Saari, Christopher A - DNR

From:

Yang, Sarah P - DNR

Sent:

Friday, January 15, 2016 2:33 PM

To:

Fassbender, Judy L - DNR

Subject:

FW: Crawford Creek Characterization Report Draft

Attachments:

WDNR_2014_CrawfordCreekHHRA_Notes (SY141119).docx

Hi Judy,

Attached are my notes from a year ago when Scott Inman asked me to review this HHERA. Basically, I just highlighted areas from the document that may be reason for concern and/or areas that need more investigation. I'm not sure if you have a copy of these already.

Sarah

We are committed to service excellence.

Visit our survey at http://dnr.wi.gov/customersurvey to evaluate how I did.

Sarah Yang, Ph.D. Phone: (608) 266-9262 Sarah.Yang@Wisconsin.gov

From: Yang, Sarah P - DNR

Sent: Friday, December 05, 2014 1:02 PM

To: Inman, Scott T - DNR

Subject: RE: Crawford Creek Characterization Report Draft

Hi Scott,

I have attached a copy of my notes. I am going to be examining a few things in more detail before drafting my comments.

Sarah

We are committed to service excellence.

Visit our survey at http://dnr.wi.gov/customersurvey to evaluate how I did.

Sarah Yang, Ph.D. Phone: (608) 266-9262 Sarah.Yang@Wisconsin.gov

From: Inman, Scott T - DNR

Sent: Tuesday, October 21, 2014 2:08 PM

To: Yang, Sarah P - DNR

Subject: FW: Crawford Creek Characterization Report Draft

We are committed to service excellence.

∀isit our survey at http://dnr.wi.gov/customersurvey to evaluate how I did.

Scott T. Inman

Office: (608) 264-9201 Cell: (608) 576-4912

Scott.Inman@Wisconsin.gov

From: Graham, Joseph R - DNR

Sent: Monday, October 20, 2014 10:46 AM

To: Saari, Christopher A - DNR; Inman, Scott T - DNR; Fitzpatrick, William - DNR; Killian, James - DNR

Cc: Galarneau, Stephen G - DNR

Subject: Crawford Creek Characterization Report Draft

I placed a copy of the Crawford Creek characterization report under Scott's folder at the link below. The draft was received by e-mail late on 10/16/2014.

S:\Inmans\Crawford Creek\Crawford Creel Characterization Draft Report 10-16-2014

We are committed to service excellence.

Visit our survey at http://dnr.wi.gov/customersurvey to evaluate how I did.

Joe Graham

Lake Superior Sediment and Monitoring Coordinator Wisconsin Department of Natural Resources Phone: (715) 292-4925 joseph.graham@wisconsin.gov

Human Health

- Used oral dose-response info to estimate risk associated with both oral and dermal exposure (1.2.1-pg. 11)
- Surrogate toxicity values used for constituents that did not have dose-response values (1.2.1-pg. 11)
- BaP comparative potency factors (CPFs) were used (1.2.2-pg. 12)
- Toxicity equivalent factors (TEFs) were used (1.2.2-pg. 12)
- Absorption adjustment factors (AAFs) were used (1.2.3-pg. 12)
- Dermal permeability constants were derived from scientific literature (1.2.4-pg. 13)
 - Used surrogate values instead of EPA default values
- Two exposure scenarios discussed (see figure below)
 - Scenario 1 (AMEC): using AMEC derived AAFs
 - o Scenario 2 (WDNR): using default AAFs
- Chronic average daily dose (CADD) potential daily intake from oral and dermal exposure to non-carcinogens; calculated by averaging period over which exposure is assumed and compared to RfD to estimate potential hazard index (1.3.2-pg. 19)
- Lifetime average daily dose (LADD)-potential daily intake to carcinogens; calculated by averaging exposure over lifetime (70 yrs); combined with cancer slope factor to estimate excess cancer risk due to exposure (1.3.2-pg. 19)
- Hands, forearms, and face exposed to soils \rightarrow weighted soil adherence factors (1.3.2-pg. 21)
 - O What about feet and legs?
- Hands, forearms, feet exposed to sediment and surface water \rightarrow weighted soil adherence factors (1.3.2-pg. 22)
 - o What about legs?
- Samples were assumed to be representative of each exposure area (1.3.3-pg. 23)
 - No sediment data from area 1
 - No soil data from area 2
- Exposure point concentration concentration in media representing exposure area; estimated as lower of either (1.3.3-pg. 23)
 - Maximum detected concentration
 - o 95% upper confidence interval mean concentration
 - o For substances that were not detected, value = ½ of LOD was used as surrogate for 95% CI method
- Hazard quotient used to determine risk for non-carcinogens (1.4.1-pg. 25)
 - O HQ = CADD/RfD
 - o If HQ_{total} < 1, no risk assumed
- Potential excess lifetime cancer risk (PELCR) used to determine risk for carcinogens (1.4.1-pg. 26-27)
 - O PELCR = CSF x LADD
 - o If PELCR_{total} is between 10⁻⁴ and 10⁻⁶, risk is allowable
- EPA (1997b) recommends soil ingestion rate for young children of 200 mg/day (1.5.3-pg. 33)
 - Definition of small children?
- Assumed that the potential effects of different COPCs are additive (1.5.4-pg. 34)
- Observation: WDNR and AMEC exposure routes compared directly but not sure direct comparison are appropriate between more than 1 factor is different between the routes

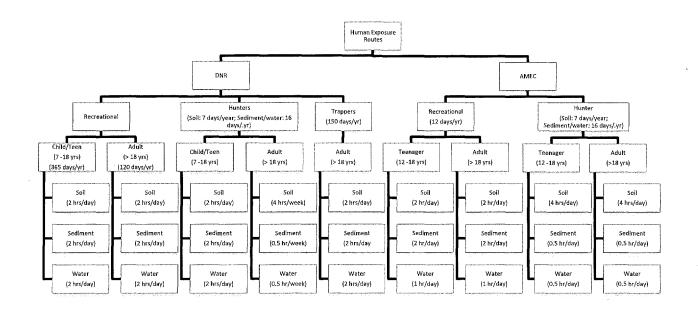


Figure 1. Diagram depicting WDNR and AMEC exposure scenarios

Ecological

Substances Detected in Environmental Matrix (2.3.1.1-pg. 38-39)							
	PAHs	Pentachlorophenol	Dioxins & Furans				
Floodplain Soil	Х	X	X				
Sediment	X	X	X				
Forage Fish	Х	X	X				
Surface Water	X	X					
Flying Insects	Х		X				

- Specific ecological receptors were selected to representing feeding guilds-used to represent species that occupy similar guilds and may potentially exist on site (2.3.1.3-pg. 43)
- Potential risk for reptiles lower than estimated for avian species (2.3.1.3-pg. 45)
- Used soil-to-earthworm BTFs to estimated COPEC concentrations in earthworms (2.3.1.4-pg. 47)
- Aerial insectivores are assumed to be opportunistic feeders and eat whatever is most abundant not just those insects that emerged from the creek (2.3.1.4-pg. 47)
- Site-specific fish concentrations were used as surrogate EPCs for aquatic macroinvertebrates (2.3.2.1-pg. 52)
- Concentrations of COPECs in soil invertebrates or plants were estimated by combining floodplain soil EPCs with BTF (2.3.2.1-pg. 52)
- TEFs were used to calculated TCDD TEQ concentrations form mammals and birds (2.3.2.1-pg. 53)
- Because benthic macroinvertebrates have limited mobility, they are likely exposed to COPEC concentrations
 equal to those in sediment in the immediate vicinity- potential effects evaluated for each sampling location,
 when available (2.3.2.1 –pg 53)
- Research references used for toxicity reference values (2.3.2.2-pg. 55)
- The highest NOAEL that is lower than the lowest NOAEL was used when available. Chronic NOAELS were derived when necessary. (2.3.2.2-pg. 55)
- If not toxicity values were available, surrogate chemicals were selected based on structural chemistry (2.3.2.2-pg. 55)
- A conversion based on weight were used to extrapolate TRVs between mammals (2.3.2.2-pg. 56)
- Toxicity Quotients (TQs)

		Kingfisher	Mink	American Robin	Swallow	Vole	Bat			
Area 1	LOAEL	< 1	<1	<1	<1	<1	<1			
	NOAEL	4.6	1.1	1.5	1.7	1.2	<1			
	-Sediment COPECs were dominant source of concern for kingfisher, mink, and swallow -Soil dioxins and furans were dominant source of concern for vole and American robin **Note: no sediment data was available for area 1 so sediment data from area 2 was used to estimate potential exposure in area 1 (2.3.2.1-pg. 52)									
Area 2	LOAEL	< 1	<1	<1	<1	<1	<1			
	NOAEL	4.6	1.1	≤1	≤1	≤1	≤1			
	PAHs within the creek (fish, invertebrates, insects) were dominant source of concern for kingfisher									
Area 3	LOAEL	< 1	< 1	< 1	< 1	< 1	< 1			
	NOAEL	< 1	< 1	< 1	< 1	< 1	< 1			

Sediment Evaluation (2.3.3.2-pg. 59-62)

- Weight of evidence approach with 5 lines of evidence
 - 1) >1 PAH concentration exceeds PECs for >1 WNDR CBSQG benchmarks → potential risk
 - 2) Total PAH concentration in all samples exceeds TEC and MEC → potential risk
 - 3) Sum Toxicity Unit (TU) > 1.0 for all locations → potential risk
 - 4) Compared PAH concentrations to "ranges, in Beazer's experience, not expected to be adversely affect benthic organisms" (2.3.2.2-pg. 56) → PAH concentrations lower than these ranges →may not pose risk
 - a. Has this work been published in a peer-reviewed scientific journal?
 - 5) Benthic invertebrate community analyses → BBL did not consider differences significant → DNR "IBI" scores indicate moderate to severe impact
 - a. Is the DNR method published?
- Combined "Five lines of evidence do not permit a firm conclusion about whether COPECs in Crawford
 Creek are affecting the benthic macroinvertebrate community"
- Wood-treating PAHs are of pyrogenic origin and such PAHs are suspected of being substantially less toxic than PAHs of petrogenic origins (2.3.3.2-pg. 62)
 - o Aare there are literature references from peer-reviewed scientific journals demonstrating this?
- Fish community evaluation (2.3.3.3-pg. 62-64)
 - Weight of evidence approach with 2 lines of evidence
 - 1) Compared lipid-normalized TCDD concentrations in Crawford Creek fish to allowable body burden ranges from study by Steevens et al. →WNDR noted that ranges in study were based on gamefish and not forage fish like those found in Crawford Creek → AMEC: little reason to believe forage fish are substantially more sensitive →do not pose risk
 - 2) Fish community analysis→BBL concluded that habitant was responsible for differences between sites and references; WDNR found lower IBI scores in areas 2 and 3 which indicate impact→unclear whether differences are related to COPECS, habitat, or both
 - Combined "lines of evidence do not permit firm conclusion about whether COPECs in Crawford Creek are affecting the fish community"
- Food chain exposures for avian species may be underestimated (2.3.4-pg. 65)
- WDNR: PAH sediment sampling locations not representative of locations in benthic study. Effects to benthic organisms may be underestimated (2.3.4-pg. 65)
- Sampling only done one season of the year. Data not representative of seasonal fluctuations in COPEC concentrations (2.3.4-pg. 65)
- Conclusions (3.0-pg. 68)
 - o Actual adverse effects in areas 1 and 2 seem unlikely given that
 - 1) Uncertainty factors used to derive TRVs →estimated exposure do not exceed actual effect levels
 - 2) Upper trophic level receptors are unlikely to forage in only a single area
 - 3) All LOAEL-based TRVs are less than 1.0