Richard, Philip E - DNR

Rec 11/4/15
POTON BRETS
W/9/15

From:

Ree, Timothy <Tim.Ree@ghd.com>

Sent:

Wednesday, November 04, 2015 8:35 AM

To:

Richard, Philip E - DNR

Subject:

Penta Wood - October 2015 Groundwater Sample Results ~COR-086165~

Attachments:

Lab Report-240-56556-1-086165-02-12-2015-10-25.pdf; Lab

Report-240-56644-1-086165-02-12-2015-10-28.pdf; Lab

Report-240-56690-1-086165-02-12-2015-10-28.pdf; 20151104075157278.pdf; 086165-

Groundwater Sample Summary October 2015.pdf

Phil,

Please find attached copies of the lab reports for groundwater sampling conducted at the Penta Wood site in October 2015. Also attached for your reference are a draft table summarizing the groundwater sample analytical data and figures with PCP concentrations. The results are generally consistent with recent sampling events.

Regards,

Tim Ree

T: +1 651 639 0913 | M: +1 651 592 7697 | E: tim.ree@ghd.com 1801 Old Highway 8 NW Suite 114 St. Paul Minnesota 55112 USA | www.ghd.com

WATER | ENERGY & RESOURCES | ENVIRONMENT | PROPERTY & BUILDINGS | TRANSPORTATION

Please consider our environment before printing this email

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Canton 4101 Shuffel Street NW North Canton, OH 44720 Tel: (330)497-9396

TestAmerica Job ID: 240-56556-1

Client Project/Site: 86165-02-12, Penta Wood

For:

GHD Services Inc. 1801 Old Highway 8 NW Suite 114 St. Paul, Minnesota 55112

Attn: Mr. Grant Anderson

Jenuse DHeckler

Authorized for release by: 10/25/2015 11:29:49 AM

Denise Heckler, Project Manager II (330)966-9477

denise.heckler@testamericainc.com

..... LINKS

Review your project results through Total Access

Have a Question?

Visit us at: www.testamericainc.com This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: GHD Services Inc. Project/Site: 86165-02-12, Penta Wood

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Method Summary	7
Sample Summary	8
Detection Summary	9
Client Sample Results	11
Surrogate Summary	20
QC Sample Results	22
QC Association Summary	32
Lab Chronicle	36
Certification Summary	39
Chain of Custody	40
Receipt Checklists	45

97	. 10
45	* All
	10 Ta
	:01

PROPOSED GROUNDWATER MONITORING WELL SAMPLE LOCATION

UNCONFINED (UPPER) AQUIFER MONITORING PLAN

FIGURE 2.1

PROPOSED UNCONFINED MONITORING WELL LOCATION

SOIL GAS WELL NEST UNCONFINED MONITORING WELL LOCATION

LEGEND

- EXTRACTION WELL NEST BIOVENTING WELL
- SOIL GAS WELL NEST
- UNCONFINED MONITORING WELL LOCATION
- PROPOSED UNCONFINED MONITORING WELL LOCATION
- SEMICONFINED MONITORING WELL LOCATION

- WELL LOCATION
 WATER SUPPLY WELL LOCATION
 RESIDENTIAL WELL LOCATION
 PCP CONCENTRATION CONTOUR (µg/L)
 PROPOSED GROUNDWATER MONITORING
 WELL SAMPLE LOCATION

PENTA WOOD PRODUCTS SUPERFUND SITE SIREN, WISCONSIN REMEDIATION SYSTEM SHUTDOWN PILOT STUDY WORK PLAN TET CONCENTRATIONS (OCTOBER 2015)

SEMICONFINED (LOWER) AQUIFER MONITORING PLAN

086165-02-20 Oct 23, 2015

FIGURE 2.2

TABLE 2.3

GROUNDWATER ANALYTICAL DATA - MONITORING WELLS PENTA WOOD PRODUCTS SUPERFUND SITE SIREN, WISCONSIN

		ES¹ PAL²	· · Alkalinity, total (as CaCO3)	250 Chloride ³	· · Hardness, carbonate	o I Nitrate (as N)	soliate sulfate	· · TOC averages	· · Methane (dissolved)	1 G Arsenic (dissolved)	00 Copper (dissolved)	oo Iron (dissolved)³	9 % Manganese (dissolved) ³	2000 Zinc (dissolved) ³	0. 1 Pentachlorophenol	0 00 Naphthalene	or Benzene	008 Toluene	0 Ethylbenzene	000 Xylenes (total)
Sample	Sample		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L8	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
Location	Idendification	Sample Date	5,	5,					-9/ -	3,						5.			5,	
Semiconfine	ed Aquifer (Lower)						*													
MW3	W-151015-PS-M-16	10/15/2015	258 B	52.5	322	1.7	11.1	1.1	5.1	ND	0.93 J	58.2 J	7.4	ND	0.15	ND	ND	ND	ND	ND
MW3	W-151015-PS-M-17	10/15/2015	258 B	52.3	312	1.7	11.2 F1	1.2	5.7	ND	1.2 J	56.6 J	7.9	ND	0.23	ND	ND	ND	ND	ND
MW7	W-151012-PS-M-02	10/12/2015	228 B	8.3	229	1.5	46.2	0.85 J	6.5 B	0.88 J	1.6 J	ND	423	ND	ND	ND	ND	ND	ND	ND
MW10	W-151015-PS-M-18	10/15/2015	178 B	6.5	244	ND	71.8	1.8	8.2	ND	1.0 J	188	861	ND	150	ND	ND	ND	ND	ND
MW12	W-151013-PS-M-03	10/13/2015	279 B	11.7	74.4	1.6	159	1.2	0.080 JB	ND	ND	362 B	27.4	ND	25	ND	ND	ND	ND	ND
MW15	W-151012-PS-M-01	10/12/2015	224 B	12.0	302	6.7 F1	5.8	0.55	ND	0.54 J	1.0 J	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW17	W-151013-PS-M-08	10/13/2015	184 J	14.8	265	4.2 H	45.3	0.59	ND	1.1 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW28	W-151014-PS-M-15	10/14/2015	126 B	15.5	155	2.0	5.4	0.69 J	ND	ND	ND	ND	ND	ND	0.32	ND	ND	ND	ND	ND
Unconfined Aquifer (Upper)																				
MW2	W-151014-PS-M-12	10/14/2015	50.7 B	0.55 J	60.3	0.63	2.1	1.3	ND	ND	0.75 J	56.7 J	2.9 J	ND	0.13	ND	ND	ND	ND	ND
MW5	W-151014-PS-M-13	10/14/2015	98.7 B	12.7	159	0.053 J	48.9	3.3	1.8 B	ND	ND	954	2230	ND	64	ND	ND	ND	ND	ND
MW6S	W-151014-PS-M-14	10/14/2015	12.5 B	10.8	76.4	3.6	6.7	3.4	ND	ND	2.5	16.8	1.4 J	ND	0.17	ND	ND	ND	ND	ND
MW9	W-151013-PS-M-10	10/13/2015	31.0 B	0.70 J	40.2	1.5 H	7.4	4.4	ND	ND	1.3 J	21.1 J	ND	ND	0.17	ND	ND	ND	ND	ND
MW16	W-151013-PS-M-04	10/13/2015	48.4 B	4.3	84.4	0.61	5.9	0.70 J	ND	ND	1.0 J	45.2 JB	2.1 J	ND	ND	ND	ND	ND	ND	ND
MW22	W-151013-PS-M-11	10/13/2015	46.3 B	1.7	52.3	0.65 H	2.8	0.74 J	ND	ND	1.2 J	ND	ND	ND	0.041 J	ND	ND	ND	ND	ND
MW26	W-151013-PS-M-06	10/13/2015	198 B	15.3	229	1.9 H	74.6	0.32 J	ND	0.76 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MW26	W-151013-PS-M-07	10/13/2015	194 B	15.5	235	1.9 H	75.7	0.33 J	ND	0.50 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Notes:

- 1 Enforcement Standard (ES) criteria adapted from Table 1 referred to and incorporated by NR 140.10 with except of Iron, Manganese, Zinc, Chloride, and Sulfate (see note 14).
- ² Preventive Action Limit (PAL) criteria adapted from Table 1 referred to and incorporated by NR 140.10 with except of Iron, Manganese, Zinc, Chloride, and Sulfate (see note 14).
- ³ Enforcement Standard (ES) and Preventive Action Limit (PAL) criteria adapted from Table 2 referred to and incorporated by NR 140.12.
- mg/L Concentrations listed with units of milligrams per liter.
- ug/L Concentrations listed with units of micrograms per liter.
- J Concentration was estimated below the reporting limit.
- < Compound was not detected above the reporting limit.
- B Analand was detected in the method blank.
- H Analysis was performed after holding time.

Concentration exceeds the ES .

Concentration exceeds the PAL.

Well MW19 was not sampled due to the presence of LNAPL.