

### **Hot Spot Investigation Documentation** and Remedial Options Analysis Report

Kewaunee Marsh

May 2010





### Hot Spot Investigation Documentation and Remedial Options Analysis Report

#### **Kewaunee Marsh**

May 2010

Prepared For Wisconsin Department of Natural Resources Green Bay, Wisconsin

Alyssa Sellwood, P.E. Project Engineer

Robert R. Stanforth, Ph.D. Senior Applied Chemist

Paul D. Turpin, P.E.

Senior Engineer

Richard P. Fish

Senior Project Manager

RMT, Inc. | Wisconsin Department of Natural Resources Final

I:\\VP\MSN\PJT1\02085\23\009\R0208523009-001.DOCX

© 2010 RMT, Inc. All Rights Reserved

### **Table of Contents**

| 1. | Intro | oductio  | on                                                | 1  |
|----|-------|----------|---------------------------------------------------|----|
|    | 1.1   | Backs    | ground                                            | 1  |
|    | 1.2   | _        | ose and Scope                                     |    |
| 2. | Prev  | vious U  | nderstanding of the Site                          | 3  |
|    | 2.1   | Cap I    | Description                                       | 3  |
|    | 2.2   | Histo    | orical Soil Sampling – Capped Area 1994/2004/2006 | 3  |
|    | 2.3   | Leach    | n Testing 2006                                    | 4  |
|    | 2.4   | 2007     | RMT Hot Spot Groundwater Sampling                 | 4  |
|    | 2.5   | Origi    | nal Concepts for Remediation of the Hot Spot      | 5  |
| 3. | Hot   | Spot In  | n <b>v</b> estigation                             | 6  |
|    | 3.1   | Geop     | robe Investigation                                | 6  |
|    |       | 3.1.1    | December 2009 Soil Sampling                       |    |
|    |       | 3.1.2    | March 2010 Soil Sampling                          | 6  |
|    |       | 3.1.3    | Soil Stratigraphy                                 |    |
|    |       | 3.1.4    | Sampling Results                                  |    |
|    | 3.2   | Geop     | hysical Survey                                    | 7  |
| 4. | Hot   | Spot D   | Pefinition                                        | 9  |
|    | 4.1   | Hot S    | Spot Definition                                   | 9  |
|    |       | 4.1.1    | Laboratory Analysis - Leach Testing               |    |
|    |       | 4.1.2    | Arsenic Distribution                              |    |
|    | 4.2   | Conce    | entration Trends Over Time                        | 11 |
|    | 4.3   | Reme     | edial Objectives                                  | 12 |
| 5. | Rem   | nedial C | Options – Laboratory Evaluations                  | 13 |
|    | 5.1   | Grou     | ndwater Extraction Evaluation                     |    |
|    |       | 5.1.1    | Leach Testing                                     |    |
|    |       | 5.1.2    | Results                                           |    |
|    | 5.2   | In Siti  | u Treatment Evaluation                            |    |
|    |       | 5.2.1    | Effectiveness                                     |    |
|    |       | 5.2.2    | Long-term Stability                               |    |
|    |       | 5.2.3    | Refinement of Chemical Dosages                    |    |

| 6. | Rem  | nedial Op | ptions Analysis                        | 16 |
|----|------|-----------|----------------------------------------|----|
|    | 6.1  | In Situ   | Treatment – 11,000 cy                  | 16 |
|    |      | 6.1.1     | Remedy Description – Basis of Cost     | 16 |
|    |      | 6.1.2     | Performance Monitoring – Basis of Cost | 17 |
|    |      | 6.1.3     | Effectiveness                          | 17 |
|    |      | 6.1.4     | Implementability                       | 18 |
|    |      | 6.1.5     | Time Frame for Restoration             | 18 |
|    |      | 6.1.6     | Cost                                   | 18 |
|    | 6.2  | In Situ   | 1 Treatment – 3,000 cy                 | 18 |
|    |      | 6.2.1     | Remedy Description – Basis of Cost     | 18 |
|    |      | 6.2.2     | Performance Monitoring – Basis of Cost | 19 |
|    |      | 6.2.3     | Effectiveness                          | 19 |
|    |      | 6.2.4     | Implementability                       | 19 |
|    |      | 6.2.5     | Time Frame for Restoration             | 19 |
|    |      | 6.2.6     | Cost                                   | 19 |
|    | 6.3  | In Situ   | Treatment with On-Site Containment     | 19 |
|    |      | 6.3.1     | Remedy Description – Basis of Cost     | 19 |
|    |      | 6.3.2     | Performance Monitoring – Basis of Cost | 20 |
|    |      | 6.3.3     | Effectiveness                          | 21 |
|    |      | 6.3.4     | Implementability                       | 21 |
|    |      | 6.3.5     | Time Frame for Restoration             | 21 |
|    |      | 6.3.6     | Cost                                   | 21 |
|    | 6.4  | In Situ   | Treatment with Off-Site Disposal       | 22 |
|    |      | 6.4.1     | Remedy Description – Basis of Cost     |    |
|    |      | 6.4.2     | Performance Monitoring – Basis of Cost | 22 |
|    |      | 6.4.3     | Effectiveness                          |    |
|    |      | 6.4.4     | Implementability                       |    |
|    |      | 6.4.5     | Time Frame for Restoration             |    |
|    |      | 6.4.6     | Cost                                   | 23 |
| 7. | Con  | clusions  | s and Recommendations                  | 24 |
|    | 7.1  | Concl     | usions                                 | 24 |
|    | 7.2  | Recon     | nmendations                            | 25 |
| Q  | Pofe | oroncos   |                                        | 26 |

#### **List of Tables**

Table 1 December 2009/March 2010 Hot Spot Geoprobe Investigation

Table 2 Remedial Options Analysis

Table 3 Comparative Summary of Remedial Options Estimated Costs<sup>(1)</sup>

#### **List of Figures**

Figure 1 Site Location Map

Figure 2 2009/2010 Hot Spot Investigation

Figure 3 Cross-Section Locator Map

Figure 4 Cross-Section A-A'
Figure 5 Cross-Section B-B'
Figure 6 Cross-Section C-C'
Figure 7 Cross-Section D-D'
Figure 8 Cross-Section E-E'

#### **List of Appendices**

Appendix A Geophysical Conductivity Survey

Appendix B Remediation Laboratory Summary Memos
Appendix C Concentration Trend Over Time Analysis
Appendix D Detailed Cost and Quantity Estimating Sheets

#### **List of Attachments**

Attachment A Soil Boring Logs
Attachment B Laboratory Reports

### Section 1 Introduction

#### 1.1 Background

Approximately 15 acres of the Kewaunee Marsh Besadny Wildlife Area, in Kewaunee, Wisconsin, are contaminated with arsenic. The source of the arsenic is likely a spill of calcium/magnesium arsenate from the adjacent railroad that occurred in the late 1930s or early 1940s. An interim action was completed in 1996 to limit the threat of direct contact with the arsenic. Specifically, 4 acres of the marsh were capped, and all 15 acres were enclosed within a fence (Figure 1).

Between 2002 and 2005, STS Consultants (STS) completed site investigation activities to define the distribution of arsenic in the soil and groundwater at the site (STS, 2004 and STS, 2006). Based on the results of the STS investigation, WDNR established site specific cleanup standards of 19 mg/kg for soil and 148  $\mu$ g/L for groundwater/surface water.

Between 2005 and 2007, following the site investigation, RMT, Inc. (RMT), completed a treatability study and a remedial options analysis for the marsh to evaluate alternatives for achieving the site-specific cleanup standards (RMT, 2007). During the study, RMT noted that an area of elevated arsenic concentrations (2,200,000  $\mu$ g/L) was present in groundwater near the former railroad ballast at monitoring well MW04-10. RMT completed an additional groundwater investigation near MW04-10 to test the hypothesis that a hot spot of dissolved-phase arsenic was present within the railroad ballast near the location of a railroad spill. The results of the additional investigation confirmed that a hot spot of dissolved-phase arsenic is present below the railroad ballast and to the east of the ballast in the marsh, near MW 04-10, although the results did not define the depth and lateral extent of the high-level contamination into the marsh.

### 1.2 Purpose and Scope

Because the hot spot of dissolved-phase arsenic identified in 2007 can act as a source of arsenic to the groundwater in the marsh, remediation of the hot spot is the critical first step to achieving the remediation objectives that have been established for the site. In order to design a remedy for the hot spot material, the WDNR and RMT determined that the extent of the hot spot must be further defined, and a focused remedial alternatives analysis for the hot spot area should be completed.

RMT has completed additional site investigation activities and testing to define the extent of the hot spot material. RMT has also completed laboratory bench scale testing to evaluate potential treatment and disposal approaches for the material. Based on the results of the site investigation activities and bench scale studies, three remedial options were evaluated for the hot spot material: (1) *in situ* treatment; (2) *in situ* treatment with on-site containment; and (3) *in situ* treatment with off-site disposal.

The purpose of this report is to document the results of the additional investigations and laboratory testing, and to present the remedial options analysis for the hot spot material. The scope of this report includes the following:

- Summary of the previous data related to the hot spot area
- Summary of the focused 2009-2010 hot spot investigation
- Delineation of the hot spot
- Determination of hot spot remedial action objectives
- Summary of the bench scale evaluations of the prospective remedial options
- Remedial options analysis

# Section 2 Previous Understanding of the Site

The following describes the site conditions that were documented by RMT and STS prior to the most recent hot spot investigation. It is critical to review the previous understanding of the site in order to put the current data and evaluations into context.

#### 2.1 Cap Description

In 1996, STS completed an Interim Action at the site (STS, 1996). Specifically, STS constructed a permeable cap over areas with distressed vegetation in the marsh (Figure 2). The cap covered approximately 4 acres, was approximately 1.5-2.5 feet thick, and was constructed from the ground up as follows:

- Granular Lime: 30 cubic yards of granular lime were applied across the surface in an effort to remove soluble arsenic as an insoluble precipitate.
- Polystyrene sheets: 5-inch-thick polystyrene sheets were placed over areas devoid of vegetation to provide a supportive base for the cap
- Geotextile Fabric: 155,000 sf of woven geotextile was placed over visibly impacted areas to provide a high-strength permeable support for the wood chips
- Wood Chips: 2 to 2.5 feet of a yard mulch and wood chip mix was applied across the cap area
- Vegetation: Capped area was seeded to establish a vegetative mat.

### 2.2 Historical Soil Sampling - Capped Area 1994/2004/2006

In 1994, STS collected soil samples from the area to be capped prior to construction of the cap. The arsenic concentrations down the center of the capped area ranged between 2,660 and 10,700 mg/kg. The concentrations were generally highest near the railroad ballast and decreased moving east from the ballast, and generally decreased moving north and south from the areas previously devoid of vegetation.

In 2002, during the site investigation, STS collected soil samples from approximately 20 borings throughout the marsh; however, no samples were collected from the capped area. The results from the soil samples collected outside the capped area indicated that arsenic impacts that exceeded the cleanup criteria of 19 mg/kg were limited to the upper 2 feet of soil in the marsh, and samples outside the capped area were generally below 1,000 mg/kg, with a few exceptions. One exception was SB02-18, which was constructed within the ballast material near the

presumed location of the historical railroad spill. The concentrations of arsenic in SB 02-18 were between 1,800 and 6,520 mg/kg, at depths between 9 and 15 feet below ground surface (STS, 2004).

In 2005, during collection of samples for the treatability work, RMT collected a soil sample from beneath the cap near the railroad ballast near the location of the historical spill. The concentration of arsenic in this sample was 2,500 mg/kg, which was significantly lower than the 10,700 mg/kg that was detected in this area in 1994. Therefore, in June 2006, in order to confirm whether this decreasing trend was observable throughout the capped area, RMT collected soil samples from approximately the same locations under the cap that had previously been sampled in 1994 by STS. The results of the sampling found that the arsenic concentrations had decreased by a factor of 2 or 4 between 1994 and 2006; specifically, the concentrations in 2006 ranged from 340 to 6,100 mg/kg, as compared to the range of 2,660 and 10,700 mg/kg documented in 1994. It should be noted, that there is a high degree in variability in the concentrations of arsenic within relatively small areas across the marsh, and this variability may also be contributing to the decreasing concentration trend.

### 2.3 Leach Testing 2006

The soil samples collected by RMT in 2005 were subjected to screening Toxicity Characteristic Leaching Procedure (TCLP) and screening Synthetic Precipitation Leaching Procedure (SPLP). The screening tests follow the standard USEPA protocols (TCLP-SW 846 Method 1311 and SPLP-SW 846 Method 1312), with the exceptions that the leaching solution is analyzed directly after acidification, and smaller quantities of solid and leaching solution are used, while still maintaining the 1:20 solid to solution ratio. Previous tests have shown that the screening tests correlate well with standard leaching test results.

Each of the samples used in this testing, with the exception of one, were collected from locations outside the capped area and contained concentrations of arsenic below 1,000 mg/kg. For samples with compositional arsenic less than 1,000 mg/kg, none of the material was determined to be hazardous (TCLP >5 mg/L), and no correlation between leachable and compositional arsenic concentration was observed (RMT, 2007).

### 2.4 2007 RMT Hot Spot Groundwater Sampling

Groundwater collected from monitoring well MW 04-10 throughout 2004 and 2005 had arsenic concentrations between 1,000,000  $\mu$ g/L and 2,200,000  $\mu$ g/L, suggesting that the well is located within the area of the historical railroad spill. The elevated concentrations of arsenic detected in this well, along with the elevated concentrations of arsenic detected in ballast in SB 02-18 in

2002, indicated that a hot spot, or source area, of dissolved phase arsenic has persisted in this area since the original spill.

In order to evaluate the presence and delineate the extent of the presumed dissolved phase source area (the "hot spot"), RMT collected groundwater samples from 22 Geoprobe borings constructed in the ballast and the marsh near MW 04-10 in April 2007. The results of the sampling found that groundwater with concentrations of arsenic greater than 100,000  $\mu$ g/L is present along approximately 70 feet of the ballast area. The results suggested that the hot spot impacts extended eastward into the marsh. However, the results of the investigation did not specifically delineate the extent of the impacts into the marsh or the depth of the impacts (RMT, 2007).

#### 2.5 Original Concepts for Remediation of the Hot Spot

As of 2007, it appeared that the cap continued to provide a direct contact barrier in the marsh, that the concentrations of arsenic were decreasing within the capped area, and that a hot spot source area persisted in the groundwater in the granular ballast material, and extended slightly eastward into the marsh. Based on this understanding, several remedial options were evaluated for the hot spot (RMT, 2007). These remedies included the following:

- Groundwater extraction and on-site treatment
- Groundwater extraction and off-site disposal
- *In situ* treatment of the hot spot

In February 2010, following the initial screening of alternatives, the options for remediation of the hot spot were refined by RMT and the WDNR. The WDNR selected the following options, which will be described in further detail within this report:

- Groundwater extraction and off-site disposal (using an extraction trench)
- *In situ* treatment
- *In situ* treatment and on site containment in the unsaturated zone
- *In situ* treatment and off-site disposal at a solid waste landfill.

### Section 3 Hot Spot Investigation

In order to confirm the extent and depth of the hot spot impacts along the ballast and eastward into the marsh, a subsurface Geoprobe® investigation and geophysical conductivity survey were completed at the site.

#### 3.1 Geoprobe Investigation

#### 3.1.1 December 2009 Soil Sampling

On December 9, 2009, RMT, and its Geoprobe® subcontractor On-Site Environmental Services (OES), mobilized to the site to initiate the hot spot soil investigation. Fourteen, or approximately half of the proposed Geoprobe® borings, were completed between December 9 and 10, 2009. However, the fieldwork was forced to stop on December 10, 2009 because of severe winter weather.

A total of 10 borings were completed in the ballast area (B1D-B1E, B2A-B2E, and B3D-B3E), and 4 boring were completed in the marsh (M2D-M5D). The locations of the borings are shown on Figure 2. The borings were logged in the field and the soil boring logs are included in Attachment A. The borings extended between 20 and 30 feet below ground surface (bgs) in the ballast area, and 10 ft bgs in the marsh.

#### 3.1.2 March 2010 Soil Sampling

Because a second mobilization was required to complete the investigation, RMT delayed completion of the investigation until the results of the December 2009 sampling event could be evaluated and the locations selected for the remaining Geoprobe® borings could be optimized. The results from the December 2009 sampling indicated the extent and depth of the impacts had been delineated in the ballast, but that the extent of the hot spot impacts required further delineation in the marsh. Therefore, no additional samples were completed in the ballast and the remainder of the sampling was focused on the marsh area.

RMT and OES mobilized to the site on March 17, 2010 to further investigate the extent of the hot spot in the marsh area. Sixteen borings were completed in the marsh area. Two transects (M2A-M2F) and (M5A-M5F) were completed parallel to the ballast. Transect M2 was approximately 10 feet from the ballast and transect M5 was approximately 60 feet from the ballast. A transect was also completed approximately 600 feet eastward

into the marsh (M6E-M12F) within the area that previously contained distressed vegetation prior to placement of the cap. The locations of the borings are shown on Figure 2. Each of the borings extended 8 to 12 feet bgs. The borings were logged in the field and the soil boring logs are included in Attachment A.

#### 3.1.3 Soil Stratigraphy

Five cross-sections were developed from the hot spot investigation results. The locations of each cross-section are shown on Figure 3 and the cross-sections are included as Figures 4 through 8.

The marsh contains approximately 8 feet of peat, which overlays a 7 to 12 foot layer of organic silt. A coarse-grained gravel layer was observed beneath the organic silt in the deeper borings. Evidence of the cap (Styrofoam) was observed at 2 to 3 feet bgs in 5 of the marsh borings.

The ballast contains 6 to 14 feet of granular fill sand that overlays a compressed layer of peat and the organic silt. The coarse-gravel layer is present approximately 20 feet bgs in the ballast area. The upper 4 to 5 feet of the ballast are unsaturated.

#### 3.1.4 Sampling Results

Soil samples were collected from 2-foot to 4-foot intervals, or from distinct soil types within each interval. The soil samples were submitted to Pace Analytical (Pace) for arsenic analysis. The laboratory reports are included in Attachment B, and the results are summarized in Table 1.

### 3.2 Geophysical Survey

A geophysical electrical conductivity survey was completed concurrent with the March 2010 Geoprobe® sampling event. The intent of the geophysical survey was to capture the electrical conductivity of a broad area surrounding the hot spot and then to correlate the conductivity to the arsenic concentrations detected at the discrete borings. The goal was to define the limits of the hot spot within the marsh based on this correlation

The Wisconsin Geological and Natural History Survey (WGNHS) completed the electrical conductivity survey on March 9, 2010. The WGNHS summarized the methods and results of the survey, which are included in Appendix A.

RMT analyzed the geophysical data and results of the compositional arsenic analyses with the goal of developing a correlation between conductivity and arsenic concentration in the marsh

(Figures A.1 and A.2). No correlation was observed between the two datasets, as shown on Figure A.3. It is likely that other factors, such as limestone used in the construction of the cap, may have interfered with the electrical conductivity response.

Based on the additional analysis of the geophysical survey, we have concluded that the limits of the hot spot cannot be defined from the electrical conductivity data. Although a specific correlation was not observed, the geophysical survey does provide a good relative picture of the arsenic distribution. The geophysical survey showed that the higher concentrations of arsenic are limited to the area under the cap, and to the east of the ballast area. This information supports that the established monitoring network is sufficient and appropriately distributed throughout the marsh.

### Section 4 Hot Spot Definition

#### 4.1 Hot Spot Definition

The results of the March 17, 2010 Geoprobe® investigation confirmed that elevated arsenic concentrations extend into the marsh; however, specific criteria were needed in order to define the limits of hot spot. RMT and the WDNR determined that the leaching characteristic, or potential impact the material has to groundwater, would be used to define the hot spot material.

#### 4.1.1 Laboratory Analysis - Leach Testing

One criterion that could be used for delineating the hot spot material is the potential to leach arsenic above 5 mg/L in a TCLP test, which would mean the excavated material would be classified as a hazardous waste under the RCRA regulations. However, the sediment analysis to date has primarily been for compositional arsenic, and to use leachable arsenic as a criterion, the correlation between compositional and leachable arsenic needs to be determined.

RMT evaluated leaching characteristics of material collected during the December 2009/March 2010 sampling events. A memo describing the laboratory methods and results is included in Appendix B. The results of the study found a strong correlation between compositional arsenic concentration and leaching arsenic concentrations for samples with arsenic concentrations above 600 mg/kg. Specifically, the study found that material with compositional arsenic concentrations greater than 1,000 mg/kg would result in a TCLP concentration greater than 5 mg/L, and thus would be considered hazardous. Based on these results, the 1,000 mg/kg criterion was selected as the threshold to define the limits of the hot spot.

It is important to note that the previous leaching studies, discussed in Section 2.3, found no correlation between compositional arsenic concentration and TCLP. However, the previous work was focused on the moderately contaminated material that is present in the broad area of the marsh and not the high concentrations present near the former location of the railroad spill. The current and previous leaching studies both found that below approximately 600 mg/kg the arsenic is not very leachable, and there is no correlation between compositional concentrations and leaching concentrations.

#### 4.1.2 Arsenic Distribution

The arsenic results are summarized in Table 1 and are also shown on each of the cross-sections (Figures 4 through 8). The approximate extent of the current hot spot (i.e., concentrations greater than 1,000 mg/kg) is shown on Figure 2.

The depth and extent of the hot spot arsenic impacts have been defined within the ballast. Arsenic concentrations greater than 1,000 mg/kg are present along a 70 foot length of the ballast, which is consistent with the results of the results from 2007, and coincide with the location of elevated impacts detected by STS in the ballast in 2004. The elevated arsenic impacts begin approximately 5 feet bgs (at the approximate) location of the groundwater table), and extend to a depth of approximately 15 feet bgs. The organic silt layer appears to be impeding the downward migration of the arsenic impacts.

The lateral extent of the hot spot impacts within the marsh has been generally defined, but additional investigation may be required to define the specific limits for the eastern edge (Figure 2). The material with arsenic concentrations greater than 1,000 mg/kg extends approximately 200 feet eastward from the ballast into the marsh. The width of hot spot impacts are present over approximately 80 feet near the ballast, but expand to at least 160 feet in width as you move eastward. The width of the impacts on the eastern edge is still approximate and further delineation is recommended. It was anticipated that the geophysical survey could have been useful to define the lateral extent of the hot spot impacts within the marsh. However, because a direct correlation between conductivity and arsenic concentration was not seen at the site (see Section 3.2), additional soil sampling is recommended.

The depth of the arsenic impacts has been defined within the marsh. Arsenic concentrations greater than 1,000 mg/kg are present within the upper 2 feet of the marsh material, and extend 8 to 10 feet bgs. Similar to the ballast area, the organic silt layer appears to be impeding further downward migration of the arsenic impacts. The elevated arsenic concentrations detected in the upper 2 feet suggest that the once "clean" cap material has now been impacted with arsenic. The specific mechanism that has caused these impacts is unknown; however, potential causes for arsenic impacts to the cap include evapotranspiration causing contaminated groundwater to rise into the vadose zone, groundwater fluctuations, settlement of the cap, or migration due to conversion of arsenic to arsine gas.

Based on the area and depth of impacts described above, the hot spot area with arsenic concentrations greater than 1000 mg/kg currently includes approximately 11,000 cy of material (Appendix D).

#### 4.2 Concentration Trends Over Time

As discussed in Section 2.2, decreasing trends were observed in the arsenic concentrations under the cap between 1994 and 2006. In order to determine if the decreasing trend has continued, RMT compared the most recent sampling results (December 2009/March 2010) to the samples collected by RMT in 2006, and to the samples collected by STS in 1994. Again, it should be noted that while there is a high degree in variability in the concentrations of arsenic within relatively small areas across the marsh, there does appear to be a significant decrease in concentration for the 12 years which were used to predict future decreases. The details of this analysis are included in Appendix C.

The arsenic concentrations from similar locations were compared and a trendline was fit to the data from each distinct area. A decreasing trend with a strong correlation was observed in each of the areas under the cap. The mechanism causing the arsenic concentrations to naturally attenuate is uncertain, but is most likely either surface water transport or conversion of the arsenic to arsine gas. Further evaluation is recommended to identify this mechanism(s) to ensure that the mechanism is not causing unanticipated problems elsewhere, and to ensure that the conditions facilitating natural attenuation can be maintained.

Although the mechanism for the decreasing trend is unknown, we can assume that further reductions in concentration will likely occur over time in the capped area. Therefore, the area currently delineated as the hot spot within the capped area of the marsh (arsenic > 1,000 mg/kg), will likely reduce in size over time. This is important because reducing the quantity of material containing hazardous levels of arsenic significantly reduces the remediation cost, with minimal risk to human health and the environment.

To evaluate the impact that natural attenuation of arsenic will have on the extent of the hot spot area, RMT assumed the average rate of decrease observed over the last 16 years to estimate what the extent of the hot spot might be 4 to 5 years from now, when performance monitoring for a hot spot remedy will likely begin. This calculation is summarized in Appendix C. The results of the calculation suggest that areas that currently have arsenic concentrations greater than 2,000 mg/kg, would likely still be considered hot spot material 4 to 5 years from now, and all areas that currently have arsenic concentrations less than 2,000 mg/kg would likely be less than 1,000 mg/kg in 4 to 5 years, and thus will no longer be considered hot spot. The approximate extent of the area that will be considered hot spot in 4 to 5 years is shown on Figure 2. This area extends approximately 7 to 8 feet bgs in the marsh, and includes approximately 3,000 cy of material (Appendix D).

However, this evaluation and observation of decreasing concentrations applies to the marsh material, and not to the ballast area. Because detailed historical data is not available from the

ballast, and the material in the ballast is different than the marsh (granular vs. organic), we assume that natural attenuation of arsenic is not occurring in the ballast, and that the material currently above 1,000 mg/kg within the ballast will remain at those levels in the future.

#### 4.3 Remedial Objectives

The hot spot material that will be targeted by the selected remedy is that material which would be considered hazardous if excavated from the site (TCLP > 5mg/L). The remedial action objectives for this hot spot material depend upon the remedial option selected.

- For any option that leaves the material on-site, the treatment must reduce the compositional arsenic concentrations to leach less than the site specific clean up criteria of 148 μg/L.
- For any option that removes the material from the site, the material must be treated to the level that renders it non-hazardous for arsenic (TCLP < 5 mg/L) so it can be disposed of at a WDNR-licensed solid waste (Subtitle D) landfill.

### Section 5 Remedial Options – Laboratory Evaluations

Bench-scale laboratory tests were completed to evaluate the feasibility and develop design criteria for groundwater extraction and *in situ* treatment.

#### 5.1 Groundwater Extraction Evaluation

#### 5.1.1 Leach Testing

In order to evaluate the feasibility of the groundwater extraction trench, it is critical to determine the length of time, or number of pore volumes of water requiring removal, to achieve the remedial objectives for the hot spot. Bench-scale leach testing was completed on four materials composited from samples collected in December 2009/March 2010. The materials included Ballast Sand, Peat from the Ballast, Peat from the Marsh, and Organic Silt from the Marsh. A memo describing the laboratory methods and results for this leach testing is included in Appendix B.

#### 5.1.2 Results

The results of the leach testing found that at least 1,000 pore volumes (500 to 600 million gallons) must be flushed through the hot spot material to achieve the remedial objectives for the on-site remedy (leachable concentration < 148  $\mu$ g/L). The large number of pore volumes required for the groundwater extraction makes this option unfeasible from the standpoint of time frame, groundwater management, and cost. Therefore, this option was eliminated from further evaluation in the detailed remedial options analysis presented in Section 6.

#### 5.2 *In Situ* Treatment Evaluation

#### 5.2.1 Effectiveness

During the 2007 treatability work, a groundwater treatment chemical process was developed that would achieve the groundwater cleanup criterion. The treatment consisted of the following:

- 25 mL/kg hydrogen peroxide (3%)
- 8.4% ferric sulfate
- 6% calcium carbonate

Additional bench scale testing was needed in order to evaluate the effectiveness of using this chemistry for *in situ* mixing of the saturated hot spot material (solids and liquid). A memo describing the laboratory methods and results for this testing are included in Appendix D.

The results from the 2010 bench scale work show that the treatment chemistry developed during the 2007 treatability study for the groundwater can also be used to effectively treat the saturated ballast and marsh material *in situ*. It should be noted that treatment of soil or sediment to render it nonhazardous for arsenic using this chemistry is covered under U.S. Patent 6,254,312 B1 (treatment of groundwater itself is not covered by the patent). Licensing to use this technology can be made available to the WDNR for the hot spot remediation either through RMT or purchasing the chemicals through Premier Chemicals, LLC.

#### 5.2.2 Long-term Stability

The bench scale study described above was also set up to make a preliminary assessment of the long-term stability of the *in situ* treatment. The concern being that because the treated material will be left below the groundwater table, the treatment process may reverse if the treated material becomes anoxic over time through biodegradation, and some arsenic may leach from the treated material in the future.

The bench scale study evaluated the stability of the treated material over a 3 month time period. Within this time, no arsenic leached from the treated material, even when left in saturated conditions. However, these results cannot be extrapolated to conclude that the treated material will be stable over the long-term, but the results do support pursuing *in situ* treatment as an effective remedial option.

#### 5.2.3 Refinement of Chemical Dosages

The bench scale-studies described above confirmed the effectiveness of the *in situ* treatment approach; however, since the chemistry had been developed for purposes of groundwater treatment of the most highly contaminated groundwater on the site, it was presumed that the chemical doses could be reduced for the *in situ* process and still be effective.

In order to refine the chemical dose for *in situ* treatment, additional bench-scale tests were completed. A memo describing the laboratory methods and results for this testing are included in Appendix B.

The results of the testing show that the doses for the *in situ* mixing could be reduced by 75 percent and still achieve the remedial objectives (leachable arsenic less than 148  $\mu$ g/L). The recommended dose for *in situ* mixing are:

- 6.25 mL/kg 3% hydrogen peroxide
- \_ 2.1% ferric sulfate
- .... 1.5% calcium carbonate

In the case where the treated material would be excavated and disposed of at a WDNR-licensed solid waste (Subtitle D) landfill, the remedial objectives are less stringent (leachable arsenic < 5 mg/L). In this case, the doses of ferric sulfate and calcium carbonate can be reduced by 90 percent and the hydrogen peroxide application can be eliminated. The recommended doses for treatment and off-site disposal are:

- --- 1% ferric sulfate
- .... 0.75% calcium carbonate

# Section 6 Remedial Options Analysis

Based on the initial screening of alternatives, and the results of the laboratory evaluations, three options were included in the remedial options analysis for the hot spot material.

- 1. *In situ* treatment
  - a. 11,000 cy (based on the current extent of the hot spot)
  - b. 3,000 cy (based on the extent of the hot spot estimated to remain in 4 to 5 years if natural attenuation continues)
- 2. *In situ* treatment, with on-site containment in the unsaturated zone (11,000 cy)
- 3. *In situ* treatment, with off-site disposal at a WDNR-licensed solid waste (Subtitle D) landfill (11,000 cy)

Groundwater extraction was eliminated from the detailed remedial options analysis because WDNR and RMT determined it to be unfeasible from the standpoint of cost and time frame for restoration (see Section 5.1).

The remedial options are summarized in Table 2 and Table 3, and the detailed quantity and cost estimating sheets for each option are included in Appendix D. Each remedial option is discussed below.

### 6.1 *In Situ* Treatment – 11,000 cy

#### 6.1.1 Remedy Description – Basis of Cost

The 11,000 cy of hot spot material will be treated *in situ* to achieve the site specific clean up criteria (leachable arsenic concentration < 148 µg/L). Approximately 300 tons ferric sulfate, 200 tons limestone, and 1,000 gallons hydrogen peroxide (50%), will be incorporated into the hot spot material using excavators, end loaders, and similar equipment. Within the marsh, swamp mats would likely be used to provide a stable surface for the heavy equipment. The treatment zone will be gridded off into accessible areas, and the *in situ* mixing will occur sequentially in each subdivided area in 3 to 5 foot lifts. Following the application of the treatment chemicals, approximately 600 tons of bentonite powder will be blended into the treated area in order to reduce the permeability of the material, and improve the long-term performance of the treatment (restrict the flow of groundwater in the area). The addition of the treatment chemicals

and bentonite will cause some bulking and will raise the elevation of the treatment area approximately 1.5 to 2.5 feet.

Following the mixing process, a 6-inch layer of top soil or similar organic material will be placed over the treated marsh material and seeded to restore vegetation so as to reduce erosion and provide a vegetative barrier. The fence and ballast/bike path will be reconstructed in the treatment area, and the bike path will be restored where damaged by truck traffic during construction.

#### 6.1.2 Performance Monitoring – Basis of Cost

Performance monitoring will be required to evaluate the effectiveness and long-term chemical stability of the *in situ* treatment. For the purposes of the remedial options analysis, it was assumed that 3 wells will be constructed in the treatment area, and one well will be constructed downgradient from the treated material. The wells will be monitored twice in the first year following treatment, and annually thereafter for 20 years. The wells will be monitored during each event for arsenic, iron, sulfate, calcium, and pH.

#### 6.1.3 Effectiveness

The laboratory evaluations have indicated that the *in situ* treatment will achieve the remedial action objectives in the short term for the hot spot. However, because the material will be left in place below the groundwater table, there is the potential for anoxic conditions to appear following treatment (years to decades later) as a result of biodegradation. The anoxic conditions could allow some of the arsenic to leach into the groundwater, and thus the long-term effectiveness is less predictable.

The impact on the marsh of any future leached arsenic can be reduced by lowering the permeability of the treated material. A simple way to do this would be to add bentonite. Laboratory experiments have been conducted to evaluate the effectiveness of bentonite addition. These results are presented in Appendix B.

The application of bentonite into the hot spot is intended to reduce the permeability of the material, such that even if leaching occurs, less groundwater will flow through the treatment area and come in contact with the leachable arsenic. In addition, even if the material does leach in the long-term, it is likely that it will leach at lower concentrations than are currently seen in the untreated hot spot. Thus, although the long-term effectiveness cannot be guaranteed, the amount of arsenic leaching into the groundwater and moving into the marsh will be significantly reduced through *in situ* treatment.

#### 6.1.4 Implementability

The *in situ* mixing process and site restoration can be accomplished using standard construction equipment. However, the marsh setting and target depth of 10 feet of saturated marsh material will require special consideration to the construction methods and phasing. Swamp mats or similar equipment would likely be required, and additional steps, such as a field trial are recommended in order to refine the specific means and methods that will be used by the contractor to complete the work. In addition, effort will likely be required to improve the bike path prior to construction and restore the bike path following construction, since it will be used as a haul road for the treatment chemicals and equipment during active remediation.

#### 6.1.5 Time Frame for Restoration

The *in situ* treatment including site preparation and site restoration will take 6 to 8 weeks to complete. The bike path will need to be closed during this time to allow a safe work zone in the treatment area, and access for the construction equipment.

#### 6.1.6 Cost

The estimated present worth cost for the *in situ* remedy for 11,000 cy of material is \$1,430,000. At this feasibility level of costing, a range -30% to +50% is typical, which equates to a potential cost range of \$1,000,000 to \$2,150,000.

### 6.2 In Situ Treatment - 3,000 cy

#### 6.2.1 Remedy Description – Basis of Cost

The 3,000 cy of hot spot material would be treated *in situ* to achieve the site specific clean up criteria (leachable arsenic concentration < 148  $\mu$ g/L). The mixing and restoration process will be consistent with that presented in Section 6.1 where only the size of the treatment area will be reduced. This reduced area assumes that the natural attenuation that has been observed in the arsenic in the capped area will continue at the site, and that within 4 to 5 years only 3,000 cy of material will constitute the hot spot and require treatment. Based on this reduced area, approximately 70 tons ferric sulfate, 50 tons limestone, and 300 gallons hydrogen peroxide (50%), will be incorporated into the hot spot material.

As discussed in Section 4.2, although natural attenuation has been observed under the cap, RMT assumes that natural attenuation is not occurring readily within the ballast.

Therefore, active remediation to address the most highly impacted material near and in the ballast is warranted.

#### 6.2.2 Performance Monitoring – Basis of Cost

Performance monitoring will be required to evaluate the effectiveness and long-term stability of the *in situ* treatment. For the purposes of the remedial options analysis, it was assumed that 2 wells will be constructed in the treatment area, and one well will be constructed downgradient from the treated material. The wells will be monitored twice in the first year following treatment, and annually thereafter for 20 years. The wells will be monitored during each event for arsenic, iron, sulfate, calcium, and pH.

#### 6.2.3 Effectiveness

Same as 6.1.3.

#### 6.2.4 Implementability

Same as 6.1.4.

#### 6.2.5 Time Frame for Restoration

The *in situ* treatment including site preparation and site restoration will take 4 to 5 weeks to complete. The bike path will need to be closed during this time to allow a safe work zone in the treatment area, and access for the construction equipment.

#### 6.2.6 Cost

The estimated present worth cost for the *in situ* remedy of 3,000 cy of material is \$780,000. At this feasibility level of costing, a range -30% to +50% is typical, which equates to a potential cost range of \$550,000 to \$1,170,000.

#### 6.3 In Situ Treatment with On-Site Containment

#### 6.3.1 Remedy Description - Basis of Cost

The 11,000 cy of hot spot material will be treated *in situ* to achieve the site specific clean up criteria (leachable arsenic concentration < 148  $\mu$ g/L). Approximately 300 tons ferric sulfate, 200 tons limestone, and 1,000 gallons hydrogen peroxide (50%), will be incorporated into the hot spot material using excavators, end loaders, and similar equipment. Swamp mats would likely be used to provide a stable surface for the heavy

equipment. The treatment zone will be gridded off into accessible areas, and the *in situ* mixing will occur sequentially in each subdivided area in 3 to 5 foot lifts.

Following the application of the treatment chemicals, the treated material will be excavated and placed on the surface of the marsh. For the purposes of this cost estimate, we assumed the material will be placed over a 500 by 180 foot section of the untreated capped area, and will be graded into a uniform mound 3 to 4 feet in height. No additional barriers or liners will be used, and the material will be allowed to dewater in place. Swamp mats would likely be used to provide stable access to the eastern portions of the marsh where the material will be placed.

Clean organic backfill will be transported to the site, and placed in the open excavation. A 6-inch layer of organic soil will be placed over the mound of treated marsh material. The newly placed organic soil will be seeded to restore vegetation so as to reduce erosion and provide a vegetative barrier. The fence and ballast/bike path will be reconstructed in the treatment area, and the bike path will be restored where damaged by truck traffic during construction. A larger effort will be required for restoration of the bike path, as compared to *in situ* treatment, due to the increased amount of truck traffic (approximately 800 trucks) that will occur due to importing of backfill.

#### 6.3.2 Performance Monitoring - Basis of Cost

Performance monitoring will be required to evaluate the effectiveness of the hot spot treatment, and long-term monitoring will be required to evaluate the chemical and structural stability of the mound of treated material that will be left on site.

To document the effectiveness of the remediation, it was assumed that 3 wells will be constructed in the excavated and backfilled area. The wells will be monitored twice in the first year following treatment, and annually thereafter for 5 years. The wells will be monitored during each event for arsenic and pH.

To document the long-term chemical and structural stability of the mound of treated material, it was assumed that 2 wells will be constructed near or through this material. These wells will be monitored twice in the first year, and annually thereafter for 20 years. The wells will be monitored during each event for arsenic, iron, sulfate, calcium, and pH. In addition, an evaluation of the structural integrity of the mound of treated material will be made during each annual monitoring event. For the purposes of this cost estimate it was assumed that the mound will need to be regraded and restored once in the 20 years of monitoring.

#### 6.3.3 Effectiveness

The laboratory evaluations have shown that the *in situ* treatment will achieve the remedial action objectives in the short term for the hot spot. The placement of the treated material above the groundwater table increases the confidence in the long-term effectiveness of the treatment. However, long-term monitoring is still recommended for this option, because settlement of the material or fluctuations in the water table may occur, whereby the treated material becomes submerged below the groundwater table and the long-term stability is no longer predictable.

It is also important to note that it is possible that movement of the treated material to an area outside the hot spot could have unintended consequences and a negative impact on the effectiveness of the natural attenuation of arsenic that appears to be occurring within the marsh.

#### 6.3.4 Implementability

The *in situ* mixing and on-site containment of the treated material can be accomplished using standard construction equipment. However, the marsh setting and target depth of 10 feet of saturated marsh material will require special consideration to the construction methods. Swamp mats or similar equipment would likely be required, and additional steps such as a field trial are recommended in order to refine the specific means and methods that will be used by the contractor to complete the work. In addition, additional effort would be required to improve the bike path as a haul road or restore damage to the bike path following construction, because of the significant amount of truck traffic (likely over 800 trucks) that will occur importing of backfill.

#### 6.3.5 Time Frame for Restoration

The *in situ* treatment with on site containment, including site preparation and site restoration will take 18 to 20 weeks to complete. The bike path will need to be closed during this time to allow a safe work zone in the treatment area, and access for the construction equipment.

#### 6.3.6 Cost

The estimated present worth cost for the *in situ* remedy of 11,000 cy of material is \$2,650,000. At this feasibility level of costing, a range -30% to +50% is typical, which equates to a potential cost range of \$1,860,000 to \$3,980,000.

#### 6.4 *In Situ* Treatment with Off-Site Disposal

#### 6.4.1 Remedy Description – Basis of Cost

The 11,000 cy of hot spot material will be treated *in situ* to meet the less stringent objective of being non-hazardous (leachable arsenic < 5 mg/L) upon excavation. Approximately 200 tons ferric sulfate and 100 tons limestone will be incorporated into the hot spot material using a backhoe, loader, and similar equipment. Swamp mats will be used to provide a stable surface for the heavy equipment. The treatment zone will be gridded off into accessible areas, and the *in situ* mixing will occur sequentially in each subdivided area in 3 to 5 foot lifts.

Following the application of the treatment chemicals, the treated material will be excavated and dewatered. For purposes of this estimate, it was assumed 1,200 tons of magnesium sulfate (Mg SO<sub>4</sub>) will be incorporated into the excavated material to remove any free liquids. The treated and dewatered material will then be transported off-site to a Subtitle D landfill. For purposes of this estimate it was assumed that the material will be disposed at Hickory Meadows landfill, under the State's contract with Veolia.

Clean organic backfill will be transported to the marsh site, and placed in the open excavation. The backfilled area will be seeded to restore vegetation so as to reduce erosion and provide a vegetative barrier. The fence and ballast/bike path will be reconstructed in the treatment area, and the bike path will be restored where damaged by truck traffic during the construction. A larger effort will be required for restoration of the bike path, as compared to *in situ* treatment and *in situ* treatment with on-site containment, due to the larger amount of truck traffic that will occur while transporting the treated material off-site and the importing backfill.

#### 6.4.2 Performance Monitoring – Basis of Cost

Performance monitoring will be required to evaluate the effectiveness of the hot spot treatment. For purposes of this cost estimate, it was assumed that 3 wells will be constructed in the excavated and backfilled area. The wells will be monitored twice in the first year following treatment and excavation, and annually thereafter for 5 years. The wells will be monitored during each event for arsenic and pH.

#### 6.4.3 Effectiveness

This option provides the strongest assurance of effectiveness in both the short-term and long-term. The laboratory evaluations have shown that the *in situ* treatment will achieve the remedial action objectives for the hot spot material in the short term (make it non-

hazardous). The removal of the treated material from the site provides the highest level of confidence as to long-term effectiveness, i.e. the material will no longer serve as a source of arsenic impacts to the Kewaunee Marsh in the future.

#### 6.4.4 Implementability

The *in situ* mixing, excavation, and off-site disposal of the treated material can be accomplished using standard construction equipment. However, the marsh setting and target depth of 10 feet of saturated marsh material will require special consideration to the construction methods. Swamp mats or similar equipment may be required, and additional steps such as a field trial are recommended in order to refine the specific means and methods that will be used by the contractor to complete the work. In addition, additional effort would be required to improve the bike path as a haul road or restore damage to the bike path following construction, because of the significant amount of truck traffic (likely over 1,000 trucks) that will occur transporting treated material off-site and importing clean backfill.

#### 6.4.5 Time Frame for Restoration

The *in situ* treatment with on site containment, including site preparation and site restoration will take 13-15 weeks to complete. The bike path will need to be closed during this time to allow a safe work zone in the treatment area, and access for the construction equipment.

#### 6.4.6 Cost

The estimated present worth cost for the *in situ* remedy of 11,000 cy of material is \$2,900,000. At this feasibility level of costing, a range -30% to +50% is typical, which equates to a potential cost range of \$2,030,000 to \$4,350,000.

### Section 7 Conclusions and Recommendations

#### 7.1 Conclusions

The results of the hot spot investigation and laboratory evaluations of the hot spot material show the following:

- Material with compositional arsenic concentrations greater than 1,000 mg/kg would be considered hazardous if removed from the site (i.e., leach arsenic over 5 mg/L). Any material with arsenic concentrations greater than 1,000 mg/kg has thus been categorized as "hot spot" material.
  - The hot spot material is present under a 70 foot length of the ballast and extends approximately 200 feet into the marsh. The extent of the eastern edge of the impacts in the marsh are still approximate.
  - The hot spot material is present 5 to 15 feet below grade in the ballast and 0 to 10 feet below grade in the marsh. An organic silt/clay layer is impeding further downward migration of the arsenic.
  - The hot spot currently contains an estimated 11,000 cy of material.
- Natural attenuation appears to be occurring within the capped area of the marsh, but the process controlling the decreasing arsenic concentrations are not understood at this time.
  - If the rate of decrease in the arsenic concentrations (observed since 1994) continues, a smaller area would be considered hot spot material within the next 4 to 5 years ("future hot spot"). Specifically, marsh material that currently has arsenic concentrations of 2,000 mg/kg or less, would have arsenic concentrations less than 1,000 mg/kg in the next 4 to 5 years.
  - The future hot spot will still be present in the ballast (no natural attenuation presumed to be occurring here), and would only extend 80 feet into the marsh.
  - The future hot spot will contain an estimated 3,000 cy of material.

The results of the laboratory evaluations and detailed remedial options analysis have indicated the following:

Groundwater extraction is not a feasible option for the site because it would require approximately 500 to 600 million gallons of groundwater to be flushed through the hot spot to achieve the remedial objectives. Given the low permeability of the marsh material, removing this large volume of water would time prohibitive, and give the remote location of the site, management of this large volume of water would be cost prohibitive.

- The chemistry developed for treatment of groundwater at the site in the treatability study (RMT, 2007) will achieve the remedial objectives when applied to the hot spot material through *in situ* mixing.
  - The treated material can either be: (1) left in place, (2) excavated and contained in a dry area of the marsh, or (3) excavated and disposed off-site at a landfill.
  - Leaving the material in place is the lowest cost alternative, but there is less predictability with the long-term effectiveness of leaving the treated material below the groundwater table.
  - The on-site containment and off-site disposal options are similar in cost; however, off-site disposal provides the most reliability regarding long-term effectiveness.
- Natural attenuation could be relied upon to remediate a portion of the hot spot, and a smaller volume of material (3,000 cy) could be targeted for active remediation.

#### 7.2 Recommendations

Based on the results of the investigations and remediation options analysis, we recommend the following:

- Select an active remedy from the list of options defined in Section 6 for the hot spot material.
- Collect additional samples in the eastern edge of the impacts of the marsh prior to the implementation of the hot spot remediation to confirm the extent of the hot spot.
- Complete additional studies to define the processes controlling natural attenuation of arsenic in the marsh, and evaluate if natural attenuation will continue.

### Section 8 References

- RMT, Inc. 2007. WDNR Kewaunee marsh treatability study. Prepared for Wisconsin Department of Natural Resources, Kewaunee, Wisconsin. August 2007.
- STS. 1996. Construction documentation report for interim action at the Kewaunee marsh arsenic site. Prepared for Wisconsin Department of Natural Resources, Kewaunee, Wisconsin. June 11, 1996
- STS. 2004. Site assessment and remedial action alternatives report. Prepared for Wisconsin Department of Natural Resources, Kewaunee, Wisconsin. March 2004.
- STS. 2006. Site assessment and remedial action alternatives report addendum. Prepared for Wisconsin Department of Natural Resources, Kewaunee, Wisconsin. September 2006.

Table 1
December 2009/March 2010 Hotspot Geoprobe Investigation
Compositional Arsenic Results - Soil Sampling
Kewaunee Marsh, Kewaunee, Wisconsin

|                  | Trans                     |         | Vakuda (Spran | V 850369 | 98559108668       | Transect        |              | W64836000          | 8 8888W | \$2.535\\<br>\$2.535\\ | Transect l     |              | univeloku.         | 29480000 | 2020              | Transect M           |                 | 606860000P          | 825888 |           | Transect N  |              |              |       |           | Transect # |              | janio in ma  | William . |                   | Transect N           |                       |                 |
|------------------|---------------------------|---------|---------------|----------|-------------------|-----------------|--------------|--------------------|---------|------------------------|----------------|--------------|--------------------|----------|-------------------|----------------------|-----------------|---------------------|--------|-----------|-------------|--------------|--------------|-------|-----------|------------|--------------|--------------|-----------|-------------------|----------------------|-----------------------|-----------------|
|                  |                           |         | ure As        |          |                   |                 | Moisture     |                    |         |                        |                | Moisture     |                    |          |                   |                      | Moisture<br>(%) |                     |        |           |             | Moisture     |              |       |           |            | Moisture     |              |           |                   |                      | Moisture              |                 |
| (1000)(100       | ID Date (ft bg:           | >) (70) | Huhwa         |          | Date<br>10-Dec-09 | (ft bgs)<br>0-2 | (%)<br>4.3   | (mg/kg)<br>3,8     | ID      | Date                   | (ft bgs)       | (70)         | (mg/kg)            |          | Date<br>17-Mar-10 | (ft bgs)<br>0-2.5'   | 43.9            | (mg/kg)<br>13.6     | ID .   | Date      | ្ា(ពេម្យន)ៈ | (%)          | : (mg/xg)    | ID    | Date      | (ft bgs)   | (70)         | (mg/kg)      | ID.       | Date<br>17-Mar-10 | (ft bgs)<br>0-2.0'   | (%)<br>48.8           | (mg/kg)<br>20.8 |
|                  |                           |         |               | D2-A     | 10-000-00         | 2-4             | 3            | 2,2                |         |                        |                |              |                    | IVI-ZA   | 17-Wat-10         | 2,5-5,0'             | 63.1            | 107                 | l      |           |             |              |              | 1     |           |            |              |              | IWI-DA    | ( ?-\viai- IU     | 2-4.0'               | 69.7                  | 1090            |
| ⋖                |                           |         |               |          |                   | 4-6             | 6.3          | 30.9               |         |                        |                |              |                    |          |                   | 5.0-7.5              | 79.5            | 67                  | l      |           |             |              |              | 1     |           |            |              |              |           |                   | 4-6.0                | 82.5                  | 3000            |
| ည်မ              |                           |         |               |          |                   | 6-8             | 12.9         | 27.5               |         |                        |                |              |                    |          |                   | 7.5-10.0             | 66.5            | 63.9                | l      |           |             |              |              | 1     |           |            |              |              |           |                   | 6-8.0'               | 76.4                  | 590             |
| Sur              |                           |         |               |          |                   | 8-10            | 12.6         | 1.6J               |         |                        |                |              |                    |          |                   |                      |                 |                     | l      |           |             |              |              | 1     |           |            |              |              |           |                   | 8~10.0               | 61.9                  | 3.9 J           |
| <u>"</u>         |                           |         |               |          |                   | 10-12           | 17.6         | 2.4                |         |                        |                |              |                    |          |                   |                      |                 |                     | l      |           |             |              |              | 1     |           |            |              |              |           |                   |                      |                       |                 |
|                  |                           |         |               |          |                   | 12-14<br>14-15  | 24.2<br>56.2 | 7.1J<br>2.9J       | 1       |                        |                |              |                    |          |                   |                      |                 |                     | l      |           |             |              |              | 1     |           |            |              |              |           |                   |                      |                       |                 |
| Macana<br>Kasasa |                           |         |               | B2-B     | 10-Dec-09         |                 | 3,3          | 9.5                | +       |                        |                |              |                    | M-2B     | 17-Mar-10         | 0-2,5'               | 41,4            | 4500                |        |           |             |              |              | _     |           |            |              |              | M.5B      | 17-Mar-10         | 0-2 0'               | 82                    | 1460            |
|                  |                           |         |               |          |                   | 2-4             | 5.8          | 527                | 1       |                        |                |              |                    |          |                   | 2.5-5.€              | 79.4            | 13200               | l      |           |             |              |              | 1     |           |            |              |              | 32        | 17 11101 10       | 2.0-4.♥              | 50.5                  | 400             |
| 8                |                           |         |               |          |                   | 4-6             | 7.4          | 3830               | 1       |                        |                |              |                    |          |                   | 5.0-7.5              | 51.4            | 834                 | l      |           |             |              |              | 1     |           |            |              |              |           |                   | 4.0-6.01             | 82                    | 4350            |
| sct              |                           |         |               |          |                   | 6-8             | 15.1         | 309                |         |                        |                |              |                    |          |                   | 7.5-10.01            | 22.8            | 2100                | l      |           |             |              |              | 1     |           |            |              |              |           |                   | 6.0-8.0              | 84.1                  | 4300            |
| Transect         |                           |         |               |          |                   | 8-10<br>10-12   | 14<br>15.5   | 343<br>240         |         |                        |                |              |                    |          |                   |                      |                 |                     | l      |           |             |              |              | 1     |           |            |              |              |           |                   | 8.0-10.01            | 67.5                  | 91.6            |
| 1                |                           |         |               |          |                   | 12-14           | 54.9         | 140                |         |                        |                |              |                    |          |                   |                      |                 |                     | l      |           |             |              |              | 1     |           |            |              |              |           |                   |                      |                       |                 |
|                  |                           |         |               |          |                   | 15-19           | 50.6         | 8.7                | 1       |                        |                |              |                    |          |                   |                      |                 |                     | l      |           |             |              |              | 1     |           |            |              |              |           |                   |                      |                       |                 |
|                  |                           |         |               |          |                   | 19-20           | 18           | 2.8                |         |                        |                |              |                    |          |                   |                      | _               |                     | l      |           |             |              |              | 1     |           |            |              |              |           |                   |                      |                       |                 |
|                  |                           |         |               | B2-C     | 10-Dec-09         |                 | 3.9          | 332                |         |                        |                |              |                    | M-2C     | 17-Mar-10         | 0-2.5                | 47              | 1510                |        |           |             |              |              |       |           |            |              |              | M-5C      | 17-Mar-10         |                      | 75.2                  | 3070            |
| ပ                |                           |         |               |          |                   | 2-4<br>4-6      | 4.9<br>5.6   | 804<br><b>2880</b> | 1       |                        |                |              |                    |          |                   | 2.5-5.0°<br>5.0-7.5° | 38,4<br>74.4    | 4510<br>11400       | l      |           |             |              |              | 1     |           |            |              |              |           |                   | 2.5-5.0'<br>5.0-7.5' | 85.2                  | 5060            |
| ž                |                           |         |               |          |                   | 6-8             | 15           | 996                |         |                        |                |              |                    |          |                   | 7.5-10.0'            | 82.3            | 9950                | l      |           |             |              |              | 1     |           |            |              |              |           |                   | 7.5-10.0°            | 82.3<br>79.3          | 4080<br>1780    |
| fransect         |                           |         |               |          |                   | 8-10            | 8.7          | 1470               | 1       |                        |                |              |                    |          |                   | 1.0 10.0             | 02.0            | 0000                | l      |           |             |              |              | 1     |           |            |              |              |           |                   | 7.5-10.0             | 7 3.3                 | 1700            |
| Tra              |                           |         |               |          |                   | 10-12           | 13.3         | 1270               | 1       |                        |                |              |                    |          |                   |                      |                 |                     | l      |           |             |              |              | 1     |           |            |              |              |           |                   |                      |                       |                 |
|                  |                           |         |               |          |                   | 12-14           | 72.6         | 9050               |         |                        |                |              |                    |          |                   |                      |                 |                     | l      |           |             |              |              | 1     |           |            |              |              |           |                   |                      |                       |                 |
| 100000 N         | B-1D 10-Dec-09 0-2        | 14.     | 7 74          |          | 10 000 00         | 14-20           | 50.8         | 708                | In 20   | 10 000 00              | 0.2            | 46.5         | 400                | 44.00    | 10 Dog 00         | 0.0                  | 10.5            | 45.4                | 44.00  | 10 000 00 | 0.0         | 50.5         | 2242         | 14.40 | 40 Day 00 | 0.5        | 50.5         | 4000         | 144.50    | 40 15-4 00        | 0.5                  | 77.7                  |                 |
|                  | B-1D 10-Dec-09 0-2<br>2-4 |         |               | B2-D     | 10-Dec-09         | 0-2<br>2-4      | 6.7<br>2.3   | 4.3<br>3.3         | B-9D    | 10-Dec-09              | 0-2<br>2-4     | 46.5<br>8.5  | 408<br>11.8        | M-20     | 10-Dec-09         | 0-2<br>2-4           | 19.5<br>71,1    | 454<br><b>512</b> 0 | M-3D   | 10-Dec-09 | 0-2<br>2-4  | 56,5<br>82,3 | 2310<br>3800 | MI-4D | 10-Dec-09 | 0-5<br>5-7 | 53.5<br>84.5 | 1850<br>4770 | M-2D      | 10-Dec-09         | 0-5<br>5-7           | 77.7<br>87.9          | 4960<br>7300    |
|                  | 4-6                       |         |               |          |                   | 4-6             | 5.7          | 4.1                |         |                        | 4-6            | 13.5         | 14,9               |          |                   | 4-6                  | 78.6            | 1930                | l      |           | 4-6         | 78.8         | 2450         | 1     |           | 6-10       | 67.9         | 628          |           |                   | 6-10                 | 68.8                  | 500             |
| ۵                | 6-8                       | 25.5    | 5 <b>1850</b> |          |                   | 6-8             | 13.4         | 1030               |         |                        | 6-8            | 11.8         | 538                |          |                   | 6-8                  | 81.1            | 2180                | l      |           | 6-8         | 75.7         | 1610         | 1     |           |            |              |              |           |                   |                      |                       |                 |
| ಕ್ಷ              | 8-10                      |         |               |          |                   | 8-10            | 12.8         | 1420               | 1       |                        | 8-10           | 17.5         | 2130               |          |                   | 8-10                 | 67.4            | 633                 | l      |           | 8-10        | 67.1         | 654          | 1     |           |            |              |              |           |                   |                      |                       |                 |
| š                | 10-1                      |         |               |          |                   | 10-12           | 17,4         | 798                | 1       |                        | 10-12          | 18.4         | 1210               |          |                   |                      |                 |                     | l      |           |             |              |              | 1     |           |            |              |              |           |                   |                      |                       |                 |
| 1 2              | 12-14<br>15-19            |         |               |          |                   | 12-14<br>14-15  | 13.9<br>72.8 | 533<br>2820        | 1       |                        | 12-14<br>14-16 | 77.3<br>59.4 | <b>2030</b><br>759 |          |                   |                      |                 |                     | l      |           |             |              |              | 1     |           |            |              |              |           |                   |                      |                       |                 |
|                  | 19-20                     |         |               |          |                   | 15-17.5         |              | 1330               |         |                        | 14-10          | 55.4         | 155                |          |                   |                      |                 |                     | l      |           |             |              |              | 1     |           |            |              |              |           |                   |                      |                       |                 |
|                  |                           |         |               |          |                   | 17.5~20         |              | 81.5               |         |                        |                |              |                    |          |                   |                      |                 |                     | l      |           |             |              |              | 1     |           |            |              |              |           |                   |                      |                       |                 |
|                  |                           |         |               |          |                   | 20-25           | 9.7          | 15.5               |         |                        |                |              |                    |          |                   |                      |                 |                     |        |           |             |              |              |       |           |            |              |              |           |                   |                      |                       |                 |
|                  | B-1E 10-Dec-09 0-2        |         |               | B2-E     | 10-Dec-09         |                 | 2.6          | 26                 | B-3E    | 10-Dec-09              |                | 8.9          | 2.9                | M-2E     | 17-Mar-10         |                      | 48.3            | 734                 | l      |           |             |              |              | 1     |           |            |              |              | M-5€      | 17-Mar-10         |                      | 70.3                  | 269             |
|                  | 2-4<br>4-6                |         |               |          |                   | 2-4<br>4-6      | 4.2<br>6.2   | 1,5 J<br>112       |         |                        | 2-4<br>4-6     | 9,9<br>17,3  | 23,2<br>330        |          |                   | 2.5·5.0<br>5.0·7.5'  | 59.6<br>55      | 1720<br>906         | l      |           |             |              |              | 1     |           |            |              |              |           |                   | 2.0-4.0'<br>4.0-6.0' | 82.6<br>8 <b>7</b> .9 | 215<br>46.6     |
| ш                | 6-8                       |         |               |          |                   | 6-8             | 14.6         | 100                |         |                        | 6-8            | 17.4         | 249                |          |                   | 7.5-10.0             | 77.4            | 1400                | l      |           |             |              |              | 1     |           |            |              |              |           |                   | 6.0-8.0              | 83.8                  | 9.8 J           |
| 55               | 8-10                      |         |               |          |                   | 8-10            | 13.1         | 107                | 1       |                        | 8-10           | 14           | 151                |          |                   |                      |                 |                     | l      |           |             |              |              | 1     |           |            |              |              |           |                   | 8.0-10.01            | 60.7                  | 2.7 J           |
| ans              | 10-1                      |         |               |          |                   | 10-13.8         |              | 87.1               | 1       |                        | 10-12          | 66.8         | 927                |          |                   |                      |                 |                     | l      |           |             |              |              | 1     |           |            |              |              |           |                   | 10.0-12.01           | 60,1                  | 40.3            |
| <b> </b> =       | 12-1                      |         |               |          |                   | 13,8-15         |              | 324                |         |                        | 12-14          | 79           | 582                |          |                   |                      |                 |                     | l      |           |             |              |              | 1     |           |            |              |              |           |                   | 12-14                | 64.1                  | 8.1             |
|                  | 14-10<br>16-1             |         |               |          |                   | 20-23<br>23-25  | 62.8<br>12.4 | 86.5<br>2.6        |         |                        | 14-16<br>16-20 | 61.7<br>53   | 63.1<br>11,7       |          |                   |                      |                 |                     | l      |           |             |              |              | 1     |           |            |              |              |           |                   | 14-15'               | 20.1                  | 3.1             |
|                  | 19-2                      |         |               |          |                   | 20-20           | 12.7         | 2.0                | 1       |                        | 20-25          | 15.4         | 2.9                |          |                   |                      |                 |                     |        |           |             |              |              |       |           |            |              |              |           |                   |                      |                       |                 |
|                  |                           |         |               | B-2F     | 10-Dec-09         | 0-2             | 2.7          | 4.1                | 1       |                        |                |              |                    | M-2F     | 17-Mar-10         | 0-:2.5'              | 53.6            | 109 M0              |        |           |             |              |              |       |           |            |              |              | M-5F      | 17-Mar-10         | 0-2.5'               | 51.7                  | 98.2            |
|                  |                           |         |               |          |                   | 2-4             | 4.8          | 1.8J               | 1       |                        |                |              |                    |          |                   | 2.5-5,0              | 78.7            | 664                 |        |           |             |              |              |       |           |            |              |              |           |                   | 2.5-5.01             | <b>7</b> 7.7          | 1300            |
|                  |                           |         |               |          |                   | 4-6             | 5.4          | 21.8               | 1       |                        |                |              |                    |          |                   | 5.0-7.5              | 77.2            | 407                 |        |           |             |              |              |       |           |            |              |              |           |                   | 5.0-7.5              | 86                    | 1260            |
| ш                |                           |         |               |          |                   | 6-8             | 10,5         | 68.1               | 1       |                        |                |              |                    |          |                   | 7.5-10.0             | 78.1            | 54.7                |        |           |             |              |              |       |           |            |              |              |           |                   | 7.5-10.0             | 76.7                  | 111             |
| ដ្ឋ              |                           |         |               | l        |                   | 8-10<br>10-12   | 12.2<br>15.6 | 10.4<br>11.8       | 1       |                        |                |              |                    |          |                   |                      |                 |                     |        |           |             |              |              |       |           |            |              |              |           |                   |                      |                       |                 |
| us.              |                           |         |               | 1        |                   | 12-13.8         |              | 16                 | 1       |                        |                |              |                    |          |                   |                      |                 |                     |        |           |             |              |              |       |           |            |              |              |           |                   |                      |                       |                 |
| Ta               |                           |         |               |          |                   | 13.8-15         |              | 4.8J               | 1       |                        |                |              |                    |          |                   |                      |                 |                     |        |           |             |              |              |       |           |            |              |              |           |                   |                      |                       |                 |
|                  |                           |         |               |          |                   | 15-16           | 67           | 37.5               | 1       |                        |                |              |                    |          |                   |                      |                 |                     |        |           |             |              |              |       |           |            |              |              |           |                   |                      |                       |                 |
|                  |                           |         |               |          |                   | 16-20           | 37.6         | 2.6J               | 1       |                        |                |              |                    |          |                   |                      |                 |                     |        |           |             |              |              |       |           |            |              |              |           |                   |                      |                       |                 |
|                  |                           |         |               |          |                   | 23-25<br>25-30  | 7.8<br>10.9  | 1.9 J<br>3.2       | 1       |                        |                |              |                    |          |                   |                      |                 |                     |        |           |             |              |              |       |           |            |              |              |           |                   |                      |                       |                 |
| 0.9389           |                           |         |               |          |                   | 23-30           | 10.9         | 3.2                |         |                        |                |              |                    |          |                   |                      | _               |                     | I      |           |             |              |              | 1     |           |            |              |              | 1         |                   |                      |                       |                 |

#### Table 1 (continued) December 2009/March 2010 Hotspot Geoprobe Investigation Compositional Arsenic Results- Soil Sampling Kewaunee Marsh, Kewaunee, Wisconsin

| 5,7837     |               | Transect f       | M6           | Wallac Sater | 620668 |            | Transect         | M7           |             | (50.0000) | sistinasions | Transect I       | <b>18</b>    |                | Lassessa. |           | Transect | M9       |             |                     | Transe     | ect M10 | MANAGARA (A.A. | E 535 | en vicelanessio | Transect f              | <b>/11</b> | New paperson | adiotes de | :09:01 05:05: <b>1</b> | ransect M12          | A ANGER A MANAGEMENT DANAGE |
|------------|---------------|------------------|--------------|--------------|--------|------------|------------------|--------------|-------------|-----------|--------------|------------------|--------------|----------------|-----------|-----------|----------|----------|-------------|---------------------|------------|---------|----------------|-------|-----------------|-------------------------|------------|--------------|------------|------------------------|----------------------|-----------------------------|
|            |               | Deptn            | Moisture     | As           |        | ANG STREET | Depth            | Moisture     | As          | NAME OF   |              | Depth            | Moisture     | As             |           |           | Depth    | Moisture | As          |                     | Dep        | th Mois | ture As        |       |                 | Depth                   | Moisture   | As           |            | ARABANTI VEN           | Depth N              | loisture As                 |
|            | ID Date       | (ft bgs)         | (%)          | (mg/kg)      | ID     | Date       | (ftbgs)          | (%)          | (mg/kg)     | ID .      | Date         | (ft bgs)         | (%)          | (mg/kg)        | ID        | Date      | (ft bgs) | (%)      | (mg/kg)     | ID Date             | e (ft b(   | )s) (%  | ) (mg/kg)      | ) ID  | Date            | (ft bgs)                | (%)        | (mg/kg)      | 1D 00      | Date                   | (ft bgs)             | (%) (mg/k                   |
| ∢          |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
| Transect   |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
| 12         |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
| 98350      |               | _                |              |              |        |            |                  |              |             |           |              |                  |              |                | ┞         |           |          |          | _           |                     |            |         |                | +     |                 |                         |            |              |            |                        |                      |                             |
|            |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
| ect B      |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
| Transect   |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
|            |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
| H-1        |               |                  |              | -+           |        |            |                  |              |             | $\vdash$  |              |                  |              |                | $\vdash$  |           |          |          |             |                     |            |         |                | +     |                 |                         |            |              |            |                        |                      |                             |
| ပ္         |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
| Transect C |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
| 2          |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
|            |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                | +     |                 |                         |            |              |            |                        |                      |                             |
|            |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
| ĝ.         |               |                  |              | ļ            |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
| Transect D |               |                  |              |              |        |            |                  |              |             | 1         |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
| =          |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
|            |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
|            | M-6E 17-Mar-1 | 0 0-4.0          | 77.2         |              | M-7E 1 | 7-Mar-10   |                  | 42           | 15.1        | M-8E      | 17-Mar-10    |                  | 61.8         | 311            |           |           |          |          |             |                     |            |         |                | +     |                 |                         |            |              |            |                        | -                    |                             |
| 113        |               | 4-6.0°<br>6-8.0° | 78.2<br>88.2 | 1910<br>2020 |        |            | 2-4.0°<br>4-6.0° | 48.4<br>83.2 | 277<br>1260 |           |              | 4-6.0°<br>6-8.0° | 60.5<br>87.8 | 24.4<br>12.9 J | ١         |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
| sect       |               |                  |              |              |        |            | 6-8.0            | 86.8         | 478         |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
| Trans      |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
|            |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
|            | <u>-</u>      |                  |              |              |        |            |                  |              |             | $\vdash$  |              |                  |              |                | M-9F      | 17-Mar-10 | 0-4.0    | 70       | 348         | <b>M-1</b> 0F 17-Ma | ır-10 0-4. | .0' 59  | .3 357         | M-11  | 1F 17-Mar-10    | 0~2.0'                  | 60.7       | 106          | M-12F      | 17-Mar-10              | 0-4.0'               | 58.3 204                    |
|            |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          | 67.8     | 452<br>82.1 |                     | 4-6<br>6-8 | 69      |                | 1     |                 | 2.0-4.0¹<br>4.0-6.0˚    |            | 549<br>160   |            |                        | 4.0-6.0'<br>6.0-8.0' | 84.7 313                    |
| ıı.        |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          | -2          |                     |            | 30      |                |       |                 | 6.0-8.0                 | 87.7       | 27.5<br>62.9 |            |                        |                      |                             |
| Fransect   |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 | 8.0-10.0°<br>10.0-12.0° | 75.3       | 3.3 JB       |            |                        |                      |                             |
| Ţ          |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
|            |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |
|            |               |                  |              |              |        |            |                  |              |             |           |              |                  |              |                |           |           |          |          |             |                     |            |         |                |       |                 |                         |            |              |            |                        |                      |                             |

Notes

1. Sample data presented in the grid orientation shown on Figure 2.

J = Estimated concentrations above the detection limit and below the reportine limit

B = Analyte was detected in the associated method blank

M0 = Matrix spike recover and/or matrix spike duplicate recovery was outside laboratory control limits

BOLD =Arsenic concentration greater than 1,000 mg/kg, which corresponds to the material that has been classified as "hot spot" based on its potential to be hazardous (TCLP > 5 mg/L).

Prepared By: A. Goergen 12/29/09, A. Sellwood 4/5/10 Checked By: A. Sellwood 12/30/09, T. O'Connell 5/12/10

Table 2
Remedial Options Analysis
WDNR – Kewaunee Marsh Hot Spot Remediation – Kewaunee, Wisconsin

| REMEDIAL OPTION                        | ESTIMATED COST | TIMEFRAME    | ADVANTAGES                                                                                                                                                                | DISADVANTAGES                                                                                                                                                                                                                                                                                     | DESCRIPTION AND ASSUMPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------|----------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1a. In Situ Treatment (11,000 cy)      | \$1,430,000    | 6 to 8 weeks | Low cost and short remediation time  Least amount of disturbance to surface of bike path (i.e. least amount of truck traffic)  Perception of not "relocating" the problem | <ul> <li>Treated material left below water table</li> <li>Uncertainty with long-term stability in saturated reducing environment</li> <li>Long-term performance monitoring required to evaluate and confirm stability over time</li> <li>Public perception of leaving material on site</li> </ul> | Remedy Description:  The "hot spot" material will be treated <i>in situ</i> to render the material non-hazardous for arsenic and achieve the site specific clean up criteria. The treatment chemicals will be mechanically mixed into the saturated hot spot material with a backhoe and loader. The treated material will be left in place, and covered with either vegetation or ballast material. Following remediation, the bike path and fence will be restored to existing conditions.  • The treatment cost is based on applying 300 tons (21 g/kg <sub>soll</sub> ) ferric sulfate, 200 tons (15g/ kg <sub>soll</sub> ) limestone, and 1,800 gallons (6.25 mL/kg <sub>soll</sub> ) hydrogen peroxide (30%) to the hot spot material. The chemical doses for treating the material are on the basis that the material must be treated to achieve the site specific cleanup criteria. (Additional testing could be used to refine these doses.)  • Following treatment 600 tons (50g/kg <sub>soll</sub> ) of bentonite (5%) will be mixed into the treated material, to reduce the permeability.  • The <i>in situ</i> work will be targeted for the late fall and winter months to provide a more stable work surface on the marsh, and swamp mats will be used to provide a stable work surface.  • The mixing will be accomplished with an excavator, dozer, and loader. The treatment area will be divided into smaller accessible areas, and mixing would occur sequentially in each subdivided area in 3 to 5 ft lifts. Treated material will be removed and temporarily stockpiled to allow access to the deeper material. All treated material will be replaced into the area from which is was removed.  • A 6-inch layer of top soil or similar organic soil will be placed over the treated marsh material and seeded to restore vegetation so as to reduce erosion and provide a vegetative barrier.  • The unsaturated ballast material (upper 4 to 5 feet) will be segregated from the treated material and stockpiled on-site. Following treatment of the saturated material, the untreated, unsaturated ballast soils will be used as backfill to restore the |
| 1b. In Situ<br>Treatment<br>(3,000 cy) | \$780,000      | 4 to 5 weeks | <ul> <li>Lowest cost and least time</li> <li>Takes advantage of the natural attenuation of arsenic</li> <li>Others same as above</li> </ul>                               | <ul> <li>Same as above</li> <li>Assumes that natural attenuation will continue</li> </ul>                                                                                                                                                                                                         | Remedy Description: Same as above, only with smaller quantities:  70 tons (21 g/kg <sub>soil</sub> ) ferric sulfate, 60 tons (15g/ kg <sub>soil</sub> ) limestone, and 480 gallons (6.25 mL/kg <sub>soil</sub> ) hydrogen peroxide (30%), and 160 tons bentonite.  Performance Monitoring – 20 years  Same as above only with 2 wells in smaller treatment area and 1 well downgradient from the treated material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

#### Notes

- 1. The "hot spot" area is defined at material with compositional arsenic concentrations greater than 1,000 mg/kg. This concentration correlates to levels that have the potential to be hazardous for arsenic.

  The hot spot area is shown on Figure 2, and includes approximately 11,000 cy or 11,900 tons of material. In the case of treatment option 1b, the "hot spot" is defined at material with compositional arsenic concentrations greater than 2,000mg/kg. This concentration correlates to levels that will still have the potential to be hazardous for arsenic in 4 to 5 years, assuming natural attenuation reduces the concentration to be below 1,000 mg/kg in that time.

  The future hot spot area is shown on Figure 2, and includes approximately 3,000 cy or 3,200 tons of material
- 2. All monitoring costs are strictly for evaluating the performance of the hot spot remediation, and do not include monitoring and evaluations for the entire marsh area, or bringing the site to closure.
- 3. All costs based on preliminary concepts. They are intended for remedial option comparison and not for budgetary purposes. The detailed cost estimating spreadsheets that provide a basis for the opinion of probable cost are included in Appendix F of this report.
- 4. A field trial is recommended to determine the specific means and methods for construction/implementation in this unique setting.
- 5. The best judgment value is presented in the table. However, at this level of cost estimating, the range in cost may vary from -30 percent to +50 percent of the best judgment value. This approach is consistent with USEPA guidance on feasibility study level estimating of remediation costs.
- 6. Costs are rounded to two significant digits. Total costs include direct and indirect capital costs, and present worth costs of the monitoring.

#### Table 2 (continued) Remedial Options Analysis

#### WDNR - Kewaunee Marsh Hot Spot Remediation - Kewaunee, Wisconsin

| REMEDIAL OPTION                                                   | ESTIMATED COST | TIME FRAME     | ADVANTAGES                                                                                                                                                                                                                                                                                                  | DISADVANTAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DESCRIPTION AND ASSUMPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------|----------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. In Situ Treatment with On-site Containment in Unsaturated Zone | \$2,650,000    | 18 to 20 weeks | <ul> <li>Treated material set above the groundwater table</li> <li>Higher confidence in chemical stability of treated material when kept unsaturated</li> <li>Perception of not "relocating" the problem</li> <li>Less costly than transporting and disposing off site at a solid waste landfill</li> </ul> | <ul> <li>Cannot guarantee the material will remain unsaturated over the long-term (material may settle below water table or water table may rise)</li> <li>Requires long-term maintenance and inspection of contained material</li> <li>Long-term monitoring still required</li> <li>May alter the natural attenuation process that is on-going in the capped area</li> <li>Alters the existing topography, and may be more noticeable to the public</li> <li>Public perception of leaving material on site</li> <li>Significant closure time to bike path</li> <li>Significant amount of truck traffic and disturbance to the bike path</li> </ul> | Remedy Description:  The "hot spot" material will be treated using the same approach described for <i>in situ</i> treatment. However, for this option, the treated material will be excavated and placed on the unsaturated capped area of the marsh. The marsh excavation will be backfilled with organic soil from an off-site source, and the ballast excavation will backfilled with granular material. Following remediation, the bike path and fence will be restored to existing conditions.  Same chemistry, treatment/construction process, and basis for the chemical doses as described for <i>in situ</i> treatment.  The treated material will be excavated and placed on top of the "capped" area that is outside the hot spot area, and above the current water table. The treated soil would be graded across an area approximately 180° x 500° and would extend approximately 3 to 4 feet above the existing grade.  The material will dewater in place on the unsaturated capped area. The water that drains off the material will not require additional treatment.  The treated material would be covered with a 6-inch layer of top soil and seeded to restore vegetation so as to reduce erosion and provide a vegetative barrier.  The marsh excavation would be backfilled with approximately 10,500 cy of organic material, and seeded to restore vegetative cover.  The ballast area would be backfilled with approximately 10,500 cy of granular material. Approximately 450 cy of backfill will come from an off-site source. The other 350 cy will come from unsaturated ballast material (upper 4 to 5 feet) that is segregate and stockpiled on site as was described for the <i>in situ</i> treatment process.  The bike path will be restored and the fence replaced to existing conditions.  This cost assumes that the stabilization, on-site containment, and site restoration can be completed in 18 to 20 weeks. Performance Monitoring – 5 and 20 years  A total of 5 years of performance monitoring are assumed for the hot spot area, and a total of 20 years of monitoring are assumed to confirm |

#### Notes

- 1. The "hot spot" area is defined at material with compositional arsenic concentrations greater than 1,000 mg/kg. This concentration correlates to levels that have the potential to be hazardous for arsenic.

  The hot spot area is shown on Figure 2, and includes approximately 11,000 cy or 11,900 tons of material. In the case of treatment option 1b, the "hot spot" is defined at material with compositional arsenic concentrations greater than 2,000mg/kg. This concentration correlates to levels that will still have the potential to be hazardous for arsenic in 4 to 5 years, assuming natural attenuation reduces the concentration to be below 1,000 mg/kg in that time.

  The future hot spot area is shown on Figure 2, and includes approximately 3,000 cy or 3,200 tons of material
- 2. All monitoring costs are strictly for evaluating the performance of the hot spot remediation, and do not include monitoring and evaluations for the entire marsh area, or bringing the site to closure.
- 3. All costs based on preliminary concepts. They are intended for remedial option comparison and not for budgetary purposes. The detailed cost estimating spreadsheets that provide a basis for the opinion of probable cost are included in Appendix F of this report.
- 4. A field trial is recommended to determine the specific means and methods for construction/implementation in this unique setting.
- 5. The best judgment value is presented in the table. However, at this level of cost estimating, the range in cost may vary from -30 percent to +50 percent of the best judgment value. This approach is consistent with USEPA guidance on feasibility study level estimating of remediation costs.
- 6. Costs are rounded to two significant digits. Total costs include direct and indirect capital costs, and present worth costs of the monitoring.

#### Table 2 (continued) Remedial Options Analysis

WDNR - Kewaunee Marsh Hot Spot Remediation - Kewaunee, Wisconsin

| REMEDIAL OPTION                              | ESTIMATED COST | TIME FRAME     | ADVANTAGES                                                                                                                                                                                                                                                                                                                                                                                         | DISADVANTAGES                                                                                                                                                                                                                                           | DESCRIPTION AND ASSUMPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------|----------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. In Situ Treatment, with Off-Site Disposal | \$2,900,000    | 13 to 15 weeks | Treated material will be kept in a controlled and monitored location (solid waste landfill) Removes bulk of source material Highest confidence in long-term effectiveness. (i.e. eliminates long-term stability concern for saturated reducing conditions at the marsh) Public perception may be improved for removing the hot spot material from the site  Least amount of performance monitoring | <ul> <li>Highest cost</li> <li>Some uncertainty with dewatering</li> <li>Perception of "relocating" the problem</li> <li>Significant closure time to bike path</li> <li>Significant amount of truck traffic and disturbance to the bike path</li> </ul> | Remedy Description:  The "hot spot" material will be treated using the same approach described for <i>in situ</i> treatment. However, for this option, the treated material will be excavated, dewatered, and transported off site for disposal at a solid waste landfill. The marsh excavation will be backfilled with organic soil from an off-site source, and the ballast excavation will backfilled with imported granular material. Following remediation, the bike path and fence will be restored to existing conditions.  The treatment cost is based on applying 200 tons (10.5 g/kgsoil) ferric sulfate, 100 tons (7.5g/kgsoil) limestone, and no hydrogen peroxide to the hot spot material. The chemical doses selected for treating the material are on the basis that the material must be treated to render it non-hazardous for disposal purposes.  The treatment process will be the same as described for <i>in situ</i> treatment.  The treated material will be excavated and stockpiled on-site. The material will be dewatered by adding magnesium sulfate to the material to absorb any residual free liquids. The material must be dewatered to contain no free liquids for landfill acceptance.  Cost assume that the excavated material will be transported to Hickory Meadow landfill in Hilbert, Wisconsin (55 miles from the site), and will be disposed under the State's waste disposal contract with Veolia.  The marsh excavation would be backfilled with approximately 10,500 cy of organic material, and seeded to restore vegetative cover.  The ballast area would be backfilled with approximately 800 cy of granular material. Approximately 450 cy of backfill will come from an off-site source. The other 350 cy will come from unsaturated ballast material (upper 4 to 5 feet) that is segregate and stockpiled on site as was described for the <i>in situ</i> treatment process.  The bike path will be restored and the fence replaced to existing conditions.  Performance Monitoring – 5 years  A total of 5 years of performance monitoring are assumed for the hot spot area.  Construct |

#### Notes:

- 1. The "hot spot" area is defined at material with compositional arsenic concentrations greater than 1,000 mg/kg. This concentration correlates to levels that have the potential to be hazardous for arsenic. The hot spot area is shown on Figure 2, and includes approximately 11,000 cy or 11,900 tons of material. In the case of treatment option 1b, the "hot spot" is defined at material with compositional arsenic concentrations greater than 2,000mg/kg. This concentration correlates to levels that will still have the potential to be hazardous for arsenic in 4 to 5 years, assuming natural attenuation reduces the concentration to be below 1,000 mg/kg in that time. The future hot spot area is shown on Figure 2, and includes approximately 3,000 cy or 3,200 tons of material
- 2. All monitoring costs are strictly for evaluating the performance of the hot spot remediation, and do not include monitoring and evaluations for the entire marsh area, or bringing the site to closure.
- 3. All costs based on preliminary concepts. They are intended for remedial option comparison and not for budgetary purposes. The detailed cost estimating spreadsheets that provide a basis for the opinion of probable cost are included in Appendix F of this report.
- A field trial is recommended to determine the specific means and methods for construction/implementation in this unique setting.
   The best judgment value is presented in the table. However, at this level of cost estimating, the range in cost may vary from -30 percent to +50 percent of the best judgment value. This approach is consistent with USEPA quidance on feasibility study level estimating of remediation costs.
- 6. Costs are rounded to two significant digits. Total costs include direct and indirect capital costs, and present worth costs of the monitoring.

Table 3
Comparative Summary of Remedial Options Estimated Costs<sup>(1)</sup>
WDNR – Kewaunee Marsh Hot Spot Remediation

| SCENARIO |                                            | BEST JUDGMENT REMEDIATION CONCEPTUAL COST ESTIMATES |                             |                            |                    |                      |  |  |  |
|----------|--------------------------------------------|-----------------------------------------------------|-----------------------------|----------------------------|--------------------|----------------------|--|--|--|
|          |                                            | TOTAL COST                                          |                             | PRESEN                     | IT WORTH OF ANNUAL | COSTS <sup>(4)</sup> |  |  |  |
|          | REMEDIAL OPTION                            | PRESENT WORTH(2)                                    | YEAR 1 COSTS <sup>(3)</sup> | O&M                        | MONITORING         | DURATION             |  |  |  |
| 1a       | In Situ Treatment (11,000 cy)              | \$1,430,000                                         | \$1,250,000                 | \$0                        | \$180,000          | 20 years             |  |  |  |
| 1b       | In Situ Treatment (3,000 cy)               | \$780,000                                           | \$600,000                   | \$0                        | \$180,000          | 20 years             |  |  |  |
| 2        | In Situ Treatment with On-site Containment | \$2,650,000                                         | \$2,400,000                 | \$40,000<br>(once – yr 10) | \$210,000          | 20 years             |  |  |  |
| 3        | In Situ Treatment with Off-site Disposal   | \$2,900,000                                         | \$2,850,000                 | \$0                        | \$50,000           | 5 years              |  |  |  |

#### Footnotes:

(1) This table is a summary of information presented in Table 2, and is not intended to be used as a stand alone document. This summary is compiled for comparative purposes only. Important descriptions, assumptions and uncertainties are discussed in Table 2.

(3) Year 1 costs include direct and indirect capital costs, as well as the first year O&M and monitoring costs.

(4) Costs do not include total site monitoring and evaluation to bring the site to closure.

The best judgment value is presented in the table. However, at this level of cost estimating, the range in cost may vary from -30 percent to +50 percent of the best judgment value. This approach is consistent with USEPA guidance on feasibility study level estimating of remediation costs.



IMAGERY FROM USDA - NATIONALAGRICULTURE IMAGERY PROGRAM, 2008.



744 Hearlland Trail Madison, W153717-1934 P.O. Box 8923 53708-8923 Phone: 608-831-4444 Fax: 608-831-3334 WISCONSIN DEPARTMENT OF NATURAL RESOURCES KEWAUNEE MARSH

SITE AREA MAP

| DRAWN BY:    | PAPEZJ       |
|--------------|--------------|
| APPROVED BY: | FISHD        |
| PROJECT NO:  | 00-007201.19 |
| FILE NO.     | 72011903.mxd |
| DATE:        | MAY 2010     |



## **LEGEND**

ARSENIC > 1,000 mg/kg \ M-SERIES = MARSH (8-12 FT) B-SERIES = BALLAST (15-30 FT)

ARSENIC < 1,000 mg/kg

MONITORING WELL LOCATION

RMT TEMPORARY WELL LOCATION (APRIL 2007) (ARSENIC CONCENTRATION COLOR CODE)

- < 100,000 µg/L
- > 100,000 µg/L
- SOIL BORING (STS HISTORICAL SAMPLE LOCATION)



CAPPEDAREA

APPROXIMATE AREA OF PREVIOUSLY DISTRESSED VEGETATION



APPROXIMATE EXTENT OF CURRENT HOT SPOT AREA (>1,000 mg/kg) (DASHED WHERE INFERRED)

APPROXIMATE EXTENT OF FUTURE HOT SPOT (>2,000 mg/kg)

## NOTES:

- ALL GEOPROBE BORINGS WERE LOCATED USING A TRIMBLE GEOXH GPSUNIT.
- CURRENT HOT SPOT IS DEFINED AS CONTAINING COMPOSITIONAL ARSENIC CONCENTRATIONS GREATER THAN 1,000 mg/kg. THIS COMPOSITIONAL CONCENTRATION CORRELATES TO POTENTIALLY HAZARDOUS MATERIAL (TCLP > 5 mg/kg).
- 3. THE CURRENT HOTSPOT IMPACTS EXTEND APPROXIMATELY 10 FT BELOW GRADE IN THE MARSH AND ARE PRESENT5-12 FT BELOW GRADE IN BALLAST.
- THE FUTURE HOT SPOT REPRESENTS THE AREA THAT WILL HAVE ARSENIC > 1,000 mg/kg IN 4 YEARS BASED ON THE OBSERVED RATE OF DECREASE N CONCENTRATION OVER THE LAST 15 YEARS.



**WISCONSIN DEPARTMENT OF NATURAL RESOURCES KEWAUNEE MARSH** 

#### 2009/2010 HOT SPOT GEOPROBE INVESTIGATION

| DRAWN BY:    | MCKEEFRY J | SCALE:        | PROJ. NO. | 00-07201.15 |
|--------------|------------|---------------|-----------|-------------|
| CHECKED BY:  | SELLWOOD A | AS NOTED      | FILE NO.  | 72011901.mx |
| APPROVED BY: | FISH D     | DATE PRINTED: |           | FIGURE A    |
| DATE:        | MA V 2010  | 5/27/2010     |           | FIGURE 2    |



744 Heartland Trail Madison, WI 53717-1934

P.O. Box 8923 53708-8923 Phone: 608-831-4444 Fax: 608-831-3334



00-07201.22

72011904.mxd











# Appendix A Geophysical Conductivity Survey

April 7, 2010

Annette Weissbach, Hydrogeologist Wisconsin Department of Natural Resources 2984 Shawano Ave. Green Bay, WI 54313-6727

Re: Geophysical Survey of an Arsenic Contaminated Site in the Kewaunee Marsh

Dear Ms. Weissbach,

This memorandum describes efforts by scientists from the Wisconsin Geological and Natural History Survey to characterize an arsenic plume in the Kewaunee Marsh Besadny Wildlife Area near Kewaunee, WI using electrical conductivity measurements. The site of the arsenic contamination is a wetlands located near the Kewaunee River. The site is underlain by approximately 7 feet of peat over around 10 feet of organic silt over clays, sands and gravels. The source of the arsenic is thought to be a spill from a nearby railroad, currently a recreational bike trail. The spill is thought to have occurred in the 1940s (Stanforth and others, 2007).

We chose to use electrical conductivity measurements to map the arsenic plume because the concentrations of arsenic are very high in the soils (>1000 mg/Kg) and also in ground water samples (>1,000,000  $\mu g/L$ ), creating a measurable contrast to uncontaminated areas. The high concentrations of arsenic ions, arsenate or arsenite, in the groundwater cause large increases in the conductivity of the subsurface. These high conductivities allowed us to quickly map the extent of the arsenic plume.

#### Methods

The electrical conductivity of the subsurface varies with the conductivity of the pore fluid and the sediment. Pore fluids with higher ionic strengths are more conductive and result in higher conductivities measured with the instrument. In this survey, we expect that the higher concentrations of arsenic ions caused measurably higher conductivities. Also, different lithologies have different electrical conductivities. Most common minerals such as quartz or feldspar have very low conductivities so that pore fluids dominate the overall conductivities in these sediments. However, clays are highly conductive with the result that a sediment with a high clay content and with pore fluid of low conductivity will give overall conductivities similar to a clean sand sediment with a high conductivity pore fluid. For this reason, if bulk measurements of conductivity are used to map the extent of a plume of conductive pore fluid, the clay content and porosity of the subsurface must be assumed to not vary significantly. We made that assumption in this survey.

We used an EM-31 ground conductivity meter to measure the bulk electrical conductivity of the subsurface. This instrument is easy to use and can collect large

amounts of data quickly. It measures electrical conductivity by inducing current in the subsurface with a coil located at the end of one of its arms. Another coil at the end of the other arm records the induced earth current. That current is proportional to the conductivity of the subsurface (McNeill, 1980).

The orientation of the instrument coils affects the depths at which the instrument is most sensitive (McNeill, 1980). If the coils are aligned vertically, the instrument will sense greater depths. When the coils are aligned horizontally, more shallow depths have greater weight. For example, Figure 1 shows the instrument response with depth for when the coils are vertical, Rv(z) and horizontal, Rh(z). When the coils are vertical, the about half of the instrument response is due to the subsurface above 12.1 feet. The figure also shows that about 25% of the instrument response when the coils are vertical is from below 24.3 feet. In contrast, when the coils are aligned horizontally, half of the instrument response is due to the subsurface above only 5 feet. This difference allowed us to measure the difference between the shallow (around 5 feet depth) and deep (around 12 feet depth) conductivities at the site.



Figure 1. EM-31 instrument response (after McNeill, 1980)

We collected data at approximately even intervals across the site. At each location, we collected vertical and horizontal coil conductivity readings. Each location was recorded with a Garmin Oregon GPS unit. The data was collected in approximately 2 hours.

### **Results**

In general, the conductivity results confirm earlier interpretations of the extent of the impacted area. Figure 2 shows the site, the shallow and deep conductivity measurements, and conductivity contours based on the deep measurements. Red corresponds to higher conductivity and blue to low. The deep measurements are shown as the larger circles beneath the smaller circles of the shallow measurements. The regions of highest conductivity correspond to the two zones of dead vegetation where the arsenic spill and runoff was thought to have accumulated. There do not appear to be any high values of deep conductivities outside the capped area either to the west or north. Some moderately high conductivities are present to the southwest, between the tracks, shown in orange but their origin may be due to sediment changes or moderate concentrations of arsenic. The conductivities suggest that the arsenic plume is slowly migrating to the east and diminishes in strength towards the river, around 100 feet past the capped zone.

Other factors, in addition to variation in pore fluid and lithologic variation, may affect the conductivities. A cap, indicated in the 2005 air photo in Figure 2 by the more green vegetation beneath the central plumes, had been placed over the highly contaminated areas. While that cap may have altered the conductivity of the upper 3-4 feet at the site and might affect the shallow conductivity values, it would have much less effect on the deep conductivity values. This is justified by observing that the orange value deep conductivities shown on the east end of the capped area are not significantly different than the deep conductivities just outside of the capped area. Another factor, one that also affected the shallow readings, was there was around 6 inches of water over ice in the area outside the capped zone. Within the capped zone, there was little standing water and no ice. There was standing water to the west of the tracks but no ice. In general, where the vegetation seen in the air photo is green, the ice had melted. Where the vegetation was brown, the ice was still present. The presence of ice would tend to lower the resistivity of the shallow measurements since nearly 30% of the weighted measurement would be from the upper two feet. In contrast, the deep measurements would be relatively unaffected since only 5% of the deep measurement depends on the upper two feet (Figure 1). For these reasons the deep measurements are relatively unaffected by the ice, standing water, or the cap.

### **Conclusions**

A survey of the electrical conductivity of the subsurface was conducted using an EM-31 ground conductivity meter in an area contaminated with arsenic. The measured conductivities are highest where the arsenic was known to have been spilled and to have killed vegetation. The conductivities are lower in areas not thought to be contaminated. Although the conductivities between the railroad tracks may suggest an area of additional moderate contamination, the survey confirmed that the current interpretation of the arsenic migration towards the river is likely correct.

Please contact me (608-262-2307; <u>djhart@wisc.edu</u>) if you have any questions regarding this report.

Sincerely,

David Hart Hydrogeologist/Geophysicist

Cc: Alyssa Sellwood, RMT

## References

McNeil, J.D., 1980, Electromagnetic Terrain Conductivity Measurement at Low Induction Numbers. Technical Note TN-6. Geonics Limited, Ontario, Canada.

Stanforth, R., R. Fish, A. Sellwood, and P. Turpin., 2007, WDNR-Kewaunee Marsh Treatability Project-Final Report to WDNR, RMT, Madison, WI.



Figure 2. Air photo showing conductivity measurements. The highest conductivities are shown in red; the lowest are shown in blue. The small circles are for the shallow horizontal coil measurements; the large circles are for the deep vertical coil measurements.



00-07201.15

72011507.mxd

FIGURE A.1



## **LEGEND**

- RMT GEOPROBE LOCATION (DEC 2009/MARCH 2010)
- MONITORING WELL LOCATION

RMT TEMPORARY WELL LOCATION (APRIL 2007) (ARSENIC CONCENTRATION COLOR CODE)

- < 100,000 µg/L
  - > 100,000 µg/L
- SOIL BORING (STS HISTORICAL SAMPLE LOCATION)
- BIKE PATH (FORMER RAILROAD TRACKS)

—x—x—x—x FENCE

CAPPED AREA

APPROXIMATE AREA OF PREVIOUSLY DISTRESSED VEGETATION

WGNHS CONDUCTIVITY SAMPLE POINT (MARCH 9, 2010

ISO-CONDUCT!VITY CONTOUR

CONDUCTIVITY



## NOTES:



WISCONSIN DEPARTMENT OF **NATURAL RESOURCES KEWAUNEE MARSH** 

SHEETTITLE:

HOT SPOT GEOPROBE INVESTIGATION HORIZONTAL CONDUCTIVITY

| DRAWN BY:    | PAPEZ J    | SCALE:        |
|--------------|------------|---------------|
| CHECKED BY:  | SELLWOOD A | AS NOTED      |
| APPROVED BY: | FISH D     | DATE PRINTED: |
| DATE:        | 1.1AY 2010 | 5/27/2010     |

PROJ.NO. 00-07201.15 FILE NO. 72011506.mxd FIGURE A.2



744 Heartland Trail Madison, WI 53717-1934

P.O. Box 8923 53708-8923 Phone: 608-831-4444 Fax: 608-831-3334









FIGURE A.3

# Appendix B Remediation Laboratory Summary Memos

# **Table of Contents**

- Comparison of DI Water and TCLP Leach Test Results
- Leach Testing of Composite Samples
- Confirmation of Treatment Effectiveness for Sediments
- Dose Response Testing
- Addition of Bentonite

Comparison of DI Water and TCLP Leach Test Results



Date: May 5, 2010

To: Technical File

From: **Bob Stanforth** 

Project No.: 02085.23.009

Comparison of DI Water and Screening TCLP Leaching Test Results for Subject:

Kewaunee Sediments

### Introduction

The focus of leaching studies for the Kewaunee soils has been predominantly using distilled water leaching tests (using the SPLP procedure but with DI water), or modifications thereof with different solids concentrations. Less work has been done using screening TCLP tests<sup>1</sup>, since the focus has not been on whether the sediments are hazardous, but rather on the potential for contributing dissolved arsenic to the marsh. However, one approach to delineating the "hot-spot" area requiring treatment would be to determine the areas of the marsh that leach arsenic at over 5 mg/L in a TCLP test, and would be considered hazardous were they to be removed.

Compositional analysis and screening TCLP and DI Water tests have been run on a number of composite sediments from the two recent Geoprobe investigations on the site (in December 2009, and Marsh 2010). These results can be used for two purposes: first to compare DI Water and TCLP results and see if the DI Water test (at 2 g/40 mL) can be used as a surrogate for the TCLP test, and second, to compare leaching test concentrations (TCLP or DI Water) with the compositional values.

#### Results

Compositional and leaching test results for the different composites are given in Table 1.

Table 1

|                          | ARSENIC CONCENTRATION |                      |                               |  |  |  |  |
|--------------------------|-----------------------|----------------------|-------------------------------|--|--|--|--|
| SAMPLE                   | COMPOSITIONAL, mg/kg  | SCREENING TCLP, mg/L | DI WATER, mg/L <sup>(f)</sup> |  |  |  |  |
| December 2009 Composites |                       |                      |                               |  |  |  |  |
| Ballast                  | 1,400                 | 8.4                  | 13                            |  |  |  |  |
| Peat Under ballast       | 1,500                 | 11                   | 11                            |  |  |  |  |
| Peat in Marsh            | 2,600                 | 24                   | 18                            |  |  |  |  |
| Organic Silt in marsh    | 550                   | 3.1                  | 2.5                           |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> The screening tests follow the standard USEPA protocols (TCLP-SW 846 Method 1311 and SPLP-SW 846 Method 1312), with the exceptions that the leaching solution is analyzed directly after acidification, and smaller quantities of solid and leaching solution are used, while still maintaining the 1:20 solid to solution ratio. Previous tests have shown that the screening tests correlate well with standard leaching test results. 3

Table 1

|                       | ARSENIC CONCENTRATION |                               |      |  |  |  |  |
|-----------------------|-----------------------|-------------------------------|------|--|--|--|--|
| SAMPLE                | COMPOSITIONAL, mg/kg  | DI WATER, mg/L <sup>(1)</sup> |      |  |  |  |  |
| March 2010 Composites |                       |                               |      |  |  |  |  |
| >10,000 mg/kg         | 8900                  | 94                            | 99   |  |  |  |  |
| ~5,000 mg/kg          | 4550                  | 38                            | 42   |  |  |  |  |
| 2,000 4,000 mg/kg     | 2950                  | 22                            | 16   |  |  |  |  |
| 1,000 - 2,000 mg/kg   | 1200                  | 3.0                           | 2.8  |  |  |  |  |
| 500 – 1,000 mg/kg     | 920                   | 3.6                           | 1.7  |  |  |  |  |
| 250 – 500 mg/kg       | 440                   | 0.26                          | 0.18 |  |  |  |  |

Note:

# Comparison of TCLP and DI Water Leaching Test Results

A comparison of the two leaching test results, using the same solid/solution ratio (2 g/40 mL) is given in Figure 1.

Figure 1
Comparison of DI Water Leaching Test Arsenic Concentrations
With TCLP Arsenic Concentrations for Composite Kewaunee Samples



<sup>) 2</sup> g/40 mL sample.

The two leaching tests give very similar arsenic concentrations, indicating that the DI water leaching test (at the correct solids concentration) gives a good indication of the expected TCLP test arsenic concentration.

A second comparison can be made between the compositional arsenic concentration and the leaching test concentration, as shown in Figure 2.



Figure 2
Comparison Between Compositional and TCLP and DI Water Test Leachable Arsenic Concentrations

There is a good correlation between the compositional levels of arsenic in the samples and the leachable concentrations, in either the TCLP or DI water tests. Increasing compositional levels of arsenic increase the amount leached in the TCLP or DI Water tests. However, for both tests, the lines do not go through the origin, but rather there is a compositional threshold below which arsenic is not very leachable, and above which leaching concentrations increases linearly with compositional arsenic. The threshold value for the TCLP test is 605 mg/kg, while for the DI Water test it is 715 mg/L. More importantly, a compositional value of around 1060 mg/kg is needed to give a TCLP test concentration of greater than 5 mg/L. In other words, sediments with compositional levels below 1060 are not likely to be hazardous due to arsenic leaching in the TCLP test.

## Conclusion

Based on the compositional analysis and screening leaching test analysis of the Geoprobe samples from the Kewaunee Marsh, sediments with a compositional value of below 1000 mg/kg are not likely to be hazardous due to arsenic leaching in a TCLP test.

**Leach Testing of Composite Samples** 



**Date:** May 5, 2010

To: Technical File

From: Bob Stanforth

**Project No.:** 02085.23.009

**Subject:** Leach Testing of Composite Kewaunee Hot Spot Samples

#### Introduction

Compositional analysis of the Geoprobe samples showed several things:

- 1. The boundaries of the highly contaminated soil under the railroad (RR) bed have been delineated.
- 2. The contamination extends past the ballast under the RR bed and into the underlying peat material. Contamination does not extend into the underlying silt or into the gravel layer beneath the RR bed.
- 3. The highly contaminated zone extends further into the marsh than was anticipated. The eastern edge has not been delineated.
- 4. The highly contaminated zone extends deeper into the marsh than was anticipated, going into the organic silt at 7-10 feet as well as through the peat layer going down to 7 feet.

One potential approach to remediating the highly contaminated groundwater in the ballast under the RR bed is to install a groundwater extraction trench parallel to the bike path and pump the groundwater. A question that needs to be addressed in evaluating this approach is how long it will take to remove the contamination from the area using a groundwater pumping system. Is the arsenic sufficiently soluble that the contamination can be removed by pumping a few pore volumes, or will multiple pore volumes need to be removed in order to reduce arsenic concentrations to acceptably low levels? This question can be addressed by running leaching tests on the contaminated material collected during the December 2009 Geoprobe sampling.

The original work called for doing leaching tests on the ballast to evaluate the leaching pattern of arsenic from the contaminated area. However, given the much more extensive nature of the contamination and the need to know whether the arsenic is dissolved or particulate for treatment purposes, leaching tests were run on composites of the different types of contaminated soils found, namely ballast, peat under the ballast, peat in the marsh, and organic silt in the marsh.

### **Procedure**

### **Composite Preparation**

Composites were made of the different types of material to be tested. The different soil samples divided into the four groups (Ballast, Peat under Ballast, Peat in Marsh, Organic Silt in Marsh) and composites made by mixing equal weights of each Ballast sample, each Peat-under-Ballast sample, each Peat-in-Marsh sample and each Organic-Silt-in-Marsh sample. Table 1 gives the

individual samples used for each composite, along with the arsenic concentrations and moisture content for each sample. The moisture content and arsenic concentration for each composite are also given in Table 1.

## **Leaching Tests**

A series of leaching tests were run on each composite. Amounts of solid ranging from 0.5 g to 20 g were placed in 50 mL centrifuge tubes, and sufficient deionized (DI) water added to bring the volume to 40 mL. The samples were shaken overnight, then centrifuged to separate the solids and leachate. The leachate was removed and an aliquot filtered for arsenic and calcium analysis. The pH was measured on the remaining leachate. Meanwhile, fresh DI water was added to each sample, and the process repeated. The 0.5 g through 4 g samples were leached for a total of ten elutions, while the 10 and 20 g samples were leached for five elutions. The pore volume was estimated from the moisture content of the samples (since they were saturated when collected).

To illustrate what the leaching pattern looks like when there is no retention on the solids, sand spiked with an arsenate standard to give an arsenic concentration of 1000 mg/kg As was leached using solids concentrations of 0.5 g, 1.0 g, 2.0 g and 4.0 g per 40 mL.

## Results

The results of the leaching tests are given in Tables 2 and 3 for arsenic concentration and mass of arsenic released, respectively.

Arsenic concentrations in the 4 g/40 mL samples vs. pore volume are shown in Figure 1. The leaching pattern for all the solids samples follows a similar curve, with a rapid decrease at low pore volumes and an extended tailing off to much higher pore volumes. Arsenic concentrations from the spiked sand samples drop much more quickly than the marsh samples, indicating that the tailing is due to something more than retained pore water. Note that concentrations do not drop to low levels even after several elutions (representing hundreds of pore volumes).

The focus of the pump-and-treat concept was for the ballast material. Arsenic concentrations versus pore volume for the different solids concentrations of Ballast samples are shown in Figure 2. All the solid concentrations fall on the same line. Arsenic concentrations are not reduced to low values until after many pore volumes. Figure 3 shows arsenic concentration vs. pore volume for the low arsenic concentration section of the graph. Arsenic concentrations are not reduced to below 0.17 mg/L (the target value) until after over 1000 pore volumes (approximately 500 to 600 million gallons) have been removed. Given the low permeability of the marsh material, removing this large volume of water would be time prohibitive, and given the remote location of the site, management of this large volume of water would be cost prohibitive.

Further, the mass balance on arsenic for the ballast material indicates that only about 500 mg/kg arsenic was removed from the ballast by the leaching, or about one third of the total arsenic present (Table 3). Not only would groundwater extraction involve removing large volumes of water, it would also not remove much of the arsenic present in the ballast. In contrast, almost all the arsenic was removed from the other three composites in the multiple elution leaching tests (Table 3).

## Conclusions

It would require removal of more than 1000 pore volumes of water from the ballast area to reduce the leached concentration to below 0.17 mg/L. Removing and treating such a large volume is impractical, and the pump-and-treat approach is unlikely to be a cost-effective way to remediate the soil under the bike path.

Table 1
Kewaunee Geoprobe Investigation of Hot Spot Area, December 2009
Summary of Contaminated Samples in BD/MD Transect

| SAN             | <b>IPLE</b> |               | ARSENIC         |
|-----------------|-------------|---------------|-----------------|
| BORING          | DEPTH       | MOISTURE, %   | MEASURED, mg/kg |
| Ballast         |             |               |                 |
| B1D             | 6-8         | 25.5          | 1,850           |
| B2D             | 6-8         | 13.4          | 1,030           |
|                 | 8-10        | 12.8          | 1,420           |
|                 | 10-12       | 17.4          | 798             |
|                 | 12-14       | 13.9          | 533             |
| B3D             | 6-8         | 11.8          | 538             |
|                 | 8-10        | 17.5          | 2,130           |
|                 | 10-12       | 18.4          | 1,210           |
| Composite       |             | 17.7          | 1,400           |
| Peat Under Bal  | last        |               |                 |
| B1D             | 8-10        | 75.9          | 2,150           |
|                 | 10-12       | 80.8          | 1,070           |
| B2D             | 14-15       | 72.8          | 2,820           |
|                 | 15-17.5     | 44.9          | 1,330           |
| B3D             | 12-14       | 77.3          | 2,030           |
|                 | 14-16       | 59.4          | 759             |
| Composite       |             | 68.0          | 1,500           |
| Peat in Marsh   |             |               |                 |
| M2D             | 2-4         | 71.1          | 5,120           |
|                 | 4-6         | 78.6          | 1,930           |
|                 | 6-8         | 81.1          | 2,180           |
| M3D             | 0-2         | 56.5          | 2,310           |
|                 | 2-4         | 82.3          | 3,800           |
|                 | 4-6         | 78.8          | 2,450           |
|                 | 6-8         | 75.7          | 1,610           |
| M4D             | 0-5         | 53.5          | 1,850           |
|                 | 5-7         | 84.5          | 4,770           |
| M5D             | 0-5         | 77.7          | 4,960           |
|                 | 5-7         | 87.9          | 7,300           |
| Composite       | Programme   | 74.9          | 2,600           |
| Organic Silt in | Marsh       |               |                 |
| M2D             | 8-10        | 67.4          | 633             |
| M3D             | 8-10        | 67.1          | 654             |
| M4D             | 7-10        | 67.9          | 628             |
| M5D             | 7-10        | 68.8          | 500             |
| Composite       |             | 6 <b>7</b> .7 | 550             |

Table 2
Arsenic Concentrations – Kewaunee Geoprobe Composite Samples Multiple Extraction Test
Using DI Water Extractant

| SAN      | IPLE         |                                          |               |                 |             | EXTRA     | CTION        |                                        |             |                                         |               |
|----------|--------------|------------------------------------------|---------------|-----------------|-------------|-----------|--------------|----------------------------------------|-------------|-----------------------------------------|---------------|
| dl 💮     | DRY WT       | 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 | 2             | 3               | 4           | 5         | 6            | 7                                      | 8           | 9                                       | 10            |
| As Conce | ntration, mg | /L (Concent                              | rations below | r target of 0.: | 148 mg/L in | bold)     |              |                                        |             |                                         |               |
| Ballast  | 0.5          | 2.7                                      | 0.71          | 0.37            | 0.29        | 0.21      | 0.12         | 0.10                                   | 0.091       | 0.081                                   | 0.045         |
|          | 1.0          | 5.9                                      | 1.7           | 0.91            | 0.65        | 0.46      | 0.24         | 0.24                                   | 0.20        | 0.15                                    | 0.091         |
|          | 2.0          | 9.8                                      | 3.2           | 1.8             | 1.4         | 1.1       | 0.57         | 0.47                                   | 0.40        | 0.35                                    | 0.24          |
|          | 4.0          | 16                                       | 6.1           | 3.8             | 3.4         | 2.1       | 1.2          | 0.85                                   | 0.77        | 0.64                                    | 0. <b>4</b> 4 |
|          | 10.0         | 34                                       | 15            | 11              | 7.9         |           |              |                                        |             | -                                       |               |
|          | 20.0         | 54                                       | 28            | 22              | 17          |           |              |                                        |             |                                         |               |
| Peat     | 0.5          | 3.7                                      | 0.90          | 0.39            | 0.25        | 0.16      | 0.081        | 0.063                                  | 0.057       | 0.034                                   | 0.03          |
| under    | 1.0          | 6.4                                      | 2.1           | 1.0             | 0.70        | 0.47      | 0.25         | 0.20                                   | 0.18        | 0.12                                    | 0.09          |
| Ballast  | 2.0          | 12                                       | 3.7           | 1.9             | 1.4         | 1.0       | 0.63         | 0.49                                   | 0.41        | 0.31                                    | 0.24          |
|          | 4.0          | 19                                       | 7.0           | 3.6             | 2.3         | 2.6       | 1.5          | 1.1                                    | 0.92        | 0.71                                    | 0.63          |
|          | 10.0         | 40                                       | 19            | 14              | 11          |           |              |                                        |             |                                         |               |
|          | 20.0         | 71                                       | 31            | 27              | 23          | 3834344   |              |                                        |             |                                         |               |
| Peat in  | 0.5          | 6.4                                      | 1.0           | 0.32            | 0.19        | 0.12      | 0.062        | 0.049                                  | 0.038       | 0.026                                   | 0.02          |
| Marsh    | 1.0          | 9.9                                      | 2.3           | 0.93            | 0.59        | 0.40      | 0.19         | 0.17                                   | 0.16        | 0.14                                    | 0.10          |
|          | 2.0          | 16                                       | 4.3           | 2.1             | 1.5         | 1.2       | 0.72         | 0.59                                   | 0.52        | 0.44                                    | 0.39          |
|          | 4.0          | 33                                       | 12            | 5.0             | 3.2         | 2.8       | 1.8          | 1.3                                    | 1.0         | 0.94                                    | 0.86          |
|          | 10.0         | 85                                       | 30            | 23              | 14          |           |              |                                        |             |                                         |               |
|          | 20.0         | 160                                      | 49            | 19              | 40          |           |              |                                        | Hag bearing | £1                                      |               |
| Organic  | 0.5          | 1.0                                      | 0.40          | 0.22            | 0.16        | 0.10      | 0.066        | 0.061                                  | 0.058       | 0.030                                   | 0.02          |
| Silt in  | 1.0          | 1.6                                      | 0.64          | 0.37            | 0.29        | 0.20      | 0.13         | 0.10                                   | 0.11        | 0.078                                   | 0.04          |
| Marsh    | 2.0          | 2.6                                      | 1.2           | 0.80            | 0.64        | 0.55      | 0.35         | 0.30                                   | 0.24        | 0.20                                    | 0.14          |
|          | 4.0          | 4.1                                      | 2.1           | 1.3             | 1.2         | 1.1       | 0.68         | 0.63                                   | 0.55        | 0.43                                    | 0.38          |
|          | 10.0         | 8.2                                      | 2.7           | 1.8             | 0.89        | 52503255  | 3:33:65/43/4 | ###################################### |             | *************************************** |               |
|          | 20.0         | 12                                       | 4.1           | 2.6             | 1.2         |           |              |                                        |             |                                         |               |
| As       | 0.5          | 11                                       | 0.078         | <0.013          | <0.013      | 100914040 | 4,00,00      |                                        |             |                                         |               |
| Spiked   | 1.0          | 23                                       | 0.28          | 0.024           | <0.013      | 747470    |              |                                        |             |                                         |               |
| Sand     | 2.0          | 45                                       | 1.1           | 0.045           | <0.013      |           |              |                                        |             |                                         |               |
|          | 4.0          | 85                                       | 3.2           | 0.12            | <0.013      | 327600    |              |                                        |             |                                         |               |

Table 3
Cumulative Arsenic Extracted – Kewaunee Geoprobe Composite Samples Multiple Extraction Test
Using DI Water Extractant

|           | PLE        | <u>(* 1974 – 1864 ) iš 1866                                   </u> |          | en Gregoria de la composição de Carlos.<br>La composição de la compo | ngagaga arawaya da arawa ka |                                        | CTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | Paris de la prima de la proposició de la prima de<br>Notaciones de la prima de l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100 may 1940 a program in<br>La coma naca <del>a</del> nta and a ca | }600.6-(1000,000,000.600).<br>• |
|-----------|------------|--------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------|
| ID        | DRYWT      | 1                                                                  | 2        | 3                                                                                                                                                         | 4                                                               | 5                                      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                   | 10                              |
| Cumulativ | Arsenic Ma | ass extracted                                                      | d, mg/kg |                                                                                                                                                           |                                                                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                 |
| Ballast   | 0.5        | 262                                                                | 331      | 367                                                                                                                                                       | 395                                                             | 415                                    | 427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 436           | 445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 453                                                                 | 457                             |
| (1,400)   | 1.0        | 287                                                                | 370      | 414                                                                                                                                                       | 446                                                             | 468                                    | 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 491           | 501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 508                                                                 | 513                             |
|           | 2.0        | 237                                                                | 314      | 358                                                                                                                                                       | 392                                                             | 419                                    | 433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 444           | 454                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 462                                                                 | 468                             |
|           | 4.0        | 195                                                                | 269      | 315                                                                                                                                                       | 356                                                             | 382                                    | 397                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 407           | 417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 425                                                                 | 430                             |
|           | 10         | 165                                                                | 238      | 291                                                                                                                                                       | 329                                                             | 857478744.02                           | 477753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bar paraki    | 8 J. L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                                 |
|           | 20         | 131                                                                | 199      | 252                                                                                                                                                       | 293                                                             | ###################################### | THE PROPERTY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 272-02172     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                 |
| Peat      | 0.5        | 925                                                                | 1150     | 1250                                                                                                                                                      | 1310                                                            | 1350                                   | 1370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1386          | 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1410                                                                | 1420                            |
| under     | 1.0        | 750                                                                | 1010     | 1135                                                                                                                                                      | 1220                                                            | 1279                                   | 1310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1335          | 1358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1373                                                                | 1384                            |
| Ballast   | 2.0        | 750                                                                | 981      | 1100                                                                                                                                                      | 1190                                                            | 1253                                   | 1292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1323          | 1349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1368                                                                | 1383                            |
| (1,500)   | 4.0        | 595                                                                | 814      | 927                                                                                                                                                       | 999                                                             | 1080                                   | 1127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1161          | 1190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1212                                                                | 1232                            |
|           | 10         | 500                                                                | 738      | 913                                                                                                                                                       | 1050                                                            | ARGEVILLA PER LE                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NACH BOOK     | 4.194.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                     |                                 |
|           | 20         | 444                                                                | 638      | 807                                                                                                                                                       | 951                                                             |                                        | VERY COLUMN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99903337FA    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                 |
| Peat in   | 0.5        | 2030                                                               | 2350     | 2450                                                                                                                                                      | 2510                                                            | 2548                                   | 2568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2584          | 2596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2604                                                                | 2610                            |
| Marsh     | 1.0        | 1570                                                               | 1940     | 2090                                                                                                                                                      | 2180                                                            | 2244                                   | 2274                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2301          | 2327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2344                                                                | 2365                            |
| (2,600)   | 2.0        | 1280                                                               | 1620     | 1790                                                                                                                                                      | 1910                                                            | 2006                                   | 2063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2110          | 2152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2187                                                                | 2218                            |
|           | 4.0        | 1270                                                               | 1730     | 1920                                                                                                                                                      | 2040                                                            | 2148                                   | 2217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2267          | 2306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2342                                                                | 2375                            |
|           | 10         | 1351                                                               | 1828     | 2286                                                                                                                                                      | 2510                                                            | 97.800000000                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | Selection of the select |                                                                     |                                 |
|           | 20         | 1275                                                               | 1666     | 1817                                                                                                                                                      | 2136                                                            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                 |
| Organic   | 0.5        | 247                                                                | 346      | 400                                                                                                                                                       | 440                                                             | 465                                    | 481                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 496           | 511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 518                                                                 | 523                             |
| Silt in   | 1.0        | 198                                                                | 277      | 323                                                                                                                                                       | 359                                                             | 384                                    | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 413           | 426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 436                                                                 | 441                             |
| Marsh     | 2.0        | 161                                                                | 235      | 285                                                                                                                                                       | 325                                                             | 359                                    | 381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 399           | 414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 426                                                                 | 435                             |
| (550)     | 4.0        | 127                                                                | 192      | 232                                                                                                                                                       | 269                                                             | 303                                    | 324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 344           | 361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 374                                                                 | 386                             |
|           | 10         | 102                                                                | 135      | 157                                                                                                                                                       | 168                                                             | 58 F 57 F 4 C                          | XII.4804.480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | inia karana   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                 |
| İ         | 20         | 74.3                                                               | 99.7     | 116                                                                                                                                                       | 123                                                             |                                        | 22732355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 Nation 2017 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                 |
| As        | 0.5        | 880                                                                | 890      | 890                                                                                                                                                       | 890                                                             | 50/261/4747934                         | 78-78-50-50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 38138378      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                 |
| Spiked    | 1.0        | 920                                                                | 931      | 932                                                                                                                                                       | 932                                                             | 8888888                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |                                 |
| Sand      | 2.0        | 900                                                                | 922      | 923                                                                                                                                                       | 923                                                             |                                        | A SAME STATE OF THE SAME STATE |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                                                                 |                                 |



Figure 1
Arsenic Concentrations versus Elution Number for the 4g/40 mL Samples of Each Composite



Figure 2
Arsenic Concentration versus Pore Volume for the Ballast Samples







**Confirmation of Treatment Effectiveness for Sediments** 



**Date:** May 5, 2010

To: Technical File

From: Bob Stanforth

**Project No.:** 02085.23.009

**Subject:** Kewaunee Confirmation of Treatment Effectiveness for Sediments

### Introduction

A treatment process was developed for treating contaminated groundwater at the Kewaunee site, using the groundwater from MW04-10 and from in the ballast under the bike path, as discussed in the 2007 Treatability Report. The objectives of the treatment were as follows:

- Reduce dissolved arsenic to <170 μg/L</li>
- Generate solids that do not leach arsenic at greater than 5 mg/L in a TCLP test

It was assumed that the bulk of the arsenic in the ballast was dissolved, and that the ballast solids would be inert in the treatment testing. Since the ballast solids appear to be predominantly sand, this assumption is not unreasonable. However, the sediment in the marsh contains significant amounts of organic matter, lower concentrations of arsenic, and presumably more arsenic tied up in the solid phase. It is important, therefore, to test the treatment chemistry developed for the ballast groundwater on the sediment samples, both from under the tracks and in the marsh to ensure that the treatment process is still effective.

During the Geoprobe sampling in December, 2009 high arsenic levels were found in several different types of media in addition to the ballast groundwater. High levels of arsenic were found in the peat under the ballast, in the peat in marsh adjacent to the tracks, and at somewhat lower levels in the organic silt under the peat in the marsh. All the media need to be tested to confirm treatment effectiveness.

Composite samples of the four types of soil found during the December, 2009 Geoprobe investigation were mixed with the treatment reagents developed for the groundwater in the ballast area to evaluate whether the reagents effectively immobilized arsenic in the soils. The treatment consists of the following (per kilogram of soil):

- 25 mL 3% H<sub>2</sub>●<sub>2</sub>
- 84 g Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>-xH<sub>2</sub>O
- 60 g CaCO₃

The soils were treated and then subjected to both screening TCLP and SPLP tests, and the leachates analyzed for arsenic.

The treatment process was developed for the contaminated groundwater in the ballast and hot spot area in the marsh (near MW04-10). Since the ballast contains very little organic matter, and the treatment process will render the solids oxic, there is little driving force to generate anaerobic conditions in the ballast. Anaerobic conditions could reverse a small portion of the treatment chemistry and release some arsenic. Hence, there is some concern that the treatment process could be reversed if the samples become anoxic following treatment due to the continued biodegradation of the organic material in the solids. To address this concern the samples were saturated with DI water after aliquots were removed for the leaching tests and allowed to sit in capped beakers. Samples were taken after 10 days, 1 month, and after 3 months to determine whether arsenic is released from the treated material over time.

### Results

The untreated ballast and two peat samples leached arsenic over the hazardous waste criterion of 5 mg/L in the screening TCLP (Table 1). The organic peat sample was marginally nonhazardous (at 3.1 mg/L As). All four samples leached significant amounts of arsenic (>1 mg/L) in an SPLP test.

Treatment with the proposed reagents reduced arsenic leaching in both the TCLP and SPLP tests to below detection (<0.013 mg/L). Arsenic concentrations remained below detection for all samples tested under saturated conditions.

The results indicate that the treatment process developed for the groundwater in the ballast is also effective for both the ballast solids and marsh solids, and maintains a low arsenic leaching potential from the solids for all the times tested (up to three months) after treatment.

Table 1
Results of Screening TCLP and SPLP Leaching Tests on the Composite Geoprobe Samples With and Without Treatment

|           |               | SCREEN | IING TCLP | SCREE | NING SPLP |
|-----------|---------------|--------|-----------|-------|-----------|
| S         | AMPLE         | На     | As, mg/L  | рН    | As, mg/L  |
| Ballast   |               |        |           |       |           |
| Untreated | l             | 5.94   | 8.4       | 8.91  | 13        |
| Treated   | Immediate     | 5.98   | <0.013    | 6.56  | <0.013    |
|           | 10 Day        |        |           | 7.46  | <0.013    |
|           | 1 month       |        |           | 7.63  | <0.013    |
|           | 3 month       |        |           | 7.74  | <0.013    |
| Peat Und  | ler Ballast   |        |           |       |           |
| Untreated | I             | 6.27   | 11        | 8.36  | 11        |
| Treated   | Immediate     | 6.14   | <0.013    | 6.71  | <0.013    |
|           | 10 Day        |        |           | 7.31  | <0.013    |
|           | 1 month       |        |           | 7.44  | <0.013    |
|           | 3 month       |        |           | 7.54  | <0.013    |
| Peat in N | larsh         |        |           |       |           |
| Untreated | ſ             | 5.44   | 24        | 8.33  | 18        |
| Treated   | Immediate     | 5.94   | <0.013    | 5.70  | <0.013    |
|           | 10 Day        |        |           | 6.93  | <0.013    |
|           | 1 month       |        |           | 6.97  | <0.013    |
|           | 3 month       |        |           | 7.44  | <0.013    |
| Organic   | Silt in Marsh |        |           |       |           |
| Untreated | d             | 6.29   | 3,1       | 8.76  | 2.5       |
| Treated   | Immediate     | 6.28   | <0.013    | 7.21  | <0.013    |
|           | 10 Day        |        |           | 7.46  | <0.013    |
|           | 1 month       |        |           | 7.56  | < 0.013   |
|           | 3 month       |        |           | 7.77  | <0.013    |

**Dose Response Testing** 



**Date:** May 5, 2010

**To:** Technical File

From: Bob Stanforth

**Project No.:** 02085.23.009

**Subject:** Kewaunee Dose Response Testing For Hot-Spot Sediments

### Introduction

With an increased area of "hot-spot" sediment that may require treatment, and with much lower soluble arsenic concentrations than found in the ballast groundwater, lower doses of treatment additives were tested to see if the dose could be reduced and still have effective treatment. The initial "dose" was that determined for the ballast groundwater. However, since the objective was to lower the leachable arsenic to below the hazardous waste criterion of 5 mg/L rather than to meet a groundwater criterion, the arsenite oxidation using peroxide was not included. The selected chemistry consisted of the following:

- 8.4% Ferric Sulfate (Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>•xH<sub>2</sub>•
- 6.0% high calcium limestone

Varying proportions (0.1, 0.25, and 0.5 times) of this dose were introduced to the composite sediments of differing arsenic concentrations made up form the March 2010 Geoprobe investigation samples. The treated samples were subjected to both screening TCLP and screening SPLP tests.

### Results

The results are given below.

|                  | SCREEN     | ING TCLP | SCREEN | ING SPLP |
|------------------|------------|----------|--------|----------|
| DOSE             | рН         | As, mg/L | pH     | As, mg/L |
| ~10,000 mg/kg As | s Sediment |          |        |          |
| Untreated        | 5.28       | 94       | 7.88   | 99       |
|                  | 5.39       | 99       | 8.10   | 88       |
| 0.10 Dose        | 5.45       | 38       | 7.60   | 27       |
| 0.25 Dose        | 5.49       | 2.4      | 7.05   | 0.96     |
| 0.50 Dose        | 5.73       | <0.013   | 5.61   | 0.025    |
| ~5000 mg/kg As   | Sediment   |          |        |          |
| Untreated        | 5.50       | 38       | 8.08   | 42       |
|                  | 5.40       | 47       | 8.14   | 35       |
| 0.10 Dose        | 5.60       | 3.8      | 7.44   | 2.6      |
| 0.25 Dose        | 5.52       | 0.099    | 6.52   | 0.062    |
| 0.50 Dose        | 5.61       | <0.013   | 6 02   | <0 013   |

|                   | SCREEN     | ING TCLP | SCREEN | NG SPLP  |
|-------------------|------------|----------|--------|----------|
| DOSE              | На         | As, mg/L | рН     | As, mg/L |
| 2000-4000 mg/kg A | s Sediment |          |        |          |
| Untreated         | 5.57       | 22       | 8.42   | 16       |
|                   | 5.54       | 23       | 8.45   | 16       |
| 0.10 Dose         | 5.65       | 2.3      | 7.35   | 0.20     |
| 0.25 Dose         | 5.59       | <0.013   | 6.68   | 0.023    |
| 0.50 Dose         | 5.67       | <0.013   | 5.91   | <0.013   |

The results indicate that a much lower dose of the treatment additive is required for reducing leaching from the sediments to below 5 mg/L, with a 0.25 X dose effective for the most contaminated sediments, and a 0.10 X dose effective for the sediments with lower arsenic levels (5000 mg/kg and below). A plot of the TCLP arsenic concentration versus dose (as the fraction of the groundwater treatment dose) is shown in Figure 1. Figure 2 shows the same results with the Y-axis expanded so that results under the hazardous waste criterion (HWC) for arsenic (5 mg/L)are more clearly seen. Since there is very little sediment with the very high arsenic levels (~10,000 mg/kg), an overall dose for the contaminated sediment of 1% ferric sulfate and 0.75% limestone ( or 0.125 X dose) should be effective for the bulk of the material. For the higher arsenic concentrations (5000 mg/kg and above) a 0.25 X dose is effective.

Figure 1
TCLP As versus Dose for Kewaunee Sediments of Differing Arsenic Concentrations
(HWC – Hazardous Waste Criterion)



Figure 2

TCLP As versus Dose for Kewaunee Sediments of Differing Arsenic Concentrations,
with the Y-axis Expanded so that Concentrations Around the Hazardous Waste Criterion (HWC) are More Clearly Seen



**Addition of Bentonite** 



Date: May 11, 2010

To: Technical File

From: Bob Stanforth

**Project No.:** 02085.23.009

**Subject:** Addition of Bentonite to Treated Kewaunee Peat Samples

### Introduction

The treatment process for the Kewaunee sediment samples is designed to immobilize arsenic so that it is insoluble and immobile in the treated material. This process could be improved by reducing the permeability of the treated material, so that the potential for arsenic mobility back into the marsh is reduced still further. To test this concept, samples of treated peat material were further treated with different amounts of bentonite and the permeability of the samples measured.

### **Procedure**

Samples of contaminated peat were mixed with the target treatment reagent (6.6 mL 3% peroxide, 21 g ferric sulfate and 15 g high calcium limestone per kilogram of sediment). The samples were allowed to react for several hours (to ensure all gas has been generated from the acid-limestone reaction), then different amounts of sodium bentonite powder were added, as shown in the Table 1 below. The bentonite was allowed to hydrate, then the samples were placed into permeameter cells, gently compacted by hand and the permeability measured in a flexible wall permeameter using a falling head permeameter test (ASTM D5084).

### Results

The permeability results are presented in Table 1 below. Laboratory data sheets are attached.

| SAMPLE    | BENTONITE | PERMEABILITY, cm/sec   |
|-----------|-----------|------------------------|
| Untreated | 0         | 4.6 x 10 <sup>-7</sup> |
| Treated   | 0         | 2.9 x 10 <sup>-7</sup> |
|           | 2%        | 3.1 x 10 <sup>-7</sup> |
|           | 4%        | 1.8 x 10 <sup>-7</sup> |
|           | 6%        | 1.3 x 10 <sup>-7</sup> |
|           | 8%        | 1.1 x 10 <sup>-7</sup> |

### Conclusions

Somewhat surprisingly, the untreated sediment has a relatively low permeability even without treatment or bentonite addition. Permeabilities in the peat layers in field range from  $1.5 \times 10^{-4}$  to  $6.7 \times 10^{-3}$  cm/sec, (STS, 2004). The laboratory measurements for the untreated material has a permeability three orders of magnitude lower than what is found in the field. The lower permeability in the lab sample may be due to the disruption of the sediment layering that enhances horizontal permeability in the field. Disruption of this layering, which occurs due to the annual deposition of the plant material, can lower the permeability significantly. Treatment of the sediment would disrupt the layering, and would be anticipated to lower the permeability even without addition of either treatment reagents or bentonite. Addition of the treatment reagents lowered the permeability slightly, since the reagents form very fine solids which plug the pores in the sediment, while addition of bentonite lowered the permeability still further. However, the difference in permeability between the sample with no bentonite (2.9 x  $10^{-7}$  cm/sec) and the highest (8%) bentonite dose ( $1.1 \times 10^{-7}$  cm/sec) is fairly small. The addition of bentonite provides some assurance that the permeability has been reduced. However, the disruption of the sediment structure during treatment is the major factor reducing permeability.

The laboratory test does not perfectly model what will happen in the field, but is indicative of a significant reduction in permeability just due to working the marsh material. The actual decrease in permeability due to the treatment will need to be determined in the field.

A previous estimate of groundwater flow rates at the site gave a groundwater velocity of 0.37 ft/yr using a permeability of  $1.7 \times 10^{-4}$  cm/sec (STS, 2004). A reduction in permeability of several orders of magnitude would lower the groundwater flow velocity to insignificant rates, such that the groundwater would be essentially static in the treated area.

|         |        |        |         |                |              |           |           | RMT, lr     | nc.       |                                         |             |               |            |                                         |            | 2C: (X)          |              |
|---------|--------|--------|---------|----------------|--------------|-----------|-----------|-------------|-----------|-----------------------------------------|-------------|---------------|------------|-----------------------------------------|------------|------------------|--------------|
|         |        |        |         |                | 1            | Falling I | Head Pern | neability : | Гest (AST | M D5084                                 | 1)          |               |            |                                         |            | 2A: 5 <b>/</b> α |              |
|         | Projec | t Nar  | ne:     | WDNR -         | Kewaunce     |           |           |             |           | (                                       | Cell #:     |               |            |                                         |            |                  | 8            |
| 1       | Pr∙jec | ( #:   | 1       | 02085.03.0     | 001          |           |           |             |           |                                         | USCS Desc   | ription       |            |                                         |            |                  | N/A          |
| !       | Sampl  | e Na   | me:     | AC 10040       | 12           |           |           |             |           |                                         | USCS Clas   | sification    |            |                                         |            |                  | N/A          |
| ,       | Visual | Des    | cript   | Marsh Se       | diment       |           |           |             |           |                                         | Average K   | (v =          |            |                                         |            | 41.6E-0          | 7 cm/sec     |
|         | Sampl  | e Tyj  | oe:     | Remoidee       | l            |           | Initial   | Füral       |           |                                         |             |               |            |                                         |            |                  |              |
|         |        |        |         |                |              |           | Values    | Values      |           |                                         |             |               |            |                                         |            |                  |              |
|         | Sampl  | le Dia | a. (in) |                |              |           | 2.85      | 2.70        |           |                                         | Permeant:   |               |            |                                         | ,          | Vater            |              |
|         | Sampl  | le Ht. | (in)    |                |              |           | 2.20      | 1.97        |           |                                         | Permeant S  | Specific Gr   | avity:     |                                         | 1          | .00.             |              |
|         | Tare 6 | k We   | t (g)   |                |              |           | 299.22    | 518.80      |           |                                         | Sample Sp   | ecific Grav   | ity:       |                                         | ì          | .95              | Est.         |
| ·       | Tare 8 | k Dry  | (8)     |                |              |           | 144.00    | 108.10      |           |                                         | Contining   | Pressure (1   | osi):      |                                         | 1          | 0.00             |              |
|         | Tare ( | g)     |         |                |              |           | 0.00      | 26.1.10     |           |                                         | Burette Dia |               | r.         |                                         |            | 0.250            |              |
|         | Samp   | le Wi  | . (g)   | ×              | <u></u>      |           | 299.22    | 25-1.70     |           | *************************************** | Burette Ze  |               |            |                                         |            | 100.0            |              |
|         |        |        |         |                |              |           |           |             |           |                                         | Final Samp  | ple Conditi   | ion:       |                                         | (          | Consolidate      | d            |
|         | Maist  | ure (' | 'ó)     |                |              |           | 107.8     | 76.9        |           |                                         | Maximum     | Gradient:     |            |                                         | 1          | 3.7              |              |
|         | Wet D  |        |         | )              |              |           | 81.2      | 86.0        |           |                                         | Average G   | radient:      |            |                                         | 1          | 10.9             |              |
|         | Dry D  | Densi  | y (pcf  | )              |              |           | 39.1      | 48.6        |           |                                         | Max. Effec  | t. Stress (p  | si):       |                                         | :          | 3.2              |              |
|         | Satur  | ation  | (%)     |                |              |           | 99.6      | 100.0       |           |                                         | Min. Effec  | t. Stress (p  | si):       |                                         | 1          | 1.3              |              |
|         |        |        | ****    |                |              |           |           |             |           |                                         | Ave. Effec  | t. Stress (p: | si):       |                                         | :          | 2.1              |              |
|         | Date   |        | 7       | ime            | Run          | Temp      | Pressu    | re (psi)    |           | Cham.                                   |             | Bot.          |            | Top                                     | Flow       | Kv ***           | Ave.*        |
| Yr.     | Mo.    | Dav    | Hr.     | Min.           | Time         | C***      | Bot       | Тор         | Cham      | Díſ.                                    | Bot         | Dif.          | Тор        | Dif.                                    | Dtf.%      | cm/sec           | 0,1          |
| 2010    | 5      | 3      | 13      | 3.00           |              | 0.0       | 98        | 98          | 20.55     |                                         | 3.95        |               | 100.65     |                                         |            |                  |              |
| 2010    | 5      | 3      | 13      | 37.00          | 2040         | 20.0      | 98        | 98          | 25.35     | 4.80                                    | 6.40        | 2.45          | 94.60      | 6.05                                    | -42.4      | 9.7E-0           | 7            |
| 2010    | 5      | 3      | 14      | 10.00          | 1980         | 20.0      | 98        | 98          | 27.50     | 2.15                                    | 8.95        | 2.55          | 91.25      | 3.35                                    | -13.6      | 7.5E-0           | 7            |
| 2010)   | 5      | 3      | 14      | 46.00          | 2160         | 20.0      | 98        | 98          | 29.10     | 1.60                                    | [1.75       | 2.80          | 88.20      | 3.05                                    | -4.3       | 7.3E-0           | 7            |
| 2010    | 5      | 3      | 14      | 57.00          | 660          | 20.0      | 98        | 98          | 30.15     | 1.05                                    | 12,40       | 0.65          | 87.20      | 1.00                                    | -21.2      | 7.1E-0           | 17           |
| 2010    | 5      | 4      | 5       | 53.00          |              | 0.0       | 98        | 98          | 54.()()   |                                         | 2,55        |               | 98.95      |                                         |            |                  |              |
| 2010    | 5      | -4     | 7       | 4.00           | 4260         | 20.0      | 98        | 98          | 55.35     | 1.35                                    | 7.65        | 5.10          | 93.40      | 5.55                                    | -4.2       | 5.9E-0           | 17           |
| 2010    | 5      | -4     | 8       | 4.00           | 3600         | 20.0      | 98        | 98          | 56.80     | 1.45                                    | 11.40       | 3.75          | 89.70      | 3.70                                    | 0.7        | 5.4E-0           |              |
| 2010    | 5      | 4      | 8       | 57.00          | 3180         | 20.0      | 98        | 98          | 57.90     | 1.10                                    | [4.40]      | 3.00          | 86.50      | 3.20                                    | -3.2       | 5.6E+0           |              |
| 2010    |        | 4      | 9       | 38.00          | 3660         | 20.0      | 98        | 98          | 58.20     | 0.30                                    | 17.70       | 3.30          | 8,3,35     | 3.15                                    | 2.3        | 5.5E-0           |              |
| 2010    | 5      | -4     | 10)     | 59.00          | 3660         | 20.0      | 98        | 98          | 59.40     | 1.20                                    | 20.55       | 2.85          | 80.40      | 2.95                                    | -1.7       | 5.4E-(           |              |
| 9       |        | -1     | 12      | 4.00           | 3900         | 20.0      | 98        | 98          | 60.20     | 0.80                                    |             |               |            | 2.95                                    |            | 5.4E-(           |              |
| 2010    |        |        |         |                |              |           |           |             |           |                                         | 23.40       | 2.85          | 77,65      |                                         | 1.8        |                  |              |
| 2010    | 5 -    | -4     | 13      | 5.00           | 3660         | 20.0      | 98        | 98          | 61.70     | 1.50                                    | 25.75       | 2.35          | 75.20      | 2.45                                    | -2.1       | 5.4E-0           |              |
| 2010    |        | 4      | 1.1     | 7.00           | 3720         | 20.0      | 98        | 98          | 62.40     | 0.70                                    | 28.00       | 2.25          | 73.15      | 2,05                                    | 4.7        | 5.2E-0           |              |
| 2010    |        | -4     | 16      | 16.00          | 77-10        | 20.0      | 98        | 98          | 6-1.60    | 2.20                                    | 31.85       | 3.85          | 69.30      | 3.85                                    | 0.0        | 5.2E-0           | )/           |
| 2010    | 5      | 3      | 5       | 40.00          |              | 0.0       | 98        | 98          | 15.15     |                                         | 4.20        |               | 99,30      |                                         |            |                  |              |
| 2010    | 5      | 5      | 6       | 40.00          | 3600         | 20.0      | 98        | 98          | 18.00     | 2.85                                    | 7.30        | 3.10          | 94.25      | 5.05                                    | -23.9      | 5.3E-0           |              |
| 2010    | 5      | 5      | 7       | 42.00          | 3720         | 20.0      | 98        | 98          | 18.90     | 0.90                                    | 10.55       | 3.25          | 90.75      | 3,50                                    | -3.7       | 4.7E-0           |              |
| 2010    | 5      | 5      | 8       | 42.00          | 3600         | 20.0      | 98        | 98          | 19.20     | 0.30                                    | 13.60       | 3.05          | 87.70      | 3.05                                    | 0.0        | 4.7E-0           |              |
| 2010    | 5_     | 5      | 9       | 42.00          | 3600         | 20.0      | 98        | 98          | 20.60     | 1.40                                    | 16.25       | 2.65          | 84.60      | 3.10                                    | -7.8       | 4.8E-0           | 07           |
| 2010    | 5      | 5      | 10      | 42.00          | 3600         | 19.0      | 98        | 98          | 20.90     | 0.30                                    | 18.80       | 2.55          | 82.05      | 2.55                                    | 0.0        | 4.7E-0           | 07 <b>I</b>  |
| 2010    | 5      | 5      | 11      | 42.00          | 3600         | 20.0      | 98        | 98          | 22.10     | 1.20                                    | 21.15       | 2.35          | 79,50      | 2.55                                    | -1.1       | 4.8E-0           | 07 1         |
| 2010    | 5      | 5      | 12      | 42.00          | 3600         | 20.0      | 98        | 98          | 22.40     | 0.30                                    | 23.35       | 2.20          | 77.40      | 2,10                                    | 2.3        | 4.6E-0           | 07 1         |
| 2010    | 5      | 5      | 13      | 42.()()        | 3600         | 20.0      | 98        | 98          | 23.50     | 1.10                                    | 25.20       | 1.85          | 75.25      | 2.15                                    | -7.5       | 4.6E-            | 07           |
| 2010    | 5      | 5      | 1-1     | 43.00          | 3660         | 20.0      | 98        | 98          | 2-1.00    | 0.50                                    | 27.15       | 1.95          | 73.40      | 1.85                                    | 2.6        | 4.6E-            | 07 ï         |
| 2010    | 5      | ŝ      | 15      | 50.00          | 4020         | 20.0      | 98        | 98          | 24.40     | 0.40                                    | 28.90       | 1.75          | 71.40      | 2.00                                    | -6.7       | 4.5E-            | 07 1         |
| **A zer | o in t | his co | lumn    | starts a so    | eries of mea | suremer   | nts.      |             | *Average  | Ky for th                               | ose rows w  | vith a 1 in t | he Ave. co | olumn.                                  |            | 4.6E-            | 07 cm/sec    |
| ti      |        |        |         | وأميام بيوالان | le Kv and le | (las      | 4:77      | ,           |           |                                         |             |               |            | *************************************** | justed for |                  | - management |

| Τ               |             |              |             |         |           |                               |            |               | RMT, I   | nc.    |                                         |                     |              |            |                                        | lo           | C: M                                   | i                                       |
|-----------------|-------------|--------------|-------------|---------|-----------|-------------------------------|------------|---------------|----------|--------|-----------------------------------------|---------------------|--------------|------------|----------------------------------------|--------------|----------------------------------------|-----------------------------------------|
|                 |             |              |             |         |           |                               | Falling I  | Flead Pern    |          |        | M ID508-                                | 1)                  |              |            |                                        | <b>:</b> -   | 2A: /ἐλ\                               | 1                                       |
| T               |             | Projec       | t Nai       | ne:     | WDNR -    | Kewaunee                      |            |               | <u> </u> | , ,    |                                         | <br>Cell #:         |              |            |                                        |              |                                        | 3                                       |
|                 |             | 'rojec       | t #:        |         | 02085.01. | .001                          |            |               |          |        |                                         | USCS Desc           | ription:     |            |                                        |              |                                        | :N/A                                    |
|                 | 9           | Samp         | le Na       | me:     | AC10040   | -13                           |            |               |          |        |                                         | USCS Class          | •            |            |                                        |              |                                        | N/A                                     |
|                 |             | Visua        | l Des       | cript:  | Treated S | Sediment                      |            |               |          |        |                                         | Average K           | (v =         |            |                                        | r            | 2.9E-07                                | cm/sec                                  |
| Τ               |             | Samp         | le Ty       | pe:     | Remolde   | d                             |            | Initial       | Final    |        |                                         | -                   |              |            |                                        |              |                                        |                                         |
|                 |             |              |             |         |           |                               |            | Values        | Values   |        |                                         |                     |              |            |                                        |              |                                        |                                         |
|                 |             | Samp         | le Di       | a. (in) |           |                               |            | 2.85          | 2.75     |        |                                         | Permeant:           |              |            |                                        | V            | Vater                                  |                                         |
|                 |             | Samp         | le I-It     | (in)    |           |                               |            | 2.13          | 1.80     |        |                                         | Permeant S          | Specific Gr  | avity:     |                                        | ı            | .00                                    |                                         |
|                 |             | Tare 6       | k We        | t (g)   |           |                               |            | 297.80        | 501.00   |        |                                         | Sample Sp           | ecific Grav  | sity:      |                                        | 2            | .08                                    | Est.                                    |
|                 |             | Tare &       | k Dry       | (g)     |           |                               |            | 116.49        | 396.42   |        |                                         | Contining           | l'ressure (  | psi):      |                                        | l.           | 0.00                                   | İ                                       |
|                 |             | Tare (       | g)          |         |           |                               |            | 0.00          | 249.93   |        |                                         | Burette Dia         | ameter (in   | <b>)</b>   |                                        | 0            | .250                                   | ļ                                       |
| L               |             | Samp         | le W        | l. (g)  |           |                               |            | 297.80        | 251.07   |        |                                         | Burette Ze          | ro (cm):     |            |                                        | 1            | 0.00                                   |                                         |
|                 |             |              |             |         |           |                               |            |               |          |        |                                         | Final Samp          | ole Condit   | ion:       |                                        | (            | Consolidated                           |                                         |
|                 |             | Moist        | urc (       | %)      |           |                               |            | 103.3         | 71.4     |        |                                         | Maximum             | Gradient:    |            |                                        | 2            | 20.5                                   |                                         |
|                 |             | Wet D        | Densi       | ty (pcl | )         |                               |            | 83.7          | 89.5     |        |                                         | Average C           | radient:     |            |                                        | ı            | 1.0                                    |                                         |
| 1               |             |              |             | ıy (pcf | -         |                               |            | 41.2          | 52.2     |        |                                         | Max. Effec          |              | osi):      |                                        | 3            | 3.I                                    |                                         |
|                 |             | Satura       | ntion       | (%)     |           |                               |            | 99.8          | 100.0    |        |                                         | Min, Effec          | t. Stress (p | si):       |                                        | l            | .4                                     |                                         |
| L               |             |              |             |         |           |                               |            |               |          |        |                                         | Ave, Effec          | t. Stress (p | si):       |                                        | 2            | .2                                     |                                         |
|                 |             | Date         |             | 7       | ime       | Run                           | Temp       | Pressu        | re (psi) |        | Cham.                                   |                     | Bot.         |            | Тор                                    | Flow         | Kv ***                                 | Ave.*                                   |
|                 | Yr.         | Mo.          | Day         | Hr.     | Min.      | Time                          | C***       | Elot          | Тор      | Cham   | Dif.                                    | Bot                 | Dif.         | Тор        | Dif.                                   | Dif.%        | cm/sec                                 | 0,1                                     |
| ١               | 2010        | -{           | 30          | 10      | 29.00     |                               | 0.0        | 98            | 98       | 62.20  |                                         | 17.90               |              | 98.25      |                                        |              |                                        |                                         |
| 2               | 2010        | .1           | 30          | 12      | 39.00     | 7800                          | 20.0       | 98            | 98       | 64.10  | 1.90                                    | 23.55               | 5.65         | 91.45      | 6.80                                   | -9.2         | 4.1E-07                                |                                         |
| 3               | 2010        | -1           | 30          | 13      | 40,00     | 3660                          | 20.0       | 98            | 98       | 64.45  | 0.35                                    | 25.90               | 2.35         | 89.85      | 1.60                                   | 19.0         | 3.1E-07                                |                                         |
| 4               | 2010        | 4            | 30          | I-1     | 11.00     | 1860                          | 20.0       | 98            | 98       | 64.80  | 0.35                                    | 27.00               | 1.10         | 87.70      | 2.15                                   | -32.3        | 5.3E-07                                | *************************************** |
| s               | 2010        | 5            | 3           | 6       | T1.00     |                               | 0.0        | 98            | 98       | 22.80  |                                         | 1.70                |              | 100.70     |                                        |              | — <del>»</del>                         |                                         |
| 6               | 2010        | 5            | 3           | 7       | 11.00     | 3600                          | 20.0       | 98            | 98       | 23.85  | 1.05                                    | 4.35                | 2.65         | 97.05      | 3.65                                   | -15.9        | 3.5E-07                                |                                         |
| 7               | 2010        | 5            | 3           | 8       | 12.00     | 3660                          | 20.0       | 98            | 98       | 24.10  | 0.25                                    | 7.10                | 2.75         | 93.90      | 3.15                                   | -6.8         | 3.4E-07                                |                                         |
| H               | 2010        | <del>_</del> | 3           | 9       | 12.00     | 3600                          | 20.0       | 98            | 98       | 2-1.60 | 0.50                                    | 9.65                | 2.55         | 91.15      | 2.75                                   | -3.8         |                                        |                                         |
| 8 <u> </u><br>. |             | 5            |             |         |           |                               | 21.0       |               |          |        |                                         |                     |              |            |                                        |              | 3.3E-07                                |                                         |
| 9               | 2010        |              | 3           | 11      | 13.00     | 7260                          |            | 98            | 98       | 25.80  | 1.20                                    | 14.30               | 4.65         | 86.20      | 4.95                                   | -3.1         | 3.2E-07                                | ····                                    |
| ۰               | 2010        | 5            | 3           | 12      | 44.00     | 5:160                         | 20.0       | 98            | 98       | 25.00  | -0.80                                   | 17.35               | 3.05         | 82.75      | 3.45                                   | -6.2         | 3.3E-07                                | *************************************** |
| 1               | 2010        | 5            | 3           | 14      | 8.00      | 50.10                         | 20.0       | 98            | 98       | 25.55  | 0.55                                    | 19.95               | 2.60         | 79.90      | 2.85                                   | -4.6         | 3.3E-07                                |                                         |
| 2               | 2010        | 5            | <u>l</u>    | 5       | 49.00     | 56-160                        | 2(),()     | 98            | 98       | 29.80  | 4.25                                    | 37,15               | 17.20        | 60.95      | 18.95                                  | -4.8         | 3.1E-07                                |                                         |
| 3               | 2010        | 5            | 4           | 5       | 58.00     |                               | 0.0        | 98            | 98       | 30.30  |                                         | 37.25               |              | 100.50     |                                        |              |                                        | ····                                    |
| 4               | 2010        | 5            | 4           | 7       | 59.00     | 7260                          | 20.0       | 98            | 98       | 31.20  | 0.90                                    | 40.50               | 3.25         | 96.30      | -1.20                                  | -12.8        | 3.3E-07                                |                                         |
| 5               | 2010        | 5            | 4           | 10      | 1.00      | 7356                          | 20.0       | 98            | 98       | 31.60  | 0.40                                    | 43.50               | 3.00         | 93.10      | 3.20                                   | -3.2         | 3.0E-07                                |                                         |
| 6               | 2010        | 5            | -1          | 11      | 59.00     | 701-1                         | 20.0       | 98            | 98       | 32.20  | 0.60                                    | 45.95               | 2,45         | 90.25      | 2.85                                   | -7.5         | 3.0E-07                                |                                         |
| 7               | 2010        | 5            | 4           | 1-1     | 0.00      | 7260                          | 20.0       | 98            | 98       | 32.70  | 0.50                                    | 48.25               | 2.30         | 87.70      | 2.55                                   | -5.2         | 3.0E-07                                |                                         |
| 8               | 2010        | 5            | 1           | 16      | 8.00      | 7680                          | 20.0       | 98            | 98       | 33.50  | 0.80                                    | 50.40               | 2.15         | 85.35      | 2.35                                   | -1,4         | 3.0E-07                                |                                         |
| 9               | 2010        | 5            | 5           | 5       | :31.00    | -18180                        | 20.0       | 98            | 98       | 37.15  | 3.65                                    | 58.75               | 8.35         | 75.70      | 9.65                                   | -7.2         | 2,813-07                               |                                         |
| 0               | 2010        | 5            | 5           | 5       | 40.00     |                               | 0.0        | 98            | 98       | 37.05  |                                         | -L95                |              | 98.75      |                                        |              |                                        |                                         |
| 21              | 2010        | 5            | 5           | 7       | 44.00     | 7-1-10                        | 20.0       | 98            | 98       | 37.60  | 0.55                                    | 10.05               | 5.10         | 93.65      | 5.10                                   | 0.0          | 2.9E-07                                | , 1                                     |
| 22              | 2010        | 5            | 5           | 9       | 44.00     | 7200                          | 20.0       | 98            | 98       | 37.60  | 0.00                                    | 1-1.30              | 4.25         | 89.15      | 4.50                                   | -2.9         | 2.9E-07                                |                                         |
| 23              | 2010        | 5            | 5           | 11      | 45.00     |                               | 20.()      | 98            | 98       | 37.75  | 0.15                                    | 18.15               | 3.85         | 85.20      | 3.95                                   | -1.3         | 2.9E-07                                |                                         |
| 24              | 2010        |              |             | 13      | 44.00     |                               | 20.0       | 98            | 98       | 38.00  | 0.25                                    | 21.50               | 3.35         | 81.60      | 3.60                                   | -3.6         | 2.9E-07                                |                                         |
|                 | 2010        |              | 5           | 16      | 23.00     |                               | 20.0       | 98            | 98       | 38.50  | 0.50                                    | 25.40               | 3.90         | 77.55      | 4.05                                   | -1.9         |                                        |                                         |
| 25              | 2010        | <u></u>      |             | 7       | 37.00     |                               | 19.0       | 98            | אר<br>98 |        | *************************************** | 39.30               |              |            | ······································ |              | 2.8E-07                                |                                         |
| °               |             |              | 6<br>his co |         |           | eries of mea                  |            | <del></del>   | 98       | ·41.30 | 2.80<br>Kv: (or th                      | 39.30<br>050 TOWS W | 13.90        | 62.80      | 14.75                                  | -3.0         | 2.8E-07                                |                                         |
|                 |             |              |             |         |           | eries of mea<br>ole Kv and lo |            |               | ١        | WikuRö | rv (ör th                               | ose faws w          | am a t III l | me Ave. co |                                        | ineta. I for | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | cm/sec                                  |
| L               | i i eriiiii | 101101       | 11111       |         | a oy stab | HE VE WHEN TO                 | 2 es 110 M | Carrerential. | ,        |        |                                         |                     |              |            | Lv ad                                  | justed for   | temperature.                           |                                         |

| Γ   |                                         |               |                |          |           |                 |         |               | RMT, I                                  | nc.     |           |                                         |                  |             |       | k            | 2C: \$)      |                                         |
|-----|-----------------------------------------|---------------|----------------|----------|-----------|-----------------|---------|---------------|-----------------------------------------|---------|-----------|-----------------------------------------|------------------|-------------|-------|--------------|--------------|-----------------------------------------|
|     |                                         |               |                |          |           |                 | Falling | Head Pern     |                                         |         | M D508-   | <del>1</del> )                          |                  |             |       | <b>⊢</b>     | QA: 19       |                                         |
| Ī   | 1                                       | Projec        | t Nan          | ne: V    | VDNR -    | Kewaunee        |         |               |                                         |         |           | Cell #:                                 |                  |             |       |              |              | 1                                       |
|     | 1                                       | Projec        | t #:           | C        | 2085.01.0 | 001             |         |               |                                         |         |           | USCS Desc                               | ription:         |             |       |              |              | N/A                                     |
|     | 9                                       | Sampl         | e Na           | me: /    | \C10040   | .1.1            |         |               |                                         |         |           | USCS Class                              | sification:      |             |       |              |              | N/A                                     |
|     |                                         | Visual        | Des            | cript: T | freated S | ediment -       |         |               |                                         |         |           | Average K                               | ( <sub>V</sub> = |             |       | I            | 3.1E-07      | cm/sec                                  |
| Γ   | 9                                       | Samp          | le Tyj         | pe: I    | Remolde   | d               |         | Initial       | Final                                   |         |           |                                         |                  |             |       |              |              |                                         |
|     |                                         |               |                |          |           |                 |         | Values        | Values                                  |         |           |                                         |                  |             |       |              |              |                                         |
|     | 9                                       | Samp          | le Dia         | a. (in)  |           |                 |         | 2.85          | 2.70                                    |         |           | Permeant                                |                  |             |       | ١            | Vater        | 1                                       |
|     | :                                       | Samp          | le Ht          | (in)     |           |                 |         | 2.17          | 2.00                                    |         |           | Permeant S                              | Specific Gr      | avity:      |       | 1            | 1.00         |                                         |
|     |                                         | Tare 6        | k We           | l (g)    |           |                 |         | 303.03        | 525.80                                  |         | :         | Sample Sp                               | ecific Grav      | rity:       |       | =            | 2.04         | Est.                                    |
|     |                                         | Tare 8        | k Dry          | (g)      |           |                 |         | 151.20        | -112.30                                 |         |           | Confining                               | Pressure (       | psi);       |       | 1            | 0.001        | İ                                       |
|     |                                         | Tare (        | g)             |          |           |                 |         | 0.00          | 261.10                                  |         |           | Burette Di                              | ameter (in       | ):          |       | (            | 0.250        |                                         |
| 1   |                                         | Samp          | le W           | . (g)    |           |                 |         | 303.03        | 264.70                                  |         |           | Burette Ze                              | ro (cm):         |             |       | :            | 100.0        |                                         |
|     |                                         |               |                |          |           |                 |         |               |                                         |         |           | Final Samp                              | ole Condit       | ion:        |       | (            | Consolidated |                                         |
|     |                                         | Moist         | ure ('         | %)       |           |                 |         | 1004          | 75.1                                    |         |           | Maximum                                 | Gradient:        |             |       | 1            | 18.9         |                                         |
|     |                                         | Wei E         | Densil         | ly (pcí) |           |                 |         | 831           | 88.1                                    |         |           | Average C                               | Gradient:        |             |       |              | 10,5         |                                         |
|     |                                         | Dry E         | )ensit         | y (pci)  |           |                 |         | 41.6          | 50.3                                    |         |           | Max. Effec                              | t. Stress (p     | si):        |       | :            | 3.2          |                                         |
|     |                                         | Satur         | ation          | (*4)     |           |                 |         | 99.5          | 100.0                                   |         |           | Min. Effect                             | ı. Sıress (p     | si):        |       |              | 1.2          |                                         |
|     |                                         |               |                |          |           |                 |         |               |                                         |         |           | Ave, Effec                              | ı.Stress (p      | si):        |       | :            | 2.3          |                                         |
| Ī   |                                         | Date          | T              | T        | ime       | Run             | Temp    | Pressu        | re (psi)                                |         | Cham,     |                                         | Bot.             |             | Тор   | Flow         | Kv ***       | Ave.*                                   |
|     | Yr.                                     | No.           | Day            | Hr.      | Min.      | Time            | C***    | Bot           | Тор                                     | Cham    | Dif.      | Bot                                     | Dif.             | Тор         | Dif.  | Dif.%        | cm/sec       | 0,1                                     |
|     | 2010                                    | 4             | 30             | 10       | 29,00     |                 | 0.0     | 98            | 98                                      | 70.70   |           | 17.65                                   |                  | 98.40       |       |              |              |                                         |
| 2   | 2010                                    | 4             | 30             | 12       | 40.00     | 7860            | 20.0    | 98            | 98                                      | 72.85   | 2.15      | 23.15                                   | 5.30             | 89.25       | 9.15  | -24.9        | 5.5E-07      |                                         |
| 3   | 2010                                    | 4             | 30             | 13       | 41.00     | 3660            | 20.0    | 98            | 98                                      | 73.20   | 0.35      | 25.55                                   | 2.40             | 86.60       | 2.65  | -5.●         | -1.7E-07     |                                         |
| 4   | 2010                                    | 4             | 30             | 14       | 12.00     | 1860            | 20.0    | 98            | 98                                      | 73.40   | 0.20      | 26.60                                   | 1.05             | 85.40       | 1.20  | -6.7         | 1.4E-07      | *************************************** |
| s 🖟 | 2010                                    | 5             | 3              | 6        | 12.00     |                 | 0.0     | 98            | 98                                      | 17.05   |           | 1.00                                    |                  | 99.30       |       |              |              |                                         |
| 6   | 2010                                    | <u>-</u>      | 3              | 7        | 12.00     | 3600            | 20.0    | 98            | 98                                      | 18.70   | 1.65      | 3.35                                    | 2.35             | 95.30       | 4.00  | -26.0        | 4.0E-07      |                                         |
| 7   | 2010                                    | 5             | 3              | 8        | 12.00     | 3600            | 20.0    | 98            | 98                                      | 19.10   | 0.40      | 5.85                                    | 2.50             | 92.05       | 3.25  | -13.0        | 3.9E-07      |                                         |
| 8   | 2010                                    |               | 3              | 9        | 12.00     | 3600            | 20.0    | 98            | 98                                      | 19.95   | 0.85      | 8.20                                    | 2.35             | 89.20       | 2.85  | -9.6         |              |                                         |
| ľ   | *************************************** | ŝ             | 3              |          |           |                 | 21.0    |               | 98                                      |         |           | *************************************** |                  |             |       | ····         | 3.8E-07      |                                         |
| 9   | 20(0)                                   | •••••         |                | - 11     | 13.00     | 7260            |         | 98            | *************************************** | 21.40   | 1.45      | 12.55                                   | 4.35             | 84.70       | 5.10  | -7.9         | 3.6E-07      |                                         |
| 10  | 2010                                    |               | 3              | 12       | 44.00     | 5460            | 20.0    | 98            | 98                                      | 20.35   | -1.05     | 15.35                                   | 2.80             | 80.50       | 3.60  | -12.5        | 3.7E-07      |                                         |
| "   | 2010                                    | <u>5</u>      | 3              | 14       | 8.00      | 5040            | 20.0    | 98            | 98                                      | 20.90   | 0.55      | 17.75                                   | 210              | 77.65       | 2.85  | -8.6         | 3.6E-07      |                                         |
| 12  | 2010                                    | 5             | 1              | 5        | 49.00     | 56· <b>16</b> 0 | 20.0    | 98            | 98                                      | 24.90   | -1.00     | 34.20                                   | 16.45            | 58.25       | 19.40 | -8.2         | 3.5E-07      |                                         |
| 13  | 2010                                    | 5             | -1             | - 5      | 58.00     |                 | 0.0     | 98            | 98                                      | 25.15   |           | 34.20                                   |                  | 100.75      |       | ······       | ***          |                                         |
| 14  | 2010                                    | 5             | 4              | 8        | 0.00      | 7320            | 20.0    | 98            | 98                                      | 28.80   | 3.65      | 37.40                                   | 3.20             | 96.50       | 4.25  | -14.1        | 3.5E-07      |                                         |
| 15  | 2010                                    |               | 4              | 10       | 3.(10)    | 7380            | 20.0    | 98            | 98                                      | 26.20   | -2.60     | -10.30                                  | 2.90             | 9.3.00      | 3.50  | -9.4         | 3.4E-07      |                                         |
| 16  | 2010                                    | 5             | 4              | 12       | 0.00      | 7020            | 20.0    | 98            | 98                                      | 26.70   | 0.50      | 42.75                                   | 2.45             | 90.05       | 2.95  | -9.3         | 3.4E-07      |                                         |
| 17  | 2010                                    | 5             | 4              | 1.4      | 1.00      | 7260            | 20.0    | 98            | 98                                      | 27.30   | 0.60      | 45.00                                   | 2.25             | 87.35       | 2.70  | -9.1         | 3.3E-07      |                                         |
| 18  | 2010                                    | 5             | 4              | 16       | 10.00     | 77-10           | 20.0    | 98            | 98                                      | 27.80   | 0.50      | :17.10                                  | 2.10             | 84.80       | 2.55  | -9.7         | 3.3E-07      |                                         |
| 19  | 2010                                    | 5             | 5              | 5        | 32.00     | 48120           | 20.0    | 98            | 98                                      | 30.75   | 2.95      | 55.65                                   | 8.55             | 74.35       | 10.45 | -10.0        | 3.2E-07      |                                         |
| 20  | 2010                                    | 5             | 5              | 5        | -11.00    |                 | 0.0     | 98            | 98                                      | 30.55   |           | 2.85                                    |                  | 99.05       |       |              |              | *************************************** |
| 21  | 2010                                    | 5             | 5              | 7        | -15.00    | 7440            | 20.0    | 98            | 98                                      | 30.90   | 0.35      | 7.55                                    | 4.70             | 94.05       | 5.00  | -3.1         | 3.1E-07      | 1                                       |
| 22  | 2010                                    | 5             | 5              | 9        | 45.00     | 7200            | 20,0    | 98            | 98                                      | 30.80   | -0.10     | 11.55                                   | -1.00            | 89.60       | 4.45  | -5.3         | 3.1E-07      |                                         |
| 23  | 2010                                    | <u>5</u>      | <del>-</del> 5 | 11       | 46.00     | 7260            | 20.0    | 98            | 98                                      | 30.90   | 0.10      | 15.20                                   | 3.65             | 85.63       | 3.95  | -3.9         | 3.1E-07      |                                         |
| 24  | 2010                                    | 5             |                | 13       | 46.00     | 7200            | 20.0    | 98            | 98                                      | 31.10   |           |                                         |                  |             |       |              |              |                                         |
|     | ~                                       |               |                |          | ~         |                 |         |               |                                         |         | 0.20      | 18.40                                   | 3.20             | 82.10       | 3.55  | -5.2<br>1.5  | 3.0E-07      | ·····                                   |
| 25  | 2010                                    | 5             | <u>5</u>       |          | 24.00     | 9480            | 20.0    | 98            | 98                                      | 31.40   | 0.30      | 22.15                                   | 3.75             | 78.00       | 4.10  | 1.5          | 3.0E-07      |                                         |
| 26  | 2010                                    | 5<br>(0 in 1) | 6<br>Vie co    | 7        | 41.00     | 55020           | 19.0    | 98            | 98                                      | 33.20   | 1.80      | 36.10                                   | 13.95            | 62.50       | 15.50 | <i>-</i> 5.3 | 3.0E-07      | *******                                 |
|     |                                         |               |                |          |           | eries of mea    |         |               | ,                                       | Average | er for th | ose rows w                              | an a Lin i       | ine Ave. co |       | livet - 4 d  | <del></del>  | cm/sec                                  |
| 1   | ( 1 GLIJ/FI                             | i tellioi     | ciele          | tmme     | a by stab | le Ky and lo    | W 110W  | carrerential. | )                                       |         |           |                                         |                  |             | Kv ad | Busted For   | temperature. |                                         |

|       |          | ······  |                    |           | -                   |           |              | RMT. h   | NC.        |                | ·····      |                                        |            |          | Q                 | ic: dA       |                 |
|-------|----------|---------|--------------------|-----------|---------------------|-----------|--------------|----------|------------|----------------|------------|----------------------------------------|------------|----------|-------------------|--------------|-----------------|
|       |          |         |                    |           |                     | Falling I | Head Pern    | eability | Test (AST  | M D5084        | )          |                                        |            |          | Q                 | (A: 9}       |                 |
|       | Pr∙jec   | t Nan   | ie: 1              | WDNR -    | Kewaunee            |           |              |          |            | (              | Cell#:     |                                        |            |          |                   |              | 5               |
| ı     | Projec   | :t#:    | C                  | 12085.01. | 001                 |           |              |          |            | 1              | USCS Desc  | ription:                               |            |          |                   |              | N/A             |
| :     | Sampl    | le Nar  | ne: .              | AC10040   | 45                  |           |              |          |            | ı              | JSCS Class | sification                             |            |          |                   |              | N/A             |
|       | Visua    | l Desc  | ript:              | Freatod S | ediment             |           |              |          |            |                | Average K  | (v =                                   |            |          |                   | 1.8E-07      | cm/sec          |
|       | Samp     | le Typ  | e: I               | Remolde   | d                   |           | lnitial      | Final    |            |                |            |                                        |            |          |                   |              |                 |
|       |          |         |                    |           |                     |           | Values       | Values   |            |                |            |                                        |            |          |                   |              |                 |
|       | Samp     | le Dia  | . (in)             |           |                     |           | 2.85         | 2.72     |            |                | Permeant.  |                                        |            |          | V                 | Valer        |                 |
|       | Samp     | le Ht.  | (in)               |           |                     |           | 2.23         | 2.10     |            |                | Permeant S | Specific Gr                            | avity:     |          | 1.                | ,00          |                 |
|       | Tare 8   | & Wet   | (g)                |           |                     |           | 316.03       | 537.40   |            | :              | Sample Sp  | ecific Grav                            | rity:      |          | 2                 | .04          | Est.            |
|       | Tare 8   | & Dry   | (g)                |           |                     |           | 163.81       | 417.90   |            |                | Contining  | Pressure (1                            | psi):      |          | 1                 | 0.00         |                 |
|       | Tare (   | (g)     |                    |           |                     |           | 0.00         | 254.09   |            |                | Burette Di | ameter (in)                            | <b>)</b> : |          | 0                 | .2.50        |                 |
|       | Samp     | le Wt.  | (g)                |           |                     |           | 316.03       | 283.31   |            |                | Burette Ze | ro (cm):                               |            |          | 1                 | 0.00         |                 |
|       |          |         |                    |           |                     |           |              |          |            |                | Final Samp | ole Condit                             | ion:       |          | C                 | Consolidated |                 |
|       | Moist    | ure (%  | ລ                  |           |                     |           | 92.9         | 73.0     |            |                | Maximum    | Gradient                               |            |          | 1                 | 7.6          |                 |
|       |          |         | y (pcť)            | )         |                     |           | 84.6         | 88.4     |            |                | Average C  |                                        |            |          |                   | 2.0          |                 |
|       |          |         | r (pcf)<br>r (pcf) |           |                     |           | 43.9         | 51.1     |            |                | Max. Effec |                                        | si):       |          |                   | 9            |                 |
|       | •        | ation ( |                    | ,         |                     |           | 99.7         | 100.0    |            |                | Min, Effec |                                        |            |          |                   | .3           |                 |
|       | Jului    | unon ,  | (.0)               |           |                     |           | ,,,,         | 100.0    |            |                | Ave. Effec | ••                                     |            |          |                   | 2.0          |                 |
|       | Date     | T       | T                  | ime       | Run                 | Temp      | Pressu       | re (psi) |            | Cham.          |            | Bot.                                   | ,          | Тор      | Flow              | Kv ***       | Ave.*           |
| Yr.   | Mo.      | Day     | 1-ir.              | Min.      | Time                | Coss      | Bot          | Тор      | Cham       | Dif.           | Bot        | Dif.                                   | Top        | Dif.     | Dif.%             | cm/sec       | 0,1             |
| 2010  | 4        | 30      | 10)                | 30.00     |                     | 0.0       | 98           | 98       | 34.50      |                | 21.45      |                                        | 98.00      |          |                   |              |                 |
|       |          |         |                    |           | 2040                |           |              | 98       |            | 11211111111111 |            | 31111111111111111111111111111111111111 |            | - 10     | 37.4              | 2.10.00      | (0) (4) (4) (4) |
| 2010  | -4       | .30     | 12                 | 41.00     | 7860                | 20.0      | 98           |          | 35.85      | 1.35           | 23.90      | 2.45                                   | 92.60      | 5.40     | -37.6             | 3.1E-07      |                 |
| 2010  | -1       | 30      | 13                 | 42.00     | 3660                | 20.0      | 98           | 98       | 36.15      | 0.30           | 25.05      | 1.15                                   | 91.30      | 1.30     | -6.1              | 2.2E-07      |                 |
| 2010  | 4        | 30      | 1.4                | 13.()()   | 1860                | 20,0      | 98           | 98       | 36.30      | 0.15           | 25.60      | 0.55                                   | 90.80      | 0,50     | 4.8               | 1.9E-07      |                 |
| 2010  | 5        | 3       | 6                  | 13.00     |                     | (),()     | 98           | 98       | 47.10      |                | 2.30       |                                        | 100.80     |          |                   |              |                 |
| 2010  | 5        | 3       | 7                  | 13.00     | 3600                | 20.0      | 98           | 98       | 17.15      | 0.05           | 3.80       | 1.50                                   | 99.15      | 1.65     | ~ <del>1</del> .8 | 2.0E-07      |                 |
| 2010  | 5        | 3       | 8                  | 13.00     | 3600                | 20.0      | 98           | 98       | 46.95      | -0.20          | 5.30       | 1.50                                   | 97.60      | 1.55     | -1.6              | 2.0E-07      |                 |
| 2010  | 5        | 3       | 9                  | 13.00     | 3600                | 20,0      | 98           | 98       | 47.30      | 0.35           | 6.75       | 1.45                                   | 96.10      | 1.50     | -1.7              | 2.0E-07      |                 |
| 2010  | 5        | 3       | 11                 | 1.4.()()  | 7260                | 21.0      | 98           | 98       | 48.20      | 0.90           | 9.45       | 2.70                                   | 93.30      | 2,80     | -1.8              | 1.9E-07      |                 |
| 2010  | 5        | 3       | 12                 | 45.(X)    | 5460                | 20.0      | 98           | 98       | 46.85      | -1.35          | 11.45      | 2.00                                   | 91.25      | 2.05     | -1.2              | 2.0E-07      |                 |
| 2010  | 5        | 3       | 14                 | 9.00      | 5040                | 20,0      | 98           | 98       | 47.10      | 0.25           | 13.15      | 1.70                                   | 89.55      | 1.70     | 0.0               | 1.9E-07      |                 |
| 2010  | 5        | 4       | 5                  | 50.00     | 56460               | 20.0      | 98           | 98       | 48,60      | 1.50           | 27.75      | 14.60                                  | 74.70      | 14.85    | -0.8              | 1.9E-07      |                 |
| 2010  |          | 4       | 8                  | 1.00      | 7860                | 20.0      | 98           | 98       | 49.10      | 0.50           | 29.20      | 1,-15                                  | 73.20      | 1.50     | -1.7              | 1.9E-07      |                 |
|       |          |         |                    |           |                     |           |              |          |            |                |            |                                        |            |          |                   |              |                 |
| 2010  | <u>5</u> | - 4     | 10)                | 7.00      | 7560                | 20.0      | 98           | 98       | 49.00      |                | 30.55      | 1.35                                   | 71.80      | 1.40     | -1.8              | 1.9E-07      |                 |
| 2010  | 5        | -1      | 12                 | 1.00      | 6840                | 20.0      | 98           | 98       | 49.30      |                | 31.70      | 1.15                                   | 70.60      | 1.20     | -2.1              | 1.9E-07      |                 |
| 2010  | 5        | -4      | 14                 | 3.00      | 7320                | 20.0      | 98           | 98       | 49.70      | 0.40           | 32.85      | 1.15                                   | 69.45      | 1.15     | 0.0               | 1.9E-07      |                 |
| 2010  | 5        | 4       | 16                 | 11.00     | 7680                | 20.0      | 98           | 98       | 5().9()    | 1.20           | 33.90      | 1.05                                   | 68.30      | 1.15     | -4.5              | 1.8E-07      |                 |
| 2010  | 5        | 5       | 5                  | 33.00     | · <del>1</del> 8120 | 2(),()    | 98           | 98       | 51.55      | 0.65           | 39.45      | 5.55                                   | 62.55      | 5,75     | -1.8              | 1.9E-07      |                 |
| 2010  | 5        | 5       | 5                  | 42.00     |                     | 0.0       | 98           | 98       | 51.70      |                | 4.65       |                                        | 98.40      |          |                   |              |                 |
| 2010  | 5        | 5       | 7                  | 46.00     | 7440                | 20.0      | 98           | 98       | 52.00      | 0.30           | 7.40       | 2.75                                   | 95.40      | 3.00     | -4.3              | 1.9E-07      | 1               |
| 2010  | 5        | 5       | 9                  | 46.00     | 7200                | 20,0      | 98           | 98       | 51.80      | -0.20          | 9.90       | 2.50                                   | 92.80      | 2.60     | ~2.0              | 1.9E-07      | 1               |
| 2010  | 5        | 5       | 11                 | 47.00     | 7260                | 20.0      | 98           | 98       | 51.90      |                | 12.30      | 2.40                                   | 90.40      | 2.40     | 0.0               | 1.9E-07      | 1               |
| 2010  | 5        |         | 13                 | 47.00     |                     | 20.0      | 98           | 98       | 52.00      |                | 14.50      |                                        | 88.20      |          | 0.0               | 1.8E-07      |                 |
| i     |          | 5       | 16                 | 25.00     |                     |           | 98           | 98       | 52.00      |                | 17.20      |                                        | 85.40      |          | -1.8              | 1.8E-07      |                 |
| 2010  | <u>5</u> |         |                    |           |                     |           |              |          |            |                |            |                                        |            |          |                   |              |                 |
| 2010  |          | 6       | 7                  | 45.00     |                     | 20.0      | 98           | 98       | 53.30      |                | 29.25      |                                        | 73.20      |          | -0.6              | 1.8E-07      |                 |
| 2010  |          | 6       | 9                  | 42.00     |                     |           | 98           | 98       | 53.70      |                | 30.40      |                                        | 72.00      |          | -2.1              | 1.8E-07      | 1               |
|       |          |         |                    |           | eries of mea        |           |              |          | *: Average | Kv for th      | ose rows v | vith a 1 in                            | the Ave. c |          |                   | -            | cm/sec          |
| Clerm | inatio   | n dete  | rmine              | d by stat | ole Ky and l        | ow flow   | differential | .)       |            |                |            |                                        |            | ***Kv ac | ljusted for       | temperature. |                 |

|                       | reprincipant property | -                                       | ****         |            |              |              | <del></del>  | RMT, li   | ıc.         |                                         | ·········   |                                       |                                               |               | ļ          | ic: gr     | -            |
|-----------------------|-----------------------|-----------------------------------------|--------------|------------|--------------|--------------|--------------|-----------|-------------|-----------------------------------------|-------------|---------------------------------------|-----------------------------------------------|---------------|------------|------------|--------------|
|                       |                       |                                         |              |            |              | Falling      | Head Peru    | neability | Test (AST   | M D508                                  | ·l)         |                                       |                                               |               | IC         | A: 10-     | ,            |
| -                     | Projec                | t Mar                                   | ne:          | WDNR -     | Kowauneo     |              |              |           | <del></del> | **********                              | Cell#:      | · · · · · · · · · · · · · · · · · · · |                                               |               |            |            | 6            |
|                       | Projec                | t#:                                     |              | 02085.01.  | 001          |              |              |           |             |                                         | USCS Desc   | ription:                              |                                               |               |            |            | N/A          |
|                       |                       |                                         | me:          | AC10040    | 16           |              |              |           |             |                                         | USCS Class  |                                       |                                               |               |            |            | N/A          |
|                       | V isua                | l Des                                   | cript:       | Treated S  | ediment      |              |              |           |             |                                         | Average K   |                                       |                                               |               | ſ~         | 1.3E-0     |              |
|                       | Samp                  |                                         | weenstander= | Remolded   |              | ************ | Initial      | Final     |             | 74701111111                             | (/          |                                       |                                               |               | /h         | -www.      |              |
| account of the second |                       | ,                                       |              |            |              |              | Values       | Values    |             |                                         |             |                                       |                                               |               |            |            |              |
|                       | Samp                  | le Dia                                  | a. (in)      |            |              |              | 2.85         | 2.75      |             |                                         | Permeant:   |                                       |                                               |               | 1          | Vater      |              |
|                       | Samp                  |                                         |              |            |              |              | 2.31         | 2.10      |             |                                         | Permeant S  | Specific Gr                           | ravity:                                       |               |            | .00        |              |
|                       | Tare                  |                                         |              |            |              |              | 325.21       | 540,00    |             |                                         | Sample Sp   | •                                     | •                                             |               |            | .98        | Est.         |
|                       | Tare                  |                                         |              |            |              |              | 169.89       | 421.40    |             |                                         | Confining   |                                       | •                                             |               |            | 00.0       |              |
|                       | Tare (                | •                                       | 10/          |            |              |              | 0.00         | 251.51    |             |                                         | Burette Di  |                                       | •                                             |               |            | .250       |              |
|                       | Samp                  | -                                       | . (g)        |            |              |              | 325.21       | 288.49    |             |                                         | Burette Ze  |                                       | ,                                             |               |            | 0.00       |              |
|                       |                       | *************************************** |              |            | 100000       | -            | -            |           |             |                                         | Final Samp  |                                       | ion:                                          | <del>//</del> |            | Onsolidate | d            |
|                       |                       |                                         |              |            |              |              |              |           |             |                                         |             |                                       |                                               |               |            |            | •            |
|                       | Meis                  | ure (                                   | ( <u>۱</u>   |            |              |              | 911          | 69.8      |             |                                         | Maximum     | Gradient:                             |                                               |               | 1          | 7.8        |              |
|                       |                       |                                         | ty (pcl      | )          |              |              | 84.1         | 88.1      |             |                                         | Average G   |                                       |                                               |               |            | 3.4        |              |
|                       |                       |                                         | y (pcf       | •          |              |              | -13.9        | 51.9      |             |                                         | Max. Effec  |                                       | osi).                                         |               |            | 3.1        |              |
|                       | Satur                 |                                         |              | ,          |              |              | 99.8         | 100.0     |             |                                         | Min. Effect |                                       |                                               |               |            | .2         |              |
|                       |                       |                                         | ,            |            |              |              | ,,,,         |           |             |                                         | Ave. Effect | ••                                    | -                                             |               |            | 2.1        |              |
|                       | Date                  |                                         | 7            | ime        | Run          | Temp         | Pressu       | re (psi)  |             | Cham.                                   |             | Bot.                                  | <u>,                                     </u> | Тор           | Flow       | Kv***      | Ave.*        |
| Yr,                   | Mo.                   | Day                                     | Hr.          | Min.       | Time         | C***         | Bot          | Тор       | Cham        | Dit.                                    | Bot         | Dif.                                  | Тор                                           | Dif.          | Dif.%      | cm/sec     | 0,1          |
| 2010                  | -4                    | 30                                      | 10           | 30.00      |              | 0.0          | 98           | 98        | 42.00       |                                         |             |                                       | 98.10                                         |               |            |            |              |
|                       |                       | 30                                      | 12           | 42.00      | 7920         | 20.0         | 98           | 98        | 43.15       | 1.15                                    | 22.05       | 2.20                                  | 95.40                                         | 2.70          | 10.2       | 1.00.6     | <u> </u>     |
| <u> </u>              | 4                     |                                         |              |            |              |              |              |           |             |                                         |             |                                       |                                               |               | -10.2      | 1.8E-0     |              |
| 2010                  | 4                     | 3()                                     | 13           | -13.00     | 3660         | 20.0         | 98           | 98        | 43.70       | 0.55                                    | 22.85       | 0.80                                  | 94.30                                         | 1.10          | -15.8      | 1.6E-0     | ~~~~         |
| 2010                  | 4                     | 30                                      | 14           | 13.00      | 1800         | 20.0         | 98           | 98        | 43.90       | 0.20                                    | 23.30       | 0.45                                  | 93.80                                         | 0.50          | -5.3       | 1.6E-0     | 7            |
| 2010                  | 5                     | 3                                       | 6            | 1-1.00     |              | 0.0          | 98           | 98        | 55.60       |                                         | 2.55        |                                       | 100.55                                        |               |            |            | _            |
| 2010                  | 5                     | 3                                       | 7            | 14.00      | 3600         | 20.0         | 98           | 98        | 55.60       | 0.00                                    | 3.85        | 1.30                                  | 99.35                                         | 1.20          | 4.0        | 1.6E-0     | 17           |
| 2010                  | 5                     | 3                                       | 8            | 14.()()    | 3600         | 20.0         | 98           | 98        | 55.60       | 0.00                                    | 5.00        | 1.15                                  | 98.15                                         | 1.20          | -2.1       | 1.5E-(     | J <i>7</i>   |
| 2010                  | 5                     | 3                                       | 9            | 14.00      | 3600         | 20.0         | 98           | 98        | 55.80       | 0.20                                    | 6.10        | 1.10                                  | 97.10                                         | 1.05          | 2.3        | 1.4E-0     | 17           |
| 2010                  | 5                     | 3                                       | 11           | 14.00      | 7200         | 21.0         | 98           | 98        | 56.60       | 0.80                                    | 8.30        | 2.20                                  | 95.05                                         | 2.05          | 3.5        | 1.4E-(     | <br>)7       |
| 2010                  | 5                     | 3                                       | 12           | 45.00      | 5460         | 20.0         | 98           | 98        | 55.45       | -1.15                                   | 9.75        | 1.45                                  | 93.35                                         | 1.70          | -7.9       | 1.5E-0     | <br>)7       |
| 2010                  | 5                     | 3                                       | H            | 9.00       | 5040         | 20.0         | 98           | 98        | 55.65       | 0.20                                    | 11.20       | 1.45                                  | 92.05                                         | 1.30          | 5.5        | 1.5E-0     |              |
| 2 2010                |                       | 4                                       | 5            | 50.00      | 56460        | 20.0         | 98           | 98        | 57.40       | 1.75                                    | 23.70       | 12.50                                 | 79.65                                         | 12.40         | 0.4        | 1.4E-0     |              |
| 2010                  |                       | <u>.</u>                                | 8            | 2.00       | 7920         | 20.0         | 98           | 98        | 58,00       | 0.60                                    | 25.05       | 1.35                                  |                                               |               |            |            |              |
| #                     |                       |                                         |              |            |              |              |              |           |             |                                         |             |                                       | 78.30                                         | 1.35          | 0.0        | 1.4E-0     |              |
| 2010                  |                       | 4                                       | 10           | 8.00       | 7560         | 20.0         | 98           | 98        | 58.10       | 0.10                                    | 26.35       | 1.30                                  | 77.05                                         | 1.25          | 2.0        | 1.4E-0     |              |
| 2010                  |                       | 4                                       | 12           | 2.00       | 68-10        | 20.0         | 98           | 98        | 58.20       | 0.10                                    |             | 1.05                                  | 75.90                                         | 1.15          | -÷l.5      | 1.4E-0     | )7           |
| 2010                  |                       | 1                                       | 14           | 5.0()      | 7380         | 20.0         | 98           | 98        | 58.50       | 0.30                                    | 28.55       | 1.15                                  | 74.85                                         | 1.05          | ⊰i.5       | 1.4E-0     | )7           |
| 7 2010                | 5                     | 4                                       | 16           | 13.00      | 7680         | 20.0         | 98           | 98        | 59.00       | 0.50                                    | 29.65       | 1.10                                  | 73.75                                         | 1.10          | 0.0        | 1.4E-0     | )7           |
| 8 2010                | 5                     | 5                                       | 5            | 34.00      | 48060        | 20.0         | 98           | 98        | 60.55       | 1.55                                    | 35.25       | 5.60                                  | 67.95                                         | 5.80          | -1.8       | 1.4E-0     | J7           |
| 9 2010                | 5                     | 5                                       | 5            | 42.00      |              | 0.0          | 98           | 98        | 18.65       |                                         | 2.75        |                                       | 97.95                                         |               |            |            |              |
| 0 2010                | 5                     | 5                                       | 7            | 48.00      | 7560         | 20.0         | 98           | 98        | 19.80       | 1.15                                    | 4,55        | 1.80                                  | 95.25                                         | 2.70          | -20.0      | 1.4E-      | 0 <u>7</u> 1 |
| 1 2010                | 5                     | 5                                       | 9            | 48.00      | 7200         | 20.0         | 98           | 98        | 19.90       | 0.10                                    | 6.40        | 1.85                                  | 93.20                                         | 2.05          | -5.1       | 1.3E-0     | 07 1         |
| 2 2010                | 5                     | 5                                       | 13           | 48.00      | 7200         | 20.0         | 98           | 98        | 20.10       | 0.20                                    | 8.10        | 1.70                                  | 91.20                                         | 2.00          | -8.1       | 1.3E-(     | 07 1         |
| 3 2010                | ) 5                   | 5                                       | 13           | 48.00      | 7200         | 20.0         | 98           | 98        | 20.50       | 010                                     |             | 1.70                                  | 89.40                                         | 1.80          | -2.9       | 1.3E-      |              |
| 2010                  |                       | 5                                       | 16           | 26.00      | 9480         | 20.0         | 98           | 98        | 20.70       | 0.20                                    |             | 2.10                                  | 87:10                                         | 2.30          | -1.5       | 1.3E-      |              |
| ï                     |                       |                                         |              |            |              |              |              |           |             |                                         |             |                                       |                                               |               |            |            |              |
| 5 2010                |                       | 6                                       | 7            | 46.00      | 55200        | 20.0         | 98           | 98        | 22.80       | 2.10                                    |             | 9.90                                  | 76.40                                         | 10.70         | -3.9       | 1.3E-      | _            |
| 6 2010                |                       | 6                                       | , 9          |            | 7020         | 20.0         | 98           | 98        | 2,3,40      | 0.60                                    |             | 1.00                                  | 75.35                                         | 1.05          | -2.4       | 1.2E-      | - 20000      |
| ll .                  |                       |                                         |              |            | ries of mea: |              |              |           | Average     | Ky for th                               | ose rows w  | ath a 1 in                            | tne Ave. co                                   |               |            | `          | 07 cm/sec    |
| (i erm                | มาสถ่อ                | naete                                   | rmine        | ea by stab | le Kv and lo | w tlow       | differential | .)        |             | *************************************** |             |                                       |                                               | ***Kv ad      | justed for | lemperatur | e.           |

Superior and American P.

|         |           |             |               |                                       |              |           |           | RMT, h    | ıc.       |           |                |             |              |            | (     | oc: de       |       |
|---------|-----------|-------------|---------------|---------------------------------------|--------------|-----------|-----------|-----------|-----------|-----------|----------------|-------------|--------------|------------|-------|--------------|-------|
|         |           |             |               |                                       |              | Falling I | Head Pern | neability | Test (AST | M D508    | 1)             |             |              |            |       | 2A: M        |       |
|         | Projec    | t Nai       | ne:           | WDNR - K                              | esvaunee     |           |           |           | ,         |           | Cell #:        |             | was reaching |            |       |              | 7     |
|         | Projec    | t #:        |               | 02085.01.00                           | 01           |           |           |           |           |           | USCS Desc      | ription:    |              |            |       |              | N/:   |
|         | ,<br>Samp |             | me:           | AC1004047                             | 7            |           |           |           |           |           | USCS Class     | •           |              |            |       |              | N/:   |
|         | Visua     | l Des       | cript:        | Treated Sec                           | diment       |           |           |           |           |           | Average K      | v =         |              |            |       | 1.1E-07      | cm/se |
|         | Samp      | le Ty       | pe:           | Remolded                              | <del>,</del> |           | Initial   | Final     |           | a         | <u> </u>       |             |              |            | ±     |              |       |
|         | •         |             | •             |                                       |              |           | Values    | Values    |           |           |                |             |              |            |       |              |       |
|         | Samp      | le Dia      | a. (in)       |                                       |              |           | 2.85      | 2.72      |           |           | Permeant:      |             |              |            | ,     | Water        |       |
|         | Samp      |             |               |                                       |              |           | 2.36      | 2.22      |           |           | Permeant S     | Specific Gr | avity:       |            |       | 1.00         |       |
|         | Tare      |             |               |                                       |              |           | 337.68    | 565.00    |           |           | Sample Sp      | •           | ,            |            |       | 2.15         | E     |
|         | Tare 8    |             |               |                                       |              |           | 171.84    | 433.70    | •         |           | Confining      |             |              |            |       | 100.0        |       |
|         | Tare (    | -           | 107           |                                       |              |           | 0.00      | 261.86    |           |           | Burette Dia    |             | •            |            |       | 0.250        |       |
|         | Samp      |             | l. (g)        |                                       |              |           | 337.68    | 303.1-1   |           |           | Burette Zei    | ,           | ,-           |            |       | 100.0        |       |
|         |           |             |               | , , , , , , , , , , , , , , , , , , , |              |           |           |           |           |           | Final Samp     | <u> </u>    | ion.         |            |       | Consolidated |       |
|         |           |             |               |                                       |              |           |           |           |           |           | · z iii siiii; | ne contin   |              |            |       | consonance   |       |
|         | '\loist   | nre (       | %)            |                                       |              |           | 96.5      | 76l       |           |           | Maximum        | Gradient:   |              |            |       | 7.4          |       |
|         |           |             | w)<br>Ly (pcl | )                                     |              |           | 85.4      | 89.5      |           |           | Average G      |             |              |            |       | 6.0          |       |
|         |           |             | ty (pci       | •                                     |              |           | -13.5     | 50.7      |           |           | Max, Effec     |             | osi).        |            |       | 3.1          |       |
|         | Satur     |             |               | ,                                     |              |           | 99.5      | 100.0     |           |           | Min. Effect    |             |              |            |       | 1.4          |       |
|         | Jatu      | acion       | (.0)          |                                       |              |           | 77.3      | 100.0     |           |           | Ave. Effect    |             |              |            |       | 2.2          |       |
|         | Date      | <del></del> |               | ime                                   | Run          | Temp      | Proces    | re (psi)  |           | Cham.     | 1110           | Bot.        | 1,.          | Тор        | Flow  | Kv***        | Ave   |
| Yr.     | Mo.       | Dave        | Hr.           | Min.                                  | Time         | C         | Bot       | Top       | Cham      | Dif.      | Bot            | Dif.        | Top          | ιορ<br>Dữ. | Dif.% | cm/sec       | 0,1   |
|         |           |             |               | :5                                    | (Harrista)   |           |           |           |           | eliaisaan | <u>'</u>       | 144444444   |              | Ou.        |       | innistration | 0,    |
| 2010    | 4         | 30_         | lı)           | 31.00                                 |              | 0.0       | 98        | 98        | 60.75     |           | 19.35          |             | 97.45        |            |       |              |       |
| 2010    | 4         | 30          | 12            | -12.00                                | 7860         | 20.0      | 98        | 98        | 62.70     | 1.95      | 20.70          | 1.35        | 95.00        | 2.45       | -28.9 | 1.5E-07      |       |
| 2010    | 4         | 30          | 13            | 43,00                                 | 3660         | 20.0      | 98        | 96        | 63.15     | 0.45      | 2110           | 0.70        | 94.20        | 0.80       | -6.7  | 1.3E-07      |       |
| 2010    | 4         | 30          | 14            | 14.00                                 | 1860         | 20.0      | 98        | 98        | 63.25     | 0.10      | 21.75          | 0.35        | 93.85        | 0.35       | 0.0   | 1.2E-07      |       |
| 2010    | 5         | 3           | ó             | 16.00                                 |              | 0.0       | 98        | 98        | 22.85     |           | 2.40           |             | 100.95       |            |       |              |       |
| 2010    | 5         | 3           | 7             | <b>15.00</b>                          | 35-10        | 20.0      | 98        | 98        | 24.40     | 1,55      | 2.85           | 015         | 99.05        | 1.90       | -61.7 | 1.6E-07      |       |
| 2010    | 5         | 3           | 8             | 15.00                                 | 3600         | 20.0      | 98        | 98        | 24.65     | 0.25      | 3.55           | 0.70        | 98.05        | 1.00       | -17.6 | 1.2E-07      |       |
| 2010    | 5         | 3           | 9             | 15.00                                 | 3600         | 20.0      | 98        | 98        | 25.20     | 0.55      | -1.30          | 0.75        | 97.10        | 0.95       | -11.8 | 1.2E-07      |       |
| 2010    | 5         | 3           | 11            | 15.00                                 | 7200         | 21.0      | 98        | 98        | 26.65     | 1.45      | 5.85           | 1.55        | 95.40        | 1.70       | -4.6  | 1.2E-07      |       |
| 2010    | 5         | 3           | 12            |                                       | 5460         | 20.0      | 98        | 98        | 25.75     | -0.90     | 6.93           |             | 94.05        | 1.35       | -10.2 |              |       |
|         |           |             |               | 46.00                                 |              |           |           |           |           |           |                | 1.10        |              |            |       | 1.2E-07      |       |
| 2010    | 5         | 3           | 14            | 10.00                                 | 5040         | 20.0      | 98        | 98        | 26.30     | 0.55      | 7.95           | 1.00        | 92.90        | 1.15       | -7.0  | 1.2E-07      |       |
| 2010    | 5         | 4           | 5             | 51.00                                 | 56460        | 20.0      | 98        | 98        | 29.85     | 3.55      | 17.90          | 9.95        | 82.50        | 10.:10     | -2.2  | 1.2E-07      |       |
| 2010    | 5         | 4           | 8             | 3.00                                  | 7920         | 20.0      | 98        | 98        | 30.60     | 0.75      | 19.10          | 1.20        | 81.40        | 1.10       | 4.3   | 1.1E-07      |       |
| 2010    | 5         | 4           | 10            | 9.00                                  | 7560         | 20.0      | 98        | 98        | 30.60     | 0.00      | 20.15          | 1.05        | 80.20        | 1.20       | -6.7  | 1.2E-07      |       |
| 2010    | 5         | -1          | 12            | 3.00                                  | 6840         | 20.0      | 98        | 98        | 30.90     | 0.30      | 21.10          | 0.95        | 79.25        | 0.95       | 0.0   | 1.1E-07      |       |
| 2010    | 5         | 4           | 1.1           | 6.00                                  | 7380         | 20.0      | 98        | 98        | 31.40     | 0.50      | 22.10          | 1.00        | 78.20        | 1.05       | -2.4  | 1.2E-07      |       |
| 2010    | 5         | 4           | 16            | 14.00                                 | 7680         | 20.0      | 98        | 98        | 31.90     | 0.50      | 23.10          | 1.00        | 77.20        | 1.00       | 0.0   | 1.1E-07      |       |
| 2010    | 5         | 5           | 5             | 35.00                                 | 48060        | 20.0      | 98        | 98        | 34.05     | 2.15      | 28.40          | 5.30        | 71.55        | 5.65       | -3.2  | 1.1E-07      |       |
| 2010    | 5         | 5           | 7             | 49.00                                 | 8040         | 20.0      | 98        | 98        | 34.70     | 0.65      | 29.15          | 0.75        | 70.80        | 0.75       | 0.0   | 1.0E-07      |       |
|         |           |             |               |                                       |              |           |           |           |           |           |                |             |              |            |       |              |       |
| 2010    |           | 5           | 9             |                                       | 7200         | 20.0      | 98        | 98        | 34.60     | -0.10     |                | 0.65        | 70.05        | 0.75       | -7.1  | 1.1E-07      |       |
| 2010    | 5         | 5           | 11            | 49.00                                 | 7200         | 2().0     | 98        | 98        | 34.60     | 0.00      |                | 0.60        | 69.35        | 0.70       | -7.7  | 1.1E-07      |       |
| 2010    | 5         | 5           | 13            | -19.00                                | 7200         | 20.0      | 98        | 98        | 3-L80     | 0.20      | 31.05          | 0.65        | 68.75        | 0.60       | 4.0   | 1.1E-07      |       |
| 2010    | 5         | 5           | ló            | 27.00                                 | 9480         | 20.0      | 98        | 98        | 36.00     | 1.20      | 31.80          | 0.75        | 67.90        | 0.85       | -6.2  | 1.1E-07      | ,     |
| 2010    | 5         | 6           | 7             | 47.00                                 | 55200        | 20.0      | 98        | 98        | 36.70     | 0.70      | 35.60          | 3.80        | 63.70        | 4.20       | -5.0  | 1.1E-07      | ,     |
| 2010    | 5         | 6           | 9             | 44.00                                 | 7020         | 20.0      | 98        | 98        | 37.30     | 0.60      | 36.05          | 015         | 63.25        | 015        | 0.0   | 1.1E-07      | ,     |
|         |           |             |               |                                       |              |           |           |           |           |           |                |             |              |            |       | _            |       |
| **A zei | ro in I   | his co      | lumn          | starts a ser                          | ies of mea   | suremen   | ıts.      |           | *Awerage  | Ky for th | iose rows w    | rith a 1 in | the Ave. co  | dumn.      |       | 1.1E-07      | cm/s  |
|         |           |             |               | ed by stable                          |              |           |           | ,         | . 0-      |           |                |             | . **         |            |       | temperature. |       |

# Appendix C Concentration Trend Over Time Analysis

# Appendix C Evaluation of Arsenic Concentration Trends Under the Cap Kewaunee Marsh - Kewaunee, WI April 2010

|            | ARSE        | NIC CONCENTR<br>(mg/kg) | ATION             |
|------------|-------------|-------------------------|-------------------|
| LOCATION   | STS<br>1994 | RMT<br>JUNE 2006        | RMT<br>MARCH 2010 |
| YEARS      | 0.0         | 12                      | 16                |
| TS-18      | 2,030       | 340                     |                   |
| TS-19/M3D  | 10,700      | 6,100                   | 3,800             |
| TS-20/M8E  | 4,600       | 910                     | 311               |
| TS-21/M10F | 2,660       | 640                     | 589               |
| TS-22/M11F | 5,480       | 1,800                   | 549               |
| TS-23/M12F | 4,500       | 1,500                   | 313               |
| TS-24      | 1,880       | 1,100                   |                   |



## What is the concentration today that will be approximately 1,000 mg/kg in 4 years?

- 1. Choose average slope = -245.6
- 2. Set x (years) to be 4 years
- 3. Set y (target concentration) to be 1000 mg/kg
- 4. Solve for starting concentration today (the y-intercept) [1000 = -245.6 \* 4 + concentration]
- 5. Solution 2000 mg/kg

| entration |
|-----------|
|           |
| 307.84    |
| 258.99    |
| 277.16    |
| 138.41    |
| 245.6     |
|           |



# Appendix D Detailed Cost and Quantity Estimating Sheets

# **Table of Contents**

- Cost Estimates
- Quantity Estimates

**Cost Estimates** 

### OPTION 1a: IN SITU TREATMENT (11,000 cy)

| ITEM                                            | UNIT   | UNIT COST     | QTY         | TOTAL                    |
|-------------------------------------------------|--------|---------------|-------------|--------------------------|
| DIRECT CAPITAL COSTS                            |        |               |             |                          |
| Mobilization                                    | ls     | \$30,000      | 1           | \$30,000                 |
| Site Preparation                                | Is     | \$67,500      | 1           | \$67,500                 |
| Mixing of treatment chemicals                   | week   | \$46,750      | 5           | \$233,750                |
| Treatment Chemicals                             |        |               |             |                          |
| - Ferric sulfate                                | tons   | <b>\$6</b> 00 | 300         | \$180,000                |
| - Limestone                                     | tons   | <b>\$</b> 50  | 200         | \$10,000                 |
| - Peroxide (50%)                                | gallon | <b>\$</b> 5   | 1,000       | \$4,600                  |
| - Bentonite                                     | tons   | \$275         | <b>6</b> 00 | \$165,000                |
| Top Soil and Seed (Marsh Area)                  | sf     | \$1.65        | 30,000      | \$49,500                 |
| Fence Restoration                               | ls     | \$10,000      | 1           | \$10,000                 |
| Bike Path Restoration                           | ls     | \$50,000      | 1           | \$50,000                 |
| Demobilization                                  | Is     | \$15,000      | 1           | \$15,000                 |
| Monitoring Well Construction                    | well   | \$2,500       | 4           | \$10,000                 |
| SUBTOTAL OF DIRECT CAPITAL COST                 |        |               |             | \$825,350                |
| 30 % CONTINGENCY                                | %      | 30%           |             | \$247,605                |
|                                                 |        |               |             |                          |
| INDIRECT CAPITAL COSTS                          |        |               |             |                          |
| Project management/administration               | ls     | \$20,000      | 1           | \$20,000                 |
| Plans and Specifications                        | ls     | \$30,000      | 1           | \$30,000                 |
| Subcontracting                                  | Is     | \$25,000      | 1           | \$25,000                 |
| Permitting                                      | ls     | \$10,000      | 1           | \$10,000                 |
| Construction oversight                          | wk     | \$7,500       | 6           | \$45,000                 |
| Documentation reporting                         | ls     | \$15,000      | 1           | \$15,000                 |
| SUBTOTAL OF INDIRECT CAPITAL COSTS              | -      |               |             | \$145,000                |
| SUBTOTAL OF DIRECT AND INDIRECT CAPITAL COSTS   |        |               |             | \$1,217,955              |
|                                                 |        |               |             |                          |
| FIRST YEAR OF GROUNDWATER MONITORING - SEMI-ANI | NUAL   |               |             |                          |
| Project management/administration               | hr     | <b>\$</b> 195 | 20          | \$3,900                  |
| Groundwater sampling (4 wells, 2 times/yr)      | hr     | \$100         | 50          | \$5,000                  |
| Field equipment/expenses                        | ls     | \$1,000       | 1           | \$1,000                  |
| Lab - As, Fe, SO4, pH , Calcium                 | each   | \$100         | 8           | \$800                    |
| Data evaluation                                 | hr     | \$130         | 20          | \$2,600                  |
| Reporting                                       | hr     | \$130         | 30          | \$3,900                  |
| SUBTOTAL OF FIRST YEAR OF MONITORING            |        |               |             | \$17,200                 |
| 30 % CONTINGENCY                                | %      | 30%           | <u> </u>    | <b>\$</b> 5, <b>16</b> 0 |
|                                                 |        |               |             |                          |
| SUBTOTAL OF CAPITAL AND FIRST YEAR COSTS        |        |               |             | \$1,240,315              |

### OPTION 1a: IN SITU TREATMENT (11,000 cy)

| ITEM                                       | UNIT | UNIT COST | QTY   | TOTAL       |
|--------------------------------------------|------|-----------|-------|-------------|
| FUTURE ANNUAL COSTS                        |      |           |       |             |
| MONITORING COSTS (ANNUAL - YEARS 2-20)     |      |           |       |             |
| Project management/administration          | hr   | \$195     | 15    | \$2,925     |
| Groundwater sampling (4 wells, once/yr)    | hr   | \$100     | 25    | \$2,500     |
| Field equipment and expenses               | ls   | \$500     | 1     | \$500       |
| Lab - As, Fe, SO4, pH , Calcium            | each | \$100     | 4     | \$400       |
| Data evaluation                            | hr   | \$100     | 10    | \$1,000     |
| Reporting                                  | hr   | \$130     | 20    | \$2,600     |
| SUBTOTAL FOR ANNUAL GROUNDWATER MONITORING |      |           |       | \$9,925     |
| 30 % CONTINGENCY                           | %    | 30%       |       | \$2,978     |
| PRESENT WORTH OF ANNUAL MONITORING         | 19   | years @   | 3%    | \$184,813   |
|                                            |      |           |       |             |
| TOTAL COST (TOTAL CAPITAL + PRESENT WORTH) |      |           | Total | \$1,430,000 |
|                                            |      |           | + 50% | \$2,150,000 |
|                                            |      |           | - 30% | \$1,000,000 |

Prepared By. A. Sellwood

### ASSUMPTIONS:

- 1. Costs rounded up to the nearest ten thousand dollars.
- 2 Costs determined from experience and estimates from other similar projects.
- 3 Contingency is assumed to be 30% of direct capital costs, monitoring costs, and annual O&M.
- 4. Indirect costs do not include legal fees or public relations assistance.
- 5. Interest rate 3%; the balance of an 8% interest rate less a 5% inflation rate, based on EPA approach for remedial cost estimating.
- 6. All costs are based on preliminary concepts. They are intended for remedial option comparison and not for final budgeting.

### REMEDIATION NOTES:

- 1. Mobilization includes the mobilization of equipment, swamp mats, chemicals and job trailer to the site.
- Site preparation includes removal of 100 LF of existing chain link fence, installation of approximately 4500 LF of silt fence, and set up of a site trailer and construction of a site laydown area for storage of equipment and materials at the intersection of the road and bike path. Assumes existing bike path can be used as access road.
- In situ treatment includes construction of a temporary access ramp to the marsh and assumes treatment of approximately 500 CY/day with the specified chemicals
- Bike path restoration includes backfilling the excavated area and grading up to 2,000 cy of gravel over the section of path used by trucks to access the site.
- 5. Site restoration includes repair of the 100 LF of chainlink fence and application of 6-inches of top soil and seed to the marsh. It does not include wetlands restoration.

### OPTION 1B: IN SITU TREATMENT (3,000 cy)

| ITEM                                            | UNIT   | UNIT COST     | QTY    | TOTAL.    |
|-------------------------------------------------|--------|---------------|--------|-----------|
| DIRECT CAPITAL COSTS                            |        |               |        |           |
| Mobilization                                    | Is     | \$30,000      | 1      | \$30,000  |
| Site Preparation                                | Is     | \$50,000      | 1      | \$50,000  |
| Mixing of treatment chemicals                   | week   | \$46,750      | 2      | \$93,500  |
| Treatment Chemicals                             |        |               |        |           |
| - Ferric sulfate                                | tons   | \$600         | 70     | \$42,000  |
| - Limestone                                     | tons   | \$50          | 50     | \$2,500   |
| - Peroxide (50%)                                | gallon | <b>\$</b> 5   | 300    | \$1,380   |
| - Bentonite                                     | tons   | \$275         | 160    | \$44,000  |
| Top Soil and Seed (Marsh Area)                  | sf     | \$1.65        | 12,000 | \$19,800  |
| Fence Restoration                               | Is     | \$10,000      | 1      | \$10,000  |
| Bike Path Restoration                           | Is     | \$50,000      | 1      | \$50,000  |
| Demobilization                                  | Is     | \$15,000      | 1      | \$15,000  |
| Monitoring Well Construction                    | well   | \$2,500       | 3      | \$7,500   |
| SUBTOTAL OF DIRECT CAPITAL COST                 | !      |               |        | \$365,680 |
| 30 % CONTINGENCY                                | %      | 30%           |        | \$109,704 |
|                                                 |        |               |        |           |
| IND!RECT CAPITAL COSTS                          |        |               |        |           |
| Project management/administration               | Is     | \$15,000      | 1      | \$15,000  |
| Plans and Specifications                        | Is     | \$20,000      | 1      | \$20,000  |
| Subcontracting                                  | Is     | \$20,000      | 1      | \$20,000  |
| Permitting                                      | Is     | \$10,000      | 1      | \$10,000  |
| Construction oversight                          | wk     | \$7,500       | 3      | \$22,500  |
| Documentation reporting                         | Is     | \$10,000      | 1      | \$10,000  |
| SUBTOTAL OF INDIRECT CAPITAL COSTS              | •      | •             | -      | \$97,500  |
| SUBTOTAL OF DIRECT AND INDIRECT CAPITAL COSTS   |        |               |        | \$572,884 |
|                                                 |        |               |        |           |
| FIRST YEAR OF GROUNDWATER MONITORING - SEMI-ANI | NUAL   |               |        |           |
| Project management/administration               | hr     | \$195         | 20     | \$3,900   |
| Groundwater sampling (3 wells, 2 times/yr)      | hr     | \$100         | 40     | \$4,000   |
| Field equipment/expenses                        | ls     | \$1,000       | 1      | \$1,000   |
| Lab - As, Fe, SO4, pH , Calcium                 | each   | \$100         | 6      | \$600     |
| Data evaluation                                 | hr     | <b>\$1</b> 30 | 20     | \$2,600   |
| Reporting                                       | hr     | <b>\$1</b> 30 | 30     | \$3,900   |
| SUBTOTAL OF FIRST YEAR OF MONITORING            | •      | •             |        | \$16,000  |
| 30 % CONTINGENCY                                | %      | 30%           |        | \$4,800   |
|                                                 |        |               |        |           |
| SUBTOTAL OF CAPITAL AND FIRST YEAR COSTS        |        |               |        | \$593,684 |

### OPTION 1B: IN SITU TREATMENT (3,000 cy)

| !TEM                                       | UNIT | UNIT COST | QTY   | TOTAL       |
|--------------------------------------------|------|-----------|-------|-------------|
| FUTURE ANNUAL COSTS                        |      |           |       |             |
| MONITORING COSTS (ANNUAL - YEARS 2-20)     |      |           |       |             |
| Project management/administration          | hr   | \$195     | 15    | \$2,925     |
| Groundwater sampling (3 wells, once/yr)    | hr   | \$100     | 25    | \$2,500     |
| Field equipment and expenses               | Is   | \$500     | 1     | \$500       |
| Lab - As, Fe, SO4, pH , Calcium            | each | \$100     | 3     | \$300       |
| Data evaluation                            | hr   | \$100     | 10    | \$1,000     |
| Reporting                                  | hr   | \$130     | 20    | \$2,600     |
| SUBTOTAL FOR ANNUAL GROUNDWATER MONITORING |      |           |       | \$9,825     |
| 30 % CONTINGENCY                           | %    | 30%       |       | \$2,948     |
| PRESENT WORTH OF ANNUAL MONITORING         | 19   | years @   | 3%    | \$182,951   |
|                                            |      |           |       |             |
| TOTAL COST (TOTAL CAPITAL + PRESENT WORTH) |      |           | Total | \$780,000   |
|                                            |      |           | + 50% | \$1,170,000 |
|                                            |      |           | - 30% | \$550,000   |

Prepared By. A. Sellwood

### ASSUMPTIONS:

- 1. Costs rounded up to the nearest ten thousand dollars.
- 2. Costs determined from experience and estimates from other similar projects.
- 3. Contingency is assumed to be 30% of direct capital costs, monitoring costs, and annual O&M
- 4. Indirect costs do not include legal fees or public relations assistance.
- 5. Interest rate 3%; the balance of an 8% interest rate less a 5% inflation rate, based on EPA approach for remedial cost estimating.
- 6. All costs are based on preliminary concepts. They are intended for remedial option comparison and not for final budgeting.

### REMEDIATION NOTES:

- 1. Mobilization includes the mobilization of equipment, swamp mats, chemicals and job trailer to the site.
- 2. Site preparation includes removal of 100 LF of existing chain link fence, installation of approximately 4500 LF of silt fence, and set up of a site trailer and construction of a site laydown area for storage of equipment and materials at the intersection of the road and bike path. Assumes existing bike path can be used as access road.
- 3. In situ treatment includes construction of a temporary access ramp to the marsh and assumes treatment of approximately 500 CY/day with the specified chemicals.
- 4. Bike path restoration includes backfilling the excavated area and grading up to 2,000 cy of gravel over the section of path used by trucks to access the site.
- 5. Site restoration includes repair of the 100 LF of chainlink fence and application of 6-inches of top soil and seed to the marsh. It does not include wetlands restoration.

:

### OPTION 2: IN SITU TREATMENT, WITH ON-SITE CONTAINMENT

| ITEM                                            | UNIT   | UNIT COST   | QTY    | TOTAL           |
|-------------------------------------------------|--------|-------------|--------|-----------------|
| DIRECT CAPITAL COSTS                            |        |             |        |                 |
| Mobilization                                    | Is     | \$30,000    | 1      | \$30,000        |
| Site Preparation                                | Is     | \$67,500    | 1      | \$67,500        |
| Mixing of treatment chemicals                   | week   | \$46,750    | 4      | \$187,000       |
| Treatment Chemicals                             |        |             |        |                 |
| - Ferric sulfate                                | tons   | \$600       | 300    | \$180,000       |
| - Limestone                                     | tons   | \$50        | 200    | \$10,000        |
| - Peroxide (50%)                                | gallon | <b>\$</b> 5 | 1,000  | \$4,600         |
| Excavation and placement on cap                 | су     | \$35        | 11,000 | \$385,000       |
| Backfill and Seed (Marsh excavation)            | су     | \$45        | 11,000 | \$495,000       |
| Top Soil and Seed (Capped Area)                 | sf     | \$1.65      | 87,000 | \$143,550       |
| Fence Restoration                               | ls     | \$10,000    | 1      | \$10,000        |
| Bike Path Restoration                           | ls     | \$80,000    | 1      | \$80,000        |
| Demobilization                                  | Is     | \$15,000    | 1      | \$15,000        |
| Monitoring Well Construction                    | well   | \$2,500     | 5      | \$12,500        |
| SUBTOTAL OF DIRECT CAPITAL COST                 | •      |             |        | \$1,620,150     |
| 30 % CONTINGENCY                                | %      | 30%         |        | \$486,045       |
|                                                 |        |             |        |                 |
| INDIRECT CAPITAL COSTS                          |        |             |        |                 |
| Project management/administration               | Is     | \$25,000    | 1      | \$25,000        |
| Plans and Specifications                        | is     | \$45,000    | 1      | \$45,000        |
| Subcontracting                                  | ls     | \$25,000    | 1      | \$25,000        |
| Permitting                                      | Is     | \$20,000    | 1      | \$20,000        |
| Construction oversight                          | wk     | \$7,500     | 18     | \$135,000       |
| Documentation reporting                         | Is     | \$25,000    | 1      | \$25,000        |
| SUBTOTAL OF INDIRECT CAPITAL COSTS              | •      |             |        | \$275,000       |
| SUBTOTAL OF DIRECT AND INDIRECT CAPITAL COSTS   |        |             |        | \$2,381,195     |
|                                                 |        |             |        |                 |
| FIRST YEAR OF GROUNDWATER MONITORING - SEMI-ANN | NUAL   |             |        |                 |
| Project management/administration               | hr     | \$195       | 20     | \$3,900         |
| Groundwater sampling (5 wells, 2 times/yr)      | hr     | \$100       | 55     | <b>\$</b> 5,500 |
| Field equipment/expenses                        | Is     | \$1,000     | 1      | \$1,000         |
| Lab- As, Fe, SO4, pH , Calcium                  | each   | \$100       | 10     | \$1,000         |
| Data evaluation                                 | hr     | \$130       | 20     | \$2,600         |
| Reporting                                       | hr     | \$130       | 30     | \$3,900         |
| SUBTOTAL OF FIRST YEAR OF MONITORING            | •      | •           |        | \$17,900        |
| 30 % CONTINGENCY                                | %      | 30%         |        | \$5,370         |
|                                                 |        |             |        |                 |
| SUBTOTAL OF CAPITAL AND FIRST YEAR COSTS        |        |             |        | \$2,404,465     |

## OPINION OF PROBABLE COST WDNR - KEWAUNEE MARSH HOT SPOT REMEDIATION KEWAUNEE, WI PROJECT NO. 02085.21.001

#### OPTION 2: IN SITU TREATMENT, WITH ON-SITE CONTAINMENT

| ANNUAL COSTS HOT SPOT MONITORING COSTS (ANNUAL - YEARS 2-5) Project management/administration Groundwater sampling (3 wells, once/yr) Field equipment and expenses Is S500 Lab - As and pH Breading S25 S3 S75 Breading S30 Reporting FRESENT WORTH OF O&M  TREATED MATERIAL MONITORING COSTS (ANNUAL - YEARS 2-20) Project management/administration Pressent worth OF ANNUAL GROUNDWATER MONITORING FRESENT WORTH OF ANNUAL GROUNDWATER MONITORING FRESENT WORTH OF O&M  TREATED MATERIAL MONITORING COSTS (ANNUAL - YEARS 2-20) Freigld equipment and expenses Is S500 S13,484  TREATED MATERIAL MONITORING COSTS (ANNUAL - YEARS 2-20) Frield equipment and expenses Is S500 S500 FRESENT WORTH OF O&M  TREATED MATERIAL MONITORING COSTS (ANNUAL - YEARS 2-20) Field equipment and expenses Is S500 S500 S500 S500 S500 S500 S500 S50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ITEM                                                 | UNIT     | UNIT COST | QTY   | TOTAL        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------|-----------|-------|--------------|
| Project management/administration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANNUAL COSTS                                         |          |           |       |              |
| Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stood   Stoo                                                                                                                                                | HOT SPOT MONITORING COSTS (ANNUAL - YEARS 2-5)       |          |           |       |              |
| Field equipment and expenses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project management/administration                    | hr       | \$195     | 10    | \$1,950      |
| Lab - As and pH .   each   S25   3   \$75     Data evaluation   hr   \$100   5   \$500     Reporting   \$130   10   \$1,300     SUBTOTAL FOR ANNUAL GROUNDWATER MONITORING   \$5,325     30 % CONTINGENCY   %   30%   \$1,598     PRESENT WORTH OF HOT SPOT MONITORING   4   years @ 3%   \$25,732     TREATED MATERIAL O&M (ONE TIME REPAIR EVENT = YEAR 10)   Construction Cost   ls   \$45,000   1   \$45,000     PRESENT WORTH OF O&M   \$33,484     TREATED MATERIAL MONITORING COSTS (ANNUAL - YEARS 2-20)   Project management/administration   hr   \$195   15   \$2,925     Groundwater sampling (2 wells, once/yr)   hr   \$100   25   \$2,500     Field equipment and expenses   ls   \$500   1   \$500     Lab - As, Fe, SO4, pH , Calcium   each   \$100   2   \$200     Data evaluation   hr   \$100   10   \$1,000     Reporting   \$9,725     30 % CONTINGENCY   %   30%   \$2,918     PRESENT WORTH OF ANNUAL MONITORING   19   years @ 3%   \$181,089     PRESENT WORTH OF TREATED MATERIAL O&M AND MONITORING   \$225,732     PRESENT WORTH OF TREATED MATERIAL O&M AND MONITORING   \$221,572.86     TOTAL COST (TOTAL CAPITAL + PRESENT WORTH)   Total   \$2,650,000     + 50%   \$3,980,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Groundwater sampling (3 wells, once/yr)              | hr       | \$100     | 10    | \$1,000      |
| Data evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Field equipment and expenses                         | ls       | \$500     | 1     | \$500        |
| Reporting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lab - As and pH ,                                    | each     | \$25      | 3     | \$75         |
| SUBTOTAL FOR ANNUAL GROUNDWATER MONITORING   \$5,325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Data evaluation                                      | hr       | \$100     | 5     | \$500        |
| 30 % CONTINGENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reporting                                            | hr       | \$130     | 10    | \$1,300      |
| PRESENT WORTH OF HOT SPOT MONITORING         4         years @         3%         \$25,732           TREATED MATERIAL O&M (ONE TIME REPAIR EVENT = YEAR 10)         Is         \$45,000         1         \$45,000           PRESENT WORTH OF O&M         \$33,484           TREATED MATERIAL MONITORING COSTS (ANNUAL - YEARS 2-20)         Project management/administration         Inr         \$195         15         \$2,925           Groundwater sampling (2 wells, once/yr)         hr         \$100         25         \$2,500           Field equipment and expenses         is         \$500         1         \$500           Lab - As, Fe, SO4, pH, Calcium         each         \$100         2         \$200           Data evaluation         hr         \$100         10         \$1,000           Reporting         hr         \$130         20         \$2,600           SUBTOTAL FOR ANNUAL GROUNDWATER MONITORING         \$9,725           30 % CONTINGENCY         %         30%         \$2,918           PRESENT WORTH OF ANNUAL MONITORING         19         years @         3%         \$181,089           PRESENT WORTH OF TREATED MATERIAL O&M AND MONITORING         \$214,572.86         TOTAL COST (TOTAL CAPITAL + PRESENT WORTH)         Total         \$2,650,000           + 50%         \$3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SUBTOTAL FOR ANNUAL GROUNDWATER MONITORING           |          |           |       | \$5,325      |
| TREATED MATERIAL O&M (ONE TIME REPAIR EVENT = YEAR 10) Construction Cost   Is   \$45,000   1   \$45,000   PRESENT WORTH OF O&M   \$33,484    TREATED MATERIAL MONITORING COSTS (ANNUAL - YEARS 2-20) Project management/administration   Inr   \$195   15   \$2,925   Groundwater sampling (2 wells, once/yr)   Inr   \$100   25   \$2,500   Field equipment and expenses   Is   \$500   1   \$500   Lab - As, Fe, SO4, pH , Calcium   each   \$100   2   \$200   Data evaluation   Inr   \$100   10   \$1,000   Reporting   Inr   \$130   20   \$2,600   SUBTOTAL FOR ANNUAL GROUNDWATER MONITORING   \$9,725   30 % CONTINGENCY   %   30%   \$2,918   PRESENT WORTH OF ANNUAL MONITORING   19   years @ 3%   \$181,089    PRESENT WORTH OF TREATED MATERIAL O&M AND MONITORING   \$214,572.86   TOTAL COST (TOTAL CAPITAL + PRESENT WORTH)   Total   \$2,650,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30 % CONTINGENCY                                     | %        | 30%       |       | \$1,598      |
| S   \$45,000   1   \$45,000   1   \$45,000   1   \$45,000   1   \$45,000   1   \$45,000   1   \$45,000   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$34,500   1   \$33,484   1   \$34,500   1   \$33,484   1   \$34,500   1   \$33,484   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500 | PRESENT WORTH OF HOT SPOT MONITORING                 | 4        | years @   | 3%    | \$25,732     |
| S   \$45,000   1   \$45,000   1   \$45,000   1   \$45,000   1   \$45,000   1   \$45,000   1   \$45,000   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$33,484   1   \$34,500   1   \$33,484   1   \$34,500   1   \$33,484   1   \$34,500   1   \$33,484   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500   1   \$34,500 |                                                      |          |           |       |              |
| PRESENT WORTH OF O&M         \$33,484           TREATED MATERIAL MONITORING COSTS (ANNUAL - YEARS 2-20)         hr         \$195         15         \$2,925           Groundwater sampling (2 wells, once/yr)         hr         \$100         25         \$2,500           Field equipment and expenses         Is         \$500         1         \$500           Lab - As, Fe, SO4, pH, Calcium         each         \$100         2         \$200           Data evaluation         hr         \$100         10         \$1,000           Reporting         hr         \$130         20         \$2,600           SUBTOTAL FOR ANNUAL GROUNDWATER MONITORING         \$9,725         \$30%         \$2,918           PRESENT WORTH OF ANNUAL MONITORING         19         years @         3%         \$181,089           PRESENT WORTH OF TREATED MATERIAL O&M AND MONITORING         \$25,732         \$214,572.86           TOTAL COST (TOTAL CAPITAL + PRESENT WORTH)         Total         \$2,650,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TREATED MATERIAL O&M (ONE TIME REPAIR EVENT = YE     | AR 10)   |           |       |              |
| TREATED MATERIAL MONITORING COSTS (ANNUAL - YEARS 2-20) Project management/administration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Construction Cost                                    | ls       | \$45,000  | 1     | \$45,000     |
| Project management/administration         hr         \$195         15         \$2,925           Groundwater sampling (2 wells, once/yr)         hr         \$100         25         \$2,500           Field equipment and expenses         is         \$500         1         \$500           Lab - As, Fe, SO4, pH, Calcium         each         \$100         2         \$200           Data evaluation         hr         \$100         10         \$1,000           Reporting         hr         \$130         20         \$2,600           SUBTOTAL FOR ANNUAL GROUNDWATER MONITORING         \$9,725           30 % CONTINGENCY         %         30%         \$2,918           PRESENT WORTH OF ANNUAL MONITORING         19         years @         3%         \$181,089           PRESENT WORTH OF TREATED MATERIAL O&M AND MONITORING         \$25,732         \$214,572.86           TOTAL COST (TOTAL CAPITAL + PRESENT WORTH)         Total         \$2,650,000           + 50%         \$3,980,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PRESENT WORTH OF O&M                                 |          |           |       | \$33,484     |
| Project management/administration         hr         \$195         15         \$2,925           Groundwater sampling (2 wells, once/yr)         hr         \$100         25         \$2,500           Field equipment and expenses         is         \$500         1         \$500           Lab - As, Fe, SO4, pH, Calcium         each         \$100         2         \$200           Data evaluation         hr         \$100         10         \$1,000           Reporting         hr         \$130         20         \$2,600           SUBTOTAL FOR ANNUAL GROUNDWATER MONITORING         \$9,725           30 % CONTINGENCY         %         30%         \$2,918           PRESENT WORTH OF ANNUAL MONITORING         19         years @         3%         \$181,089           PRESENT WORTH OF TREATED MATERIAL O&M AND MONITORING         \$25,732         \$214,572.86           TOTAL COST (TOTAL CAPITAL + PRESENT WORTH)         Total         \$2,650,000           + 50%         \$3,980,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                      |          |           |       |              |
| Groundwater sampling (2 wells, once/yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TREATED MATERIAL MONITORING COSTS (ANNUAL - YEAR     | RS 2-20) |           |       |              |
| Field equipment and expenses         Is         \$500         1         \$500           Lab - As, Fe, SO4, pH, Calcium         each         \$100         2         \$200           Data evaluation         hr         \$100         10         \$1,000           Reporting         hr         \$130         20         \$2,600           SUBTOTAL FOR ANNUAL GROUNDWATER MONITORING         \$9,725         \$9,725           30 % CONTINGENCY         %         30%         \$2,918           PRESENT WORTH OF ANNUAL MONITORING         19         years @         3%         \$181,089           PRESENT WORTH OF HOT SPOT MONITORING         \$25,732         \$25,732           PRESENT WORTH OF TREATED MATERIAL O&M AND MONITORING         \$214,572.86           TOTAL COST (TOTAL CAPITAL + PRESENT WORTH)         Total         \$2,650,000           + 50%         \$3,980,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project management/administration                    | hr       | \$195     | 15    | \$2,925      |
| Lab - As, Fe, SO4, pH, Calcium       each       \$100       2       \$200         Data evaluation       hr       \$100       10       \$1,000         Reporting       hr       \$130       20       \$2,600         SUBTOTAL FOR ANNUAL GROUNDWATER MONITORING       \$9,725         30 % CONTINGENCY       %       30%       \$2,918         PRESENT WORTH OF ANNUAL MONITORING       19       years @       3%       \$181,089         PRESENT WORTH OF HOT SPOT MONITORING       \$25,732         PRESENT WORTH OF TREATED MATERIAL O&M AND MONITORING       \$214,572.86         TOTAL COST (TOTAL CAPITAL + PRESENT WORTH)       Total       \$2,650,000         + 50%       \$3,980,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Groundwater sampling (2 wells, once/yr)              | hr       | \$100     | 25    | \$2,500      |
| Data evaluation Reporting         hr         \$100         10         \$1,000           SUBTOTAL FOR ANNUAL GROUNDWATER MONITORING         \$9,725           30 % CONTINGENCY         %         30%         \$2,918           PRESENT WORTH OF ANNUAL MONITORING         19         years @         3%         \$181,089           PRESENT WORTH OF HOT SPOT MONITORING         \$25,732           PRESENT WORTH OF TREATED MATERIAL O&M AND MONITORING         \$214,572.86           TOTAL COST (TOTAL CAPITAL + PRESENT WORTH)         Total         \$2,650,000           + 50%         \$3,980,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Field equipment and expenses                         | is       | \$500     | 1     | \$500        |
| Reporting         hr         \$130         20         \$2,600           SUBTOTAL FOR ANNUAL GROUNDWATER MONITORING         \$9,725           30 % CONTINGENCY         %         30%         \$2,918           PRESENT WORTH OF ANNUAL MONITORING         19         years @         3%         \$181,089           PRESENT WORTH OF HOT SPOT MONITORING         \$25,732           PRESENT WORTH OF TREATED MATERIAL O&M AND MONITORING         \$214,572.86           TOTAL COST (TOTAL CAPITAL + PRESENT WORTH)         Total         \$2,650,000           + 50%         \$3,980,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lab - As, Fe, SO4, pH , Calcium                      | each     | \$100     | 2     | \$200        |
| SUBTOTAL FOR ANNUAL GROUNDWATER MONITORING         \$9,725           30 % CONTINGENCY         %         30%         \$2,918           PRESENT WORTH OF ANNUAL MONITORING         19         years @         3%         \$181,089           PRESENT WORTH OF HOT SPOT MONITORING         \$25,732           PRESENT WORTH OF TREATED MATERIAL O&M AND MONITORING         \$214,572.86           TOTAL COST (TOTAL CAPITAL + PRESENT WORTH)         Total         \$2,650,000           + 50%         \$3,980,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Data evaluation                                      | hr       | \$100     | 10    | \$1,000      |
| 30 % CONTINGENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Reporting                                            | hr       | \$130     | 20    | \$2,600      |
| PRESENT WORTH OF ANNUAL MONITORING         19         years @         3%         \$181,089           PRESENT WORTH OF HOT SPOT MONITORING         \$25,732           PRESENT WORTH OF TREATED MATERIAL 0&M AND MONITORING         \$214,572.86           TOTAL COST (TOTAL CAPITAL + PRESENT WORTH)         Total         \$2,650,000           + 50%         \$3,980,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SUBTOTAL FOR ANNUAL GROUNDWATER MONITORING           |          |           |       | \$9,725      |
| PRESENT WORTH OF HOT SPOT MONITORING         \$25,732           PRESENT WORTH OF TREATED MATERIAL O&M AND MONITORING         \$214,572.86           TOTAL COST (TOTAL CAPITAL + PRESENT WORTH)         Total         \$2,650,000           + 50%         \$3,980,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30 % CONTINGENCY                                     | %        | 30%       |       | \$2,918      |
| PRESENT WORTH OF TREATED MATERIAL O&M AND MONITORING         \$214,572.86           TOTAL COST (TOTAL CAPITAL + PRESENT WORTH)         Total         \$2,650,000           + 50%         \$3,980,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PRESENT WORTH OF ANNUAL MONITORING                   | 19       | years @   | 3%    | \$181,089    |
| PRESENT WORTH OF TREATED MATERIAL O&M AND MONITORING         \$214,572.86           TOTAL COST (TOTAL CAPITAL + PRESENT WORTH)         Total         \$2,650,000           + 50%         \$3,980,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |          |           |       |              |
| PRESENT WORTH OF TREATED MATERIAL O&M AND MONITORING         \$214,572.86           TOTAL COST (TOTAL CAPITAL + PRESENT WORTH)         Total         \$2,650,000           + 50%         \$3,980,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |          |           |       |              |
| TOTAL COST (TOTAL CAPITAL + PRESENT WORTH)  Total \$2,650,000 + 50% \$3,980,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PRESENT WORTH OF HOT SPOT MONITORING                 |          |           |       | \$25,732     |
| + 50% \$3,980,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PRESENT WORTH OF TREATED MATERIAL O&M AND MONITORING |          |           |       | \$214,572.86 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOTAL COST (TOTAL CAPITAL + PRESENT WORTH)           |          |           | Total | \$2,650,000  |
| 20% \$4.950,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |          |           | + 50% | \$3,980,000  |
| - 50% \$1,860,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |          |           | - 30% | \$1,860,000  |

Prepare By. A. Sellwood

#### ASSUMPTIONS:

- 1. Costs rounded up to the nearest ten thousand dollars.
- $2. \ \ {\hbox{Costs determined from experience and estimates from other similar projects}}.$
- 3. Contingency is assumed to be 30% of direct capital costs, monitoring costs, and annual O&M.
- 4. Indirect costs do not include legal fees or public relations assistance,
- 5. Interest rate 3%; the balance of an 8% interest rate less a 5% inflation rate, based on EPA approach for remedial cost estimating,
- 6. All costs are based on preliminary concepts. They are intended for remedial option comparison and not for final budgeting.

#### REMEDIATION NOTES

- 1. Mobilization includes the mobilization of equipment, swamp mats, chemicals and job trailer to the site.
- Site preparation includes removal of 100 LF of existing chain link fence, installation of approximately 4500 LF of silt fence, and
  set up of a site trailer and construction of a site laydown area for storage of equipment and materials at the intersection of the
  road and bike path. Assumes existing bike path can be used as access road.
- In situ treatment includes construction of a temporary access ramp to the marsh and assumes treatment of approximately 500 CY/day with the specified chemicals.
- 4. Onsite containment assumes purchase/rental of 500 LF of additional swamp mats to reach outer aroa of cap, production rate of 300 CY per day to transport and place treated material over approximately 2 acres of the exiting in tact cap to a height of up to 4 feet.
- Bike path restoration includes backfilling the excavated area and grading up to 2,000 cy of gravel over the section of path used by trucks to access the site.
- 6. Site restoration includes repair of the 100 LF of chainlink fence and application of 6-inches of top soil and seed to the marsh. It does not include wetlands restoration.

## OPINION OF PROBABLE COST WDNR - KEWAUNEE MARSH HOT SPOT REMEDIATION KEWAUNEE, WI PROJECT NO. 02085.21.001

#### OPTION 3: IN SITU TREATMENT WITH OFF-SITE DISPOSAL

| ITEM                                          | UNIT | UNIT COST | QTY    | TOTAL       |
|-----------------------------------------------|------|-----------|--------|-------------|
| DIRECT CAPITAL COSTS                          |      |           |        |             |
| Mobilization                                  | Is   | \$30,000  | 1      | \$30,000    |
| Site Preparation                              | Is   | \$67,500  | 1      | \$67,500    |
| Mixing of treatment chemicals                 | week | \$46,750  | 4      | \$187,000   |
| Treatment Chemicals                           |      |           |        |             |
| - Ferric sulfate                              | tons | \$600     | 200    | \$120,000   |
| - Limestone                                   | tons | \$50      | 100    | \$5,000     |
| - Peroxide                                    | gal  | \$25      | 0      | \$0         |
| Dewater - Magnesium Sulfate                   | tons | \$175     | 1,200  | \$210,000   |
| Excavate and Transport to Hickory Meadows     | tons | \$40      | 11,900 | \$476,000   |
| Disposal (Hickory Meadows - Veolia Contract)  | tons | \$25      | 11,900 | \$297,500   |
| Backtill and Seed (Marsh excavation)          | су   | \$45      | 11,000 | \$495,000   |
| Fence Restoration                             | Is   | \$10,000  | 1      | \$10,000    |
| Bike Path Restoration                         | Is   | \$80,000  | 1      | \$80,000    |
| Demobilization                                | Is   | \$15,000  | 1      | \$15,000    |
| Monitoring Well Construction                  | well | \$2,500   | 3      | \$7.500     |
| SUBTOTAL OF DIRECT CAPITAL COST               | •    |           |        | \$2,000,500 |
| 30 % CONTINGENCY                              | %    | 30%       |        | \$600,150   |
|                                               |      |           |        |             |
| INDIRECT CAPITAL COSTS                        |      |           |        |             |
| Project management/administration             | Is   | \$25,000  | 1      | \$25,000    |
| Plans and Specifications                      | Is   | \$35,000  | 1      | \$35,000    |
| Subcontracting                                | Is   | \$25,000  | 1      | \$25,000    |
| Permitting                                    | Is   | \$20,000  | 1      | \$20,000    |
| Construction oversight                        | wk   | \$7,500   | 13     | \$97,500    |
| Documentation reporting                       | ls   | \$25,000  | 1      | \$25,000    |
| SUBTOTAL OF INDIRECT CAPITAL COSTS            |      |           |        | \$227,500   |
| SUBTOTAL OF DIRECT AND INDIRECT CAPITAL COSTS |      |           |        | \$2,828,150 |
|                                               |      | 1         |        |             |
| FIRST YEAR OF GROUNDWATER MONITORING - SEMI-A | 1    |           |        |             |
| Project management/administration             | hr   | \$195     | 20     | \$3,900     |
| Groundwater sampling (3 wells, 2 times/yr)    | hr   | \$100     | 50     | \$5,000     |
| Field equipment/expenses                      | ls . | \$1,000   | 1      | \$1,000     |
| Lab - As, pH                                  | each | \$25      | 6      | \$150       |
| Data evaluation                               | hr   | \$130     | 20     | \$2,600     |
| Reporting                                     | hr   | \$130     | 30     | \$3,900     |
| SUBTOTAL OF FIRST YEAR OF MONITORING          |      |           |        | \$16,550    |
| 30 % CONTINGENCY                              | %    | 30%       |        | \$4,965     |
| CURTOTAL OF CARITAL AND FIRST VEAR COOTS      |      |           |        |             |
| SUBTOTAL OF CAPITAL AND FIRST YEAR COSTS      |      |           |        | \$2,849,665 |

## OPINION OF PROBABLE COST WDNR - KEWAUNEE MARSH HOT SPOT REMEDIATION KEWAUNEE, WI PROJECT NO. 02085.21.001

#### OPTION 3: IN SITU TREATMENT WITH OFF-SITE DISPOSAL

| ITEM                                       | UNIT | UNIT COST | QTY   | TOTAL        |
|--------------------------------------------|------|-----------|-------|--------------|
| FUTURE ANNUAL COSTS                        |      |           |       |              |
| MONITORING COSTS (ANNUAL - YEARS 2-5)      |      |           |       |              |
| Project management/administration          | hr   | \$195     | 15    | \$2,925      |
| Groundwater sampling (3 wells, once/yr)    | hr   | \$100     | 25    | \$2,500      |
| Field equipment and expenses               | Is   | \$500     | 1     | \$500        |
| Lab - As, pH                               | each | \$25      | 3     | <b>\$7</b> 5 |
| Data evaluation                            | hr   | \$100     | 10    | \$1,000      |
| Reporting                                  | hr   | \$130     | 20    | \$2,600      |
| SUBTOTAL FOR ANNUAL GROUNDWATER MONITORING |      | •         |       | \$9,600      |
| 30 % CONTINGENCY                           | %    | 30%       |       | \$2,880      |
| PRESENT WORTH OF ANNUAL MONITORING         | 4    | years @   | 3%    | \$46,389     |
| PRESENT WORTH OF MONITORING                |      |           |       | \$46,389.39  |
| TOTAL COST (TOTAL CAPITAL + PRESENT WORTH) |      |           | Total | \$2,900,000  |
|                                            |      |           | + 50% | \$4,350,000  |
|                                            |      | i         | - 30% | \$2,030,000  |

Prepared By. A. Sellwood

#### ASSUMPTIONS:

- 1. Costs rounded up to the nearest hundred thousand dollars.
- 2. Costs determined from experience and estimates from other similar projects.
- 3. Contingency is assumed to be 30% of direct capital costs, monitoring costs, and annual O&M.
- 4. Indirect costs do not include legal fees or public relations assistance.
- 5. Interest rate 3%; the balance of an 8% interest rate less a 5% inflation rate, based on EPA approach for remedial cost estimating.
- 6. All costs are based on preliminary concepts. They are intended for remedial option comparison and not for final budgeting.

#### **REMEDIATION NOTES:**

- 1. Mobilization includes the mobilization of equipment, swamp mats, chemicals and job trailer to the site.
- Site preparation includes removal of 100 LF of existing chain link fence, installation of approximately 4500 LF of silt fence, and set up of a site trailer and construction of a site laydown area for storage of equipment and materials at the intersection of the road and bike path. Assumes existing bike path can be used as access road.
- 3. In situ treatment includes construction of a temporary access ramp to the marsh and assumes treatment of approximately 500 CY/day with the specified chemicals.
- 4. Assumes excavation rate of 500 tons per day and disposal at the Veolia Hickory Meadows (53 miles from site).
- 5 Bike path restoration includes backfilling the excavated area and grading up to 2,000 cy of gravel over the section of path used by trucks to access the site.
- 6. Site restoration includes repair of the 100 LF of chainlink fence and application of 6-inches of top soil and seed to the marsh. It does not include wetlands restoration.

**Quantity Estimates** 

## Kewaunee Hot Spot Remediation In Situ Treatment (Small Volume)

| <b>Volumes</b>     |                |                   |               |  |
|--------------------|----------------|-------------------|---------------|--|
| Location           | Area (sf)      | Depth (ft)        | Volume (cy)   |  |
| Ballast ("Clean")  | 1,750          | 5                 | 400           |  |
| Ballast (Hot Spot) | 1 <b>,7</b> 50 | 7                 | 500           |  |
| Marsh              | 5,600          | 8                 | <b>1,7</b> 00 |  |
|                    |                | Total Hot Spot    | 2,200         |  |
|                    | Benching       | g/Slope (Add 25%) | 3,000         |  |

| <u>Mass</u> |             |                          |            |           |
|-------------|-------------|--------------------------|------------|-----------|
| Soil Type   | Volume (cy) | γ <sub>sat</sub> (lb/cf) | Mass (ton) | Mass (kg) |
| Sand/Silt   | 600         | 130                      | 1,060      | 9.62E+05  |
| Peat        | 2,400       | 65                       | 2,110      | 1.92E+06  |
|             | ****        | Total                    | 3,170      | 2.88E+06  |

| Chemical Quantities     |             |            |  |
|-------------------------|-------------|------------|--|
| Material                | Dose (%)    | Tons       |  |
| Ferric Sulfate          | 2.1         | <b>7</b> 0 |  |
| Limestone               | 1.5         | 50         |  |
| Bentonite               | 5           | 160        |  |
|                         | Dose (L/kg) | Gallons    |  |
| Hydrogen Peroxide (30%) | 0.000625    | 480        |  |
| Hydrogen Peroxide (50%) |             | 290        |  |

Prepared By: A. Sellwood 4/15/10

### Kewaunee Hot Spot Remediation In Situ or On-Site Containment

| <u>Volumes</u>     |           |                   |             |
|--------------------|-----------|-------------------|-------------|
| Location           | Area (sf) | Depth (ft)        | Volume (cy) |
| Ballast ("Clean")  | 1,750     | 5                 | 400         |
| Ballast (Hot Spot) | 1,750     | 7                 | 500         |
| Marsh              | 20,700    | 10                | 7,700       |
|                    |           | Total Hot Spot    | 8,200       |
|                    | Benching  | g/Slope (Add 25%) | 11,000      |

| <u>Mass</u> |             |                        |            |           |
|-------------|-------------|------------------------|------------|-----------|
| Soil Type   | Volume (cy) | $\gamma_{sat}$ (lb/cf) | Mass (ton) | Mass (kg) |
| Sand/Silt   | 2,200       | 130                    | 3,870      | 3.51E+06  |
| Peat        | 8,800       | 65                     | 7,730      | 7.02E+06  |
|             | leder .     | Total                  | 11,600     | 1.05E+07  |

| Chemical Quantities     |             |         |  |
|-------------------------|-------------|---------|--|
| Material                | Dose (%)    | Tons    |  |
| Ferric Sulfate          | 2.1         | 300     |  |
| Limestone               | 1.5         | 200     |  |
| Bentonite               | 5           | 600     |  |
|                         | Dose (L/kg) | Gallons |  |
| Hydrogen Peroxide (30%) | 0.000625    | 1,800   |  |
| Hydrogen Peroxide (50%) |             | 1,080   |  |

Prepared By: A. Sellwood 4/15/10

## Kewaunee Hot Spot Remediation Off Site Disposal

| Volumes            |           |                  | :             |
|--------------------|-----------|------------------|---------------|
| Location           | Area (sf) | Depth (ft)       | Volume (cy)   |
| Ballast ("Clean")  | 1,750     | 5                | 400           |
| Ballast (Hot Spot) | 1,750     | 7                | 500           |
| Marsh              | 20,700    | 10               | <b>7,7</b> 00 |
|                    | -         | Total Hot Spot   | 8,200         |
|                    | Benching  | /Slope (Add 25%) | 11,000        |

| <u>Mass</u> |             |                        |            |           |
|-------------|-------------|------------------------|------------|-----------|
| Soil Type   | Volume (cy) | $\gamma_{sat}$ (lb/cf) | Mass (ton) | Mass (kg) |
| Sand/Silt   | 2,200       | 130                    | 3,870      | 3.51E+06  |
| Peat        | 8,800       | 65                     | 7,730      | 7.02E+06  |
|             | *****       | Total                  | 11,600     | 1.05E+07  |

| Chemical Quantities |             |         |  |
|---------------------|-------------|---------|--|
| Material            | Dose (%)    | Tons    |  |
| Ferric Sulfate      | 1.05        | 200     |  |
| Limestone           | 0.75        | 100     |  |
|                     | Dose (L/kg) | Gallons |  |
| Hydrogen Peroxide   | 0           | 0       |  |

Prepared By: A. Sellwood 4/15/10

# Attachment A Soil Boring Logs

07201DNR.GPJ WI DNR 2003.GDT 4/22/10

#### SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |               | <u>Rc</u>                                             | oute To:                               |                                        | /astewater []<br>/Redevelopment [] | l      | Waste !<br>Other    | _              | ement          |                 |         |                         |                     |              |                     |        |                              |
|--------------------|---------------------------------|---------------|-------------------------------------------------------|----------------------------------------|----------------------------------------|------------------------------------|--------|---------------------|----------------|----------------|-----------------|---------|-------------------------|---------------------|--------------|---------------------|--------|------------------------------|
| r: '1'.            | (b) :                           |               |                                                       |                                        |                                        |                                    |        | License/I           | )              | N. S           |                 |         |                         | 110                 | Pag          |                     | of     | 2                            |
|                    | y/Proje<br>waune                |               |                                                       |                                        |                                        |                                    |        | License/i           | -etimi/        | MOINO          | ring ivu        | moei    |                         | 1201 1118           | g Numb       | B1                  | D      |                              |
|                    |                                 |               |                                                       | f arew ch                              | ief`(fĭrst, last) a                    | nd Firm                            |        | Date Dri            | lling St       | arted          |                 | Da      | ite Drilli              | ing Co              | mpleted      | <i>D</i> ,          |        | ling Method                  |
| Du:<br>On-         | sty Ha<br>-Site E               | rvey<br>Envir | onmen                                                 | tal Serv                               | vices                                  |                                    |        |                     | 12/7           | /2009          |                 |         |                         | 12/7/               | 2009         |                     | Go     | eoprobe                      |
|                    | nique W                         |               |                                                       |                                        | Vell ID No.                            | Common Well Nan                    | ne     | Final Sta           | tic Wa         | ter Levo       | el l            | Surfac  | e Eleva                 |                     |              | Во                  |        | Diameter                     |
|                    |                                 |               |                                                       |                                        |                                        |                                    |        |                     | Feet l         | MSL            |                 |         | 586.●                   |                     |              |                     | 2.1    | inches                       |
|                    | Grid Or                         | rigin         |                                                       |                                        | ) or Bor                               |                                    |        | La                  | t              | c              | ŧ               | В       | Local C                 | Grid Lo             |              |                     |        | -                            |
| State              | Plane<br>1/4                    | of.           |                                                       | ,907 JN,<br>/4 of Sec                  | 2,616,443                              |                                    |        |                     |                | 0              | (               | Jt      |                         | Eaa                 | Π N<br>ι 🗌 S | !                   | ſ      | □ E<br>Feet □ W              |
| Facilit            |                                 | Ol            |                                                       |                                        | County                                 | T N, R                             | ICc    | Long                |                | Civil T        | own/Ci          | ty/ or  | Village                 | ree                 | l [] 3       |                     |        | reet [] w                    |
|                    | ,                               |               |                                                       | 1                                      | Kewaunee                               |                                    | 3      | -                   |                | Kewa           |                 |         | 3                       |                     |              |                     |        |                              |
| Sar                | nple                            |               |                                                       |                                        |                                        |                                    |        |                     |                |                |                 |         |                         | Soil                | Prope        | erties              |        |                              |
|                    | &<br>E)                         | S             | 75                                                    |                                        | Soi I/R                                | Rock Description                   |        |                     |                |                |                 |         |                         |                     |              |                     |        |                              |
| ن ر                | A !! .                          | mmc           | Fe.                                                   |                                        | And G                                  | cologic Origin For                 |        |                     |                |                | _               |         | SSive                   | 3                   |              | 20                  |        | SIL                          |
| lber<br>Typ        | gth<br>over                     | Blow Counts   | Depth in Feet                                         |                                        | Eac                                    | ch Major Unit                      |        |                     | CS             | Graphic<br>L•g | l<br>gran       | PID/FID | Compressive<br>Strength | stur                | i gi         | ticit               | 9      | ),/<br>mne                   |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blo           | Dep                                                   |                                        |                                        |                                    |        |                     | N S            | Grap<br>L•g    | Well<br>Diagram | PID     | Compres<br>Strength     | Moisture<br>Content | Liquid       | Plasticity<br>Index | P 200  | RQD/<br>Comments             |
| CS 2 CS            | 60<br>48                        |               | - 2<br>- 3<br>- 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10 | SANI<br>brown<br>Large<br>CLAY<br>SYR: | DY CLAY (and 10 YR 5/3, with organ     | sand, reddish gr                   | moi    | st.                 | SP<br>CL<br>CL |                |                 |         |                         |                     |              |                     |        |                              |
|                    |                                 |               | <br>12                                                |                                        |                                        |                                    |        |                     |                | 77 77<br>77 77 |                 |         |                         |                     |              |                     |        |                              |
| I heret            | y certif                        | y that        |                                                       | rmation o                              | n this form is tr                      | ue and correct to the              | best o | of my kn            | owleds         | 1              |                 |         | .1                      | L                   | J            |                     |        | <u>·, , , ,</u>              |
| Signat             |                                 | •             |                                                       |                                        | ······································ |                                    | RMT,   |                     |                |                |                 |         |                         | <del></del>         |              |                     | Tal. / | 508-831-4444                 |
| -                  |                                 |               |                                                       |                                        |                                        | 1                                  |        | , THC.<br>ertland T | 'rail M        | Indienn        | W/1 53          | 717     |                         |                     |              |                     |        | 308-831-4444<br>308-831-3337 |

| Boring Number                                         | ı.          | B1I             | Use only as an attachment to Form 4400-1                                                                           | 22.      |             | ~~~~            |         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | Pag             |                     | oľ :  | 2                |
|-------------------------------------------------------|-------------|-----------------|--------------------------------------------------------------------------------------------------------------------|----------|-------------|-----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|---------------------|-------|------------------|
| Sample                                                |             |                 |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Soil                | Prope           | rties               |       |                  |
| 1. &<br>1 (in)                                        | nts         | ect.            | Soil/Rock Description                                                                                              |          |             |                 |         | ive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                 |                     |       | ø;               |
| ype<br>h At                                           | Con         | =               | And Geologic Origin For<br>Each Major Unit                                                                         | S        | iic         | am              | Ω.      | oress<br>gth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ure                 | ਚ               | city                |       | ,<br>ncnt        |
| Number<br>and Type<br>Length Att. &<br>Recovered (in) | Blow Counts | Depth In Fect   | Lacti Major Offic                                                                                                  | ISC      | Graphic Log | Well<br>Diagram | PID/FID | onn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Moisture<br>Content | Liquid<br>Limit | Plasticity<br>Index | P 200 | RQD/<br>Comments |
| ~ a _ 2                                               | <u>m</u>    | <u>.</u>        |                                                                                                                    | <u> </u> | <u> </u>    |                 | -       | 0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                 | <u> </u>            |       | н. О             |
|                                                       |             | -               | ORGANIC SILT (OL), with shells and                                                                                 |          | -6-         | II              |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
|                                                       |             | — 13<br>=       | trace organics, dark greenish gray GLEY1 4/1, moist, soft.                                                         |          | 7—G         |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
|                                                       |             | 14              | 771, HOIST, SOIT.                                                                                                  |          | 25          | H               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
|                                                       |             |                 |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
| 4 60                                                  |             | 15              |                                                                                                                    |          | - C         |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
| 4 60<br>CS 42                                         |             | -               |                                                                                                                    | 01       |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
|                                                       |             | <del>-</del> 16 |                                                                                                                    | OL       | 7-6         |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
|                                                       |             | <br>            |                                                                                                                    |          | 7-6         | }               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
| 4.                                                    |             | ··-· 17         |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       | ı                |
|                                                       |             | -<br>18         |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
|                                                       |             | 10              |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
|                                                       |             | <br>19          |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
|                                                       |             |                 | GRAVEL WITH SAND (GW), and trace fines, small to large, subangular, coarse to medium grained sand, light red brown | GW       | a ()        |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
|                                                       |             | 20              | medium grained sand, light red brown                                                                               |          | J           |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
|                                                       |             |                 | \\\2.5YR 7/3, wet.<br>E.O.B at 20 feet bgs.                                                                        |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
|                                                       |             |                 |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
|                                                       |             |                 |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
|                                                       |             |                 |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
|                                                       |             |                 |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
|                                                       |             |                 |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
|                                                       |             |                 |                                                                                                                    |          |             |                 |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                 |                     |       |                  |
|                                                       |             |                 |                                                                                                                    |          |             |                 |         | VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VIII - VI | i                   |                 |                     |       |                  |
|                                                       |             |                 |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
|                                                       |             |                 |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
| 05                                                    |             |                 |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
| 4(22)                                                 |             |                 |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
| GDT                                                   |             |                 |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
| 2003                                                  |             |                 |                                                                                                                    |          |             |                 |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                 |                     |       |                  |
| D D S                                                 |             |                 |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
| y 196                                                 |             |                 |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
| DNR                                                   |             |                 |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
| 07201                                                 |             |                 |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
| 6000                                                  |             |                 |                                                                                                                    |          | }           |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
| WDNR SBL 1998 07201DNR GPJ WI DNR 2005.GDT 4/22/10    |             |                 |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |
| WOW                                                   |             |                 |                                                                                                                    |          |             |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       | 2                |

07201DNR.GPJ WI DNR 2003.GDT 4/22/10

### SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | <u>Ro</u>      | 200000000000000000000000000000000000000 | astewater   Redevelopment                                                   | Waste Modern           | _       | ement                                   |                 |              |                         |                     |                 |                     |     |                              |
|--------------------|---------------------------------|-------------|----------------|-----------------------------------------|-----------------------------------------------------------------------------|------------------------|---------|-----------------------------------------|-----------------|--------------|-------------------------|---------------------|-----------------|---------------------|-----|------------------------------|
|                    |                                 |             |                |                                         |                                                                             | · ,                    |         |                                         | ********        |              |                         |                     | Pag             |                     | oſ` | 2                            |
|                    | y/Proje<br>vaune                |             |                |                                         |                                                                             | License/F              | Permit  | /Monito                                 | ring Nu         | ımber        |                         | Boring              | Numbe           | я<br>В1)            | C   |                              |
|                    |                                 |             |                | ferew chief (first, last) ar            | nd Firm                                                                     | Date Dril              | lling S | tarted                                  |                 | Da           | te Drilli               | ng Con              | pleted          |                     |     | ing Method                   |
| Dus                | sty Ha                          | rvey        |                |                                         |                                                                             |                        |         |                                         |                 |              |                         |                     |                 |                     |     | ,                            |
|                    | -Site E<br>rique W              |             |                | tal Services   DNR Well ID No.          | Common Well Name                                                            | Final Stat             |         | //2009                                  |                 | Surfac       | e Elevat                | 12/7/2              | :009            | Bo                  |     | eoprobe<br>Diameter          |
| WI OI              | nque v                          | i cii 110   | •              | ISTAIR WEILTIS NO.                      | Common Wen Name                                                             | 1                      | Feet l  |                                         | ' l             |              | 586.0 I                 |                     | 1SL             | 130                 |     | inches                       |
|                    | Grid O                          | rigin       |                | timated:  ) or Bor                      |                                                                             | 1                      |         | 0                                       | <u>'</u>        |              | Local C                 |                     |                 | 1                   |     |                              |
| State              |                                 | _           |                | 946 N, 2,616,456                        |                                                                             | Lat                    |         |                                         |                 |              |                         |                     |                 |                     |     | ДΕ                           |
| Facilit            | 1/4<br>v ID                     | of          | - 1.           | /4 of Section ,   County                | T N, R                                                                      | Long                   |         | Civil T                                 | ovn/Ci          | <br>tv/ or \ | √illage                 | Feet                | □ s             |                     |     | Feet W                       |
|                    | <i>y</i> 14.5                   |             |                | Kewaunee                                |                                                                             | 31                     |         | Kewa                                    |                 | -,           | 5-                      |                     |                 |                     |     |                              |
| Sar                | nple                            |             |                |                                         |                                                                             |                        |         |                                         |                 |              |                         | Soil                | Prope           | rties               | · • |                              |
|                    | જ (દા                           | \$          | ğ              | Soil/Re                                 | ock Description                                                             |                        |         |                                         |                 |              | ပ္                      |                     |                 |                     |     |                              |
| r<br>pe            | Att.                            | uno         | in Fe          |                                         | ologic Origin For                                                           |                        | S       | U                                       | 8               | Ω            | essiv                   | 5 -                 |                 | ity                 |     | ents                         |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blow Counts | Depth in Feet  | Eac                                     | h Major Unit                                                                |                        | SC      | Graphic<br>Log                          | Well<br>Diagram | PID/FID      | Compressive<br>Strength | Moisture<br>Content | Liquid<br>Limit | Plasticity<br>Index | 200 | RQD/<br>Comments             |
| ŹŔ                 | - 60<br>김 종                     | m           | ا ۵            | CAND (CD)(d)                            | gravel, medium to t                                                         | C                      | $\Box$  | Grap                                    | Ŋ<br>Ö          | 2            | <u>0</u> <u>2</u>       | 2 ડે                | اد د            | 2 4                 | ۵.  | <u> </u>                     |
| CS                 | 21                              |             | 2              | grained, brown 10                       | YR 5/3, moist.                                                              |                        | SP      |                                         |                 |              |                         |                     |                 |                     |     |                              |
| 2<br>CS            | 60<br>24                        |             | -5             | 2.5YR 6/3, moist, PEAT, with organ      | CL), light red brown<br>soft.<br>ics (root mass, woo<br>10YR 3/2, moist, so | <br>od),               | CL      | 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 |                 |              |                         |                     |                 |                     |     |                              |
| 3<br>CS            | 60<br>60                        |             | 10<br>11<br>12 |                                         |                                                                             |                        |         | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7   |                 |              |                         |                     |                 |                     |     |                              |
| heret              | y certif                        | y that (    | the infor      | mation on this form is tru              | ie and correct to the bes                                                   | t of my kn             | owled   | ge.                                     |                 |              |                         |                     |                 |                     |     |                              |
| Signat             | ure                             |             |                |                                         |                                                                             | Γ, Inc.<br>leartland T | rail N  | 4adison.                                | WI 53           | 717          |                         |                     |                 |                     |     | 508-831-4444<br>508-831-3334 |

| Borin                                                | g Numl                          | oer         | BIE           | Use only as an attachment to Form 4400-1                                          | 22.      |                    | _,              |         | -ı                      |                     |        | ge 2                | oſ    | 2                |
|------------------------------------------------------|---------------------------------|-------------|---------------|-----------------------------------------------------------------------------------|----------|--------------------|-----------------|---------|-------------------------|---------------------|--------|---------------------|-------|------------------|
| San                                                  | nple                            |             |               |                                                                                   |          |                    |                 |         |                         | Soil                | Propo  | erties              |       |                  |
|                                                      | &<br>(in)                       | ts.         | jo j          | Soil/Rock Description                                                             |          |                    |                 |         | ۸٥                      |                     |        |                     |       |                  |
| . 2                                                  | Att.                            | uno         | n Fe          | And Geologic Origin For                                                           | S        | 0                  | [               |         | cssiv<br>h              | 5 ***               |        | 2                   |       | cnts             |
| Number<br>and Type                                   | Length Att. &<br>Recovered (in) | Blow Counts | Depth in Feet | Each Major Unit                                                                   | SC       | aphi               | Well<br>Diagram | PID/FID | Compressive<br>Strength | Moisture<br>Content | Liquid | Plasticity<br>Index | P 200 | RQD/<br>Comments |
| and                                                  | Ler                             | Blo         | Dc            |                                                                                   | 5        | Graphic 12 Log     | ŽÃ              | L L     | <u>S S</u>              | క్రి                | ËË     | Pla                 | P 2   | 2 S              |
|                                                      |                                 |             | -             |                                                                                   |          | 7. 7.7.<br>2.7. 7. |                 |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             | _<br>13       |                                                                                   |          | 77. 7              | E               |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             | _ ' '         |                                                                                   |          | 1, 11,             | i i             |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             | <br>14        |                                                                                   |          | 24 2               |                 |         |                         |                     | -      |                     |       |                  |
|                                                      |                                 |             | - 1-1         | ORGANIC SILT (OL), with shells and trace organics, dark greenish gray GLEY1       |          |                    | -               |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             | _<br>15       | 4/1, moist, soft.                                                                 |          |                    | <u>^</u>        |         |                         |                     |        |                     |       |                  |
| 4<br>CS                                              | 60<br>48                        |             | - 13          | , , , , , , , , , , , , , , , , , , , ,                                           |          | F-3                | 7<br>           |         |                         |                     |        |                     |       |                  |
|                                                      | 10                              |             | -16           |                                                                                   |          | 22                 | 7               |         | :                       |                     |        |                     |       |                  |
|                                                      |                                 |             | -             |                                                                                   | OL       |                    | 7               |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             | 17            |                                                                                   | 0        | 5                  | 7               |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             | - '           |                                                                                   |          | -0-                |                 |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             | 18            |                                                                                   |          | 2                  | 4               |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             | -             |                                                                                   |          | 7C                 | 4               |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             | _<br>19       |                                                                                   | <u> </u> | 7                  |                 |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             | _             | SANDY CLAY (CL), with gravel, fine to medium grained, reddish brown 5YR 5/3,      | CL.      | 1/                 | 4               |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             | - 20          | $\int_{\Gamma} very \text{ wet, soft.}$                                           | GW       | °V°                |                 |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             |               | GRAVEL WITH SAND (GW), and trace                                                  |          |                    |                 |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             |               | fines, small to large, subangular, coarse to medium grained sand, light red brown |          |                    |                 |         |                         | j<br>               |        |                     |       |                  |
|                                                      |                                 |             |               | 2.5YR 7/3, wet.                                                                   |          |                    |                 |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             |               | E.O.B at 20 feet bgs.                                                             |          |                    |                 |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             |               |                                                                                   |          |                    |                 |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             |               |                                                                                   |          |                    |                 |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             |               |                                                                                   |          |                    |                 |         |                         |                     | ]      |                     |       |                  |
|                                                      |                                 |             |               |                                                                                   |          |                    |                 |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             |               |                                                                                   |          |                    |                 |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             |               |                                                                                   |          |                    |                 |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             |               |                                                                                   |          |                    |                 |         |                         |                     |        |                     |       |                  |
|                                                      |                                 |             |               |                                                                                   |          |                    |                 |         |                         |                     |        |                     |       |                  |
| 22/10                                                |                                 |             |               |                                                                                   |          |                    |                 |         |                         |                     |        |                     |       |                  |
| 47                                                   |                                 |             |               |                                                                                   |          |                    |                 |         |                         |                     |        |                     |       |                  |
| 3.GDJ                                                |                                 |             |               |                                                                                   |          |                    |                 |         |                         |                     |        |                     |       |                  |
| 3 200                                                |                                 |             |               |                                                                                   |          |                    |                 |         |                         |                     |        |                     |       |                  |
| N D                                                  |                                 |             |               |                                                                                   |          |                    | -               |         |                         |                     |        |                     |       |                  |
| . Ces                                                |                                 |             |               |                                                                                   |          |                    |                 |         |                         |                     |        |                     |       |                  |
| ONR.(                                                |                                 | ,<br>       |               |                                                                                   |          |                    |                 |         |                         |                     |        |                     |       |                  |
| 7201                                                 |                                 |             |               |                                                                                   |          |                    |                 |         |                         |                     |        |                     |       |                  |
| 0 888                                                |                                 |             |               |                                                                                   |          |                    |                 |         |                         |                     |        |                     |       |                  |
| SBE                                                  |                                 |             |               |                                                                                   |          |                    |                 |         |                         |                     |        |                     |       |                  |
| WDNR SBL 1998 07201DNR,GPJ WI DNR 2003.GDT - 4/22/10 |                                 |             |               |                                                                                   |          |                    |                 |         |                         |                     |        |                     |       | Ч                |
| S                                                    | 1                               | I           | I             | 1                                                                                 | 1        | 1                  | 1               | 1       | 1                       | 1                   | 1      |                     |       | B                |

| State of Wisconsin              |  |
|---------------------------------|--|
| Department of Natural Resources |  |

07201DNR.GPJ WIDNR 2003.GDT 4/22/10

#### SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | Ro                         | ute To:                         |                             | /astewater   /Redevelopment                                                  | Waste<br>Other            | _         | ement                                 |                                         |         |                                         |                     |                 |                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------|---------------------------------|-------------|----------------------------|---------------------------------|-----------------------------|------------------------------------------------------------------------------|---------------------------|-----------|---------------------------------------|-----------------------------------------|---------|-----------------------------------------|---------------------|-----------------|---------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                 |             |                            |                                 |                             |                                                                              |                           |           |                                       |                                         |         |                                         |                     | Pag             |                     | of   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | y/Proje                         |             |                            |                                 |                             |                                                                              | License                   | /Permit   | /Monito                               | ring Nu                                 | mber    |                                         | Boring              | Numb            | er<br>B2.           | ٨    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | waune<br>g Drillee              |             |                            | ferew chi                       | cf`(first, last) a          | nd Firm                                                                      | Date D                    | rilling S | tarted                                | *************************************** | Da      | te Drilli                               | ng Con              | npleted         |                     |      | ing Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Du                 | sty Ha                          | rvey        |                            |                                 |                             |                                                                              |                           | 10/6      |                                       |                                         | İ       |                                         | 10/0/               | 200             |                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | -Site E                         |             |                            | tal Servi                       | ices<br>/ell ID No.         | Common Well Name                                                             | e Final St                |           | 3/2 <b>00</b> 9<br>iter Leve          |                                         | Surfac  | e Elevat                                | 12/8/2<br>tion      | 2009            | Bo                  |      | eoprobe<br>Diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    | ·                               |             |                            |                                 |                             |                                                                              |                           | Feet      | MSL                                   |                                         |         | 587. <b>●</b> 1                         |                     |                 |                     | 2.1  | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | Grid Or<br>Plane                | rigin       |                            |                                 | 2,616,416                   | ring Location 🔯<br>E S/C/N                                                   | L                         | at        | 0                                     | I                                       | (1      | Local C                                 | Grid Lo             | cation<br>[] N  |                     |      | [] r:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ouic               | 1/4                             | of          |                            | /4 of Sect                      | -                           | T N, R                                                                       |                           | ıg        | · · · · · · · · · · · · · · · · · · · |                                         | (1      |                                         | Feet                |                 |                     |      | Feet W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Facilit            | y ID                            |             |                            |                                 | County                      |                                                                              | County C                  | ode       | Civil T                               |                                         | ty/or   | √illage                                 |                     |                 |                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sar                | nple                            |             |                            | ] ]                             | Kewaunee                    |                                                                              | 31                        |           | Kewa                                  | aunee<br>                               |         | 1                                       | Soil                | Prope           |                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 541                | T*****                          |             |                            |                                 | Soil/R                      | tock Description                                                             |                           |           |                                       |                                         |         |                                         |                     | rope            | 1103                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| c)                 | VIII. S<br>ed (ii               | unts        | Fcc                        |                                 |                             | cologic Origin For                                                           |                           |           |                                       |                                         |         | ssive                                   |                     |                 | J.,                 |      | ts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blow Counts | Depth In Feet              |                                 | Eac                         | ch Major Unit                                                                |                           | C S       | Graphic<br>Log                        | WcII<br>Diagram                         | PID/FID | Compressive<br>Strength                 | Moisture<br>Content | uid<br>ii       | Plasticity<br>Index | 200  | RQD/<br>Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| and                | Len                             | B           | Dep                        |                                 |                             |                                                                              |                           | N.S       | Grap<br>Log                           | Well                                    | PID     | Cor                                     | 8 5                 | Liquid<br>Limít | Plastic<br>Index    | P 2( | \ \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( |
| CS 2               | 60 39                           |             | -1<br>-2<br>-3<br>-4<br>-5 | yellow                          | v brown 10\<br>d material a | gravel, medium g<br>/R 4/4, moist. Bla<br>t 6.5 - 6.7 feet bgs               | ick                       | SP        |                                       |                                         |         | AND AND AND AND AND AND AND AND AND AND |                     |                 |                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CS                 | 45                              |             | 7                          | bgs.<br>As abo<br>brown<br>SANI | ove, with class 5YR 5/3.    | erial from 6.5 - 6.  ay, moist to wet, r  trace gravel, med ish brown 10YR 5 | ed<br>lium to             |           |                                       |                                         |         |                                         |                     |                 |                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3<br>CS            | 60<br>60                        |             |                            |                                 | this fam. is to             |                                                                              |                           | SP        |                                       |                                         |         |                                         |                     |                 |                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Signat             |                                 | y man       | ine into                   | mation of                       | ii unis torm is ti          | rue and correct to the b                                                     | MT, Inc.                  | .iiowied  | gc.                                   |                                         |         |                                         |                     |                 |                     | r.L. | (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5                  |                                 |             |                            |                                 |                             | 101                                                                          | VII, IIIC.<br>I Heartland | Trail N   | Madison                               | , WI 53                                 | 717     |                                         |                     |                 |                     |      | 508-831-4444<br>508-831-3334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Borin                                             | g Numb                          | oer         | B2 <i>A</i>   | 4 Use only as an attachment to Form 4400-1                                                     | 22. |                |                 |         |                         |                     |                 | se 2                | οľ    | 2                |
|---------------------------------------------------|---------------------------------|-------------|---------------|------------------------------------------------------------------------------------------------|-----|----------------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|-------|------------------|
|                                                   | nple                            |             |               |                                                                                                |     |                |                 |         |                         | Soil                | Prope           | erties              |       |                  |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,           | 3 (2                            | 10          | <sub>55</sub> | Soil/Rock Description                                                                          |     |                |                 |         | l <sub>o</sub>          |                     |                 |                     |       |                  |
| 45                                                | od (i                           | unts        | - Fe          | And Geologic Origin For                                                                        |     |                | _               | _       | SSiv                    |                     |                 | >.                  |       | str              |
| yper                                              | th A                            | ပို         | n lu          | Each Major Unit                                                                                | S   | hic            | ram             | FID     | pre                     | cnt                 | .p              | icit                | 0     | , mc             |
| Number<br>and Type                                | Length Att. &<br>Recovered (in) | Blow Counts | Depth In Feet | Sauth Maryon Chin                                                                              | nsc | Graphic<br>Log | Wc11<br>Diagram | PID/FID | Compressive<br>Strength | Moisture<br>Content | Liquid<br>Limit | Plasticity<br>Index | P 200 | RQD/<br>Comments |
| 2.8                                               | 기업                              |             |               |                                                                                                | SP  |                | <u> </u>        | <u></u> | S                       |                     | 1 -1            | <u> </u>            |       | <u> </u>         |
|                                                   |                                 |             | -             |                                                                                                |     | <u> </u>       |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             | 13            | PEAT, with organics (wood and root mass), dark brown 10YR 3/2, moist, soft.                    |     | 2 22           |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               | mass), dark brown 10 f K 3/2, moist, sort.                                                     |     | 77 7           |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     | 1, 11,         |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             | 14            |                                                                                                |     |                | ,               |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               | ORGANIC SILT (OL), with shells and                                                             | OL  | 23             | 1               |         |                         |                     | }               |                     |       |                  |
| -                                                 |                                 |             | 15            | ORGANIC SILT (OL), with shells and trace organics, dark greenish gray GLEY1 /4/1, moist, soft. |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                         |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               | E.O.B. at 15 feet bgs.                                                                         |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   | ļ                               |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 | Ì                   |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         | i                   | 1               |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 | <br>    |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
|                                                   |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
| 2/10                                              |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
| 4/23                                              |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
| 3D ±                                              |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
| 203.0                                             |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
| S.<br>S.                                          |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
| M D                                               |                                 |             |               |                                                                                                |     |                |                 | <br>    |                         |                     | ļ               |                     |       |                  |
| <u>a.</u>                                         | -                               |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
| 7.<br>7.<br>0.                                    |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
| 7201E                                             |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
| (O 88                                             |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
| ~<br>%                                            |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
| WDNR SBL 1986 07201DNR.GPJ WIDNR 2003.GDT 4/22/10 |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       |                  |
| MQM                                               |                                 |             |               |                                                                                                |     |                |                 |         |                         |                     |                 |                     |       | 6                |
|                                                   | ,                               |             |               |                                                                                                |     |                |                 |         | -                       |                     |                 |                     |       | •                |

### SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                         |                                 |             | Ro            | watershed/W<br>Remediation/            |             | nent 🗆          | Waste I<br>Other      |         | ement          |                 |         |                         |                     |                 |                     |         |                              |
|-------------------------|---------------------------------|-------------|---------------|----------------------------------------|-------------|-----------------|-----------------------|---------|----------------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|---------|------------------------------|
|                         |                                 |             |               |                                        |             |                 |                       |         |                |                 |         |                         |                     | Pag             |                     | οľ      | 2                            |
|                         | ty/Projec<br>waune              |             |               |                                        |             |                 | License/I             | oermit/ | /Monito        | ring Nu         | ımbe    | r                       | Boring              | , Numb          | er<br>B2            | B       |                              |
|                         |                                 |             |               | f crew chief (first, last) ar          | nd Firm     |                 | Date Dri              | lling S | tarted         | <del></del>     | D       | Date Drilli             | ng Cor              | npleted         |                     |         | ling Method                  |
| Du                      | sty Ha                          | rvey        |               | . 10                                   |             |                 |                       | 12.0    | 12000          |                 |         |                         | 1 2 /0 //           | 2000            |                     |         | 1                            |
|                         | -Site E                         |             |               | tal Services    DNR Well ID No.        | Common      | Well Name       | Final Sta             |         | /2009          |                 | Surf    | ice Eleva               | 12/8/2              | 2009            | Bo                  |         | eoprobe<br>Diameter          |
| *****                   | inque vi                        | Cii 110     |               | BAX Well his No.                       | Common      | Wen Panie       |                       | Feet l  |                | '               | Otil It | 587.0                   |                     | 4SL             |                     |         | inches                       |
|                         | Grid Or                         | rigin       |               | stimated:  ) or Bor                    |             |                 | 1                     |         | 0              |                 |         | Local                   |                     |                 | ,                   |         |                              |
| State                   | Plane                           |             |               | ,007 N, 2,616,427                      |             | C/N             |                       | 1       | ····           |                 |         | -                       |                     |                 |                     |         | Ξ£                           |
| Facili                  | 1/4                             | of          | 1             | /4 of Section ,                        | T N         | !, R            | Long<br>County Co     |         |                |                 | ily/ o  | r Village               | Feet                | □ S             |                     |         | Feet W                       |
| 1 (101111               | ty II                           |             |               | Kewaunee                               |             | i i             | 31                    | ac      | Kewa           |                 | -       | rvinage                 |                     |                 |                     |         |                              |
| Sai                     | mple                            |             |               |                                        |             | 1 -             |                       |         |                |                 |         |                         | Soil                | Prope           | erties              |         |                              |
| d                       |                                 |             | -             | Soil/R                                 | ock Descri  | otion           |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
| υ                       | Att. o                          | Blow Counts | Depth In Feet |                                        | ologic Orig |                 |                       |         |                | _               |         | SSIVC                   |                     |                 | ٠,                  |         | SIL                          |
| Typ.                    | gth /                           | υ<br>V      | th di         | Eac                                    | h Major Ui  | nit             |                       | CS      | ohic           | l<br>gram       | PID/FID | apres<br>ngth           | Sture               | pi ii           | ticit;              | 0       | )/<br>mine                   |
| Number<br>and Type      | Length Att. &<br>Recovered (in) | Blov        | Dep           |                                        |             |                 |                       | S D     | Graphic<br>Log | Well<br>Diagram | PID     | Compressive<br>Strength | Moisture<br>Content | Liquid<br>Limit | Plasticity<br>Index | P 200   | RQD/<br>Comments             |
| 1                       | 60                              |             |               | SAND (SP), with                        |             |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
| CS                      | 30                              |             |               | small to large, sub<br>brown 10YR 5/4, | angular g   | gravel, yell    | owish                 |         |                |                 |         |                         |                     |                 |                     |         |                              |
| e<br>S                  |                                 |             |               | 010W111011C 3/4,                       | moist.      |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
|                         |                                 |             | -             |                                        |             |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
|                         |                                 |             | _ 2           |                                        |             |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
|                         |                                 |             |               |                                        |             |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
|                         |                                 |             | - 3           |                                        |             |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
|                         |                                 |             |               |                                        |             |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
|                         |                                 |             | _4            |                                        |             |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
|                         |                                 |             |               |                                        |             |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
| 2                       | 60                              |             | 5             |                                        |             |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
| 2<br>CS                 | 30                              |             |               |                                        |             |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
|                         |                                 |             | 6             |                                        |             |                 |                       | SP      |                |                 |         |                         |                     |                 |                     |         |                              |
|                         |                                 |             | -             |                                        |             |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
|                         |                                 |             | 7             |                                        |             |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
|                         |                                 |             | -             |                                        |             |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
|                         |                                 |             | -8            |                                        |             |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
|                         |                                 |             |               |                                        |             |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
|                         |                                 |             | ()            | A 1 1/1 1                              | ٠.          |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
| 0                       |                                 |             | -             | As above, with cla                     | y, moist    | to wet.         |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
| 472271                  |                                 |             | <br>10        |                                        |             |                 |                       |         |                |                 |         |                         |                     |                 | :                   |         |                              |
| 5 CS                    | 60<br>15                        |             | -             |                                        |             |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
| 03.G                    |                                 |             | -<br>11       |                                        |             |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
| 18 20                   |                                 |             | -             |                                        |             |                 |                       |         |                |                 |         |                         |                     |                 |                     |         |                              |
| WI DNR 2003.GDT 4/22/10 |                                 |             | <br>12        |                                        |             |                 | ,-,-                  |         |                |                 |         |                         |                     |                 |                     |         |                              |
| d I herel               | by certif                       | y that      |               | rmation on this form is tr             | ue and corr | ect to the best | of my kn              | owled   | л<br>20.       | L               | 1       |                         | L                   |                 | 1                   |         |                              |
| Signat                  | lure                            |             |               |                                        |             |                 | f, Inc.               |         | o * ·          |                 |         |                         |                     |                 |                     | י וברני | 500 031 dada                 |
| Signat<br>Signat        |                                 |             |               |                                        |             | 1 (111 1        | t, mc.<br>leartland T | frail N | 4adison,       | , WI 53         | 3717    |                         |                     |                 |                     |         | 508-831-4444<br>508-831-3334 |

| Borin                                             | g Numb                          | ocr         | B2E           | Use only as an attachment to Form 4400-                                                       | 122. |                    |                 |            |                         |                     | Pag    |                     | oſ        | 2                |
|---------------------------------------------------|---------------------------------|-------------|---------------|-----------------------------------------------------------------------------------------------|------|--------------------|-----------------|------------|-------------------------|---------------------|--------|---------------------|-----------|------------------|
|                                                   | ple                             | ~~~         |               |                                                                                               |      |                    |                 |            |                         | Soil                | Prope  | erties              |           |                  |
|                                                   | Length Att. &<br>Recovered (in) | S.          | ू<br>इंद      | Soil/Rock Description                                                                         |      |                    |                 |            | ပ္                      |                     |        |                     |           |                  |
|                                                   | Au.<br>red                      | oun         | n Fc          | And Geologic Origin For                                                                       | S    | l u                |                 |            | essí                    | 211                 |        | ity                 |           | ents             |
| Number<br>and Type                                | ngth                            | Blow Counts | Depth In Feet | Each Major Unit                                                                               | U    | aphi               | Well<br>Diagram | PID/FID    | Compressive<br>Strength | Moisture<br>Content | Liquid | Plasticity<br>Index | P 200     | RQD/<br>Comments |
| and                                               | Le                              | <u></u>     | De            |                                                                                               | S O  | Garaphic<br>14 Log | ž ō             | _ <u>=</u> | <u> </u>                | ž S                 | 33     | <u> </u>            | <u>c.</u> | <u> </u>         |
|                                                   |                                 |             | -             | PEAT, with organics (wood and root mass), dark brown 10YR 3/2, moist, soft.                   |      | 2 24               |                 |            |                         |                     |        |                     |           |                  |
| ·                                                 |                                 |             | -<br>- 13     | 111d35), dark 610 W1 10 1 K 3/2, 110l3t, 301t.                                                |      | 77. 7              | 1               |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             | -             |                                                                                               |      | 1/2 1/2            |                 |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             | 14            |                                                                                               |      | 77 7               | 1               |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             | -             |                                                                                               |      | 77. 7              |                 |            |                         |                     |        |                     |           |                  |
| 4                                                 | 60                              |             | <u>-</u> 15   | ODCANIC SILT (OL) with challe and                                                             |      | J= 0               | 1               |            |                         |                     |        |                     |           |                  |
| 4<br>CS                                           | 60                              |             | E             | ORGANIC SILT (OL), with shells and trace organics, dark greenish gray GLEY1 4/1, moist, soft. |      | - G                |                 |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             | 16            | 4/1, moist, soft.                                                                             |      | 6                  |                 |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             | -             |                                                                                               |      | 6                  |                 |            |                         |                     |        |                     |           |                  |
| ·                                                 |                                 |             | 17            |                                                                                               | OL   |                    |                 |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             | E             |                                                                                               |      |                    | 7               |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             | 18<br>        |                                                                                               |      | 7-0                |                 |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             | -             |                                                                                               |      | <del>7</del> €     |                 |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             | 19<br>        | SANDY CLAY (CL), with gravel, medium grained, red brown gray 5YR 5/2, moist.                  |      | 17                 |                 |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             |               | grained, red brown gray 5YR 5/2, moist.                                                       | CL   |                    |                 |            |                         |                     |        |                     |           |                  |
| _                                                 |                                 |             | 2()           | E.O.B. at 20 feet bgs.                                                                        |      |                    |                 |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             |               |                                                                                               |      |                    |                 |            | 1                       |                     |        |                     |           |                  |
|                                                   |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           |                  |
|                                                   |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           | 44               |
| 22710                                             |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           |                  |
| <b>1</b> 4                                        |                                 |             |               |                                                                                               | <br> |                    |                 |            |                         |                     | <br>   |                     |           |                  |
| 33.GD                                             |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           |                  |
| ۲۳<br>20                                          |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           |                  |
| <u> </u>                                          |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           |                  |
| GPJ                                               |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           |                  |
| DNR.                                              |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           |                  |
| 07201                                             |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           |                  |
| 0)<br>0)                                          |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           |                  |
| WDNR SBL 1988 (72010NR,GPJ WIBNR 2003,GDT 4/22/10 |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           |                  |
| WOW                                               |                                 |             |               |                                                                                               |      |                    |                 |            |                         |                     |        |                     |           | 8                |
|                                                   |                                 |             | •             |                                                                                               | 1    | ,                  | •               |            | •                       |                     | •      |                     |           |                  |

07201DNR.GPJ WIDNR 2003.GDT 4/22/10

#### SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | Ro                          |                                                                                                                                                      | 'astewater 🔲<br>Redevelopment 🔲                                                                                                             | Waste<br>Other                         |             | ement              |                 |         |                         |                     |                 |                     |        |                              |
|--------------------|---------------------------------|-------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------|--------------------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|--------|------------------------------|
|                    |                                 |             |                             |                                                                                                                                                      |                                                                                                                                             |                                        |             |                    |                 |         |                         |                     | Pag             |                     | oſ     | 2                            |
|                    | y/Proje                         |             |                             |                                                                                                                                                      |                                                                                                                                             | License/                               | Permit      | /Monito            | ring N          | umber   |                         | Boring              | Numbe           | er<br>B2            | $\sim$ |                              |
|                    | vaune<br>3 Drilled              |             |                             | f crew chief (first, last) a                                                                                                                         | nd Firm                                                                                                                                     | Date Dri                               | illing S    | tarted             |                 | Da      | ite Drilli              | ng Con              | pleted          | 132                 |        | ling Method                  |
| Dus                | sty Ha                          | rvey        |                             | . 10                                                                                                                                                 |                                                                                                                                             |                                        | 10/0        | · <b>/2</b> 0.00   |                 |         |                         | 10 (0) (0           |                 |                     |        | ì                            |
|                    | Site E                          |             |                             | tal Services    DNR Well ID No.                                                                                                                      | Common Well Name                                                                                                                            | Final Sta                              |             | 5/2009<br>ter Leve |                 | Surfac  | e Elevat                | 12/8/2<br>ion       | 2009            | Во                  |        | eoprobe<br>Diameter          |
|                    |                                 |             |                             |                                                                                                                                                      |                                                                                                                                             |                                        | Feet l      |                    |                 | ;       | 587.0 1                 | Feet N              |                 |                     |        | inches                       |
| Local<br>State     | Grid Oi                         | igin        |                             | stimated: [] ) or Bor<br>,989 N, 2,616,440                                                                                                           |                                                                                                                                             | 1.:                                    | ıt          | 0                  |                 | 11      | Local C                 | Grid Loo            |                 |                     |        | t                            |
| State              | 1/4                             | of          |                             | ,969 N, 2,010,440<br>/4 of Section ,                                                                                                                 | T N, R                                                                                                                                      | Long                                   |             | •                  |                 | 11      |                         | Feet                | □ N<br>□ S      |                     |        | E E W                        |
| Facilit            |                                 | -           |                             | County                                                                                                                                               |                                                                                                                                             | County Co                              |             | Civil T            |                 | •       | Village                 |                     |                 |                     |        |                              |
| 0                  | 1 1                             | <u> </u>    | 1                           | Kewaunee                                                                                                                                             |                                                                                                                                             | 31                                     | 1           | Kewa               | aunee           | 1       |                         | 0.1                 | <b>D</b>        | 4.5                 |        |                              |
| Sar                | nple<br>I                       |             |                             | 0.100                                                                                                                                                |                                                                                                                                             |                                        |             |                    |                 |         |                         | 2011                | Prope           | rues                |        |                              |
|                    | it. &<br>3 (in                  | ınts        | Feet                        |                                                                                                                                                      | ock Description<br>ologic Origin For                                                                                                        |                                        |             |                    |                 |         | ive                     |                     |                 |                     |        | v,                           |
| ber<br>Sype        | th A                            | . Cor       | n d                         |                                                                                                                                                      | h Major Unit                                                                                                                                |                                        | CS          | hic                | ram             | FID     | press                   | turc                | . E.            | icity               | 0      | J.                           |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Bl•w Counts | Depth In Feet               |                                                                                                                                                      |                                                                                                                                             |                                        | O S (       | Graphic<br>Log     | Well<br>Diagram | PID/FID | Compressive<br>Strength | Moisture<br>Content | Liquid<br>Limit | Plasticity<br>Index | P 200  | RQD/<br>Comments             |
| CS 2<br>CCS        | 60<br>30<br>60<br>48            |             | - 2<br>- 3<br>- 3<br>6<br>7 | SAND (SP), with small to large, sub brown 10YR 5/4,                                                                                                  | angular gravel, yo                                                                                                                          | ellowish                               | SP          |                    |                 |         |                         |                     |                 |                     |        |                              |
| a CS               | 60<br>60                        |             |                             | stiff.  SAND (SP), with small to medium, yellowish brown 1  CLAY (CL), red to stiff.  GRAVEL (GP), was large, medium grad 6/3, wet.  SAND (SP), with | gravel, medium g<br>subangular gravel<br>OYR 5/4, moist.<br>brown 5YR 5/3, m<br>with sand, medium<br>ined, light brown<br>gravel, medium to | rained,<br>,<br>noist,<br>1 to<br>10YR | SP CL GP SP |                    |                 |         |                         |                     |                 |                     |        |                              |
| l herel<br>Signat  |                                 | y that      | the info                    | rmation on this form is tr                                                                                                                           | Taux.                                                                                                                                       |                                        | nowled      | ge.                |                 |         |                         |                     |                 |                     |        |                              |
| ज्ञाहास्या         | VII C                           |             |                             |                                                                                                                                                      | 1 1/1                                                                                                                                       | AT, Inc.<br>Heartland                  | Trail N     | //adison           | , WI 5:         | 3717    |                         |                     |                 |                     |        | 608-831-4444<br>608-831-3334 |

| Boring Nun                                   | nber | ······································ | B20                              | Use only as an attachment to Form 4400-                                                                                                                                                                                                                                                                                                             | 122.  | <del>-</del> 1 | <del></del>  - |                 |         |                      | <br> | Pag            |                 | oľ.      | 2                |
|----------------------------------------------|------|----------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|----------------|-----------------|---------|----------------------|------|----------------|-----------------|----------|------------------|
| Number and Type Length Att. & Recovered (in) |      | Blow Counts                            | Depth In Fect                    | Soil/Rock Description And Geologic Origin For Each Major Unit                                                                                                                                                                                                                                                                                       | USCS  | [3] Graphic    | -0g            | Well<br>Diagram | PID/FID | Compressive Strength | <br> | Prope<br>Limit | Plasticity Soll | P 200    | RQD/<br>Comments |
| 4 60 CS 30                                   |      |                                        | 13<br>14<br>15<br>18<br>19<br>20 | grained, small to medium subangular to round gravel, brown 10YR 5/3, very wet.  PEAT, with organics (wood and root mass), dark brown 10YR 3/2, moist, soft.  ORGANIC SILT (OL), with shells and trace organics, dark greenish gray GLEY1 4/1, moist, soft.  SILTY CLAY (CL-ML), with sand, red brown 5YR 5/3, moist, stiff.  E.O.B. at 20 feet bgs. | OL OL |                |                |                 | Id      | S S                  | CC   |                |                 | <u>a</u> |                  |
|                                              |      |                                        |                                  |                                                                                                                                                                                                                                                                                                                                                     |       |                |                |                 |         |                      |      |                |                 |          | 10               |

#### SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    | y/Pro jed                       |                |                   |                                                                                     |                 | License/        | Permit           | 'Monitori         | ing Nu          | mber     |                         | Boring              | Pag<br>Numb     | er                  |       |                         |
|--------------------|---------------------------------|----------------|-------------------|-------------------------------------------------------------------------------------|-----------------|-----------------|------------------|-------------------|-----------------|----------|-------------------------|---------------------|-----------------|---------------------|-------|-------------------------|
|                    | vaunce<br>Drilled               |                |                   | ferew chief (First, last) and Fir                                                   | m               | Date Dri        | lling S          | arted             |                 | Da       | te Drilli               | ng Cor              | npleted         | B2                  |       | ing Method              |
| Dus<br>On-         | ty Ha<br>Site E                 | rvey<br>invirc | onmen             | ital Services                                                                       |                 |                 | 12/7             | /2009             |                 |          |                         | 12/7/2              | 2009            |                     | Ge    | eoprobe                 |
| WI Un              | ique W                          | 'ell No        |                   | DNR Well ID No. Com                                                                 | mon Well Name   | Final Sta       | tic Wa<br>Feet l |                   | 1               |          | e Elevat<br>587.0 I     |                     | 4S1             | Во                  |       | Diameter inches         |
| Local (<br>State   | Grid Or                         | igin           |                   | stimated: (1) or Boring Lo<br>,973 N, 2,616,452 E                                   | ocation 🛛       | La              |                  | 0 1               |                 |          | Local (                 |                     | cation          | <u> </u>            |       |                         |
|                    | 1/4                             | of             |                   | /4 of Section , T                                                                   | N, R            | Long            | <u> </u>         | 0 1               |                 | <u>u</u> |                         | Feet                |                 |                     | ı     | Feet D V                |
| Facilit            | y ID                            |                |                   | County<br>Kewaunee                                                                  |                 | County Co<br>31 | de               | Civil To<br>Kewai |                 | y/ or \  | √illage                 |                     |                 |                     |       |                         |
| San                |                                 |                |                   |                                                                                     | 1               |                 |                  |                   |                 |          |                         | Soil                | Prope           | erties              |       |                         |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blow Counts    | Depth In Fect     | Soil/Rock D<br>And Geologic<br>Each Maj                                             | : Origin For    |                 | uscs             | Graphic<br>Log    | Well<br>Diagram | PID/FID  | Compressive<br>Strength | Moisture<br>Content | Liquid<br>Limit | Plasticity<br>Index | P 200 | RQD/<br>Comments        |
| CS 2               | 60 36                           |                | -3<br>4<br>5<br>7 | SAND (SP), with grav<br>yellow brown 10YR 4/<br>stained material at 6.5<br>Ballast. | 4, moist. Black |                 | SP               |                   | ***             |          |                         |                     |                 |                     |       |                         |
|                    |                                 |                | -8                | CLAY (CL), brownish soft. SAND (SP), with grav brown 10YR 5/3, mois                 | el, medium gra  | /-              | CL               |                   | ****            |          |                         |                     |                 |                     |       |                         |
| 3<br>s             | 60<br>48                        |                | 10<br>            |                                                                                     |                 |                 | SP               |                   |                 |          |                         |                     |                 |                     |       |                         |
|                    |                                 | y that t       | the info          | rmation on this form is true and                                                    |                 | of my kn        | owledg           | зe.               |                 |          |                         |                     |                 |                     |       |                         |
| Signati            | ire                             |                |                   |                                                                                     |                 | l', lnc.        | Smill N          | ladison,          | WI 52           | 717      |                         |                     |                 |                     |       | 08-831-44<br>608-831-33 |

| Borin                                            | ng Numb                         | er          | B21           | Use only as an attachment to Form 4400-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 122.                                    |                |                                      |         |                         |                     | Pag             | ge 2                | oſ    | 2                |
|--------------------------------------------------|---------------------------------|-------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|--------------------------------------|---------|-------------------------|---------------------|-----------------|---------------------|-------|------------------|
| Sar                                              | nple                            |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *************************************** |                |                                      |         |                         | Soil                | Propo           | rties               |       |                  |
| Number<br>and Type                               | Length Att. &<br>Recovered (in) | Blow Counts | Depth In Feet | Soil/Rock Description<br>And Geologic Origin For<br>Each Major Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | uscs                                    | Graphic<br>Log | Well                                 | PID/FID | Compressive<br>Strength | Moisture<br>Content | Liquid<br>Limit | Plasticity<br>Index | P 200 | RQD/<br>Comments |
| WDNR SBL 1996 07201DNR GPJ WI DNR 2036DT 4/22/10 | 60 54                           |             |               | PEAT, with organics (wood and root mass), dark brown 10YR 3/2, moist, soft.  SAND (SW), medium grained, light yellow brown 10YR 6/4, moist.  PEAT, with organics (wood and root mass), dark brown 10YR 3/2, moist, soft.  ORGANIC SILT (OL), with shells and trace organics, dark greenish gray GLEY1 4/1, moist, soft.  GRAVEL WITH CLAY AND SAND (GW-GC), small to large gravel, medium to coarse grained, red-brown gray 5YR 5/3, wet.  GRAVEL WITH SAND (GW), and clay, small to large gravel, sub-angular, medium to coarse grained, light red brown 2.5YR 7/3, wet.  E.O.B. at 25 feet bgs. | SP SW OL GW                             |                | viocential designation of the second |         |                         |                     |                 |                     |       |                  |
| WDNR                                             |                                 |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                |                                      |         |                         |                     |                 |                     |       | 12               |

07201DNR.GPJ WI DNR 2003.GDT 4/22/10

### SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | <u>Rc</u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /astewater   /Redevelopment                                           | Waste<br>Other |           | gement                                        |                 |                                         |                         |                     |                 |                                         |          |                  |
|--------------------|---------------------------------|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------|-----------|-----------------------------------------------|-----------------|-----------------------------------------|-------------------------|---------------------|-----------------|-----------------------------------------|----------|------------------|
| Facili             | ty/Proje                        | ct Nan      | ne            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | License        | /Permit   | /Monito                                       | rina Nu         | umbe                                    | r                       | Boring              | Pag             |                                         | of`      | 2                |
|                    | waune                           |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | Biechse        | ,, Cillac | Wionito                                       | ring rva        | iiiioc                                  | '                       | Domis               | , rvaino        | B2                                      | E        |                  |
|                    |                                 |             |               | ferew chief (first, last) a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd Firm                                                               | Date Di        | illing S  | tarted                                        |                 | E                                       | Date Drilli             | ing Cor             | npleted         |                                         |          | ling Method      |
|                    | sty Ha<br>-Site I               |             | onmen         | tal Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |                | 12/7      | 7/2009                                        |                 | *************************************** |                         | 12/7/2              | 2009            |                                         | G        | eoprobe          |
| WLU                | nique V                         | Vell No     | ).            | DNR Well ID No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Common Well Nam                                                       | e Final St     |           |                                               | 2)              | Surfa                                   | ace Eleva               |                     |                 | Во                                      |          | Diameter         |
|                    | 2112                            |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                | Feet      | MSL                                           |                 |                                         | 587.0                   |                     |                 |                                         | 2.1      | inches           |
|                    | Grid O<br>Plane                 | rigin       |               | stimated: [] ) or Boi<br>,954 N, 2,616,467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                       | l L            | a1        | G                                             | •               | ,                                       | " Local C               | Grid Lo             |                 |                                         |          | FT73             |
| State              |                                 | of          |               | /4 of Section ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T N, R                                                                | Lon            |           | 0                                             | 1               | ,                                       |                         | Feet                | □ N<br>□ S      |                                         |          | Feet W           |
| Facilit            |                                 | 01          |               | County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 18,18                                                               | County Co      |           | Civil T                                       | own/Ci          | ty/ or                                  | -  <br>r Village        | 1 001               |                 |                                         |          | 1 CCI () 11      |
|                    |                                 |             |               | Kewaunee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                       | 31             |           | Kewa                                          |                 | -,                                      |                         |                     |                 |                                         |          |                  |
| Sai                | nple                            |             |               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                |           | <u>,                                     </u> |                 |                                         |                         | Soil                | Prope           | erties                                  |          |                  |
|                    | ·                               | 1           | -             | Soil/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ock Description                                                       |                |           |                                               |                 |                                         |                         |                     |                 |                                         | ,        | 1                |
| 4.                 | 3 H. &                          | unts        | Fee           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cologic Origin For                                                    |                |           |                                               |                 |                                         | sive                    |                     |                 |                                         |          | S <sub>3</sub>   |
| ber<br>ype         | th A                            | ပိ          | <u> </u>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ch Major Unit                                                         |                | S         | , 2 <u>2</u>                                  | an.             | 9                                       | ores<br>gth             | furc                | Φ.              | city                                    | _        | )<br>ncn         |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blow Counts | Depth In Feet | 1540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | in wagor our                                                          |                | SC        | Graphic<br>Log                                | Well<br>Diagram | PID/FID                                 | Compressive<br>Strength | Moisture<br>Content | Liquid<br>Limit | Plasticity<br>Index                     | 200      | RQD/<br>Comments |
| Z. 73              | 60                              | <u> </u>    |               | SAND (SP), with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | arayal madium                                                         | vroined        | =         | 10 -3                                         | ×Ω              | 4                                       | O S                     | ≥ ∪                 | 77              | a, =                                    | <u>a</u> | <u>  ∝∪</u>      |
| CS 2 CS            | 60<br>36                        |             | - 2           | Small to large grave 6/6, moist. Ballast Ballast CLAY (CL), brow moderately stiff. ESAND (SP), with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vel, yellow brown<br>in red 5YR 5/3, n<br>Balkıst<br>gravel, medium t | noist,         | SP CO.    |                                               |                 |                                         |                         |                     |                 |                                         |          |                  |
|                    |                                 | y that      |               | grained, small to lead to brown 10YR 6/6,  As above, medium 10YR 5/2, very we contain the form is treation on this form is treation on this form is treation on this form is treation on the second contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the contains the cont | moist, Ballast.  n grained, browniet.  ue and correct to the b        | sh gray        | SP        | ge.                                           |                 |                                         |                         |                     |                 |                                         |          |                  |
| Signat             | ure                             |             | ••••••        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | MT, Inc.       |           |                                               |                 |                                         |                         |                     |                 | *************************************** | Tel: (   | 508-831-4444     |
|                    |                                 |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | 4 Heartland    | Trail N   | Aadison,                                      | WI 53           | 717                                     |                         |                     |                 |                                         |          | 508-831-3334     |

|                                            | g Numb           | oer         | B2I                        | Use only as an attachment to Form 4400-1                                                                                                                                                                                                                                                                                                  | 22.  | T              | 1 1             |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Call | Pag            |     | oſ    | 2                |
|--------------------------------------------|------------------|-------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|-----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------|-----|-------|------------------|
| Number<br>and Type                         | Length Att. & dd | Blow Counts | Depth in Feet              | Soil/Rock Description<br>And Geologic Origin For<br>Each Major Unit                                                                                                                                                                                                                                                                       | uscs | Graphic<br>Log | Well<br>Diagram | PID/FID | Compressive<br>Strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Prope<br>Limit | ity | P 200 | RQD/<br>Comments |
| 4<br>CS                                    | 60               |             | 13<br>14<br>15<br>16<br>17 | PEAT, with organics (wood and root mass), dark brown 10YR 3/2, moist, soft.  ORGANIC SILT (OL), with shells and trace organics, dark greenish gray GLEY1 4/1, moist, soft.                                                                                                                                                                | SP   |                |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                |     |       |                  |
| 5<br>CS                                    | 60<br>18         |             |                            | SANDY CLAY (CL), dark red gray 2.5YR 4/2, moist, soft.                                                                                                                                                                                                                                                                                    | CL   |                |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                |     |       |                  |
| iPJ WI DNR 2003.GDT 4/22/10                |                  |             | - 22<br>23<br>24<br>25     | SAND (SP), with trace small gravel and fines, very fine grained, red brown 5YR 5/3, very wet.  SANDY CLAY (CL), fine to medium grained, reddish brown 5YR 5/3, very wet, soft.  GRAVEL WITH SAND (GW), and trace fines, small to large, subangular, coarse to medium grained sand, light red brown 2.5YR 7/3, wet.  E.O.B at 25 feet bgs. | SP   |                |                 |         | COLONIA DE LOCATION DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLONIA DE LA COLO |      |                |     |       |                  |
| WDNR SBL 1998 07201DNR.GPJ WI DNR 2003.GDT |                  |             |                            |                                                                                                                                                                                                                                                                                                                                           |      |                |                 |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                |     |       | 14               |

67201DNR.GPJ\_WEDNR\_2003.GDT\_\_4/22/10

#### SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | Ro            | ute To:   |                                | Vastewater   /Redevelopment      |                      | te Man          | agen    | nent           |        |                                               |                                        |          |                 |                     |       |                              |
|--------------------|---------------------------------|-------------|---------------|-----------|--------------------------------|----------------------------------|----------------------|-----------------|---------|----------------|--------|-----------------------------------------------|----------------------------------------|----------|-----------------|---------------------|-------|------------------------------|
|                    |                                 |             |               |           |                                | •                                |                      |                 |         |                |        |                                               |                                        |          | Pag             | ge l                | of    | 2                            |
|                    | ty/Projec                       |             |               |           |                                |                                  | Licens               | se/Pern         | nit/N   | 1onito         | ring N | umbe                                          | ı.                                     | Boring   |                 | er                  |       | ·                            |
|                    | waune                           |             |               | f crew ch | nicf (first, last) a           | and Firm                         | Date T               | Orilling        | Star    | rted           |        |                                               | Date Drill                             | ing Cor  | moleted         | B2.                 |       | ing Method                   |
| Du                 | sty Ha                          | rvey        |               |           |                                |                                  |                      | ×11             | , 01111 |                |        |                                               | , me 151 m                             | 5        | приссес         |                     |       |                              |
| On                 | -Site E                         | inviro      |               | tal Serv  |                                | 70 W IIN                         | 12: 1.0              |                 |         | 2009           |        | 10 0                                          | ice Eleva                              | 12/7/    | 2009            | (1)-                |       | eoprobe<br>Diameter          |
| WLO                | nique W                         | 'eli No     | ).            | DINK      | Well ID No.                    | Common Well Name                 | e Final s            | Static V<br>Fee |         |                | 21     | Surta                                         | 166 Elevi<br>587.0                     |          | лS1.            | 130                 |       | inches                       |
|                    | Grid Or                         | igin        |               |           |                                | ring Location 🛛                  | I                    |                 | 0       |                | 1      | L                                             |                                        | Grid Lo  |                 |                     |       |                              |
| State              | Plane                           | - C         |               |           | , 2,616,488                    |                                  |                      | Lat             |         |                | ,      |                                               | -                                      | F        | □ N<br>ι □ S    |                     |       | E Feet [] W                  |
| Facilit            | 1/4<br>Ly ID                    | 01          | I             | /4 of Sec | County                         | T N, R                           | County               | ong<br>Code     | C       | ivil To        | own/C  | ity/o                                         | -  <br>: Village                       |          | 1 🗆 2           |                     |       | ·cet L.J W                   |
|                    |                                 | ····        | <del></del>   |           | Kewaunee                       |                                  | 31                   |                 | I       | Kewa           | unce   | <u>,                                     </u> | ······································ |          |                 |                     |       |                              |
| Sar                | nple                            |             |               |           |                                |                                  |                      |                 |         | 1              |        |                                               |                                        | Soil     | Propo           | erties              |       |                              |
|                    | (ii)                            | nts         | cet           |           |                                | Rock Description                 |                      |                 |         |                |        |                                               | s.c                                    |          |                 |                     |       |                              |
| cı.<br>ypc         | h Att                           | Com         | i i           |           |                                | cologic Origin For               |                      | 0               | ,       | j.             | 1 11   |                                               | ressi                                  | arc<br>H |                 | city                |       | nemts                        |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blow Counts | Depth in Feet |           | Ea                             | ch Major Unit                    |                      | 7.5.1           |         | Graphic<br>Log | Well   | PID/FID                                       | Compressive<br>Strength                | Moisture | Liquid<br>Li, t | Plasticity<br>Index | P 200 | RQD/<br>Comments             |
| )                  | 60                              | ===         | -             | SANI      | D (SP), with                   | gravel, medium g                 | grained,             |                 |         |                |        | 1 124                                         | 0 0                                    |          |                 | <u> </u>            |       |                              |
| CS :               | 36                              |             | ļ.,           | browi     | n-yellow 10'                   | YR 6/6, moist. Ba                | llast.               |                 |         | 0 0            |        |                                               |                                        |          |                 |                     |       |                              |
|                    |                                 |             | -             |           |                                |                                  |                      |                 | a.<br>3 | 0.0            |        |                                               |                                        |          |                 |                     |       |                              |
|                    |                                 |             | -<br>-<br>2   |           |                                |                                  |                      |                 |         | , o 'v         |        |                                               |                                        |          |                 |                     |       |                              |
|                    |                                 |             |               |           |                                |                                  |                      |                 |         | 0 0<br>0.      |        |                                               |                                        |          |                 |                     |       |                              |
|                    |                                 |             | _<br>3        |           |                                |                                  |                      |                 |         | 0.0            |        |                                               |                                        |          |                 |                     |       |                              |
|                    |                                 |             | -             |           |                                |                                  |                      |                 | 2       | а a<br>0 а     |        |                                               |                                        |          |                 | ,                   |       |                              |
|                    |                                 |             | -4            |           |                                |                                  |                      |                 | Ċ       | , 00           |        |                                               |                                        |          |                 |                     |       |                              |
|                    |                                 |             | -             |           |                                |                                  |                      |                 | ا<br>د  | 000            |        |                                               |                                        |          |                 |                     |       |                              |
| 2                  | 60                              |             | 5             |           |                                |                                  |                      |                 |         | 00             |        |                                               |                                        |          |                 |                     |       |                              |
| CS                 | 27                              |             | _             |           |                                |                                  |                      |                 |         | , ,            |        |                                               |                                        |          |                 |                     |       |                              |
|                    |                                 |             | - 6<br>-      |           |                                |                                  |                      | S               | 100     | 0 0            |        |                                               |                                        |          |                 |                     |       |                              |
|                    |                                 |             | -             |           |                                |                                  |                      |                 |         | 00             |        |                                               |                                        |          |                 |                     |       |                              |
|                    | •                               |             | -7<br>-       |           |                                | medium grained,                  |                      |                 | ۵       | 0 0            |        |                                               |                                        |          |                 |                     |       |                              |
|                    |                                 |             | -             |           | ım gravel, w<br>R 4/1 , wet. E | vith trace fines, dan<br>Ballagt | rk gray              |                 |         | 0.0            |        |                                               |                                        |          |                 |                     |       |                              |
| à,                 |                                 |             | 8             | 10 11     | ic 1/1, wot. 1.                | , unusti                         |                      |                 | 2       | 0 0<br>0 b     |        |                                               |                                        |          |                 |                     |       |                              |
|                    |                                 |             | - o           |           |                                |                                  |                      |                 | 'ç      | 0.0            |        |                                               |                                        |          | [               |                     |       | I                            |
|                    |                                 |             | -             |           |                                |                                  |                      |                 |         | 0.0            |        |                                               |                                        |          |                 |                     |       | :<br>                        |
| 2                  | 60                              |             | 10            | ماد، به ۸ |                                | nd.                              |                      |                 |         | 0.0            |        |                                               |                                        |          |                 |                     |       | ſ                            |
| 3<br>CS            | 60                              |             | E             | As au     | ove, very w                    | ct.                              |                      |                 | è       | 0 0 1          |        |                                               |                                        |          |                 |                     |       |                              |
|                    |                                 |             | 11            |           |                                |                                  |                      |                 |         | 0 0            |        |                                               |                                        |          |                 |                     |       | l                            |
|                    |                                 |             |               |           |                                |                                  |                      |                 | ,       | 000            |        |                                               |                                        |          |                 |                     |       |                              |
|                    | 1                               |             | <u>- 12</u>   |           |                                |                                  |                      |                 |         |                | L      |                                               |                                        |          |                 |                     |       |                              |
| I herel<br>Signat  |                                 | y that      | the info      | mation o  | n this form is t               | rue and correct to the b         |                      |                 | edge    |                |        |                                               |                                        |          |                 |                     |       |                              |
| ઝકુલલા             | are                             |             |               |           |                                |                                  | MT, Inc.<br>Heartlan |                 | Ma      | dison          | WI 5   | 3717                                          |                                        |          |                 |                     |       | 508-831-4444<br>508-831-3334 |

| Boring Number                                                        | B2I                                          | Use only as an attachment to Form 4400-1                                                                                                                           | 22.    |                |                 |         |                         |                     | Pag             | ge 2                | of    | 2                |
|----------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|-------|------------------|
| Sample                                                               |                                              |                                                                                                                                                                    |        |                |                 |         |                         | Soil                | Prope           | erties              |       |                  |
| Number<br>and Type<br>Length Att. &<br>Recovered (in)<br>Blow Counts | Depth In Fect                                | Soil/Rock Description<br>And Geologic Origin For<br>Each Major Unit                                                                                                | nscs   | Graphic<br>Log | Well<br>Diagram | PID/FID | Compressive<br>Strength | Moisture<br>Content | Liquid<br>Limit | Plasticity<br>Index | P 200 | RQD/<br>Comments |
| 4 60<br>CS 60                                                        | - 13<br>- 14<br>- 15<br>- 16<br>- 17<br>- 18 | PEAT, with visible organics, very dark brown 10YR 2/2, moist, soft.  ORGANIC SILT (OL), with shells and trace organics, dark greenish gray GLEY1 4/1, moist, soft. | SP OL. |                |                 |         |                         |                     |                 |                     |       |                  |
| 5 60<br>CS 60                                                        | - 19<br>- 20<br>- 21<br>- 22                 | CLAY (CL), with sand, very fine grained, dark grayish red 2.5YR 4/2, moist, moderately stiff.                                                                      | CL     |                |                 |         |                         |                     |                 |                     |       |                  |
| WDNR SBL 1998 #7201 DNR.GPJ WI DNR 2003.GDT 4/22/10                  | 23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | GRAVEL WITH SAND (GW), and trace fines, small to large, subangular, coarse to medium grained sand, light red brown 2.5YR 7/3, wet.                                 | GW     |                |                 |         |                         |                     |                 |                     |       |                  |
| WDNR SBL                                                             |                                              |                                                                                                                                                                    |        |                |                 |         |                         |                     |                 |                     |       | 16               |

\$7201DNR.GPJ\_WLDNR\_2003.GDT \_\_4/22/10

### SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | <u>Rc</u>     | oute To:   | Watershed/W<br>Remediation/    |              |               | Waste<br>Other | -                | gement           |                 |                 |                         |                     |            |                     |        |                  |
|--------------------|---------------------------------|-------------|---------------|------------|--------------------------------|--------------|---------------|----------------|------------------|------------------|-----------------|-----------------|-------------------------|---------------------|------------|---------------------|--------|------------------|
|                    |                                 |             |               |            |                                |              |               |                |                  |                  |                 |                 |                         |                     | Pag        |                     | of .   | 2                |
|                    | y/Projec                        |             |               |            |                                |              |               | License/       | Permit           | /Monito          | ring No         | ımber           |                         | Boring              | Numbe      |                     | Ŋ      |                  |
|                    | vaune                           |             |               | Corony ch  | icf (first, last) a            | nd Firm      |               | Date Dr        | illing S         | Started          |                 | ID <sub>2</sub> | te Drilli               | na Cor              | moleted    | B31                 |        | ing Method       |
|                    | sty Hai                         |             | Name o        | i CiCW CII | nei (m si, iasi) a             | nd i iiii    |               | Date Dr        | illing c         | otar text        |                 | 154             |                         | iig C oi            | пристес    |                     |        | mg stemed        |
| On                 | Site F                          | invira      | mmen          | tal Serv   | vices .                        |              |               |                | 12/7             | 7/2009           |                 |                 |                         | 12/7/2              | 2009       |                     | Ge     | eoprobe          |
|                    | nique W                         |             |               |            | Well ID No.                    | Common       | Well Name     | Final Sta      |                  | iter Leve        | el              | Surfac          | e Elevat                |                     |            | Во                  |        | Diameter         |
|                    |                                 |             |               |            |                                |              |               |                | Feet             | MSL              |                 |                 | 586.0 1                 | Feet N              | <b>ASL</b> |                     | 2.1    | inches           |
|                    | Grid Or                         | igin        |               |            | O or Boi                       |              |               |                |                  | o                | ,               | 11              | Local C                 | Grid Lo             |            | -                   |        |                  |
| State              | Plane                           |             |               | -          | , 2,616,460                    |              | C/N           | La             |                  |                  |                 | —               |                         |                     | □ N        |                     |        | E E              |
| D 200              | 1/4                             | of          |               | /4 of Sec  |                                | T N          | l, R          | Lon            |                  | 100.000          |                 |                 |                         | Feet                | S          |                     |        | Feet W           |
| Facilit            | y ID                            |             |               | 1          | County<br>Kewaunee             |              |               | County Co      | oae              | Civil To<br>Kewa |                 | -               | vmage                   |                     |            |                     |        |                  |
| Car                | nple                            |             | 1             | 1          | Kewaunee                       |              |               | 31             | 1                | Kewa             | lunce           | 1               | 1                       | Soil                | Prope      | wtiac               |        |                  |
| Sai                | 1.,                             |             |               |            |                                |              |               |                |                  |                  |                 |                 |                         | 3011                | rrope      | aties               |        |                  |
|                    | S. (in)                         | Str         | 100           |            |                                | lock Descri  | •             |                |                  |                  |                 |                 | νc                      |                     |            |                     |        |                  |
| jpe<br>jpe         | r Ati                           | Ino.        | in F          |            |                                | ologic Orig  |               |                | S                | ပ္               | E E             |                 | cssi<br>th              | in the              |            | <u>1</u>            |        | Cents            |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blow Counts | Depth In Feet |            | Eac                            | th Major Ui  | nit           |                | SC               | Graphic<br>Log   | Well<br>Diagram | PID/FID         | Compressive<br>Strength | Moisture<br>Content | Liquid     | Plasticity<br>Index | P 200  | RQD/<br>Comments |
| žě                 |                                 | E E         | Ğ             |            |                                |              |               |                | =                | Grap             | 3 ∆             | III.            | S 22                    | žζ                  | ڐ ڐ        | 12 E                | ۵.     | 2 0 2            |
| CS.                | 60<br>48                        |             | -             | TOPS       |                                |              |               | . <del> </del> | L                |                  |                 |                 |                         |                     |            |                     |        |                  |
|                    |                                 |             | -             |            | D (SP), with                   |              |               |                |                  | , , ,            |                 |                 |                         |                     |            |                     |        |                  |
|                    |                                 |             |               | browi      | n-yellow 10\                   | /R 6/6, n    | noist. Ball   | last.          |                  | 0.0              |                 |                 |                         |                     |            |                     |        |                  |
|                    |                                 |             |               |            |                                |              |               |                |                  | 0.0              |                 |                 |                         |                     |            |                     |        |                  |
|                    |                                 |             | 2             |            |                                |              |               |                |                  | 0 0              |                 |                 |                         |                     |            |                     |        |                  |
| ·ea                |                                 |             |               |            |                                |              |               |                |                  | , 0              |                 |                 |                         |                     |            |                     |        |                  |
| :                  |                                 |             | 3             |            |                                |              |               |                | SP               | 0.0              |                 |                 |                         |                     |            |                     |        |                  |
|                    |                                 |             |               |            |                                |              |               |                | 31               | 9 00             |                 |                 |                         |                     |            |                     |        |                  |
|                    |                                 |             | -4            |            |                                |              |               |                |                  | 0.0              | 63) b           |                 |                         | !<br>!              |            |                     |        |                  |
|                    |                                 |             | E             |            |                                |              |               |                |                  | 0.00             |                 |                 |                         |                     |            |                     |        |                  |
|                    |                                 |             | _<br>_ 5      |            |                                |              |               |                |                  | 0 0              |                 |                 |                         |                     |            |                     |        |                  |
| CS                 | 60<br>57                        |             | -             |            |                                |              |               |                |                  | 0.00             |                 |                 |                         |                     |            |                     | j      |                  |
|                    | ٠,                              |             | - ,           |            |                                |              |               |                |                  | 0.0              |                 |                 |                         |                     |            |                     |        |                  |
| 1                  |                                 |             | -6            | SANI       | DY CLAY (                      | CL), med     | lium grain    | ied,           | CL               | ///              |                 |                 |                         |                     |            |                     |        |                  |
|                    |                                 |             |               |            | sh brown 5Y                    |              |               | /"             | GP               | p 💛              |                 |                 |                         |                     |            |                     |        |                  |
|                    |                                 |             | -7            | $_{1}$ GRA | VEL (GP), v                    | vith sand,   | , small to    | 1              | <del>  -</del> - | 1//              |                 |                 |                         |                     |            |                     |        |                  |
|                    |                                 |             | _             |            | ım, coarse gı<br>l 6/6, moist. | rained, bi   | own-yello     | ow !           | CL               |                  |                 |                 |                         |                     |            |                     |        |                  |
|                    |                                 |             | -8            |            | DY CLAY (                      | C'L \ brox   | vo TÖVR       | '              | <b>├</b>         | 1.1              |                 |                 |                         |                     |            |                     |        |                  |
|                    |                                 |             |               | moist      |                                | المار, المار | WII TOTIC     | JIJ, 1         |                  |                  |                 |                 |                         |                     |            |                     |        |                  |
|                    |                                 |             | ()            |            | O (SP), with                   | gravel, n    | nedium gr     | ained.         |                  | 0 0 0            |                 |                 |                         |                     |            |                     |        |                  |
|                    |                                 |             | -             |            | angular grav                   |              |               |                |                  | 0.0              |                 |                 |                         |                     |            |                     |        |                  |
|                    |                                 |             | -             | moist.     |                                |              |               |                | CD.              | 0 0 0            |                 |                 |                         |                     |            | 1                   |        |                  |
| 3<br>CS            | 60                              |             | 10            |            |                                |              |               |                | SP               | 0.9              |                 |                 |                         |                     |            |                     |        |                  |
| (2)                | 57                              |             | _             |            |                                |              |               |                |                  | D o              |                 |                 |                         |                     |            |                     |        |                  |
|                    |                                 |             | 11            |            |                                |              |               |                |                  |                  |                 |                 |                         |                     |            |                     |        |                  |
|                    |                                 |             | -             |            |                                |              |               |                |                  | 0 0              |                 |                 |                         |                     |            |                     |        |                  |
|                    |                                 |             | 12            |            |                                |              |               |                |                  | 0.00             |                 |                 |                         |                     |            |                     |        |                  |
| I herel            | y certif                        | y that      | the info      | rmation o  | on this form is tr             | ue and corr  | ect to the be | st of my kr    | nowled           | ge.              |                 |                 |                         |                     |            |                     |        |                  |
| Signat             | ure                             |             |               |            | ····                           |              | Firm RM       | T, Inc.        |                  |                  |                 |                 |                         |                     |            |                     | Tel: ( | 508-831-4444     |
|                    |                                 |             |               |            |                                |              |               | Heartland '    | Trail 1          | Madison,         | WI 5            | 3717            |                         |                     |            |                     |        | 608-831-3334     |

| Borin                                               | g Numb                          | ocı.        | B3I           | Usc only as an attachment to Form 4400-1                                                      | 22.  |                                       |                                        |         |                         |                     |                 | je 2                | of    | 2                |
|-----------------------------------------------------|---------------------------------|-------------|---------------|-----------------------------------------------------------------------------------------------|------|---------------------------------------|----------------------------------------|---------|-------------------------|---------------------|-----------------|---------------------|-------|------------------|
|                                                     | nple                            |             |               |                                                                                               |      |                                       |                                        |         |                         | Soil                | Prope           | erties              |       |                  |
|                                                     | Length Att. &<br>Recovered (in) | S           | <u> </u>      | Soil/Rock Description                                                                         |      |                                       |                                        |         | į,                      |                     |                 |                     |       |                  |
| ຼ ຂ                                                 | Att.                            | Blow Counts | Depth in Feet | And Geologic Origin For                                                                       | S    | 0                                     | =                                      | Ω       | Compressive<br>Strength | 5 L                 |                 | Ž,                  |       | RQD/<br>Comments |
| Type:                                               | gth                             |             | 450           | Each Major Unit                                                                               | uscs | tphi(                                 | Well<br>Diagram                        | PID/FID | mpri<br>engt            | Moisture<br>Content | Liquid<br>Limit | Plasticity<br>Index | P 200 | )Qi              |
| Number<br>and Type                                  | Len<br>Rec                      | Blo         | Del           |                                                                                               | S    | Graphic<br>Log                        |                                        | IId     | Str                     | နို ပိ              | <u> </u>        | Pla                 |       | RQ<br>Co         |
|                                                     |                                 |             | _             |                                                                                               | SP   | 17, 1                                 |                                        |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               | PEAT, with visible organics, very dark                                                        |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             | 13            | brown 10YR 2/2, moist, soft.                                                                  |      | <b>かなる</b>                            |                                        |         |                         |                     |                 |                     |       | :                |
|                                                     |                                 |             | -             |                                                                                               |      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1                                      |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             | 14            | ORGANIC SILT (OL), with shells and trace organics, dark greenish gray GLEY1 4/1, moist, soft. |      | -6-                                   |                                        |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             | -             | trace organics, dark greenish gray GLEY 1                                                     |      | 7                                     |                                        |         |                         |                     |                 |                     |       |                  |
| 4<br>CS                                             | 12<br>12                        |             | -15           | 4/1, IIIOISI, SOI I.                                                                          | OL   | 23                                    | }::::::::::::::::::::::::::::::::::::: |         |                         |                     |                 |                     |       |                  |
| CS                                                  | 12                              |             | -             |                                                                                               |      | -6-                                   | 1                                      |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             | 16            | E.O.B. at 16 feet bgs.                                                                        |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 | -                   |       |                  |
|                                                     |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 | ı           |               |                                                                                               |      |                                       |                                        |         |                         | }                   |                 |                     | !     |                  |
|                                                     |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     | ı     |                  |
|                                                     |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             | 1             |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     | 1     |                  |
|                                                     |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
| Q.                                                  |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
| 41227                                               |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
| Ō                                                   |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
| 903.0                                               |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
| NR 2                                                |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 | }<br>               |       |                  |
| ω<br>M                                              |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
| 3.GPJ                                               |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
| ZON.                                                |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
| 172                                                 |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
| 90                                                  |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       |                  |
| WDNR SBL 1998 \$72\$1DNR.GPJ WIDNR 2003.GDT 4722/10 |                                 |             |               |                                                                                               |      |                                       |                                        |         |                         |                     |                 |                     |       | _                |
| &DNF                                                |                                 |             |               |                                                                                               | Ì    |                                       |                                        |         |                         |                     |                 |                     |       | 18               |
|                                                     | 1                               | 1           | 1             | 1                                                                                             | ı    | F                                     | 1                                      | ı       | I                       | I                   | F               | •                   | I     | ı ·              |

07201DNR.GPJ WIDNR 2003.GDT 4/22/10

### SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | <u>Rc</u>     |                              | /astewater   /Redevelopment           | Waste<br>Other | -        | ement             |                 |         |                         |                     |                  |                     |         |                              |
|--------------------|---------------------------------|-------------|---------------|------------------------------|---------------------------------------|----------------|----------|-------------------|-----------------|---------|-------------------------|---------------------|------------------|---------------------|---------|------------------------------|
|                    |                                 |             |               |                              | · · · · · · · · · · · · · · · · · · · | 1.7            |          |                   |                 |         |                         |                     | Pag              | -                   | of      | 2                            |
|                    | ty/Proje<br>waune               |             |               |                              |                                       | License/       | Permi    | 'Monito           | ring Ni         | umbei   |                         | Boring              | , Numb           | er<br>B3            | E       |                              |
|                    |                                 |             |               | f crew chief (first, last) a | nd Firm                               | Date Dr        | illing S | tarted            |                 | D       | ate Drill               | ing Cor             | npleted          |                     |         | ing Method                   |
|                    | sty Ha<br>-Site E               |             | onmen         | tal Services                 |                                       |                | 12/7     | 7/2009            |                 |         |                         | 12/7/               | 2009             |                     | Go      | eoprobe                      |
|                    | nique W                         |             |               | DNR Well ID No.              | Common Well Name                      | Final Sta      |          |                   |                 | Surfa   | ce Eleva                |                     |                  | Во                  |         | Diameter                     |
|                    |                                 |             |               |                              |                                       |                | Feet     | MSL               |                 |         | 586.0                   |                     |                  |                     | 2.1     | inches                       |
|                    | Grid Oi                         | rigin       |               | stimated: (1) or Bor         |                                       | ه. ا           | NI.      | o                 | r               | 11      | Local (                 | Grid Lo             |                  |                     |         |                              |
| State              | Plane<br>1/4                    | of.         |               | ,960 N, 2,616,475            | E S/C/N<br>T N, R                     | Lon            |          | 0                 | <br>I           | 10      |                         | Fee                 | Ν [] ι<br>S [] ι |                     | ,       | □ E<br>Feet □ W              |
| Facili             |                                 | 01          |               | County                       | 1 18, 18                              | County Co      | _        | Civil T           | own/C           | ity/ or | Village                 | 1 00                | د سا             |                     |         | CCL E.J W                    |
|                    |                                 |             |               | Kewaunee                     |                                       | 31             | ·y       | Kewa              | unee            |         |                         |                     | ~~~~             |                     |         | <del></del>                  |
| Sar                | nple                            |             |               |                              |                                       |                |          |                   |                 |         |                         | Soil                | Propo            | erties              |         |                              |
|                    | (in)                            | ıts         | cet           |                              | ock Description                       |                | Ì        |                   |                 |         | ve ve                   |                     |                  |                     |         |                              |
| cr<br>/pc          | n Au                            | Cour        | In F          |                              | eologic Origin For                    |                | L/J      | ي                 | =               | Ω       | cssi<br>th              | lrc<br>1            |                  | ity                 | ı İ     | cmts                         |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blow Counts | Depth In Feet | Eac                          | th Major Unit                         |                | SC       | Graphic<br>Log    | Well<br>Diagram | PID/FID | Compressive<br>Strength | Moisture<br>Content | Liquid<br>Limit  | Plasticity<br>Index | P 200   | RQD/<br>Comments             |
| Z #                | 60<br>50                        | B           | ۵             | SAND (SP), with              | small gravel tine                     | <del> </del>   | 2        | 5 3               | 30              | I G     | Ŭ Ø                     | ΣŬ                  | <u> </u>         | <u> </u>            | <u></u> | <u> </u>                     |
| CS                 | 48                              |             | -             | grained, yellow br           |                                       |                |          |                   |                 |         |                         |                     |                  | !                   |         |                              |
| 4                  |                                 |             | I             |                              |                                       |                |          |                   |                 |         |                         |                     |                  |                     |         |                              |
|                    |                                 |             | -             |                              |                                       |                |          |                   |                 |         |                         |                     |                  |                     |         |                              |
| :                  |                                 |             | -2            |                              |                                       |                |          |                   | i               |         |                         |                     |                  |                     |         |                              |
|                    |                                 |             | E             |                              |                                       |                | SP       |                   |                 |         |                         |                     |                  |                     |         |                              |
|                    |                                 |             | -3            |                              |                                       |                |          |                   |                 |         |                         |                     |                  |                     |         |                              |
|                    |                                 |             | Ē             |                              |                                       |                |          |                   |                 |         |                         |                     |                  |                     |         |                              |
|                    |                                 |             | 4             |                              |                                       |                |          |                   |                 |         |                         |                     |                  |                     |         |                              |
|                    |                                 |             | -             |                              |                                       |                |          |                   |                 |         |                         |                     |                  |                     |         | <br>                         |
| 2                  | 60                              |             | 5<br>-        | CLAY (CL), brow              | /n 7.5YR 4/6, moi                     | st, soft.      | CL       | ///               |                 | Ì       |                         |                     |                  |                     |         |                              |
| CS                 | 48                              |             |               | SAND (SP), with              | small gravel, fine                    |                |          | <i>Y. J. J. J</i> |                 |         |                         |                     |                  |                     |         |                              |
|                    |                                 |             | 6             | grained, yellow br           | own 10YR 6/6, m                       | oist.          |          |                   |                 |         |                         |                     |                  |                     |         |                              |
|                    |                                 |             |               |                              |                                       |                | SP       |                   |                 |         |                         |                     |                  |                     | ļ       | !<br>!                       |
|                    |                                 |             | 7             |                              |                                       |                | j        |                   |                 |         |                         |                     |                  |                     |         |                              |
|                    |                                 |             | 8             | CLAY (CL), brow              | /n 7.5YR 4/6, moi                     | st, soft.      | CL       |                   |                 |         |                         |                     |                  |                     |         |                              |
|                    |                                 |             | -             | SAND (SP), with              | trace gravel, fine                    | lo             |          |                   |                 |         |                         |                     |                  |                     |         |                              |
|                    |                                 |             | - ()          | medium grained,<br>very wet. | yellow brown 103                      | r R 6/2,       | SP       |                   |                 |         |                         |                     |                  |                     |         |                              |
|                    |                                 |             | -             | very wear                    |                                       |                | 21,      |                   |                 |         |                         | revine was to       |                  |                     |         |                              |
|                    |                                 |             | - 10          |                              |                                       |                |          |                   |                 |         |                         |                     |                  |                     |         |                              |
| 3<br>CS            | 60<br>39                        |             | F ''          | PEAT, with visibl            |                                       | ark            |          | 立立                |                 | ·       |                         |                     |                  |                     |         |                              |
|                    |                                 |             | -11           | brown 10YR 2/2,              | moist, sort.                          |                |          | 70 77<br>7 77     |                 |         |                         |                     |                  |                     |         |                              |
|                    |                                 |             | E i l         |                              |                                       |                |          | 7 777<br>— — —    |                 |         |                         |                     |                  |                     |         |                              |
|                    |                                 |             | _<br>12       |                              |                                       |                |          | 살 살               |                 |         |                         |                     |                  |                     |         |                              |
| I heret            | y certif                        | y that      | . ,           | rmation on this form is tr   | ue and correct to the be              | est of my kn   | owled:   | ge.               |                 | 1       | t                       | I—————              | h                |                     |         |                              |
| Signat             |                                 |             |               |                              | 10:                                   | IT, Inc.       |          |                   |                 |         |                         |                     |                  |                     | Tel-7   | 508-831-44-14                |
|                    |                                 |             |               |                              |                                       | Heartland 1    | Frail A  | 4adison           | W/L 53          | 3717    |                         |                     |                  |                     |         | 708-831-3334<br>308-831-3334 |

|                    | ig Numl<br>nple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | B3I                          | Use only as an attachment to Form 4400-                                                                                                                                                                         |       |               |                 |         |                         | Soil                |        | ge 2<br>erties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | oľ`   |                  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|-----------------|---------|-------------------------|---------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------|
| Number<br>and Type | Length Att. &<br>Recovered (in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Blow Counts | Depth In Feet                | Soil/Rock Description<br>And Geologic Origin For<br>Each Major Unit                                                                                                                                             | uscs  | Gaphic<br>Log | Well<br>Diagram | PID/FID | Compressive<br>Strength | Moisture<br>Content | Liquid | Plasticity<br>Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P 200 | RQD/<br>Comments |
| 4 CS               | 60 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | -13<br>14<br>15<br>16<br>17  | ORGANIC SILT (OL), with shells and trace organics, dark greenish gray GLEY1 4/1, moist, soft.                                                                                                                   | OL    |               |                 |         |                         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                  |
| 55<br>CS           | 60<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | - 20<br>- 21<br>- 22<br>- 23 | SILTY CLAY (CL-ML), dark grayish red 2.5YR 4/2, moist, soft. GRAVEL WITH SAND (GW), and clay, small to large, subangular, coarse to medium grained sand, light red brown 2.5YR 7/3, wet. As above, trace fines. | CL-MI |               |                 |         |                         |                     | i i    | Transfer of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st |       |                  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 25                           | E.O.B at 25 feet bgs.                                                                                                                                                                                           |       |               |                 |         |                         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                  |
|                    | NAMES OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY |             |                              |                                                                                                                                                                                                                 |       |               |                 |         |                         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 20               |

072010NR.GPJ WLDNR 2003.GDT 4/22/10

### SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | <u>R</u>       | oute To:  |                                 | Wastewater [] n/Redevelopment [] |                | Waste M<br>Other | _        | ement          |                 |         |                         |                     |         |                     |              |                              |
|--------------------|---------------------------------|-------------|----------------|-----------|---------------------------------|----------------------------------|----------------|------------------|----------|----------------|-----------------|---------|-------------------------|---------------------|---------|---------------------|--------------|------------------------------|
|                    |                                 |             |                |           | Remedianoi                      | n/kedevelopment                  | ,              | Omer             | [_]      |                |                 |         |                         |                     | Dα      | ge 1                | oſ           | 1                            |
| Facili             | ty/Proje                        | ct Nan      | 10             |           |                                 |                                  | Li             | icense/l         | Permit/  | Monito         | ring Nu         | ımber   |                         | Boring              | Numb    | eı.                 |              | 1                            |
|                    | waune                           |             |                |           |                                 | 1.00                             | <u></u>        |                  |          |                |                 |         |                         |                     |         | MI                  |              |                              |
|                    | g Drilleo<br>ni Kap             |             | Name o         | I crew c  | hicf (first, last)              | and Firm                         | D              | ate Dril         | lling Si | larted         |                 | Da      | te Drilli               | ng Coi              | npicted |                     | Drill        | ling Method                  |
| On                 | -Site E                         | Enviro      |                | tal Ser   | vices                           |                                  |                |                  |          | /2010          |                 |         |                         | 3/17/2              | 2010    |                     |              | eoprobe                      |
| WIU                | nique W                         | ell No      | ).             | DNR       | Well ID No.                     | Common Well Nan                  | ie Fi          |                  |          | ter Leve       | el              |         | e Elevai                |                     |         | Bo                  |              | Diameter                     |
| Local              | Grid Or                         | rigin       | [] (c          | stimated: | · 🗆 ) or Bo                     | pring Location                   |                |                  | Feet I   |                |                 | :       | 582.0 I<br>Local C      |                     |         | ļ                   | 2.1          | inches                       |
|                    | Plane                           |             | 243            | ,962 N    | l, 2,616,829                    | DE S/C/N                         |                | Lat              | !        | <u> </u>       | ·               |         | 1.300011                | 3110 130            | [] N    | 1                   |              | □ Е                          |
|                    | 1/4                             | oſ          | I              | /4 of Se  |                                 | T N, R                           |                | Long             |          | 0              | *               |         |                         | Feet                | ı 🗆 S   |                     |              | Feet [] W                    |
| Facili             | ty ID                           |             |                |           | County<br>Kewaunee              |                                  | Cou            | inty Co          | de       | Civil T<br>Kew | own/Ci<br>aunee | ity/or  | Village                 |                     |         |                     |              |                              |
| Sar                | nple                            |             | 1              |           | Rewaunce                        |                                  | 131            |                  |          | Itewa          |                 |         |                         | Soil                | Prop    | erties              |              |                              |
|                    |                                 | 10          | -              |           | Soil/                           | Rock Description                 |                |                  |          |                |                 |         |                         |                     |         |                     |              | -                            |
| . ບູ               | Length Att. &<br>Recovered (in) | Blow Counts | Depth In Feet  |           |                                 | Geologic Origin For              |                |                  |          |                | _               |         | Compressive<br>Strength | U                   |         | >                   |              | nts                          |
| Number<br>and Type | gth                             | Ŭ<br>*      | di di          |           | Ea                              | ach Major Unit                   |                |                  | CS       | Graphic<br>Log | Well<br>Diagram | PID/FID | Compress<br>Strength    | Moisture<br>Content | Liquid  | Plasticity<br>Index | 200          | RQD/<br>Comments             |
|                    | Ler                             | Blo         | Del            |           |                                 |                                  |                |                  | S        | Grap           | Well            | PIC     | Str                     | ≗ ⊙                 | Liquid  | Plastic<br>Index    | P 2          | \$ 5                         |
| 1<br>CS            | 48<br>24                        |             |                |           | <b>T,</b> dark brov<br>t, soft. | wn to black (10Y                 | R 3/2          | :),              |          | 77.77          |                 |         |                         | na (Populana        |         |                     |              |                              |
| Ì                  |                                 |             | - 1            | 111013    | ι, 301ι.                        |                                  |                |                  |          | 77 7           |                 |         |                         |                     |         |                     |              |                              |
|                    |                                 |             |                |           |                                 |                                  |                |                  |          | 2 24           |                 |         |                         |                     |         |                     | I            |                              |
|                    |                                 |             | -2             |           |                                 |                                  |                |                  |          | 77 7           |                 |         |                         |                     | ]       |                     | I            |                              |
|                    |                                 |             | E              |           |                                 |                                  |                |                  |          | 不不不不           |                 |         |                         |                     |         |                     | İ            |                              |
|                    |                                 |             | -3             |           |                                 |                                  |                |                  |          | 1, 11,         |                 |         |                         |                     |         |                     | I            |                              |
|                    |                                 |             | _              |           |                                 |                                  |                |                  |          | 77 7           |                 |         |                         |                     |         |                     | <u>:</u><br> |                              |
| 2                  | 48                              |             | 4              |           |                                 |                                  |                |                  |          | 4 77           |                 |         |                         |                     |         |                     | I            |                              |
| CS                 | 24                              |             | _              |           |                                 |                                  |                |                  |          | 77 7           |                 |         |                         |                     |         |                     | İ            |                              |
|                    |                                 |             | <u>-5</u>      |           |                                 |                                  |                |                  |          | 77. 77.        |                 |         |                         |                     |         |                     | I            |                              |
|                    |                                 |             | -              |           |                                 |                                  |                |                  |          | 4 14           |                 |         |                         |                     |         |                     | !            |                              |
|                    |                                 |             | (s             |           |                                 |                                  |                |                  |          | 70 7           |                 |         |                         |                     |         |                     |              |                              |
|                    |                                 |             |                |           |                                 |                                  |                |                  |          | 2 24           |                 |         |                         |                     |         |                     |              |                              |
|                    |                                 |             | <del>-</del> 7 |           |                                 |                                  |                |                  |          | 77 77          |                 |         |                         |                     |         |                     |              |                              |
| 1                  |                                 |             | - 0            |           |                                 |                                  |                |                  |          | 77 7           |                 |         |                         |                     |         |                     |              |                              |
|                    |                                 |             | 8              | E.O.      | B. at 8 feet b                  | ogs.                             |                |                  |          |                |                 |         |                         |                     |         |                     |              |                              |
|                    |                                 |             |                |           |                                 |                                  |                |                  |          |                |                 |         |                         |                     |         |                     | :            |                              |
|                    |                                 |             |                |           |                                 |                                  |                |                  |          |                |                 |         |                         |                     |         |                     |              |                              |
|                    |                                 |             |                |           |                                 |                                  |                |                  |          |                |                 |         |                         |                     |         |                     |              |                              |
|                    |                                 |             |                |           |                                 |                                  |                |                  |          |                |                 |         |                         |                     |         |                     |              |                              |
|                    |                                 |             |                |           |                                 |                                  |                |                  |          |                |                 |         |                         |                     |         |                     |              |                              |
|                    |                                 |             |                |           |                                 |                                  |                |                  |          |                |                 |         |                         |                     |         |                     |              |                              |
|                    |                                 |             |                |           |                                 |                                  |                |                  |          |                |                 |         |                         |                     |         |                     |              |                              |
|                    |                                 | y that      | the info       | rmation o | on this form is                 | true and correct to the          | hest of        | my kn            | owledg   | ge.            |                 |         |                         |                     |         |                     |              |                              |
| Signat             | ure                             |             |                |           |                                 |                                  | MT,<br>14 Beau |                  | rail N   | 1adison        | W153            | 1717    |                         |                     |         |                     |              | 608-831-4444<br>608-831-3334 |

07201DNR.GPJ WI DNR 2003.GDT 4/22/10

### SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | 2.22          | <del></del>                             | Vastewater   /Redevelopment         | Waste  <br>Other | _       |                |                 |         |                         |                     | Pag             | va 1                | oſ     | 2                |
|--------------------|---------------------------------|-------------|---------------|-----------------------------------------|-------------------------------------|------------------|---------|----------------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|--------|------------------|
| Facili             | ty/Proje                        | ct Nan      | ne            |                                         |                                     | License/         | Permit  | /Monito        | ring No         | umbe    | :<br>:                  | Boring              |                 |                     | 01     |                  |
|                    | waune                           |             |               |                                         |                                     |                  |         |                |                 |         |                         |                     |                 | MI                  |        |                  |
|                    | _                               | -           | Name o        | f crew chief (first, last) a            | and Firm                            | Date Dri         | lling S | arted          |                 | Ī       | Date Drill              | ing Cor             | npleted         |                     | Drill  | ing Method       |
| On                 |                                 | inviro      |               | tal Services                            |                                     |                  |         | /2010          |                 |         |                         | 3/17/2              | 2010            |                     |        | eoprobe          |
| WU                 | nique W                         | ell No      | ).            | DNR Well ID No.                         | Common Well Name                    | Final Sta        |         |                | el              | Surf    | ace Eleva               |                     | 101             | Во                  |        | Diameter         |
| Local              | Grid Oı                         | rigin       | T (cs         | stimated: 🔲 ) or Bo                     | ring Location 🛛                     | 1                | Feet l  | VISI           |                 |         | 583.0                   | Grid Lo             |                 | <u> </u>            | 2,1    | inches           |
|                    | Plane<br>1/4                    |             | 243           | ,956 N, 2,616,948                       |                                     | La<br>Long       | t       | 0              | †               |         | D                       |                     | □ N<br>L □ S    |                     | ı      | ☐ E<br>Feet □ W  |
| Facili             |                                 | <u> </u>    |               | County                                  | I IN, K                             | County Co        |         | Civil T        | own/C           | ity/ o  | – I<br>r Village        | 1,00                | د لیا ۵         | <del>,</del>        |        | rect () vv       |
|                    | •                               |             |               | Kewaunee                                |                                     | 31               |         | Kewa           |                 | -       | Ü                       |                     |                 |                     |        |                  |
| Sai                | nple                            |             |               |                                         |                                     |                  |         |                |                 |         |                         | Soil                | Prope           | erties              |        |                  |
|                    | it. &<br>d (in)                 | mts         | fcc1          |                                         | Rock Description cologic Origin For |                  |         |                |                 |         | ive                     |                     |                 |                     |        | o,               |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blow Counts | Depth In Feet |                                         | ch Major Unit                       |                  | CS      | Graphic<br>Log | Well<br>Diagram | PID/FID | Compressive<br>Strength | Moisture<br>Content | i ig            | Plasticity<br>Index | 0      | RQD/<br>Comments |
| Nur                |                                 | Blo         | Dep           |                                         |                                     |                  | S O     | Grap<br>Log    |                 | PID     | Con                     | Noi<br>Con          | Liquid<br>Limit | Plastic<br>Index    | P 200  |                  |
| I<br>CS            | 48<br>30                        |             | _             | PEAT, dark brow frozen, soft.           | vn to black (10YR                   | 3/2),            |         | 12 11/2 N      |                 |         |                         |                     |                 |                     |        |                  |
|                    |                                 |             | <u> </u>      |                                         |                                     |                  |         | 77 7           |                 |         |                         |                     |                 |                     |        |                  |
|                    |                                 |             | -<br>-        |                                         |                                     |                  |         | 24 24          |                 |         |                         |                     |                 |                     |        |                  |
|                    |                                 |             | 2<br>         | As above, no long                       | ger frozen - wet.                   |                  |         | 4 34           |                 |         |                         |                     |                 |                     |        |                  |
|                    |                                 |             | -<br>-<br>3   | Styrofoam cap ma                        | aterial present                     |                  |         | 71/ 7          |                 |         |                         |                     |                 |                     |        |                  |
| ,                  |                                 |             | -             |                                         |                                     |                  |         | 77 77          |                 |         |                         |                     | E               |                     |        |                  |
| 2                  | 48                              |             | 4<br>4        |                                         |                                     |                  |         | 2 24           |                 |         |                         |                     |                 |                     |        |                  |
| CS                 | 30                              |             |               |                                         |                                     |                  |         | 77 77<br>77 77 |                 |         |                         |                     |                 |                     |        | i<br>I           |
|                    |                                 |             | 5<br>-        |                                         |                                     |                  |         | 71 71          |                 |         |                         |                     |                 |                     |        |                  |
|                    |                                 |             | <br>6         |                                         |                                     |                  |         | 11 11 11 11    |                 |         |                         |                     |                 |                     |        |                  |
|                    |                                 |             | -             |                                         |                                     |                  |         | 77 77          |                 |         |                         |                     |                 |                     |        |                  |
|                    |                                 |             | 7             |                                         |                                     |                  |         | 77 77          |                 |         |                         |                     |                 |                     |        |                  |
| 4.<br>4.           |                                 |             | -             |                                         |                                     |                  |         | 0 0 0 0        |                 |         |                         |                     |                 |                     |        |                  |
| 3<br>CS            | 48                              |             | 8<br>         | ŌRGANIC SIL                             | (OL), with shells                   | , dark           |         |                |                 |         |                         |                     |                 |                     |        |                  |
| (3)                | 48                              |             | -<br>-<br>()  | greenish gray (gle                      | eyì 4/l´), moist, soft              |                  |         |                |                 |         |                         |                     |                 |                     |        |                  |
|                    |                                 |             |               |                                         |                                     |                  |         | -3             |                 |         |                         |                     |                 |                     |        |                  |
|                    |                                 |             | 10            |                                         |                                     |                  | OL      |                |                 |         |                         |                     |                 |                     |        |                  |
|                    |                                 |             | -             |                                         |                                     |                  |         |                |                 |         |                         |                     |                 |                     |        |                  |
|                    |                                 |             | 11            |                                         |                                     |                  |         | 7-0            |                 |         |                         |                     |                 |                     |        |                  |
| i                  |                                 |             | -<br>-<br>12  |                                         |                                     |                  |         | - E            |                 |         |                         |                     |                 |                     |        |                  |
| I herel            | اــــــا<br>by certif           | y that      |               | rmation on this form is t               | rue and correct to the be           | st of my kn      | owleds  | ie.            |                 | .       |                         | .l                  | 1               | <u> </u>            |        |                  |
| Signa              |                                 | - "         |               | *************************************** | Firm RM                             | T, Inc.          | •       |                |                 | ~~~~    |                         |                     |                 |                     | Tel: 6 | 08-831-4444      |
|                    |                                 |             |               |                                         | 744                                 | Heartland T      | rail N  | dadison.       | WL 53           | 3717    |                         |                     |                 |                     | Fax: 6 | 608-831-3334     |

|                                                     | ng Numl                         | oer<br>     | M.1           | 1F Use only as an attachment to Form 4400-                               | 122. |                   | Т               |         |                         |                     |                 | ge 2                | oľ    | 2                |
|-----------------------------------------------------|---------------------------------|-------------|---------------|--------------------------------------------------------------------------|------|-------------------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|-------|------------------|
| Sa                                                  | mple                            |             |               |                                                                          |      |                   |                 |         |                         |                     | Prop            | erties              |       |                  |
|                                                     | 1. & ]                          | nts         | Sect          | Soil/Rock Description                                                    |      |                   |                 |         | avc                     |                     |                 |                     |       | s                |
| ver<br>Vpe                                          | h At                            | Cou         | I II I        | And Geologic Origin For<br>Each Major Unit                               | S    | 1ic               | am              | Q.      | orcss                   | inro<br>ant         | p .             | city                |       | nem              |
| Number<br>and Type                                  | Length Att. &<br>Recovered (in) | Blow Counts | Depth In Feet | Bach Major Office                                                        | uscs | Craphic           | Well<br>Diagram | PID/FID | Compressive<br>Strength | Moisture<br>Content | Liquid<br>Limit | Plasticity<br>Index | P 200 | RQD/<br>Comments |
| 4<br>CS                                             | 48                              |             |               | No recovery from 12 - 16 feet bgs. Drillers reported very soft material. |      | <del>_</del>      |                 |         | <u> </u>                |                     |                 |                     |       |                  |
| CS                                                  | ()                              |             |               | reported very soft material.                                             |      | - G               |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             | -13           |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             | -<br>14       |                                                                          | OL   |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             | - ' '         |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             | <u>-</u> 15   |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                          |      | -G-<br>           |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             | 16            | E.O.B. at 16 feet bgs                                                    |      | -C. <del></del> - |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       | •                |
|                                                     |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
|                                                     |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
| 01/2                                                |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
| 4123                                                |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
| 3.GDT                                               |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
| 8.<br>8.<br>9.<br>9.                                |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
| M DN                                                |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
| 8                                                   |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     | <u> </u>        |                     |       |                  |
| C C                                                 |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
| 0720                                                |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
| 600                                                 |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
| WDNR SBL 1998 07201DNR,GPJ WIDNR 2003,GDT - 4/22/10 |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       |                  |
| WDA                                                 |                                 |             |               |                                                                          |      |                   |                 |         |                         |                     |                 |                     |       | 23               |

### SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                                                                      | <u>Ro</u>     |                               | 'astewater $\square$<br>Redevelopment $\square$ |                                        | te Manag<br>r 🔲                                         | ement          |                 |           |                         |               |                 |                     |                  |                  |  |  |
|----------------------------------------------------------------------|---------------|-------------------------------|-------------------------------------------------|----------------------------------------|---------------------------------------------------------|----------------|-----------------|-----------|-------------------------|---------------|-----------------|---------------------|------------------|------------------|--|--|
|                                                                      |               |                               |                                                 |                                        |                                                         |                |                 |           |                         | Page 1 of 1   |                 |                     |                  |                  |  |  |
| Facility/Project Na                                                  |               |                               |                                                 | Licens                                 | License/Permit/Monitoring Number Boring Num             |                |                 |           |                         |               |                 |                     |                  |                  |  |  |
| Kewaunee M                                                           |               | ferew chief (first, last) ai  | al Eins                                         | Data I                                 |                                                         |                |                 |           |                         |               |                 | M 1                 |                  | ling Method      |  |  |
| -                                                                    | : Name o      | r crew enter (tirst, tast) at | JCI 1. 11.111                                   | Date Drilling Started Date Dr          |                                                         |                |                 |           |                         |               | npicted         | וויזכו              | ing Method       |                  |  |  |
| Toni Kapugi<br>On-Site Envi                                          |               |                               | Io                                              | 12: 1                                  | 3/17                                                    |                |                 | 3/17/2010 |                         |               |                 | Geoprobe            |                  |                  |  |  |
| WI Unique Well N                                                     | NO.           | DNR Well ID No.               | Common Well Na                                  | me  Final S                            | Final Static Water Level Surface Elev<br>Feet MSL 582.0 |                |                 |           |                         |               | ACT.            | Bo                  | orchole Diameter |                  |  |  |
| Local Grid Origin                                                    |               | stimated: 🔲 ) or Bor          | ing Location M                                  |                                        | Local                                                   |                |                 |           |                         |               |                 |                     | 2.1 inches       |                  |  |  |
| State Plane                                                          |               | ,953 N, 2,617,062             |                                                 |                                        | Lat                                                     |                |                 |           | ·                       |               |                 | ı                   | ОЕ               |                  |  |  |
| 1/4 of                                                               |               | /4 of Section ,               | T N, R                                          | La                                     | ng                                                      | 0              | 1               | I         | :                       | Feet S        |                 |                     |                  | Feet 🗍 W         |  |  |
| Facility ID                                                          |               | County                        |                                                 | County (                               |                                                         | Civil T        | own/Ci          | ty/ or    | · Village               |               |                 |                     | 1000 123 11      |                  |  |  |
|                                                                      |               | Kewaunee                      |                                                 | 31                                     |                                                         | Kewa           | aunee           |           |                         |               |                 |                     |                  |                  |  |  |
| Sample                                                               |               |                               |                                                 | ······································ |                                                         |                |                 |           |                         | Soil Properti |                 |                     |                  |                  |  |  |
| જ (iii) જ                                                            |               | Soil/R                        | ock Description                                 |                                        |                                                         |                |                 |           |                         |               |                 |                     |                  |                  |  |  |
| od (C                                                                | .F.C          | And Ge                        |                                                 |                                        |                                                         |                |                 | Sivo      | Moisture<br>Content     | id            |                 |                     | JIS              |                  |  |  |
| Type<br>Type<br>Type<br>Co                                           | L L           | Eac                           |                                                 | CS                                     | Nic.                                                    | ran            | FID             | pres      |                         |               | icity           | _                   | l co             |                  |  |  |
| Number<br>and Type<br>Length Att. &<br>Recovered (in)<br>Blow Counts | Depth in Fect |                               | •                                               |                                        | U S (                                                   | Graphic<br>Log | Well<br>Diagram | PID/FID   | Compressive<br>Strength | fois          | Liquid<br>Limit | Plasticity<br>Index | P 200            | RQD/<br>Comments |  |  |
| 1 48 1                                                               | <u> </u>      | PEAT, dark brow               | n to black (LOY                                 | ′R 3/2)                                | +-                                                      | <u> </u>       | > -             | <u> </u>  | S                       | 20            |                 |                     |                  | <u> </u>         |  |  |
| CS 9.6                                                               | -             | moist, soft.                  | ii to bluck (101                                | 10 3/2),                               |                                                         | 4 11           |                 |           |                         |               |                 |                     |                  |                  |  |  |
|                                                                      | - 1           | •                             |                                                 |                                        |                                                         | 11/2           | 4               |           |                         |               |                 |                     |                  |                  |  |  |
| w                                                                    |               |                               |                                                 |                                        |                                                         | 12 11/2        |                 |           |                         |               |                 |                     |                  |                  |  |  |
|                                                                      | - 2           |                               |                                                 |                                        |                                                         | 77 7           |                 |           |                         |               |                 |                     |                  |                  |  |  |
|                                                                      | [             |                               |                                                 |                                        |                                                         | 2 77           |                 |           |                         | ,             |                 |                     |                  |                  |  |  |
|                                                                      | -3<br>3<br>4  |                               |                                                 |                                        |                                                         | 71 7           | {               |           |                         |               |                 |                     |                  |                  |  |  |
|                                                                      |               |                               |                                                 |                                        |                                                         | 12 14          |                 |           |                         |               |                 |                     |                  |                  |  |  |
|                                                                      |               |                               |                                                 |                                        |                                                         | 11/ 11         |                 |           |                         |               |                 |                     |                  |                  |  |  |
| 2 48                                                                 |               | As above, wet.                |                                                 |                                        | 7 77                                                    |                |                 |           |                         |               |                 |                     |                  |                  |  |  |
| 2 48<br>CS 30                                                        | -             | 713 400 70, 11 01.            |                                                 |                                        |                                                         | 711 71         |                 |           |                         |               |                 |                     |                  |                  |  |  |
|                                                                      | 5             |                               |                                                 |                                        |                                                         | 2 24           |                 |           |                         |               |                 |                     |                  |                  |  |  |
|                                                                      | E             |                               |                                                 |                                        |                                                         | 77 77          |                 |           |                         |               |                 |                     |                  |                  |  |  |
| (A)                                                                  | 6             |                               |                                                 |                                        |                                                         | 2 24           |                 |           |                         |               |                 |                     |                  |                  |  |  |
|                                                                      | - "           |                               |                                                 |                                        |                                                         | 77 77          |                 |           |                         |               |                 |                     |                  |                  |  |  |
|                                                                      |               |                               |                                                 |                                        | 4 34                                                    |                |                 |           |                         |               | :               |                     |                  |                  |  |  |
|                                                                      | 7<br>         | ORGANIC SILT                  | (OL), with she                                  | lls, dark                              |                                                         |                |                 |           |                         |               |                 |                     |                  |                  |  |  |
|                                                                      | -             | greenish gray (gley           | soft.                                           | OL                                     |                                                         |                |                 |           |                         |               |                 |                     |                  |                  |  |  |
|                                                                      | ~ 8           | E.O.B. at 8 feet bg           | S.                                              |                                        |                                                         | infraz.        |                 |           |                         |               |                 |                     |                  |                  |  |  |
|                                                                      |               |                               |                                                 |                                        |                                                         |                |                 |           |                         |               |                 | Į                   |                  |                  |  |  |
|                                                                      |               |                               |                                                 |                                        |                                                         |                |                 |           |                         |               |                 | ļ                   |                  |                  |  |  |
| 2                                                                    |               |                               |                                                 |                                        |                                                         |                |                 |           |                         |               |                 | :                   |                  |                  |  |  |
|                                                                      |               |                               |                                                 |                                        |                                                         |                |                 |           |                         | i             |                 |                     |                  |                  |  |  |
|                                                                      |               |                               |                                                 |                                        |                                                         |                |                 |           |                         |               |                 |                     |                  |                  |  |  |
|                                                                      |               |                               |                                                 |                                        |                                                         |                |                 |           |                         |               |                 |                     |                  |                  |  |  |
|                                                                      |               |                               |                                                 |                                        |                                                         |                |                 |           |                         | İ             |                 |                     |                  |                  |  |  |
|                                                                      |               |                               |                                                 |                                        |                                                         |                |                 |           |                         |               |                 |                     |                  |                  |  |  |
|                                                                      |               |                               |                                                 |                                        |                                                         |                |                 |           |                         |               |                 |                     |                  |                  |  |  |
| I hereby certify tha                                                 | t the infor   | mation on this form is tru    |                                                 | e best of my                           | knowledg                                                | ge.            |                 |           |                         |               |                 |                     |                  |                  |  |  |
| Signature                                                            |               |                               |                                                 | RMT, Inc.                              |                                                         |                |                 |           |                         |               |                 |                     |                  | 508-831-4444     |  |  |
| I hereby certify that<br>Signature                                   |               |                               |                                                 | 44 Heartland                           | l Trail A                                               | ladison,       | , WI 53         | 717       |                         | ~~~~~         |                 |                     | Fax: (           | 508-831-3334     |  |  |

07201DNR,GPJ WI DNR 2003.GDT 4/22/10

## SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                                                                                             |                                 |             | R             |                                       | Watershed/V<br>Remediation |                                           |                                          | Waste<br>Other         | -                                         | ement          |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|---------------------------------------------------------------------------------------------|---------------------------------|-------------|---------------|---------------------------------------|----------------------------|-------------------------------------------|------------------------------------------|------------------------|-------------------------------------------|----------------|-----------------|------------------------------------|-----------------------------------------|----------------------------|-----------------|-------------------------------------------|------|------------------|--|--|--|
|                                                                                             |                                 |             |               |                                       |                            |                                           |                                          | 1                      |                                           |                |                 |                                    |                                         | Page I of I [Boring Number |                 |                                           |      |                  |  |  |  |
| Facility/Project Name                                                                       |                                 |             |               |                                       |                            |                                           |                                          | License/               | License/Permit/Monitoring Number          |                |                 |                                    |                                         |                            |                 |                                           | . ^  |                  |  |  |  |
| Kewaunee Marsh Boring Drilled By: Name of crew chief (first, last) and Firm                 |                                 |             |               |                                       |                            |                                           |                                          |                        | Date Drilling Started Date Dril           |                |                 |                                    |                                         |                            |                 | M2A<br> lling Completed   Drilling Method |      |                  |  |  |  |
| Toni Kapugi                                                                                 |                                 |             |               |                                       |                            |                                           |                                          |                        | Date Drining Started 1941                 |                |                 |                                    |                                         |                            |                 | ing completed (1997)                      |      |                  |  |  |  |
| On-                                                                                         | -Site E                         | nvir        |               | ntal Servic                           |                            | B: 10:                                    | 3/17/2010                                |                        |                                           |                |                 |                                    | 3/17/2010 acc Elevation Born            |                            |                 |                                           |      |                  |  |  |  |
| WI U                                                                                        | nique W                         | 'ell No     | ) <i>.</i>    | DNR We                                |                            | Final Static Water Level Surf<br>Feet MSL |                                          |                        |                                           |                |                 | rface Elevation Bor 584.0 Feet MSL |                                         |                            |                 |                                           |      |                  |  |  |  |
| Local                                                                                       | Grid Or                         | ioin        | (c            | estimated: [                          |                            | 1                                         |                                          |                        |                                           |                |                 | cation                             | i                                       | 2.1 inches                 |                 |                                           |      |                  |  |  |  |
| Local Grid Origin (estimated: ) or Boring Location State Plane 244,040 N, 2,616,437 E S/C/N |                                 |             |               |                                       |                            |                                           |                                          | La                     | l                                         | G              | 1<br>           |                                    |                                         | OH 130                     |                 | 1                                         | Ов   |                  |  |  |  |
|                                                                                             |                                 |             |               |                                       |                            |                                           | N, R                                     | Long                   | 3                                         | 0              | 1               |                                    |                                         | Fee                        | ι 🗒 s           |                                           |      | Feet D W         |  |  |  |
| Facili                                                                                      | ıy ID                           |             |               |                                       | unty                       |                                           |                                          | 1                      | County Code   Civil Town/City/ or Village |                |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             |               | K                                     | ewaunee                    |                                           |                                          | 31                     |                                           | Kewa           | unee            |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
| Sar                                                                                         | nple                            |             |               |                                       |                            |                                           |                                          |                        |                                           |                |                 |                                    |                                         | Soil                       | Prope           |                                           |      |                  |  |  |  |
|                                                                                             | Length Att. &<br>Recovered (in) | S           | ಶ             |                                       | Soil/F                     | Rock Descr                                | ription                                  |                        |                                           |                |                 |                                    | رو                                      |                            |                 |                                           |      |                  |  |  |  |
| . ગ્ર                                                                                       | Att.                            | Blow Counts | Depth In Feet |                                       | And Geologic Origin F      |                                           |                                          |                        |                                           |                | -               |                                    | Compressive<br>Strength                 | ي                          |                 | <u>&gt;</u>                               |      | nts              |  |  |  |
| TyT                                                                                         | gth                             | Č           | 1 =           |                                       | Ea                         | ch Major U                                | Jnit                                     |                        | CS                                        | phic           | ll<br>gran      | /FII                               | npre                                    | Stur                       | uid<br>ii       | sticit                                    | 200  | in S             |  |  |  |
| Number<br>and Type                                                                          | Len                             | Blo         | Dep           |                                       |                            |                                           |                                          |                        | N.S                                       | Graphic<br>Log | Well<br>Diagram | PID/FID                            | Compress                                | Moisture<br>Content        | Liquid<br>Limit | Plasticity<br>Index                       | p 2( | RQD/<br>Comments |  |  |  |
| 1                                                                                           | 60                              |             | <u> </u>      | TOPSC                                 | OIL/CAP                    | MATEI                                     | RIAL.                                    |                        |                                           | 31.7           |                 |                                    | *************************************** |                            |                 |                                           |      |                  |  |  |  |
| ĊS                                                                                          | 25                              |             | L             |                                       |                            |                                           |                                          |                        |                                           | 7 77.          |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             | -1            |                                       |                            |                                           |                                          |                        |                                           | 150.7          |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             | Ē             |                                       |                            |                                           |                                          |                        |                                           |                |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             | -2            |                                       |                            |                                           | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                        |                                           |                |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             | -             | POOD                                  | LY GRA                     |                                           | 大野花                                      |                        |                                           |                |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             | 3             | medium                                | r grained,                 | light bro                                 | wn, wet.                                 | , [                    |                                           | 2 24           |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             | 4             |                                       | dark brov                  |                                           | 3/2),                                    |                        | 77. 7                                     |                |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
| -                                                                                           |                                 |             |               | wet, sof                              | ì.                         |                                           | `                                        | ,,                     |                                           | 1, 11,         |                 |                                    |                                         |                            |                 | l                                         |      |                  |  |  |  |
|                                                                                             |                                 |             | ļ .           |                                       |                            |                                           |                                          |                        |                                           | 77 7           |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             | 5             |                                       |                            |                                           |                                          |                        |                                           | 1, 11,         |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
| 2<br>CS                                                                                     | 60<br>30                        |             | -             |                                       |                            |                                           |                                          |                        |                                           | 34 3           |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
| CS                                                                                          | 50                              |             | -             |                                       |                            |                                           |                                          |                        |                                           | 1, 11,         |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             | -6            |                                       |                            |                                           |                                          |                        |                                           | 77 7           |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             |               |                                       |                            |                                           |                                          |                        |                                           | 7 77           |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             | 7             |                                       |                            |                                           |                                          |                        |                                           | 71 7           |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             | -             |                                       |                            |                                           |                                          |                        |                                           | 4 34           |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             | 8             |                                       |                            |                                           |                                          |                        |                                           | 77.7           |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             | -             |                                       |                            |                                           |                                          |                        |                                           | 2 22           |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             | -9            | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | NICOLI                     | 0.701.                                    | - <del> </del>                           |                        | <u> </u>                                  | 44 4           |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
| , i                                                                                         |                                 |             | -             | ORGA                                  | NIC SIL                    | L (OL), '                                 | with shell                               | s, dark                | OL                                        | [ <del>-</del> |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             | 10            |                                       |                            |                                           |                                          |                        |                                           |                |                 |                                    |                                         |                            |                 |                                           |      | :                |  |  |  |
|                                                                                             |                                 |             |               | E.O.B.                                | at 10 feet                 | bgs.                                      |                                          |                        |                                           |                |                 |                                    |                                         | :                          |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             |               |                                       |                            |                                           |                                          |                        |                                           | <br>           |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             |               |                                       |                            |                                           |                                          |                        |                                           |                |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             |               |                                       |                            |                                           |                                          |                        |                                           |                |                 |                                    |                                         |                            |                 |                                           |      |                  |  |  |  |
|                                                                                             |                                 |             | , , .         | <u> </u>                              |                            |                                           |                                          |                        | L                                         | <u> </u>       | <u> </u>        |                                    |                                         | }                          | ļ               | <u> </u>                                  |      |                  |  |  |  |
|                                                                                             | •                               | y that      | the info      | ormation on t                         | this form is t             | rue and cor                               | 1951                                     |                        | owledg                                    | ge.            |                 |                                    |                                         |                            |                 |                                           |      | <u></u>          |  |  |  |
| Signat                                                                                      | urc                             |             |               |                                       |                            |                                           |                                          | MT, Inc.               | rast k                                    | tadie:         | Ma es           | 715                                |                                         |                            |                 |                                           |      | 508-831-4444     |  |  |  |
|                                                                                             |                                 |             |               |                                       |                            |                                           | /444                                     | Heartland <sup>*</sup> | rian IV                                   | raca5011       | , w. 1. J.      | 111                                |                                         |                            |                 |                                           | rax. | 508-831-3334     |  |  |  |

07201DNR.GPJ WI DNR 2003.GDT 4/22/10

### SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                        |                                              |             | Ro                                           | watershed/Wastewa<br>Remediation/Redev        |                                          | Waste ?<br>Other                                          | -        | ement                                   |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
|------------------------|----------------------------------------------|-------------|----------------------------------------------|-----------------------------------------------|------------------------------------------|-----------------------------------------------------------|----------|-----------------------------------------|-----------------|-----------------------------------------|-------------------------|---------------------|-----------------|---------------------|----------------------------------------|------------------------------|--|--|
|                        |                                              |             |                                              |                                               |                                          |                                                           |          |                                         |                 |                                         |                         |                     | Pag             | •                   | oſ                                     | 1                            |  |  |
|                        | y/Projec                                     |             |                                              |                                               |                                          | License/Permit/Monitoring Number   Boring Number          |          |                                         |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
|                        | watine                                       |             |                                              | ferew chief (first, last) and Fin             | Date Dri                                 | lling St                                                  | arted    |                                         | Da              | mg Completed Drilling Metho             |                         |                     |                 |                     |                                        |                              |  |  |
|                        | ıi Kap                                       | -           | varne o                                      | refer emer (1113), lasty and r in             | Date Div                                 | ining of                                                  | artec    |                                         | 154             | Date Drilling Completed                 |                         |                     |                 |                     | Drining Wethou                         |                              |  |  |
| On                     | -Site E                                      | inviro      |                                              | tal Services                                  |                                          |                                                           | /2010    |                                         |                 | 3/17/2010                               |                         |                     |                 |                     | Geoprobe                               |                              |  |  |
| WLU                    | nique W                                      | 'ell No     |                                              | DNR Well ID No.   Com                         | Final Static Water Level Sur<br>Feet MSL |                                                           |          |                                         |                 | rface Elevation B<br>584.0 Feet MSL     |                         |                     |                 |                     | Borchole Diameter                      |                              |  |  |
| Local                  | Grid Or                                      | ioin        | [~] (cs                                      | stimated: [] ) or BoringLo                    | ,                                        | reet f                                                    | MSL      | ļ                                       | - :             | 584.U <b>I</b><br>Local C               |                         |                     | 2.1 inches      |                     |                                        |                              |  |  |
|                        | Plane                                        | '5'''       |                                              | ,017 N, 2,616,449 E                           | Lat°                                     |                                                           |          |                                         |                 | D N                                     |                         |                     |                 |                     | ОЕ                                     |                              |  |  |
|                        | 1/4                                          | of          | 1                                            | /4 of Section , T                             | N, R                                     | Long                                                      |          | ·                                       | ·               |                                         | " Feet $\square$ S      |                     |                 |                     |                                        | Feet 🗍 W                     |  |  |
| Facilit                | y ID                                         |             |                                              | County                                        |                                          | County Code   Civil Town/City/ or Village   31   Kewaunee |          |                                         |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
| - Sar                  | nple                                         |             |                                              | Kewaunee                                      |                                          | 31                                                        | <u> </u> | Kewa                                    | unee            |                                         | 1                       | Soil                | Prope           | ortiec              |                                        |                              |  |  |
| 341                    | 7                                            |             |                                              | Soil/Rock D                                   | acquintion                               |                                                           |          |                                         |                 |                                         |                         |                     | TTOP            | Tues                |                                        |                              |  |  |
|                        | ររ. &<br>d (in                               | ımts        | Depth In Feet                                | And Geologic                                  | •                                        |                                                           |          |                                         |                 |                                         | sive                    | Moisture<br>Content | pi.             | Plasticity<br>Index | ı                                      | 2                            |  |  |
| ber<br>ype             | Length Att. &<br>Recovered (in)              | Con         | Ξ                                            | Each Maj                                      | -                                        |                                                           | C S      | hic                                     | ram<br>Lam      | QI-                                     | pres                    |                     |                 |                     | 0                                      | men                          |  |  |
| Number<br>and Type     | Suo?                                         | Blow Counts | )cpt                                         |                                               |                                          |                                                           | n s (    | Graphic<br>Log                          | Well<br>Diagram | PID/FID                                 | Compressive<br>Strength | Moisture<br>Content | Liquid<br>Limit | Plastic<br>Index    | P 200                                  | RQD/<br>Comments             |  |  |
| CS                     | 60                                           |             |                                              | TOPSOIL.                                      | ,-                                       |                                                           | 3 /2 3   |                                         | <u> </u>        | 1 0 0)                                  |                         | <u> </u>            |                 |                     |                                        |                              |  |  |
| CS                     | 30                                           |             | -<br>-<br>-                                  | POORLY GRADED                                 |                                          | /<br>/*                                                   | SP       | <u> </u>                                |                 | and and and and and and and and and and |                         |                     |                 |                     | i                                      |                              |  |  |
|                        |                                              |             | - 1                                          | unedium grained, light                        |                                          |                                                           | 2 24     |                                         |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
|                        |                                              |             |                                              | PEAT, dark brown to l wet, soft.              | /2),                                     |                                                           | 11/11    |                                         |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
|                        |                                              |             | -2                                           | wet, som                                      |                                          |                                                           |          | 1, 11,                                  |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
|                        |                                              |             | -                                            |                                               |                                          |                                                           |          | 77 77                                   |                 |                                         |                         |                     |                 |                     | 1                                      |                              |  |  |
|                        |                                              |             | 3<br>-                                       |                                               |                                          |                                                           |          | 5 77                                    |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
|                        |                                              |             | 1                                            |                                               |                                          |                                                           |          | 7 T                                     |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
|                        |                                              |             | 4                                            |                                               |                                          |                                                           | ļ        | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
| 1                      |                                              |             |                                              |                                               |                                          |                                                           |          | 2 24                                    |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
| 2                      | 60                                           |             | 5<br>                                        | ORGANIC SILT (OI                              | ), with shells,                          |                                                           |          |                                         |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
| CS                     | 4()                                          |             | -                                            | greenish gray (gley 1 4/                      | ĺ), wet, soft.                           |                                                           |          |                                         |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
|                        |                                              |             | ()<br>-                                      |                                               |                                          |                                                           |          | 2                                       |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
|                        |                                              |             | _                                            |                                               |                                          |                                                           |          |                                         |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
|                        |                                              |             | 7                                            |                                               |                                          | -                                                         | OL       | 6                                       |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
|                        |                                              |             | -                                            |                                               |                                          | ;                                                         |          |                                         |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
|                        |                                              |             | 8                                            |                                               |                                          |                                                           |          | 7-9                                     |                 |                                         | İ                       |                     |                 |                     |                                        |                              |  |  |
| 3                      |                                              |             |                                              |                                               |                                          |                                                           |          | 2-0                                     |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
|                        |                                              |             | ()<br>-                                      | POORLY GRADED                                 | SAND WITH                                |                                                           | SP       |                                         |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
|                        |                                              |             | -                                            | GRAVEL (SP), medium                           |                                          |                                                           |          | 11/11                                   |                 |                                         |                         |                     |                 |                     | ļ                                      |                              |  |  |
|                        | 1                                            |             | -10                                          | \gravel, wet, soft.<br>\PEAT, dark brown to t | 5'r                                      |                                                           |          |                                         |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
|                        |                                              |             |                                              | wet, soft.                                    | mack (101 R 3                            | /2),                                                      |          |                                         |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
| E.O.B. at 10 feet bgs. |                                              |             |                                              |                                               |                                          |                                                           |          |                                         |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
|                        |                                              |             |                                              | _                                             |                                          |                                                           |          |                                         |                 |                                         |                         |                     |                 |                     |                                        |                              |  |  |
|                        | <u>                                     </u> |             | <u>                                     </u> |                                               |                                          |                                                           |          |                                         |                 |                                         |                         |                     |                 | ŀ                   |                                        |                              |  |  |
| I herel<br>Signat      |                                              | y that      | the info                                     | rmation on this form is true and              | Ten:                                     |                                                           | owledg   | ge.                                     |                 |                                         | ·····                   |                     |                 |                     | ······································ |                              |  |  |
|                        |                                              |             |                                              |                                               | 1.5151                                   | Γ, Inc.<br>leartland τ                                    | rail N   | 1adison,                                | WI 53           | 717                                     |                         |                     |                 |                     |                                        | 508-831-4444<br>508-831-3334 |  |  |

# SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

| Facilit  | y/Projec                        | et Nam      | ıc            |                                                                   | License      | /Permit     | /Monitor       | ing No          | mher      |                         | Borine              | Pag<br>Numb                                      |                     | of         | ]                |
|----------|---------------------------------|-------------|---------------|-------------------------------------------------------------------|--------------|-------------|----------------|-----------------|-----------|-------------------------|---------------------|--------------------------------------------------|---------------------|------------|------------------|
|          | vaune                           |             |               |                                                                   | Bicchisc     | , cillin    | ivioiiito:     | ing ivai        | iiiiiiiii |                         | יוויוסכו            | 5 (Millio                                        | M2                  | 2C         |                  |
|          |                                 |             | Name o        | of crew chief (first, last) and Firm                              | Date Di      | illing S    | tarted         |                 | Da        | ite Drilli              | ng Co               | mpleted                                          |                     | Drill      | ling Metho       |
|          | i Kap                           |             |               | ntal Services                                                     |              | 3/17        | 7/2010         |                 |           |                         | 3/17/               | 2010                                             |                     | <i>(</i> : | eoprobe          |
|          | ique W                          |             |               | DNR Well ID No.   Common Well Nam                                 | e Final St   |             | ter Level      |                 | surf ac   | e Eleva                 |                     | 2010                                             | Вс                  |            | Diameter         |
|          |                                 |             |               |                                                                   |              | Feet        | MSL            |                 |           | 584.0                   |                     |                                                  |                     | 2.1        | inches           |
|          | Grid Or<br>Plane                | rigin       |               | stimated:  ) or Boring Location  ,998 N, 2,616,463 E S/C/N        | L            | at          | ن ن            | ,               | п         | Local C                 | Grid Lo             |                                                  |                     |            | ,                |
| State    | 1/4                             | of          |               | 1/4 of Section , T N. R                                           | Lor          |             | 0              | !               | 11        |                         | Fee                 | 4 []<br>S □ ι                                    |                     |            | Feet U           |
| acilit   |                                 |             |               | County                                                            | County C     |             | Civil To       | wn/Cit          | y/ or `   | Village                 |                     |                                                  |                     |            |                  |
|          | . 1                             |             | 1             | Kewaunee                                                          | 31           | · · · · · · | Kewai          | unee            |           | <del></del>             |                     | ·····                                            |                     |            | <del></del>      |
| Sar      | nple                            |             |               |                                                                   |              |             |                |                 |           |                         | Soil                | Prope                                            | erties              | T          | -                |
|          | Length Att. &<br>Recovered (in) | uts.        | cct           | Soil/Rock Description                                             |              |             |                |                 |           | , c                     |                     |                                                  |                     |            |                  |
| S De     | h Ati                           | Blow Counts | Depth In Feet | And Geologic Origin For                                           |              | S           | .c             | 띮               | Ω         | Compressive<br>Strength | arc<br>n            |                                                  | ity                 |            | Cints            |
| and Type | cngt<br>ecov                    | low         | cpth          | Each Major Unit                                                   |              | SC          | Graphic<br>Log | Well<br>Diagram | PID/FID   | Compress<br>Strength    | Moisture<br>Content | Liquid<br>Limit                                  | Plasticity<br>Index | P 200      | RQD/<br>Comments |
| ୍ଲ<br>   | 60                              | <u>m</u>    | _ <u>_</u>    | PEAT, dark brown to black (10YR                                   | 2 3/2)       | <u> </u>    |                | <u> </u>        | Ω,        | 10 8                    | ں جے                | <del>                                     </del> | C                   | ۵.         | <u> </u>         |
| S.       | 30                              |             | -             | wet, soft.                                                        | ( 3, 2),     |             | 2 24           |                 |           |                         |                     |                                                  |                     |            |                  |
|          |                                 |             | <br>          |                                                                   |              |             | <u> </u>       |                 |           |                         |                     |                                                  |                     |            |                  |
|          |                                 |             | -<br>-        |                                                                   |              |             |                |                 |           |                         |                     |                                                  |                     |            |                  |
|          |                                 |             | 2<br>         |                                                                   |              |             | 2 22           |                 |           |                         |                     |                                                  |                     |            |                  |
|          |                                 |             |               |                                                                   |              |             | 24 24          |                 |           |                         |                     |                                                  |                     |            |                  |
|          |                                 |             | ~~ 3<br>~     |                                                                   |              |             | 2 24           |                 |           |                         |                     |                                                  |                     |            |                  |
| 8        |                                 |             | -             |                                                                   |              |             | 77. 77         |                 |           |                         |                     |                                                  |                     |            |                  |
|          |                                 |             | 4<br>         |                                                                   |              |             | 77.71          |                 |           |                         |                     |                                                  |                     |            | :                |
| 11       |                                 |             | -             | POORLY GRADED SAND (SP)                                           | ),           | _SP_        | 27.2           | ĺ               |           |                         |                     |                                                  |                     |            |                  |
| 2<br>:S  | 60<br>35                        |             | 5<br>         | medium grained, light yellow brow PEAT, dark brown to black (10YR |              |             | 2 24           |                 |           |                         |                     |                                                  |                     |            |                  |
|          |                                 |             | <br>(         | wet, soft.                                                        | 3/4),        |             | 77. 7          |                 |           |                         |                     |                                                  |                     |            |                  |
| •        |                                 |             | - '           |                                                                   |              |             | 1, 11,         |                 |           |                         |                     |                                                  |                     |            |                  |
| V        |                                 |             | _<br>7        |                                                                   |              |             | 70 7           |                 |           |                         |                     |                                                  |                     |            |                  |
|          |                                 |             | <u> </u>      |                                                                   |              |             | 77.7           |                 |           |                         |                     |                                                  |                     |            |                  |
| A.       |                                 |             | 8             |                                                                   |              |             | 2 24           |                 |           |                         |                     |                                                  |                     |            |                  |
|          |                                 |             | -<br>-        |                                                                   | ,            |             | 11.1           |                 |           |                         |                     |                                                  |                     |            |                  |
|          |                                 |             | <br>()        | ORGANIC SILT (OL), with shel geenish gray (gley 14/1), wet, soft. | is, dark     |             |                |                 |           |                         |                     |                                                  |                     | į          | <br>             |
|          |                                 |             | <br>          | geeman gruy (grey) - 1777, 11 ex, beta                            |              | OL          |                |                 |           |                         |                     |                                                  |                     |            |                  |
|          |                                 |             | <br>10        | E.O.B. at 10 feet bgs.                                            |              |             | 2-0            | 1               |           | -                       |                     |                                                  |                     |            |                  |
|          |                                 |             |               | 15.O.B. at 10 lect ogs.                                           |              |             |                | 1               |           |                         |                     |                                                  |                     |            |                  |
|          |                                 |             |               |                                                                   |              |             |                |                 |           |                         |                     |                                                  |                     |            |                  |
|          |                                 |             |               |                                                                   |              |             |                |                 |           |                         |                     |                                                  |                     |            |                  |
|          |                                 |             |               |                                                                   |              |             |                |                 |           |                         |                     |                                                  |                     |            |                  |
|          |                                 | that t      | he info       | rmation on this form is true and correct to the l                 | best of my k | iowled      | ge.            |                 |           |                         |                     |                                                  |                     |            |                  |
| ignati   | ire                             |             |               | Firm R                                                            | MT, Inc.     |             |                |                 |           |                         | ~~~~                |                                                  |                     | 11.51.7    | 508-831-44       |

gresult in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable grinformation on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent

# SOIL BORING LOG INFORMATION

Form 44()()-122 Rev. 7-98

| Facility/Project Name                                                | <u> </u>       |                       |                                                      | License/I      | ormit/   | 'Monito             | ring Nu            | mber         |                         | Boring              | Pag<br>Numb     | cı.                 | of    | 1                |
|----------------------------------------------------------------------|----------------|-----------------------|------------------------------------------------------|----------------|----------|---------------------|--------------------|--------------|-------------------------|---------------------|-----------------|---------------------|-------|------------------|
| Kewaunee Mars<br>Boring Drilled By: N                                |                | hief (first, last) an | d Firm                                               | Date Dri       | lling St | arted               | <del></del>        | Da           | te Drilli               | ng Cor              | npleted         | M2                  |       | ing Method       |
| Dusty Harvey                                                         |                |                       |                                                      |                |          |                     |                    |              |                         |                     | ·               |                     |       |                  |
| On-Site Enviror                                                      |                |                       | Common Well Name                                     | Final Sta      |          | /2009<br>ter Leve   | :1                 | Surfac       | e Elevat                | 1 2/8/2<br>ion      | 2009            | Во                  |       | Diameter         |
| Local Grid Origin [                                                  | 7 (actimated   | : 🔲 ) or Bori         | nu Logotion 57                                       | ]              | Feet N   | MSL                 |                    |              | 584.0 I<br>Local C      |                     |                 |                     | 2.1   | inches           |
| State Plane                                                          |                | l, 2,616,473 I        |                                                      | La             | t        | <u> </u>            |                    |              | isocai (                |                     | $\square$ N     |                     |       | □ E              |
| 1/4 of<br>Facility ID                                                | 1/4 of Sc      | County                | T N, R                                               | Long County Co |          | <u> </u><br>Civil T | <u></u><br>own/Cit | <br>ty/ or \ | √illage                 | Feet                | . □ S           |                     |       | Feet 🗍 W         |
| raemty 119                                                           |                | Kewaunee              |                                                      | 31             |          | Kewa                |                    | .,           | .,                      |                     |                 |                     |       | 1 ****           |
| Sample                                                               |                | 6. 9.05               |                                                      |                |          |                     |                    |              |                         | Soil                | Propo           | erties              |       |                  |
| Number<br>and Type<br>Length Att. &<br>Recovered (in)<br>Blow Counts | Depth in Feet  | And Geo               | ock Description<br>ologic Origin For<br>n Major Unit |                | nscs     | Graphic<br>Log      | Well<br>Diagram    | PID/FID      | Compressive<br>Strength | Moisture<br>Content | Liquid<br>Limit | Plasticity<br>Index | P 200 | RQD/<br>Comments |
| 2 60 CS 51                                                           | ORC PEA mass   | S), dark brown        | OL), with shells a                                   | soft.          | OL.      |                     |                    |              | ritation and            |                     |                 |                     |       |                  |
| I hereby certify that the Signature                                  | ne information | on this form is tru   | ie and correct to the be                             | st of my kn    | owled    | ge.                 |                    |              |                         | 1                   |                 |                     | Tel   | 608-831-444      |
|                                                                      |                |                       | 1014                                                 | Heartland      | D 21 A   | Andiona             | 11/1 52            | 717          |                         |                     |                 |                     |       | 608-831-333      |

# SOIL BORING LOG INFORMATION

Form 4400-122

| Pacilio   | y/Projec                        | ot Man      | ıc.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | License/I   | Permit /      | Monito           | rina No         | nbor    | 1                       | Boring              | Pag                                     |                     | of`    | 1                |
|-----------|---------------------------------|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------|---------------|------------------|-----------------|---------|-------------------------|---------------------|-----------------------------------------|---------------------|--------|------------------|
|           | waune                           |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Licenseri   | CHILL         | MORIO            | ring Rui        | noci    |                         | Doring              | Numb                                    | M2                  | E      |                  |
|           |                                 |             |               | of crew chief (first, last) and I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Firm                         | Date Dri    | lling St      | arted            |                 | Da      | te Drilli               | ng Con              | npleted                                 |                     |        | ling Method      |
|           | ni Kap<br>-Site E               |             | າກກາຍກ        | tal Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |             | 3/17          | /2•10            |                 |         |                         | 3/17/2              | 2010                                    |                     | Ge     | eoprobe          |
| VI Ui     | nique W                         | 'ell No     |               | DNR Well ID No. Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mmon Well Name               | Final Sta   |               |                  | :               |         | e Eleva                 |                     |                                         | Boi                 | rchole | Diameter         |
|           | 0:10                            |             | <u> </u>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | ]           | Feet N        | MSL              |                 |         | 584.0 ]                 |                     |                                         |                     | 2.1    | inches           |
|           | Grid Oi<br>Plane                | rigin       |               | stimated:  ) or Boring 1,972 N, 2,616,485 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Location 📓<br>S/C/N          | La          | l             | 0                |                 | U       | Local C                 | ina ro              | cauon                                   | ı                   |        | [] E             |
|           | 1/4                             | of          |               | /4 of Section , T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N, R                         | Long        |               | 0                |                 |         |                         | Feet                |                                         |                     | ı      | Feet 🛄 V         |
| acilit    | y ID                            |             |               | County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 1                          | County Co   |               |                  | own/Cit         | y/ or \ | Village                 |                     |                                         |                     |        |                  |
| ~         | 1                               |             | J             | Kewaunee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                            | 31          |               | Kewa             | unee            |         | ı                       | 0. 1                | 75                                      |                     |        | 1                |
| Sar       | nple                            |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               |                  |                 |         |                         | Soil                | Propo                                   | erties              |        | 1                |
|           | Length Att. &<br>Recovered (in) | ınts        | 100t          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Description                  |             |               |                  |                 |         | ive                     |                     |                                         |                     |        | , s              |
| and Type  | th At                           | Con         | l lu          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gic Origin For<br>lajor Unit |             | S             | عزر              | ma              | Ü,      | oress<br>gth            | urc                 | P                                       | city                | _      | ncmt             |
| nd T      | engt                            | Blow Counts | Depth In Feet | i.sacii iv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ajor omt                     |             | nsc           | Graphic<br>Log   | Well<br>Diagram | PID/FID | Compressive<br>Strength | Moisture<br>Content | Liquid<br>Limit                         | Plasticity<br>Index | P 200  | RQD/<br>Comments |
|           | 60                              |             |               | PEAT, dark brown to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | o black (10YR 3              | 3/2).       |               | $\overline{x}$   | 2 0             |         | 08                      | 20                  | 7 7                                     |                     |        | 2 0              |
| S         | 24                              |             | -<br>-        | wet, soft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | /,          |               | <u>1</u> 11      |                 |         |                         |                     |                                         |                     | !      |                  |
|           |                                 |             | I             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               | 71 71            |                 |         |                         |                     |                                         |                     |        |                  |
|           |                                 |             | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               | 1, 11,           |                 |         |                         |                     |                                         |                     | 1      |                  |
| A.        |                                 |             | -<br>2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               | 57 77            |                 |         |                         |                     |                                         |                     |        |                  |
|           |                                 |             | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               | 4 77             |                 |         |                         |                     |                                         |                     |        |                  |
|           |                                 |             | _<br>3        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               | 77 77            |                 |         |                         |                     |                                         |                     |        |                  |
|           |                                 |             | - '           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               | 4 14             |                 |         |                         |                     |                                         |                     |        |                  |
|           |                                 |             | ~<br>^        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               | 54 54            |                 |         |                         |                     |                                         |                     |        |                  |
|           |                                 |             | - 4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               | 77. 77<br>7. 77. |                 |         |                         |                     |                                         |                     |        |                  |
|           |                                 |             | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               | 2 <u>22</u>      |                 |         |                         |                     |                                         |                     |        | -                |
| 2<br>'S : | 60                              |             | 5<br>-        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               | 77.77            | ĺ               |         |                         |                     | :                                       |                     | ļ      |                  |
| S         | 36                              |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               | 12 12            |                 |         |                         |                     |                                         |                     |        |                  |
|           |                                 |             | -6            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               | 71/ 7            |                 |         |                         |                     |                                         |                     |        |                  |
|           |                                 |             | <br>-         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               | 1, 11,           |                 |         |                         |                     |                                         |                     |        | İ                |
| Ī         |                                 |             | 7             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               | 77 7             |                 |         |                         |                     |                                         |                     |        |                  |
|           |                                 |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             | čī\           | 12.31.12         |                 |         |                         |                     |                                         |                     |        |                  |
| 1         |                                 |             | 8             | POORLY GRADEI<br>Imedium grained, ligh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | J SAND (SP),                 | /           | SP_           | <u> </u>         |                 |         |                         |                     |                                         |                     |        |                  |
|           |                                 |             | -             | PEAT, dark brown to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | black (10VR 3                | (7) '       |               | 2 12             |                 |         |                         |                     |                                         |                     |        |                  |
|           |                                 |             | -<br>()       | wet, soft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | 72),        |               | 77. 7            |                 |         |                         |                     |                                         |                     |        |                  |
|           |                                 |             | <br>          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |             |               | 1/2 VV           |                 |         |                         |                     |                                         |                     |        |                  |
| :         |                                 |             | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               | 77. 77           |                 |         |                         |                     |                                         |                     |        |                  |
|           |                                 |             | - 10          | ORGANIC SILT (Carrier of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st |                              | dark /      | <u>(Ol.</u> , |                  |                 |         |                         |                     |                                         |                     |        | Ē                |
|           |                                 |             |               | E.O.B. at 10 feet bgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |             |               |                  |                 |         |                         |                     |                                         |                     |        |                  |
|           |                                 |             |               | L.O.D. at 10 feet ogs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |             |               |                  |                 |         |                         |                     |                                         |                     |        |                  |
|           |                                 |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               |                  |                 |         |                         |                     |                                         |                     |        |                  |
|           |                                 |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               |                  |                 |         |                         |                     |                                         |                     |        | Ĺ                |
|           | •                               | y that t    | he info       | rmation on this form is true a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd correct to the bes        | st of my kn | owledg        | ge.              |                 |         |                         |                     |                                         |                     |        |                  |
| ignat     | ure                             | *           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Firm RM                      | T, Inc.     |               | <del></del>      |                 |         |                         |                     | *************************************** |                     | Tel: 6 | 508-8.31-44      |
|           |                                 |             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |             |               |                  | WI 537          |         |                         |                     |                                         |                     |        | 508-831-31       |

gresult in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable ginformation on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

# SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | <u>Rc</u>     |                           | ershed/Wa    | istewater<br>Redevelopr  | nent []      | Waste I<br>Other     | _               | ement           |                 |          |                         |              |                 |                     |         |                              |
|--------------------|---------------------------------|-------------|---------------|---------------------------|--------------|--------------------------|--------------|----------------------|-----------------|-----------------|-----------------|----------|-------------------------|--------------|-----------------|---------------------|---------|------------------------------|
|                    |                                 |             |               |                           |              | ·                        |              |                      |                 |                 |                 |          |                         |              | Pag             | ge 1                | oſ      | 1                            |
|                    | y/Projec                        |             |               |                           |              |                          |              | License/             | Permit          | 'Monito         | ring Nı         | ımber    |                         | Boring       | Numb            | SI.                 |         |                              |
|                    | waune<br>P Drilled              |             |               | f crew chief (firs        | st. last) an | d Firm                   |              | Date Dri             | lling S         | arted           |                 | Da       | te Drilli               | ng Cor       | noleted         | M2                  |         | ing Method                   |
| Toi                | ni Kap                          | ugi         |               |                           | ,,, u        |                          |              |                      |                 |                 |                 |          |                         |              |                 |                     |         |                              |
|                    | -Site E                         |             |               | tal Services  DNR Well ID | NI.          | <u></u>                  | Well Name    | Final Sta            |                 | /201            | 1               |          | e Elevat                | 3/17/2       | 2010            | ID.                 |         | eoprobe<br>Diameter          |
| WIO                | nique w                         | CII NO      | J.            | DINK WEILID               | NO.          | Common                   | wen Name     |                      | uc wa<br>Feet l |                 | 21              |          | e Elevai<br>584.● ]     |              | 4SL             | 150                 |         | inches                       |
|                    | Grid Or                         | rigin       |               | stimated: \( \)           |              |                          |              | 1                    |                 | •               | 1               |          | Local C                 |              |                 |                     |         |                              |
| State              | Plane<br>1/4                    | o.C         |               | ,943 N, 2,61              | 16,5111      |                          | C/N          | La                   |                 | 0               |                 | tı .     |                         | Rost         | □ N □ S         |                     |         | [] E<br>Feet [] W            |
| Facilit            |                                 | 01          | <u>'</u>      | /4 of Section County      | ,            | I N                      | , R          | Long<br>County Co    |                 | CivilT          | own/Ci          | ty/ or \ | /illage                 | rect         |                 |                     |         | ·cct L.J W                   |
|                    |                                 | 1           |               | Kewa                      | unee         |                          |              | 31                   |                 | Kewa            | unee            | ,        | ,                       |              |                 |                     |         | •                            |
| Sar                | nple                            |             |               |                           |              |                          |              |                      |                 |                 |                 |          |                         | Soil         | Prope           | erties              | <u></u> |                              |
|                    | ر: گار<br>(ji)                  | nts         | 100           |                           |              | ock Descrip              |              |                      |                 |                 |                 |          | ve                      |              |                 |                     |         |                              |
| ypc                | h At                            | Cou         | l In F        |                           |              | logic Orig<br>ı Major Un |              |                      | S               | ) <u>H</u>      | am              | į į      | oress<br>gth            | n L          | P               | city                | _       | nent                         |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blow Counts | Depth In Feet |                           | 1241         | i wajoi on               | iii.         |                      | usc             | Graphic<br>Log  | Well<br>Diagram | PID/FID  | Compressive<br>Strength | Moisture     | Liquid<br>Limit | Plasticity<br>Index | P 200   | RQD/<br>Comments             |
| 1 8                | 60                              |             |               | PEAT, dar                 | k browi      | to blac                  | k (10YR 3    | 3/2),                |                 | 77. 77<br>  0 1 | 1               |          | 100                     | <u>  ~ 0</u> | <u>-</u> -      | L                   | £24     |                              |
| CS                 | 35                              |             |               | wet, soft.                |              |                          | `            | , .                  |                 | 2 34            |                 |          |                         |              |                 |                     |         |                              |
|                    |                                 |             | 1             |                           |              |                          |              |                      | ļ               | 77 77           | 1               |          | j<br>                   |              |                 |                     |         |                              |
| /8.                |                                 |             | -             | POORLY                    | GRAD         | ED SAN                   | ND (SP),     |                      |                 | <u> </u>        |                 |          |                         |              |                 |                     |         |                              |
| i i                |                                 |             | 2<br>         | hmedium gra PEAT, dar     |              |                          |              | (72 <b>)</b>         |                 | 7 77            |                 |          |                         |              |                 |                     |         |                              |
| 7                  |                                 |             | 3             | wet, soft.                | K UIUWI      | i to biaci               | K (1 • 1 K 5 | 112),                |                 | 77 7            |                 |          |                         |              |                 |                     |         |                              |
| Ų.                 |                                 |             | -             |                           |              |                          |              |                      |                 | 77. 7           |                 |          |                         |              |                 |                     |         |                              |
|                    |                                 |             | 4             |                           |              |                          |              |                      | ļ               | 7 77            |                 |          |                         |              |                 |                     |         |                              |
|                    |                                 |             | F             |                           |              |                          |              |                      |                 | 77 7            |                 |          |                         |              |                 |                     |         |                              |
| 2                  | 60                              |             | - 5           |                           |              |                          |              |                      |                 | 1 11            |                 |          |                         |              |                 |                     |         |                              |
| 2<br>CS            | 38.4                            |             | -             |                           |              |                          |              |                      |                 | F 77            |                 |          |                         |              |                 |                     |         |                              |
|                    |                                 |             | 6             |                           |              |                          |              |                      |                 | 77. 7           |                 |          |                         |              |                 |                     |         |                              |
|                    |                                 |             | -             |                           |              |                          |              |                      |                 | 2 24            |                 |          |                         |              |                 |                     | -       |                              |
|                    |                                 |             | 7             |                           |              |                          |              |                      |                 | 77 7            |                 |          |                         |              |                 |                     |         |                              |
|                    |                                 |             |               |                           |              |                          |              |                      |                 | 77 7            |                 |          |                         |              |                 |                     |         |                              |
| Ý                  |                                 |             | 8             |                           |              |                          |              |                      |                 | 2 24            |                 |          |                         |              |                 |                     |         |                              |
| Ą                  |                                 |             | <br>()        | ORGANIC                   | ŌSILT        | (OL), w                  | ith shells,  | dark                 |                 | 6-              |                 |          |                         |              | İ               |                     |         |                              |
|                    |                                 |             |               | greenish gr               | ay (gley     | 1 4/1), S                | on, wet.     |                      | OL              |                 |                 |          |                         |              |                 |                     |         | :<br>                        |
|                    |                                 |             | -<br>[()      | - D.O.D.                  |              |                          |              |                      |                 |                 |                 |          |                         |              |                 |                     |         |                              |
|                    |                                 |             |               | E.O.B. at 1               | • feet by    | gs.                      |              |                      |                 |                 |                 |          |                         |              |                 |                     |         |                              |
|                    |                                 |             |               |                           |              |                          |              |                      |                 |                 |                 |          |                         |              |                 |                     |         |                              |
|                    |                                 |             |               |                           |              |                          |              |                      |                 |                 |                 |          |                         |              |                 |                     |         |                              |
|                    |                                 | ~~~~        | <u> </u>      |                           |              |                          |              |                      | <u> </u>        | <u></u>         |                 |          |                         | <u></u>      |                 |                     |         |                              |
|                    |                                 | y that      | the info      | rmation on this (         | `orm is tru  |                          | ro:          | •                    | iowled:         | ge.             |                 |          |                         |              |                 |                     |         | ···-                         |
| Signat             | ure                             |             |               |                           |              |                          |              | T, Inc.<br>Teartland | Frail N         | Aadison         | , WI 53         | 717      |                         |              |                 |                     |         | 508-831-4444<br>508-831-3334 |

| State of Wisconsin              |
|---------------------------------|
| Department of Natural Resources |

07201DNR,GPJ\_W! DNR\_2003.GDT 4/22/10

## SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | <u>R</u>      |                                 |                 | astewater 🗌<br>Redevelopment [                       |         | Waste f           | _        | ement          |                 |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 | ,                   |       |                  |
|--------------------|---------------------------------|-------------|---------------|---------------------------------|-----------------|------------------------------------------------------|---------|-------------------|----------|----------------|-----------------|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|---------------------|-------|------------------|
| Facili             | ty/Proje                        | ct Nar      | ne            |                                 |                 |                                                      |         | License/I         | )omit/   | Monito         | rina Nu         | undac   | N1"         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Boring              | Pag<br>Numb     |                     | of    | 1                |
|                    | waune                           |             |               |                                 |                 |                                                      |         | Licenseri         | Cilino   | WIOIIILO       | ing ixt         | moc     | ,1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Doring              | , i veii iio    | M3                  | 3D    |                  |
|                    |                                 |             |               | of crew chief                   | (first, last) a | nd Firm                                              |         | Date Dri          | lling St | arted          |                 | Ī       | Date L      | rillii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ng Cor              | npleted         |                     |       | ling Method      |
|                    | sty Ha<br>-Site E               |             | onmei         | ntal Service                    | es              |                                                      |         |                   | 12/8     | / <b>200</b> 9 |                 |         |             | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12/8/2              | 2009            |                     | G     | eoprobe          |
|                    | nique W                         |             |               | DNR Well                        |                 | Common Well Na                                       | ame     | Final Sta         |          |                |                 | Surf    | ace El      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 | Во                  |       | Diameter         |
|                    |                                 |             |               |                                 |                 |                                                      |         |                   | Feet l   | MSL            |                 |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Feet N              |                 |                     | 2.1   | inches           |
|                    | Grid Or                         | ngin        |               | stimated:                       |                 |                                                      |         | 1 10              |          | O              | ,               |         | " Loc       | al G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | irid Lo             | cation          |                     |       |                  |
| State              | Plane                           |             |               | 3,995 N, 2                      | ,               |                                                      |         | La                |          | 0              | —               |         | ~           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       | □ E              |
| Facili             | 1/4                             | of          |               | 1/4 of Section                  |                 | T N, R                                               | 10      | Leng<br>County Co |          | Civil T        |                 | lví o   | <br>• Vill- | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Feet                | S               |                     |       | Feet [] W        |
|                    |                                 | ,           |               | 1                               | ewaunee         |                                                      | !       | 31                |          | Kewa           |                 | , .     | 1 1116      | .gc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |                 | <del></del>         |       | <del></del>      |
| Saı                | <u>nple</u>                     |             |               |                                 |                 |                                                      |         |                   |          |                |                 |         | _           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Soil                | Propo           | erties              | ·     |                  |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blow Counts | Depth in Feet |                                 | And Go          | ock Description<br>ologic Origin For<br>h Major Unit |         |                   | USCS     | Graphic<br>Log | Well<br>Diagram | PID/FID | Compressive | Strength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Moisture<br>Content | Liquid<br>Limit | Plasticity<br>Index | P 200 | RQD/<br>Comments |
| 2<br>CS            | 60 24                           |             |               | ORGAN<br>trace org<br>4/1, mois | ark brown       | ics (wood and 10YR 3/2, mo                           | oist, s | soft.             | OL       |                |                 |         |             | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                     |                 |                     |       |                  |
| I herel            | y certif                        | y that      | the info      | rmation on th                   | nis form is tr  | ie and correct to th                                 | ne best | t of my kn        | owleds   | ,<br>ge.       |                 |         | - 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | l .             |                     | 1     | 1                |
| Signat             | •                               |             |               |                                 |                 | Firm                                                 | RMT     | r, Inc.           | •        |                | . WI 53         | 717     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                 |                     |       |                  |

## SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | <u>Rc</u>     | ute To:    | Watershed/W<br>Remediation/             |             |                           | Waste N         | _        | ement       |                 |              |                         |                     |                 |                     |        |                  |
|--------------------|---------------------------------|-------------|---------------|------------|-----------------------------------------|-------------|---------------------------|-----------------|----------|-------------|-----------------|--------------|-------------------------|---------------------|-----------------|---------------------|--------|------------------|
|                    |                                 |             |               |            |                                         |             |                           |                 |          |             |                 |              |                         |                     | Pag             |                     | of     | 1                |
|                    | y/Projec                        |             |               |            |                                         |             |                           | License/I       | ormit/   | Monito      | ring Nu         | ımber        |                         | Boring              | Numb            | er<br>M4            | רו     |                  |
|                    | vauneo                          |             |               | f oren abi | ef (first, last) ar                     | d Figns     |                           | Date Dri        | lling St | arted       | _               |              | te Drilli               | ing Cor             | nuleted         | JV14                |        | ing Method       |
|                    | sty Hai                         |             | Name o        | i ciew cin | er (i ir st, iast) ai                   | IC PHIN     |                           | Date Dir        | ming Si  | aricu       |                 | 154          | (C 171 IIII             | ing Coi             | пристес         |                     | 15/111 | ing wethou       |
| On-                | -Site E                         | nvir        | onmen         | tal Servi  | ices                                    |             |                           |                 | 12/8     | /2009       |                 |              |                         | 12/8/2              | 2009            |                     | Ge     | eoprobe          |
|                    | nique W                         |             |               |            | Vell ID No.                             | Common      | Well Name                 | Final Sta       |          |             | el              | Surfac       | e Eleva                 |                     |                 | Во                  |        | Diameter         |
|                    |                                 |             |               |            |                                         |             |                           |                 | Feet I   | MSL         |                 | 4            | 583.                    | Feet N              | <b>MSL</b>      |                     | 2.1    | inches           |
|                    | Grid Or                         | igin        |               |            | [ ] ) or Bor                            |             |                           |                 | _        | •           | 1               | u]           | Local (                 | Grid Lo             | cation          |                     |        |                  |
| State              | Plane                           |             |               |            | 2,616,5•2                               |             | C/N                       | La              |          |             |                 |              |                         |                     |                 |                     |        | ☐ E<br>Feet ☐ W  |
|                    | 1/4                             | oľ.         | 1             | /4 of Sect |                                         | <u>T</u> N  | √, R                      | Long            |          |             |                 |              | ('11                    | Feet                | $\Box$ s        |                     | l      | Feet 📙 W         |
| Facilit            | y ID                            |             |               | 1          | County                                  |             | 3                         | County Co<br>31 | de       | Civil T     |                 | •            | vmage                   |                     |                 |                     |        |                  |
| 0                  | 11                              |             | 1             | 1          | Kewaunee                                |             |                           | 31              |          | Kewa        | lunee           | 1            | l .                     | Cail.               | Duone           | ndlaa               |        |                  |
| Sar                | nple                            |             |               |            |                                         |             |                           |                 |          |             |                 |              |                         | 2011                | Prope           | ines                |        |                  |
|                    | Length Att. &<br>Recovered (in) | S           | cet           |            |                                         | ock Descri  | •                         |                 |          |             |                 |              | νς                      |                     |                 |                     |        |                  |
| 5<br>DC            | Att                             | our         | 드             |            |                                         | ologic Orig |                           |                 | S        | ၂           | 8               | ۵            | cssi                    | 2 -                 |                 | <u>5</u>            |        | ciits            |
| Number<br>and Type | ugth<br>cove                    | Blow Counts | Depth In Feet |            | Eac                                     | ı Major U   | nit                       |                 | SC       | aphi.       | Well<br>Diagram | PID/FID      | idu                     | istu                | Liquid<br>Limit | Plasticity<br>Index | P 200  | RQD/<br>Comments |
| a Zu               |                                 | m           | lő            |            |                                         |             |                           |                 | 5        | Graphic Log | Well<br>Diagr   | PII          | Compressive<br>Strength | Moisture<br>Coutent | <u> </u>        | Pia                 | ۵.     | <u> </u>         |
| CS                 | 60<br>6                         |             | -<br> -       | PEAT       | `, with organ                           | ics (woo    | od and root               |                 |          |             |                 |              | Ì                       |                     |                 |                     |        |                  |
| CS                 | 0                               |             | -             | mass),     | , dark brown                            | IOYR 3      | 3/2, moist,               | SO11.           |          | 2 24        |                 |              |                         |                     |                 |                     |        |                  |
|                    |                                 |             |               |            |                                         |             |                           |                 |          | 71 7        |                 |              |                         |                     | <br>            |                     |        |                  |
|                    |                                 |             | E             |            |                                         |             |                           |                 |          | 77. 77.     |                 |              |                         |                     |                 |                     |        |                  |
|                    |                                 |             | 2             |            |                                         |             |                           |                 |          | 2 14        |                 |              |                         |                     | İ               | ĺ                   |        |                  |
|                    |                                 |             | F             |            |                                         |             |                           |                 |          | 77 7        |                 |              |                         |                     |                 |                     |        |                  |
|                    |                                 |             | 3             |            |                                         |             |                           |                 |          | 12 11/2     |                 |              |                         |                     |                 |                     |        |                  |
|                    |                                 |             | -             |            |                                         |             |                           |                 |          | 1/2 1/2     |                 |              |                         |                     |                 | İ                   |        |                  |
|                    |                                 |             | 4             |            |                                         |             |                           |                 |          | 1, 11,      |                 |              |                         |                     |                 |                     |        |                  |
|                    |                                 |             | -             |            |                                         |             |                           |                 |          | 77. 7       |                 |              |                         |                     |                 |                     |        |                  |
|                    |                                 |             |               |            |                                         |             |                           |                 |          | 12 31       |                 |              |                         |                     |                 |                     |        |                  |
| 2<br>CS            | 60<br>54                        |             | -             |            |                                         |             |                           |                 |          | 71          |                 |              |                         |                     |                 |                     |        |                  |
| Co                 | 54                              |             | -             |            |                                         |             |                           |                 |          | 12 11/      |                 |              |                         |                     |                 |                     |        |                  |
|                    |                                 |             | 6             |            |                                         |             |                           |                 |          | 711/7       |                 |              |                         |                     |                 |                     |        |                  |
| 4                  |                                 |             | <u></u>       |            |                                         |             |                           |                 |          | 2 27        |                 |              |                         |                     |                 |                     |        |                  |
|                    |                                 |             | <del></del> 7 |            |                                         |             |                           |                 |          | 777 77      |                 |              |                         |                     | E               |                     |        |                  |
|                    |                                 |             | -             | - OPGA     | ANIC SILT (                             | 71. W       | th challe a               |                 |          | 1, 11,      |                 |              |                         |                     |                 |                     |        |                  |
|                    | ĺ                               |             | 8             | trace of   | organics, dar                           | k greeni    | th sheas at<br>sh grav GI | EY1             |          |             |                 |              |                         | İ                   |                 |                     |        |                  |
|                    |                                 |             | -             |            | oist, soft.                             | <u>G</u>    | 6                         |                 |          |             |                 |              |                         |                     |                 |                     |        |                  |
|                    |                                 |             | 9             |            |                                         |             |                           |                 | OL       | 7           |                 |              |                         |                     |                 |                     |        |                  |
|                    |                                 |             | -             |            |                                         |             |                           |                 |          | 70          |                 |              | į                       |                     |                 |                     |        |                  |
|                    |                                 |             | - ,,          |            |                                         |             |                           |                 |          |             |                 |              |                         |                     |                 |                     |        |                  |
|                    |                                 |             | 10            | E.O.B      | at 10 feet b                            | gs.         |                           |                 |          |             |                 |              |                         |                     |                 |                     |        |                  |
|                    |                                 |             |               |            |                                         |             |                           |                 |          |             |                 |              |                         |                     |                 |                     |        |                  |
|                    |                                 |             |               |            |                                         |             |                           |                 |          |             |                 | }            |                         | 1                   |                 |                     |        |                  |
|                    |                                 |             |               |            |                                         |             |                           |                 |          |             |                 |              |                         | 1                   |                 |                     |        |                  |
|                    |                                 |             |               |            |                                         |             |                           |                 |          |             |                 |              |                         | -                   |                 |                     |        |                  |
| I herel            | oy certif                       | y that      | the info      | rmation of | n this form is tr                       | ie and cor  | rect to the bes           | st of my kn     | owledg   | ge.         |                 |              |                         |                     |                 |                     |        |                  |
| Signat             | ure                             |             |               |            | ••••••••••••••••••••••••••••••••••••••• |             | Firm RM                   | T, Inc.         |          |             |                 |              |                         |                     |                 |                     | Tel: ( |                  |
|                    |                                 |             |               |            |                                         |             |                           | Heartland       | Frail N  | 1adison     | <u>, WI 53</u>  | <u> 3717</u> |                         |                     |                 |                     |        | 508-831-3334     |

## SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | Ro            |                                                    | astewater                 |              | _            | ement                  |                 |          |                 |                     |                 |                     |        |                     |
|--------------------|---------------------------------|-------------|---------------|----------------------------------------------------|---------------------------|--------------|--------------|------------------------|-----------------|----------|-----------------|---------------------|-----------------|---------------------|--------|---------------------|
|                    |                                 |             |               | Remediation/                                       | Redevelopment $\square$   | Other        | LJ           |                        |                 |          |                 |                     |                 |                     |        |                     |
| Enaili             | ty/Proje                        | at Nlaus    |               |                                                    |                           | License/I    | )<br>Omesite | Manita                 | uissa NIsa      | l. au    | Т               | Darina              | Pag<br>Numbe    |                     | of     | 1                   |
|                    | waune                           |             |               |                                                    |                           | Elicense/i   | -0111111/    | IVIOIIIIO              | ring ivu        | moer     |                 | Doring              | Numbe           | M.5                 | A      |                     |
|                    |                                 |             |               | f crew chief (first, last) a                       | nd Firm                   | Date Dri     | lling S      | tarted                 |                 | Da       | te Drilli       | ng Con              | npleted         |                     |        | ling Method         |
| To                 | ni Kap                          | ugi         | a             | tal Camiana                                        |                           |              | 2/17         | /2 <b>0</b> 1 <b>0</b> |                 |          |                 | 3/17/2              | 0.61.6          |                     |        | o o muole o         |
|                    | -Site E                         |             |               | Ital Services   DNR Well ID No.                    | Common Well Name          | Final Sta    |              |                        | : :             | Surfac   | e Elevat        |                     | 2010            | Во                  |        | eoprobe<br>Diameter |
|                    | ·                               |             |               |                                                    |                           | 1            | Feet l       |                        |                 | :        | 582. <b>●</b> I | eet N               |                 |                     |        | inches              |
|                    | Grid Or                         | igin        | [] (es        | stimated: □ ) or Bor<br>, <b>0</b> 64 N, 2,616,488 | ing Location 🔯<br>E S/C/N | La           | ı            | 0                      |                 | =        | Local C         | irid Lo             |                 |                     |        |                     |
| State              | Plane<br>1/4                    | of          |               | /4 of Section ,                                    | T N, R                    | Long         |              | 0                      | 1               | 11       |                 | Feet                |                 |                     |        | Feet W              |
| Facili             |                                 | UI .        | <u>'</u>      | County                                             | 1 11, 12                  | County Co    | de           | CivilTo                | own/Cit         | y/ or \  | Village         | 1 000               | 3               |                     |        | 1001 () 11          |
|                    |                                 |             |               | Kewaunee                                           |                           | 31           |              | Kewa                   | unee            |          |                 |                     |                 |                     |        |                     |
| Sa                 | mple                            |             |               |                                                    |                           |              |              |                        |                 |          |                 | Soil                | Propo           | erties              |        |                     |
|                    | 33 (EE)                         | its         | Set           |                                                    | ock Description           |              |              |                        |                 |          | v.c             |                     |                 |                     |        |                     |
| je<br>De           | Au                              | Cour        | ln F          | 1                                                  | ologic Origin For         |              | S            | ن                      | ٤               | Ω        | cssi            | irc<br>at           |                 | <u>Ş</u>            |        | cnts                |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blow Counts | Depth In Feet | Eac                                                | h Major Unit              |              | S C          | Graphic<br>Log         | Well<br>Diagram | PID/FID  | ompi<br>reng    | Moisture<br>Content | Liquid<br>Limit | Plasticity<br>Index | P 200  | RQD/<br>Comments    |
|                    | 60<br>60                        | В           | ۵             | PEAT, dark brow                                    | n to black (10VR          | 3/2)         |              | <u> </u>               | ΜΩ              | <u> </u> | \(\int \)       | <u> </u>            | 22              | 2 =                 | ۵      | <u> </u>            |
| CS                 | 30                              |             | -             | wet, soft.                                         | ii to black (1011k        | 3/2),        |              | 7 77                   |                 |          |                 |                     |                 |                     |        |                     |
|                    |                                 |             | -1            |                                                    |                           |              |              | 77 7                   |                 |          |                 |                     |                 |                     |        |                     |
|                    |                                 |             | -             |                                                    |                           |              |              | 12 111                 |                 |          |                 |                     |                 |                     |        |                     |
|                    | [                               | ·<br>       | 2             |                                                    |                           |              |              | 77 77<br>77 77         |                 |          |                 |                     |                 |                     |        |                     |
| ľ                  |                                 |             | E             |                                                    |                           |              |              | 示 7<br>- 二             |                 |          |                 |                     |                 |                     |        |                     |
|                    |                                 |             | -3            |                                                    |                           |              |              | 2 24                   |                 |          |                 |                     |                 |                     |        |                     |
|                    |                                 |             |               |                                                    |                           |              |              | 77 7                   |                 |          |                 |                     |                 |                     |        |                     |
|                    |                                 |             | 4<br>         |                                                    |                           |              |              | 4 11                   |                 |          |                 |                     |                 |                     |        |                     |
|                    |                                 |             | -             |                                                    |                           |              |              |                        |                 |          |                 |                     |                 |                     |        |                     |
| 2<br>CS            | 60                              |             | 5             |                                                    |                           |              |              | 77 71                  |                 |          |                 |                     |                 |                     |        |                     |
| CS                 | 55                              |             | -<br>-        |                                                    |                           |              |              | 4 11                   |                 |          |                 |                     |                 |                     |        |                     |
|                    |                                 |             | -6            |                                                    |                           |              |              | 71 7                   |                 |          |                 |                     |                 |                     |        |                     |
| Ň                  | S                               |             | -             | ORGANIC SILT                                       | (OL), with shells         | s, dark      |              |                        |                 |          |                 |                     |                 |                     |        |                     |
|                    |                                 |             | 7<br>-        | greenish gray (gle                                 | yl 4/1), wet, soft.       |              |              | 7-7-                   |                 |          |                 |                     |                 |                     |        |                     |
|                    |                                 |             | -             |                                                    |                           |              |              | 75                     |                 |          |                 |                     |                 |                     |        |                     |
|                    |                                 |             | -8            |                                                    |                           |              | OL           |                        |                 |          |                 |                     |                 |                     |        |                     |
|                    |                                 |             | -<br>-<br>- 9 |                                                    |                           |              |              | 6_                     | j               |          |                 |                     |                 |                     |        |                     |
|                    |                                 |             | -             |                                                    |                           |              |              |                        |                 |          |                 |                     |                 |                     |        |                     |
|                    |                                 |             | - 10          |                                                    |                           |              |              | 5                      |                 |          |                 |                     |                 |                     |        |                     |
|                    |                                 |             |               | E.O.B. at 10 feet b                                | gs.                       |              |              |                        |                 |          |                 |                     |                 |                     |        |                     |
| i<br>S             |                                 |             |               |                                                    |                           |              |              |                        |                 |          |                 |                     |                 |                     |        | İ                   |
| There Signa        |                                 |             |               |                                                    |                           |              |              |                        |                 |          |                 |                     |                 |                     |        |                     |
| 5                  |                                 |             |               |                                                    |                           |              |              |                        |                 |          |                 |                     |                 |                     |        |                     |
| There              | by certif                       | y that      | the info      | rmation on this form is tr                         | ie and correct to the bo  | est of my kn | owledg       | ge.                    |                 |          | -               |                     | •               |                     |        |                     |
| Signa              |                                 |             |               |                                                    |                           | IT, Inc.     |              |                        |                 |          |                 |                     |                 |                     | Tel: ( |                     |
| ,<br>              |                                 | ~~~~        |               |                                                    |                           | Heartland 1  | rail N       | /ladison,              | WI 53           | 717      | ~               |                     |                 |                     |        | 608-831-3334        |

07201DNR.GPJ WI DNR 2003.GDT 4/22/10

# SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | <u>Ro</u>      | <del></del>                     | astewater  Redevelopment              | Waste N                 | _        | ement                  |                 |         |                         |                     | Davi            | e 1                 | c                                       | 1                            |
|--------------------|---------------------------------|-------------|----------------|---------------------------------|---------------------------------------|-------------------------|----------|------------------------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|-----------------------------------------|------------------------------|
| Facili             | y/Projec                        | et Nan      | ne             |                                 |                                       | License/I               | Permit   | /Monito                | ring Nu         | ımbe    | ı.                      | Boring              | Pag<br>Numbo    | ,                   | of                                      | 1                            |
|                    | vaune                           |             |                |                                 |                                       |                         |          |                        |                 |         |                         | 3                   |                 | M5                  | В                                       |                              |
| Borin              | g Drillec                       | l By:       | Name o         | f crew chief (first, last) a    | nd Firm                               | Date Dri                | lling St | arted                  |                 | ĮÎ.     | Date Drill              | ing Con             | npleted         |                     | Drill                                   | ing Method                   |
| Toı                | ni Kap                          | ugi         |                |                                 |                                       |                         |          |                        |                 | İ       |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             |                | tal Services                    | 10                                    | - LO:                   |          | /2 <b>●</b> 1 <b>●</b> | ······          | 0 0     |                         | 3/17/2              | 2010            | 715-                |                                         | eoprobe<br>Diameter          |
| WI U               | iique W                         | ell No      | ١.             | DNR Well ID No.                 | Common Well Name                      | Final Sta               |          |                        | 21              | Surta   | ice Eleva<br>582.€      |                     | 101             | 130                 |                                         | inches                       |
| Local              | Grid Or                         | ioin        |                | <u> </u>                        | ing Location 🔯                        | <u>.</u>                | Feet l   | VISL                   |                 |         | Local (                 |                     |                 |                     | 2.1                                     | inches                       |
|                    | Plane                           | '5'''       |                | ,048 N, 2,616,501               |                                       | La                      | ι        | <u> </u>               |                 | ~~~     | -                       | 3110 130            | □ N             |                     |                                         | ΞЕ                           |
|                    | 1/4                             | oſ          |                | /4 of Section ,                 | T N, R                                | Long                    |          | 6                      | 1               |         |                         | Feet                |                 |                     | i                                       | Feet W                       |
| Facilit            |                                 |             | <del></del>    | County                          |                                       | County Co               |          | Civil T                | own/C           | ity/ o  | r Village               |                     |                 |                     |                                         |                              |
|                    |                                 |             |                | Kewaunee                        |                                       | 31                      |          | Kewa                   | unee            |         |                         |                     |                 |                     |                                         |                              |
| Sar                | nple                            |             |                |                                 |                                       |                         |          |                        |                 |         |                         | Soil                | Prope           | rties               | TO A TO A TO A TO A TO A TO A TO A TO A |                              |
|                    | s (iii                          | s           | ಕ              | Soil/R                          | ock Description                       |                         |          |                        |                 |         | ပ                       |                     |                 | İ                   |                                         |                              |
| ပ                  | cd (                            | une         | Fc.            | And Ge                          | ologic Origin For                     |                         |          |                        | _               |         | SSİV                    | 6                   |                 | >\                  |                                         | ats                          |
| iber<br>Typ        | yth /                           | Č           | II II          | Eac                             | h Major Unit                          |                         | C S      | hic                    | ran:            | FID     | ingth                   | sture               | pi j            | ticit               | 0                                       | )<br>James                   |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blow Counts | Depth In Feet  |                                 | -                                     |                         | S N      | Graphic<br>Log         | Well<br>Diagram | PID/FID | Compressive<br>Strength | Moisture<br>Content | Liquid<br>Limit | Plasticity<br>Index | P 200                                   | RQD/<br>Comments             |
| 1                  | 60                              |             | r.             | PEAT, dark brow                 | n to black (10YR                      | 3/2).                   |          | 12 2                   | - 1             |         | 0 07                    | 0                   |                 |                     |                                         | 20                           |
| CS                 | 26.4                            |             | -              | wet, soft.                      |                                       | -, -,,                  |          | 1 11                   |                 |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             | ]<br>]         |                                 |                                       |                         |          | 77 77                  |                 |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             | . <del>.</del> |                                 |                                       |                         |          | 7 77                   |                 |         |                         |                     | <b>!</b>        |                     |                                         |                              |
|                    |                                 |             | <del></del> 2  |                                 |                                       |                         |          | 77 77                  |                 |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             | -              |                                 |                                       |                         |          | 7 77                   |                 |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             | -<br>3         |                                 |                                       |                         |          | 71/ 71                 |                 |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             |                | Styrofoam cap ma                | terial observed at                    | 3 feet                  |          | 77 77                  |                 |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             | -<br>4         | bgs.                            |                                       |                         |          | 7 77                   |                 |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             |                |                                 |                                       |                         |          | 77 77                  |                 |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             | -              |                                 |                                       |                         |          | <u> </u>               |                 |         |                         |                     |                 |                     |                                         |                              |
| 2<br>CS            | 60                              |             | 5              |                                 |                                       |                         |          | 77 77                  |                 |         |                         |                     |                 |                     |                                         |                              |
| CS                 | 55                              |             | -              |                                 |                                       |                         |          | 4 24                   |                 |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             | -6             |                                 |                                       |                         |          | 77 77                  |                 |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             | -              |                                 |                                       |                         |          | 2 12                   |                 |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             | 7              |                                 |                                       |                         |          | 71 71                  |                 |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             | -              | ODCANICOLI                      | · · · · · · · · · · · · · · · · · · · |                         |          | 1, 11,                 |                 |         | E                       |                     |                 |                     |                                         |                              |
|                    |                                 |             | 8              | ORGANIC SILT greenish gray (gle | vi 4/1) wet soft                      | ,                       |          | -67-                   |                 |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             |                | groomen gray (gro               | <i>j.</i> 77, 70, 50, 50, 11          |                         |          | <u>-</u>               |                 |         |                         |                     |                 |                     |                                         |                              |
|                    | j                               |             | ()             |                                 |                                       |                         | OL       |                        |                 |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             | -<br> -        |                                 |                                       |                         |          | 26                     |                 |         |                         |                     | :               |                     |                                         |                              |
|                    |                                 |             |                |                                 |                                       |                         |          |                        |                 |         |                         |                     | :               |                     |                                         |                              |
|                    |                                 |             | 10             | E.O.B. at 10 feet l             | ogs.                                  |                         |          |                        |                 |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             |                |                                 |                                       |                         |          |                        |                 |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             |                |                                 |                                       |                         |          |                        |                 |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             |                |                                 |                                       |                         |          |                        |                 |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 |             |                |                                 |                                       |                         |          | <u> </u>               | l<br>L          |         |                         |                     |                 |                     |                                         |                              |
|                    |                                 | y that      | the info       | rmation on this form is tr      |                                       | est of my kn            | owledg   | ge.                    |                 |         |                         |                     |                 |                     |                                         |                              |
| Signat             | ure                             |             |                |                                 |                                       | IT, Inc.<br>Heartland I | rail N   | 1adison                | WL53            | 3717    |                         |                     |                 |                     |                                         | 508-831-4444<br>508-831-3334 |

07201DNR.GPJ WI DNR 2003.GDT 4/22/10

# SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | <u>Rc</u>      | oute To:      | Watershed/W<br>Remediation/ |             |                              | Waste M                 | _           | ement            |                 |         |                         |                     | D.          | 1                   | of    | 1                            |
|--------------------|---------------------------------|-------------|----------------|---------------|-----------------------------|-------------|------------------------------|-------------------------|-------------|------------------|-----------------|---------|-------------------------|---------------------|-------------|---------------------|-------|------------------------------|
| Facilit            | y/Projec                        | ct Nan      | ne             |               |                             |             |                              | License/I               | Permit/     | Monito           | ring Nu         | ımber   |                         | Boring              | Pa,<br>Numb |                     | 01    | <u>i</u>                     |
| Kev                | vaune                           | e Ma        | rsh            |               |                             |             |                              |                         |             |                  | Ü               |         |                         |                     |             | M5                  |       |                              |
|                    |                                 | -           | Name o         | ferew c       | hief (first, last) a        | nd Firm     |                              | Date Dri                | lling St    | arted            |                 | Da      | te Drilli               | ing Cor             | inpleted    |                     | Drill | ing Method                   |
|                    | ni Kap                          |             | 212122         | tal Ser       | vioos                       |             |                              |                         | 2/17        | /2010            |                 |         |                         | 3/17/2              | 2616        |                     | C     | eoprobe                      |
|                    | ique W                          |             |                |               | Well ID No.                 | Common      | Well Name                    | Final Sta               |             |                  | 3               | Surfac  | c Eleva                 |                     | 2010        | Вс                  |       | Diameter                     |
|                    | •                               |             |                |               |                             |             |                              |                         | Feet N      | MSL              |                 |         | 582.● 〕                 |                     | MSL         |                     |       | inches                       |
|                    | Grid Or                         | igin        |                |               | : 🗌 ) or Bor                |             |                              |                         |             | o                | ,               | 11      | Local C                 | orid Lo             | cation      |                     |       |                              |
| State              |                                 |             |                |               | , 2,616,512                 |             | C/N                          | La                      |             |                  |                 | 11      |                         |                     |             |                     |       | □ E                          |
| Facilit            | 1/4<br>v ID                     | of          | - 1            | /4 of Sc      | County                      | T N         | l, R                         | Long                    |             | Civil T          | /C              | ity/ or | Village                 | Feet                | ı 🗆 S       | i                   | -     | Feet D W                     |
| · uc               | ,                               |             |                |               | Kewaunee                    |             |                              | 31                      |             | Kewa             |                 | •       | , mage                  |                     |             |                     |       |                              |
| San                | nple                            |             |                |               | 1                           |             | <u>L</u>                     |                         |             |                  |                 |         |                         | Soil                | Prop        | erties              |       |                              |
|                    | 3 (E                            |             | 77             |               | Soil/R                      | ock Descri  | ption                        |                         |             |                  |                 |         | 6)                      |                     |             |                     |       |                              |
| ပ                  | Att.                            | Blow Counts | Depth in Feet  |               | And Ge                      | ologic Orig | gin For                      |                         |             |                  | _               |         | SSIV                    | .                   |             |                     |       | SILS                         |
| rber<br>Typ        | gth /                           | Č           | 4              |               | Eac                         | h Major U   | nit                          |                         | SCS         | ohic             | gram            | PID/FID | ngth                    | stura               | pi ii       | ticit               | Φ.    | )/<br>Imei                   |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blov        | Оср            |               |                             |             |                              |                         | n S         | Graphic<br>Log   | Well<br>Diagram | PID     | Compressive<br>Strength | Moisture<br>Content | Liquid      | Plasticity<br>Index | P 200 | RQD/<br>Comments             |
| 1<br>CS            | 60                              |             | -              |               | T, dark brow                | n to blac   | k (1 <b>0</b> YR 3           | /2),                    |             | 77. 77           | 1               | Ì       | İ                       | Ì                   |             |                     |       |                              |
| r<br>C2            | 26                              |             | _              | wet,          | soft.                       |             |                              |                         |             | 2 24             |                 |         |                         |                     |             | 1                   |       |                              |
|                    |                                 |             | - 1            |               |                             |             |                              |                         |             | 27 77            |                 |         |                         |                     |             |                     |       |                              |
|                    |                                 |             | _              |               |                             |             |                              |                         |             | 77 77            | ļ               | }       | )                       |                     |             |                     |       |                              |
|                    |                                 |             | 2              |               |                             |             |                              |                         |             | 1 24             |                 | ŀ       |                         | -                   |             |                     |       |                              |
|                    |                                 |             | _              |               |                             |             |                              |                         |             | 44 41            |                 |         |                         |                     |             |                     |       |                              |
|                    |                                 |             | <del>-</del> 3 |               |                             |             |                              |                         |             | 1, 11,           |                 |         |                         |                     |             |                     |       |                              |
| :                  |                                 |             | -              | Styre         | of oam cap ma               | terial pre  | esent at 3.5                 | feet                    |             | 41 11            |                 |         |                         |                     |             |                     |       |                              |
|                    |                                 |             | 4              | bgs.          | 1                           | •           |                              |                         |             | 2 11             | :               |         |                         |                     |             |                     |       |                              |
|                    |                                 |             | E              |               |                             |             |                              |                         |             | 77 77            |                 | ļ       |                         |                     |             |                     |       |                              |
| 2                  | 60                              | ļ           | -5             |               |                             |             |                              |                         |             | 77 77            |                 |         |                         |                     |             |                     |       |                              |
| CS                 | 28                              |             | -              |               |                             |             |                              |                         |             | <u> </u>         |                 |         |                         |                     |             |                     |       |                              |
|                    |                                 |             | <u>-</u> 6     |               |                             |             |                              |                         |             | 77 77            |                 |         |                         |                     |             |                     |       |                              |
|                    |                                 |             | -              |               |                             |             |                              |                         |             | 4 14             |                 |         |                         |                     |             | -                   |       |                              |
|                    |                                 |             | <del>-</del> 7 |               |                             |             |                              |                         |             | 71 71            |                 |         |                         |                     |             |                     |       |                              |
|                    |                                 |             |                |               |                             |             |                              |                         |             | 2 14             |                 |         |                         |                     |             |                     |       |                              |
|                    |                                 |             | -8             | - 55.6        |                             | 7.5.5       | سنداء ماء ماام               |                         |             | <u> </u>         |                 |         |                         |                     |             | ]                   |       |                              |
|                    |                                 |             |                | ΩICC          | GANIC SILT nish gray (gle   | v1 4/1). v  | viiii siiciis,<br>wet. soft. |                         |             |                  |                 |         |                         |                     |             |                     |       |                              |
|                    |                                 |             | 9              | <i>B.</i> 55. | 6.47 (8.4                   | ) - 11 - 75 |                              |                         | OL          |                  |                 |         |                         |                     |             |                     |       |                              |
| 4.1                |                                 |             | -              |               |                             |             |                              |                         |             |                  |                 | ]       |                         |                     |             |                     |       |                              |
| \$\$\$\$           |                                 |             | 10             |               |                             |             |                              |                         | *********** |                  |                 |         |                         |                     |             |                     |       |                              |
|                    |                                 |             |                | E.O.          | B. at 10 feet b             | igs.        |                              |                         |             |                  |                 |         |                         |                     |             |                     |       |                              |
|                    |                                 |             |                |               |                             |             |                              |                         |             |                  |                 |         |                         |                     |             |                     |       |                              |
|                    |                                 |             |                |               |                             |             |                              |                         |             |                  |                 |         |                         |                     |             |                     | 1     |                              |
|                    |                                 |             |                |               |                             |             |                              |                         |             |                  |                 |         |                         |                     |             |                     |       |                              |
| hereb              | wwwd                            | v that      | the info       | mation        | on this form is tr          | ue and corr | ect to the best              | of my kn                | ovlede      | ·                | L               | L       | .1                      | L                   | L           | L                   |       |                              |
| Signati            |                                 | <i></i>     |                |               | 10.11113 (1                 |             | I 4-3.                       | l', Inc.                |             | , <del>-</del> · |                 |         |                         |                     |             |                     | T.L.  | .//0 031 .1.11               |
| 4                  |                                 |             |                |               |                             |             | 1 17171                      | i , inc.<br>leartland T | `rail N     | ladison,         | . WI 53         | 1717    |                         |                     |             |                     |       | 608-831-4444<br>608-831-3334 |

07201DNR.GPJ WI ONR 2003.GDT 4/22/10

# SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | <u>Ro</u>      | ute To:    |                               | astewater [] Redevelopment [] |                | Waste N   | _          | ement              |                                              |          |                         |                     |          |                     |     |                              |
|--------------------|---------------------------------|-------------|----------------|------------|-------------------------------|-------------------------------|----------------|-----------|------------|--------------------|----------------------------------------------|----------|-------------------------|---------------------|----------|---------------------|-----|------------------------------|
|                    |                                 |             |                |            | Remediation                   | Redevelopment $\square$       | J              | Office    |            |                    |                                              |          |                         |                     | Pag      | e 1                 | of  | 1                            |
|                    | y/Projec                        |             |                |            |                               |                               | 1.             | icense/l  | Permit/    | /Monito            | ring Nu                                      | mber     |                         | Boring              |          | er                  |     |                              |
|                    | vaune<br>Drille                 |             |                | ferew chi  | of (first, last) ar           | nd Firm                       |                | Date Dril | ling St    | arted              |                                              | Dat      | e Drilli                | ng Con              | noleted  | M5                  |     | ing Method                   |
| Dus                | ty Ha                           | rvey        |                |            |                               |                               |                |           |            |                    |                                              |          |                         |                     |          |                     |     |                              |
|                    | Site E                          |             |                | tal Servi  | ices<br>/ell ID No.           | Common Well Nar               | me F           | inal Stat |            | /2009<br>ter Leve  | 1 (                                          | Surface  | e Elevat                | 1 2/8/2<br>ion      | 2009     | Во                  |     | eoprobe<br>Diameter          |
|                    | •                               |             |                |            |                               |                               |                |           | Feet 1     |                    |                                              | 5        | 82. <b>●</b> I          | Feet N              |          |                     |     | inches                       |
| ocal<br>State      | Grid Or<br>Plane                | rigin       |                |            | 2,616,521                     | ing Location 🔯<br>E S/C/N     |                | Lat       | i          | •                  | ·                                            | ;ı       | Local C                 | irid Loc            | cation   | ı                   |     | □ в                          |
|                    | 1/4                             | oſ          |                | /4 of Sect | ion ,                         | T N, R                        |                | Long      |            | 0                  | *                                            | *1       |                         | Feet                |          |                     |     | Feet W                       |
| Facilit            | y ID                            |             |                | 1          | County<br>Kewaunee            |                               | Co             | unty Cod  | de         | Civil To<br>Kewa   |                                              | ly/ or \ | /illage                 |                     |          |                     |     |                              |
| San                | nple                            |             |                |            | ice watinee                   |                               | 121            |           |            | IXCVI              |                                              | •        |                         | Soil                | Prope    | erties              |     |                              |
|                    | 4                               | Ŋ           | ા              |            | Soil/R                        | ock Description               |                |           |            |                    |                                              |          | ည                       |                     |          |                     |     |                              |
| ۳<br>و             | Att.<br>red (                   | ount        | n Fe           |            |                               | ologic Origin For             |                |           | S          |                    | E 1                                          | Ω        | essiv<br>h              | ا تو<br>ا           |          | <u>&gt;</u>         |     | ents                         |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blow Counts | Depth In Feet  |            | Eac                           | h Major Unit                  |                |           | SC         | Graphic<br>Log     | Wcll<br>Diagram                              | PID/FID  | Compressive<br>Strength | Moisture<br>Content | Liquid   | Plasticity<br>Index | 200 | RQD/<br>Comments             |
|                    | 00<br>  \( \times \)            | B           | Į Č            | PEAT       | `. with organ                 | nics (wood and r              | oot            |           |            | 77. 77<br>10 7     | <u>≭                                    </u> | Ч        | 2 2                     | ≥ ∪                 | <u> </u> | <u> </u>            |     |                              |
| l<br>CS            | 12                              |             | 1 1 1          |            |                               | 1 <b>1 0</b> YR 3/2, moi      |                | ft.       |            | 4 34               |                                              |          |                         |                     |          |                     |     |                              |
|                    |                                 |             |                |            |                               |                               |                |           |            | 77. 77.<br>77. 77. |                                              |          |                         |                     |          |                     |     |                              |
|                    |                                 |             | -<br>- 2       |            |                               |                               |                |           |            | 21/ 21             |                                              |          |                         |                     |          |                     |     |                              |
|                    |                                 |             |                |            |                               |                               |                |           |            | 2 11               |                                              |          |                         |                     |          |                     |     |                              |
|                    |                                 |             | -<br>- 3       |            |                               |                               |                |           |            | 77 77              |                                              |          |                         |                     |          |                     |     |                              |
|                    |                                 |             | -              |            |                               |                               |                |           |            | 77 77<br>7 77      |                                              |          |                         |                     |          |                     |     |                              |
|                    |                                 |             | 4              |            |                               |                               |                |           |            | 1 11               |                                              |          | :                       |                     |          |                     |     |                              |
| ,                  |                                 |             | -              |            |                               |                               |                |           |            | 77 7               |                                              |          |                         |                     |          |                     |     |                              |
| 2                  | 60                              |             | -<br>5         |            |                               |                               |                |           |            | 2 24               |                                              |          |                         |                     |          |                     |     |                              |
| 2<br>CS            | 48                              |             | -              |            |                               |                               |                |           |            | 77 77              |                                              |          |                         |                     |          |                     |     |                              |
|                    |                                 |             | - 6            |            |                               |                               |                |           |            | 27 77              |                                              |          |                         |                     |          |                     |     |                              |
| ٠.                 |                                 |             | -              |            |                               |                               |                |           |            | 1 14               |                                              |          |                         |                     |          |                     |     |                              |
|                    |                                 |             | <del></del> 7  |            |                               |                               |                |           |            | 24 2               |                                              |          |                         |                     |          |                     |     |                              |
|                    |                                 |             |                |            |                               |                               |                |           |            | 77.77              |                                              |          |                         |                     |          |                     |     |                              |
|                    |                                 |             | <del>-</del> 8 |            |                               |                               |                |           |            | 1/2/1/2            |                                              |          |                         |                     |          |                     |     |                              |
|                    |                                 |             | -<br>()        |            |                               | (OL), with shell              |                |           | ··· ··· ·· | 6                  |                                              |          |                         |                     |          |                     |     |                              |
| I                  |                                 |             | y<br>          | 1race 0    | organics, dar<br>noist, soft. | k greenish gray               | GLE            | Υl        | OL         | [-G                |                                              |          |                         |                     |          |                     |     |                              |
|                    |                                 |             | 1()            |            |                               |                               |                |           |            | F-G                |                                              |          | <u> </u><br>            |                     |          |                     |     |                              |
|                    |                                 |             |                |            |                               |                               |                |           |            |                    |                                              |          |                         |                     |          |                     |     |                              |
|                    |                                 |             |                |            |                               |                               |                |           |            |                    |                                              |          |                         |                     |          |                     |     |                              |
|                    |                                 |             |                |            |                               |                               |                |           |            |                    |                                              |          |                         |                     |          |                     |     |                              |
| (I                 |                                 | 1:          |                |            | a della Carro de de           |                               |                | · · · ·   |            | 1                  |                                              |          |                         |                     |          |                     |     |                              |
| heret<br>Signat    |                                 | y that      | the info       | rmation or | n this form is tr             | ue and correct to the         |                |           | owled      | ge.                |                                              |          |                         |                     |          |                     |     | 5 (10 02 L 5 L 5 L 5 L       |
| ٠٠                 |                                 |             |                |            |                               | , ,                           | RMT,<br>744 He | artland T | raíl N     | 1adison            | . WI 53                                      | 717      |                         |                     |          |                     |     | 508-831-4444<br>508-831-3334 |

07201DNR.GPJ WLONR 2003.GDT 4/22/10

# SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | Ro            | ute To:                                | Watershed/V         | Vastewater   /Redevelopment | Waste<br>Other | _                  | ement                                  |                 |         |                         |                     |         |                     |       |                       |
|--------------------|---------------------------------|-------------|---------------|----------------------------------------|---------------------|-----------------------------|----------------|--------------------|----------------------------------------|-----------------|---------|-------------------------|---------------------|---------|---------------------|-------|-----------------------|
|                    |                                 |             |               |                                        | remediation         | Acceptation 1               | Other          |                    |                                        |                 |         |                         |                     | Pag     | e 1                 | of :  | 2                     |
|                    | ty/Projec                       |             |               |                                        |                     |                             | License        | /Permit            | /Monito                                | ring Nu         | ımber   |                         | Boring              | Numbe   | er.                 |       |                       |
|                    | wauned                          |             |               | ferew ch                               | icf (first, last) a | and Firm                    | Date D         | rilling S          | tarted                                 |                 | IDa     | ıte Drilli              | no Cor              | mileted | M5                  |       | ing Method            |
|                    | ni Kap                          |             | vaine o       | rerew en                               | ici (ilist, iast) t |                             |                | i iiiiig 3         | itii teti                              |                 |         |                         | ng cor              | пристес |                     |       | m <sub>5</sub> wellou |
| On                 | -Site E                         | inviro      |               | tal Serv                               |                     |                             |                |                    | 7/2010                                 |                 |         |                         | 3/17/2              | 2010    | 700                 |       | eoprobe               |
| WI U               | nique W                         | 'ell No     | ).            | DNR V                                  | Vell ID No.         | Common Well Name            | e  Final S     | tatic Wa<br>  Feet | iter Leve                              | el              |         | e Elevai<br>582.● l     |                     | 121     | Bo                  |       | Diameter inches       |
| Local              | Grid Or                         | rigin       |               |                                        |                     | ring Location 🛛             | <u></u>        | 1 CCL              | 0                                      | !               |         | Local C                 |                     |         | 1                   |       | menes                 |
| State              | Plane                           |             |               |                                        | 2,616,528           | E S/C/N                     |                | at                 |                                        | <u>.</u>        |         |                         |                     |         |                     |       | Ξε                    |
| Facili             | 1/4                             | oſ          | l             | /4 of Sec                              | tion ,<br>County    | T N, R                      | Lo             | ng                 | Civil T                                |                 |         | Villane                 | Feet                | [] S    |                     |       | Feet W                |
| racm               | ly 11)                          |             |               | 1                                      | Kewaunee            |                             | 31             | ode                | Kewa                                   |                 |         | village                 |                     |         |                     |       |                       |
| Sai                | nple                            |             |               | 1                                      |                     |                             | 1              |                    | 1                                      |                 |         |                         | Soil                | Prope   | erties              |       |                       |
|                    | 3.E                             | s           | <br>  ;       |                                        | Soil/F              | Rock Description            |                |                    |                                        |                 |         | v                       |                     |         |                     |       |                       |
| . ပ္               | Att.                            | ount        | ء<br>1        |                                        | And G               | cologie Origin For          |                |                    |                                        | _               |         | ssiv                    | ပ                   |         | 25                  |       | SIE                   |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blow Counts | Depth In Feet |                                        | Ea                  | ch Major Unit               |                | SCS                | Graphic<br>Log                         | Well<br>Diagram | PID/FID | Compressive<br>Strength | Moisture<br>Content | Liquid  | Plasticity<br>Index | 200   | RQD/<br>Comments      |
| a Nu               |                                 | <br> Blo    |               | ······································ | ·······             |                             |                | 2                  | Gran                                   | y ig            |         | Str                     | \$ ⊙                | Liquid  | Plastic<br>Index    | P 2   | <u> </u>              |
| 1<br>CS            | 60<br>30                        |             | -             | PEA'l wet, s                           | <b>r,</b> dark brov | vn to black (10YR           | 3/2),          |                    | 77. 7.                                 |                 |         |                         |                     |         |                     |       |                       |
|                    |                                 |             | 1             | wei, a                                 | ort.                |                             |                |                    | 11/1                                   |                 |         |                         |                     |         |                     |       |                       |
|                    |                                 |             | -             |                                        |                     |                             |                |                    | <u>, v,</u>                            |                 |         |                         |                     |         |                     |       |                       |
|                    |                                 |             | <br>2         |                                        |                     |                             |                |                    | 71 7                                   |                 |         |                         |                     |         |                     |       |                       |
|                    |                                 |             | -             |                                        |                     |                             |                |                    | 1 11                                   |                 |         |                         |                     |         |                     |       |                       |
|                    |                                 |             | 3             |                                        |                     |                             |                |                    | 7 77 7                                 |                 |         |                         |                     |         |                     |       |                       |
|                    |                                 |             | -             |                                        |                     |                             |                |                    | 77 7                                   |                 |         |                         |                     |         |                     |       |                       |
|                    |                                 |             | 4             |                                        |                     |                             |                |                    | <u> </u>                               |                 |         |                         |                     |         |                     |       |                       |
|                    |                                 |             | <br>-         |                                        |                     |                             |                |                    | 77. 7                                  |                 |         |                         |                     |         |                     |       |                       |
| 2                  | 60                              |             | 5<br>5        |                                        |                     |                             |                |                    | 7 77                                   |                 |         |                         |                     |         |                     |       |                       |
| CS                 | 60                              |             | -             |                                        |                     |                             |                |                    | 7 77<br>77 7                           |                 |         |                         |                     |         |                     |       |                       |
|                    |                                 |             | -6            |                                        |                     |                             |                |                    | 77 7                                   |                 |         |                         |                     |         |                     |       |                       |
|                    |                                 |             | -<br>-        |                                        |                     |                             |                |                    | 1, 11,                                 |                 |         |                         |                     |         |                     |       |                       |
|                    |                                 |             | 7<br>-        |                                        |                     |                             |                |                    | 77. 7                                  | 1               |         |                         |                     |         |                     |       |                       |
|                    |                                 |             | -             | ŌRG                                    | ĀNĪC SĪL            | Γ (OL), with shel           | ls, dark       |                    | <u> </u>                               |                 |         |                         |                     |         |                     |       |                       |
|                    |                                 |             | 8<br>-        | green                                  | ish gray (gle       | eyl 4/1), wet, soft         |                |                    |                                        |                 |         |                         |                     |         |                     |       |                       |
|                    |                                 |             | -             |                                        |                     |                             |                |                    | 7-G                                    |                 | 1       |                         |                     |         |                     |       |                       |
|                    |                                 |             | 9<br>         |                                        |                     |                             |                |                    | -6                                     |                 |         |                         |                     |         |                     |       |                       |
|                    |                                 |             | -             |                                        |                     |                             |                | OL                 | -6-                                    |                 |         |                         |                     |         |                     |       |                       |
| 3<br>CS            | 60<br>60                        |             | [()<br>       |                                        |                     |                             |                |                    | -0-                                    |                 |         |                         |                     | -       |                     |       |                       |
| CJ                 |                                 |             | -<br>-<br>] ] |                                        |                     |                             |                |                    | -G-                                    |                 |         |                         |                     |         |                     | , !   |                       |
|                    |                                 |             | - ''          |                                        |                     |                             |                |                    | -G                                     |                 |         |                         |                     |         |                     |       |                       |
|                    |                                 |             | -<br><br>12   |                                        |                     |                             |                |                    | 75                                     | ]               |         |                         |                     |         |                     |       |                       |
| l here             | by certif                       | y that      | 1             | rmation o                              | on this form is t   | rue and correct to the      | best of my l   | nowled             | ge.                                    |                 | !       | 1                       | 1                   | ı       | ŧ                   |       | <u> </u>              |
| Signa              |                                 |             |               |                                        |                     | Long                        | MΓ. Inc.       |                    | ······································ |                 |         |                         |                     |         |                     | Tel-7 | 608-831-4444          |
|                    |                                 |             |               |                                        |                     |                             | 4 Heartland    | Trail N            | Madison                                | . WL51          | 3717    |                         |                     |         |                     |       | 608-831-3334          |

Form 44()()-122A

| Boring Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M5            | Use only as an attachment to Form 4400-1                                                                                                                                                                                                                        | 22             |                                        |                 |         |                         |                     | Pag             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of :  | 2                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------|-----------------|---------|-------------------------|---------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------|
| Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                                                                                                 |                |                                        |                 |         |                         | Soil                | Prope           | rties                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                  |
| Number<br>and Type<br>Length Att. &<br>Recovered (in)<br>Blow Counts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Depth in Feet | Soil/Rock Description<br>And Geologie Origin For<br>Each Major Unit                                                                                                                                                                                             | USCS           | Graphic Log                            | Well<br>Diagram | PID/FID | Compressive<br>Strength | Moisture<br>Content | Liquid<br>Limit | Plasticity<br>Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P 200 | RQD/<br>Comments |
| Ni am am and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second and a second a second and a second and a second and a second and a second and a second and a second and a second and a second and a second | 13            | SANDY LEAN CLAY WITH GRAVEL (CL), medium grained sand, small to medium gravel, redish brown gray (2.5YR 4/2), wet, moderately stiff.  POORLY GRADED GRAVEL (GP), with clay, small to medium gravel, redish brown gray (2.5YR 4/2), wet.  E.O.B. at 15 feet bgs. | OL<br>CL<br>GP | 15   0   0   0   0   0   0   0   0   0 | W. Di           | ld      | CC Str                  | M, CC               | Li              | NI CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACT | P     | <u> </u>         |
| WDNR SBL 1996 07201DNR.GPJ W! DNR 2003.GDT 4/22/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                                                                                                                                                                                                                                 |                |                                        |                 |         |                         |                     |                 | AND AND AND AND AND AND AND AND AND AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                  |
| WDNR SBL 1998 07201DNR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                                                                                                                                                                                                                                                                 |                |                                        |                 |         |                         |                     |                 | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |       | 38               |

07201DNR.GPJ WI DNR 2003.GDT 4/22/10

# SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |                | Ro            | Watershed/W<br>Remediation/l | astewater 🔲<br>Redevelopment [ |        | Waste M                 | _                | ement            |                 |         |         |          |                     |           |                     |              |                              |
|--------------------|---------------------------------|----------------|---------------|------------------------------|--------------------------------|--------|-------------------------|------------------|------------------|-----------------|---------|---------|----------|---------------------|-----------|---------------------|--------------|------------------------------|
|                    |                                 |                |               |                              |                                |        |                         |                  |                  |                 |         |         |          |                     |           |                     | o <b>ſ</b> ` | 1                            |
|                    | y/Projec<br>waune               |                |               |                              |                                |        | License/F               | ormit/           | Monito           | ring Nu         | ımbe    | er.     | !        | Boring              | g Numb    | oer<br>M:           | 5 IZ         |                              |
|                    |                                 |                |               | ferew chief (first, last) ar | nd Firm                        |        | Date Dril               | lling St         | arted            |                 | I       | Date E  | Orilli   | ng Coi              | npletec   |                     |              | ling Method                  |
|                    | ni Kapı<br>-Site E              |                | onmen         | tal Services                 |                                |        |                         | 3/17             | /2010            |                 |         |         | _        | 3/17/               | 2010      |                     | G            | eoprobe                      |
|                    | nique W                         |                |               |                              | Common Well N                  | ame    | Final Stat              | tic Wa           | er Leve          |                 | Surf    | ace El  | levat    | ion                 |           | В                   | orchole      | Diameter<br>inches           |
| Local              | Grid Or                         | ioin           | ☐ (es         | stimated: 🗌 ) or Bori        | ing Location 🔯                 |        | <u> </u>                | Feet I           |                  | -               |         |         |          | Feet Norid Lo       |           | <u> </u>            | 2.1          | inches                       |
|                    | Plane                           |                | 243           | ,975 N, 2,616,552            | E S/C/N                        |        | Lat                     | l                | <u> </u>         |                 |         | -       | • 0      |                     | []        |                     |              | О€                           |
| D . 30             | 1/4                             | oſ             | 1             | , ,                          | T N, R                         | 17     | Long                    |                  | -                |                 |         | \/:II.  |          | Fee                 |           | <u> </u>            |              | Feet [] W                    |
| Facilit            | y ID                            |                |               | County<br>Kewaunee           |                                |        | County Cod<br>31        | de               | Civil To<br>Kewa |                 | -       | ı. VIII | age      |                     |           |                     |              |                              |
| San                | nple                            |                | 1             | *                            |                                |        |                         |                  |                  |                 |         |         |          | Soil                | Prop      | erties              |              |                              |
|                    | 3) (E                           | ν <sub>0</sub> | , n           | Soil/Re                      | ock Description                |        |                         |                  |                  |                 |         |         | ,        |                     |           |                     |              |                              |
| ပ                  | od ()                           | unts           | F.            | And Go                       | ologic Origin For              |        |                         |                  |                  |                 |         | 3818    | 2        | ٠,                  |           | >,                  |              | st.                          |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blow Counts    | Depth In Fect | Eac                          | h Major Unit                   |        |                         | CS               | Graphic<br>Log   | WcII<br>Diagram | PID/FID | i i     | Strength | Moisture<br>Content | nid<br>ii | Plasticity<br>Index | 200          | RQD/<br>Conninents           |
| Nun                | Len                             | Blo            | Оср           |                              |                                |        |                         | S O              | Gra              | Wel             | PID     | 1 E     | Stre     | Con Moi.            | Liquid    | Plastic<br>Index    | p 2(         | [50]                         |
| I<br>CS            | 60<br>30                        |                | -             | PEAT, dark brow              | n to black (10                 | YR 3   | /2),                    |                  | 京 立              |                 | 1       |         |          |                     |           |                     |              |                              |
| CS                 | .,()                            |                | - (           | wet, soft                    |                                |        |                         |                  | 77 77<br>7 77    |                 |         |         |          |                     |           |                     |              | 1                            |
|                    |                                 |                |               |                              |                                |        |                         |                  | 7 77             |                 |         |         |          |                     |           |                     |              |                              |
|                    |                                 |                | - 3           |                              |                                |        |                         |                  | 77. 77.          |                 |         |         |          |                     | }         |                     |              |                              |
| 77<br>77           |                                 |                | 2<br>         |                              |                                |        |                         |                  | 4 34             |                 |         |         |          |                     |           |                     |              |                              |
|                    |                                 |                |               | Styrofoam cap ma             | terial present a               | ıt 2.5 | feet                    |                  | 71 71            |                 |         |         |          |                     |           |                     |              |                              |
|                    |                                 |                | 3<br>         | bgs.                         |                                |        |                         |                  | <u> </u>         |                 |         |         |          |                     |           |                     |              |                              |
|                    |                                 |                | - 4           |                              |                                |        |                         |                  | 77 77<br>77 77   |                 |         |         |          |                     |           |                     |              |                              |
|                    |                                 |                | 4             |                              |                                |        |                         |                  | 77 77            |                 |         |         |          |                     |           |                     |              |                              |
|                    |                                 |                |               |                              |                                |        |                         |                  | 1, 11,           |                 |         |         |          |                     |           |                     |              |                              |
| 2<br>CS            | 60<br>60                        |                | 5<br>         |                              |                                |        |                         |                  | 쓰 쓰              |                 |         |         |          |                     |           |                     |              |                              |
| CS                 | 00                              |                | - ,           |                              |                                |        |                         |                  | 12 VV            |                 |         |         |          |                     |           |                     |              |                              |
| 2:                 |                                 |                | ()            |                              |                                |        |                         |                  | 77 77            |                 |         |         |          |                     |           |                     |              |                              |
|                    |                                 |                | -<br>-7       |                              |                                |        |                         |                  | 77 77            |                 |         |         |          |                     |           |                     |              |                              |
|                    |                                 |                | - '           |                              |                                |        |                         |                  | 2 24             |                 |         |         |          |                     |           |                     |              |                              |
| :                  |                                 |                | -<br>- 8      |                              |                                |        |                         | L                | 77 77            |                 |         |         |          |                     |           |                     |              |                              |
|                    |                                 |                | -             | ORGANIC SILT                 |                                | reenis | sh                      |                  | -6               |                 |         |         |          |                     |           |                     |              |                              |
|                    |                                 |                | - 9           | gray (gleyl 4/1), w          | ei, som                        |        |                         | OL               | <u> </u>         |                 |         |         |          |                     |           |                     |              |                              |
|                    |                                 |                | -             |                              |                                |        |                         | OL               | 7                |                 |         |         |          |                     |           |                     |              |                              |
|                    |                                 |                | 10            |                              |                                |        |                         |                  | 2                |                 |         |         |          |                     |           |                     |              |                              |
|                    |                                 |                | - 10          | E.O.B. at 10 feet b          | gs.                            |        |                         |                  |                  |                 |         |         |          |                     |           |                     |              |                              |
|                    |                                 |                |               |                              |                                |        | <b>!</b>                |                  |                  |                 |         |         |          |                     |           |                     |              |                              |
|                    |                                 |                |               |                              |                                |        |                         |                  |                  |                 |         |         |          |                     |           |                     |              |                              |
|                    |                                 |                |               |                              |                                |        |                         |                  |                  |                 |         |         |          |                     |           |                     |              |                              |
| l berek            | N certif                        | v that         | the info      | rmation on this form is tr   | ie and correct to the          | he hee | Lof my ko               | اسسس<br>میرادیا، | .c               | L               | 1       |         |          |                     |           |                     | 1            | <u></u>                      |
| Signat             | •                               | ,              |               |                              |                                |        | T, Inc.                 |                  |                  |                 |         |         |          |                     | ·····     |                     | Tal          | 608-831-4444                 |
|                    |                                 |                |               |                              |                                |        | i , inc.<br>feartland T | rail M           | ladison,         | , WI 53         | 3717    |         |          |                     |           |                     |              | 608-831-4444<br>608-831-3334 |

07201DNR,GPJ WIDNR 2003.GDT 4/22/10

# SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                        |                     | Ro            | ute To:                |                        | Vastewater []<br>/Redevelopmen |            | Waste Modern | _               | ement                                  |                 |         |                         |                     |                 |                     |     |                              |
|--------------------|----------------------------------------|---------------------|---------------|------------------------|------------------------|--------------------------------|------------|--------------|-----------------|----------------------------------------|-----------------|---------|-------------------------|---------------------|-----------------|---------------------|-----|------------------------------|
|                    |                                        |                     |               |                        | Kemediation            | Acedevelopmen                  | IL t       | Other        | L)              |                                        |                 |         |                         |                     | Pag             | ne 1                | oſ  | 1                            |
|                    | ty/Proje                               |                     |               |                        | , , , , ,              |                                |            | License/I    | ermit/          | Monito                                 | ring Nu         | mber    |                         | Boring              |                 | er                  |     |                              |
|                    | waune                                  |                     |               | f crow of              | nicf (first, last) a   | and Eiras                      |            | Date Dri     | lina Si         | arted                                  |                 |         | e Drilli                | na Con              | mleted          | M                   |     | ing Method                   |
|                    | ni Kap                                 |                     | ivanic o      | I CICW CI              | ner (i ii st, iast) t  | ind i iiii                     |            | Date Dil     | ming of         | arteti                                 |                 | 150     | IC 1511111              | ng Con              | пристес         |                     |     | mg wethou                    |
| On                 | -Site E                                | Snviro              |               | tal Serv               | vices<br>Well ID No.   | [Common We                     | II Ni      | Final Sta    |                 | <b>/2€1€</b>                           | .1 1            | C F     | e Elevat                | 3/17/2              | 2010            | 10.5                |     | eoprobe<br>Diameter          |
| WIO                | nique v                                | ven no              | ٠.            | DINK                   | WCII 317 NO.           | Common we                      | ıı Name    | l            | uc wa<br>Feet I |                                        | 31              |         | 82.0 I                  |                     | 1SL             | 150                 |     | inches                       |
|                    | Grid O                                 | rigin               |               |                        | ) or Bo                |                                |            | La           |                 | •                                      |                 | п       | Local C                 | irid Loc            |                 |                     |     |                              |
| State              | Plane<br>1/4                           | of`                 |               | ,•• / 1N,<br>/4 of`Sec | , 2,616,581<br>etion , | E S/C/1 T N, R                 |            | Long         |                 | 0                                      |                 |         |                         | Feet                |                 | !                   | ı   | E Feet W                     |
| Facilit            |                                        | <u> </u>            |               |                        | County                 |                                | (          | County Co    |                 | Civil T                                |                 | ly/or \ | /illage                 |                     |                 |                     |     |                              |
| Sar                | nple                                   | 1                   | ı             | i                      | Kewaunee               |                                |            | 31           |                 | Kewa                                   | unce            |         | ŀ                       | Soil                | Prope           | ortine              |     |                              |
| 341                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                     |               |                        | Soil/E                 | Rock Descriptio                | n          |              |                 |                                        |                 |         | ļ                       | 2011                | Ττορι           | Ji iles             |     |                              |
| ေ                  | 411. 8<br>ed (i)                       | ounts               | 1 Fee         |                        |                        | cologic Origin I               |            |              |                 |                                        | _               |         | ssive                   | ى<br>ن              |                 | 7                   |     | nts                          |
| Number<br>and Type | Length Att. &<br>Recovered (in)        | Blow Counts         | Depth In Feet |                        | Ea                     | ch Major Unit                  |            |              | SCS             | Graphic 12 Log                         | Well<br>Diagram | PID/FID | Compressive<br>Strength | Moisture<br>Content | Liquid<br>Limit | Plasticity<br>Index | 200 | RQD/<br>Comments             |
| a Z<br>I           | 2 2<br>48                              | Ĭ<br>M              | ŭ             | DEA                    | T, dark brov           |                                | 103/13/2   | (2)          | 30              | 53                                     | Well            | PIE     | Str                     | Σိပိ                | ig i            | Pla                 | 다.  | )                            |
| 2<br>CS            | 48<br>24                               |                     |               | wet, s                 |                        | <b>r (OL), w</b> ith           | ı shells,  | clark (      | OL.             |                                        |                 |         |                         |                     |                 |                     |     |                              |
| here               | l<br>by certi                          | <u>Í</u><br>fy that | the info      | rmation c              | on this form is t      | rue and correct                | to the bes | t of my kn   | owleds          | <u> </u><br>30.                        |                 |         |                         |                     |                 |                     |     |                              |
| Signa              |                                        | <u>-</u>            |               |                        |                        | Fir                            | m RM       | T, Inc.      |                 | ······································ | . WI 53         | 717     | ·····                   |                     |                 |                     |     | 508-831-4444<br>508-831-3334 |

07201DNR.GPJ WI DNR 2003.GDT 4/22/10

# SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | <u>R</u> c    | oute To:  |                                   | Vastewater   /Redevelopment |                                         | Waste M<br>Other | _            | ement          |                 |          |                          |                     |          |                     |         |                              |
|--------------------|---------------------------------|-------------|---------------|-----------|-----------------------------------|-----------------------------|-----------------------------------------|------------------|--------------|----------------|-----------------|----------|--------------------------|---------------------|----------|---------------------|---------|------------------------------|
|                    |                                 |             |               |           |                                   |                             |                                         |                  |              |                |                 |          |                          |                     | Pag      |                     | of      | 1                            |
|                    | y/Proje                         |             |               |           |                                   |                             | Li                                      | icense/l         | ermit/       | 'Monito        | ring No         | .imbo    | er.                      | Boring              | Numb     |                     | ריזי    |                              |
|                    | waune                           |             |               | Causin    | chief (first, last) a             | 1 12:                       | 15                                      |                  | II: C4       |                |                 | - 11     | Data Dri                 | lling Cor           | andatad  | M.7                 |         | ing Method                   |
|                    |                                 |             | Name o        | or crew o | emer (msi, iasi) a                | ind Film                    | טן                                      | ate Dri          | ning Si      | arted          |                 | '        | Jaic IJH                 | illig Col           | приссес  |                     | ווו ועו | ing wicthou                  |
|                    | n Kap<br>-Site F                |             | onmen         | ıtal Se   | rvices                            |                             |                                         |                  | 3/17         | /2010          |                 |          |                          | 3/17/2              | 2010     |                     | G       | eoprobe                      |
|                    | nique W                         |             |               |           | Well ID No.                       | Common Well Nam             | ne Fi                                   | inal Sta         |              |                |                 | Surf     | ace Elev                 |                     |          | Во                  |         | Diameter                     |
|                    |                                 |             |               |           |                                   |                             |                                         | ]                | Feet N       | ИSL            |                 |          |                          | Feet N              |          |                     | 2.1     | inches                       |
|                    | Grid Oı                         | igin        |               |           | d: 🔲 ) or Bor                     |                             |                                         |                  |              | 0              | ,               |          | " Local                  | Grid Lo             |          |                     |         |                              |
| State              | Plane                           |             |               | -         | N, 2,616,623                      |                             |                                         | La               |              |                |                 |          |                          |                     |          |                     |         | ЭЕ                           |
| Facilit            | 1/4                             | oſ          |               | 1/4 of S  | County ,                          | T N, R                      | - ICou                                  | Long<br>Inty Co  |              | Civil T        |                 | ity/ c   | <u>-  </u><br>or Village |                     | S        |                     |         | Feet [] W                    |
| raciiii            | y II)                           |             |               |           | Kewaunee                          |                             | 31                                      | -                | i            | Kewa           |                 | -        | a villagi                | •                   |          |                     |         |                              |
| Sar                | nple                            |             | 1             |           | Rewaunce                          |                             | 131                                     |                  |              | Itewa          |                 |          | -                        | Soil                | Propo    | erties              |         |                              |
| Dar                |                                 |             |               |           | C ~ 3 / D                         | Rock Description            |                                         |                  |              |                |                 |          |                          | 1                   | 1100     |                     | ,       |                              |
|                    | t. &                            | nts         | eet           |           |                                   | •                           |                                         |                  |              |                |                 |          | ive                      |                     |          |                     |         | <b>√</b> :                   |
| cr<br>ype          | At<br>erec                      | Cou         | In I          |           |                                   | cologic Origin For          |                                         |                  | S            | 22             | <br>            | <u>_</u> | ress                     | 티                   |          | ly                  |         | )Cmir                        |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blow Counts | Depth In Feet |           | Eac                               | ch Major Unit               |                                         |                  | SC           | Graphic<br>Log | Well<br>Diagram | חויו/חום | Compressive              | Moisture<br>Content | Liquid   | Plasticity<br>Index | P 200   | RQD:<br>Comments             |
|                    | 7 %                             | 133         | Ĭ             | 1 7077    | A (T) 1 1 1                       | . 11 1 (1037)               | 2 (2)                                   |                  | =            | 177 7<br>12 7  | <u> ≱ö</u>      | <u> </u> | :   0 0                  | i ∑ŭ                | ב בו     | 교표                  | ۵.      | <u> </u>                     |
| CS :               | 48<br>24                        |             | -             |           | <b>A I ,</b> dark brow<br>, soft. | n to black (10YF            | R 3/2,                                  | ),               |              | 12 N.7         |                 |          |                          |                     |          |                     |         |                              |
|                    |                                 |             | <u>-</u>      | WCL       | , 3011.                           |                             |                                         |                  |              | 77 7           |                 |          |                          |                     |          |                     |         |                              |
|                    |                                 |             | - '           |           |                                   |                             |                                         |                  |              | 1, 11,         |                 |          |                          |                     |          |                     |         |                              |
|                    |                                 |             | - ,           |           |                                   |                             |                                         |                  |              | 11 1           |                 |          |                          |                     |          |                     |         |                              |
|                    |                                 |             | _2            |           |                                   |                             |                                         |                  |              | 1, 11,         |                 |          |                          |                     |          |                     |         |                              |
|                    |                                 |             | -             |           |                                   |                             |                                         |                  |              | 71/            |                 |          |                          |                     |          |                     |         |                              |
|                    |                                 |             | -3            |           |                                   |                             |                                         |                  |              | 7 77           |                 |          |                          |                     |          |                     |         |                              |
|                    |                                 |             | -             |           |                                   |                             |                                         |                  |              | 41 7           |                 |          |                          |                     |          |                     |         |                              |
| 2                  | 48                              |             | 4<br>         |           |                                   |                             |                                         |                  |              | 1 11           |                 |          |                          |                     |          |                     |         |                              |
| 2<br>CS            | 24                              |             | -             |           |                                   |                             |                                         |                  |              | 71 7           | 1               |          |                          |                     |          |                     |         |                              |
|                    |                                 |             | -<br>5        |           |                                   |                             |                                         |                  |              | 1. 11.         |                 |          |                          |                     |          |                     |         |                              |
|                    |                                 |             | -             | ļ         |                                   |                             |                                         |                  |              | 77 77          | 1               |          |                          |                     |          |                     |         |                              |
|                    |                                 |             | - ()          |           |                                   |                             |                                         |                  |              | 1, 11,         |                 |          |                          |                     |          | ]                   |         |                              |
|                    |                                 |             |               |           |                                   |                             |                                         |                  |              | 77 7           |                 |          | -                        |                     |          |                     |         |                              |
|                    |                                 |             |               |           |                                   |                             |                                         |                  |              | 7 VV           |                 |          |                          |                     |          |                     |         |                              |
|                    |                                 |             | 7<br>-        |           |                                   |                             |                                         |                  |              | 27.7           |                 |          |                          |                     |          |                     |         |                              |
|                    |                                 |             |               |           |                                   |                             |                                         |                  |              | 77 77<br>7 77  |                 |          |                          |                     |          |                     |         |                              |
|                    | 1                               |             | 8             | E.O       | .B. at 8 feet by                  | QS.                         | *************************************** | ~~               | ************ |                |                 |          |                          |                     |          |                     |         |                              |
|                    |                                 |             |               |           |                                   | В                           |                                         |                  |              |                |                 |          |                          |                     |          |                     |         |                              |
|                    |                                 |             |               |           |                                   |                             |                                         |                  |              |                |                 |          |                          |                     |          |                     |         |                              |
|                    |                                 |             |               | İ         |                                   |                             |                                         |                  |              |                |                 |          |                          |                     |          |                     |         |                              |
|                    |                                 |             |               |           |                                   |                             |                                         |                  |              |                |                 |          |                          |                     |          |                     |         |                              |
|                    |                                 |             |               |           |                                   |                             |                                         |                  |              |                |                 |          |                          |                     |          |                     |         |                              |
|                    |                                 |             |               |           |                                   |                             |                                         |                  |              |                |                 |          |                          |                     |          |                     |         |                              |
|                    |                                 |             |               |           |                                   |                             |                                         |                  |              |                |                 |          |                          |                     |          |                     |         |                              |
|                    |                                 |             |               |           |                                   |                             |                                         |                  |              |                |                 |          |                          |                     |          |                     |         |                              |
| I 1                | L                               | 1           | 4             |           |                                   |                             |                                         | l                |              | L              | <u> </u>        | 1        |                          |                     | <u> </u> | ii                  |         | <u> </u>                     |
|                    |                                 | y that      | me info       | rmation   | on this form is ti                | rue and correct to the l    |                                         |                  | owieds       | gc.            |                 |          |                          |                     |          |                     |         |                              |
| Signat             | ure                             |             |               |           |                                   |                             | MT,<br>4 Hea                            | Inc.<br>rdand T  | `rail N      | ladison        | . WL51          | 3717     |                          |                     |          |                     |         | 508-831-4444<br>508-831-3334 |

07201DNR,GP3 WLDNR 2003,GDT 4/22/10

# SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |               | Ro            | oute To:  |                      | Wastewater               |                         |          | ement          |                 |          |                         |                     |                 |                     |        |                              |
|--------------------|---------------------------------|---------------|---------------|-----------|----------------------|--------------------------|-------------------------|----------|----------------|-----------------|----------|-------------------------|---------------------|-----------------|---------------------|--------|------------------------------|
|                    |                                 |               |               |           | Remediation          | /Redevelopment           | Other                   |          |                |                 |          |                         |                     |                 |                     |        |                              |
| Esaili:            | ty/Proje                        | at Man        |               |           |                      |                          | Lieense/                | Damait   | Manita         | rina Ni         | bar      |                         | Boring              | Pag             |                     | of     | 1                            |
|                    | waune                           |               |               |           |                      |                          | Licenser                | r Citimo | VIVIOTIMO      | ring int        | moci     |                         | gillioci            | Numo            | M8                  | EΕ     |                              |
|                    |                                 |               |               | f crew c  | hief (first, last)   | and Firm                 | Date Dr                 | illing S | tarted         |                 | Da       | te Drilli               | ng Cor              | npleted         |                     |        | ing Method                   |
| Toi<br>On          | n Kap<br>-Site E                | ugi<br>Enviro | onmen         | tal Ser   | vices                |                          |                         | 3/17     | 7/2010         |                 |          |                         | 3/17/2              | 2010            |                     | Go     | eoprobe                      |
|                    | ique V                          |               |               |           | Well ID No.          | Common Well Name         |                         | itic Wa  | ter Leve       |                 |          | e Elevat                | ion                 |                 | Во                  | rehole | Diameter                     |
|                    | 0:10                            |               | <u> </u>      |           | <u></u>              | oring Location 🖂         |                         | Feet l   | MSL            |                 |          | 582.0 I<br>Local C      |                     |                 |                     | 2.1    | inches                       |
|                    | Grid Or<br>Plane                | rigin         |               |           | , 2,616,670          |                          | L                       | ıt       | 0              | <u> </u>        |          | Local C                 | ina Lo              | cation<br>      | ı                   |        | ОЕ                           |
| J                  | 1/4                             | of            |               |           | ction ,              |                          | Lon                     | g        | 0              |                 |          |                         | Feet                |                 | •                   | J      | Feet W                       |
| Facilit            | y ID                            |               |               |           | County               | ·                        | County Co               |          | Civil T        |                 | ty/ or \ | Village                 |                     |                 |                     |        |                              |
|                    |                                 |               | 1             |           | Kewaunee             |                          | 31                      |          | Kewa           | unee            |          | 1                       | 0 11                | **              |                     |        |                              |
| Sar                | nple<br>T                       |               |               |           |                      |                          |                         |          |                |                 |          |                         | Soil                | Prope           | erties              |        |                              |
|                    | & E                             | nts           | cci           |           |                      | Rock Description         |                         |          |                |                 |          | NC                      |                     |                 |                     |        | ,,                           |
| cr.                | ercd                            | Com           | ~             |           |                      | cologic Origin For       |                         | S        | j.             | E               | 0        | ressi                   | ure<br>nt           |                 | Žį.                 |        | lents                        |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blow Counts   | Depth In Feet |           | Ea                   | ich Major Unit           |                         | USC      | G Graphic      | Well<br>Diagram | PIO/FID  | Compressive<br>Strength | Moisture<br>Content | Liquid<br>Limit | Plasticity<br>Index | P 200  | RQD/<br>Comments             |
| 1                  | 48                              |               | -             |           |                      | vn to black (10YR        | 3/2),                   | 1        |                |                 |          |                         |                     |                 |                     |        |                              |
| CS                 | 22.5                            |               | -<br>-        | mois      | t, soft.             |                          |                         |          | 2 22           |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               | -             |           |                      |                          |                         |          | 7 77<br>77 77  |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               | -             |           |                      |                          |                         |          | 77.7           | 4               |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               | 2<br>-        |           |                      |                          |                         |          | 1, 11,         |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               | -             |           |                      |                          |                         |          | 71/ 71         |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               | 3<br>         |           |                      |                          |                         |          | 4 77           |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               |               |           |                      |                          |                         |          | 71 7           | 1               |          |                         |                     |                 |                     |        |                              |
| 2                  | 48                              |               | 4             | As al     | oove, wet.           |                          |                         |          | 2 32           | ]               |          |                         |                     |                 |                     |        |                              |
| CS                 | 43.2                            |               | -             |           |                      |                          |                         |          | 77 77<br>77 77 |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               | 5<br>         |           |                      |                          |                         |          | 77 77          |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               |               |           |                      |                          |                         |          | 1, 11,         |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               | - 6           |           |                      |                          |                         | ļ        | 71/ 71         |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               |               |           |                      |                          |                         |          | 1, 11          |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               | 7<br>-        |           |                      |                          |                         |          | 711            |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               |               |           |                      |                          |                         |          | 上丛             |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               | 8             | E.O.      | B. at 8 feet b       | ogs.                     |                         |          | 77 77          |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               |               |           |                      | J                        |                         |          |                |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               |               |           |                      |                          |                         |          |                |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               |               |           |                      |                          |                         |          |                |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               |               |           |                      |                          |                         |          |                |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               |               |           |                      |                          |                         |          |                |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               |               |           |                      |                          |                         |          |                |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               |               |           |                      |                          |                         |          |                |                 |          |                         |                     |                 |                     |        |                              |
|                    |                                 |               |               |           |                      |                          |                         | 1        |                |                 |          |                         |                     |                 |                     |        |                              |
|                    | -                               | y that        | the info      | rmation ( | on this form is t    | rue and correct to the b | oest of my ki           | nowled   | ge.            |                 |          |                         |                     |                 |                     |        |                              |
| Signat             | ure                             |               |               |           | Control (Control des |                          | MT, Inc.<br>4 Heartland | Trail N  | /adison        | , WI 53         | 717      |                         |                     |                 |                     |        | 608-831-4444<br>608-831-3334 |

07201DNR.GPJ WI DNR 2003.GDT 4/22/10

# SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

|                    |                                 |             | Ro            | oute To:   | W <sup>a</sup> tershed/V | Vastewater   /Redevelopment | Waste I<br>Other       | -               | ement             |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------|---------------------------------|-------------|---------------|------------|--------------------------|-----------------------------|------------------------|-----------------|-------------------|-----------------|---------|-------------------------|----------|---------|---------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                 |             |               |            |                          | ·                           |                        |                 |                   |                 |         |                         |          | Pa      | ge l                | oſ`    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | ty/Projec                       |             |               |            |                          |                             | License/I              | Permit/         | 'Monitor          | ring No         | umbei   |                         | Boring   | g Numb  | cı.                 |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | waune                           |             |               | f crew ch  | icf (first, last) a      | and Firm                    | Date Dri               | lling S         | larted            |                 | ID      | ate Drill               | ing Cor  | muleted | M9                  |        | ling Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                    | ni Kap                          |             | rame o        | r crew cir | iici (iii si, iiisi) i   | and 1 am                    | But bir                | 5               | un teci           |                 |         | ate Dim                 | 5        | mpieted |                     |        | ms weaton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| On                 | -Site E                         | Enviro      |               | tal Serv   |                          |                             | 121 10                 |                 | /2010             |                 |         |                         | 3/17/    | 2010    | Lis                 |        | eoprobe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| WU                 | nique W                         | ell No      | ).            | DNR V      | Well ID No.              | Common Well Name            | Final Sta              | uc Wa<br>Feet l |                   | el              | Surfa   | ce Eleva<br>582.0       |          | 12N     | Bo                  |        | Diameter inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Grid Oı                         | igin        |               |            |                          | ring Location 🛛             | 1 .                    |                 | 0                 |                 |         | Local (                 |          |         |                     |        | menes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| State              | Plane                           |             |               |            | 2,616,703                |                             | La                     |                 | 0                 | <br>I           |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Facilit            | 1/4<br>ly ID                    | of          |               | /4 of Sec  | ction ,<br>County        | T N, R                      | Long                   |                 | Civil To          | own/C           | ity/ or | Village                 | Fee      | ι□S     | <u> </u>            |        | Feet 🗍 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | ,                               |             |               | i          | Kewaunee                 |                             | 31                     |                 | Kewa              |                 | -       | 0                       |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sar                | nple                            |             |               |            |                          |                             |                        |                 |                   |                 |         |                         | Soil     | Prop    | erties              |        | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th |
|                    | જ (in)                          | sti         | cet           |            |                          | Rock Description            |                        |                 |                   |                 |         | , c                     |          |         |                     | ŀ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| cr<br>/pe          | . Att                           | Cour        | ln F          |            |                          | cologic Origin For          |                        | S               | ္ပ                | <br>            | Ω       | essi th                 | 11c      |         | iţ                  |        | lonts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Number<br>and Type | Length Att. &<br>Recovered (in) | Blow Counts | Depth In Fect |            | Ea                       | ch Major Unit               |                        | SC              | Graphic<br>Log    | Well<br>Diagram | PID/FID | Compressive<br>Strength | Moisture | Liquid  | Plasticity<br>Index | P 200  | RQD/<br>Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7 8                | <u>.</u> ≪<br>48                | <u> </u>    |               | PEA'       | Γ dark brov              | vn to black (10YR 3         | /2)                    |                 | <u> 까 자</u>       | ≠ Ω             | Δ.      | SO                      | 20       |         |                     | ۵.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CS                 | 14.4                            |             | -             | wet, s     |                          | to olden (10 170 s          | , - ),                 |                 | 7 77              |                 |         |                         |          |         |                     | į<br>į |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             | I             | Capin      | naterial pres            | sent from 1-1.3 feet l      | bgs.                   |                 | 77 77             |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             | -             |            |                          |                             |                        |                 | 77. 77.<br>7. 77. |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             | 2<br>         |            |                          |                             |                        |                 | 4 34              |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             | -3            |            |                          |                             |                        |                 | 77 77             |                 |         |                         |          | }       |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             | <u> </u>      |            |                          |                             |                        |                 | 4 4               |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             | -4            |            |                          |                             |                        |                 | 2 27              |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2<br>CS            | 48<br>43.2                      |             | -             | As ab      | ove very we              | et from 4-6.5 feet bg       | S.                     |                 | 27 77             |                 |         |                         |          |         |                     | i<br>I |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             | -5            |            |                          |                             |                        | [               | 1 14              |                 |         |                         |          |         |                     | <br>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             | E             |            |                          |                             |                        |                 | 77 77<br>77 77    |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             | -6            |            |                          |                             |                        |                 | 77 77             |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             | -             |            |                          |                             |                        |                 | 2 22              |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             | 7             |            |                          |                             |                        |                 | 77 77             |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             |               |            |                          |                             |                        |                 | 24 24             |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             | 8             | E.O.E      | 3. at 8 feet b           | gs.                         |                        |                 | <u> </u>          |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             |               |            |                          |                             |                        |                 |                   |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             |               |            |                          |                             |                        |                 |                   |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             |               |            |                          |                             |                        |                 |                   |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             |               |            |                          |                             |                        |                 |                   |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             |               |            |                          |                             |                        |                 |                   |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             |               |            |                          |                             |                        |                 |                   |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 |             |               |            |                          |                             |                        |                 |                   |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                 | y that      | the info      | rmation o  | on this form is t        | rue and correct to the bes  | t of my kn             | owledg          | ge.               |                 |         |                         |          |         |                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Signat             | aire                            |             |               |            |                          |                             | Γ, Inc.<br>leartland T | Frail N         | 4adison.          | . WI 53         | 3717    |                         |          |         |                     |        | 508-831-4444<br>508-831-3334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

# Attachment B Laboratory Reports



December 29, 2009

BOB STANFORTH RMT MADISON 744 Heartland Trail Madison, WI 537171934

RE: Project: 7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

#### Dear BOB STANFORTH:

Enclosed are the analytical results for sample(s) received by the laboratory on December 15, 2009. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tod Noltemeyer

Tod holteneyor

tod.noltemeyer@pacelabs.com Project Manager

Enclosures

cc: ALEX GOERGEN, RMT - MADISON

4 age 10132







#### **CERTIFICATIONS**

7201.10 KEWAUNEE MARSH Project:

Pace Project No.: 4026525

Green Bay Certification IDs California Certification #: 09268CA Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 11887

New York Certification #: 11888 North Carolina Certification #: 503 North Dakota Certification #: R-150 South Carolina Certification #: 83006001 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 1241 Bellevue Street Green Bay, WI 54302

REPORT OF LABORATORY ANALYSIS

Page 2 of 52







## **SAMPLE SUMMARY**

Project:

7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

| Lab ID             | Sample ID  | Matrix | Date Collected | Date Received           |
|--------------------|------------|--------|----------------|-------------------------|
| 4026525001         | B1D-0-2'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525002         | B1D-2-4'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525003         | B1D-4-6'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525004         | B1D-6-8'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525005         | B1D-8-10'  | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525006         | B1D-10-12' | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525007         | B1D-12-14' | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525008         | B1D-15-19' | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525009         | B1D-19-20' | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525010         | B1E-0-2'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525011         | B1E-2-4'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525012         | B1E-4-6'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525013         | B1E-6-8'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525014         | B1E-8-10'  | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525015         | B1E-10-12' | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525016         | B1E-12-14' | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525017         | B1E-14-16' | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| <b>402652501</b> 8 | B1E-16-19' | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525019         | B1E-19-20' | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525020         | B2A-0-2'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525021         | B2A-2-4'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525022         | B2A-4-6'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525023         | B2A-6-8'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525024         | B2A-8-10'  | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525025         | B2A-10-12' | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525026         | B2A-12-14' | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525027         | B2A-14-15' | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525028         | B2B-0-2'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525029         | B2B-2-4'   | Solid  | 12/10/09 13:00 | 12/15/09 08: <b>5</b> 5 |
| 4026525030         | B2B-4-6'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525031         | B2B-6-8'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525032         | B2B-8-10'  | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525033         | B2B-10-12' | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525034         | B2B-12-15' | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525035         | B2B-15-19' | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525036         | B2B-19-20' | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |
| 4026525037         | B2C-0-2'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55          |

## REPORT OF LABORATORY ANALYSIS

Page 3 of 52





## **SAMPLE SUMMARY**

7201.10 KEWAUNEE MARSH Project:

Pace Project No.: 4026525

| Lab ID     | Sample ID    | Matrix | Date Collected | Date Received  |
|------------|--------------|--------|----------------|----------------|
| 4026525038 | B2C-2-4'     | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525039 | B2C-4-6'     | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525040 | B2C-6-8'     | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525041 | B2C-8-10'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525042 | B2C-10-12'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525043 | B2C-12-14'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525044 | B2C-14-20'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525045 | B2D-0-2'     | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525046 | B2D-2-4'     | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525047 | B2D-4-6'     | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525048 | B2D-6-8'     | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525049 | B2D-8-10'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525050 | B2D-10-12'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525051 | B2D-12-14'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525052 | B2D-14-15'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525053 | B2D-15-17,5' | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525054 | B2D-17.5-20' | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525055 | B2D-20-25'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525056 | B2E-0-2'     | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525057 | B2E-2-4'     | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525058 | B2E-4-6'     | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525059 | B2E-6-8'     | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525060 | B2E-8-10'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525061 | B2E-10-13.8' | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525062 | B2E-13.8-15' | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525063 | B2E-20-23'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525064 | B2E-23-25'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525065 | B2F-0-2'     | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525066 | B2F-2-4'     | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525067 | B2F-4-6'     | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525068 | B2F-6-8'     | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525069 | B2F-8-10'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525070 | B2F-10-12'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525071 | B2F-12-13.8' | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525072 | B2F-13.8-15' | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525073 | B2F-15-16'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525074 | B2F-16-20'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |

# REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

Page 4 of 52







## **SAMPLE SUMMARY**

Project: 7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

| Pace Project No | 5.: 4026525 |        |                |                |
|-----------------|-------------|--------|----------------|----------------|
| Lab ID          | Sample ID   | Matrix | Date Collected | Date Received  |
| 4026525075      | B2F-23-25'  | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525076      | B2F-25-30'  | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525077      | B3D-0-2'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525078      | B3D-2-4'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525079      | B3D-4-6'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525080      | B3D-6-8'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525081      | B3D-8-10'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525082      | B3D-10-12'  | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525083      | B3D-12-14'  | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525084      | B3D-14-16'  | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525085      | B3E-0-2'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525086      | B3E-2-4'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525087      | B3E-4-6'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525088      | B3E-6-8'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525089      | B3E-8-10'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525090      | B3E-10-12'  | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525091      | B3E-12-14'  | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525092      | B3E-14-16'  | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525093      | B3E-16-20'  | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525094      | B3E-20-25'  | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525095      | M2D-0-2'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525096      | M2D-2-4'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525097      | M2D-4-6'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525098      | M2D-6-8'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525099      | M2D-8-10'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525100      | M3D-0-2'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525101      | M3D-2-4'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525102      | M3D-4-6'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525103      | M3D-6-8'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525104      | M3D-8-10'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525105      | M4D-0-5'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525106      | M4D-5-7'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525107      | M4D-7-10'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525108      | M5D-0-5'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525109      | M5D-5-7'    | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |
| 4026525110      | M5D-7-10'   | Solid  | 12/10/09 13:00 | 12/15/09 08:55 |

REPORT OF LABORATORY ANALYSIS

Page 5 of 52





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

| Lab ID     | Sample ID  | Method           | Analysts | Analytes<br>Reported |
|------------|------------|------------------|----------|----------------------|
| 4026525001 | B1D-0-2'   |                  | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525002 | B1D-2-4'   | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525003 | B1D-4-6'   | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525004 | B1D-6-8'   | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525005 | B1D-8-10'  | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525006 | B1D-10-12' | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525007 | B1D-12-14' | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525008 | B1D-15-19' | EPA <b>6</b> 010 | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525009 | B1D-19-20' | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525010 | B1E-0-2'   | EPA6010          | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525011 | B1E-2-4'   | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525012 | B1E-4-6'   | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525013 | B1E-6-8'   | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525014 | B1E-8-10'  | EPA6010          | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525015 | B1E-10-12' | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525016 | B1E-12-14' | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525017 | B1E-14-16' | EPA 6010         | DI_B     | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525018 | B1E-16-19' | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525019 | B1E-19-20' | EPA 6010         | DLB      | 1                    |

# REPORT OF LABORATORY ANALYSIS

Page 6 of 52

6







Project:

7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

| Lab ID     | Sample ID  | Method           | Analysts | Analytes<br>Reported |
|------------|------------|------------------|----------|----------------------|
| •          |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525020 | B2A-0-2'   | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525021 | B2A-2-4'   | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525022 | B2A-4-6'   | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525023 | B2A-6-8'   | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525024 | B2A-8-10'  | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525025 | B2A-10-12' | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525026 | B2A-12-14' | EPA6010          | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525027 | B2A-14-15' | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525028 | B2B-0-2'   | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525029 | B2B-2-4'   | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525030 | B2B-4-6'   | EPA <b>6</b> 010 | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525031 | B2B-6-8'   | EPA6010          | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525032 | B2B-8-10'  | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525033 | B2B-10-12' | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525034 | B2B-12-15' | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525035 | B2B-15-19' | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525036 | B2B-19-20' | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |
| 4026525037 | B2C-0-2'   | EPA 6010         | DLB      | 1                    |
|            |            | ASTM D2974-87    | MRN      | 1                    |

# **REPORT OF LABORATORY ANALYSIS** This report shall not be reproduced, except in full,

Page 7 of 52

without the written consent of Pace Analytical Services, Inc.,





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

| Lab ID     | Sample ID    | Method        | Analysts | Analytes<br>Reported |
|------------|--------------|---------------|----------|----------------------|
| 4026525038 | B2C-2-4'     | EPA 6010      | DLB      | 1                    |
|            |              | ASTM D2974-87 | MRN      | 1                    |
| 4026525039 | B2C-4-6'     | EPA 6010      | DLB      | 1                    |
|            |              | ASTM D2974-87 | MRN      | 1                    |
| 4026525040 | B2C-6-8'     | EPA 6010      | DLB      | 1                    |
|            |              | ASTM D2974-87 | MRN      | 1                    |
| 4026525041 | B2C-8-10'    | EPA 6010      | DLB      | 1                    |
|            |              | ASTM D2974-87 | MRN      | 1                    |
| 4026525042 | B2C-10-12'   | EPA 6010      | DLB      | 1                    |
|            |              | ASTM D2974-87 | MRN      | 1                    |
| 4026525043 | B2C-12-14'   | EPA 6010      | DLB      | 1                    |
|            |              | ASTM D2974-87 | MRN      | 1                    |
| 4026525044 | B2C-14-20'   | EPA 6010      | DLB      | 1                    |
|            |              | ASTM D2974-87 | MRN      | 1                    |
| 4026525045 | B2D-0-2'     | EPA 6010      | DLB      | 1                    |
|            |              | ASTM D2974-87 | MRN      | 1                    |
| 4026525046 | B2D-2-4'     | EPA 6010      | DLB      | 1                    |
|            |              | ASTM D2974-87 | MRN      | 1                    |
| 4026525047 | B2D-4-6'     | EPA 6010      | DLB      | 1                    |
|            |              | ASTM D2974-87 | MRN      | 1                    |
| 4026525048 | B2D-6-8'     | EPA 6010      | DLB      | 1                    |
|            |              | ASTM D2974-87 | MRN      | 1                    |
| 4026525049 | B2D-8-10'    | EPA 6010      | DLB      | 1                    |
|            |              | ASTM D2974-87 | MRN      | 1                    |
| 4026525050 | B2D-10-12'   | EPA 6010      | DLB      | 1                    |
|            |              | ASTM D2974-87 | MRN      | 1                    |
| 4026525051 | B2D-12-14'   | EPA 6010      | DLB      | 1                    |
|            |              | ASTM D2974-87 | MRN      | 1                    |
| 4026525052 | B2D-14-15'   | EPA 6010      | DLB      | 1                    |
|            |              | ASTM D2974-87 | MRN      | 1                    |
| 4026525053 | B2D-15-17.5' | EPA 6010      | DLB      | 1                    |
|            |              | ASTM D2974-67 | MRN      | 1                    |
| 4026525054 | B2D-17.5-20' | EPA 6010      | DLB      | 1                    |
|            |              | ASTM D2974-87 | MRN      | 1                    |
| 4026525055 | B2D-20-25'   | EPA 6010      | DLB      | 1                    |
|            |              | ASTM D2974-87 | MRN      | 1                    |
| 4026525056 | B2E-0-2'     | EPA 6010      | DLB      | 1                    |
|            |              |               |          |                      |

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Page 8 of 52



Project<sup>-</sup>

7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

| Lab ID             | Sample ID              | Method            | Analysts | Analytes<br>Reported |
|--------------------|------------------------|-------------------|----------|----------------------|
|                    |                        | ASTM D2974-87     | MRN      | 1                    |
| 4026525057         | B2E-2-4'               | EPA 6010          | DLB      | 1                    |
|                    |                        | ASTM D2974-87     | MRN      | 1                    |
| 4026525058         | B2E-4-6'               | EPA6010           | DLB      | 1                    |
|                    |                        | ASTM D2974-87     | MRN      | 1                    |
| 4026525059         | B2E-6-8'               | EPA 6 0 1 0       | DLB      | 1                    |
|                    |                        | ASTM D2974-87     | MRN      | 1                    |
| 4026525060         | B2E-8-10'              | EPA 6010          | DLB      | 1                    |
|                    |                        | ASTM D2974-87     | MRN      | 1                    |
| 1026525061         | B2E-10-13.8'           | EPA 6010          | DLB      | 1                    |
|                    |                        | ASTM D2974-87     | MRN      | 1                    |
| 4026525062         | 026525062 B2E-13.8-15' | EPA 6010          | DLB      | 1                    |
|                    |                        | ASTM D2974-87     | MRN      | 1                    |
| 1026525063         | B2E-20-23'             | EPA 6010          | DLB      | 1                    |
|                    |                        | ASTM D2974-87     | MRN      | 1                    |
| 1026525064         | B2E-23-25'             | EPA 6010          | DLB      | 1                    |
|                    |                        | ASTM D2974-87     | MRN      | 1                    |
| 026525065          | B2F-0-2'               | EPA 6010          | DLB      | 1                    |
|                    |                        | ASTM D2974-87     | MRN      | 1                    |
| 026525066          | B2F-2·4'               | EPA 6010          | DLB      | 1                    |
|                    |                        | ASTM D2974-87     | MRN      | 1                    |
| 026525067          | B2F-4-6'               | EPA 6010          | DLB      | 1                    |
|                    |                        | ASTM D2974-87     | MRN      | 1                    |
| 026525068          | B2F-6-8'               | EPA 6010          | DLB      | 1                    |
|                    |                        | ASTM D2974-87     | MRN      | 1                    |
| <b>40265250</b> 69 | B2F-8-10'              | EPA6010           | DLB      | 1                    |
|                    |                        | ASTM D2974-87     | MRN      | 1                    |
| 4026525070         | B2F-10-12'             | EPA 6010          | DLB      | 1                    |
|                    |                        | ASTM D2974-87     | MRN      | 1                    |
| 1026525071         | B2F-12-13.8'           | EPA6010           | DLB      | 1                    |
|                    |                        | ASTM D2974-87     | MRN      | 1                    |
| 1026525072         | B2F-13.8-15'           | EPA 6010          | DLB      | 1                    |
|                    |                        | ASTM D2974-87     | MRN      | 1                    |
| 4026525073         | B2F-15-16'             | E <b>P</b> A 6010 | DLB      | 1                    |
|                    |                        | ASTM D2974-87     | MRN      | 1                    |
| 4026525074         | B2F-16-20'             | EPA 6010          | DLB      | 1                    |
|                    |                        |                   |          |                      |

## REPORT OF LABORATORY ANALYSIS

Page 9 of 52

9







Project:

7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

| Lab ID     | Sample ID  | Method                 | Analysts | Analytes<br>Reported |
|------------|------------|------------------------|----------|----------------------|
| 4026525075 | B2F-23-25' | EPA 6010               |          | 1                    |
|            |            | ASTM D2974-87          | MRN      | 1                    |
| 4026525076 | B2F-25-30' | EPA6010                | DLB      | 1                    |
|            |            | ASTM D2974-87          | MRN      | 1                    |
| 4026525077 | B3D-0-2'   | EPA6010                | DLB      | 1                    |
|            |            | ASTM D2974-87          | MRN      | 1                    |
| 4026525078 | B3D-2-4'   | EP <b>A 6</b> 0 1 0    | DLB      | 1                    |
|            |            | ASTM D2974-87          | MRN      | 1                    |
| 4026525079 | B3D-4-6'   | EPA6010                | DLB      | 1                    |
|            |            | ASTM D2974-87          | MRN      | 1                    |
| 4026525080 | B3D-6-8'   | EPA6010                | DLB      | 1                    |
|            |            | ASTM D2974-87          | MRN      | 1                    |
| 4026525081 | B3D-8-10'  | EPA 6010               | DLB      | 1                    |
|            |            | ASTM D2974-87          | MRN      | 1                    |
| 4026525082 | B3D-10-12' | EPA6010                | DLB      | 1                    |
|            |            | ASTM D2974-87          | MRN      | 1                    |
| 4026525083 | B3D-12-14' | EPA 6010               | DLB      | 1                    |
|            |            | ASTM D2974-87          | MRN      | 1                    |
| 4026525084 | B3D-14-16' | EPA 6010               | DLB      | 1                    |
|            |            | ASTM D2974-87          | MRN      | 1                    |
| 4026525085 | B3E-0-2'   | EPA6010                | DLB      | 1                    |
|            |            | ASTM D2974-87          | MRN      | 1                    |
| 4026525086 | B3E-2-4'   | EPA 6010               | DLB      | 1                    |
|            |            | ASTM D297 <b>4</b> -87 | MRN      | 1                    |
| 4026525087 | B3E-4-6'   | EP <b>A</b> 6010       | DLB      | 1                    |
|            |            | ASTM D2974-87          | MRN      | 1                    |
| 4026525088 | B3E-6-8'   | EPA 6010               | DLB      | 1                    |
|            |            | ASTM D2974-87          | MRN      | 1                    |
| 4026525089 | B3E-8-10'  | EPA 6010               | DLB      | 1                    |
|            |            | ASTM D2974-87          | MRN      | 1                    |
| 4026525090 | B3E-10-12' | EPA 6010               | DLB      | 1                    |
|            |            | ASTM D2974-87          | MRN      | 1                    |
| 4026525091 | B3E-12-14' | EPA6010                | DLB      | 1                    |
|            |            | ASTM D2974-87          | MRN      | 1                    |
| 4026525092 | B3E-14-16' | EPA 6010               | DLB      | 1                    |
|            |            | ASTM D2974-87          | MRN      | 1                    |
| 4026525093 | B3E-16-20' | EPA <b>6</b> 010       | DLB      | 1                    |
|            |            |                        |          |                      |

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Page 10 of 52



Project:

7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

| Lab ID     | Sample ID  | Method        | Analysts | Analytes<br>Reported |
|------------|------------|---------------|----------|----------------------|
|            |            | ASTM D2974-87 | MRN      | 1                    |
| 4026525094 | B3E-20-25' | EPA 6010      | DLB      | 1                    |
|            |            | ASTM D2974-87 | MRN      | 1                    |
| 4026525095 | M2D-0-2'   | EPA 6010      | DLB      | 1                    |
|            |            | ASTM D2974-87 | MRN      | 1                    |
| 4026525096 | M2D-2-4'   | EPA 6010      | DLB      | 1                    |
|            |            | ASTM D2974-87 | MRN      | 1                    |
| 4026525097 | M2D-4-6'   | EPA 6010      | DLB      | 1                    |
|            |            | ASTM D2974-87 | MRN      | 1                    |
| 4026525098 | M2D-6-8'   | EPA 6010      | DLB      | 1                    |
|            |            | ASTM D2974-87 | MRN      | 1                    |
| 4026525099 | M2D-8-10'  | EPA 6010      | DLB      | 1                    |
|            |            | ASTM D2974-87 | MRN      | 1                    |
| 4026525100 | M3D-0-2'   | EPA 6010      | DLB      | 1                    |
|            |            | ASTM D2974-87 | MRN      | 1                    |
| 1026525101 | M3D-2-4'   | EPA 6010      | DLB      | 1                    |
|            |            | ASTM D2974-87 | MRN      | 1                    |
| 1026525102 | M3D-4-6'   | EPA 6010      | DLB      | 1                    |
|            |            | ASTM D2974-87 | MRN      | 1                    |
| 1026525103 | M3D-6-8'   | EPA 6010      | DLB      | 1                    |
|            |            | ASTM D2974-87 | MRN      | 1                    |
| 4026525104 | M3D-8-10'  | EPA 6010      | DLB      | 1                    |
|            |            | ASTM D2974-87 | MRN      | 1                    |
| 1026525105 | M4D-0-5'   | EPA 6010      | DLB      | 1                    |
|            |            | ASTM D2974-87 | MRN      | 1                    |
| 1026525106 | M4D-5-7'   | EPA 6010      | DLB      | 1                    |
|            |            | ASTM D2974-87 | MRN      | 1                    |
| 1026525107 | M4D-7-10'  | EPA 6010      | DLB      | 1                    |
|            |            | ASTM D2974-87 | MRN      | 1                    |
| 1026525108 | M5D-0-5'   | EPA 6010      | DLB      | 1                    |
|            |            | ASTM D2974-87 | MRN      | 1                    |
| 1026525109 | M5D-5-7'   | EPA 6010      | DLB      | 1                    |
|            |            | ASTM D2974-87 | MRN      | 1                    |
| 4026525110 | M5D-7-10'  | EPA 6010      | DLB      | 1                    |
|            |            | ASTM D2974-87 | MRN      | 1                    |

## REPORT OF LABORATORY ANALYSIS

Page 11 of 52







Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

Sample: B1D-0-2'

Lab ID: 4026525001

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

| Results reported on a "dry-we                  | eight" basis                                                                                    |                                                          |              |            |                 |                |                |              |      |  |  |
|------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------|------------|-----------------|----------------|----------------|--------------|------|--|--|
| Parameters                                     | Results                                                                                         | Units                                                    | LOQ          | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |  |  |
| 6010 MET ICP                                   | Analytical                                                                                      | Analytical Method: EPA 6010 Preparation Method: EPA 3050 |              |            |                 |                |                |              |      |  |  |
| Arsenic                                        | <b>7.1</b> r                                                                                    | ng/kg                                                    | 2.2          | 0.13       | 1               | 12/16/09 13:45 | 12/17/09 13:52 | 7440-38-2    |      |  |  |
| Percent Moisture                               | Analytical                                                                                      | Method: ASTN                                             | л D2974-87   |            |                 |                |                |              |      |  |  |
| Percent Moisture                               | 14.7 %                                                                                          | <b>%</b>                                                 | 0.10         | 0.10       | 1               |                | 12/18/09 08:01 |              |      |  |  |
| Sample: B1D-2-4'                               | Lab ID:                                                                                         | 4026525002                                               | Collected    | 12/10/0    | 9 13:00         | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |  |  |
| Results reported on a "dry-we                  | eight" basis                                                                                    |                                                          |              |            |                 |                |                |              |      |  |  |
| Parameters                                     | Results                                                                                         | Units                                                    | LOQ          | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |  |  |
| 6010 MET ICP                                   | Analytical                                                                                      | Method: EPA                                              | 6010 Prepara | ation Meth | od: EPA         | A 3050         |                |              |      |  |  |
| Arsenic                                        | <b>105</b> n                                                                                    | ng/kg                                                    | 2.1          | 0.12       | 1               | 12/16/09 13:45 | 12/17/09 13:56 | 7440-38-2    |      |  |  |
| Percent Moisture                               | Analytical                                                                                      | Method: ASTN                                             | л D2974-87   |            |                 |                |                |              |      |  |  |
| Percent Moisture                               | <b>12.8</b> % 0.10 0.10 1 12/18/09 08:01                                                        |                                                          |              |            |                 |                |                |              |      |  |  |
| Sample: B1D-4-6' Results reported on a "dry-we |                                                                                                 | 4026525003                                               | Collected    | 12/10/0    | 9 13:00         | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |  |  |
| Parameters                                     | Results                                                                                         | Units                                                    | LOQ          | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |  |  |
| 6010 MET ICP                                   | Analytical                                                                                      | Method: EPA 6                                            | 6010 Prepara | ation Meth | od: EP <i>F</i> | A 3050         |                |              |      |  |  |
| Arsenic                                        | <b>719</b> n                                                                                    | ng/kg                                                    | 2.4          | 0.14       | 1               | 12/16/09 13:45 | 12/17/09 14:00 | 7440-38-2    |      |  |  |
| Percent Moisture                               | Analytical                                                                                      | Method: ASTN                                             | и D2974-87   |            |                 |                |                |              |      |  |  |
| Percent Moisture                               | 20.2 %                                                                                          | 6                                                        | 0.10         | 0.10       | 1               |                | 12/18/09 08:01 |              |      |  |  |
| Sample: B1D-6-8'                               | Lab ID:                                                                                         | 4026525004                                               | Collected    | 12/10/0    | 9 13:00         | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |  |  |
| Results reported on a "dry-we                  | ight" basis                                                                                     |                                                          |              |            |                 |                |                |              |      |  |  |
| Parameters                                     | Results                                                                                         | Units                                                    | LOQ          | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |  |  |
| 6010 MET ICP                                   | Analytical                                                                                      | Method: EPA 6                                            | 6010 Prepara | ation Meth | od: EPA         | N3050          |                |              |      |  |  |
| Arsenic                                        | <b>1850</b> n                                                                                   | ng/kg                                                    | 2.7          | 0.15       | 1               | 12/16/09 13:45 | 12/17/09 14:04 | 7440-38-2    |      |  |  |
|                                                | 1850 mg/kg 2.7 0.15 1 12/16/09 13:45 12/17/09 14:04 7440-38-2  Analytical Method: ASTM D2974-87 |                                                          |              |            |                 |                |                |              |      |  |  |
| Percent Moisture                               | Analytical                                                                                      | Method: ASTM                                             | 1D2974-87    |            |                 |                |                |              |      |  |  |

Date: 12/29/2009 12:11 PM

## **REPORT OF LABORATORY ANALYSIS**

Page 12 of 52





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

Sample: B1D-8-10'

Lab ID: 4026525005

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

| ght" basis        |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |              |         |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------|---------|
| Results           | Units                                                                                                                                                                                            | LOQ                                                                                                                                                                                                                                                                                                                                                                                                            | LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DF      | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analyzed                | CAS No.      | Qual    |
| Analytical        | I Method: EPA 6                                                                                                                                                                                  | 6010 Prepara                                                                                                                                                                                                                                                                                                                                                                                                   | ation Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | od: EPA | A3050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |              |         |
| <b>2160</b> mg/kg |                                                                                                                                                                                                  | 8.3                                                                                                                                                                                                                                                                                                                                                                                                            | 0.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1       | 12/16/09 13:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12/17/09 14:08          | 7440-38-2    |         |
| Analytical        | I Method: ASTM                                                                                                                                                                                   | 1D2974-87                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |              |         |
| 75.9 %            | %                                                                                                                                                                                                | 0.10                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12/18/09 08:01          |              |         |
| Lab ID:           | 4026525006                                                                                                                                                                                       | Collected                                                                                                                                                                                                                                                                                                                                                                                                      | 12/10/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 13:00 | Received: 12/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 <b>5</b> /09 08:55 Ma | atrix: Solid |         |
| ht" basis         |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |              |         |
| Results           | Units                                                                                                                                                                                            | LOQ                                                                                                                                                                                                                                                                                                                                                                                                            | LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DF      | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analyzed                | CAS No.      | Qual    |
| Analytical        | I Method: EPA6                                                                                                                                                                                   | 6010 Prepara                                                                                                                                                                                                                                                                                                                                                                                                   | ation Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | od: EPA | A3050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |              |         |
| 1070 r            | ng/kg                                                                                                                                                                                            | 10.2                                                                                                                                                                                                                                                                                                                                                                                                           | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1       | 12/16/09 13:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12/17/09 14:19          | 7440-38-2    |         |
| Analytical        | I Method: ASTM                                                                                                                                                                                   | 1 D2974-87                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |              |         |
| 80.8 %            | %                                                                                                                                                                                                | 0.10                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12/18/09 08:02          |              |         |
| Lab ID:           | 4026525007                                                                                                                                                                                       | Collected                                                                                                                                                                                                                                                                                                                                                                                                      | 12/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9 13:00 | Received: 12/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15/09 08:55 Ma          | atrix: Solid |         |
| Results           | Units                                                                                                                                                                                            | LOQ                                                                                                                                                                                                                                                                                                                                                                                                            | LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DF      | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analyzed                | CAS No.      | Qual    |
| Analytical        | Method: EPA 6                                                                                                                                                                                    | 3010 Prepara                                                                                                                                                                                                                                                                                                                                                                                                   | ition Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | od: EPA | 3050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |         |
| <b>151</b> n      | ng/kg                                                                                                                                                                                            | 4.3                                                                                                                                                                                                                                                                                                                                                                                                            | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1       | 12/16/09 13:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12/17/09 14:23          | 7440-38-2    |         |
| Analytical        | Method: ASTM                                                                                                                                                                                     | 1 D2974-87                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |              |         |
| 53.4 %            | %                                                                                                                                                                                                | 0.10                                                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12/18/09 08:02          |              |         |
| Lab ID:           | 4026525008                                                                                                                                                                                       | Collected                                                                                                                                                                                                                                                                                                                                                                                                      | 12/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9 13:00 | Received: 12/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15/09 08:55 Ma          | atrix: Solid |         |
| ght" basis        |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |              |         |
| Results           | Units                                                                                                                                                                                            | LOQ                                                                                                                                                                                                                                                                                                                                                                                                            | LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DF      | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analyzed                | CAS No.      | Qual    |
| Analytical        | Method: EPA 6                                                                                                                                                                                    | 6010 Prepara                                                                                                                                                                                                                                                                                                                                                                                                   | ation Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | od: EPA | 3050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |              |         |
|                   |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |              |         |
| 8 <b>6.4</b> n    | ng/kg                                                                                                                                                                                            | 4.4                                                                                                                                                                                                                                                                                                                                                                                                            | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1       | 12/16/09 13:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12/17/09 14:27          | 7440-38-2    |         |
|                   | ng/kg<br>I Method: ASTM                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1       | 12/16/09 13:45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12/17/09 14:27          | 7440-38-2    |         |
|                   | Results  Analytica 2160 r Analytica 75.9 S  Lab ID: pht" basis  Results  Analytica 80.8 S  Lab ID: pht" basis  Results  Analytica 151 r Analytica 53.4 S  Lab ID: pht" basis  Results  Analytica | Results Units  Analytical Method: EPA 6 2160 mg/kg Analytical Method: ASTM 75.9 %  Lab ID: 4026525006 pht" basis  Results Units  Analytical Method: EPA 6 1070 mg/kg Analytical Method: ASTM 80.8 %  Lab ID: 4026525007 pht" basis  Results Units  Analytical Method: EPA 6 151 mg/kg Analytical Method: ASTM 53.4 %  Lab ID: 4026525008 pht" basis Results Units  Lab ID: 4026525008 pht" basis Results Units | Results Units LOQ  Analytical Method: EPA 6010 Prepara 2160 mg/kg 8.3  Analytical Method: ASTM D2974-87 75.9 % 0.10  Lab ID: 4026525006 Collected: htt" basis  Results Units LOQ  Analytical Method: EPA 6010 Prepara 1070 mg/kg 10.2  Analytical Method: ASTM D2974-87 80.8 % 0.10  Lab ID: 4026525007 Collected: htt" basis  Results Units LOQ  Analytical Method: EPA 6010 Prepara 151 mg/kg 4.3  Analytical Method: EPA 6010 Prepara 151 mg/kg 4.3  Analytical Method: ASTM D2974-87 53.4 % 0.10  Lab ID: 4026525008 Collected: htt" basis Results Units LOQ  Analytical Method: ASTM D2974-87 53.4 % 0.10 | Results | Analytical Method: EPA 6010 Preparation Method: EPA 2160 mg/kg 8.3 0.48 1  Analytical Method: ASTM D2974-87  75.9 % 0.10 0.10 1  Lab ID: 4026525006 Collected: 12/10/09 13:00 pht" basis  Results Units LOQ LOD DF  Analytical Method: EPA 6010 Preparation Method: EPA 1070 mg/kg 10.2 0.59 1  Analytical Method: ASTM D2974-87  80.8 % 0.10 0.10 1  Lab ID: 4026525007 Collected: 12/10/09 13:00 pht" basis  Results Units LOQ LOD DF  Analytical Method: ASTM D2974-87  80.8 % 0.10 0.10 1  Lab ID: 4026525007 Collected: 12/10/09 13:00 pht" basis  Results Units LOQ LOD DF  Analytical Method: EPA 6010 Preparation Method: EPA 151 mg/kg 4.3 0.25 1  Analytical Method: ASTM D2974-87  53.4 % 0.10 0.10 1  Lab ID: 4026525008 Collected: 12/10/09 13:00 pht" basis  Results Units LOQ LOD DF | Results                 | Results      | Results |

Date: 12/29/2009 12:11 PM

## REPORT OF LABORATORY ANALYSIS

Page 13 of 52





7201.10 KEWAUNEE MARSH Project: Pace Project No.: 4026525

| Sample: B1D-19-20'                            | Lab ID:       | 4026525009   | Collected           | : 12/10/0   | 9 13:00 | Received: 12/          | 15/09 08:55 M         | atrix: Solid |      |
|-----------------------------------------------|---------------|--------------|---------------------|-------------|---------|------------------------|-----------------------|--------------|------|
| Results reported on a "dry-w                  | eight" basis  |              |                     |             |         |                        |                       |              |      |
| Parameters                                    | Results       | Units        | LOQ                 | LOD         | DF      | Prepared               | Analyzed              | CAS No.      | Qual |
| 6010 MET ICP                                  | Analytical    | Method: EPA  | 6010 Prepara        | ation Meth  | od: EPA | 3050                   |                       |              |      |
| Arsenic                                       | <b>4.6</b> m  | ig/kg        | 2.4                 | 0.14        | 1       | 12/16/0 <b>9</b> 13:45 | 12/17/09 14:32        | 7440-38-2    |      |
| Percent Moisture                              | Analytical    | Method: ASTN | и D2 <b>9</b> 74-87 |             |         |                        |                       |              |      |
| Percent Moisture                              | 16.2 %        | ò            | 0.10                | 0.10        | 1       |                        | 12/18/09 08:02        |              |      |
| Sample: B1E-0-2' Results reported on a "dry-w |               | 4026525010   | Collected           | 12/10/09    | 9 13:00 | Received: 12/          | 15/09 08:55 M         | atrix: Solid |      |
| Parameters                                    | Results       | Units        | LOQ                 | LOD         | DF      | Prepared               | Analyzed              | CAS No.      | Qual |
| 6010 MET ICP                                  | Analytical    | Method: EPA  | 6010 Prepara        | ation Meth  | od: EPA | 3050                   |                       |              |      |
| Arsenic                                       | 2.8 m         | ıg/kg        | 2.2                 | 0.13        | 1       | 12/16/09 13:45         | 12/17/09 13:36        | 7440-38-2    |      |
| Percent Moisture                              | Analytical    | Method: ASTN | M D2974-87          |             |         |                        |                       |              |      |
| Percent Moisture                              | 8.6 %         | )            | 0.10                | 0.10        | 1       |                        | 12/18/09 08:02        |              |      |
| Sample: B1E-2-4' Results reported on a "dry-w |               | 4026525011   | Collected           | 12/10/0     | 9 13:00 | Received: 12/          | 15/09 08:5 <b>5</b> M | atrix: Solid |      |
| Parameters                                    | Results       | Units        | LOQ                 | LOD         | DF      | Prepared               | Analyzed              | CAS No.      | Qual |
| 6010 MET ICP                                  | Analytical    | Method: EPA  | 6010 Prepara        | ation Meth  | od: EPA | 3050                   |                       |              |      |
| Arsenic                                       | 35.4 m        | ıg/kg        | 2.4                 | 0.14        | 1       | 12/16/09 13:45         | 12/17/09 14:36        | 7440-38-2    |      |
| Percent Moisture                              | Analytical    | Method: ASTN | и D2974-87          |             |         |                        |                       |              |      |
| Percent Moisture                              | 17.8 %        |              | 0.10                | 0.10        | 1       |                        | 12/18/09 08:02        |              |      |
| Sample: B1E-4-6' Results reported on a "dry-w |               | 4026525012   | Collected           | l: 12/10/09 | 9 13:00 | Received: 12/          | 15/09 08:55 M         | atrix: Solid |      |
| Parameters                                    | Results       | Units        | LOQ                 | LOD         | DF      | Prepared               | Analyzed              | CAS No.      | Qual |
| 6010 MET ICP                                  | Analytical    | Method: EPA  |                     | ation Meth  | od: EPA | 3050                   |                       |              |      |
| Arsenic                                       | <b>49.9</b> m | ıg/kg        | 2.4                 | 0.14        | 1       | 12/16/09 13:45         | 12/17/09 14:40        | 7440-38-2    |      |
| Percent Moisture                              | Analytical    | Method: ASTN | и D2974-87          |             |         |                        |                       |              |      |
| Percent Moisture                              | 18.0 %        |              | 0.10                | 0.10        | 1       |                        | 12/18/09 08:03        |              |      |
|                                               |               |              |                     |             |         |                        |                       |              |      |

Date: 12/29/2009 12:11 PM

## REPORT OF LABORATORY ANALYSIS

Page 14 of 52





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

Sample: B1E-6-8'

Lab ID: 4026525013

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

| Results reported on a "dry-w                     | eight" basis |                 |              |            |          |                |                 |              |      |
|--------------------------------------------------|--------------|-----------------|--------------|------------|----------|----------------|-----------------|--------------|------|
| Parameters                                       | Results      | Units           | LOQ          | LOD        | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                     | Analytica    | l Method: EPA   | 6010 Prepar  | ation Meth | nod: EP/ | A3050          |                 |              |      |
| Arsenic                                          | <b>232</b> r | mg/kg           | 2.6          | 0.15       | 1        | 12/16/09 13:45 | 12/17/09 14:44  | 7440-38-2    |      |
| Percent Moisture                                 | Analytica    | I Method: ASTN  | M D2974-87   |            |          |                |                 |              |      |
| Percent Moisture                                 | 23.2         | %               | 0.10         | 0.10       | 1        |                | 12/18/09 08:04  |              |      |
| Sample: B1E-8-10'                                | Lab ID:      | 4026525014      | Collected    | 12/10/0    | 9 13:00  | Received: 12/  | /15/09 08:55 Ma | atrix: Solid |      |
| Results reported on a "dry-w                     | eight" basis |                 |              |            |          |                |                 |              |      |
| Parameters                                       | Results      | Units           | LOQ          | LOD        | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                     | Analytica    | l Method: EPA   | 6010 Prepara | ation Meth | nod: EPA | A3050          |                 |              |      |
| Arsenic                                          | <b>932</b> r | mg/kg           | 8.6          | 0.50       | 1        | 12/16/09 13:45 | 12/17/09 14:48  | 7440-38-2    |      |
| Percent Moisture                                 | Analytica    | I Method: ASTN  | и D2974-87   |            |          |                |                 |              |      |
| Percent Moisture                                 | 77.5 %       | %               | 0.10         | 0.10       | 1        |                | 12/18/09 08:04  |              |      |
| Sample: B1E-10-12' Results reported on a "dry-wa |              | 4026525015      | Collected    | : 12/10/0  | 9 13:00  | Received: 12/  | /15/09 08:55 Ma | atrix: Solid |      |
| Parameters                                       | Results      | Units           | LOQ          | LOD        | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                     | Analytical   | I Method: EPA 6 |              | ation Meth | od: EPA  | A 3050         |                 |              |      |
| Arsenic                                          | 294 r        | ng/kg           | 5.3          | 0.31       | 1        | 12/16/09 13:45 | 12/17/09 14:52  | 7440-38-2    |      |
| Percent Moisture                                 | Analytical   | l Melhod: ASTN  | л D2974-87   |            |          |                |                 |              |      |
| Percent Moisture                                 | 63.3 %       | %               | 0.10         | 0.10       | 1        |                | 12/18/09 08:04  |              |      |
| Sample: B1E-12-14'                               | Lab ID:      | 4026525016      | Collected    | : 12/10/0  | 9 13:00  | Received: 12/  | 15/09 08:55 Ma  | atrix: Solid |      |
| Results reported on a "dry-we                    | eight" basis |                 |              |            |          |                |                 |              |      |
| Parameters                                       | Results      | Units           | LOQ          | LOD        | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                     | Analytical   | Method: EPA (   | 6010 Prepara | ation Meth | od: EPA  | 3050           |                 |              |      |
| Arsenic                                          | 341 r        | ng/kg           | 8.7          | 0.50       | 1        | 12/16/09 13:45 | 12/17/09 14:56  | 7440-38-2    |      |
| Percent Moisture                                 | Analytical   | Method: ASTN    | и D2974-87   |            |          |                |                 |              |      |
| D                                                |              |                 |              |            |          |                |                 |              |      |

Date: 12/29/2009 12:11 PM

Percent Moisture

## **REPORT OF LABORATORY ANALYSIS**

0.10

0.10

77.1 %

Page 15 of 52

12/18/09 08:04





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

Sample: B1E-14-16'

Lab ID: 4026525017

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

Results reported on a "dry-weight" basis

| ght" basis            |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                |                 |              |         |  |  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|-----------------|--------------|---------|--|--|--|
| Results               | Units                                                                                                                                                                                                                      | LOQ _                                                                                                                                                                                                                                                                                                                                                                          | LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DF              | Prepared       | Analyzed        | CAS No.      | Qual    |  |  |  |
| Analytica             | I Method: EPA 6                                                                                                                                                                                                            | 6010 Prepar                                                                                                                                                                                                                                                                                                                                                                    | ation Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | od: EPA         | 3050           | -               |              |         |  |  |  |
| <b>6.2</b> r          | mg/kg                                                                                                                                                                                                                      | 4.7                                                                                                                                                                                                                                                                                                                                                                            | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1               | 12/16/09 13:45 | 12/17/09 15:07  | 7440-38-2    |         |  |  |  |
| Analytica             | I Method: ASTN                                                                                                                                                                                                             | и D2974-87                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                |                 |              |         |  |  |  |
| 58.0                  | %                                                                                                                                                                                                                          | 0.10                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1               |                | 12/18/09 08:04  |              |         |  |  |  |
| Lab ID:               | 4026525018                                                                                                                                                                                                                 | Collected                                                                                                                                                                                                                                                                                                                                                                      | d: 12/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9 13:00         | Received: 12/  | 115/09 08:55 Ma | atrix: Solid |         |  |  |  |
| Results               | Units                                                                                                                                                                                                                      | LOQ                                                                                                                                                                                                                                                                                                                                                                            | LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DF              | Prepared       | Analyzed        | CAS No.      | Qual    |  |  |  |
| Analytica             | l Method: EPA 6                                                                                                                                                                                                            | 6010 Prepara                                                                                                                                                                                                                                                                                                                                                                   | ation Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | od: EPA         | 3050           |                 |              |         |  |  |  |
| <b>3.4</b> J r        | ng/kg                                                                                                                                                                                                                      | 4.3                                                                                                                                                                                                                                                                                                                                                                            | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1               | 12/16/09 13:45 | 12/17/09 15:11  | 7440-38-2    | В       |  |  |  |
| Analytica             | I Method: ASTN                                                                                                                                                                                                             | л D2974-87                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                |                 |              |         |  |  |  |
| 53.6 %                | %                                                                                                                                                                                                                          | 0.10                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1               |                | 12/18/09 08:04  |              |         |  |  |  |
| Lab ID:<br>ght" basis | 4026525019                                                                                                                                                                                                                 | Collected                                                                                                                                                                                                                                                                                                                                                                      | l: 12/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9 13:00         | Received: 12/  | 15/09 08:55 Ma  | atrix: Solid |         |  |  |  |
| Results               | Units                                                                                                                                                                                                                      | LOQ                                                                                                                                                                                                                                                                                                                                                                            | LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DF              | Prepared       | Analyzed        | CAS No.      | Qual    |  |  |  |
| Analytica             | l Method: EPA 6                                                                                                                                                                                                            | 6010 Prepara                                                                                                                                                                                                                                                                                                                                                                   | alion Melh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | od: EPA         | \3050          |                 |              |         |  |  |  |
| 2.7 n                 | ng/kg                                                                                                                                                                                                                      | 2.5                                                                                                                                                                                                                                                                                                                                                                            | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1               | 12/16/09 13:45 | 12/17/09 15:16  | 7440-38-2    |         |  |  |  |
| Analytical            | Method: ASTM                                                                                                                                                                                                               | 1 D2974-87                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                |                 |              |         |  |  |  |
| 21.5 %                | <b>%</b>                                                                                                                                                                                                                   | 0.10                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1               |                | 12/18/09 08:04  |              |         |  |  |  |
| Lab ID:<br>ht" basis  | 4026525020                                                                                                                                                                                                                 | Collected                                                                                                                                                                                                                                                                                                                                                                      | l: 12/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9 13:00         | Received: 12/  | 15/09 08:55 Ma  | trix: Solid  |         |  |  |  |
| Results               | Units                                                                                                                                                                                                                      | LOQ                                                                                                                                                                                                                                                                                                                                                                            | LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DF              | Prepared       | Analyzed        | CAS No.      | Qual    |  |  |  |
| Analytical            | Melhod: EPA 6                                                                                                                                                                                                              | 6010 Prepara                                                                                                                                                                                                                                                                                                                                                                   | ation Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | od: EP <i>F</i> | 3050           |                 |              |         |  |  |  |
| 3.8 n                 | ng/kg                                                                                                                                                                                                                      | 2.1                                                                                                                                                                                                                                                                                                                                                                            | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1               | 12/16/09 14:00 | 12/17/09 15:35  | 7440-38-2    |         |  |  |  |
| Analytical            | Method: ASTM                                                                                                                                                                                                               | 1 D2974-87                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |                |                 |              |         |  |  |  |
| 130                   | <i>l</i>                                                                                                                                                                                                                   | 0.10                                                                                                                                                                                                                                                                                                                                                                           | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1               |                | 12/18/09 08:04  |              |         |  |  |  |
|                       | Results  Analytica 58.0 G  Lab ID: ght" basis  Results  Analytica 3.4J r  Analytica 53.6 G  Lab ID: ght" basis  Results  Analytica 2.7 r  Analytica 21.5 G  Lab ID: ght" basis  Results  Analytica 3.8 r  Analytical 3.8 r | Results Units  Analytical Method: EPA ( 6.2 mg/kg  Analytical Method: ASTM 58.0 %  Lab ID: 4026525018  Analytical Method: EPA ( 3.4J mg/kg  Analytical Method: ASTM 53.6 %  Lab ID: 4026525019  Analytical Method: EPA ( 2.7 mg/kg  Analytical Method: ASTM 21.5 %  Lab ID: 4026525020  Analytical Method: ASTM 21.5 %  Lab ID: 4026525020  Analytical Method: EPA ( 3.8 mg/kg | Results Units LOQ  Analytical Method: EPA 6010 Prepar 6.2 mg/kg 4.7  Analytical Method: ASTM D2974-87 58.0 % 0.10  Lab ID: 4026525018 Collected and the basis  Results Units LOQ  Analytical Method: EPA 6010 Prepar 3.4 J mg/kg 4.3  Analytical Method: ASTM D2974-87 53.6 % 0.10  Lab ID: 4026525019 Collected and the basis  Results Units LOQ  Analytical Method: EPA 6010 Prepar 2.7 mg/kg 2.5  Analytical Method: ASTM D2974-87 21.5 % 0.10  Lab ID: 4026525020 Collected and the basis  Results Units LOQ  Analytical Method: ASTM D2974-87 21.5 % 0.10  Analytical Method: EPA 6010 Prepar 3.8 mg/kg 2.1  Analytical Method: EPA 6010 Prepar 3.8 mg/kg 2.1  Analytical Method: ASTM D2974-87 | Results         | Results        | Results         | Results      | Results |  |  |  |

Date: 12/29/2009 12:11 PM

#### REPORT OF LABORATORY ANALYSIS

Page 16 of 52





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

Sample: B2A-2-4'

Lab ID: 4026525021

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

| Sample: BZA-Z-4                               | Lab ID            | 4020020021                                               | Collecte              | u. 12/10/0  | 9 13.00     | Received. 12   | / 13/09 00.33 W | atrix. Soliu |      |  |
|-----------------------------------------------|-------------------|----------------------------------------------------------|-----------------------|-------------|-------------|----------------|-----------------|--------------|------|--|
| Results reported on a "dry-w                  | eight" basis      |                                                          |                       |             |             |                |                 |              |      |  |
| Parameters                                    | Results           | Units                                                    | LOQ                   | LOD         | DF          | Prepared       | Analyzed        | CAS No.      | Qual |  |
| 6010 MET ICP                                  | Analytica         | Analytical Method: EPA 6010 Preparation Method: EPA 3050 |                       |             |             |                |                 |              |      |  |
| Arsenic                                       | 2.2               | <b>2.2</b> mg/kg                                         |                       | 0.11        | 1           | 12/16/09 14:00 | 12/17/09 15:55  | 7440-38-2    |      |  |
| Percent Moisture                              | Analytica         | l Method: ASTN                                           | M D2974-87            |             |             |                |                 |              |      |  |
| Percent Moisture                              | 3.0               | %                                                        | 0.10                  | 0.10        | 1           |                | 12/18/09 08:04  |              |      |  |
| Sample: B2A-4-6'                              | Lab ID            | : 4026525022                                             | Collecte              | d: 12/10/0  | 9 13:00     | Received: 12   | /15/09 08:55 M  | atrix: Solid |      |  |
| Results reported on a "dry-w                  | eight" basis      |                                                          |                       |             |             |                |                 |              |      |  |
| Parameters                                    | Results           | Units                                                    | LOQ                   | LOD         | DF          | Prepared       | Analyzed        | CAS No.      | Qual |  |
| 6010 MET ICP                                  | Analytica         | al Method: EPA                                           | 6010 Prepa            | ration Meth | nod: EPA    | A 3050         |                 |              |      |  |
| Arsenic                                       | <b>30.9</b> mg/kg |                                                          | 2.1                   | 0.12        | 1           | 12/16/09 14:00 | 12/17/09 15:59  | 7440-38-2    |      |  |
| Percent Moisture                              | Analytica         | I Method: ASTN                                           | и D2974-87            |             |             |                |                 |              |      |  |
| Percent Moisture                              | 6.3               | %                                                        | 0.10                  | 0.10        | 1           |                | 12/18/09 08:05  |              |      |  |
| Sample: B2A-6-8' Results reported on a "dry-w |                   | : 4026525023                                             | Collecte              | d: 12/10/0  | 9 13:00     | Received: 12   | /15/09 08:55 M  | atrix: Solid |      |  |
| Parameters                                    | Results           | Units                                                    | LOQ                   | LOD         | DF          | Prepared       | Analyzed        | CAS No.      | Qual |  |
| 6010 MET ICP                                  | Analytica         | Method: EPA                                              | 6010 Prepa            | ration Meth | od: EP      | A 3050         | <u> </u>        |              |      |  |
| Arsenic                                       | 27.5              | mg/kg                                                    | 2.2                   | 0.13        | 1           | 12/16/09 14:00 | 12/17/09 16:03  | 7440-38-2    |      |  |
| Percent Moisture                              | Analytica         | al Method: ASTN                                          | и D2974-87            |             |             |                |                 |              |      |  |
| Percent Moisture                              | 12.9              | %                                                        | 0.10                  | 0.10        | 1           |                | 12/18/09 08:05  |              |      |  |
| Sample: B2A-8-10'                             | Lab ID:           | : 4026525024                                             | Collecte              | d: 12/10/0  | 9 13:00     | Received: 12/  | /15/09 08:55 M  | atrix: Solid |      |  |
| Results reported on a "dry-w                  | eight" basis      |                                                          |                       |             |             |                |                 |              |      |  |
| Parameters                                    | Results           | Units                                                    | LOQ                   | LOD         | DF          | Prepared       | Analyzed        | CAS No.      | Qual |  |
| 6010 MET ICP                                  | Analytica         | I Melhod: EPA                                            | ———— -<br>6010 Prepai | ration Meth | <br>od: EP# | - <del> </del> | _               |              |      |  |
| Arsenic                                       | 1.6J              | mg/kg                                                    | 2.3                   | 0.13        | 1           | 12/16/09 14:00 | 12/17/09 16:07  | 7440-38-2    |      |  |
| Percent Moisture                              | Analytica         | al Method: ASTN                                          | и D2974-87            |             |             |                |                 |              |      |  |
|                                               |                   |                                                          |                       |             |             |                |                 |              |      |  |

Date: 12/29/2009 12:11 PM

Percent Moisture

## REPORT OF LABORATORY ANALYSIS

0.10

0.10

12.6 %

Page 17 of 52

12/18/09 08:05





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

Sample: B2A-10-12'

Lab ID: 4026525025

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

| Results reported on a "dry-w                    | eight" basis |                  |                     |            |                  |                |                  |              |      |
|-------------------------------------------------|--------------|------------------|---------------------|------------|------------------|----------------|------------------|--------------|------|
| Parameters                                      | Results      | Units            | LOQ _               | LOD        | DF               | Prepared       | Analyzed         | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytica    | l Method: EPA    | 6010 Prepara        | ation Meth | nod: EP <i>A</i> | A 3050         |                  |              |      |
| Arsenic                                         | 2.4 1        | mg/kg            | 2.4                 | 0.14       | 1                | 12/16/09 14:00 | 12/17/09 16:11   | 7440-38-2    |      |
| Percent Moisture                                | Analytica    | I Method: ASTN   | M D2974-87          |            |                  |                |                  |              |      |
| Percent Moisture                                | 17.6         | %                | 0.10                | 0.10       | 1                |                | 12/18/09 08:05   |              |      |
| Sample: B2A-12-14'                              | Lab ID:      | 4026525026       | Collected           | : 12/10/0  | 9 13:00          | Received: 12/  | /15/09 08:55 Ma  | atrix: Solid |      |
| Results reported on a "dry-w                    | eight" basis |                  |                     |            |                  |                |                  |              |      |
| Parameters                                      | Results      | Units            | LOQ                 | LOD        | DF               | Prepared       | Analyzed         | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytica    | I Method: EPA    | 6010 Prepara        | ation Meth | nod: EP <i>A</i> | A 3050         |                  |              |      |
| Arsenic                                         | 7.1J r       | mg/kg            | 7.3                 | 0.42       | 1                | 12/16/09 14:00 | 12/17/09 16:15   | 7440-38-2    |      |
| Percent Moisture                                | Analytica    | I Method: ASTN   | и D <b>2</b> 974-87 |            |                  |                |                  |              |      |
| Percent Moisture                                | 74.2         | %                | 0.10                | 0.10       | 1                |                | 12/18/09 08:05   |              |      |
| Sample: B2A-14-15' Results reported on a "dry-w |              | 4026525027       | Collected           | : 12/10/0  | 9 13:00          | Received: 12/  | 15/09 08:55 Ma   | atrix: Solid |      |
| Parameters                                      | Results -    | Units            | LOQ _               | LOD        | DF               | Prepared       | Analyzed<br>———— | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytica    | I Method: EPA    | 6010 Prepara        | ation Meth | od: EPA          | 3050           |                  |              |      |
| Arsenic                                         | 2.9J r       | mg/kg            | 4.1                 | 0.24       | 1                | 12/16/09 14:00 | 12/17/09 16:19   | 7440-38-2    |      |
| Percent Moisture                                | Analytica    | I Method: ASTN   | и D2974-87          |            |                  |                |                  |              |      |
| Percent Moisture                                | 56.2         | %                | 0.10                | 0.10       | 1                |                | 12/18/09 08:05   |              |      |
| Sample: B2B-0-2' Results reported on a "dry-w   |              | 4026525028       | Collected           | 12/10/09   | 9 13:00          | Received: 12/  | 15/09 08:55 Ma   | atrix: Solid |      |
| Parameters                                      | Results      | Units            | LOQ _               | LOD        | DF               | Prepared       | Analyzed         | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytica    | I Method: IEPA ( | 6010 Prepara        | ation Meth | od: EPA          | 3050           |                  |              |      |
| Arsenic                                         | 9.5 r        | ng/kg            | 2.0                 | 0.12       | 1                | 12/16/09 14:00 | 12/17/09 16:23   | 7440-38-2    |      |
| Percent Moisture                                | Analytica    | I Method: ASTN   | л D2974-87          |            |                  |                |                  |              |      |
| Percent Moisture                                | 3.3          | %                | 0.10                | 0.10       | 1                |                | 12/18/09 08:05   |              |      |

Date: 12/29/2009 12:11 PM

**REPORT OF LABORATORY ANALYSIS** 

Page 18 of 52





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

Sample: B2B-2-4' Lab ID: 4026525029 Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

| Results reported on a "dry-w                  | eight" basis |                 |              |            |          |                |                |              |      |
|-----------------------------------------------|--------------|-----------------|--------------|------------|----------|----------------|----------------|--------------|------|
| Parameters                                    | Results      | Units           | LOQ          | LOD        | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                  | Analytica    | I Method: EPA   | 6010 Prepara | ation Metl | nod: EP  | A3050          |                |              |      |
| Arsenic                                       | <b>527</b> r | mg/kg           | 2.1          | 0.12       | 1        | 12/16/09 14:00 | 12/17/09 16:27 | 7440-38-2    |      |
| Percent Moisture                              | Analytica    | I Method: ASTN  | и D2974-87   |            |          |                |                |              |      |
| Percent Moisture                              | 5.8          | %               | 0.10         | 0.10       | 1        |                | 12/18/09 08:05 |              |      |
| Sample: B2B-4-6'                              | Lab ID:      | 4026525030      | Collected    | l: 12/10/0 | 9 13:00  | Received: 12/  | 15/09 08:55 M  | atrix: Solid |      |
| Results reported on a "dry-w                  | eight" basis |                 |              |            |          |                |                |              |      |
| Parameters                                    | Results      | Units           | LOQ          | LOD        | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                  | Analytical   | I Method: EPA 6 | 6010 Prepara | ation Meth | nod: EPA | A 3050         |                |              |      |
| Arsenic                                       | 3830 r       | mg/kg           | 2.1          | 0.12       | 1        | 12/16/09 14:00 | 12/17/09 16:31 | 7440-38-2    |      |
| Percent Moisture                              | Analytica    | I Method: ASTN  | л D2974-87   |            |          |                |                |              |      |
| Percent Moisture                              | 7.4 %        | %               | 0.10         | 0.10       | 1        |                | 12/18/09 08:06 |              |      |
| Sample: B2B-6-8' Results reported on a "dry-w |              | 4026525031      | Collected    | l: 12/10/0 | 9 13:00  | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |
| Parameters                                    | Results      | Units           | LOQ          | LOD        | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                  | Analytical   | I Method: EPA 6 | 6010 Prepara | ation Meth | nod: EPA | A 3050         |                |              |      |
| Arsenic                                       | 309 r        | ng/kg           | 2.1          | 0.12       | 1        | 12/16/09 14:00 | 12/17/09 16:43 | 7440-38-2    |      |
| Percent Moisture                              | Analytical   | Method: ASTM    | 1 D2974-87   |            |          |                |                |              |      |
| Percent Moisture                              | 15.1 %       | %               | 0.10         | 0.10       | 1        |                | 12/18/09 08:06 |              |      |
| Sample: B2B-8-10'                             |              | 4026525032      | Collected    | : 12/10/0  | 9 13:00  | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |
| Results reported on a "dry-w                  | eight" basis |                 |              |            |          |                |                |              |      |
| Parameters                                    | Results      | Units           | LOQ          | LOD        | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                  | Analytical   | I Method: EPA 6 | 6010 Prepara | ation Meth | od: EP   | A 3050         |                |              |      |
| Arsenic                                       | 343 r        | ng/kg           | 2.3          | 0.13       | 1        | 12/16/09 14:00 | 12/17/09 16:47 | 7440-38-2    |      |
| Percent Moisture                              | Analytical   | l Method: ASTN  | 1 D2974-87   |            |          |                |                |              |      |
| Percent Moisture                              | 14.0 %       | %               | 0.10         | 0.10       | 1        |                | 12/18/09 08:09 |              |      |

Date: 12/29/2009 12:11 PM

## REPORT OF LABORATORY ANALYSIS

Page 19 of 52





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

Sample: B2B-10-12'

Lab ID: 4026525033

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

Results reported on a "dry-weight" basis

| Results reported on a "dry-weig                       | nt" basis              |                                  |                     |            |                 |                |                 |              |      |  |  |  |
|-------------------------------------------------------|------------------------|----------------------------------|---------------------|------------|-----------------|----------------|-----------------|--------------|------|--|--|--|
| Parameters                                            | Results                | Units                            | LOQ                 | LOD        | DF              | Prepared       | Analyzed        | CAS No.      | Qual |  |  |  |
| 6010 MET ICP                                          | Analytica              | l Method: EPA 6                  | 6010 Prepara        | ation Meth | nod: EPA        | 3050           |                 |              |      |  |  |  |
| Arsenic                                               | <b>240</b> r           | ng/kg                            | 2.3                 | 0.13       | 1               | 12/16/09 14:00 | 12/17/09 16:50  | 7440-38-2    |      |  |  |  |
| Percent Moisture                                      | Analytica              | I Method: ASTN                   | л D2974-87          |            |                 |                |                 |              |      |  |  |  |
| Percent Moisture                                      | 15.5 %                 | %                                | 0.10                | 0.10       | 1               |                | 12/18/09 08:09  |              |      |  |  |  |
| Sample: B2B-12-15'<br>Results reported on a "dry-weig |                        | 4026525034                       | Collected           | : 12/10/0  | 9 13:00         | Received: 12/  | 115/09 08:55 Ma | atrix: Solid |      |  |  |  |
| Parameters                                            | Results                | Units                            | LOQ                 | LOD        | DF              | Prepared       | Analyzed        | CAS No.      | Qual |  |  |  |
| 6010 MET ICP                                          | Analytical             | Method: EPA 6                    | 3010 Prepara        | ation Meth | od: EPA         | N3050          |                 |              |      |  |  |  |
| Arsenic                                               | <b>140</b> n           | ng/kg                            | 4.3                 | 0.25       | 1               | 12/16/09 14:00 | 12/17/09 16:55  | 7440-38-2    |      |  |  |  |
| Percent Moisture                                      | Analytical             | Analytical Method: ASTM D2974-87 |                     |            |                 |                |                 |              |      |  |  |  |
| Percent Moisture                                      | 54.9 %                 | <b>%</b>                         | 0.10                | 0.10       | 1               |                | 12/18/09 08:10  |              |      |  |  |  |
| Sample: B2B-15-19'                                    |                        | 4026525035                       | Collected           | 12/10/0    | 9 13:00         | Received: 12/  | 15/09 08:55 Ma  | atrix: Solid |      |  |  |  |
| Results reported on a "dry-weig                       |                        |                                  |                     |            |                 |                |                 |              |      |  |  |  |
| Parameters                                            | Results -              | Units                            | LOQ _               | LOD        | DF              | Prepared       | Analyzed        | CAS No.      | Qual |  |  |  |
| 6010 MET ICP                                          | Analytical             | Method: EPA 6                    | 010 Prepara         | ation Meth | od: EP <i>A</i> | 3050           |                 |              |      |  |  |  |
| Arsenic                                               | 8.7 n                  | ng/kg                            | 4.0                 | 0.23       | 1               | 12/16/09 14:00 | 12/17/09 16:59  | 7440-38-2    |      |  |  |  |
| Percent Moisture                                      | Analytical             | Method: ASTM                     | 1 D <b>2</b> 974-87 |            |                 |                |                 |              |      |  |  |  |
| Percent Moisture                                      | 50.6 %                 | %                                | 0.10                | 0.10       | 1               |                | 12/18/09 08:10  |              |      |  |  |  |
| Sample: B2B-19-20'<br>Results reported on a "dry-weig |                        | 4026525036                       | Collected           | : 12/10/0  | 9 13:00         | Received: 12/  | 15/09 08:55 Ma  | atrix: Solid |      |  |  |  |
| Parameters                                            | Results                | Units                            | LOQ                 | LOD        | DF              | Prepared       | Analyzed        | CAS No.      | Qual |  |  |  |
| 6010 MET ICP                                          | — ———— –<br>Analytical | Method: EPA 6                    | 6010 Prepara        | ation Meth | od: EP <i>F</i> | · 3050         | -               |              | •    |  |  |  |
| Arsenic                                               | 2.8 n                  | ng/kg                            | 2.3                 | 0.13       | 1               | 12/16/09 14:00 | 12/17/09 17:03  | 7440-38-2    |      |  |  |  |

Date: 12/29/2009 12:11 PM

Percent Moisture Percent Moisture

## REPORT OF LABORATORY ANALYSIS

0.10

1

0.10

Analytical Method: ASTM D2974-87

18.0 %

Page 20 of 52







Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

Sample: B2C-0-2'

Lab ID: 4026525037

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

Results reported on a "dry-weight" basis

| Parameters                                     | Results       | Units         | LOQ          | LOD        | DF      | Prepared       | Analyzed                | CAS No.       | Qual |
|------------------------------------------------|---------------|---------------|--------------|------------|---------|----------------|-------------------------|---------------|------|
| 6010 MET ICP                                   | Analytica     | l Method: EPA | 6010 Prepara | ation Meth | od: EP  | <b>A</b> 3050  |                         |               |      |
| Arsenic                                        | <b>332</b> r  | mg/kg         | 1.9          | 0.11       | 1       | 12/16/09 14:00 | 12/17/09 17:06          | 7440-38-2     |      |
| Percent Moisture                               | Analytica     | l Method: AST | M D2974-87   |            |         |                |                         |               |      |
| Percent Moisture                               | 3.9 %         | %             | 0.10         | 0.10       | 1       |                | 12/18/09 08:10          |               |      |
| Sample: B2C-2-4'                               | Lab ID:       | 4026525038    | Collected    | 12/10/0    | 9 13:00 | Received: 12/  | /15/09 08:55 M          | atrix: Solid  |      |
| Results reported on a "dry-we                  | eight" basis  |               |              |            |         |                |                         |               |      |
| Parameters                                     | Results       | Units         | LOQ          | LOD        | DF      | Prepared       | Analyzed                | CAS No.       | Qual |
| 6010 MET ICP                                   | Analytica     | l Method: EPA | 6010 Prepara | ation Meth | od: EPA | A 3050         |                         |               |      |
| Arsenic                                        | 804 r         | <b>n</b> g/kg | 1.9          | 0.11       | 1       | 12/16/09 14:00 | 12/17/09 17:11          | 7440-38-2     |      |
| Percent Moisture                               | Analytical    | Melliod: AST  | M D2974-87   |            |         |                |                         |               |      |
| Percent Moisture                               | 4.9           | %             | 0.10         | 0.10       | 1       |                | 12/18/09 08:10          |               |      |
| Sample: B2C-4-6' Results reported on a "dry-wo |               | 4026525039    | Collected    | 12/10/0    | 9 13:00 | Received: 12/  | /15/09 08:55 Ma         | atrix: Solid  |      |
| Parameters                                     | Results       | Units         | LOQ          | LOD        | DF      | Prepared       | Analyzed                | CAS No.       | Qual |
| 6010 MET ICP                                   | Analytical    | Method: EPA   | 6010 Prepara | ition Meth | od: EPA | \3050          |                         |               |      |
| Arsenic                                        | <b>2880</b> r | ng/kg         | 2.0          | 0.11       | 1       | 12/16/09 14:00 | 12/17/09 17:15          | 7440-38-2     |      |
| Percent Moisture                               | Analytical    | Method: ASTN  | и D2974-87   |            |         |                |                         |               |      |
| Percent Moisture                               | 5.6 %         | %             | 0.10         | 0.10       | 1       |                | 12/18/09 08:10          |               |      |
| Sample: B2C-6-8'                               | Lab ID:       | 4026525040    | Collected    | 12/10/0    | 9 13:00 | Received: 12/  | /15/09 08: <b>55</b> Ma | atr'ıx: Solid |      |
| Results reported on a "dry-wo                  | eight" basis  |               |              |            |         |                |                         |               |      |
| Parameters                                     | Results       | Units         | LOQ          | LOD        | DF      | Prepared       | Analyzed                | CAS No.       | Qual |
| 6010 MET ICP                                   | Analytical    | Method: EPA   | 6010 Prepara | ntion Meth | od: EPA | 3050           |                         |               |      |
| Arsenic                                        | <b>996</b> n  | ng/kg         | 2.3          | 0.14       | 1       | 12/16/09 14:25 | 12/17/09 17:38          | 7440-38-2     | P6   |
| Percent Moisture                               | Analytical    | Method: ASTN  | л D2974-87   |            |         |                |                         |               |      |

Date: 12/29/2009 12:11 PM

Percent Moisture

#### REPORT OF LABORATORY ANALYSIS

0.10

0.10

15.0 %

Page 21 of 52 21







Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

Sample: B2C-8-10' Lab ID: 4026525041 Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

| Results reported on a "dry-w                     | eight" basis |                |              |            |         |                         |                 |              |      |
|--------------------------------------------------|--------------|----------------|--------------|------------|---------|-------------------------|-----------------|--------------|------|
| Parameters                                       | Results      | Units          | LOQ _        | LOD        | DF      | Prepared                | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                     | Analytica    | I Method: EPA  | 6010 Prepara | ation Meth | od: EPA | A 3050                  |                 |              |      |
| Arsenic                                          | 1470 :       | mg/kg          | 2.1          | 0.12       | 1       | 12/16/09 14:25          | 12/17/09 17:50  | 7440-38-2    |      |
| Percent Moisture                                 | Analytica    | I Method: ASTN | M D2974-87   |            |         |                         |                 |              |      |
| Percent Moisture                                 | 8.7 (        | %              | 0.10         | 0.10       | 1       |                         | 12/18/09 08:10  |              |      |
| Sample: B2C-10-12' Results reported on a "dry-wa |              | 4026525042     | Collected    | : 12/10/0  | 9 13:00 | Received: 12/           | /15/09 08:55 Mi | atrix: Solid |      |
| Parameters                                       | Results      | Units          | LOQ          | LOD        | DF      | Prepared                | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                     | Analytica    | ıl Method: EPA | 6010 Prepara | ation Meth | od: EPA | A 3050                  | _               |              |      |
| Arsenic                                          | 1270 r       | mg/kg          | 2.2          | 0.13       | 1       | 12/16/09 14: <b>2</b> 5 | 12/17/09 17:54  | 7440-38-2    |      |
| Percent Moisture                                 | Analytica    | l Method: ASTN | M D2974-87   |            |         |                         |                 |              |      |
| Percent Moisture                                 | 13.3 9       | %              | 0.10         | 0.10       | 1       |                         | 12/18/09 08:11  |              |      |
| Sample: B2C-12-14' Results reported on a "dry-w  |              | 4026525043     | Collected    | 12/10/0    | 9 13:00 | Received: 12/           | /15/09 08:55 Ma | atrix: Solid |      |
| Parameters                                       | Results      | Units          | LOQ          | LOD        | DF      | Prepared                | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                     | Analytica    | I Method: EPA  | 6010 Prepara | ation Meth | od: EP  | A3050                   | _               |              |      |
| Arsenic                                          | 9050 r       | ng/kg          | 7.3          | 0.42       | 1       | 12/16/09 14:25          | 12/17/09 17:58  | 7440-38-2    |      |
| Percent Moisture                                 | Analytica    | l Method: ASTN | M D2974-87   |            |         |                         |                 |              |      |
| Percent Moisture                                 | 72.6         | %              | 0.10         | 0.10       | 1       |                         | 12/18/09 08:11  |              |      |
| Sample: B2C-14-20'                               | Lab ID:      | 4026525044     | Collected    | 12/10/0    | 9 13:00 | Received: 12/           | /15/09 08:55 Ma | atrix: Solid |      |
| Results reported on a "dry-we                    | eight" basis |                |              |            |         |                         |                 |              |      |
| Parameters                                       | Results      | Units          | LOQ          | LOD        | DF      | Prepared                | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                     | Analytica    | I Method: EPA  | 6010 Prepara | ation Meth | od: EPA | A 3050                  |                 |              |      |
| Arsenic                                          | 708 r        | mg/kg          | 3.9          | 0.23       | 1       | 12/16/09 14:25          | 12/17/09 18:02  | 7440-38-2    |      |
| Percent Moisture                                 | Analytica    | l Method: ASTN | M D2974-87   |            |         |                         |                 |              |      |
|                                                  |              |                |              |            |         |                         |                 |              |      |

Date: 12/29/2009 12:11 PM

Percent Moisture

# REPORT OF LABORATORY ANALYSIS This report shall not be reproduced, except in full,

0.10

1

0.10

50.8 %

Page 22 of 52







Project: 7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

Sample: B2D-0-2' Lab ID: 4026525045 Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

| Sample: B2D-0-2               | Lab ID       | : 4026525045     | Collected    | 1: 12/10/0 | 9 13:00 | Received: 12            | /15/09 08:55 Ma    | atrix: Solid      |      |
|-------------------------------|--------------|------------------|--------------|------------|---------|-------------------------|--------------------|-------------------|------|
| Results reported on a "dry-w  | eight" basis |                  |              |            |         |                         |                    |                   |      |
| Parameters                    | Results      | Units            | LOQ          | LOD        | DF      | Prepared                | Analyzed           | CAS No.           | Qual |
| 6010 MET ICP                  | Analytica    | al Method: EPA   | 6010 Prepar  | ation Meth | od: EPA | A 3050                  |                    |                   |      |
| Arsenic                       | 4.3          | mg/kg            | 2.0          | 0.12       | 1       | 12/16/09 14: <b>2</b> 5 | 12/17/09 18:06     | 7440-38 <b>-2</b> |      |
| Percent Moisture              | Analytica    | al Method: ASTN  | и D2974-87   |            |         |                         |                    |                   |      |
| Percent Moisture              | 6.7          | %                | 0.10         | 0.10       | 1       |                         | 12/18/09 08:11     |                   |      |
| Sample: B2D-2-4'              |              | : 4026525046     | Collected    | d: 12/10/0 | 9 13:00 | Received: 12            | /15/09 08:55 Ma    | atrix: Solid      |      |
| Results reported on a "dry-w  | eight" basis |                  |              |            |         |                         |                    |                   |      |
| Parameters                    | Results      | Units            | LOQ          | LOD        | DF      | Prepared                | Analyzed           | CAS No.           | Qual |
| 6010 MET ICP                  | Analytica    | al Method: EPA   | 6010 Prepar  | ation Meth | od: EPA | 3050                    |                    |                   |      |
| Arsenic                       | 3.3          | mg/kg            | 1.9          | 0.11       | 1       | 12/16/09 14:25          | 12/17/09 18:18     | 7440-38-2         |      |
| Percent Moisture              | Analytica    | al Method: ASTM  | 1 D2974-87   |            |         |                         |                    |                   |      |
| Percent Moisture              | 2.3          | %                | 0.10         | 0.10       | 1       |                         | 12/18/09 08:11     |                   |      |
| Sample: B2D-4-6'              | Lab ID       | 4026525047       | Collected    | i: 12/10/0 | 9 13:00 | Received: 12/           | /15/09 08:55 Ma    | atrix: Solid      |      |
| Results reported on a "dry-we | eight" basis |                  |              |            |         |                         |                    |                   |      |
| Parameters                    | Results      | Units            | LOQ          | LOD        | DF      | Prepared                | Analyzed           | CAS No.           | Qual |
| 6010 MET ICP                  | Analytica    | al Method: EPA 6 | 6010 Prepara | ation Meth | od: EPA | A 3050                  |                    |                   |      |
| Arsenic                       | 4.1          | m <b>•</b> /kg   | 2.0          | 0.12       | 1       | 12/16/09 14: <b>2</b> 5 | 12/17/09 18:22     | 7440-38-2         |      |
| Percent Moisture              | Analytica    | I Method: ASTM   | 1 D2974-87   |            |         |                         |                    |                   |      |
| Percent Moisture              | 5.7          | %                | 0.10         | 0.10       | 1       |                         | 12/18/09 08:11     |                   |      |
| Sample: B2D-6-8'              | Lab ID:      | 4026525048       | Collected    | 1: 12/10/0 | 9 13:00 | Received: 12/           | 15/09 08:55 Ma     | atrix: Solid      |      |
| Results reported on a "dry-we | eight" basis |                  |              |            |         |                         |                    |                   |      |
| Parameters                    | Results      | Units            | LOQ          | LOD        | DF      | Prepared                | Analyzed           | CAS No.           | Qual |
| 6010 MET ICP                  | Analytica    | nl Method: EPA 6 | 3010 Prepara | ation Meth | od: EPA | 3050                    |                    |                   |      |
| Arsenic                       | 1030         | mg/kg            | 2.2          | 0.13       | 1       | 12/16/09 14:25          | 12/17/09 18:26     | 7440-38- <b>2</b> |      |
| Percent Moisture              | Analytica    | al Method: ASTN  | 1 D2974-87   |            |         |                         |                    |                   |      |
| Descent Mainture              | 40.4         | 0.4              | 0.40         | 0.40       |         |                         | 10/11/0/100 0.0.11 |                   |      |

Date: 12/29/2009 12:11 PM

Percent Moisture

## **REPORT OF LABORATORY ANALYSIS**

0.10

0.10

13.4 %

Page 23 of 52







Project:

7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

Sample: B2D-8-10'

Lab ID: 4026525049

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

| Results reported on a "dry-we                    | eight" basis  |                |              |             |          |                |                |                   |      |
|--------------------------------------------------|---------------|----------------|--------------|-------------|----------|----------------|----------------|-------------------|------|
| Parameters                                       | Results       | Units          | LOQ          | LOD         | DF       | Prepared       | Analyzed       | CAS No.           | Qual |
| 6010 MET ICP                                     | Analytica     | I Method: EPA  | 6010 Prepara | ation Meth  | nod: EPA | 3050           |                |                   |      |
| Arsenic                                          | <b>1420</b> r | mg/kg          | 2.1          | 0.12        | 1        | 12/16/09 14:25 | 12/17/09 18:30 | 7440-38-2         |      |
| Percent Moisture                                 | Analytica     | I Method: ASTN | и D2974-87   |             |          |                |                |                   |      |
| Percent Moisture                                 | 12.8 %        | %              | 0.10         | 0.10        | 1        |                | 12/18/09 08:11 |                   |      |
| Sample: B2D-10-12'                               | Lab ID:       | 4026525050     | Collected    | l: 12/1 0/0 | 9 13:00  | Received: 12/  | 15/09 08:55 Ma | atrix: Solid      |      |
| Results reported on a "dry-we                    | eight" basis  |                |              |             |          |                |                |                   |      |
| Parameters                                       | Results       | Units          | LOQ          | LOD         | DF       | Prepared       | Analyzed       | CAS No.           | Qual |
| 6010 MET ICP                                     | Analytica     | I Method: EPA  | 6010 Prepara | ation Meth  | nod: EPA | N3050          |                |                   |      |
| Arsenic                                          | 798 r         | mg/kg          | 2.2          | 0.13        | 1        | 12/16/09 14:25 | 12/17/09 18:34 | 7440-38- <b>2</b> |      |
| Percent Moisture                                 | Analytical    | I Method: ASTN | и D2974-87   |             |          |                |                |                   |      |
| Percent Moisture                                 | 17.4 %        | %              | 0.10         | 0.10        | 1        |                | 12/18/09 08:11 |                   |      |
| Sample: B2D-12-14' Results reported on a "dry-we |               | 4026525051     | Collected    | : 12/10/0   | 9 13:00  | Received: 12/  | 15/09 08:55 Ma | atrix: Solid      |      |
| Parameters                                       | Results       | Units          | LOQ          | LOD         | DF       | Prepared       | Analyzed       | CAS No.           | Qual |
| 6010 MET ICP                                     | Analytical    | I Method: EPA  |              | ation Meth  | nod: EPA | 3050           |                |                   | -    |
| Arsenic                                          | 533 r         | ng/kg          | 2.1          | 0.12        | 1        | 12/16/09 14:25 | 12/17/09 18:38 | 7440-38-2         |      |
| Percent Moisture                                 | Analytical    | I Method: ASTN | и D2974-87   |             |          |                |                |                   |      |
| Percent Moisture                                 | 13.9 %        | %              | 0.10         | 0.10        | 1        |                | 12/18/09 08:11 |                   |      |
| Sample: B2D-14-15'                               | Lab ID:       | 4026525052     | Collected    | : 12/10/0   | 9 13:00  | Received: 12/  | 15/09 08:55 Ma | atrix: Solid      |      |
| Results reported on a "dry-we                    | eight" basis  |                |              |             |          |                |                |                   |      |
| Parameters                                       | Results       | Units          | LOQ          | LOD         | DF       | Prepared       | Analyzed       | CAS No.           | Qual |
| 6010 MET ICP                                     | Analytical    | Method: EPA 6  | 6010 Prepara | ation Meth  | od: EPA  | 3050           |                |                   |      |
| Arsenic                                          | <b>2820</b> n | ng/kg          | 6.9          | 0.40        | 1        | 12/16/09 14:25 | 12/17/09 18:42 | 7440-38-2         |      |
| Percent Moisture                                 | Analytical    | I Method: ASTN | 1 D2974-87   |             |          |                |                |                   |      |

Date: 12/29/2009 12:11 PM

Percent Moisture

## REPORT OF LABORATORY ANALYSIS

0.10

0.10

72.8 %

Page 24 of 52







Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

Sample: B2D-15-17.5'

Lab ID: 4026525053

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

| Results reported on a "dry-w                    | eight" basis  |                |              |            |          |                |                         |              |      |
|-------------------------------------------------|---------------|----------------|--------------|------------|----------|----------------|-------------------------|--------------|------|
| Parameters                                      | Results       | Units          | LOQ          | LOD        | DF       | Prepared       | Analyzed                | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytica     | l Method: EPA  | 6010 Prepara | ation Meth | nod: EP  | 3050           |                         |              |      |
| Arsenic                                         | <b>1330</b> r | ng/kg          | 3.6          | 0.21       | 1        | 12/16/09 14:25 | 12/17/09 18:46          | 7440-38-2    |      |
| Percent Moisture                                | Analytica     | l Method: ASTN | M D2974-87   |            |          |                |                         |              |      |
| Percent Moisture                                | 44.9 %        | <b>%</b>       | 0.10         | 0.10       | 1        |                | 12/18/09 08:13          |              |      |
| Sample: B2D-17.5-20'                            | Lab ID:       | 4026525054     | Collected    | : 12/10/0  | 9 13:00  | Received: 12/  | /15/09 08: <b>55</b> Ma | atrix: Solid |      |
| Results reported on a "dry-w                    | eight" basis  |                |              |            |          |                |                         |              |      |
| Parameters                                      | Results       | Units          | LOQ          | LOD        | DF       | Prepared       | Analyzed                | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytical    | Method: EPA    | 6010 Prepara | ation Meth | nod: EPA | 3050           |                         |              |      |
| Arsenic                                         | 81.5 r        | ng/kg          | 2.4          | 0.14       | 1        | 12/16/09 14:25 | 12/17/09 18:50          | 7440-38-2    |      |
| Percent Moisture                                | Analytica     | I Method: ASTN | M D2974-87   |            |          |                |                         |              |      |
| Percent Moisture                                | 24.7 %        | <b>%</b>       | 0.10         | 0.10       | 1        |                | 12/18/09 08:13          |              |      |
| Sample: B2D-20-25' Results reported on a "dry-w |               | 4026525055     | Collected    | : 12/10/0  | 9 13:00  | Received: 12/  | 15/09 08:55 Ma          | atrix: Solid |      |
| Parameters                                      | Results       | Units          | LOQ          | LOD        | DF       | Prepared       | Analyzed                | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytical    | Method: EPA    | 6010 Prepara | ation Meth | nod: EPA | A3050          |                         |              |      |
| Arsenic                                         | <b>15.5</b> r | ng/kg          | 2.1          | 0.12       | 1        | 12/16/09 14:25 | 12/17/09 18:54          | 7440-38-2    |      |
| Percent Moisture                                | Analytical    | Method: ASTN   | и D2974-87   |            |          |                |                         |              |      |
| Percent Moisture                                | 9.7 %         | %              | 0.10         | 0.10       | 1        |                | 12/18/09 08:13          |              |      |
| Sample: B2E-0-2'                                | Lab ID:       | 4026525056     | Collected    | : 12/10/0  | 9 13:00  | Received: 12/  | 15/09 08:55 Ma          | atrix: Solid |      |
| Results reported on a "dry-w                    | eight" basis  |                |              |            |          |                |                         |              |      |
| Parameters                                      | Results       | Units          | LOQ          | LOD        | DF       | Prepared       | Analyzed                | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytical    | IMethod: EPA   | 6010 Prepara | ation Meth | nod: EPA | A 3050         |                         |              |      |
| Arsenic                                         | <b>2.6</b> n  | ng/kg          | 1.9          | 0.11       | 1        | 12/16/09 14:25 | 12/17/09 19:06          | 7440-38-2    |      |
| Percent Moisture                                | Analytical    | Method: ASTN   | M D2974-87   |            |          |                |                         |              |      |
| December Mainture                               | 2.00          | ,              | 0.10         | 0.10       | 4        |                | 12/10/00 00:12          |              |      |

Date: 12/29/2009 12:11 PM

Percent Moisture

#### REPORT OF LABORATORY ANALYSIS

0.10

0.10

2.6 %

Page 25 of 52







Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

Sample: B2E-2-4'

Lab ID: 4026525057

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

Results reported on a "dry-weight" basis

| Parameters       | Results    | Units        | LOQ _        | LOD         | DF      | Prepared       | Analyzed                | CAS No.       | Qual |
|------------------|------------|--------------|--------------|-------------|---------|----------------|-------------------------|---------------|------|
| 6010 MET ICP     | Analytical | Method: EPA  | 6010 Prepara | ation Metho | od: EPA | 3050           |                         |               |      |
| Arsenic          | 1.5J n     | ng/kg        | 2.0          | 0.11        | 1       | 12/16/09 14:25 | 12/17/09 19:10          | 7440-38-2     | В    |
| Percent Moisture | Analytical | Method: ASTI | M D2974-87   |             |         |                |                         |               |      |
| Percent Moisture | 4.2 %      | <b>6</b>     | 0.10         | 0.10        | 1       |                | 12/18/09 08:13          | <b>;</b>      |      |
|                  |            |              |              |             |         |                |                         |               |      |
| Sample: B2E-4-6' | Lab ID:    | 4026525058   | Collected    | : 12/10/09  | 13:00   | Received: 12   | /15/09 08: <b>5</b> 5 N | latrix: Solid |      |

Results reported on a "dry-weight" basis

| Parameters                   | Results      | Units            | LOQ          | LOD        | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
|------------------------------|--------------|------------------|--------------|------------|---------|----------------|----------------|--------------|------|
| 6010 MET ICP                 | Analytica    | al Method: EPA 6 | 6010 Prepara | ation Meth | od: EP  | A3050          |                |              |      |
| Arsenic                      | 112          | mg/kg            | 2.1          | 0.12       | 1       | 12/16/09 14:25 | 12/17/09 19:14 | 7440-38-2    |      |
| Percent Moisture             | Analytica    | al Method: ASTN  | и D2974-87   |            |         |                |                |              |      |
| Percent Moisture             | 6.2          | %                | 0.10         | 0.10       | 1       |                | 12/18/09 08:13 |              |      |
| Sample: B2E-6-8'             | Lab ID       | : 4026525059     | Collected    | : 12/10/09 | 9 13:00 | Received: 12/  | 15/09 08:55 M  | atrix: Solid |      |
| Results reported on a "dry-w | eight" basis |                  |              |            |         |                |                |              |      |
| Parameters                   | Results      | Units            | LOQ          | LOD        | DF      | Prepared       | Analyzed       | CAS No.      | Qual |

| Parameters                    | Results Units      | LOQ              | LOD         | DF     | Prepared       | Analyzed               | CAS No.      | Qual |
|-------------------------------|--------------------|------------------|-------------|--------|----------------|------------------------|--------------|------|
| 6010 MET ICP                  | Analytical Method: | EPA 6010 Prepara | ition Metho | d: EPA | 3050           |                        |              |      |
| Arsenic                       | <b>100</b> mg/kg   | 2.3              | 0.13        | 1      | 12/16/09 14:25 | 12/17/09 19:18         | 7440-38-2    |      |
| Percent Moisture              | Analytical Method: | ASTM D2974-87    |             |        |                |                        |              |      |
| Percent Moisture              | 14.6 %             | 0.10             | 0.10        | 1      |                | 12/18/09 08:13         |              |      |
| Sample: B2E-8-10'             | Lab ID: 4026525    | i060 Collected:  | 12/10/09    | 13:00  | Received: 12/  | 15/09 08: <b>5</b> 5 M | atrix: Solid |      |
| Results reported on a "dry-wi | oight" basis       |                  |             |        |                |                        |              |      |

Results reported on a "dry-weight" basis

| Parameters       | Results                                                 | Units        | LOQ        | LOD  | DF | Prepared       | Analyzed       | CAS No.   | Qual       |
|------------------|---------------------------------------------------------|--------------|------------|------|----|----------------|----------------|-----------|------------|
| 6010 MET ICP     | Analytical Method: EPA 6010 Preparation Method: EPA3050 |              |            |      |    |                |                |           |            |
| Arsenic          | <b>107</b> m                                            | ng/kg        | 2.3        | 0.13 | 1  | 12/16/09 14:45 | 12/17/09 19:34 | 7440-38-2 | <b>M</b> 0 |
| Percent Moisture | Analytical                                              | Method: ASTI | M D2974-87 |      |    |                |                |           |            |
| Percent Moisture | 13.1 %                                                  | ,            | 0.10       | 0.10 | 1  |                | 12/18/09 08:13 |           |            |

Date: 12/29/2009 12:11 PM

REPORT OF LABORATORY ANALYSIS

Page 26 of 52

26



Project:

7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

Sample: B2E-10-13.8'

Lab ID: 4026525061

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

| Results reported on a "dry-w                    | eight" basis   |                 |             |             |          |                |                 |              |      |
|-------------------------------------------------|----------------|-----------------|-------------|-------------|----------|----------------|-----------------|--------------|------|
| Parameters                                      | Results        | Units           | LOQ         | LOD         | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytica      | I Method: EPA   | 6010 Prepa  | ration Meth | nod: EPA | A 3050         |                 |              |      |
| Arsenic                                         | 87.1           | mg/kg           | 2.2         | 0.13        | 1        | 12/16/09 14:45 | 12/17/09 19:53  | 7440-38-2    |      |
| Percent Moisture                                | Analytica      | Il Method: ASTN | M D2974-87  |             |          |                |                 |              |      |
| Percent Moisture                                | 10.1           | %               | 0.10        | 0.10        | 1        |                | 12/18/09 08:14  |              |      |
| Sample: B2E-13.8-15'                            | Lab ID:        | 4026525062      | Collecte    | d: 12/10/0  | 9 13:00  | Received: 12/  | /15/09 08:55 M  | atrix: Solid |      |
| Results reported on a "dry-w                    | eight" basis   |                 |             |             |          |                |                 |              |      |
| Parameters                                      | Results        | Units           | LOQ         | LOD         | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytica      | I Method: EPA   | 6010 Prepa  | ration Meth | nod: EPA | ₹ 3050         | _               |              |      |
| Arsenic                                         | 324 1          | mg/kg           | 7.7         | 0.44        | 1        | 12/16/09 14:45 | 12/17/09 19:58  | 7440-38-2    |      |
| Percent Moisture                                | Analytica      | I Method: ASTN  | м D2974-87  |             |          |                |                 |              |      |
| Percent Moisture                                | 75.2 9         | %               | 0.10        | 0.10        | 1        |                | 12/18/09 08:14  |              |      |
| Sample: B2E-20-23' Results reported on a "dry-w |                | 4026525063      | Collecte    | d: 12/10/0  | 9 13:00  | Received: 12/  | /15/09 08:55 Ma | atrix: Solid |      |
| Parameters                                      | Results        | Units           | LOQ         | LOD         | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytica      | I Method: EPA   |             | ration Meth | nod: EPA | A 3050         | _               |              |      |
| Arsenic                                         | 86.5 r         | mg/kg           | 5.0         | 0.29        | 1        | 12/16/09 14:45 | 12/17/09 20:02  | 7440-38-2    |      |
| Percent Moisture                                | Analytica      | I Method: ASTN  | M D29'74-87 |             |          |                |                 |              |      |
| Percent Moisture                                | <b>62</b> .8 9 | %               | 0.10        | 0.10        | 1        |                | 12/18/09 08:14  |              |      |
| Sample: B2E-23-25'                              |                | 4026525064      | Collecte    | d: 12/10/0  | 9 13:00  | Received: 12/  | 15/09 08:55 Ma  | atrix: Solid |      |
| Results reported on a "dry-we                   | eight" basis   |                 |             |             |          |                |                 |              |      |
| Parameters                                      | Results        | Units           | LOQ _       | LOD         | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytica      | I Method: EPA 6 | 6010 Prepai | ration Meth | od: EPA  | 3050           |                 |              |      |
| Arsenic                                         | 2.6 r          | mg/kg           | 2.1         | 0.12        | 1        | 12/16/09 14:45 | 12/17/09 20:05  | 7440-38-2    |      |
| Percent Moisture                                | Analytica      | I Method: ASTN  | и D2974-87  |             |          |                |                 |              |      |
|                                                 |                |                 |             |             |          |                |                 |              |      |

Date: 12/29/2009 12:11 PM

Percent Moisture

## REPORT OF LABORATORY ANALYSIS

0.10

0.10

12.4 %

Page 27 of 52





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

Sample: B2F-0-2'

Lab ID: 4026525065

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

| Results reported on a "dry-w                   | eight" basis   |                 |                       |            |         |                 |                                |              |      |
|------------------------------------------------|----------------|-----------------|-----------------------|------------|---------|-----------------|--------------------------------|--------------|------|
| Parameters                                     | Results        | Units           | L.OQ                  | LOD        | DF      | Prepared        | Analyzed                       | CAS No.      | Qual |
| 6010 MET ICP                                   | Analytica      | I Method: EPA   | 6010 Prepara          | ation Meth | od: EPA | A 3050          |                                |              |      |
| Arsenic                                        | <b>4.1</b> r   | mg/kg           | 1.9                   | 0.11       | 1       | 12/16/09 14:45  | <b>12/17/</b> 09 <b>2</b> 0:10 | 7440-38-2    |      |
| Percent Moisture                               | Analytica      | I Method: ASTN  | и D2974-87            |            |         |                 |                                |              |      |
| Percent Moisture                               | 2.7 %          | %               | 0.10                  | 0.10       | 1       |                 | 12/18/09 08:14                 |              |      |
| Sample: B2F-2-4'                               | Lab ID:        | 4026525066      | Collected             | : 12/10/0  | 9 13:00 | Received: 12/   | 15/09 08:55 Ma                 | atrix: Solid |      |
| Results reported on a "dry-we                  | eight" basis   |                 |                       |            |         |                 |                                |              |      |
| Parameters                                     | Results        | Units           | LOQ                   | LOD        | DF      | Prepared        | Analyzed                       | CAS No.      | Qual |
| 6010 MET ICP                                   | Analytical     | Method: EPA     | <br>6010 Prepara      | ation Meth | od: EP  | A 30 <b>5</b> 0 |                                |              |      |
| Arsenic                                        | <b>1.8</b> J r | mg/kg           | 2.0                   | 0.11       | 1       | 12/16/09 14:45  | 12/17/09 20:14                 | 7440-38-2    |      |
| Percent Moisture                               | Analytical     | I Method: ASTN  | и D2974-87            |            |         |                 |                                |              |      |
| Percent Moisture                               | 4.8 %          | %               | 0.10                  | 0.10       | 1       |                 | 12/18/09 08:14                 |              |      |
| Sample: B2F-4-6' Results reported on a "dry-we |                | 4026525067      | Collected             | : 12/10/0  | 9 13:00 | Received: 12/   | 15/09 08: <b>55</b> Ma         | atrix: Solid |      |
| Parameters                                     | Results        | Units           | LOQ                   | LOD        | DF      | Prepared        | Analyzed                       | CAS No.      | Qual |
| 6010 MET ICP                                   | Analytical     | Method: EPA     | 6010 Pre <b>p</b> ara | ation Meth | od: EPA | 3050            |                                |              |      |
| Arsenic                                        | 21.8 n         | ng/kg           | 2.0                   | 0.11       | 1       | 12/16/09 14:45  | 12/17/09 20:18                 | 7440-38-2    |      |
| Percent Moisture                               | Analytical     | Method: ASTN    | и D2974-87            |            |         |                 |                                |              |      |
| Percent Moisture                               | 5.4 %          | %               | 0.10                  | 0.10       | 1       |                 | 12/18/09 08:14                 |              |      |
| Sample: B2F-6-8' Results reported on a "dry-we |                | 4026525068      | Collected             | : 12/10/0  | 9 13:00 | Received: 12/   | 15/09 08:55 Ma                 | atrix: Solid |      |
| Parameters                                     | Results        | Units           | LOQ                   | LOD        | DF      | Prepared        | Analyzed                       | CAS No.      | Qual |
| 6010 MET ICP                                   |                |                 |                       |            |         |                 |                                |              |      |
| Arsenic                                        | 68.1 n         | l Method: EPA 6 | 2.1                   | o.12       | 00: EPA |                 | 12/17/09 20:22                 | 7440 28 2    |      |
| Percent Moisture                               |                |                 |                       | 0.12       | '       | 12/10/09 14:45  | 12/1//09/20:22                 | 1440-30-2    |      |
|                                                | •              | Method: ASTN    |                       | 0.40       | 4       |                 | 10/10/00 00:44                 |              |      |
| Percent Moisture                               | 10.5 %         | <b>′</b> 0      | 0.10                  | 0.10       | 1       |                 | 12/18/09 08:14                 |              |      |

Date: 12/29/2009 12:11 PM

## REPORT OF LABORATORY ANALYSIS

Page 28 of 52





Project: 7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

| Lab ID:                 | 4026525069                                                                                                                                                                                                                                                                                                                                                   | Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : 12/10/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 13:00         | Received: 12/  | 15/09 08:55 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| eight" basis            |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| Results                 | Units                                                                                                                                                                                                                                                                                                                                                        | LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DF              | Prepared       | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CAS No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Qual    |
| Analytical              | Method: EPA 6                                                                                                                                                                                                                                                                                                                                                | 3010 Prepara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ation Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | od: EPA         | 3050           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| <b>10.4</b> n           | ng/kg                                                                                                                                                                                                                                                                                                                                                        | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1               | 12/16/09 14:45 | 12/17/09 20:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7440-38-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| Analytical              | Method: ASTM                                                                                                                                                                                                                                                                                                                                                 | 1 D2974-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 12.2 %                  | 6                                                                                                                                                                                                                                                                                                                                                            | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1               |                | 12/18/09 08:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| Lab ID:<br>eight" basis | 4026525070                                                                                                                                                                                                                                                                                                                                                   | Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : 12/10/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 13:00         | Received: 12/  | 15/09 08:55 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Results                 | Units                                                                                                                                                                                                                                                                                                                                                        | LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DF              | Prepared       | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CAS No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Qual    |
| Analytical              | Method: EPA 6                                                                                                                                                                                                                                                                                                                                                | 6010 Prepara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ation Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | od: EP <i>F</i> | \3050          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| <b>11.8</b> n           | ng/kg                                                                                                                                                                                                                                                                                                                                                        | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1               | 12/16/09 14:45 | 12/17/09 20:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7440-38-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| Analytical              | Method: ASTM                                                                                                                                                                                                                                                                                                                                                 | 1 D2974-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 15.6 %                  | 6                                                                                                                                                                                                                                                                                                                                                            | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1               |                | 12/18/09 08:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| Lab ID:<br>eight" basis | 4026525071                                                                                                                                                                                                                                                                                                                                                   | Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : 12/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 13:00         | Received: 12/  | 15/09 08:55 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Results                 | Units                                                                                                                                                                                                                                                                                                                                                        | LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DF              | Prepared       | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CAS No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Qual    |
| Analytical              | Method: EPA 6                                                                                                                                                                                                                                                                                                                                                | 6010 Prepara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ation Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | od: EPA         | 3050           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| <b>16.0</b> m           | ng/kg                                                                                                                                                                                                                                                                                                                                                        | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1               | 12/16/09 14:45 | 12/17/09 20:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7440-38-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| Analytical              | Method: ASTM                                                                                                                                                                                                                                                                                                                                                 | 1 D2974-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 16.7 %                  | 6                                                                                                                                                                                                                                                                                                                                                            | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1               |                | 12/18/09 08:14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| Lab ID:<br>eight" basis | 4026525072                                                                                                                                                                                                                                                                                                                                                   | Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | : 12/10/09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 13:00         | Received: 12/  | 15/09 08:55 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| Results                 | Units                                                                                                                                                                                                                                                                                                                                                        | LOQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DF              | Prepared       | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CAS No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Qual    |
| Analytical              | Method: EPA 6                                                                                                                                                                                                                                                                                                                                                | 6010 Prepara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ation Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | od: EPA         | 3050           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 4.8J m                  | ng/kg                                                                                                                                                                                                                                                                                                                                                        | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1               | 12/16/09 14:45 | 12/17/09 20:46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7440-38-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| Analytical              | Method: ASTM                                                                                                                                                                                                                                                                                                                                                 | 1 D2974-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 76.0 %                  | 6                                                                                                                                                                                                                                                                                                                                                            | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1               |                | 12/18/09 08:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
|                         | Results  Analytical 10.4 n Analytical 12.2 %  Lab ID: eight" basis  Results  Analytical 15.6 %  Lab ID: eight" basis  Results  Analytical 16.0 n Analytical 16.7 %  Lab ID: eight" basis  Results  Analytical Analytical Analytical Analytical Analytical Analytical Analytical Analytical Analytical Analytical Analytical Analytical Analytical Analytical | Results Units  Analytical Method: EPA 6  10.4 mg/kg  Analytical Method: ASTM 12.2 %  Lab ID: 4026525070  sight" basis  Results Units  Analytical Method: EPA 6  11.8 mg/kg  Analytical Method: ASTM 15.6 %  Lab ID: 4026525071  sight" basis  Results Units  Analytical Method: EPA 6  16.0 mg/kg  Analytical Method: ASTM 16.7 %  Lab ID: 4026525072  sight" basis  Results Units  Analytical Method: ASTM 16.7 %  Lab ID: 4026525072  sight" basis  Results Units  Analytical Method: EPA 6  4.8J mg/kg | Analytical Method: EPA 6010 Preparation of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the property of the | Results         | Results        | Results Units LOQ LOD DF Prepared  Analytical Method: EPA 6010 Preparation Method: EPA 3050  10.4 mg/kg 2.2 0.13 1 12/16/09 14:45  Analytical Method: ASTM D2974-87  12.2 % 0.10 0.10 1  Lab ID: 4026525070 Collected: 12/10/09 13:00 Received: 12/16/10/10/14:45  Analytical Method: EPA 6010 Preparation Method: EPA 3050  11.8 mg/kg 2.2 0.13 1 12/16/09 14:45  Analytical Method: ASTM D2974-87  15.6 % 0.10 0.10 1  Lab ID: 4026525071 Collected: 12/10/09 13:00 Received: 12/16/10/10/10/10/10/10/10/10/10/10/10/10/10/ | Results Units LOQ LOD DF Prepared Analyzed  Analytical Method: EPA 6010 Preparation Method: EPA 3050  10.4 mg/kg 2.2 0.13 1 12/16/09 14:45 12/17/09 20:26  Analytical Method: ASTM D2974-87  12.2 % 0.10 0.10 1 12/18/09 08:14  Lab ID: 4026525070 Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Might" basis  Results Units LOQ LOD DF Prepared Analyzed  Analytical Method: EPA 6010 Preparation Method: EPA 3050  11.8 mg/kg 2.2 0.13 1 12/16/09 14:45 12/17/09 20:30  Analytical Method: ASTM D2974-87  15.6 % 0.10 0.10 1 12/18/09 08:55 Might" basis  Results Units LOQ LOD DF Prepared Analyzed  Analytical Method: ASTM D2974-87  16.0 mg/kg 2.3 0.13 1 12/16/09 14:45 12/17/09 20:42  Analytical Method: ASTM D2974-87  16.7 % 0.10 0.10 1 12/18/09 08:55 Might" basis  Results Units LOQ LOD DF Prepared Analyzed  Analytical Method: ASTM D2974-87  16.7 % 0.10 0.10 1 12/18/09 08:14  Lab ID: 4026525072 Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Might" basis  Results Units LOQ LOD DF Prepared Analyzed  Analytical Method: ASTM D2974-87  16.7 % 0.10 0.10 1 12/18/09 08:14  Lab ID: 4026525072 Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Might" basis  Results Units LOQ LOD DF Prepared Analyzed  Analytical Method: EPA 6010 Preparation Method: EPA 3050  4.8J mg/kg 7.5 0.43 1 12/16/09 14:45 12/17/09 20:46  Analytical Method: ASTM D2974-87 | Results |

Date: 12/29/2009 12:11 PM

## REPORT OF LABORATORY ANALYSIS

Page 29 of 52







Project:

7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

Sample: B2F-15-16' Lab ID: 4026525073

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

| Results reported on a "dry-we                       | eight" basis |                 |              |            |         |                |                |              |      |
|-----------------------------------------------------|--------------|-----------------|--------------|------------|---------|----------------|----------------|--------------|------|
| Parameters                                          | Results      | Units           | LOQ          | LOD        | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                        | Analytica    | l Method: EPA   | 6010 Prepara | ation Meth | od: EPA | 3050           |                |              |      |
| Arsenic                                             | 37.5 ।       | mg/kg           | 6.1          | 0.35       | 1       | 12/16/09 14:45 | 12/17/09 20:50 | 7440-38-2    |      |
| Percent Moisture                                    | Analytica    | I Method: ASTN  | M D2974-87   |            |         |                |                |              |      |
| Percent Moisture                                    | 67.0         | %               | 0.10         | 0.10       | 1       |                | 12/18/09 08:16 |              |      |
| Sample: B2F-16-20' Results reported on a "dry-we    |              | 4026525074      | Collected    | : 12/10/0  | 9 13:00 | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |
| Parameters                                          | Results      | Units           | LOQ          | LOD        | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                        | Analytica    | l Method: EPA   | 6010 Prepara | alion Meth | od: EP  | A3050          |                |              |      |
| Arsenic                                             | 2.6J ı       | mg/kg           | 3.0          | 0.17       | 1       | 12/16/09 14:45 | 12/17/09 20:54 | 7440-38-2    |      |
| Percent Moisture                                    | Analytica    | I Method: ASTN  | M D2974-87   |            |         |                |                |              |      |
| Percent Moisture                                    | 37.6         | %               | 0.10         | 0.10       | 1       |                | 12/18/09 08:16 |              |      |
| Sample: B2F-23-25' Results reported on a "dry-we    |              | 4026525075      | Collected    | 12/10/0    | 9 13:00 | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |
| Parameters                                          | Results      | Units           | LOQ          | LOD        | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                        | Analytica    | I Method: EPA ( | 6010 Prepara | ation Meth | od: EPA | \3050          |                |              |      |
| Arsenic                                             | 1.9J r       | ng/kg           | 2.0          | 0.12       | 1       | 12/16/09 14:45 | 12/17/09 20:58 | 7440-38-2    |      |
| Percent Moisture                                    | Analytica    | I Method: ASTN  | M D2974-87   |            |         |                |                |              |      |
| Percent Moisture                                    | 7.8 9        | %               | 0.10         | 0.10       | 1       |                | 12/18/09 08:16 |              |      |
| Sample: B2F-25-30'<br>Results reported on a "dry-we |              | 4026525076      | Collected:   | 12/10/09   | 9 13:00 | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |
| Parameters                                          | Results      | Units           | LOQ          | LOD        | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                        | Analytica    | Method: EPA     | 6010 Prepara | ation Meth | od: EPA | N3050          |                |              |      |
| Arsenic                                             | <b>3.2</b> r | ng/kg           | 2.1          | 0.12       | 1       | 12/16/09 14:45 | 12/17/09 21:02 | 7440-38-2    |      |
| Percent Moisture                                    | Analytica    | Method: ASTM    | л D2974-87   |            |         |                |                |              |      |

Date: 12/29/2009 12:11 PM

Percent Moisture

#### REPORT OF LABORATORY ANALYSIS

0.10

10.9 %

Page 30 of 52

12/18/09 08:16



1

0.10



Project: 7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

Sample: B3D-0-2' Lab ID: 4026525077 Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

| Paramelers                                        | Results       | Units           | LOQ                | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
|---------------------------------------------------|---------------|-----------------|--------------------|------------|-----------------|----------------|----------------|--------------|------|
| 6010 MET ICP                                      | Analytica     | I Method: EPA   | 6010 Prepara       | ation Meth | od: EP <i>A</i> | A 3050         |                |              |      |
| Arsenic                                           | 408 1         | mg/kg           | 3.5                | 0.20       | 1               | 12/16/09 14:45 | 12/17/09 21:06 | 7440-38-2    |      |
| Percent Moisture                                  | Analytica     | l Method: ASTN  | M D2974-87         |            |                 |                |                |              |      |
| Percent Moisture                                  | 46.5          | %               | 01.0               | 0.10       | 1               |                | 12/18/09 08:16 |              |      |
| Sample: B3D-2-4' Results reported on a "dry-we    |               | 4026525078      | Collected          | 12/10/0    | 9 13:00         | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |
| Parameters                                        | Results       | Units           | LOQ                | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                      | Analytica     | I Method: EPA 6 | <br>6010 Prepara   | ation Meth | od: EPA         | 3050           |                |              |      |
| Arsenic                                           | 11.8 г        | mg/kg           | 2.2                | 0.13       | 1               | 12/16/09 14:45 | 12/17/09 21:10 | 7440-38-2    |      |
| Percent Moisture                                  | Analytica     | I Method: ASTM  | 1 D2974-87         |            |                 |                |                |              |      |
| Percent Moisture                                  | 8.5 9         | %               | 0.10               | 0.10       | 1               |                | 12/18/09 08:16 |              |      |
| Sample: B3D-4-6'<br>Results reported on a "dry-wo |               | 4026525079      | Collected          | 12/10/0    | 9 13:00         | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |
| Parameters                                        | Results       | Units           | LOQ                | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                      | Analytica     | Method: EPA 6   | 6010 Prepara       | ition Meth | od: EPA         | \3050          |                |              |      |
| Arsenic                                           | <b>14.9</b> r | ng/kg           | 2.1                | 0.12       | 1               | 12/16/09 14:45 | 12/17/09 21:14 | 7440-38-2    |      |
| Percent Moisture                                  | Analytical    | Method: ASTM    | 1 D2974-8 <b>7</b> |            |                 |                |                |              |      |
| Percent Moisture                                  | 13.5          | <b>%</b>        | 0.10               | 0.10       | 1               |                | 12/18/09 08:16 |              |      |
| Sample: B3D-6-8'<br>Results reported on a "dry-we |               | 4026525080      | Collected:         | 12/10/09   | 9 13:00         | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |
| Parameters                                        | Results       | Units           | LOQ                | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                      | Analytica     | Method: EPA 6   | 3010 Prepara       | ition Meth | od: EPA         | 3050           |                |              |      |
| Arsenic                                           | <b>538</b> r  | ng/kg           | 2.3                | 0.13       | 1               | 12/16/09 17:00 | 12/17/09 21:38 | 7440-38-2    | P6   |
| Percent Moisture                                  | Analytica     | I Method: ASTM  | 1 D2974-87         |            |                 |                |                |              |      |
|                                                   |               |                 |                    |            |                 |                |                |              |      |

Date: 12/29/2009 12:11 PM

## REPORT OF LABORATORY ANALYSIS

Page 31 of 52





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

Sample: B3D-8-10'

Lab ID: 4026525081

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

Results reported on a "dry-weight" basis

| Parameters                                       | Results        | Units        | LOQ _                 | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
|--------------------------------------------------|----------------|--------------|-----------------------|------------|-----------------|----------------|----------------|--------------|------|
| 6010 MET ICP                                     | Analytical     | Method: EPA  | 6010 Prepara          | ation Meth | od: EPA         | 43050          |                |              |      |
| Arsenic                                          | <b>21</b> 30 r | ng/kg        | 2.3                   | 0.13       | 1               | 12/16/09 17:00 | 12/17/09 21:50 | 7440-38-2    |      |
| Percent Moisture                                 | Analytical     | Method: ASTI | M D2974-87            |            |                 |                |                |              |      |
| Percent Moisture                                 | 17.5 %         | <b>%</b>     | 0.10                  | 0.10       | 1               |                | 12/18/09 08:16 |              |      |
| Sample: B3D-10-12'                               |                | 4026525082   | Collected             | : 12/10/0  | 9 13:00         | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |
| Results reported on a "dry-we                    | eignt" basis   |              |                       |            |                 |                |                |              |      |
| Parameters                                       | Results        | Units        | LOQ _                 | LOD        | DF_             | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                     | Analytical     | Method: EPA  | 6010 Prepara          | ation Meth | od: EPA         | A 3050         |                |              |      |
| Arsenic                                          | <b>1210</b> n  | ng/kg        | 2.3                   | 0.13       | 1               | 12/16/09 17:00 | 12/17/09 21:54 | 7440-38-2    |      |
| Percent Moisture                                 | Analytical     | Method: ASTN | и D2974-87            |            |                 |                |                |              |      |
| Percent Moisture                                 | 18.4 %         | 6            | 0.10                  | 0.10       | 1               |                | 12/18/09 08:17 |              |      |
| Sample: B3D-12-14' Results reported on a "dry-we |                | 4026525083   | Collected:            | 12/10/0    | 9 13:00         | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |
| Parameters                                       | Results        | Units        | LOQ                   | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                     | Analytical     | Method: EPA  | 6010 Pre <b>p</b> ara | ation Meth | od: EPA         | \3050          |                |              |      |
| Arsenic                                          | <b>2030</b> n  | ng/kg        | 7.9                   | 0.46       | 1               | 12/16/09 17:00 | 12/17/09 21:58 | 7440-38-2    |      |
| Percent Moisture                                 | Analytical     | Method: ASTN | и D2974-87            |            |                 |                |                |              |      |
| Percent Moisture                                 | 77.3 %         | 6            | 0.10                  | 0.10       | 1               |                | 12/18/09 08:17 |              |      |
| Sample: B3D-14-16'                               | Lab ID:        | 4026525084   | Collected:            | 12/10/0    | 9 13:00         | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |
| Results reported on a "dry-we                    | eight" basis   |              |                       |            |                 |                |                |              |      |
| Parameters                                       | Results        | Units        | LOQ                   | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                     | Analytical     | Method: EPA  |                       | ation Meth | od: EP <i>R</i> | A3050          |                |              |      |
| Arsenic                                          | 759 n          | ng/kg        | 4.7                   | 0.27       | 1               | 12/16/09 17:00 | 12/17/09 22:02 | 7440-38-2    |      |
| Percent Moisture                                 | Analytical     | Method: ASTN | и D2974-87            |            |                 |                |                |              |      |

Date: 12/29/2009 12:11 PM

Percent Moisture

#### REPORT OF LABORATORY ANALYSIS

0.10

0.10

59.4 %

Page 32 of 52





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

Sample: B3E-0-2'

Lab ID: 4026525085

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

Results reported on a "dry-weight" basis

| Parameters                                       | Results       | Units         | LOQ              | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
|--------------------------------------------------|---------------|---------------|------------------|------------|-----------------|----------------|----------------|--------------|------|
| 6010 MET ICP                                     | Analytica     | Method: EPA   | <br>6010 Prepara | ation Meth | od: EPA         | 3050           |                |              |      |
| Arsenic                                          | <b>2.9</b> r  | ng/kg         | 2.1              | 0.12       | 1               | 12/16/09 17:00 | 12/17/09 22:06 | 7440-38-2    |      |
| Percent Moisture                                 | Analytical    | Method: ASTN  | и D2974-87       |            |                 |                |                |              |      |
| Percent Moisture                                 | 8.9           | <b>%</b>      | 0.10             | 0.10       | 1               |                | 12/18/09 08:17 |              |      |
| Sample: B3E-2-4'                                 | Lab iD:       | 4026525086    | Collected        | : 12/10/0  | 9 13:00         | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |
| Results reported on a "dry-w                     | eight" basis  |               |                  |            |                 |                |                |              |      |
| Parameters                                       | Results       | Units         | LOQ              | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                     | Analytica     | Method: EPA   | 6010 Prepara     | ation Meth | od: EPA         | 3050           |                |              |      |
| Arsenic                                          | <b>23.2</b> r | ng/kg         | 2.0              | 0.12       | 1               | 12/16/09 17:00 | 12/17/09 22:18 | 7440-38-2    |      |
| Percent Moisture                                 | Analytica     | Method: ASTN  | л D2974-87       |            |                 |                |                |              |      |
| Percent Moisture                                 | 9.9 %         | 6             | 0.10             | 0.10       | 1               |                | 12/18/09 08:17 |              |      |
| Sample: B3E-4-6' Results reported on a "dry-w    |               | 4026525087    | Collected        | 12/10/09   | 9 13:00         | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |
| Parameters                                       | Results       | Units         | LOQ              | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 METICP                                      | Analytical    | Method: EPA 6 | <br>3010 Prepara | ation Meth | od: EP <i>F</i> | \3050          |                |              |      |
| Arsenic                                          | 33 <b>0</b> r | ng/kg         | 2.3              | 0.13       | 1               | 12/16/09 17:00 | 12/17/09 22:22 | 7440-38-2    |      |
| Percent Moisture                                 | Analytical    | Method: ASTM  | 1 D2974-87       |            |                 |                |                |              |      |
| Percent Moisture                                 | 17.3 %        | 6             | 0.10             | 0.10       | 1               |                | 12/18/09 08:17 |              |      |
| Sample: B3E-6-8'<br>Results reported on a "dry-w |               | 4026525088    | Collected:       | 12/10/09   | 9 13:00         | Received: 12/  | 15/09 08:55 Ma | trix: Solid  |      |
| Parameters                                       | Results       | Units         | LOQ              | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                     | Analytical    | Method: EPA 6 | 6010 Prepara     | ntion Meth | od: EPA         | 3050           |                |              |      |
| Arsenic                                          | <b>249</b> n  | ng/kg         | 2.2              | 0.13       | 1               | 12/16/09 17:00 | 12/17/09 22:26 | 7440-38-2    |      |
| Percent Moisture                                 |               | Method: ASTM  |                  |            |                 |                |                |              |      |

Date: 12/29/2009 12:11 PM

Percent Moisture

REPORT OF LABORATORY ANALYSIS

0.10

0.10

17.4 %

Page 33 of 52





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

Sample: B3E-8-10' Lab ID: 4026525089 Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

| Results reported on a "dry-wei                    | ight" basis  |                 |                    |            |                  |                                 |                 |                    |      |
|---------------------------------------------------|--------------|-----------------|--------------------|------------|------------------|---------------------------------|-----------------|--------------------|------|
| Parameters                                        | Results      | Units           | LOQ                | LOD        | DF               | Prepared                        | Analyzed        | CAS No.            | Qual |
| 6010 MET ICP                                      | Analytica    | I Method: EPA   | 6010 Prepara       | ation Meth | nod: EPA         | 3050                            |                 |                    |      |
| Arsenic                                           | <b>151</b> r | mg/kg           | 2.3                | 0.13       | 1                | 12/16/09 17:00                  | 12/17/09 22:30  | 7440-38-2          |      |
| Percent Moisture                                  | Analytica    | I Method: ASTN  | и D297 <b>4-87</b> |            |                  |                                 |                 |                    |      |
| Percent Moisture                                  | 14.0 9       | %               | 0.10               | 0.10       | 1                |                                 | 12/18/09 08:17  |                    |      |
| Sample: B3E-10-12'                                | Lab ID:      | 4026525090      | Collected          | : 12/10/0  | 9 13:00          | Received: 12/                   | 15/09 08:55 Ma  | atrix: Solid       |      |
| Results reported on a "dry-wei                    | ight" basis  |                 |                    |            |                  |                                 |                 |                    |      |
| Parameters                                        | Results      | Units           | LOQ                | LOD        | DF               | Prepared                        | Analyzed        | CAS No.            | Qual |
| 6010 MET ICP                                      | Analytica    | I Method: EPA   | 6010 Prepara       | ation Meth | nod: EPA         | 3050                            |                 |                    |      |
| Arsenic                                           | 927 r        | mg/kg           | 5.5                | 0.32       | 1                | 12/16/ <b>0</b> 9 <b>17</b> :00 | 12/17/09 22:34  | 744 <b>0-</b> 38-2 |      |
| Percent Moisture                                  | Analytica    | I Method: ASTN  | 1 D2974-87         |            |                  |                                 |                 |                    |      |
| Percent Moisture                                  | 66.8         | %               | 0.10               | 0.10       | 1                |                                 | 12/18/09 08:17  |                    |      |
| Sample: B3E-12-14' Results reported on a "dry-wei |              | 4026525091      | Collected          | : 12/10/0  | 9 13:00          | Received: 12/                   | /15/09 08:55 Ma | atrix: Solid       |      |
| Parameters                                        | Results      | Units           | LOQ _              | LOD        | DF               | Prepared                        | Analyzed        | CAS No.            | Qual |
| 6010 MET ICP                                      | Analytica    | I Method: EPA ( | 6010 Prepara       | ation Meth | nod: EP <i>F</i> | 3050                            |                 |                    |      |
| Arsenic                                           | 582 r        | mg/kg           | 9.5                | 0.55       | 1                | 12/16/09 17:00                  | 12/17/09 22:38  | 7440-38-2          |      |
| Percent Moisture                                  | Analytica    | I Method: ASTN  | D2974-87           |            |                  |                                 |                 |                    |      |
| Percent Moisture                                  | 79.0 9       | %               | 0.10               | 0.10       | 1                |                                 | 12/18/09 08:17  |                    |      |
| Sample: B3E-14-16' Results reported on a "dry-wei |              | 4026525092      | Collected          | : 12/10/0  | 9 13:00          | Received: 12/                   | 15/09 08:55 Ma  | atrix: Solid       |      |
| Parameters                                        | Results      | Units           | LOQ                | LOD        | DF               | Prepared                        | Analyzed        | CAS No.            | Qual |
| 6010 MET ICP                                      | Analytica    | Method: EPA 6   | 6010 Prepara       | ation Meth | nod: EPA         | \3 <b>0</b> 50                  |                 |                    |      |
| Arsenic                                           | 63.1 r       | ng/kg           | 5.1                | 0.30       | 1                | 12/16/09 17:00                  | 12/17/09 22:42  | 7440-38-2          |      |
| Percent Moisture                                  | Analytical   | Method: ASTN    | 1 D2974-8 <b>7</b> |            |                  |                                 |                 |                    |      |
| Percent Moisture                                  | 61.7 %       | <b>%</b>        | 0.10               | 0.10       | 1                |                                 | 12/18/09 08:18  |                    |      |

Date: 12/29/2009 12:11 PM

## **REPORT OF LABORATORY ANALYSIS**

Page 34 of 52





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

Sample: B3E-16-20'

Lab ID: 4026525093

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

| Parameters                                                                                                       | Results                                                         | Units                                                                    | LOQ                            | LOD                          | DF                           | Prepared                                            | Analyzed                                           | CAS No.                              | Qual        |
|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------|------------------------------|------------------------------|-----------------------------------------------------|----------------------------------------------------|--------------------------------------|-------------|
| 6010 MET ICP                                                                                                     | Analytica                                                       | ll Method: EPA                                                           | 6010 Prepar                    | ation Meth                   | od: EPA                      | 3050                                                |                                                    |                                      |             |
| Arsenic                                                                                                          | 11.7                                                            | mg/kg                                                                    | 4.2                            | 0.24                         | 1                            | 12/16/09 17:00                                      | 12/17/09 22:46                                     | 7440-38-2                            |             |
| Percent Moisture                                                                                                 | Analytica                                                       | I Method: AST                                                            | M D2974-87                     |                              |                              |                                                     |                                                    |                                      |             |
| Percent Moisture                                                                                                 | 53.0                                                            | %                                                                        | 0.10                           | 0.10                         | 1                            |                                                     | 12/18/09 08:18                                     |                                      |             |
| Sample: B3E-20-25' Results reported on a "dry-w                                                                  |                                                                 | 4026525094                                                               | Collected                      | : 12/10/09                   | 9 13:00                      | Received: 12/                                       | 15/09 08:55 Ma                                     | atrix: Solid                         | <del></del> |
| Parameters                                                                                                       | Results                                                         | Units                                                                    | LOQ                            | LOD                          | DF                           | Prepared                                            | Analyzed                                           | CAS No.                              | Qual        |
| 6010 MET ICP                                                                                                     | Analytica                                                       | I Method: EPA                                                            | 6010 Prepara                   | ation Meth                   | od: EPA                      | 3050                                                |                                                    |                                      |             |
| Arsenic                                                                                                          | 2.9                                                             | ng/kg                                                                    | 2.3                            | 0.13                         | 1                            | 12/16/09 17:00                                      | 12/17/09 22:50                                     | 7440-38-2                            |             |
| Percent Moisture                                                                                                 | Analytica                                                       | I Method: ASTN                                                           | и D2974-87                     |                              |                              |                                                     |                                                    |                                      |             |
| Percent Moisture                                                                                                 | 15.4                                                            | %                                                                        | 0.10                           | 0.10                         | 1                            |                                                     | 12/18/09 08:19                                     |                                      |             |
| Sample: M2D-0-2' Results reported on a "dry-w                                                                    |                                                                 | 4026525095                                                               | Collected                      | : 12/10/09                   | 9 13:00                      | Received: 12/                                       | 15/09 08:55 Ma                                     | ntrix: Solid                         |             |
|                                                                                                                  |                                                                 |                                                                          |                                |                              |                              |                                                     |                                                    |                                      |             |
| Parameters                                                                                                       | Results                                                         | Units                                                                    | LOQ                            | LOD                          | DF                           | Prepared                                            | Analyzed                                           | CAS No.                              | Qual        |
| Parameters 6010 MET ICP                                                                                          |                                                                 | Units  Il Method: EPA                                                    |                                |                              |                              | · - · · · · · · · · · · · · · · · · · ·             | Analyzed                                           | CAS No.                              | Qual        |
| 6010 METICP                                                                                                      | Analytica                                                       |                                                                          |                                |                              |                              | 3050                                                | Analyzed 12/17/09 22:54                            |                                      | Qual        |
|                                                                                                                  | Analytica                                                       | Il Method: EPA                                                           | 6010 Prepara                   | ation Meth                   |                              | 3050                                                | ·                                                  |                                      | Qual        |
| 6010 MET ICP<br>Arsenic<br>Percent Moisture                                                                      | Analytica                                                       | il Method: EPA<br>mg/kg<br>il Method: ASTN                               | 6010 Prepara                   | ation Meth                   |                              | 3050                                                | ·                                                  |                                      | Qual        |
| 6010 MET ICP Arsenic Percent Moisture Percent Moisture                                                           | Analytica<br>454<br>Analytica<br>19.5                           | il Method: EPA<br>mg/kg<br>il Method: ASTN                               | 2.4<br>A D2974-87<br>0.10      | ation Meth                   | od: EPA                      | 3050                                                | 12/17/09 22:54<br>12/18/09 08:19                   |                                      | Qual        |
| 6010 MET ICP Arsenic Percent Moisture Percent Moisture Sample: M2D-2-4'                                          | Analytica<br>454<br>Analytica<br>19.5                           | il Method: EPAi<br>mg/kg<br>il Method: AS i N                            | 2.4<br>A D2974-87<br>0.10      | 0.14<br>0.10                 | od: EPA                      | 3050<br>12/16/09 17:00                              | 12/17/09 22:54<br>12/18/09 08:19                   | 7440-38-2                            | Qual        |
| 6010 MET ICP Arsenic Percent Moisture Percent Moisture Sample: M2D-2-4' Results reported on a "dry-w             | Analytica<br>454<br>Analytica<br>19.5<br>Lab ID<br>eight" basis | Il Method: EPA<br>mg/kg<br>Il Method: AS I N<br>%                        | 2.4 A D2974-87 0.10  Collected | 0.14<br>0.10<br>0.10<br>0.10 | od: EPA<br>1<br>1<br>9 13:00 | 3050<br>12/16/09 17:00<br>Received: 12/             | 12/17/09 22:54<br>12/18/09 08:19<br>15/09 08:55 Ma | 7440-38-2<br>atrix: Solid            | MINISTRAÇÃO |
| 6010 MET ICP Arsenic Percent Moisture Percent Moisture  Sample: M2D-2-4' Results reported on a "dry-w Parameters | Analytica<br>454<br>Analytica<br>19.5<br>Lab ID<br>eight" basis | Il Method: EPAI mg/kg Il Method: ASTM  4026525096  Units Il Method: EPAI | 2.4 A D2974-87 0.10  Collected | 0.14<br>0.10<br>0.10<br>0.10 | od: EPA<br>1<br>1<br>9 13:00 | 3050<br>12/16/09 17:00<br>Received: 12/<br>Prepared | 12/17/09 22:54<br>12/18/09 08:19<br>15/09 08:55 Ma | 7440-38-2<br>atrix: Solid<br>CAS No. | MINISTRAÇÃO |

Date: 12/29/2009 12:11 PM

Percent Moisture

REPORT OF LABORATORY ANALYSIS

0.10

0.10

71.1 %

Page 35 of 52





Project<sup>-</sup>

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

Sample: M2D-4-6'

Lab ID: 4026525097

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

| Parameters                                    | Results                | Units                                             | LOQ                        | LOD                | DF            | Prepared           | Analyzed       | CAS No.               | Qual |
|-----------------------------------------------|------------------------|---------------------------------------------------|----------------------------|--------------------|---------------|--------------------|----------------|-----------------------|------|
| 6010 MET ICP                                  | Analytica              | l Method: EPA                                     | 6010 Prepa                 | ration Meth        | od: EPA       | A 3050             |                |                       |      |
| Arsenic                                       | <b>1930</b> r          | mg/kg                                             | 9.3                        | 0.54               | 1             | 12/16/09 17:00     | 12/17/09 23:10 | 7440-38-2             |      |
| Percent Moisture                              | Analytica              | l Method: ASTI                                    | M D2974-87                 |                    |               |                    |                |                       |      |
| Percent Moisture                              | 78.6                   | %                                                 | 0.10                       | 0.10               | 1             |                    | 12/18/09 08:19 |                       |      |
|                                               |                        |                                                   |                            |                    |               |                    |                |                       |      |
| Sample: M2D-6-8'                              | Lab ID:                | 4026525098                                        | Collecte                   | d: 12/10/09        | 9 13:00       | Received: 12/      | 15/09 08:55 Ma | atrix: Solid          |      |
| Sample: M2D-6-8' Results reported on a "dry-w |                        | 4026525098                                        | Collecte                   | d: 12/10/09        | 9 13:00       | Received: 12/      | 15/09 08:55 Ma | atrix: Solid          |      |
| •                                             |                        | 4026525098<br>Units                               | Collecte                   | d: 12/10/09        | 9 13:00<br>DF | Received: 12/      | 15/09 08:55 Ma | etrix: Solid  CAS No. | Qual |
| Results reported on a "dry-w Parameters       | reight" basis  Results |                                                   | LOQ                        | LOD                | DF            | Prepared           |                |                       | Qual |
| Results reported on a "dry-w                  | reight" basis  Results | Units<br>I Method: EPA                            | LOQ                        | LOD                | DF            | Prepared           |                | CAS No.               | Qual |
| Parameters 6010 MET ICP                       | Results Analytica      | Units<br>I Method: EPA                            | LOQ<br>6010 Prepar<br>10.5 | LOD<br>ration Meth | DF            | Prepared<br>A 3050 | Analyzed       | CAS No.               | Qual |
| Parameters  6010 MET ICP  Arsenic             | Results Analytica      | Units<br>I Method: EPA<br>ng/kg<br>I Method: ASTN | LOQ<br>6010 Prepar<br>10.5 | LOD<br>ration Meth | DF            | Prepared<br>A 3050 | Analyzed       | CAS No.               | Qual |

| Parameters       | Results U         | nits LOQ          | LOD          | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
|------------------|-------------------|-------------------|--------------|---------|----------------|-----------------|--------------|------|
| 6010 MET ICP     | Analytical Meth   | od: EPA 6010 Prep | aration Meth | od: EPA | A 3050         |                 |              |      |
| Arsenic          | 63 <b>3</b> mg/kg | 6.1               | 0.35         | 1       | 12/16/09 17:00 | 12/17/09 23:18  | 7440-38-2    |      |
| Percent Moisture | Analytical Meth   | od: ASTM D2974-87 | •            |         |                |                 |              |      |
| Percent Moisture | 67.4 %            | 0.10              | 0.10         | 1       |                | 12/18/09 08:19  |              |      |
| Sample: M3D-0-2' | Lab ID: 4020      | 3525100 Collect   | ed: 12/10/0  | 9 13:00 | Received: 12   | /15/09 08:55 Ma | atrix: Solid |      |

| Parameters       | Results                                                  | Units       | LOQ        | LOD  | DF | Prepared       | Analyzed       | CAS No.   | Qual  |  |  |
|------------------|----------------------------------------------------------|-------------|------------|------|----|----------------|----------------|-----------|-------|--|--|
| 6010 MET ICP     | Analytical Method. EPA 6010 Preparation Method: EPA 3050 |             |            |      |    |                |                |           |       |  |  |
| Arsenic          | <b>2310</b> m                                            | ng/kg       | 4.6        | 0.26 | 1  | 12/16/09 17:00 | 12/17/09 11:57 | 7440-38-2 | P6,R1 |  |  |
| Percent Moisture | Analytical                                               | Method: AST | M D2974-87 |      |    |                |                |           |       |  |  |
| Percent Moisture | 56.5 %                                                   | ó           | 0.10       | 0.10 | 1  |                | 12/18/09 08:19 |           |       |  |  |

Dato: 12/29/2009 12:11 PM

**REPORT OF LABORATORY ANALYSIS** 

Page 36 of 52





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

Sample: M3D-2-4'

Lab ID: 4026525101

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

Results reported on a "dry-weight" basis

| Results reported on a "dry-we                  |                                  |                 |              |             |         |                |                  |              |      |
|------------------------------------------------|----------------------------------|-----------------|--------------|-------------|---------|----------------|------------------|--------------|------|
| Parameters                                     | Results                          | Units           |              | LOD DF      |         | Prepared       | Analyzed<br>———— | CAS No.      | Qual |
| 6010 MET ICP                                   | Analytica                        | l Method: EPA   | 6010 Prepara | ation Meth  | od: EPA | A30 <b>5</b> 0 |                  |              |      |
| Arsenic                                        | 3800 r                           | mg/kg           | 10.6         | 0.61        | 1       | 12/16/09 17:00 | 12/17/09 12:08   | 7440-38-2    |      |
| Percent Moisture                               | Analytica                        | M D2974-87      |              |             |         |                |                  |              |      |
| Percent Moisture                               | 82.3                             | 82.3 %          |              |             | 1       |                | 12/18/09 08:19   |              |      |
| Sample: M3D-4-6' Lab ID: 402652510             |                                  |                 | Collected    | : 12/10/0   | 9 13:00 | Received: 12/  | atrix: Solid     |              |      |
| Results reported on a "dry-we                  | eight" basis                     |                 |              |             |         |                |                  |              |      |
| Parameters                                     | Results                          | Results Units   |              |             | DF      | Prepared       | Analyzed         | CAS No.      | Qual |
| 6010 MET ICP                                   | Analytica                        | l Method: EPA   | 6010 Prepara | ation Meth  | od: EPA | 3050           |                  |              |      |
| Arsenic                                        | 2450 ı                           | mg/kg           | 9.4          | 0.55        | 1       | 12/16/09 17:00 | 12/17/09 12:12   | 7440-38-2    |      |
| Percent Moisture                               | Analytica                        | I Method: ASTN  | и D2974-87   |             |         |                |                  |              |      |
| Percent Moisture                               | 78.8 %                           |                 | 0.10         | 0.10        | 1       |                | 12/18/09 08:20   |              |      |
| Sample: M3D-6-8' Results reported on a "dry-we |                                  | 4026525103      | Collected    | : 12/10/0   | 9 13:00 | Received: 12/  | 15/09 08:55 Ma   | trix: Solid  |      |
| Parameters                                     | Results                          | Units           | LOQ          | LOD         | DF      | Prepared       | Analyzed         | CAS No.      | Qual |
| 6010 MET ICP                                   | Analytica                        | I Method: EPA 6 |              | ation Meth  | od: EPA | √3050          |                  |              |      |
| Arsenic                                        | 1610 r                           | ng/kg           | 7.9          | 0.46        | 1       | 12/16/09 17:00 | 12/17/09 12:16   | 7440-38-2    |      |
| Percent Moisture                               | Analytica                        | I Method: ASTN  | л D2974-87   |             |         |                |                  |              |      |
| Percent Moisture                               | 75.7 9                           | %               | 0.10         | 0.10 0.10 1 |         |                | 12/18/09 08:20   |              |      |
| Sample: M3D-8-10'                              | Lab ID:                          | 4026525104      | Collected    | : 12/10/0   | 9 13:00 | Received: 12/  | 15/09 08:55 Ma   | ıtrix: Solid |      |
| Results reported on a "dry-we                  | eight" basis                     |                 |              |             |         |                |                  |              |      |
| Parameters                                     | Results                          | Units           | LOQ          | LOD         | DF      | Prepared       | Analyzed         | CAS No.      | Qual |
| 6010 MET ICP                                   | Analytica                        | I Method: EPA 6 | 6010 Prepara | ation Meth  | od: EPA | 3050           |                  |              |      |
| Arsenic                                        | 654 r                            | ng/kg           | 6.0          | 0.35        | 1       | 12/16/09 17:00 | 12/17/09 12:20   | 7440-38-2    |      |
| Percent Moisture                               | Analytical Method: ASTM D2974-87 |                 |              |             |         |                |                  |              |      |

Date: 12/29/2009 12:11 PM

Percent Moisture

#### REPORT OF LABORATORY ANALYSIS

0.10

0.10

67.1 %

Page 37 of 52







Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

Sample: M4D-0-5' Lab ID: 4026525105 Collect

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

| Parameters                                         | Results         | Units                     | LOQ _        | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
|----------------------------------------------------|-----------------|---------------------------|--------------|------------|-----------------|----------------|----------------|--------------|------|
| 6010 MET ICP                                       | Analytica       | I Method: EPA 6           | 6010 Prepara | ation Meth | od: EPA         | 3050           |                |              |      |
| Arsenic                                            | 1850 r          | <b>1850</b> mg/kg         |              |            | 1               | 12/16/09 17:00 | 12/17/09 12:24 | 7440-38-2    |      |
| Percent Moisture                                   | Analytica       | л D2974-87                |              |            |                 |                |                |              |      |
| Percent Moisture                                   | 53.5            | 53.5 %                    |              |            | 1               |                | 12/18/09 08:20 |              |      |
| Sample: M4D-5-7' Results reported on a "dry-we     |                 | 4026525106                | Collected    | : 12/10/0  | 9 13:00         | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |
| Parameters                                         | Results         | Units                     | LOQ          | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                       | Analytica       | I Method: EPA6            | 6010 Prepara | ation Meth | od: EPA         | \3050          |                |              | -    |
| Arsenic                                            | 4770 r          | ng/kg                     | 11.6         | 0.67       | 1               | 12/16/09 17:00 | 12/17/09 12:28 | 7440-38-2    |      |
| Percent Moisture                                   | Analytical      | Method: ASTM              | 1 D2974-87   |            |                 |                |                |              |      |
| Percent Moisture                                   | 84.5 %          |                           | 0.10         | 0.10       | 1               |                | 12/18/09 08:20 |              |      |
| Sample: M4D-7-10'<br>Results reported on a "dry-we |                 | 4026525107                | Collected    | 12/10/0    | 9 13:00         | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |
| Parameters                                         | Results         | Units                     | LOQ          | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                       | Analytical      | Method: EPA 6             | 6010 Prepara | ation Meth | od: EP <i>F</i> | 3050           |                |              |      |
| Arsenic                                            | 628 r           | ng/kg                     | 5.7          | 5.7 0.33   |                 | 12/16/09 17:00 | 12/17/09 12:32 | 7440-38-2    |      |
| Percent Moisture                                   | Analytical      | l Melliod: ASTM           | 1 D2974-87   |            |                 |                |                |              |      |
| Percent Moisture                                   | 67.9 %          | <b>%</b>                  | 0.10         | 0.10 1     |                 |                | 12/18/09 08:20 |              |      |
| Sample: M5D-0-5'                                   |                 | 4026525108                | Collected    | 12/10/09   | 9 13:00         | Received: 12/  | 15/09 08:55 Ma | atrix: Solid |      |
| Results reported on a "dry-we                      | eignt basis     |                           |              |            |                 |                |                |              |      |
| Parameters                                         | Results         | Units                     | LOQ _        | LOD        | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                       | Analytical      | Method <sup>,</sup> EPA 6 | 010 Prepara  | ition Meth | od: EPA         | \3050          |                |              |      |
| Arsenic                                            | 4960 n          | ng/kg                     | 8.7          | 8.7 0.51 1 |                 | 12/16/09 17:00 | 12/17/09 13:00 | 7440-38-2    |      |
| Percent Moisture                                   | Analytical      | Method: ASTM              | 1 D2974-87   |            |                 |                |                |              |      |
|                                                    | Moisture 77.7 % |                           | 0.10         | 0.10       | 1               |                | 12/18/09 08:20 |              |      |

Date: 12/29/2009 12:11 PM

## REPORT OF LABORATORY ANALYSIS

Page 38 of 52





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

Percent Moisture

Sample: M5D-5-7'

Lab ID: 4026525109

68.8 %

Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Solid

12/18/09 08:20

| Parameters                   | Results                                                                          | Results Units  |             | LOD        | DF     | Prepared       | Analyzed       | CAS No.   | Qual |  |
|------------------------------|----------------------------------------------------------------------------------|----------------|-------------|------------|--------|----------------|----------------|-----------|------|--|
| 6010 MET ICP                 | Analytica                                                                        | I Method: EPA6 | 3010 Prepai | ation Meth | od: EP | A3050          |                |           |      |  |
| Arsenic                      | 7300 r                                                                           | 7300 mg/kg     |             |            | 1      | 12/16/09 17:00 | 12/17/09 13:04 | 7440-38-2 |      |  |
| Percent Moisture             | Analytical Method: ASTM D2974-87                                                 |                |             |            |        |                |                |           |      |  |
| Percent Moisture             | 87.9                                                                             | %              | 0.10        | 0.10       | 1      |                | 12/18/09 08:20 |           |      |  |
| Sample: M5D-7-10'            | Lab ID: 4026525110 Collected: 12/10/09 13:00 Received: 12/15/09 08:55 Matrix: Sc |                |             |            |        |                |                |           |      |  |
| Results reported on a "dry-w | eight" basis                                                                     |                |             |            |        |                |                |           |      |  |
| Parameters                   | Results                                                                          | Units          | LOQ         | LOD        | DF     | Prepared       | Analyzed       | CAS No.   | Qual |  |
| 6010 MET ICP                 | Analytica                                                                        | I Method: EPA6 | 010 Prepar  | ation Meth | od: EP | A3050          |                |           |      |  |
| Arsenic                      | 500 r                                                                            | 500 mg/kg      |             | 0.35       | 1      | 12/16/09 17:00 | 12/17/09 13:08 | 7440-38-2 |      |  |
|                              |                                                                                  |                |             |            |        |                |                |           |      |  |

0.10

0.10

Date: 12/29/2009 12:11 PM

**REPORT OF LABORATORY ANALYSIS** 

Page 39 of 52



Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

QC Batch:

MPRP/3476

Analysis Method:

EPA 6010

QC Batch Method:

EPA 3050

Analysis Description:

6010 MET

Associated Lab Samples:

4026525019, 4026525010, 4026525011, 4026525012, 4026525013, 4026525014, 4026525015, 4026525016,

4026525017, 4026525018, 4026525019

METHOD BLANK: 246938

Matrix: Solid

Associated Lab Samples:

4026525001, 4026525002, 4026525003, 4026525004, 4026525005, 4026525006, 4026525007, 4026525008, 4026525009, 4026525010, 4026525011, 4026525012, 4026525013, 4026525014, 4026525015, 4026525016,

4026525017, 4026525018, 4026525019

Blank

Reporting Limit

Parameter

Units

Units

Result

Analyzed

Qualifiers

Arsenic

Arsenic

mg/kg

0.19J

2.0 12/17/09 13:20

LABORATORY CONTROL SAMPLE:

Parameter

246939

Units

mg/kg

Spike Conc

LCS Result

LCS % Rec % Rec Limits

50 49.8 100 80-120 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

246940

2.8

Result

MS 4026525010 Spike

MSD

246941 MS

55.7

MSD

MS

MSD % Rec

% Rec Limits

Max RPD RPD Qual

Parameter Arsenic

Conc.

54.7

Spike Conc.

54.7

Result

Result

56.7

% Rec

97

98

Qualifiers

75-125 2 20





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

QC Batch:

MPRP/3477

Analysis Method:

EPA 6010

QC Batch Method:

EPA 3050

Analysis Description:

6010 MET

Associated Lab Samples:

4026525020, 4026525021, 4026525022, 4026525023, 4026525024, 4026525025, 4026525026, 4026525027, 4026525028, 4026525029, 4026525030, 4026525031, 4026525032, 4026525033, 4026525034, 4026525035,

4026525036, 4026525037, 4026525038, 4026525039

METHOD BLANK: 246942

Matrix: Solid

Associated Lab Samples:

4026525020, 4026525021, 4026525022, 4026525023, 4026525024, 4026525025, 4026525026, 4026525027, 4026525028, 4026525029, 4026525030, 4026525031, 4026525032, 4026525033, 4026525034, 4026525035,

4026525036, 4026525037, 4026525038, 4026525039

Blank

Reporting

Parameter

Units

Units

Result

Limit Analyzed Qualifiers

Arsenic

mg/kg

< 0.12

12/17/09 15:27 2.0

LABORATORY CONTROL SAMPLE:

Parameter

246943

Units

mg/kg

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Arsenic 50 49.2 98 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 246944

MSD

52.2

MS

MSD

MS

MSD

% Rec

Max

Qual

Parameter

Spike Conc

MS Result

55.4

246945

99

80-120

RPD RPD

Arsenic

Result 3.8

4026525020

Spike Conc 52.2

Result 56.2 % Rec

% Rec 100 Limits 75-125

20





Project:

QC Batch:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

MPRP/3478

Analysis Method:

EPA 6010

QC Batch Method:

EPA 3050

Analysis Description:

6010 MET

Associated Lab Samples:

4026525040, 4026525041, 4026525042, 4026525043, 4026525044, 4026525045, 4026525046, 4026525047,

4026525048, 4026525049, 4026525050, 4026525051, 4026525052, 4026525053, 4026525054, 4026525055,

4026525056, 4026525057, 4026525058, 4026525059

METHOD BLANK: 247057

Matrix: Solid

Associated Lab Samples:

4026525040, 4026525041, 4026525042, 4026525043, 4026525044, 4026525045, 4026525046, 4026525047, 

4026525056, 4026525057, 4026525058, 4026525059

Blank Result

Reporting

Parameter

Units

Limit

Qualifiers

80-120

Arsenic

mg/kg

0.16J

2.0 12/17/09 17:30

Analyzed

100

LABORATORY CONTROL SAMPLE:

247058

Spike

LCS

LCS

% Rec

Parameter

Units

mg/kg

Units

mg/kg

Conc.

Result 50.2 % Rec

Limits

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

247059

50

MSD

247060

1040

MS

MSD

% Rec

Max

Qual

Parameter Arsenic

Arsenic

4026525040 Result

996

MS Spike

58.8

Spike Conc. Conc.

MS Result

58.7

MSD Result

967

% Rec

82

% Rec

-49

Limits 75-125 RPD RPD

8 20 P6





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

QC Batch:

MPRP/3479

Analysis Method:

EPA6010

QC Batch Method:

EPA 3050

Analysis Description:

6010 MET

Associated Lab Samples:

4026525060, 4026525061, 4026525062, 4026525063, 4026525064, 4026525065, 4026525066, 4026525067, 4026525068, 4026525069, 4026525070, 4026525071, 4026525072, 4026525073, 4026525074, 4026525075,

4026525076, 4026525077, 4026525078, 4026525079

METHOD BLANK: 247061

Matrix: Solid

Associated Lab Samples:

4026525060, 4026525061, 4026525062, 4026525063, 4026525064, 4026525065, 4026525066, 4026525067, 4026525068, 4026525069, 4026525070, 4026525071, 4026525072, 4026525073, 4026525074, 4026525075,

4026525076, 4026525077, 4026525078, 4026525079

Blank

Reporting

Parameter

Units

Units

4026525060

Result

107

Result

Limit

Qualifiers

Arsenic

mg/kg

0.12J

2.0 12/17/09 19:26

Analyzed

99

LABORATORY CONTROL SAMPLE:

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

247062

Spike

LCS

LCS % Rec % Rec

Parameter

Units

mg/kg

mg/kg

Conc.

Result 49.7

Limits

Qualifiers

MSD

247064 MS Result

185

MSD

219

MSD

135

80-120

% Rec

75-125

Max

RPD RPD Qual

Parameter Arsenic

Arsenic

Conc.

MS Spike

57.4

50

Spike Conc.

57.4

Result

MS % Rec

% Rec

196

Limits

17 20 M0





Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

QC Batch:

MPRP/3480

Analysis Method:

EPA 6010

QC Batch Method:

EPA 3050

Analysis Description:

6010 MET

Associated Lab Samples:

4026525088, 4026525089, 4026525090, 4026525091, 4026525092, 4026525093, 4026525094, 4026525095,

4026525096, 4026525097, 4026525098, 4026525099

METHOD BLANK: 247065

Matrix: Solid

Associated Lab Samples:

4026525080, 4026525081, 4026525082, 4026525083, 4026525084, 4026525085, 4026525086, 4026525087, 4026525088, 4026525089, 4026525090, 4026525091, 4026525092, 4026525093, 4026525094, 4026525095,

4026525096, 4026525097, 4026525098, 4026525099

Blank

Reporting

Parameter

Units

Units

4026525080

Result

538

Result

Limit

Analyzed

Qualifiers

Arsenic

mg/kg

< 0.12

2.0 12/17/09 21:30

LABORATORY CONTROL SAMPLE:

Parameter

247066

Units

mg/kg

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

50 51.1 102 mg/kg 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

247067

MSD

247068

MSD

MS MSD

% Rec

Max

Qual

MS Spike

56.6

Spike

MS Result

% Rec

Limits

RPD RPD

Parameter Arsenic

Arsenic

Conc

Conc. 56.6

Result 505 537

% Rec -58

~.3

75-125

6

20 P6





Project:

Arsenic

Arsenic

Arsenic

7201.10 KEWAUNEE MARSH

Pace Project No.:

QC Batch Method:

4026525

QC Batch:

MPRP/3481

Analysis Method:

EPA 6010

EPA 3050

Analysis Description:

6010 MET

Associated Lab Samples:

4026525100, 4026525101, 4026525102, 4026525103, 4026525104, 4026525105, 4026525106, 4026525107,

4026525108, 4026525109, 4026525110

METHOD BLANK: 247093

Matrix: Solid

Associated Lab Samples:

4026525100, 4026525101, 4026525102, 4026525103, 4026525104, 4026525105, 4026525106, 4026525107,

4026525108, 4026525109, 4026525110

Units

Reporting

Parameter

Units mg/kg

Result < 0.12

Blank

Limit

Analyzed

2.0 12/17/09 11:27

Qualifiers

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

247094

mg/kg

Units

mg/kg

Spike Conc.

50

LCS % Rec

Limits

% Rec

80-120

Qualifiers

247095

Result

2310

247096

115

LCS

Result

MS

MSD

MSD

MS % Rec

-289

MSD

-633

Max

Qual

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 4026525100

Spike Conc.

114

Spike Conc.

MS Result

1980

49.3

Result 1580 % Rec

% Rec Limits

75-125

RPD RPD

20 P6,R1







Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

Percent Moisture

4026525

QC Batch:

PMST/3428

Analysis Method:

ASTM D2974-87

QC Batch Method: AS

ASTM D2974-87

Analysis Description:

Dry Weight/Percent Moisture

Associated Lab Samples: 4

4026525001, 4026525002, 4026525003, 4026525004, 4026525005, 4026525006, 4026525007, 4026525008,

4026525009, 4026525010, 4026525011

Units

%

SAMPLE DUPLICATE: 247630

Parameter

| 4026507001 | Dup    |     | Max |            |
|------------|--------|-----|-----|------------|
| Result     | Result | RPD | RPD | Qualifiers |
| 84.9       | 85.7   | 0   | 10  |            |







Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

QC Batch:

PMST/3429

Analysis Method:

ASTM D2974-87

QC Batch Method:

ASTM D2974-87

Analysis Description:

Dry Weighl/Percent Moisture

Associated Lab Samples:

4026525012, 4026525013, 4026525014, 4026525015, 4026525016, 4026525017, 4026525018, 4026525019, 4026525020, 4026525021, 4026525022, 4026525023, 4026525024, 4026525025, 4026525026, 4026525027,

4026525028, 4026525029, 4026525030, 4026525031

SAMPLE DUPLICATE: 247636

Parameter

4026525012 Result Dup Result

RPD

Max RPD

Qualifiers

Percent Moisture

%

Units

18.0

18.7

3

10







Project:

QC Batch:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

PMST/3430

Analysis Method:

ASTM D2974-87

QC Batch Method:

ASTM D2974-87

Analysis Description:

Dry Weight/Percent Moisture

Associated Lab Samples:

Units

 $\frac{4026525032,4026525033,4026525034,4026525035,4026525036,4026525037,4026525038,4026525039,4026525040,4026525041,4026525042,4026525043,4026525044,4026525045,4026525046,4026525047,\\$ 

4026525048, 4026525049, 4026525050, 4026525051

SAMPLE DUPLICATE: 247664

4026525032 Result

Dup Result

RPD

Max RPD

Qualifiers

Parameter Percent Moisture

%

14.0

16.2

14

10







Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

QC Batch:

PMST/3431

Analysis Method:

ASTM D2974-87

QC Batch Method:

ASTM D2974-87

Analysis Description:

Dry Weight/Percent Moisture

Associated Lab Samples:

4026525052, 4026525053, 4026525054, 4026525055, 4026525056, 4026525057, 4026525058, 4026525059, 4026525060, 4026525061, 4026525062, 4026525063, 4026525064, 4026525065, 4026525066, 4026525067, 4026525066, 4026525066, 4026525067, 4026525066, 4026525066, 4026525067, 4026525066, 4026525066, 4026525067, 4026525066, 4026525066, 4026525067, 4026525066, 4026525066, 4026525067, 4026525066, 4026525066, 4026525067, 4026525066, 4026525067, 4026525066, 4026525067, 4026525066, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026525067, 4026

4026525068, 4026525069, 4026525070, 4026525071

SAMPLE DUPLICATE: 247665

Parameter

4026525052 Result

Dup Result

RPD

Max RPD

Qualifiers

Percent Moisture

Units

72.8

72.1

10

Date: 12/29/2009 12:11 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..







Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

QC Batch:

PMST/3432

Analysis Method:

ASTM D2974-87

QC Batch Method:

Percent Moisture

ASTM D2974-87

Analysis Description:

Dry Weight/Percent Moisture

Associated Lab Samples:

Units

4026525072, 4026525073, 4026525074, 4026525075, 4026525076. 4026525077, 4026525078, 4026525079,

4026525080, 4026525081, 4026525082, 4026525083, 4026525084, 4026525085, 4026525086, 4026525087,

4026525088, 4026525089, 4026525090, 4026525091

SAMPLE DUPLICATE: 247666

4026525072 Result

Dup Result

RPD

Max RPD

Qualifiers

Parameter

%

76.0

74.3

2

10

Date: 12/29/2009 12:11 PM

50







Project:

7201.10 KEWAUNEE MARSH

Pace Project No.:

4026525

QC Batch:

PMST/3433

Analysis Method:

ASTM D2974-87

QC Batch Method.

ASTM D2974-87

Analysis Description:

Dry Weight/Percent Moisture

Associated Lab Samples:

4026525092, 4026525093, 4026525094, 4026525095, 4026525096, 4026525097, 4026525098, 4026525099, 4026525100, 4026525101, 4026525102, 4026525103, 4026525104, 4026525105, 4026525106, 4026525107,

4026525108, 4026525109, 4026525110

Units

SAMPLE DUPLICATE: 247667

4026525092 Result

Dup Result

**RPD** 

Max RPD

Qualifiers

Parameter Percent Moisture

61.7

59.8

3

10





#### **QUALIFIERS**

Project: 7201.10 KEWAUNEE MARSH

Pace Project No.: 4026525

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

U - Indicates the compound was analyzed for, but not detected.

#### **ANALYTE QUALIFIERS**

Date: 12/29/2009 12:11 PM

B Analyte was detected in the associated method blank.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the

spike level.

R1 RPD value was outside control limits.

out the written consent of Pace



# **CHAIN OF CUSTODY RECORD**

J WA

63847

4026525

|                                                                                                                                | RMT Inc., 744 Heartland Trail, Madison, WI 53717-1934<br>Phone 608/831-4444 • Fax 608/831-3334 • www.rmtinc.com |                                        |                                         |                               |                                       |                         |                   |                           | Filter                                     |   |                      |                                                 | 1 (Yes/No) /10 |    |                                         |                                                                        |           |                     |                                         |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|-------------------------------|---------------------------------------|-------------------------|-------------------|---------------------------|--------------------------------------------|---|----------------------|-------------------------------------------------|----------------|----|-----------------------------------------|------------------------------------------------------------------------|-----------|---------------------|-----------------------------------------|
| r                                                                                                                              | ***************************************                                                                         | ······································ | *************************************** | <del></del>                   |                                       |                         |                   |                           |                                            |   |                      | ed (Co                                          |                | A/ | /                                       | Ζ,                                                                     |           | ///                 |                                         |
| Project No.                                                                                                                    | b                                                                                                               | Pr                                     | oject/                                  | 'Client:<br>zuner Mars L      |                                       |                         |                   |                           |                                            |   |                      | ره.                                             | //             | // |                                         |                                                                        | ///       | PRESERVED CO        | DOES                                    |
| Project Manager/Contact Person:                                                                                                |                                                                                                                 |                                        |                                         |                               |                                       |                         |                   |                           |                                            | N |                      | Ι,                                              | //             |    |                                         |                                                                        | A - NONE  |                     |                                         |
| Dick Fish / Bob Star Part                                                                                                      |                                                                                                                 |                                        |                                         | Total Number<br>of Containers | ainers<br>X                           |                         | And Was Requested |                           |                                            |   | //                   | //                                              |                |    | ///                                     | 8 — HNO <sub>3</sub><br>C — H <sub>2</sub> SO <sub>4</sub><br>D — N⊌OH |           |                     |                                         |
| Lab No.                                                                                                                        | No. Yr. 09                                                                                                      |                                        |                                         |                               | MATRIX                                |                         | President of      |                           |                                            |   | //                   | //                                              |                |    |                                         | E — HCI                                                                |           |                     |                                         |
| 200 110.                                                                                                                       | Date                                                                                                            | Time                                   | e                                       | Sample Station ID             |                                       |                         |                   | ~                         |                                            |   | /                    | /                                               | /              | // | //                                      |                                                                        | Comments: | F — METHANOL<br>G — |                                         |
| 001                                                                                                                            | 12-10                                                                                                           | 13:0                                   | 00                                      | BID-0-2                       | · · · · · · · · · · · · · · · · · · · | Į.                      | So                | ,,                        | $\kappa$                                   |   |                      |                                                 |                |    | 1                                       | 1,1                                                                    | z poly    |                     |                                         |
| 002                                                                                                                            | 1                                                                                                               |                                        |                                         | BIP-2-41                      |                                       | . [                     |                   | 1                         | と                                          |   |                      |                                                 |                |    |                                         |                                                                        | 1 7 34    |                     |                                         |
| 003                                                                                                                            |                                                                                                                 |                                        |                                         | B10-4-C1                      |                                       |                         |                   |                           | Ø                                          |   |                      |                                                 |                |    |                                         |                                                                        |           |                     |                                         |
| 004                                                                                                                            |                                                                                                                 |                                        |                                         | 1310-6-8,                     |                                       |                         |                   |                           | نح                                         |   |                      |                                                 |                |    |                                         |                                                                        |           |                     |                                         |
| 005                                                                                                                            |                                                                                                                 |                                        |                                         | BID-8-10,                     |                                       |                         |                   |                           | $\propto$                                  |   |                      |                                                 |                |    |                                         |                                                                        |           |                     | *************************************** |
| 006                                                                                                                            |                                                                                                                 |                                        |                                         | BID-10-121                    |                                       |                         |                   |                           | 火                                          |   |                      |                                                 |                |    |                                         |                                                                        |           |                     |                                         |
| 007                                                                                                                            |                                                                                                                 |                                        |                                         | B1P-12-141                    |                                       | 1                       |                   |                           | Х                                          |   |                      |                                                 |                | -  |                                         |                                                                        |           |                     |                                         |
| 00%                                                                                                                            |                                                                                                                 |                                        |                                         | BID-15-1                      | 1                                     | 1                       | ٥                 |                           | X                                          |   |                      |                                                 |                |    |                                         |                                                                        |           |                     |                                         |
| 000                                                                                                                            | )2-10                                                                                                           | 13:0                                   | ) <sup>()</sup>                         | BID- 19-20                    | >                                     | }                       | S                 | oil.                      | X                                          |   |                      |                                                 |                |    |                                         |                                                                        | )         |                     |                                         |
|                                                                                                                                |                                                                                                                 |                                        |                                         |                               |                                       |                         |                   |                           |                                            |   |                      |                                                 |                |    |                                         |                                                                        |           |                     |                                         |
| SPECIAL IN                                                                                                                     | STRUCTI                                                                                                         | ONS                                    | **********                              |                               |                                       |                         |                   |                           |                                            |   |                      |                                                 | · · · ·        |    |                                         |                                                                        |           |                     |                                         |
|                                                                                                                                |                                                                                                                 |                                        |                                         |                               |                                       |                         |                   |                           |                                            |   |                      |                                                 |                |    | *************************************** |                                                                        |           |                     |                                         |
| SAMPLER Relinquished by (Signature) ate/Time Received by (Signature)  Alex Gran 12-14-09  12-14-09                             |                                                                                                                 |                                        |                                         |                               | 12/14/9                               | Date/Time<br>2/14/9/345 |                   |                           | HAZARDS ASSOCIATED WITH SAMPLES  Flommable |   |                      | Turn Around (circle one) Normal Rush Report Due |                |    |                                         |                                                                        |           |                     |                                         |
| Relinquished by (Signature)  Date/Time Received by (Signature)  Relinquished by (Signature)  Date/Time Received by (Signature) |                                                                                                                 |                                        |                                         |                               | ' Dat                                 | e/Tii                   | me                | ☐ Солтоsive☐ Highly Toxic |                                            |   |                      | (For Lab Use Only)                              |                |    |                                         |                                                                        |           |                     |                                         |
| Relinquished by (Signature)  Date/Time Received by (Signature)  12/15/09 855 All 8024 Liberty                                  |                                                                                                                 |                                        |                                         | 12/15/0                       | Date/Time<br>12/15/09855              |                         |                   | Other (list)              |                                            |   | Temp Blank (Y) N (We |                                                 |                |    |                                         | Receipt pH (Wet/Metals)                                                |           |                     |                                         |
| Custody Seal: Present/Absent Intact/Not Intact Seal #s                                                                         |                                                                                                                 |                                        |                                         |                               |                                       | <u> </u>                |                   |                           |                                            |   |                      |                                                 | ] -            | 10 | 1                                       |                                                                        |           | NA                  |                                         |



## **CHAIN OF CUSTODY RECORD**

4026525

**Nº** 063507

| 746 Uportlan | I Trail D A          | D 0022                         | • Madian WE 52700 0022 • DL (/0                               | .0\ 021 <i>AAAA</i>        | \ 021 222 4       |           |                               | Filtere          | d (Yes/N | 10) /h                | 1//            |       |                 |                                                                        |
|--------------|----------------------|--------------------------------|---------------------------------------------------------------|----------------------------|-------------------|-----------|-------------------------------|------------------|----------|-----------------------|----------------|-------|-----------------|------------------------------------------------------------------------|
| 744 neuman   | 1 11011, P.V.        | . BOX 8923                     | <ul> <li>Madison, WI 53708-8923</li> <li>Phone (60</li> </ul> | 18) 831-4444 ♥ FAX (6U8    | ) 831-3334        |           | Pre                           | served           | (Code)_  | /A/                   | $\angle$       |       |                 |                                                                        |
| Project No.  | 0                    | Project<br>) Les               | VClient:<br>vullnee MarsL                                     |                            |                   |           |                               | ise <sup>i</sup> |          | //                    | //             | //    | ///             | PRESERVED CODES                                                        |
| Project Mar  | ager/Con             |                                |                                                               |                            |                   |           |                               | die              |          | / /                   | / /            |       | ///             | A - NONE                                                               |
| Dist         | Fish                 | 1B.L                           | Stu fil                                                       | Total Number Of Containers | ×                 |           | alyses A                      |                  |          |                       | //             |       |                 | B - HNO <sub>3</sub><br>C - H <sub>2</sub> SO <sub>4</sub><br>D - NaOH |
| Lab No.      | Yr <u>09</u><br>Date | Time                           | Sample Station ID                                             | Total N                    | MATRIX            | Ar        | W. Care                       |                  |          | //,                   |                | //c   | omments:        | E - HCI<br>F - METHANOL<br>G                                           |
| 010          | 12-10                | 13.00                          | BIE -0-2'                                                     | <u> </u>                   | Soil              | *         |                               |                  |          |                       |                | 407   | z poly          |                                                                        |
| 011          |                      |                                | BiE-2-4"                                                      | 1                          |                   | X         |                               |                  |          |                       |                | 1     | , (             |                                                                        |
| 012          | 1                    |                                | BIE - 4-6'                                                    |                            |                   | x         |                               |                  |          |                       |                | ]     |                 |                                                                        |
| 013          |                      |                                | BIE-6-8,                                                      | 1                          |                   | メ         |                               |                  |          |                       |                | Ì     |                 |                                                                        |
| 014          |                      |                                | BIE - 8-10'                                                   |                            | 1                 | ×         |                               |                  |          |                       |                |       |                 |                                                                        |
| 015          |                      |                                | BIE-10-12'                                                    | 1                          |                   | X         |                               |                  |          |                       |                |       |                 |                                                                        |
| Ollo         |                      |                                | BIE- 12-141                                                   | 1                          |                   | λ         |                               |                  |          |                       |                | 1     |                 |                                                                        |
| 017          | -                    |                                | BIE-14-16                                                     |                            |                   | $\times$  |                               |                  |          |                       |                |       |                 |                                                                        |
| 018          |                      |                                | BIE-16-19'                                                    | }                          |                   | X         |                               |                  |          |                       |                |       |                 |                                                                        |
| 019          | 12-10                | 3:00                           | BIE-19-20'                                                    |                            | Sil               | $\lambda$ |                               |                  |          |                       |                | \ \ < | b               |                                                                        |
| SPECIAL II   | STRUCT               | IONS                           |                                                               |                            |                   |           | -                             |                  |          |                       |                |       |                 |                                                                        |
|              |                      |                                |                                                               |                            |                   | 1         |                               |                  |          |                       |                |       |                 |                                                                        |
| SAMPLER      | Relinquist           | ied by (Sig.<br>Ales کریم<br>م | Date/Time Received by                                         | (Sig.) Da                  | ite/Time_         | ] '       | ARDS AS<br>WITH SA<br>! Flamm | MPLES            | T        | ırn Aroui<br>epoit Du | nd (circle     | one)  | Normal          | Rush                                                                   |
| Relinquishe  | dby (Sig.            |                                | Date/Time Received by                                         | (Sig.) / Da                | ate/Time          |           | Corros                        | sive             |          |                       |                | (Fo   | or Lab Use Only | )                                                                      |
| Relinquishe  | d by (Sig.           | , ,                            | Date/Time Received by                                         | (Sig.) D. 12/15/0          | ate/Time<br>9 855 |           | -                             |                  |          | Receipt T<br>Temp Bla |                | N     |                 | Receipt pH<br>(Wet/Metals)                                             |
| Custody S    | eal: Pre             | sent/Absen                     | t Intact/Not Intact Seal #'s                                  | 0                          |                   |           |                               |                  |          |                       | <del>~ (</del> |       |                 | <del></del>                                                            |





## **CHAIN OF CUSTODY RECORD**

**Nº** 063508

| 744 Haartland Trail P.C | ) Roy 8923    | <ul> <li>Madison WI 53708 8923</li> </ul> | • Phone (608) 831-4444 • F  | 'AY (ANR)                     | 831-3334                              |                 |                               |          | Yes/No)                                 | N/                  | <u>/</u> ,                            |                   |                                                |
|-------------------------|---------------|-------------------------------------------|-----------------------------|-------------------------------|---------------------------------------|-----------------|-------------------------------|----------|-----------------------------------------|---------------------|---------------------------------------|-------------------|------------------------------------------------|
|                         |               | <u> </u>                                  | - 110110 (000) 031 4444 - 1 | T (000)                       | 1                                     | ļ               |                               | rved (Co | <u> </u>                                | <u>/ /</u>          |                                       | ///               |                                                |
| Project No.             | Project<br>Le | ourse Marsh                               |                             |                               |                                       |                 |                               | ,ed/     | //.                                     | //                  | //                                    |                   | PRESERVED CODES                                |
| Project Manager/Cor     |               |                                           |                             | -                             |                                       |                 | a chi                         | 83/      | //                                      | //                  | //                                    |                   | A - NONE<br>B - HNO <sub>3</sub>               |
| Dick Fish 1             | 1 BOS ST      | an fir K                                  |                             | Total Number<br>Of Containers | ×                                     |                 | Redi                          |          | //,                                     |                     | //                                    |                   | C - H <sub>2</sub> SO <sub>4</sub><br>D - NaOH |
| Lab No. Yr. 09<br>Date  | Time          | Sample                                    | Station ID                  | Total N<br>Of Con             | MATRIX                                | Aria            |                               | //       |                                         |                     |                                       | Comments:         | E - HC!<br>F - METHANOL<br>G                   |
| 020 12-16               | 13:00         | B2A-0-2*                                  |                             | 1                             | 50:1                                  | $\times$        |                               | -        |                                         |                     | L                                     | for poly          |                                                |
| 021                     |               | B2A-2-41                                  |                             | 1                             |                                       | Y               |                               |          |                                         |                     |                                       | 1                 |                                                |
| 022                     |               | BZA - 4-61                                |                             |                               |                                       | $\mathcal{X}$   |                               |          |                                         |                     |                                       |                   |                                                |
| 023                     |               | 132A - 6-8'                               |                             |                               |                                       | $ \mathcal{X} $ |                               |          | *************************************** |                     |                                       |                   |                                                |
| 024                     |               | BZA - 8-10'                               |                             | 1                             |                                       | $ \mathcal{X} $ |                               |          |                                         |                     |                                       |                   |                                                |
| 025                     |               | 132A -10-12'                              |                             | i                             | İ                                     | χ               |                               |          |                                         |                     |                                       | j                 |                                                |
| 026 1                   |               | B2A -12-141                               |                             | 1                             |                                       |                 |                               |          |                                         |                     |                                       |                   |                                                |
| 27 1                    |               | B2A-14-151                                |                             |                               |                                       | $\lambda$       |                               |          |                                         |                     |                                       |                   |                                                |
| 028 L                   |               | B28 - O-2                                 |                             |                               |                                       | X               |                               |          |                                         |                     |                                       | 1                 |                                                |
| 10201 12-10             | 13:00         | B2B - 2-4                                 |                             |                               | Sail                                  | X               |                               |          |                                         |                     |                                       | XI                |                                                |
| SPECIAL INSTRUC         | TIONS         |                                           |                             | ,   <del></del>               |                                       | معاملات مستورا  |                               | <u> </u> | ······                                  |                     |                                       |                   |                                                |
|                         |               |                                           | -                           |                               |                                       |                 |                               |          |                                         |                     |                                       |                   |                                                |
| SAMPLER Relinquis       | Alex (        | Socroun D-14-09                           | Received by (Stg.)          | Da<br>2 <i> {15 </i>          | te/Time<br>{                          | HAZAR<br>WI     | DS ASSO<br>TH SAMP<br>Flammab | LES      | Turn Ar                                 | ound (ci            | rcle one)                             | Normal            | Rush                                           |
| Relinquished by (819    |               | Date/Time                                 | Received by (Sig.)          | 7. 16 <sub>a</sub>            | te/Time                               |                 | Corrosive                     | 2        |                                         |                     | · · · · · · · · · · · · · · · · · · · | (For Lab Use Only | у)                                             |
| Relinquished by (Sig    | )<br>//       | Date/Time 12/15/09 855                    | Received by (Sig.)          | Da<br>12/15/1                 | te/Time<br>/<br>// //SSS              | 1               | Other (list                   |          | · · · · ·                               | ot Temp:<br>Blank ( | _                                     | 1                 | Receipt pH (Wet/Metals)                        |
| Custody Seal: Pro       | esent/Absent  | 7                                         | eal #'s                     | · <u>~/</u> ~                 | · · · · · · · · · · · · · · · · · · · | . 1             |                               |          |                                         | KU                  | 1                                     |                   | <u> </u>                                       |

63848

# RMT.

|              |             |              |             | adison, WI 53717-193       |                                                  |                               |                       |          |                 |                            | Fil                | tered ( | Yes/N | ol /1                    | V/  |          |            | //         | $\overline{Z}$ |                                                |
|--------------|-------------|--------------|-------------|----------------------------|--------------------------------------------------|-------------------------------|-----------------------|----------|-----------------|----------------------------|--------------------|---------|-------|--------------------------|-----|----------|------------|------------|----------------|------------------------------------------------|
| Phone 608/   | 831-        | 4444         | • Fax 60    | 8/831-3334 • www.rml       | inc.com                                          |                               |                       |          |                 | Pr                         | reserv             | ed (Co  | de) / | <u> 14/</u>              |     | <u> </u> | <u>/_/</u> | <u> </u>   | <u>/_/</u>     | <u> </u>                                       |
| Project No.  |             |              | Ken         | t/Client:<br>Occuree MarsL |                                                  |                               |                       |          |                 |                            | ند                 | 36)/    | //    | //                       | /   | //       | //         |            | //             | PRESERVED CODES                                |
| Project Ma   | nage        | r/Co         | ntact Perso | an;                        |                                                  |                               |                       |          |                 |                            |                    | 7,      | / /   | / /                      | / , | / ,      | / /        |            |                | A — NONE<br>B — HNO3                           |
| Dick         | F           | s L          | / B         | sb Stanforth               |                                                  | Total Number<br>of Containers | ≥                     | <u>≼</u> | ;               | alyses of                  | ر موالي<br>مراكبان | //      | //    | //                       | //  | //       | //         | //         |                | C — H <sub>2</sub> SO <sub>4</sub><br>D — NoOH |
| Lab No.      | Yr. ⊆<br>Do | - 1          | Time        | Somp                       | ole Station ID                                   | Total N<br>of Con             | VIGTAAA               | A A      | Ari             |                            | ]                  |         | //    |                          | /   | /        |            | mmenls:    |                | E — HCI<br>F — METHANOL<br>G                   |
| 030          | 12-         | 10           | 13:00       | B2B-4-6'                   |                                                  | P                             | 500                   | .'}      | <u>ر</u><br>الا |                            | ,                  | Í       |       |                          |     | ,        |            | 2 00/4     | <br>1          |                                                |
| 081          |             |              | Ì           | B2B-6-81                   |                                                  | 1                             |                       |          | א               |                            |                    |         |       |                          |     |          | }          | 1          |                |                                                |
| 122          |             |              |             | 1320-3-101                 |                                                  | 3                             |                       |          | $\bowtie$       |                            |                    |         |       |                          |     |          |            |            |                |                                                |
| 033          |             |              |             | 1328-10-12                 |                                                  | 1                             |                       |          | $\lambda$       |                            |                    |         |       |                          |     |          |            |            |                |                                                |
| 634          |             |              |             | B2B - 12-15                | . 1                                              | Ĭ.                            |                       |          | χ               |                            |                    |         |       |                          |     |          |            |            |                |                                                |
| 035          | •           |              |             | 13213-15-1                 | ۲ <sup>۱</sup>                                   | 1                             |                       |          | X               |                            |                    |         |       |                          |     |          |            |            |                |                                                |
| 026          |             |              |             | B2B - 19-29                | >'                                               | 1                             |                       |          | $\chi$          |                            |                    |         |       |                          |     |          |            |            |                |                                                |
| 037          | ļ           |              |             | B2(-0-2                    |                                                  |                               |                       |          | X               |                            |                    |         |       |                          |     |          |            |            |                |                                                |
| 038          | 8           | _            | <b>V</b>    | BSC - 7-1                  |                                                  | }                             | Ţ                     | /        | X               |                            |                    |         |       |                          |     |          |            |            |                |                                                |
| 0391         | 12-         | . <b>\</b> 0 | 13:00       | 132c-4-6                   | \                                                | 1                             | ىچ                    | (:       | X               |                            |                    |         |       |                          | j   |          | 4          | 1          |                |                                                |
| SPECIAL IN   | ISTRU       | ICTIC        | NS SMS      | _                          |                                                  |                               |                       |          |                 |                            |                    |         |       |                          |     |          |            |            |                |                                                |
|              |             |              |             |                            |                                                  |                               |                       |          |                 |                            |                    |         |       |                          |     |          |            | _          |                |                                                |
| SAMPLER R    | <u>J.</u>   | <u>S</u>     | Alea G      | 12-14-69                   | Received by (Signature)  Received by (Signature) | 1146                          | e/Tim<br>//3<br>e/Tim | 4Ś       | ٧               | ARDS A<br>VITH SA<br>Flomm | AMPLE              |         |       | n <b>A</b> rou<br>ort Du |     | ircle c  | one)       | Normal     | ) Ru           | ush                                            |
| Relinquishe  | -<br>-<br>- | noign        | 17          | Date/Time                  | received by folgodiones                          | Dan                           | <b>5/</b> 1 (11)      | IC       |                 | Corro<br>Highly            |                    |         |       |                          |     |          | (For       | Lab Use Or | ıly)           |                                                |
| Relinquished | d by (      | Sign         | <del></del> | , Date/Time                |                                                  | ,                             | e/Tim                 |          |                 | Other                      |                    |         |       | ceipt T<br>np Bla        |     |          | N          |            |                | ceipt pH<br>et/Metals)                         |
|              | al          |              | <u> </u>    |                            | pappoviselitz                                    | 144                           | 998                   | 755      |                 |                            |                    |         | _     | •                        | 0   | 7        |            |            | . ,            | NA                                             |
| Custody Se   | al:         | Prese        | ent/Absen   | Intact/Not Intact          | Seal #s 🔑                                        |                               |                       |          |                 |                            |                    |         |       | <i>j</i>                 |     |          | _          |            |                | <del></del>                                    |





|                        |              |                     | Madison, WI 53717-1934                    |                               |               |                 | Fil          | tered (                                          | Yes/No}     | M            | //         |                  |                                        |
|------------------------|--------------|---------------------|-------------------------------------------|-------------------------------|---------------|-----------------|--------------|--------------------------------------------------|-------------|--------------|------------|------------------|----------------------------------------|
| Phone 608/             | 831-444      |                     | 18/831-3334 • www.rmtinc.com              | ········   ·················  | ·             | .               | Preserv      | ·                                                | <del></del> | <del>}</del> | <u>_</u> , |                  | ///                                    |
| Project No             |              | Projec              | ct/Client:                                |                               |               |                 |              | 8                                                | //          | //           |            |                  | MESTRAFO CODES                         |
| 7,201,10<br>Project Ma | nagor/Co     | ntact Pare          | wante Mask                                | _                             |               |                 | ,e           | <i>\$</i>                                        | //          | //           | /          |                  | PRESERVED CODES A — NONE               |
|                        |              |                     |                                           |                               |               |                 | 20°          | //                                               |             | //           | / /        | ////             | B — HNO <sub>3</sub>                   |
| Dick                   | 1-ish        | Bol                 | , Stanfall                                | Total Number<br>of Containers | ×             | Andha           |              | / /                                              | //          | //           | Ζ.         |                  | C H <sub>2</sub> SO <u>4</u><br>D NoOH |
|                        | Yr. 09       | _                   |                                           | T Z Š                         | MATRIX        | Andre           | &) <b>Y</b>  |                                                  | //          | //           |            |                  | E — HCI                                |
| lab No.                | 7r. Oate     | Time                | Sample Station ID                         | ફ ટ્રે                        | ≥             |                 |              |                                                  | //          | //           | //         |                  | F — METHANOL                           |
|                        |              |                     | ,                                         | <u> </u>                      |               |                 | $\leftarrow$ | <del>-                                    </del> |             |              | _          | Comments:        | G                                      |
| 040                    | 1)-10        | 13:00               | B2C-6-8'                                  | 1 1                           | 55.           | X               |              |                                                  |             |              |            | 402 poly         |                                        |
| 04                     | •            | ŀ                   | B2C-8-10'                                 | (                             | 1             | $ \mathcal{X} $ |              |                                                  |             |              |            | '                |                                        |
| 042                    |              |                     | B2C-10-17,                                |                               |               | $ \mathcal{X} $ |              |                                                  |             |              |            |                  |                                        |
| 043                    |              |                     | B2C - 12-141                              | (                             |               | X               |              |                                                  |             |              |            | 1                |                                        |
| 044                    |              |                     | B2C- 14-207                               | 1                             |               | $\bowtie$       |              |                                                  |             |              |            | ļ<br>ļ           |                                        |
| 045                    |              |                     | B2D - 0-21                                |                               |               | $\mathcal{X}$   |              |                                                  |             |              |            | }                |                                        |
| 046                    |              | 1                   | 132D-2-41,                                |                               | 1             | $\chi$          |              |                                                  |             |              |            |                  |                                        |
| 047                    |              | ***                 | B2D-4-61                                  |                               |               | X               |              |                                                  |             |              |            | 1                |                                        |
| 048                    | $\downarrow$ | <del></del>         | B20-6-8'                                  | 1                             |               | Χ               |              |                                                  |             |              |            |                  |                                        |
| 049                    | 12-10        | 13:00               | 13219-8-10                                | 1                             | 5,1           | X               |              |                                                  |             |              |            | 4                |                                        |
| SPECIAL IN             | STRUCTIO     | ONS                 |                                           |                               | -             | -               | -            | -                                                | •           | •            | •          | •                |                                        |
|                        |              |                     |                                           |                               |               |                 |              |                                                  |             |              |            |                  |                                        |
| SAMPLER R              | elinquishe   | d by (Sigr          | nature) Date/Time Received by (Signature) | Da                            | te/Time       | HAZARDS         |              |                                                  | Turn 4      | Around (     | cicclo     | one) Normali     | Rush                                   |
| ر علله ا               | Safa (       | Alexbuc             | 12-14-09 tanial                           | 2)14/9                        | ,1345         | 3 WITH          | SAMPLE       |                                                  | 1           | -            |            | one, Homos       | NO3II                                  |
| Relinquishe            | d by (Sign   | atur <del>k</del> ) | Date/Time Received by (Signature)         | 7 77 7                        | te/Time       |                 |              |                                                  | Kepor       | t Due _      |            |                  | ······································ |
|                        | ,, u         | 10                  | 14/9 1700                                 |                               | •             | ☐ Cor           |              |                                                  |             |              |            | (For Lab Use Onl | y}                                     |
| Relinquishe            | hy (Sign     | oture)              | Date/Time Received by (Signature),        | Dat                           | re/Time       | ☐ High          |              |                                                  | Rece        | ipt Temp     | ):<br>(A)  |                  | Receipt pH                             |
| l ' .                  | alta         |                     | 12/15/09 855 MALLOVISelab                 |                               | 9855          |                 | er (list)    |                                                  | Temp        | Blank >      | (Y)        | N                | (Wet/Metals)                           |
|                        | 0170 1       |                     | 112107 D> 1 1/1X / ALU ( 40 40)           | // <i>\</i>                   | <i>i</i> ク8ンフ |                 |              |                                                  | ┨           | RO           | /          | <del></del>      | NA                                     |
| Custody Se             | al: Prese    | ent/Absen           | Intact/Not Intact Seal #s                 |                               |               |                 |              |                                                  | 1           |              |            |                  | · •                                    |

|                | M                    |                       |              |                           | Q.I.Z.                  | <b>.</b> .                          |                       |                     |                                   |          |                                        |                       |     | <u> </u>        | 1026525                                        |
|----------------|----------------------|-----------------------|--------------|---------------------------|-------------------------|-------------------------------------|-----------------------|---------------------|-----------------------------------|----------|----------------------------------------|-----------------------|-----|-----------------|------------------------------------------------|
|                |                      |                       | •            | ladison, WI 53717-193     |                         |                                     |                       |                     | Fi                                | ltered ( | Yes/No                                 | 6/                    |     |                 |                                                |
|                | Phone 608/           | 831-444               |              | 8/831-3334 • www.rm       |                         | _                                   |                       |                     |                                   | ved (Co  |                                        |                       | //  | ZZZ             |                                                |
|                | Project No. 7201. ld |                       | Projec       | t/Client:<br>vaunee Mars  | 1                       |                                     |                       |                     |                                   | راهي     | //                                     | //                    | //  | ///             | PRESERVED CODES                                |
|                | Project Mar          |                       | ontact Pers  | on:                       |                         |                                     |                       |                     | ئى                                | \$ \     | //                                     |                       | //  |                 | A — NONE                                       |
|                | Dick                 | - 12                  | / B.L        | Stanfill                  |                         | []<br>Total Number<br>of Containers | ×                     | <b> </b>            | Se Sed                            | //       | //,                                    |                       | //  |                 | B — HNO3<br>C — H <sub>2</sub> 5O4<br>D — NdOH |
|                | Lab No               | Yr. <u>09</u><br>Date | Tme          | Samj                      | ole Station ID          | Total No                            | MATRIX                | And                 |                                   | //       |                                        | //                    |     | Comments:       | E HCI<br>F METHANOL<br>G                       |
| 50             | MAN                  | 12-10                 | 13:00        | B2D-10-1                  | Σ,                      | li                                  | Soil                  | ÍXÍ                 |                                   | ĺĺ       |                                        | ÍΤ                    | 1.1 | )zpolu          |                                                |
| 5)             | 052                  | Ì                     | 1            | 1320 - 12-1               |                         | }                                   | )                     | $\frac{1}{\lambda}$ |                                   |          |                                        | -                     |     | 1               |                                                |
| 52             | 053                  |                       |              | B2D-14-1                  | ۲,                      | 1                                   |                       | $ \lambda $         |                                   | -        |                                        |                       |     |                 |                                                |
| 5              | 054                  |                       |              | 1350-12-                  |                         |                                     |                       | $\frac{1}{\lambda}$ |                                   | -        |                                        |                       |     |                 | `                                              |
| <del>5</del> 4 | 255                  |                       |              | 13217- 17,5               | - 20`                   | (                                   |                       | $\lambda$           |                                   |          | ······································ |                       |     |                 |                                                |
| 35             | 090                  |                       |              | 13712 -50                 |                         |                                     |                       | X                   |                                   |          |                                        | -                     |     |                 |                                                |
| 56             | 057                  |                       |              | Ble - 0-2                 |                         |                                     |                       | X                   |                                   |          |                                        |                       |     |                 |                                                |
| 57             | 098                  |                       |              | 131E - 2-1                |                         | (                                   |                       | V                   |                                   |          |                                        |                       |     |                 |                                                |
| 9E             | 059                  |                       | $\downarrow$ | 1324-4-                   | ; \<br>5                | 1                                   | 1                     | $\lambda$           |                                   |          |                                        |                       |     |                 |                                                |
| 3              | 060                  | 1200                  | 13:00        | 132E-6                    | -8                      | 1                                   | (۱،۵                  | M                   |                                   |          |                                        |                       |     | •               |                                                |
| ,              | SPECIAL IN           | s ructio              | ONS          |                           | <u> </u>                |                                     |                       |                     |                                   | 1        |                                        |                       |     |                 |                                                |
| -              |                      |                       |              |                           |                         |                                     |                       |                     |                                   |          |                                        |                       |     |                 |                                                |
|                | SAMPLER R            | LAI                   | er Goesal    | 1)7-10-09                 | Received by (Signature) | 3/14/0                              | te/Time<br>1349       | Wi                  | DS ASSOX<br>TH SAMPL<br>Flammable | ES       | Turn Ard                               |                       |     | Normal          | Rush                                           |
|                | Relinquished         | 1 by (8igr            | nature)      | Oute/Time                 | Recei ed by (Signature) |                                     | te/T me               | ]H                  | Corrosive                         | :        |                                        |                       | •   | or Lab Use Only | •                                              |
|                | Δ.                   | l by (Sign<br>a Utc   |              | Date/Time<br>12/15/09 855 | Received by (Signature) | Do 19                               | te/Time<br> <br> 5/09 |                     | Other (list)                      |          | Receip<br>Temp B                       | t Temp:<br>Ilank      | Ŷ N |                 | Receipt pH (Wet/Metals)                        |
| 89             | Custody Sec          | al: Prese             | ent/Absent   |                           | Seal #s                 | 1                                   |                       |                     |                                   |          |                                        | <i>y</i> , <i>O j</i> |     |                 |                                                |

## RMT.

## **CHAIN OF CUSTODY RECORD**

63851 4026525

|               |                     |                                              |              | adison, WI 53717-193 |                           |                               |                    |           |                                          | Filtered | (Yes/No) | [v]         | $\angle$ |                  |                                            |
|---------------|---------------------|----------------------------------------------|--------------|----------------------|---------------------------|-------------------------------|--------------------|-----------|------------------------------------------|----------|----------|-------------|----------|------------------|--------------------------------------------|
|               | Phone 508/          | 831-444                                      | 4 • Fax 608  | 3/831-3334 • www.rm! | inc.com                   |                               | 1                  |           | Prese                                    | erved (C | ode) /4  |             | <u> </u> |                  | ///                                        |
|               | Project No. 7201.10 |                                              | Ker          | /Client:             |                           |                               |                    |           | 14 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |          | ///      | //          | //       |                  | PRESERVED CODES<br>A — NONE                |
|               | Project Ma          | nager/Co                                     | ontact Perso | n:                   |                           |                               |                    |           | م ود                                     | X/ ,     | //       | //          | / /      | ////             | B — HNO <sub>3</sub>                       |
|               | Diele               | Fisl                                         | / B.         | 5 Stanfork           |                           | umber                         | ×                  |           | 145                                      |          | //       | //          | //       |                  | C H <sub>2</sub> SO <sub>4</sub><br>D NaOH |
|               | Lab No.             | Yr. <u>09</u><br>Date                        | Time         | Somp                 | ole Station ID            | Total Number<br>of Containers | MATRIX             | Ari       |                                          |          | ///      | //          | //       | Comments:        | E — HCI<br>F — METHANOL<br>G —             |
| $\varnothing$ | 06/2                | 12-10                                        | 13:00        | BZE- 8-10'           |                           | }                             | Soil               |           |                                          | Ť        |          | ĺ           | <u></u>  | ,                |                                            |
| 01            | Non                 | <u> </u>                                     | 4            | BZE - 10-13.         | 8,                        | 1                             | 1                  | X         |                                          |          |          |             |          |                  |                                            |
| 162           |                     | 12-10                                        | 17:00        | B2E-13,8-            |                           | Ti                            |                    | X         |                                          |          |          |             |          |                  |                                            |
|               | 004                 | 1                                            | 1            | B2E-JO-Z             |                           |                               |                    | $ \chi $  |                                          |          |          |             |          |                  |                                            |
| 1             | 065                 |                                              |              | B2E - 23 -           |                           |                               |                    | χ         |                                          |          |          |             | -        |                  |                                            |
| 15            | Odo                 |                                              |              | 132F-0-2             |                           | 1                             |                    | k         |                                          |          |          |             |          |                  |                                            |
| do            | 067                 |                                              |              | B2F - 2-4            |                           | 1                             |                    | ス         |                                          |          |          |             |          |                  |                                            |
| 607           | 068                 |                                              |              | 132F-4-6             |                           |                               |                    | X         |                                          |          |          |             |          |                  |                                            |
| (D)           | 069                 |                                              |              | B2F-6-8              |                           |                               |                    | $\sim$    |                                          |          |          |             |          |                  |                                            |
| 9             | 075                 | 12-10                                        | /2.∞∞        | BZF -8-              | 10'                       |                               | Soil               | $\lambda$ |                                          |          |          |             |          |                  |                                            |
|               | SPECIAL IN          | ISTRUCTIO                                    | ONS          | <u> </u>             |                           |                               | L                  | '         | "                                        | "        | "        | -!!!!       | II-      |                  |                                            |
|               |                     |                                              |              |                      | Δ                         |                               |                    |           |                                          |          | _        |             |          |                  |                                            |
|               | SAMPLER R           | 11_                                          | CAlenG<br>-  | wse) 12-14-09        | Received by (Signature)   | 1/24/                         | e/Time<br>//34     | \ \       | RDS ASSO<br>VITH SAM<br>Flammab          | PIES     | Turn Ar  |             |          | ne) Normal       | Rush                                       |
|               | Relinquishe         | d by-(Sign                                   | - 17         | Date/Time            | Received by (Signature)   | Date                          | e/Time             | 1         | Corrosiv                                 |          |          |             |          | (For Lab Use Onl | <b>y</b> )                                 |
|               | Relinquisher        | <u>مــــــــــــــــــــــــــــــــــــ</u> |              | U/d //OC Date/Time   | Received by (Signature) / | Dest                          | e/Time             | 1         | Highly To                                |          | Receip   | ot Temp:    | _        |                  | Receipt pH                                 |
|               |                     | #CO                                          | 12/          | 5/09 855             | 1 1 1//                   | 1 1                           | 9855               |           | Other (lis                               | t)       | Temp (   | Blank (     | _        | N                | (Wet/Metals)                               |
| 20            | Custody Se          | al: Pres                                     | ent/Absent   |                      | 7(: ) // 3                |                               | ····· <del>·</del> |           |                                          |          |          | <u></u> Λ.υ | ′ (      |                  | _/U//T                                     |



## **CHAIN OF CUSTODY RECORD**

**63852** 4026525

|        | •                   |                        |                | adison, WI 53717-193    |                          |                                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Fil                       | tered    | Yes/N         | io) / /           | \<br>\<br>                              | $\angle$ |                | //    |                                                |
|--------|---------------------|------------------------|----------------|-------------------------|--------------------------|--------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------|----------|---------------|-------------------|-----------------------------------------|----------|----------------|-------|------------------------------------------------|
|        | Phone 608/          | 831-4444               | Fax 608        | 8/831-3334 • www.гm     | tinc.com                 |                                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F        | Preserv                   | red (Co  | ode)          | /A/               |                                         |          |                | //    |                                                |
|        | Project No. 7201,10 | >                      | lew            | 1/Client:<br>James Mash |                          |                                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                           | sjed/    | //            | //                | //                                      | /        |                | //    | PRESERVED CODES<br>A — NONE                    |
|        | Project Mai         | -                      |                |                         |                          |                                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                           | //       | / ,           | / /               |                                         |          |                |       | B HNO <sub>3</sub>                             |
|        | Diele               | Fish                   | /12 <u>0 L</u> | , Stanfork              |                          | Total Number<br>of Containers                    | ×      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X45.     |                           |          | //            | //                | //                                      | //       | ///            |       | C — H <sub>2</sub> SO <sub>4</sub><br>D — NaOH |
|        | Lab No.             | Yr. <u>09</u><br>Date  | Time           | Sam                     | ple Station ID           | of Con                                           | MATRIX | \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \ \rangle \rangle \ \rangle \ \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangl |          |                           | //       | //            | //                | //                                      | //       |                |       | E — HCI<br>F — METHANOL                        |
|        | 127                 |                        |                |                         | ·                        | .                                                |        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>/</u> | <u>/</u>                  | <u>/</u> | <u> </u>      | <u>/</u> ــــا    |                                         | <u></u>  | Comments:      | ····  | G                                              |
| $\cup$ | MB                  | 12-10                  | 13:00          | B2F-10-17               | ۲,                       | Ì                                                | 52.1   | 次                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                           |          |               |                   |                                         |          | toz polu       |       |                                                |
|        | maz                 | )                      |                | B2F-12-13               | 1.81                     |                                                  | Soil   | $ \mathcal{X} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                           |          |               |                   |                                         |          | )              |       |                                                |
| 2      | . 1772              | 15:10                  | 13,00          | B2F-13.8                |                          | 1                                                | Soil   | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                           |          |               |                   |                                         |          | 4              |       |                                                |
| سن     |                     |                        |                |                         |                          | -                                                |        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                           | _        |               |                   |                                         |          | X              |       |                                                |
|        |                     |                        |                |                         |                          |                                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                           |          |               |                   |                                         |          |                |       |                                                |
|        |                     |                        |                |                         |                          |                                                  |        | .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | <u></u>                   |          |               |                   |                                         |          |                |       |                                                |
|        |                     |                        |                |                         |                          |                                                  |        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                           |          |               | . 1               | *************************************** |          |                |       |                                                |
|        |                     |                        |                |                         |                          |                                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                           | /        | $\rightarrow$ |                   |                                         |          |                |       |                                                |
|        |                     |                        |                |                         |                          |                                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                           |          |               |                   |                                         |          |                |       |                                                |
|        |                     |                        |                |                         |                          |                                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                           |          |               |                   |                                         |          |                |       |                                                |
|        |                     |                        |                | <del></del>             |                          |                                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                           |          |               | <del></del>       |                                         |          |                |       |                                                |
|        | SPECIAL IN          | STRUCTIO               | DNS            |                         |                          |                                                  |        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | ·                         |          | ,             |                   | <u> </u>                                |          |                |       |                                                |
|        |                     |                        |                |                         |                          |                                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                           |          |               |                   |                                         |          |                |       |                                                |
|        | -                   | 30 1                   |                | - 11-11/69              | Received by (Signature)  | <del>'                                    </del> | 1345   | HAZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | WITH S   | ASSOC<br>SAMPLE<br>Imable | ES .     | Tur           | n Arou<br>oort Du |                                         |          | ne) Normal     | ) Ru  | ush                                            |
|        | Relinquished        | L <del>by (</del> Sign | ature)         | Date/Time 1700          | Received by (Signature)  | Dat                                              | e/Time | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Com      |                           |          |               |                   |                                         |          | (For Lab Use ( | Only} |                                                |
|        | Relinquished        | <u> </u>               | ature)         | Date/ me                | Received by (Signature)/ | Dat                                              | e/Time | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | y Toxic                   |          |               | eceipt î          |                                         | <u>a</u> |                | Rec   | eipt pH                                        |
|        | / 4                 | 04(3)                  | 4.0101         | 12/15/09 855            |                          | 2/15/09                                          |        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Othe     | r (list)                  |          | Те            | mp Bla            | nk (                                    | Ý)       | N              | (We   | et/Metals)                                     |
| 5      |                     |                        | ent/Absent     | Intact/Not intact       |                          | ,,-,,-                                           | ´      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                           |          | 1 -           |                   | <u> </u>                                |          | -              |       | U pr                                           |

## 63853

### **CHAIN OF CUSTODY RECORD**



RMT Inc., 744 Heartland Trail, Madison, WI 53717-1934 Filtered (Yes/No) Phone 608/831-4444 • Fax 608/831-3334 • www.rrntinc.com Preserved (Code) Andyses Requested Project No. Proje t/Client: 7201.10 Kewayne Marsh PRESERVED CODES A - NONE Project Manager/Contact Person: B - HNO, Diche Fish / Bob Stanfarth Total Number of Contoiners C-H2SO4 MATRIX D-NaOH Yr. 09 F—HCI Lab No. F --- METHANOL Sample Station ID Date Time Comments: B2F-15-16 12-10 500 13:00 M2F ~ 16-20' 132F - 23-25 12F-25-30 B30-0-2, 133P -2-41 M30-4-6' B3D-6-8° B3D-8-10 X 133D-10-12' Soil 17-10 13:00 SPECIAL INSTRUCTIONS SAMPLER Relinquished by (Signature) Date/Time Date/Time Received by (Signature) HAZARDS ASSOCIATED Turn Around (circle one) / Normal Rush (Ale Goesa) WITH SAMPLES Report Due \_ ☐ Flammable Relinquished by (Signature) Date/Time Received by (Signature) Date/Time 1700 □ Corrosive (For Lab Use Only) ☐ Highly Toxic Receipt Temp: Receipt pH Relinquished by (Signature) Date/Time Date/Time Received by (Signature) ☐ Other (list) Temp Blonk ("Y) (Wet/Metals) 12/15/09855 Intact/Not Intact Seal #s Custody Seal: Present/Absent

## RMT.

| IV!         | <b>/</b>              |                       | <b></b>                              |                            |               |                   |                                         |          |              | $\sqcup$ {                              | 021525                                                     |
|-------------|-----------------------|-----------------------|--------------------------------------|----------------------------|---------------|-------------------|-----------------------------------------|----------|--------------|-----------------------------------------|------------------------------------------------------------|
|             |                       |                       | ladison, WI 53717-1934               |                            |               |                   | Filtered                                | (Yes/No) | v/           | 7777                                    | 7//                                                        |
| Phone 608   | /831 <del>-4</del> 44 | 4 • Fax 60            | 8/831-3334 • www.rmtinc.com          |                            |               |                   | Preserved (C                            | Code) /A |              | ////                                    |                                                            |
| Project No  | i.<br>'o              | Projec<br>Kec         | t/Client:<br>source MasL             |                            |               |                   | , web                                   | ///      | //           |                                         | PRESERVED CODES                                            |
| Project Mo  | nager/Co              |                       |                                      |                            |               |                   | die?                                    | //       | //           |                                         | A NONE                                                     |
| Diclo       | - Fish                | /B.                   | 6 Stanfork                           | Total Number of Containers | <u></u>       | 74                | Sedie Control                           |          | //           |                                         | B — HNO <sub>3</sub><br>C — H <sub>2</sub> SO₄<br>D — NbOH |
| lab No.     |                       | Time                  | Sample Station ID                    | Total N                    | MATRIX        | Arth              |                                         |          |              | Comments:                               | E — HCI<br>F — METHANOL<br>G —                             |
| 08份         | 12-10                 | 13:00                 | B3D-12-141                           |                            | Soil          |                   | *************************************** |          | <u> </u>     | 40zpoly                                 |                                                            |
| OS SE       |                       | }                     | B3D - 14-16'                         |                            | 1             | X                 |                                         |          | <del></del>  |                                         | ***************************************                    |
| JUBN K      |                       |                       | B3E-0-21                             | 1                          |               | X                 |                                         |          |              |                                         |                                                            |
| 087         |                       |                       | B3E-2-41                             | 1                          |               | $\overline{\chi}$ |                                         |          |              |                                         |                                                            |
| 087         |                       |                       | 133E-4-6'                            |                            |               | X                 | ······································  | -        |              |                                         |                                                            |
| 089         |                       |                       | B3E-6-81                             |                            |               | X                 |                                         |          |              | *************************************** |                                                            |
| 090         |                       |                       | B3F-8-16                             |                            |               | X                 |                                         | ·        |              |                                         |                                                            |
| 091         |                       |                       | B3E-10-12                            |                            |               | $ \lambda $       |                                         |          |              |                                         |                                                            |
| 092         |                       | 4                     | B3E-12-14'                           |                            | 1             | <u> </u>          |                                         |          |              |                                         |                                                            |
| 093         | 12-10                 | 13:00                 | B3E-14-16°                           |                            | 1:2           | X                 |                                         |          |              |                                         |                                                            |
| SPECIAL IN  | ISTRUCTIO             | ONS                   |                                      |                            |               |                   | " "                                     |          |              |                                         |                                                            |
|             |                       |                       | ^                                    |                            |               |                   |                                         |          |              |                                         |                                                            |
| SAMPLER F   | Relinquishe           | ed by (Sign<br>(Alea) | 244c) 12-14-05 D. Farmel             | Da<br>12/14/19             | ote/Time      | TIM E             | OS ASSOCIATEI<br>H SAMPLES<br>ammable   | Turn Aro |              | e one) Normal                           | Rush                                                       |
| Relinquishe | d by 15igi            | nature                | Date/Time Received by (Signature)    | Do                         | ate/Time      |                   | опозіче                                 |          |              | (For Lab Use Onl                        |                                                            |
|             | tin                   | 1                     | 12)14/9 1100 Received by (signature) |                            |               | _                 | ghly Toxic                              | Receipt  | Tome         | (, c. 225 csc cm                        |                                                            |
| Relinquishe |                       | at re}                | Date/Time Received by (Signature)    | // /                       | pte/Time      |                   | ther (list)                             |          | ank (Y       | ) и                                     | Receipt pH<br>(Wet/Metals)                                 |
|             | elta                  |                       | 12/15/09 855 Afformselet             | z 1415/1                   | 98 <u>5</u> 5 |                   |                                         | ·        | RDI          | ^                                       | NA                                                         |
| Custody Se  | eal: Pres             | ent/ bsen             | Intact/Not Intact Seal #\$           |                            |               |                   |                                         |          | <del>"</del> | <del></del>                             | <del>, ,</del> ,                                           |

63803

### **CHAIN OF CUSTODY RECORD**

RMT.

RMT Inc., 744 Heartland Trail, Madison, WI 53717-1934 Filtered (Yes/No) Phone 608/831-4444 • Fax 608/831-3334 • www.rmtinc.com Preserved (Code) Andlyses Rectuested Project No. Project/Client. Kewaree Mas L 7201,10 PRESERVED CODES A -- NONE Project Manager/Contact Person: B --- HNO2 Diele Fist / Bob Stenfuth Total Number of Containers C-H<sub>2</sub>SO<sub>4</sub> MATRIX D-NoOH ٧r.  $0^{\frac{1}{9}}$ E — HCI Lab No. F - METHANOL Sample Station ID Date Time Comments: 402 poly 12.10 B3E-16-20' 13:00 X B3E-20-251  $\mathcal{X}$ 0943 m20-0-21 χ M217-2-4 m1p-4.61 X M2D-6-8' M2D-8-10' M3D-0-2' M3D-1-41 M3n-4-6' X 13:00 SPECIAL INSTRUCTIONS SAMPLER Relinquished by (Signature) Received by (Signature) Date/Time Date/Time HAZARDS ASSOCIATED Turn Around (circle one) Normal Rush (Ales Gorgan) WITH SAMPLES 12-14-09 Report Due \_ ☐ Flammable Date/Time Relinquished by (Signature) Received by (Signature) Date/Time □ Corrosive (For Lab Use Only) ☐ Highly Toxic Receipt Temp: Receipt pH Received by (Signature) Relinquished by (Signature) Date/Time Date/Time ☐ Other (list) Temp Blank (Wet/Metals) 11909855 Intact/Not Intact Seal #s Custody Seal: Present/Absent



## **CHAIN OF CUSTODY RECORD**

63804 402655

|             |                                 |             | ladison, WI 53717-1934              |                               |        |                                       |                                        | Filte   | ered ( | Yes/No)          | /w/         |    |          |              |                                                |
|-------------|---------------------------------|-------------|-------------------------------------|-------------------------------|--------|---------------------------------------|----------------------------------------|---------|--------|------------------|-------------|----|----------|--------------|------------------------------------------------|
| Phone 608   | /831-4444                       | -           | 8/831-3334 • www.rmtinc.com         |                               |        |                                       |                                        | reserve |        | - /              | 7/          | Z, | <u> </u> | 77           |                                                |
| Project No  | •                               | Ke          | t/Client:<br>wounce Mors L          |                               |        |                                       |                                        | .6      | zed/   | //               | //          | // | //       |              | PRESERVED CODES                                |
| Project Mo  | nager/Ca                        | ntas Pors   | on.                                 | 1                             |        |                                       | _                                      |         | 7,     | //               |             | /, | //       |              | A — NONE<br>B — HNO3                           |
| 1010        | le Fi                           | sl/I        | But Starforth                       | lumber<br>toiners             | ×      | And                                   | 74.<br>14.                             |         | //     | //               |             | /, | //       |              | C — H <sub>2</sub> SO <sub>4</sub><br>D — N-OH |
| Lab No.     | Yr. $\frac{\bigcirc^{\circ}}{}$ | Time        | Sample Station ID                   | Total Number<br>of Contoiners | MATRIX | Arr                                   |                                        | //      | /      |                  | //          | /  | Gomr     | nents:       | E — HCI<br>F — METHANOL<br>G —                 |
| 104/2       | 12-10                           | 13:00       | M3D-6-8,                            | 1                             | Soil   | $ \mathcal{X} $                       |                                        |         |        |                  |             |    | 402      | poly         |                                                |
| 1053        |                                 |             | M3n-8-101                           |                               | 1      | $\lambda$                             |                                        |         |        |                  |             |    |          | 1 )          |                                                |
| 106 \$      |                                 |             | m4D-0-5'                            | }                             |        | $\left[ \times \right]$               |                                        |         |        |                  |             |    |          |              |                                                |
| 107         |                                 |             | m40-5-7'                            | \                             |        | $ \chi $                              |                                        |         |        |                  |             |    |          |              |                                                |
| 108         |                                 |             | M40-7-101                           |                               |        | ک                                     |                                        |         |        |                  |             |    |          |              |                                                |
| 109         |                                 |             | MSD-0-51                            | 1                             |        | 7                                     |                                        |         |        |                  |             |    |          |              |                                                |
| 110         |                                 |             | M5D-5-7)                            | 1                             |        | Ø                                     |                                        |         |        |                  |             |    | Í        |              |                                                |
| 1//         | 12-15                           | 13:00       | m59-7-10'                           | 1                             | Soil   | X                                     |                                        |         |        |                  |             |    | 7        |              |                                                |
|             |                                 |             |                                     |                               |        |                                       |                                        |         |        |                  |             |    |          |              |                                                |
|             |                                 |             |                                     |                               |        |                                       |                                        |         |        |                  |             |    |          |              |                                                |
| SPECIAL IN  | ISTRUCTIO                       | DNS         |                                     |                               |        | · · · · · · · · · · · · · · · · · · · | ······································ | ,       |        |                  | سيسسيد ارس  | .  | I        |              |                                                |
|             |                                 |             |                                     |                               |        |                                       |                                        |         |        |                  |             |    |          |              |                                                |
| SAMPLER F   | 7                               |             | 1211-01 - 10                        | 14/9                          | ,134   | HAZA                                  |                                        | AMPIES  |        | Turn A<br>Report |             |    | one) (   | formal       | Rush                                           |
| Relinquishe | d by (Sign                      | at re       | Date/Time Received by (Signature)   | Dat                           | e/Time |                                       | Сопс                                   | sive    |        |                  |             |    | (For La  | ıb Use Only) |                                                |
|             | Ten                             | <u>~\//</u> | Date/Time   Persived by (Signature) |                               |        |                                       | Highly                                 | Toxic   |        | Pacei            | pt Temp     | ۸۰ | •        |              | aceint nH                                      |
| Rélinquishe | 214co                           | diore;      | 12/15/09 855 HAMDONSOLA             | Dg1<br>12/15                  | 09855  |                                       | Other                                  | (list)  |        |                  | Blank<br>RO |    | Ν        | Mero X       | weipt pH  Weit/Metals)                         |
| Custody Se  | eal: Prese                      | ent/Absen   | i Intact/Not Intact Seal #s         |                               |        |                                       |                                        |         |        |                  | ,           | `  |          | _            | _ (                                            |

## Face Analytical

### **Sample Condition Upon Receipt**

| Client Name:                                                                                                               | PINT                      | Pr                                    | oject # 404525                                              |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------|-------------------------------------------------------------|
| Courier: Fed Ex TUPS TUSPS TO                                                                                              |                           |                                       | Walter .                                                    |
| Tracking #:                                                                                                                | Silent ) Commerc          | ial ; Pace Other                      | <u> </u>                                                    |
| Custody Seal on Cooler/Box Present: \ \ yes                                                                                | r no Seals                | intact: Tyes T no                     |                                                             |
|                                                                                                                            | no Seals                  | intact: T yes T no                    |                                                             |
| \                                                                                                                          | ble Bags   Non            | e Other                               |                                                             |
| Thermometer Used NA                                                                                                        | Type of Ice: (Wet)        | •                                     | Samples on ice, cooling process has begun                   |
| Cooler Temperature ROI                                                                                                     | Biological Tissue         | is Frozen: Tyes                       | Γ                                                           |
| Temp Blank Present: yes pro no                                                                                             |                           | no                                    | Person examining contents:                                  |
| Temp should be above freezing to 6°C for all sample exc<br>Biota Samples should be received $\leq$ 0°C.                    | ept Biota.                | Comments:                             | Initials:MeA                                                |
| Chain of Custody Present:                                                                                                  | Yes DNO DNA               | 1.                                    |                                                             |
| Chain of Custody Filled Out:                                                                                               | VDves □No □N/A            | 2.                                    |                                                             |
| Chain of Custody Relinquished:                                                                                             | THE DNO DNIA              | 3.                                    |                                                             |
| Sampler Name & Signature on COC;                                                                                           | MYes □No □N/A             | 4.                                    |                                                             |
| Samples Arrived within Hold Time:                                                                                          | Yes No N/A                | 5.                                    |                                                             |
| Short Hold Time Analysis (<72hr):                                                                                          | UYes DNO □N/A             | 6.                                    |                                                             |
| Rush Turn Around Time Requested:                                                                                           | □Yes □N/A                 | 7.                                    |                                                             |
| Sufficient Volume:                                                                                                         | Øves □no □n/A             | 8.                                    |                                                             |
| Correct Containers Used:                                                                                                   | Maryes □No □N/A           | 9.                                    | ·                                                           |
| -Pace Containers Used:                                                                                                     | ÉYes □No □N/A             | ·                                     |                                                             |
| Containers Intact:                                                                                                         | Yes □No □N/A              | 10. *                                 |                                                             |
| Filtered volume received for Dissolved tests                                                                               | □Yes □No CIN/A            | 11.                                   |                                                             |
| Sample Labels match COC:                                                                                                   | Myes Ono On/A             | 12.                                   |                                                             |
| -Includes date/time/ID/Analysis Matrix:                                                                                    | <u> </u>                  |                                       |                                                             |
| All containers nee ding preservation have been checked.                                                                    | □Yes EÌNO VĮN/A           | 13.                                   |                                                             |
| All containers needing preservation are found to be in                                                                     | ☐Yes ☐No VŽÍN/A           |                                       |                                                             |
| compliance with EPA recommendation.                                                                                        |                           | Initial when                          | Lot # of added                                              |
| exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)                                                                        | □Yes □No                  | completed                             | preservative                                                |
| Samples checked for dechlorination:                                                                                        | □Yes □No DANA             | 14.                                   |                                                             |
| Headspace in VOA Vials ( >6mm);                                                                                            | □Yes □No YAN/A            | 15.                                   |                                                             |
| Trip Blank Present:                                                                                                        | □Yes □No PRIA             | 16.                                   |                                                             |
| Trip Blank Custody Seals Present                                                                                           | Ciyes Cino DNA            |                                       |                                                             |
| Pace Trip Blank Lot # (if purchased):                                                                                      | <u>.</u>                  |                                       |                                                             |
| Client Notification/ Resolution:  Person Contacted:                                                                        | Date/                     | lime:                                 | Field Data Required? Y / N                                  |
| Comments/ Resolution:                                                                                                      | Dater                     | · · · · · · · · · · · · · · · · · · · |                                                             |
|                                                                                                                            |                           |                                       |                                                             |
|                                                                                                                            | ·····                     | ············                          |                                                             |
|                                                                                                                            |                           |                                       |                                                             |
| Project Manager Review:                                                                                                    | TA)                       |                                       | Date: /2/15/09                                              |
| Note: Whenever there is a discrepancy affecting North Garolina coincorrect preservative, out of temp, incorrect containers | ompliance samples, a copy | of this form will be sent to the No   | orth Carolina DEHNR Certification Office (i.e. out of hold, |



March 31, 2010

BOB STANFORTH RMT MADISON 744 Heartland Trail Madison, WI 537171934

RE: Project: 7201.15 KEWAUNEE MARSH

Pace Project No.: 4029654

#### Dear BOB STANFORTH:

Enclosed are the analytical results for sample(s) received by the laboratory on March 20, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tod Noltemeyer

Too holteneya

tod.noltemeyer@pacelabs.com Project Manager

Enclosures

cc: ALEX GOERGEN, RMT - MADISON







#### **CERTIFICATIONS**

7201.15 KEWAUNEE MARSH Project:

Pace Project No.: 4029654

Green Bay Certification IDs California Certification #: 09268CA Florida/NELAP Certification # E87948 Illinois Certification #: 200050 Kentucky Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 11887

New York Certification #: 11888 North Carolina Certification #: 503 North Dakota Certification#: R-150 South Carolina Certification #: 83006001 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 1241 Bellevue Street Green Bay, WI 54302





#### **SAMPLE SUMMARY**

Project:

7201.15 KEWAUNEE MARSH

Pace Project No.: 4029654

| Lab ID     | Sample ID     | Matrix | Date Collected  | Date Received  |
|------------|---------------|--------|-----------------|----------------|
| 4029654001 | M2A 0-2.5'    | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654002 | M2A 2.5-5.0'  | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654003 | M2A 5.0-7.5'  | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654004 | M2A 7.5-10.0' | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654005 | M2B 0-2.5'    | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654006 | M2B 2.5-5.0'  | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654007 | M2B 5.0-7.5'  | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654008 | M2B 7.5-10.0° | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654009 | M2C 0-2.5'    | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654010 | M2C 2.5-5.0'  | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654011 | M2C 5.0-7.5'  | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654012 | M2C 7.5-10.0' | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654013 | M2E 0-2.5'    | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654014 | M2E 2.5-5.0'  | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654015 | M2E 5.0-7.5'  | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654016 | M2E 7.5-10.0' | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654017 | M2F 0-2.5'    | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654018 | M2F 2.5-5.0'  | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654019 | M2F 5.0-7.5'  | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654020 | M2F 7.5-10.0' | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654021 | M5A 0-2.0'    | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654022 | M5A 2-4.0'    | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654023 | M5A 4-6.0'    | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654024 | M5A 6-8.0'    | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654025 | M5A 8-10.0'   | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654026 | M5B 0-2.0'    | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654027 | M5B 2.0-4.0'  | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654028 | M5B 4.0-6.0'  | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654029 | M5B 6.0-8.0'  | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654030 | M5B 8.0-10.0° | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654031 | M5C 0-2.5'    | Solid  | 03/17/1 0 00:00 | 03/20/10 08:43 |
| 4029654032 | M5C 2.5-5.0'  | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654033 | M5C 5.0-7.5'  | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654034 | M5C 7.5-10.0° | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654035 | M5E 0-2.0'    | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654036 | M5E 2.0-4.0'  | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |
| 4029654037 | M5E 4.0-6.0'  | Solid  | 03/17/10 00:00  | 03/20/10 08:43 |

#### REPORT OF LABORATORY ANALYSIS





#### **SAMPLE SUMMARY**

Project: 7201.15 KEWAUNEE MARSH

Pace Project No.: 4029654

| Lab ID     | Sample ID        | Matrix | Date Collected         | Date Received  |
|------------|------------------|--------|------------------------|----------------|
| 4029654038 | M5E 6.0-8.0'     | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654039 | M5E 8.0-10.0'    | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654040 | M5E 10.0-12.0'   | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654041 | M5E 12-14'       | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654042 | M5E 14-15'       | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654043 | M5F 0-2.5'       | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654044 | M5F 2.5-5.0'     | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654045 | M5F 5.0-7.5'     | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654046 | M5F 7.5-10.0'    | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654047 | M6E 0-4.0'       | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654048 | M6E 4-6.0'       | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654049 | M6E 6-8.0'       | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654050 | M7E 0-2.0'       | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654051 | M7E 2-4.0'       | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654052 | M7E 4-6.0'       | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654053 | M7E 6-8.0'       | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654054 | M8E 0-4.0'       | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654055 | M8E 4-6.0'       | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654056 | M8E 6-8.0'       | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654057 | M9F 0-4.0'       | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654058 | M9F 4.0-6.0'     | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654059 | M9F 6.0-8.0'     | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654060 | M10F 0-4.0'      | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654061 | M10F 4-6'        | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654062 | M10F 6-8.0'      | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654063 | M11F 0-2.0'      | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654064 | M11 F 2.0-4.0'   | Solid  | 03/17/10 <b>0</b> 0:00 | 03/20/10 08:43 |
| 4029654065 | M11 F 4.0-6.0'   | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654066 | M11F 6.0-8.0'    | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654067 | M11F 8.0-10.0'   | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654068 | M11 F 10.0-12.0' | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654069 | M12F 0-4.0'      | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654070 | M12F 4.0-6.0'    | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
| 4029654071 | M12F 6.0-8.0'    | Solid  | 03/17/10 00:00         | 03/20/10 08:43 |
|            |                  |        |                        |                |

#### **REPORT OF LABORATORY ANALYSIS**





Project:

7201.15 KEWAUNEE MARSH

Pace Project No.: 4029654

| Lab ID     | Sample ID     | Method           | Analysts | Analytes<br>Reported |
|------------|---------------|------------------|----------|----------------------|
| 4029654001 | M2A 0-2.5'    | EPA 6010         | DLB      | 1                    |
|            |               | ASTM D2974-87    | AME      | 1                    |
| 4029654002 | M2A 2.5-5.0'  | EPA 6010         | DLB      | 1                    |
|            |               | ASTM D2974-87    | AME      | 1                    |
| 4029654003 | M2A 5.0-7.5'  | EPA 6010         | DLB      | 1                    |
|            |               | ASTM D2974-87    | AME      | 1                    |
| 4029654004 | M2A 7.5-10.0' | EPA 6010         | DLB      | 1                    |
|            |               | ASTM D2974-87    | AME      | 1                    |
| 4029654005 | M2B 0-2.5'    | EP <b>A</b> 6010 | DLB      | 1                    |
|            |               | ASTM D2974-87    | AME      | 1                    |
| 4029654006 | M2B 2.5-5.0'  | EPA 6010         | DLB      | 1                    |
|            |               | ASTM D2974-87    | AME      | 1                    |
| 4029654007 | M2B 5.0-7.5'  | EPA6010          | DLB      | 1                    |
|            |               | ASTM D2974-87    | AME      | 1                    |
| 4029654008 | M2B 7.5-10.0' | EPA 6010         | DLB      | 1                    |
|            |               | ASTM D2974-87    | AME      | 1                    |
| 4029654009 | M2C 0-2.5'    | EPA 6010         | DLB      | 1                    |
|            |               | ASTM D2974-87    | AME      | 1                    |
| 4029654010 | M2C 2.5-5.0'  | EPA 6010         | DLB      | 1                    |
|            |               | ASTM D2974-87    | AME      | 1                    |
| 4029654011 | M2C 5.0-7.5'  | EPA 6010         | DLB      | 1                    |
|            |               | ASTM D2974-87    | AME      | 1                    |
| 4029654012 | M2C 7.5-10.0' | EPA 6010         | DLB      | 1                    |
|            |               | ASTM D2974-87    | AME      | 1                    |
| 4029654013 | M2E 0-2.5'    | EPA 6010         | DLB      | 1                    |
|            |               | ASTM D2974-87    | AME      | 1                    |
| 4029654014 | M2E 2,5-5,0'  | EPA 6010         | DLB      | 1                    |
|            |               | ASTM D2974-87    | AME      | 1                    |
| 4029654015 | M2E 5.0-7.5'  | EPA 6010         | DLB      | 1                    |
|            |               | ASTM D2974-87    | AME      | 1                    |
| 4029654016 | M2E 7.5-10.0' | EPA 6010         | DLB      | 1                    |
|            |               | ASTM D2974-87    | AME      | 1                    |
| 4029654017 | M2F 0-2.5'    | EPA 6010         | DLB      | 1                    |
|            |               | ASTM D2974-87    | AME      | 1                    |
| 4029654018 | M2F 2.5-5.0'  | EPA 6010         | DLB      | 1                    |
|            |               | ASTM D2974-87    | AME      | 1                    |
| 4029654019 | M2F 5.0-7.5'  | EPA 6010         | DLB      | 1                    |

#### REPORT OF LABORATORY ANALYSIS

Page 5 of 36





Project:

7201.15 KEWAUNEE MARSH

Pace Project No.: 4029654

| Lab ID     | Sample ID     | Method                    | Analysts | Analytes<br>Reported |
|------------|---------------|---------------------------|----------|----------------------|
|            |               | ASTM D2974-87             | AME      | 1                    |
| 4029654020 | M2F 7.5-10.0' | EPA 6010                  | DLB      | 1                    |
|            |               | ASTMD2974-87              | AME      | 1                    |
| 4029654021 | M5A 0-2.0'    | EPA 6010                  | DLB      | 1                    |
|            |               | ASTM D2974-87             | AME      | 1                    |
| 4029654022 | M5A2-4.0'     | EPA 6010                  | DLB      | 1                    |
|            |               | ASTM D2974-87             | AME      | 1                    |
| 4029654023 | M5A 4-6.0'    | EPA6010                   | DLB      | 1                    |
|            |               | ASTM D2974-87             | AME      | 1                    |
| 4029654024 | M5A 6-8.0'    | EPA6010                   | DLB      | 1                    |
|            |               | ASTM D2974-87             | AME      | 1                    |
| 4029654025 | M5A 8-10.0'   | EPA6010                   | DLB      | 1                    |
|            |               | ASTM D2974-87             | AME      | 1                    |
| 4029654026 | M5B 0-2.0'    | EPA 6010                  | DLB      | 1                    |
|            |               | ASTM D2974-87             | AME      | 1                    |
| 4029654027 | M5B 2.0-4.0'  | EPA 6010                  | DLB      | 1                    |
|            |               | ASTM D2974-87             | AME      | 1                    |
| 4029654028 | M5B 4.0-6.0'  | EPA 6010                  | DLB      | 1                    |
|            |               | ASTM D2974-87             | AME      | 1                    |
| 4029654029 | M5B 6.0-8.0'  | EPA 6010                  | DLB      | 1                    |
|            |               | ASTM D2974-87             | AME      | 1                    |
| 4029654030 | M5B 8.0-10.0' | EPA 6 0 1 0               | DLB      | 1                    |
|            |               | ASTM D2974-87             | AME      | 1                    |
| 4029654031 | M5C 0-2.5'    | EPA <b>6</b> 0 <b>1</b> 0 | DLB      | 1                    |
|            |               | ASTM D2974-87             | AME      | 1                    |
| 4029654032 | M5C 2.5-5.0'  | EPA6010                   | DLB      | 1                    |
|            |               | ASTM D2974-87             | AME      | 1                    |
| 4029654033 | M5C 5.0-7.5'  | EPA6010                   | DLB      | 1                    |
|            |               | ASTM D2974-87             | AME      | 1                    |
| 4029654034 | M5C 7.5-10.0' | EPA6010                   | DLB      | 1                    |
|            |               | ASTM D2974-87             | AME      | 1                    |
| 4029654035 | M5E 0-2.0'    | EPA6010                   | DLB      | 1                    |
|            |               | ASTM D2974-87             | AME      | 1                    |
| 4029654036 | M5E 2.0-4.0'  | EPA6010                   | DLB      | 1                    |
|            |               | ASTM D2974-87             | AME      | 1                    |
| 4029654037 | M5E 4.0-6.0'  | EPA 6010                  | DLB      | 1                    |
|            |               | ASTM D2974-87             | AME      | 1                    |

#### **REPORT OF LABORATORY ANALYSIS**

Page 6 of 36





Project:

7201.15 KEWAUNEE MARSH

Pace Project No.: 4029654

| Lab ID     | Sample ID      | Method                 | Analysts | Analytes<br>Reported |
|------------|----------------|------------------------|----------|----------------------|
| 4029654038 | M5E 6.0-8.0'   | EPA 6010               | DLB      | 1                    |
|            |                | ASTM D2974-87          | AME      | 1                    |
| 4029654039 | M5E 8.0-10.0'  | EPA 6010               | DLB      | 1                    |
|            |                | ASTM D2974-87          | AME      | 1                    |
| 4029654040 | M5E 10.0-12.0' | EPA 6010               | DLB      | 1                    |
|            |                | ASTM D2974-87          | AME      | 1                    |
| 4029654041 | M5E 12-14'     | EPA 6010               | DLB      | 1                    |
|            |                | ASTM D2974-87          | AME      | 1                    |
| 4029654042 | M5E 14-15'     | EPA 6010               | DLB      | 1                    |
|            |                | ASTM D2974-87          | AME      | 1                    |
| 4029654043 | M5F 0-2.5'     | EPA 6010               | DLB      | 1                    |
|            |                | ASTM D297 <b>4</b> -87 | AME      | 1                    |
| 4029654044 | M5F 2.5-5.0'   | EPA 6010               | DLB      | 1                    |
|            |                | ASTM D2974-87          | AME      | 1                    |
| 4029654045 | M5F 5.0-7.5'   | EPA 6010               | DLB      | 1                    |
|            |                | ASTM D297 <b>4</b> -87 | AME      | 1                    |
| 4029654046 | M5F 7.5-10.0'  | EPA6010                | DLB      | 1                    |
|            |                | ASTM D2974-87          | AME      | 1                    |
| 4029654047 | M6E 0.4.0'     | EPA 6010               | DLB      | 1                    |
|            |                | ASTM D2974-87          | AME      | 1                    |
| 4029654048 | M6E 4-6.0'     | EPA 6010               | DLB      | 1                    |
|            |                | ASTM D2974-87          | AME      | 1                    |
| 4029654049 | M6E 6-8.0'     | EPA 6010               | DLB      | 1                    |
|            |                | ASTM D2974-87          | AME      | 1                    |
| 4029654050 | M7E 0-2.0'     | EPA 6010               | DLB      | 1                    |
|            |                | ASTM D2974-87          | AME      | 1                    |
| 4029654051 | M7E 2·4.0'     | EPA 6010               | DLB      | 1                    |
|            |                | ASTM D2974-87          | AME      | 1                    |
| 4029654052 | M7E 4-6.0'     | EPA6010                | DLB      | 1                    |
|            |                | ASTM D2974-87          | AME      | 1                    |
| 4029654053 | M7E 6-8.0'     | EPA 6010               | DLB      | 1                    |
|            |                | ASTM D2974-87          | AME      | 1                    |
| 4029654054 | M8E 0-4.0'     | EPA 6010               | DI_I3    | 1                    |
|            |                | ASTM D2974-87          | AME      | 1                    |
| 4029654055 | M8E 4-6.0'     | EPA 6010               | DLB      | 1                    |
|            |                | ASTM D2974-87          | AME      | 1                    |
| 4029654056 | M8E 6-8.0'     | EPA 6010               | DLB      | 1                    |

#### REPORT OF LABORATORY ANALYSIS

Page 7 of 36





Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

| Lab ID     | Sample ID       | Method                 | Analysts | Analytes<br>Reported |
|------------|-----------------|------------------------|----------|----------------------|
|            |                 | ASTM D2974-87          | AME      | 1                    |
| 4029654057 | M9F 0-4.0'      | EPA 6 0 1 0            | DLB      | 1                    |
|            |                 | ASTM D2974-87          | AME      | 1                    |
| 4029654058 | M9F 4.0-6.0'    | EPA 6010               | DLB      | 1                    |
|            |                 | ASTM D2974-87          | AME      | 1                    |
| 4029654059 | M9F 6.0-8.0"    | EPA 6010               | DLB      | 1                    |
|            |                 | ASTM D2974-87          | AME      | 1                    |
| 4029654060 | M10F 0-4.0'     | EPA 6010               | DLB      | 1                    |
|            |                 | ASTM D2974-87          | AME      | 1                    |
| 4029654061 | M10F 4-6'       | EPA 6010               | DLB      | 1                    |
|            |                 | ASTM D2974-87          | AME      | 1                    |
| 4029654062 | M10F 6-8.0'     | EPA 6010               | DLB      | 1                    |
|            |                 | ASTM D2974-87          | AME      | 1                    |
| 4029654063 | M11F 0-2.0'     | EPA 6010               | DLB      | 1                    |
|            |                 | ASTM D2974-87          | AME      | 1                    |
| 4029654064 | M11F 2.0-4.0'   | EPA 6010               | DLB      | 1                    |
|            |                 | ASTM D2 <b>97</b> 4-87 | AME      | 1                    |
| 4029654065 | M11F 4.0-6.0'   | EPA 6010               | DLB      | 1                    |
|            |                 | ASTM D2974-87          | AME      | 1                    |
| 4029654066 | M11F 6.0-8.0'   | EPA 6010               | DLB      | 1                    |
|            |                 | ASTM D2974-87          | AME      | 1                    |
| 4029654067 | M11F 8.0-10.0'  | EPA 6010               | DLB      | 1                    |
|            |                 | ASTM D2974-87          | AME      | 1                    |
| 4029654068 | M11F 10.0-12.0' | EPA 6010               | DLB      | 1                    |
|            |                 | ASTM D2974-87          | AME      | 1                    |
| 4029654069 | M12F 0-4.0'     | EPA 6010               | DLB      | 1                    |
|            |                 | ASTM D2974-87          | AME      | 1                    |
| 4029654070 | M12F 4.0-6.0'   | EPA 6010               | DLB      | 1                    |
|            |                 | ASTM D2974-87          | AME      | 1                    |
| 4029654071 | M12F 6.0-8.0'   | EPA 6010               | DLB      | 1                    |
|            |                 | ASTM D2974-87          | AME      | 1                    |
|            |                 |                        |          |                      |

#### REPORT OF LABORATORY ANALYSIS





Project: 7201.15 KEWAUNEE MARSH

Pace Project No.: 4029654

Sample: M2A 0-2.5' Lab ID: 4029654001 Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid

| Results reported on a "dry-we                       |           | 4029654001                  | Collecte   | ea: 03/1//1 | 0 00:00  | Received: U3   | 720/10 08:43 M | atrix: Solid |      |
|-----------------------------------------------------|-----------|-----------------------------|------------|-------------|----------|----------------|----------------|--------------|------|
| Parameters                                          | Results   | Units                       | LOQ        | LOD         | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                        | Analytica | I Method <sup>.</sup> EPA   | 6010 Prepa | ration Meth | nod: EP  | A 3050         |                |              |      |
| Arsenic                                             | 13.6      | mg/kg                       | 3.5        | 0.20        | 1        | 03/23/10 11:40 | 03/23/10 17:50 | 7440-38-2    |      |
| Percent Moisture                                    | Analytica | I Method: ASTM              | и D2974-87 |             |          |                |                |              |      |
| Percent Moisture                                    | 43.9      | %                           | 0.10       | 0.10        | 1        |                | 03/25/10 08:15 |              |      |
| Sample: M2A 2.5-5.0' Results reported on a "dry-we  |           | 4029654002                  | Collecte   | d: 03/17/1  | 0 00:00  | Received: 03   | /20/10 08:43 M | atrix: Solid |      |
| Parameters                                          | Results   | Units                       | LOQ        | LOD         | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                        | Analytica | ıl Method <sup>.</sup> EPA  |            | ration Meth | nod: EP/ | A 3050         |                |              |      |
| Arsenic                                             | 107       | mg/kg                       | 5.0        | 0.29        | 1        | 03/23/10 11:40 | 03/23/10 17:54 | 7440-38-2    |      |
| Percent Moisture                                    | Analytica | ıl Method <sup>.</sup> ASTN | и D2974-87 |             |          |                |                |              |      |
| Percent Moisture                                    | 63.1      | %                           | 0.10       | 0.10        | 1        |                | 03/25/10 08:15 |              |      |
| Sample: M2 A 5.0-7.5' Results reported on a "dry-we |           | 4029654003                  | Collecte   | d: 03/17/1  | 0 00:00  | Received: 03/  | /20/10 08:43 M | atrix: Solid |      |
| Parameters                                          | Results   | Units                       | LOQ        | LOD         | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                        | Analytica | I Method: EPA               | 6010 Prepa | ration Meth | od: EP   | A 3050         |                |              |      |
| Arsenic                                             | 67.0      | mg/kg                       | 9.1        | 0.52        | 1        | 03/23/10 11:40 | 03/23/10 17:58 | 7440-38-2    |      |
| Percent Moisture                                    | Analytica | II Method <sup>.</sup> ASTN | и D2974-87 |             |          |                |                |              |      |
| Percent Moisture                                    | 79.5      | %                           | 0.10       | 0.10        | 1        |                | 03/25/10 08:15 |              |      |
| Sample: M2A7.5-10.0' Results reported on a "dry-we  |           | 4029654004                  | Collecte   | d: 03/17/1  | 0 00:00  | Received: 03/  | 20/10 08:43 M  | atrix: Solid |      |
| Parameters                                          | Results   | Units                       | LOQ        | LOD         | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                        | Analytica | l Method: EPA               | 6010 Prepa | ration Meth | od: EPA  | A 3050         |                |              |      |
| Arsenic                                             | 63.9 1    | mg/kg                       | 5.7        | 0.33        | 1        | 03/23/10 11:40 | 03/23/10 18:02 | 7440-38-2    |      |
| Percent Moisture                                    | Analytica | l Melhod: ASTN              | 1 D2974-87 |             |          |                |                |              |      |
| Percent Moisture                                    | 66.5      | %                           | 0.10       | 0.10        | 1        |                | 03/25/10 08:15 |              |      |

Date: 03/31/2010 02:49 PM

#### REPORT OF LABORATORY ANALYSIS

Page 9 of 36







Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

Sample: M2B 0-2.5'

Lab ID: 4029654005

Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid

| Results reported on a "dry-we                      | eight" basis |                  |                     |              |          |                |                 |              |      |
|----------------------------------------------------|--------------|------------------|---------------------|--------------|----------|----------------|-----------------|--------------|------|
| Parameters                                         | Results      | Units            | LOQ                 | LOD          | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                       | Analytica    | ıl Method: EPA ( | 6010 Prepa          | aration Meth | nod: EPA | A 3050         |                 |              |      |
| Arsenic                                            | 4500 (       | mg/kg            | 3.2                 | 0.19         | 1        | 03/23/10 11:40 | 03/23/10 18:06  | 7440-38-2    |      |
| Percent Moisture                                   | Analytica    | I Method: ASTN   | л D2974 <b>-</b> 87 |              |          |                |                 |              |      |
| Percent Moisture                                   | 41.4         | %                | 0.10                | 0.10         | 1        |                | 03/25/10 08:15  |              |      |
| Sample: M2B 2.5-5.0' Results reported on a "dry-we |              | 4029654006       | Collecte            | ed: 03/17/1  | 0 00:00  | Received: 03/  | /20/10 08:43 Ma | atrix: Solid |      |
| Parameters                                         | Results      | Units            | LOQ                 | LOD          | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                       | Analytica    | I Method: EPA    | 6010 Prepa          | aration Meth | nod: EPA | ₹ 3050         |                 |              |      |
| Arsenic                                            | 13200 1      | mg/kg            | 8.7                 | 0.50         | 1        | 03/23/10 11:40 | 03/23/10 18:10  | 7440-38-2    |      |
| Percent Moisture                                   | Analytica    | II Method: ASTN  | 1 D29 <b>7</b> 4-87 |              |          |                |                 |              |      |
| Percent Moisture                                   | 79.4         | %                | 0.10                | 0.10         | 1        |                | 03/25/10 08:15  |              |      |
| Sample: M2B 5.0-7.5' Results reported on a "dry-wo |              | 4029654007       | Collecte            | ed: 03/17/1  | 0 00:00  | Received: 03/  | /20/10 08:43 Ma | atrix: Solid |      |
| Parameters                                         | Results      | Units            | LOQ                 | LOD          | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                       | Analytica    | l Method: EPA 6  | 6010 Prepa          | aration Meth | od: EPA  | \3050          |                 |              |      |
| Arsenic                                            | 834 1        | mg/kg            | 3.5                 | 0.20         | 1        | 03/23/10 11:40 | 03/23/10 18:14  | 7440-38-2    |      |
| Percent Moisture                                   | Analytica    | I Method: ASTN   | 1 D2974-87          |              |          |                |                 |              |      |
| Percent Moisture                                   | 51.4 9       | %                | 0.10                | 0.10         | 1        |                | 03/25/10 08:15  |              |      |
| Sample: M2B 7.5-10.0'                              | Lab ID:      | 4029654008       | Collecte            | ed: 03/17/10 | 0 00:00  | Received: 03/  | 20/10 08:43 Ma  | atrix: Solid |      |

Date: 03/31/2010 02:49PM

**6010 MET ICP** 

**Percent Moisture** 

Percent Moisture

Arsenic

Results reported on a "dry-weight" basis

Results

2100 mg/kg

22.8 %

Units

Analytical Method: ASTM D2974-87

LOQ

Analytical Method: EPA 6010 Preparation Method: EPA 3050

0.10

Parameters

#### REPORT OF LABORATORY ANALYSIS

Page 10 of 36



LOD

0.13

0.10

DF

Prepared

Analyzed

03/25/10 08:16

CAS No.

Qual



Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

Sample: M2C 0-2.5'

Lab ID: 4029654009

Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid

Results reported on a "dry-weight" basis

| Parameters                                             | Results        | Units          | LOQ                   | LOD        | DF      | Prepared       | Analyzed<br>-  | CAS No.      | Qual |
|--------------------------------------------------------|----------------|----------------|-----------------------|------------|---------|----------------|----------------|--------------|------|
| 6010 MET ICP                                           | Analytica      | Method: EPA    | 6010 Prepara          | ation Meth | od: EP  | A 3050         |                |              |      |
| Arsenic                                                | <b>1510</b> r  | ng/kg          | 3.2                   | 0.19       | 1       | 03/23/10 11:40 | 03/23/10 18:22 | 7440-38-2    |      |
| Percent Moisture                                       | Analytica      | I Method: ASTN | л D2974-87            |            |         |                |                |              |      |
| Percent Moisture                                       | 47.0           | %              | 0.10                  | 0.10       | 1       |                | 03/25/10 08:16 |              |      |
| Sample: M2C 2.5-5.0'                                   | Lab ID:        | 4029654010     | Collected             | : 03/17/1  | 0 00:00 | Received: 03/  | 20/10 08:43 Ma | ıtrix: Solid |      |
| Results reported on a "dry-w                           | eight" basis   |                |                       |            |         |                |                |              |      |
| Parameters                                             | Results        | Units          | LOQ                   | LOD        | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                           | Analytica      | Method: EPA    | 6010 Pre <b>p</b> ara | ation Meth | od: EPA | A 3050         |                |              |      |
| Arsenic                                                | <b>4510</b> r  | ng/kg          | 2.9                   | 0.17       | 1       | 03/23/10 11:40 | 03/23/10 18:26 | 7440-38-2    |      |
| Percent Moisture                                       | Analytical     | Method: ASTN   | 1 D2974-87            |            |         |                |                |              |      |
| Percent Moisture                                       | 38.4 %         | <b>%</b>       | 0.10                  | 0.10       | 1       |                | 03/25/10 08:16 |              |      |
| Sample: M2C 5,0-7.5' Results reported on a "dry-w      |                | 4029654011     | Collected             | : 03/17/1  | 0 00:00 | Received: 03/  | 20/10 08:43 Ma | ıtrix: Solid |      |
| Parameters                                             | Results        | Units          | LOQ                   | LOD        | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                           | Analytical     | Method: EPA 6  | 3010 Prepara          | ation Meth | od: EPA | A3050          |                |              |      |
| Arsenic                                                | <b>11400</b> r | ng/kg          | 7.2                   | 0.42       | 1       | 03/23/10 11:40 | 03/23/10 18:38 | 7440-38-2    |      |
| Percent Moisture                                       | Analytical     | Method: ASTN   | 1 D2974-87            |            |         |                |                |              |      |
| Percent Moisture                                       | 74.4 %         | 6              | 0.10                  | 0.10       | 1       |                | 03/25/10 08:16 |              |      |
| Sample: M2C 7.5-10.0'<br>Results reported on a "dry-wo |                | 4029654012     | Collected:            | 03/17/10   | 00:00   | Received: 03/  | 20/10 08:43 Ma | trix: Solid  |      |
| Parameters                                             | Results        | Units          | LOQ                   | LOD        | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                           | Analytical     | Method: EPA 6  | 6010 Prepara          | ntion Meth | od: EPA | 3050           |                |              |      |
| Arsenic                                                | 9950 n         | ng/kg          | 9.9                   | 0.57       | 1       | 03/23/10 11:40 | 03/23/10 18:42 | 7440-38-2    |      |
|                                                        |                |                |                       |            |         |                |                |              |      |

Date: 03/31/2010 02:49 PM

Percent Moisture

### REPORT OF LABORATORY ANALYSIS

0.10

0.10

82.3 %

Page 11 of 36







Project:

7201.15 KEWAUNEE MARSH

Pace Project No.: 4029654

Sample: M2E 0-2.5'

Lab ID: 4029654013

Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid

Results reported on a "dry-weight" basis

|                                                        |            |               | 1.00         |            | D.F.    |                |                 | 0.0.1        |      |
|--------------------------------------------------------|------------|---------------|--------------|------------|---------|----------------|-----------------|--------------|------|
| Parameters                                             | Results    | Units         |              | LOD        | DF      | Prepared       | Analyzed<br>    | CAS No.      | Qual |
| 6010 MET ICP                                           | Analytica  | Method: EPA   | 6010 Prepara | ation Meth | od: EPA | A 3050         |                 |              |      |
| Arsenic                                                | 734 r      | ng/kg         | 3.8          | 0.22       | 1       | 03/23/10 11:40 | 03/23/10 18:46  | 7440-38-2    |      |
| Percent Moisture                                       | Analytica  | Method: ASTN  | 1 D2974-87   |            |         |                |                 |              |      |
| Percent Moisture                                       | 48.3 9     | <b>%</b>      | 0.10         | 0.10       | 1       |                | 03/25/10 08:16  |              |      |
| Sample: M2E 2.5-5.0' Results reported on a "dry-wo     |            | 4029654014    | Collected    | : 03/17/1  | 0 00:00 | Received: 03/  | /20/10 08:43 Ma | atrix: Solid |      |
| Parameters                                             | Results    | Units         | LOQ _        | LOD        | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 METICP                                            | Analytica  | Method: EPA   | 6010 Prepara | ation Meth | od: EPA | \ 3050         |                 |              |      |
| Arsenic                                                | 1720 r     | ng/kg         | 4.5          | 0.26       | 1       | 03/23/10 11:40 | 03/23/10 18:50  | 7440-38-2    |      |
| Percent Moisture                                       | Analytica  | Method: ASTN  | и D2974-87   |            |         |                |                 |              |      |
| Percent Moisture                                       | 59.6 %     | %             | 0.10         | 0.10       | 1       |                | 03/25/10 08:16  |              |      |
| Sample: M2E 5.0-7.5' Results reported on a "dry-we     |            | 4029654015    | Collected    | : 03/17/1  | 0 00:00 | Received: 03/  | 20/10 08:43 Ma  | ıtrix: Solid |      |
| Parameters                                             | Results    | Units         | LOQ          | LOD        | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                           | Analytical | Method: EPA 6 | 6010 Prepara | ation Meth | od: EPA | 3050           |                 |              |      |
| Arsenic                                                | 906 n      | ng/kg         | 3.9          | 0.22       | 1       | 03/23/10 11:40 | 03/23/10 18:54  | 7440-38-2    |      |
| Percent Moisture                                       | Analytical | Method: ASTN  | 1 D2974-87   |            |         |                |                 |              |      |
| Percent Moisture                                       | 55.0 %     | 6             | 0.10         | 0.10       | 1       |                | 03/25/10 08:16  |              |      |
| Sample: M2E 7.5-10.0'<br>Results reported on a "dry-we |            | 4029654016    | Collected    | : 03/17/10 | 00:00   | Received: 03/  | 20/10 08:43 Ma  | trix: Solid  |      |
| Parameters                                             | Results    | Units         | LOQ          | LOD        | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                           | Analytical | Method: EPA 6 | 6010 Prepara | ation Meth | od: EPA | 3050           |                 |              |      |
| Arsenic                                                | 1400 n     | ng/kg         | 8.2          | 0.48       | 1       | 03/23/10 11:40 | 03/23/10 18:58  | 7440-38-2    |      |
| Percent Moisture                                       | Analytical | Method: ASTN  | 1 D2974-87   |            |         |                |                 |              |      |
| Percent Moisture                                       | 77.4 %     | 6             | 0.10         | 0.10       | 1       |                | 03/25/10 08:16  |              |      |

Date: 03/31/2010 02:49 PM

#### REPORT OF LABORATORY ANALYSIS

Page 12 of 36







Project-

7201.15 KEWAUNEE MARSH

Pace Project No.: 4029654

Sample: M2F 0-2.5'

Lab ID: 4029654017

Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid

| Results reported on a "dry-we                      | eight" basis  |                |              |            |                  |                |                 |              |      |
|----------------------------------------------------|---------------|----------------|--------------|------------|------------------|----------------|-----------------|--------------|------|
| Parameters                                         | Results       | Units          | LOQ _        | LOD        | DF               | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                       | Analytica     | l Method: EPA  | 6010 Prepara | ation Meth | nod: EPA         | 3050           |                 |              |      |
| Arsenic                                            | <b>109</b> r  | mg/kg          | 4.3          | 0.25       | 1                | 03/23/10 15:15 | 03/25/10 00:48  | 7440-38-2    | M0   |
| Percent Moisture                                   | Analytica     | I Method: ASTN | M D2974-87   |            |                  |                |                 |              |      |
| Percent Moisture                                   | 53.6          | %              | 0.10         | 0.10       | 1                |                | 03/25/10 08:16  |              |      |
| Sample: M2F 2.5-5.0'                               | Lab ID:       | 4029654018     | Collected    | : 03/17/1  | 0 00:00          | Received: 03/  | /20/10 08:43 Ma | atrix: Solid |      |
| Results reported on a "dry-we                      | eight" basis  |                |              |            |                  |                |                 |              |      |
| Parameters                                         | Results       | Units          | LOQ          | LOD        | DF               | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                       | Analytica     | l Method: EPA  | 6010 Prepara | ation Meth | nod: EPA         | A3050          |                 |              |      |
| Arsenic                                            | 664 r         | ng/kg          | 8.9          | 0.51       | 1                | 03/23/10 15:15 | 03/25/10 01:07  | 7440-38-2    |      |
| Percent Moisture                                   | Analytical    | Method: ASTN   | M D2974-87   |            |                  |                |                 |              |      |
| Percent Moisture                                   | 78.7 9        | %              | 0.10         | 0.10       | 1                |                | 03/25/10 08:16  |              |      |
| Sample: M2F 5.0-7.5' Results reported on a "dry-wa |               | 4029654019     | Collected    | : 03/17/1  | 0 00:00          | Received: 03/  | /20/10 08:43 Ma | atrix: Solid |      |
| Parameters                                         | Results       | Units          | LOQ          | LOD        | DF               | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                       | Analytica     | I Method: EPA  | 6010 Prepara | ation Meth | nod: EP          | \3050          |                 |              |      |
| Arsenic                                            | 407 r         | ng/kg          | 7.5          | 0.43       | 1                | 03/23/10 15:15 | 03/25/10 01:11  | 7440-38-2    |      |
| Percent Moisture                                   | Analytica     | I Method: ASTN | M D2974-87   |            |                  |                |                 |              |      |
| Percent Moisture                                   | 77.2 9        | %              | 0.10         | 0.10       | 1                |                | 03/25/10 08:17  |              |      |
| Sample: M2F 7.5-10.0'                              | Lab ID:       | 4029654020     | Collected    | 03/17/1    | 0 00:00          | Received: 03/  | /20/10 08:43 Ma | atrix: Solid |      |
| Results reported on a "dry-we                      | eight" basis  |                |              |            |                  |                |                 |              |      |
| Parameters                                         | Results       | Units          | LOQ          | LOD        | DF               | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                       | Analytica     | I Method: EPA  | 6010 Prepara | ation Meth | nod: <b>E</b> PA | A 3050         |                 |              |      |
| Arsenic                                            | <b>54.7</b> r | mg/kg          | 8.2          | 0.48       | 1                | 03/23/10 15:15 | 03/25/10 01:15  | 7440-38-2    |      |
| Percent Moisture                                   | Analytica     | I Method: AST  | M D2974-87   |            |                  |                |                 |              |      |

Date: 03/31/2010 02:49 PM

Percent Moisture

#### REPORT OF LABORATORY ANALYSIS

0.10

0.10

78.1 %

Page 13 of 36







Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

Sample: M5A 0-2.0'

Lab ID: 4029654021

76.4 %

Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid

| Results reported on a "dry-w                    | eight" basis |                |                        |            |          |                |                 |              |      |
|-------------------------------------------------|--------------|----------------|------------------------|------------|----------|----------------|-----------------|--------------|------|
| Parameters                                      | Results      | Units          | LOQ                    | LOD        | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytica    | l Method: EPA  | 6010 Prepara           | ation Meth | nod: EPA | A 3050         |                 |              |      |
| Arsenic                                         | 20.8 1       | ng/kg          | 3.4                    | 0.19       | 1        | 03/23/10 15:15 | 03/25/10 01:19  | 7440-38-2    |      |
| Percent Moisture                                | Analytica    | Method: ASTM   | M D2974-87             |            |          |                |                 |              |      |
| Percent Moisture                                | 48.8         | %              | 0.10                   | 0.10       | 1        |                | 03/25/10 08:17  |              |      |
| Sample: M5A 2-4.0'                              |              | 4029654022     | Collected              | : 03/17/1  | 0 00:00  | Received: 03/  | /20/10 08:43 Ma | atrix: Solid |      |
| Results reported on a "dry-w                    | eight" basis |                |                        |            |          |                |                 |              |      |
| Parameters                                      | Results      | Units          | LOQ                    | LOD        | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytica    | l Method: EPA  | 6010 Prepara           | ation Meth | nod: EP/ | A3050          |                 |              |      |
| Arsenic                                         | 1090 r       | ng/kg          | 6.5                    | 0.38       | 1        | 03/23/10 15:15 | 03/25/10 01:23  | 7440-38-2    |      |
| Percent Moisture                                | Analytica    | l Method: ASTN | м D2974-87             |            |          |                |                 |              |      |
| Percent Moisture                                | 69.7         | %              | 0.10                   | 0.10       | 1        |                | 03/25/10 08:18  |              |      |
| Sample: M5A 4-6.0' Results reported on a "dry-w |              | 4029654023     | Collected              | : 03/17/1  | 0 00:00  | Received: 03/  | /20/10 08:43 Ma | atrix: Solid |      |
| Parameters                                      | Results      | Units          | LOQ                    | LOD        | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytica    | Method: EPA    | 6010 Prepara           | ation Meth | nod: EP  | A 3050         |                 |              |      |
| Arsenic                                         | 3000 r       |                | 11.0                   | 0.63       | 1        |                | 03/25/10 01:27  | 7440-38-2    |      |
| Percent Moisture                                |              | I Method: ASTN | м D2974-87             |            |          |                |                 |              |      |
| Percent Moisture                                | 82.5         |                | 0.10                   | 0.10       | 1        |                | 03/25/10 08:18  |              |      |
| Sample: M5A 6-8.0'                              | Lab ID:      | 4029654024     | Collected              | 03/17/1    | 0 00:00  | Received: 03/  | /20/10 08:43 Ma | atrix: Solid |      |
| Results reported on a "dry-we                   | eight" basis |                |                        |            |          |                |                 |              |      |
| Parameters                                      | Results      | Units          | LOQ                    | LOD        | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytical   | Method: EPA    | ——————<br>6010 Prepara | ation Meth | nod: EPA | A 3050         |                 |              |      |
| Arsenic                                         | <b>590</b> r | ng/kg          | 8.4                    | 0.48       | 1        | 03/23/10 15:15 | 03/25/10 01:31  | 7440-38-2    |      |
| Percent Moisture                                | Analytica    | Method: ASTM   | м D2974-87             |            |          |                |                 |              |      |
|                                                 | 70.4         | .,             | 0.40                   | 0.40       |          |                | 00/05/40 00 40  |              |      |

Date: 03/31/2010 02:49 PM

Percent Moisture

#### REPORT OF LABORATORY ANALYSIS

0.10

0.10

Page 14 of 36



Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

Sample: M5A 8-10.0'

Lab ID: 4029654025

Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid

| Parameters                                        | Results       | Units          | LOQ          | LOD          | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
|---------------------------------------------------|---------------|----------------|--------------|--------------|-----------------|----------------|----------------|--------------|------|
| 6010 MET ICP                                      | Analytica     | I Method: EPA  | 6010 Prepara | ation Meth   | od: EPA         | A 3050         |                |              |      |
| Arsenic                                           | <b>3.9J</b> r | ng/kg          | 5.0          | 0.29         | 1               | 03/23/10 15:15 | 03/25/10 01:35 | 7440-38-2    |      |
| Percent Moisture                                  | Analytica     | I Method: ASTN | л D2974-87   |              |                 |                |                |              |      |
| Percent Moisture                                  | 61.9          | %              | 0.10         | 0.10         | 1               |                | 03/25/10 08:18 |              |      |
| Sample: M5B 0-2.0'                                | Lab ID:       | 4029654026     | Collected    | : 03/17/1    | 0 00:00         | Received: 03/  | 20/10 08:43 Ma | atrix: Solid |      |
| Results reported on a "dry-w                      | eight" basis  |                |              |              |                 |                |                |              |      |
| Parameters                                        | Results       | Units          | LOQ          | LOD          | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                      | Analytica     | l Method: EPA6 | 6010 Prepara | ation Meth   | od: EPA         | N3050          |                |              |      |
| Arsenic                                           | <b>1460</b> r | ng/kg          | 10           | 0.58         | 1               | 03/23/10 15:15 | 03/25/10 01:39 | 7440-38-2    |      |
| Percent Moisture                                  | Analytica     | I Method: ASTN | 1 D2974-87   |              |                 |                |                |              |      |
| Percent Moisture                                  | 82.0 %        | %              | 0.10         | <b>0</b> .10 | 1               |                | 03/25/10 08:18 |              |      |
| Sample: M5B 2.0-4.0' Results reported on a "dry-w |               | 4029654027     | Collected    | : 03/17/1    | 0 00:00         | Received: 03/  | 20/10 08:43 Ma | atrix: Solid |      |
| Parameters                                        | Results       | Units          | LOQ          | LOD          | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                      | Analytica     | Method: EPA6   | 3010 Prepara | ation Meth   | od: <b>E</b> PA | 3050           |                |              |      |
| Arsenic                                           | 400 r         | ng/kg          | 3.6          | 0.21         | 1               | 03/23/10 15:15 | 03/25/10 01:44 | 7440-38-2    |      |
| Percent Moisture                                  | Analytica     | Method: ASTN   | 1 D2974-87   |              |                 |                |                |              |      |
| Percent Moisture                                  | 50.5          | <b>%</b>       | 0.10         | 0.10         | 1               |                | 03/25/10 08:19 |              |      |
| Sample: M5B 4.0-6.0'                              | Lab ID:       | 4029654028     | Collected    | : 03/17/1    | 0 00:00         | Received: 03/  | 20/10 08:43 Ma | atrix: Solid |      |
| Results reported on a "dry-w                      | eight" basis  |                |              |              |                 |                |                |              |      |
| Parameters                                        | Results       | Units          | LOQ          | LOD          | DF              | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010 MET ICP                                      | Analytical    | Method: EPA 6  | 6010 Prepara | ation Meth   | od: EPA         | <br>\3050      |                |              |      |
| Arsenic                                           | <b>4350</b> r | ng/kg          | 10.1         | 0.58         | 1               | 03/23/10 15:15 | 03/25/10 01:55 | 7440-38-2    |      |
|                                                   |               |                |              |              |                 |                |                |              |      |

Date: 03/31/2010 02:49 PM

Percent Moisture

#### REPORT OF LABORATORY ANALYSIS

0.10

82.0 %

Page 15 of 36

03/25/10 08:19



0.10





Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

Sample: M5B 6.0-8.0

Lab ID: 4029654029

Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid

| Results reported on a "dry-w                    | eight" basis |                 |              |            |                 |                |                 |              |      |
|-------------------------------------------------|--------------|-----------------|--------------|------------|-----------------|----------------|-----------------|--------------|------|
| Parameters                                      | Results      | Units           | LOQ          | LOD        | DF              | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytica    | l Method: EPA 6 | 6010 Prepara | ation Meth | od: EPA         | 43050          |                 |              |      |
| Arsenic                                         | 4300 1       | ng/kg           | 12.3         | 0.71       | 1               | 03/23/10 15:15 | 03/25/10 01:59  | 7440-38-2    |      |
| Percent Moisture                                | Analytica    | I Method: ASTN  | л D2974-87   |            |                 |                |                 |              |      |
| Percent Moisture                                | 84.1         | %               | 0.10         | 0.10       | 1               |                | 03/25/10 08:19  |              |      |
| Sample: M5B 8.0-10.0'                           | Lab ID:      | 4029654030      | Collected    | : 03/17/1  | 0 00:00         | Received: 03/  | /20/10 08:43 Ma | atrix: Solid |      |
| Results reported on a "dry-w                    | eight" basis |                 |              |            |                 |                |                 |              |      |
| Parameters                                      | Results      | Units           | LOQ          | LOD        | DF              | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytica    | l Method: EPA ( | 6010 Prepara | ation Meth | od: EP <i>F</i> | A 3050         |                 |              |      |
| Arsenic                                         | 91.6 r       | mg/kg           | 5.5          | 0.32       | 1               | 03/23/10 15:15 | 03/25/10 02:03  | 7440-38-2    |      |
| Percent Moisture                                | Analytica    | I Method: ASTN  | л D2974-87   |            |                 |                |                 |              |      |
| Percent Moisture                                | 67.5         | %               | 0.10         | 0.10       | 1               |                | 03/25/10 08:19  |              |      |
| Sample: M5C 0-2.5' Results reported on a "dry-w |              | 4029654031      | Collected    | : 03/17/1  | 00:00           | Received: 03/  | 20/10 08:43 Ma  | atrix: Solid |      |
| Parameters                                      | Results      | Units           | LOQ          | LOD        | DF              | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytica    | Method: EPA6    | 6010 Prepara | ation Meth | od: EPA         | \3 <b>0</b> 50 |                 |              |      |
| Arsenic                                         | 3070 r       | ng/kg           | 8.0          | 0.46       | 1               | 03/23/10 15:15 | 03/25/10 02:07  | 7440-38-2    |      |
| Percent Moisture                                | Analytica    | I Melhod: ASTN  | и D2974-87   |            |                 |                |                 |              |      |
| Percent Moisture                                | 75.2 9       | <b>%</b>        | 0.10         | 0.10       | 1               |                | 03/25/10 08:19  |              |      |
| Sample: M5C 2,5-5,0'                            |              | 4029654032      | Collected    | : 03/17/1  | 0 00:00         | Received: 03/  | 20/10 08:43 Ma  | atrix: Solid |      |
| Results reported on a "dry-w                    | eigni basis  |                 |              |            |                 |                |                 |              |      |
| Parameters                                      | Results      | Units           | LOQ _        | LOD        | DF              | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytica    | Method: EPA 6   | 6010 Prepara | ation Meth | od: EPA         | 3050           |                 |              |      |
| Arsenic                                         | 5060 r       | ng/kg           | 13.3         | 0.77       | 1               | 03/23/10 15:15 | 03/25/10 02:11  | 7440-38-2    |      |
| Percent Moisture                                | Analytica    | Method: ASTM    | 1 D2974-87   |            |                 |                |                 |              |      |
| Percent Moisture                                | 85.2 %       | 6               | 0.10         | 0.10       | 1               |                | 03/25/10 08:19  |              |      |

Date: 03/31/2010 02:49 PM

#### REPORT OF LABORATORY ANALYSIS

Page 16 of 36







Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

Sample: M5C 5.0-7.5'

Lab ID: 4029654033

Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid

Results reported on a "dry-weight" basis

| Results reported on a dry-w                        | ergin basis  |                                                          |                           |            |         |                        |                         |              |      |  |
|----------------------------------------------------|--------------|----------------------------------------------------------|---------------------------|------------|---------|------------------------|-------------------------|--------------|------|--|
| Parameters                                         | Results      | Units                                                    | LOQ _                     | LOD        | DF      | Prepared               | Analyzed                | CAS No.      | Qual |  |
| 6010 MET ICP                                       | Analytica    | Analytical Method: EPA 6010 Preparation Method: EPA 3050 |                           |            |         |                        |                         |              |      |  |
| Arsenic                                            | 4080 1       | ng/kg                                                    | 10.3                      | 0.60       | 1       | 03/23/10 15:15         | 03/25/10 02:15          | 7440-38-2    |      |  |
| Percent Moisture                                   | Analytica    | l Method: ASTN                                           | и D2974-87                |            |         |                        |                         |              |      |  |
| Percent Moisture                                   | 82.3         | 82.3 %                                                   |                           | 0.10       | 1       |                        | 03/25/10 08:19          |              |      |  |
| Sample: M5C 7.5-10.0' Results reported on a "dry-w |              | 4029654034                                               | Collected                 | d: 03/17/1 | 0 00:00 | Received: 03/          | /20/10 08:43 Ma         | atrix: Solid |      |  |
| Parameters                                         | Results      | Units                                                    | LOQ                       | LOD        | DF      | Prepared               | Analyzed                | CAS No.      | Qual |  |
| 6010 MET ICP                                       | Analytica    | Analytical Method: EPA 6010 Preparation Method: EPA3050  |                           |            |         |                        |                         |              |      |  |
| Arsenic                                            | 1780 mg/kg   |                                                          | 8.7                       | 0.50       | 1       | 03/23/10 15:1 <b>5</b> | 03/25/10 02:19          | 7440-38-2    |      |  |
| Percent Moisture                                   | Analytica    | и D2974-87                                               |                           |            |         |                        |                         |              |      |  |
| Percent Moisture                                   | 79.3         | 0.10                                                     | 0.10                      | 1          |         | 03/25/10 08:19         |                         |              |      |  |
| Sample: M5E 0-2.0' Results reported on a "dry-wa   |              | 4029654035                                               | Collected                 | d: 03/17/1 | 0 00:00 | Received: 03/          | /20/10 08:43 Ma         | atrix: Solid |      |  |
| Parameters                                         | Results      | Units                                                    | LOQ                       | LOD        | DF      | Prepared               | Analyzed                | CAS No.      | Qual |  |
| 6010 MET ICP                                       | Analytica    | I Method: EPA 6                                          | 6010 Prepar               | ation Meth | od: EP  | A 3050                 |                         |              |      |  |
| Arsenic                                            | 269 1        | ng/kg                                                    | 6.3                       | 0.36       | 1       | 03/23/10 15:15         | 03/25/10 0 <b>2</b> :23 | 7440-38-2    |      |  |
| Percent Moisture                                   | Analytica    | I Method: ASTN                                           | л D2974-87                |            |         |                        |                         |              |      |  |
| Percent Moisture                                   | 70.3         | 70.3 %                                                   |                           | 0.10       | 1       |                        | 03/2 <b>5</b> /10 08:19 |              |      |  |
| Sample: M5E 2.0-4.0'                               | Lab ID:      | 4029654036                                               | Collected: 03/17/10 00:00 |            |         | Received: 03/          | atrix: Solid            |              |      |  |
| Results reported on a "dry-we                      | eight" basis |                                                          |                           |            |         |                        |                         |              |      |  |
| Parameters                                         | Results      | Units                                                    | LOQ                       | LOD        | DF      | Prepared               | Analyzed                | CAS No.      | Qual |  |
| 6010 MET ICP                                       | Analytica    | I Method: EPA 6                                          | 3010 Prepar               | ation Meth | od: EPA | A 3050                 |                         |              |      |  |
| Arsenic                                            | 215 (        | ng/kg                                                    | 10.8                      | 0.62       | 1       | 03/23/10 15:15         | 03/25/10 02:27          | 7440-38-2    |      |  |
| Percent Moisture                                   | Analytica    | I Method: ASTN                                           | л D2974-87                |            |         |                        |                         |              |      |  |
| December 114                                       |              |                                                          | 0.45                      |            |         | 00/05/40 06 15         |                         |              |      |  |

Date: 03/31/2010 02:49 PM

Percent Moisture

#### REPORT OF LABORATORY ANALYSIS

0.10

82.6 %

Page 17 of 36

03/25/10 08:19



0.10





Project: 7201.15 KEWAUNEE MARSH

Pace Project No.: 4029654

Sample: M5E 4.0-6.0' Lab ID: 4029654037 Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid

| Parameters                                                     | Results                           | Units                                                   | LOQ              | LOD               | DF            | Prepared       | Analyzed                   | CAS No.               | Qual |  |
|----------------------------------------------------------------|-----------------------------------|---------------------------------------------------------|------------------|-------------------|---------------|----------------|----------------------------|-----------------------|------|--|
|                                                                |                                   |                                                         |                  | -                 | - <u> </u>    | - Midiyacu     | C/10 140.                  | - —                   |      |  |
| 6010 MET ICP                                                   | •                                 | 3010 Prepara                                            |                  | od: EPA           |               |                |                            |                       |      |  |
| Arsenic                                                        | 46.6 mg/kg                        |                                                         | 16.3             | 0.94              | 1             | 03/23/10 17:00 | 03/25/10 02:51             | 7440-38-2             |      |  |
| Percent Moisture                                               | Analytica                         | и D2974-87                                              |                  |                   |               |                |                            |                       |      |  |
| Percent Moisture                                               | 87.9                              | 0.10                                                    | 0.10             | 1                 |               | 03/25/10 08:19 |                            |                       |      |  |
| Sample: M5E 6.0-8.0' Results reported on a "dry-we             |                                   | 4029654038                                              | Collected        | : 03/17/1         | 0 00:00       | Received: 03/  | 20/10 08:43 Ma             | atrix: Solid          |      |  |
| Parameters                                                     | Results                           | Units                                                   | LOQ              | LOD               | DF            | Prepared       | Analyzed                   | CAS No.               | Qual |  |
| 6010 MET ICP                                                   | Analytica                         | Analytical Method: EPA6010 Preparation Method: EPA 3050 |                  |                   |               |                |                            |                       |      |  |
| Arsenic                                                        | <b>9.8J</b> mg/kg                 |                                                         | 10.5             | 0.61              | 1             | 03/23/10 17:00 | 03/25/10 03:02             | 7440-38-2             |      |  |
| Percent Moisture                                               | Analytica                         | l Method: ASTN                                          | 1 D2974-87       |                   |               |                |                            |                       |      |  |
| Percent Moisture                                               | 83.8                              | 0.10                                                    | 0.10             | 1                 |               | 03/25/10 08:19 |                            |                       |      |  |
| Sample: M5E 8.0-10.0' Results reported on a "dry-we Parameters |                                   | 4029654039<br>Units                                     | Collected<br>LOQ | : 03/17/10<br>LOD | 0 00:00<br>DF | Received: 03/  | 20/10 08:43 Ma<br>Analyzed | atrix: Solid  CAS No. | Qual |  |
| 6010 MET ICP                                                   | Analytica                         | I Method: EPA 6                                         |                  | ation Meth        | od: EPA       | <br>\3050      |                            |                       |      |  |
| Arsenic                                                        | 2.7J ı                            |                                                         | 4.4              | 0.25              | 1             |                | 03/25/10 03:06             | 7440-38-2             |      |  |
| Percent Moisture                                               | Analytica                         | l Method: ASTM                                          | 1 D2974-87       |                   |               |                |                            |                       |      |  |
| Percent Moisture                                               | 60.7 % 0.10 0.10 1 03/25/10 08:19 |                                                         |                  |                   |               |                |                            |                       |      |  |
| Sample: M5E 10.0-12.0'<br>Results reported on a "dry-we        |                                   | 4029654040                                              | Collected        | 03/17/10          | 00:00         | Received: 03/  | 20/10 08:43 Ma             | atrix: Solid          |      |  |
| Parameters                                                     | Results                           | Units                                                   | LOQ              | LOD               | DF            | Prepared       | Analyzed                   | CAS No.               | Qual |  |
| 6010 MET ICP                                                   | Analytica                         | l Method: EPA6                                          | 3010 Prepara     | ition Meth        | od: EPA       | \3050          |                            |                       |      |  |
| Arsenic                                                        | 40.3 r                            | ng/kg                                                   | 4.3              | 0.25              | 1             | 03/23/10 17:00 | 03/25/10 03:10             | 7440-38-2             |      |  |
| Percent Moisture                                               | Analytica                         | Method: ASTM                                            | 1 D2974-87       |                   |               |                |                            |                       |      |  |
|                                                                | 60.1 %                            |                                                         |                  |                   |               |                |                            |                       |      |  |

Date: 03/31/2010 02:49 PM

#### REPORT OF LABORATORY ANALYSIS

Page 18 of 36







Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

Sample: M5E 12-14'

Lab ID: 4029654041

Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid

Results reported on a "dry-weight" basis

| Results reported on a "dry-we                    | eight" basis                                             |               |                       |            |          |                |                         |              |      |  |
|--------------------------------------------------|----------------------------------------------------------|---------------|-----------------------|------------|----------|----------------|-------------------------|--------------|------|--|
| Parameters                                       | Results                                                  | Units         | LOQ _                 | LOD        | DF       | Prepared       | Analyzed                | CAS No.      | Qual |  |
| 6010 MET ICP                                     | Analytica                                                | l Method: EPA | A 3050                |            |          |                |                         |              |      |  |
| Arsenic                                          | 8.1 r                                                    | ng/kg         | 4.9                   | 0.29       | 1        | 03/23/10 17:00 | 03/25/10 03:15          | 7440-38-2    |      |  |
| Percent Moisture                                 | Analytica                                                | M D2974-87    |                       |            |          |                |                         |              |      |  |
| Percent Moisture                                 | 64.1 %                                                   | 0.10          | 0.10                  | 1          |          | 03/25/10 08:21 |                         |              |      |  |
| Sample: M5E 14-15'                               | Lab ID:                                                  | 4029654042    | Collected             | : 03/17/1  | 0 00:00  | Received: 03/  | /20/10 08:43 Ma         | atrix: Solid |      |  |
| Results reported on a "dry-we                    | eight" basis                                             |               |                       |            |          |                |                         |              |      |  |
| Parameters                                       | Results                                                  | Units         | LOQ                   | LOD        | DF       | Prepared       | Analyzed                | CAS No.      | Qual |  |
| 6010 MET ICP                                     | Analytical                                               | Method: EPA   | 60 <b>1</b> 0 Prepara | ation Meth | nod: EP/ | A3050          |                         |              |      |  |
| Arsenic                                          | 3.1 r                                                    | mg/kg         | 2.2                   | 0.12       | 1        | 03/23/10 17:00 | 03/25/10 03:19          | 7440-38-2    |      |  |
| Percent Moisture                                 | Analytical Method: ASTM D2974-87                         |               |                       |            |          |                |                         |              |      |  |
| Percent Moisture                                 | 20.1 %                                                   | %             | 0.10                  | 0.10       | 1        |                | 03/2 <b>5/1</b> 0 08:21 |              |      |  |
| Sample: M5F 0-2.5' Results reported on a "dry-we |                                                          | 4029654043    | Collected             | : 03/17/1  | 0 00:00  | Received: 03/  | /20/10 08:43 Ma         | atrix: Solid |      |  |
| Parameters                                       | Results                                                  | Units         | LOQ                   | LOD        | DF       | Prepared       | Analyzed                | CAS No.      | Qual |  |
| 6010 MET ICP                                     | Analytical                                               | Method: EPA ( | 60 <b>1</b> 0 Prepara | ation Meth | nod: EP  | A 3050         |                         |              |      |  |
| Arsenic                                          | 98.2 r                                                   | ng/kg         | 3.6                   | 0.21       | 1        | 03/23/10 17:00 | 03/25/10 03:30          | 7440-38-2    |      |  |
| Percent Moisture                                 | Analytical                                               | Method: ASTN  | и D2974-87            |            |          |                |                         |              |      |  |
| Percent Moisture                                 | 51.7 %                                                   | %             | 0.10                  | 0.10       | 1        |                | 03/25/10 08:21          |              |      |  |
| Sample: M5F 2.5-5.0'                             | Lab ID:                                                  | 4029654044    | Collected             | : 03/17/1  | 0 00:00  | Received: 03/  | /20/10 08:43 Ma         | atrix: Solid |      |  |
| Results reported on a "dry-we                    | eight" basis                                             |               |                       |            |          |                |                         |              |      |  |
| Parameters                                       | Results                                                  | Units         | LOQ                   | LOD        | DF       | Prepared       | Analyzed                | CAS No.      | Qual |  |
| 6010 MET ICP                                     | Analytical Method: EPA 6010 Preparation Method: EPA 3050 |               |                       |            |          |                |                         |              |      |  |
| Arsenic                                          | 1300 n                                                   | ng/kg         | 8.6                   | 0.50       | 1        | 03/23/10 17:00 | 03/25/10 03:34          | 7440-38-2    |      |  |
| Percent Moisture                                 | Analytical Method: ASTM D2974-87                         |               |                       |            |          |                |                         |              |      |  |
|                                                  |                                                          |               |                       |            |          |                |                         |              |      |  |

Date: 03/31/2010 02:49 PM

Percent Moisture

#### **REPORT OF LABORATORY ANALYSIS**

0.10

1

0.10

77.7 %

Page 19 of 36







Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

Sample: M5F 5.0-7.5'

Lab ID: 4029654045

Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid

Results reported on a "dry-weight" basis

| 1260 mg Analytical M 86.0 %  Lab ID: 4 ht" basis   | Units  Method: EPA 6  g/kg  Method: ASTM  4029654046  Units                                                                                                                             | 12.5<br>1 D2974-87<br>0.10<br>Collected                                                                                                                                                                                                                               | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 03/23/10 17:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analyzed  03/25/10 03:38  03/25/10 08:21  20/10 08:43 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAS No. 7440-38-2 atrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1260 mg Analytical M 86.0 %  Lab ID: 4 ht" basis   | g/kg<br>Method: ASTM<br>4029654046                                                                                                                                                      | 12.5<br>1 D2974-87<br>0.10<br>Collected                                                                                                                                                                                                                               | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 03/23/10 17:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03/25/10 08:21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Analytical N 86.0 %  Lab ID: 4  ht" basis  Results | Method: ASTM                                                                                                                                                                            | 0.10<br>Collected:                                                                                                                                                                                                                                                    | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03/25/10 08:21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 86.0 %  Lab ID: 4  ht" basis  Results              | 4029654046                                                                                                                                                                              | 0.10<br>Collected:                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Received: 03/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | atrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Lab ID: 4 ht" basis Results                        |                                                                                                                                                                                         | Collected                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Received: 03/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | atrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Results                                            |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                       | 03/17/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Received: 03/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20/10 08:43 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | atrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Results                                            | Units                                                                                                                                                                                   | 100                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                    | Units                                                                                                                                                                                   | 100                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Analytical N                                       |                                                                                                                                                                                         | LOQ                                                                                                                                                                                                                                                                   | LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAS No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                    | Analytical Method: EPA 6010 Preparation Method: EPA 3050                                                                                                                                |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| <b>111</b> mg/kg                                   |                                                                                                                                                                                         | 7.7                                                                                                                                                                                                                                                                   | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 03/23/10 17:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03/25/10 03:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7440-38-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Analytical Method: ASTM D2974-87                   |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 76.7 %                                             |                                                                                                                                                                                         | 0.10                                                                                                                                                                                                                                                                  | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03/25/10 08:21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                    | 4029654047                                                                                                                                                                              | Collected:                                                                                                                                                                                                                                                            | 03/17/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Received: 03/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20/10 08:43 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | trix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Results                                            | Units                                                                                                                                                                                   | LOQ                                                                                                                                                                                                                                                                   | LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAS No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Analytical N                                       | Method <sup>,</sup> EPA 6                                                                                                                                                               | 3010 Prepara                                                                                                                                                                                                                                                          | ition Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | od: EPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| <b>895</b> mg                                      | g/kg                                                                                                                                                                                    | 8.4                                                                                                                                                                                                                                                                   | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 03/23/10 17:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03/25/10 03:47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7440-38-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Analytical M                                       | Method: ASTM                                                                                                                                                                            | 1 D29 <b>7</b> 4-87                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 77.2 %                                             |                                                                                                                                                                                         | 0.10                                                                                                                                                                                                                                                                  | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03/25/10 08:22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Lab ID: 4                                          | 1029654048                                                                                                                                                                              | Collected:                                                                                                                                                                                                                                                            | 03/17/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Received: 03/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20/10 08:43 Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | trix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| ht" basis                                          |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Results                                            | Units                                                                                                                                                                                   | LOQ                                                                                                                                                                                                                                                                   | LOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAS No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Analytical M                                       | Method: EPA 6                                                                                                                                                                           | 010 Prepara                                                                                                                                                                                                                                                           | tion Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | od: EPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \3050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| <b>1910</b> mg                                     | g/kg                                                                                                                                                                                    | 8.7                                                                                                                                                                                                                                                                   | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 03/23/10 17:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03/25/10 03:51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7440-38-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Analytical Method: ASTM D2974-87                   |                                                                                                                                                                                         |                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                    | Analytical M  Analytical M  Test ID: 4  Analytical M  Results  Analytical M  77.2 %  Lab ID: 4  Analytical M  Analytical M  This basis  Results  Analytical M  Analytical M  This basis | Analytical Method: EPA 6 111 mg/kg Analytical Method: ASTM 76.7 %  Lab ID: 4029654047  ht" basis  Results Units  Analytical Method: EPA 6 895 mg/kg Analytical Method: ASTM 77.2 %  Lab ID: 4029654048  ht" basis  Results Units  Analytical Method: EPA 6 1910 mg/kg | Analytical Method: EPA 6010 Prepara  111 mg/kg 7.7  Analytical Method: ASTM D2974-87  76.7 % 0.10  Lab ID: 4029654047 Collected:  ht" basis  Results Units LOQ  Analytical Method: EPA 6010 Prepara  895 mg/kg 8.4  Analytical Method: ASTM D2974-87  77.2 % 0.10  Lab ID: 4029654048 Collected:  ht" basis  Results Units LOQ  Analytical Method: EPA 6010 Prepara  4029654048 Collected:  ht" basis  Results Units LOQ  Analytical Method: EPA 6010 Prepara  1910 mg/kg 8.7 | Analytical Method: EPA 6010 Preparation Method: ASTM D2974-87  76.7 % 0.10 0.10  Lab ID: 4029654047 Collected: 03/17/10  ht" basis  Results Units LOQ LOD  Analytical Method: EPA 6010 Preparation Method: 895 mg/kg 8.4 0.49  Analytical Method: ASTM D2974-87  77.2 % 0.10 0.10  Lab ID: 4029654048 Collected: 03/17/10  ht" basis  Results Units LOQ LOD  Analytical Method: ASTM D2974-87  77.2 % 0.10 0.10  Analytical Method: EPA 6010 Preparation Method: basis  Results Units LOQ LOD  Analytical Method: EPA 6010 Preparation Method: BASIM D2974-87  Analytical Method: EPA 6010 Preparation Method: BASIM D2974-87 | Analytical Method: EPA 6010 Preparation Method: EPA  111 mg/kg 7.7 0.45 1  Analytical Method: ASTM D2974-87  76.7 % 0.10 0.10 1  Lab ID: 4029654047 Collected: 03/17/10 00:00  ht" basis  Results Units LOQ LOD DF  Analytical Method: EPA 6010 Preparation Method: EPA  895 mg/kg 8.4 0.49 1  Analytical Method: ASTM D2974-87  77.2 % 0.10 0.10 1  Lab ID: 4029654048 Collected: 03/17/10 00:00  ht" basis  Results Units LOQ LOD DF  Analytical Method: EPA 6010 Preparation Method: EPA  Analytical Method: EPA 6010 Preparation Method: EPA  895 mg/kg 8.4 0.49 1  Analytical Method: EPA 6010 Preparation Method: EPA  895 mg/kg 8.7 0.50 1 | Analytical Method: EPA 6010 Preparation Method: EPA 3050  111 mg/kg 7.7 0.45 1 03/23/10 17:00  Analytical Method: ASTM D2974-87  76.7 % 0.10 0.10 1  Lab ID: 4029654047 Collected: 03/17/10 00:00 Received: 03/ht" basis  Results Units LOQ LOD DF Prepared  Analytical Method: EPA 6010 Preparation Method: EPA 3050  895 mg/kg 8.4 0.49 1 03/23/10 17:00  Analytical Method: ASTM D2974-87  77.2 % 0.10 0.10 1  Lab ID: 4029654048 Collected: 03/17/10 00:00 Received: 03/ht" basis  Results Units LOQ LOD DF Prepared  Analytical Method: EPA 6010 Preparation Method: EPA 3050  1910 mg/kg 8.7 0.50 1 03/23/10 17:00 | Analytical Method: EPA 6010 Preparation Method: EPA 3050  111 mg/kg 7.7 0.45 1 03/23/10 17:00 03/25/10 03:42  Analytical Method: ASTM D2974-87  76.7 % 0.10 0.10 1 03/25/10 08:21  Lab ID: 4029654047 Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matht" basis  Results Units LOQ LOD DF Prepared Analyzed  Analytical Method: EPA 6010 Preparation Method: EPA 3050  895 mg/kg 8.4 0.49 1 03/23/10 17:00 03/25/10 03:47  Analytical Method: ASTM D2974-87  77.2 % 0.10 0.10 1 03/25/10 08:22  Lab ID: 4029654048 Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matht" basis  Results Units LOQ LOD DF Prepared Analyzed  Analytical Method: EPA 6010 Preparation Method: EPA 3050  403/25/10 08:22  Analytical Method: EPA 6010 Preparation Method: EPA 3050  Analytical Method: EPA 6010 Preparation Method: EPA 3050 | Analytical Method: EPA 6010 Preparation Method: EPA 3050  111 mg/kg 7.7 0.45 1 03/23/10 17:00 03/25/10 03:42 7440-38-2  Analytical Method: ASTM D2974-87  76.7 % 0.10 0.10 1 03/25/10 08:21  Lab ID: 4029654047 Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid ht" basis  Results Units LOQ LOD DF Prepared Analyzed CAS No.  Analytical Method: EPA 6010 Preparation Method: EPA 3050  895 mg/kg 8.4 0.49 1 03/23/10 17:00 03/25/10 03:47 744/0-38-2  Analytical Method: ASTM D2974-87  77.2 % 0.10 0.10 1 03/25/10 08:22  Lab ID: 4029654048 Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid ht" basis  Results Units LOQ LOD DF Prepared Analyzed CAS No.  Analytical Method: EPA 6010 Preparation Method: EPA 3050  Analytical Method: EPA 6010 Preparation Method: EPA 3050  Analytical Method: EPA 6010 Preparation Method: EPA 3050  Analytical Method: EPA 6010 Preparation Method: EPA 3050  Analytical Method: EPA 6010 Preparation Method: EPA 3050  Analytical Method: EPA 6010 Preparation Method: EPA 3050  1910 mg/kg 8.7 0.50 1 03/23/10 17:00 03/25/10 03:51 7440-38-2 |  |

Date: 03/31/2010 02:49 PM

Percent Moisture

**REPORT OF LABORATORY ANALYSIS** 

0.10

0.10

78.2 %

Page 20 of 36





Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

Sample: M6E 6-8.0'

Lab ID: 4029654049

Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid

Results reported on a "dry-weight" basis

| Parameters                                      | Results                                                  | Units                     | LOQ          | LOD        | DF      | Prepared       | Analyzed                | CAS No.      | Qual |
|-------------------------------------------------|----------------------------------------------------------|---------------------------|--------------|------------|---------|----------------|-------------------------|--------------|------|
| 6010 MET ICP                                    | Analytica                                                | l Method <sup>.</sup> EPA | 6010 Prepara | ation Meth | od: EPA | A 3050         |                         |              |      |
| Arsenic                                         | 2020 1                                                   | mg/kg                     | 15.4         | 0.89       | 1       | 03/23/10 17:00 | 03/25/10 03:54          | 7440-38-2    |      |
| Percent Moisture                                | Analytica                                                | Method: ASTM              | л D2974-87   |            |         |                |                         |              |      |
| Percent Moisture                                | 88.2 %                                                   |                           | 0.10         | 0.10       | 1       |                | 03/25/10 08:22          |              |      |
| Sample: M7E 0-2.0'                              | Lab ID:                                                  | 4029654050                | Collected    | : 03/17/1  | 0 00:00 | Received: 03/  | 20/10 08:43 Ma          | atrix: Solid |      |
| Results reported on a "dry-w                    | eight" basis                                             |                           |              |            |         |                |                         |              |      |
| Parameters                                      | Results                                                  | Units                     | LOQ          | LOD        | DF      | Prepared       | Analyzed                | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytical Method: EPA 6010 Preparation Method: EPA 3050 |                           |              |            |         |                |                         |              |      |
| Arsenic                                         | <b>15.1</b> mg/kg                                        |                           | 3.0          | 0.18       | 1       | 03/23/10 17:00 | 03/ <b>2</b> 5/10 03:58 | 7440-38-2    |      |
| Percent Moisture                                | Analytica                                                | I Method: ASTN            | / D2974-87   |            |         |                |                         |              |      |
| Percent Moisture                                | 42.0                                                     | 0.10                      | 0.10         | 1          |         | 03/25/10 08:22 |                         |              |      |
| Sample: M7E 2-4.0' Results reported on a "dry-w |                                                          | 4029654051                | Collected    | 03/17/1    | 0 00:00 | Received: 03/  | 20/10 08:43 Ma          | atrix: Solid |      |
| Parameters                                      | Results                                                  | Units                     | LOQ          | LOD        | DF      | Prepared       | Analyzed                | CAS No.      | Qual |
| 6010 MET ICP                                    | Analytica                                                | I Method: EPA (           | 6010 Prepara | ation Meth | od: EP# | \ 3050         |                         |              |      |
| Arsenic                                         | 277 ı                                                    | ng/kg                     | 3.4          | 0.20       | 1       | 03/23/10 17:00 | 03/25/10 04:03          | 7440-38-2    |      |
| Percent Moisture                                | Analytica                                                | l Method: ASTN            | и D2974-87   |            |         |                |                         |              |      |
| Percent Moisture                                | 48.4                                                     | %                         | 0.10         | 0.10       | 1       |                | 03/25/10 08:22          |              |      |
| Sample: M7E 4-6.0'                              | Lab ID:                                                  | 4029654052                | Collected    | 03/17/1    | 0 00:00 | Received: 03/  | 20/10 08:43 Ma          | atrix: Solid |      |
| Results reported on a "dry-w                    | eight" basis                                             |                           |              |            |         |                |                         |              |      |
| Parameters                                      | Results                                                  | Units                     | LOQ          | LOD        | DF      | Prepared       | Analyzed                | CAS No.      | Oual |
| 6010 MET ICP                                    | Analytica                                                | l Method: EPA (           | 6010 Prepara | ition Meth | od: EPA | 3050           |                         |              |      |
| Arsenic                                         | <b>1260</b> r                                            | ng/kg                     | 11.4         | 0.66       | 1       | 03/23/10 17:00 | 03/25/10 04:07          | 7440-38-2    |      |
|                                                 |                                                          |                           |              |            |         |                |                         |              |      |

Date: 03/31/2010 02:49 PM

Percent Moisture

#### REPORT OF LABORATORY ANALYSIS

0.10

1

0.10

83.2 %

Page 21 of 36





Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

Sample: M7E 6-8.0'

Lab ID: 4029654053

Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid

| Results reported on a "dry-w                     | eight" basis                     |                                                          |            |              |                |                |                |              |      |  |
|--------------------------------------------------|----------------------------------|----------------------------------------------------------|------------|--------------|----------------|----------------|----------------|--------------|------|--|
| Parameters                                       | Results                          | Units                                                    | LOQ        | LOD          | DF             | Prepared       | Analyzed       | CAS No.      | Qual |  |
| 6010 MET ICP                                     | Analytica                        | I Method: EPA                                            | 6010 Prepa | aration Meth | hod: EP        | A3050          |                |              |      |  |
| Arsenic                                          | 478 1                            | 14.0                                                     | 0.81       | 1            | 03/23/10 17:00 | 03/25/10 04:18 | 7440-38-2      |              |      |  |
| Percent Moisture                                 | Analytica                        | I Method: ASTM                                           | и D2974-87 |              |                |                |                |              |      |  |
| Percent Moisture                                 | 86.8                             | 0.10                                                     | 0.10       | 1            |                | 03/25/10 08:22 |                |              |      |  |
| Sample: M8E 0-4.0' Results reported on a "dry-we |                                  | 4029654054                                               | Collecte   | ed: 03/17/1  | 10 00:00       | Received: 03/  | /20/10 08:43 M | atrix: Solid |      |  |
| Parameters                                       | Results                          | Units                                                    | LOQ        | LOD          | DF             | Prepared       | Analyzed       | CAS No.      | Qual |  |
| 6010 MET ICP                                     | Analytica                        | Analytical Method: EPA 6010 Preparation Method: EPA 3050 |            |              |                |                |                |              |      |  |
| Arsenic                                          | <b>311</b> mg/kg                 |                                                          | 5.1        | 0.30         | 1              | 03/23/10 17:00 | 03/25/10 04:22 | 7440-38-2    |      |  |
| Percent Moisture                                 | Analytical Method: ASTM D2974-87 |                                                          |            |              |                |                |                |              |      |  |
| Percent Moisture                                 | 61.8 %                           |                                                          | 0.10       | 0.10         | 1              |                | 03/25/10 08:22 |              |      |  |
| Sample: M8E 4-6.0'                               | Lab ID:                          | 4029654055                                               | Collecte   | ed: 03/17/1  | 0 00:00        | Received: 03/  | /20/10 08:43 M | atrix: Solid |      |  |
| Results reported on a "dry-wo                    | eight" basis                     |                                                          |            |              |                |                |                |              |      |  |
| Parameters                                       | Results                          | Units                                                    | LOQ        | LOD          | DF             | Prepared       | Analyzed       | CAS No.      | Qual |  |
| 6010 MET ICP                                     | Analytica                        | I Method: EPA                                            | 6010 Prepa | ration Meth  | nod: EPA       | A 3050         |                |              |      |  |
| Arsenic                                          | <b>24.4</b> r                    | ng/kg                                                    | 4.5        | 0.26         | 1              | 03/23/10 17:00 | 03/25/10 04:27 | 7440-38-2    |      |  |
| Percent Moisture                                 | Analytica                        | I Method: ASTM                                           | и D2974-87 |              |                |                |                |              |      |  |
| Percent Moisture                                 | 60.5                             | %                                                        | 0.10       | 0.10         | 1              |                | 03/25/10 08:22 |              |      |  |
| Sample: M8E 6-8.0'                               | Lab ID:                          | 4029654056                                               | Collecte   | ed: 03/17/1  | 0 00:00        | Received: 03/  | /20/10 08:43 M | atrix: Solid |      |  |
| Results reported on a "dry-wo                    | eight" basis                     |                                                          |            |              |                |                |                |              |      |  |
| Parameters                                       | Results                          | Units                                                    | LOQ        | LOD          | DF             | Prepared       | Analyzed       | CAS No.      | Qual |  |
| 6010 MET ICP                                     | Analytica                        | l Method: EPA (                                          | 6010 Prepa | ration Meth  | nod: EP        | 43050          |                |              |      |  |
| Arsenic                                          | <b>12.9J</b> n                   | ng/kg                                                    | 15.1       | 0.88         | 1              | 03/23/10 17:00 | 03/25/10 04:30 | 7440-38-2    |      |  |
|                                                  |                                  |                                                          |            |              |                |                |                |              |      |  |

Date: 03/31/2010 02:49 PM

**Percent Moisture** 

Percent Moisture

#### REPORT OF LABORATORY ANALYSIS

0.10

0.10

Analytical Method: ASTM D2974-87

87.8 %

Page 22 of 36





Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

Sample: M9F 0-4.0'

Lab ID: 4029654057

Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid

Results reported on a "dry-weight" basis

| Results reported on a dry-w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | reignt basis                                             |                                                          |             |         |                |                 |              |      |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-------------|---------|----------------|-----------------|--------------|------|--|--|--|
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Results Units                                            | LOQ                                                      | LOD         | DF      | Prepared       | Analyzed        | CAS No.      | Qual |  |  |  |
| 6010 MET ICP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analytical Method: EPA 6010 Preparation Method: EPA 3050 |                                                          |             |         |                |                 |              |      |  |  |  |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>348</b> mg/kg                                         | 5.9                                                      | 0.34        | 1       | 03/24/10 11:35 | 03/25/10 17:55  | 7440-38-2    |      |  |  |  |
| Percent Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analytical Method: AST                                   | M D2974-87                                               |             |         |                |                 |              |      |  |  |  |
| Percent Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70.0 %                                                   | 0.10                                                     | 0.10        | 1       |                | 03/25/10 08:22  |              |      |  |  |  |
| Sample: M9F 4.0-6.0'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lab ID: 4029654058                                       | Collected                                                | 1: 03/17/1  | 0 00:00 | Received: 03/  | /20/10 08:43 M  | atrix: Solid |      |  |  |  |
| Results reported on a "dry-w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | eignt" basis                                             |                                                          |             |         |                |                 |              |      |  |  |  |
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Results Units                                            | LOQ _                                                    | LOD         | DF      | Prepared       | Analyzed        | CAS No.      | Qual |  |  |  |
| 6010 MET ICP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analytical Method: EPA                                   | Analytical Method: EPA 6010 Preparation Method: EPA 3050 |             |         |                |                 |              |      |  |  |  |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>452</b> mg/kg                                         | 5.6                                                      | 0.32        | 1       | 03/24/10 11:35 | 03/25/10 17:59  | 7440-38-2    |      |  |  |  |
| Percent Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analytical Method: AST                                   | M D2974-87                                               |             |         |                |                 |              |      |  |  |  |
| Percent Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 67.8 %                                                   | 0.10                                                     | 0.10        | 1       |                | 03/25/10 08:23  |              |      |  |  |  |
| Sample: M9F 6.0-8.0' Results reported on a "dry-w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lab ID: 4029654059                                       | Collected                                                | 1: 03/17/1  | 00:00   | Received: 03/  | /20/10 08:43 Ma | atrix: Solid |      |  |  |  |
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Results Units                                            | LOQ                                                      | LOD         | DF      | Prepared       | Analyzed        | CAS No.      | Qual |  |  |  |
| 6010 MET ICP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analytical Method: EPA 6010 Preparation Method: EPA 3050 |                                                          |             |         |                |                 |              |      |  |  |  |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 <b>2.1</b> mg/kg                                       | 13.7                                                     | 0.79        | 1       | 03/24/10 11:35 | 03/25/10 18:03  | 7440-38-2    |      |  |  |  |
| Percent Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analytical Method: ASTI                                  | Analytical Method: ASTM D2974-87                         |             |         |                |                 |              |      |  |  |  |
| Percent Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 86.3 %                                                   |                                                          |             |         |                |                 |              |      |  |  |  |
| Sample: M10F 0-4.0' Results reported on a "dry-water of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the support of the suppor | Lab ID: 4029654060<br>eight" basis                       | Collected                                                | l: 03/17/10 | 00:00   | Received: 03/  | 20/10 08:43 Ma  | atrix: Solid |      |  |  |  |
| Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Results Units                                            | LOQ                                                      | LOD         | DF      | Prepared       | Analyzed        | CAS No.      | Qual |  |  |  |
| 6010 MET ICP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Analytical Method: EPA 6010 Preparation Method: EPA 3050 |                                                          |             |         |                |                 |              |      |  |  |  |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 357 mg/kg                                                | 4.3                                                      | 0.25        | 1       | 03/24/10 11:35 | 03/25/10 18:06  | 7440-38-2    |      |  |  |  |
| Percent Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Analytical Method: ASTI                                  | M D297 <b>4</b> -87                                      |             |         |                |                 |              |      |  |  |  |
| Percent Moisture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 59.3 %                                                   | 0.10                                                     | 0.10        | 1       |                | 03/25/10 08:23  |              |      |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                          |             |         |                |                 |              |      |  |  |  |

Date: 03/31/2010 02:49 PM

REPORT OF LABORATORY ANALYSIS

Page 23 of 36





#### ANALYTICAL RESULTS

Project:

7201.15 KEWAUNEE MARSH

Pace Project No .:

4029654

Sample: M10F 4-6'

Lab ID: 4029654061

Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid

Results reported on a "dry-weight" basis

Parameters Units LOQ Results

589 mg/kg

69.3 %

5.9 0.34

LOD

DF

Analyzed

CAS No. Qual

Percent Moisture

Percent Moisture

6010 MET ICP

Arsenic

Analytical Method: ASTM D2974-87

0.10

Analytical Method: EPA 6010 Preparation Method: EPA 3050

Prepared

Sample: M10F 6-8.0'

Lab ID: 4029654062

03/25/10 08:23

Analyzed

Collected: 03/17/10 00:00 Received: 03/20/10 08:43

Results reported on a "dry-weight" basis

Parameters

Results Units

LOQ

LOD

0.10

Prepared

CAS No. Qual

6010 MET ICP

Analytical Method: EPA 6010 Preparation Method: EPA 3050

0.81 14.1

DF

**Percent Moisture** 

Percent Moisture

Arsenic

52.7 mg/kg Analytical Method: ASTM D2974-87

86.3 %

LOQ

0.10

0.10

03/25/10 08:24

Sample: M11F 0-2.0'

Lab ID: 4029654063

Collected: 03/17/10 00:00

Matrix: Solid

Results reported on a "dry-weight" basis

Results

Units

LOD

DF

Received: 03/20/10 08:43

CAS No.

Parameters

**6010 MET ICP** Analytical Method: EPA 6010 Preparation Method: EPA 3050

106 mg/kg

Prepared

Analyzed

Qual

Arsenic **Percent Moisture** 

Analytical Method: ASTM D2974-87

5.0 0.29

1

Percent Moisture

Sample: M11F 2.0-4.0'

Lab ID: 4029654064

60.7 %

0.10

03/25/10 08:24

Received: 03/20/10 08:43 Matrix: Solid

Results reported on a "dry-weight" basis

0.10

Collected: 03/17/10 00:00

03/25/10 08:24

Parameters Results

Units

Analytical Method: ASTM D2974-87

LOQ

LOD

0.10

DF

Prepared

Analyzed

CAS No. Qual

6010 MET ICP

Analytical Method: EPA 6010 Preparation Method: EPA 3050

0.10

Arsenic

Percent Moisture

Percent Moisture

549 mg/kg

73.3 %

6.6 0.38

03/24/10 11:35 03/25/10 18:30 7440-38-2

Date: 03/31/2010 02:49 PM

REPORT OF LABORATORY ANALYSIS

Page 24 of 36

without the written consent of Pace Analytical Services, Inc..



#### **ANALYTICAL RESULTS**

Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

Sample: M11F 4.0-6.0'

Lab ID: 4029654065

**3.3J** mg/kg

75.3 %

Analytical Method: ASTM D2974-87

Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid

Results reported on a "dry-weight" basis

| Results reported on a "dry-wei                         | ight" basis          |                 |                     |            |         |                |                 |              |      |
|--------------------------------------------------------|----------------------|-----------------|---------------------|------------|---------|----------------|-----------------|--------------|------|
| Parameters                                             | Results              | Units           | LOQ                 | LOD        | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                           | Analytica            | l Method: EPA   | 6010 Prepara        | ation Meth | nod: EP | <b>A</b> 3050  |                 |              |      |
| Arsenic                                                | 160 r                | mg/kg           | 14.0                | 0.81       | 1       | 03/24/10 11:35 | 03/25/10 18:34  | 7440-38-2    |      |
| Percent Moisture                                       | Analytica            | I Method: ASTN  | и D2974-87          |            |         |                |                 |              |      |
| Percent Moisture                                       | 86.0                 | <b>%</b>        | 0.10                | 0.10       | 1       |                | 03/25/10 08:24  |              |      |
| Sample: M11F 6.0-8.0' Results reported on a "dry-wei   |                      | 4029654066      | Collected           | : 03/17/1  | 0 00:00 | Received: 03/  | /20/10 08:43 Ma | atrix: Solid |      |
| Parameters                                             | Results              | Units           | LOQ                 | LOD        | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                           | Analytica            | I Melhod: EPA 6 | 6010 Prepara        | ation Meth | nod: EP | N3050          |                 |              |      |
| Arsenic                                                | 27.5 1               | ng/kg           | 14.9                | 0.86       | 1       | 03/24/10 11:35 | 03/25/10 18:38  | 7440-38-2    |      |
| Percent Moisture                                       | Analytica            | l Method: ASTM  | 0 D2974-87          |            |         |                |                 |              |      |
| Percent Moisture                                       | 87.7                 | %               | 0.10                | 0.10       | 1       |                | 03/25/10 08:24  |              |      |
| Sample: M11F 8.0-10.0' Results reported on a "dry-wei  |                      | 4029654067      | Collected           | : 03/17/1  | 0 00:00 | Received: 03/  | /20/10 08:43 Ma | atrix: Solid |      |
| Parameters                                             | Results              | Units           | LOQ                 | LOD        | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                           | Analytica            | I Method: EPA 6 | 6010 Prepara        | ation Meth | nod: EP | A 3050         | -               |              |      |
| Arsenic                                                | <b>62.9</b> r        | ng/kg           | 11.6                | 0.67       | 1       | 03/24/10 11:35 | 03/25/10 18:42  | 7440-38-2    |      |
| Percent Moisture                                       | Analytica            | I Method: ASTM  | и D2974 <b>-8</b> 7 |            |         |                |                 |              |      |
| Percent Moisture                                       | 84.5                 | %               | 0.10                | 0.10       | 1       |                | 03/25/10 08:24  |              |      |
| Sample: M11F 10.0-12.0' Results reported on a "dry-wei |                      | 4029654068      | Collected           | : 03/17/1  | 0 00:00 | Received: 03/  | /20/10 08:43 Ma | atrix: Solid |      |
| Parameters                                             | Results              | Units           | LOQ                 | LOD        | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                           | — ——— -<br>Analytica | I Method: EPA 6 |                     | ation Meth | nod: EP | \3050          |                 |              |      |

Date: 03/31/2010 02;49 PM

Arsenic

**Percent Moisture** 

Percent Moisture

#### REPORT OF LABORATORY ANALYSIS

0.10

Page 25 of 36

03/25/10 08:24



0.44

0.10



#### **ANALYTICAL RESULTS**

Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

Sample: M12F 0-4.0'

Lab ID: 4029654069

74.9 %

Collected: 03/17/10 00:00 Received: 03/20/10 08:43 Matrix: Solid

03/25/10 08:25

| Parameters                                          | Results   | Units           | LOQ         | LOD        | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
|-----------------------------------------------------|-----------|-----------------|-------------|------------|---------|----------------|-----------------|--------------|------|
| 6010 MET ICP                                        | Analytica | l Method: EPA   | 6010 Prepar | ation Meth | od: EP/ | A 3050         |                 |              |      |
| Arsenic                                             | 204 ו     | mg/kg           | 4.2         | 0.24       | 1       | 03/24/10 11:35 | 03/25/10 18:50  | 7440-38-2    |      |
| Percent Moisture                                    | Analytica | l Method: ASTN  | и D2974-87  |            |         |                |                 |              |      |
| Percent Moisture                                    | 58.3      | %               | 0.10        | 0.10       | 1       |                | 03/25/10 08:24  |              |      |
| Sample: M12F 4.0-6.0' Results reported on a "dry-w  |           | 4029654070      | Collected   | d: 03/17/1 | 0 00:00 | Received: 03/  | /20/10 08:43 Ma | atrix: Solid |      |
| Parameters                                          | Results   | Units           | LOQ         | LOD        | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                        | Analytica | l Method: EPA ( | 6010 Prepar | ation Meth | od: EP  | A3050          |                 |              |      |
| Arsenic                                             | 313 ו     | mg/kg           | 11.9        | 0.69       | 1       | 03/25/10 10:00 | 03/26/10 15:24  | 7440-38-2    |      |
| Percent Moisture                                    | Analytica | l Method: ASTN  | л D2974-87  |            |         |                |                 |              |      |
| Percent Moisture                                    | 84.7 9    | %               | 0.10        | 0.10       | 1       |                | 03/25/10 08:25  |              |      |
| Sample: M12F 6.0-8.0' Results reported on a "dry-we |           | 4029654071      | Collected   | d: 03/17/1 | 0 00:00 | Received: 03/  | /20/10 08:43 Ma | atrix: Solid |      |
| Parameters                                          | Results   | Units           | LOQ         | LOD        | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010 MET ICP                                        | Analytica | I Method: EPA 6 | 6010 Prepar | ation Meth | od: EPA | A 3050         |                 |              |      |
| Arsenic                                             | 7.6 1     | ng/kg           | 7.4         | 0.43       | 1       | 03/25/10 10:00 | 03/26/10 15:28  | 7440-38-2    |      |
| Percent Moisture                                    | Analytica | l Method: ASTM  | 1 D2974-87  |            |         |                |                 |              |      |

0.10

0.10

1

Date: 03/31/2010 02:49 PM

Percent Moisture

**REPORT OF LABORATORY ANALYSIS** 

Page 26 of 36





Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

QC Batch:

MPRP/3799

Analysis Method:

EPA 6010

QC Batch Method

EPA3050

Analysis Description:

6010 MET

Associated Lab Samples:

4029654009, 4029654010, 4029654011, 4029654012, 4029654013, 4029654014, 4029654015, 4029654016

METHOD BLANK: 277796

Matrix: Solid

Associated Lab Samples:

4029654001, 4029654002, 4029654003, 4029654004, 4029654005, 4029654006, 4029654007, 4029654008, 4029654009, 4029654010, 4029654011, 4029654012, 4029654013, 4029654014, 4029654015, 4029654016

Blank

Reporting

Parameter

Units

Units

Result

Limit

Analyzed

Qualifiers

Arsenic

< 0.12

2.0 03/23/10 17:10

LABORATORY CONTROL SAMPLE:

Parameter

277797

mg/kg

Spike

LCS Result

LCS % Rec % Rec Limits

Arsenic

Parameter

Arsenic

mg/kg

Units

mg/kg

Conc 50

47.0

MSD

Result

53.6

80-120

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

277798

Result

4.6

MSD

277799 MS

MS

94

MSD

% Rec

Max

4029572022

MS Spike Conc.

Spike Conc. 50.9 53

Result 54.6

% Rec

% Rec

Limits 75-125

RPD RPD Qual 20





Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

QC Batch:

MPRP/3800

Analysis Method:

EPA 6010

QC Batch Method:

EPA 3050

Analysis Description:

6010 MET

Associated Lab Samples:

4029654017, 4029654018, 4029654019, 4029654020, 4029654021, 4029654022, 4029654023, 4029654024,

4029654025, 4029654026, 4029654027, 4029654028, 4029654029, 4029654030, 4029654031, 4029654032,

4029654033, 4029654034, 4029654035, 4029654036

METHOD BLANK: 277880

Matrix: Solid

Associated Lab Samples:

4029654017, 4029654018, 4029654019, 4029654020, 4029654021, 4029654022, 4029654023, 4029654024, 4029654025, 4029654026, 4029654027, 4029654028, 4029654029, 4029654030, 4029654031, 4029654032,

4029654033, 4029654034, 4029654035, 4029654036

Blank

Reporting

Parameter

Units

Result

Limit Analyzed Qualifiers

mg/kg < 0.12 2.0 03/25/10 00:40

LABORATORY CONTROL SAMPLE:

277881

Units

mg/kg

Spike

LCS

LCS % Rec % Rec

Qualifiers

Units Conc Limits Parameter Result mg/kg 50 49.7 99 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

277882

Result

109

277883

MS

MSD

MS

MSD

% Rec

Max

Parameter

Arsenic

Arsenic

MSD Spike

104

106

% Rec

Limits

RPD RPD

Qual

Arsenic

4029654017

Spike Conc. Conc

MS Result 244

Result 250 % Rec 129 132

75-125

2

20 M0

Date: 03/31/2010 02:49 PM

Page 28 of 36



Project: 7201.15 KEWAUNEE MARSH

Pace Project No.: 4029654

QC Batch: MPRP/3805 Analysis Method: EPA 6010
QC Batch Method: EPA3050 Analysis Description: 6010 MET

Associated Lab Samples: 4029654037, 4029654038, 4029654039, 4029654040, 4029654041, 4029654042, 4029654043, 4029654044,

4029654045, 4029654046, 4029654047, 4029654048, 4029654049, 4029654050, 4029654051, 4029654052,

4029654053, 4029654054, 4029654055, 4029654056

METHOD BLANK: 278047 Matrix: Solid

Associated Lab Samples: 402965403'7, 4029654038, 4029654039, 4029654040, 4029654041, 4029654042, 4029654043, 4029654044,

4029654045, 4029654046, 4029654047, 4029654048, 4029654049, 4029654050, 4029654051, 4029654052,

 $4029654053,\,4029654054\,,4029654055,\,4029654056$ 

Blank Reporting

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 mg/kg
 <0.12</td>
 2.0
 03/25/10 02:43

Arsenic mg/kg <0.12 2.0 03/25/10 02:4

LABORATORY CONTROL SAMPLE: 278048

LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Arsenic 50 48.3 97 80-120 mg/k

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 278049 278050

MS MSD

4029654037 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc Conc. Result % Rec % Rec Limits RPD RPD Qual Result Result 46.6 404 75-125 .8 20 Arsenic mg/kg 401 453 449 101 100





Project:

7201.15 KEWAUNEE MARSH

Pace Project No .:

4029654

QC Batch:

MPRP/3807

Analysis Method:

EPA 6010

QC Batch Method:

EPA 3050

Analysis Description:

6010 MET

Associated Lab Samples:

4029654057, 4029654058, 4029654059, 4029654060, 4029654061, 4029654062, 4029654063, 4029654064, 4029654065, 4029654066, 4029654067, 4029654068, 4029654069

METHOD BLANK: 278216

Matrix: Solid

Associated Lab Samples:

4029654057, 4029654058, 4029654059, 4029654060, 4029654061, 4029654062, 4029654063, 4029654064,

4029654065, 4029654066, 4029654067, 4029654068, 4029654069

Blank

Reporting

Parameter

Units

Units

Result

Limit

Analyzed

Qualifiers

Arsenic

mg/kg

0.15J

2.0 03/25/10 17:03

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

278217

Spike Conc.

LCS Result

LCS % Rec % Rec Limits

Qualifiers

Arsenic

mg/kg

mg/kg

50

47.7

278219

95

80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

278218

7 7

MSD

Spike

MS

MSD Result

56.9

MSD % Rec % Rec

Max

RPD RPD

Arsenic

4029668002 Units Result

MS Spike

Conc. 56.2

Conc. Result 55.9

57.0

MS % Rec 88

Limits 75-125 88

Qual .03 20

Date: 03/31/2010 02:49 PM

REPORT OF LABORATORY ANALYSIS

Page 30 of 36





Project<sup>,</sup>

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

QC Batch:

MPRP/3810

Analysis Method: Analysis Description: EPA 6010 6010 MET

Q C Batch Method:

Associated Lab Samples:

EPA 3050

4029654070, 4029654071

Matrix: Solid

Associated Lab Samples:

METHOD BLANK: 278614

4029654070, 4029654071

Blank

Reporting

Parameter

Units

Result

Limit

Qualifiers Analyzed

Arsenic

mg/kg

< 0.12

2.0 03/26/10 14:34

LABORATORY CONTROL SAMPLE:

Parameter

Parameter

Units

4029669005

Result

0.53J

Spike Conc.

LCS Result

LCS % Rec

% Rec Limits

Qualifiers

Arsenic

mg/kg

50

48.9

98

80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:

278616

278617

MS

MS Spike MSD Spike

MSD Result Result

MS % Rec

MSD % Rec % Rec Limits

Max RPD RPD Qual

Arsenic

mg/kg

Units

Conc

52.1

Conc. 51.9

50.0 50.3 95

75-125

.5 20







Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

QC Batch:

PMST/3750

Units

Analysis Method:

ASTM D2974-87

QC Batch Method:

ASTM D2974-87

Analysis Description:

Dry Weight/Percent Moisture

Associated Lab Samples:

4029654001, 4029654002, 4029654003, 4029654004, 4029654005, 4029654006, 4029654007, 4029654008, 4029654009, 4029654010, 4029654011, 4029654012, 4029654013, 4029654014, 4029654015, 4029654016,

4029654017, 4029654018, 4029654019, 4029654020

SAMPLE DUPLICATE: 278467

4029654001 Result

Dup Result

**RPD** 

Max RPD

Qualifiers

Parameter Percent Moisture

%

43.9

10







Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

QC Batch:

PMST/3751

Analysis Method:

ASTM D2974-87

QC Batch Method:

ASTM D2974-87

Analysis Description:

Dry Weight/Percent Moisture

Associated Lab Samples:

2

 $\frac{4029654029}{4029654030},\frac{4029654031}{4029654031},\frac{4029654032}{4029654033},\frac{4029654034}{4029654034},\frac{4029654035}{4029654036},\frac{4029654036}{4029654030},\frac{4029654039}{4029654030},\frac{4029654039}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654033}{4029654030},\frac{4029654039}{4029654030},\frac{4029654039}{4029654030},\frac{4029654039}{4029654030},\frac{4029654039}{4029654030},\frac{4029654039}{4029654030},\frac{4029654039}{4029654030},\frac{4029654039}{4029654030},\frac{4029654039}{4029654030},\frac{4029654039}{4029654030},\frac{4029654039}{4029654030},\frac{4029654039}{4029654030},\frac{4029654039}{4029654030},\frac{4029654039}{4029654030},\frac{4029654030}{4029654030},\frac{4029654030}{4029654030},\frac{4029654030}{4029654030},\frac{4029654030}{4029654030},\frac{4029654030}{4029654030},\frac{4029654030}{4029654030},\frac{4029654030}{4029654030},\frac{4029654030}{4029654030},\frac{4029654030}{4029654000},\frac{4029654030}{4029654000},\frac{4029654030}{4029654000},\frac{4029654000}{4029654000},\frac{4029654000}{4029654000},\frac{4029654000}{4029654000},\frac{4029654000}{4029654000},\frac{4029654000}{40296540000}$ 

SAMPLE DUPLICATE: 278523

Parameter

4029654021 Result

Dup Result

**RPD** 

Qualifiers

Percent Moisture

%

Units

48.8

49.5

10

Max RPD







Project:

7201.15 KEWAUNEE MARSH

Pace Project No.:

4029654

QC Batch:

PMST/3752

Analysis Method:

ASTM D2974-87

QC Batch Method:

ASTM D2974-87

Analysis Description:

Dry Weight/Percent Moisture

Associated Lab Samples:

4029654041, 4029654042, 4029654043, 4029654044, 4029654045, 4029654046, 4029654047, 4029654048,

4029654057, 4029654058, 4029654059, 4029654060

SAMPLE DUPLICATE: 278539

|                  |       | 4029654041 | Dup    |     | Max |            |
|------------------|-------|------------|--------|-----|-----|------------|
| Parameter        | Units | Result     | Result | RPD | RPD | Qualifiers |
| Percent Moisture | %     | 64.1       | 64.6   | 8.  | 10  |            |

Date: 03/31/2010 02:49 PM

REPORT OF LABORATORY ANALYSIS









Project: 7201.15 KEWAUNEE MARSH

Pace Project No.: 4029654

QC Batch: PMST/3753 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Associated Lab Samples: 4029654061, 4029654062, 4029654063, 4029654064, 4029654065, 4029654066, 4029654067, 4029654068,

4029654069, 4029654070, 4029654071

SAMPLE DUPLICATE: 278559

|                  |       | 4029654061 | Dup    |     | Max |            |
|------------------|-------|------------|--------|-----|-----|------------|
| Parameter        | Units | Result     | Result | RPD | RPD | Qualifiers |
| Percent Moisture | %     | 69.3       | 66.2   | 5   | 10  |            |





#### **QUALIFIERS**

Project: 7201.15 KEWAUNEE MARSH

Pace Project No.: 4029654

#### **DEFINITIONS**

OF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

U - Indicates the compound was analyzed for, but not detected.

#### **ANALYTE QUALIFIERS**

Date: 03/31/2010 02:49 PM

B Analyte was detected in the associated method blank.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.



RMT.

## **CHAIN OF CUSTODY RECORD**

63813

|                                                                                                       |                                                                      |        | ladison, WI 53        |                   |                            | K            | ·           | F                             | iltered | (Yes/No                               | 1/W        | // | ///                        |                                                             |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------|-----------------------|-------------------|----------------------------|--------------|-------------|-------------------------------|---------|---------------------------------------|------------|----|----------------------------|-------------------------------------------------------------|
| Project No                                                                                            |                                                                      | Projec | t/Client:             | www.rmtinc.com    | $\neg$                     |              |             | Preser                        |         |                                       | <u>/4/</u> | // |                            |                                                             |
| 7201, 15                                                                                              | 7                                                                    | 1ce    | wanze R               | nast              |                            |              |             |                               | -sted   | //                                    |            | // | ///                        | PRESERVED COM                                               |
| Project Ma                                                                                            |                                                                      |        | _                     |                   |                            |              |             | Secri                         |         | //                                    | //         | /, | ///                        | A — NONE<br>B — HNO <sub>1</sub>                            |
| Diele                                                                                                 | - F.JL                                                               | 1 Bol  | . Startert            | 4                 | Umber<br>ainers            | ×            | M           |                               | /,      | //                                    | //         | // | ///                        | C — H <sub>2</sub> SO <sub>4</sub><br>D — N <sub>2</sub> OH |
| Lab No.                                                                                               | Yr. <u>lO</u><br>Date                                                | Time   |                       | Sample Station ID | Total Number of Containers | MATRIX       | Andr        |                               | //      | //                                    | //         |    | Comment                    | E — HCI<br>F — METHANOL<br>•••                              |
| 100                                                                                                   | 3/17                                                                 |        | M 2/4                 | D-2.51            | 1                          | Soil         | 12          | ĺ                             | ĺ       | ÍÍ                                    |            | 一  | Sent i                     | 2.8/2c/c beg                                                |
| 002                                                                                                   | 1                                                                    |        | 14214                 | 2.5-5.0           |                            | 1            | \pi         |                               |         |                                       |            |    |                            | 1                                                           |
| 013                                                                                                   |                                                                      |        | M2A                   | 5.0-7.5           | 1                          |              | Iω          |                               |         |                                       |            |    |                            |                                                             |
| 064                                                                                                   |                                                                      |        | MZA                   | 7.5-16.           | 1                          |              | ľχ          |                               |         |                                       |            |    |                            | 1                                                           |
| 005                                                                                                   |                                                                      |        | MIB                   | 0-5'2             | -                          |              | lχ          |                               |         |                                       |            |    |                            |                                                             |
| 000                                                                                                   |                                                                      |        | MIS                   | 7.5-5.0           |                            |              | X           |                               |         |                                       |            |    |                            |                                                             |
| 180                                                                                                   | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                              |        |                       |                   | (                          |              | <u>  k</u>  |                               |         |                                       |            |    |                            |                                                             |
| 608                                                                                                   |                                                                      |        | 142B                  | 7.5-10.0          | 1                          |              | X           |                               |         |                                       |            |    |                            |                                                             |
| D30                                                                                                   |                                                                      |        | MZC                   | Ď-2. <i>5</i>     | 1                          | $\downarrow$ | >           |                               |         |                                       |            |    |                            | $\downarrow$                                                |
| 010/402                                                                                               | 3/12                                                                 |        | Mzc                   | 2,5-5,0           | 1                          | 50,1         | X           |                               |         |                                       |            |    | Sant .h                    | 20 lock bass                                                |
| SPECIAL IN                                                                                            | ISTRUCTIO                                                            | ONS    | Promoter of the state |                   | U                          |              |             |                               |         | · · · · · · · · · · · · · · · · · · · |            |    |                            |                                                             |
|                                                                                                       |                                                                      |        |                       |                   |                            |              |             |                               |         |                                       |            |    |                            |                                                             |
| AL.                                                                                                   | AMPLER Relinquished by (Signature) Date/Time Received by (Signature) |        |                       |                   | , ,                        | te/Time      | 1           | S ASSOX<br>I SAMPL<br>ammable | E\$     | Turn                                  | Around     |    | one) Norr                  | nal Rush                                                    |
| Relinquishe                                                                                           | elinquished by (Signature)  Date/Time Recei ed by (Signature)        |        |                       |                   | שמ                         | te/Time      | 1           | orrosive                      |         |                                       |            |    | (For Lab U                 | se Only)                                                    |
| elinquished by (Signature)  CS WASH CS  3/20/10 843  Received by (Signature)  CS WASH CS  3/20/10 843 |                                                                      |        |                       |                   | re/Time<br>/10 843         | I .          | phly Toxion |                               |         | ceipt Ter<br>np Blank                 | •          |    | Receipt pH<br>(Wet/Metals) |                                                             |
|                                                                                                       |                                                                      |        | t Intact/Not          |                   |                            | ,            | •           |                               |         | <b>-</b>                              |            |    |                            |                                                             |
|                                                                                                       | ·····                                                                |        |                       |                   |                            |              |             |                               |         | 1                                     |            |    |                            |                                                             |



## **CHAIN OF CUSTODY RECORD**

| -                    |              | -           | ladison, WI 53              |                                |                            |                 |        |          |             |             | Yes/No)     | /v/      | $\angle$    |          |          |                                                |
|----------------------|--------------|-------------|-----------------------------|--------------------------------|----------------------------|-----------------|--------|----------|-------------|-------------|-------------|----------|-------------|----------|----------|------------------------------------------------|
|                      | 33 1-4444    |             |                             | www.rmtinc.com                 |                            | 1               | _      |          |             |             | de /A       |          |             | //       | λ,       |                                                |
| Project No. 7201, 13 |              | Projec      | t/Client:                   | ars)                           |                            | Ì               |        | 345 S    |             | رکي         |             | //       | //          | ///      |          | PRESERVED CODES                                |
| Project Mana         |              | ontact Pe s | on:                         |                                |                            |                 |        |          | ,se         | \$ <b>`</b> | //          |          | //          | ///      | //       | A — NONE                                       |
|                      |              |             | stanfor                     | 1.1                            | ra er                      |                 |        |          | ₹6 <u>/</u> |             | ///         | //       |             |          |          | B HNO₃                                         |
| Vick 1               | -,56         | / LDo:      | > Standa                    | 74                             | Total Number of Contoiners | ×               |        | 145°     | 150         | / /         | ///         | //       | //          |          |          | C — H <sub>2</sub> SO <sub>4</sub><br>D — NoOH |
| Lab No. Y            | r. 10        |             |                             |                                | 7 Z &                      | MATRIX          | PZ     | X        | Ζ,          | /,          | //          | / ,      | //          |          |          | E — HCI                                        |
| Lub 140.             | Date         | Time        |                             | Sample Station !D              | कृ कृ                      | 2               | //     | T        |             |             | //          |          | /           | Comments |          | F — METHANOL<br>G —                            |
| 01)                  | 3/17         | _           | MZC                         | 5,0-7.57                       | Ì                          | Soil            | X      |          |             | ĺ           |             |          |             |          |          | 2 plack bays                                   |
| 012                  | )            |             | mic                         | 7.5-10.0                       | 1                          | 1               | X      |          |             |             |             | İ        |             | 1        | <u> </u> |                                                |
| 013                  |              |             | m2E                         | 0-2.5                          | ١                          |                 | $\chi$ |          |             |             |             |          |             |          |          |                                                |
| 014                  |              |             | MIE                         | 7.5-5.0'                       | 1                          |                 | X      |          |             |             |             |          |             | 1        |          |                                                |
| 0/5                  |              |             | MZE                         | 1                              |                            | χ               |        |          |             |             |             |          | 1           |          |          |                                                |
| Olo                  |              |             | MIE                         | 7.5-10.3                       | 1                          |                 | 火      |          |             |             |             |          |             | 1        |          |                                                |
| 017                  |              |             | M2F                         | 0-2.5'                         | 1                          |                 | X      |          |             |             |             |          |             |          |          |                                                |
| 018                  |              |             | MIF                         | 7.5-5,•                        | }                          |                 | χ      |          |             |             |             |          |             |          |          |                                                |
| 619                  | $\downarrow$ |             | MZF                         | 5,0-7.51                       | 1                          | 1               | X      |          |             |             |             |          |             | V        |          |                                                |
| 600                  | 3/17         |             | MJE                         | 7,5-10,0                       | Ì                          | Soil            | X      |          |             |             |             |          |             | Sen't    | 2.       | dock bugs                                      |
| SPECIAL INS          | TRUCTIO      | ONS         |                             |                                |                            |                 |        |          |             |             | -           |          |             |          |          |                                                |
|                      |              |             |                             |                                |                            |                 |        |          |             |             | -           |          |             |          |          |                                                |
| SAMPLER Re           | inquishe     |             | ot re) Date<br>3/18/10/6:   | e/Time Received by (Signature) | Da                         | te/Time<br>D/CO | HAZ    | ARDS A   |             |             | Tom Are     | ound (ci | ircle on    | e) Norm  | ا راه    | Rush                                           |
| / Lb. 2              | S_D_         | 2/19/1      | 9 100                       |                                | MTH S                      |                 | S      | Repo t D |             |             | -           | '        | (03)1       |          |          |                                                |
| Relinquished         | by (Sig/     | l Da        | le/Time                     | 1 -                            | Flam                       |                 |        | Керот    |             |             |             |          |             |          |          |                                                |
| Dif                  | -            |             |                             | 1                              | Com<br>Highly              |                 |        |          |             | _           | (For Lab Us | e Only)  |             |          |          |                                                |
| Relinquished         | by (Sign     | at re)      | Dote                        | e/Time Received by (Signature) |                            | te/Time         | 1      | Othe     |             |             |             |          | R ij        |          |          | eceipt pH                                      |
| CSLOOKS              | tics         | 3/20        | 1843                        | _                              |                            | 1               |        | lemp B   | lank        | Y (1        | <b>'</b> )  | (^       | Vet/Metals} |          |          |                                                |
| Custody Seal         |              | ent/Absen   | 3120 (10 8<br>i\ Intact/Not | 19 July July 11 Hotact Seal #s | <del>,</del>               |                 |        |          |             |             | <u> </u>    |          |             |          |          |                                                |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            | ladison, WI 537                     |                   |                            |                    |                 |        | Fil                      | tered ( | Yes/No)          | W  | // | ///         | //     | ///                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|-------------------------------------|-------------------|----------------------------|--------------------|-----------------|--------|--------------------------|---------|------------------|----|----|-------------|--------|--------------------------------------------------------------------------------------------------------|
| Phone 608/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>'</sup> 831-444 | 1 • Fax 60 | 8/831-3334 • w                      | ww.rmtinc.com     |                            |                    |                 | ī      | reserv                   | ed (Co  | ode) /1          | /  | /_ | ///         |        | / /                                                                                                    |
| Project No. 7201 (15) Proj ct Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nager/Co             | ntact Pers | it/Client: u au nee Mo on:  Stantar | •                 | Total Number of Containers | ×                  | And             | 74.86. | gety                     | şto /   |                  |    |    |             |        | PRESERVED CODES A — NONE B — HNO <sub>3</sub> C — H <sub>2</sub> SO <sub>4</sub> D — N <del>o</del> OH |
| Lab No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Yr. 10<br>Dat        | Time       |                                     | Sample Station ID | Total N<br>of Con          | MATRIX             | Ari             |        | /v<br>/                  | /       | //               | // | // | Comments    | ::     | E — HCI<br>F — METHANOL<br>G —                                                                         |
| 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3/17                 |            | m 512                               | 0.7.0,            | 1                          | Soil               | $\aleph$        |        |                          |         |                  |    |    | Sent.       | L 2.)  | lack bass                                                                                              |
| -022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |            | MSA                                 | 2-4.0`            | 1                          |                    | $\chi$          |        |                          |         |                  |    |    |             | 1      |                                                                                                        |
| 023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                    |            | MSA                                 | 4-6,0             |                            |                    | χ               |        |                          |         |                  |    |    |             | 1      |                                                                                                        |
| 024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |            | M 5A                                | 6-80              | 1                          |                    | X               |        |                          |         |                  |    |    |             |        |                                                                                                        |
| 075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |            | MSA                                 | 8-100,            | }                          |                    | k               |        |                          |         |                  |    |    |             |        |                                                                                                        |
| 076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                    |            | M 5 B                               | 0-2,01            |                            |                    | X               |        |                          |         |                  |    |    |             |        |                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                    |            | M5B                                 | 20-4.0,           | \                          |                    | $ \lambda $     |        |                          |         |                  |    |    |             |        |                                                                                                        |
| 078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |            | MSB                                 | 4.0-6.0           | 1                          |                    | X               |        |                          |         |                  |    |    |             |        |                                                                                                        |
| 529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\downarrow$         |            | MSB                                 | 6.0-8.D'          | [                          |                    | $\chi$          |        |                          |         |                  |    |    | 4           | J      |                                                                                                        |
| 630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3/17                 |            | M5B                                 | 8.0-10.0          | 1                          | Soil               | $ \mathcal{X} $ |        |                          |         |                  |    |    | Senf.       | h Z.)p | lock bugs                                                                                              |
| SPECIAL IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STRUCTIO             | ONS        |                                     |                   |                            |                    | ·               |        |                          |         |                  |    |    | -           |        |                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |                                     |                   |                            |                    |                 |        |                          |         |                  |    |    |             |        |                                                                                                        |
| Relinquished by (Signature) Date/Time   Received by (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |            |                                     |                   |                            | e/Time             | ν               | VITH S | ASSOC<br>SAMPLE<br>mable | ES      | Turn Ar          |    |    | one) Narm   | R      | ush                                                                                                    |
| D. ton 3/19/10/200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |            |                                     |                   | Dar                        | e/ nme             |                 | Com    | osive<br>y Toxic         |         |                  |    | AG | (For Lab Us | •      |                                                                                                        |
| Relinquish d by (Signature) Date/Time Received by (Signature)  Signature Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Supplies Su |                      |            |                                     |                   |                            | e/Time<br>U 10 845 |                 | Othe   | -                        |         | Receip<br>Temp ( |    |    |             |        | c ipt pH<br>(et/Metals)                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.1                  |            | ntact/Not Ir                        |                   |                            |                    |                 |        |                          |         |                  |    |    | _           |        |                                                                                                        |

# RMT.

| RMT Inc., 744 Heartland Trail, Madison, WI 53717-1934                                                                                  |                               |                           |                 | F      | iltered ( | Yes/No) / | W/         | ///         | ////                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|-----------------|--------|-----------|-----------|------------|-------------|------------------------------------------------------------------------------------|
| Phone 608/831-4444 • Fax 608/831-3334 • www.rmtinc.com                                                                                 |                               |                           |                 | Preser | ved (Co   | ode) //   | /_/        | ///         |                                                                                    |
| Project No. 7201.15  Project/Client: 1/201.15  Project Manager/Contact Person:  Dicle Gold / Bob Stanfort                              | ber<br>iers                   |                           | Prody.          | s ed   | Se Se S   |           |            |             | PRESERVED CODES  A - NONE  B - HNO <sub>3</sub> C - H <sub>2</sub> SO <sub>4</sub> |
| P 200 1-32 / 1063 21-7010170                                                                                                           | a in a                        | ž                         | 1 74            | /25°/  | //        | ///       |            | ///         | D-NoOH                                                                             |
| Lab No. Yr. 10 Date Time Sample Station ID                                                                                             | Total Number<br>of Containers | MATRIX                    | Pro             |        | //        | //        |            | Comment     | E HCI<br>F METHANOL<br>s: G                                                        |
| 031 3/17 MSC 0-2.5°                                                                                                                    | ١                             | Soil                      | X               |        |           |           |            | Sent.       | il ziblack bags                                                                    |
| 032 1 MSC 2.5-S,D'                                                                                                                     | (                             | 1                         | X               |        |           |           |            |             |                                                                                    |
| 053   MSC 5,0-7,5                                                                                                                      | ١                             |                           | 入               |        |           |           |            |             |                                                                                    |
| 034 MSC 7.5-10.0                                                                                                                       | Ì                             |                           | Х               |        |           |           |            |             |                                                                                    |
| 035   MSE 0-2.01                                                                                                                       | 1                             |                           | X               |        |           |           |            |             |                                                                                    |
| 036 MSE 2.0-4.01                                                                                                                       | 1                             |                           | X               |        |           |           |            |             |                                                                                    |
| 037   MSE 4.0-6.0'                                                                                                                     | {                             |                           | X               |        |           |           |            |             |                                                                                    |
| 058   MSE 6,0.80'                                                                                                                      | 1                             |                           | χ               |        |           |           |            |             |                                                                                    |
| 539 V MSE 8,0-10.0'                                                                                                                    | 1                             | 1                         | X               |        | -         |           |            |             |                                                                                    |
| 640 3117 MEE 10,0-12.01                                                                                                                | 1                             | Soil                      | X               |        |           |           |            | Sent.       | Zipiloche bags                                                                     |
| SPECIAL INSTRUCTIONS                                                                                                                   |                               |                           |                 |        |           |           | •          | •           |                                                                                    |
|                                                                                                                                        |                               |                           |                 |        |           |           |            |             |                                                                                    |
| SAMPLER Relinquished by (Signature)  Date/Time Received by (Signature)  Relinquished by (Signature)  Date/Time Received by (Signature) |                               | e/Time<br>0 200<br>e/Time | HAZARDS<br>WITH | SAMPI  | LES       |           | ound (circ |             | Rush                                                                               |
| D. Fennel 3)19/101700                                                                                                                  | - Dan                         | e, rane                   | ☐ Co            |        | ic        |           | - 6        | (For Lab Us | ·                                                                                  |
| Relinquished by (Signature)  CG (00) SM15  3/20/10 845  HUM HWM                                                                        | 5,101                         | e/Time                    |                 | •      |           | Receipt   | Temp: (G   |             | Receipt pH<br>(Wet/Metals)                                                         |
| Custody Seal: Present/Custody Seal #s                                                                                                  |                               |                           |                 |        |           |           |            |             |                                                                                    |

# RMT.

|                                                                                                                                                                     | RMT Inc., 744 Heartland Trail, Madison, Wl 53717-1934<br>Phone 608/831-4444 • Fax 608/831-3334 • www.rmtinc.com |            |                                  |                 |                               |          |                                         |                             |                      |        | Yes/No)          | W/              | //                                            |              | //       |                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------|----------------------------------|-----------------|-------------------------------|----------|-----------------------------------------|-----------------------------|----------------------|--------|------------------|-----------------|-----------------------------------------------|--------------|----------|------------------------------------------------------------------------|
| Phone 608/                                                                                                                                                          | 831-444                                                                                                         | 4 • Fax 60 | 8/831-3334 • www.r               | munc.com        | _                             |          |                                         |                             |                      | ed (Co |                  |                 | <u>/                                     </u> | <u>/ / /</u> | _/_/     | / /                                                                    |
| Project No<br>7201. {<br>Project Mo                                                                                                                                 | 5                                                                                                               | Ke         | t/Client:<br>wauner Marsi<br>on: | L               | -                             |          |                                         | differ                      | AUE                  | sied/  |                  | //              |                                               |              | //       | PRESERVED CODES<br>A — NONE                                            |
| ] '                                                                                                                                                                 | •                                                                                                               |            | ob Stanfarth                     |                 | Total Number<br>of Containers | RIX      |                                         | dife?                       | \$\\<br>\$\_\<br>\$\ |        |                  | //              |                                               |              |          | B — HNO <sub>3</sub><br>C — H <sub>2</sub> SO <sub>4</sub><br>D — NoOH |
| Lab No.                                                                                                                                                             | Yr. <u>iO</u><br>Date                                                                                           | Time       | Sai                              | mple Station ID | Total N<br>of Cor             | MATRIX   | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\  |                             | //                   | //     | //               | //              | //                                            | Comments     | s:       | E — HCI<br>F — METHANOL<br>G —                                         |
| 041                                                                                                                                                                 | 3/17                                                                                                            |            | MSE 12-14                        |                 | 1                             | Soil     | $\bowtie$                               |                             |                      |        |                  |                 |                                               | Sen ,        | 7. Z.    | lock bags                                                              |
| 042                                                                                                                                                                 | 1                                                                                                               |            | MSE 14-                          |                 |                               |          | ळ                                       |                             |                      |        |                  |                 |                                               |              |          |                                                                        |
| 043                                                                                                                                                                 | <u> </u>                                                                                                        |            | A5F 0-                           |                 | 1 1                           |          | $\mathcal{X}$                           |                             |                      |        |                  |                 |                                               |              | <u> </u> |                                                                        |
| 644                                                                                                                                                                 |                                                                                                                 |            | MSF 2.                           |                 | 1 1                           |          | X                                       |                             |                      |        |                  |                 |                                               |              | <u> </u> |                                                                        |
| 045                                                                                                                                                                 |                                                                                                                 |            | MSF 5                            |                 | ***                           |          | λ                                       |                             |                      |        |                  |                 |                                               |              | <u> </u> |                                                                        |
| 046                                                                                                                                                                 |                                                                                                                 |            | MSF 7                            | .5-10.cl        | (                             |          | λ                                       |                             |                      |        |                  |                 |                                               | į            | <u> </u> |                                                                        |
| 647                                                                                                                                                                 |                                                                                                                 |            | MLE O                            | -401            |                               |          | λ                                       |                             |                      |        |                  |                 |                                               |              |          |                                                                        |
| 648                                                                                                                                                                 |                                                                                                                 |            | MGE 4                            |                 | 1                             |          | λ                                       |                             |                      |        |                  |                 |                                               |              |          |                                                                        |
| 849                                                                                                                                                                 |                                                                                                                 |            | MLE 6-                           | 8,0             | } }                           | d        | X                                       |                             |                      |        |                  |                 |                                               |              | -        |                                                                        |
| 620                                                                                                                                                                 | 3/17                                                                                                            |            | M7E 0-                           | 7.0'            |                               | Sail     | X                                       |                             |                      |        |                  |                 |                                               | Sentia       | 2.71     | och Lags                                                               |
| SPECIAL IN                                                                                                                                                          | ISTRUCTI                                                                                                        | ONS        | -                                |                 |                               |          | -                                       |                             |                      |        |                  | -               |                                               |              |          |                                                                        |
|                                                                                                                                                                     |                                                                                                                 |            |                                  |                 |                               |          |                                         |                             |                      |        |                  |                 |                                               |              |          |                                                                        |
| SAMPLER Relinquished by (Signature)  3/10/(o 1(:))  Relinquished by (Signature)  Date/Time Received by (Signature)  Received by (Signature)                         |                                                                                                                 |            |                                  |                 |                               | e/Time   | > HAZ                                   | ARDS A<br>MTH S.<br>I Flamr | AMPLE                |        | Turn A<br>Report |                 | circle c                                      | one) Norm    | gD R     | ush<br>                                                                |
| D. Enu 3/19/10 1700                                                                                                                                                 |                                                                                                                 |            |                                  |                 |                               |          |                                         | Corro<br>Highly             |                      |        | D                | ot Temp         | .)                                            | (For Lab Use | •        |                                                                        |
| Relinquished by (Signature)  One/Time Received by (Signature)  One/Time Received by (Signature)  One/Time Received by (Signature)  One/Time Received by (Signature) |                                                                                                                 |            |                                  |                 |                               | Time  43 |                                         | Other                       | r (list)             |        | Temp             | priemp<br>Blank | Υ (                                           |              |          | ceipt pH<br>et/Metals}                                                 |
| <del></del>                                                                                                                                                         | <del>(</del>                                                                                                    | ent/Absen  | ntact/Not Intact                 |                 |                               | ,        | *************************************** |                             |                      |        |                  |                 | _                                             |              |          |                                                                        |

## RMT

## **CHAIN OF CUSTODY RECORD**

| RMT Inc., 744 Heartland Trail, Madison, WI 53717-1934                                                                                 |                               |                          |                 |                         | Fil             | ered ( | Yes/No} | NI       |          |              |                 | ///                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------|-----------------|-------------------------|-----------------|--------|---------|----------|----------|--------------|-----------------|------------------------------------------------------------------|
| Phone 608/831-4444 • Fax 608/831-3334 • www.rmtinc.com                                                                                |                               |                          |                 |                         | reserv          | _ •    |         | 4/       | <u> </u> | / /          | //              | //                                                               |
| Project No. 7201.15 Project Manager/Contact Person:  Project Manager/Contact Person:                                                  |                               |                          | Pr.             |                         | gy <sup>e</sup> | sied/  | //      |          | /        | //           |                 | PRESERVED CODES<br>A — NONE                                      |
| Dich Fish / Bob Stafe H                                                                                                               | Total Number<br>of Containers | ×                        |                 | Wes.                    | 21/             | )/     | //      | //       | //       | //           |                 | B HNO <sub>3</sub><br>C H <sub>2</sub> SO <sub>4</sub><br>D NoOH |
| Lab No. Yr. 10 Date Time Sample Station ID                                                                                            | Total N<br>of Con             | MATRIX                   | AC              |                         | 2 r /           | /      | //      | //       | //       | Com          | ments:          | E — HCI<br>F — METHANOL<br>G —                                   |
| S/ 3/17   M7E 2-4.0                                                                                                                   | \                             | 501                      | X               |                         |                 |        |         |          |          | SQ.          | G.5 -1. f       | lock bags                                                        |
| 052 M7E 4-6.0                                                                                                                         |                               | 1                        | X               |                         |                 |        |         |          |          |              |                 |                                                                  |
| 053 M7E 6-8.0                                                                                                                         |                               |                          | X               |                         |                 |        |         |          |          |              |                 |                                                                  |
| 054 M8E 0-40                                                                                                                          | 1                             |                          | 18              |                         |                 |        |         |          |          |              |                 | :                                                                |
| 055 M8E 4-6.0                                                                                                                         |                               |                          | $ \mathcal{X} $ |                         |                 |        |         |          |          |              |                 |                                                                  |
| 056 M8E 6-8.0                                                                                                                         |                               |                          | X               |                         |                 |        |         |          |          |              | <u> </u>        |                                                                  |
| c57   M9F 0-4.0                                                                                                                       |                               |                          | 1x              |                         |                 |        |         |          |          |              |                 |                                                                  |
| 058 M9F 4.0-6,0                                                                                                                       | <b> </b>                      |                          |                 |                         |                 |        |         |          |          |              |                 |                                                                  |
| 059 J M9F 6.0-8.0                                                                                                                     |                               |                          | $ \chi $        |                         |                 |        |         |          |          |              | <u>لــــــل</u> |                                                                  |
| 660 3/17 MIDF 0-4.0                                                                                                                   | 1                             | 50.4                     | $ \lambda $     |                         |                 |        |         |          |          | 5en:         | f.2 2/p         | lick bays                                                        |
| SPECIAL INSTRUCTIONS                                                                                                                  |                               |                          |                 |                         |                 |        |         |          | •        | <b>W</b>     |                 | ,                                                                |
|                                                                                                                                       |                               |                          |                 |                         |                 |        | _       |          | _        | _            |                 |                                                                  |
| SAMPLER Relinquished by (Signature)  3/13/10  Relinquished by (Signature)  Date/Time Received by (Signature)  Received by (Signature) | 19/10                         | e/Time<br>DO Q<br>e/Time | HAZA<br>V       | ARDS A<br>WTH S<br>Flam | AMPLE           |        |         | Due      |          | one) (       | Vormal          | Rush                                                             |
| D- Enewy 3/19/10 1700                                                                                                                 | Dui                           | o, mio                   | _               | Corre                   |                 |        |         |          |          | (For Lo      | ab Use Only)    |                                                                  |
| Relinquished by (Signature)  Date/Time Received by (Signature)                                                                        | Dat                           | e/Time                   | 1               | Highly<br>Other         |                 |        |         | ipt Temp |          |              | ſ               | Receipt pH                                                       |
| C5601840 312011 843 Freethibrur                                                                                                       | 31201                         | (U 843                   |                 | Отне                    | 11121)          |        | Temp    | Blank    | Y        | ( <u>L</u> ) | ,               | Wet/Metals)                                                      |
| Custody Seal: Present/Absent Intact/Not Intact Seal #s                                                                                |                               |                          |                 |                         |                 |        |         |          |          | _            | _               |                                                                  |



| •                                      |                                    | •           | ladison, WI 53717-1     |                 |                               |              | , in the second |          | Fi                      | iltered ( | (Yes/No)             | /W/       | /_          |           | ////                               |
|----------------------------------------|------------------------------------|-------------|-------------------------|-----------------|-------------------------------|--------------|-----------------|----------|-------------------------|-----------|----------------------|-----------|-------------|-----------|------------------------------------|
| Phone 608/83                           | 31-4444                            | • Fax 60    | 8/831-3334 • www.i      | mtinc.com       |                               |              |                 |          | Preser                  | ved (Co   | ode)                 | M/        |             |           |                                    |
| Project No.<br>7201.15<br>Project Mana |                                    | le          | t/Client:<br>Waunee Ma  | rsl             | <u> </u>                      |              |                 | andly se | .5                      | e jed     | //                   | //        | //          |           | PRESERVED CODES A—NONE             |
| _ '                                    | •                                  |             | _                       | . 1             | م یا                          |              |                 |          | Say                     |           | //                   | //        | / /         |           | B-HNO <sub>3</sub>                 |
| 1 Vick                                 | -156                               | 13          | ob Stanfa               | . H             | Total Number<br>of Containers |              |                 | Se       | ر براج                  | /         | //                   | //        | /           | ///       | C — H <sub>2</sub> SO <sub>4</sub> |
| <del></del>                            | <del></del>                        | <del></del> |                         |                 | ZZ                            | MATRIX       | 1.              | COLLY.   | ¥/                      |           |                      | //        |             |           | D — NGOH<br>E — HCI                |
| Lab No. Y                              | r. <u>[ 0  </u>                    |             |                         |                 | P S S                         | ≸            | 1               |          | γ,                      | / /       | //                   | //        | / /         |           | F — METHANOL                       |
|                                        | Date                               | Time        | Sa                      | mple Station ID |                               |              |                 | /        | /                       | /.        | //                   | //        |             | Comments: | G                                  |
| 061 -                                  | 3/17                               |             | MIOF 4                  |                 |                               | <u>S</u> a.' | 1 >             |          |                         |           |                      |           |             | Senf, L   | ziplockbag                         |
| 062                                    |                                    |             | MIOF 6                  | 8.01            | )                             | 1            | \               | <i>-</i> |                         |           |                      |           |             |           | 1                                  |
| 063                                    |                                    |             | MILE O                  | -2.0'           | 11                            | -            | \               | -<br>-   |                         |           |                      |           |             |           |                                    |
| 064                                    |                                    |             | MIT                     | 2,0-4.0         |                               |              |                 |          |                         |           |                      |           |             |           |                                    |
| 06.5                                   | 1                                  | 1           |                         | 1,0-6.0         | ] [                           |              | 1)              | <u>.</u> |                         |           |                      |           |             | 1         |                                    |
| 066                                    |                                    |             | MIF                     |                 | 1                             |              | Īχ              |          |                         |           |                      |           |             |           |                                    |
| 067                                    |                                    |             |                         | 8.0-10.0        | 1                             |              | 1               |          |                         |           |                      |           | İ           | 1         |                                    |
| 068                                    |                                    |             |                         | 120-12.0        | 1                             |              |                 |          |                         |           |                      |           |             |           |                                    |
| 069                                    | 1                                  |             |                         | 0-40°           |                               |              | X               |          |                         |           |                      |           |             |           | /                                  |
| 070 3                                  | 3/17                               |             | MIZE                    | 4.0-6.0'        | 1                             | 50%          | / <i>\</i>      | 5        |                         |           |                      |           |             | Sent in   | z. plack bag                       |
| SPECIAL INST                           | RUCTIC                             | NS          |                         |                 | · U                           |              |                 | <u></u>  | ı İ <del>paramanı</del> |           |                      | I         | <u> </u>    |           |                                    |
|                                        | _                                  |             |                         | A               |                               |              |                 |          |                         |           |                      |           |             |           |                                    |
| SAMPLER Reli                           | 1                                  | *           | Received by (Signature) | Dat             | e/Time.                       | M HV         | ZARDS<br>WITH   | SAMPL    | ES                      | Turn /    | Around (<br>rt Due _ |           | one) Normal | Rush      |                                    |
| Relinquished L                         | Received by (Signature)            | Dat         | e/Time                  |                 | □ Cor<br>□ High               | rosive       |                 |          |                         |           | (For Lab Use C       | Only)     |             |           |                                    |
| Relinquished b                         | y (Sign                            | ature)      | / Date/Time             |                 |                               | e/Time       | -               | □ Othi   | -                       |           |                      | eipt Temp |             |           | Receipt pH                         |
| Co long                                | a legistics 3/20/10 843 Well which |             |                         |                 |                               |              |                 |          | ,                       |           | temp                 | o Blank   | Y           | W         | (Wet/Metals)                       |
|                                        |                                    |             | t Intact/Not Intact     |                 |                               |              |                 |          |                         |           |                      |           |             |           |                                    |

|                                                                                                                                      |               |                                       | ladison, WI 53717-19                           |                 |                                         |                            |     |                 | Filte                      | ered (       | Yes/No   | 1/10                  |          | ///         | $\mathbb{Z}_{\mathbb{Z}}$ |                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------|------------------------------------------------|-----------------|-----------------------------------------|----------------------------|-----|-----------------|----------------------------|--------------|----------|-----------------------|----------|-------------|---------------------------|----------------------------------------------------------------------------------|
| Phone 608/                                                                                                                           | 831-4444      | • Fax 60                              | 8/831-3334 • www.m                             | minc.com        |                                         |                            |     |                 | Preserve                   |              |          | <u> </u>              | $\angle$ |             |                           | /                                                                                |
| Project Mai                                                                                                                          | 5<br>nager/Co | n ac Pers                             | t/Client:<br>wanter Mar<br>on:<br>Sh Stanforth |                 | umber<br>ainers                         | ×                          |     | .\\\505         | Secretary.                 |              |          |                       |          |             | //                        | PRESERVED CODES  A — NONE  B — HNO3  C — H <sub>2</sub> SO <sub>4</sub> D — NoOH |
| Lab Na.                                                                                                                              | Yr.∫⊅<br>Date | Time                                  | San                                            | nple Station ID | Total Number<br>of Containers           | MATRIX                     | AC  | 9/6             | <u> </u>                   | /            | <u>/</u> | <u>//</u>             | //       | Comments    |                           | E — HCI<br>F — METHANOL<br>G —                                                   |
| 071                                                                                                                                  | 3/17          |                                       | M12F 6.                                        | 0-8.0           | /                                       | 501)                       | p   |                 |                            |              |          |                       |          | Sent.L      | 2.}./                     | ech bag                                                                          |
|                                                                                                                                      | /             |                                       |                                                |                 | ***                                     |                            |     |                 |                            |              |          |                       |          |             |                           |                                                                                  |
|                                                                                                                                      |               | · · · · · · · · · · · · · · · · · · · |                                                |                 |                                         |                            | -   |                 |                            |              |          |                       |          |             |                           |                                                                                  |
|                                                                                                                                      |               | ···                                   |                                                |                 |                                         |                            |     |                 |                            |              |          |                       |          |             |                           |                                                                                  |
|                                                                                                                                      |               |                                       |                                                |                 |                                         |                            |     |                 |                            |              |          |                       |          |             |                           |                                                                                  |
|                                                                                                                                      |               |                                       |                                                | -               |                                         |                            |     |                 |                            |              |          |                       |          |             |                           |                                                                                  |
|                                                                                                                                      |               |                                       |                                                |                 | *                                       |                            |     |                 |                            | <del>-</del> | $\dashv$ | o                     | +        |             |                           |                                                                                  |
| •                                                                                                                                    |               |                                       |                                                |                 | -                                       |                            |     |                 |                            | <u></u>      |          |                       | _        |             |                           |                                                                                  |
|                                                                                                                                      |               |                                       |                                                |                 | *************************************** | }                          |     |                 |                            |              |          | +                     | +        |             |                           |                                                                                  |
|                                                                                                                                      |               |                                       |                                                |                 |                                         | <u> </u>                   |     |                 |                            | 1            |          |                       |          |             |                           |                                                                                  |
| SPECIAL IN                                                                                                                           | STRUCTIO      | ONS                                   |                                                |                 | •                                       | f                          |     |                 |                            |              |          | -                     |          |             |                           |                                                                                  |
|                                                                                                                                      |               |                                       |                                                |                 |                                         |                            |     |                 |                            |              |          |                       |          |             |                           |                                                                                  |
| SAMPLER Relinquished by (Signature)    Date/Time   Received by (Signature)                                                           |               |                                       |                                                |                 |                                         | re/Time<br>6260<br>re/Time | HAZ |                 | ASSOCI<br>IAMPLES<br>mable |              | 1        |                       |          | one) Norm   | ol R                      | Rush                                                                             |
| kelinquisned by (Signature)  Date/ Time   Received by (Signature)                                                                    |               |                                       |                                                |                 |                                         | e/ IIme                    |     | Соп             |                            |              |          |                       |          | (For Lab Us | e Only}                   |                                                                                  |
| Relinquished by (Signature)  Date/Time Received by (Signature)  Date/Time Received by (Signature)  Date/Time Received by (Signature) |               |                                       |                                                |                 | Dat<br> } 3 (                           | e/Time<br>W/(1543          | ∟ ا | Highly<br>Other |                            |              |          | ceipt Ter<br>np Blanl |          |             |                           | eceipt pH<br>/et/Metals)                                                         |
| Custody Se                                                                                                                           | al: Prese     | ent/Absen                             |                                                |                 |                                         |                            |     |                 |                            |              |          |                       |          |             |                           |                                                                                  |

Pace Analytical Services, Inc. 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

### Sample Condition Upon Receipt

| PaceAnalytical Client Nam                                                                                            | e: RMT        |                     |                                         | Project#                                           | 4029654                                                                       |
|----------------------------------------------------------------------------------------------------------------------|---------------|---------------------|-----------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------|
| Courier:   Fed Ex   UPS   USPS                                                                                       | Client Co     | mmerc               | ial Pace Ot                             | her                                                |                                                                               |
| Tracking #:                                                                                                          |               | ,,,,,,              | , , , , , , , , , , , , , , , , , , , , |                                                    |                                                                               |
| Custody Seal on Cooler/Box Present:                                                                                  | • •           | Seals<br>Non<br>Wet | Blue Dry None                           | no                                                 | Optional:<br>Proj. Due Bate:<br>Proj. Name:<br>ice, cooling process has begun |
| Cooler Temperature (LO)                                                                                              | Biological    | lissue              | is Frozen: yes                          | 2                                                  |                                                                               |
| Temp Blank Present: yes no                                                                                           | . 5: .        |                     | j 110                                   | Person exa                                         | mining contents:<br>20//0                                                     |
| Temp should be above freezing to $6^{\circ}$ % for all sample 6 Biota Samples should be received $\leq 0^{\circ}$ C. | ехсері віоіа. |                     | Comments:                               | Initials:                                          |                                                                               |
| Chain of Custody Present:                                                                                            | ∐Yes □No      | □N/A                | 1.                                      |                                                    |                                                                               |
| Chain of Custody Filled Out:                                                                                         | Óyes □No      | []]N/A              | 2.                                      |                                                    |                                                                               |
| Chain of Custody Relinquished:                                                                                       | ☐Yes ☐No      | □n/a                | 3.                                      |                                                    |                                                                               |
| Sampler Name & Signature on COC:                                                                                     | ZYes □No      | □n/a                | 4.                                      |                                                    |                                                                               |
| Samples Arrived within Hold Time:                                                                                    | ÚÝes □No      | □n/a                | 5.                                      |                                                    |                                                                               |
| Short Hold Time Analysis (<72hr):                                                                                    | □Yes □No      | □N/A                | 6.                                      |                                                    |                                                                               |
| Rush Turn Around Time Requested:                                                                                     | □Yes □No      | □n/a                | 7.                                      |                                                    |                                                                               |
| Sufficient Volume:                                                                                                   | Yes DNo       | []N/A               | 8.                                      |                                                    |                                                                               |
| Correct Containers Used:                                                                                             | Yes 🗆 No      | □N/A                | 9.                                      |                                                    |                                                                               |
| -Pace Containers Used:                                                                                               | ∠<br>□yes ØNo | []n/a               |                                         |                                                    |                                                                               |
| Containers Intact:                                                                                                   | ∐Yes □No      | □n/a                | 10.                                     |                                                    |                                                                               |
| Filtered volume received for Dissolved tests                                                                         | ∐Yes □No      | ØN/A                | 11.                                     |                                                    |                                                                               |
| Sample Labels match COC:                                                                                             | Yes Z No      | $I_{\square N/A}$   | 12045 Jabello                           | 5.0.7.01                                           | (06 ic 6.0-7.5.                                                               |
| -Includes date/time/ID/Analysis Matrix:                                                                              | 5             |                     | Date mutched. or                        |                                                    |                                                                               |
| All containers needing preservation have been checked.                                                               | □Yes ■No      | DN/A                |                                         | <del>-                                      </del> | · · · · · · · · · · · · · · · · · · ·                                         |
| All containers needing preservation are found to be in compliance with EPA recommendation.                           | □Yes □No      | JIN/A               |                                         |                                                    |                                                                               |
| exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)                                                                  | □Yes □No      | 1                   | Initial when completed                  | Lot # of adde<br>preservative                      |                                                                               |
| Samples checked for dechlorination:                                                                                  | □Yes □No      | ØN/A                | 14.                                     | <b>'</b>                                           |                                                                               |
| Headspace in VOA Viałs ( >6mm):                                                                                      | □Yes □No      | [ZN/A               | 15.                                     |                                                    |                                                                               |
| Trip Blank Present:                                                                                                  | □Yes □No      | ZIN/A               | 16.                                     |                                                    |                                                                               |
| Trip Blank Custody Seals Present                                                                                     | □Yes □No      | /<br>N/A            |                                         |                                                    |                                                                               |
| Pace Trip Blank Lot # (if purchased):  Client Notification/ Resolution:  Person Contacted:  Comments/ Resolution:    |               | _Date/              | Fime:                                   | Field Data F                                       | Required? Y / N                                                               |
| Project Manager Review:                                                                                              | (V            |                     | <b>\{.</b>                              | Dati                                               | e: 3/22/10                                                                    |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers) ///