (Filtered) TMW-08 (Filtered) TMW-08 (Filtered) TMW-08 (Filtered) TMW-05A (Filtered) TMW-05A (Filtered) TMW-05A (Filtered) TMW-11A (Filtered)	Benzoic Acid	<10%

The criteria used to evaluate the LCS recoveries are presented in the following table. In the case of an LCS deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
	Detect	J
the lower control limit (11) but > 10%	Non-detect	UJ
< the lower control limit (LL) but > 10%	Detect	J
< 10%	Non-detect	R
	Detect	J

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD	
	Butyl Benzyl Phthalate	1.0 U	0.072 J		
TMW-8A/	4-Chlorophenyl Phenyl Ether	0.50 U	0.052 J	40	
Duplicate	Di-n-butyl Phthalate	1.0 U	0.15 J	AC	
	Bis(2-ethylhexyl) Phthalate	0.18 J	0.24 J		
	Butyl Benzyl Phthalate	1.0 U	0.063 J		
	Di-n-butyl Phthalate	0.16 J	0.18 J		
	Bis(2-ethylhexyl) Phthalate	0.21 J	0.42 J		
TMW-8A (Filtered)/ Duplicate (Filtered)	Isophorone	0.13 J	0.50 U	AC	
	4-Methylphenol	0.89 J	0.24 J		
	Naphthalene	0.071 J	0.053 J		
	Phenol	0.14 J	0.50 U		

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra. All identified compounds met the specified criteria.

Sample results associated with compounds that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
	2,4-Dimethylphenol	940 E	880 D	880 D
TMW-12A	2-Methylnaphthalene	370 E	370 D	370 D
TIVIVV-TZA	4-Methylphenol	970 E	750 D	750 D
	Naphthalene	2,000 E	6,700 D	6,700 D
	Acenaphthene	280 E	270 D	270 D
TMW-2A	2-Methylnaphthalene	320 E	320 D	320 D
	Naphthalene	1,800 E	5,200 D	5,200 D
	2,4-Dimethylphenol	900 E	990 D	990 D
TMW-12A (Filtered)	4-Methylphenol	730 E	780 D	780 D
	Naphthalene	1,400 E	4,100 D	4,100 D
TMW-02A (Filtered)	Naphthalene	1,500 E	4,100 D	4,100 D

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
TMW-11A (Filtered)	Naphthalene	100 E	110 D	110 D

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

The final reported sample results are qualified as documented in the table below.

Reported Sample Results	Qualification
Diluted sample result within calibration range	D
Diluted sample result less than the calibration range	DJ
Diluted sample result greater than the calibration range	EDJ
Original sample result greater than the calibration range	EJ

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270	Rep	orted		mance otable	Not Required
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROM	ETRY (GC/	MS)			
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х	Х		
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х	Х		
Laboratory Control Sample Duplicate(LCSD) %R					х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate(MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х	Х		
Field Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		х	
D. Transcription/calculations acceptable		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation		Х		Х	

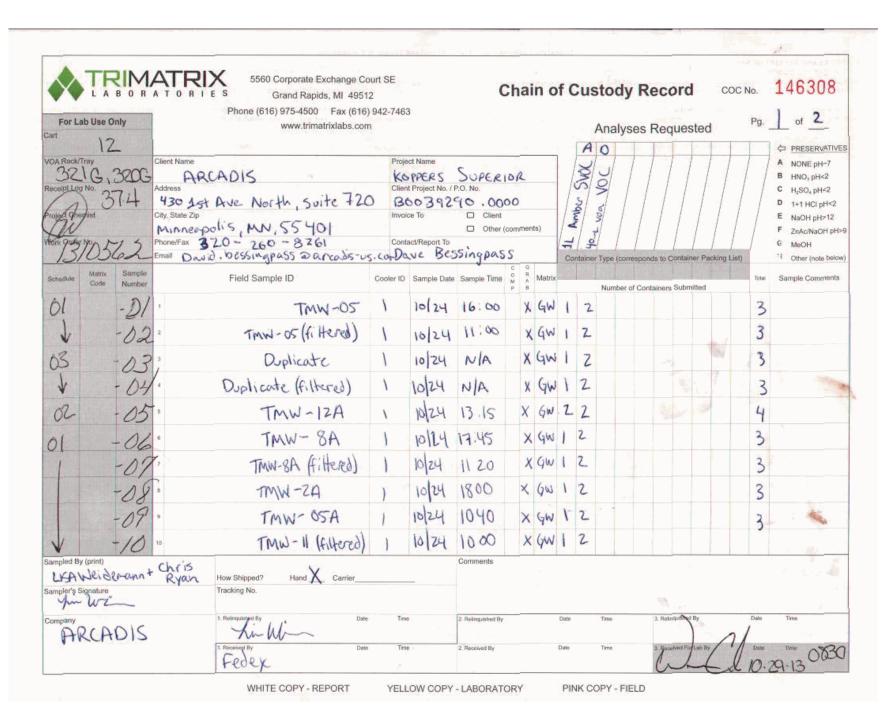
%R8L %R RPD %D

Percent recovery Relative percent difference Percent difference

VALIDATION PERFORMED BY:

Jennifer Singer

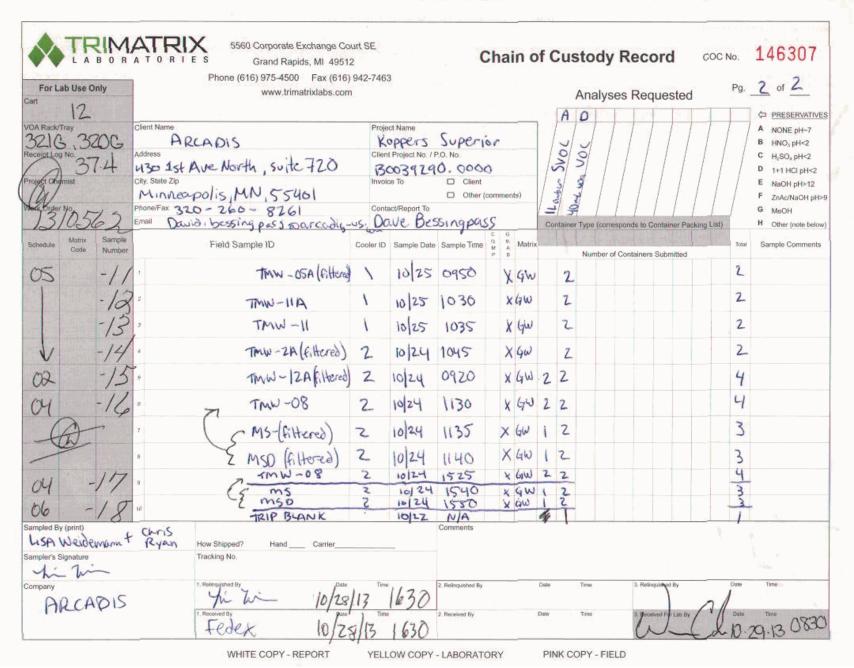
SIGNATURE:


knnifer Ainger

DATE: January 17, 2014

PEER REVIEW: Dennis Capria

DATE: January 24, 2014


CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

 www.trimatrixlabs.com without written authorization of TriMatrix Laboratories, Inc. Fax 616.942.7463 This report shall not be reproduced, except in full, without written authorization of T Individual sample results relate only to the sample tested. cchange Court SE • Grand Rapids, MI 49512 • 616.975.4500 • Fax 6 5560 Corporate Exchange Court SE

Page 121 of 125

TRIMATR

Page 122 of 125

 www.trimatrixlabs.com without written authorization of TriMatrix Laboratories, Inc. Fax 616.942.7463 This report shall not be reproduced, except in full, without written authorization of T Individual sample results relate only to the sample tested. xchange Court SE • Grand Rapids, MI 49512 • 616.975.4500 • Fax 6 5560 Corporate Exchange Court SE

For Lab Use Only	Phone (616) 975-4500 Fax (616) www.trimatrixlabs.com				An	alyses Requested	Pg.	of
Cart 4	and a second and the second second second				DD			PRESERVATIVE
VOA Rack/Tray 482 White Receipt Log No. 39-11 Project Chepfist	Client Name ARCADIS Address 430 1st Ave N, Ste 720 City, State Zip	Project Name Koppurs Client Project No. / B003929 Invoice To			SVOCS VOCS		111	A NONE pH-7 B HNO ₃ pH-2 C H ₃ SO ₄ pH-2 D 1+1 HCl pH-2 E NaOH pH-12
Norgonger to 200	Minneapolis, MN 55401 Phone/Fax 612-373-0259	Contact/Report To	2	sinnona)	122		ELL	F ZnAc/NaOH pH> G MeOH
Schedule Matrix Sample Code Numbe	Email Chris.ryan@arcadis-us.con Field Sample ID	Cooler ID Sample Date		C G O R M A Matrix	21	e (corresponds to Container Par	Total	H Other (note below Sample Comments
01 01	TMW-OZA (Filtored)	10/28	1235	χ	1	ander of Containers Submitted	1	
1 00	TMW-05A (Filtered)	10/28	1300	χ	1		ļ	
V O	" MTMW-11 (Unfiltered)	10/28	1330	Х	1		1	
01 04	* TMW-11A (Filtored)	10/28	1345	Х	12		3	
08 az	TMW-02A (Filtered)-2	10/24	-	X	1			Hold. Only us
+ DE	"TMW-11- Z (unfiltered)	10/24	~	К	1		1_	II
	8						-	
	10							
Sampled By (print) Sherid Lisa Weidem Sampler's Signature			Comments					

Page 124 of 125

This report shall not be reproduced, except in full, without written authorization of TriMatrix Laboratories, Inc. Individual sample results relate only to the sample tested. 5560 Corporate Exchange Court SE • Grand Rapids, MI 49512 • 616.975.4500 • Fax 616.942.7463 • www.trimatrixlabs.com

Client:	Beazer East, Inc.	Work Order:	1310562	
Project:	Koppers Superior	Description:	Laboratory Services	
Client Sample ID:	TMW-05	Sampled:	10/24/13 16:00	
Lab Sample ID:	1310562-01	Sampled By:	Client	
Matrix:	Water	Received:	10/29/13 8:30	
Unit:	ug/L	Prepared:	11/6/13 0:00 By:	LEW
Dilution Factor:	1	Analyzed:	11/6/13 7:29 By:	LEW
QC Batch:	1312148	Analytical Batch:	3K14015	

Halogenated and Aromatic Volatiles by EPA Method 8021B

				Analytical		
CAS Number	Analyte			Result	RL	MDL
71-43-2	Benzene			1.0U	1.0	0.20
104-51-8	n-Butylbenzene			1.0U	1.0	0.28
*74-87-3	Chloromethane			1.0U	1.0	0.37
100-41-4	Ethylbenzene			1.0U	1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.0U	5.0	0.48
*91-20-3	Naphthalene			1.0U <mark>J</mark>	1.0	0.44
103-65-1	n-Propylbenzene			1.0U	1.0	0.24
100-42-5	Styrene			1.0U	1.0	0.20
108-88-3	Toluene			1.0U	1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U	1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			1.0U	1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			1.0U	1.0	0.22
179601-23-1	Xylene, Meta + Para			2.0U	2.0	0.42
95-47-6	Xylene, Ortho			1.0U	1.0	0.20
Surrogates:	g	% Recovery	Control Limits			
1,2-Dichloroethane-d4	4	117	81-126			
aaa-Trifluorotoluene		96	86-118			

*See Statement of Data Qualifications

Page 10 of 125

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-05	Sampled:	10/24/13 16:00		
Lab Sample ID:	1310562-01	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	10/31/13 7:55	By:	ALK
Dilution Factor:	1	Analyzed:	11/6/13 18:48	By:	JLB
QC Batch:	1311584	Analytical Batch:	3K07013		

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	0.50U	0.50	0.033
208-96-8	Acenaphthylene	0.50U	0.50	0.017
120-12-7	Anthracene	0.50U	0.50	0.062
56-55-3	Benzo(a)anthracene	0.50U	0.50	0.045
50-32-8	Benzo(a)pyrene	0.50U	0.50	0.040
205-99-2	Benzo(b)fluoranthene	0.50U	0.50	0.058
207-08-9	Benzo(k)fluoranthene	0.50U	0.50	0.060
191-24-2	Benzo(g,h,i)perylene	0.50U	0.50	0.061
*65-85-0	Benzoic Acid	5.00	5.0	0.48 R
100-51-6	Benzyl Alcohol	0.50U	0.50	0.049
101-55-3	4-Bromophenyl Phenyl Ether	0.50U	0.50	0.043
85-68-7	Butyl Benzyl Phthalate	1.0U	1.0	0.056
59-50-7	4-Chloro-3-methylphenol	0.50U	0.50	0.12
106-47-8	4-Chloroaniline	1.0U	1.0	0.10
111-91-1	Bis(2-chloroethoxy)methane	0.50U	0.50	0.018
111-44-4	Bis(2-chloroethyl) Ether	0.50U	0.50	0.024
108-60-1	Bis(2-chloroisopropyl) Ether	0.50U	0.50	0.026
91-58-7	2-Chloronaphthalene	0.50U	0.50	0.017
95-57-8	2-Chlorophenol	0.50U	0.50	0.027
7005-72-3	4-Chlorophenyl Phenyl Ether	0.50U	0.50	0.048
218-01-9	Chrysene	0.50U	0.50	0.045
53-70-3	Dibenz(a,h)anthracene	0.50U	0.50	0.11
132-64-9	Dibenzofuran	0.50U	0.50	0.041
84-74-2	Di-n-butyl Phthalate	0.24J	1.0	0.14
95-50-1	1,2-Dichlorobenzene	0.50U	0.50	0.040
541-73-1	1,3-Dichlorobenzene	0.50U	0.50	0.041
106-46-7	1,4-Dichlorobenzene	0.50U	0.50	0.020
91-94-1	3,3 ´-Dichlorobenzidine	1.0U	1.0	0.12
120-83-2	2,4-Dichlorophenol	0.50U	0.50	0.092

Continued on next page

*See Statement of Data Qualifications

Page 11 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-05	Sampled:	10/24/13 16:00
Lab Sample ID:	1310562-01	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	1	Analyzed:	11/6/13 18:48 By: JLB
QC Batch:	1311584	Analytical Batch:	3K07013

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
*84-66-2	Diethyl Phthalate	0.273	0.50 UB 0.50	0.065
105-67-9	2,4-Dimethylphenol	1.0U	1.0	0.17
131-11-3	Dimethyl Phthalate	0.50U	0.50	0.046
534-52-1	4,6-Dinitro-2-methylphenol	5.0U	5.0	1.0
51-28-5	2,4-Dinitrophenol	5.0U	5.0	1.2
121-14-2	2,4-Dinitrotoluene	0.50U	0.50	0.048
606-20-2	2,6-Dinitrotoluene	0.50U	0.50	0.080
117-84-0	Di-n-octyl Phthalate	0.50U	0.50	0.077
117-81-7	Bis(2-ethylhexyl) Phthalate	0.15J	0.50	0.11
206-44-0	Fluoranthene	0.50U	0.50	0.063
86-73-7	Fluorene	0.50U	0.50	0.041
118-74-1	Hexachlorobenzene	0.50U	0.50	0.063
87-68-3	Hexachlorobutadiene	0.50U	0.50	0.040
77-47-4	Hexachlorocyclopentadiene	0.50U	0.50	0.044
67-72-1	Hexachloroethane	0.50U	0.50	0.042
193-39-5	Indeno(1,2,3-cd)pyrene	0.50U	0.50	0.080
78-59-1	Isophorone	0.50U	0.50	0.045
56-49-5	3-Methylcholanthrene	2.0U	2.0	0.12
91-57-6	2-Methylnaphthalene	0.50U	0.50	0.015
90-12-0	1-Methylnaphthalene	0.50U	0.50	0.020
95-48-7	2-Methylphenol	0.50U	0.50	0.048
106-44-5	4-Methylphenol	0.50U	0.50	0.057
91-20-3	Naphthalene	0.053J	0.50	0.031
88-74-4	2-Nitroaniline	0.50U	0.50	0.12
99-09-2	3-Nitroaniline	1.0U	1.0	0.24
100-01-6	4-Nitroaniline	1.0U	1.0	0.33
98-95-3	Nitrobenzene	0.50U	0.50	0.058
100-02-7	4-Nitrophenol	5.0U	J 5.0	1.2
88-75-5	2-Nitrophenol	0.50U	0.50	0.048
86-30-6	N-Nitroso-diphenylamine	0.50U	0.50	0.068
621-64-7	N-Nitroso-di-n-propylamine	0.50U	0.50	0.075

Continued on next page

*See Statement of Data Qualifications

Page 12 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-05	Sampled:	10/24/13 16:00
Lab Sample ID:	1310562-01	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	1	Analyzed:	11/6/13 18:48 By: JLB
QC Batch:	1311584	Analytical Batch:	3K07013

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

				Analytical		
CAS Number	Analyte			Result	RL	MDL
87-86-5	Pentachlorophenol			0.50U	0.50	0.081
85-01-8	Phenanthrene			0.50U	0.50	0.043
108-95-2	Phenol			0.50U	0.50	0.034
129-00-0	Pyrene			0.50U	0.50	0.066
58-90-2	2,3,4,6-Tetrachlorophenol			5.0U	5.0	0.37
935-95-5	2,3,5,6-Tetrachlorophenol			10U	10	0.21
120-82-1	1,2,4-Trichlorobenzene			0.50U	0.50	0.027
88-06-2	2,4,6-Trichlorophenol			0.50U	0.50	0.085
95-95-4	2,4,5-Trichlorophenol			0.50U	0.50	0.099
Surrogates:	% Rec	overy	Control Limits			
2-Fluorophenol	21		20-70			
Phenol-d6	23	?	18-45			
Nitrobenzene-d5	70	7	31-123			
2-Fluorobiphenyl	70	7	25-113			

30-121

42-125

41

81

Page 13 of 125

2,4,6-Tribromophenol

o-Terphenyl

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-05 (Filtered)	Sampled:	10/24/13 11:00
Lab Sample ID:	1310562-02	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	11/6/13 0:00 By: LEW
Dilution Factor:	1	Analyzed:	11/6/13 8:17 By: LEW
QC Batch:	1312148	Analytical Batch:	3K14015

Halogenated and Aromatic Volatiles by EPA Method 8021B

				Analytical		
CAS Number	Analyte			Result	RL	MDL
71-43-2	Benzene			1.0U	1.0	0.20
104-51-8	n-Butylbenzene			1.0U	1.0	0.28
*74-87-3	Chloromethane			1.0U	1.0	0.37
100-41-4	Ethylbenzene			1.0U	1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.0U	5.0	0.48
*91-20-3	Naphthalene			1.0U <mark>J</mark>	1.0	0.44
103-65-1	n-Propylbenzene			1.0U	1.0	0.24
100-42-5	Styrene			1.0U	1.0	0.20
108-88-3	Toluene			1.0U	1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U	1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			1.0U	1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			1.0U	1.0	0.22
179601-23-1	Xylene, Meta + Para			2.0U	2.0	0.42
95-47-6	Xylene, Ortho			1.0U	1.0	0.20
Surrogates:	%	6 Recovery	Control Limits			
1,2-Dichloroethane-c	14	114	81-126			
aaa-Trifluorotoluene		95	86-118			

*See Statement of Data Qualifications

Page 14 of 125

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-05 (Filtered)	Sampled:	10/24/13 11:00		
Lab Sample ID:	1310562-02	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	10/31/13 7:55	By:	ALK
Dilution Factor:	1	Analyzed:	11/6/13 19:22	By:	JLB
QC Batch:	1311584	Analytical Batch:	3K07013		

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	0.56U	0.56	0.037
208-96-8	Acenaphthylene	0.56U	0.56	0.019
120-12-7	Anthracene	0.56U	0.56	0.068
56-55-3	Benzo(a)anthracene	0.56U	0.56	0.050
50-32-8	Benzo(a)pyrene	0.56U	0.56	0.045
205-99-2	Benzo(b)fluoranthene	0.56U	0.56	0.065
207-08-9	Benzo(k)fluoranthene	0.56U	0.56	0.066
191-24-2	Benzo(g,h,i)perylene	0.56U	0.56	0.068
*65-85-0	Benzoic Acid	<u> </u>	5.6	0.53 R
100-51-6	Benzyl Alcohol	0.56U	0.56	0.054
101-55-3	4-Bromophenyl Phenyl Ether	0.56U	0.56	0.048
85-68-7	Butyl Benzyl Phthalate	1.10	1.1	0.062
59-50-7	4-Chloro-3-methylphenol	0.56U	0.56	0.13
106-47-8	4-Chloroaniline	1.10	1.1	0.11
111-91-1	Bis(2-chloroethoxy)methane	0.56U	0.56	0.020
111-44-4	Bis(2-chloroethyl) Ether	0.56U	0.56	0.026
108-60-1	Bis(2-chloroisopropyl) Ether	0.56U	0.56	0.029
91-58-7	2-Chloronaphthalene	0.56U	0.56	0.019
95-57-8	2-Chlorophenol	0.56U	0.56	0.030
7005-72-3	4-Chlorophenyl Phenyl Ether	0.56U	0.56	0.053
218-01-9	Chrysene	0.56U	0.56	0.050
53-70-3	Dibenz(a,h)anthracene	0.56U	0.56	0.13
132-64-9	Dibenzofuran	0.56U	0.56	0.045
84-74-2	Di-n-butyl Phthalate	0.16J	1.1	0.15
95-50-1	1,2-Dichlorobenzene	0.56U	0.56	0.044
541-73-1	1,3-Dichlorobenzene	0.56U	0.56	0.046
106-46-7	1,4-Dichlorobenzene	0.56U	0.56	0.022
91-94-1	3,3 '-Dichlorobenzidine	1.1U	1.1	0.14
120-83-2	2,4-Dichlorophenol	0.56U	0.56	0.10

Continued on next page

*See Statement of Data Qualifications

Page 15 of 125

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-05 (Filtered)	Sampled:	10/24/13 11:00		
Lab Sample ID:	1310562-02	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	10/31/13 7:55	By:	ALK
Dilution Factor:	1	Analyzed:	11/6/13 19:22	By:	JLB
QC Batch:	1311584	Analytical Batch:	3K07013		

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
*84-66-2	Diethyl Phthalate	0.293	0.56 UB.56	0.072
105-67-9	2,4-Dimethylphenol	1.1U	1.1	0.19
131-11-3	Dimethyl Phthalate	0.56U	0.56	0.051
534-52-1	4,6-Dinitro-2-methylphenol	5.6U	5.6	1.1
51-28-5	2,4-Dinitrophenol	5.6U	5.6	1.3
121-14-2	2,4-Dinitrotoluene	0.56U	0.56	0.053
606-20-2	2,6-Dinitrotoluene	0.56U	0.56	0.089
117-84-0	Di-n-octyl Phthalate	0.56U	0.56	0.085
117-81-7	Bis(2-ethylhexyl) Phthalate	0.19J	0.56	0.13
206-44-0	Fluoranthene	0.56U	0.56	0.070
86-73-7	Fluorene	0.56U	0.56	0.046
118-74-1	Hexachlorobenzene	0.56U	0.56	0.070
87-68-3	Hexachlorobutadiene	0.56U	0.56	0.044
77-47-4	Hexachlorocyclopentadiene	0.56U	0.56	0.049
67-72-1	Hexachloroethane	0.56U	0.56	0.046
193-39-5	Indeno(1,2,3-cd)pyrene	0.56U	0.56	0.089
78-59-1	Isophorone	0.56U	0.56	0.050
56-49-5	3-Methylcholanthrene	2.20	2.2	0.13
91-57-6	2-Methylnaphthalene	0.56U	0.56	0.017
90-12-0	1-Methylnaphthalene	0.56U	0.56	0.022
95-48-7	2-Methylphenol	0.56U	0.56	0.053
106-44-5	4-Methylphenol	0.56U	0.56	0.063
91-20-3	Naphthalene	0.56U	0.56	0.034
88-74-4	2-Nitroaniline	0.56U	0.56	0.13
99-09-2	3-Nitroaniline	1.1U	1.1	0.27
100-01-6	4-Nitroaniline	1.1U	1.1	0.37
98-95-3	Nitrobenzene	0.56U	0.56	0.065
100-02-7	4-Nitrophenol	5.6U J	5.6	1.4
88-75-5	2-Nitrophenol	0.56U	0.56	0.053
86-30-6	N-Nitroso-diphenylamine	0.56U	0.56	0.075
621-64-7	N-Nitroso-di-n-propylamine	0.56U	0.56	0.084

Continued on next page

*See Statement of Data Qualifications

Page 16 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample	e ID: TMW-05 (Filtered)	Sampled:	10/24/13 11:00
Lab Sample I	D: 1310562-02	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Facto	or: 1	Analyzed:	11/6/13 19:22 By: JLB
QC Batch:	1311584	Analytical Batch:	3K07013

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

				Analytical		
CAS Number	Analyte			Result	RL	MDL
87-86-5	Pentachlorophenol			0.56U	0.56	0.090
85-01-8	Phenanthrene			0.56U	0.56	0.047
108-95-2	Phenol			0.18J	0.56	0.037
129-00-0	Pyrene			0.56U	0.56	0.073
58-90-2	2,3,4,6-Tetrachlorophenol			5.6U	5.6	0.41
935-95-5	2,3,5,6-Tetrachlorophenol			11U	11	0.24
120-82-1	1,2,4-Trichlorobenzene			0.56U	0.56	0.030
88-06-2	2,4,6-Trichlorophenol			0.56U	0.56	0.095
95-95-4	2,4,5-Trichlorophenol			0.56U	0.56	0.11
Surrogates:	% Reco	overy	Control Limits			
2-Fluorophenol	35		20-70			
Phenol-d6	29		18-45			
Nitrobenzene-d5	59		31-123			
2-Fluorobiphenyl	63		25-113			

30-121

42-125

60

74

Page 17 of 125

2,4,6-Tribromophenol

o-Terphenyl

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample II	D: Duplicate	Sampled:	10/24/13 0:00
Lab Sample ID:	1310562-03	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	11/6/13 0:00 By: LEW
Dilution Factor:	1	Analyzed:	11/6/13 9:06 By: LEW
QC Batch:	1312148	Analytical Batch:	3K14015

Halogenated and Aromatic Volatiles by EPA Method 8021B

				Analytical		
CAS Number	Analyte			Result	RL	MDL
71-43-2	Benzene			1.0U	1.0	0.20
104-51-8	n-Butylbenzene			1.0U	1.0	0.28
*74-87-3	Chloromethane			1.0U	1.0	0.37
100-41-4	Ethylbenzene			1.0U	1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.0U	5.0	0.48
*91-20-3	Naphthalene			1.0U J	1.0	0.44 🕂
103-65-1	n-Propylbenzene			1.0U	1.0	0.24
100-42-5	Styrene			1.0U	1.0	0.20
108-88-3	Toluene			1.0U	1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U	1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			1.0U	1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			1.0U	1.0	0.22
179601-23-1	Xylene, Meta + Para			2.0U	2.0	0.42
95-47-6	Xylene, Ortho			1.0U	1.0	0.20
Surrogates:		% Recovery	Control Limits			
1,2-Dichloroethane-d4	!	116	81-126			
aaa-Trifluorotoluene		94	86-118			

*See Statement of Data Qualifications

Page 18 of 125

Client:	Beazer East, Inc.	Work Order:	1310562	
Project:	Koppers Superior	Description:	Laboratory Services	
Client Sample ID:	Duplicate	Sampled:	10/24/13 0:00	
Lab Sample ID:	1310562-03	Sampled By:	Client	
Matrix:	Water	Received:	10/29/13 8:30	
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK	
Dilution Factor:	1	Analyzed:	11/6/13 19:57 By: JLB	
QC Batch:	1311584	Analytical Batch:	3K07013	

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	0.50U	0.50	0.033
208-96-8	Acenaphthylene	0.50U	0.50	0.017
120-12-7	Anthracene	0.50U	0.50	0.062
56-55-3	Benzo(a)anthracene	0.50U	0.50	0.045
50-32-8	Benzo(a)pyrene	0.50U	0.50	0.040
205-99-2	Benzo(b)fluoranthene	0.50U	0.50	0.058
207-08-9	Benzo(k)fluoranthene	0.50U	0.50	0.060
191-24-2	Benzo(g,h,i)perylene	0.50U	0.50	0.061
*65-85-0	Benzoic Acid	5.00	5.0	0.48 R
100-51-6	Benzyl Alcohol	0.50U	0.50	0.049
101-55-3	4-Bromophenyl Phenyl Ether	0.50U	0.50	0.043
85-68-7	Butyl Benzyl Phthalate	0.072J	1.0	0.056
59-50-7	4-Chloro-3-methylphenol	0.50U	0.50	0.12
106-47-8	4-Chloroaniline	1.0U	1.0	0.10
111-91-1	Bis(2-chloroethoxy)methane	0.50U	0.50	0.018
111-44-4	Bis(2-chloroethyl) Ether	0.50U	0.50	0.024
108-60-1	Bis(2-chloroisopropyl) Ether	0.50U	0.50	0.026
91-58-7	2-Chloronaphthalene	0.50U	0.50	0.017
95-57-8	2-Chlorophenol	0.50U	0.50	0.027
7005-72-3	4-Chlorophenyl Phenyl Ether	0.052J	0.50	0.048
218-01-9	Chrysene	0.50U	0.50	0.045
53-70-3	Dibenz(a,h)anthracene	0.50U	0.50	0.11
132-64-9	Dibenzofuran	0.50U	0.50	0.041
84-74-2	Di-n-butyl Phthalate	0.15J	1.0	0.14
95-50-1	1,2-Dichlorobenzene	0.50U	0.50	0.040
541-73-1	1,3-Dichlorobenzene	0.50U	0.50	0.041
106-46-7	1,4-Dichlorobenzene	0.50U	0.50	0.020
91-94-1	3,3 '-Dichlorobenzidine	1.0U	1.0	0.12
120-83-2	2,4-Dichlorophenol	0.50U	0.50	0.092

Continued on next page

*See Statement of Data Qualifications

Page 19 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	Duplicate	Sampled:	10/24/13 0:00
Lab Sample ID:	1310562-03	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	1	Analyzed:	11/6/13 19:57 By: JLB
QC Batch:	1311584	Analytical Batch:	3K07013

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
*84-66-2	Diethyl Phthalate	- 8.231 0.5	0 UB 0.50	0.065
105-67-9	2,4-Dimethylphenol	1.0U	1.0	0.17
131-11-3	Dimethyl Phthalate	0.50U	0.50	0.046
534-52-1	4,6-Dinitro-2-methylphenol	5.0U	5.0	1.0
51-28-5	2,4-Dinitrophenol	5.0U	5.0	1.2
121-14-2	2,4-Dinitrotoluene	0.50U	0.50	0.048
606-20-2	2,6-Dinitrotoluene	0.50U	0.50	0.080
117-84-0	Di-n-octyl Phthalate	0.50U	0.50	0.077
117-81-7	Bis(2-ethylhexyl) Phthalate	0.24J	0.50	0.11
206-44-0	Fluoranthene	0.50U	0.50	0.063
86-73-7	Fluorene	0.50U	0.50	0.041
118-74-1	Hexachlorobenzene	0.50U	0.50	0.063
87-68-3	Hexachlorobutadiene	0.50U	0.50	0.040
77-47-4	Hexachlorocyclopentadiene	0.50U	0.50	0.044
67-72-1	Hexachloroethane	0.50U	0.50	0.042
193-39-5	Indeno(1,2,3-cd)pyrene	0.50U	0.50	0.080
78-59-1	Isophorone	0.50U	0.50	0.045
56-49-5	3-Methylcholanthrene	2.0U	2.0	0.12
91-57-6	2-Methylnaphthalene	0.50U	0.50	0.015
90-12-0	1-Methylnaphthalene	0.50U	0.50	0.020
95-48-7	2-Methylphenol	0.50U	0.50	0.048
106-44-5	4-Methylphenol	0.50U	0.50	0.057
91-20-3	Naphthalene	0.50U	0.50	0.031
88-74-4	2-Nitroaniline	0.50U	0.50	0.12
99-09-2	3-Nitroaniline	1.0U	1.0	0.24
100-01-6	4-Nitroaniline	1.0U	1.0	0.33
98-95-3	Nitrobenzene	0.50U	0.50	0.058
100-02-7	4-Nitrophenol	5.0U J	5.0	1.2
88-75-5	2-Nitrophenol	0.50U	0.50	0.048
86-30-6	N-Nitroso-diphenylamine	0.50U	0.50	0.068
621-64-7	N-Nitroso-di-n-propylamine	0.50U	0.50	0.075

Continued on next page

*See Statement of Data Qualifications

Page 20 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	Duplicate	Sampled:	10/24/13 0:00
Lab Sample ID:	1310562-03	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	1	Analyzed:	11/6/13 19:57 By: JLB
QC Batch:	1311584	Analytical Batch:	3K07013

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

			Analytical		
CAS Number	Analyte		Result	RL	MDL
87-86-5	Pentachlorophenol		0.50U	0.50	0.081
85-01-8	Phenanthrene		0.50U	0.50	0.043
108-95-2	Phenol		0.50U	0.50	0.034
129-00-0	Pyrene		0.50U	0.50	0.066
58-90-2	2,3,4,6-Tetrachlorophenol		5.0U	5.0	0.37
935-95-5	2,3,5,6-Tetrachlorophenol		10U	10	0.21
120-82-1	1,2,4-Trichlorobenzene		0.50U	0.50	0.027
88-06-2	2,4,6-Trichlorophenol		0.50U	0.50	0.085
95-95-4	2,4,5-Trichlorophenol		0.50U	0.50	0.099
Surrogates:	% Recove	ry Control Limits			
2-Fluorophenol	36	20-70			
Phenol-d6	30	18-45			
Nitrobenzene-d5	60	31-123			
2-Fluorobiphenyl	59	25-113			

30-121

42-125

71

75

Page 21 of 125

2,4,6-Tribromophenol

o-Terphenyl

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	Duplicate (Filtered)	Sampled:	10/24/13 0:00
Lab Sample ID:	1310562-04	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	11/6/13 0:00 By: LEW
Dilution Factor:	1	Analyzed:	11/6/13 9:54 By: LEW
QC Batch:	1312148	Analytical Batch:	3K14015

Halogenated and Aromatic Volatiles by EPA Method 8021B

				Analytical		
CAS Number	Analyte			Result	RL	MDL
71-43-2	Benzene			1.0U	1.0	0.20
104-51-8	n-Butylbenzene			1.0U	1.0	0.28
*74-87-3	Chloromethane			1.0U	1.0	0.37
100-41-4	Ethylbenzene			1.0U	1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.0U	5.0	0.48
*91-20-3	Naphthalene			1.0U J	1.0	0.44
103-65-1	n-Propylbenzene			1.0U	1.0	0.24
100-42-5	Styrene			1.0U	1.0	0.20
108-88-3	Toluene			1.0U	1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U	1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			1.0U	1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			1.0U	1.0	0.22
179601-23-1	Xylene, Meta + Para			2.0U	2.0	0.42
95-47-6	Xylene, Ortho			1.0U	1.0	0.20
Surrogates:	c.	% Recovery	Control Limits			
1,2-Dichloroethane-d	14	117	81-126			
aaa-Trifluorotoluene		97	86-118			

*See Statement of Data Qualifications

Page 22 of 125

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	Duplicate (Filtered)	Sampled:	10/24/13 0:00		
Lab Sample ID:	1310562-04	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	10/31/13 7:55	By:	ALK
Dilution Factor:	1	Analyzed:	11/6/13 20:32	By:	JLB
QC Batch:	1311584	Analytical Batch:	3K07013		

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	0.50U	0.50	0.033
208-96-8	Acenaphthylene	0.50U	0.50	0.017
120-12-7	Anthracene	0.50U	0.50	0.062
56-55-3	Benzo(a)anthracene	0.50U	0.50	0.045
50-32-8	Benzo(a)pyrene	0.50U	0.50	0.040
205-99-2	Benzo(b)fluoranthene	0.50U	0.50	0.058
207-08-9	Benzo(k)fluoranthene	0.50U	0.50	0.060
191-24-2	Benzo(g,h,i)perylene	0.50U	0.50	0.061
+ 65-85-0	Benzoic Acid	5.00	5.0	<u> </u>
100-51-6	Benzyl Alcohol	0.50U	0.50	0.049
101-55-3	4-Bromophenyl Phenyl Ether	0.50U	0.50	0.043
85-68-7	Butyl Benzyl Phthalate	0.063J	1.0	0.056
59-50-7	4-Chloro-3-methylphenol	0.50U	0.50	0.12
106-47-8	4-Chloroaniline	1.0U	1.0	0.10
111-91-1	Bis(2-chloroethoxy)methane	0.50U	0.50	0.018
111-44-4	Bis(2-chloroethyl) Ether	0.50U	0.50	0.024
108-60-1	Bis(2-chloroisopropyl) Ether	0.50U	0.50	0.026
91-58-7	2-Chloronaphthalene	0.50U	0.50	0.017
95-57-8	2-Chlorophenol	0.50U	0.50	0.027
7005-72-3	4-Chlorophenyl Phenyl Ether	0.50U	0.50	0.048
218-01-9	Chrysene	0.50U	0.50	0.045
53-70-3	Dibenz(a,h)anthracene	0.50U	0.50	0.11
132-64-9	Dibenzofuran	0.50U	0.50	0.041
84-74-2	Di-n-butyl Phthalate	0.18J	1.0	0.14
95-50-1	1,2-Dichlorobenzene	0.50U	0.50	0.040
541-73-1	1,3-Dichlorobenzene	0.50U	0.50	0.041
106-46-7	1,4-Dichlorobenzene	0.50U	0.50	0.020
91-94-1	3,3´-Dichlorobenzidine	1.0U	1.0	0.12
120-83-2	2,4-Dichlorophenol	0.50U	0.50	0.092

Continued on next page

*See Statement of Data Qualifications

Page 23 of 125

Cli	ent:	Beazer East, Inc.	Work Order:	1310562		
Pro	oject:	Koppers Superior	Description:	Laboratory Services		
Cli	ent Sample ID:	Duplicate (Filtered)	Sampled:	10/24/13 0:00		
La	b Sample ID:	1310562-04	Sampled By:	Client		
Ma	atrix:	Water	Received:	10/29/13 8:30		
Ur	nit:	ug/L	Prepared:	10/31/13 7:55	By:	ALK
Di	lution Factor:	1	Analyzed:	11/6/13 20:32	By:	JLB
Q	C Batch:	1311584	Analytical Batch:	3K07013		

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
*84-66-2	Diethyl Phthalate		0.50 UB 0.50	0.065
105-67-9	2,4-Dimethylphenol	1.0U	1.0	0.17
131-11-3	Dimethyl Phthalate	0.50U	0.50	0.046
534-52-1	4,6-Dinitro-2-methylphenol	5.0U	5.0	1.0
51-28-5	2,4-Dinitrophenol	5.0U	5.0	1.2
121-14-2	2,4-Dinitrotoluene	0.50U	0.50	0.048
606-20-2	2,6-Dinitrotoluene	0.50U	0.50	0.080
117-84-0	Di-n-octyl Phthalate	0.50U	0.50	0.077
117-81-7	Bis(2-ethylhexyl) Phthalate	0.42J	0.50	0.11
206-44-0	Fluoranthene	0.50U	0.50	0.063
86-73-7	Fluorene	0.50U	0.50	0.041
118-74-1	Hexachlorobenzene	0.50U	0.50	0.063
87-68-3	Hexachlorobutadiene	0.50U	0.50	0.040
77-47-4	Hexachlorocyclopentadiene	0.50U	0.50	0.044
67-72-1	Hexachloroethane	0.50U	0.50	0.042
193-39-5	Indeno(1,2,3-cd)pyrene	0.50U	0.50	0.080
78-59-1	Isophorone	0.50U	0.50	0.045
56-49-5	3-Methylcholanthrene	2.0U	2.0	0.12
91-57-6	2-Methylnaphthalene	0.50U	0.50	0.015
90-12-0	1-Methylnaphthalene	0.50U	0.50	0.020
95-48-7	2-Methylphenol	0.50U	0.50	0.048
106-44-5	4-Methylphenol	0.24J	0.50	0.057
91-20-3	Naphthalene	0.053J	0.50	0.031
88-74-4	2-Nitroaniline	0.50U	0.50	0.12
99-09-2	3-Nitroaniline	1.0U	1.0	0.24
100-01-6	4-Nitroaniline	1.0U	1.0	0.33
98-95-3	Nitrobenzene	0.50U	0.50	0.058
100-02-7	4-Nitrophenol	5.0U	J 5.0	1.2
88-75-5	2-Nitrophenol	0.50U	0.50	0.048
86-30-6	N-Nitroso-diphenylamine	0.50U	0.50	0.068
621-64-7	N-Nitroso-di-n-propylamine	0.50U	0.50	0.075

Continued on next page

*See Statement of Data Qualifications

Page 24 of 125

Clie	ent:	Beazer East, Inc.	Work Order:	1310562		
Pro	oject:	Koppers Superior	Description:	Laboratory Services		
Clie	ent Sample ID:	Duplicate (Filtered)	Sampled:	10/24/13 0:00		
Lab	o Sample ID:	1310562-04	Sampled By:	Client		
Ma	trix:	Water	Received:	10/29/13 8:30		
Uni	it:	ug/L	Prepared:	10/31/13 7:55	By:	ALK
Dilu	ution Factor:	1	Analyzed:	11/6/13 20:32	By:	JLB
QC	Batch:	1311584	Analytical Batch:	3K07013		

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

			Analytical		
CAS Number	Analyte		Result	RL	MDL
87-86-5	Pentachlorophenol		0.50U	0.50	0.081
85-01-8	Phenanthrene		0.50U	0.50	0.043
108-95-2	Phenol		0.50U	0.50	0.034
129-00-0	Pyrene		0.50U	0.50	0.066
58-90-2	2,3,4,6-Tetrachlorophenol		5.0U	5.0	0.37
935-95-5	2,3,5,6-Tetrachlorophenol		10U	10	0.21
120-82-1	1,2,4-Trichlorobenzene		0.50U	0.50	0.027
88-06-2	2,4,6-Trichlorophenol		0.50U	0.50	0.085
95-95-4	2,4,5-Trichlorophenol		0.50U	0.50	0.099
Surrogates:	% Recov	ery Control Limits			
2-Fluorophenol	41	20-70			
Phenol-d6	30	18-45			
Nitrobenzene-d5	72	31-123			
2-Fluorobiphenyl	74	25-113			

30-121

42-125

79

86

Page 25 of 125

2,4,6-Tribromophenol

o-Terphenyl

Client:	Beazer East, Inc.	Work Order:	1310562	
Project:	Koppers Superior	Description:	Laboratory Services	
Client Sample ID:	TMW-12A	Sampled:	10/24/13 13:15	
Lab Sample ID:	1310562-05	Sampled By:	Client	
Matrix:	Water	Received:	10/29/13 8:30	
Unit:	ug/L	Prepared:	11/6/13 0:00 By: LEV	W
Dilution Factor:	1	Analyzed:	11/6/13 10:43 By: LEV	W
QC Batch:	1312148	Analytical Batch:	3K14015	

Halogenated and Aromatic Volatiles by EPA Method 8021B

				Analytical			
CAS Number	Analyte			Result		RL	MDL
71-43-2	Benzene			22		1.0	0.20
104-51-8	n-Butylbenzene			1.0U		1.0	0.28
*74-87-3	Chloromethane			1.0U		1.0	0.37
100-41-4	Ethylbenzene			32		1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.0U		5.0	0.48
*91-20-3	Naphthalene			-400E	9200 DJ	1.0	0.44
103-65-1	n-Propylbenzene			0.86J		1.0	0.24
100-42-5	Styrene			1.0U		1.0	0.20
108-88-3	Toluene			42		1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U		1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			12		1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			32		1.0	0.22
179601-23-1	Xylene, Meta + Para			61		2.0	0.42
95-47-6	Xylene, Ortho			30		1.0	0.20
Surrogates:		% Recovery	Control Limits				
1,2-Dichloroethane-	d4	109	81-126				
aaa-Trifluorotoluene	2	103	86-118				

*See Statement of Data Qualifications

Page 26 of 125

Client:	Beazer Eas	t, Inc.	Work Order:	1310562			
Project:	Koppers Sup	erior	Description:	Laboratory	Services		
Client Sar	nple ID: TMW-12A		Sampled:	10/24/13	13:15		
Lab Samp	le ID: 1310562-0	5	Sampled By:	Client			
Matrix:	Water		Received:	10/29/13	8:30		
Unit:	ug/L		Prepared:	10/31/13	7:55	By:	ALK
Dilution F	actor: 10		Analyzed:	11/9/13	2:34	By:	DWJ
QC Batch	1311584		Analytical Batch:	3K11041			

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	250	5.6	0.37
208-96-8	Acenaphthylene	6.0	5.6	0.19
120-12-7	Anthracene	11	5.6	0.68
56-55-3	Benzo(a)anthracene	3.4J	5.6	0.50
50-32-8	Benzo(a)pyrene	1.3J	5.6	0.45
205-99-2	Benzo(b)fluoranthene	1.9J	5.6	0.65
207-08-9	Benzo(k)fluoranthene	0.89J	5.6	0.66
191-24-2	Benzo(g,h,i)perylene	5.6U	5.6	0.68
*65-85-0	Benzoic Acid	560	56	
100-51-6	Benzyl Alcohol	5.6U	5.6	0.54
101-55-3	4-Bromophenyl Phenyl Ether	5.6U	5.6	0.48
85-68-7	Butyl Benzyl Phthalate	11U	11	0.62
59-50-7	4-Chloro-3-methylphenol	5.6U	5.6	1.3
106-47-8	4-Chloroaniline	11U	11	1.1
111-91-1	Bis(2-chloroethoxy)methane	5.6U	5.6	0.20
111-44-4	Bis(2-chloroethyl) Ether	5.6U	5.6	0.26
108-60-1	Bis(2-chloroisopropyl) Ether	5.6U	5.6	0.29
91-58-7	2-Chloronaphthalene	1.1J	5.6	0.19
95-57-8	2-Chlorophenol	5.6U	5.6	0.30
7005-72-3	4-Chlorophenyl Phenyl Ether	5.6U	5.6	0.53
218-01-9	Chrysene	2.4J	5.6	0.50
53-70-3	Dibenz(a,h)anthracene	5.6U	5.6	1.3
132-64-9	Dibenzofuran	140	5.6	0.45
84-74-2	Di-n-butyl Phthalate	11U	11	1.5
95-50-1	1,2-Dichlorobenzene	5.6U	5.6	0.44
541-73-1	1,3-Dichlorobenzene	5.6U	5.6	0.46
106-46-7	1,4-Dichlorobenzene	5.6U	5.6	0.22
91-94-1	3,3 '-Dichlorobenzidine	11U	11	1.4
120-83-2	2,4-Dichlorophenol	5.6U	5.6	1.0

Continued on next page

*See Statement of Data Qualifications

Page 27 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-12A	Sampled:	10/24/13 13:15
Lab Sample ID:	1310562-05	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	10	Analyzed:	11/9/13 2:34 By: DWJ
QC Batch:	1311584	Analytical Batch:	3K11041

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
84-66-2	Diethyl Phthalate	1.13	5.6	0.72
*105-67-9	2,4-Dimethylphenol	-9496 -880 D	11	1.9
131-11-3	Dimethyl Phthalate	5.6U	5.6	0.51
534-52-1	4,6-Dinitro-2-methylphenol	56U	56	11
51-28-5	2,4-Dinitrophenol	56U	56	13
121-14-2	2,4-Dinitrotoluene	5.6U	5.6	0.53
606-20-2	2,6-Dinitrotoluene	5.6U	5.6	0.89
117-84-0	Di-n-octyl Phthalate	5.6U	5.6	0.85
117-81-7	Bis(2-ethylhexyl) Phthalate	5.6U	5.6	1.3
206-44-0	Fluoranthene	24	5.6	0.70
86-73-7	Fluorene	120	5.6	0.46
118-74-1	Hexachlorobenzene	5.6U	5.6	0.70
87-68-3	Hexachlorobutadiene	5.6U	5.6	0.44
77-47-4	Hexachlorocyclopentadiene	5.6U	5.6	0.49
67-72-1	Hexachloroethane	5.6U	5.6	0.46
193-39-5	Indeno(1,2,3-cd)pyrene	5.6U	5.6	0.89
78-59-1	Isophorone	5.6U	5.6	0.50
56-49-5	3-Methylcholanthrene	22U	22	1.3
*91-57-6	2-Methylnaphthalene	-370E 370 D	5.6	0.17
90-12-0	1-Methylnaphthalene	210	5.6	0.22
95-48-7	2-Methylphenol	230	5.6	0.53
*106-44-5	4-Methylphenol	-970e 750 D	5.6	0.63
*91-20-3	Naphthalene		5.6	0.34
88-74-4	2-Nitroaniline	5.6U	5.6	1.3
99-09-2	3-Nitroaniline	11U	11	2.7
100-01-6	4-Nitroaniline	11U <mark>J</mark>	11	3.7
98-95-3	Nitrobenzene	5.6U	5.6	0.65
100-02-7	4-Nitrophenol	56U	56	14
88-75-5	2-Nitrophenol	5.6U	5.6	0.53
86-30-6	N-Nitroso-diphenylamine	5.6U	5.6	0.75
621-64-7	N-Nitroso-di-n-propylamine	5.6U	5.6	0.84

Continued on next page

*See Statement of Data Qualifications

Page 28 of 125

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-12A	Sampled:	10/24/13 13:15		
Lab Sample ID:	1310562-05	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	10/31/13 7:55	By:	ALK
Dilution Factor:	10	Analyzed:	11/9/13 2:34	By:	DWJ
QC Batch:	1311584	Analytical Batch:	3K11041		

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

				Analytical		
CAS Number	Analyte			Result	RL	MDL
87-86-5	Pentachlorophenol			5.6U	5.6	0.90
85-01-8	Phenanthrene			130	5.6	0.47
108-95-2	Phenol			42	5.6	0.37
129-00-0	Pyrene			15	5.6	0.73
58-90-2	2,3,4,6-Tetrachlorophenol			56U	56	4.1
935-95-5	2,3,5,6-Tetrachlorophenol			110U	110	2.4
120-82-1	1,2,4-Trichlorobenzene			5.6U	5.6	0.30
88-06-2	2,4,6-Trichlorophenol			5.6U	5.6	0.95
95-95-4	2,4,5-Trichlorophenol			5.6U	5.6	1.1
Surrogates:	%	Recovery	Control Limits			
2-Fluorophenol		46	20-70			
Phenol-d6		38	18-45			
Nitrobenzene-d5		79	31-123			

25-113

30-121

42-125

75

96

90

2-Fluorobiphenyl

o-Terphenyl

2,4,6-Tribromophenol

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-12A	Sampled:	10/24/13 13:15
Lab Sample ID:	1310562-05RE1	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	11/8/13 7:00 By: LEW
Dilution Factor:	250	Analyzed:	11/8/13 17:25 By: LEW
QC Batch:	1312152	Analytical Batch:	3K14017

*Halogenated and Aromatic Volatiles by EPA Method 8021B

CAS Number	Analyte			Analytical Result	RL	MDL
*91-20-3	Naphthalene			9200B	250	110
Surrogates:		% Recovery	Control Limits			
1,2-Dichloroethane-	14	120	81-126		<	
aaa-Trifluorotoluene	,	95	86-118		\searrow	

*See Statement of Data Qualifications

Page 30 of 125

Client: Project: Client Sample ID: Lab Sample ID: Matrix: Unit: Dilution Factor: QC Batch:

Work Order:	1310562
Description:	Laboratory Services
Sampled:	10/24/13 13:15
Sampled By:	Client
Received:	10/29/13 8:30
Prepared:	10/31/13 7:55 By: ALK
Analyzed:	11/12/13 18:39 By: JLB
Analytical Batch:	3K12078

Semivolatile Organic Compounds by EPA Method 8270C/

	\mathbf{X}	Analytical		
CAS Number	Analyte	Result	RL	MDL
83-32-9	Acenaphthene	240J	280	18
208-96-8	Acenaphthylene	280U	280	9.5
120-12-7	Anthracene	280U	280	34
56-55-3	Benzo(a)anthracene	280U	280	25
50-32-8	Benzo(a)pyrene	280U	280	22
205-99-2	Benzo(b)fluoranthene	280U	280	32
207-08-9	Benzo(k)fluoranthene	280U	280	33
191-24-2	Benzo(g,h,i)perylene	280U	280	34
*65-85-0	Benzoic Acid	2800U	2800	270
100-51-6	Benzyl Alcohol	280U	280	27
101-55-3	4-Bromophenyl Phenyl Ether	280U	280	24
85-68-7	Butyl Benzyl Phthalate	560U	560	31
59-50-7	4-Chloro-3-methylphenol	280U	280	64
106-47-8	4-Chloroaniline	560U	560	57
111-91-1	Bis(2-chloroethoxy)methane	280U	280	10
111-44-4	Bis(2-chloroethyl) Ether	280U	280	13
108-60-1	Bis(2-chloroisopropyl) Ether	280U	280	14
91-58-7	2-Chloronaphthalene	280U	280	9.5
95-57-8	2-Chlorophenol	280U	280	15
7005-72-3	4-Chlorophenyl Phenyl Ether	2800	280	27
218-01-9	Chrysene	280U	280	25
53-70-3	Dibenz(a,h)anthracene	280U	280	63
132-64-9	Dibenzofuran	130J	280	23
84-74-2	Di-n-butyl Phthalate	560U	560	75
95-50-1	1,2-Dichlorobenzene	280U	280	22
541-73-1	1,3-Dichlorobenzene	280U	280	23
106-46-7	1,4-Dichlorobenzene	280U	280	11
91-94-1	3,3 '-Dichlorobenzidine	560U	560	69
120-83-2	2,4-Dichlorophenol	280U	280	51
				\mathbf{n}

Continued on next page

*See Statement of Data Qualifications

Page 31 of 125

This report shall not be reproduced, except in full, without written authorization of TriMatrix Laboratories, Inc.

Individual sample results relate only to the sample tested.

Client Project: Client Sample ID: Lab Sample ID: Matrix: Unit: Dilution Factor: QC Batch:

Work Order:	1310562
Description:	Laboratory Services
Sampled:	10/24/13 13:15
Sampled By:	Client
Received:	10/29/13 8:30
Prepared:	10/31/13 7:55
Analyzed:	11/12/13 18:39
Analytical Batch:	3K12078

ALK

JLB

By:

By:

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

	\mathbf{X}	Analytical		
CAS Number	Analyte	Result	RL	MDL
84-66-2	Diethyl Phthalate	44]	280	36
105-67-9	2,4-Dimethylphenol	880	560	93
131-11-3	Dimethyl Phthalate	280U	280	25
534-52-1	4,6-Dinitro-2-methylphenol	2800U	2800	570
51-28-5	2,4-Dinitrophenol	2800U	2800	640
121-14-2	2,4-Dinitrotoluene	280U	280	26
606-20-2	2,6-Dinitrotoluene	280U	280	44
117-84-0	Di-n-octyl Phthalate	280U	280	43
117-81-7	Bis(2-ethylhexyl) Phthalate	280U	280	63
206-44-0	Fluoranthene	280U	280	35
86-73-7	Fluorene	1103	280	23
118-74-1	Hexachlorobenzene	280U	280	35
87-68-3	Hexachlorobutadiene	280U	280	22
77-47-4	Hexachlorocyclopentadiene	280U	280	25
67-72-1	Hexachloroethane	280U	280	23
193-39-5	Indeno(1,2,3-cd)pyrene	280U	280	44
78-59-1	Isophorone	280U	280	25
56-49-5	3-Methylcholanthyene	1100	1100	67
91-57-6	2-Methylnaphthalene	370	280	8.3
90-12-0	1-Methylnaphthalene	2103	280	11
95-48-7	2-Methylphenol	1403	280	26
106-44-5	4-Methylphenol	750	280	31
91-20-3	Naphthalene	6700	280	17
88-74-4	2-Nitroaniline	280U	280	64
99-09-2	3-Nitroaniline	560U	560	140
100-01-6	4-Nitroaniline	560U	560	180
98-95-3	Nitrobenzene	280U	280	32
100-02-7	4-Nitrophenol	2800U	2800	690
88-75-5	2-Nitrophenol	280U	280	26
86-30-6	N-Nitroso-diphenylamine	280U	280	38
621-64-7	N-Nitroso-di-n-propylamine	280U	280	42

Continued on next page

Page 32 of 125

Client: Beazer East, Inc.	Work Order:	1310562
Project: Koppers Superior	Description:	Laboratory Services
Client Sample ID: TMW-12A	Sampled:	10/24/13 13:15
Lab Sample ID: 1310562-05RE1	Sampled By:	Client
Matrix: Water	Received:	10/29/13 8:30
Unit: ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor: 500	Analyzed:	11/12/13 18:39 By: JLB
QC Batch: 1311584	Analytical Batch:	3K12078

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
87-86-5	Pentachlorophenol	280U	280	45
85-01-8	Phenanthrene	120J	280	24
108-95-2	Phenol	2804	280	19
129-00-0	Pyrene	280U	280	36
58-90-2	2,3,4,6-Tetrachlorophenol	2800U	2800	210
935-95-5	2,3,5,6-Tetrachlorophenol	5600U	5600	120
120-82-1	1,2,4-Trichlorobenzene	280U	280	15
88-06-2	2,4,6-Trichlorophenol	280U	280	47
95-95-4	2,4,5-Trichlorophenol	280U	280	55

Page 33 of 125

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-8A	Sampled:	10/24/13 17:45		
Lab Sample ID:	1310562-06	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	11/6/13 0:00	By:	LEW
Dilution Factor:	1	Analyzed:	11/6/13 11:31	By:	LEW
QC Batch:	1312148	Analytical Batch:	3K14015		

*Halogenated and Aromatic Volatiles by EPA Method 8021B

				Analytical		
CAS Number	Analyte			Result	RL	MDL
71-43-2	Benzene			1.0U	1.0	0.20
104-51-8	n-Butylbenzene			1.00	1.0	0.28
*74-87-3	Chloromethane			1.0U	1.0	0.37
100-41-4	Ethylbenzene			1.00	1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.00	5.0	0.48
*91-20-3	Naphthalene			1.0U J	1.0	0.44
103-65-1	n-Propylbenzene			1.0U	1.0	0.24
100-42-5	Styrene			1.00	1.0	0.20
108-88-3	Toluene			1.0U	1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U	1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			1.0U	1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			0.69J	1.0	0.22
179601-23-1	Xylene, Meta + Para			2.0U	2.0	0.42
95-47-6	Xylene, Ortho			1.0U	1.0	0.20
Surrogates:	9	6 Recovery	Control Limits			
1,2-Dichloroethane-	d4	128	81-126			
aaa-Trifluorotoluene		96	86-118			

*See Statement of Data Qualifications

Page 34 of 125

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample	ID: TMW-8A	Sampled:	10/24/13 17:45		
Lab Sample ID): 1310562-06	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	10/31/13 7:55	By:	ALK
Dilution Factor	r: 1	Analyzed:	11/6/13 21:08	By:	JLB
QC Batch:	1311584	Analytical Batch:	3K07013		

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	0.50U	0.50	0.033
208-96-8	Acenaphthylene	0.50U	0.50	0.017
120-12-7	Anthracene	0.50U	0.50	0.062
56-55-3	Benzo(a)anthracene	0.50U	0.50	0.045
50-32-8	Benzo(a)pyrene	0.50U	0.50	0.040
205-99-2	Benzo(b)fluoranthene	0.50U	0.50	0.058
207-08-9	Benzo(k)fluoranthene	0.50U	0.50	0.060
191-24-2	Benzo(g,h,i)perylene	0.50U	0.50	0.061
*65-85-0	Benzoic Acid	5.00	5.0	0.48
100-51-6	Benzyl Alcohol	0.50U	0.50	0.049
101-55-3	4-Bromophenyl Phenyl Ether	0.50U	0.50	0.043
85-68-7	Butyl Benzyl Phthalate	1.0U	1.0	0.056
59-50-7	4-Chloro-3-methylphenol	0.50U	0.50	0.12
106-47-8	4-Chloroaniline	1.0U	1.0	0.10
111-91-1	Bis(2-chloroethoxy)methane	0.50U	0.50	0.018
111-44-4	Bis(2-chloroethyl) Ether	0.50U	0.50	0.024
108-60-1	Bis(2-chloroisopropyl) Ether	0.50U	0.50	0.026
91-58-7	2-Chloronaphthalene	0.50U	0.50	0.017
95-57-8	2-Chlorophenol	0.50U	0.50	0.027
7005-72-3	4-Chlorophenyl Phenyl Ether	0.50U	0.50	0.048
218-01-9	Chrysene	0.50U	0.50	0.045
53-70-3	Dibenz(a,h)anthracene	0.50U	0.50	0.11
132-64-9	Dibenzofuran	0.50U	0.50	0.041
84-74-2	Di-n-butyl Phthalate	1.0U	1.0	0.14
95-50-1	1,2-Dichlorobenzene	0.50U	0.50	0.040
541-73-1	1,3-Dichlorobenzene	0.50U	0.50	0.041
106-46-7	1,4-Dichlorobenzene	0.50U	0.50	0.020
91-94-1	3,3 '-Dichlorobenzidine	1.0U	1.0	0.12
120-83-2	2,4-Dichlorophenol	0.50U	0.50	0.092

R

Continued on next page

*See Statement of Data Qualifications

Page 35 of 125

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-8A	Sampled:	10/24/13 17:45		
Lab Sample ID:	1310562-06	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	10/31/13 7:55	By:	ALK
Dilution Factor:	1	Analyzed:	11/6/13 21:08	By:	JLB
QC Batch:	1311584	Analytical Batch:	3K07013		

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result RL	MDL
*84-66-2	Diethyl Phthalate	0.50 UB0.50	0.065
105-67-9	2,4-Dimethylphenol	1.0U 1.0	0.17
131-11-3	Dimethyl Phthalate	0.50U 0.50	0.046
534-52-1	4,6-Dinitro-2-methylphenol	5.0U 5.0	1.0
51-28-5	2,4-Dinitrophenol	5.0U 5.0	1.2
121-14-2	2,4-Dinitrotoluene	0.50U 0.50	0.048
606-20-2	2,6-Dinitrotoluene	0.50U 0.50	0.080
117-84-0	Di-n-octyl Phthalate	0.50U 0.50	0.077
117-81-7	Bis(2-ethylhexyl) Phthalate	0.18J 0.50	0.11
206-44-0	Fluoranthene	0.50U 0.50	0.063
86-73-7	Fluorene	0.50U 0.50	0.041
118-74-1	Hexachlorobenzene	0.50U 0.50	0.063
87-68-3	Hexachlorobutadiene	0.50U 0.50	0.040
77-47-4	Hexachlorocyclopentadiene	0.50U 0.50	0.044
67-72-1	Hexachloroethane	0.50U 0.50	0.042
193-39-5	Indeno(1,2,3-cd)pyrene	0.50U 0.50	0.080
78-59-1	Isophorone	0.50U 0.50	0.045
56-49-5	3-Methylcholanthrene	2.0U 2.0	0.12
91-57-6	2-Methylnaphthalene	0.50U 0.50	0.015
90-12-0	1-Methylnaphthalene	0.50U 0.50	0.020
95-48-7	2-Methylphenol	0.50U 0.50	0.048
106-44-5	4-Methylphenol	0.50U 0.50	0.057
91-20-3	Naphthalene	0.50U 0.50	0.031
88-74-4	2-Nitroaniline	0.50U 0.50	0.12
99-09-2	3-Nitroaniline	1.0U 1.0	0.24
100-01-6	4-Nitroaniline	1.0U 1.0	0.33
98-95-3	Nitrobenzene	0.50U 0.50	0.058
100-02-7	4-Nitrophenol	5.0U J 5.0	1.2
88-75-5	2-Nitrophenol	0.50U 0.50	0.048
86-30-6	N-Nitroso-diphenylamine	0.50U 0.50	0.068
621-64-7	N-Nitroso-di-n-propylamine	0.50U 0.50	0.075

Continued on next page

*See Statement of Data Qualifications

Page 36 of 125

Client:	Beazer East, Inc.	Work Order:	1310562	
Project:	Koppers Superior	Description:	Laboratory Services	
Client Sample ID:	TMW-8A	Sampled:	10/24/13 17:45	
Lab Sample ID:	1310562-06	Sampled By:	Client	
Matrix:	Water	Received:	10/29/13 8:30	
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK	
Dilution Factor:	1	Analyzed:	11/6/13 21:08 By: JLB	
QC Batch:	1311584	Analytical Batch:	3K07013	

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

				Analytical		
CAS Number	Analyte			Result	RL	MDL
87-86-5	Pentachlorophenol			0.50U	0.50	0.081
85-01-8	Phenanthrene			0.50U	0.50	0.043
108-95-2	Phenol			0.50U	0.50	0.034
129-00-0	Pyrene			0.50U	0.50	0.066
58-90-2	2,3,4,6-Tetrachlorophenol			5.0U	5.0	0.37
935-95-5	2,3,5,6-Tetrachlorophenol			10U	10	0.21
120-82-1	1,2,4-Trichlorobenzene			0.50U	0.50	0.027
88-06-2	2,4,6-Trichlorophenol			0.50U	0.50	0.085
95-95-4	2,4,5-Trichlorophenol			0.50U	0.50	0.099
Surrogates:	% Reco	overy	Control Limits			
2-Fluorophenol	34		20-70			
Phenol-d6	29		18-45			
Nitrobenzene-d5	66		31-123			
2-Fluorobiphenyl	68		25-113			

30-121

42-125

78

88

Page 37 of 125

2,4,6-Tribromophenol

o-Terphenyl

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-8A (Filtered)	Sampled:	10/24/13 11:20
Lab Sample ID:	1310562-07	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	11/6/13 0:00 By: LEW
Dilution Factor:	1	Analyzed:	11/6/13 18:00 By: LEW
QC Batch:	1312148	Analytical Batch:	3K14015

*Halogenated and Aromatic Volatiles by EPA Method 8021B

				Analytical		
CAS Number	Analyte			Result	RL	MDL
71-43-2	Benzene			1.0U	1.0	0.20
104-51-8	n-Butylbenzene			1.0U	1.0	0.28
*74-87-3	Chloromethane			1.0U	1.0	0.37
100-41-4	Ethylbenzene			1.0U	1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.0U	5.0	0.48
*91-20-3	Naphthalene			1.0U J	1.0	0.44
103-65-1	n-Propylbenzene			1.0U	1.0	0.24
100-42-5	Styrene			1.0U	1.0	0.20
108-88-3	Toluene			1.0U	1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U	1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			1.0U	1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			1.0U	1.0	0.22
179601-23-1	Xylene, Meta + Para			2.0U	2.0	0.42
95-47-6	Xylene, Ortho			1.0U	1.0	0.20
Surrogates:	%	6 Recovery	Control Limits			
1,2-Dichloroethane-	d4	128	81-126			
aaa-Trifluorotoluene		95	86-118			

*See Statement of Data Qualifications

Page 38 of 125

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-8A (Filtered)	Sampled:	10/24/13 11:20		
Lab Sample ID:	1310562-07	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	10/31/13 7:55	By:	ALK
Dilution Factor:	1	Analyzed:	11/6/13 21:43	By:	JLB
QC Batch:	1311584	Analytical Batch:	3K07013		

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	0.50U	0.50	0.033
208-96-8	Acenaphthylene	0.50U	0.50	0.017
120-12-7	Anthracene	0.50U	0.50	0.062
56-55-3	Benzo(a)anthracene	0.50U	0.50	0.045
50-32-8	Benzo(a)pyrene	0.50U	0.50	0.040
205-99-2	Benzo(b)fluoranthene	0.50U	0.50	0.058
207-08-9	Benzo(k)fluoranthene	0.50U	0.50	0.060
191-24-2	Benzo(g,h,i)perylene	0.50U	0.50	0.061
*65-85-0	Benzoic Acid	5.00	5.0	
100-51-6	Benzyl Alcohol	0.50U	0.50	0.049
101-55-3	4-Bromophenyl Phenyl Ether	0.50U	0.50	0.043
85-68-7	Butyl Benzyl Phthalate	1.0U	1.0	0.056
59-50-7	4-Chloro-3-methylphenol	0.50U	0.50	0.12
106-47-8	4-Chloroaniline	1.0U	1.0	0.10
111-91-1	Bis(2-chloroethoxy)methane	0.50U	0.50	0.018
111-44-4	Bis(2-chloroethyl) Ether	0.50U	0.50	0.024
108-60-1	Bis(2-chloroisopropyl) Ether	0.50U	0.50	0.026
91-58-7	2-Chloronaphthalene	0.50U	0.50	0.017
95-57-8	2-Chlorophenol	0.50U	0.50	0.027
7005-72-3	4-Chlorophenyl Phenyl Ether	0.50U	0.50	0.048
218-01-9	Chrysene	0.50U	0.50	0.045
53-70-3	Dibenz(a,h)anthracene	0.50U	0.50	0.11
132-64-9	Dibenzofuran	0.50U	0.50	0.041
84-74-2	Di-n-butyl Phthalate	0.16J	1.0	0.14
95-50-1	1,2-Dichlorobenzene	0.50U	0.50	0.040
541-73-1	1,3-Dichlorobenzene	0.50U	0.50	0.041
106-46-7	1,4-Dichlorobenzene	0.50U	0.50	0.020
91-94-1	3,3 '-Dichlorobenzidine	1.0U	1.0	0.12
120-83-2	2,4-Dichlorophenol	0.50U	0.50	0.092

Continued on next page

*See Statement of Data Qualifications

Page 39 of 125

Client:	Beazer East, Inc.	Work Order:	1310562	
Project:	Koppers Superior	Description:	Laboratory Services	
Client Sample ID:	TMW-8A (Filtered)	Sampled:	10/24/13 11:20	
Lab Sample ID:	1310562-07	Sampled By:	Client	
Matrix:	Water	Received:	10/29/13 8:30	
Unit:	ug/L	Prepared:	10/31/13 7:55 By: A	LK
Dilution Factor:	1	Analyzed:	11/6/13 21:43 By: J	LB
QC Batch:	1311584	Analytical Batch:	3K07013	

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result RL	MDL
*84-66-2	Diethyl Phthalate	- 6.263 0.50 UB0.50	0.065
105-67-9	2,4-Dimethylphenol	1.0U 1.0	0.17
131-11-3	Dimethyl Phthalate	0.50U 0.50	0.046
534-52-1	4,6-Dinitro-2-methylphenol	5.0U 5.0	1.0
51-28-5	2,4-Dinitrophenol	5.0U 5.0	1.2
121-14-2	2,4-Dinitrotoluene	0.50U 0.50	0.048
606-20-2	2,6-Dinitrotoluene	0.50U 0.50	0.080
117-84-0	Di-n-octyl Phthalate	0.50U 0.50	0.077
117-81-7	Bis(2-ethylhexyl) Phthalate	0.21J 0.50	0.11
206-44-0	Fluoranthene	0.50U 0.50	0.063
86-73-7	Fluorene	0.50U 0.50	0.041
118-74-1	Hexachlorobenzene	0.50U 0.50	0.063
87-68-3	Hexachlorobutadiene	0.50U 0.50	0.040
77-47-4	Hexachlorocyclopentadiene	0.50U 0.50	0.044
67-72-1	Hexachloroethane	0.50U 0.50	0.042
193-39-5	Indeno(1,2,3-cd)pyrene	0.50U 0.50	0.080
78-59-1	Isophorone	0.13J 0.50	0.045
56-49-5	3-Methylcholanthrene	2.0U 2.0	0.12
91-57-6	2-Methylnaphthalene	0.50U 0.50	0.015
90-12-0	1-Methylnaphthalene	0.50U 0.50	0.020
95-48-7	2-Methylphenol	0.50U 0.50	0.048
106-44-5	4-Methylphenol	0.89 0.50	0.057
91-20-3	Naphthalene	0.071J 0.50	0.031
88-74-4	2-Nitroaniline	0.50U 0.50	0.12
99-09-2	3-Nitroaniline	1.0U 1.0	0.24
100-01-6	4-Nitroaniline	1.0U 1.0	0.33
98-95-3	Nitrobenzene	0.50U 0.50	0.058
100-02-7	4-Nitrophenol	5.0U J 5.0	1.2
88-75-5	2-Nitrophenol	0.50U 0.50	0.048
86-30-6	N-Nitroso-diphenylamine	0.50U 0.50	0.068
621-64-7	N-Nitroso-di-n-propylamine	0.50U 0.50	0.075

Continued on next page

*See Statement of Data Qualifications

Page 40 of 125

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-8A (Filtered)	Sampled:	10/24/13 11:20		
Lab Sample ID:	1310562-07	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	10/31/13 7:55	By:	ALK
Dilution Factor:	1	Analyzed:	11/6/13 21:43	By:	JLB
QC Batch:	1311584	Analytical Batch:	3K07013		

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

				Analytical		
CAS Number	Analyte			Result	RL	MDL
87-86-5	Pentachlorophenol			0.50U	0.50	0.081
85-01-8	Phenanthrene			0.50U	0.50	0.043
108-95-2	Phenol			0.14J	0.50	0.034
129-00-0	Pyrene			0.50U	0.50	0.066
58-90-2	2,3,4,6-Tetrachlorophenol			5.0U	5.0	0.37
935-95-5	2,3,5,6-Tetrachlorophenol			10U	10	0.21
120-82-1	1,2,4-Trichlorobenzene			0.50U	0.50	0.027
88-06-2	2,4,6-Trichlorophenol			0.50U	0.50	0.085
95-95-4	2,4,5-Trichlorophenol			0.50U	0.50	0.099
Surrogates:	%	6 Recovery	Control Limits			
2-Fluorophenol		45	20-70			
Phenol-d6		34	18-45			
Nitrobenzene-d5		84	31-123			

25-113

30-121

42-125

77

83

90

Page 41 of 125

2-Fluorobiphenyl

o-Terphenyl

2,4,6-Tribromophenol

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-2A	Sampled:	10/24/13 18:00		
Lab Sample ID:	1310562-08	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	11/6/13 0:00	By:	LEW
Dilution Factor:	1	Analyzed:	11/6/13 18:49	By:	LEW
QC Batch:	1312148	Analytical Batch:	3K14015		

Halogenated and Aromatic Volatiles by EPA Method 8021B

CAS Number	Analyte			Analytical Result		RL	MDL
71-43-2	Benzene			7.0		1.0	0.20
104-51-8	n-Butylbenzene			1.0U		1.0	0.28
*74-87-3	Chloromethane			1.0U		1.0	0.37
100-41-4	Ethylbenzene			40		1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.0U		5.0	0.48
*91-20-3	Naphthalene			390E	12000 DJ	1.0	0.44
103-65-1	n-Propylbenzene			0.93J		1.0	0.24
100-42-5	Styrene			1.0U		1.0	0.20
108-88-3	Toluene			25		1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U		1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			15		1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			37		1.0	0.22
179601-23-1	Xylene, Meta + Para			70		2.0	0.42
95-47-6	Xylene, Ortho			32		1.0	0.20
Surrogates:		% Recovery	Control Limits				
1,2-Dichloroethane-o	14	124	81-126				
aaa-Trifluorotoluene		102	86-118				

*See Statement of Data Qualifications

Page 42 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-2A	Sampled:	10/24/13 18:00
Lab Sample ID:	1310562-08	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	10	Analyzed:	11/9/13 3:09 By: DWJ
QC Batch:	1311584	Analytical Batch:	3K11041

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
*83-32-9	Acenaphthene			0.35
208-96-8	Acenaphthylene	0.85J	5.3	0.18
120-12-7	Anthracene	9.5	5.3	0.18
56-55-3	Benzo(a)anthracene	6.6	5.3	0.03
50-32-8	Benzo(a)pyrene	2.4J	5.3	0.43
205-99-2	Benzo(b)fluoranthene	3.8J	5.3	0.62
207-08-9	Benzo(k)fluoranthene	1.6J	5.3	0.62
191-24-2	Benzo(q,h,i)perylene	0.74J	5.3	0.65
*65-85-0	Benzoic Acid	36J	5.5	5.1
100-51-6	Benzyl Alcohol	5.3U	5.3	0.52
101-55-3	4-Bromophenyl Phenyl Ether	5.30 5.3U	5.3	0.32
85-68-7	Butyl Benzyl Phthalate	5.50 11U	5.5 11	0.40
59-50-7		5.3U	5.3	1.2
106-47-8	4-Chloro-3-methylphenol 4-Chloroaniline	5.30 11U	5.5 11	1.2
111-91-1	Bis(2-chloroethoxy)methane	5.3U	5.3	0.20
111-91-1	· · · · · ·	5.30 5.3U	5.3	0.20
	Bis(2-chloroethyl) Ether			
108-60-1	Bis(2-chloroisopropyl) Ether	5.3U	5.3	0.27
91-58-7	2-Chloronaphthalene	5.3U	5.3	0.18
95-57-8	2-Chlorophenol	5.30	5.3	0.28
7005-72-3	4-Chlorophenyl Phenyl Ether	5.30	5.3	0.51
218-01-9	Chrysene	4.83	5.3	0.48
53-70-3	Dibenz(a,h)anthracene	5.30	5.3	1.2
132-64-9	Dibenzofuran	120	5.3	0.43
84-74-2	Di-n-butyl Phthalate	110	11	1.4
95-50-1	1,2-Dichlorobenzene	5.30	5.3	0.42
541-73-1	1,3-Dichlorobenzene	5.3U	5.3	0.44
106-46-7	1,4-Dichlorobenzene	5.30	5.3	0.21
91-94-1	3,3´-Dichlorobenzidine	110	11	1.3
120-83-2	2,4-Dichlorophenol	5.30	5.3	0.97

Continued on next page

*See Statement of Data Qualifications

Page 43 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-2A	Sampled:	10/24/13 18:00
Lab Sample ID:	1310562-08	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	10	Analyzed:	11/9/13 3:09 By: DWJ
QC Batch:	1311584	Analytical Batch:	3K11041

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
*84-66-2	Diethyl Phthalate	1.2J	5.3	0.69
105-67-9	2,4-Dimethylphenol	170	11	1.8
131-11-3	Dimethyl Phthalate	5.3U	5.3	0.48
534-52-1	4,6-Dinitro-2-methylphenol	53U	53	11
51-28-5	2,4-Dinitrophenol	53U	53	12
121-14-2	2,4-Dinitrotoluene	5.3U	5.3	0.51
606-20-2	2,6-Dinitrotoluene	5.3U	5.3	0.85
117-84-0	Di-n-octyl Phthalate	5.3U	5.3	0.81
117-81-7	Bis(2-ethylhexyl) Phthalate	5.30	5.3	1.2
206-44-0	Fluoranthene	34	5.3	0.67
86-73-7	Fluorene	110	5.3	0.44
118-74-1	Hexachlorobenzene	5.3U	5.3	0.67
87-68-3	Hexachlorobutadiene	5.30	5.3	0.42
77-47-4	Hexachlorocyclopentadiene	5.3U	5.3	0.47
67-72-1	Hexachloroethane	5.3U	5.3	0.44
193-39-5	Indeno(1,2,3-cd)pyrene	5.3U	5.3	0.85
78-59-1	Isophorone	5.3U	5.3	0.48
56-49-5	3-Methylcholanthrene	21U	21	1.3
*91-57-6	2-Methylnaphthalene	-320E 320 D	5.3	0.16
90-12-0	1-Methylnaphthalene	170	5.3	0.21
95-48-7	2-Methylphenol	40	5.3	0.51
106-44-5	4-Methylphenol	100	5.3	0.60
*91-20-3	Naphthalene	_1800E 5200 D	5.3	0.33
88-74-4	2-Nitroaniline	5.3U	5.3	1.2
99-09-2	3-Nitroaniline	11U	11	2.6
100-01-6	4-Nitroaniline	11U J	11	3.5
98-95-3	Nitrobenzene	5.3U	5.3	0.62
100-02-7	4-Nitrophenol	53U	53	13
88-75-5	2-Nitrophenol	5.3U	5.3	0.51
86-30-6	N-Nitroso-diphenylamine	5.3U	5.3	0.72
621-64-7	N-Nitroso-di-n-propylamine	5.3U	5.3	0.80

Continued on next page

*See Statement of Data Qualifications

Page 44 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-2A	Sampled:	10/24/13 18:00
Lab Sample ID:	1310562-08	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	10	Analyzed:	11/9/13 3:09 By: DWJ
QC Batch:	1311584	Analytical Batch:	3K11041

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

				Analytical		
CAS Number	Analyte			Result	RL	MDL
87-86-5	Pentachlorophenol			5.3U	5.3	0.86
85-01-8	Phenanthrene			130	5.3	0.45
108-95-2	Phenol			11	5.3	0.36
129-00-0	Pyrene			26	5.3	0.70
58-90-2	2,3,4,6-Tetrachlorophenol			53U	53	3.9
935-95-5	2,3,5,6-Tetrachlorophenol			110U	110	2.3
120-82-1	1,2,4-Trichlorobenzene			5.3U	5.3	0.28
88-06-2	2,4,6-Trichlorophenol			5.3U	5.3	0.91
95-95-4	2,4,5-Trichlorophenol			5.3U	5.3	1.1
Surrogates:	%	Recovery	Control Limits			
2-Fluorophenol		41	20-70			
Phenol-d6		34	18-45			
Nitrobenzene-d5		79	31-123			

25-113

30-121

42-125

73

95

83

2-Fluorobiphenyl

o-Terphenyl

2,4,6-Tribromophenol

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-2A	Sampled:	10/24/13 18:00
Lab Sample ID:	1310562-08RE1	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared	11/8/13 7:00 By: LEW
Dilution Factor:	250	Apalyzed:	11/8/13 18:13 By: LEW
QC Batch:	1312152	Analytical Batch:	3K14017

*Halogenated and Aromatic Volatiles by EPA Method 8021B

CAS Number	Analyte			Analytical Result	RL	MDL
91-20-3	Naphthalene			12000B	250	110
Surrogates:		% Recovery	Control Limits			
1,2-Dichloroethane-d4		115	81-126			
aaa-Trifluorotoluene		97	86-118			

*See Statement of Data Qualifications

Page 46 of 125

ANALYTICAL REPORT

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-2A	Sampled:	10/24/13 18:00
Lab Sample ID:	1310562-08RE1	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	200	Analyzed:	11/12/13 19:13 By: JLB
QC Batch:	1311584	Analytical Batch:	3K12078
	\mathbf{X}		

Semivolatile Organic Compounds by EPA Method 8270

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	270	110	7.0
208-96-8	Acenaphthylene	110U	110	3.6
120-12-7	Anthracene	110U	110	13
56-55-3	Benzo(a)anthracene	110U	110	9.7
50-32-8	Benzo(a)pyrene	110U	110	8.6
205-99-2	Benzo(b)fluoranthene	110U	110	12
207-08-9	Benzo(k)fluoranthene	110U	110	13
191-24-2	Benzo(g,h,i)perylene	110U	110	13
*65-85-0	Benzoic Acid	1100U	1100	100
100-51-6	Benzyl Alcohol	110U	110	10
101-55-3	4-Bromophenyl Phenyl Ether	110U	110	9.1
85-68-7	Butyl Benzyl Phthalate	210U	210	12
59-50-7	4-Chloro-3-methylphenol	110U	110	24
106-47-8	4-Chloroaniline	210U	210	22
111-91-1	Bis(2-chloroethoxy)methane	110U	110	3.9
111-44-4	Bis(2-chloroethyl) Ether	110U	110	5.0
108-60-1	Bis(2-chloroisopropyl) Ether	110U	110	5.5
91-58-7	2-Chloronaphthalene	110U	110	3.6
95-57-8	2-Chlorophenol	110U	110	5.7
7005-72-3	4-Chlorophenyl Phenyl Ether	1100	110	10
218-01-9	Chrysene	1100	110	9.6
53-70-3	Dibenz(a,h)anthracene	110U	110	24
132-64-9	Dibenzofuran	110	110	8.7
84-74-2	Di-n-butyl Phthalate	210U	210	29
95-50-1	1,2-Dichlorobenzene	110U	110	8.4
541-73-1	1,3-Dichlorobenzene	110U	110	8.7
106-46-7	1,4-Dichlorobenzene	110U	110	4.2
91-94-1	3,3 '-Dichlorobenzidine	210U	210	26
120-83-2	2,4-Dichlorophenol	110U	110	19

Continued on next page

*See Statement of Data Qualifications

Page 47 of 125

This report shall not be reproduced, except in full, without written authorization of TriMatrix Laboratories, Inc.

Individual sample results relate only to the sample tested.

Client: Beazer East, Inc. Project Koppers Superior Client Sample ID: TMW-2A Lab Sample ND: 1310562-08RE1 Water Matrix: Unit: ug/L 200 Dilution Factor: 1311584 QC Batch:

Work Order:	1310562		
Description:	Laboratory Services		
Sampled:	10/24/13 18:00		
Sampled By:	Client		
Received:	10/29/13 8:30		
Prepared:	10/31/13 7:55	By:	ALK
Analyzed:	11/12/13 19:13	By:	JLB
Analytical Batch:	3K12078		

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

		Analytical		
CAS Number	Analyte	Result	RL	MDL
84-66-2	Diethyl Phthalate	110U	110	14
105-67-9	2,4-Dimethylphenol	1403	210	36
131-11-3	Dimethyl Phthalate	110U	110	9.7
534-52-1	4,6-Dinitro-2-methylphenol	1100U	1100	220
51-28-5	2,4-Dinitrophenol	1100U	1100	250
121-14-2	2,4-Dinitrotoluene	110U	110	10
606-20-2	2,6-Dinitrotoluene	110U	110	17
117-84-0	Di-n-octyl Phthalate	110U	110	16
117-81-7	Bis(2-ethylhexyl) Phthalate	110U	110	24
206-44-0	Fluoranthene	34J	110	13
86-73-7	Fluorene	1003	110	8.8
118-74-1	Hexachlorobenzene	110U	110	13
87-68-3	Hexachlorobutadiene	110U	110	8.4
77-47-4	Hexachlorocyclopentadiene	110U	110	9.4
67-72-1	Hexachloroethane	110U	110	8.9
193-39-5	Indeno(1,2,3-cd)pyrene	110U	110	17
78-59-1	Isophorone	110U	110	9.6
56-49-5	3-Methylcholanthrene	430U	430	26
91-57-6	2-Methylnaphthalene	320	110	3.2
90-12-0	1-Methylnaphthalene	170	110	4.1
95-48-7	2-Methylphenol	21J	110	10
106-44-5	4-Methyphenol	553	110	12
91-20-3	Naphthalene	5200	110	6.5
88-74-4	2-Nitroaniline	110U	110	25
99-09-2	3-Nitroaniline	210U	210	52
100-01-6	4-Nitroaniline	210U	210	70
98-95-3	Nitrobenzene	110U	110	12
100-02-7	4-Nitrophenol	1100U	1100	270
88-75-5	2-Nitrophenol	110U	110	10
86-30-6	N-Nitroso-diphenylamine	110U	110	14
621-64-7	N-Nitroso-di-n-propylamine	110U	110	16
				Ň

Continued on next page

Page 48 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-2A	Sampled:	10/24/13 18:00
Lab Sample ID:	1310562-08RE1	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	200	Analyzed:	11/12/13 19:13 By: JLB
QC Batch:	1311584	Analytical Batch:	3K12078

Semivolatile Organic Compounds (EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
87-86-5	Pentachlorophenol	110U	110	17
85-01-8	Phenanthrene	130	110	9.1
108-95-2	Phenol	1100	110	7.2
129-00-0	Pyrene	19J	110	14
58-90-2	2, 3, 4, 6-Tetrachlorophenol	1100U	1100	79
935-95-5	2,3,5,6-Tetrachlorophenol	2100U	2100	45
120-82-1	1,2,4-Trichlorobenzene	110U	110	5.7
88-06-2	2,4,6-Trichlorophenol	110U	110	18
95-95-4	2,4,5-Trichlorophenol	110U	110	21
				\sim

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-05A	Sampled:	10/24/13 10:40		
Lab Sample ID:	1310562-09	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	11/6/13 0:00	By:	LEW
Dilution Factor:	1	Analyzed:	11/6/13 19:37	By:	LEW
QC Batch:	1312148	Analytical Batch:	3K14015		

*Halogenated and Aromatic Volatiles by EPA Method 8021B

				Analytical		
CAS Number	Analyte			Result	RL	MDL
71-43-2	Benzene			1.0U	1.0	0.20
104-51-8	n-Butylbenzene			1.0U	1.0	0.28
*74-87-3	Chloromethane			1.0U	1.0	0.37
100-41-4	Ethylbenzene			1.00	1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.0U	5.0	0.48
*91-20-3	Naphthalene			1.0U J	1.0	0.44
103-65-1	n-Propylbenzene			1.0U	1.0	0.24
100-42-5	Styrene			1.0U	1.0	0.20
108-88-3	Toluene			1.0U	1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U	1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			1.0U	1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			1.0U	1.0	0.22
179601-23-1	Xylene, Meta + Para			2.0U	2.0	0.42
95-47-6	Xylene, Ortho			1.0U	1.0	0.20
Surrogates:	%	6 Recovery	Control Limits			
1,2-Dichloroethane-	d4	128	81-126			
aaa-Trifluorotoluene	2	95	86-118			

*See Statement of Data Qualifications

Page 50 of 125

Client:	Beazer East, Inc.	Work Order:	1310562	
Project:	Koppers Superior	Description:	Laboratory Services	
Client Sample ID:	TMW-05A	Sampled:	10/24/13 10:40	
Lab Sample ID:	1310562-09	Sampled By:	Client	
Matrix:	Water	Received:	10/29/13 8:30	
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK	
Dilution Factor:	1	Analyzed:	11/6/13 22:17 By: JLB	
QC Batch:	1311584	Analytical Batch:	3K07013	

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	0.56U	0.56	0.037
208-96-8	Acenaphthylene	0.56U	0.56	0.019
120-12-7	Anthracene	0.56U	0.56	0.068
56-55-3	Benzo(a)anthracene	0.56U	0.56	0.050
50-32-8	Benzo(a)pyrene	0.56U	0.56	0.045
205-99-2	Benzo(b)fluoranthene	0.56U	0.56	0.065
207-08-9	Benzo(k)fluoranthene	0.56U	0.56	0.066
191-24-2	Benzo(g,h,i)perylene	0.56U	0.56	0.068
*65-85-0	Benzoic Acid	5.6U	5.6	
100-51-6	Benzyl Alcohol	0.56U	0.56	0.054
101-55-3	4-Bromophenyl Phenyl Ether	0.56U	0.56	0.048
85-68-7	Butyl Benzyl Phthalate	0.11J	1.1	0.062
59-50-7	4-Chloro-3-methylphenol	0.56U	0.56	0.13
106-47-8	4-Chloroaniline	1.1U	1.1	0.11
111-91-1	Bis(2-chloroethoxy)methane	0.56U	0.56	0.020
111-44-4	Bis(2-chloroethyl) Ether	0.56U	0.56	0.026
108-60-1	Bis(2-chloroisopropyl) Ether	0.56U	0.56	0.029
91-58-7	2-Chloronaphthalene	0.56U	0.56	0.019
95-57-8	2-Chlorophenol	0.56U	0.56	0.030
7005-72-3	4-Chlorophenyl Phenyl Ether	0.56U	0.56	0.053
218-01-9	Chrysene	0.56U	0.56	0.050
53-70-3	Dibenz(a,h)anthracene	0.56U	0.56	0.13
132-64-9	Dibenzofuran	0.56U	0.56	0.045
84-74-2	Di-n-butyl Phthalate	0.573	1.1	0.15
95-50-1	1,2-Dichlorobenzene	0.56U	0.56	0.044
541-73-1	1,3-Dichlorobenzene	0.56U	0.56	0.046
106-46-7	1,4-Dichlorobenzene	0.56U	0.56	0.022
91-94-1	3,3 '-Dichlorobenzidine	1.10	1.1	0.14
120-83-2	2,4-Dichlorophenol	0.56U	0.56	0.10

Continued on next page

*See Statement of Data Qualifications

Page 51 of 125

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-05A	Sampled:	10/24/13 10:40		
Lab Sample ID:	1310562-09	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	10/31/13 7:55	By:	ALK
Dilution Factor:	1	Analyzed:	11/6/13 22:17	By:	JLB
QC Batch:	1311584	Analytical Batch:	3K07013		

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

105-67-9 2.4-Dimethylphenol 1.1.U 1.1.U <th1.u< th=""> 1.1.U 1.1.U<th>CAS Number</th><th>Analyte</th><th>Analytical Result</th><th>RL</th><th>MDL</th></th1.u<>	CAS Number	Analyte	Analytical Result	RL	MDL
13 Dimethyl Phrlatet 0.56U 0.56 0.55 534-52-1 4,6 Dintro-2-methylphenol 5,6U 5,6 1. 51-28-5 2,4 Dintrophenol 5,6U 5,6 0.5 506-20-2 2,6 Dintrotoluene 0.56U 0.56 0.66 117-84-0 Din-oxtyl Phrlatate 0.56U 0.56 0.66 117-84-0 Din-oxtyl Phrlatate 0.56U 0.56 0.66 117-84-0 Din-oxtyl Phrlatate 0.56U 0.56 0.60 117-84-7 Bis(2-ethylhexyl) Phrlatate 0.56U 0.56 0.07 66-73-7 Fluorene 0.56U 0.56 0.04 118-74-1 Hexachlorochorzene 0.56U 0.56 0.04 77-63 Hexachlorochorzene 0.56U 0.56 0.04 67-72-1 Hexachlorochorzene 0.56U 0.56 0.06 193-35 Indeno(1,2,3-cd)prenel 0.56U 0.56 0.06 191-57-6 2-Methylphenol 0.56U 0.56 0.05 <td>*84-66-2</td> <td>Diethyl Phthalate</td> <td>- 0.343 ()</td> <td>.56 UB 0.56</td> <td>0.072</td>	*84-66-2	Diethyl Phthalate	- 0.343 ()	.56 UB 0.56	0.072
SH452-1 4,6-Ditro 2-methylphenol 5,6U 5,6 1. S1-28-5 2,4-Dinitrophenol 5,6U 5,6 1. 121-14-2 2,4-Dinitrobluene 0,5U 0,56 0,05 606-202 2,6-Dinitrobluene 0,5U 0,56 0,06 117-84-0 Din-octyl Phthalate 0,5U 0,56 0,06 117-81-7 Big(2-ethylphenyl) Phthalate 0,5U 0,56 0,07 117-81-7 Big(2-ethylphenyl) Phthalate 0,5U 0,56 0,04 206-44-0 Fluorene 0,5U 0,56 0,04 118-74-1 Hexachlorobtzene 0,5U 0,56 0,04 118-74-1 Hexachlorobtzene 0,5U 0,56 0,04 77-74 Hexachlorobtzene 0,5U 0,56 0,04 77-74 Hexachlorobtzene 0,5U 0,56 0,04 97-85-3 Indeno(1,2,3-cd)pyrene 0,5U 0,56 0,04 91-95-6 J-Methylphenol 0,5U 0,56 0,05 <td>105-67-9</td> <td>2,4-Dimethylphenol</td> <td>1.1U</td> <td>1.1</td> <td>0.19</td>	105-67-9	2,4-Dimethylphenol	1.1U	1.1	0.19
12-28-5 2,4-Dinitrophone 5.6U 5.6 1. 121-14-2 2,4-Dinitrotoluene 0.56U 0.56 0.05 606-20-2 2,6-Dinitrotoluene 0.56U 0.56 0.06 117-84-0 Di-n-oct/J Pitthalate 0.56U 0.56 0.06 117-81-7 Bis(2-ettylhexyl) Pitthalate 0.56U 0.56 0.07 206-44-0 Fluoranthene 0.56U 0.56 0.07 206-44-0 Fluoranthene 0.56U 0.56 0.07 206-44-0 Houranthene 0.56U 0.56 0.07 206-44-0 Houranthene 0.56U 0.56 0.07 87-737 Fluorene 0.56U 0.56 0.07 87-68-3 Hexachlorocytopentadiene 0.56U 0.56 0.06 913-93-5 Inden0(1,2,3-cd)pyrene 0.56U 0.56 0.05 93-93-5 Inden0(1,2,3-cd)pyrene 0.56U 0.56 0.05 94-95 3-Methylcholanthrene 2.2U 2.2 0.1 </td <td>131-11-3</td> <td>Dimethyl Phthalate</td> <td>0.56U</td> <td>0.56</td> <td>0.051</td>	131-11-3	Dimethyl Phthalate	0.56U	0.56	0.051
121:14-2 2,4-Dintroduene 0,56U 0,56 0,55U 606-20-2 2,6-Dintroduene 0,56U 0,56 0,06 117-84-0 Di-n-ocyl Phthalate 0,56U 0,56 0,06 117-81-7 Bis(2-ethylhsxyl) Phthalate 0,291 0,56 0,07 206-44-0 Fluoranthene 0,56U 0,56 0,07 86-73-7 Fluorene 0,56U 0,56 0,07 87-88-3 Hexachlorobenzene 0,56U 0,56 0,04 97-87-1 Hexachlorobutadiene 0,56U 0,56 0,04 97-87-3 Indeno(1,2,3-cd)pyrene 0,56U 0,56 0,04 97-87-1 Hexachlorocyclopentadiene 0,56U 0,56 0,04 97-87-1 Hexachlorocyclopentadiene 0,56U 0,56 0,04 97-87-1 Hexachlorocyclopentadiene 0,56U 0,56 0,04 97-87-1 Indeno(1,2,3-cd)pyrene 0,56U 0,56 0,05 96-95 3-Methylcholathrene 2,2U 0,11 0,56 0,05 90-12-0 1-Methylphenol 0,5	534-52-1	4,6-Dinitro-2-methylphenol	5.6U	5.6	1.1
606-20-22,6-Dinitrodolene0.56U0.560.080117-84-0Di-n-octyl Phthalate0.56U0.560.080117-81-7Bis(2-ethylhexyl) Phthalate0.29J0.560.07206-44-0Fluoranthene0.56U0.560.0786-73-7Fluorene0.56U0.560.04118-74-1Hexachlorobarzene0.56U0.560.0477-83Hexachlorobatzene0.56U0.560.0477-474Hexachlorobatzene0.56U0.560.0478-89-1Hexachlorobatzene0.56U0.560.0493-39-5Indeno(1,2,3-cd)pyrene0.56U0.560.0678-59-1Sophorone0.56U0.560.0291-57-62-Methylnaphthalene0.56U0.560.0291-57-62-Methylnaphthalene0.56U0.560.0291-20-21-Methylnaphthalene0.56U0.560.0291-20-3Naphthalene0.56U0.560.0291-20-3Naphthalene0.56U0.560.0291-20-3Naphthalene0.56U0.560.0291-20-3Nitroanline1.101.10.290-923-Nitroanline1.101.10.290-923-Nitroanline0.56U0.560.06100-01-64-Nitroanline0.56U0.560.06100-02-74-Nitroanline0.56U0.560.05100-02-74-Nitroanline0.56U0.560.05	51-28-5	2,4-Dinitrophenol	5.6U	5.6	1.3
117-84-0 Din-octyl Phthalate 0.56U 0.56 0.88 117-81-7 Bis(2-ethylhexyl) Phthalate 0.293 0.56 0.07 266-44-0 Fluoranthene 0.56U 0.56 0.07 86-73-7 Fluorene 0.56U 0.56 0.07 87-8-3 Hexachlorobenzene 0.56U 0.56 0.07 87-8-3 Hexachlorocyclopentaliene 0.56U 0.56 0.04 77-74 Hexachlorocyclopentaliene 0.56U 0.56 0.04 93-39-5 Indeno(1,2,3-cd)pyrene 0.56U 0.56 0.06 88-971 Isophorone 0.56U 0.56 0.07 91-57-6 3-Methylcholanthrene 2.2U 2.2 0.1 91-57-6 3-Methylphenol 0.56U 0.56 0.02 91-57-6 3-Methylphenol 0.56U 0.56 0.02 91-57-6 3-Methylphenol 0.56U 0.56 0.03 91-57-6 3-Methylphenol 0.56U 0.56 0.03	121-14-2	2,4-Dinitrotoluene	0.56U	0.56	0.053
117-81-7 Big 2-ehylhexyl) Phthalate 0.291 0.56 0.10 206-44-0 Fluoranthene 0.56U 0.56 0.07 86-73-7 Fluorene 0.56U 0.56 0.07 86-73-7 Fluorene 0.56U 0.56 0.07 87-86-3 Hexachlorobutadiene 0.56U 0.56 0.04 77-47-4 Hexachlorocyclopentadiene 0.56U 0.56 0.04 67-72.1 Hexachlorochane 0.56U 0.56 0.04 93-39.5 Indeno(1,2,3-cd)pyrene 0.56U 0.56 0.05 86-99.5 Jadethylcholanthrene 2.0U 2.2 0.11 91-57-6 2-Methylnaphthalene 0.56U 0.56 0.05 95-48-7 2-Methylphenol 0.56U 0.56 0.05 95-48-7 2-Methylphenol 0.56U 0.56 0.05 95-48-7 2-Methylphenol 0.56U 0.56 0.03 95-48-7 2-Methylphenol 0.56U 0.56 0.03	606-20-2	2,6-Dinitrotoluene	0.56U	0.56	0.089
December Puoranthene 0.56U 0.56 0.77 86-73-7 Fluorene 0.56U 0.56 0.04 118-74-1 Hexachlorobenzene 0.56U 0.56 0.04 118-74-1 Hexachlorobutadiene 0.56U 0.56 0.04 77-87-3 Hexachlorocyclopentadiene 0.56U 0.56 0.04 67-72-1 Hexachlorocyclopentadiene 0.56U 0.56 0.04 193-39-5 Indeno(1,2,3-cd)pyrene 0.56U 0.56 0.04 193-39-5 Indeno(1,2,3-cd)pyrene 0.56U 0.56 0.05 56-49-5 Jmethylcholanthrene 2.2U 2.2 0.1 91-57-6 2-Methylpanhlalene 0.56U 0.56 0.05 91-42-0 1-Methylpanhlalene 0.56U 0.56 0.05 91-20-3 Naphthalene 0.56U 0.56 0.05 91-20-3 Naphthalene 0.56U 0.56 0.05 91-20-3 Naphthalene 0.56U 0.56 0.05	117-84-0	Di-n-octyl Phthalate	0.56U	0.56	0.085
86-73-7 Florene 0.56U 0.56 0.44 118-74-1 Hexachlorobenzene 0.56U 0.56 0.47 87-68-3 Hexachlorobenzene 0.56U 0.56 0.44 77-74 Hexachlorobenzene 0.56U 0.56 0.44 67-72-1 Hexachlorobenzene 0.56U 0.56 0.44 193-39-5 Inden(1,2,3-cd)pyrene 0.56U 0.56 0.56 76-79-1 Isophorone 0.56U 0.56 0.56 76-79-5 J-Methylohalthrene 0.56U 0.56 0.50 91-57-6 J-Methylophol 0.56U 0.56 0.50 91-57-6 J-Methylophol 0.56U 0.56 0.50 91-57-6 J-Methylophol 0.56U 0.56 0.50 91-52 J-Methylophol 0.56U 0.56 0.50 91-53 Naphtalene 0.56U 0.56 0.50 91-53 Nitroenline 1.10 1.1 0.33 910-02-7 Al	117-81-7	Bis(2-ethylhexyl) Phthalate	0.29J	0.56	0.13
18-74-1 Hexachlorobenzene 0.56U 0.56 0.77 87-68-3 Hexachlorobutadiene 0.50U 0.56 0.44 77-47-4 Hexachlorocyclopentadiene 0.50U 0.56 0.44 67-72-1 Hexachlorocyclopentadiene 0.50U 0.56 0.44 193-39-5 Inden0(1,2,3-cd)pyrene 0.50U 0.56 0.68 78-69-3 Jedenotharene 0.50U 0.56 0.60 56-49-5 3-Methylohanthrene 2.2U 2.2 0.41 91-57-6 2-Methylaphthalene 0.50U 0.56 0.60 91-20-1 1-Methylaphthalene 0.50U 0.56 0.60 91-20-2 2-Methylaphthalene 0.50U 0.56 0.60 91-20-3 Naphthalene 0.50U 0.56 0.50	206-44-0	Fluoranthene	0.56U	0.56	0.070
87-68-3 Hexachlorobutadiene 0.56U 0.56 0.44 77-47-4 Hexachlorocyclopentadiene 0.56U 0.56 0.04 67-72-1 Hexachlorocyclopentadiene 0.56U 0.56 0.04 193-39-5 Indeno(1,2,3-cd)pyrene 0.56U 0.56 0.08 78-59-1 Isophorone 0.56U 0.56 0.08 56-49-5 3-Methylcholanthrene 2.2U 2.2 0.1 91-57-6 2-Methylnaphtalene 0.56U 0.56 0.02 91-20 1-Methylnaphtalene 0.56U 0.56 0.02 95-48-7 2-Methylphenol 0.56U 0.56 0.05 106-44-5 4-Methylphenol 0.56U 0.56 0.03 88-74-4 2-Nitroaniline 0.56U 0.56 0.03 90-92 3-Nitroaniline 1.1U 1.1 0.3 90-99-2 3-Nitroaniline 0.56U 0.56 0.06 100-01-6 4-Nitroaniline 1.1U 1.1 0.3 <tr< td=""><td>86-73-7</td><td>Fluorene</td><td>0.56U</td><td>0.56</td><td>0.046</td></tr<>	86-73-7	Fluorene	0.56U	0.56	0.046
7747-4Hexachlorocyclopentadiene0.56U0.560.4467-72-1Hexachloroethane0.56U0.560.66193-39-5Indeno(1,2,3-cd)pyrene0.56U0.56U0.5678-59-1Sophoron0.56U0.560.5656-49-53-Methylchalthrene2.2U2.20.191-57-62-Methylnaphthalene0.56U0.560.0295-48-72-Methylphenol0.56U0.560.05106-44-54-Methylphenol0.56U0.560.0391-20-3Naphtalene0.56U0.560.0397-92-43-Nitroaniline0.56U0.560.0398-95-3Nitrobenzene0.56U0.560.06100-02-74-Nitrophenol0.56U0.560.06100-02-74-Nitrophenol0.56U0.560.5666-03-556-04-550.56U0.560.56100-02-74-Nitrophenol0.56U0.560.5666-05-556-05-550.56U0.56U0.560.5667-556-05-556-05-550.56U0.56U0.560.5667-556-05-556-05-550.56U0.56U0.56U0.560.5667-556-05-556-05-556-05-550.56U0.56U0.560.5667-556-05-556-05-556-05-556-05-550.56U0.560.5670-756-05-556-05-556-05-556-05-556-05-550.550.55 <td< td=""><td>118-74-1</td><td>Hexachlorobenzene</td><td>0.56U</td><td>0.56</td><td>0.070</td></td<>	118-74-1	Hexachlorobenzene	0.56U	0.56	0.070
67-72-1 Hexachloroachina 0.56U 0.56 0.44 193-39-5 Indeno(1,2,3-cd)pyrene 0.56U 0.56 0.56 78-59-1 Isophorone 0.56U 0.56 0.56 56-49-5 3-Methylcholanthrene 2.2U 2.2 0.1 91-57-6 2-Methylnaphthalene 0.56U 0.56 0.02 90-12-0 1-Methylnaphthalene 0.56U 0.56 0.02 95-48-7 2-Methylphenol 0.56U 0.56 0.03 106-44-5 4-Methylphenol 0.56U 0.56 0.03 100-01-6 4-Nitroaniline 1.1U 1.1 0.2 100-01-6 4-Nitroanilen 0.56U 5.6U 0.56U 0.56 0.56U 100-02-7 4-Nitrophenol 5.6U 5.6U	87-68-3	Hexachlorobutadiene	0.56U	0.56	0.044
193-39-5 Inden(1,2,3-cd)pyrene 0.56U 0.56 0.88 78-59-1 Isophorone 0.56U 0.56 0.55 56-49-5 3-Methylcholanthrene 2.2U 2.2 0.1 91-57-6 2-Methylnaphthalene 0.56U 0.56 0.01 90-12-0 1-Methylnaphthalene 0.56U 0.56 0.02 95-48-7 2-Methylphenol 0.56U 0.56 0.05 106-44-5 4-Methylphenol 0.56U 0.56 0.05 106-44-5 4-Methylphenol 0.56U 0.56 0.03 91-20-3 Naphthalene 0.56U 0.56 0.14 91-20-3 Naphthalene 0.56U 0.56 0.14 91-20-3 Naphthalene 0.56U 0.56 0.14 91-20-4 Nitroaniline 1.1U 1.1 0.25 100-02-7 <td< td=""><td>77-47-4</td><td>Hexachlorocyclopentadiene</td><td>0.56U</td><td>0.56</td><td>0.049</td></td<>	77-47-4	Hexachlorocyclopentadiene	0.56U	0.56	0.049
78-59-1 Isophorone 0.56U 0.56 0.55 56-49-5 3-Methylcholanthrene 2.2U 2.2 0.1 91-57-6 2-Methylnaphthalene 0.56U 0.56 0.01 90-12-0 1-Methylnaphthalene 0.56U 0.56 0.02 95-48-7 2-Methylphenol 0.56U 0.56 0.05 106-44-5 4-Methylphenol 0.56U 0.56 0.05 106-44-5 4-Methylphenol 0.56U 0.56 0.03 88-74-4 2-Nitroaniline 0.56U 0.56 0.03 90-92 3-Nitroaniline 1.1U 1.1 0.2 100-01-6 4-Nitroaniline 1.1U 1.1 0.3 98-95-3 Nitrobenzene 0.56U 5.6U 0.56 0.06 100-02-7 4-Nitrophenol 5.6U	67-72-1	Hexachloroethane	0.56U	0.56	0.046
56-49-5 3-Methylcholanthrene 2.2U 2.2 0.1 91-57-6 2-Methylnaphthalene 0.56U 0.56 0.01 90-12-0 1-Methylnaphthalene 0.56U 0.56 0.02 95-48-7 2-Methylphenol 0.56U 0.56 0.05 106-44-5 4-Methylphenol 0.56U 0.56 0.06 91-20-3 Naphthalene 0.56U 0.56 0.06 91-20-3 Nitroaniline 1.1U 1.1 0.2 91-09-2 3-Nitroaniline 0.56U 0.56 0.66 92-95-3 Nitrobenzene 0.56U 5.6U 1.4 98-95-3 Nitrophenol 5.6U 5.6U 5.6U 88-75-5 2-Nitroph	193-39-5	Indeno(1,2,3-cd)pyrene	0.56U	0.56	0.089
91-57-6 2-Methylnaphthalene 0.56U 0.56 0.02 90-12-0 1-Methylnaphthalene 0.56U 0.56 0.02 95-48-7 2-Methylphenol 0.56U 0.56 0.56 106-44-5 4-Methylphenol 0.56U 0.56 0.66 91-20-3 Naphthalene 0.56U 0.56 0.66 91-20-3 Naphthalene 0.56U 0.56 0.67 91-20-3 Nitroaniline 1.10 1.1 0.2 100-01-6 4-Nitroaniline 1.10 1.1 0.3 98-95-3 Nitrobenzene 0.56U 0.56 0.66 100-02-7 4-Nitrophenol 5.6U 5.6U 5.6U 5.6U 88-75-5 2-Nitrophenol 0.56U 0.56 0.56 0.56 <t< td=""><td>78-59-1</td><td>Isophorone</td><td>0.56U</td><td>0.56</td><td>0.050</td></t<>	78-59-1	Isophorone	0.56U	0.56	0.050
90-12-0 1-Methylnaphthalene 0.56U 0.56 0.02 95-48-7 2-Methylphenol 0.56U 0.56 0.05 106-44-5 4-Methylphenol 0.56U 0.56 0.06 91-20-3 Naphthalene 0.56U 0.56 0.03 88-74-4 2-Nitroaniline 0.56U 0.56 0.14 99-09-2 3-Nitroaniline 1.1U 1.1 0.2 100-01-6 4-Nitroaniline 1.1U 1.1 0.3 98-95-3 Nitrobenzene 0.56U J 5.6U J 5.6 1.1 100-02-7 4-Nitrophenol 5.6U J 5.6U J 5.6 1.1 88-75-5 2-Nitrophenol 0.56U 0.56U J 5.6U J 5.6U J 5.6U J	56-49-5	3-Methylcholanthrene	2.2U	2.2	0.13
95-48-7 2-Methylphenol 0.56U 0.56 0.05 106-44-5 4-Methylphenol 0.56U 0.56 0.06 91-20-3 Naphthalene 0.56U 0.56 0.03 88-74-4 2-Nitroaniline 0.56U 0.56 0.11 99-09-2 3-Nitroaniline 1.1U 1.1 0.2 100-01-6 4-Nitroaniline 1.1U 1.1 0.3 98-95-3 Nitrobenzene 0.56U 5.6U 5.6U 1.1U 100-02-7 4-Nitrophenol 5.6U 5.6U 5.6U 1.1U 1.1U 88-75-5 2-Nitrophenol 0.56U 0.56U 0.56U 0.56U 0.55U	91-57-6	2-Methylnaphthalene	0.56U	0.56	0.017
106-44-5 4-Methylphenol 0.56U 0.56 0.06 91-20-3 Naphthalene 0.56U 0.56 0.03 88-74-4 2-Nitroaniline 0.56U 0.56 0.1 99-09-2 3-Nitroaniline 1.1U 1.1 0.2 100-01-6 4-Nitroaniline 1.1U 1.1 0.3 98-95-3 Nitrobenzene 0.56U 0.56 0.6 100-02-7 4-Nitrophenol 5.6U	90-12-0	1-Methylnaphthalene	0.56U	0.56	0.022
91-20-3 Naphthalene 0.56U 0.56 0.03 88-74-4 2-Nitroaniline 0.56U 0.56 0.1 99-09-2 3-Nitroaniline 1.1U 1.1 0.2 100-01-6 4-Nitroaniline 1.1U 1.1 0.3 98-95-3 Nitrobenzene 0.56U 0.56 0.66 100-02-7 4-Nitrophenol 5.6U 5.6U 5.6U 1.1U 88-75-5 2-Nitrophenol 0.56U 0.56U 0.56U 0.56U 86-30-6 Nitroso-diphenylamine 0.56U 0.56U 0.56U 0.56U	95-48-7	2-Methylphenol	0.56U	0.56	0.053
88-74-4 2-Nitroaniline 0.560 0.56 0.1 99-09-2 3-Nitroaniline 1.10 1.1 0.2 100-01-6 4-Nitroaniline 1.10 1.1 0.3 98-95-3 Nitrobenzene 0.560 0.560 0.56 100-02-7 4-Nitrophenol 5.60 J 5.60 J 5.60 J 88-75-5 2-Nitrophenol 0.560 0.560 0.560 86-30-6 Nitroso-diphenylamine 0.560 0.560 0.560	106-44-5	4-Methylphenol	0.56U	0.56	0.063
99-09-2 3-Nitroaniline 1.10 1.1 0.2 100-01-6 4-Nitroaniline 1.10 1.1 0.3 98-95-3 Nitrobenzene 0.56U 0.56 0.66 100-02-7 4-Nitrophenol 5.6U 5.6U 5.6U 0.56 88-75-5 2-Nitrophenol 0.56U 0.56U 0.56 0.55 86-30-6 N-Nitroso-diphenylamine 0.56U 0.56U 0.56U 0.56U	91-20-3	Naphthalene	0.56U	0.56	0.034
100-01-6 4-Nitroaniline 1.10 1.1 0.3 98-95-3 Nitrobenzene 0.56U 0.56 0.66 100-02-7 4-Nitrophenol 5.6U J 5.6 1. 88-75-5 2-Nitrophenol 0.56U 0.56U 0.56U 0.56U 86-30-6 N-Nitroso-diphenylamine 0.56U 0.56U 0.56U 0.56U	88-74-4	2-Nitroaniline	0.56U	0.56	0.13
98-95-3 Nitrobenzene 0.56U 0.56 0.66 100-02-7 4-Nitrophenol 5.6U J 5.6 1. 88-75-5 2-Nitrophenol 0.56U 0.56U 0.56 0.05 86-30-6 N-Nitroso-diphenylamine 0.56U 0.56U 0.56U 0.56U	99-09-2	3-Nitroaniline	1.10	1.1	0.27
100-02-7 4-Nitrophenol 5.60 J 5.60 J 1. 88-75-5 2-Nitrophenol 0.560 0.560 0.05 86-30-6 N-Nitroso-diphenylamine 0.560 0.560 0.07	100-01-6	4-Nitroaniline	1.10	1.1	0.37
88-75-5 2-Nitrophenol 0.56U 0.56 0.05 86-30-6 N-Nitroso-diphenylamine 0.56U 0.56 0.07	98-95-3	Nitrobenzene	0.56U	0.56	0.065
86-30-6 N-Nitroso-diphenylamine 0.56U 0.56 0.07	100-02-7	4-Nitrophenol	5.6U J	5.6	1.4
	88-75-5	2-Nitrophenol	0.56U	0.56	0.053
621-64-7 N-Nitroso-di-n-propylamine 0.56U 0.56 0.08	86-30-6	N-Nitroso-diphenylamine	0.56U	0.56	0.075
	621-64-7	N-Nitroso-di-n-propylamine	0.56U	0.56	0.084

Continued on next page

*See Statement of Data Qualifications

Page 52 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-05A	Sampled:	10/24/13 10:40
Lab Sample ID:	1310562-09	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	1	Analyzed:	11/6/13 22:17 By: JLB
QC Batch:	1311584	Analytical Batch:	3K07013

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

				Analytical		
CAS Number	Analyte			Result	RL	MDL
87-86-5	Pentachlorophenol			0.56U	0.56	0.090
85-01-8	Phenanthrene			0.067J	0.56	0.047
108-95-2	Phenol			0.56U	0.56	0.037
129-00-0	Pyrene			0.11J	0.56	0.073
58-90-2	2,3,4,6-Tetrachlorophenol			5.6U	5.6	0.41
935-95-5	2,3,5,6-Tetrachlorophenol			11U	11	0.24
120-82-1	1,2,4-Trichlorobenzene			0.56U	0.56	0.030
88-06-2	2,4,6-Trichlorophenol			0.56U	0.56	0.095
95-95-4	2,4,5-Trichlorophenol			0.56U	0.56	0.11
Surrogates:	% Rec	covery	Control Limits			
2-Fluorophenol	20	6	20-70			
Phenol-d6	20	6	18-45			
Nitrobenzene-d5	5-	4	31-123			
2-Fluorobiphenyl	4.	7	25-113			

30-121

42-125

46

64

Page 53 of 125

2,4,6-Tribromophenol

o-Terphenyl

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-11 (Filtered)	Sampled:	10/24/13 10:00		
Lab Sample ID:	1310562-10	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	11/6/13 0:00	By:	LEW
Dilution Factor:	1	Analyzed:	11/6/13 20:26	By:	LEW
QC Batch:	1312148	Analytical Batch:	3K14015		

Halogenated and Aromatic Volatiles by EPA Method 8021B

				Analytical		
CAS Number	Analyte			Result	RL	MDL
71-43-2	Benzene			1.0U	1.0	0.20
104-51-8	n-Butylbenzene			1.0U	1.0	0.28
*74-87-3	Chloromethane			1.0U	1.0	0.37
100-41-4	Ethylbenzene			1.0U	1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.0U	5.0	0.48
*91-20-3	Naphthalene			1.0U J	1.0	0.44 - R
103-65-1	n-Propylbenzene			1.0U	1.0	0.24
100-42-5	Styrene			1.0U	1.0	0.20
108-88-3	Toluene			1.0U	1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U	1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			1.0U	1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			1.0U	1.0	0.22
179601-23-1	Xylene, Meta + Para			2.0U	2.0	0.42
95-47-6	Xylene, Ortho			1.0U	1.0	0.20
Surrogates:		% Recovery	Control Limits			
1,2-Dichloroethane-d4		126	81-126			
aaa-Trifluorotoluene		96	86-118			

*See Statement of Data Qualifications

Page 54 of 125

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-11 (Filtered)	Sampled:	10/24/13 10:00		
Lab Sample ID:	1310562-10	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	10/31/13 7:55	By:	ALK
Dilution Factor:	1	Analyzed:	11/6/13 22:52	By:	JLB
QC Batch:	1311584	Analytical Batch:	3K07013		

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	0.50U	0.50	0.033
208-96-8	Acenaphthylene	0.50U	0.50	0.017
120-12-7	Anthracene	0.50U	0.50	0.062
56-55-3	Benzo(a)anthracene	0.50U	0.50	0.045
50-32-8	Benzo(a)pyrene	0.50U	0.50	0.040
205-99-2	Benzo(b)fluoranthene	0.50U	0.50	0.058
207-08-9	Benzo(k)fluoranthene	0.50U	0.50	0.060
191-24-2	Benzo(g,h,i)perylene	0.50U	0.50	0.061
*65-85-0	Benzoic Acid	5.00	5.0	0.48
100-51-6	Benzyl Alcohol	0.50U	0.50	0.049
101-55-3	4-Bromophenyl Phenyl Ether	0.50U	0.50	0.043
85-68-7	Butyl Benzyl Phthalate	0.061J	1.0	0.056
59-50-7	4-Chloro-3-methylphenol	0.50U	0.50	0.12
106-47-8	4-Chloroaniline	1.0U	1.0	0.10
111-91-1	Bis(2-chloroethoxy)methane	0.50U	0.50	0.018
111-44-4	Bis(2-chloroethyl) Ether	0.50U	0.50	0.024
108-60-1	Bis(2-chloroisopropyl) Ether	0.50U	0.50	0.026
91-58-7	2-Chloronaphthalene	0.50U	0.50	0.017
95-57-8	2-Chlorophenol	0.50U	0.50	0.027
7005-72-3	4-Chlorophenyl Phenyl Ether	0.50U	0.50	0.048
218-01-9	Chrysene	0.50U	0.50	0.045
53-70-3	Dibenz(a,h)anthracene	0.50U	0.50	0.11
132-64-9	Dibenzofuran	0.50U	0.50	0.041
84-74-2	Di-n-butyl Phthalate	0.14J	1.0	0.14
95-50-1	1,2-Dichlorobenzene	0.50U	0.50	0.040
541-73-1	1,3-Dichlorobenzene	0.50U	0.50	0.041
106-46-7	1,4-Dichlorobenzene	0.50U	0.50	0.020
91-94-1	3,3 '-Dichlorobenzidine	1.0U	1.0	0.12
120-83-2	2,4-Dichlorophenol	0.50U	0.50	0.092

R

Continued on next page

*See Statement of Data Qualifications

Page 55 of 125

Client:	Beazer East, Inc.	Work Order:	1310562	
Project:	Koppers Superior	Description:	Laboratory Services	
Client Sample ID:	TMW-11 (Filtered)	Sampled:	10/24/13 10:00	
Lab Sample ID:	1310562-10	Sampled By:	Client	
Matrix:	Water	Received:	10/29/13 8:30	
Unit:	ug/L	Prepared:	10/31/13 7:55 By:	ALK
Dilution Factor:	1	Analyzed:	11/6/13 22:52 By:	JLB
QC Batch:	1311584	Analytical Batch:	3K07013	

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
*84-66-2	Diethyl Phthalate	- 8.283 0.5	0 UB 0.50	0.065
105-67-9	2,4-Dimethylphenol	1.0U	1.0	0.17
131-11-3	Dimethyl Phthalate	0.50U	0.50	0.046
534-52-1	4,6-Dinitro-2-methylphenol	5.0U	5.0	1.0
51-28-5	2,4-Dinitrophenol	5.0U	5.0	1.2
121-14-2	2,4-Dinitrotoluene	0.50U	0.50	0.048
606-20-2	2,6-Dinitrotoluene	0.50U	0.50	0.080
117-84-0	Di-n-octyl Phthalate	0.50U	0.50	0.077
117-81-7	Bis(2-ethylhexyl) Phthalate	0.12J	0.50	0.11
206-44-0	Fluoranthene	0.50U	0.50	0.063
86-73-7	Fluorene	0.50U	0.50	0.041
118-74-1	Hexachlorobenzene	0.50U	0.50	0.063
87-68-3	Hexachlorobutadiene	0.50U	0.50	0.040
77-47-4	Hexachlorocyclopentadiene	0.50U	0.50	0.044
67-72-1	Hexachloroethane	0.50U	0.50	0.042
193-39-5	Indeno(1,2,3-cd)pyrene	0.50U	0.50	0.080
78-59-1	Isophorone	0.50U	0.50	0.045
56-49-5	3-Methylcholanthrene	2.0U	2.0	0.12
91-57-6	2-Methylnaphthalene	0.50U	0.50	0.015
90-12-0	1-Methylnaphthalene	0.50U	0.50	0.020
95-48-7	2-Methylphenol	0.50U	0.50	0.048
106-44-5	4-Methylphenol	0.50U	0.50	0.057
91-20-3	Naphthalene	0.50U	0.50	0.031
88-74-4	2-Nitroaniline	0.50U	0.50	0.12
99-09-2	3-Nitroaniline	1.0U	1.0	0.24
100-01-6	4-Nitroaniline	1.0U	1.0	0.33
98-95-3	Nitrobenzene	0.50U	0.50	0.058
100-02-7	4-Nitrophenol	5.0U J	5.0	1.2
88-75-5	2-Nitrophenol	0.50U	0.50	0.048
86-30-6	N-Nitroso-diphenylamine	0.50U	0.50	0.068
621-64-7	N-Nitroso-di-n-propylamine	0.50U	0.50	0.075

Continued on next page

*See Statement of Data Qualifications

Page 56 of 125

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID	: TMW-11 (Filtered)	Sampled:	10/24/13 10:00		
Lab Sample ID:	1310562-10	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	10/31/13 7:55	By:	ALK
Dilution Factor:	1	Analyzed:	11/6/13 22:52	By:	JLB
QC Batch:	1311584	Analytical Batch:	3K07013		

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

			Analytical		
CAS Number	Analyte		Result	RL	MDL
87-86-5	Pentachlorophenol		0.50U	0.50	0.081
85-01-8	Phenanthrene		0.50U	0.50	0.043
108-95-2	Phenol		0.50U	0.50	0.034
129-00-0	Pyrene		0.50U	0.50	0.066
58-90-2	2,3,4,6-Tetrachlorophenol		5.0U	5.0	0.37
935-95-5	2,3,5,6-Tetrachlorophenol		10U	10	0.21
120-82-1	1,2,4-Trichlorobenzene		0.50U	0.50	0.027
88-06-2	2,4,6-Trichlorophenol		0.50U	0.50	0.085
95-95-4	2,4,5-Trichlorophenol		0.50U	0.50	0.099
Surrogates:	% Recove	ry Control Limits			
2-Fluorophenol	30	20-70			
Phenol-d6	25	18-45			
Nitrobenzene-d5	70	31-123			
2-Fluorobiphenyl	60	25-113			

30-121

42-125

69

80

Page 57 of 125

2,4,6-Tribromophenol

o-Terphenyl

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-05A (Filtered)	Sampled:	10/25/13 9:50		
Lab Sample ID:	1310562-11	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	11/8/13 7:00	By:	LEW
Dilution Factor:	1	Analyzed:	11/8/13 11:44	By:	LEW
QC Batch:	1312152	Analytical Batch:	3K14017		

Halogenated and Aromatic Volatiles by EPA Method 8021B

				Analytical		
CAS Number	Analyte			Result	RL	MDL
71-43-2	Benzene			1.0U	1.0	0.20
104-51-8	n-Butylbenzene			1.0U	1.0	0.28
*74-87-3	Chloromethane			1.0U J	1.0	0.37
100-41-4	Ethylbenzene			1.0U	1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.0U	5.0	0.48
*91-20-3	Naphthalene			1.0U	1.0	0.44
103-65-1	n-Propylbenzene			1.0U	1.0	0.24
100-42-5	Styrene			1.0U	1.0	0.20
108-88-3	Toluene			1.0U	1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U	1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			1.0U	1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			1.0U	1.0	0.22
179601-23-1	Xylene, Meta + Para			2.0U	2.0	0.42
95-47-6	Xylene, Ortho			1.0U	1.0	0.20
Surrogates:		% Recovery	Control Limits			
1,2-Dichloroethane-	d4	106	81-126			
aaa-Trifluorotoluene		99	86-118			

*See Statement of Data Qualifications

Page 58 of 125

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-11A	Sampled:	10/25/13 10:30		
Lab Sample ID:	1310562-12	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	11/8/13 7:00	By:	LEW
Dilution Factor:	1	Analyzed:	11/8/13 12:32	By:	LEW
QC Batch:	1312152	Analytical Batch:	3K14017		

Halogenated and Aromatic Volatiles by EPA Method 8021B

				Analytical		
CAS Number	Analyte			Result	RL	MDL
71-43-2	Benzene			1.0U	1.0	0.20
104-51-8	n-Butylbenzene			1.0U	1.0	0.28
*74-87-3	Chloromethane			1.0U J	1.0	0.37
100-41-4	Ethylbenzene			1.0U	1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.0U	5.0	0.48
*91-20-3	Naphthalene			1.0U	1.0	0.44
103-65-1	n-Propylbenzene			1.0U	1.0	0.24
100-42-5	Styrene			1.0U	1.0	0.20
108-88-3	Toluene			1.0U	1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U	1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			1.0U	1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			1.0U	1.0	0.22
179601-23-1	Xylene, Meta + Para			2.0U	2.0	0.42
95-47-6	Xylene, Ortho			1.0U	1.0	0.20
Surrogates:	4	% Recovery	Control Limits			
1,2-Dichloroethane-	d4	114	81-126			
aaa-Trifluorotoluene		98	86-118			

*See Statement of Data Qualifications

Page 59 of 125

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-11	Sampled:	10/25/13 10:35		
Lab Sample ID:	1310562-13	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	11/8/13 7:00	By:	LEW
Dilution Factor:	1	Analyzed:	11/8/13 13:22	By:	LEW
QC Batch:	1312152	Analytical Batch:	3K14017		

Halogenated and Aromatic Volatiles by EPA Method 8021B

				Analytical		
CAS Number	Analyte			Result	RL	MDL
71-43-2	Benzene			1.0U	1.0	0.20
104-51-8	n-Butylbenzene			1.0U	1.0	0.28
*74-87-3	Chloromethane			1.0U J	1.0	0.37
100-41-4	Ethylbenzene			1.0U	1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.0U	5.0	0.48
*91-20-3	Naphthalene			1.0U	1.0	0.44
103-65-1	n-Propylbenzene			1.0U	1.0	0.24
100-42-5	Styrene			1.0U	1.0	0.20
108-88-3	Toluene			1.0U	1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U	1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			1.0U	1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			1.0U	1.0	0.22
179601-23-1	Xylene, Meta + Para			2.0U	2.0	0.42
95-47-6	Xylene, Ortho			1.0U	1.0	0.20
Surrogates:	4	% Recovery	Control Limits			
1,2-Dichloroethane-	-d4	123	81-126			
aaa-Trifluorotoluene	9	98	86-118			

*See Statement of Data Qualifications

Page 60 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-2A (Filtered)	Sampled:	10/24/13 10:45
Lab Sample ID:	1310562-14	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	11/7/13 0:00 By: LEW
Dilution Factor:	1	Analyzed:	11/7/13 7:44 By: LEW
QC Batch:	1312149	Analytical Batch:	3K14016

Halogenated and Aromatic Volatiles by EPA Method 8021B

CAS Number	Analyte			Analytical Result	RL	MDL
71-43-2	Benzene			4.0	1.0	0.20
104-51-8	n-Butylbenzene			1.0U	1.0	0.28
*74-87-3	Chloromethane			1.0U	1.0	0.37
100-41-4	Ethylbenzene			12	1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.0U	5.0	0.48
*91-20-3	Naphthalene			410BE	6400 DJ 1.0	0.44
103-65-1	n-Propylbenzene			1.0U	1.0	0.24
100-42-5	Styrene			1.0U	1.0	0.20
108-88-3	Toluene			11	1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U	1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			3.5	1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			8.7	1.0	0.22
179601-23-1	Xylene, Meta + Para			20	2.0	0.42
95-47-6	Xylene, Ortho			11	1.0	0.20
Surrogates:		% Recovery	Control Limits			
1,2-Dichloroethane-	14	118	81-126			
aaa-Trifluorotoluene		103	86-118			

*See Statement of Data Qualifications

Page 61 of 125

Client:	Beazer East, Inc.	Work Order:	1310562	
Project:	Koppers Superior	Description:	Laboratory Services	
Client Sample ID:	TMW-2A (Filtered)	Sampled:	10/24/13 10:45	
Lab Sample ID:	1310562-14RE1	Sampled By:	Client	
Matrix:	Water	Received:	10/29/13 8:30	
Unit:	ug/L	Prepared:	11/8/13 7:00 By: LEW	
Dilution Factor:	250	Analyzed:	11/8/13 19:02 By: LEW	
QC Batch:	1312152	Analytical Batch:	3K14017	

*Halogenated and Aromatic Volatiles by EPA Method 8021B

			Analytical		
Analyte			Result	RL	MDL
Naphthalene			6400B	250	110
	% Recovery	Control Limits			
	116	81-126		\searrow	
	98	86-118			
	Analyte Maphthalene	Naphthalene % Recovery 116	Naphthalene % Recovery Control Limits 116 81-126	Analyte Result Maphthalene 6400B % Recovery Control Limits 116 81-126	AnalyteResultRLMaphthalene6400B250% RecoveryControl Limits11681-126

*See Statement of Data Qualifications

Page 62 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-12A (Filtered)	Sampled:	10/24/13 9:20
Lab Sample ID:	1310562-15	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	11/7/13 0:00 By: LEW
Dilution Factor:	1	Analyzed:	11/7/13 8:32 By: LEW
QC Batch:	1312149	Analytical Batch:	3K14016

Halogenated and Aromatic Volatiles by EPA Method 8021B

				Analytical			
CAS Number	Analyte			Result		RL	MDL
71-43-2	Benzene			30		1.0	0.20
104-51-8	n-Butylbenzene			1.0U		1.0	0.28
*74-87-3	Chloromethane			1.0U		1.0	0.37
100-41-4	Ethylbenzene			34		1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.0U		5.0	0.48
*91-20-3	Naphthalene				6700 DJ	1.0	0.44
103-65-1	n-Propylbenzene			0.95J		1.0	0.24
100-42-5	Styrene			1.4		1.0	0.20
108-88-3	Toluene			45		1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U		1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			16		1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			41		1.0	0.22
179601-23-1	Xylene, Meta + Para			69		2.0	0.42
95-47-6	Xylene, Ortho			36		1.0	0.20
Surrogates:		% Recovery	Control Limits				
1,2-Dichloroethane-	d4	126	81-126				
aaa-Trifluorotoluene		102	86-118				

*See Statement of Data Qualifications

Page 63 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-12A (Filtered)	Sampled:	10/24/13 9:20
Lab Sample ID:	1310562-15	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	10	Analyzed:	11/9/13 3:44 By: DWJ
QC Batch:	1311584	Analytical Batch:	3K11041

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	84	5.0	0.33
208-96-8	Acenaphthylene	2.1J	5.0	0.17
120-12-7	Anthracene	1.4J	5.0	0.62
56-55-3	Benzo(a)anthracene	5.0U	5.0	0.45
50-32-8	Benzo(a)pyrene	5.0U	5.0	0.40
205-99-2	Benzo(b)fluoranthene	5.0U	5.0	0.58
207-08-9	Benzo(k)fluoranthene	5.0U	5.0	0.60
191-24-2	Benzo(g,h,i)perylene	5.0U	5.0	0.61
*65-85-0	Benzoic Acid	<u>50U</u>	50	<u>4.8</u> R
100-51-6	Benzyl Alcohol	5.0U	5.0	0.49
101-55-3	4-Bromophenyl Phenyl Ether	5.0U	5.0	0.43
85-68-7	Butyl Benzyl Phthalate	10U	10	0.56
59-50-7	4-Chloro-3-methylphenol	5.0U	5.0	1.2
106-47-8	4-Chloroaniline	10U	10	1.0
111-91-1	Bis(2-chloroethoxy)methane	1.2J	5.0	0.18
111-44-4	Bis(2-chloroethyl) Ether	5.0U	5.0	0.24
108-60-1	Bis(2-chloroisopropyl) Ether	5.0U	5.0	0.26
91-58-7	2-Chloronaphthalene	0.82J	5.0	0.17
95-57-8	2-Chlorophenol	5.0U	5.0	0.27
7005-72-3	4-Chlorophenyl Phenyl Ether	5.0U	5.0	0.48
218-01-9	Chrysene	5.0U	5.0	0.45
53-70-3	Dibenz(a,h)anthracene	5.0U	5.0	1.1
132-64-9	Dibenzofuran	12	5.0	0.41
84-74-2	Di-n-butyl Phthalate	10U	10	1.4
95-50-1	1,2-Dichlorobenzene	5.0U	5.0	0.40
541-73-1	1,3-Dichlorobenzene	5.0U	5.0	0.41
106-46-7	1,4-Dichlorobenzene	5.0U	5.0	0.20
91-94-1	3,3 '-Dichlorobenzidine	10U	10	1.2
120-83-2	2,4-Dichlorophenol	5.0U	5.0	0.92

Continued on next page

*See Statement of Data Qualifications

Page 64 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-12A (Filtered)	Sampled:	10/24/13 9:20
Lab Sample ID:	1310562-15	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	10	Analyzed:	11/9/13 3:44 By: DWJ
QC Batch:	1311584	Analytical Batch:	3K11041

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
*84-66-2	Diethyl Phthalate	2.03	5.0	0.65
*105-67-9	2,4-Dimethylphenol	_900е _990 D	10	1.7
131-11-3	Dimethyl Phthalate	5.0U	5.0	0.46
534-52-1	4,6-Dinitro-2-methylphenol	50U	50	10
51-28-5	2,4-Dinitrophenol	50U	50	12
121-14-2	2,4-Dinitrotoluene	5.0U	5.0	0.48
606-20-2	2,6-Dinitrotoluene	5.0U	5.0	0.80
117-84-0	Di-n-octyl Phthalate	5.0U	5.0	0.77
117-81-7	Bis(2-ethylhexyl) Phthalate	5.0U	5.0	1.1
206-44-0	Fluoranthene	5.0U	5.0	0.63
86-73-7	Fluorene	10	5.0	0.41
118-74-1	Hexachlorobenzene	5.0U	5.0	0.63
87-68-3	Hexachlorobutadiene	5.0U	5.0	0.40
77-47-4	Hexachlorocyclopentadiene	5.0U	5.0	0.44
67-72-1	Hexachloroethane	5.0U	5.0	0.42
193-39-5	Indeno(1,2,3-cd)pyrene	5.0U	5.0	0.80
78-59-1	Isophorone	5.0U	5.0	0.45
56-49-5	3-Methylcholanthrene	20U	20	1.2
91-57-6	2-Methylnaphthalene	150	5.0	0.15
90-12-0	1-Methylnaphthalene	98	5.0	0.20
95-48-7	2-Methylphenol	170	5.0	0.48
*106-44-5	4-Methylphenol	-730E 780 D	5.0	0.57
*91-20-3	Naphthalene	-1400E 4100 I	5.0	0.31
88-74-4	2-Nitroaniline	5.0U	5.0	1.2
99-09-2	3-Nitroaniline	10U	10	2.4
100-01-6	4-Nitroaniline	10U <mark>J</mark>	10	3.3
98-95-3	Nitrobenzene	5.0U	5.0	0.58
100-02-7	4-Nitrophenol	50U	50	12
88-75-5	2-Nitrophenol	5.0U	5.0	0.48
86-30-6	N-Nitroso-diphenylamine	5.0U	5.0	0.68
621-64-7	N-Nitroso-di-n-propylamine	5.0U	5.0	0.75

Continued on next page

*See Statement of Data Qualifications

Page 65 of 125

Cli	ent:	Beazer East, Inc.	Work Order:	1310562	
Pro	oject:	Koppers Superior	Description:	Laboratory Services	
Cli	ent Sample ID:	TMW-12A (Filtered)	Sampled:	10/24/13 9:20	
La	b Sample ID:	1310562-15	Sampled By:	Client	
Ma	atrix:	Water	Received:	10/29/13 8:30	
Un	it:	ug/L	Prepared:	10/31/13 7:55 By: ALK	
Dil	lution Factor:	10	Analyzed:	11/9/13 3:44 By: DWJ	
QC	C Batch:	1311584	Analytical Batch:	3K11041	

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

				Analytical		
CAS Number	Analyte			Result	RL	MDL
87-86-5	Pentachlorophenol			5.0U	5.0	0.81
85-01-8	Phenanthrene			0.71J	5.0	0.43
108-95-2	Phenol			23	5.0	0.34
129-00-0	Pyrene			5.0U	5.0	0.66
58-90-2	2,3,4,6-Tetrachlorophenol			50U	50	3.7
935-95-5	2,3,5,6-Tetrachlorophenol			100U	100	2.1
120-82-1	1,2,4-Trichlorobenzene			5.0U	5.0	0.27
88-06-2	2,4,6-Trichlorophenol			5.0U	5.0	0.85
95-95-4	2,4,5-Trichlorophenol			5.0U	5.0	0.99
Surrogates:	%	6 Recovery	Control Limits			
2-Fluorophenol		48	20-70			
Phenol-d6		31	18-45			
Nitrobenzene-d5		75	31-123			

Nitrobenzene-d5	75	31-123
2-Fluorobiphenyl	70	25-113
2,4,6-Tribromophenol	88	30-121
o-Terphenyl	84	42-125

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-12A (Filtered)	Sampled:	10/24/13 9:20		
Lab Sample ID:	1310562-15RE1	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	11/8/13 7:00	By:	LEW
Dilution Factor:	200	Analyzed:	11/8/13 19:50	By:	LEW
QC Batch:	1312152	Analytical Batch:	3K14017		

*Halogenated and Aromatic Volatiles by EPA Method 8021B

MDL	RL	Analytical Result			Analyte	CAS Number
88	200	6700B			Naphthalene	*91-20-3
			Control Limits	% Recovery		Surrogates:
			81-126	109	d4	1,2-Dichloroethane-c
			86-118	98	2	aaa-Trifluorotoluene
			86-118	98	2	aaa Trifluorotoluene

*See Statement of Data Qualifications

Page 67 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-12A (Filtered)	Sampled:	10/24/13 9:20
Lab Sample ID:	1310562-15RE1	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	200	Analyzed:	11/12/13 19:48 By: JLB
QC Batch:	1811584	Analytical Batch:	3K12078
	\mathbf{X}		

Semivolatile Organic Compounds by EPA Method 8270C

CAC Number		Analytical Result		
CAS Number	Analyte	Kesuit	RL	MDL
83-32-9	Acenaphthene	86J	100	6.6
208-96-8	Acenaphthylene	100U	100	3.4
120-12-7	Anthracene	100U	100	12
56-55-3	Benzo(a)anthracene	100U	100	9.1
50-32-8	Benzo(a)pyrene	100U	100	8.1
205-99-2	Benzo(b)fluoranthene	100U	100	12
207-08-9	Benzo(k)fluoranthene	100U	100	12
191-24-2	Benzo(g,h,i)perylene	100U	100	12
*65-85-0	Benzoic Acid	1000U	1000	96
100-51-6	Benzyl Alcohol	100U	100	9.7
101-55-3	4-Bromophenyl Phenyl Ether	100U	100	8.6
85-68-7	Butyl Benzyl Phthalate	200U	200	11
59-50-7	4-Chloro-3-methylphenol	100U	100	23
106-47-8	4-Chloroaniline	200U	200	20
111-91-1	Bis(2-chloroethoxy)methane	100U	100	3.7
111-44-4	Bis(2-chloroethyl) Ether	100U	100	4.7
108-60-1	Bis(2-chloroisopropyl) Ether	10QU	100	5.2
91-58-7	2-Chloronaphthalene	100U	100	3.4
95-57-8	2-Chlorophenol	100U	100	5.3
7005-72-3	4-Chiorophenyl Phenyl Ether	100U	100	9.6
218-01-9	Chrysene	100U	100	9.1
53-70-3	Dibenz(a,h)anthracene	100U	100	23
132-64-9	Dibenzofuran	12J	100	8.2
84-74-2	Di-n-butyl Phthalate	200U	200	27
95-50-1	1,2-Dichlorobenzene	100U	100	7.9
541-73-1	1,3-Dichlorobenzene	100U	100	8.2
106-46-7	1,4-Dichlorobenzene	100U	100	3.9
91-94-1	3,3 '-Dichlorobenzidine	200U	200	25
120-83-2	2,4-Dichlorophenol	100U	100	18

Continued on next page

*See Statement of Data Qualifications

Page 68 of 125

Client:	Beazer East, Inc.
Project:	Koppers Superior
Client Sample ID:	TMW-12A (Filtered)
Lab Sample IQ:	1310562-15RE1
Matrix:	Water
Unit:	ug/L
Dilution Factor:	200
QC Batch:	1311584

Work Order:	1310562			
Description:	Laborator	y Services		/
Sampled:	10/24/13	9:20		
Sampled By:	Client			
Received:	10/29/13	8:30		
Prepared:	10/31/13	7:55	By:	ALK
Analyzed:	11/12/13	19:48	By:	JLB
Analytical Batch:	3K12078			

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
84-66-2	Diethyl Phthalate	100U	100	13
105-67-9	2,4-Dimethylphenol	990	200	34
131-11-3	Dimethyl Phthalate	100U	100	9.1
534-52-1	4,6-Dinitro-2-methylphenol	1000U	1000	200
51-28-5	2,4-Dinitrophenol	1000U	1000	230
121-14-2	2,4-Dinitrotoluene	100U	100	9.5
606-20-2	2,6-Dinitrotoluene	100U	100	16
117-84-0	Di-n-octyl Phthalate	100U	100	15
117-81-7	Bis(2-ethylhexyl) Phthalate	100U	100	23
206-44-0	Fluoranthene	100U	100	13
86-73-7	Fluorene	10J	100	8.3
118-74-1	Hexachlorobenzene	100U	100	13
87-68-3	Hexachlorobutadiene	100U	100	7.9
77-47-4	Hexachlorocyclopentadiene	100U	100	8.9
67-72-1	Hexachloroethane	100U	100	8.4
193-39-5	Indeno(1,2,3-cd)pyrene	100U	100	16
78-59-1	Isophorone	1000	100	9.0
56-49-5	3-Methylcholanthrene	4000	400	24
91-57-6	2-Methylnaphthalene	160	100	3.0
90-12-0	1-Methylpaphthalene	110	100	3.9
95-48-7	2-Methylphenol	150	100	9.5
106-44-5	4-Methylphenol	780	100	11
91-20-3	Naphthalene	4100	100	6.1
88-74-4	2-Nitroaniline	100U	100	23
99-09-2	3-Nitroaniline	200U	200	49
100-01-6	4-Nitroaniline	200U	200	66
98-95-3	Nitrobenzene	100U	100	12
100-02-7	4-Nitrophenol	1000U	1000	250
88-75-5	2-Nitrophenol	100U	100	9.5
86-30-6	N-Nitroso-diphenylamine	100U	100	14
621-64-7	N-Nitroso-di-n-propylamine	100U	100	15

Continued on next page

Page 69 of 125

Description: Sampled: Sampled By:	Laboratory Services 10/24/13 9:20 Client		
•			
Sampled By:	Client		
Sumpicu by:	Cilent		
Received:	10/29/13 8:30		
Prepared:	10/31/13 7:55	By:	ALK
Analyzed:	11/12/13 19:48	By:	JLB
Analytical Batch:	3K12078		

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
87-86-5	Pentachlorophenol	100U	100	16
85-01-8	Phenanthrene	1004	100	8.5
108-95-2	Phenol	100U	100	6.7
129-00-0	Pyrene	100U	100	13
58-90-2	2,3,4,6-Tetrachlorophenol	1000U	1000	74
935-95-5	2,3,5,6-Tetrachlorophenol	2000U	2000	43
120-82-1	1,2,4-Trichlorobenzene	100U	100	5.3
88-06-2	2,4,6-Trichlorophenol	100U	100	17
95-95-4	2,4,5-Trichlorophenol	100U	100	20

Page 70 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-08 (Filtered)	Sampled:	10/24/13 11:30
Lab Sample ID:	1310562-16	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	11/6/13 0:00 By: LEW
Dilution Factor:	1	Analyzed:	11/6/13 5:52 By: LEW
QC Batch:	1312148	Analytical Batch:	3K14015

Halogenated and Aromatic Volatiles by EPA Method 8021B

				Analytical		
CAS Number	Analyte			Result	RL	MDL
71-43-2	Benzene			1.0U	1.0	0.20
104-51-8	n-Butylbenzene			1.0U	1.0	0.28
*74-87-3	Chloromethane			1.0U	1.0	0.37
100-41-4	Ethylbenzene			1.0U	1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.0U	5.0	0.48
*91-20-3	Naphthalene			1.0U <mark>J</mark>	1.0	0.44 R
103-65-1	n-Propylbenzene			1.0U	1.0	0.24
100-42-5	Styrene			1.0U	1.0	0.20
108-88-3	Toluene			1.0U	1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U	1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			1.0U	1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			1.0U	1.0	0.22
179601-23-1	Xylene, Meta + Para			2.0U	2.0	0.42
95-47-6	Xylene, Ortho			1.0U	1.0	0.20
Surrogates:		% Recovery	Control Limits			
1,2-Dichloroethane-d4	!	114	81-126			
aaa-Trifluorotoluene		92	86-118			

*See Statement of Data Qualifications

Page 71 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-08 (Filtered)	Sampled:	10/24/13 11:30
Lab Sample ID:	1310562-16	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	1	Analyzed:	11/8/13 23:05 By: DWJ
QC Batch:	1311584	Analytical Batch:	3K11041

*Semivolatile Organic Compounds by EPA Method 8270C

83-32-9Acenaphthene208-96-8Acenaphthylene120-12-7Anthracene56-55-3Benzo(a)anthracene50-32-8Benzo(a)pyrene205-99-2Benzo(b)fluoranthene207-08-9Benzo(k)fluoranthene191-24-2Benzo(g,h,i)perylene*65-85-0Benzoi Acid*100-51-6Benzyl Alcohol101-55-34-Bromophenyl Ether85-68-7Butyl Benzyl Phthalate	Analytical Result		MDL
120-12-7 Anthracene 56-55-3 Benzo(a)anthracene 50-32-8 Benzo(a)pyrene 205-99-2 Benzo(b)fluoranthene 207-08-9 Benzo(k)fluoranthene 191-24-2 Benzo(g,h,i)perylene *65-85-0 Benzoic Acid *100-51-6 Benzyl Alcohol 101-55-3 4-Bromophenyl Phenyl Ether	0.56U	0.56	0.037
56-55-3 Benzo(a)anthracene 50-32-8 Benzo(a)pyrene 205-99-2 Benzo(b)fluoranthene 207-08-9 Benzo(k)fluoranthene 191-24-2 Benzo(g,h,i)perylene *65-85-0 Benzoi Acid *100-51-6 Benzyl Alcohol 101-55-3 4-Bromophenyl Phenyl Ether	0.56U	0.56	0.019
50-32-8 Benzo(a)pyrene 205-99-2 Benzo(b)fluoranthene 207-08-9 Benzo(k)fluoranthene 191-24-2 Benzo(g,h,i)perylene *65-85-0 Benzoic Acid *100-51-6 Benzyl Alcohol 101-55-3 4-Bromophenyl Phenyl Ether	0.56U	0.56	0.068
205-99-2Benzo(b)fluoranthene207-08-9Benzo(k)fluoranthene191-24-2Benzo(g,h,i)perylene*65-85-0Benzoic Acid*100-51-6Benzyl Alcohol101-55-34-Bromophenyl Phenyl Ether	0.56U	0.56	0.050
207-08-9 Benzo(k)fluoranthene 191-24-2 Benzo(g,h,i)perylene *65-85-0 Benzoic Acid *100-51-6 Benzyl Alcohol 101-55-3 4-Bromophenyl Phenyl Ether	0.56U	0.56	0.045
191-24-2 Benzo(g,h,i)perylene *65-85-0 Benzoic Acid *100-51-6 Benzyl Alcohol 101-55-3 4-Bromophenyl Phenyl Ether	0.56U	0.56	0.065
*65-85-0 Benzoic Acid *100-51-6 Benzyl Alcohol 101-55-3 4-Bromophenyl Phenyl Ether	0.56U	0.56	0.066
*100-51-6Benzyl Alcohol101-55-34-Bromophenyl Phenyl Ether	0.56U	0.56	0.068
101-55-3 4-Bromophenyl Phenyl Ether	1.4J	5.6	0.53
	0.56U <mark>J</mark>	0.56	0.054
85-68-7 Butyl Benzyl Phthalate	0.56U	0.56	0.048
but but but but but but but but but but	1.10	1.1	0.062
59-50-7 4-Chloro-3-methylphenol	0.56U	0.56	0.13
106-47-8 4-Chloroaniline	1.10	1.1	0.11
111-91-1 Bis(2-chloroethoxy)methane	0.56U	0.56	0.020
111-44-4Bis(2-chloroethyl) Ether	0.56U	0.56	0.026
108-60-1Bis(2-chloroisopropyl) Ether	0.56U	0.56	0.029
91-58-7 2-Chloronaphthalene	0.56U	0.56	0.019
*95-57-8 2-Chlorophenol	0.56U J	0.56	0.030
7005-72-34-Chlorophenyl Phenyl Ether	0.56U	0.56	0.053
218-01-9 Chrysene	0.56U	0.56	0.050
53-70-3 Dibenz(a,h)anthracene	0.56U	0.56	0.13
132-64-9 Dibenzofuran	0.56U	0.56	0.045
84-74-2 Di-n-butyl Phthalate	0.18J	1.1	0.15
95-50-1 1,2-Dichlorobenzene	0.56U	0.56	0.044
541-73-1 1,3-Dichlorobenzene	0.56U	0.56	0.046
106-46-7 1,4-Dichlorobenzene	0.56U	0.56	0.022
91-94-1 3,3´-Dichlorobenzidine			0.14
120-83-2 2,4-Dichlorophenol	1.10	1.1	0.14

Continued on next page

*See Statement of Data Qualifications

Page 72 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-08 (Filtered)	Sampled:	10/24/13 11:30
Lab Sample ID:	1310562-16	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	1	Analyzed:	11/8/13 23:05 By: DWJ
QC Batch:	1311584	Analytical Batch:	3K11041

*Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
*84-66-2	Diethyl Phthalate	_ 0.56	5 UB 0.56	0.072
105-67-9	2,4-Dimethylphenol	1.1U	1.1	0.19
131-11-3	Dimethyl Phthalate	0.56U	0.56	0.051
534-52-1	4,6-Dinitro-2-methylphenol	5.6U	5.6	1.1
51-28-5	2,4-Dinitrophenol	5.6U	5.6	1.3
121-14-2	2,4-Dinitrotoluene	0.56U	0.56	0.053
606-20-2	2,6-Dinitrotoluene	0.56U	0.56	0.089
117-84-0	Di-n-octyl Phthalate	0.56U	0.56	0.085
117-81-7	Bis(2-ethylhexyl) Phthalate	0.56U	0.56	0.13
206-44-0	Fluoranthene	0.56U	0.56	0.070
86-73-7	Fluorene	0.56U	0.56	0.046
118-74-1	Hexachlorobenzene	0.56U	0.56	0.070
87-68-3	Hexachlorobutadiene	0.56U	0.56	0.044
77-47-4	Hexachlorocyclopentadiene	0.56U	0.56	0.049
67-72-1	Hexachloroethane	0.56U	0.56	0.046
193-39-5	Indeno(1,2,3-cd)pyrene	0.56U	0.56	0.089
78-59-1	Isophorone	0.56U	0.56	0.050
56-49-5	3-Methylcholanthrene	2.2U	2.2	0.13
91-57-6	2-Methylnaphthalene	0.033J	0.56	0.017
90-12-0	1-Methylnaphthalene	0.56U	0.56	0.022
95-48-7	2-Methylphenol	0.56U	0.56	0.053
106-44-5	4-Methylphenol	0.56U	0.56	0.063
91-20-3	Naphthalene	0.12J	0.56	0.034
88-74-4	2-Nitroaniline	0.56U	0.56	0.13
99-09-2	3-Nitroaniline	1.1U	1.1	0.27
100-01-6	4-Nitroaniline	1.1U <mark>J</mark>	1.1	0.37
98-95-3	Nitrobenzene	0.56U	0.56	0.065
100-02-7	4-Nitrophenol	5.6U	5.6	1.4
88-75-5	2-Nitrophenol	0.56U	0.56	0.053
86-30-6	N-Nitroso-diphenylamine	0.56U	0.56	0.075
621-64-7	N-Nitroso-di-n-propylamine	0.56U	0.56	0.084

Continued on next page

*See Statement of Data Qualifications

Page 73 of 125

Client:	Beazer East, Inc.	Work Order:	1310562		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-08 (Filtered)	Sampled:	10/24/13 11:30		
Lab Sample ID:	1310562-16	Sampled By:	Client		
Matrix:	Water	Received:	10/29/13 8:30		
Unit:	ug/L	Prepared:	10/31/13 7:55	By:	ALK
Dilution Factor:	1	Analyzed:	11/8/13 23:05	By:	DWJ
QC Batch:	1311584	Analytical Batch:	3K11041		

*Semivolatile Organic Compounds by EPA Method 8270C (Continued)

				Analytical		
CAS Number	Analyte			Result	RL	MDL
87-86-5	Pentachlorophenol			0.56U	0.56	0.090
85-01-8	Phenanthrene			0.56U	0.56	0.047
*108-95-2	Phenol			0.56U J	0.56	0.037
129-00-0	Pyrene			0.56U	0.56	0.073
58-90-2	2,3,4,6-Tetrachlorophenol			5.6U	5.6	0.41
935-95-5	2,3,5,6-Tetrachlorophenol			11U	11	0.24
120-82-1	1,2,4-Trichlorobenzene			0.56U	0.56	0.030
88-06-2	2,4,6-Trichlorophenol			0.56U	0.56	0.095
95-95-4	2,4,5-Trichlorophenol			0.56U	0.56	0.11
Surrogates:	% R	Recovery	Control Limits			
2-Fluorophenol		26	20-70			
Phenol-d6		4	18-45			
Nitrobenzene-d5		74	31-123			
2-Fluorobiphenyl		73	25-113			

30-121

42-125

82

87

*See Statement of Data Qualifications

Page 74 of 125

2,4,6-Tribromophenol

o-Terphenyl

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-08	Sampled:	10/24/13 15:25
Lab Sample ID:	1310562-17	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	11/6/13 0:00 By: LEW
Dilution Factor:	1	Analyzed:	11/6/13 6:40 By: LEW
QC Batch:	1312148	Analytical Batch:	3K14015

Halogenated and Aromatic Volatiles by EPA Method 8021B

				Analytical		
CAS Number	Analyte			Result	RL	MDL
71-43-2	Benzene			1.0U	1.0	0.20
104-51-8	n-Butylbenzene			1.0U	1.0	0.28
*74-87-3	Chloromethane			1.0U	1.0	0.37
100-41-4	Ethylbenzene			1.0U	1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.0U	5.0	0.48
*91-20-3	Naphthalene			1.0U <mark>J</mark>	1.0	0.44
103-65-1	n-Propylbenzene			1.0U	1.0	0.24
100-42-5	Styrene			1.0U	1.0	0.20
108-88-3	Toluene			1.0U	1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U	1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			1.0U	1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			1.0U	1.0	0.22
179601-23-1	Xylene, Meta + Para			2.0U	2.0	0.42
95-47-6	Xylene, Ortho			1.0U	1.0	0.20
Surrogates:	g	% Recovery	Control Limits			
1,2-Dichloroethane-de	4	108	81-126			
aaa-Trifluorotoluene		94	86-118			

*See Statement of Data Qualifications

Page 75 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-08	Sampled:	10/24/13 15:25
Lab Sample ID:	1310562-17	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	1	Analyzed:	11/7/13 0:02 By: JLB
QC Batch:	1311584	Analytical Batch:	3K07013

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	0.55U	0.55	0.036
208-96-8	Acenaphthylene	0.55U	0.55	0.019
120-12-7	Anthracene	0.55U	0.55	0.068
56-55-3	Benzo(a)anthracene	0.55U	0.55	0.050
50-32-8	Benzo(a)pyrene	0.55U	0.55	0.044
205-99-2	Benzo(b)fluoranthene	0.55U	0.55	0.064
207-08-9	Benzo(k)fluoranthene	0.55U	0.55	0.065
191-24-2	Benzo(g,h,i)perylene	0.55U	0.55	0.067
*65 85 0	Benzoic Acid	5.50	5.5	
100-51-6	Benzyl Alcohol	0.55U	0.55	0.053
101-55-3	4-Bromophenyl Phenyl Ether	0.55U	0.55	0.047
85-68-7	Butyl Benzyl Phthalate	1.1U	1.1	0.061
59-50-7	4-Chloro-3-methylphenol	0.55U	0.55	0.13
106-47-8	4-Chloroaniline	1.1U	1.1	0.11
111-91-1	Bis(2-chloroethoxy)methane	0.55U	0.55	0.020
111-44-4	Bis(2-chloroethyl) Ether	0.55U	0.55	0.026
108-60-1	Bis(2-chloroisopropyl) Ether	0.55U	0.55	0.028
91-58-7	2-Chloronaphthalene	0.55U	0.55	0.019
95-57-8	2-Chlorophenol	0.55U	0.55	0.029
7005-72-3	4-Chlorophenyl Phenyl Ether	0.55U	0.55	0.053
218-01-9	Chrysene	0.55U	0.55	0.050
53-70-3	Dibenz(a,h)anthracene	0.55U	0.55	0.12
132-64-9	Dibenzofuran	0.55U	0.55	0.045
84-74-2	Di-n-butyl Phthalate	0.16J	1.1	0.15
95-50-1	1,2-Dichlorobenzene	0.55U	0.55	0.044
541-73-1	1,3-Dichlorobenzene	0.55U	0.55	0.045
106-46-7	1,4-Dichlorobenzene	0.55U	0.55	0.022
91-94-1	3,3'-Dichlorobenzidine	1.1U	1.1	0.14
120-83-2	2,4-Dichlorophenol	0.55U	0.55	0.10

Continued on next page

*See Statement of Data Qualifications

Page 76 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-08	Sampled:	10/24/13 15:25
Lab Sample ID:	1310562-17	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	1	Analyzed:	11/7/13 0:02 By: JLB
QC Batch:	1311584	Analytical Batch:	3K07013

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result RL	MDL
*84-66-2	Diethyl Phthalate		0.072
105-67-9	2,4-Dimethylphenol	1.1U 1.1	0.18
131-11-3	Dimethyl Phthalate	0.55U 0.55	0.050
534-52-1	4,6-Dinitro-2-methylphenol	5.5U 5.5	1.1
51-28-5	2,4-Dinitrophenol	5.5U 5.5	1.3
121-14-2	2,4-Dinitrotoluene	0.55U 0.55	0.052
606-20-2	2,6-Dinitrotoluene	0.55U 0.55	0.088
117-84-0	Di-n-octyl Phthalate	0.55U 0.55	0.084
117-81-7	Bis(2-ethylhexyl) Phthalate	0.15J 0.55	0.12
206-44-0	Fluoranthene	0.55U 0.55	0.069
86-73-7	Fluorene	0.55U 0.55	0.045
118-74-1	Hexachlorobenzene	0.55U 0.55	0.069
87-68-3	Hexachlorobutadiene	0.55U 0.55	0.043
77-47-4	Hexachlorocyclopentadiene	0.55U 0.55	0.049
67-72-1	Hexachloroethane	0.55U 0.55	0.046
193-39-5	Indeno(1,2,3-cd)pyrene	0.55U 0.55	0.088
78-59-1	Isophorone	0.55U 0.55	0.049
56-49-5	3-Methylcholanthrene	2.20 2.2	0.13
91-57-6	2-Methylnaphthalene	0.55U 0.55	0.016
90-12-0	1-Methylnaphthalene	0.55U 0.55	0.021
95-48-7	2-Methylphenol	0.55U 0.55	0.052
106-44-5	4-Methylphenol	0.55U 0.55	0.062
91-20-3	Naphthalene	0.077J 0.55	0.034
88-74-4	2-Nitroaniline	0.55U 0.55	0.13
99-09-2	3-Nitroaniline	1.1U 1.1	0.27
100-01-6	4-Nitroaniline	1.1U 1.1	0.36
98-95-3	Nitrobenzene	0.55U 0.55	0.064
100-02-7	4-Nitrophenol	5.5U J 5.5	1.4
88-75-5	2-Nitrophenol	0.55U 0.55	0.052
86-30-6	N-Nitroso-diphenylamine	0.55U 0.55	0.074
621-64-7	N-Nitroso-di-n-propylamine	0.55U 0.55	0.083

Continued on next page

*See Statement of Data Qualifications

Page 77 of 125

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-08	Sampled:	10/24/13 15:25
Lab Sample ID:	1310562-17	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	1	Analyzed:	11/7/13 0:02 By: JLB
QC Batch:	1311584	Analytical Batch:	3K07013

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAC North an	Austria		Analytical	-	
CAS Number	Analyte		Result	RL	MDL
87-86-5	Pentachlorophenol		0.55U	0.55	0.089
85-01-8	Phenanthrene		0.55U	0.55	0.047
108-95-2	Phenol		0.55U	0.55	0.037
129-00-0	Pyrene		0.55U	0.55	0.072
58-90-2	2,3,4,6-Tetrachlorophenol		5.5U	5.5	0.41
935-95-5	2,3,5,6-Tetrachlorophenol		11U	11	0.23
120-82-1	1,2,4-Trichlorobenzene		0.55U	0.55	0.029
88-06-2	2,4,6-Trichlorophenol		0.55U	0.55	0.094
95-95-4	2,4,5-Trichlorophenol		0.55U	0.55	0.11
Surrogates:	% Recover	y Control Limits			
2-Fluorophenol	27	20-70			
Phenol-d6	26	18-45			
Nitrobenzene-d5	74	31-123			
2-Fluorobiphenyl	69	25-113			

30-121

42-125

60

89

Page 78 of 125

2,4,6-Tribromophenol

o-Terphenyl

Client:	Beazer East, Inc.	Work Order:	1310562
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	Trip Blank	Sampled:	10/24/13 0:00
Lab Sample ID:	1310562-18	Sampled By:	Client
Matrix:	Water	Received:	10/29/13 8:30
Unit:	ug/L	Prepared:	11/6/13 0:00 By: LEW
Dilution Factor:	1	Analyzed:	11/6/13 5:03 By: LEW
QC Batch:	1312148	Analytical Batch:	3K14015

Halogenated and Aromatic Volatiles by EPA Method 8021B

				Analytical		
CAS Number	Analyte			Result	RL	MDL
71-43-2	Benzene			1.0U	1.0	0.20
104-51-8	n-Butylbenzene			1.0U	1.0	0.28
*74-87-3	Chloromethane			1.0U	1.0	0.37
100-41-4	Ethylbenzene			1.0U	1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.0U	5.0	0.48
*91-20-3	Naphthalene			1.0U <mark>J</mark>	1.0	0.44 🕂
103-65-1	n-Propylbenzene			1.0U	1.0	0.24
100-42-5	Styrene			1.0U	1.0	0.20
108-88-3	Toluene			1.0U	1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U	1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			1.0U	1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			1.0U	1.0	0.22
179601-23-1	Xylene, Meta + Para			2.0U	2.0	0.42
95-47-6	Xylene, Ortho			1.0U	1.0	0.20
Surrogates:		% Recovery	Control Limits			
1,2-Dichloroethane-d4		98	81-126			
aaa-Trifluorotoluene		99	86-118			

*See Statement of Data Qualifications

Page 79 of 125

Client:	Beazer East, Inc.	Work Order:	1310588
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-02A (Filtered)	Sampled:	10/28/13 12:35
Lab Sample ID:	1310588-01	Sampled By:	Client
Matrix:	Water	Received:	10/30/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	10	Analyzed:	11/9/13 1:59 By: DWJ
QC Batch:	1311584	Analytical Batch:	3K11041

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	110	5.3	0.35
208-96-8	Acenaphthylene	0.43J	5.3	0.18
120-12-7	Anthracene	5.30	5.3	0.65
56-55-3	Benzo(a)anthracene	5.30	5.3	0.48
50-32-8	Benzo(a)pyrene	5.30	5.3	0.43
205-99-2	Benzo(b)fluoranthene	5.30	5.3	0.62
207-08-9	Benzo(k)fluoranthene	5.30	5.3	0.63
191-24-2	Benzo(g,h,i)perylene	5.30	5.3	0.65
*65-85-0	Benzoic Acid	373	53	5.1
100-51-6	Benzyl Alcohol	5.30	5.3	0.52
101-55-3	4-Bromophenyl Phenyl Ether	5.30	5.3	0.46
85-68-7	Butyl Benzyl Phthalate	11U	11	0.59
59-50-7	4-Chloro-3-methylphenol	5.30	5.3	1.2
106-47-8	4-Chloroaniline	110	11	1.1
111-91-1	Bis(2-chloroethoxy)methane	5.30	5.3	0.20
111-44-4	Bis(2-chloroethyl) Ether	5.30	5.3	0.25
108-60-1	Bis(2-chloroisopropyl) Ether	5.30	5.3	0.27
91-58-7	2-Chloronaphthalene	5.30	5.3	0.18
95-57-8	2-Chlorophenol	5.30	5.3	0.28
7005-72-3	4-Chlorophenyl Phenyl Ether	5.30	5.3	0.51
218-01-9	Chrysene	5.30	5.3	0.48
53-70-3	Dibenz(a,h)anthracene	5.30	5.3	1.2
132-64-9	Dibenzofuran	15	5.3	0.43
84-74-2	Di-n-butyl Phthalate	11U	11	1.4
95-50-1	1,2-Dichlorobenzene	5.3U	5.3	0.42
541-73-1	1,3-Dichlorobenzene	5.3U	5.3	0.44
106-46-7	1,4-Dichlorobenzene	5.3U	5.3	0.21
91-94-1	3,3 '-Dichlorobenzidine	11U	11	1.3
120-83-2	2,4-Dichlorophenol	5.3U	5.3	0.97
*84-66-2	Diethyl Phthalate	1.5J	5.3	0.69
105-67-9	2,4-Dimethylphenol	170	11	1.8

Continued on next page

*See Statement of Data Qualifications

Page 80 of 125

Client:	Beazer East, Inc.	Work Order:	1310588
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-02A (Filtered)	Sampled:	10/28/13 12:35
Lab Sample ID:	1310588-01	Sampled By:	Client
Matrix:	Water	Received:	10/30/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	10	Analyzed:	11/9/13 1:59 By: DWJ
QC Batch:	1311584	Analytical Batch:	3K11041

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
131-11-3	Dimethyl Phthalate	5.3U	5.3	0.48
534-52-1	4,6-Dinitro-2-methylphenol	53U	53	11
51-28-5	2,4-Dinitrophenol	53U	53	12
121-14-2	2,4-Dinitrotoluene	5.3U	5.3	0.51
606-20-2	2,6-Dinitrotoluene	5.3U	5.3	0.85
117-84-0	Di-n-octyl Phthalate	5.3U	5.3	0.81
117-81-7	Bis(2-ethylhexyl) Phthalate	5.3U	5.3	1.2
206-44-0	Fluoranthene	5.3U	5.3	0.67
86-73-7	Fluorene	16	5.3	0.44
118-74-1	Hexachlorobenzene	5.3U	5.3	0.67
87-68-3	Hexachlorobutadiene	5.3U	5.3	0.42
77-47-4	Hexachlorocyclopentadiene	5.3U	5.3	0.47
67-72-1	Hexachloroethane	5.3U	5.3	0.44
193-39-5	Indeno(1,2,3-cd)pyrene	5.3U	5.3	0.85
78-59-1	Isophorone	5.3U	5.3	0.48
56-49-5	3-Methylcholanthrene	21U	21	1.3
91-57-6	2-Methylnaphthalene	150	5.3	0.16
90-12-0	1-Methylnaphthalene	94	5.3	0.21
95-48-7	2-Methylphenol	44	5.3	0.51
106-44-5	4-Methylphenol	88	5.3	0.60
*91-20-3	Naphthalene	1500E	4100 D ^{5.3}	0.33
88-74-4	2-Nitroaniline	5.3U	5.3	1.2
99-09-2	3-Nitroaniline	11U	11	2.6
100-01-6	4-Nitroaniline	11U J	11	3.5
98-95-3	Nitrobenzene	5.3U	5.3	0.62
100-02-7	4-Nitrophenol	53U	53	13
88-75-5	2-Nitrophenol	5.3U	5.3	0.51
86-30-6	N-Nitroso-diphenylamine	5.3U	5.3	0.72
621-64-7	N-Nitroso-di-n-propylamine	5.3U	5.3	0.80
87-86-5	Pentachlorophenol	2.93	5.3	0.86
85-01-8	Phenanthrene	0.53J	5.3	0.45

Continued on next page

*See Statement of Data Qualifications

Page 81 of 125

Client:	Beazer East, Inc.	Work Order:	1310588
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-02A (Filtered)	Sampled:	10/28/13 12:35
Lab Sample ID:	1310588-01	Sampled By:	Client
Matrix:	Water	Received:	10/30/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	10	Analyzed:	11/9/13 1:59 By: DWJ
QC Batch:	1311584	Analytical Batch:	3K11041

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte			Analytical Result	RL	MDL
108-95-2	Phenol			11	5.3	0.36
129-00-0	Pyrene			5.3U	5.3	0.70
58-90-2	2,3,4,6-Tetrachlorophenol			53U	53	3.9
935-95-5	2,3,5,6-Tetrachlorophenol			110U	110	2.3
120-82-1	1,2,4-Trichlorobenzene			5.3U	5.3	0.28
88-06-2	2,4,6-Trichlorophenol			5.3U	5.3	0.91
95-95-4	2,4,5-Trichlorophenol			5.3U	5.3	1.1
Surrogates:		% Recovery	Control Limits			
2-Fluorophenol		50	20-70			
Phenol-d6		31	18-45			
Nitrobenzene-d5		78	31-123			
2-Fluorobiphenyl		81	25-113			
2,4,6-Tribromophenol		97	30-121			
o-Terphenyl		95	42-125			

Page 82 of 125

Client: Beazer East, Inc. Project: Koppers Superior Client Sample ID: TMW-02A (Filtered) Lab Sample ID: 1310588-01RE1 Matrix: Water Unit: ug/L 200 Dilution Factor: QC Batch: 1311584

Work Order:	1310588
Description:	Laboratory Services
Sampled:	10/28/13 12:35
Sampled By:	Client
Received:	10/30/13 8:30
Prepared:	10/31/13 7:55 By: ALK
Analyzed:	11/12/13 20:23 By: JLB
Analytical Batch:	3K12078

Semivolatile Organic Compounds by EPA Method 8270

	\mathbf{X}	Analytical		
CAS Number	Analyte	Result	RL	MDL
83-32-9	Acenaphthene	1003	110	7.0
208-96-8	Acenaphthylene	110U	110	3.6
120-12-7	Anthracene	110U	110	13
56-55-3	Benzo(a)anthracene	110U	110	9.7
50-32-8	Benzo(a)pyrene	110U	110	8.6
205-99-2	Benzo(b)fluoranthene	110U	110	12
207-08-9	Benzo(k)fluoranthene	110U	110	13
191-24-2	Benzo(g,h,i)perylene	110U	110	13
*65-85-0	Benzoic Acid	1100U	1100	100
100-51-6	Benzyl Alcohol	110U	110	10
101-55-3	4-Bromophenyl Phenyl Ether	110U	110	9.1
85-68-7	Butyl Benzyl Phthalate	210U	210	12
59-50-7	4-Chloro-3-methylphenol	110U	110	24
106-47-8	4-Chloroaniline	210U	210	22
111-91-1	Bis(2-chloroethoxy)methane	110U	110	3.9
111-44-4	Bis(2-chloroethyl) Ether	του	110	5.0
108-60-1	Bis(2-chloroisopropy) Ether	1100	110	5.5
91-58-7	2-Chloronaphtharene	110U	110	3.6
95-57-8	2-Chloropherol	110U	110	5.7
7005-72-3	4-Chlorophenyl Phenyl Ether	110U	110	10
218-01-9	Chrysene	110U	110	9.6
53-70-3	Dibenz(a,h)anthracene	110U	110	24
132-64-9	Dibenzofuran	13J	110	8.7
84-74-2	Di-n-butyl Phthalate	210U	210	29
95-50-1	1,2-Dichlorobenzene	110U	110	8.4
541-73-1	1,3-Dichlorobenzene	110U	110	8.7
106-46-7	1,4-Dichlorobenzene	110U	110	4.2
91-94-1	3,3 '-Dichlorobenzidine	210U	210	26
120-83-2	2,4-Dichlorophenol	110U	110	19
84-66-2	Diethyl Phthalate	110U	110	14
105-67-9	2,4-Dimethylphenol	150J	210	36

Continued on next page

*See Statement of Data Qualifications

Page 83 of 125

This report shall not be reproduced, except in full, without written authorization of TriMatrix Laboratories, Inc.

Individual sample results relate only to the sample tested.

Client:	Beazer East, Inc.	Work Order:	1310588
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-02A (Filtered)	Sampled:	10/28/13 12:35
Lab Sample ID:	1310588-01RE1	Sampled By:	Client
Matrix:	Water	Received:	10/30/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	200	Analyzed:	11/12/13 20:23 By: JLB
QC Batch:	1311584	Analytical Batch:	3K12078
	\mathbf{X}		

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

	\mathbf{X}	Analytical		
CAS Number	Analyte	Result	RL	MDL
131-11-3	Dimethyl Phthalate	110U	110	9.7
534-52-1	4,6-Dinitro-2-methylphenol	1100U	1100	220
51-28-5	2,4-Dinitrophenol	1100U	1100	250
121-14-2	2,4-Dinitrotoluene	110U	110	10
606-20-2	2,6-Dinitrotoluene	110U	110	17
117-84-0	Di-n-octyl Phthalate	110U	110	16
117-81-7	Bis(2-ethylhexyl) Phthalate	110U	110	24
206-44-0	Fluoranthene	110U	110	13
86-73-7	Fluorene	13J	110	8.8
118-74-1	Hexachlorobenzene	110U	110	13
87-68-3	Hexachlorobutadiene	110U	110	8.4
77-47-4	Hexachlorocyclopentadiene	110U	110	9.4
67-72-1	Hexachloroethane	110U	110	8.9
193-39-5	Indeno(1,2,3-cd)pyrene	110U	110	17
78-59-1	Isophorone	110U	110	9.6
56-49-5	3-Methylcholanthrene	430U	430	26
91-57-6	2-Methylnaphthalene	140	110	3.2
90-12-0	1-Methylnaphthalene	87)	110	4.1
95-48-7	2-Methylphepol	23J	110	10
106-44-5	4-Methylphenol	493	110	12
91-20-3	Naphthalene	4100	110	6.5
88-74-4	2-Nitroaniline	110U	110	25
99-09-2	3-Nitroaniline	210U	210	52
100-01-6	4-Nitroaniline	210U	210	70
98-95-3	Nitrobenzene	110U	110	12
100-02-7	4-Nitrophenol	1100U	1100	270
88-75-5	2-Nitrophenol	110U	110	10
86-30-6	N-Nitroso-diphenylamine	110U	110	14
621-64-7	N-Nitroso-di-n-propylamine	110U	110	16
87-86-5	Pentachlorophenol	110U	110	17
85-01-8	Phenanthrene	110U	110	9.1
•				

Continued on next page

Page 84 of 125

Client:Beazer East, Inc.Project:Koppers SuperiorClient Sample ID:TMW-02A (Filtered)Lab Sample ID:1310588-01RE1Matrix:Water	Work Order: Description: Sampled: Sampled By:	1310588 Laboratory Services 10/28/13 12:35 Cliept		
Client Sample ID:TMW-02A (Filtered)Lab Sample ID:1310588-01RE1	Sampled:	10/28/13 12:35		
Lab Sample ID: 1310588-01RE1	·			
	Sampled By:	Client		
Matrix: Water		CIICIT		
	Received:	10/30/13 8:30		
Unit: ug/L	Prepared:	10/31/13 7:55	By:	ALK
Dilution Factor: 200	Analyzed:	11/12/13 20:23	By:	JLB
QC Batch: 1311584	Analytical Batch:	3K12078		

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
108-95-2	Phenol	110U	110	7.2
129-00-0	Pyrene	1184	110	14
58-90-2	2,3,4,6-Tetrachlorophenol	1100U	1100	79
935-95-5	2,3,5,6-Tetrachlorophenol	2100U	2100	45
120-82-1	1,2,4-Trichlorobenzene	110U	110	5.7
88-06-2	2,4,6-Trichlorophenol	110U	110	18
95-95-4	2,4,5-Trichlorophenol	110U	110	21

Page 85 of 125

Client:	Beazer East, Inc.	Work Order:	1310588	
Project:	Koppers Superior	Description:	Laboratory Services	
Client Sample ID:	TMW-05A (Filtered)	Sampled:	10/28/13 13:00	
Lab Sample ID:	1310588-02	Sampled By:	Client	
Matrix:	Water	Received:	10/30/13 8:30	
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK	<
Dilution Factor:	1	Analyzed:	11/7/13 0:37 By: JLB	;
QC Batch:	1311584	Analytical Batch:	3K07013	

*Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	1.4U	1.4	0.094
208-96-8	Acenaphthylene	1.4U	1.4	0.049
120-12-7	Anthracene	1.4U	1.4	0.18
56-55-3	Benzo(a)anthracene	1.4U	1.4	0.13
50-32-8	Benzo(a)pyrene	1.4U	1.4	0.12
205-99-2	Benzo(b)fluoranthene	1.4U	1.4	0.17
207-08-9	Benzo(k)fluoranthene	1.4U	1.4	0.17
191-24-2	Benzo(g,h,i)perylene	1.4U	1.4	0.17
65-85-0	Benzoic Acid	140		
100-51-6	Benzyl Alcohol	1.4U	1.4	0.14
101-55-3	4-Bromophenyl Phenyl Ether	1.4U	1.4	0.12
85-68-7	Butyl Benzyl Phthalate	0.17J	2.9	0.16
59-50-7	4-Chloro-3-methylphenol	1.4U	1.4	0.33
06-47-8	4-Chloroaniline	2.9U	2.9	0.29
111-91-1	Bis(2-chloroethoxy)methane	1.4U	1.4	0.053
111-44-4	Bis(2-chloroethyl) Ether	1.4U	1.4	0.068
108-60-1	Bis(2-chloroisopropyl) Ether	1.4U	1.4	0.074
91-58-7	2-Chloronaphthalene	1.4U	1.4	0.049
95-57-8	2-Chlorophenol	1.4U	1.4	0.076
7005-72-3	4-Chlorophenyl Phenyl Ether	1.4U	1.4	0.14
218-01-9	Chrysene	1.4U	1.4	0.13
53-70-3	Dibenz(a,h)anthracene	1.4U	1.4	0.32
132-64-9	Dibenzofuran	1.4U	1.4	0.12
84-74-2	Di-n-butyl Phthalate	0.773	2.9	0.39
95-50-1	1,2-Dichlorobenzene	1.4U	1.4	0.11
541-73-1	1,3-Dichlorobenzene	1.4U	1.4	0.12
106-46-7	1,4-Dichlorobenzene	1.4U	1.4	0.056
91-94-1	3,3 '-Dichlorobenzidine	2.9U	2.9	0.35
120-83-2	2,4-Dichlorophenol	1.4U	1.4	0.26
84-66-2	Diethyl Phthalate	_0.833_ 1.4 UB	1.4	0.19
105-67-9	2,4-Dimethylphenol	2.90	2.9	0.48

Continued on next page

*See Statement of Data Qualifications

Page 86 of 125

Client:	Beazer East, Inc.	Work Order:	1310588
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-05A (Filtered)	Sampled:	10/28/13 13:00
Lab Sample ID:	1310588-02	Sampled By:	Client
Matrix:	Water	Received:	10/30/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	1	Analyzed:	11/7/13 0:37 By: JLB
QC Batch:	1311584	Analytical Batch:	3K07013

*Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
131-11-3	Dimethyl Phthalate	1.4U	1.4	0.13
534-52-1	4,6-Dinitro-2-methylphenol	14U	14	2.9
51-28-5	2,4-Dinitrophenol	14U	14	3.3
121-14-2	2,4-Dinitrotoluene	1.4U	1.4	0.14
606-20-2	2,6-Dinitrotoluene	1.4U	1.4	0.23
117-84-0	Di-n-octyl Phthalate	1.4U	1.4	0.22
117-81-7	Bis(2-ethylhexyl) Phthalate	0.49J	1.4	0.32
206-44-0	Fluoranthene	1.4U	1.4	0.18
86-73-7	Fluorene	1.4U	1.4	0.12
118-74-1	Hexachlorobenzene	1.4U	1.4	0.18
87-68-3	Hexachlorobutadiene	1.4U	1.4	0.11
77-47-4	Hexachlorocyclopentadiene	1.4U	1.4	0.13
67-72-1	Hexachloroethane	1.4U	1.4	0.12
193-39-5	Indeno(1,2,3-cd)pyrene	1.4U	1.4	0.23
78-59-1	Isophorone	1.4U	1.4	0.13
56-49-5	3-Methylcholanthrene	5.7U	5.7	0.34
91-57-6	2-Methylnaphthalene	1.4U	1.4	0.043
90-12-0	1-Methylnaphthalene	1.4U	1.4	0.056
95-48-7	2-Methylphenol	1.4U	1.4	0.14
106-44-5	4-Methylphenol	1.4U	1.4	0.16
91-20-3	Naphthalene	1.4U	1.4	0.088
88-74-4	2-Nitroaniline	1.4U	1.4	0.33
99-09-2	3-Nitroaniline	2.90	2.9	0.70
100-01-6	4-Nitroaniline	2.90	2.9	0.94
98-95-3	Nitrobenzene	1.4U	1.4	0.17
100-02-7	4-Nitrophenol	14U J	14	3.6
88-75-5	2-Nitrophenol	1.4U	1.4	0.14
86-30-6	N-Nitroso-diphenylamine	1.4U	1.4	0.19
621-64-7	N-Nitroso-di-n-propylamine	1.4U	1.4	0.22
87-86-5	Pentachlorophenol	1.4U	1.4	0.23
85-01-8	Phenanthrene	0.14J	1.4	0.12

Continued on next page

*See Statement of Data Qualifications

Page 87 of 125

Client:	Beazer East, Inc.	Work Order:	1310588
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-05A (Filtered)	Sampled:	10/28/13 13:00
Lab Sample ID:	1310588-02	Sampled By:	Client
Matrix:	Water	Received:	10/30/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	1	Analyzed:	11/7/13 0:37 By: JLB
QC Batch:	1311584	Analytical Batch:	3K07013

*Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte			Analytical Result	RL	MDL
108-95-2	Phenol			2.8	1.4	0.096
129-00-0	Pyrene			1.4U	1.4	0.19
58-90-2	2,3,4,6-Tetrachlorophenol			14U	14	1.1
935-95-5	2,3,5,6-Tetrachlorophenol			290	29	0.61
120-82-1	1,2,4-Trichlorobenzene			1.4U	1.4	0.076
88-06-2	2,4,6-Trichlorophenol			1.4U	1.4	0.24
95-95-4	2,4,5-Trichlorophenol			1.4U	1.4	0.28
Surrogates:		% Recovery	Control Limits			
2-Fluorophenol		48	20-70			
Phenol-d6		51	18-45			
Nitrobenzene-d5		77	31-123			
2-Fluorobiphenyl		74	25-113			
2,4,6-Tribromophenol		74	30-121			
o-Terphenyl		90	42-125			

*See Statement of Data Qualifications

Page 88 of 125

Client:	Beazer East, Inc.	Work Order:	1310588	
Project:	Koppers Superior	Description:	Laboratory Services	
Client Sample ID:	TMW-11 (Unfiltered)	Sampled:	10/28/13 13:30	
Lab Sample ID:	1310588-03	Sampled By:	Client	
Matrix:	Water	Received:	10/30/13 8:30	
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK	
Dilution Factor:	1	Analyzed:	11/7/13 1:12 By: JLB	
QC Batch:	1311584	Analytical Batch:	3K07013	

Semivolatile Organic Compounds by EPA Method 8270C

83-32-9Acenaphthene208-96-8Acenaphthylene120-12-7Anthracene56-55-3Benzo(a)anthracene	0.50U 0.50U 0.50U 0.50U 0.50U 0.50U	0.50 0.50 0.50 0.50 0.50	0.033 0.017 0.062 0.045
120-12-7 Anthracene	0.50U 0.50U 0.50U	0.50 0.50	0.062
	0.50U 0.50U	0.50	
56-55-3 Benzo(a)anthracene	0.50U		0.045
		0.50	
50-32-8 Benzo(a)pyrene	0.50U		0.040
205-99-2 Benzo(b)fluoranthene		0.50	0.058
207-08-9 Benzo(k)fluoranthene	0.50U	0.50	0.060
191-24-2 Benzo(g,h,i)perylene	0.50U	0.50	0.061
65-85-0 Benzoic Acid	5.00	5.0	0.48]
100-51-6 Benzyl Alcohol	0.50U	0.50	0.049
101-55-3 4-Bromophenyl Phenyl Ether	0.50U	0.50	0.043
85-68-7 Butyl Benzyl Phthalate	1.0U	1.0	0.056
59-50-7 4-Chloro-3-methylphenol	0.50U	0.50	0.12
106-47-8 4-Chloroaniline	1.0U	1.0	0.10
111-91-1 Bis(2-chloroethoxy)methane	0.50U	0.50	0.018
111-44-4 Bis(2-chloroethyl) Ether	0.50U	0.50	0.024
108-60-1 Bis(2-chloroisopropyl) Ether	0.50U	0.50	0.026
91-58-7 2-Chloronaphthalene	0.50U	0.50	0.017
95-57-8 2-Chlorophenol	0.50U	0.50	0.027
7005-72-3 4-Chlorophenyl Phenyl Ether	0.50U	0.50	0.048
218-01-9 Chrysene	0.50U	0.50	0.045
53-70-3 Dibenz(a,h)anthracene	0.50U	0.50	0.11
132-64-9 Dibenzofuran	0.50U	0.50	0.041
84-74-2 Di-n-butyl Phthalate	0.14J	1.0	0.14
95-50-1 1,2-Dichlorobenzene	0.50U	0.50	0.040
541-73-1 1,3-Dichlorobenzene	0.50U	0.50	0.041
106-46-7 1,4-Dichlorobenzene	0.50U	0.50	0.020
91-94-1 3,3'-Dichlorobenzidine	1.0U	1.0	0.12
120-83-2 2,4-Dichlorophenol	0.50U	0.50	0.092
84-66-2 Diethyl Phthalate	- 0.283	0.50 UB 0.50	0.065
105-67-9 2,4-Dimethylphenol	1.0U	1.0	0.17

Continued on next page

*See Statement of Data Qualifications

Page 89 of 125

Client:	Beazer East, Inc.	Work Order:	1310588
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-11 (Unfiltered)	Sampled:	10/28/13 13:30
Lab Sample ID:	1310588-03	Sampled By:	Client
Matrix:	Water	Received:	10/30/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	1	Analyzed:	11/7/13 1:12 By: JLB
QC Batch:	1311584	Analytical Batch:	3K07013

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
131-11-3	Dimethyl Phthalate	0.50U	0.50	0.046
534-52-1	4,6-Dinitro-2-methylphenol	5.0U	5.0	1.0
51-28-5	2,4-Dinitrophenol	5.0U	5.0	1.2
121-14-2	2,4-Dinitrotoluene	0.50U	0.50	0.048
606-20-2	2,6-Dinitrotoluene	0.50U	0.50	0.080
117-84-0	Di-n-octyl Phthalate	0.50U	0.50	0.077
117-81-7	Bis(2-ethylhexyl) Phthalate	0.20J	0.50	0.11
206-44-0	Fluoranthene	0.50U	0.50	0.063
86-73-7	Fluorene	0.50U	0.50	0.041
118-74-1	Hexachlorobenzene	0.50U	0.50	0.063
87-68-3	Hexachlorobutadiene	0.50U	0.50	0.040
77-47-4	Hexachlorocyclopentadiene	0.50U	0.50	0.044
67-72-1	Hexachloroethane	0.50U	0.50	0.042
193-39-5	Indeno(1,2,3-cd)pyrene	0.50U	0.50	0.080
78-59-1	Isophorone	0.50U	0.50	0.045
56-49-5	3-Methylcholanthrene	2.0U	2.0	0.12
91-57-6	2-Methylnaphthalene	0.50U	0.50	0.015
90-12-0	1-Methylnaphthalene	0.50U	0.50	0.020
95-48-7	2-Methylphenol	0.50U	0.50	0.048
106-44-5	4-Methylphenol	0.50U	0.50	0.057
91-20-3	Naphthalene	0.50U	0.50	0.031
88-74-4	2-Nitroaniline	0.50U	0.50	0.12
99-09-2	3-Nitroaniline	1.0U	1.0	0.24
100-01-6	4-Nitroaniline	1.0U	1.0	0.33
98-95-3	Nitrobenzene	0.50U	0.50	0.058
100-02-7	4-Nitrophenol	5.0U J	5.0	1.2
88-75-5	2-Nitrophenol	0.50U	0.50	0.048
86-30-6	N-Nitroso-diphenylamine	0.50U	0.50	0.068
621-64-7	N-Nitroso-di-n-propylamine	0.50U	0.50	0.075
87-86-5	Pentachlorophenol	0.50U	0.50	0.081
85-01-8	Phenanthrene	0.50U	0.50	0.043

Continued on next page

Page 90 of 125

Client:	Beazer East, Inc.	Work Order:	1310588
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-11 (Unfiltered)	Sampled:	10/28/13 13:30
Lab Sample ID:	1310588-03	Sampled By:	Client
Matrix:	Water	Received:	10/30/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	1	Analyzed:	11/7/13 1:12 By: JLB
QC Batch:	1311584	Analytical Batch:	3K07013

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

				Analytical		
CAS Number	Analyte			Result	RL	MDL
108-95-2	Phenol			0.50U	0.50	0.034
129-00-0	Pyrene			0.50U	0.50	0.066
58-90-2	2,3,4,6-Tetrachlorophenol			5.0U	5.0	0.37
935-95-5	2,3,5,6-Tetrachlorophenol			10U	10	0.21
120-82-1	1,2,4-Trichlorobenzene			0.50U	0.50	0.027
88-06-2	2,4,6-Trichlorophenol			0.50U	0.50	0.085
95-95-4	2,4,5-Trichlorophenol			0.50U	0.50	0.099
Surrogates:		% Recovery	Control Limits			
2-Fluorophenol		26	20-70			
Phenol-d6		23	18-45			
Nitrobenzene-d5		75	31-123			
2-Fluorobiphenyl		76	25-113			
2,4,6-Tribromophenol		63	30-121			
o-Terphenyl		90	42-125			

Page 91 of 125

Client:	Beazer East, Inc.	Work Order:	1310588		
Project:	Koppers Superior	Description:	Laboratory Services		
Client Sample ID:	TMW-11A (Filtered)	Sampled:	10/28/13 13:45		
Lab Sample ID:	1310588-04	Sampled By:	Client		
Matrix:	Water	Received:	10/30/13 8:30		
Unit:	ug/L	Prepared:	11/8/13 7:00	By:	LEW
Dilution Factor:	1	Analyzed:	11/8/13 14:10	By:	LEW
QC Batch:	1312152	Analytical Batch:	3K14017		

*Halogenated and Aromatic Volatiles by EPA Method 8021B

				Analytical			
CAS Number	Analyte			Result		RL	MDL
71-43-2	Benzene			1.0U		1.0	0.20
104-51-8	n-Butylbenzene			1.0U		1.0	0.28
*74-87-3	Chloromethane			1.0U J		1.0	0.37
100-41-4	Ethylbenzene			0.45J		1.0	0.20
1634-04-4	Methyl tert-Butyl Ether			5.0U		5.0	0.48
*91-20-3	Naphthalene			-310BE	410 D J	1.0	0.44
103-65-1	n-Propylbenzene			1.0U		1.0	0.24
100-42-5	Styrene			1.0U		1.0	0.20
108-88-3	Toluene			1.0U		1.0	0.33
71-55-6	1,1,1-Trichloroethane			1.0U		1.0	0.30
108-67-8	1,3,5-Trimethylbenzene			0.49J		1.0	0.24
95-63-6	1,2,4-Trimethylbenzene			0.90J		1.0	0.22
179601-23-1	Xylene, Meta + Para			0.90J		2.0	0.42
95-47-6	Xylene, Ortho			0.54J		1.0	0.20
Surrogates:		% Recovery	Control Limits				
1,2-Dichloroethane-d4		137	81-126				
aaa-Trifluorotoluene		100	86-118				

*See Statement of Data Qualifications

Page 92 of 125

Client:	Bea	zer East, Inc.	Work Order:	1310588		
Project:	Корг	pers Superior	Description:	Laboratory Services		
Client San	nple ID: TMV	N-11A (Filtered)	Sampled:	10/28/13 13:45		
Lab Samp	le ID: 131	0588-04	Sampled By:	Client		
Matrix:	Wate	er	Received:	10/30/13 8:30		
Unit:	ug/L		Prepared:	10/31/13 7:55	By:	ALK
Dilution Fa	actor: 1		Analyzed:	11/7/13 1:47	By:	JLB
QC Batch:	1311	1584	Analytical Batch:	3K07013		

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	19	0.67	0.044
208-96-8	Acenaphthylene	0.67U	0.67	0.023
120-12-7	Anthracene	0.67U	0.67	0.082
56-55-3	Benzo(a)anthracene	0.67U	0.67	0.061
50-32-8	Benzo(a)pyrene	0.67U	0.67	0.054
205-99-2	Benzo(b)fluoranthene	0.67U	0.67	0.077
207-08-9	Benzo(k)fluoranthene	0.67U	0.67	0.079
191-24-2	Benzo(g,h,i)perylene	0.67U	0.67	0.081
*65 85 0	Benzoic Acid	6.7U	6.7	0.64
100-51-6	Benzyl Alcohol	0.67U	0.67	0.065
101-55-3	4-Bromophenyl Phenyl Ether	0.67U	0.67	0.057
85-68-7	Butyl Benzyl Phthalate	1.3U	1.3	0.074
59-50-7	4-Chloro-3-methylphenol	0.67U	0.67	0.15
106-47-8	4-Chloroaniline	1.3U	1.3	0.14
111-91-1	Bis(2-chloroethoxy)methane	0.67U	0.67	0.025
111-44-4	Bis(2-chloroethyl) Ether	0.67U	0.67	0.032
108-60-1	Bis(2-chloroisopropyl) Ether	0.67U	0.67	0.034
91-58-7	2-Chloronaphthalene	0.67U	0.67	0.023
95-57-8	2-Chlorophenol	0.67U	0.67	0.036
7005-72-3	4-Chlorophenyl Phenyl Ether	0.67U	0.67	0.064
218-01-9	Chrysene	0.67U	0.67	0.060
53-70-3	Dibenz(a,h)anthracene	0.67U	0.67	0.15
132-64-9	Dibenzofuran	3.8	0.67	0.054
84-74-2	Di-n-butyl Phthalate	0.21J	1.3	0.18
95-50-1	1,2-Dichlorobenzene	0.67U	0.67	0.053
541-73-1	1,3-Dichlorobenzene	0.67U	0.67	0.055
106-46-7	1,4-Dichlorobenzene	0.67U	0.67	0.026
91-94-1	3,3 ´-Dichlorobenzidine	1.3U	1.3	0.17
120-83-2	2,4-Dichlorophenol	0.67U	0.67	0.12

R

Continued on next page

*See Statement of Data Qualifications

Page 93 of 125

Client:	Beazer East, Inc.	Work Order:	1310588
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-11A (Filtered)	Sampled:	10/28/13 13:45
Lab Sample ID:	1310588-04	Sampled By:	Client
Matrix:	Water	Received:	10/30/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	1	Analyzed:	11/7/13 1:47 By: JLB
QC Batch:	1311584	Analytical Batch:	3K07013

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte	Analytical Result	RL	MDL
*84-66-2	Diethyl Phthalate	- 8.403 0.	67 UB 0.67	0.087
105-67-9	2,4-Dimethylphenol	1.2J	1.3	0.22
131-11-3	Dimethyl Phthalate	0.67U	0.67	0.061
534-52-1	4,6-Dinitro-2-methylphenol	6.7U	6.7	1.4
51-28-5	2,4-Dinitrophenol	6.7U	6.7	1.5
121-14-2	2,4-Dinitrotoluene	0.67U	0.67	0.063
606-20-2	2,6-Dinitrotoluene	0.67U	0.67	0.11
117-84-0	Di-n-octyl Phthalate	0.67U	0.67	0.10
117-81-7	Bis(2-ethylhexyl) Phthalate	0.20J	0.67	0.15
206-44-0	Fluoranthene	0.67U	0.67	0.084
86-73-7	Fluorene	5.9	0.67	0.055
118-74-1	Hexachlorobenzene	0.67U	0.67	0.084
87-68-3	Hexachlorobutadiene	0.67U	0.67	0.053
77-47-4	Hexachlorocyclopentadiene	0.67U	0.67	0.059
67-72-1	Hexachloroethane	0.67U	0.67	0.056
193-39-5	Indeno(1,2,3-cd)pyrene	0.67U	0.67	0.11
78-59-1	Isophorone	0.67U	0.67	0.060
56-49-5	3-Methylcholanthrene	2.70	2.7	0.16
91-57-6	2-Methylnaphthalene	9.3	0.67	0.020
90-12-0	1-Methylnaphthalene	8.5	0.67	0.026
95-48-7	2-Methylphenol	0.67U	0.67	0.063
106-44-5	4-Methylphenol	0.67U	0.67	0.075
*91-20-3	Naphthalene	—100E <u>1</u> 1	LO D 0.67	0.041
88-74-4	2-Nitroaniline	0.67U	0.67	0.15
99-09-2	3-Nitroaniline	1.3U	1.3	0.33
100-01-6	4-Nitroaniline	1.3U	1.3	0.44
98-95-3	Nitrobenzene	0.67U	0.67	0.078
100-02-7	4-Nitrophenol	6.7U J	6.7	1.7
88-75-5	2-Nitrophenol	0.67U	0.67	0.063
86-30-6	N-Nitroso-diphenylamine	0.67U	0.67	0.090
621-64-7	N-Nitroso-di-n-propylamine	0.67U	0.67	0.10

Continued on next page

*See Statement of Data Qualifications

Page 94 of 125

Client:	Beazer East, Inc.	Work Order:	1310588
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-11A (Filtered)	Sampled:	10/28/13 13:45
Lab Sample ID:	1310588-04	Sampled By:	Client
Matrix:	Water	Received:	10/30/13 8:30
Unit:	ug/L	Prepared:	10/31/13 7:55 By: ALK
Dilution Factor:	1	Analyzed:	11/7/13 1:47 By: JLB
QC Batch:	1311584	Analytical Batch:	3K07013

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

			Analytical		
CAS Number	Analyte		Result	RL	MDL
87-86-5	Pentachlorophenol		0.67U	0.67	0.11
85-01-8	Phenanthrene		0.76	0.67	0.057
108-95-2	Phenol		0.67U	0.67	0.045
129-00-0	Pyrene		0.67U	0.67	0.087
58-90-2	2,3,4,6-Tetrachlorophenol		6.7U	6.7	0.49
935-95-5	2,3,5,6-Tetrachlorophenol		13U	13	0.28
120-82-1	1,2,4-Trichlorobenzene		0.67U	0.67	0.035
88-06-2	2,4,6-Trichlorophenol		0.67U	0.67	0.11
95-95-4	2,4,5-Trichlorophenol		0.67U	0.67	0.13
Surrogates:	% Recove	ry Control Limits			
2-Fluorophenol	28	20-70			
Phenol-d6	33	18-45			
Nitrobenzene-d5	69	31-123			
2-Fluorobiphenyl	79	25-113			

30-121

42-125

54

91

Page 95 of 125

2,4,6-Tribromophenol

o-Terphenyl

Client:	Beazer East, Inc.	Work Order:	1310588
Project:	Koppers Superior	Description:	Laboratory Services
Client Sample ID:	TMW-11A (Filtered)	Sampled:	10/28/13 13:45
Lab Sample ID:	1310588-04RE1	Sampled By:	Chient
Matrix:	Water	Received:	10/30/13 8:30
Unit:	ug/L	Prepared:	11/19/13 9:00 By: LEW
Dilution Factor:	10	Analyzed:	11/19/13 17:02 By: LEW
QC Batch:	1312588	Analytical Batch:	3K21014

*Halogenated and Aromatic Volatiles by EPA Method 8021B

CAS Number	Analyte			Analytical Result	RL	MDL
91-20-3	Naphthalene			410	10	4.4
Surrogates:		% Recovery	Control Limits			
1,2-Dichloroethane-d4		108	81-126		\searrow	
aaa-Trifluorotoluene		102	86-118			

*See Statement of Data Qualifications

Page 96 of 125

ANALYTICAL REPOR	T
------------------	---

Client:	Beazer East, Inc.
Project:	Koppers Superior
Client Sample ID:	TMW-11A (Filtered)
Lab Sample ID:	1310588-04RE1
Matrix:	Water
Unit:	ug/L
Dilution Factor:	5
QC Batch:	1311584

Work Order:	1310588		/
Description:	Laboratory Services		
Sampled:	10/28/13 13:45		
Sampled By:	Client		
Received:	10/30/13 8:30		
Prepared:	10/31/13 7:55	By:	ALK
Analyzed:	11/8/13 22:30	By:	DWJ
Analytical Batch:	3K11041		

Semivolatile Organic Compounds by EPA Method 8270C

CAS Number	Analyte	Analytical Result	RL	MDL
83-32-9	Acenaphthene	18	3.3	0.22
208-96-8	Acenaphthylene	3.3U	3.3	0.11
120-12-7	Anthracene	3.3U	3.3	0.41
56-55-3	Benzo(a)anthracene	3.3U	3.3	0.30
50-32-8	Benzo(a)pyrene	3.3U	3.3	0.27
205-99-2	Benzo(b)fluoranthene	3.3U	3.3	0.39
207-08-9	Benzo(k)fluoranthene	3.3U	3.3	0.40
191-24-2	Benzo(g,h,i)perylene	3.3U	3.3	0.41
*65-85-0	Benzoic Acid	330	33	3.2
100-51-6	Benzyl Alcohol	3.3U	3.3	0.32
101-55-3	4-Bromophenyl Phenyl Ether	3.3U	3.3	0.29
85-68-7	Butyl Benzyl Phthalate	6.7U	6.7	0.37
59-50-7	4-Chloro-3-methylphenol	3.3U	3.3	0.77
106-47-8	4-Chloroaniline	6.7U	6.7	0.68
111-91-1	Bis(2-chloroethoxy)methane	3.30	3.3	0.12
111-44-4	Bis(2-chloroethyl) Ether	3. 3U	3.3	0.16
108-60-1	Bis(2-chloroisopropyl) Ether	3.30	3.3	0.17
91-58-7	2-Chloronaphtrialene	3.3U	3.3	0.11
95-57-8	2-Chlorophenol	3.3U	3.3	0.18
7005-72-3	4-Chlorophenyl Phenyl Ether	3.3U	3.3	0.32
218-01-9	Chrysene	3.3U	3.3	0.30
53-70-3	Dibenz(a,h)anthracene	3.3U	3.3	0.75
132-64-9	Dibenzofuran	4.1	3,3	0.27
84-74-2	Di-n-butyl Phthalate	6.7U	6.7	0.90
95-50-1	1,2-Dichlorobenzene	3.3U	3.3	0.26
541-73-1	1,3-Dichlorobenzene	3.3U	3.3	0.27
106-46-7	1,4-Dichlorobenzene	3.3U	3.3	0.13
91-94-1	3,3 '-Dichlorobenzidine	6.7U	6.7	0.83
120-83-2	2,4-Dichlorophenol	3.3U	3.3	0.61

Continued on next page

*See Statement of Data Qualifications

Page 97 of 125

Client:	Beazer East, Inc.	Work Order:
Project:	Koppers Superior	Description:
Client Sample ID:	TMW-11A (Filtered)	Sampled:
Lab Sample IN:	1310588-04RE1	Sampled By:
Matrix:	Water	Received:
Unit:	ug/L	Prepared:
Dilution Factor:	<u>z</u>	Analyzed:
QC Batch:	1311584	Analytical Batch
	\mathbf{X}	

ork Order:	1310588
scription:	Laboratory Services
mpled:	10/28/13 13:45
mpled By:	Client
ceived:	10/30/13 8:30
epared:	10/31/13 7:55 By: ALK
alyzed:	11/8/13 22:30 By: DWJ
alytical Batch:	3K11041

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

	\mathbf{X}	Analytical		
CAS Number	Analyte	Result	RL	MDL
*84-66-2	Diethyl Phthalate	0.93J	3.3	0.43
105-67-9	2,4-Dimethylphenol	1.73	6.7	1.1
131-11-3	Dimethyl Phthalate	3.3U	3.3	0.30
534-52-1	4,6-Dinitro-2-methylphenol	33U	33	6.8
51-28-5	2,4-Dinitrophenol	33U	33	7.7
121-14-2	2,4-Dinitrotoluene	3.3U	3.3	0.32
606-20-2	2,6-Dinitrotoluene	3.3U	3.3	0.53
117-84-0	Di-n-octyl Phthalate	3.3U	3.3	0.51
117-81-7	Bis(2-ethylhexyl) Phthalate	3.3U	3.3	0.75
206-44-0	Fluoranthene	3.3U	3.3	0.42
86-73-7	Fluorene	5.5	3.3	0.28
118-74-1	Hexachlorobenzene	3.3U	3.3	0.42
87-68-3	Hexachlorobutadiene	3.3U	3.3	0.26
77-47-4	Hexachlorocyclopentadiene	3.3U	3.3	0.30
67-72-1	Hexachloroethane	3.3U	3.3	0.28
193-39-5	Indeno(1,2,3-cd)pyrene	3.3U	3.3	0.53
78-59-1	Isophorone	3.3U	3.3	0.30
56-49-5	3-Methylcholanthrene	13U	13	0.80
91-57-6	2-Methylnaphthalene	10	3.3	0.099
90-12-0	1-Methylpephthalene	7.9	3.3	0.13
95-48-7	2-Methylphenol	3.3U	3.3	0.32
106-44-5	4-Methylphenol	3.3U	3.3	0.38
91-20-3	Naphthalene	110	3.3	0.20
88-74-4	2-Nitroaniline	3.3U	3.3	0.77
99-09-2	3-Nitroaniline	6.7U	6.7	1.6
100-01-6	4-Nitroaniline	6.7U	6.7	2.2
98-95-3	Nitrobenzene	3.3U	33	0.39
100-02-7	4-Nitrophenol	33U	33	8.3
88-75-5	2-Nitrophenol	3.3U	3.3	0.32
86-30-6	N-Nitroso-diphenylamine	3.3U	3.3	0.45
621-64-7	N-Nitroso-di-n-propylamine	3.3U	3.3	0.50

Continued on next page

*See Statement of Data Qualifications

Page 98 of 125

This report shall not be reproduced, except in full, without written authorization of TriMatrix Laboratories, Inc.

Individual sample results relate only to the sample tested.

Client: Beazer East, Inc. Project: Koppers Superior Client Sample ID: TMW-11A (Filtered) 1310588-04RE1 Lab Sample ID: Water Matrix: Unit: ug/L 5 Dilution Factor: QC Batch: 1311584

ANALYTICAL REPORT

Work Order:	1310588		/
Description:	Laboratory Services		
Sampled:	10/28/13 13:45		
Sampled By:	Client		
Received:	10/30/13 8:30		
Prepared:	10/31/13 7:55	By:	ALK
Analyzed:	11/8/13 22:30	By:	DWJ
Analytical Batch:	3K11041		

Semivolatile Organic Compounds by EPA Method 8270C (Continued)

CAS Number	Analyte			Analytical Result	RL	MDL
87-86-5	Pentachlorophenol		\mathbf{X}	3.3U	3.3	0.54
85-01-8	Phenanthrene			0.80J	3.3	0.28
108-95-2	Phenol	/		3.3U	3.3	0.22
129-00-0	Pyrene			3.3U	3.3	0.44
58-90-2	2,3,4,6-Tetrachloropher	nol		33U	33	2.5
935-95-5	2,3,5,6-Tetrachloropher	nol		67U	67	1.4
120-82-1	1,2,4-Trichlorobenzene			3.3U	3.3	0.18
88-06-2	2,4,6-Trichlorophenol			3.30	3.3	0.57
95-95-4	2,4,5-Trichlorophenol			3.3U	3.3	0.66
Surrogates:		% Recovery	Control Limits			
2-Fluorophenol		44	20-70		\mathbf{i}	
Phenol-d6		33	18-45			
Nitrobenzene-d5		57	31-123			
2-Fluorobiphenyl		84	25-113			<
2,4,6-Tribromophenol		61	30-121			\mathbf{X}
o-Terphenyl		93	42-125			

Page 99 of 125

Beazer East, Inc.

Supplemental Off-Property Investigation

Data Review

SUPERIOR, WISCONSIN

Semivolatile Analyses

SDG #180-25192-1

Analyses Performed By: TestAmerica Laboratories, Inc. Pittsburgh, Pennsylvania

Report: #21175R Review Level: Tier III Project: B0039290.0000.00003

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #180-25192-1 for samples collected in association with the Beazer East, Inc., Supplemental Off-Property Investigation. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

					Analysis				
Sample ID	Lab ID	Matrix	Sample Collection Date	Parent Sample	VUX.	SVOC	PEST/ PCB	MET	MISC
SB-16_30-30.5 (20130913)	180-25192-1	Soil	9/13/2013			Х			

Note:

1. Matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample location SB-16_30-30.5 (20130913).

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

		Rep	orted		mance ptable	Not
	Items Reviewed	No	Yes	No	Yes	Required
1.	Sample receipt condition		Х		Х	
2.	Requested analyses and sample results		Х		Х	
3.	Master tracking list		Х		Х	
4.	Methods of analysis		Х		Х	
5.	Reporting limits		Х		Х	
6.	Sample collection date		Х		Х	
7.	Laboratory sample received date		Х		Х	
8.	Sample preservation verification (as applicable)		х		х	
9.	Sample preparation/extraction/analysis dates		Х		Х	
10.	Fully executed Chain-of-Custody (COC) form		Х		Х	
11.	Narrative summary of QA or sample problems provided		х		Х	
12.	Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Method 8270C. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- · Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- · Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is

that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

SEMI-VOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270C	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6°C
300-040 62700	Soil	14 days from collection to extraction and 40 days from extraction to analysis	Cool to <6°C

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method, trip, and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure contamination of samples during shipment. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits.

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations were the compounds concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and the RPD between the MS/MSD results were acceptable.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Field duplicate analysis was not performed on a sample location within this SDG.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra.

All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR SVOCs

GAS CHROMATOGRAPHY/MASS SPECTROMETE Tier II Validation Holding times Reporting limits (units)	No Yes RY (GC/MS) X X X	No	Yes X X	Required
Tier II Validation Holding times				
Holding times	X			
	X			
Reporting limits (units)	I		X	
	X		~	
Blanks	Х			
A. Method blanks			Х	
B. Equipment blanks				Х
Laboratory Control Sample (LCS) %R	Х		Х	
Laboratory Control Sample Duplicate(LCSD) %R				Х
LCS/LCSD Precision (RPD)				Х
Matrix Spike (MS) %R	Х		Х	
Matrix Spike Duplicate(MSD) %R	Х		Х	
MS/MSD Precision (RPD)	Х		Х	
Field Duplicate (RPD)				Х
Surrogate Spike Recoveries	Х		Х	
Dilution Factor	Х		Х	
Moisture Content	Х		Х	
Tier III Validation				
System performance and column resolution	Х		Х	
Initial calibration %RSDs	Х		Х	
Continuing calibration RRFs	Х		Х	
Continuing calibration %Ds	Х		Х	
Instrument tune and performance check	Х		Х	
Ion abundance criteria for each instrument used	Х		Х	
Internal standard	Х		Х	
Compound identification and quantitation				<u> </u>
A. Reconstructed ion chromatograms	Х		Х	
B. Quantitation Reports	Х		Х	
C. RT of sample compounds within the established RT windows	х		Х	
D. Transcription/calculations acceptable	Х		Х	
E. Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation	Х		Х	

%R8L %R RPD %D

Percent recovery Relative percent difference Percent difference

VALIDATION PERFORMED BY:

Jennifer Singer

SIGNATURE:

knnifer Ainger

DATE: January 31, 2014

PEER REVIEW: Todd Church

DATE: January 31, 2014

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

Test	America Labora	tory location:	(C		of C		1.50								TestAr THE LEADER IN EN	MERICO
	Regula	ory program:		DW	<i>.</i> /		DES		RCR	A		Othe	er		(d) and (d) an		- <u>G</u>
Client Contact						Site Ca				6		-+	Lab	b Contact:		COC No:	a Laboratories, Inc.
Company Name:	Client Project					Site Co		Be	ssia	coas			Lat	Vernauk	e Roctat		0645
Beazer	Deve	pessing	pas			Talash	0			1			Tol	Voion			The second second second second second second second second second second second second second second second s
Address:	Dave Telephone: 2	18-920	1-460	4607			199- 1199-	- 82°	ì-4	607	ł _			412-9	e Bortot 63-7053		of COCs
ity/state/Zip: Pittsburgh, PA	Email: devici.	bessingp	es () or	cadis	s-us	.000	Analys	is Tarn (in BUS	aroun days)	d Time				N.F M	Analyses	For lab use	
hone: 412-208-9813			0			T/	∖T ir diffe	erent from	below . 3 wo		rotes)		9240			Walk-in ch Lab pickup	and the second states of the
roject Name: BLazer - Superior WI		ment/Carrier:							2 wo 1 wo					0		Lab sampli	ng
roject Number:	Shinning/Track	ing No: 946 17	8 97	12					2 da 1 da	ys		(N/N)	oran=0	perature		Job/SDG N	lo:
0#	- 0-0		1	Matrix		E.	Conta	iners &				mple				10.18%	
			20115	1	her:	H2SO4		- -	1		Other:	Filtered Sample (Y/N)	- TT VC	14445			le Specific Notes / ial Instructions:
Sample Identification	Sample Date	Sample Time	Air Aqu	Sedime	PO	H2	<u> </u>	NaOl	Zn		0 ^E	E	5 >			_	
56-16_30-30,5 (20130913)	9/13/13	1054		X						1		ed k	_			Rush	TAT
SB-16_30.5-31 (20130913) Temp Blank	9/13/13	1055		X						1		NK	à 1			Hold	to- Analysis
Temp Blank			X							1				l			3
- 1																	ā .
												4	Ŀ				9 19
									-	1		7	ł			1	
								_		_		_	1				
	-						-			1		-		180-25192 CI	nain of Custody		
								+	-	1				\pm 1 1			1
2	-						+	-	+				-				- 21.
Possible Hazard Identification		1												e retained longer th			
Non-Hazard Flammable S	in Irritant	Poison B		່ງ Un	known		Ret	urn to C	lient	- 2	Disp	osal B	y Lab	Archiv	e For	Months	131 W-10997-0
KEmeil results to Pave	. Bussing	pes Q	de	rid.	best	ingp	~s (par	·ca.	dis-	us. c	om					
telinguished by c. M	Company: ARCA	515	Date	Time:	,	200	0	Rec	eined	TR	Z M	ia	4	Res	Company PEH	- Date/Time	1/13 0850
Relinquished by:	Company:		Date	/Time:				Rec	efredi						Company:	Date/Time	
telinquished by:	Company:		Date	Time:	11-1 -	a tradi		Rec	eived	in Labo	ratory b	y:			Company:	Date/Time	- 1 - 1
																	1
G2008: TestAmenca Laboratones: Inc ∿All rights reserved TestAmenca & Design ™ are trademarks of TestAmenca Laboratones: Inc																TAL	0018-1 (04/10)

DATA REPORTING QUALIFIERS

Client: ARCADIS U.S. Inc

Job Number: 180-25192-1

Lab Section	Qualifier	Description
GC/MS Semi VOA	J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Client: ARCADIS U.S. Inc

Analytical Data

Job Number: 180-25192-1

Client Sample ID:	SB-16_30-30.5 (201309	13)				
Lab Sample ID:	180-25192-1				D	ate Sampled: 09/13/2013 1054
Client Matrix:	Solid	% Moisture	23.8		D	ate Received: 09/17/2013 0850
	٤	3270C Semivolatile Org	ganic Compou	unds (GC/MS)	
Analysis Method:	8270C	Analysis Batch:	180-84181	Ins	trument ID:	733
Prep Method:	3541	Prep Batch:	180-84028	Lal	b File ID:	N0919003.D
Dilution:	1.0			Init	ial Weight/Volume	e: 15.1 g
Analysis Date:	09/19/2013 1508			Fin	al Weight/Volume	e: 5.0 mL
Prep Date:	09/19/2013 0420				ection Volume:	2 uL
Analyte	DryWt Corrected	: Y Result (u	g/Kg)	Qualifier	MDL	RL
Acenaphthene		9.8	/	J	8.3	87
Acenaphthylene		ND			10	87
Anthracene		ND			8.5	87
Benzo[a]anthracene	3	ND			11	87
Benzo[a]pyrene		ND			8.7	87
Benzo[b]fluoranther	ie	ND			14	87
Benzo[g,h,i]perylene	e	ND			8.6	87
Benzo[k]fluoranthen	e	ND			18	87
Chrysene		ND			10	87
Dibenz(a,h)anthrace	ene	ND			9.7	87
Fluoranthene		32		J	9.3	87
Fluorene		ND			11	87
Indeno[1,2,3-cd]pyre	ene	ND			9.0	87
Naphthalene		ND			7.5	87
Phenanthrene		45		J	14	87
Pyrene		22		J	8.8	87
Surrogate		%Rec		Qualifier	Acce	ptance Limits
Nitrobenzene-d5		57			25 - 1	04
2-Fluorobiphenyl		61			35 - 1	05
Terphenyl-d14		65			25 - 1	27

Imagine the result

Beazer East, Inc.

Supplemental Off-Property Investigation

Data Review

SUPERIOR, WISCONSIN

Volatile and Semivolatile Analyses

SDG #1401173

Analyses Performed By: TriMatrix Laboratories Grand Rapids, Michigan

Report: #21243R Review Level: Tier III Project: B0039290.0000.00003

SUMMARY

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #1401173 for samples collected in association with the Beazer East, Inc., Supplemental Off-Property Investigation. The review was conducted as a Tier III evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the validation annotated sample result sheets, and chain of custody. Analyses were performed on the following samples:

			Sample				Analysis	5	
Sample ID	Lab ID	Matrix	Collection Date	Parent Sample	voc	SVOC	PEST/ PCB	MET	MISC
TMW-02A Filtered	1401173-01	Water	1/13/2014		Х	Х			
TMW-02A	1401173-02	Water	1/13/2014		Х	Х			
TMW-05 Filtered	1401173-03	Water	1/13/2014		Х	Х			
TMW-05A Filtered	1401173-04	Water	1/13/2014		Х	Х			
TMW-05	1401173-05	Water	1/14/2014		Х	Х			
TMW-08	1401173-06	Water	1/13/2014		Х	Х			
TMW-08 Filtered	1401173-07	Water	1/13/2014		Х	Х			
TMW-08A	1401173-08	Water	1/13/2014		Х	Х			
TMW-08A Filtered	1401173-09	Water	1/13/2014		Х	Х			
TMW-11 Filtered	1401173-10	Water	1/13/2014		Х	Х			
TMW-11A Filtered	1401173-11	Water	1/13/2014		Х	Х			
TMW-11	1401173-12	Water	1/14/2014		Х	Х			
TMW-11A	1401173-13	Water	1/14/2014		Х	Х			
TMW-12A Filtered	1401173-14	Water	1/13/2014		Х	Х			
TMW-12A	1401173-15	Water	1/14/2014		Х	Х			
TMW-19C Filtered	1401173-16	Water	1/13/2014		Х	Х			
TMW-19C	1401173-17	Water	1/14/2014		Х	Х			
TMW-23	1401173-18	Water	1/13/2014		Х	Х			
TMW-23 Filtered	1401173-19	Water	1/13/2014		Х	Х			
MW-800	1401173-20	Water	1/13/2014	TMW-08 Filtered	Х	Х			
MW-801	1401173-21	Water	1/13/2014	TMW-08	Х	Х			
Trip Blank	1401173-22	Water	1/13/2014		Х				

Note:

1. The matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on sample locations TMW-23 and TMW-23 Filtered.

ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

	Rep	orted		mance ptable	Not
Items Reviewed	No	Yes	No	Yes	Required
1. Sample receipt condition		Х		Х	
2. Requested analyses and sample results		Х		Х	
3. Master tracking list		Х		Х	
4. Methods of analysis		Х		Х	
5. Reporting limits		Х		Х	
6. Sample collection date		Х		Х	
7. Laboratory sample received date		Х		Х	
8. Sample preservation verification (as applicable)		Х		х	
9. Sample preparation/extraction/analysis date	S	Х		Х	
10. Fully executed Chain-of-Custody (COC) for	m	Х		Х	
11. Narrative summary of QA or sample problems provided		Х		Х	
12. Data Package Completeness and Compliance		Х		Х	

QA - Quality Assurance

ORGANIC ANALYSIS INTRODUCTION

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 8260 and 8270C. Data were reviewed in accordance with USEPA National Functional Guidelines of October 1999.

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
 - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit.
 - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect.
- Quantitation (Q) Qualifiers
 - E The compound was quantitated above the calibration range.
 - D Concentration is based on a diluted sample analysis.
- Validation Qualifiers
 - J The compound was positively identified; however, the associated numerical value is an estimated concentration only.
 - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation.
 - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only.
 - UB Compound considered non-detect at the listed value due to associated blank contamination.
 - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification.
 - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

VOLATILE ORGANIC COMPOUND (VOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8260	Water	14 days from collection to analysis	Cool to <6 °C; preserved to a pH of less than 2 s.u.

All samples were analyzed within the specified holding times.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Compounds were not detected above the MDL in the associated blanks; therefore detected sample results were not associated with blank contamination.

3. System Performance

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
TMW-12A MW-800 MW-801	CCV %D	n-Butylbenzene	20.4%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	KKF <0.05	Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration	KKF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	RRF >0.05 01 RRF >0.01	Detect	NO ACTION
	%RSD > 15% or a correlation	Non-detect	UJ
Initial Calibration	coefficient <0.99	Detect	J
	% PSD > 00%	Non-detect	R
	%RSD >90%	Detect	J
	$0/D \sim 200/$ (increases in considuate)	Non-detect	No Action
	%D >20% (increase in sensitivity)	Detect	J
Continuing Colibration	0/D > 200/ (decreases in consitivity)	Non-detect	UJ
Continuing Calibration	%D >20% (decrease in sensitivity)	Detect	J
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)	Detect	J

RRF of 0.01 only applies to compounds which are typically poor responding compounds (i.e., ketones, 1,4-dioxane, etc.)

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. The analysis requires surrogate compounds exhibit recoveries within the laboratory-established acceptance limits.

All surrogate recoveries were within control limits.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the VOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the compound concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

The MS/MSD exhibited acceptable recoveries and RPD between the MS/MSD recoveries.

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

All compounds associated with the LCS analysis exhibited recoveries within the control limits.

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
TMW-08/ MW-801	All analytes	U	U	AC
TMW-08 Filtered/ MW-800	All analytes	U	U	AC

Results for duplicate samples are summarized in the following table.

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

The retention times of all quantitated peaks must fall within the calculated retention time windows. All identified compounds met the specified criteria.

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

DATA VALIDATION CHECKLIST FOR VOCs

VOCs: SW-846 8260	Repor	ted	Perfor Accep		Not Required
	No	Yes	No	Yes	Nequireu
GAS CHROMATOGRAPHY/MASS SPECTROMETR	Y (GC/MS)				
Tier II Validation					
Holding times		Х		Х	
Reporting limits (units)		Х		Х	
Blanks					
A. Method blanks		Х		X	
B. Equipment blanks					Х
C. Trip blanks		Х		Х	
Laboratory Control Sample (LCS) %R		Х		Х	
Laboratory Control Sample Duplicate (LCSD) %R					Х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х		Х	
Matrix Spike Duplicate(MSD) %R		Х		Х	
MS/MSD Precision (RPD)		Х		Х	
Field/Lab Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х		Х	
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation	i		•		
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation	I.				
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		Х		х	
D. Transcription/calculation errors present		Х		Х	
E. Reporting limits adjusted to reflect sample dilutions		Х		х	

VOCs: SW-846 8260	Repo	orted	Perfor Accep		Not Required
	No	Yes	No	Yes	noquirou
GAS CHROMATOGRAPHY/MASS SPECTROMETR	RY (GC/MS)			
0/DCD Deletive standard deviation					

%RSDRelative standard deviation%RPercent recoveryRPDRelative percent difference%DPercent difference

SEMI-VOLATILE ORGANIC COMPOUND (SVOC) ANALYSES

1. Holding Times

The specified holding times for the following methods are presented in the following table.

Method	Matrix	Holding Time	Preservation
SW-846 8270C	Water	7 days from collection to extraction and 40 days from extraction to analysis	Cool to <6°C

The analyses that exceeded the holding are presented in the following table.

Sample Locations	Holding Time	Criteria
TMW-08 Filtered (RE) TMW-23 Filtered (RE)	Extraction: 14 days	<7 Days
MW-800 (RE)		

RE Re-extraction

Sample results associated with sample locations analyzed by analytical method SW-846 8270 were qualified, as specified in the table below. All other holding times were met.

	Qualification	
Criteria	Detected Analytes	Non-detect Analytes
Analysis completed less than two times holding time	J	UJ
Analysis completed greater than two times holding time	J	R

Note: Samples TMW-08 Filtered, TMW-23 Filtered, and MW-800 were re-extracted outside of the required holding time. The samples were re-extracted due to the low acid extractable surrogate recoveries in the original analysis (see Section 5). The results from the re-extracted analysis will be used for the acid-extractable analytes only associated with samples TMW-08 Filtered and TMW-23 Filtered. The results from the original analysis of sample MW-800 will be used for all analytes since the acid extractable surrogate recoveries were >10%.

2. Blank Contamination

Quality assurance (QA) blanks (i.e., method, trip, and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure contamination of samples during shipment. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank (common laboratory contaminant compounds are calculated at ten times) is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B).

Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

Sample Locations	Analytes	Sample Result	Qualification
TMW-05 Filtered TMW-08 TMW-08A TMW-08A Filtered TMW-11 MW-800 MW-801	Butyl benzyl phthalate		
TMW-08 Filtered TMW-11 Filtered TMW-11A Filtered TMW-11 TMW-19C Filtered TMW-23 Filtered	Di-n-butyl phthalate		
TMW-05 Filtered TMW-05 TMW-08 TMW-08A TMW-08A Filtered TMW-11 Filtered TMW-11A Filtered TMW-11 TMW-23 MW-800 MW-801	Diethyl phthalate	Detected sample results <rl and <bal< td=""><td>"UB" at the RL</td></bal<></rl 	"UB" at the RL
TMW-05 Filtered TMW-05A Filtered TMW-05 TMW-08 TMW-08 Filtered TMW-08A Filtered TMW-11 Filtered TMW-11A Filtered TMW-19C Filtered TMW-19C TMW-23 TMW-23 Filtered MW-800 MW-801	bis(2-Ethylhexyl)phthalate		
TMW-05 Filtered TMW-05A Filtered TMW-05 TMW-08 TMW-11A TMW-19C TMW-23 MW-800 MW-801	Di-n-butyl phthalate	Detected sample results >RL and <bal< td=""><td>"UB" at detected sample concentration</td></bal<>	"UB" at detected sample concentration
TMW-05A Filtered TMW-08 Filtered TMW-19C Filtered TMW-19C TMW-23 Filtered	Diethyl phthalate		

Sample Locations	Analytes	Sample Result	Qualification
TMW-11	bis(2-Ethylhexyl)phthalate		

RL Reporting limit

3. Mass Spectrometer Tuning

Mass spectrometer performance was acceptable and all analyses were performed within a 12-hour tune clock.

System performance and column resolution were acceptable.

4. Calibration

Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument daily performance is satisfactory.

4.1 Initial Calibration

The method specifies percent relative standard deviation (%RSD) and relative response factor (RRF) limits for select compounds only. A technical review of the data applies limits to all compounds with no exceptions.

All target compounds associated with the initial calibration standards must exhibit a %RSD less than the control limit (15%) or a correlation coefficient greater than 0.99 and an RRF value greater than control limit (0.05).

4.2 Continuing Calibration

All target compounds associated with the continuing calibration standard must exhibit a percent difference (%D) less than the control limit (20%) and RRF value greater than control limit (0.05).

All compounds associated with the calibrations were within the specified control limits, with the exception of the compounds presented in the following table.

Sample Locations	Initial/Continuing	Compound	Criteria
TMW-05 Filtered TMW-05A Filtered TMW-05		Benzoic Acid	-22.9%
TMW-03 TMW-08 TMW-08 Filtered TMW-11 Filtered		Hexachlorocyclopentadiene	-28.5%
TMW-11A Filtered TMW-19C Filtered TMW-19C	CCV %D	4-Nitrophenol	-27.1%
TMW-02A TMW-08A		Benzoic Acid	-20.7%
TMW-08A Filtered TMW-11		2,4-Dinitrophenol	-21.8%
TMW-11A TMW-12A TMW-23		Hexachlorocyclopentadiene	-30.6%

Sample Locations	Initial/Continuing	Compound	Criteria
TMW-23 Filtered MW-800 MW-801		4-Nitrophenol	-22.8%
TMW-02A Filtered		Hexachlorocyclopentadiene	-29.8%

The criteria used to evaluate the initial and continuing calibration are presented in the following table. In the case of a calibration deviation, the sample results are qualified.

Initial/Continuing	Criteria	Sample Result	Qualification
	RRF <0.05	Non-detect	R
	RRF <0.03	Detect	J
Initial and Continuing	RRF <0.01 ¹	Non-detect	R
Calibration	KKF <0.01	Detect	J
	RRF >0.05 or RRF >0.01 ¹	Non-detect	No Action
	RRF 20.03 01 RRF 20.01	Detect	NO ACION
	%RSD > 15% or a correlation	Non-detect	UJ
Initial Calibration	coefficient <0.99	Detect	J
	%RSD >90%	Non-detect	R
		Detect	J
	% D > 20% (increases in consistivity)	Non-detect	No Action
	%D >20% (increase in sensitivity)	Detect	J
Continuing Calibration	% D > 20% (decrease in consitiuity)	Non-detect	UJ
	%D >20% (decrease in sensitivity)	Detect	J
	%D >90% (increase/decrease in	Non-detect	R
	sensitivity)	Detect	J

RRF of 0.01 only applies to compounds which are typically poor responding compounds

5. Surrogates/System Monitoring Compounds

All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. SVOC analysis requires that two of the three SVOC surrogate compounds within each fraction exhibit recoveries within the laboratory-established acceptance limits.

Sample locations associated with surrogates exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Surrogate	Recovery
	2-Fluorophenol	
TMW-02A Filtered TMW-02A	Phenol-d6	D
TMW-12A Filtered TMW-12A	Nitrobenzene-d5	D
	2-Fluorobiphenyl	

Sample Locations	Surrogate	Recovery
	2,4,6-Tribromophenol	
	o-Terphenyl	
	2-Fluorophenol	AC
	Phenol-d6	<10%
TMW-05A Filtered TMW-08 Filtered	Nitrobenzene-d5	
TMW-11A Filtered TMW-23 Filtered	2-Fluorobiphenyl	AC
TWW-23 Tillered	2,4,6-Tribromophenol	AC
	o-Terphenyl	
	2-Fluorophenol	AC
	Phenol-d6	>UL
TMW-11A	Nitrobenzene-d5	
	2-Fluorobiphenyl	AC
	2,4,6-Tribromophenol	AC
	o-Terphenyl	
	2-Fluorophenol	AC
	Phenol-d6	<ll but="">10%</ll>
TMW-11 Filtered MW-800	Nitrobenzene-d5	
	2-Fluorobiphenyl	
	2,4,6-Tribromophenol	AC
	o-Terphenyl	

UL Upper control limit

LL Lower control limit

D Diluted

AC Acceptable

The criteria used to evaluate the surrogate recoveries are presented in the following table. In the case of a surrogate deviation, the sample results associated with the deviant fraction are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	No Action
> 0L	Detect	J
	Non-detect	UJ
< LL but > 10%	Detect	J
< 10%	Non-detect	R
	Detect	J
Surrogates diluted below the calibration curve due to the	Non-detect	ı1
high concentration of a target compounds	Detect	J
A more concentrated analysis was not performed with surrogat	e compounds within t	he calibration range:

A more concentrated analysis was not performed with surrogate compounds within the calibration range; therefore, no determination of extraction efficiency could be made.

Note: Re-extraction of samples TMW-05A Filtered and TMW-11A Filtered was not possible due to insufficient sample volume. The results from the original analysis should be for the acid-extractable analytes, with qualification.

Note: Samples TMW-08 Filtered and TMW-23 Filtered were re-extracted due to the low acid extractable surrogate recovery in the original analysis. As discussed in Section 1, the re-extractions were performed outside of the required holding times. The surrogate recoveries for the re-extracted samples were within the control limits. The results from the re-extracted analysis should be used for the acid-extractable analytes associated with these samples.

6. Internal Standard Performance

Internal standard performance criteria insure that the GC/MS sensitivity and response are stable during every sample analysis. The criteria requires the internal standard compounds associated with the SVOC exhibit area counts that are not greater than two times (+100%) or less than one-half (-50%) of the area counts of the associated continuing calibration standard.

All internal standard responses were within control limits.

7. Matrix Spike/Matrix Spike Duplicate (MS/MSD) Analysis

MS/MSD data are used to assess the precision and accuracy of the analytical method. The compounds used to perform the MS/MSD analysis must exhibit a percent recovery within the laboratory-established acceptance limits. The relative percent difference (RPD) between the MS/MSD recoveries must exhibit an RPD within the laboratory-established acceptance limits.

Note: The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations were the compounds concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater.

Sample locations associated with the MS/MSD exhibiting recoveries outside of the control limits are presented in the following table.

Sample Locations	Compound	MS Recovery	MSD Recovery
TMW-23	Benzoic Acid	<10%	<10%
111/11/23	2,3,5,6-Tetrachlorophenol	<ll but="">10%</ll>	AC
	Benzoic Acid	<10%	<10%
	4-Nitrophenol		
	Pentachlorophenol	- <ll but="">10%</ll>	<ll but="">10%</ll>
TANA 22 Filtered	2,3,4,6-Tetrachlorophenol		
TMW-23 Filtered	2,3,5,6-Tetrachlorophenol		
	2,4,6-Trichlorophenol		
	2,4,5-Trichlorophenol		
	3,3'-Dichlorobenzidine	AC	

AC Acceptable

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
	Detect	J
< the lower control limit (LL) but > 10%	Non-detect	UJ
	Detect	J
4.00/	Non-detect	R
< 10%	Detect	J
Parent sample concentration > four times the MS/MSD	Detect	No Action
spiking solution concentration.	Non-detect	NU ACTION

Sample locations associated with MS/MSD recoveries exhibiting an RPD greater than of the control limit presented in the following table.

Sample Locations	Compound
	Acenaphthene
	Acenaphthylene
	Anthracene
	Benzo(a)anthracene
	Benzo(a)pyrene
	Benzo(b)fluoranthene
	Benzo(k)fluoranthene
	Benzo(g,h,i)perylene
	Benzyl Alcohol
	4-Bromophenyl Phenyl Ether
	Butyl Benzyl Phthalate
	4-Chloro-3-methylphenol
TMW-23	4-Chloroaniline
11000-23	Bis(2-chloroethoxy)methane
	Bis(2-chloroethyl) Ether
	Bis(2-chloroisopropyl) Ether
	2-Chloronaphthalene
	2-Chlorophenol
	4-Chlorophenyl Phenyl Ether
	Chrysene
	Dibenz(a,h)anthracene
	Dibenzofuran
	1,2-Dichlorobenzene
	1,3-Dichlorobenzene
	1,4-Dichlorobenzene
	3,3'-Dichlorobenzidine

Sample Locations	Compound
	Diethyl Phthalate
	Dimethyl Phthalate
	2,4-Dinitrotoluene
	2,6-Dinitrotoluene
	Di-n-octyl Phthalate
	Bis(2-ethylhexyl) Phthalate
	Fluorene
	Hexachlorobenzene
	Hexachlorobutadiene
	Hexachloroethane
	Indeno(1,2,3-cd)pyrene
	2-Methylnaphthalene
	2-Methylphenol
	4-Methylphenol
	Naphthalene
	Nitrobenzene
	N-Nitroso-diphenylamine
	N-Nitroso-di-n-propylamine
	Phenanthrene
	Phenol
	Pyrene
	1,2,4-Trichlorobenzene
	Acenaphthene
	Acenaphthylene
	Anthracene
	Benzo(a)anthracene
	Benzo(g,h,i)perylene
	Benzoic Acid
	4-Bromophenyl Phenyl Ether
	Butyl Benzyl Phthalate
TMM 22 Filtered	4-Chloro-3-methylphenol
TMW-23 Filtered	Bis(2-chloroisopropyl) Ether
	2-Chloronaphthalene
	2-Chlorophenol
	4-Chlorophenyl Phenyl Ether
	Dibenz(a,h)anthracene
	Dibenzofuran
	2,4-Dichlorophenol
	Dimethyl Phthalate
	2,6-Dinitrotoluene

Sample Locations	Compound
	Di-n-octyl Phthalate
	Bis(2-ethylhexyl) Phthalate
	Fluorene
	Hexachlorobenzene
	Hexachlorobutadiene
	Indeno(1,2,3-cd)pyrene
	2-Methylnaphthalene
	2-Methylphenol
	4-Methylphenol
	Naphthalene
	2-Nitrophenol
	N-Nitroso-diphenylamine
	Phenanthrene
	2,4,5-Trichlorophenol

The criteria used to evaluate the RPD between the MS/MSD recoveries are presented in the following table. In the case of an RPD deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> UL	Non-detect	UJ
	Detect	J

8. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The compounds associated with the LCS analysis must exhibit a percent recovery within the laboratory-established acceptance limits.

Sample locations associated with LCS analysis exhibiting recoveries outside of the control limits presented in the following table.

Sample Locations	Compound	LCS Recovery
TMW-02A Filtered TMW-02A TMW-05 Filtered TMW-05A Filtered TMW-05 TMW-08 TMW-08 Filtered TMW-08A TMW-08A Filtered TMW-11 Filtered TMW-11A Filtered TMW-11A	Benzoic Acid	<10%

Sample Locations	Compound	LCS Recovery
TMW-12A Filtered		
TMW-12A		
TMW-19C Filtered		
TMW-19C		
TMW-23		
TMW-23 Filtered		
MW-800		
MW-801		

The criteria used to evaluate the LCS recoveries are presented in the following table. In the case of an LCS deviation, the sample results are qualified as documented in the table below.

Control Limit	Sample Result	Qualification
> the upper control limit (UL)	Non-detect	No Action
	Detect	J
< the lower control limit (LL) but > 10%	Non-detect	UJ
	Detect	J
< 10%	Non-detect	R
	Detect	J

9. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

Sample ID/Duplicate ID	Compound	Sample Result	Duplicate Result	RPD
TMW-08/	Benzyl Alcohol	0.31 J	0.64 U	AC
MW-801	Phenanthrene	0.078 J	0.064 J	AC
TMW-08 Filtered/ MW-800	All analytes	U	U	AC
	TMW-08/ MW-801 TMW-08 Filtered/	TMW-08/ MW-801 Benzyl Alcohol Phenanthrene TMW-08 Filtered/ All analytes	Sample ID/Duplicate IDCompoundResultTMW-08/ MW-801Benzyl Alcohol0.31 JPhenanthrene0.078 JTMW-08 Filtered/All analytesU	Sample ID/Duplicate IDCompoundResultTMW-08/ MW-801Benzyl Alcohol0.31 J0.64 UPhenanthrene0.078 J0.064 JTMW-08 Filtered/All analytesUU

AC Acceptable

The calculated RPDs between the parent sample and field duplicate were acceptable.

10. Compound Identification

Compounds are identified on the GC/MS by using the analytes relative retention time and ion spectra. All identified compounds met the specified criteria.

Sample results associated with compounds that exhibited a concentration greater than the linear range of the instrument calibration are summarized in the following table.

Sample ID	Compound	Original Analysis	Diluted Analysis	Reported Analysis
TMW-02A	Naphthalene		5,000 D	5,000 D
TMW-11A	bis(2-Ethylhexyl)phthalate		220 D	220 D
	Acenaphthene		18,000 D	18,000 D
	Dibenzofuran		12,000 D	12,000 D
	Fluoranthene		22,000 D	22,000 D
	Fluorene		15,000 D	15,000 D
TMW-12A	2-Methylnaphthalene		18,000 D	18,000 D
	1-Methylnaphthalene		8,600 D	8,600 D
	Naphthalene		78,000 D	78,000 D
	Phenanthrene		41,000 D	41,000 D
	Pyrene		16,000 D	16,000 D

Note: In the instance where both the original analysis and the diluted analysis sample results exhibited a concentration greater than the calibration linear range of the instrument; the sample result exhibiting the greatest concentration will be reported as the final result.

The final reported sample results are qualified as documented in the table below.

Reported Sample Results	Qualification
Diluted sample result within calibration range	D
Diluted sample result less than the calibration range	DJ
Diluted sample result greater than the calibration range	EDJ
Original sample result greater than the calibration range	EJ

11. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

Note: The reporting limits associated with sample TMW-02A Filtered, TMW-05 Filtered, TMW-05A Filtered, TMW-05, TMW-08, TMW-08A, TMW-08A Filtered, TMW-11 Filtered, TMW-11, TMW-11A (original and re-extraction), TMW-12A (original and re-extraction), TMW-19C Filtered, TMW-19C, TMW-23, TMW-23 Filtered (re-extraction), MW-800 (original and re-extraction), and MW-801 were elevated due to insufficient sample volume received.

DATA VALIDATION CHECKLIST FOR SVOCs

SVOCs: SW-846 8270	•	orted	Acce	mance otable	Not
	No	Yes	No	Yes	Required
GAS CHROMATOGRAPHY/MASS SPECTROME	TRY (GC/	MS)			
Tier II Validation					
Holding times		Х	Х		
Reporting limits (units)		Х		Х	
Blanks			•	•	•
A. Method blanks		Х	Х		
B. Equipment blanks					Х
Laboratory Control Sample (LCS) %R		Х	Х		
Laboratory Control Sample Duplicate(LCSD) %R					х
LCS/LCSD Precision (RPD)					Х
Matrix Spike (MS) %R		Х	Х		
Matrix Spike Duplicate(MSD) %R		Х	Х		
MS/MSD Precision (RPD)		Х	Х		
Field Duplicate (RPD)		Х		Х	
Surrogate Spike Recoveries		Х	Х		
Dilution Factor		Х		Х	
Moisture Content					Х
Tier III Validation					
System performance and column resolution		Х		Х	
Initial calibration %RSDs		Х		Х	
Continuing calibration RRFs		Х		Х	
Continuing calibration %Ds		Х	Х		
Instrument tune and performance check		Х		Х	
Ion abundance criteria for each instrument used		Х		Х	
Internal standard		Х		Х	
Compound identification and quantitation					
A. Reconstructed ion chromatograms		Х		Х	
B. Quantitation Reports		Х		Х	
C. RT of sample compounds within the established RT windows		х		х	
D. Transcription/calculations acceptable		Х		Х	
 E. Reporting limits adjusted to reflect sample dilutions %RSD Relative standard deviation 		Х		Х	

%R RPD %D

Percent recovery Relative percent difference Percent difference

VALIDATION PERFORMED BY:

Jennifer Singer

SIGNATURE:

knnife Ainger

DATE: February 14, 2014

PEER REVIEW: Todd Church

DATE: February 18, 2014

CHAIN OF CUSTODY/ CORRECTED SAMPLE ANALYSIS DATA SHEETS

	5560 Corporate Exchange Court SE E S Grand Rapids, MI 49512	irt SE	0	hain of	Chain of Custody Record	rd coc No.	146973
For Lab Use Only	Phone (616) 975-4500 Fax (616) 942-7463 www.trimatrixlabs.com	342-7463			Analyses Requested	ested Pg.	
Box .	0	Project Name LODESS SWOLTUT	Lola				
Receipt Log No. 8 21 V30 FL	420 FLAF OWN #720	Client Project No. / P.O. No. & 0039290,0000	0.000.0				C H ₃ SO ₄ pH<2 1+1 HCl pH<2
AND CITY State 20 MUMUC MUMUC PhoneFrax 612 PhoneFrax 612	City, State Zp MI/M/ (DO) (13, MN) SSYO) H PhoneFax (D12, 3, 3, 3, 4, 3, 4 Errail A (A) 2, 2, 2, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	Invoice To http://www.ht.co contactReport to DAVE BESSINGPOS	A Client SOVE BES	omments) SINGPOS	2012 Container Trae Contracondis to Container Packing List	tamer Packing List	E NaOH pH>12 F ZnAc/NaOH pH>9 G MeOH H Other (note below)
Matrix Sample Code Number	Field Sample ID	Cooler ID Sample Date Sample Time	Sample Time	c c Matrix	Number of Containers Submitted	Total	San
mut 10-	TMW - 02A FIFTER	01314 0240	02-40		12	3	
+20-WMT = 20-	024	1/13/14 1420	02M	¥ 6w	12	3	
- WMTT = SP -	3 TMW-05 Filtred	0001 hi/eili	0001	→ Qm	32	10	
+17 ASO - WMT . 40 -	OSA FILKRED	oebo hileli	0640	7 6W Z	2 1	<i>1</i> 07	0
20-WMT :20 -	-05	asao h//n/1	0500	× 6w.2	- 2	m	
AND WILL OF	13.4						
80-mut. 70 -	90	1/13/14 1635	1635	× GWZ	2 2	7	
- WMTT: 20 -	"TMW-09 Filtred	1/13/14 1110	0111	× Gw 3 2	3 2	5	
Ado - wmt. 80 -	- 0°0A	anon Melli	0M01	X GW Z	22	2	
- with .	19 "TMW-08A FIREd	1/13/14	IIIS	× GW 3	3 2	5	
Sampled By (print) Artuol DWY 70W Sample's Signature	How Shipped? Hand Carrier Kodey Tracking No.		Comments				
Company	1. Freingustrol By Date 1/14/1/	1 T39	2 Reimpushed By	0	Date Three 3. Reinquished B	Date Date	Tême
	1. Account By Date	Ime	2 Received By	D	de Time 3 Protes	Fortabel / Min	Then I am

Individual sample results relate only to the sample tested.

5060 Corporate Exchange Court SE + Grand Rapids, MI 49512 + 616.975.4500 + Fax 616.942.450 + Same Court SE + 3000 Second

LABORATORIES Corporate Exchange Court SE Grand Rapids, MI 49512		Chain of Custody Record	COC No. 146975
For Lab Use Only Www.trimatrixlabs.com	Fax (616) 942-7463 ixlabs.com	Analyses Requested	Pg. 201 2
VOA Rack/Tay Clean Manue	Project Name	DA	A NONE off-2
BOX	Kuppers Superior		
Receipt Log No. 21 N 30 Frist Rich + 720	Client Project No. / P.O. No. B 003912910, 0000		C H ₃ S04,pH<2
	Thur	POAS	
701173 Emil David-besing para Ortodo	ALCUM BESSINGDAND	Container Type (corresponds to Container Packing List)	Ing List) H Other (note below)
Marrink Sample Code Number	Cooler 10 Sample Date Sample Time 0 R Matrix	Number of Containers Submitted	Total Sample Comments
- 10 mmu-11 Fittred	1/13/14 1230	3 2	2
- 1/ = muulia Flitred	SZ21 /1/c1/1	- 2	7
11-mul = 21 -	Dial H/H/H	12	С
-13 . TIMW-11A	ling the rows	1 2	б
-14 " TMW-12A FILTRED	1/13/14 1155	2 2	Ś
-15 " TMW-12A	VIUITU OPUS	22	I
- 16, Tmu-196 Filtred	0071 MEIL	32	2
- 17 " JPI-WITT - 19C	SE60 Hillih	22	3
Osmism Osm .	VI3/14 ODJ35	22	4 TMW-23
· And March Itred	0060 HIGH	22	4 minu-23
Sampled By (print) MUOL DWARSUL How Shipped? Hand Carrier R Samplerd Segnature DOUGUP Tracking No.	Carrier FCOLOY Comments		
(RAUNNAN V	12 MM 133	Date Time 3. Reinquicited By	Date Tree
٢	Time 2. Rocoived By	Date Time 3. provived For Lab 9	1 1 10 - The Tare

Individual sample results relate only to the sample tested.

5560 Corporate Exchange Court SE + Grand Rapids, MI 49512 + 616.975.4500 + Fax 616.942.7463 + www.trimatrixlabs.com

TRIMATRIX LABORATORIES	5560 Corporate Exr Grand Rapids	ount SE 2	Ċ	iain of	Chain of Custody Record	COC No.	COC No. 146974
For Lab Use Only	Phone (616) 975-4500 Fax (616) www.trimatrixlabs.com	Fax (616) 942-7463 ixlabs.com			Analyses Requested		Pg. 2 of 3
X	Cleant Name Or Or Or Or Address	Project Name	Her Name KODESSMEND				
.21	1430 FICST (NC N#720 B00 C(N, STATE Z) MINN (200011), MN 17401 00000 MINN (200232) 9434 Photos (2232) 9434 Contactive Contactive BOO397	BOD39790.0000 INVERTING CLIENT MCCUMAPLE Other (comments) COMPAPLE Other (comments)	ents) Mary				
Matrix Ssimple Code Number	Field Sample ID	Cooler ID Sample Date Sample Time a	e Sample Time ⁰	G A Matrix	Number of Containers Submitted	Total Total	Sar
- 18.	TMW-23	hikih	SEP0 1	X 6W 3	2	5	
-19 2	* TMW-23 FILTER	1/51/	413/14 0900	X GW 3	3 2	10	
- 20 -	20 mm - 800	hileih)	×60032	2	2	
-21-	100- MM +	MI2/1M	1	X (5/10 Z	22	7	
122:	Junia diult.)	1	1		-	
and a	Discord		Ĩ	1	45	2	AUCASSINGLAS
2 10 10							6
Sampled By (print) (2011. Buyns KL Sampler's Signature	How Shipped? Hand Camer	carrieff.cluv	Comments				
oncourse of the second	BOUNTWAR // 14	14/14 Ton 35	2. Reinquished By	Date		Date:	Time
		0	C. FORCHERING BY			5	1.15.40900
	WHITE COPY - REPORT	YELLOW COPY	YELLOW COPY - LABORATORY		PINK COPY - FIELD		

TMW-02A Filtered

Laboratory	: TriMatrix Laboratories, Inc.		SDG:	1401173			
Client	t: Beazer East, Inc.	Project: Koppers Superior					
Matrix	: Water La	boratory ID: 140117): 1401173-01A.D		
Sampled	1: 01/13/14 08:40	Prepared: 01/27/1			d: 01/27/14 13:03		
Solids		Preparation: 5030B	the second process where		a state of the sta		
					l: <u>5 mL/5 mL</u>		
and the second second		e: <u>4A31015</u>	Calibration:	4A31006	Instrument:	350	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
71-43-2	Benzene	20	20	6.4	20	U	
104-51-8	π-Butylbenzene	20	20	4.1	20	U	
108-90-7	Chlorobenzene	20	20	4.3	20	U	
100-41-4	Ethylbenzene	20	16	5.5	20	J	
1634-04-4	Methyl tert-Butyl Ether	20	100	2.1	100	U	
91-20-3	Naphthalene	20	2800	n	20	1	
103-65-1	n-Propylbenzene	20	20	2.9	20	U	
100-42-5	Styrene	20	20	2.5	20	U	
108-88-3	Toluene	20	16	5.7	20	J	
71-55-6	1,1,1-Trichloroethane	20	20	5.9	20	U	
95-63-6	1,2,4-Trimethylbenzene	20	10	3.8	20	J	
108-67-8	1,3,5-Trimethylbenzene	20	5.0	4.0	20	J	
79601-23-1	Xylene, Meta + Para	20	28	4.3	40	J	
95-47-6	Xylene, Ortho	20	15	4.6	20	J	
ystem Monito	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q	
ibromofluoro	methane	40.0	39.9	100	85 - 118		
2-Dichloroeth	nane-d4	40.0	37.4	94	87 - 122		
oluene-d8		40.0	38.5	96	85 - 113	-	
-Bromofluorol	benzene	40.0	38.8	97	82 - 110		
ternal Stand	ard	Area	RT	% REC.	Ref. RT	Q	
luorobenzene		669001	6.266	89	6.266		
hlorobenzene-	-d5	494980	10.56	89	10.56		
4-Dichlorober	nzene-d4	243046	13.524	86	13.525	-	

TMW-02A

Laboratory	: TriMatrix Laboratories, Inc.		SDG:	1401173		
Client	: Beazer East, Inc.	Project: Koppers Superior				
Matrix	:: Water La	boratory ID: <u>140117</u>	and the second second second second second second second second second second second second second second second		: 1401173-02A.D	
Sampled	1: 01/13/14 14:20	Prepared: 01/27/1			: 01/27/14 13:31	
Solids		Preparation: 5030B			: 5 mL/5 mL	
						250
C. C. M. A.		e: <u>4A31015</u>	Calibration:		Instrument:	350
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
71-43-2	Benzene	50	50	16	50	U
104-51-8	n-Butylbenzene	50	50	10	50	U
108-90-7	Chlorobenzene	50	50	11	50	U
100-41-4	Ethylbenzene	50	30	14	50	J
1634-04-4	Methyl tert-Butyl Ether	50	250	5.2	250	U
91-20-3	Naphthalene	50	7900	28	50	
103-65-1	n-Propylbenzene	50	50	7.2	50	U
100-42-5	Styrene	50	50	6.2	.50	U
108-88-3	Toluene	50	26	14	50	J
71-55-6	1,1,1-Trichloroethane	50	50	15	50	U
95-63-6	1,2,4-Trimethylbenzene	50	24	9.4	50	J
108-67-8	1,3,5-Trimethylbenzene	50	11	10	50	J
179601-23-1	Xylene, Meta + Para	50	50	11	100	J
95-47-6	Xylene, Ortho	50	26	11	50	J
System Monit	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q
Dibromofluoro	methane	40.0	38.8	97	85 - 118	
,2-Dichloroeth	nane-d4	40.0	37.8	95	87 - 122	
Foluene-d8		40.0	38.9	97	85 - 113	
I-Bromofluoro	benzene	40.0	39.8	100	82 - 110	
nternal Stand	lard	Area	RT	% REC.	Ref. RT	Q
Fluorobenzene		673235	6.266	90	6.266	
Chlorobenzene	-d5	489830	10.56	88	10.56	
1,4-Dichlorobe	nzene-d4	248427	13.524	88	13.525	-

TMW-05 Filtered

Laboratory	y: TriMatrix Laboratories, Inc.	SDG: <u>1401173</u>					
Clien	t: Beazer East, Inc.	Project: Koppers Superior					
Matrix: Water Lab		boratory ID: 140117	3-03	File ID	: <u>1401173-03.D</u>		
Sampled	1: <u>01/13/14 10:30</u>	Prepared: 01/23/1	4 07:00	Analyzed: 01/23/14 14:13			
Solids	5:	Preparation: 5030B	and the second se		l: 5 mL/5 mL		
QC Batch		ce: 4A24008	Calibration:		Instrument:	350	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
71-43-2	Benzene	1	1.0	0.32	1.0	U	
104-51-8	n-Butylbenzene	1	1.0	0.20	1.0	U	
108-90-7	Chlorobenzene	1	1.0	0.21	1.0	U	
100-41-4	Ethylbenzene	1	1.0	0.27	1.0	U	
1634-04-4	Methyl tert-Butyl Ether	1	5.0	0.10	5.0	U	
91-20-3	Naphthalene	1	1.0	0.56	1.0	U	
103-65-1	n-Propylbenzene	1	1.0	0.14	1.0	U	
100-42-5	Styrene	1	1.0	0.12	1.0	U	
108-88-3	Toluene	1	2.3	0.28	1.0		
71-55-6	1,1,1-Trichloroethane	1	1.0	0.30	1.0	U	
95-63-6	1,2,4-Trimethylbenzene	1	1.0	0.19	1.0	U	
108-67-8	1,3,5-Trimethylbenzene	1	1.0	0.20	1.0	U	
179601-23-1	Xylene, Meta + Para	1	0.38	0.21	2.0	J	
95-47-6	Xylene, Ortho	1	0.24	0.23	1.0	J	
System Monite	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q	
Dibromofluoro	methane	40.0	39.4	99	85 - 118		
1,2-Dichloroeth	nane-d4	40.0	40.5	101	87 - 122		
Toluene-d8		40.0	38.4	96	85 - 113		
4-Bromofluoro	benzene	40.0	38.7	97	82 - 110		
Internal Stand	lard	Area	RT	% REC.	Ref. RT	Q	
Fluorobenzene		581330	6.266	95	6.266	V	
Chlorobenzene	-d5	420763	10.56	96	10.56	-	
1,4-Dichlorober	nzene-d4	202474	13.524	96	13.525		

TMW-05A Filtered

Laboratory	: TriMatrix Laboratories, Inc.		SDG:	1401173		
Client	t: Beazer East, Inc.		Project:	Coppers Superior		
Matrix	: <u>Water</u> La	boratory ID: 140117	3-04	File ID): 1401173-04.D	
Sampled	l: 01/13/14 09:30	Prepared: 01/23/1			d: 01/23/14 14:41	
Solids		Preparation: 5030B		and the second second	l: 5 mL/5 mL	
		ce: 4A24008	Calibration:		Instrument:	350
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
71-43-2	Benzene	1	1.0	0.32	1.0	U
104-51-8	n-Butylbenzene	1	1.0	0.20	1.0	U
108-90-7	Chlorobenzene	1	1.0	0.21	1.0	U
100-41-4	Ethylbenzene	1	1.0	0.27	1.0	U
1634-04-4	Methyl tert-Butyl Ether	1	5.0	0.10	5.0	U
91-20-3	Naphthalene	1	1.0	0.56	1.0	U
103-65-1	n-Propylbenzene	1	1.0	0.14	1.0	U
100-42-5	Styrene	1	1.0	0.12	1.0	U
108-88-3	Toluene	1	0.35	0.28	1.0	J
71-55-6	1,1,1-Trichloroethane	1	1.0	0.30	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1	1.0	0.19	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1	1.0	0.20	1.0	U
79601-23-1	Xylene, Meta + Para	1	2.0	0.21	2.0	U
95-47-6	Xylene, Ortho	1	1.0	0.23	1.0	U
ystem Monito	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q
bibromofluoro	methane	40.0	39.3	98	85 - 118	
,2-Dichloroeth	nane-d4	40.0	40.8	102	87 - 122	
oluene-d8		40.0	38.5	96	85 - 113	
-Bromofluorol	benzene	40.0	37.8	95	82 - 110	
nternal Stand	lard	Area	RT	% REC.	Ref. RT	Q
luorobenzene		581343	6.266	95	6.266	
Chlorobenzene-	-d5	421895	10.56	97	10.56	
,4-Dichlorober	nzene-d4	196424	13.524	94	13.525	_

TMW-05

Laboratory: TriMatrix Laboratories, Inc. SDG: 1						
Client	: Beazer East, Inc.		Project:]	Koppers Superi	or	
Matrix	:: <u>Water</u> La	boratory ID: <u>140117</u>	3-05	File ID	: <u>1401173-05.D</u>	
Sampled	I: 01/14/14 08:50	Prepared: 01/23/1	4 07:00	Analyzed	: 01/23/14 15:08	
Solids		Preparation: 5030B	Aqueous Purge &	Initial/Final	: 5 mL / 5 mL	
QC Batch		ce: 4A24008	Calibration:		Instrument:	350
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
71-43-2	Benzene	1	1.0	0.32	1.0	U
104-51-8	n-Butylbenzene	T	1.0	0.20	1.0	U
108-90-7	Chlorobenzene	1	1.0	0.21	1.0	U
100-41-4	Ethylbenzene	1	1.0	0.27	1.0	U
1634-04-4	Methyl tert-Butyl Ether	1. 1	5.0	0.10	5.0	υ
91-20-3	Naphthalene	1	1.0	0.56	1.0	U
103-65-1	n-Propylbenzene	1	1.0	0.14	1.0	U
100-42-5	Styrene	1	1.0	0.12	1.0	U
108-88-3	Toluene	1	1.0	0.28	1.0	U
71-55-6	1,1,1-Trichloroethane	1	1.0	0.30	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1	1.0	0.19	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1	1.0	0.20	1.0	U
179601-23-1	Xylene, Meta + Para	1	2.0	0.21	2.0	U
95-47-6	Xylene, Ortho	1	1.0	0.23	1.0	U
System Monit	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q
Dibromofluoro	methane	40.0	39.8	99	85 - 118	
1,2-Dichloroet	nane-d4	40.0	41,0	103	87 - 122	
Toluene-d8	100 C	40.0	38.9	97	85 - 113	-
4-Bromofluoro	benzene	40.0	38.9	97	82 - 110	
Internal Stand	lard	Area	RT	% REC.	Ref. RT	Q
Fluorobenzene		571471	6.266	94	6.266	
Chlorobenzene	-d5	414491	10.56	95	10.56	
1,4-Dichlorobe	nzene-d4	195416	13.524	93	13.525	

TMW-08

Laboratory	: TriMatrix Laboratories, Inc.	SDG: <u>1401173</u>						
Client	: Beazer East, Inc.		Project:]	Koppers Superi	or			
Matrix	: <u>Water</u> La	boratory ID: 140117	3-06	File ID: 1401173-06.D				
Sampled	1: 01/13/14 16:35	Prepared: 01/23/14 07:00		Analyzed	1: 01/23/14 15:35			
Solids	E.	Preparation: 5030B			l: 5 mL / 5 mL			
		e: 4A24008	Calibration:		Instrument:	350		
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q		
71-43-2	Benzene	1	1.0	0.32	1.0	U		
104-51-8	n-Butylbenzene	1	1.0	0.20	1.0	U		
108-90-7	Chlorobenzene	1	1.0	0.21	1.0	U		
100-41-4	Ethylbenzene	1	1.0	0.27	1.0	U		
1634-04-4	Methyl tert-Butyl Ether	1	5.0	0.10	5.0	U		
91-20-3	Naphthalene	- T	1.0	0.56	1.0	U		
103-65-1	n-Propylbenzene	1	1.0	0.14	1.0	U		
100-42-5	Styrene	1	1.0	0.12	1.0	U		
108-88-3	Toluene	1	1.0	0.28	1.0	U		
71-55-6	1,1,1-Trichloroethane	1	1.0	0.30	1.0	U		
95-63-6	1,2,4-Trimethylbenzene	1	1.0	0.19	1.0	U		
108-67-8	1,3,5-Trimethylbenzene	1	1.0	0.20	1.0	U		
179601-23-1	Xylene, Meta + Para	1	2.0	0.21	2.0	U		
95-47-6	Xylene, Ortho	1	1.0	0.23	1.0	U		
System Monite	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q		
Dibromofluoro	methane	40.0	40.0	100	85 - 118			
,2-Dichloroeth	hane-d4	40.0	41.6	104	87 - 122			
Foluene-d8	and the second second second	40.0	38.5	96	85 - 113			
-Bromofluoro	benzene	40.0	39.4	99	82 - 110			
nternal Stand	lard	Area	RT	% REC.	Ref. RT	Q		
Iuorobenzene	2	567231	6.266	93	6.266			
Chlorobenzene	-d5	403724	10.56	92	10.56			
1,4-Dichlorobe	nzene-d4	190679	13.524	91	13.525	-		

TMW-08 Filtered

Laboratory	: TriMatrix Laboratories, Inc.	SDG: <u>1401173</u>						
Client	: Beazer East, Inc.	Project: Koppers Superior						
Matrix	: Water La	boratory ID: 140117.	3-07	File ID: 1401173-07.D				
Sampled	: 01/13/14 11:10	Prepared: 01/23/14 07:00		Analyzed: 01/23/14 16:03				
Solids		Preparation: 5030B			: 5 mL / 5 mL			
		e: <u>4A24008</u>	Calibration:		Instrument:	350		
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q		
71-43-2	Benzene	1	1.0	0.32	1.0	U		
104-51-8	n-Butylbenzene	1	1.0	0.20	1.0	U		
108-90-7	Chlorobenzene	1	1.0	0.21	1.0	U		
100-41-4	Ethylbenzene	1	1.0	0.27	1.0	U		
1634-04-4	Methyl tert-Butyl Ether	1	5.0	0.10	5.0	U		
91-20-3	Naphthalene	1	1.0	0.56	1.0	U		
103-65-1	n-Propylbenzene	1	1.0	0.14	1.0	U		
100-42-5	Styrene	1	1.0	0.12	1.0	U		
108-88-3	Toluene	1	1.0	0.28	1.0	U		
71-55-6	1,1,1-Trichloroethane	1	1.0	0.30	1.0	U		
95-63-6	1,2,4-Trimethylbenzene	1	1.0	0.19	1.0	U		
108-67-8	1,3,5-Trimethylbenzene	1	1.0	0.20	1.0	U		
179601-23-1	Xylene, Meta + Para	1	2.0	0.21	2.0	U		
95-47-6	Xylene, Ortho	1	1.0	0.23	1.0	U		
System Monite	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q		
Dibromofluoro	methane	40.0	40.1	100	85 - 118			
,2-Dichloroeth	nane-d4	40.0	40.8	102	87 - 122			
Foluene-d8		40.0	38.6	97	85 - 113			
l-Bromofluoro	benzene	40.0	38.0	95	82 - 110			
Internal Stand	lard	Area	RT	% REC.	Ref. RT	Q		
Fluorobenzene		578584	6.266	95	6.266			
Chlorobenzene	-d5	411557	10.56	94	10.56			
,4-Dichlorobe	nzene-d4	197584	13.525	94	13.525			

TMW-08A

Laboratory	: TriMatrix Laboratories, Inc.	SDG: <u>1401173</u>					
Client	: Beazer East, Inc.		or				
Matrix	: Water La	boratory ID: 140117	3-08	File ID	: 1401173-08.D		
Sampled	: 01/13/14 16:40	Prepared: 01/23/14 07:00			1: 01/23/14 16:30		
Solids		Preparation: 5030B	a state of the second second		: 5 mL/5 mL		
1					the second second second second second second second second second second second second second second second se	250	
		e: <u>4A24008</u>	Calibration:		Instrument:	C	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
71-43-2	Benzene	1	1.0	0.32	1.0	U	
104-51-8	n-Butylbenzene	1	1.0	0.20	1.0	U	
108-90-7	Chlorobenzene	1,	1.0	0.21	1.0	U	
100-41-4	Ethylbenzene	1	1.0	0.27	1.0	U	
1634-04-4	Methyl tert-Butyl Ether	1	5.0	0.10	5.0	U	
91-20-3	Naphthalene	1	1.0	0.56	1.0	U	
103-65-1	n-Propylbenzene	1	1.0	0.14	1.0	U	
100-42-5	Styrene	1 1	1.0	0.12	1.0	U	
108-88-3	Toluene	1	1.0	0.28	1.0	U	
71-55-6	1,1,1-Trichloroethane	1	1.0	0.30	1.0	U	
95-63-6	1,2,4-Trimethylbenzene	1	1.0	0.19	1.0	U	
108-67-8	1,3,5-Trimethylbenzene	1	1.0	0.20	1.0	U	
179601-23-1	Xylene, Meta + Para		2.0	0.21	2.0	U	
95-47-6	Xylene, Ortho	1	1.0	0.23	1.0	U	
ystem Monite	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q	
Dibromofluoro	methane	40.0	40.1	100	85 - 118		
,2-Dichloroeth	nane-d4	40.0	40.9	102	87 - 122		
oluene-d8		40.0	39.3	98	85 - 113		
-Bromofluoro	benzene	40.0	39.0	98	82 - 110		
nternal Stand	ard	Area	RT	% REC.	Ref. RT	Q	
luorobenzene		583624	6.266	96	6.266		
hlorobenzene-	-d5	425334	10.56	97	10.56		
,4-Dichlorober	nzene-d4	204631	13.524	98	13.525	-	

TMW-08A Filtered

Laboratory	: TriMatrix Laboratories, Inc.	SDG: <u>1401173</u>					
Client	: Beazer East, Inc.	Project: Koppers Superior					
Matrix	: <u>Water</u> La	boratory ID: 140117	3-09	File ID: <u>1401173-09.D</u>			
Sampled	: 01/13/14 11:15	Prepared: 01/23/14 07:00		Analyzed	: 01/23/14 16:58		
Solids		Preparation: 5030B			: 5 mL / 5 mL		
QC Batch		e: <u>4A24008</u>	Calibration:		Instrument:	350	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
71-43-2	Benzene	1	1.0	0.32	1.0	U	
104-51-8	n-Butylbenzene	1	1.0	0.20	1.0	U	
108-90-7	Chlorobenzene	1	1.0	0.21	1.0	U	
100-41-4	Ethylbenzene	1	1.0	0.27	1.0	U	
1634-04-4	Methyl tert-Butyl Ether	1	5.0	0.10	5.0	U	
91-20-3	Naphthalene	1	1.0	0.56	1.0	U	
103-65-1	n-Propylbenzene	1	1.0	0.14	1.0	U	
100-42-5	Styrene	1	1.0	0.12	1.0	U	
108-88-3	Toluene	1	1.0	0.28	1.0	U	
71-55-6	1,1,1-Trichloroethane	- Î	1.0	0.30	1.0	U	
95-63-6	1,2,4-Trimethylbenzene	1	1.0	0.19	1.0	U	
108-67-8	1,3,5-Trimethylbenzene	- 1	1.0	0.20	1.0	U	
179601-23-1	Xylene, Meta + Para	1	2.0	0.21	2.0	U	
95-47-6	Xylene, Ortho	1	1.0	0.23	1.0	U	
System Monite	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q	
Dibromofluoro	methane	40.0	40.0	100	85 - 118		
,2-Dichloroeth	nane-d4	40.0	42.1	105	87 - 122		
oluene-d8		40.0	39.0	97	85 - 113		
-Bromofluoro	benzene	40.0	37.6	94	82 - 110		
nternal Stand	lard	Area	RT	% REC.	Ref. RT	Q	
luorobenzene		571719	6.266	94	6.266		
Chlorobenzene	-d5	419316	10.56	96	10.56		
,4-Dichlorobe	nzene-d4	197887	13.524	94	13.525		

TMW-11 Filtered

Laboratory	: TriMatrix Laboratories, Inc.		SDG:	1401173			
Client	t: Beazer East, Inc.	Project: Koppers Superior					
Matrix	: Water La	boratory ID: 140117		File ID: 1401173-10.D			
Sampled	: 01/13/14 12:30	Prepared: 01/23/14 07:00		Analyzed: 01/23/14 17:25			
Solids	A second s	Preparation: 5030B			l: <u>5 mL/5 mL</u>		
		ce: <u>4A24008</u>	Calibration:		Instrument:	250	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	1975 - L	
71-43-2	Benzene	1	1.0	0.32	1.0	Q U	
104-51-8	n-Butylbenzene	1	1.0	0.32	1.0	U	
108-90-7	Chlorobenzene	-1	1.0	0.20	1.0		
100-41-4	Ethylbenzene	1	1.0	0.21	1.0	U U	
1634-04-4	Methyl tert-Butyl Ether	1	5.0	0.27	5.0		
91-20-3	Naphthalene	1	0.56	0.10	1.0	J	
103-65-1	n-Propylbenzene	1	1.0	0.14	1.0	U	
100-42-5	Styrene	1	1.0	0.14	1.0	U U	
108-88-3	Toluene	1	1.0	0.12	1.0	U U	
71-55-6	1,1,1-Trichloroethane	1	1.0	0.28	1.0	U	
95-63-6	1,2,4-Trimethylbenzene	1	1.0	0.19	1.0	U	
108-67-8	1,3,5-Trimethylbenzene	1	1.0	0.19	1.0	U	
79601-23-1	Xylene, Meta + Para	1	2.0	0.20	2.0	U	
95-47-6	Xylene, Ortho	1	1.0	0.23	1.0	U	
ystem Monite	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q	
ibromofluoro	methane	40.0	39.6	99	85 - 118	×	
2-Dichloroeth	ane-d4	40.0	39.8	100	87 - 122	-	
oluene-d8		40.0	37.5	94	85 - 113		
Bromofluoro	benzene	40.0	38.8	97	82 - 110		
iternal Stand	lard	Area	RT	% REC.	Ref. RT	Q	
uorobenzene		570498	6.266	94	6.266		
hlorobenzene-	-d5	396134	10.56	91	10.56	-	
4-Dichlorober	nzene-d4	195063	13.524	93	13.525		

TMW-11A Filtered

Laboratory	: TriMatrix Laboratories, Inc.	SDG: <u>1401173</u>						
Client	: Beazer East, Inc.	Project: Koppers Superior						
Matrix	: <u>Water</u> La	boratory ID: 140117	3-11	File ID: 1401173-11.D				
Sampled	: 01/13/14 12:25	Prepared: 01/23/1	4 07:00	Analyzed	: 01/23/14 17:52			
Solids		Preparation: 5030B			: 5 mL / 5 mL			
		e: <u>4A24008</u>	Calibration:		Instrument:	350		
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q		
71-43-2	Benzene	1	1.0	0.32	1.0	U		
104-51-8	n-Butylbenzene	1	1.0	0.20	1.0	U		
108-90-7	Chlorobenzene	1	1.0	0.21	1.0	U		
100-41-4	Ethylbenzene	1	1.0	0.27	1.0	U		
1634-04-4	Methyl tert-Butyl Ether	i	5.0	0.10	5.0	U		
91-20-3	Naphthalene	1	1.0	0.56	1.0	U		
103-65-1	n-Propylbenzene	1	1.0	0.14	1.0	U		
100-42-5	Styrene	1 1	1.0	0.12	1.0	U		
108-88-3	Toluene	1	1.0	0.28	1.0	U		
71-55-6	1,1,1-Trichloroethane	1	1.0	0.30	1.0	U		
95-63-6	1,2,4-Trimethylbenzene	1	1.0	0.19	1.0	U		
108-67-8	1,3,5-Trimethylbenzene	1	1.0	0.20	1.0	U		
179601-23-1	Xylene, Meta + Para	1	2.0	0.21	2.0	U		
95-47-6	Xylene, Ortho	1	1.0	0.23	1.0	U		
System Monito	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q		
Dibromofluoro	methane	40.0	39.7	99	85 - 118			
,2-Dichloroeth	nane-d4	40.0	40.0	100	87 - 122	-		
Toluene-d8		40.0	38.7	97	85 - 113			
-Bromofluoro	benzene	40.0	39.1	98	82 - 110			
nternal Stand	lard	Area	RT	% REC.	Ref. RT	Q		
luorobenzene		563327	6.266	92	6.266	×		
Chlorobenzene	-d5	395856	10.56	91	10.56			
,4-Dichlorobe	nzene-d4	189910	13.524	90	13.525	_		

TMW-11

Laboratory	: TriMatrix Laboratories, Inc.	nc. SDG: <u>1401173</u>						
Client	: Beazer East, Inc.	Project: Koppers Superior						
Matrix	: <u>Water</u> La	boratory ID: 140117	3-12	File ID: 1401173-12.D				
Sampled	1: <u>01/14/14 10:10</u>	Prepared: 01/23/14 07:00			I: 01/23/14 18:20			
Solids		Preparation: 5030B			l: 5 mL/5 mL			
		e: <u>4A24008</u>	Calibration:		THORE A COLUMN AND	250		
					Instrument:			
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q		
71-43-2	Benzene	1	1.0	0.32	1.0	U		
104-51-8	n-Butylbenzene	1	1.0	0.20	1.0	U		
108-90-7	Chlorobenzene	1	1.0	0.21	1.0	U		
100-41-4	Ethylbenzene	I	1.0	0.27	1.0	U		
1634-04-4	Methyl tert-Butyl Ether	1	5.0	0.10	5.0	U		
91-20-3	Naphthalene	1	1.0	0.56	1.0	U		
103-65-1	n-Propylbenzene	1	1.0	0.14	1.0	U		
100-42-5	Styrene	1	1.0	0.12	1.0	U		
108-88-3	Toluene	1	1.0	0.28	1.0	U		
71-55-6	1,1,1-Trichloroethane	1	1.0	0.30	1.0	U		
95-63-6	1,2,4-Trimethylbenzene	1	1.0	0.19	1.0	U		
108-67-8	1,3,5-Trimethylbenzene	1	1.0	0.20	1.0	U		
79601-23-1	Xylene, Meta + Para	1	2.0	0.21	2.0	U		
95-47-6	Xylene, Ortho	1	1.0	0.23	1.0	U		
ystem Monito	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q		
bibromofluoro	methane	40.0	40.8	102	85 - 118			
2-Dichloroeth	nane-d4	40.0	41.7	104	87 - 122			
oluene-d8		40.0	38.8	97	85 - 113			
-Bromofluoro	benzene	40.0	39.1	98	82 - 110			
iternal Stand	lard	Area	RT	% REC.	Ref. RT	Q		
luorobenzene		554187	6.266	91	6.266			
hlorobenzene-	-d5	397636	10.56	91	10.56			
,4-Dichlorober	nzene-d4	192491	13.524	92	13.525			

TMW-11A

Laboratory	: TriMatrix Laboratories, Inc.	SDG: <u>1401173</u>						
Client	: Beazer East, Inc.		Project: 1	Koppers Superi	or			
Matrix	: <u>Water</u> La	boratory ID: 140117	3-13	File ID: 1401173-13.D				
Sampled	: 01/14/14 10:15	Prepared: 01/27/1		Analyzed	1: 01/27/14 16:40			
Solids		Preparation: 5030B			: 5 mL / 5 mL			
		e: <u>4A31015</u>	Calibration:		Instrument:	350		
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL			
71-43-2	Benzene		and a second second second second second second second second second second second second second second second			Q		
104-51-8	And Aug 2 ref.	1	1.0	0.32	1.0	U		
	n-Butylbenzene	1	1.0	0.20	1.0	U		
108-90-7	Chlorobenzene	1	1.0	0.21	1.0	U		
100-41-4	Ethylbenzene	1	1.0	0.27	1.0	U		
1634-04-4	Methyl tert-Butyl Ether	1	5.0	0.10	5.0	U		
91-20-3	Naphthalene	1	1.0	0.56	1.0	U		
103-65-1	n-Propylbenzene	1	1.0	0.14	1.0	U		
100-42-5	Styrene	1	1.0	0.12	1.0	U		
108-88-3	Toluene	1	0.39	0.28	1.0	J		
71-55-6	1,1,1-Trichloroethane	1	1.0	0.30	1.0	U		
95-63-6	1,2,4-Trimethylbenzene	1	1.0	0.19	1.0	U		
108-67-8	1,3,5-Trimethylbenzene	1	1.0	0.20	1.0	U		
179601-23-1	Xylene, Meta + Para	1	0.36	0.21	2.0	J		
95-47-6	Xylene, Ortho		1.0	0.23	1.0	U		
System Monite	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q		
Dibromofluoro	methane	40.0	39.4	99	85 - 118	-		
,2-Dichloroeth	nane-d4	40.0	38.7	97	87 - 122			
oluene-d8		40.0	38.5	96	85 - 113			
-Bromofluorol	benzene	40.0	38.7	97	82 - 110			
nternal Stand	lard	Area	RT	% REC.	Ref. RT	Q		
luorobenzene	W. C.	665428	6.266	89	6.266	V		
Chlorobenzene	-d5	488270	10.56	88	10.56			
.4-Dichlorobe		240529	13.524	85	13.525			

TMW-12A Filtered

8.40000						
Laboratory	: TriMatrix Laboratories, Inc.		SDG:	1401173		
Client	t: Beazer East, Inc.		Project:	Koppers Superior		
Matrix	: <u>Water</u> La	boratory ID: 140117	3-14	File ID: <u>1401241-01A.D</u>		
Sampled	I: 01/13/14 11:55	Prepared: 01/27/1	4 09:00	Analyzed: 01/27/14 13:58		
Solids		Preparation: 5030B	Aqueous Purge &	Initial/Fina	l: 5 mL / 5 mL	
QC Batch		:e: 4A31015	Calibration:		Instrument:	350
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
71-43-2	Benzene	20	25	6.4	20	
104-51-8	n-Butylbenzene	20	20	4.1	20	U
108-90-7	Chlorobenzene	20	20	4.3	20	U
100-41-4	Ethylbenzene	20	14	5.5	20	J
1634-04-4	Methyl tert-Butyl Ether	20	100	2.1	100	U
91-20-3	Naphthalene	20	3800	11	20	
103-65-1	n-Propylbenzene	20	20	2.9	20	U
100-42-5	Styrene	20	20	2.5	20	U
108-88-3	Toluene	20	31	5.7	20	
71-55-6	1,1,1-Trichloroethane	20	20	5.9	20	U
95-63-6	1,2,4-Trimethylbenzene	20	12	3.8	20	J
108-67-8	1,3,5-Trimethylbenzene	20	5.6	4.0	20	J
179601-23-1	Xylene, Meta + Para	20	33	4.3	40	J
95-47-6	Xylene, Ortho	20	15	4.6	20	J
System Monite	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q
Dibromofluoro	methane	40.0	40.0	100	85 - 118	
,2-Dichloroeth	nane-d4	40.0	39.1	98	87 - 122	
Toluene-d8		40.0	38.8	97	85 - 113	
-Bromofluoro	benzene	40.0	39.6	99	82 - 110	
nternal Stand	lard	Area	RT	% REC.	Ref. RT	Q
Fluorobenzene		661038	6.266	88	6.266	
Chlorobenzene	-d5	490632	10.56	88	10.56	
1,4-Dichlorobe	nzene-d4	248743	13.525	88	13.525	-

TMW-12A

Laboratory	: TriMatrix Laboratories, Inc.		SDG:	1401173		
Client	t: Beazer East, Inc.		Project:]	Koppers Superi	or	
Matrix	: <u>Water</u> La	boratory ID: 140117	3-15	File ID: 1401173-15.D		
Sampled	1: 01/14/14 09:45	Prepared: 01/24/1			1: 01/24/14 15:22	
Solids		Preparation: 5030B			l: 5 mL/5 mL	
		ce: <u>4A29026</u>	Calibration:		Instrument:	350
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
71-43-2	Benzene	100	39	32	100	J
104-51-8	n-Butylbenzene	100	100	20	100	U
108-90-7	Chlorobenzene	100	100	21	100	U
100-41-4	Ethylbenzene	100	47	27	100	J
1634-04-4	Methyl tert-Butyl Ether	100	500	10	500	U
91-20-3	Naphthalene	100	13000	56	100	
103-65-1	n-Propylbenzene	100	100	14	100	U
100-42-5	Styrene	100	100	12	100	U
108-88-3	Toluene	100	66	28	100	J
71-55-6	1,1,1-Trichloroethane	100	100	30	100	U
95-63-6	1,2,4-Trimethylbenzene	100	61	19	100	J
108-67-8	1,3,5-Trimethylbenzene	100	25	20	100	J
79601-23-1	Xylene, Meta + Para	100	110	21	200	J
95-47-6	Xylene, Ortho	100	54	23	100	J
ystem Monite	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q
ibromofluoro	methane	40.0	38.9	97	85 - 118	
,2-Dichloroeth	hane-d4	40.0	39.4	98	87 - 122	
oluene-d8		40.0	39.2	98	85 - 113	
-Bromofluoro	benzene	40.0	39.2	98	82 - 110	
nternal Stand	lard	Area	RT	% REC.	Ref. RT	Q
luorobenzene		657771	6.266	108	6.266	
hlorobenzene	-d5	486064	10.56	112	10.56	
4-Dichlorobe	nzene-d4	243151	13 524	114	12 525	

TMW-19C Filtered

Laboratory	: TriMatrix Laboratories, Inc.	aboratories, Inc. SDG: 1401173					
Client	: Beazer East, Inc.		Project:	Koppers Superior			
Matrix	: Water La	boratory ID: 140117	3-16	File ID: <u>1401173-16.D</u>			
Sampled	: 01/13/14 12:00	Prepared: 01/27/14 09:00		Analyzed: 01/27/14 17:08			
Solids	the second second second second second second second second second second second second second second second se	Preparation: 5030B	and the second second		l: <u>5 mL/5 mL</u>		
		e: <u>4A31015</u>	Calibration:			250	
CAS No.			A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF A DECEMBER OF		Instrument:	1.22	
and the second second second	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
71-43-2	Benzene	1	1.0	0.32	1.0	U	
104-51-8	n-Butylbenzene	1	1.0	0.20	1.0	U	
108-90-7	Chlorobenzene	1	1.0	0.21	1.0	U	
100-41-4	Ethylbenzene	1	1.0	0.27	1.0	U	
1634-04-4	Methyl tert-Butyl Ether	1	5.0	0.10	5.0	U	
91-20-3	Naphthalene	1	1.0	0.56	1.0	U	
103-65-1	n-Propylbenzene	1	1.0	0.14	1.0	U	
100-42-5	Styrene	1	1.0	0.12	1.0	U	
108-88-3	Toluene	1	1.0	0.28	1.0	U	
71-55-6	1,1,1-Trichloroethane	1	1.0	0.30	1.0	U	
95-63-6	1,2,4-Trimethylbenzene	1	1.0	0.19	1.0	U	
108-67-8	1,3,5-Trimethylbenzene	1	1.0	0.20	1.0	U	
179601-23-1	Xylene, Meta + Para	1	2.0	0.21	2.0	U	
95-47-6	Xylene, Ortho	1	1.0	0.23	1.0	U	
System Monite	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q	
Dibromofluoro	methane	40.0	40.2	101	85 - 118		
1,2-Dichloroeth	nane-d4	40.0	38.5	96	87 - 122	-	
Toluene-d8		40.0	38.6	96	85 - 113		
4-Bromofluoro	benzene	40.0	39.2	98	82 - 110		
Internal Stand	ard	Area	RT	% REC.	Ref. RT	Q	
Fluorobenzene		666170	6.266	89	6.266		
Chlorobenzene	-d5	481106	10.56	87	10.56	-	
1,4-Dichlorober	nzene-d4	238377	13.524	85	13.525		

TMW-19C

Laboratory	y: TriMatrix Laboratories, Inc.		SDG:	1401173		
Clien	t: Beazer East, Inc.		Project:	Koppers Superi	or	
Matrix	k: <u>Water</u> La	boratory ID: 140117	3-17	File ID): 1401173-17.D	
Sampled	1: 01/14/14 09:35	Prepared: 01/27/1	4 09:00	Analyzed	l: 01/27/14 17:35	
Solids	S:	Preparation: 5030B.	the second second second second second second second second second second second second second second second s		l: 5 mL/5 mL	
		ce: <u>4A31015</u>	Calibration:		Instrument:	350
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	<u>Q</u>
71-43-2	Benzene		1.0	0.32	1.0	U
104-51-8	n-Butylbenzene	1 1	1.0	0.32	1.0	U U
108-90-7	Chlorobenzene	1	1.0	0.20	1.0	U
100-41-4	Ethylbenzene	1	1.0	0.21	1.0	U
1634-04-4	Methyl tert-Butyl Ether	1	5.0	0.27	5.0	U
91-20-3	Naphthalene	1	1.0	0.56	1.0	U
103-65-1	n-Propylbenzene	1	1.0	0.14	1.0	U
100-42-5	Styrene	1	1.0	0.12	1.0	U
108-88-3	Toluene	1	1.0	0.28	1.0	U
71-55-6	1,1,1-Trichloroethane	1	1.0	0.30	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1	1.0	0.19	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1	1.0	0.20	1.0	U
179601-23-1	Xylene, Meta + Para	1	2.0	0.21	2.0	U
95-47-6	Xylene, Ortho	1	1.0	0.23	1.0	U
System Monit	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q
Dibromofluoro	methane	40.0	39.8	99	85 - 118	
1,2-Dichloroeth	hane-d4	40.0	38.8	97	87 - 122	
Foluene-d8		40.0	38.8	97	85 - 113	
4-Bromofluoro	benzene	40.0	39.2	98	82 - 110	
Internal Stand	lard	Area	RT	% REC.	Ref. RT	Q
Fluorobenzene		657496	6.266	88	6,266	×
Chlorobenzene	-d5	481194	10.56	87	10.56	
1,4-Dichlorobe	nzene-d4	244514	13.525	87	13.525	

TMW-23

Laboratory	: TriMatrix Laboratories, Inc.		SDG	1401173		
And the second s	t: Beazer East, Inc.			Koppers Superi	or	
	and the second se		and the second second second second second second second second second second second second second second second			
		aboratory ID: <u>140117</u>			: <u>1401173-18.D</u>	
	1: <u>01/13/14 09:35</u>	Prepared: 01/24/1	4 15:00	Analyzed	l: 01/24/14 21:14	
Solids	к:	Preparation: 5030B	Aqueous Purge &	Initial/Final	: <u>5 mL / 5 mL</u>	
QC Batch	: <u>1400737</u> Sequen	ce: <u>4A31014</u>	Calibration:	4A31006	Instrument:	350
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
71-43-2	Benzene	1	1.0	0.32	1.0	U
104-51-8	n-Butylbenzene	1	1.0	0.20	1.0	U
108-90-7	Chlorobenzene	1	1.0	0.21	1.0	U
100-41-4	Ethylbenzene	1	1.0	0.27	1.0	U
1634-04-4	Methyl tert-Butyl Ether	1	5.0	0.10	5.0	U
91-20-3	Naphthalene	1 - 11	1.0	0.56	1.0	U
103-65-1	n-Propylbenzene	1	1.0	0.14	1.0	U
100-42-5	Styrene	1	1.0	0.12	1.0	U
108-88-3	Toluene	1	1.0	0.28	1.0	U
71-55-6	1,1,1-Trichloroethane	1	1.0	0.30	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1	1.0	0.19	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1	1.0	0.20	1.0	U
179601-23-1	Xylene, Meta + Para	1	2.0	0.21	2.0	U
95-47-6	Xylene, Ortho	$ _{L^{\infty}} = _{L^{\infty}} = _{L^{\infty}}$	1.0	0.23	1.0	U
System Monit	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q
Dibromofluoro	methane	40.0	39,5	99	85 - 118	
1,2-Dichloroeth	hane-d4	40.0	38.6	97	87 - 122	
Toluene-d8		40.0	39.2	98	85 - 113	-
4-Bromofluoro	benzene	40.0	39.1	98	82 - 110	
Internal Stand	lard	Area	RT	% REC.	Ref. RT	Q
Fluorobenzene		700299	6.266	99	6.266	×
Chlorobenzene	-d5	523186	10.56	101	10.56	
1,4-Dichlorobe	nzene-d4	256884	13.524	97	13.525	

TMW-23 Filtered

Laboratory	Laboratory: TriMatrix Laboratories, Inc.			SDG: <u>1401173</u>			
Client	: Beazer East, Inc.		Project:	Koppers Superior			
Matrix	: <u>Water</u> La	boratory ID: 140117		File ID: 1401173-19.D			
	: <u>01/13/14 09:00</u>	Prepared: 01/24/1					
Solids		and the state of the state	and the second second	Analyzed: 01/24/14 21:42			
		Preparation: <u>5030B</u>	a second and a second second second second second second second second second second second second second second		l: <u>5 mL/5 mL</u>		
		e: <u>4A31014</u>	Calibration:	4A31006	Instrument:	350	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
71-43-2	Benzene	1	1.0	0.32	1.0	U	
104-51-8	n-Butylbenzene	1	1.0	0.20	1.0	U	
108-90-7	Chlorobenzene	1	1.0	0.21	1.0	U	
100-41-4	Ethylbenzene	1	1.0	0.27	1.0	U	
1634-04-4	Methyl tert-Butyl Ether	1	5.0	0.10	5.0	U	
91-20-3	Naphthalene	1	1.0	0.56	1.0	U	
103-65-1	n-Propylbenzene	1	1.0	0.14	1.0	U	
100-42-5	Styrene	1	1.0	0.12	1.0	U	
108-88-3	Toluene	1	1.0	0.28	1.0	U	
71-55-6	1,1,1-Trichloroethane	1	1.0	0.30	1.0	U	
95-63-6	1,2,4-Trimethylbenzene	1	1.0	0.19	1.0	U	
108-67-8	1,3,5-Trimethylbenzene		1.0	0.20	1.0	U	
79601-23-1	Xylene, Meta + Para	1	0.21	0.21	2.0	J	
95-47-6	Xylene, Ortho	1	1.0	0.23	1.0	U	
ystem Monite	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q	
bibromofluoro	methane	40.0	38.9	97	85 - 118		
,2-Dichloroeth	nane-d4	40.0	37.4	94	87 - 122		
oluene-d8		40.0	38.5	96	85 - 113	1	
-Bromofluoro	benzene	40.0	39.8	99	82 - 110		
nternal Stand	lard	Area	RT	% REC.	Ref. RT	Q	
luorobenzene		707243	6.266	100	6.266	-	
hlorobenzene	-d5	516062	10.56	100	10.56	-	
,4-Dichlorober	nzene-d4	254757	13.524	96	13.525	-	

MW-800

Laboratory	y: TriMatrix Laboratories, Inc.	tories, Inc. SDG: <u>1401173</u>					
Clien	t: Beazer East, Inc.		Project:	Koppers Superior File ID: <u>1401173-20.D</u>			
Matrix	k: Water La	aboratory ID: 140117	3-20				
Sampled	1: 01/13/14 00:00	Prepared: 01/24/1	4 07:00	Analyze	d: 01/24/14 13:06		
Solids	S;	Preparation: 5030B	Aqueous Purge &	Initial/Final: <u>5 mL / 5 mL</u>			
QC Batch	n: <u>1400630</u> Sequen	ce: <u>4A29026</u>	Calibration:		Instrument:	350	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
71-43-2	Benzene	1 1	1.0	0.32	1.0	U	
104-51-8	n-Butylbenzene	1	1.0	0.20	1.0	U	
108-90-7	Chlorobenzene	1	1.0	0.21	1.0	U	
100-41-4	Ethylbenzene	1	1.0	0.27	1.0	U	
1634-04-4	Methyl tert-Butyl Ether	1	5.0	0.10	5.0	U	
91-20-3	Naphthalene	1	1.0	0.56	1.0	U	
103-65-1	n-Propylbenzene	1	1.0	0.14	1.0	U	
100-42-5	Styrene	1	1.0	0.12	1.0	U	
108-88-3	Toluene	1	1.0	0.28	1.0	U	
71-55-6	1,1,1-Trichloroethane	1	1.0	0.30	1.0	U	
95-63-6	1,2,4-Trimethylbenzene	1	1.0	0.19	1.0	U	
108-67-8	1,3,5-Trimethylbenzene	1	1.0	0.20	1.0	U	
179601-23-1	Xylene, Meta + Para	1	2.0	0.21	2.0	U	
95-47-6	Xylene, Ortho	1	1.0	0.23	1.0	U	
System Monite	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q	
Dibromofluoro	methane	40.0	39.6	99	85 - 118	×	
1,2-Dichloroeth	nane-d4	40.0	37.5	94	87 - 122		
Toluene-d8		40.0	38.7	97	85 - 113		
4-Bromofluorobenzene		40.0	38.8	97	82 - 110		
Internal Stand	lard	Area	RT	% REC.	Ref. RT	Q	
Fluorobenzene		697634	6.266	115	6.266	V	
Chlorobenzene-	-d5	512111	10.56	118	10.56		
1,4-Dichlorober	nzene-d4	254494	13.524	120	13.525	-	

MW-801

Laboratory	: TriMatrix Laboratories, Inc.		SDG:	1401173		
Client	: Beazer East, Inc.		Project:]	Koppers Superi	or	
Matrix	:: <u>Water</u> La	boratory ID: 140117	3-21	File ID: <u>1401173-21.D</u>		
Sampled	: <u>01/13/14 00:00</u>	Prepared: 01/24/1	4 07:00	Analyzed: 01/24/14 13:33		
Solids	e	Preparation: 5030B		Initial/Final	l: <u>5 mL/5 mL</u>	
QC Batch		e: <u>4A29026</u>	Calibration:		Instrument:	350
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
71-43-2	Benzene	1	1.0	0.32	1.0	U
104-51-8	n-Butylbenzene	I	1.0	0.20	1.0	U
108-90-7	Chlorobenzene	1	1.0	0.21	1.0	U
100-41-4	Ethylbenzene	1	1.0	0.27	1.0	υ
1634-04-4	Methyl tert-Butyl Ether	1	5.0	0.10	5.0	U
91-20-3	Naphthalene	1	1.0	0.56	1.0	U
103-65-1	n-Propylbenzene	1	1.0	0.14	1.0	U
100-42-5	Styrene	1	1.0	0.12	1.0	U
108-88-3	Toluene	1	1.0	0.28	1.0	U
71-55-6	1,1,1-Trichloroethane	1	1.0	0.30	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1	1.0	0.19	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1	1.0	0.20	1.0	U
179601-23-1	Xylene, Meta + Para	1	2.0	0.21	2.0	U
95-47-6	Xylene, Ortho	1	1.0	0.23	1.0	U
System Monite	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q
Dibromofluoro	methane	40.0	39.1	98	85 - 118	
1,2-Dichloroeth	nane-d4	40.0	36.8	92	87 - 122	
Toluene-d8	1. Law 10. A. 197 1	40.0	38.3	96	85 - 113	
4-Bromofluoro	benzene	40.0	39.4	98	82 - 110	-
Internal Stand	ard	Area	RT	% REC.	Ref. RT	Q
Fluorobenzene		713276	6.266	117	6.266	×
Chlorobenzene	d5	516586	10.56	119	10.56	
1,4-Dichlorober	nzene-d4	250850	13.525	118	13.525	

Trip Blank

Laboratory	: TriMatrix Laboratories, Inc.		SDG:	1401173		
Client	: Beazer East, Inc.		Project:]	Koppers Superi	or	
Matrix	: Water L	aboratory ID: 140117	3-22	File ID: <u>1401172-22.D</u>		
Sampled	: 01/13/14 00:00	Prepared: 01/23/1	4 07:00	Analyzed: 01/23/14 13:46		
Solids		Preparation: 5030B			l: 5 mL / 5 mL	
		nce: 4A24008	Calibration:		Instrument:	350
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
71-43-2	Benzene	1	1.0	0.32	1.0	U
104-51-8	n-Butylbenzene	1	1.0	0.20	1.0	U
108-90-7	Chlorobenzene	1	1.0	0.21	1.0	U
100-41-4	Ethylbenzene	- 1	1.0	0.27	1.0	U
1634-04-4	Methyl tert-Butyl Ether	1	5.0	0,10	5.0	U
91-20-3	Naphthalene	1	1.0	0.56	1.0	U
103-65-1	n-Propylbenzene	1	1.0	0.14	1.0	U
100-42-5	Styrene	1.	1.0	0.12	1.0	U
108-88-3	Toluene	1	1.0	0.28	1.0	U
71-55-6	1,1,1-Trichloroethane		1.0	0.30	1.0	U
95-63-6	1,2,4-Trimethylbenzene	1	1.0	0.19	1.0	U
108-67-8	1,3,5-Trimethylbenzene	1	1.0	0.20	1.0	U
79601-23-1	Xylene, Meta + Para	1 1 1	2.0	0.21	2.0	U
95-47-6	Xylene, Ortho	1	1.0	0.23	1.0	U
ystem Monit	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q
bibromofluoro	methane	40.0	39.8	100	85 - 118	
,2-Dichloroeth	nane-d4	40.0	40.5	101	87 - 122	
oluene-d8		40.0	39.0	98	85 - 113	
-Bromofluoro	benzene	40.0	38.2	96	82 - 110	
nternal Stand	lard	Area	RT	% REC.	Ref. RT	Q
luorobenzene		567244	6.266	93	6.266	
Chlorobenzene	-d5	409435	10.56	94	10.56	
,4-Dichlorobe	nzene-d4	192810	13.524	92	13.525	

TMW-02A Filtered

Laborator	y: TriMatrix Laboratories, Inc.		SDG: 1	401173		
Clien	it: Beazer East, Inc.		Project: K	Coppers Superio	or	
Matrix	x: <u>Water</u> L	aboratory ID: 14011	service and the service of the servi		: <u>1401173-01 x2</u>	00.D
Sampleo	d: 01/13/14 08:40	Prepared: 01/16	/14 07:48		: 01/25/14 01:15	
Solid			C Liquid-Liquid Ext		: <u>640 mL / 1 mL</u>	
		nce: <u>4A27042</u>	Calibration: 4		Instrument	
CAS No.	Analyte	March Provided in the	and the statement and the state			
83-32-9	Acenaphthene	Dilution	CONC. (ug/L)	MDL	MRL	Q
208-96-8	Acenaphthylene	100	98	5.2	78	J
120-12-7	Anthracene	100	78	2.7	78	U UJ
56-55-3	S C ADR D ADRY	100	78	9.6	78	U
50-32-8	Benzo(a)anthracene	100	78	7.1	78	U
	Benzo(a)pyrene	100	78	6.3	78	U
205-99-2	Benzo(b)fluoranthene	100	78	9.1	78	U
207-08-9	Benzo(k)fluoranthene	100	78	9.3	78	U
191-24-2	Benzo(g,h,i)perylene	100	78	9.5	78	υV
65-85-0	Benzoic Acid	100	780	75	780	U
100-51-6	Benzyl Alcohol	100	78	7.6	78	U UJ
101-55-3	4-Bromophenyl Phenyl Ether	100	78	6.7	78	U
85-68-7	Butyl Benzyl Phthalate	100	160	8.7	160	U
59-50-7	4-Chloro-3-methylphenol	100	78	18	78	U
106-47-8	4-Chloroaniline	100	160	16	160	U
111-91-1	Bis(2-chloroethoxy)methane	100	78	2.9	78	U
111-44-4	Bis(2-chloroethyl) Ether	100	78	3.7	78	U
108-60-1	Bis(2-chloroisopropyl) Ether	100	78	4.0	78	U
91-58-7	2-Chloronaphthalene	100	78	2.7	78	U
95-57-8	2-Chlorophenol	100	78	4.2	78	U
7005-72-3	4-Chlorophenyl Phenyl Ether	100	78	7.5	78	U
218-01-9	Chrysene	100	78	7.1	78	U
53-70-3	Dibenz(a,h)anthracene	100	78	18	78	UV
132-64-9	Dibenzofuran	100	30	6.4	78	J
84-74-2	Di-n-butyl Phthalate	100	160	21	160	U UJ
106-46-7	1,4-Dichlorobenzene	100	78	3.1	78	U
95-50-1	1,2-Dichlorobenzene	100	78	6.2	78	υ
541-73-1	1,3-Dichlorobenzene	100	78	6.4	78	U
91-94-1	3,3'-Dichlorobenzidine	100	160	19	160	U
120-83-2	2,4-Dichlorophenol	100	78	19	78	U
84-66-2	Diethyl Phthalate	100	78	10	78	U
105-67-9	2,4-Dimethylphenol	100	180	26	160	
131-11-3	Dimethyl Phthalate	100	78	7.1	78	J
534-52-1	4,6-Dinitro-2-methylphenol	100	780			U UJ
51-28-5	2,4-Dinitrophenol	100	780	160 180	780 780	U _{UJ}

TMW-02A Filtered

Clier	nt: Beazer East, Inc.		Project: K	oppers Superio	or	
		oratory ID: 14011				00.0
					: <u>1401173-01 x2</u>	
	d: <u>01/13/14 08:40</u>	Prepared: 01/16			: 01/25/14 01:15	
Solid			CLiquid-Liquid Ext	Initial/Final	: <u>640 mL/1 mL</u>	
QC Batc	h: <u>1400299</u> Sequence	: <u>4A27042</u>	Calibration: 4	A22014	Instrument	: <u>195</u>
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
606-20-2	2,6-Dinitrotoluene	100	78	13	78	U
121-14-2	2,4-Dinitrotoluene	100	78	7.4	78	U
117-84-0	Di-n-octyl Phthalate	100	78	12	78	U
117-81-7	Bis(2-ethylhexyl) Phthalate	100	78	18	78	U
206-44-0	Fluoranthene	100	78	9.8	78	U
86-73-7	Fluorene	100	27	6.5	78	J
118-74-1	Hexachlorobenzene	100	78	9.8	78	U U
87-68-3	Hexachlorobutadiene	100	78	6.2	78	U
77-47-4	Hexachlorocyclopentadiene	100	78	6.9	78	U
67-72-1	Hexachloroethane	100	78	6.5	78	U
193-39-5	Indeno(1,2,3-cd)pyrene	100	78	12	78	U
78-59-1	Isophorone	100	78	7.0	78	U
91-57-6	2-Methylnaphthalene	100	110	2.3	78	J
90-12-0	1-Methylnaphthalene	100	69	3.0	78	J
106-44-5	4-Methylphenol	100	130 -	8.8	78	J
95-48-7	2-Methylphenol	100	39	7.4	78	J
91-20-3	Naphthalene	100	2900	4.8	78	J
100-01-6	4-Nitroaniline	100	160	52	160	υυ
88-74-4	2-Nitroaniline	100	78	18	78	U
99-09-2	3-Nitroaniline	100	160	38	160	U
98-95-3	Nitrobenzene	100	78	9.1	78	U
88-75-5	2-Nitrophenol	100	78	7.4	78	U
100-02-7	4-Nitrophenol	100	780	200	780	U
86-30-6	N-Nitroso-diphenylamine	100	78	11	78	U
521-64-7	N-Nitroso-di-n-propylamine	100	78	12	78	U
87-86-5	Pentachlorophenol	100	78	13	78	UV
85-01-8	Phenanthrene	100	19	6.7	78	J
08-95-2	Phenol	100	78	5.3	78	U UJ
29-00-0	Pyrene	100	78	10	78	U
58-90-2	2,3,4,6-Tetrachlorophenol	100	780	58	780	U
20-82-1	1,2,4-Trichlorobenzene	100	78	4.2	78	U
95-95-4	2,4,5-Trichlorophenol	100	78	16	78	U
88-06-2	2,4,6-Trichlorophenol	100	78	13	78	U
56-49-5	3-Methylcholanthrene	100	310	19	310	UV

TMW-02A Filtered

Laboratory:	TriMatrix Laborator	Matrix Laboratories, Inc. SI				DG: <u>1401173</u>			
Client:	Beazer East, Inc.			Project: k	Koppers Superior				
Matrix:	Water	Labo	Laboratory ID: 1401173-01		File ID: 1401173-01 x200.D		0.D		
Sampled:	01/13/14 08:40		Prepared: 01/16/14 07:48		Analyzed:	01/25/14 01:15			
Solids:		Pr	Preparation: 3510C Liquid-Liquid Extu		Initial/Final:	640 mL / 1 mL			
QC Batch:	1400299	Sequence:	4A27042	Calibration: 4	A22014	Instrument:	195		
CAS No.	Analyte		Dilution	CONC. (ug/L)	MDL	MRL	Q		
935-95-5	2,3,5,6-Tetrachlorop	ohenol	100	1600	33	1600	U UJ		
Internal Stands	ard	-	Area	RT	% REC.	Ref. RT	Q		
1,4-Dichlorober	nzene-d4		176523	7,66	97	7.84			
Naphthalene-d8	1+ 1		749051	10.39	106	10.58			
Acenaphthene-d	110		472259	14.5	113	14.7			
Phenanthrene-d	10		746287	17.92	111	18.08			
Chrysene-d12			841482	21.53	110	21.65			
Perylene-d12			729144	23.23	114	23.4			

TMW-02A

	y: TriMatrix Laboratories, Inc			DG: <u>1401173</u>			
	t: Beazer East, Inc.			oppers Superio	or		
Matri	x: Water	Laboratory ID: 1401	173-02	File ID	: <u>1401173-02 x1</u>	00.D	
Sample	d: 01/13/14 14:20	Prepared: 01/16	/14 07:48	Analyzed	: 01/24/14 05:55	E C	
Solid	s:	Preparation: 35100	C Liquid-Liquid Ext	Initial/Final	: 950 mL / 1 mL		
QC Bate	h: <u>1400299</u> Seq	uence: 4A24001	Calibration: 4	A22014	Instrument	: <u>195</u>	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
83-32-9	Acenaphthene	100	240	3.3	50	J	
208-96-8	Acenaphthylene	100	50	1.7	50	U	
120-12-7	Anthracene	100	21	6.2	50	J	
56-55-3	Benzo(a)anthracene	100	12	4.5	50	J	
50-32-8	Benzo(a)pyrene	100	50	4.0	50	U t	
205-99-2	Benzo(b)fluoranthene	100	6.3	5.8	50	J	
207-08-9	Benzo(k)fluoranthene	100	50	6.0	50	U U	
191-24-2	Benzo(g,h,i)perylene	100	50	6.1	50	Ut	
65-85-0	Benzoic Acid	100	500	48	500	U	
100-51-6	Benzyl Alcohol	100	50	4.9	50	UU	
101-55-3	4-Bromophenyl Phenyl Etho	er 100	50	4.3	50	U	
85-68-7	Butyl Benzyl Phthalate	100	100	5.6	100	U	
59-50-7	4-Chloro-3-methylphenol	100	50	12	50	U	
106-47-8	4-Chloroaniline	100	100	10	100	U	
111-91-1	Bis(2-chloroethoxy)methan	e 100	50	1.8	50	U	
111-44-4	Bis(2-chloroethyl) Ether	100	50	2.4	50	U	
108-60-1	Bis(2-chloroisopropyl) Ethe	er 100	50	2.6	50	U	
91-58-7	2-Chloronaphthalene	100	50	1.7	50	U	
95-57-8	2-Chlorophenol	100	50	2.7	50	U	
7005-72-3	4-Chlorophenyl Phenyl Ethe	er 100	50	4.8	50	UV	
218-01-9	Chrysene	100	8.4	4.5	50	J	
53-70-3	Dibenz(a,h)anthracene	100	50	11	50	U U.	
132-64-9	Dibenzofuran	100	100	4.1	50	J	
84-74-2	Di-n-butyl Phthalate	100	100	14	100	U U	
106-46-7	1,4-Dichlorobenzene	100	50	2.0	50	U	
95-50-1	1,2-Dichlorobenzene	100	50	4.0	50	U	
541-73-1	1,3-Dichlorobenzene	100	50	4.1	50	U	
91-94-1	3,3'-Dichlorobenzidine	100	100	12	100	U	
120-83-2	2,4-Dichlorophenol	100	50	9.2	50	UV	
84-66-2	Diethyl Phthalate	100	7.4	6.5	50	J	
105-67-9	2,4-Dimethylphenol	100	120	17	100		
131-11-3	Dimethyl Phthalate	100	50	4.6	50	J U U	
534-52-1	4,6-Dinitro-2-methylphenol		500	100	500	U U	
51-28-5	2,4-Dinitrophenol	100	500	120	500	UU	

TMW-02A

Clier	nt: Beazer East, Inc.		Project: K	oppers Superi	or	
Matri	ix: <u>Water</u> Lab	oratory ID: 14011			: <u>1401173-02 x1</u>	00.0
	d: 01/13/14 14:20	Prepared: 01/16				
Solid					: <u>01/24/14 05:55</u>	
			CLiquid-Liquid Ext		: <u>950 mL / 1 mL</u>	
QC Bate	h: <u>1400299</u> Sequence	: <u>4A24001</u>	Calibration: 4	A22014	Instrument	: <u>195</u>
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
606-20-2	2,6-Dinitrotoluene	100	50	8.0	50	UU
121-14-2	2,4-Dinitrotoluene	100	50	4.8	50	U
117-84-0	Di-n-octyl Phthalate	100	50	7.7	50	U
117-81-7	Bis(2-ethylhexyl) Phthalate	100	50	11	50	U
206-44-0	Fluoranthene	100	46	6.3	50	J
86-73-7	Fluorene	100	100	4.1	50	J
118-74-1	Hexachlorobenzene	100	50	6.3	50	UU
87-68-3	Hexachlorobutadiene	100	50	4.0	50	U
77-47-4	Hexachlorocyclopentadiene	100	50	4.4	50	υ
67-72-1	Hexachloroethane	100	50	4.2	50	U
193-39-5	Indeno(1,2,3-cd)pyrene	100	50	8.0	50	U
78-59-1	Isophorone	100	50	4.5	50	U
91-57-6	2-Methylnaphthalene	100	260	1.5	50	J
90-12-0	1-Methylnaphthalene	100	150	2.0	50	J
106-44-5	4-Methylphenol	100	56	5.7	50	J
95-48-7	2-Methylphenol	100	19	4.8	50	J
100-01-6	4-Nitroaniline	100	100	33	100	U U
88-74-4	2-Nitroaniline	100	50	12	50	U
99-09-2	3-Nitroaniline	100	100	24	100	U
98-95-3	Nitrobenzene	100	50	5.8	50	U
88-75-5	2-Nitrophenol	100	50	4.8	50	U
100-02-7	4-Nitrophenol	100	500	120	500	U
86-30-6	N-Nitroso-diphenylamine	100	50	6.8	50	U
621-64-7	N-Nitroso-di-n-propylamine	100	50	7.5	50	U
87-86-5	Pentachlorophenol	100	50	8.1	50	U
85-01-8	Phenanthrene	100	140	4.3	50	J
108-95-2	Phenol	100	50	3.4	50	U U.
129-00-0	Pyrene	100	36	6.6	50	J
58-90-2	2,3,4,6-Tetrachlorophenol	100	500	37	500	U U
120-82-1	1,2,4-Trichlorobenzene	100	50	2.7	50	UUU
95-95-4	2,4,5-Trichlorophenol	100	50	9.9	50	U
88-06-2	2,4,6-Trichlorophenol	100	50	8.5	50	U
56-49-5	3-Methylcholanthrene	100	200	12	200	U
935-95-5	2,3,5,6-Tetrachlorophenol	100	1000	21	1000	UU

TMW-02A

Laboratory: TriMatrix Laborato	ries, Inc.	SDG:	: 1401173			
Client: Beazer East, Inc.		Project:	Koppers Superio	<u>or</u>		
Matrix: Water	Laboratory ID: 140117	Laboratory ID: 1401173-02		File ID: <u>1401173-02 x100.D</u>		
Sampled: 01/13/14 14:20	Prepared: 01/16/14 07:48		Analyzed:	01/24/14 05:55		
Solids:	Preparation: 3510C Liquid-Liquid Ext		Initial/Final:	Initial/Final: 950 mL / 1 mL		
QC Batch: 1400299	Sequence: <u>4A24001</u>	Calibration:	4A22014	Instrument:	195	
Internal Standard	Area	RT	% REC.	Ref. RT	Q	
1,4-Dichlorobenzene-d4	180858	7.75	124	7.84		
Naphthalene-d8	736075	10.48	127	10.58		
Acenaphthene-d10	457164	14.59	129	14.7		
Phenanthrene-d10	720222	18	125	18.08		
Chrysene-d12	798574	21.59	127	21.65		
Perylene-d12	671727	23.31	125	23.4		

* Values outside of QC limits

Page 6 of 75

TMW-02A

Laboratory	y: TriMatrix Laborator	ries, Inc.		SDG: 1	401173		
Clien	t: Beazer East, Inc.			Project: k	Coppers Superior		
Matrix	Matrix: Water		ry ID: 14011	73-02RE1	File ID:	1401173-02 x2	00.D
Sampleo	d: 01/13/14 14:20	Pre	Prepared: 01/16/1-		Analyzed:	01/25/14 02:25	
Solids:		Prepar	Preparation: <u>3510C Liquid-Liquid Extu</u> Init			950 mL / 1 mL	
QC Batch	h: <u>1400299</u>	Sequence: 4A2	27042	Calibration:	A22014	Instrument	: <u>195</u>
CAS No.	Analyte		Dilution	CONC. (ug/L)	MDL	MRL	Q
91-20-3	Naphthalene		200	5000	6.1	100	DJ
Internal Stan	dard		Area	RT	% REC.	Ref. RT	Q
,4-Dichlorobe	enzene-d4		167770	7.66	92	7.84	
Naphthalene-d	18		695447	10.39	98	10.58	
cenaphthene	-d10		433803	14.5	104	14.7	-
henanthrene-	d10		678300	17.92	101	18.08	-
Chrysene-d12	IT		758444	21.53	100	21.65	
Perylene-d12			630890	23.23	99	23.4	

TMW-05 Filtered

Laborator	ry: TriMatrix Laboratories, Inc.		SDG: 1	401173		
Clier	nt: Beazer East, Inc.		Project: K	oppers Superi	or	
Matri	ix: <u>Water</u> Lab	oratory ID: 14011	73-03	File ID); <u>1401173-03.D</u>	
Sample	ed: 01/13/14 10:30	Prepared: 01/16	/14 07:48	Analyzed	1: 01/22/14 21:33	e -
Solic	ds: I	Preparation: 35100	C Liquid-Liquid Ext		l: 880 mL / 1 mL	2
QC Bate		e: <u>4A22031</u>	Calibration: 4		Instrument	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	
83-32-9	Acenaphthene	1	0.57	0.038	0.57	Q U
208-96-8	Acenaphthylene	1	0.57	0.038	0.57	U
120-12-7	Anthracene	1	0.57	0.019	0.57	U
56-55-3	Benzo(a)anthracene	1	0.57	0.070		
50-32-8	Benzo(a)pyrene	1	0.57	(app. 0.44)	0.57	U
205-99-2	Benzo(b)fluoranthene	1		0.046	0.57	U
207-08-9	Benzo(k)fluoranthene	1	0.57	0.066	0.57	U
191-24-2	Benzo(g,h,i)perylene	1	0.57	0.068	0.57	U
65-85-0	Benzoic Aeid		0.57	0.069	0.57	U
100-51-6	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	5.7	0.54	5.7	U R
101-55-3	Benzyl Alcohol	1	0.57	0.055	0.57	U
85-68-7	4-Bromophenyl Phenyl Ether	1	0.57	0.049	0.57	U
	Butyl Benzyl Phthalate	1	0.080 1.1	0.063	1.1	🔏 UB
59-50-7	4-Chloro-3-methylphenol	1	0.57	0.13	0.57	U
106-47-8	4-Chloroaniline	1	1.1	0.12	1.1	U
111-91-1	Bis(2-chloroethoxy)methane	1	0.57	0.021	0.57	U
111-44-4	Bis(2-chloroethyl) Ether	1	0.57	0.027	0.57	U
108-60-1	Bis(2-chloroisopropyl) Ether	1	0.57	0.029	0.57	U
91-58-7	2-Chloronaphthalene	1	0.57	0.019	0.57	U
95-57-8	2-Chlorophenol	1	0.57	0.030	0.57	U
7005-72-3	4-Chlorophenyl Phenyl Ether	1	0.57	0.055	0.57	U
218-01-9	Chrysene	1	0.57	0.051	0.57	U
53-70-3	Dibenz(a,h)anthracene	1	0.57	0.13	0.57	U
132-64-9	Dibenzofuran	1	0.57	0.046	0.57	U
84-74-2	Di-n-butyl Phthalate	1	2.5	0.15	1.1	B UE
106-46-7	1,4-Dichlorobenzene	1	0.57	0.022	0.57	U
95-50-1	1,2-Dichlorobenzene	1	0.57	0.045	0.57	U
541-73-1	1,3-Dichlorobenzene	1	0.57	0.047	0.57	U
91-94-1	3,3'-Dichlorobenzidine	1	1.1	0.14	1.1	υ
120-83-2	2,4-Dichlorophenol	1	0.57	0.10	0.57	U
84-66-2	Diethyl Phthalate	1	-0.49-0.57	0.074	0.57	🔏 UB
105-67-9	2,4-Dimethylphenol	1	1.1	0.19	1.1	U
131-11-3	Dimethyl Phthalate	1	0.57	0.052	0.57	U
534-52-1	4,6-Dinitro-2-methylphenol	1	5.7	1.2	5.7	U
51-28-5	2,4-Dinitrophenol	1	5.7	1.3	5.7	U

Page 8 of 75

TMW-05 Filtered

Laborator	y: TriMatrix Laboratories, Inc.		SDG: 14	401173		
Clien	it: Beazer East, Inc.		Project: K	oppers Superi	or	
Matri	x: Water La	boratory ID: 14011		and the second state	: 1401173-03.D	
Sample	d: 01/13/14 10:30	Prepared: 01/16			: 01/22/14 21:33	
Solid			C Liquid-Liquid Ext			
		ce: <u>4A22031</u>			: <u>880 mL/1 mL</u>	
			Calibration: 4	A22014	Instrument	: <u>195</u>
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
606-20-2	2,6-Dinitrotoluene	1	0.57	0.091	0.57	U
121-14-2	2,4-Dinitrotoluene	1	0.57	0.054	0.57	U
117-84-0	Di-n-octyl Phthalate	1	0.57	0.087	0.57	U
117-81-7	Bis(2-ethylhexyl) Phthalate	1	0.18 0.57	0.13	0.57	-HB UI
206-44-0	Fluoranthene	1	0.57	0.071	0.57	U
86-73-7	Fluorene	1	0.57	0.047	0.57	U
118-74-1	Hexachlorobenzene	1	0.57	0.071	0.57	U
87-68-3	Hexachlorobutadiene	1	0.57	0.045	0.57	U
77-47-4	Hexachlorocyclopentadiene	1	0.57	0.050	0.57	U UJ
67-72-1	Hexachloroethane	1	0.57	0.048	0.57	U
193-39-5	Indeno(1,2,3-cd)pyrene	1	0.57	0.091	0.57	U
78-59-1	Isophorone	1	0.57	0.051	0.57	U
91-57-6	2-Methylnaphthalene	1	0.57	0.017	0.57	U
90-12-0	1-Methylnaphthalene	1	0.57	0.022	0.57	U
106-44-5	4-Methylphenol	1	0.57	0.064	0.57	U
95-48-7	2-Methylphenol	1	0.57	0.054	0.57	U
91-20-3	Naphthalene	1	0.57	0.035	0.57	U
100-01-6	4-Nitroaniline	1	1.1	0.38	1.1	U
88-74-4	2-Nitroaniline	1	0.57	0.13	0.57	U
99-09-2	3-Nitroaniline	1	1,1	0.28	1.1	U
98-95-3	Nitrobenzene	1	0.57	0.066	0.57	U
88-75-5	2-Nitrophenol	1	0.57	0.054	0.57	U
100-02-7	4-Nitrophenol	1	5.7	1.4	5.7	U UJ
86-30-6	N-Nitroso-diphenylamine	1	0.57	0.077	0.57	U 00
621-64-7	N-Nitroso-di-n-propylamine	1	0.57	0.086	0.57	U
87-86-5	Pentachlorophenol	1	0.57	0.080	0.57	U
85-01-8	Phenanthrene	1	0.57	0.092	0.57	U
108-95-2	Phenol	1	0.57	0.048	0.57	U
129-00-0	Pyrene	1	0.57	0.038	0.57	U
58-90-2	2,3,4,6-Tetrachlorophenol	1	5.7	0.073	5.7	1
120-82-1	1,2,4-Trichlorobenzene	1	0.57	0.42		U
95-95-4	2,4,5-Trichlorophenol	1	0.57	0.030	0.57	U
88-06-2	2,4,6-Trichlorophenol	1	0.57		0.57	U
56-49-5	3-Methylcholanthrene	1	2.3	0.097 0.14	0.57	U U

TMW-05 Filtered

Laboratory	Laboratory: TriMatrix Laboratories, Inc. SDG: 1401173					
Clien	t: Beazer East, Inc.		Project: 1	Coppers Superi	or	
Matrix	c: Water	Laboratory ID: 1401173	3-03	File ID	: <u>1401173-03.D</u>	
Sampleo	d: 01/13/14 10:30	Prepared: 01/16/14	4 07:48	Analyzed	: 01/22/14 21:33	
Solid		Preparation: 3510C I	iquid-Liquid Ext		: 880 mL / 1 mL	
QC Batch	n: <u>1400299</u> See	quence: <u>4A22031</u>	Calibration:		Instrument:	195
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
935-95-5	2,3,5,6-Tetrachlorophenol	1	11	0.24	11	U
System Monit	toring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q
2-Fluoropheno	l	22.7	9.09	40	20 - 70	
Phenol-d6		22.8	6.34	28	18 - 45	
Nitrobenzene-	d5	11.4	8.42	74	31 - 123	
2-Fluorobipher	nyl	11.4	7.17	63	25 - 113	
2,4,6-Tribrom	ophenol	23.0	10.9	47	30 - 121	
o-Terphenyl		11.4	8.64	76	42 - 125	
Internal Stan	dard	Area	RT	% REC.	Ref. RT	Q
,4-Dichlorobe	enzene-d4	145960	7.76	98	7.84	
Naphthalene-d	8	570692	10.49	97	10.58	
Acenaphthene-	d10	355243	14.61	100	14.7	-
Phenanthrene-	d10	576815	18.01	99	18.08	
Chrysene-d12		656802	21.6	99	21.65	
Perylene-d12		599373	23,33	106	23.4	

TMW-05A Filtered

	y: TriMatrix Laboratories, Inc.			SDG: <u>1401173</u>			
Clier	nt: Beazer East, Inc.		Project: k	Coppers Superi	or		
Matri	x: <u>Water</u> Labo	oratory ID: 14011	73-04	File ID	: 1401173-04.D		
Sample	d: 01/13/14 09:30	Prepared: 01/16	/14 07:48	Analyzed	l: 01/22/14 22:08		
Solid	ls: Pi	reparation: 35100	C Liquid-Liquid Ext	Initial/Final	: 620 mL / 1 mL		
QC Batc	h: <u>1400299</u> Sequence	: <u>4A22031</u>	Calibration: 4	A22014	Instrument	195	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
83-32-9	Acenaphthene	1	0.11	0.053	0.81	J	
208-96-8	Acenaphthylene	1	0.81	0.028	0.81	U	
120-12-7	Anthracene	1	0.81	0.020	0.81	U	
56-55-3	Benzo(a)anthracene	1	0.81	0.073	0.81	U	
50-32-8	Benzo(a)pyrene	1	0.81	0.075	0.81	U	
205-99-2	Benzo(b)fluoranthene	1	0.81	0.083	0.81	U	
207-08-9	Benzo(k)fluoranthene	1	0.81	0.094	0.81	U	
191-24-2	Benzo(g,h,i)perylene	1	0.81	0.098	0.81	U	
65-85-0	Benzoic Acid	1	8.1	0.098	8.1		
100-51-6	Benzyl Alcohol	1	0.81	0.078		U R	
101-55-3	4-Bromophenyl Phenyl Ether	1	0.81	0.078	0.81	U	
85-68-7	Butyl Benzyl Phthalate	1	1.6			U	
59-50-7	4-Chloro-3-methylphenol	1	0.81	0.090	1.6	U	
106-47-8	4-Chloroaniline	1	1.6		0.81	<u>U</u>	
111-91-1	Bis(2-chloroethoxy)methane	1	0.81	0.16	1.6	U	
111-44-4	Bis(2-chloroethyl) Ether	1	0.81	0.030	0.81	U	
108-60-1	Bis(2-chloroisopropyl) Ether	1		0.038	0.81	U	
91-58-7	2-Chloronaphthalene		0.81	0.042	0.81	U	
95-57-8	2-Chlorophenol	1	0.81	0.028	0.81	U	
7005-72-3		1	0.81	0.043	0.81	Ŭ	
218-01-9	4-Chlorophenyl Phenyl Ether	1	0.81	0.077	0.81	U	
53-70-3	Chrysene	1	0.81	0.073	0.81	U	
132-64-9	Dibenz(a,h)anthracene	1	0.81	0.18	0.81	U	
84-74-2	Dibenzofuran	1	0.81	0.066	0.81	U	
106-46-7	Di-n-butyl Phthalate	1	3.7	0.22	1.6) 🖉 U	
95-50-1	1,4-Dichlorobenzene 1,2-Dichlorobenzene	1	0.81	0.032	0.81	Ū	
541-73-1		1	0.81	0.064	0.81	U	
	1,3-Dichlorobenzene	1	0.81	0.066	0.81	U	
91-94-1	3,3'-Dichlorobenzidine	1	1.6	0.20	1.6	U	
120-83-2	2,4-Dichlorophenol	1	0.81	0.15	0.81	U	
84-66-2	Diethyl Phthalate	1	0.95	0.10	0.81	UB	
105-67-9	2,4-Dimethylphenol	1	1.6	0.27	1.6	U I	
131-11-3	Dimethyl Phthalate	1	0.81	0.073	0.81	U	
534-52-1 51-28-5	4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol	1	8.1	1.6	8.1	U R	

TMW-05A Filtered

Laborator	y: TriMatrix Laboratories, Inc.		SDG: 1	401173		
Clien	t: Beazer East, Inc.		Project: K	Coppers Superio	or	
Matrix	x: <u>Water</u> L	aboratory ID: 14011	73-04	File ID	: 1401173-04.D	
Sampleo	d: 01/13/14 09:30	Prepared: 01/16		Analyzed: 01/22/14 22:08		
Solid			C Liquid-Liquid Ext		: 620 mL / 1 mL	
		ce: <u>4A22031</u>	Calibration: 4		Instrument	
CAS No.	Analyte	Dilution				
606-20-2	2,6-Dinitrotoluene	Dilution	0.81	0.13	MRL	Q
121-14-2	2,4-Dinitrotoluene				0.81	U
127-14-2	Di-n-octyl Phthalate	1	0.81	0.077	0.81	U
		1	0.81	0,12	0.81	U
117-81-7	Bis(2-ethylhexyl) Phthalate	- 41	0.48 0.81	0.18	0.81	JB UB
206-44-0	Fluoranthene	1	0.81	0.10	0.81	U
86-73-7	Fluorene	1	0.81	0.067	0.81	U
118-74-1	Hexachlorobenzene	1	0.81	0.10	0.81	U
87-68-3	Hexachlorobutadiene	1	0.81	0.064	0.81	U
77-47-4	Hexachlorocyclopentadiene	1	0.81	0.072	0.81	U R
67-72-1	Hexachloroethane	1	0.81	0.067	0.81	U
193-39-5	Indeno(1,2,3-cd)pyrene	1	0.81	0.13	0.81	U
78-59-1	Isophorone	1	0.81	0.073	0.81	U
91-57-6	2-Methylnaphthalene	1	0.032	0.024	0.81	J
90-12-0	1-Methylnaphthalene	1	0.81	0.031	0.81	U
106-44-5	4-Methylphenol	1	0.81	0.091	0.81	U
95-48-7	2-Methylphenol	1	0.81	0.077	0.81	U
91-20-3	Naphthalene	1	0.34	0.050	0.81	J
100-01-6	4-Nitroaniline	1	1.6	0.53	1.6	U
88-74-4	2-Nitroaniline	1	0.81	0.19	0.81	U
99-09-2	3-Nitroaniline	1	1.6	0.39	1.6	U
98-95-3	Nitrobenzene	1	0.81	0.094	0.81	U
88-75-5	2-Nitrophenol		0.81	0.077	0.81	U R
100-02-7	4-Nitrophenol	1	8.1	2.0	8.1	U R
86-30-6	N-Nitroso-diphenylamine	4				
621-64-7	N-Nitroso-di-n-propylamine	1	0.81	0.11	0.81	U R
87-86-5	Pentachlorophenol	1	0.81	0.12	0.81	U
85-01-8	Phenanthrene	1	0.81	0.13	0.81	U R
108-95-2		1	0.097	0.069	0.81	J
1012 012 12	Phenol	I	0.81	0.054	0.81	U R
129-00-0	Pyrene	1	0.81	0.11	0.81	U
58-90-2	2,3,4,6-Tetrachlorophenol	1	8.1	0.60	8.1	U R
120-82-1	1,2,4-Trichlorobenzene	1	0.81	0.043	0.81	U
-95-95-4	2,4,5-Trichlorophenol	1	0.81	0.16	0.81	U R
88-06-2	2,4,6-Trichlorophenol	1	0.81	0.14	0.81	U R
56-49-5	3-Methylcholanthrene	1	3.2	0.19	3.2	U

TMW-05A Filtered

Laboratory	: TriMatrix Laboratories	s, Inc.	SDG:	1401173			
Clien	t: Beazer East, Inc.		Project:]	Koppers Superior			
Matrix	: <u>Water</u>	Laboratory ID: 140117	3-04	File ID	: <u>1401173-04.D</u>		
Sampled	1: 01/13/14 09:30	Prepared: 01/16/1	4 07:48	Analyzed	: 01/22/14 22:08		
Solids	32	Preparation: 3510C1	Liquid-Liquid Ext	Initial/Final	: 620 mL / 1 mL		
QC Batch	: <u>1400299</u>	Sequence: <u>4A22031</u>	Calibration:		Instrument:	195	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
935-95-5	2,3,5,6-Tetrachlorophe	mol 1	16	0.34	16	U	R
System Monitoring Compound		ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q	-
2-Fluoropheno	1	32.3	7.40	23	20 - 70		
Phenol-d6		32.4	0.887	3	18 - 45	*	
Nitrobenzene-o	15	16.1	13.1	81	31 - 123		
2-Fluorobipher	ıyl	16.1	10.1	63	25 - 113		
2,4,6-Tribromo	phenol	32.6	16.1	49	30 - 121		2
o-Terphenyl		16.1	12.3	76	42 - 125		
Internal Stand	lard	Area	RT	% REC.	Ref. RT	Q	-
1,4-Dichlorobe	nzene-d4	160257	7.76	108	7.84	x	-
Naphthalene-d	8	610210	10.5	104	10.58	_	
Acenaphthene-d10		381357	14.61	108	14.7		
Phenanthrene-o	110	602967	18.02	104	18.08		-
Chrysene-d12		655417	21.6	99	21.65	-	
Perylene-d12		587303	23.32	104	23.4		

TMW-05

Laborator	ry: TriMatrix Laboratories, Inc.		SDG: 14	401173		
Clier	nt: Beazer East, Inc.		Project: K	oppers Superio	Dr	
Matri	ix: Water Labo	ratory ID: 14011	73-05	File ID	: 1401173-05.D	
Sample	ed: 01/14/14 08:50	Prepared: 01/16	/14 07:48	Analyzed	: 01/23/14 01:03	
Solid	ls: Pr		C Liquid-Liquid Ext		: 850 mL / 1 mL	
	h: <u>1400299</u> Sequence:		Calibration: 4		Instrument	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
83-32-9	Acenaphthene	1	0.59	0.039	0.59	
208-96-8	Acenaphthylene	1	0.59	0.039	0.59	U
120-12-7	Anthracene	1	0.59	0.020	0.59	U
56-55-3	Benzo(a)anthracene	1	0.59	0.072	0.59	U
50-32-8	Benzo(a)pyrene	1	0.59			
205-99-2	Benzo(b)fluoranthene	1	1 4 4 4 4 4 4 4	0.047	0.59	U U
203-99-2	Benzo(b)fluoranthene		0.59	0.068	0.59	1
191-24-2		1	0.59	0.070	0.59	U
	Benzo(g,h,i)perylene	1	0.59	0.072	0.59	U
65-85-0	Benzoic Acid	1	5.9	0,56	5.9	U R
100-51-6	Benzyl Alcohol	1	0.59	0.057	0.59	U
101-55-3	4-Bromophenyl Phenyl Ether	1	0.59	0.050	0.59	U
85-68-7	Butyl Benzyl Phthalate	1	1.2	0.066	1.2	U
59-50-7	4-Chloro-3-methylphenol	1	0.59	0.14	0.59	U
106-47-8	4-Chloroaniline	1	1.2	0.12	1.2	U
111-91-1	Bis(2-chloroethoxy)methane	1	0.59	0.022	0.59	U
111-44-4	Bis(2-chloroethyl) Ether	1	0.59	0.028	0.59	U
108-60-1	Bis(2-chloroisopropyl) Ether	1	0.59	0.030	0.59	U
91-58-7	2-Chloronaphthalene	1	0.59	0.020	0.59	U
95-57-8	2-Chlorophenol	I	0.59	0.031	0.59	U
7005-72-3	4-Chlorophenyl Phenyl Ether	1	0.59	0.056	0.59	U
218-01-9	Chrysene	1	0.59	0.053	0.59	U
53-70-3	Dibenz(a,h)anthracene	1	0.59	0.13	0.59	U
132-64-9	Dibenzofuran	1	0.59	0.048	0.59	U
84-74-2	Di-n-butyl Phthalate	1	1.7	0.16	1.2	🔏 UB
106-46-7	1,4-Dichlorobenzene	1	0.59	0.023	0.59	U
95-50-1	1,2-Dichlorobenzene	1	0.59	0.047	0.59	U
541-73-1	1,3-Dichlorobenzene	1	0.59	0.048	0.59	U
91-94-1	3,3'-Dichlorobenzidine	1	1.2	0.15	1.2	U
120-83-2	2,4-Dichlorophenol	1	0.59	0.11	0.59	U
84-66-2	Diethyl Phthalate	1	0.53 0.59	0.077	0.59	🔏 UB
105-67-9	2,4-Dimethylphenol	1	1.2	0.20	1.2	U
131-11-3	Dimethyl Phthalate	1	0.59	0.054	0.59	U
534-52-1	4,6-Dinitro-2-methylphenol	1	5.9	1.2	5.9	U
51-28-5	2,4-Dinitrophenol	-1	5.9	1.4	5.9	U

TMW-05

Laborator	Laboratory: TriMatrix Laboratories, Inc. SDG: 1401173					
Clier	nt: Beazer East, Inc.		Project; K	oppers Superio	or	
Matri	x: Water La	boratory ID: 14011	73-05	File ID	: 1401173-05.D	
Sample	d: 01/14/14 08:50	Prepared: 01/16	/14 07:48	Analyzed	: 01/23/14 01:03	
Solid		and a second second	C Liquid-Liquid Extr		: 850 mL / 1 mL	
		ce: <u>4A22031</u>	Calibration: 4		Instrument	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
606-20-2	2,6-Dinitrotoluene	1	0.59	0.094	0.59	U
121-14-2	2,4-Dinitrotoluene	1	0.59	0.056	0.59	U
117-84-0	Di-n-octyl Phthalate	1	0.59	0.090	0.59	U
117-81-7	Bis(2-ethylhexyl) Phthalate	1	0.59	0.13	0.59	JB U
206-44-0	Fluoranthene	1	0.59	0.074	0.59	U
86-73-7	Fluorene	1	0.59	0.049	0.59	U
118-74-1	Hexachlorobenzene	1	0.59	0.074	0.59	U
87-68-3	Hexachlorobutadiene	1	0.59	0.046	0.59	U
77-47-4	Hexachlorocyclopentadiene	1	0.59	0.052	0.59	U UJ
67-72-1	Hexachloroethane	1	0.59	0.049	0.59	U
193-39-5	Indeno(1,2,3-cd)pyrene	1	0.59	0.094	0.59	U
78-59-1	Isophorone	1	0.59	0.053	0.59	U
91-57-6	2-Methylnaphthalene	1	0.59	0.018	0.59	U
90-12-0	1-Methylnaphthalene	1	0.59	0.023	0.59	U
106-44-5	4-Methylphenol	1	0.59	0.067	0.59	U
95-48-7	2-Methylphenol	1	0.59	0.056	0.59	Û
91-20-3	Naphthalene	1	0.59	0.036	0.59	U
100-01-6	4-Nitroaniline	1	1.2	0.39	1.2	U
88-74-4	2-Nitroaniline	1	0.59	0.14	0.59	U
99-09-2	3-Nitroaniline	1	1.2	0.29	1.2	U
98-95-3	Nitrobenzene	1	0.59	0.069	0.59	U
88-75-5	2-Nitrophenol	1	0.59	0.056	0.59	U
100-02-7	4-Nitrophenol	1	5.9	1.5	5.9	U UJ
86-30-6	N-Nitroso-diphenylamine	1	0.59	0.080	0.59	U
621-64-7	N-Nitroso-di-n-propylamine	1	0.59	0.089	0.59	U
87-86-5	Pentachlorophenol	1	0.59	0.095	0.59	U
85-01-8	Phenanthrene	T	0.59	0.050	0.59	U
108-95-2	Phenol	1	0.59	0.040	0.59	U
129-00-0	Pyrene	1	0.59	0.077	0.59	U
58-90-2	2,3,4,6-Tetrachlorophenol	1	5.9	0.44	5.9	U
120-82-1	1,2,4-Trichlorobenzene	1	0.59	0.031	0.59	U
95-95-4	2,4,5-Trichlorophenol	1	0.59	0.12	0.59	U
88-06-2	2,4,6-Trichlorophenol	1	0.59	0.10	0.59	U
56-49-5	3-Methylcholanthrene	1	2.4	0.14	2.4	U

Page 15 of 75

TMW-05

Laborator	y: TriMatrix Laboratories, Inc.		SDG:	1401173				
Clien	t: Beazer East, Inc.		Project: Koppers Superior					
Matrix	Matrix: Water Lab		3-05		: <u>1401173-05.D</u>			
Sampleo	1: 01/14/14 08:50	Prepared: 01/16/1	4 07:48		: 01/23/14 01:03			
Solid	S:	Preparation: 3510C	a the second second second second second second second second second second second second second second second		: 850 mL / 1 mL			
QC Batch	n: <u>1400299</u> Sequ	ence: <u>4A22031</u>	Calibration:		Instrument:	195		
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q		
935-95-5	2,3,5,6-Tetrachlorophenol	1	12	0.25	12	U		
System Monit	toring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q		
2-Fluorophenol		23.5	12.5	53	20 - 70	¥.		
Phenol-d6		23.6	8.18	35	18 - 45			
Nitrobenzene-	15	11.8	9.09	77	31 - 123			
2-Fluorobipher	nyl	11.8	7.19	61	25 - 113			
2,4,6-Tribromo	pphenol	23.8	14.0	59	30 - 121			
o-Terphenyl		11.8	8.54	73	42 - 125			
Internal Stand	lard	Area	RT	% REC.	Ref. RT	Q		
1,4-Dichlorobe	enzene-d4	162736	7.76	110	7.84	×		
Naphthalene-d	8	631705	10.5	108	10.58			
Acenaphthene-	d10	393776	14.61	111	14.7			
Phenanthrene-o	110	626047	18.01	108	18.08			
Chrysene-d12		697141	21.6	105	21.65			
Perylene-d12	1 K. A. H	627523	23.33	111	23.4			

TMW-08

	y: TriMatrix Laborator	les, mc.	SDG: <u>1</u>	And the second se		
	t: Beazer East, Inc.		Project: K	Coppers Superio	<u>nc</u>	
Matri	x: Water	Laboratory ID: 140	1173-06	File ID	: <u>1401173-06.D</u>	
Sample	d: 01/13/14 16:35	Prepared: 01/1	6/14 07:48	Analyzed	: 01/23/14 01:38	
Solid	s:	Preparation: 351	0C Liquid-Liquid Extr	Initial/Final	: 770 mL/1 mL	
QC Batcl	h: <u>1400299</u>	Sequence: 4A22031	Calibration: 4	A22014	Instrument:	195
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
83-32-9	Acenaphthene	1	0.65	0.043	0.65	U
208-96-8	Acenaphthylene	- 1	0.65	0.022	0.65	U
120-12-7	Anthracene	1	0.65	0.022	0.65	U
56-55-3	Benzo(a)anthracene		0.65	0.059	0.65	U
50-32-8	Benzo(a)pyrene	1	0.65	0.059	0.65	U
205-99-2	Benzo(b)fluoranthen		0.65	0.032	0.65	U
207-08-9	Benzo(k)fluoranthen		0.65	0.073	0.65	υ
191-24-2	Benzo(g,h,i)perylene		0.65	0.077	0.65	U
65-85-0	Benzoic Acid	- 1	6.5	0.62	6.5	U F
100-51-6	Benzyl Alcohol	1	0.31	0.02	0.65	J
101-55-3	4-Bromophenyl Pher		0.65	0.065	0.65	U
85-68-7	Butyl Benzyl Phthala		0.05	0.072	1.3	
59-50-7	4-Chloro-3-methylph		0.65	0.072	0.65	U VE
106-47-8	4-Chloroaniline	1	1.3	0.13	1.3	U
111-91-1	Bis(2-chloroethoxy)		0.65	0.13	0.65	U
111-44-4	Bis(2-chloroethyl) E		0.65	A	14 G 1 1 14	
108-60-1	Bis(2-chloroisopropy			0.031	0.65	U
91-58-7	2-Chloronaphthalene		0.65	0.034	0.65	U
95-57-8	2-Chlorophenol	and the second s	0.65	0.022	0.65	U
7005-72-3	the second second second second second second second second second second second second second second second s	I	0.65	0.035	0.65	U
218-01-9	4-Chlorophenyl Pher	hyl Einer I	0.65	0.062	0.65	U
53-70-3	Chrysene	1	0.65	0.059	0.65	U
132-64-9	Dibenz(a,h)anthracen Dibenzofuran		0.65	0.15	0.65	U
84-74-2		1	0.65	0.053	0.65	U
106-46-7	Di-n-butyl Phthalate 1,4-Dichlorobenzene		1.4	0.18	1.3	
95-50-1	1,4-Dichlorobenzene		0.65	0.026	0.65	U
541-73-1	1,2-Dichlorobenzene		0.65	0.051	0.65	U
91-94-1	3,3'-Dichlorobenzidi		0.65	0.053	0.65	U
120-83-2	a second s		1.3	0.16	1.3	U
Qui Charly Martin I	2,4-Dichlorophenol	1	0.65	0.12	0.65	U
84-66-2	Diethyl Phthalate	1	A.57 0.65	0.085	0,65	
105-67-9	2,4-Dimethylphenol	1	1.3	0.22	1.3	U
131-11-3	Dimethyl Phthalate	1	0.65	0.059	0.65	U
534-52-1 51-28-5	4,6-Dinitro-2-methyl 2,4-Dinitrophenol	phenol 1	6,5	1.3	6.5	U

TMW-08

Laborator	y: TriMatrix Laboratories, Inc.		SDG: <u>14</u>	401173		
Clier	nt: Beazer East, Inc.		Project: K	oppers Superio	or	
Matri	x: <u>Water</u> La	boratory ID: 14011	73-06	File ID	: 1401173-06.D	
Sample	d: 01/13/14 16:35	Prepared: 01/16	/14 07:48	Analyzed	: 01/23/14 01:38	
Solid	s:	1.	Liquid-Liquid Ext	10 P 10 P 10	: 770 mL/1 mL	
		ce: 4A22031	Calibration: 4		Instrument	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	
606-20-2	2,6-Dinitrotoluene	1	0.65	0.10	0.65	U
121-14-2	2,4-Dinitrotoluene	1	0.65	0.062	0.65	U
117-84-0	Di-n-octyl Phthalate	1	0.65	0.099	0.65	U
117-81-7	Bis(2-ethylhexyl) Phthalate	1	0.65	0.15	0.65	JB UB
206-44-0	Fluoranthene	1	0.65	0.081	0.65	U
86-73-7	Fluorene	1	0.65	0.054	0.65	U
118-74-1	Hexachlorobenzene	1	0.65	0.081	0.65	U
87-68-3	Hexachlorobutadiene	1	0.65	0.051	0.65	U
77-47-4	Hexachlorocyclopentadiene	1	0.65	0.058	0.65	U UJ
67-72-1	Hexachloroethane	1	0.65	0.054	0.65	U
193-39-5	Indeno(1,2,3-cd)pyrene	1	0.65	0.10	0.65	U
78-59-1	Isophorone	1	0.65	0.058	0.65	U
91-57-6	2-Methylnaphthalene	1	0.65	0.019	0.65	U
90-12-0	1-Methylnaphthalene	1	0.65	0.025	0.65	U
106-44-5	4-Methylphenol	1	0.65	0.074	0.65	U
95-48-7	2-Methylphenol	1	0.65	0.062	0.65	U
91-20-3	Naphthalene	1	0.65	0.040	0.65	U
100-01-6	4-Nitroaniline	1	1.3	0.43	1.3	U
88-74-4	2-Nitroaniline	Ĭ	0.65	0.15	0.65	U
99-09-2	3-Nitroaniline	-1	1.3	0.32	1.3	U
98-95-3	Nitrobenzene	1	0.65	0.076	0.65	U
88-75-5	2-Nitrophenol	() ()	0.65	0.062	0.65	U
100-02-7	4-Nitrophenol	1	6.5	1.6	6.5	U UJ
86-30-6	N-Nitroso-diphenylamine	1	0.65	0.088	0.65	U
621-64-7	N-Nitroso-di-n-propylamine	1	0.65	0.098	0.65	U
87-86-5	Pentachlorophenol	1	0.65	0.11	0.65	U
85-01-8	Phenanthrene	1	0.078	0.055	0.65	J
108-95-2	Phenol	1	0.65	0.044	0.65	U
129-00-0	Pyrene	1	0.65	0.085	0.65	U
58-90-2	2,3,4,6-Tetrachlorophenol	1	6.5	0.48	6.5	U
120-82-1	1,2,4-Trichlorobenzene	1	0.65	0.035	0.65	U
95-95-4	2,4,5-Trichlorophenol	1	0.65	0,13	0.65	U
88-06-2	2,4,6-Trichlorophenol	1	0.65	0.11	0.65	U
56-49-5	3-Methylcholanthrene	1	2.6	0.16	2.6	U

TMW-08

Laboratory	y: TriMatrix Laboratories, Inc	SDG: <u>1401173</u>					
Clien	t: Beazer East, Inc.		Project: 1	Koppers Superior			
Matrix	k: <u>Water</u>	Laboratory ID: 140117	Laboratory ID: 1401173-06		: <u>1401173-06.D</u>		
Sampleo	1: 01/13/14 16:35	Prepared: 01/16/1	Prepared: 01/16/14 07:48		: 01/23/14 01:38		
Solids	s:	Preparation: 3510C1	Liquid-Liquid Ext	Initial/Final	: 770 mL/1 mL		
QC Batch	n: <u>1400299</u> Seq	uence: <u>4A22031</u>	Calibration:		Instrument:	195	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
935-95-5	2,3,5,6-Tetrachlorophenol	1	13	0.28	13	U	
System Monit	toring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q	
2-Fluoropheno		26.0	14.3	55	20 - 70		
Phenol-d6		26.1	9.45	36	18 - 45		
Nitrobenzene-	d5	13.0	9.18	71	31 - 123		
2-Fluorobipher	nyl	13.0	7.77	60	25 - 113		
2,4,6-Tribrom	ophenol	26.2	15.4	59	30 - 121		
o-Terphenyl		13.0	8.91	69	42 - 125		
Internal Stan	dard	Area	RT	% REC.	Ref. RT	Q	
1,4-Dichlorobe	enzene-d4	166795	7.77	113	7.84	x	
Naphthalene-d	8	653948	10.5	111	10.58		
Acenaphthene-	-d10	402071	14.61	114	14.7		
Phenanthrene-o	d10	620863	18.01	107	18.08		
Chrysene-d12		672131	21.6	102	21.65		
Perylene-d12		598748	23.33	106	23.4		

TMW-08 Filtered

	Laboratory:	TriMatrix Laboratories, Inc.		SDG:	1401173		
	Client:	Beazer East, Inc.		Project:	Koppers Superio	<u>or</u>	
	Matrix:	Water La	boratory ID: 1401	173-07	File ID	: 1401173-07.D	
	Sampled:	01/13/14 11:10	Prepared: 01/10	5/14 07:48		: 01/22/14 22:43	
	Solids:	a se a se parte de la companya de la companya de la companya de la companya de la companya de la companya de la		C Liquid-Liquid Ext		: <u>980 mL / 1 mL</u>	
	QC Batch:		e: <u>4A22031</u>	Calibration:		Instrument	
_	1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 - 1964 -					2	
	CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
	83-32-9	Acenaphthene	1	0.50	0.033	0.50	U
	08-96-8	Acenaphthylene	1	0.50	0.017	0.50	U
_	20-12-7	Anthracene	1	0.50	0.062	0.50	U
	56-55-3	Benzo(a)anthracene	- 1	0.50	0.045	0.50	U
_	50-32-8	Benzo(a)pyrene	1	0.50	0.040	0.50	U
	05-99-2	Benzo(b)fluoranthene	1	0.50	0.058	0.50	U
_	07-08-9	Benzo(k)fluoranthene	1	0.50	0.060	0.50	U
_	91-24-2	Benzo(g,h,i)perylene	1	0.50	0.061	0.50	U
_	55-85-0	Benzoic Acid	1	5.0	0.48	5.0	U-R
1	00-51-6	Benzyl Alcohol	1	0.50	0.049	0.50	U
1	01-55-3	4-Bromophenyl Phenyl Ether	1	0.50	0.043	0.50	U
8	35-68-7	Butyl Benzyl Phthalate	1	1.0	0.056	1.0	U
4	59-50-7	4-Chloro-3-methylphenol	1	0.50	0.12	0.50	U
1	06-47-8	4-Chloroaniline	1	1.0	0.10	1.0	U
1	11-91-1	Bis(2-chloroethoxy)methane	1	0.50	0.018	0.50	U
1	11-44-4	Bis(2-chloroethyl) Ether	1	0.50	0.024	0.50	U
1	08-60-1	Bis(2-chloroisopropyl) Ether	1	0.50	0.026	0.50	U
5	01-58-7	2-Chloronaphthalene	1	0,50	0.017	0.50	U
-9	5-57-8	2-Chlorophenol	1	0.50	0.027	0.50	U
70	05-72-3	4-Chlorophenyl Phenyl Ether	1	0.50	0.048	0.50	U
2	18-01-9	Chrysene	1	0.50	0.045	0.50	U
5	3-70-3	Dibenz(a,h)anthracene	1	0.50	0.11	0.50	U
1.	32-64-9	Dibenzofuran	1	0.50	0.041	0.50	U
8	4-74-2	Di-n-butyl Phthalate	1	9.68 1.0	0.14	1.0	JB UE
1	06-46-7	1,4-Dichlorobenzene	1	0.50	0.020	0.50	U
9	5-50-1	1,2-Dichlorobenzene	1	0.50	0.040	0.50	U
5	41-73-1	1,3-Dichlorobenzene	1	0.50	0.041	0.50	U
9	1-94-1	3,3'-Dichlorobenzidine	1	1.0	0.12	1.0	U
-13	20-83-2	2,4-Dichlorophenol	1	0.50	0.092	0.50	<u>u</u>
8	4-66-2	Diethyl Phthalate	1	0.57	0.065	0.50	UB
1	05-67-9	2,4-Dimethylphenol	1	1.0	0.17	1.0	U
13	31-11-3	Dimethyl Phthalate	1	0.50	0.046	0.50	U
-5:	34-52-1	4,6-Dinitro-2-methylphenol	1	5.0	1.0	5.0	U
-5	1-28-5	2,4-Dinitrophenol	1	5.0	1.2	5.0	U

TMW-08 Filtered

Laborator	y: TriMatrix Laboratories, Inc.		SDG: 1	401173		
Clier	nt: Beazer East, Inc.		Project: H	Coppers Superio	or	
Matri	ix: Water La	boratory ID: 14	101173-07	File ID	: 1401173-07.D	
Sample	:d: 01/13/14 11:10		/16/14 07:48		: 01/22/14 22:43	
Solid						
			510C Liquid-Liquid Ext		: <u>980 mL/1 mL</u>	105
	10 1 10 A	e: <u>4A22031</u>	Calibration:	+A22014	Instrument:	195
CAS No.	Analyte	Dilution	187	MDL	MRL	Q
606-20-2	2,6-Dinitrotoluene	1	0.50	0.080	0.50	U
121-14-2	2,4-Dinitrotoluene	1	0.50	0.048	0.50	U
117-84-0	Di-n-octyl Phthalate	1	0.50	0.077	0.50	U
117-81-7	Bis(2-ethylhexyl) Phthalate	1	0.5 0	0.11	0.50	JB UB
206-44-0	Fluoranthene	1	0.50	0.063	0.50	U
86-73-7	Fluorene		0.50	0.041	0.50	U
118-74-1	Hexachlorobenzene	1	0.50	0.063	0.50	U
87-68-3	Hexachlorobutadiene	1	0.50	0.040	0.50	U
77-47-4	Hexachlorocyclopentadiene	1	0.50	0.044	0.50	U
67-72-1	Hexachloroethane	1	0.50	0.042	0.50	U
193-39-5	Indeno(1,2,3-cd)pyrene	1	0.50	0.080	0.50	U
78-59-1	Isophorone	1	0.50	0.045	0.50	U
91-57-6	2-Methylnaphthalene	1	0.50	0.015	0.50	U
90-12-0	1-Methylnaphthalene	1	0.50	0.020	0.50	U
106-44-5	4-Methylphenol	1	0.50	0.057	0.50	U
95-48-7	2-Methylphenol	1	0.50	0.048	0.50	U
91-20-3	Naphthalene	1	0.50	0.031	0.50	U
100-01-6	4-Nitroaniline	1	1.0	0.33	1.0	U
88-74-4	2-Nitroaniline	1	0.50	0.12	0.50	U
99-09-2	3-Nitroaniline	1	1.0	0.24	1.0	U
98-95-3	Nitrobenzene	1	0.50	0.058	0.50	υ
88-75-5	2-Nitrophenol	1	0.50	0.048	0.50	
100-02-7	4-Nitrophenol		5.0	1.2	5.0	U
86-30-6	N-Nitroso-diphenylamine	1	0.50	0.068	0.50	
621-64-7	N-Nitroso-di-n-propylamine	1	0.50	0.075	0.50	υ
87-86-5	Pentachlorophenol	1	0.50	0.075	0.50	
85-01-8	Phenanthrene	1	0.50	0.043	0.50	U
108-95-2	Phenol		0.50	0.043	0.50	
129-00-0	Pyrene	1	0.50	0.066	0.50	U
	2,3,4,6-Tetrachlorophenol	1	5.0	0.000	5.0	U
120-82-1	1,2,4-Trichlorobenzene	1	0.50	0.027	0.50	U
95-95-4	2,4,5-Trichlorophenol	1	0.50	0.027	0.50	U U
88-06-2	2,4,6-Trichlorophenol	1	0.50	0.099	0.50	U U
56-49-5	3-Methylcholanthrene	1				
20-42-2		1	2.0	0.12	2.0	U

TMW-08 Filtered

Laboratory	Laboratory: TriMatrix Laboratories, Inc. SDG: 1401173					
Clien	t: Beazer East, Inc.		Project: H	Koppers Superior		
Matrix	: Water	Laboratory ID: 140117	3-07	File ID	: <u>1401173-07.D</u>	
Sampled	1: 01/13/14 11:10	Prepared: 01/16/1	4 07:48	Analyzed	: 01/22/14 22:43	
Solids	5:	Preparation: 3510C	Contraction of the second		: 980 mL/1 mL	
QC Batch	n: <u>1400299</u>	Sequence: <u>4A22031</u>	Calibration:		Instrument:	195
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
935-95-5	2,3,5,6-Tetrachloroph	enol 1	10	0.21	10	U
Svetem Monit	toring Compound	ADDED (ug/L)	CONCIDENT	% REC.	QC Limits	0
2-Fluoropheno	CALL CLARK WITH ALC	20.4	CONC (ug/L) 9.51	47	20 - 70	Q
Phenol-d6		20.5	1.81	9	18 - 45	*
Nitrobenzene-	d5	10.2	7.83	77	31 - 123	
2-Fluorobipher	nyl	10.2	6.21	61	25 - 113	-
2,4,6-Tribromo	ophenol	20.6	11.6	56	30 - 121	
o-Terphenyl		10.2	7.30	72	42 - 125	-
1.0					1	
Internal Stand	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Area	RT	% REC.	Ref. RT	Q
1,4-Dichlorobe	DOLLAR THE	158209	7.77	107	7.84	-
Naphthalene-d		616789	10.5	105	10.58	
Acenaphthene-	d10	381974	14.61	108	14.7	
Phenanthrene-o	110	605982	18.02	104	18.08	
Chrysene-d12		681255	21.6	103	21.65	
Perylene-d12		615931	23.32	109	23.4	-

TMW-08 Filtered

Laboratory:	Laboratory: TriMatrix Laboratories, Inc. SDG: 1401173						
Client:	Beazer East, Inc.		Project: k	Koppers Superio	or		
Matrix:	Water La	boratory ID: 14011	73-07RE1	File ID	: 1401173-07RE	1.D	
Sampled:	01/13/14 11:10	Prepared: 01/27/14 07:48 Analyzed: 01/31/14 18:05					
Solids:	the second second second second second second second second second second second second second second second se	Preparation: <u>3510C Liquid-Liquid Ext</u> Initial/Final: <u>950 mL / 1 mL</u>					
QC Batch:		ce: <u>4A31045</u>	Calibration: 4		Instrument		
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
83-32-9	Acenaphthene	Diation	0.50	0.033	0.50	U	
208-96-8	Acenaphthylene	1	0.50	0.033	0.50	U	
120-12-7	Anthracene	1	0.50	0.062	0.50	U	
56-55-3	Benzo(a)anthracene	1	0.50	0.002	0.50	U	
50-32-8	Benzo(a)pyrene	1	0.50	0.040	0.50	U	
205-99-2	Benzo(b)fluoranthene		0.50	0.040	0.50	U	
207-08-9	Benzo(k)fluoranthene			0.058	0.50	U	
191-24-2	Benzo(g,h,i)perylene	1	0.50	and the second second			
65-85-0	Benzoic Acid	1	0.50	0.061	0.50	U	
100-51-6	Benzyl Alcohol		5.0	0.48	5.0	U	
		1	0.22	0.049	0.50	J	
101-55-3	4-Bromophenyl Phenyl Ether	1	0.50	0.043	0.50	U	
85-68-7	Butyl Benzyl Phthalate	1	0.063	0.056	1.0	J	
59-50-7	4-Chloro-3-methylphenol	1	0.50	0.12	0.50	U UJ	
106-47-8	4-Chloroaniline	1	1.0	0.10	1.0	U	
111-91-1	Bis(2-chloroethoxy)methane	1	0.50	0.018	0.50	U	
111-44-4	Bis(2-chloroethyl) Ether		0.50	0.024	0.50	U	
108-60-1	Bis(2-chloroisopropyl) Ether	1	0.50	0.026	0.50	U	
91-58-7	2-Chloronaphthalene	1	0.50	0.017	0.50	0	
95-57-8	2-Chlorophenol	1	0.50	0.027	0.50	U UJ	
7005-72-3	4-Chlorophenyl Phenyl Ether	1	0.50	0.048	0.50	U	
218-01-9	Chrysene	1	0.50	0.045	0.50	U	
53-70-3	Dibenz(a,h)anthracene	1	0.50	0.11	0.50	U	
132-64-9	Dibenzofuran	1	0.50	0.041	0.50	U	
84-74-2	Di-n-butyl Phthalate	1	0.32	0.14	1.0	JB	
106-46-7	1,4-Dichlorobenzene	1	0.50	0.020	0.50	U	
95-50-1	1,2-Dichlorobenzene	1	0.50	0.040	0.50	U	
541-73-1	1,3-Dichlorobenzene	1	0.50	0.041	0.50	U	
91-94-1	3,3' Dichlorobenzidine	1	1.0	0.12	1.0	U	
120-83-2	2,4-Dichlorophenol	1	0.50	0.092	0.50	U UJ	
84-66-2	Diethyl Phthalate	1	0.42	0.065	0.50	J	
105-67-9	2,4-Dimethylphenol	1	1.0	0.17	1.0	U UJ	
131-11-3	Dimethyl Phthalate	1	0.50	0.046	0.50	U	
534-52-1	4,6-Dinitro-2-methylphenol	1	5.0	1.0	5.0	U UJ	
51-28-5	2,4-Dinitrophenol	1	5.0	1.2	5.0	U _{UJ}	

TMW-08 Filtered

Laborator	y: TriMatrix Laboratories, Inc.		SDG:	1401173		
Clier	nt: Beazer East, Inc.		Project:	Koppers Superi	ior	
Matri	ix: Water L	aboratory ID: 14011	73-07RE1	File ID	D: 1401173-07RE	1.D
Sample	d: 01/13/14 11:10	Prepared: 01/27			d: 01/31/14 18:05	
Solid			C Liquid-Liquid Ext		1: 950 mL/1 mL	
		nce: <u>4A31045</u>	Calibration:			105
			and the second second		Instrument:	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
606-20-2	2,6 Dinitrotoluene	1	0.50	0.080	0.50	U
121-14-2	2,4-Dinitrotoluene	1	0.50	0.048	0.50	U
117-84-0	Di-n-octyl Phthalate	1	0.50	0.077	0.50	U
117-81-7	Bis(2-ethylhexyl) Phthalate		0.56	0.11	0.50	В
206-44-0	Fluoranthene	T	0.50	0.063	0.50	U
86-73-7	Fluorene	1	0.50	0.041	0.50	U
118-74-1	Hexachlorobenzene	1	0.50	0.063	0.50	U
87-68-3	Hexachlorobutadiene	1	0.50	0.040	0.50	U
77-47-4	Hexachlorocyclopentadiene	1	0.50	0.044	0.50	U UJ
67-72-1	Hexachloroethane	1	0.50	0.042	0.50	U
193-39-5	Indeno(1,2,3-cd)pyrene	1	0.50	0.080	0.50	U
78-59-1	Isophorone		0.50	0.045	0.50	U
91-57-6	2-Methylnaphthalene	1	0.50	0.015	0.50	U
90-12-0	1-Methylnaphthalene	1	0.50	0.020	0.50	- U -
106-44-5	4-Methylphenol	1	0.50	0.057	0.50	U UJ
95-48-7	2-Methylphenol	1	0.50	0.048	0.50	U UJ
91-20-3	Naphthalene	1	0.032	0.031	0.50	
100-01-6	4-Nitroaniline	- 1 - 1 - I - I -	1.0	0.33	1.0	U
88-74-4	2-Nitroaniline		0.50	0.12	0.50	U
99-09-2	3-Nitroaniline	1	1.0	0.24	1.0	U
98-95-3	Nitrobenzene	1	0.50	0.058	0.50	-ti-
88-75-5	2-Nitrophenol	1	0.50	0.048	0.50	U UJ
100-02-7	4-Nitrophenol	1	5.0	1.2	5.0	U UJ
86-30-6	N-Nitroso-diphenylamine	1	0.50	0.068	0.50	U UJ
621-64-7	N-Nitroso-di-n-propylamine	1	0.50	0.075	0.50	U
87-86-5	Pentachlorophenol	1	0.50	0.081	0.50	U UJ
85-01-8	Phenanthrene	1	0.50	0.043	0.50	U
108-95-2	Phenol	1	0.50	0.034	0.50	U UJ
129-00-0	Pyrene	1	0.50	0.066	0.50	 U
58-90-2	2,3,4,6-Tetrachlorophenol	1	5.0	0.37	5.0	U UJ
120-82-1	1,2,4-Trichlorobenzene	1	0.50	0.027	0.50	U
95-95-4	2,4,5-Trichlorophenol	1	0.50	0.099	0.50	U UJ
88-06-2	2,4,6-Trichlorophenol	I	0.50	0.085	0.50	U UJ
56-49-5	3-Methylcholanthrene	-1	2.0	0.12	2.0	<u> </u>
			1		1. A 10 C 10 C 10 C 10 C 10 C 10 C 10 C 10	

TMW-08 Filtered

Laboratory	: TriMatrix Laboratories	s, Inc.	SDG: <u>1401173</u>					
Client	: Beazer East, Inc.		Project: Koppers Superior					
Matrix	: Water	Laboratory ID: 140117	3-07RE1	File ID	: 1401173-07RE1	<u>.D</u>		
Sampled	: 01/13/14 11:10	Prepared: 01/27/1	Prepared: 01/27/14 07:48		: 01/31/14 18:05			
Solids		Preparation: 3510C	Preparation: 3510C Liquid-Liquid Ext		: 950 mL/l mL			
QC Batch	: <u>1400299</u>	Sequence: <u>4A31045</u>	Calibration:		Instrument:	195		
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q		
935-95-5	2,3,5,6-Tetrachlorophe	enol 1	10	0.21	10	U _{UJ}		
System Monit	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q		
2-Fluoropheno	1	21.1	11.4	54	20 - 70			
Phenol-d6		21.2	4.65	22	18 - 45			
Nitrobenzene-o	15	10.5	10.5	99	31 - 123			
2-Fluorobipher	ıyl	10.5	9.60	91	25 - 113			
2,4,6-Tribromo	phenol	21.3	19.0	89	30 - 121			
o-Terphenyl		10.5	11.2	106	42 - 125			
Internal Stand	lard	Area	RT	% REC.	Ref. RT	Q		
1,4-Dichlorobe	nzene-d4	266220	7.67	93	7.67			
Naphthalene-d	8	997412	10.4	92	10.4			
Acenaphthene-	d10	603061	14.51	89	14.51			
Phenanthrene-c	110	978650	17.92	88	17.93			
Chrysene-d12		1045926	21.53	87	21.54	1		
Perylene-d12		964792	23.23	94	23.23			

TMW-08A

Laboratory	: TriMatrix Laboratories, Inc. SDG: 1401173						
Client	: Beazer East, Inc.		Project: K	oppers Superio	or		
Matrix	: Water Lab	oratory ID: 14011	73-08	File ID	: 1401173-08.D		
Sampled	: 01/13/14 16:40	Prepared: 01/16	/14 07:48	Analyzed	: 01/24/14 03:37		
Solids	P		C Liquid-Liquid Ext	A 4 37 1 1 1	: 850 mL / 1 mL		
		: <u>4A24001</u>	Calibration: 4		Instrument		
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
83-32-9	Acenaphthene	1	0.59	0.039	0.59	U	
208-96-8	Acenaphthylene	1	0.59	0.020	0.59	U	
120-12-7	Anthracene	1	0.59	0.072	0.59	U	
56-55-3	Benzo(a)anthracene	1	0.59	0.053	0.59	U	
50-32-8	Benzo(a)pyrene	1	0.59	0.047	0.59	U	
205-99-2	Benzo(b)fluoranthene	1	0.59	0.068	0.59	U	
207-08-9	Benzo(k)fluoranthene	1	0.59	0.070	0.59	U	
191-24-2	Benzo(g,h,i)perylene	1	0.59	0.072	0.59	U	
65-85-0	Benzoic Acid	1	5.9	0.56	5.9	U R	
100-51-6	Benzyl Alcohol	1	0.59	0.057	0.59	U	
101-55-3	4-Bromophenyl Phenyl Ether	1	0.59	0.050	0.59	U	
85-68-7	Butyl Benzyl Phthalate	1	0.071 1.2	0.066	1.2	J UE	
59-50-7	4-Chloro-3-methylphenol	1	0.59	0.14	0.59	U	
106-47-8	4-Chloroaniline	1	1.2	0.12	1.2	U	
111-91-1	Bis(2-chloroethoxy)methane	1	0.59	0.022	0.59	υ	
111-44-4	Bis(2-chloroethyl) Ether	1	0.59	0.028	0.59	U	
108-60-1	Bis(2-chloroisopropyl) Ether	1	0.59	0.030	0.59	U	
91-58-7	2-Chloronaphthalene	1	0.59	0.020	0.59	U	
95-57-8	2-Chlorophenol	1	0.59	0.031	0.59	U	
7005-72-3	4-Chlorophenyl Phenyl Ether	1	0.59	0.056	0.59	υ	
218-01-9	Chrysene	1	0.59	0.053	0.59	U	
53-70-3	Dibenz(a,h)anthracene	1	0.59	0.13	0.59	U	
132-64-9	Dibenzofuran	1	0.59	0.048	0.59	U	
84-74-2	Di-n-butyl Phthalate	1	1.2	0.16	1.2	υ	
106-46-7	1,4-Dichlorobenzene	1	0.59	0.023	0.59	U	
95-50-1	1,2-Dichlorobenzene	1	0.59	0.047	0.59	U	
541-73-1	1,3-Dichlorobenzene	1	0.59	0.048	0.59	U	
91-94-1	3,3'-Dichlorobenzidine	1	1.2	0.15	1.2	U	
120-83-2	2,4-Dichlorophenol	1	0.59	0.11	0.59	U	
84-66-2	Diethyl Phthalate	1	0.19 0.59	0.077	0.59	J UB	
105-67-9	2,4-Dimethylphenol	1	1.2	0.20	1.2	U	
131-11-3	Dimethyl Phthalate	1	0.59	0.054	0.59	U	
534-52-1	4,6-Dinitro-2-methylphenol	1	5.9	1.2	5.9	U	
51-28-5	2.4-Dinitrophenol	.1	5.9	1.4	5.9	U UJ	

TMW-08A

Laboratory	TriMatrix Laboratories, Inc. SDG: 1401173						
Client	t: Beazer East, Inc.		Project: K	oppers Superio	r		
Matrix	: Water L	aboratory ID: 14011	73-08	File ID:	1401173-08.D		
Sampled	1: 01/13/14 16:40	Prepared: 01/16	/14 07:48	Analyzed:	01/24/14 03:37		
Solids		Preparation: 35100	C Liquid-Liquid Ext		850 mL/1 mL		
		nce: 4A24001	Calibration: 4		Instrument:	195	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
606-20-2	2,6-Dinitrotoluene	1	0.59	0.094	0.59	U	
121-14-2	2,4-Dinitrotoluene	1	0.59	0.054	0.59	U	
117-84-0	Di-n-octyl Phthalate	1	0.59	0.090	0.59	U	
117-81-7	Bis(2-ethylhexyl) Phthalate	1	0.39 0.59	0.090	0.59	JB UB	
206-44-0	Fluoranthene	1	0.59				
86-73-7	Fluorene			0.074	0.59	U	
101 CT 4003 TA	A SAMA C - DOCU	1	0.59	0.049	0.59	U	
118-74-1	Hexachlorobenzene	1	0.59	0.074	0.59	U	
87-68-3	Hexachlorobutadiene	1	0.59	0.046	0.59	U	
77-47-4	Hexachlorocyclopentadiene	1	0,59	0.052	0.59	U UC	
67-72-1	Hexachloroethane		0.59	0.049	0.59	U	
193-39-5	Indeno(1,2,3-cd)pyrene	1	0.59	0.094	0.59	U	
78-59-1	Isophorone	1	0.094	0.053	0.59	J	
91-57-6	2-Methylnaphthalene	1	0.59	0.018	0.59	U	
90-12-0	1-Methylnaphthalene	1	0.59	0.023	0.59	U	
106-44-5	4-Methylphenol	1	0.59	0.067	0.59	U	
95-48-7	2-Methylphenol	1	0.59	0.056	0.59	U	
91-20-3	Naphthalene	1	0.59	0.036	0.59	U	
100-01-6	4-Nitroaniline	1	1.2	0.39	1.2	U	
88-74-4	2-Nitroaniline	1	0.59	0.14	0.59	U	
99-09-2	3-Nitroaniline	1	1.2	0.29	1.2	U	
98-95-3	Nitrobenzene	1	0.59	0.069	0.59	U	
88-75-5	2-Nitrophenol	1	0.59	0.056	0.59	U	
100-02-7	4-Nitrophenol	1	5.9	1.5	5.9	U UJ	
86-30-6	N-Nitroso-diphenylamine	1	0.59	0.080	0.59	U	
621-64-7	N-Nitroso-di-n-propylamine	1	0.59	0.089	0.59	U	
87-86-5	Pentachlorophenol	1	0.59	0.095	0.59	U	
85-01-8	Phenanthrene	1	0.59	0.050	0.59	U	
108-95-2	Phenol	1 1	0.59	0.040	0.59	U	
129-00-0	Pyrene	1	0.59	0.077	0.59	U	
58-90-2	2,3,4,6-Tetrachlorophenol	1	5.9	0.44	5.9	U	
120-82-1	1,2,4-Trichlorobenzene	1	0.59	0.031	0.59	U	
95-95-4	2,4,5-Trichlorophenol	1	0.59	0.12	0.59	U	
88-06-2	2,4,6-Trichlorophenol	1	0.59	0.12	0.59	U	
56-49-5	3-Methylcholanthrene	1 1	2.4	0.14	2.4	U	

TMW-08A

Laboratory	: TriMatrix Laboratories	s, Inc.	SDG: <u>1401173</u>					
Client	: Beazer East, Inc.		Project: 1	Coppers Superi	or			
Matrix	:: Water	Laboratory ID: 140117	Laboratory ID: 1401173-08		: <u>1401173-08.D</u>			
Sampled	: 01/13/14 16:40	Prepared: 01/16/1	4 07:48	Analyzed	: 01/24/14 03:37			
Solids	R .	Preparation: 3510C	Liquid-Liquid Ext	Initial/Final	: 850 mL / 1 mL			
QC Batch	: <u>1400299</u>	Sequence: <u>4A24001</u>	Calibration:		Instrument:	195		
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q		
935-95-5	2,3,5,6-Tetrachlorophe	enol 1	12	0.25	12	U		
System Monit	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q		
the second second second second second second second second second second second second second second second se	2-Fluorophenol		11.4	49	20 - 70	×		
Phenol-d6		23.6	7.69	33	18 - 45	-		
Nitrobenzene-o	15	11.8	8.73	74	31 - 123	-		
2-Fluorobipher	nyl	11.8	6.42	55	25 - 113			
2,4,6-Tribromo	phenol	23.8	15.0	63	30 - 121	1		
o-Terphenyl		11.8	8.36	71	42 - 125			
Internal Stand	lard	Area	RT	% REC.	Ref. RT	Q		
1,4-Dichlorobe	nzene-d4	168890	7.74	116	7.84			
Naphthalene-da	8	681454	10.47	117	10.58			
Acenaphthene-	d10	421707	14.59	119	14.7			
Phenanthrene-c	110	650019	18	113	18.08			
Chrysene-d12		644344	21.59	102	21.65			
Perylene-d12		572823	23.31	107	23.4			

TMW-08A Filtered

	y: TriMatrix Laboratories, Inc.			1401173		
	t: Beazer East, Inc.		Project:	Koppers Superi	or	
Matri	x: <u>Water</u> Labo	pratory ID: 1401	173-09	File ID): <u>1401173-09.D</u>	
Sample	d: 01/13/14 11:15	Prepared: 01/1	5/14 07:48	Analyzed	l: 01/24/14 01:18	
Solid	s: Pi	reparation: 3510	C Liquid-Liquid Ext	Initial/Final	l: <u>810 mL / 1 mL</u>	
QC Batch	h: <u>1400299</u> Sequence	4A24001	Calibration:	4A22014	Instrument:	195
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
83-32-9	Acenaphthene	1	0.62	0.041	0.62	U
208-96-8	Acenaphthylene	1	0.62	0.021	0.62	U
120-12-7	Anthracene	1	0.62	0.076	0.62	U
56-55-3	Benzo(a)anthracene	1	0.62	0.056	0.62	U
50-32-8	Benzo(a)pyrene	1	0.62	0.050	0.62	U
205-99-2	Benzo(b)fluoranthene	1	0.62	0.072	0.62	U
207-08-9	Benzo(k)fluoranthene	- 1 -	0.62	0.074	0.62	U
191-24-2	Benzo(g,h,i)perylene	1	0.62	0.075	0.62	U
65-85-0	Benzoie Acid	1	6.2	0.59	6.2	U
100-51-6	Benzyl Alcohol	1	0.62	0.060	0.62	U
101-55-3	4-Bromophenyl Phenyl Ether	1	0.62	0.053	0.62	U
85-68-7	Butyl Benzyl Phthalate	1	DH5 1.2	0.069	1.2	J U
59-50-7	4-Chloro-3-methylphenol	1	0.62	0.14	0.62	U
106-47-8	4-Chloroaniline	1	1.2	0.13	1.2	U
111-91-1	Bis(2-chloroethoxy)methane	1	0.62	0.023	0.62	U
111-44-4	Bis(2-chloroethyl) Ether	1	0.62	0.029	0.62	U
108-60-1	Bis(2-chloroisopropyl) Ether	1	0.62	0.032	0.62	U
91-58-7	2-Chloronaphthalene	1	0.62	0.021	0.62	U
95-57-8	2-Chlorophenol	1	0.62	0.033	0.62	U
7005-72-3	4-Chlorophenyl Phenyl Ether	1	0.62	0.059	0.62	U
218-01-9	Chrysene	1	0.62	0.056	0.62	U
53-70-3	Dibenz(a,h)anthracene	1	0.62	0.14	0.62	U
132-64-9	Dibenzofuran	1	0.62	0.050	0.62	U
84-74-2	Di-n-butyl Phthalate	1	1.2	0.17	1.2	U
106-46-7	1,4-Dichlorobenzene	1	0.62	0.024	0.62	U
95-50-1	1,2-Dichlorobenzene	1	0.62	0.049	0.62	U
541-73-1	1,3-Dichlorobenzene	1	0.62	0.051	0.62	U
91-94-1	3,3'-Dichlorobenzidine	1	1.2	0.15	1.2	U
120-83-2	2,4-Dichlorophenol	1	0.62	0.11	0.62	U
84-66-2	Diethyl Phthalate	1	0.62	0.080	0.62	🔏 UE
105-67-9	2,4-Dimethylphenol	1	1.2	0.21	1.2	U
131-11-3	Dimethyl Phthalate	1	0.62	0.056	0.62	U
534-52-1	4,6-Dinitro-2-methylphenol	1	6.2	1.3	6.2	U
51-28-5	2,4-Dinitrophenol	1	6.2	1.4	6.2	U U

TMW-08A Filtered

Laborator	y: TriMatrix Laboratories, Inc.		SDG: 1	401173		
Clier	t: Beazer East, Inc.		Project: K	Coppers Superio	<u>or</u>	
Matri	x: <u>Water</u> Lab	oratory ID: 14011	73-09	File ID	: 1401173-09.D	
Sample	d: 01/13/14 11:15	Prepared: 01/16			: 01/24/14 01:18	
Solid			C Liquid-Liquid Ext		: 810 mL/1 mL	
		e: <u>4A24001</u>	Calibration: 4		Instrument:	
				1	Contraction of the local data	1.000
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
606-20-2	2,6-Dinitrotoluene	1	0.62	0.099	0.62	U
121-14-2	2,4-Dinitrotoluene	1	0.62	0.059	0.62	U
117-84-0	Di-n-octyl Phthalate	1	0.62	0.095	0.62	U
117-81-7	Bis(2-ethylhexyl) Phthalate	1	0.62	0.14	0.62	JB UB
206-44-0	Fluoranthene	1	0.62	0.077	0.62	U
86-73-7	Fluorene	1	0.62	0.051	0.62	U
118-74-1	Hexachlorobenzene	1	0.62	0.077	0.62	U
87-68-3	Hexachlorobutadiene	1	0.62	0.049	0.62	U
77-47-4	Hexachlorocyclopentadiene	1	0.62	0.055	0.62	U UJ
67-72-1	Hexachloroethane	1.	0.62	0.052	0.62	U
193-39-5	Indeno(1,2,3-cd)pyrene	1	0.62	0.099	0.62	U
78-59-1	Isophorone	1	0.099	0.056	0.62	J
91-57-6	2-Methylnaphthalene	1	0.62	0.018	0.62	U
90-12-0	1-Methylnaphthalene	1	0.62	0.024	0.62	U
106-44-5	4-Methylphenol	1	0.62	0.070	0.62	U
95-48-7	2-Methylphenol	1	0.62	0.059	0.62	U
91-20-3	Naphthalene	1	0.049	0.038	0.62	J
100-01-6	4-Nitroaniline	1	1.2	0.41	1.2	U
88-74-4	2-Nitroaniline	1	0.62	0.14	0.62	U
99-09-2	3-Nitroaniline		1.2	0.30	1.2	U
98-95-3	Nitrobenzene	1	0.62	0.072	0.62	U
88-75-5	2-Nitrophenol	1	0.62	0.059	0.62	U
100-02-7	4-Nitrophenol	1	6.2	1.5	6.2	U UJ
86-30-6	N-Nitroso-diphenylamine	1	0.62	0.083	0.62	U
621-64-7	N-Nitroso-di-n-propylamine	1	0.62	0.093	0.62	U
87-86-5	Pentachlorophenol	I	0.62	0.10	0.62	υ
85-01-8	Phenanthrene	1	0.62	0.053	0.62	U
108-95-2	Phenol	1	0.62	0.042	0.62	U
129-00-0	Pyrene	1	0.62	0.081	0.62	U
58-90-2	2,3,4,6-Tetrachlorophenol	1	6.2	0.46	6.2	U
120-82-1	1,2,4-Trichlorobenzene	1	0.62	0.033	0.62	U
95-95-4	2,4,5-Trichlorophenol	1	0.62	0.12	0.62	U
88-06-2	2,4,6-Trichlorophenol	1	0.62	0.12	0.62	U
56-49-5	3-Methylcholanthrene	11	2.5	0.15	2.5	U

TMW-08A Filtered

Laboratory	: TriMatrix Laboratories, Inc	SDG: <u>1401173</u>					
Clien	: Beazer East, Inc.		Project: 1	Koppers Superi	or		
Matrix	: Water	Laboratory ID: 140117	3-09	File ID	: <u>1401173-09.D</u>		
Sampled	1: 01/13/14 11:15	Prepared: 01/16/1	4 07:48	Analyzed	: 01/24/14 01:18		
Solids		Preparation: 3510C1	Liquid-Liquid Ext	Initial/Final	: 810 mL/1 mL		
QC Batch	:: <u>1400299</u> Seq	uence: <u>4A24001</u>	Calibration:		Instrument:	195	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
935-95-5	2,3,5,6-Tetrachlorophenol	1	12	0.26	12	U	
System Monitoring Compound		ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q	
2-Fluoropheno	1	24.7	14.0	57	20 - 70	-	
Phenol-d6		24.8	9.02	36	18 - 45	-	
Nitrobenzene-o	15	12.3	9.22	75	31 - 123		
2-Fluorobipher	ıyl	12.3	6.86	56	25 - 113		
2,4,6-Tribromo	phenol	24.9	16.1	65	30 - 121	-	
o-Terphenyl		12.3	8.90	72	42 - 125		
Internal Stand	lard	Area	RT	% REC.	Ref. RT	Q	
1,4-Dichlorobe	nzene-d4	157419	7.75	108	7.84		
Naphthalene-d	8	639097	10.48	110	10.58		
Acenaphthene-	d10	392554	14.59	110	14.7		
Phenanthrene-c	110	605948	18	105	18.08		
Chrysene-d12		621202	21.58	99	21.65		
Perylene-d12		549449	23.31	102	23.4		

TMW-11 Filtered

Laborator	y: TriMatrix Laboratories, Inc.	401173				
Clien	nt: Beazer East, Inc.		Project: K	oppers Superi	or	
Matri	x: <u>Water</u> Lab	oratory ID: 14011	73-10	File ID): <u>1401173-10.D</u>	
Sample	d: 01/13/14 12:30	Prepared: 01/16	/14 07:48	Analyzed	I: 01/22/14 23:18	
Solid	s: F		C Liquid-Liquid Ext		l: 860 mL / 1 mL	
		: 4A22031	Calibration: 4		Instrument:	195
CAS No.	Analyte	Dilution				
83-32-9	Acenaphthene		CONC. (ug/L)	MDL	MRL	Q
	and the second second second second second second second second second second second second second second second	1	0.58	0.038	0.58	U
208-96-8	Acenaphthylene	1	0.58	0.020	0.58	U
120-12-7	Anthracene	1	0.58	0.072	0.58	U
56-55-3	Benzo(a)anthracene	1	0.58	0.053	0.58	U
50-32-8	Benzo(a)pyrene	1	0.58	0.047	0.58	U
205-99-2	Benzo(b)fluoranthene	1	0.58	0.068	0.58	U
207-08-9	Benzo(k)fluoranthene	1	0.58	0.069	0.58	U
191-24-2	Benzo(g,h,i)perylene	1	0.58	0.071	0.58	U
65-85-0	Benzoic Acid	1	5.8	0.56	5.8	U
100-51-6	Benzyl Alcohol	1	0.58	0.057	0,58	U
101-55-3	4-Bromophenyl Phenyl Ether	ī	0.58	0.050	0.58	U
85-68-7	Butyl Benzyl Phthalate	1	1.2	0.065	1.2	υ
59-50-7	4-Chloro-3-methylphenol	1	0.58	0.13	0.58	U
106-47-8	4-Chloroaniline	1	1.2	0.12	1.2	U
111-91-1	Bis(2-chloroethoxy)methane	1	0.58	0.021	0.58	U
111-44-4	Bis(2-chloroethyl) Ether	1	0.58	0.028	0.58	U
108-60-1	Bis(2-chloroisopropyl) Ether	1	0.58	0.030	0.58	U
91-58-7	2-Chloronaphthalene	1	0.58	0.020	0.58	U
95-57-8	2-Chlorophenol	1	0.58	0.031	0.58	U
7005-72-3	4-Chlorophenyl Phenyl Ether	1	0.58	0.056	0.58	U
218-01-9	Chrysene	1	0.58	0.053	0.58	U
53-70-3	Dibenz(a,h)anthracene	1	0.58	0.13	0.58	U
132-64-9	Dibenzofuran	1	0.58	0.047	0.58	U
84-74-2	Di-n-butyl Phthalate	1	0.16 1.2	0.16	1.2	JB U
106-46-7	1,4-Dichlorobenzene	1	0.58	0.023	0.58	U
95-50-1	1,2-Dichlorobenzene	1	0.58	0.046	0.58	U
541-73-1	1,3-Dichlorobenzene	1	0.58	0.048	0.58	U
91-94-1	3,3'-Dichlorobenzidine	1	1.2	0.14	1.2	U
120-83-2	2,4-Dichlorophenol	1	0.58	0.14	0.58	U
84-66-2	Diethyl Phthalate	1	0.30	0.076	0.58	J UE
105-67-9	2,4-Dimethylphenol	1	1.2	0.20	1.2	U
131-11-3	Dimethyl Phthalate	1	0.58	0.053	0.58	U
534-52-1	4,6-Dinitro-2-methylphenol	I I	5.8	1.2	5.8	U
51-28-5	2,4-Dinitrophenol	1	5.8	1.2	5.8	U

TMW-11 Filtered

Laborator	y: TriMatrix Laboratories, Inc.	401173				
Clien	nt: Beazer East, Inc.	Project: K	oppers Superio	or		
Matri	x: <u>Water</u> Lab	oratory ID: 14011	the second second second second second second second second second second second second second second second s		: 1401173-10.D	
Sample	d: 01/13/14 12:30	Prepared: 01/16	/14 07:48	Analyzed	: 01/22/14 23:18	
Solid	s: F		C Liquid-Liquid Extr		: 860 mL / 1 mL	
		e: <u>4A22031</u>	Calibration: 4		Instrument:	
		The state of the s	and the second second second second second second second second second second second second second second second		and the second second	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
606-20-2	2,6-Dinitrotoluene	1	0.58	0.093	0.58	U
121-14-2	2,4-Dinitrotoluene	1	0.58	0.055	0.58	U
117-84-0	Di-n-octyl Phthalate	1	0.58	0.089	0.58	U
117-81-7	Bis(2-ethylhexyl) Phthalate	1	0.16 0.58	0.13	0.58	JB UB
206-44-0	Fluoranthene	1	0.58	0.073	0.58	U
86-73-7	Fluorene	1	0.58	0.048	0.58	U
118-74-1	Hexachlorobenzene	1	0.58	0.073	0.58	U
87-68-3	Hexachlorobutadiene	1	0.58	0.046	0.58	U
77-47-4	Hexachlorocyclopentadiene	1	0.58	0.052	0.58	U UJ
67-72-1	Hexachloroethane	1	0.58	0.049	0.58	U
193-39-5	Indeno(1,2,3-cd)pyrene	1	0.58	0.093	0.58	U
78-59-1	Isophorone	Ĩ.	0.58	0.052	0.58	U
91-57-6	2-Methylnaphthalene	1	0.023	0.017	0.58	J
90-12-0	1-Methylnaphthalene	1	0.58	0.023	0.58	U
106-44-5	4-Methylphenol	1	0.58	0.066	0.58	U
95-48-7	2-Methylphenol	1	0.58	0.055	0.58	U
91-20-3	Naphthalene	1	0.45	0.036	0.58	J
100-01-6	4-Nitroaniline	1	1.2	0.38	1.2	U
88-74-4	2-Nitroaniline	1	0.58	0.13	0.58	U
99-09-2	3-Nitroaniline	1	1.2	0.15	1.2	U
98-95-3	Nitrobenzene	1	0.58	0.068	0.58	U
88-75-5	2-Nitrophenol	1	0.58	0.055	0.58	U
100-02-7	4-Nitrophenol	1	5.8	1.5	5.8	
86-30-6	N-Nitroso-diphenylamine	1		0.079		U UJ
621-64-7	N-Nitroso-di-n-propylamine	1	0.58		0.58	U
87-86-5	Pentachlorophenol	I	0.58	0.088	0.58	U
85-01-8	Phenanthrene		0.58	0.094	0.58	U
108-95-2	Phenol	1	0.58	0.050	0.58	U
		1	0.58	0.039	0.58	U
129-00-0	Pyrene 2224 CTrtendu I	1	0.58	0.076	0.58	U
58-90-2	2,3,4,6-Tetrachlorophenol	1	5.8	0.43	5.8	U
120-82-1	1,2,4-Trichlorobenzene	1	0.58	0.031	0.58	U
95-95-4	2,4,5-Trichlorophenol	- il	0.58	0.12	0.58	U
88-06-2	2,4,6-Trichlorophenol	1	0.58	0.099	0.58	U
56-49-5	3-Methylcholanthrene	1	2.3	0.14	2.3	U

TMW-11 Filtered

Laboratory	: TriMatrix Laboratorie	es, Inc.	SDG: <u>1401173</u>					
Client	t: Beazer East, Inc.		Project: H	Coppers Superi	or			
Matrix	: <u>Water</u>	Laboratory ID: 140117	3-10	File ID	: <u>1401173-10.D</u>			
Sampled	1: 01/13/14 12:30	Prepared: 01/16/1	4 07:48	Analyzed	: 01/22/14 23:18			
Solids		Preparation: 3510C1			: 860 mL / 1 mL			
QC Batch	a: <u>1400299</u>	Sequence: <u>4A22031</u>	Calibration:		Instrument:	195		
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q		
935-95-5	2,3,5,6-Tetrachloroph	enol 1	12	0.25	12	U		
System Monitoring Compound		ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q		
2-Fluorophenol		23.3	10.7	46	20 - 70	-		
Phenol-d6		23.4	2.23	10	18 - 45	*		
Nitrobenzene-o	Nitrobenzene-d5		8.92	77	31 - 123			
2-Fluorobipher	ıyl	11.6	6.84	59	25 - 113			
2,4,6-Tribromo	phenol	23.5	12.9	55	30 - 121			
o-Terphenyl		11.6	8.07	69	42 - 125			
Internal Stand	lard	Area	RT	% REC.	Ref. RT	Q		
1,4-Dichlorobe	enzene-d4	154303	7,77	104	7.84			
Naphthalene-da	8	602969	10.5	103	10.58			
Acenaphthene-	d10	369830	14.61	104	14.7	-		
Phenanthrene-c	110	577156	18.01	99	18.08			
Chrysene-d12		657812	21.6	99	21.65			
Perylene-d12		588178	23.33	104	23.4	-		

TMW-11A Filtered

	y: <u>TriMatrix Laboratories, Inc.</u> SDG: <u>1401173</u>						
Clier	t: Beazer East, Inc. Project: Koppers Superior						
Matri	ix: <u>Water</u> Labo	oratory ID: 14011	73-11	File ID: <u>1401173-11.D</u>			
Sample	ed: 01/13/14 12:25	Prepared: 01/16	/14 07:48	Analyzed	: 01/22/14 23:53	8	
Solid	ls: Pr	reparation: 35100	C Liquid-Liquid Ext	Initial/Final	: 1000 mL / 1 ml	L	
QC Batc		4A22031	Calibration: 4		Instrument	Prove and	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
83-32-9	Acenaphthene	1	0.50	0.033	0.50	υ	
208-96-8	Acenaphthylene	1	0.50	0.017	0.50	U	
120-12-7	Anthracene	1	0.50	0.062	0.50	U	
56-55-3	Benzo(a)anthracene	1	0.50	0.045	0.50	U	
50-32-8	Benzo(a)pyrene	1	0.50	0.040	0.50	U	
205-99-2	Benzo(b)fluoranthene	1	0.50	0.058	0.50	U	
207-08-9	Benzo(k)fluoranthene	1	0.50	0.060	0.50	U	
191-24-2	Benzo(g,h,i)perylene	1	0.50	0.061	0.50	U	
65-85-0	Benzoic Acid	1	5,0	0.48	5.0	U	
100-51-6	Benzyl Alcohol	1	0.50	0.049	0.50	U	
101-55-3	4-Bromophenyl Phenyl Ether	1	0.50	0.043	0.50	U	
85-68-7	Butyl Benzyl Phthalate	1	1.0	0.056	1.0	U	
59-50-7	4-Chloro-3-methylphenol	1	0.50	0.12	0.50	U	
106-47-8	4-Chloroaniline	1	1.0	0.10	1.0	U	
111-91-1	Bis(2-chloroethoxy)methane	1	0.50	0.018	0.50	U'	
111-44-4	Bis(2-chloroethyl) Ether	1	0.50	0.024	0.50	U	
108-60-1	Bis(2-chloroisopropyl) Ether	1	0.50	0.026	0.50	U	
91-58-7	2-Chloronaphthalene	1	0.50	0.017	0.50	U	
95-57-8	2-Chlorophenol	1	0.50	0.027	0.50	U	
7005-72-3	4-Chlorophenyl Phenyl Ether	1	0.50	0.048	0.50	U	
218-01-9	Chrysene	1	0.50	0.045	0.50	U	
53-70-3	Dibenz(a,h)anthracene	1	0.50	0.11	0.50	U	
132-64-9	Dibenzofuran	1	0.50	0.041	0.50	U	
84-74-2	Di-n-butyl Phthalate	$(\mathbf{I}_{i}) \in \{\mathbf{I}_{i}\}$	0.16 1.0	0.14	1.0		
106-46-7	1,4-Dichlorobenzene	-1112	0.50	0.020	0.50	U	
95-50-1	1,2-Dichlorobenzene	1	0.50	0.040	0.50	U	
541-73-1	1,3-Dichlorobenzene	1	0.50	0.041	0.50	U	
91-94-1	3,3'-Dichlorobenzidine	1	1.0	0.12	1.0	U	
120-83-2	2,4-Dichlorophenol	1	0.50	0.092	0.50	U I	
84-66-2	Diethyl Phthalate		0.50	0.065	0.50	J UB	
105-67-9	2,4-Dimethylphenol	1	1.0	0.17	1.0	U	
131-11-3	Dimethyl Phthalate	1	0.50	0.046	0.50	U	
534-52-1	4,6-Dinitro-2-methylphenol	1	5.0	1.0	5.0	U 1	
51-28-5	2,4-Dinítrophenol	1	5.0	1.2	5.0	U	

TMW-11A Filtered

	y: TriMatrix Laboratories, Inc.			: 1401173			
	nt: Beazer East, Inc.			: Koppers Superior			
Matri	x: <u>Water</u> Lab	oratory ID: 14011	73-11	File ID	: <u>1401173-11.D</u>		
Sample	d: 01/13/14 12:25	Prepared: 01/16/	/14 07:48	Analyzed	01/22/14 23:53		
Solid	ls: P	reparation: 35100	Liquid-Liquid Ext	Initial/Final:	: 1000 mL / 1 mL	2	
QC Batc	h: <u>1400299</u> Sequence	: <u>4A22031</u>	Calibration: 4	A22014	Instrument:	195	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
606-20-2	2,6-Dinitrotoluene	1	0.50	0.080	0.50	U	
121-14-2	2,4-Dinitrotoluene	1	0.50	0.048	0.50	U	
117-84-0	Di-n-octyl Phthalate	1	0.50	0.077	0.50	U	
117-81-7	Bis(2-ethylhexyl) Phthalate	1	D.14 0.50	0.11	0.50	JE UB	
206-44-0	Fluoranthene	1	0.50	0.063	0.50	U	
86-73-7	Fluorene	1	0.50	0.041	0.50	U	
118-74-1	Hexachlorobenzene	1	0.50	0.063	0.50	U	
87-68-3	Hexachlorobutadiene	1	0.50	0.040	0.50	U	
77-47-4	Hexachlorocyclopentadiene	1	0.50	0.044	0.50	U R	
67-72-1	Hexachloroethane	1	0.50	0.042	0.50	U	
193-39-5	Indeno(1,2,3-cd)pyrene	1	0.50	0.080	0.50	U	
78-59-1	Isophorone	1	0.50	0.045	0.50	U	
91-57-6	2-Methylnaphthalene	1	0.50	0.015	0.50	U	
90-12-0	1-Methylnaphthalene	1	0.50	0.020	0.50	U	
106-44-5	4-Methylphenol	1	0.50	0.057	0.50	U-	
95-48-7	2-Methylphenol	1	0.50	0.048	0.50	U	
91-20-3	Naphthalene	1	0.12	0.031	0.50	J	
100-01-6	4-Nitroaniline	1	1.0	0.33	1.0	U	
88-74-4	2-Nitroaniline	I	0.50	0.12	0.50	U	
99-09-2	3-Nitroaniline	1	1.0	0.24	1.0	U	
98-95-3	Nitrobenzene	1	0,50	0.058	0.50	U	
88-75-5	2-Nitrophenol	1	0.50	0.048	0.50	U	
100-02-7	4-Nitrophenol	1	5.0	1.2	5.0	U F	
86-30-6	N-Nitroso-diphenylamine	1	0.50	0.068	0.50	<u>U</u> I	
621-64-7	N-Nitroso-di-n-propylamine	1	0.50	0.075	0.50	U	
87-86-5	Pentachlorophenol	1	0.50	0.081	0.50	U R	
85-01-8	Phenanthrene	1	0.50	0.043	0.50	U	
108-95-2	Phenol	1	0.50	0.034	0.50	U 1	
129-00-0	Pyrene	1	0.50	0.066	0.50	U	
58-90-2	2,3,4,6-Tetrachlorophenol	1	5.0	0.37	5.0	U R	
120-82-1	1,2,4-Trichlorobenzene	1	0.50	0.027	0.50	U	
95-95-4	2,4,5-Trichlorophenol	1	0.50	0.099	0.50	<u>U</u> I	
88-06-2	2,4,6-Trichlorophenol	1	0.50	0.085	0.50	U R	
56-49-5	3-Methylcholanthrene	1	2.0	0.12	2.0	U	

TMW-11A Filtered

Laboratory:	TriMatrix Laboratories, Inc.	SDG: <u>1401173</u>					
Client:	Beazer East, Inc.		Project: 1	Koppers Superio	<u>r</u>		
Matrix:	Water La	Laboratory ID: 1401173-11		File ID:	1401173-11.D		
Sampled:	01/13/14 12:25	Prepared: 01/16/14 07:48		Analyzed:	01/22/14 23:53		
Solids:		Preparation: 3510C	Liquid-Liquid Ext	Initial/Final:	1000 mL/1 mL		
QC Batch:	1400299 Sequence	ce: 4A22031	Calibration:		Instrument:	195	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
935-95-5	2,3,5,6-Tetrachlorophenol	1	10	0.21	10	U R	
System Monitoring Compound		ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q	
2-Fluorophenol		20.0	6.85	34	20-70		
Phenol-d6		20.1	1.09	5	18 - 45	*	
Nitrobenzene-d:	5	10.0	8.04	80	31 - 123		
2-Fluorobipheny	yI	10.0	6.09	61	25 - 113		
2,4,6-Tribromop	ohenol	20.2	12.2	60	30 - 121		
o-Terphenyl		10.0	7.29	73	42 - 125		
Internal Stands	ard	Area	RT	% REC.	Ref. RT	Q	
1,4-Dichloroben	izene-d4	156136	7.77	105	7.84	×	
Naphthalene-d8		603178	10.5	103	10.58		
Acenaphthene-d	10	376309	14.61	106	14.7	-	
Phenanthrene-d	10	611945	18.01	105	18.08		
Chrysene-d12		690756	21.6	104	21.65		
Perylene-d12		623352	23.33	111	23.4		

TMW-11

	y: TriMatrix Laboratories, Inc.		SDG: <u>1</u>	401173		
Clier	nt: Beazer East, Inc.	oppers Superi	or			
Matri	x: <u>Water</u> Labo	oratory ID: 14011	73-12	File ID	: <u>1401173-12.D</u>	
Sample	d: 01/14/14 10:10	Prepared: 01/16	/14 07:48	Analyzed	: 01/24/14 04:11	
Solid	ls: Pi	reparation: 35100	C Liquid-Liquid Ext	Initial/Final	: <u>620 mL / 1 mL</u>	
QC Batc		4A24001	Calibration: 4		Instrument	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	11.7 mm
83-32-9	Acenaphthene	1	0.81	0.053	0.81	Q U
208-96-8	Acenaphthylene	1	0.81	0.028	0.81	U
120-12-7	Anthracene	1	0.81	0.028	0.81	U
56-55-3	Benzo(a)anthracene	1	0.81	0.099	0.81	Sec. 1
50-32-8	Benzo(a)pyrene	1	0.81	0.0.10		U
205-99-2	Benzo(b)fluoranthene	1		0.065	0.81	U
207-08-9	Benzo(k)fluoranthene	1	0.81	0.094	0.81	U
191-24-2	Benzo(g,h,i)perylene		0.81	0.096	0.81	U
65-85-0	Benzoic Acid	1	0.81	0.098	0.81	U
100-51-6	The first was created.	1	8.1	0.77	8.1	U
101-55-3	Benzyl Alcohol	1	0.21	0.078	0.81	J
AND DESCRIPTION OF	4-Bromophenyl Phenyl Ether	1	0.81	0.069	0,81	U
85-68-7	Butyl Benzyl Phthalate	1	0.19 1.6	0.090	1.6	J UI
59-50-7	4-Chloro-3-methylphenol	1	0.81	0.19	0.81	U
106-47-8	4-Chloroaniline	1	1.6	0.16	1.6	U
111-91-1	Bis(2-chloroethoxy)methane	1	0.81	0.030	0.81	U
111-44-4	Bis(2-chloroethyl) Ether	1	0.81	0.038	0.81	U
108-60-1	Bis(2-chloroisopropyl) Ether	1	0.81	0.042	0.81	U
91-58-7	2-Chloronaphthalene	1	0.81	0.028	0.81	U
95-57-8	2-Chlorophenol	I	0.81	0.043	0.81	U
7005-72-3	4-Chlorophenyl Phenyl Ether	1	0.81	0.077	0.81	U
218-01-9	Chrysene	1	0.81	0.073	0.81	U
53-70-3	Dibenz(a,h)anthracene	1	0.81	0.18	0.81	U
132-64-9	Dibenzofuran	1	0.81	0.066	0.81	U
84-74-2	Di-n-butyl Phthalate	1	0.87 1.6	0.22	1.6	JE UI
106-46-7	1,4-Dichlorobenzene	1	0.81	0.032	0.81	U
95-50-1	1,2-Dichlorobenzene	1	0.81	0.064	0.81	U
541-73-1	1,3-Dichlorobenzene	1	0.81	0.066	0.81	U
91-94-1	3,3'-Dichlorobenzidine	1	1.6	0.20	1.6	U
120-83-2	2,4-Dichlorophenol	1	0.81	0.15	0.81	U
84-66-2	Diethyl Phthalate	1	0.340.81	0.10	0.81	🔏 UB
105-67-9	2,4-Dimethylphenol	1	1.6	0.27	1.6	U
131-11-3	Dimethyl Phthalate	1	0.81	0.073	0.81	U
534-52-1	4,6-Dinitro-2-methylphenol	1	8.1	1.6	8.1	U
51-28-5	2,4-Dinitrophenol	1	8.1	1.9	8.1	υυ

TMW-11

Laborator	y: TriMatrix Laboratories, Inc.	1401173				
Clier	nt: Beazer East, Inc.	Koppers Superi	or			
Matri	x: Water	Laboratory ID: 1401	173-12	File ID): 1401173-12.D	
Sample	d: 01/14/14 10:10	Prepared: 01/16	/14 07:48		1: 01/24/14 04:11	
Solid	s:		C Liquid-Liquid Ext		: 620 mL/1 mL	
QC Batc	h: <u>1400299</u> Seque	ence: <u>4A24001</u>	Calibration:		Instrument	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	
606-20-2	2,6-Dinitrotoluene	1	0.81	0.13	0.81	Q U
121-14-2	2,4-Dinitrotoluene	1	0.81	0.077	0.81	U
117-84-0	Di-n-octyl Phthalate	1	0.81	0.12	0.81	U
117-81-7	Bis(2-ethylhexyl) Phthalate	1	1.5	0.12	0.81	
206-44-0	Fluoranthene	1	0.15	0.10	0.81	J J
86-73-7	Fluorene	1	0.15	0.067		
118-74-1	Hexachlorobenzene	1	0.81	0.087	0.81	U
87-68-3	Hexachlorobutadiene	1	0.81	0.064	0.81	บ บ
77-47-4	Hexachlorocyclopentadiene	1	0.81	0.084		
67-72-1	Hexachloroethane	1	0.81		0.81	UU
193-39-5	Indeno(1,2,3-cd)pyrene	1	0.81	0.067	0.81	U
78-59-1	Isophorone	1	0.081	0.13	0.81	U
91-57-6	2-Methylnaphthalene	1 T		0.073	0.81	J
90-12-0	1-Methylnaphthalene	1	0.048	0.024	0.81	J
106-44-5	4-Methylphenol	1		0.031	0.81	U
95-48-7	2-Methylphenol	1	0.81	0.091	0.81	U
91-20-3	Naphthalene	1	0.81	0.077	0.81	U
100-01-6	4-Nitroaniline		0.13	0.050	0.81	J
88-74-4	2-Nitroaniline	1	1.6	0.53	1.6	U
99-09-2	3-Nitroaniline	1	0.81	0.19	0.81	U
98-95-3	Nitrobenzene	1	1.6	0.39	1.6	U
88-75-5	2-Nítrophenol	1	0.81	0.094	0.81	U
100-02-7	4-Nitrophenol	1	0.81	0.077	0.81	U
86-30-6	N-Nitroso-diphenylamine	1	8.1	2.0	8.1	U U
621-64-7	N-Nitroso-di-n-propylamine	1	0.81	0.11	0.81	U
87-86-5	and a statement of the state of the statement of the	1	0.81	0.12	0.81	U
85-01-8	Pentachlorophenol Phenanthrene	- 1	0.81	0.13	0.81	U
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1	0.19	0.069	0.81	J
108-95-2 129-00-0	Phenol	1	0.81	0.054	0.81	U
	Pyrene	1	0.15	0.11	0.81	J -
58-90-2	2,3,4,6-Tetrachlorophenol	1	8.1	0.60	8.1	U
120-82-1	1,2,4-Trichlorobenzene	1	0.81	0.043	0.81	U
95-95-4	2,4,5-Trichlorophenol	1	0.81	0.16	0.81	U
88-06-2	2,4,6-Trichlorophenol	1	0.81	0.14	0.81	U
56-49-5	3-Methylcholanthrene	1	3.2	0.19	3.2	U

TMW-11

Laboratory	: TriMatrix Laboratories, Inc.		SDG: 1	401173		
Client	: Beazer East, Inc.		Project: H	Coppers Superior		
Matrix	: <u>Water</u> Lal	ooratory ID: 140117	3-12	File ID	: <u>1401173-12.D</u>	
Sampled	: 01/14/14 10:10	Prepared: 01/16/14	4 07:48	Analyzed	: 01/24/14 04:11	
Solids	:	Preparation: 3510C1	Contraction of the		: 620 mL / 1 mL	
	A state for the second state of the	e: <u>4A24001</u>	Calibration:		Instrument:	195
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
935-95-5	2,3,5,6-Tetrachlorophenol	1	16	0.34	16	U
System Monit	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q
2-Fluoropheno		32.3	16.0	49	20 - 70	Q
Phenol-d6		32.4	11.2	34	18 - 45	_
Nitrobenzene-c	15	16.1	9.71	60	31 - 123	
2-Fluorobipher	nyl	16.1	8.32	52	25 - 113	
2,4,6-Tribromo	phenol	32.6	17.6	54	30 - 121	
o-Terphenyl		16.1	9.63	60	42 - 125	-
Internal Stand	lard	Area	RT	% REC.	Ref. RT	Q
1,4-Dichlorobe	the later of the l	172042	7.75	118	7.84	V
Naphthalene-di	provide and	674419	10.48	116	10.58	
Acenaphthene-	d10	420024	14.59	118	14.7	-
Phenanthrene-c	110	629431	18	109	18.08	
Chrysene-d12		594540	21.58	94	21.65	
Perylene-d12						

TMW-11A

Laborator	y: TriMatrix Laboratories, Inc.	sDG: <u>1401173</u>							
Clien	t: Beazer East, Inc.		Project: Koppers Superior						
Matri	x: Water	aboratory ID: 1401	173-13	File ID: <u>1401173-13.D</u>					
Sample	d: 01/14/14 10:15	Prepared: 01/16	/14 07:48	Analyzed	1: 01/24/14 03:02				
Solid	S:		C Liquid-Liquid Ext		: 130 mL / 1 mL				
		nce: 4A24001	Calibration: 4		Instrument				
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q			
83-32-9	Acenaphthene	1	3.8	0.25	3.8				
208-96-8	Acenaphthylene	1	3.8	0.13	3.8	U			
120-12-7	Anthracene	1	3.8	0.13	3.8	U			
56-55-3	Benzo(a)anthracene	1	3.8	0.47	3.8	U			
50-32-8	Benzo(a)pyrene	1	3.8	0.33	3.8	U			
205-99-2	Benzo(b)fluoranthene	1	3.8	0.31	3.8	U			
207-08-9	Benzo(k)fluoranthene	1							
191-24-2	Benzo(g,h,i)perylene	1	3.8	0.46	3.8	U			
65-85-0	Benzoic Acid	1	3.8	0.47	3.8	U			
100-51-6	Benzyl Alcohol		38	3.7	38	U R			
100-51-8	Contraction of the Contract of Contract	1	3.8	0.37	3.8	U			
85-68-7	4-Bromophenyl Phenyl Ether		3.8	0.33	3.8	U			
	Butyl Benzyl Phthalate	1	3.9	0.43	7.7	J			
59-50-7	4-Chloro-3-methylphenol	1	3.8	0.88	3.8	U			
106-47-8	4-Chloroaniline	1	7.7	0.78	7.7	U			
111-91-1	Bis(2-chloroethoxy)methane	1	3.8	0.14	3.8	U			
111-44-4	Bis(2-chloroethyl) Ether	1	3.8	0.18	3.8	U			
108-60-1	Bis(2-chloroisopropyl) Ether	1	3.8	0.20	3.8	U			
91-58-7	2-Chloronaphthalene	1	3.8	0.13	3.8	U			
95-57-8	2-Chlorophenol	1	3.8	0.21	3.8	U			
7005-72-3	4-Chlorophenyl Phenyl Ether	$-\mathbf{I}_{c}$	3.8	0,37	3.8	U			
218-01-9	Chrysene	1	3.8	0.35	3.8	U			
53-70-3	Dibenz(a,h)anthracene	1	3.8	0.87	3.8	U			
132-64-9	Dibenzofuran	1	3.8	0.31	3.8	U			
84-74-2	Di-n-butyl Phthalate	1	17	1.0	7.7	🔏 UB			
106-46-7	1,4-Dichlorobenzene	1	3.8	0.15	3.8	U			
95-50-1	1,2-Dichlorobenzene	1	3.8	0.30	3.8	U			
541-73-1	1,3-Dichlorobenzene	1	3.8	0.32	3.8	U			
91-94-1	3,3'-Dichlorobenzidine	1	7.7	0.95	7.7	U			
120-83-2	2,4-Dichlorophenol	1	3.8	0.70	3.8	U			
84-66-2	Diethyl Phthalate	1	1.6	0.50	3.8	J			
105-67-9	2,4-Dimethylphenol	1	7.7	1.3	7.7	U			
131-11-3	Dimethyl Phthalate	1	3.8	0.35	3.8	U			
534-52-1	4,6-Dinitro-2-methylphenol	1	38	7.8	38	U			
51-28-5	2,4-Dinitrophenol	1	38	8.9	38	U UJ			

TMW-11A

Laborator	y: TriMatrix Laboratories, Inc.		SDG: 1	401173				
Clien	t: Beazer East, Inc.		Project: K	oppers Superio	<u>or</u>			
Matri	x: <u>Water</u> La	boratory ID: 14011	File ID: <u>1401173-13</u>					
Sample	d: 01/14/14 10:15	Prepared: 01/16	/14 07:48	Analyzed	: 01/24/14 03:02			
Solid	s:	Preparation: 35100	C Liquid-Liquid Ext	Initial/Final	: 130 mL / 1 mL			
QC Batc	h: <u>1400299</u> Sequen	ce: 4A24001	Calibration: 4		Instrument	195		
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q		
606-20-2	2,6-Dinitrotoluene	1	3.8	0.62	3.8	U		
121-14-2	2,4-Dinitrotoluene	1	3.8	0.37	3.8	U		
117-84-0	Di-n-octyl Phthalate	1	3.8	0.59	3.8	U		
206-44-0	Fluoranthene	1	3.8	0.48	3.8	U		
86-73-7	Fluorene	1	3.8	0.32	3.8	U		
118-74-1	Hexachlorobenzene	1	3.8	0.48	3.8	U		
87-68-3	Hexachlorobutadiene	1	3.8	0.30	3.8	U		
77-47-4	Hexachlorocyclopentadiene	1/	3.8	0.34	3.8	U UJ		
67-72-1	Hexachloroethane	1	3.8	0.32	3.8	U		
193-39-5	Indeno(1,2,3-cd)pyrene	1	3.8	0.61	3.8	U		
78-59-1	Isophorone	1	3.8	0.35	3.8	U		
91-57-6	2-Methylnaphthalene	1	3.8	0.11	3.8	U		
90-12-0	1-Methylnaphthalene	1	3.8	0.15	3.8	U		
106-44-5	4-Methylphenol	1	3.8	0.44	3.8	U		
95-48-7	2-Methylphenol	1	3.8	0.37	3.8	U		
91-20-3	Naphthalene	1	3.8	0.24	3.8	U		
100-01-6	4-Nitroaniline	1	7.7	2.5	7.7	U		
88-74-4	2-Nitroaniline	1	3.8	0.89	3.8	U		
99-09-2	3-Nitroaniline	1	7.7	1.9	7.7	U		
98-95-3	Nitrobenzene	1	3.8	0.45	3.8	U		
88-75-5	2-Nitrophenol	1	3.8	0.37	3.8	U		
100-02-7	4-Nitrophenol	1	38	9.6	38	U UJ		
86-30-6	N-Nitroso-diphenylamine	1	3.8	0.52	3.8	U		
621-64-7	N-Nitroso-di-n-propylamine	1	3.8	0.58	3.8	U		
87-86-5	Pentachlorophenol	1	3.8	0.62	3.8	U		
85-01-8	Phenanthrene	1	3.8	0.33	3.8	Ú		
108-95-2	Phenol	1	3.8	0.26	3.8	U		
129-00-0	Pyrene	1	3.8	0.50	3.8	U		
58-90-2	2,3,4,6-Tetrachlorophenol	1	38	2.9	38	U		
120-82-1	1,2,4-Trichlorobenzene	1	3.8	0.20	3.8	U		
95-95-4	2,4,5-Trichlorophenol	1	3.8	0.76	3.8	U		
88-06-2	2,4,6-Trichlorophenol	1	3.8	0.65	3.8	U		
56-49-5	3-Methylcholanthrene	1	15	0.92	15	U		
935-95-5	2,3,5,6-Tetrachlorophenol	1	77	1.6	77	U		

TMW-11A

Laboratory: TriMatrix Laborator	ies, Inc.	SDG:	1401173		
Client: Beazer East, Inc.		Project:	Koppers Superi	<u>0</u>	
Matrix: Water	Laboratory ID: 140	ratory ID: 1401173-13		: <u>1401173-13.D</u>	
Sampled: 01/14/14 10:15	Prepared: 01/	16/14 07:48	Analyzed	: 01/24/14 03:02	
Solids:	Preparation: 351	OC Liquid-Liquid Ext	Initial/Final	: <u>130 mL/1 mL</u>	
QC Batch: 1400299	Sequence: <u>4A24001</u>	Calibration:	4A22014	Instrument:	195
System Monitoring Compound	ADDED (ug	/L) CONC (ug/L)	% REC.	QC Limits	Q
2-Fluorophenol	154	81.8	53	20 - 70	
Phenol-d6	155	84.7	55	18 - 45	*
Nitrobenzene-d5	76.9	54.0	70	31 - 123	
2-Fluorobiphenyl	76.9	47.5	62	25 - 113	
2,4,6-Tribromophenol	155	66.2	43	30 - 121	
o-Terphenyl	76.9	52.7	68	42 - 125	
Internal Standard	Area	RT	% REC.	Ref. RT	Q
1,4-Dichlorobenzene-d4	165294	7.75	113	7.84	
Naphthalene-d8	641604	10.48	110	10.58	
Acenaphthene-d10	394294	14.59	111	14.7	-
Phenanthrene-d10	624368	18	108	18.08	
Chrysene-d12	672420	21.59	107	21.65	
Perylene-d12	597829	23.31	111	23.4	

TMW-11A

Laborator	y: TriMatrix Laboratori	es, Inc.	SDG: <u>1401173</u>				
Clien	it: Beazer East, Inc.			Project: 1	Koppers Superi	or	
Matri	x: Water	Lab	oratory ID: 140117	3-13RE1	File ID: 1401173-13 x2.		2
Sample	d: 01/14/14 10:15		Prepared: 01/16/1	4 07:48	Analyzed	: 01/25/14 03:00	
Solid	s:	F	reparation: 3510C1	Liquid-Liquid Ext	Initial/Final	: 130 mL/1 mL	
		Sequence	: <u>4A27042</u>	Calibration:	4A22014	195	
CAS No.	Analyte		Dilution	CONC. (ug/L)	MDL	MRL	Q
117-81-7	Bis(2-ethylhexyl) Phi	halate	2	220	1,7	7.7	₿ D
System Moni	toring Compound	-	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q
Nitrobenzene-	d5		76.9	45.4	59	31 - 123	
2-Fluorobiphe	nyl		76.9	43.2	56	25 - 113	1
o-Terphenyl	1		76.9	54.3	71	42 - 125	
Internal Stan	dard	-	Area	RT	% REC.	Ref. RT	Q
1,4-Dichlorob	enzene-d4		159887	7.66	88	7.84	1.00
Naphthalene-d	18		639606	10.39	90	10.58	
Acenaphthene-d10		399912	14.5	96	14.7		
Phenanthrene-d10		597040	17.92	89	18.08		
Chrysene-d12			702043	21.53	92	21.65	
Perylene-d12			630772	23.23	99	23.4	

TMW-12A Filtered

Laboratory	: TriMatrix Laboratories, Inc.		SDG: <u>1</u>	401173		
Clien	t: Beazer East, Inc.		Project: k	Coppers Superi	or	
Matrix	c: <u>Water</u> La	boratory ID: 14011	73-14	File ID	: 1401173-14 20	0X.D
Sampleo	1: 01/13/14 11:55	Prepared: 01/16	/14 07:48		£ 01/31/14 16:55	
Solids			C Liquid-Liquid Ext		: 1000 mL / 1 m	
		ce: <u>4A31045</u>	Calibration: 4		Instrument	Sec. 1
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
83-32-9	Acenaphthene	200	140	6.6	100	J
208-96-8	Acenaphthylene	200	100	3.4	100	UT
120-12-7	Anthracene	200	100	12	100	U
56-55-3	Benzo(a)anthracene	200	100	9.1	100	U
50-32-8	Benzo(a)pyrene	200	100	8.1	100	U
205-99-2	Benzo(b)fluoranthene	200	100	12	100	U
207-08-9	Benzo(k)fluoranthene	200	100	12	100	U
191-24-2	Benzo(g,h,i)perylene	200	100	12	100	U
65-85-0	Benzoic Acid	200	1000	96	1000	UU
100-51-6	Benzyl Alcohol	200	1000	9.7	1000	
101-55-3	4-Bromophenyl Phenyl Ether	200	100	8.6	100	U U
85-68-7	Butyl Benzyl Phthalate	200	200	11	200	U
59-50-7	4-Chloro-3-methylphenol	200	100	23	100	U
106-47-8	4-Chloroaniline	200	200	20	200	U
111-91-1	Bis(2-chloroethoxy)methane	200	100	3.7	100	U
111-44-4	Bis(2-chloroethyl) Ether	200	100	4.7	100	U
108-60-1	Bis(2-chloroisopropyl) Ether	200	100	5.2	100	U
91-58-7	2-Chloronaphthalene	200	100	3.4	100	U
95-57-8	2-Chlorophenol	200	100	5.3	100	U
005-72-3	4-Chlorophenyl Phenyl Ether	200	100			
218-01-9	Chrysene	200	100	9.6 9.1	100	UU
53-70-3	Dibenz(a,h)anthracene	200	100	23	100	U
132-64-9	Dibenzofuran	200	68		the set of the set of the set of the	
84-74-2	Di-n-butyl Phthalate	200	200	8.2	100	J
106-46-7	1,4-Dichlorobenzene	200	100	27 3.9	200	UU
95-50-1	1,2-Dichlorobenzene	200	100	7.9	100	U U
541-73-1	1,3-Dichlorobenzene	200	100	8.2	100	U
91-94-1	3,3'-Dichlorobenzidine	200	200	25	200	U
20-83-2	2,4-Dichlorophenol	200	100	18	100	U
84-66-2	Diethyl Phthalate	200	100			
05-67-9	2,4-Dimethylphenol	200	2500	13	100	U
131-11-3	Dimethyl Phthalate	200		34	200	J
534-52-1	4,6-Dinitro-2-methylphenol	200	100	9.1	100	Ut
51-28-5	2,4-Dinitrophenol	200	1000	200	1000	U U U t

TMW-12A Filtered

Laborator	ry: TriMatrix Laboratories, Inc.		SDG: 1	401173		
Clier	nt: Beazer East, Inc.		Project: K	oppers Superio	or	
Matri	ix: Water L	aboratory ID: 14011	73-14	File ID	: 1401173-14 20	0X.D
Sample	ed: 01/13/14 11:55	Prepared: 01/16			: 01/31/14 16:55	
Solid			C Liquid-Liquid Extr		: 1000 mL/1 ml	
		ice: 4A31045	Calibration: 4		Instrument	
		10 2 COMP.	and a state of the			
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
606-20-2	2,6-Dinitrotoluene	200	100	16	100	U _{UJ}
121-14-2	2,4-Dinitrotoluene	200	100	9.5	100	U
117-84-0	Di-n-octyl Phthalate	200	100	15	100	U
117-81-7	Bis(2-ethylhexyl) Phthalate	200	100	23	100	U
206-44-0	Fluoranthene	200	100	13	100	U V
86-73-7	Fluorene	200	54	8.3	100	J
118-74-1	Hexachlorobenzene	200	100	13	100	U UJ
87-68-3	Hexachlorobutadiene	200	100	7.9	100	U
77-47-4	Hexachlorocyclopentadiene	200	100	8.9	100	U
67-72-1	Hexachloroethane	200	100	8.4	100	U
193-39-5	Indeno(1,2,3-cd)pyrene	200	100	16	100	U
78-59-1	Isophorone	200	100	9.0	100	υV
91-57-6	2-Methylnaphthalene	200	210	3.0	100	J
90-12-0	1-Methylnaphthalene	200	110	3.9	100	
106-44-5	4-Methylphenol	200	2500	11	100	
95-48-7	2-Methylphenol	200	460	9.5	100	
91-20-3	Naphthalene	200	3800	6.1	100	\downarrow
100-01-6	4-Nitroaniline	200	200	66	200	U UJ
88-74-4	2-Nitroaniline	200	100	23	100	U
99-09-2	3-Nitroaniline	200	200	49	200	U
98-95-3	Nitrobenzene	200	100	12	100	U
88-75-5	2-Nitrophenol	200	100	9.5	100	U
100-02-7	4-Nitrophenol	200	1000	250	1000	U
86-30-6	N-Nitroso-diphenylamine	200	100	14	100	U
621-64-7	N-Nitroso-di-n-propylamine	200	100	15	100	U
87-86-5	Pentachlorophenol	200	100	16	100	UV
85-01-8	Phenanthrene	200	36	8.5	100	J
108-95-2	Phenol	200	62	6.7	100	J
129-00-0	Pyrene	200	100	13	100	U UJ
58-90-2	2,3,4,6-Tetrachlorophenol	200	1000	74	1000	U
120-82-1	1,2,4-Trichlorobenzene	200	100	5.3	1000	U
95-95-4	2,4,5-Trichlorophenol	200	100	20	100	U
88-06-2	2,4,6-Trichlorophenol	200	100	17	100	U
56-49-5	3-Methylcholanthrene	200	400	24	400	UV

TMW-12A Filtered

Laboratory	Laboratory: TriMatrix Laboratories, Inc. SDG: 1401173						
Client	: Beazer East, Inc.			Project: H	Coppers Superio	r	
Matrix	: Water	Labo	Laboratory ID: 1401173-14		File ID: <u>1401173-14 200X.D</u>		
Sampled	1: <u>01/13/14 11:55</u>		Prepared: 01/16/	14 07:48	Analyzed:	01/31/14 16:55	
Solids		Preparation: 3510C Li		Liquid-Liquid Ext	Initial/Final:	<u>1000 mL / 1 mL</u>	
QC Batch	: <u>1400299</u>	Sequence:	4A31045	Calibration: 4	A31011	Instrument:	195
CAS No.	Analyte		Dilution	CONC. (ug/L)	MDL	MRL	Q
935-95-5	2,3,5,6-Tetrachloro	phenol	200	2000	43	2000	U U
Internal Stand	dard		Area	RT	% REC.	Ref. RT	Q
1,4-Dichlorobe	enzene-d4		315632	7.67	110	7.67	
Naphthalene-da	8		1222567	10.4	112	10.4	-
Acenaphthene-	d10		762279	14.5	112	14.51	
Phenanthrene-d10		1307498	17.93	117	17.93		
Chrysene-d12			1400754	21.54	116	21.54	
Perylene-d12			1263638	23.23	122	23.23	-

TMW-12A

	y: <u>TriMatrix Laboratories, Inc.</u> nt: <u>Beazer East, Inc.</u>		SDG: <u>1</u> Project: K	Annal Annal Annal Annal Annal Annal Annal Annal Annal Annal Annal Annal Annal Annal Annal Annal Annal Annal An		
		and the second second		oppers Superi		
		boratory ID: 14011		File ID	: <u>1401173-15 x</u>	<u>100.D</u>
Sample	d: 01/14/14 09:45	Prepared: 01/16	/14 07:48	Analyzed	: <u>01/24/14 06:29</u>	9
Solid	ls:	Preparation: 35100	CLiquid-Liquid Ext	Initial/Final	: <u>940 mL / 2 mL</u>	4
QC Batc	h: <u>1400299</u> Sequence	ce: <u>4A24001</u>	Calibration: 4	A22014	Instrumen	t: <u>195</u>
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
208-96-8	Acenaphthylene	100	220	3.6	110	J
120-12-7	Anthracene	100	3100	13	110	
56-55-3	Benzo(a)anthracene	100	3900	9.7	110	
50-32-8	Benzo(a)pyrene	100	1600	8.6	110	
205-99-2	Benzo(b)fluoranthene	100	2400	12	110	
207-08-9	Benzo(k)fluoranthene	100	1300	13	110	
191-24-2	Benzo(g,h,i)perylene	100	490	13	110	
65-85-0	Benzoic Acid	100	1100	100	1100	UF
100-51-6	Benzyl Alcohol	100	110	10	110	U
101-55-3	4-Bromophenyl Phenyl Ether	100	110	9.1	110	U
85-68-7	Butyl Benzyl Phthalate	100	210	12	210	U
59-50-7	4-Chloro-3-methylphenol	100	110	24	110	U
106-47-8	4-Chloroaniline	100	210	22	210	U
111-91-1	Bis(2-chloroethoxy)methane	100	110	3.9	110	U
111-44-4	Bis(2-chloroethyl) Ether	100	110	5.0	110	U
108-60-1	Bis(2-chloroisopropyl) Ether	100	110	5.5	110	U
91-58-7	2-Chloronaphthalene	100	110	3.6	110	U
95-57-8	2-Chlorophenol	100	110	5.7	110	U
7005-72-3	4-Chlorophenyl Phenyl Ether	100	110	10	110	U
218-01-9	Chrysene	100	2400	9.6	110	J
53-70-3	Dibenz(a,h)anthracene	100	180	24	110	J
84-74-2	Di-n-butyl Phthalate	100	210	29	210	U U.
106-46-7	1,4-Dichlorobenzene	100	110	4.2	110	U
95-50-1	1,2-Dichlorobenzene	100	110	8.4	110	U
541-73-1	1,3-Dichlorobenzene	100	110	8.7	110	U
91-94-1	3,3'-Dichlorobenzidine	100	210	26	210	U
120-83-2	2,4-Dichlorophenol	100	110	19	110	U
84-66-2	Diethyl Phthalate	100	110	14	110	UV
105-67-9	2,4-Dimethylphenol	100	2100	36	210	J
131-11-3	Dimethyl Phthalate	100	110	9.7	110	U UJ
534-52-1	4,6-Dinitro-2-methylphenol	100	1100	220	1100	U
51-28-5	2,4-Dinitrophenol	100	1100	250	1100	U
606-20-2	2,6-Dinitrotoluene	100	110	17	110	U
121-14-2	2,4-Dinitrotoluene	100	110	10	110	UV

TMW-12A

Laborato	ry: TriMatrix Laboratories, Inc.		SDG:	1401173		
Clie	nt: Beazer East, Inc.		Project:	Koppers Superi	or	
Matr	ix: <u>Water</u> Lab	oratory ID: 14011	73-15	File ID	: 1401173-15 x1	00.D
Sample	ed: 01/14/14 09:45	Prepared: 01/16	/14 07:48		1: 01/24/14 06:29	
Solid	ds: F	reparation: 35100	C Liquid-Liquid Ext	100 C 100 C 100	: 940 mL/2 mL	
OC Bate		:: <u>4A24001</u>	Calibration:		Instrument	
CAS No.	Analyte		a contraction			1
117-84-0	Di-n-octyl Phthalate	Dilution 100	CONC. (ug/L)	MDL	MRL	Q
117-81-7	Bis(2-ethylhexyl) Phthalate	100		16	110	U U
118-74-1	Hexachlorobenzene	1 4 V L	110	24	110	U
87-68-3	Hexachlorobutadiene	100	110	13	110	U
77-47-4		100	110	8.4	110	U
67-72-1	Hexachlorocyclopentadiene Hexachloroethane	100	110	9.4	110	U
193-39-5	and the start of t	100	110	8.9	110	υV
	Indeno(1,2,3-cd)pyrene	100	490	17	110	J
78-59-1	Isophorone	100	110	9,6	110	U U
106-44-5	4-Methylphenol	100	2300	12	110	J
95-48-7	2-Methylphenol	100	510	10	110	J
100-01-6	4-Nitroaniline	100	210	70	210	U yj
88-74-4	2-Nitroaniline	100	110	25	110	U
99-09-2	3-Nitroaniline	100	210	52	210	U
98-95-3	Nitrobenzene	100	110	12	110	U
88-75-5	2-Nitrophenol	100	110	10	110	U
100-02-7	4-Nitrophenol	100	1100	270	1100	U
86-30-6	N-Nitroso-diphenylamine	100	110	14	110	U
621-64-7	N-Nitroso-di-n-propylamine	100	110	16	110	U
87-86-5	Pentachlorophenol	100	110	17	110	UV
108-95-2	Phenol	100	62	7.2	110	J
58-90-2	2,3,4,6-Tetrachlorophenol	100	1100	79	1100	U UJ
120-82-1	1,2,4-Trichlorobenzene	100	110	5.7	110	U
95-95-4	2,4,5-Trichlorophenol	100	110	21	110	U
88-06-2	2,4,6-Trichlorophenol	100	110	18	110	U
56-49-5	3-Methylcholanthrene	100	430	26	430	U
935-95-5	2,3,5,6-Tetrachlorophenol	100	2100	45	2100	UV
				-		
nternal Stan		Area	RT	% REC.	Ref. RT	Q
,4-Dichlorob	MALING & C	173713	7.75	119	7.84	1
laphthalene-d		758379	10.52	131	10.58	
cenaphthene		461643	14.61	130	14.7	
henanthrene-	d10	772513	18.02	134	18.08	
Chrysene-d12		733577	21.6	117	21.65	
erylene-d12		651184	23.32	121	23.4	

TMW-12A

Laboratory	: TriMatrix Laboratories, Inc.	s. Inc. SDG: <u>1401173</u>						
Client	t: Beazer East, Inc.		Project: 1	Koppers Superio	<u>or</u>			
Matrix	: <u>Water</u> I	aboratory ID: 14011	73-15RE1	File ID: 1401173-15 2000X.D				
Sampled	I: 01/14/14 09:45	Prepared: 01/16/	/14 07:48	Analyzed: 01/31/14 17:30				
Solids		Preparation: 35100	Liquid-Liquid Ext		: 940 mL / 2 mL			
QC Batch	: <u>1400299</u> Seque	nce: <u>4A31045</u>	Calibration:		Instrument	1.000		
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q		
83-32-9	Acenaphthene	2000	18000	140	2100	DJ		
132-64-9	Dibenzofuran	2000	12000	170	2100			
206-44-0	Fluoranthene	2000	22000	270	2100			
86-73-7	Fluorene	2000	15000	180	2100			
91-57-6	2-Methylnaphthalene	2000	18000	63	2100			
90-12-0	1-Methylnaphthalene	2000	8600	83	2100	-		
91-20-3	Naphthalene	2000	78000	130	2100			
85-01-8	Phenanthrene	2000	41000	180	2100			
129-00-0	Pyrene	2000	16000	280	2100			
nternal Stand	lard	Area	RT	% REC.	Ref. RT	Q		
,4-Dichlorobe	nzene-d4	306676	7.67	107	7.67			
Naphthalene-dl	8	1192920	10.39	110	10.4			
cenaphthene-	d10	749538	14.5	110	14.51			
henanthrene-c	110	1226068	17.93	110	17.93			
Chrysene-d12		1297232	21.54	108	21.54			
Perylene-d12		1144607	23.23	111	23.23			

TMW-19C Filtered

Laborator	y: TriMatrix Laboratories, Inc.		SDG:	1401173		
Clier	nt: Beazer East, Inc.		Project:	Koppers Superi	or	
Matri	x: <u>Water</u> La	boratory ID: 14011	73-16	File ID	: <u>1401173-16.D</u>	
Sample	d: 01/13/14 12:00	Prepared: 01/16			1: 01/23/14 00:28	
Solid			C Liquid-Liquid Ext		: 790 mL / 1 mL	
		e: <u>4A22031</u>	Calibration:		Instrument	1
CAS No.		and the second proceeds				
83-32-9	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
208-96-8	Acenaphthene	1	0.076	0.042	0.63	J
120-12-7	Acenaphthylene Anthracene	1	0.63	0.022	0.63	U
56-55-3	and the state of t	1	0.089	0.078	0.63	J
50-32-8	Benzo(a)anthracene	1	0.63	0.057	0.63	U
205-99-2	Benzo(a)pyrene	1	0.63	0.051	0.63	U
	Benzo(b)fluoranthene	1.	0.63	0.074	0.63	U
207-08-9	Benzo(k)fluoranthene	1	0.63	0.075	0.63	U
191-24-2	Benzo(g,h,i)perylene	1	0.63	0.077	0.63	U
65-85-0	Benzoic Acid	1	6.3	0.61	6.3	U F
100-51-6	Benzyl Alcohol	1	0.38	0.062	0.63	J
101-55-3	4-Bromophenyl Phenyl Ether	1	0.63	0.054	0.63	U
85-68-7	Butyl Benzyl Phthalate	1	1.3	0.071	1.3	U
59-50-7	4-Chloro-3-methylphenol	1	0.63	0.15	0.63	U
106-47-8	4-Chloroaniline	1	1.3	0.13	1.3	U
111-91-1	Bis(2-chloroethoxy)methane	1	0.63	0.023	0.63	U
111-44-4	Bis(2-chloroethyl) Ether	1	0.63	0.030	0.63	U
108-60-1	Bis(2-chloroisopropyl) Ether	1	0.63	0.033	0.63	U
91-58-7	2-Chloronaphthalene	1	0.63	0.022	0.63	U
95-57-8	2-Chlorophenol	1	0.63	0.034	0.63	U
7005-72-3	4-Chlorophenyl Phenyl Ether	1	0.63	0.061	0.63	U
218-01-9	Chrysene	1	0.63	0.057	0.63	U
53-70-3	Dibenz(a,h)anthracene	1	0.63	0.14	0.63	U
132-64-9	Dibenzofuran	1	0.63	0.052	0.63	U
84-74-2	Di-n-butyl Phthalate	1	D.72 1.3	0.17	1.3	AB UE
106-46-7	1,4-Dichlorobenzene	1	0.63	0.025	0.63	U
95-50-1	1,2-Dichlorobenzene	1	0.63	0.050	0.63	U
541-73-1	1,3-Dichlorobenzene	1	0.63	0.052	0.63	U
91-94-1	3,3'-Dichlorobenzidine	1	1.3	0.16	1.3	U
120-83-2	2,4-Dichlorophenol	1	0.63	0.12	0.63	U
84-66-2	Diethyl Phthalate	1	0.84	0.082	0.63	UB
105-67-9	2,4-Dimethylphenol	1	1.3	0.21	1.3	U
131-11-3	Dimethyl Phthalate	1	0.089	0.058	0.63	J
534-52-1	4,6-Dinitro-2-methylphenol	1	6.3	1.3	6.3	U
51-28-5	2,4-Dinitrophenol	1	6.3	1.5	6.3	U

Page 52 of 75

TMW-19C Filtered

	y: TriMatrix Laboratories, Inc.		SDG: <u>14</u>	1401173			
Clier	nt: Beazer East, Inc.		Project: K	oppers Superi	or		
Matri	x: <u>Water</u> Lab	oratory ID: 14011	73-16	File ID	: <u>1401173-16.D</u>		
Sample	d: 01/13/14 12:00	Prepared: 01/16	/14 07:48	Analyzed: 01/23/14 00:28			
Solid	ls: P	reparation: 35100	CLiquid-Liquid Ext	Initial/Final	: <u>790 mL/1 mL</u>		
QC Bate		: <u>4A22031</u>	Calibration: 4		Instrument		
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
606-20-2	2,6-Dinitrotoluene	1	0.63	0.10	0.63	U	
121-14-2	2,4-Dinitrotoluene	1	0.63	0.060	0.63	U	
117-84-0	Di-n-octyl Phthalate	1	0.63	0.097	0.63	U	
117-81-7	Bis(2-ethylhexyl) Phthalate	1	0.63	0.14	0.63		
206-44-0	Fluoranthene	1	0.089	0.079	0.63	J	
86-73-7	Fluorene	1	0.13	0.052	0.63	J	
118-74-1	Hexachlorobenzene	1	0.63	0.032	0.63	J U	
87-68-3	Hexachlorobutadiene	1	0.63	0.079	0.63	U	
77-47-4	Hexachlorocyclopentadiene	1	0.63	0.056	0.63	υυ	
67-72-1	Hexachloroethane	1	0.63	0.053	0.63	U	
193-39-5	Indeno(1,2,3-cd)pyrene	1	0.63	0.033	0.63	U	
78-59-1	Isophorone	1	2.3	0.057	0.63	0	
91-57-6	2-Methylnaphthalene	1	0.14	0.037	0.63		
90-12-0	1-Methylnaphthalene	1	0.11	0.019	A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF	J	
106-44-5	4-Methylphenol	1	0.63	0.023	0.63	J	
95-48-7	2-Methylphenol	1	0.63		0.63	U	
91-20-3	Naphthalene	1	0.83	0.060	0.63	U	
100-01-6	4-Nitroaniline	1		0.039	0.63	J	
88-74-4	2-Nitroaniline	1	1,3	0.42	1.3	U	
99-09-2	3-Nitroaniline	1	0.63	0.15	0.63	U	
98-95-3	Nitrobenzene	1	1.3	0.31	1.3	U	
88-75-5	2-Nitrophenol	A	0.63	0.074	0.63	U	
100-02-7	4-Nitrophenol	1	0.63	0.060	0.63	U	
86-30-6	N-Nitroso-diphenylamine	1	6.3	1.6	6.3	U _{UJ}	
621-64-7	N-Nitroso-di-n-propylamine		0.63	0.086	0.63	U	
87-86-5	Pentachlorophenol	1	0.63	0.095	0.63	U	
85-01-8	Phenanthrene	1	0.63	0.10	0.63	U	
108-95-2	Phenol	1	1.3	0.054	0.63		
129-00-0	Pyrene	1	0.63	0.043	0.63	U	
58-90-2	2,3,4,6-Tetrachlorophenol		0.63	0.083	0.63	U	
120-82-1	1,2,4-Trichlorobenzene	1	6.3	0.47	6.3	U	
95-95-4	2,4,5-Trichlorophenol		0.63	0.034	0.63	U	
88-06-2	2,4,6-Trichlorophenol	1	0.63	0.13	0.63	U	
56-49-5	3-Methylcholanthrene	1	0.63	0.11	0.63	U	

Page 53 of 75

TMW-19C Filtered

Laboratory	y: TriMatrix Laboratories	SDG:	1401173			
Clien	t: Beazer East, Inc.		Project:	Koppers Superio	<u>or</u>	
Matrix	x: <u>Water</u>	Laboratory ID: 140117	Laboratory ID: 1401173-16		: 1401173-16.D	
Sampleo	1: 01/13/14 12:00	Prepared: 01/16/1	4 07:48	Analyzed	01/23/14 00:28	
Solids	s:	Preparation: 3510C			: 790 mL / 1 mL	
QC Batch	n: <u>1400299</u>	Sequence: <u>4A22031</u>	Calibration:		Instrument:	195
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
935-95-5	2,3,5,6-Tetrachlorophe	nol 1	13	0.27	13	U
System Monit	toring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q
2-Fluoropheno	1	25.3	13.8	55	20 - 70	×
Phenol-d6		25,4	9.59	38	18 - 45	
Nitrobenzene-o	d5	12.7	9.57	76	31 - 123	-
2-Fluorobipher	nyl	12.7	7.20	57	25 - 113	-
2,4,6-Tribromo	ophenol	25.6	16.4	64	30 - 121	-
o-Terphenyl		12.7	8.78	69	42 - 125	
Internal Stand	lard	Area	RT	% REC.	Ref. RT	Q
1,4-Dichlorobe	enzene-d4	161196	7.76	109	7.84	¥
Naphthalene-d	8	629773	10.5	107	10.58	
Acenaphthene-	d10	385437	14.61	109	14.7	
Phenanthrene-c	110	608755	18.01	105	18.08	
Chrysene-d12		645865	21.6	98	21.65	
Perylene-d12		586993	23.33	104	23.4	

TMW-19C

Laborator	y: TriMatrix Laboratories, Inc.		SDG: <u>1</u>	401173		
Clien	t: Beazer East, Inc.		Project: K	oppers Superio	<u>or</u>	
Matri	x: <u>Water</u> Lab	ooratory ID: 1401	173-17	File ID	: 1401173-17.D	
Sample	d: 01/14/14 09:35	Prepared: 01/16	5/14 07:48	Analyzed	: 01/23/14 02:13	3
Solid	s:		C Liquid-Liquid Ext		: 860 mL / 1 mL	5
		e: <u>4A22031</u>	Calibration: 4		Instrument	1.110
CAS No.	Analyte	Dilution	A & A & A & A & A & A & A & A & A	MDL	MRL	
83-32-9	Acenaphthene	1	CONC. (ug/L) 0.058	0.038	0.58	Q
208-96-8	Acenaphthylene	1	0.58	0.038	0.58	U
120-12-7	Anthracene	1	0.38	/	0.58	
56-55-3	Benzo(a)anthracene	1	0.12	0.072		J
50-32-8	Benzo(a)pyrene			0.053	0.58	J
205-99-2	Benzo(a)pyrene Benzo(b)fluoranthene	1	0.58	0.047	0.58	U
203-99-2	Benzo(b)fluoranthene		0.58	0.068	0.58	U
191-24-2	Benzo(g,h,i)perylene	1	0.58	0.069	0.58	U
65-85-0	Benzoic Acid	1	0.58	0.071	0.58	U
63-83-0 100-51-6	(G1 + 1(S+1)(0.233) -	1	5.8	0.56	5.8	<u>U</u>
- 04,94 × 01. V	Benzyl Alcohol	1	0.53	0.057	0.58	J
101-55-3 85-68-7	4-Bromophenyl Phenyl Ether	1	0.58	0.050	0.58	U
83-08-7 59-50-7	Butyl Benzyl Phthalate	1	1.2	0.065	1.2	U
106-47-8	4-Chloro-3-methylphenol 4-Chloroaniline	1	0.58	0.13	0.58	U
106-47-8		1	1.2	0.12	1.2	U
0.4.014.019	Bis(2-chloroethoxy)methane	1	0.58	0.021	0.58	U
111-44-4	Bis(2-chloroethyl) Ether	1	0.58	0.028	0.58	U
108-60-1	Bis(2-chloroisopropyl) Ether	1	0.58	0.030	0.58	U
91-58-7	2-Chloronaphthalene	1	0.58	0.020	0.58	U
95-57-8	2-Chlorophenol	1	0.58	0.031	0.58	U
7005-72-3	4-Chlorophenyl Phenyl Ether	1	0.58	0.056	0.58	U
218-01-9	Chrysene	1	0.58	0.053	0.58	U
53-70-3	Dibenz(a,h)anthracene	1	0.58	0.13	0.58	U
132-64-9	Dibenzofuran	1	0.047	0.047	0.58	J
84-74-2	Di-n-butyl Phthalate	1	1.4	0.16	1.2	X UI
106-46-7	1,4-Dichlorobenzene	1	0.58	0.023	0.58	U
95-50-1	1,2-Dichlorobenzene	1	0.58	0.046	0.58	U
541-73-1	1,3-Dichlorobenzene	1	0,58	0.048	0.58	U
91-94-1	3,3 -Dichlorobenzidine	1	1.2	0.14	1.2	U
120-83-2	2,4-Dichlorophenol	1	0.58	0.11	0.58	U
84-66-2	Diethyl Phthalate	1	0.72	0.076	0.58	UB
105-67-9	2,4-Dimethylphenol	1	1.2	0.20	1.2	U
131-11-3	Dimethyl Phthalate	1	0.081	0.053	0.58	J
534-52-1	4,6-Dinitro-2-methylphenol	1	5.8	1.2	5.8	U
51-28-5	2,4-Dinitrophenol	- 1	5.8	1.3	5.8	U

Page 55 of 75

TMW-19C

Laboratory	y: TriMatrix Laboratories, Inc.	iMatrix Laboratories, Inc. SDG: 1401173						
Clien	t: Beazer East, Inc.		Project: K	oppers Superio	or			
Matrix	x: Water Lab	poratory ID: 14011	73-17	File ID	: 1401173-17.D			
Sampleo	d: 01/14/14 09:35	Prepared: 01/16	/14 07:48	Analyzed	: 01/23/14 02:13			
Solid			C Liquid-Liquid Ext		: 860 mL / 1 mL			
		e: 4A22031	Calibration: 4		Instrument:			
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL			
606-20-2	2,6-Dinitrotoluene	1	0.58	0.093	0.58	U		
121-14-2	2,4-Dinitrotoluene	1	0.58	0.055	0.58	U		
117-84-0	Di-n-octyl Phthalate	1	0.58	0.089	0.58	U		
117-81-7	Bis(2-ethylhexyl) Phthalate	1	0.50	0.13	0.58			
206-44-0	Fluoranthene	1	0.43	0.073	0.58	J		
86-73-7	Fluorene	1	0.14	0.048	0.58	J		
118-74-1	Hexachlorobenzene	1	0.58	0.073	0.58	U		
87-68-3	Hexachlorobutadiene	1	0.58	0.046	0.58	U		
77-47-4	Hexachlorocyclopentadiene	1	0.58	0.052	0.58	U U UJ		
67-72-1	Hexachloroethane	1	0.58	0.049	0.58	U		
193-39-5	Indeno(1,2,3-cd)pyrene	1	0.58	0.093	0.58	U		
78-59-1	Isophorone	1	2.4	0.052	0.58	-		
91-57-6	2-Methylnaphthalene	1	0.14	0.017	0.58	J		
90-12-0	1-Methylnaphthalene	1	0.12	0.023	0.58	J		
106-44-5	4-Methylphenol	1	0.58	0.066	0.58	U		
95-48-7	2-Methylphenol	1	0.58	0.055	0.58	U		
91-20-3	Naphthalene	1	0.19	0.036	0.58	J		
100-01-6	4-Nitroaniline	1	1.2	0.38	1.2	U		
88-74-4	2-Nitroaniline	1	0.58	0.13	0.58	U		
99-09-2	3-Nitroaniline	1	1.2	0.28	1.2	U		
98-95-3	Nitrobenzene	1	0.58	0.068	0.58	U		
88-75-5	2-Nitrophenol	1	0.58	0.055	0.58	U		
100-02-7	4-Nitrophenol	i	5.8	1.5	5.8	U UJ		
86-30-6	N-Nitroso-diphenylamine	1	0.58	0.079	0.58	U		
621-64-7	N-Nitroso-di-n-propylamine	1	0.58	0.088	0.58	U		
87-86-5	Pentachlorophenol	1	0.58	0.094	0.58	U		
85-01-8	Phenanthrene	1	2.0	0.050	0.58			
108-95-2	Phenol	1	0.58	0.039	0.58	U		
129-00-0	Pyrene	1	0.35	0.076	0.58	J		
58-90-2	2,3,4,6-Tetrachlorophenol	1	5.8	0.43	5.8	U		
120-82-1	1,2,4-Trichlorobenzene	1	0.58	0.031	0.58	U		
95-95-4	2,4,5-Trichlorophenol	1	0.58	0.12	0.58	U		
88-06-2	2,4,6-Trichlorophenol	1	0.58	0.099	0.58	U		
56-49-5	3-Methylcholanthrene	1	2.3	0.14	2.3	U		

TMW-19C

Laboratory	: TriMatrix Laboratories, Inc.		SDG:	SDG: <u>1401173</u>					
Client	: Beazer East, Inc.		Project:]	Coppers Superior					
Matrix	: <u>Water</u>	Laboratory ID: 140117	aboratory ID: 1401173-17		: <u>1401173-17.D</u>				
Sampled	: 01/14/14 09:35	Prepared: 01/16/1	4 07:48	Analyzed	: 01/23/14 02:13				
Solids	:	Preparation: 3510C	Liquid-Liquid Ext						
QC Batch	: <u>1400299</u> Sequ	ence: <u>4A22031</u>	Calibration:		Instrument:	195			
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q			
935-95-5	2,3,5,6-Tetrachlorophenol	1	12	0.25	12	U			
System Monitoring Compound		ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q			
2-Fluoropheno		23.3	10.6	45	20 - 70	~			
Phenol-d6		23.4	7.38	32	18 - 45				
Nitrobenzene-o	15	11.6	9.37	81	31 - 123				
2-Fluorobipher	nyl	11.6	6.65	57	25 - 113				
2,4,6-Tribromo	phenol	23.5	14.2	61	30 - 121				
o-Terphenyl		11.6	8.51	73	42 - 125				
Internal Stand	lard	Area	RT	% REC.	Ref. RT	Q			
1,4-Dichlorobe	nzene-d4	161677	7.77	109	7.84				
Naphthalene-da	3	626837	10.5	107	10.58				
Acenaphthene-	d10	392898	14.61	111	14.7				
Phenanthrene-c	110	620782	18.01	107	18.08				
Chrysene-d12		657298	21.6	99	21.65				
Perylene-d12		594742	23.33	105	23.4	-			

TMW-23

Laborator	y: TriMatrix Laboratories, Inc.		SDG: 1	401173		
Clier	nt: Beazer East, Inc.		Project: K	oppers Superi	or	
Matri	x: Water Labo	oratory ID: 14011	73-18	File ID	: 1401173-18.D	
Sample	d: 01/13/14 09:35	Prepared: 01/16	/14 07:48	Analyzed	1: 01/23/14 23:35	5
Solid	ls: P	and a second second second second second second second second second second second second second second second	C Liquid-Liquid Ext	Initial/Final	: 860 mL / 1 mL	
		: <u>4A24001</u>	Calibration: 4		Instrument	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
83-32-9	Acenaphthene	1	0.58	0.038	0.58	U UJ
208-96-8	Acenaphthylene	1	0.58	0.020	0.58	U
120-12-7	Anthracene	1	0.58	0.072	0.58	U
56-55-3	Benzo(a)anthracene	1	0.58	0.053	0.58	U
50-32-8	Benzo(a)pyrene	1	0.58	0.047	0.58	U
205-99-2	Benzo(b)fluoranthene	1	0.58	0.068	0.58	U
207-08-9	Benzo(k)fluoranthene	- 1	0.58	0.069	0.58	U
191-24-2	Benzo(g,h,i)perylene	1	0.58	0.071	0.58	UV
65-85-0	Benzoic Acid	1	5.8	0.56	5.8	U R
100-51-6	Benzyl Alcohol	1	0.58	0.057	0.58	U UJ
101-55-3	4-Bromophenyl Phenyl Ether	1	0.58	0.050	0.58	U
85-68-7	Butyl Benzyl Phthalate	1	1.2	0.065	1.2	U
59-50-7	4-Chloro-3-methylphenol	1	0.58	0.13	0.58	U
106-47-8	4-Chloroaniline	1	1.2	0.12	1.2	U
111-91-1	Bis(2-chloroethoxy)methane	1	0.58	0.021	0.58	U
111-44-4	Bis(2-chloroethyl) Ether	1	0.58	0.028	0.58	U
108-60-1	Bis(2-chloroisopropyl) Ether	1	0.58	0.030	0.58	U
91-58-7	2-Chloronaphthalene	1	0.58	0.020	0.58	U
95-57-8	2-Chlorophenol	t	0.58	0.031	0.58	U
7005-72-3	4-Chlorophenyl Phenyl Ether	1	0.58	0.056	0.58	U
218-01-9	Chrysene	1	0.58	0.053	0.58	U
53-70-3	Dibenz(a,h)anthracene	1	0.58	0.13	0.58	U
132-64-9	Dibenzofuran	1	0.58	0.047	0.58	υV
84-74-2	Di-n-butyl Phthalate	1	2.3	0.16	1.2	B UB
106-46-7	1,4-Dichlorobenzene	1	0.58	0.023	0.58	U UJ
95-50-1	1,2-Dichlorobenzene	1	0.58	0.046	0.58	U
541-73-1	1,3-Dichlorobenzene	1	0.58	0.048	0.58	U
91-94-1	3,3'-Dichlorobenzidine	1	1.2	0.14	1.2	UV
120-83-2	2,4-Dichlorophenol	1	0.58	0.11	0.58	U
84-66-2	Diethyl Phthalate	1	0.58	0.076	0.58	🖌 UBJ
105-67-9	2,4-Dimethylphenol	1	1.2	0.20	1.2	U
131-11-3	Dimethyl Phthalate	1	0,10	0.053	0.58	J
534-52-1	4,6-Dinitro-2-methylphenol	1	5.8	1.2	5.8	U
51-28-5	2,4-Dinitrophenol	1	5.8	1.3	5.8	U UJ

TMW-23

Laborator	aboratory: TriMatrix Laboratories, Inc. SDG:					
Clien	t: Beazer East, Inc.		Project: K	oppers Superio	or	
Matrix	x: <u>Water</u> Lab	oratory ID: 14011	73-18	File ID	: <u>1401173-18.D</u>	
Sampleo	d: 01/13/14 09:35	Prepared: 01/16	/14 07:48	Analyzed	: 01/23/14 23:35	
Solid	s: P		C Liquid-Liquid Extr		: 860 mL/1 mL	
		: <u>4A24001</u>	Calibration: 4		Instrument:	105
1. 7				a construction in the second second	100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar 100 Mar	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
606-20-2	2,6-Dinitrotoluene		0.58	0.093	0.58	U UJ
121-14-2	2,4-Dinitrotoluene	1	0.58	0.055	0.58	U
117-84-0	Di-n-octyl Phthalate	1	0.58	0.089	0.58	UŲ
117-81-7	Bis(2-ethylhexyl) Phthalate	1	0.58	0.13	0.58	, 78 ण
206-44-0	Fluoranthene	1	0.58	0.073	0.58	U
86-73-7	Fluorene	1	0.58	0.048	0.58	υυ
118-74-1	Hexachlorobenzene	1	0.58	0.073	0.58	U
87-68-3	Hexachlorobutadiene	1	0.58	0.046	0.58	U
77-47-4	Hexachlorocyclopentadiene	1	0.58	0.052	0.58	U
67-72-1	Hexachloroethane	1	0.58	0.049	0.58	U
193-39-5	Indeno(1,2,3-cd)pyrene	1	0.58	0.093	0.58	U
78-59-1	Isophorone	1	1.7	0.052	0.58	
91-57-6	2-Methylnaphthalene	1	0.58	0.017	0.58	U UJ
90-12-0	1-Methylnaphthalene	1	0.58	0.023	0.58	U
106-44-5	4-Methylphenol	1	0.58	0.066	0.58	Uyu
95-48-7	2-Methylphenol	1	0.58	0.055	0.58	U
91-20-3	Naphthalene	1	0.58	0.036	0.58	UV
100-01-6	4-Nitroaniline	1	1.2	0.38	1.2	U
88-74-4	2-Nitroaniline	1	0.58	0.13	0.58	U
99-09-2	3-Nitroaniline	1	1.2	0.28	1.2	U
98-95-3	Nitrobenzene	1	0.58	0.068	0.58	UUJ
88-75-5	2-Nitrophenol	1	0.58	0.055	0.58	U
100-02-7	4-Nitrophenol	1	5.8	1.5	5.8	UUJ
86-30-6	N-Nitroso-diphenylamine	1	0.58	0.079	0.58	U U
521-64-7	N-Nitroso-di-n-propylamine	1	0.58	0.079	0.58	UUU
87-86-5	Pentachlorophenol	1	0.58	0.088	0.58	U 00
85-01-8	Phenanthrene	1	0.58	0.094	0.58	U UJ
108-95-2	Phenol	1	0.58	0.030	0.58	UUU
129-00-0	Pyrene	1				
58-90-2	2,3,4,6-Tetrachlorophenol	1	0.58	0.076	0.58	U
20-82-1	1,2,4-Trichlorobenzene		5.8	0.43	5.8	U
95-95-4	2,4,5-Trichlorophenol	1	0.58	0.031	0.58	UV
88-06-2	A REAL PROPERTY OF THE REAL PR	1	0.58	0.12	0.58	U
88-06-2 56-49-5	2,4,6-Trichlorophenol 3-Methylcholanthrene	1	0.58	0.099	0.58	U U

TMW-23

Laboratory	: TriMatrix Laboratories, Inc.	SDG: <u>1401173</u>					
Client	: Beazer East, Inc.	Project: Koppers Superior					
Matrix	:: <u>Water</u> Lal	aboratory ID: 1401173-18		File ID	: <u>1401173-18.D</u>		
Sampled	: <u>01/13/14 09:35</u>	Prepared: 01/16/1	4 07:48		: 01/23/14 23:35		
Solids		Preparation: 3510C	Liquid-Liquid Ext		Initial/Final: 860 mL / 1 mL		
QC Batch		e: <u>4A24001</u>	Calibration:		Instrument:	195	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
935-95-5	2,3,5,6-Tetrachlorophenol	1	12	0.25	12	U	
System Monitoring Compound		ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q	
2-Fluoropheno		23.3	9.30	40	20 - 70	×	
Phenol-d6		23.4	6.79	29	18 - 45	_	
Nitrobenzene-d	15	11.6	8.67	75	31 - 123		
2-Fluorobiphen	iyl	11.6	6.97	60	25 - 113	-	
2,4,6-Tribromo	phenol	23.5	11.2	48	30 - 121		
o-Terphenyl		11.6	8.16	70	42 - 125		
Internal Stand	lard	Area	RT	% REC.	Ref. RT	Q	
1,4-Dichlorobe	nzene-d4	165031	7.74	113	7.84	×	
Naphthalene-d8	3	664212	10.48	114	10.58	-	
Acenaphthene-	d10	403434	14.59	113	14.7		
Phenanthrene-d	10	645120	18	112	18.08	-	
Chrysene-d12		700779	21.58	111	21.65		
Perylene-d12		629774	23.31	117	23.4	-	

TMW-23 Filtered

Laborator	y: TriMatrix Laboratories, Inc.		SDG: 1	401173		
Clier	nt: Beazer East, Inc.		Project: K	Coppers Superio	or	
Matri	ix: <u>Water</u> Labo	oratory ID: 1401			: <u>1401173-19.D</u>	
Sample	d: 01/13/14 09:00	Prepared: 01/17	/14 07:49	Analyzed	: 01/23/14 21:50	
Solid			C Liquid-Liquid Ext		: 1000 mL / 1 mI	
		: <u>4A24001</u>	Calibration: 4		Instrument:	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
83-32-9	Acenaphthene	I	0.50	0.033	0.50	U U UJ
208-96-8	Acenaphthylene	1	0.50	0.033	0.50	U U
120-12-7	Anthracene	1	0.50	0.017	0.50	U
56-55-3	Benzo(a)anthracene	1	0.50	0.002	0.50	UV
50-32-8	Benzo(a)pyrene	1	0.50	0.040	0.50	U U
205-99-2	Benzo(b)fluoranthene	1	0.50	0.040	0.50	U
207-08-9	Benzo(k)fluoranthene	1	0.50	0.058	0.50	U
191-24-2	Benzo(g,h,i)perylene	1	0.50	0.061	0.50	U U UJ
65-85-0	Benzoic Acid	1	5.0	0.081	5.0	U UJ
100-51-6	Benzyl Alcohol	1	2.2	1000 C	100	
101-55-3	4-Bromophenyl Phenyl Ether	1	0.50	0.049	0.50	U U UJ
85-68-7	Butyl Benzyl Phthalate	1	0.50	0.043	0.50	
59-50-7	4-Chloro-3-methylphenol		1.0	0.056	1.0	U UJ
106-47-8	4-Chloroaniline	1	0.50	0,12	0.50	<u>U</u>
111-91-1	11 110 Second Statement (11)	1	1.0	0.10	1.0	U
111-91-1	Bis(2-chloroethoxy)methane Bis(2-chloroethyl) Ether	1	0.50	0.018	0.50	U
	In the comparison of the second	1	0.50	0.024	0.50	U
108-60-1	Bis(2-chloroisopropyl) Ether	1	0.50	0.026	0.50	U UJ
91-58-7	2-Chloronaphthalene	1	0.50	0.017	0.50	U UJ
95-57-8	2-Chlorophenol	1	0.50	0.027	0.50	U
7005-72-3	4-Chlorophenyl Phenyl Ether	1	0.50	0.048	0.50	U UJ
218-01-9	Chrysene	1	0.50	0.045	0.50	U
53-70-3	Dibenz(a,h)anthracene	1	0.50	0.11	0.50	U UJ
132-64-9	Dibenzofuran	1	0.50	0.041	0.50	U UJ
84-74-2	Di-n-butyl Phthalate	1	0.34 1.0	0.14	1.0	🔏 UB
106-46-7	1,4-Dichlorobenzene	1	0.50	0.020	0.50	U
95-50-1	1,2-Dichlorobenzene	1	0.50	0.040	0.50	U
541-73-1	1,3-Dichlorobenzene	I	0.50	0.041	0.50	U
91-94-1	3,3'-Dichlorobenzidine	1	1.0	0.12	1.0	U UJ
120-83-2	2,4-Dichlorophenol	1	0.50	0.092	0.50	U
84-66-2	Diethyl Phthalate	1	0.58	0.065	0.50	UB
105-67-9	2,4-Dimethylphenol	1	1.0	0.17	1.0	U
131-11-3	Dimethyl Phthalate	1	0.12	0.046	0.50	J
534-52-1	4,6-Dinitro-2-methylphenol	1	5.0	1.0	5.0	U
51-28-5	2,4-Dinitrophenol	1	5.0	1.2	5.0	υ
	the second second second second second second second second second second second second second second second se	A				

TMW-23 Filtered

Laborator	y: TriMatrix Laboratories, Inc.	SDG: 14	401173			
Clien	t: Beazer East, Inc.		Project: K	oppers Superio	or	
Matri	x: <u>Water</u> Lab	oratory ID: 14011	73-19	File ID	: 1401173-19.D	
Sample	d: 01/13/14 09:00	Prepared: 01/17	/14 07:49	Analyzed	: 01/23/14 21:50	
Solid		and the second second	C Liquid-Liquid Ext		: 1000 mL / 1 mL	
		e: 4A24001	Calibration: 4		Instrument:	4.5.5
7		Card and a second		Call Plong	and the second second	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
606-20-2	2,6-Dinitrotoluene	1	0.11	0.080	0.50	J
121-14-2	2,4-Dinitrotoluene	1	0.50	0.048	0.50	U
117-84-0	Di-n-octyl Phthalate	1	0.50	0.077	0.50	U UJ
117-81-7	Bis(2-ethylhexyl) Phthalate	1	0.50	0.11	0.50	🔏 UBJ
206-44-0	Fluoranthene	1	0.50	0.063	0.50	U
86-73-7	Fluorene	1	0.50	0.041	0.50	U UJ
118-74-1	Hexachlorobenzene	1	0,50	0.063	0.50	U UJ
87-68-3	Hexachlorobutadiene	1	0.50	0.040	0.50	U UJ
77-47-4	Hexachlorocyclopentadiene	1	0.50	0.044	0.50	U
67-72-1	Hexachloroethane	1	0.50	0.042	0.50	U
193-39-5	Indeno(1,2,3-cd)pyrene	1	0.50	0.080	0.50	U UJ
78-59-1	Isophorone	1	1.6	0.045	0.50	
91-57-6	2-Methylnaphthalene	1	0.50	0.015	0.50	U _{UJ}
90-12-0	1-Methylnaphthalene	1	0.50	0.020	0.50	U
106-44-5	4 Methylphenol	1	0.50	0.057	0.50	U
95-48-7	2-Methylphenol	1	0.50	0.048	0.50	υ
91-20-3	Naphthalene	1	0.040	0.031	0.50	J
100-01-6	4-Nitroaniline	1	1.0	0.33	1.0	U
88-74-4	2-Nitroaniline	I	0.50	0.12	0.50	U
99-09-2	3-Nitroaniline	1	1.0	0.24	1.0	υ
98-95-3	Nitrobenzene	1	0.50	0.058	0.50	U
88-75-5	2-Nitrophenol	1	0.50	0.038	0.50	<u> </u>
100-02-7	4-Nitrophenol	1	5.0	1.2	5.0	U
86-30-6	N-Nitroso-diphenylamine	1	0.50	0.068	0.50	Ü
621-64-7	N-Nitroso-di-n-propylamine	1	0.50	0.008	0.50	U
87-86-5	Pentachlorophenol	1	0.50		0.50	U
85-01-8	Phenanthrene	1		0.081		
and the second second second	The second of the second second second second second second second second second second second second second se	1	0.50	0.043	0.50	U UJ
108-95-2	Phenol	i	0.50	0.034	0.50	U
129-00-0	Pyrene 2224 (The base has been been been been been been been bee	1	0.50	0.066	0.50	U
58-90-2	2,3,4,6-Tetrachlorophenol	1	5.0	0.37	5.0	U
120-82-1	1,2,4-Trichlorobenzene	1	0.50	0.027	0.50	U
95-95-4	2,4,5 Trichlorophenol	1	0.50	0.099	0.50	U
88-06-2	2,4,6-Trichlorophenol	1	0.50	0.085	0.50	U
56-49-5	3-Methylcholanthrene	1	2.0	0.12	2.0	U

TMW-23 Filtered

Laboratory	: TriMatrix Laboratories, I	Inc.	SDG: 1	401173		
Client	: Beazer East, Inc.		Project: 1	Koppers Superi	or	
Matrix	: Water	Laboratory ID: 140117	3-19	File ID	: 1401173-19.D	
Sampled	: 01/13/14 09:00	Prepared: 01/17/1-	4 07:49	Analyzed	: 01/23/14 21:50	
Solids		Preparation: 3510C1			: 1000 mL / 1 mL	
QC Batch	: <u>1400300</u> S	equence: <u>4A24001</u>	Calibration:		Instrument:	195
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
935-95-5	2,3,5,6-Tetrachlorophene	N 1	10	0.21	10	U
System Monito	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q
2-Fluorophenol		20.0	5.36	27	20 - 70	×
Phenol-d6		20.1	1.82	9	18 - 45	*
Nitrobenzene-d	5	10.0	7.42	74	31 - 123	
2-Fluorobiphen	yl	10.0	5.23	52	25 - 113	
2,4,6-Tribromo	phenol	20.2	7.05	35	30 - 121	
o-Terphenyl		10.0	6.61	66	42 - 125	
Internal Stand	ard	Area	RT	% REC.	Ref. RT	Q
1,4-Dichlorober	nzene-d4	177284	7.75	121	7.84	×
Naphthalene-d8		701526	10.47	121	10.58	
Acenaphthene-c	110	433155	14.59	122	14.7	
Phenanthrene-d	10	692174	18	120	18.08	
Chrysene-d12	•	758290	21.58	121	21.65	-
Perylene-d12		672245	23.31	125	23.4	

TMW-23 Filtered

Laboratory	y: TriMatrix Laboratories, Inc.		SDG: 1	401173			
Clien	t: Beazer East, Inc.		Project: K	oppers Superi	or		
Matrix	k: <u>Water</u> Lab	oratory ID: 14011	73-19RE1	File ID	: 1401173-19RE	1.D	
Sampled	d: 01/13/14 09:00	Prepared: 01/27	/14 07:49	Analyzed: 01/31/14 19:15			
Solids	s: F		C Liquid-Liquid Ext				
QC Batch		: 4A31045	Calibration: 4		Instrument		
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
83-32-9	Acenaphthene	Diration	0.56	0.037	0.56		
208-96-8	Acenaphthylene	1	0.56	0.037	0.56	U	
120-12-7	Anthracene	1	0.56	0.019	0.56	U	
56-55-3	Benzo(a)anthracene	1	0.56	0.008		U	
50-32-8	Benzo(a)pyrene				0.56		
205-99-2	Benzo(b)fluoranthene	1	0.56	0.045	0.56	U	
203-99-2	The second real second second second		0.56	0.065	0.56	U	
A STORE STORE	Benzo(k)fluoranthene		0.56	0.066	0.56	U	
191-24-2	Benzo(g,h,i)perylene	1	0.56	0.068	0.56	U	
65-85-0	Benzoic Acid	1	2.3	0.53	5.6	J	
100-51-6	Benzyl Alcohol	1	0.70	0.054	0.56		
101-55-3	4-Bromophenyl Phenyl Ether	1	0.56	0.048	0.56	U	
85-68-7	Butyl Benzyl Phthalate	1	0.14	0.062	1.1	J	
59-50-7	4-Chloro-3-methylphenol	1	0.56	0.13	0.56	U U	
106-47-8	4-Chloroaniline	1	1.1	0.11	1.1	U	
111-91-1	Bis(2-chloroethoxy)methane	1	0,56	0.020	0.56	U	
111-44-4	Bis(2-chloroethyl) Ether	1	0.56	0.026	0.56	U	
108-60-1	Bis(2-chloroisopropyl) Ether	1	0.56	0.029	0.56	U	
91-58-7	2-Chloronaphthalene	1	0.56	0.019	0.56	U	
95-57-8	2-Chlorophenol	1	0.56	0.030	0.56	UU	
7005-72-3	4-Chlorophenyl Phenyl Ether	1	0.56	0.053	0.56	U	
218-01-9	Chrysene		0.56	0.050	0.56	U	
53-70-3	Dibenz(a,h)anthrasene	1	0.56	0.13	0.56	U	
132-64-9	Dibenzofuran	1	0.56	0.045	0.56	U	
84-74-2	Di-n-butyl Phthalate	1	0.96	0.15	1.1	J	
106-46-7	1,4-Dichlorobenzene	1	0.56	0.022	0.56	U	
95-50-1	1,2-Dichlorobenzene	1	0.56	0.044	0.56	U	
541-73-1	1,3-Dichlorobenzene	1	0.56	0.046	0.56	U	
91-94-1	3,3'-Dichlorobenzidine	1	1.1	0.14	1.1	U	
120-83-2	2,4-Dichlorophenol	1	0.56	0.14	0.56	U U	
84-66-2	Diethyl Phthalate		0.50	0.10	0.56		
105-67-9	2,4-Dimethylphenol	1	1.1	0.19		17	
131-11-3	Dimethyl Phthalate	1			1.1	U U	
534-52-1	4,6-Dinitro-2-methylphenol	1	0.17	0.051	0.56	J	
51-28-5	2,4-Dinitrophenol	1	5.6	1.1	5.6	U UJ	

Page 64 of 75

TMW-23 Filtered

Laborator	y: TriMatrix Laboratories, Inc.		SDG: 1	401173		
Clier	nt: Beazer East, Inc.		Project: k	Coppers Superio	or	
Matri	x: Water La	aboratory ID: 14011	73-19RE1	File ID	: 1401173-19RE	1.D
Sample	d: 01/13/14 09:00	Prepared: 01/27			: 01/31/14 19:15	
Solid		1.10 St	C Liquid-Liquid Ext		: 900 mL / 1 mL	
		nce: 4A31045	Calibration: 4		Instrument:	
a the Article						
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
606-20-2	2,6-Dinitrotoluene	1	0.56	0.089	0.56	U
121-14-2	2,4 Dinitrotoluene	1	0.56	0.053	0.56	U
117-84-0	Di-n-octyl Phthalate	1	0.56	0.085	0.56	U
117-81-7	Bis(2-ethylhexyl) Phthalate	-	0.59	0.13	0.56	1
206-44-0	Fluoranthene	1	0.56	0.070	0.56	U
86-73-7	Fluorene	1	0.56	0.046	0.56	U
118-74-1	Hexachlorobenzene		0.56	0.070	0.56	U
87-68-3	Hexachlorobutadiene	1	0.56	0.044	0.56	U
77-47-4	Hexachlorocyclopentadiene	1	0.56	0.049	0.56	U UJ
67-72-1	Hexachloroethane	1	0.56	0.046	0.56	U
193-39-5	Indeno(1,2,3-cd)pyrene	1	0,56	0.089	0.56	U
78-59-1	Isophorone		2.0	0.050	0.56	
91-57-6	2-Methylnaphthalene	1	0.022	0.017	0.56	J
90-12-0	1-Methylnaphthalene	1	0.56	0.022	0.56	U
106-44-5	4-Methylphenol	1	0.56	0.063	0.56	U UJ
95-48-7	2-Methylphenol	1	0.56	0.053	0.56	U _{UJ}
91 20 3	Naphthalene	1	0.56	0.034	0.56	U
100-01-6	4-Nitroaniline	1	1,1	0.37	1.1	U
88-74-4	2-Nitroaniline		0.56	0.13	0.56	U
99-09-2	3-Nitroaniline	1	1.1	0.27	1.1	U
98-95-3	Nitrobenzene	1	0.56	0.065	0.56	-U-
88-75-5	2-Nitrophenol	1	0.56	0.053	0.56	U _{UJ}
100-02-7	4-Nitrophenol	1	5.6	1.4	5.6	U UJ
86-30-6	N-Nitroso-diphenylamine	1	0.56	0.075	0.56	U UJ
621-64-7	N-Nitroso-di-n-propylamine	1	0.56	0.084	0.56	U
87-86-5	Pentachlorophenol	1	0.56	0.090	0.56	U UJ
85-01-8	Phenanthrene	1	0.056	0.047	0.56	J
108-95-2	Phenol	1	0.56	0.037	0.56	U _{UJ}
129-00-0	Pyrene	1	0.56	0.073	0.56	<u> </u>
58-90-2	2,3,4,6-Tetrachlorophenol	1	5.6	0.41	5.6	U UJ
120-82-1	1,2,4-Trichlorobenzene	1	0.56	0.030	0.56	<u> </u>
95-95-4	2,4,5-Trichlorophenol	1	0.56	0.11	0.56	UUJ
88-06-2	2,4,6-Trichlorophenol	1	0.56	0.095	0.56	U UJ
56-49-5	3-Methylcholanthrene	1	2,2	0.095	2,2	U U
the first				0.13	212	0

TMW-23 Filtered

Laboratory	y: TriMatrix Laboratori	1401173				
Clien	t: Beazer East, Inc.		Project:]	Koppers Superi	or	
Matrix	x: Water	Laboratory ID: 14011	73-19RE1	File ID	: 1401173-19RE1	.D
Sampleo	d: 01/13/14 09:00	Prepared: 01/27/	14 07:49	Analyzed	: 01/31/14 19:15	
Solid	s:	Preparation: 3510C	Liquid-Liquid Ext		: 900 mL / 1 mL	
QC Batch	h: <u>1400300</u>	Sequence: <u>4A31045</u>	Calibration:		Instrument:	195
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
935-95-5	2,3,5,6-Tetrachloroph	henol 1	11	0.24	11	U UJ
System Monitoring Compound		ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q
2-Fluoropheno	ol	22.2	14.8	67	20 - 70	
Phenol-d6		22.3	5.97	27	18 - 45	
Nitrobenzene-	d5	11.1	11.6	104	31 - 123	
2-Fluorobipher	nyl	11,1	10.1	91	25 - 113	
2,4,6-Tribrom	ophenol	22.4	23.7	106	30 - 121	
o-Terphenyl		11.1	11.9	107	42 - 125	
Internal Stan	dard	Area	RT	% REC.	Ref. RT	Q
1,4-Dichlorobe	enzene-d4	278470	7.67	97	7.67	
Naphthalene-d	8	1042714	10.39	96	10.4	
Acenaphthene-	-d10	629573	14.5	93	14.51	
Phenanthrene-	d10	1017307	17.92	91	17.93	
Chrysene-d12		1129229	21.54	94	21.54	
Perylene-d12		1042732	23.22	101	23.23	

MW-800

Laborator	y: TriMatrix Laboratories, Inc.	SDG: 1	401173			
Clien	it: Beazer East, Inc.		Project: K	oppers Superio	or	
Matri	x: Water Labo	pratory ID: 14011	73-20	File ID	: 1401173-20.D	
Sample	d: 01/13/14 00:00	Prepared: 01/16	/14 07:48	Analyzed	: 01/24/14 01:53	
Solid	s: P	reparation: 35100	C Liquid-Liquid Ext		: 890 mL / 1 mL	
QC Batc		: 4A24001	Calibration: 4		Instrument:	195
CAS No.	Analyte	Dilution				14 Y
83-32-9	Acenaphthene	AL La COLORA D	CONC. (ug/L)	MDL	MRL	Q
208-96-8	Acenaphthylene	1	0.56	0.037	0.56	U
120-12-7	Anthracene		0.56	0.019	0.56	U
56-55-3	TEL WORKER -	1	0.56	0.069	0.56	U
	Benzo(a)anthracene	1	0.56	0.051	0.56	U
50-32-8	Benzo(a)pyrene	1	0.56	0.045	0.56	U
205-99-2	Benzo(b)fluoranthene	1	0.56	0.065	0.56	U
207-08-9	Benzo(k)fluoranthene	1	0.56	0.067	0.56	U
191-24-2	Benzo(g,h,i)perylene	1	0.56	0.068	0.56	U
65-85-0	Benzoic Acid	1	5.6	0.54	5.6	U
100-51-6	Benzyl Alcohol	1	0.56	0.055	0.56	U
101-55-3	4-Bromophenyl Phenyl Ether	1	0.56	0.048	0.56	U
85-68-7	Butyl Benzyl Phthalate	1	0.090 1.1	0.063	-1.1	🔏 U
59-50-7	4-Chloro-3-methylphenol	1	0.56	0.13	0.56	U
106-47-8	4-Chloroaniline	1	1.1	0.11	1.1	U
111-91-1	Bis(2-chloroethoxy)methane	1	0.56	0.021	0.56	U
111-44-4	Bis(2-chloroethyl) Ether	1	0.56	0.027	0.56	U
108-60-1	Bis(2-chloroisopropyl) Ether	1	0.56	0.029	0.56	U
91-58-7	2-Chloronaphthalene	1	0.56	0.019	0.56	U
95-57-8	2-Chlorophenol	1	0.56	0.030	0.56	U
7005-72-3	4-Chlorophenyl Phenyl Ether	1	0.56	0.054	0.56	U
218-01-9	Chrysene	1	0.56	0.051	0.56	U
53-70-3	Dibenz(a,h)anthracene	1	0.56	0.13	0.56	U
132-64-9	Dibenzofuran	1	0.56	0.046	0.56	U
84-74-2	Di-n-butyl Phthalate	Í	3.7	0.15	1.1	B UI
106-46-7	1,4-Dichlorobenzene	1	0.56	0.022	0.56	U
95-50-1	1,2-Dichlorobenzene	1	0.56	0.044	0.56	U
541-73-1	1,3-Dichlorobenzene	1	0.56	0.046	0.56	U
91-94-1	3,3'-Dichlorobenzidine	1	1.1	0.14	1.1	U
120-83-2	2,4-Dichlorophenol	1	0.56	0.10	0.56	U
84-66-2	Diethyl Phthalate	1	0.24 0.56	0.073	0.56	JUB
105-67-9	2,4-Dimethylphenol	1	1.1	0.19	1.1	U
131-11-3	Dimethyl Phthalate	1	0.56	0.051	0.56	U
534-52-1	4,6-Dinitro-2-methylphenol	1	5.6	1.1	5.6	U
51-28-5	2,4-Dinitrophenol	1	5.6	1.1	5.6	UUJ

Page 67 of 75 01054

MW-800

Laboratory	y: TriMatrix Laboratories, Inc.			SDG:	1401173		
Clien	t: Beazer East, Inc.			Project:	Koppers Superi	or	
Matrix	: <u>Water</u> L	aboratory ID:	1401173-20		File II): <u>1401173-20.D</u>	
Sampleo	i: <u>01/13/14</u> 00:00		01/16/14 07:4	18		d: 01/24/14 01:53	
Solids	5		3510C Liquid	Strange and		l: 890 mL / 1 mL	
		nce: <u>4A24001</u>	<u>5510C Eiquit</u>	Calibration:		Instrument:	
CAS No.	Analyte	Dilut	ion CO	NC. (ug/L)	MDL	MRL	Q
606-20-2	2,6-Dinitrotoluene	1	100 - 10 - 10 - 10 - 10 - 10 - 10 - 10	0.56	0.090	0.56	U
121-14-2	2,4-Dinitrotoluene	1		0.56	0.053	0.56	U
117-84-0	Di-n-octyl Phthalate	1		0.56	0.035	0.56	U
117-81-7	Bis(2-ethylhexyl) Phthalate	1		0.30 D.22 0.56	0.13	0.56	
206-44-0	Fluoranthene	1		0.56	0.070	0.56	U
86-73-7	Fluorene	1		0.56	0.046	0.56	U
118-74-1	Hexachlorobenzene	1		0.56	0.040	0.56	U
87-68-3	Hexachlorobutadiene	1		0.56	0.070	0.56	U
77-47-4	Hexachlorocyclopentadiene	1		0.56	0.050	0.56	UUJ
67-72-1	Hexachloroethane	1		0.56	0.030	0.56	U 000
193-39-5	Indeno(1,2,3-cd)pyrene	1		0.56	0.047	0.56	U
78-59-1	Isophorone	1		0.56	0.050	0.56	U
91-57-6	2-Methylnaphthalene	1		0.56	0.017	0.56	U
90-12-0	1-Methylnaphthalene	1		0.56	0.022	0.56	U
106-44-5	4-Methylphenol	1		0.56	0.022	0.56	U
95-48-7	2-Methylphenol	1		0.56	0.053	0.56	U
91-20-3	Naphthalene	1		0.56	0.033	0.56	U
100-01-6	4-Nitroaniline	1		1.1	0.37	1.1	U
88-74-4	2-Nitroaniline	I		0.56	0.13	0.56	U
99-09-2	3-Nitroaniline	1		1.1	0.13	1,1	
98-95-3	Nitrobenzene	T		0.56	0.27	0.56	U
88-75-5	2-Nitrophenol	1		0.56	0.053	0.56	U
100-02-7	4-Nitrophenol	1		5.6	1.4	5.6	U UUJ
86-30-6	N-Nitroso-diphenylamine	1		0.56	0.076	0.56	U 000
621-64-7	N-Nitroso-di-n-propylamine	1 1		0.56	0.076	0.56	U
87-86-5	Pentachlorophenol	1		0.56	0.085	0.56	U
85-01-8	Phenanthrene	1		0.56	0.091	0.56	U
108-95-2	Phenol	1		0.56	0.048	0.56	U
129-00-0	Pyrene	1		0.56	0.038	0.56	U
58-90-2	2,3,4,6-Tetrachlorophenol	1		5.6	0.074	5.6	U
120-82-1	1,2,4-Trichlorobenzene	1		0.56	0.42	0.56	U
95-95-4	2,4,5-Trichlorophenol	1		0.56	0.030	0.56	U
88-06-2	2,4,6-Trichlorophenol	1		0.56	0.096	0.56	U U
56-49-5	3-Methylcholanthrene	1		2.2	0.098	2.2	U U

Page 68 of 75 Ø1055

MW-800

Laboratory	: TriMatrix Laboratories, Inc.	401173				
Clien	t: Beazer East, Inc.		Project: 1	Coppers Superi	or	
Matrix	: Water	Laboratory ID: 140117	3-20	File ID	: <u>1401173-20.D</u>	
Sampleo	: 01/13/14 00:00	Prepared: 01/16/1	4 07:48	Analyzed	: 01/24/14 01:53	
Solids		Preparation: 3510C1	Liquid-Liquid Ext	1	: 890 mL / 1 mL	
QC Batch	a: <u>1400299</u> Sequ	uence: <u>4A24001</u>	Calibration:		Instrument:	195
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q
935-95-5	2,3,5,6-Tetrachlorophenol	1	11	0.24	11	U
System Monitoring Compound		ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q
2-Fluorophenol		22.5	10.1	45	20 - 70	
Phenol-d6		22.6	3.57	16	18-45	*
Nitrobenzene-	Nitrobenzene-d5		7.88	70	31 - 123	
2-Fluorobipher	nyl	11.2	6.69	59	25 - 113	
2,4,6-Tribromo	phenol	22.7	12.3	54	30 - 121	
o-Terphenyl		11.2	7.70	68	42 - 125	
Internal Stand	lard	Area	RT	% REC.	Ref. RT	Q
1,4-Dichlorobe	nzene-d4	167769	7.75	115	7.84	×
Naphthalene-d	8	653724	10.48	113	10.58	-
Acenaphthene-d10		404743	14.59	114	14.7	
Phenanthrene-o	110	635777	18	110	18.08	
Chrysene-d12		714616	21.58	114	21.65	-
Perylene-d12		639959	23.31	119	23.4	

MW-800

Laboratory	y: TriMatrix Laboratories, Inc.		SDG:	1401173				
Clien	Client: Beazer East, Inc. Project:				Koppers Superior			
Matrix	x: <u>Water</u> Lab	oratory ID: 140	401173-20RE1 File ID: 1401173-20RE1D					
Sampleo	d: <u>01/13/14 00:00</u>	Prepared: 01/	27/14 07:48	Analyzed	: 01/31/14 19:50			
Solid	s: P		OC Liquid-Liquid Ext		: 900 mL / 1 mL			
		: 4A31045	Calibration:		Instrument:	195		
CAS No.						_		
83-32-9	Analyte	Dilution		MDL	MRL	Q		
	Acenaphthene	- 1	0.56	0.037	0.56	U		
208-96-8	Acenaphthylene	1	0.56	0.019	0.56	U		
120-12-7	Anthracene	1	0.56	0.068	0.56	U		
56-55-3	Benzo(a)anthracene	1	0.56	0,050	0.56	U		
50-32-8	Benzo(a)pyrene	1	0.56	0.045	0.56	U		
205-99-2	Benzo(b)fluoranthene	1	0.56	0.065	0.56	U		
207-08-9	Benzo(k)fluoranthene	1	0.56	0.066	0.56	U		
191-24-2	Benzo(g,h,i)perylene	1	0.56	0.068	0.56	U		
65-85-0	Benzoic Acid	1	2.3	0.53	5.6	J		
100-51-6	Benzyl Alcohol	1	9.20	0.054	0.56	J		
101-55-3	4-Bromophenyl Phenyl Ether	1	0.56	0.048	0.56	U		
85-68-7	Butyl Benzyl Phthalate	1	0.067	0.062	1.1	J		
59-50-7	4-Chloro-3-methylphenol	1	0.56	0.13	0.56	U		
106-47-8	4-Chloroaniline	1	1.1	0.11	1.1	U		
111-91-1	Bis(2-chloroethoxy)methane	1	0.56	0.020	0.56	U		
111-44-4	Bis(2-chloroethyl) Ether	1	0,56	0.026	0.56	U		
108-60-1	Bis(2-chloroisopropyl) Ether	1	0.56	0.029	0.56	U		
91-58-7	2-Chloronaphthalene	1	0.56	0.019	0.56	U		
95-57-8	2-Chlorophenol	1	0.56	0.030	0.56	U		
7005-72-3	4-Chlorophenyl Phenyl Ether	1	0.56	0.053	0.56	U		
218-01-9	Chrysene	1	0.56	0.050	0.56	U		
53-70-3	Dibenz(a,h)anthracene	1	0.56	0.13	0.56	U		
132-64-9	Dibenzofuran	1	0.56	0.045	0.56	U		
84-74-2	Di-n-butyl Phthalate	1	0.33	0.15	1.1	JB		
106-46-7	1,4-Dichlorobenzene	1	0.56	0.022	0.56	U		
95-50-1	1,2-Dichlorobenzene	1	0.56	0.044	0.56	U		
541-73-1	1,3-Dichlorobenzene	1	0.56	0.046	0.56	U		
91-94-1	3,3'-Dichlorobenzidine	1	1.1	0.14	1.1	U		
120-83-2	2 4-Dichlorophenol	1	0.56	0.10	0.56	U		
84-66-2	Diethyl Phthalate	1	0.38	0.072	0.56	J		
105-67-9	2,4-Dimethylphenol	1	1.1	0.19	1.1	U		
131-11-3	Dimethyl Phthalate	1	0.56	0.051	0.56	U		
534-52-1	4,6-Dinitro-2-methylphenol	1	5.6	1.1	5.6	2		
\$1-28-5	2,4-Dinitrophenol	1	5.6	1.3	5,6	U		

Page 70 of 75

MW-800

Laborator	y: TriMatrix Laboratories, Inc.		SDG:	1401173				
Clien	t: Beazer East, Inc.		Project:	Koppers Superi	or			
Matri	x. Water	Laboratory ID: 14011	oratory ID: <u>1401173-20RE1</u> File ID: <u>1401173-20RE1.D</u>					
Sampleo	d: 0113/14 00:00	Prepared: 01/27	/14 07:48	Analyzed	I: 01/31/14 19:50			
Solid	s:	Preparation: 35100	Liquid-Liquid Ext	and the second second	I: 900 mL /1 mL			
QC Batcl	h: <u>1400299</u> Seque	nce: <u>4A31045</u>	Calibration:		Instrument:	<u>195</u>		
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q		
606-20-2	2,6-Dinitrotoluene	1	0.56	0.089	0.56	U		
121-14-2	2,4-Dinitrotoluene	1	0.56	0.053	0.56	U		
117-84-0	Di-n-octyl Phthalate	1	0.56	0.085	0.56	U		
117-81-7	Bis(2-ethylhexyl) Phthalate	1	0.54	9.13	0.56	JB		
206-44-0	Fluoranthene	1	0.56	0.070	0.56	U		
86-73-7	Fluorene	1	0.56	0.046	0.56	U		
118-74-1	Hexachlorobenzene	1	0.56	0.070	0.56	U		
87-68-3	Hexachlorobutadiene	1	0.56	0.044	0.56	U		
77-47-4	Hexachlorocyclopentadiene	1	0.56	0.049	0.56	U		
67-72-1	Hexachloroethane		0.56	0.046	0.56	U		
193-39-5	Indeno(1,2,3-cd)pyrene	1	0.56	0.089	0.56	U		
78-59-1	Isophorone	1	0.56	0.050	0.56	U		
91-57-6	2-Methylnaphthalene	1	0.56	0.017	0.56	U		
90-12-0	1-Methylnaphthalene	1	0.56	0.022	0.56	U		
106-44-5	4-Methylphenol	V	0.56	0.063	0.56	υ		
95-48-7	2-Methylphenol	1	0.56	0.053	0.56	U		
91-20-3	Naphthalene	1	0.56	0.034	0.56	U		
100-01-6	4-Nitroaniline	1	1.1	0,37	1.1	U		
88-74-4	2-Nitroaniline	1	0.56	0.13	0.56	U		
99-09-2	3-Nitroaniline	1	1.1	0.27	1.1	U		
98-95-3	Nitrobenzene	1	0.56	0.065	0.56	U		
88-75-5	2-Nitrophenol	1 1	0.56	0.053	0.56	U		
100-02-7	4-Nitrophenol	1	5.6	1.4	5.6	υ		
86-30-6	N-Nitroso-diphenylamine	1	0.56	0.075	0.56	U		
621-64-7	N-Nitroso-di-n-propylamine	1	0.56	0.084	0.56	U		
87-86-5	Pentachlorophenol	1	0.56	0.090	0.56	U		
85-01-8	Phenapthrene	1	0.56	0.047	0.56	υ		
108-95-2	Phenol	1	0.56	0.037	0.56	U		
129-00-0	Pyrene	1	0.56	0.073	0.56	υ		
58-90-2	2,3,4,6-Tetrachlorophenol	1	5.6	0.41	5.6	U		
120-82-1	1,2,4-Trichlorobenzene	1	0.56	0.030	0.56	U		
95-95-4	2,4,5-Trichlorophenol	I	0.56	0.11	0.56	N		
88-06-2	2,4,6-Trichlorophenol	1	0.56	0.095	0.56	U		
56-49-5	3-Methylcholanthrene	1	2.2	0.13	2.2	U		

Page 71 of 75

MW-800

Laborator	y: TriMatrix Laboratories, In	I <u>C.</u>	SDG: <u>1401173</u>							
Clien	t: Beazer East, Inc.		Project: Koppers Superior							
Matri	x: Water	Laboratory ID: 140117								
Sample	d: 01/13/14 00:00	Prepared: 01/27/1	4 07:48		: 01/31/14 19:50					
Solid	s:	Preparation: 3510C1			900 mL/1 mL					
QC Batcl	h: <u>1400299</u> Se	quence: <u>4A31045</u>	Calibration:		Instrument:	195				
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q				
935-95-5	2,3,5,6-Tetrachlorophenol	1	11	0.24	11	U				
			/			_				
System Monitoring Compound		ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q				
2-Fluorophenol		22.8	14.8	66	20 - 70	-				
Phenol-d6		22.3	6.89	31	18-45					
Nitrobenzene-	Nitrobenzene-d5		11.1	100	31 - 123					
2-Fluorobipher	nyl	11.1	9.91	89	25 - 113					
2,4,6-Tribrom	ophenol	22.4	22.6	101	30 - 121					
o-Terphenyl		11.1	11.5	104	42 - 125					
Internal Stan	ADD CA	Area	RT	% REC.	Ref. RT	Q				
1,4-Dichlorobe	enzene-d4	263886	7.67	92	7.67					
Naphthalene-d	8	1007762	10.39	93	10.4					
Acenaphthene-d10		609602	14.5	90	14.51					
Phenanthrene-d10		991283	17.92	89	17.93					
Chrysene-d12		1045665	21.53	87	21.54					
Perylene-d12		953405	23,23	92	23.23					

MW-801

	y: <u>TriMatrix Laboratories, Inc.</u>			1401173			
	nt: Beazer East, Inc.			Koppers Superior			
Matri	ix: <u>Water</u> Labo	oratory ID: 14011	73-21	File ID	: <u>1401173-21.D</u>		
Sample	d: 01/13/14 00:00	Prepared: 01/16	/14 07:48	Analyzed	: 01/24/14 02:27		
Solid	ls: Pr	reparation: 35100	CLiquid-Liquid Ext	Initial/Final	: 780 mL / 1 mL		
QC Bate	h: <u>1400299</u> Sequence:	4A24001	Calibration:	4A22014	Instrument	195	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q	
83-32-9	Acenaphthene	1	0.64	0.042	0.64	U	
208-96-8	Acenaphthylene	1	0.64	0.022	0.64	U	
120-12-7	Anthracene	1	0.64	0.079	0.64	U	
56-55-3	Benzo(a)anthracene	1	0.64	0.058	0.64	U	
50-32-8	Benzo(a)pyrene	1	0.64	0.052	0.64	U	
205-99-2	Benzo(b)fluoranthene	1	0.64	0.074	0.64	U	
207-08-9	Benzo(k)fluoranthene	1	0.64	0.076	0.64	U	
191-24-2	Benzo(g,h,i)perylene	1	0.64	0.078	0.64	U	
65-85-0	Benzoic Acid	1	6.4	0.61	6.4	U R	
100-51-6	Benzyl Alcohol	1	0.64	0.062	0.64	U	
101-55-3	4-Bromophenyl Phenyl Ether	1	0.64	0.055	0.64	U	
85-68-7	Butyl Benzyl Phthalate	1	0.15 1.3	0.071	1.3	J U	
59-50-7	4-Chloro-3-methylphenol	1	0.64	0.15	0.64	U	
106-47-8	4-Chloroaniline	1	1.3	0.13	1.3	U	
111-91-1	Bis(2-chloroethoxy)methane	1	0.64	0.024	0.64	U	
111-44-4	Bis(2-chloroethyl) Ether	1	0.64	0.030	0.64	U	
108-60-1	Bis(2-chloroisopropyl) Ether	1	0.64	0.033	0.64	U	
91-58-7	2-Chloronaphthalene	1	0.64	0.022	0.64	U	
95-57-8	2-Chlorophenol	1	0.64	0.034	0.64	U	
7005-72-3	4-Chlorophenyl Phenyl Ether	1	0.64	0.062	0.64	U	
218-01-9	Chrysene	1	0.64	0.058	0.64	U	
53-70-3	Dibenz(a,h)anthracene	1	0.64	0.14	0.64	U	
132-64-9	Dibenzofuran	1	0.64	0.052	0.64	U	
84-74-2	Di-n-butyl Phthalate	1	4.8	0.17	1.3	K UE	
106-46-7	1,4-Dichlorobenzene	1	0.64	0.025	0.64	υ	
95-50-1	1,2-Dichlorobenzene	1	0.64	0.051	0.64	U	
541-73-1	1,3-Dichlorobenzene	1	0.64	0.053	0.64	Û	
91-94-1	3,3'-Dichlorobenzidine	1	1.3	0.16	1.3	U	
120-83-2	2,4-Dichlorophenol	1	0.64	0.12	0.64	U	
84-66-2	Diethyl Phthalate	1	0.64	0.083	0.64	🗡 UB	
105-67-9	2,4-Dimethylphenol	1	1.3	0.22	1.3	U	
131-11-3	Dimethyl Phthalate	1	0.64	0.058	0.64	U	
534-52-1	4,6-Dinitro-2-methylphenol	1	6.4	1.3	6.4	U	
51-28-5	2,4-Dinitrophenol	1	6.4	1.5	6.4	U UJ	

Page 73 of 75

MW-801

Laboratory	: TriMatrix Laboratories, Inc.		SDG: 14	401173		
Client	t: Beazer East, Inc.		Project: K	oppers Superio	or	
Matrix	: Water L	aboratory ID: 14011	173-21	File ID	: 1401173-21.D	
Sampled	1: 01/13/14 00:00	Prepared: 01/16			: 01/24/14 02:27	
Solids			C Liquid-Liquid Ext	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: 780 mL / 1 mL	
		nce: 4A24001	Calibration: 4		Instrument:	
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	_
606-20-2	2,6-Dinitrotoluene	Diution	0.64	0.10	0.64	Q U
121-14-2	2,4-Dinitrotoluene	1	0.64	0.10	0.64	U
117-84-0	Di-n-octyl Phthalate	1	0.64	0.098	0.64	U
117-81-7	Bis(2-ethylhexyl) Phthalate	1	0.64	0.098	0.64	
206-44-0	Fluoranthene	1	0.64		0.64	
86-73-7	Fluorene	1		0.080	1 A 1 M 1	U
118-74-1	Hexachlorobenzene	1	0.64	0.053	0.64	U
87-68-3	Hexachlorobutadiene	1	0.64	0.080	0.64	U
77-47-4	Hexachlorocyclopentadiene			0.051	0.64	U
67-72-1	Hexachloroethane	1	0.64	0.057	0.64	U U
193-39-5		1	0.64	0.054	0.64	U
	Indeno(1,2,3-cd)pyrene	1	0.64	0.10	0.64	U
78-59-1	Isophorone	1	0.64	0.058	0.64	U
91-57-6	2-Methylnaphthalene	1	0.64	0.019	0.64	U
90-12-0	1-Methylnaphthalene	1	0.64	0.025	0.64	U
106-44-5	4-Methylphenol	1	0.64	0.073	0.64	U
95-48-7	2-Methylphenol	- (d)	0.64	0.061	0.64	U
91-20-3	Naphthalene	1	0.64	0.039	0.64	U
100-01-6	4-Nitroaniline	1	1.3	0.42	1.3	U
88-74-4	2-Nitroaniline	1	0.64	0.15	0.64	U
99-09-2	3-Nitroaniline	1	1.3	0.31	1.3	U
98-95-3	Nitrobenzene	- 1 -	0.64	0.075	0.64	U
88-75-5	2-Nitrophenol	1	0.64	0.061	0.64	U
100-02-7	4-Nitrophenol	11	6.4	1.6	6.4	U UJ
86-30-6	N-Nitroso-diphenylamine	1	0.64	0.087	0,64	U
621-64-7	N-Nitroso-di-n-propylamine	1	0.64	0.097	0.64	U
87-86-5	Pentachlorophenol	1	0.64	0.10	0.64	U
85-01-8	Phenanthrene	1	0.064	0.055	0.64	J
108-95-2	Phenol	1	0.64	0.043	0.64	U
129-00-0	Pyrene	1	0.64	0.084	0.64	U
58-90-2	2,3,4,6-Tetrachlorophenol	1	6.4	0.48	6.4	U
120-82-1	1,2,4-Trichlorobenzene	1	0.64	0.034	0.64	U
95-95-4	2,4,5-Trichlorophenol	- 1	0.64	0.13	0.64	U
88-06-2	2,4,6-Trichlorophenol	1	0.64	0.11	0.64	U
56-49-5	3-Methylcholanthrene	1	2.6	0.15	2.6	U

MW-801

Laboratory	: TriMatrix Laboratorie	s, Inc.	SDG: <u>1401173</u>					
Client	Client: Beazer East, Inc. Pro			: Koppers Superior				
Matrix	:: Water	Laboratory ID: 140117	3-21	File ID	: <u>1401173-21.D</u>			
Sampled	l: 01/13/14 00:00	Prepared: 01/16/1	4 07:48	Analyzed	: 01/24/14 02:27			
Solids		Preparation: 3510C	Liquid-Liquid Ext	Initial/Final	: 780 mL/1 mL			
QC Batch	: <u>1400299</u>	Sequence: <u>4A24001</u>	Calibration:		Instrument:	195		
CAS No.	Analyte	Dilution	CONC. (ug/L)	MDL	MRL	Q		
935-95-5	2,3,5,6-Tetrachloroph	enol 1	13	0.27	13	U		
System Monit	oring Compound	ADDED (ug/L)	CONC (ug/L)	% REC.	QC Limits	Q		
2-Fluorophenol		25.6	13.1	51	20 - 70	×		
Phenol-d6		25.8	8.56	33	18 - 45			
Nitrobenzene-d5		12.8	9.10	71	31 - 123			
2-Fluorobipher	nyl	12.8	7.76	61	25 - 113			
2,4,6-Tribromo	phenol	25.9	14.2	55	30 - 121			
o-Terphenyl		12.8	8.27	65	42 - 125			
Internal Stand	lard	Area	RT	% REC.	Ref. RT	Q		
1,4-Dichlorobe	nzene-d4	172483	7,75	118	7.84			
Naphthalene-d	8	675380	10.48	116	10.58			
Acenaphthene-d10		415596	14.59	117	14.7			
Phenanthrene-c	110	656146	18	114	18.08			
Chrysene-d12		682120	21.58	108	21.65			
Perylene-d12		614350	23.31	115	23.4			