-> SER lasefile - (ANNEX)

REPORT

1998 ANNUAL GROUNDWATER MONITORING REPORT COOK COMPOSITES & POLYMERS SAUKVILLE, WISCONSIN The county of the count

red 4-16-99

Prepared for Cook Composites and Polymers, Co. 810 East 14th Avenue North Kansas City, MO 64116

April 14, 1999

URS Greiner Woodward Clyde

URS Greiner Woodward Clyde 2312 N. Grandview Blvd. Suite 210 Waukesha, WI 53188 8E13503

TABLE OF CONTENTS

Executive S	ummary		ES-1				
Section 1	Intro	1-1					
Section 2	ose and Scope	2-1					
Section 3	Site I	Hydrogeology	3-1				
	3.1	Description of Hydrogeologic Units					
		3.1.1 Glacial Drift					
		3.1.2 Shallow Dolomite					
		3.1.3 Deep Dolomite					
	3.2	Groundwater Levels and Flow Patterns In 1998					
		3.2.1 Glacial Drift Hydrogeologic Unit					
		3.2.2 Shallow Dolomite Unit					
		3.2.3 Deep Dolomite Unit	3-4				
Section 4	Groundwater Monitoring Program						
	4.1	Program Description	4-1				
	4.2	Changes In Monitoring Network	4-1				
	4.3	Sampling Schedule	4-1				
Section 5	Grou	ndwater Quality	5-1				
	5.1	Total VOC Data	5-1				
		5.1.1 VOC Patterns In the Glacial Drift Unit					
		5.1.2 VOC Patterns In the Shallow Dolomite Unit	5-2				
	5.2	NR 140 PAL and ES Exceedances	5-2				
	5.3	VOC Trends By Monitoring Objective	5-2				
		5.3.1 Receptor Monitoring	5-3				
		5.3.2 Perimeter Monitoring	5-4				
		5.3.3 Remediation Progress Wells	5-4				
	5.4	Appendix IX Results	5-6				
Section 6	Plum	e Containment	6-1				
	6.1	Glacial Drift Unit	6-1				
	6.2	Shallow Dolomite Unit					
	6.3	Deep Dolomite Unit					
	6.4	Hydraulic Communication Between Aquifers					
Section 7	Refer	ences	7-1				

iables	
Table 1	Summary of Water Levels, 1998
Table 2	Summary of Well Running Times, 1998
Table 3	Summary of 1998 Groundwater Sampling Program
Table 4	Summary of Analytes and Methods
Table 5	Total VOCs Detected 1998 - Receptor Monitoring Group
Table 6	Total VOCs Detected 1998 - Perimeter Monitoring Group
Table 7	Total VOCs Detected 1998 - Remediation Progress Monitoring Group
Table 8	Summary of Appendix IX Parameters Detected
Figures	
Figure 1	Site Location Map
Figure 2	Monitoring Well Location Map
Figure 3	Water Table Map, Glacial Drift, Winter 1998
Figure 4	Water Table Map, Glacial Drift, Spring 1998
Figure 5	Water Table Map, Glacial Drift, Summer 1998
Figure 6	Water Table Map, Glacial Drift, Fall 1998
Figure 7	Potentiometric Surface Map, Shallow Dolomite, Winter 1998
Figure 8	Potentiometric Surface Map, Shallow Dolomite, Spring 1998
Figure 9	Potentiometric Surface Map, Shallow Dolomite, Summer 1998
Figure 10	Potentiometric Surface Map, Shallow Dolomite, Fall 1998
Figure 11	Composite 1998 Total VOC Concentrations, Glacial Drift Wells
Figure 12	Composite 1998 Total VOC Concentrations, Shallow Dolomite Wells
Appendices	
Annendix A	Quarterly Result Summary Tables

Appendix B Trend Analysis Plots

Results of the sampling performed in 1998 indicate that volatile organic compounds (VOCs) remain in the groundwater in the glacial deposits and the shallow dolomite at concentrations of up to 174,410 μg/L, a 35 percent reduction over the maximum total VOC concentration observed in 1997. The residual sources of impacts present on the site continue to impact the groundwater with the glacial deposits and the shallow dolomite unit. However, VOC concentrations in the deep dolomite unit remain at non-detectable levels.

The groundwater extraction system currently operating on the site was designed to minimize the downward migration of impacts from the glacial drift and shallow dolomite units to the deep dolomite unit, and to control the off-site migration of the impacts within the glacial drift, shallow dolomite, and deep dolomite units.

Concentrations of VOCs at the perimeter monitoring wells remain at non-detectable to low levels. Groundwater surface contours and potentiometric surface plots indicate that there is a convergent groundwater flow on the site towards the active extraction system. Stable or decreasing plume size, as indicated by stable or decreasing concentrations observed in the perimeter monitoring wells, along with an increase in concentrations observed in the active extraction wells indicate that the extraction system is effectively controlling the off-site migration of the impacts, and is reducing the plume of impacts observed. Municipal wells in Saukville continue to exhibit no detection of the impacts present on the CCP site.

SECTIONONE Introduction

Cook Composites and Polymers Co. (CCP) operates a polyester, acrylic, and alkyd resin manufacturing plant in Saukville, Wisconsin (Figure 1). Prior to 1991, the plant was owned and operated by Freeman Chemical Corporation.

In compliance with the 1987 Corrective Action order on Consent (Docket #V-W-88-R-002), October 19, 1987, 3008h order for RCRA, CCP is required to perform quarterly groundwater monitoring for specific wells. Other wells or sampling points are sampled on a semi-annual or annual basis.

Samples were collected from the Saukville facility in January, April, July, and October 1998 by URS Greiner Woodward Clyde (URSGWC) personnel. The samples collected were analyzed by EnChem Laboratory of Madison, Wisconsin.

The field data and results of the chemical analyses were compiled by URSGWC, and were submitted on a quarterly basis by CCP to the USEPA Region V, and the WDNR. Volatile organic compounds (VOC) exceedances of the Wisconsin Administrative Code Chapter NR 140 Preventative Action Limits (PAL) or Enforcement Standard (ES) were reported quarterly by CCP in accordance with NR 508. This report was prepared to summarize the results of the groundwater monitoring over the past year.

This document presents a summary of the data collected during the four quarterly groundwater sampling events at the CCP Saukville facility in 1998, and provides an evaluation of the groundwater elevation and quality trends at the site. The water quality data have been submitted to the USEPA and the WDNR in the quarterly reports. Copies of the summary tables included in each of the quarterly reports are included in Appendix A.

The contents of this report include the following:

- A summary of the groundwater elevations that were measured in the monitoring wells located both on- and off-site during 1998. Groundwater measurements are depicted on groundwater table and potentiometric surface maps for the glacial drift and shallow dolomite units, respectively.
- An evaluation of the groundwater flow directions in the glacial drift and the shallow dolomite hydrogeologic units, and the effects of the groundwater extraction system on the patterns of groundwater flow.
- A summary of the site groundwater monitoring program, and the quarterly total VOC concentrations by wells.
- Isoconcentration maps for total VOC s in groundwater in the glacial drift and shallow dolomite units.
- Time vs. concentration plots of total VOCs in groundwater in selected wells.
- An evaluation of the trends in groundwater quality for each of the monitoring groups for 1998.
- An evaluation of the effectiveness of plume containment by the on-site groundwater extraction system, based on groundwater flow and quality data.

3.1 DESCRIPTION OF HYDROGEOLOGIC UNITS

The geology at the site has been divided into three fairly distinct hydrogeologic units. These units include the unconsolidated glacial drift deposits, the shallow dolomite units consisting of the Silurian dolomite to approximately 100 ft below the ground surface, and the deep dolomite unit consisting of Silurian dolomite between approximately 100 ft and 700 ft below the ground surface. Detailed description of the three units are provided below.

3.1.1 Glacial Drift

The glacial drift unit consists of a complex succession of fill and glaciolacustrine deposits that is underlain by a glacial till. The lake deposits and other materials have been extensively used as fill on-site. Both the till and the glaciolacustrine deposits are considered to be part of a partially confining hydrostratigraphic unit.

The total thickness of the glacial drift typically varies between 10 and 30 ft in the vicinity of the site, but the glacial drift is generally on the order of 10 ft thick beneath the CCP facility. Glaciolacustrine deposits are up to 20 ft thick on the western side of the site, and consist of interbedded sands, silts and clays. The clay is soft to medium hard, gray, and plastic to slightly plastic. Between 5 and 25 ft of glacial till is present beneath the eastern side of the site. The till is composed of interbedded silty sands and sandy gravel. The sandy gravel varies from loose to very dense, is brown to gray, and is typically well-graded.

The stratigraphic order of the deposits from the ground surface is generally sand and silt overlying a laterally continuous layer of laminated silt and clay (glaciolacustrine deposits) above dense clay (glacial till). A thin layer of sand and gravel (glacial outwash) lies between this till unit and bedrock.

3.1.2 Shallow Dolomite

The glacial deposits are unconformably underlain by fractured, thinly to massive bedded Silurian dolomite, with a total thickness of approximately 600 ft in the area, which includes the deep dolomite aquifer.

The uppermost 100 ft of the Silurian dolomite in the Saukville area tends to have a lower permeability than the underlying deep dolomite aquifer. Occasionally, transmissive zones are

encountered in the shallow dolomite, such as at well W-24A, which extracts groundwater at 40 gpm, and yet shows little drawdown.

3.1.3 **Deep Dolomite**

The deep dolomite aquifer is defined as the Silurian dolomite from approximately 100 to 700 ft below the ground surface. The dominant lithology in the deep dolomite aquifer in the Saukville area is the Racine Formation. Municipal wells within the study area are typically cased to approximately 100 ft below the ground surface, and are completed in the Silurian dolomite to depths in the range of 450 to 550 ft below the ground surface. Groundwater flow within the Silurian dolomite appears to be fracture controlled beneath the study area.

Several solution features have been identified in the dolomite on-site. A sinkhole, filled with glacial deposits, which extends to a depth of approximately 200 ft below the ground surface was encountered on the eastern edge of the CCP site during the installation of wells W-3A, W-3B, and W-20. The areal extent of the sinkhole was further defined based on the seismic refraction survey performed by Minnesota Geophysical Associates. Further evidence of the karstic features includes solution enlarged joints in the dolomite observed during the borehole video logging of W-30. These observations, coupled with the hydraulic response of the aquifer during pumping tests in Saukville, suggest that groundwater flow in the Silurian dolomite is fracture controlled in the study area.

3.2 **GROUNDWATER LEVELS AND FLOW PATTERNS IN 1998**

Groundwater levels in the monitoring wells were measured prior to purging and sampling during each of the quarterly sampling events. Table 1 presents a summary of the water level measurements for each quarter, and Figure 2 shows the locations of the monitoring wells. The water level data collected in 1998 was used to develop quarterly water table maps for the glacial drift unit, and quarterly potentiometric surface maps for the shallow dolomite unit. These maps are attached as Figures 3 through 10 at the end of this report.

Groundwater elevations on-site appear to be influenced by the groundwater extraction system active on the site. A total of 9 glacial drift wells, 4 shallow dolomite wells, and one deep dolomite well are actively pumped in an effort to contain the plume of impacts. Table 2 provides a summary of the monthly pump running times.

Glacial Drift Hydrogeologic Unit 3.2.1

The water table occurs in the glacial drift unit, as shown on Figures 3 through 6. The depth to the water table at the site is approximately 10 ft below the ground surface. Water table elevations appear to be higher in the spring, possibly due to increased recharge resulting from melting snow and increased rainfall. Well W-20 is constructed as a piezometer within the glacial drift present in the sinkhole identified in the northeast corner of the site, and the hydraulic head within this well is representative of groundwater flow in the shallow dolomite unit. Therefore, water levels from well W-20 were not used to construct the water table maps included as Figures 3 to 6, but have been used to construct the potentiometric surface maps for the shallow dolomite unit as shown on Figures 7 to 10. The water table beneath the CCP facility generally slopes from the southwest to the northeast, towards the Milwaukee River, with a hydraulic gradient of approximately 0.02 ft/ft, based on the Summer 1998 water level data attached in Appendix B. However, on-site shallow groundwater flow is diverted towards the Ranney Collectors and the active on-site remediation network.

Groundwater elevation trends from 1995 to 1998, for the water table monitoring wells, are included in Appendix B. The water levels tend to follow a general trend where increases are observed during the Spring quarters and decreases are observed during the Fall and Winter quarters. The water levels measurements continue to indicate that dewatering of the on-site glacial deposits is occurring, and that the on-site extraction system is controlling off-site migration of groundwater in the glacial drift.

A vertically downward hydraulic gradient continues to be present between the glacial drift and the shallow dolomite aquifers. The magnitude of the downward gradient was determined using the July 1998 water level data for wells W-18A/W-22, and W-43/W-38. Downward gradients ranged between 0.3 and 0.9 ft/ft.

3.2.2 Shallow Dolomite Unit

The potentiometric surface in the shallow dolomite unit for the 1998 sampling events is shown on Figures 7 to 10. The piezometers constructed at the site have been completed at varying depths in the dolomite. Therefore, only those piezometers with bottom elevations between 680 and 710 ft above mean sea level (MSL) were used in preparation of Figures 7 to 10. Well W-30 has a bottom elevation of approximately 215 MSL, and is utilized to provide non-contact cooling water extracted from both the shallow and deep dolomite units. W-30 typically pumps at

approximately 340 gpm, and has induced a large cone of depression in the shallow dolomite unit. Therefore, W-30 has been included on the potentiometric maps for the shallow dolomite unit.

Groundwater elevation trends from 1995 to 1998, for the shallow dolomite monitoring wells, are included in Appendix B. The water levels tend to follow a general trend where increases are observed during the Spring quarters and decreases are observed during the Fall and Winter quarters. The water levels measurements continue to indicate that there is convergent flow within the shallow dolomite unit towards the extraction wells, and that the on-site extraction system is controlling off-site migration of groundwater in the glacial drift.

Deep Dolomite Unit 3.2.3

Based on the results of the groundwater modeling conducted during the RCRA Facility Investigation (RFI), groundwater flow in the deep dolomite unit in the Saukville area is towards well W-30, and the active Saukville municipal wells. Only one on-site data point (W-30) is available to document flow directions in the deep dolomite unit. Therefore, there is insufficient data to prepare potentiometric surface maps for the deep dolomite unit. However, groundwater on the site exhibits a strong downward flow from the glacial deposits and the shallow dolomite unit to the deep dolomite unit.

4.1 PROGRAM DESCRIPTION

The groundwater monitoring program at the CCP Saukville facility includes 42 monitoring points composed of 19 glacial drift wells, 11 shallow dolomite wells, 6 deep dolomite wells, 3 Ranney Collectors, and 3 sample points at the Saukville publicly owned treatment works (POTW). The monitoring points are further grouped according to 4 sampling objectives: receptor points, perimeter monitoring points, remediation progress points, and groundwater elevation monitoring points. The organization of the monitoring wells by monitoring objective is summarized in Table 3.

Receptor monitoring points include 4 municipal water supply wells (MW-1, MW-2, MW-3, and MW-4), POTW influent, effluent, and sludge samples, and the Ranney Collectors. The Ranney Collectors are essentially french drains which intercept shallow groundwater, and discharge to the sanitary sewer system. The results of the analyses performed on the samples collected from the Ranney Collectors provide a portion of the data necessary to calculate VOC extraction rates.

Perimeter monitoring points include monitoring wells which are located both on-site and off-site at or beyond the edge of the VOC plume. These monitoring points provide necessary information to define the extent of the plume.

Remediation progress points are monitoring wells which are located within the VOC plume. These wells provide an indication regarding the effectiveness of the on-site pumping wells.

Each of these sets of monitoring points is further subdivided into glacial drift, shallow dolomite, and deep dolomite hydrogeologic units. This subdivision allows for more effective evaluation of the on-site groundwater flow and quality trends.

4.2 CHANGES IN MONITORING NETWORK

No changes to the monitoring network were made in 1998.

4.3 SAMPLING SCHEDULE

Table 3 presents the sampling schedule that was developed for the 1998 groundwater monitoring, along with the analytical methods used each quarter. The methods and associated parameters are listed in Table 4. The Ranney Collectors and the remediation progress wells were only analyzed for the volatile organic compounds listed under EPA Method SW846-8021. The winter, spring, and fall quarter samples, including the monitoring wells, municipal wells, and the POTW

sampling points were analyzed for volatile organic compounds under EPA Method SW846-8260A. In addition, selected wells were analyzed during the summer sampling event (annual sampling event) for parameters detected during the Appendix IX monitoring, conducted during the RFI. These additional parameters include semi-volatile organic compounds (EPA Method SW846-8270B), polychlorinated biphenyls (EPA Method SW846-8080), arsenic (EPA Method SW846-7060), and barium (EPA Method SW846-6010).

5.1 TOTAL VOC DATA

The tabulated results of the VOC concentrations in each well and the supporting laboratory data were presented in each of the four quarterly reports (Woodward-Clyde, 1998b to 1998e). Copies of the result summary tables included in each of the quarterly reports have been attached in Appendix A. Tables 5, 6, and 7 present a summary of total VOC concentrations in each of the wells for the four quarters. The wells are organized by monitoring objective and hydrogeologic unit as previously described in Section 4 and Table 3. Figure 2 shows the locations of the monitoring wells on and off-site.

The lateral distribution of VOCs in the glacial drift, and the shallow dolomite unit for 1998 is depicted on the isoconcentration maps (Figures 11 and 12). The isoconcentration maps were constructed using VOC concentration data from the annual and semi-annual sampling events in 1998. Results on the semi-annual sampling events were within the same order of magnitude. Therefore, an average concentration was utilized to construct the isoconcentration maps.

5.1.1 VOC Patterns in the Glacial Drift Unit

The distribution of VOCs in the glacial drift unit for 1998 is depicted on the isoconcentration map included as Figure 11. As discussed in Section 3, Monitoring Well W-20 is completed in the glacial drift deposit within the sinkhole in the shallow dolomite unit, and therefore, the results obtained from W-20 are more representative of the water quality in the shallow dolomite aquifer. Isoconcentration contours in the glacial drift unit do not include total VOC concentrations in the Ranney Collectors. The Ranney Collector samples are composite groundwater samples that are collected from broad areas of the site through radial collection lines.

The distribution of VOCs in the groundwater in the glacial drift in 1998 (Figure 11) is generally similar to the distribution observed in the past. The horizontal extent of the plume remains generally the same as that observed in 1997. However, the shape of the area included within the 100,000 ug/L appears to have extended slightly to the east and the north. Total VOC concentrations have increased at W-43 and W-47, while the total VOC concentration at W-6A has decreased. These concentration variances could be due to seasonal fluctuations in combination with the on-site remediation system drawing the impacts in the glacial drift towards the extraction wells.

5.1.2 VOC Patterns in the Shallow Dolomite Unit

Total VOC concentrations in the groundwater in the shallow dolomite unit for 1998 are shown on Figure 12. The concentration and distribution of VOCs in the groundwater are similar to those observed in 1997 with the exception of the results from W-24A. Total VOC concentrations in W-24A have increased from 560 ug/L in 1997 to 15,270 ug/L in 1998. W-24A is an extraction well for the on site remediation system, and is located within the influence of Ranney Collector RC-2. RC-2 was actively pumped 7901 hours in 1998, potentially creating a flow in the shallow dolomite towards W-24A.

The total VOC concentration at W-21A has decreased from 30,599 ug/L in 1997 to 18,947 ug/L in 1998. W-21A is also an extraction well for the on site remediation system. The decreasing total VOC concentration trend is due to the effectiveness of the on site groundwater remediation system.

5.2 NR 140 PAL AND ES EXCEEDANCES

Wisconsin Administrative Code (WAC) Chapter NR 140 Preventative Action Limits (PALs) and Enforcement Standards (ESs) were exceeded in a total of 14 monitoring wells during 1998. Monitoring Wells W-22, W-23, W-27, and PW-08 had PAL and ES exceedances during the spring and fall sampling events. The exceedances observed in W-23, W-27, and PW-08 were attributed to chlorinated solvents which have never been used at the CCP facility.

Monitoring Wells W-06A, W-21A, W-24A, W-29, W-30, W-38, W-41, W-42, W-43, and W-47 had PAL and ES exceedances in samples collected during the annual sampling event in July 1998. It should be noted that all of the wells exhibiting exceedances during the annual sampling event are located within the plume of impacts. The concentrations observed in 1998 are similar to those observed in 1997.

VOC TRENDS BY MONITORING OBJECTIVE 5.3

This section describes the trends in total VOC concentrations for each of the monitoring objectives. Total VOC concentrations in groundwater versus time plots for selected wells are included in Appendix B. The discussion that follows is organized by monitoring objective (receptor, perimeter, remediation progress), and for each monitoring objective, by the hydrogeologic unit (glacial drift, shallow dolomite, deep dolomite).

Receptor Monitoring 5.3.1

Receptor monitoring points are sampled on a quarterly basis.

5.3.1.1 Ranney Collectors and POTW

Total VOCs were monitored in 1998 in the shallow groundwater that was discharged from the Ranney Collectors (RC-1, RC-2, and RC-3), and in the influent, sludge, and effluent samples collected from the Village of Saukville POTW. These analyses were performed to monitor the concentrations and character of impacts leaving the CCP facility, associated dilution of these impacts prior to treatment at the POTW, and concentration and character of POTW effluents.

The total VOCs detected in 1998 are summarized in Table 5. The total VOC concentrations detected in the samples collected from the Ranney Collectors are somewhat variable. The variation in total VOC concentrations observed is most likely due to seasonal precipitation and infiltration variations. Total VOC concentrations in 1998 remained below 40,000 ug/L.

The discharges from the Ranney Collectors are mixed with wastewater from several sources prior to arrival at the POTW. Total VOC concentrations detected in the POTW influent, sludge, and effluent are also summarized in Table 5. Total VOC concentrations in the POTW influent were typically approximately 27 ug/L. However, a spike in the total VOC concentrations was observed in the spring sampling event when the total VOC concentration was 122 ug/L. When the POTW influent total VOC concentrations are compared to the total concentration of VOCs discharged from the Ranney Collectors, it is obvious that significant dilution and/or volatilization of the VOCs in the Ranney Collector discharges is occurring prior to reaching the POTW.

Total VOC concentrations observed in the POTW sludge ranged between 43.3 and 3019 ug/L. The total VOC concentrations observed in the POTW sludge were typically attributed mostly to toluene.

The total VOC concentrations observed in the POTW effluent ranged between 0 and 15.3 ug/L. Total VOC concentrations in the POTW effluent were comprised of ethylbenzene, toluene, and xylene during the spring sampling event, and tetrachloroethene and trichloroethene during the fall sampling event.

5.3.1.2 Municipal Wells (Deep Dolomite Wells)

All of the municipal wells were sampled according to the schedule discussed earlier with the exception of MW-01 not being sampled during the fall sampling event due to well maintenance

activities. With the exception of a 0.5 ug/L detection of chloroform in MW-1 during the summer sampling event, no VOCs were detected in the municipal wells during the 1998 sampling events. It should be noted that chlorinated solvents have not been used at the CCP facility, and therefore, the results of the analyses indicate that the Village of Saukville's drinking water supply has not been affected by the impacts associated with the CCP facility.

5.3.2 Perimeter Monitoring

Perimeter monitoring points are sampled on a semi-annual basis in April and October.

5.3.2.1 Glacial Drift Wells

VOC concentrations in the perimeter monitoring wells screened in the glacial drift in 1998 were generally at non-detectable levels, with the exception of upgradient monitoring well W-27. As in previous years, concentrations of trichloroethene and 1,2-dichloroethene exceed the NR 140 ES and PAL, respectively. As mentioned earlier in this report, chlorinated solvents have never been utilized at the CCP facility. Well W-27 is located upgradient of the facility, and detections of chlorinated solvents are likely due to TCE sludge disposal at the former Northern Signal, formerly located immediately west of the CCP property.

5.3.2.2 Dolomite Wells

Perimeter wells screened in the dolomite generally contained less than 10 µg/L of total detectable VOCs. However, an exceedance to the ES for vinyl chloride was detected in W-23 in the Spring sampling event, and exceedances to the PAL for benzene were detected in W-22 and W-23, and for trichloroethane was detected in PW-08 during the Fall sampling event. Wells W-22 and W-23 have a history of low-level VOC concentrations. Total VOC concentrations detected in these wells continue to decline. Total VOC concentrations in the Perimeter Monitoring Wells are summarized in Table 6.

5.3.3 **Remediation Progress Wells**

5.3.3.1 Glacial Drift Wells

The remediation progress wells screened in the glacial drift unit are sampled on an annual basis. In general, the total VOC concentrations observed in 1998 were consistent with the historical

ranges. Total VOC concentrations ranged between non-detectable levels and 174,410 µg/L in 1998. A summary of the total VOCs detected in 1998 is presented in Table 7.

With the exception of W-43, the total VOC concentrations observed in the glacial drift remediation progress wells were within historical ranges during 1998. The total VOC concentration observed in W-43 in 1998 increased by approximately one order of magnitude over the average concentrations observed in 1995 through 1997. W-43 is located near the center of the site, and increased concentrations could be an indication that the on-site remediation system is successful at containing the groundwater impacts on site, and is actually drawing the impacts towards the extraction wells.

Several of the remediation progress wells screened in the glacial drift exhibited concentrations of individual VOCs in exceedance of the PALs and ESs. Specifically, well W-06A exhibited Pal exceedances for bis(2-ethylhexyl)phthalate, and naphthalene and ES exceedances for benzene, cis-1,2-dichloroethene, ethylbenzene, toluene, and xylenes; well W-41 had a PAL exceedance for benzene and an ES exceedance for xylenes; well W-42 had ES exceedances for benzene, ethylbenzene, toluene, and xylene; well W-43 had a PAL exceedance for barium and ES exceedances for benzene, ethylbenzene, styrene, toluene, xylene, and bis(2-ethylbexyl)phthalate; and well W-47 had ES exceedances for benzene, cis-1,2-dichloroethene, ethylbenzene, toluene, xylene, bis(2-ethylhexyl)phthalate, and naphthalene.

5.3.3.2 Dolomite Wells

With the exception of well W-24A, total VOC concentrations in the remediation progress wells screened in the dolomite were within ranges established in the past. The total VOC concentration observed in well W-24A in 1998 increased by nearly two orders of magnitude over average concentrations observed from 1995 to 1997. Total pumping times in well W-24A increased from 82.6 hours in 1997 to 524.3 hours in 1998. A summary of the total VOCs is presented in Table 7.

Several of the remediation progress wells screened in the shallow dolomite had concentrations of various VOCs in exceedance of the PAL or ES. Well W-21A exhibited an exceedance to the PAL for naphthalene and ES exceedances for benzene, ethylbenzene, toluene, and xylene; well W-24A exhibited PAL exceedances for bis(2-ethylhexyl)phthalate and naphthalene and ES exceedances for benzene, ethylbenzene, toluene, and xylene; well W-29 exhibited a PAL exceedance for cis-1,2-dichloroethene and ES exceedances for benzene and vinyl chloride; well

W-30 exhibited ES exceedances for benzene and bis(2-ethylhexyl)phthalate; and well W-38 exhibited ES exceedances for benzene, toluene, and xylene.

5.4 **APPENDIX IX RESULTS**

In accordance with the WDNR requirement, eight remedial progress wells were analyzed during the annual sampling event in July 1998 for the non-VOC Appendix IX parameters detected during the October 1994 sampling event and during the January 1995 confirmatory sampling. A listing of the parameters included is shown on Table 8. Each of the wells sampled for Appendix IX parameters is located near the center of the groundwater plume.

Non-VOC Appendix IX parameters detected during the 1998 annual sampling event included: 1,4-dioxane, 2,4-dimethylphenol, 2-methylphenol, 4-methylphenol, acetophenone, naphthalene, phenol, 2-methylnaphthalene, phenanthrene, bis(2-ethylhexyl)phthalate, arsenic, and barium. The metals detected may be related to naturally occurring elements. Naphthalene, bis(2ethylhexyl)phthalate, arsenic, and barium were detected at concentrations in exceedance of their respective PAL or ES.

As discussed in earlier sections of this report, well W-06A exhibited PAL exceedances for naphthalene, bis(2-ethylhexyl)phthalate, and arsenic. The results from the 1998 sampling event are within the historical ranges observed in well W-06A. Well W-21A exhibited PAL exceedances for naphthalene and arsenic. Results from the 1998 sampling event are within the historical ranges observed in W-21A. W-24A exhibited PAL exceedances for naphthalene, bis(2-ethylhexyl)phthalate and arsenic. This event is the first sample which detected naphthalene in W-24A. W-30 exhibited an ES exceedance for bis(2-ethylhexyl)phthalate. W-43 exhibited PAL exceedances for arsenic and barium and an ES exceedance for bis(2ethylhexyl)phthalate. W-47 exhibited A PAL exceedance of arsenic and ES exceedances for naphthalene, and bis(2-ethylhexyl)phthalate.

The discussions in this section combine groundwater flow and quality trends from the receptor, perimeter, and remediation progress wells in the glacial drift and dolomite, to present an evaluation of the effectiveness of the plume containment in the remedial system at the Saukville site.

6.1 GLACIAL DRIFT UNIT

Portions of the glacial unit in the area of the Ranney Collectors appear to be dewatered. This fact, along with the nearly non-detectable concentrations of VOCs in the perimeter wells (Figure 11), indicate that the off-site migration of contaminated groundwater within the glacial drift unit is being effectively controlled.

6.2 SHALLOW DOLOMITE UNIT

For the past several years, VOC concentrations in the shallow dolomite unit have remained relatively stable, or decreased in the remediation progress wells. In 1998, total VOC concentrations in the shallow dolomite remediation progress wells ranged between 61.2 and 18,947 μ g/L. Shallow dolomite perimeter monitoring wells continue to exhibit total VOC concentrations of less than 10 μ g/L. The remediation system has dewatered an elliptically shaped area in the vicinity of wells W-30 and W-21A, as shown on Figures 7 through 10. The high capacity (340 gpm) pumping from W-30 has resulted in the dewatering of a large area of the glacial till unit and the shallow dolomite unit, thereby reducing the hydraulic connection between these two units in the affected area. The dewatering of the glacial till and shallow dolomite has reduced the quantity of contaminants which can migrate downward from the glacial till to the shallow dolomite. Based on the steep gradients associated with the cone of depression around W-30, the reduction in total VOC concentration observed in the shallow dolomite remediation progress wells, and the continued nearly non-detectable concentrations of VOCs in the shallow dolomite perimeter monitoring wells, migration of the contaminant plume in the shallow dolomite is being effectively contained and controlled.

6.3 DEEP DOLOMITE UNIT

With the exception of a 0.5 μg/L detection of chloroform in the sample from MW-1 during the summer sampling event, VOC concentrations in the deep dolomite receptor (municipal) wells (MW-1, MW-2, MW-3, MW-4) have remained below detectable levels in 1998. Low level concentrations of acetone, carbon disulfide, and trichloroethene have been detected in PW-08,

SECTIONSIX Plume Containment

located upgradient to the CCP facility, in 1998. VOC concentrations observed in W-30 in 1998 increased slightly over the concentrations observed in 1997. It should be noted that a subsurface investigation was performed in 1998 at the Saukville Feeds site located immediately upgradient to the W-30 location.

The convergent flow observed around W-30, along with the relatively stable total VOC concentrations in the extracted groundwater, and the continued non-detectable concentrations of VOCs in the municipal wells indicate that the migration of the impacted groundwater in the deep dolomite aquifer is being effectively controlled by on-site pumping.

6.4 HYDRAULIC COMMUNICATION BETWEEN AQUIFERS

Groundwater elevation data indicates that downward seepage is occurring from the source areas in the glacial drift into the shallow dolomite through fractures in the upper portions of the bedrock. However, high capacity pumping has created dewatered zones within the glacial drift and shallow dolomite units, reducing the potential for vertical migration of the contaminants from the glacial drift to the shallow dolomite.

Woodward-Clyde Consultants. 1998a. 1997 Annual Groundwater Monitoring Report. March 1998.

- Woodward-Clyde Consultants. 1998b. Groundwater Monitoring Results 1998 Winter Quarter. March 1998.
- Woodward-Clyde Consultants. 1998c. Groundwater Monitoring Results 1998 Spring Quarter. June 1998.
- Woodward-Clyde Consultants. 1998d. Groundwater Monitoring Results 1998 Summer Quarter. September 1998.
- Woodward-Clyde Consultants. 1998e. Groundwater Monitoring Results 1998 Fall Quarter. November 1998.

TABLE 1 SUMMARY OF WATER LEVELS, 1998 (FEET, MSL) COOK COMPOSITES AND POLYMERS

GEOLOGIC UNIT WELL ID Jan-98 Apr-98 J	ul-98 Oct-98
Glacial W-01A 756.07 763.49 7	59.74 757.78
	37.49 732.28
	53.08 745.98
	66.45 765.61
	45.96 745.58
	64.47 762.46
	57.40 , 752.58
	68.93 768.83
	67.55 767.19
	33.03 726.59
	68.77 768.69
Glacial W-37 Well abandoned Au	
	60.91 757.80
	58.65 757.09
	60.34 758.87
	NM NM
	52.54 752.39
	61.09 762.35
	59.38 758.63
	61.91 761.64
	36.71 731.31
	44.88 742.36
	18.74 698.03
Shallow Dolomite W-22 728.00 733.34 73	30.68 729.36
Shallow Dolomite W-23 735.44 742.21 74	40.35 736.26
Shallow Dolomite W-24A* 754.86 762.26 76	62.39 757.42
Shallow Dolomite W-25 Well abandoned Ju	ıly 29, 1997
Shallow Dolomite W-28* 697.12 720.27 7	15.71 723.90
Shallow Dolomite W-29* 716.19 735.96 73	37.39 757.52
Shallow Dolomite W-38 746.64 751.30 75	50.10 748.21
Shallow Dolomite W-39 755.77 762.81 75	58.88 756.21
Shallow Dolomite W-40 735.27 741.30 74	42.46 738.45
Deep Dolomite MW-01 504 511	499 NM
Deep Dolomite MW-02 NM NM	596 NM
·	556 454
Deep Dolomite MW-04 656 656	673 668
Deep Dolomite PW-08 732.48 741.33 73	36.41 733.91
Deep Dolomite W-30* 672.28 681.52 67	76.90 624.96

^{* =} Extraction Well NM = not measured

TABLE 2 SUMMARY OF WELL RUNNING TIMES COOK COMPOSITES AND POLYMERS CO.

														Annual	Percent	
Hydrogeologic	Well					Mon	thly Runnin	g Times (ho	ours)					Total	of Total	
Unit	ID	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	(hours)	Available	Comments
Glacial Drift	W-31	0	0	1.1	1.5	0	0	3.1	0	0	0	0	0	5.7	0.1%	Dewatering of glacial drift due to pumping at RC-2 has affected
																shallow groundwater elevations.
	W-32	11	1	23.5	41.7	11.2	37	434.5	0.2	0.2	1	1.9	6.3	569.5	6.5%	Dewatering of glacial drift due to pumping at RC-2 has affected
												l	1			shallow groundwater elevations.
	W-33	392.9	263.8	430.3	634.2	350.7	314.8	601.8	820.9	814.1	626.3	677.3	835.1	6762.2	77.2%	Dewatering of glacial drift due to pumping at RC-2 has affected
																shallow groundwater elevations.
	W-34	202.4	153.7	354.3	673.6	667.4	642.6	631.3	820.8	814.1	626.7	676.9	835.3	7099.1	81.0%	Continued pumping assists in controlling off-site migration of
										_						contaminants within the glacial drift.
	W-35	1.6	1.6	2.4	1.9	2.5	73.1	94.3	0.1	0	24.1	0.5	5.4	207.5	2.4%	Continued pumping assists in controlling off-site migration of
	RC-1	167.3	187.7	305.8	265	455.9	482.1	113.5	29.5	14.3	89.2	81.1	201.2	2392.6	27.3%	contaminants within the glacial drift.
	KC-1	107.3	107.7	305.6	265	455.9	402.1	113.5	29.5	14.3	09.2	01.1	201.2	2392.0	21.3%	Pumping has created some dewatering of the glacial drift.
	RC-2	742	422.7	766.3	673.6	667,4	642,5	638.9	797.1	673.3	582.9	676.9	617.7	7901.3	90.2%	Pumping has created some dewatering of the glacial drift.
						1					1					
	RC-3	28.7	205.6	255.7	250.1	115.4	61.8	83.3	330.9	768.9	651.4	675.2	835.3	4262.3	48.7%	Pumping has created some dewatering of the glacial drift.
						<u> </u>										
Shallow	W-21A	56.7	42.3	57.2	0	0	164.8	615.3	622.5	834.1	674.4	675.2	835.3	4577.8	52.3%	Pumping is contributing to the creation of a large dewatered
Dolomite																zone within the shallow dolomite.
	W-24A	6.7	5	6.3	6.1	5.6	5.5	460	6.3	5.7	5	5.2	6.9	524.3	6.0%	Continued pumping assists in controlling off-site migration of
																contaminants within the shallow dolomite.
	W-28	46.9	19	49.4	137.6	109.4	93.3	312	52.4	92.7	136.6	111	73.3	1233.6	14.1%	Continued pumping assists in controlling off-site migration of
																contaminants within the shallow dolomite.
	W-29	152	110.2	1.7	0	U	32.5	35.1	44.2	686.4	258.9	535	738.3	2594.3	29.6%	Continued pumping assists in controlling off-site migration of
	144.00		<u> </u>	<u> </u>	1	<u> </u>				<u> </u>	<u> </u>	1 010	<u> </u>	<u> </u>	<u></u>	contaminants within the shallow dolomite.
Deep Dolomite	W-30							Pump runs	continuous	ly to provide	approxima	itely 340 gp	m of non-co	ntact coolir	g water.	
Dolomite																

TABLE 3 SUMMARY OF 1998 GROUNDWATER SAMPLING PROGRAM COOK COMPOSITES AND POLYMERS CO.

Monitoring Objective/	Unit Monitored	Compline Daint	Sampling Frequency and EPA Method Number					
Well Group	Ont Montored	Sampling Point	Quarterly	Semiannually	Annually ²			
Receptor	Glacial Drift	RC-1	8021/8260 ³					
•		RC-2	8021/82603					
		RC-3	8021/8260 ³					
	Deep Dolomite	MW-1	8260					
	•	MW-2			8260			
		MW-3	8260					
		MW-4	8260					
	POTW	POTW-I	8260					
		POTW-E	8260					
		POTW-S	8260					
Perimeter	Glacial Drift	W-01A		8260				
		W-03B		8260				
		W-04A		8260				
		W-08R		8260				
		W-20		8260				
		W-27		8260				
	Shallow Dolomite	W-03A		8260				
		W-07		8260				
		W-22		8260				
		W-23		8260				
		W-25 ³						
	Deep Dolomite	PW-08		8260				
Remediation Progress	Glacial Drift	W-06A			8260, 8270, 7060, 6010			
		W-19A			8021			
		W-37 ⁶						
		W-41			8021			

TABLE 3 (CONTINUED)

SUMMARY OF 1998 GROUNDWATER SAMPLING PROGRAM COOK COMPOSITES AND POLYMERS CO.

Monitoring Objective/ Well Group	Unit Monitored	Sampling Point	Sampling Frequency and EPA Method Number					
•			Quarterly	Semiannually	Annually ²			
W7.00F3.		W-42			8021			
		W-43			8260, 8270, 7060, 6010			
		W-47			8260, 8270, 7060, 6010, 8081			
	Shallow Dolomite	W-21A			8260, 8270, 7060, 6010			
		W-24A			8260, 8270, 7060, 6010			
		W-28			8260, 8270, 7060, 6010			
		W-29			8260, 8270, 7060, 6010			
		W-38			8021			
	Deep Dolomite	W-30			8260, 8270, 7060, 6010			
Groundwater elevation	Glacial Drift	W-14B	Quarterly water leve	l measurements only				
monitoring		W-16A	Quarterly water leve	l measurements only				
		W-18A	Quarterly water leve	Quarterly water level measurements only				
		W-44	Quarterly water leve	l measurements only				
		W-45	Quarterly water leve	l measurements only				
		W-46	Quarterly water leve	l measurements only	·			
		W-48	Quarterly water leve	l measurements only				
	Shallow Dolomite	W-39	Quarterly water leve	l measurements only				
		W-40	Quarterly water leve	l measurements only				

NOTES

- Semiannual samples are collected in April and October.
 Annual samples are collected in July.
- 3. Sampls are analyzed using Method 8260.
- 4. MW-2 is only monitored on an annual basis.
- 5. W-25 was abandoned in July 1997.
- 6. W-37 was abandoned in August 1996.

TABLE 4

SUMMARY OF ANALYTES AND METHODS COOK COMPOSITES AND POLYMERS CO.

Volatile Organic Compounds by Method 8260						
Chloroethane	1,1,1-Trichloroethane	2-Hexanone				
Chloromethane Bromomethane	Carbon Tetrachloride	4-Methyl-2-Pentanone Tetrachloroethene				
Vinyl Chloride	Vinyl Acetate Bromodichloromethane	Toluene 1				
Methylene Chloride	1,1,2,2-Tetrachloroethane	Chlrorbenzene 1				
Acetone	1,2-Dichloropropane	Ethylbenzene ¹				
Carbon Disulfide	trans-1,2-Dichloropropene	Styrene				
1,1-Dichloroethene	Trichloroethene	Xylenes (total) ¹				
1,1-Dichloroethane	Dibromochloromethane	1,4-Dichlorobenzene ¹				
1,2-Dichloroethene (total)	1,1,2-Trichloroethane	1,3-Dichlorobenzene ¹				
Chloroform	Benzene	1,2-Dichlorobenzene ¹				
1,2-Dichlroethane	cis-1,3-Dichloropropene					
2-Butanone	Bromoform					

Aromatic Volatile Organics by Method 8021¹

Benzene
Toluene
Ethylbenzene
Chlorobenzene
Xylenes (total)
1,4-Dichlorobenzene
1,3-Dichlorobenzene

Semivolatile Organic Compounds by Method 8270²

1,4-Dioxane
2,4-Dimethylphenol
2-Methylnaphthalene
2-Methylphenol
4-Methylphenol
Acetophenone
bis(2-ethylhexyl)phthalate
Naphthalene
Phenanthrene
Phenol

Polychlorinated Biphenyls (PCBs) by Method 8080³

Arochlor 1016 Arochlor 1221 Arochlor 1232 Arochlor 1242 Arochlor 1248 Arochlor 1254 Arochlor 1260

Metals by Methods 7060, 6010²

Barium Arsenic

NOTES

- Volatile aromatic compounds.
- Analyzed annually at wells W-06A, W-43, W-47, W-21A, W-24A, W-28, W-29, and W-30.
- Only well W-47 is analyzed for PCBs.

Table 5
Total VOCs Detected 1998
Receptor Monitoring Group
Cook Composites and Polymers, Co.

G	12	٠i	2	1	ln	if
171	1	(;i	М	ı	JII	11

Sample ID	Units	Jan-98	Apr-98	Jul-98	Oct-98
RC-1	ug/L	501.1	38756	14633.6	1249.87
RC-2 RC-3	ug/L ug/L	995.5 371	37357 12441	13929 6605	1298.97 5380.67

Deep Dolomite

Sample ID	Units	Jan-98	Apr-98	Jul-98	Oct-98
MW-01	ug/L	0	0	0.5	NS
MW-02	ug/L	NS	NS	0	NS
MW-03	ug/L	0	0	0	0
MW-04	ug/L	0	0	0	0

POTW

Sample ID	Units	Jan-98	Apr-98	Jul-98	Oct-98
POTW-I	ug/L	26.44	122	27.28	26.88
POTW-E	ug/L	0	15.3	0	2.96
POTW-S	ug/L	3019	62.6	48.9	43.3

ND = Not Detected

Table 6
Total VOCs Detected 1998
Perimeter Monitoring Group
Cook Composites and Polymers, Co.

Glacial Unit

Sample ID	Units	Apr-98	Oct-98
W-01A	ug/L	0	0
W-03B	ug/L	0	0
W-04A	ug/L	0	0
W-08R	ug/L	0	~
W-20	ug/L	0	0
W-27	ug/L	105.89	112

Shallow Dolomite

Sample ID	Units	Apr-98	Oct-98
		_	
PW-08	ug/L	6	4.6
W-03A	ug/L	0.5	0
W-07	ug/L	0	0
W-22	ug/L	0.9	1.9
W-23	ug/L	5.49	4
W-25	ug/L	~	~

ND = Not Detected

Notes:

- 1. PW-08 is a deep dolomite well.
- 2. W-25 was abandoned in 1997.

Table 7
Total VOCs Detected 1998
Remediation Progress Monitoring Group
Cook Composites and Polymers, Co.

_				•	 	• •
G	2	\sim 1	•		n	

Sample ID	Units	Jul-98
14/004		474440
W-06A	ug/L	174,410
W-19A	ug/L	7.7
W-37	ug/L	~
W-41	ug/L	787.6
W-42	ug/L	16,880
W-43	ug/L	103,110
W-47	ug/L	88,676

Shallow Dolomite

Sample ID	Units	Jul-98
W-21A	ug/L	18,947
W-24A	ug/L	15,270
W-28	ug/L	~
W-29	ug/L	511.6
W-30	ug/L	61.2
W-38	ug/L	3,756
	_	

ND = Not Detected

Notes:

- 1. W-30 is a deep dolomite well.
- 2. W-37 was abandoned in 1997.

TABLE 8
SUMMARY OF APPENDIX IX PARAMETERS
COOK COMPOSITES AND POLYMERS CO.

			140			1	WE				
PARAMETERS (ug/L) SVOCs	DATE	PAL	ES	W-06A	W-21A	W-24A	W-28	W-29	W-30	W-43	W-47
1,4-Dioxane	Oct-94			710E	1200D	210	530D	ND	20	ND	380D
,	Jan-95			620	960	460	610	ND	24	ND	2000E
	Jul-95		7	350	1000	260	660	120	19Q	ND	710
	Jul-96			870Q	1100Q	250D	900D	170	444 ND	ND	4700
	Jul-97 Jul-98			ND 230D	ND 830D	560 670D	1500 NS	ND 20D	ND 35	ND <3600	ND 290
2,4-Dimethylphenol	Oct-94			120	10	ND	ND ND	ND	ND	ND	71
2,4 Dimetry priorior	Jan-95			210	36Q	ND	ND	ND	ND	ND	210
	Jul-95			100q	18Q	ND	ND	5Q	ND	ND	340
	Jul-96			170Q	90Q	ND	1Q	26	ND	62	230Q
	Jul-97			210	55	ND	ND	54	ND	93Q	790
0.14 (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	Jul-98			180D	69	69	NS	4.8	<1.0	<1000	830
2-Methylphenol	Oct-94 Jan-95			32 51Q	5Q ND	ND DN	ND ND	ND ND	ND ND	ND ND	14 27Q
	Jan-95 Jul-95			22Q	ND ND	ND	ND ND	ND ND	ND ND	ND ND	45Q
	Jul-95 Jul-97			29J	ND ND	ND	ND	ND	ND	ND ND	190#
	Jul-98			42	16	14	NS	<1.1	<0.97	<980	120
3-Methylphenol	Oct-94	· ·		170	ND	ND	ND	ND	ND	ND	ND
4-Methylphenol	Oct-94			112	10	ND	ND	ND	ND	ND	51
	Jan-95	==	1880	180	ND	ND	ND	ND	ND	ND	130
	Jul-95		,	89Q	ND	ND	ND	ND	ND	ND	120
	Jul-97			91#	1.3J#	ND	ND NC	3.8J#	ND	ND <920	200 190
Acetophenone	Jul-98 Oct-94			120 56	12 ND	9.9 ND	NS ND	<1.0 ND	<0.91 ND	<920 ND	ND
, roctobileilolle	Jan-95			78Q	ND ND	ND	ND ND	ND	ND	9600	ND
	Apr-95			ND	ND	ND	ND	ND	ND	23	ND
	Jul-95		:	49Q	ND	ND	ND	2Q	ND	280	120Q
	Jul-96		-	130QB	ND	ND	ND	ND	ND	ND	250QB
	Jul-97			ND	ND	ND	ND	ND	ND	ND	180
N	Jul-98			48	10	11	NS	<0.93	<0.85	<850	240
Naphthalene	Oct-94	8	40	10	ND	ND	ND	ND	ND	ND	34
	Jan-95	8 8	40 40	15Q ND	ND 27Q	ND ND	ND ND	ND 2Q	ND ND	1200Q 43Q	17Q 30Q
	Jul-95 Jul-96	8	40	31	27Q 28Q	ND ND	ND ND	2Q 0.4Q	ND ND	75Q	90Q
	Jul-96 Jul-97	8	40	17J	4.1J	ND	ND ND	ND	ND ND	200	18J
	Jul-98	8	40	15	25	24	NS	<2.3	<2.1	<2100	110
Phenol	Oct-94	1200	6000	70	ND	ND	ND	ND	ND	ND	70
	Jan-95	1200	6000	110	ND	ND	ND	ND	ND	ND	190
	Jul-95	1200	6000	61Q	ND	ND	ND	ND	ND	30Q	110
	Jul-96	1200	6000	ND	ND	ND	ND	31	ND ND	ND ND	180Q 130
	Jul-97 Jul-98	1200 1200	6000 6000	57 61	44 5.1	ND 6.6	ND NS	52 7.2	<0.49	<500	48
1,2-Dichlorobenzene	Oct-94	60	600	ND	8Q	ND	ND	ND	ND	ND	ND
1,2 5.0	Jul-97	60	600	ND	1.2J	ND	ND	ND	ND	ND	ND
al V	Jul-98	60	600	<72	<18	<18	NS	<0.36	<0.36	<36	<36
Butylbenzene	Oct-94			ND	ND	ND	ND	2Q	ND	ND	ND
2-Methylnaphthalene	Oct-94		(==)	ND	ND	ND	ND	ND	ND	ND 4500	12
	Jan-95 Apr-95		-	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	4500 6Q	ND NA
	Jul-95			ND ND	ND ND	ND	ND ND	ND ND	ND ND	120	ND
	Jul-96			ND	ND	ND	ND	ND	ND	200Q	ND
	Jul-97			ND	ND	ND	ND	ND	ND	750	ND
	Jul-98			<1.8	<1.9	<2.0	NS	<2.0	<1.9	4200	35Q
Acenaphthene	Jan-95			ND	ND	ND	ND	ND.	ND	280Q	ND
Dibenzofuran	Jan-95			ND	ND.	ND	ND	ND	ND		ND
Fluorene N. Nitropodinhonylomino			400		ND		ND		ND	370Q	
N-Nitrosodiphenylamine	Jan-95	80	400	ND	ND	ND	ND	ND	ND	590Q	ND
	Jan-95 Jan-95	80 		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	590Q 1100Q	ND ND
Phenanthrene	Jan-95 Jan-95 Oct-94	80		ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	590Q 1100Q ND	ND ND ND
	Jan-95 Jan-95	80 		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	590Q 1100Q	ND ND
	Jan-95 Jan-95 Oct-94 Jan-95 Apr-95 Jul-95	80 	 	ND ND ND ND NA NA	ND ND ND ND NA NA	ND ND ND ND NA NA	ND ND ND ND NA NA	ND ND ND ND NA NA	ND ND ND ND NA NA	590Q 1100Q ND 1200Q 4Q 33Q	ND ND ND ND NA NA
	Jan-95 Jan-95 Oct-94 Jan-95 Apr-95 Jul-95 Jul-96	80 	 	ND ND ND ND NA ND	ND ND ND ND NA ND ND	ND ND ND ND NA ND ND	ND ND ND ND NA ND	ND ND ND ND NA ND ND	ND ND ND ND NA ND ND	590Q 1100Q ND 1200Q 4Q 33Q 48Q	ND ND ND ND NA ND
	Jan-95 Jan-95 Oct-94 Jan-95 Apr-95 Jul-95 Jul-96 Jul-97	80 	 	ND ND ND ND NA ND ND ND	ND ND ND ND NA ND ND ND	ND ND ND ND NA ND ND	ND ND ND ND NA ND ND ND	ND ND ND ND NA ND ND ND	ND ND ND ND NA ND ND ND	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210	ND ND ND ND NA ND ND
Phenanthrene	Jan-95 Jan-95 Oct-94 Jan-95 Apr-95 Jul-95 Jul-96 Jul-97 Jul-98	80 	 	ND ND ND ND NA ND ND ND ND ND ND ND ND 1.6Q	ND ND ND NA ND ND ND NC ND ND ND ND ND ND ND ND	ND ND ND NA ND ND ND NC ND ND ND ND ND ND ND <0.77	ND ND ND ND NA ND ND ND ND ND ND NS	ND ND ND ND NA ND <0.78	ND ND ND ND NA ND ND ND ND <0.71	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300	ND ND ND ND NA ND ND ND ND 8.9Q
Phenanthrene	Jan-95 Jan-95 Oct-94 Jan-95 Apr-95 Jul-95 Jul-97 Jul-98 Oct-94	80 0.6	 6	ND ND ND ND NA ND ND ND ND ND ND ND ND 1.6Q ND	ND ND ND NA ND	ND ND ND ND NA ND	ND ND ND ND NA ND NS	ND ND ND ND NA ND	ND ND ND NA ND <0.71	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND	ND ND ND ND NA ND ND ND ND ND ND ND ND 25
Phenanthrene	Jan-95 Jan-95 Oct-94 Jan-95 Apr-95 Jul-95 Jul-97 Jul-98 Oct-94 Jan-95	80 0.6 0.6	 6 6	ND ND ND ND NA ND ND ND ND ND ND ND 1.6Q ND ND	ND ND ND NA ND	ND ND ND ND NA ND	ND ND ND NA ND	ND ND ND ND NA ND	ND ND ND NA ND	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND	ND ND ND ND NA ND ND ND ND S S S S S S S S S S S S S S
Phenanthrene	Jan-95 Jan-95 Oct-94 Jan-95 Apr-95 Jul-95 Jul-97 Jul-98 Oct-94	80 0.6	 6	ND ND ND ND NA ND ND ND ND ND ND ND ND 1.6Q ND	ND ND ND NA ND	ND ND ND ND NA ND	ND ND ND ND NA ND NS	ND ND ND ND NA ND	ND ND ND NA ND <0.71	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND	ND ND ND ND NA ND ND ND ND ND ND ND ND 25
Phenanthrene Bis(2-ethylhexyl)phthalate	Jan-95 Jan-95 Oct-94 Jan-95 Apr-95 Jul-96 Jul-97 Jul-98 Oct-94 Jan-95 Jul-96	80 0.6 0.6 0.6	 6 6 6	ND ND ND ND NA ND ND ND ND ND ND 1.6Q ND ND ND	ND ND ND NA ND	ND ND ND ND NA ND	ND ND ND ND NA ND ND ND NS ND ND	ND ND ND ND NA ND ND ND ND ND SO.78 ND ND SQ	ND ND ND ND NA ND	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND	ND ND ND ND NA ND ND ND ND S S S S S S S S ND
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs	Jan-95 Jan-95 Oct-94 Jan-95 Apr-95 Jul-96 Jul-97 Jul-98 Oct-94 Jan-95 Jul-96 Jul-97 Jul-98	80 0.6 0.6 0.6 0.6 0.6	 6 6 6 6 6	ND ND ND ND ND ND ND ND ND 1.6Q ND 2.8Q	ND ND ND ND ND ND ND <0.71 ND ND ND ND ND ND	ND ND ND ND NA ND ND ND ND ND ND 1.3J 5.1	ND N	ND ND ND ND NA ND ND <0.78 ND ND 3Q ND <1.4	ND ND ND ND NA ND ND <0.71 ND ND ND ND ND	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND 44J 74000	ND ND ND ND NA ND ND ND 8.9Q 25 54 ND ND ND 8.94
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs	Jan-95 Jan-95 Oct-94 Jan-95 Apr-95 Jul-96 Jul-97 Jul-98 Oct-94 Jan-95 Jul-97 Jul-98 Oct-94 Oct-94	80 0.6 0.6 0.6 0.6 0.6	 6 6 6 6 6 6	ND ND ND ND ND ND ND ND ND 1.6Q ND	ND SO ND	ND 1.3J 5.1	ND N	ND SO ND SO ND	ND ND ND ND ND ND ND VD ND ND ND ND ND ND	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND ND ND	ND ND ND ND NA ND ND ND 8.9Q 25 54 ND ND ND 84
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs	Jan-95 Jan-95 Oct-94 Jan-95 Apr-95 Jul-96 Jul-97 Jul-98 Oct-94 Jan-95 Jul-97 Jul-98 Oct-94 Jul-97	80 0.6 0.6 0.6 0.6 0.6	 6 6 6 6 6 6	ND ND ND ND NA ND ND ND ND 1.6Q ND	ND N	ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND NA ND ND ND ND SO.78 ND ND SO.78 ND ND ND ND ND ND ND ND NA	ND ND ND ND NA ND	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND NA ND ND 8.9Q 25 54 ND ND 84
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs	Jan-95 Jan-95 Oct-94 Jan-95 Apr-95 Jul-96 Jul-97 Jul-98 Oct-94 Jan-95 Jul-97 Jul-98 Oct-94 Jul-97	80 0.6 0.6 0.6 0.6 0.6 0.003 0.003 0.003	 6 6 6 6 6 6	ND ND ND ND NA ND ND ND 1.6Q ND	ND ND ND NA ND	ND ND ND ND NA ND	ND N	ND SO.78 ND ND SO.78 ND	ND ND ND ND NA ND	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND NA ND ND ND 8.9Q 25 54 ND ND 84
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs Arochlor-1242	Jan-95 Jan-95 Oct-94 Jan-95 Apr-95 Jul-96 Jul-97 Jul-98 Oct-94 Jan-95 Jul-97 Jul-98 Oct-94 Jul-97 Jul-98	80 0.6 0.6 0.6 0.6 0.6 0.003 0.003 0.003 0.003	 6 6 6 6 6 6 6	ND ND ND ND ND ND ND ND ND 1.6Q ND NA NA	ND N	ND ND ND NA ND	ND N	ND ND ND ND ND ND ND ND ND SO ND SO ND SO ND SO ND SO ND NA NA NA	ND N	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND NA ND ND 8.9Q 25 54 ND ND 84
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs Arochlor-1242	Jan-95 Jan-95 Oct-94 Jan-95 Apr-95 Jul-96 Jul-97 Jul-98 Oct-94 Jan-95 Jul-98 Oct-94 Jul-98 Jul-97 Jul-98 Jul-98 Jul-97 Jul-98	80 0.6 0.6 0.6 0.6 0.6 0.003 0.003 0.003 0.003 0.003	 6 6 6 6 6 6 6 0.03 0.03 0.03	ND 1.6Q ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND SO.77 ND ND ND 1.3J 5.1	ND N	ND SO.78 ND ND SO.78 ND	ND N	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND NA ND ND ND 8.9Q 25 54 ND ND 84
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs Arochlor-1242	Jan-95 Jan-95 Oct-94 Jan-95 Apr-95 Jul-96 Jul-97 Jul-98 Oct-94 Jan-95 Jul-97 Jul-98 Oct-94 Jul-97 Jul-98	80 0.6 0.6 0.6 0.6 0.6 0.003 0.003 0.003 0.003	 6 6 6 6 6 6 6	ND ND ND ND ND ND ND ND ND 1.6Q ND NA NA	ND N	ND ND ND NA ND	ND N	ND ND ND ND ND ND ND ND ND SO ND SO ND SO ND SO ND SO ND NA NA NA	ND N	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND NA ND ND 8.9Q 25 54 ND ND 84
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs Arochlor-1242	Jan-95 Jan-95 Oct-94 Jan-95 Apr-95 Jul-96 Jul-97 Jul-98 Oct-94 Jan-95 Jul-98 Oct-94 Jul-98 Jul-98 Jul-98 Jul-98 Jul-96 Jul-97 Jul-98 Jul-95 Jul-98	80 0.6 0.6 0.6 0.6 0.03 0.003 0.003 0.003 0.003 0.003	 6 6 6 6 6 6 6 0.03 0.03 0.03 0.03	ND ND ND ND ND ND ND ND ND 1.6Q ND	ND ND ND ND ND ND ND ND ND ND ND ND NA NA NA NA NA	ND N	ND ND ND ND ND ND ND ND ND ND ND NS ND ND NS ND ND NS ND ND NS ND ND ND ND ND ND ND ND ND ND ND ND ND	ND SO.78 ND ND SO.78 ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND NA ND ND ND 8.9Q 25 54 ND ND 84 25 38 ND ND ND 27 7
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs: Arochlor-1242 Arochlor-1248	Jan-95 Jan-95 Jan-95 Oct-94 Jan-95 Jul-96 Jul-97 Jul-98 Oct-94 Jan-95 Jul-98 Oct-94 Jul-98 Jul-97 Jul-98 Jul-96 Jul-97 Jul-98 Jan-95 Jul-95 Jul-97 Jul-98	80 0.6 0.6 0.6 0.6 0.6 0.003 0.003 0.003 0.003 0.003 0.003 0.003		ND ND ND ND ND ND ND ND 1.6Q ND NA NA NA NA NA NA	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND N	ND ND ND ND ND ND ND ND ND ND NS ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND ND ND ND ND ND ND ND ND SO ND ND SO ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND 8.9Q 25 54 ND ND 84 25 38 ND ND ND 84
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs Arochlor-1242 Arochlor-1248	Jan-95 Jan-95 Oct-94 Jan-95 Apr-95 Jul-96 Jul-97 Jul-98 Oct-94 Jan-95 Jul-96 Jul-97 Jul-98 Oct-94 Jul-96 Jul-97 Jul-98 Jan-95 Jul-97 Jul-98 Jan-95 Jul-97 Jul-98	80 0.6 0.6 0.6 0.6 0.6 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	 6 6 6 6 6 6 6 6 0.03 0.03 0.03 0.03 0.0	ND ND ND ND ND ND ND ND 1.6Q ND NA	ND N	ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND SO ND NA	ND N	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND ND NA NA NA NA NA NA NA NA	ND ND ND ND ND ND ND 8.9Q 25 54 ND ND 84 25 38 ND ND ND 87 7.6
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs Arochlor-1242 Arochlor-1248	Jan-95 Jan-95 Jan-95 Oct-94 Jan-95 Jul-96 Jul-97 Jul-98 Oct-94 Jan-95 Jul-96 Jul-97 Jul-98 Oct-94 Jul-97 Jul-98 Jul-97 Jul-98 Jan-95 Jul-97 Jul-98 Jan-95 Jul-97 Jul-98	80 0.6 0.6 0.6 0.6 0.6 0.03 0.003 0.003 0.003 0.003 0.003 0.003 5 5	 6 6 6 6 6 6 6 0.03 0.03 0.03 0.03 0.03	ND ND ND ND ND ND ND ND 1.6Q ND ND ND ND ND ND ND ND NA	ND ND ND ND ND ND ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND N	ND N	ND SO.78 ND ND SO.78 ND ND ND SO.78 ND ND SO.78 ND ND SO.78 ND ND SO.78 ND ND NA	ND N	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND 8.9Q 25 54 ND ND 84 27 7 ND ND 7.6 ND
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs: Arochlor-1242 Arochlor-1248	Jan-95 Jan-95 Oct-94 Jan-95 Jul-95 Jul-97 Jul-98 Oct-94 Jan-95 Jul-97 Jul-98 Oct-94 Jul-97 Jul-98 Jul-97 Jul-98 Jul-97 Jul-98 Jul-97 Jul-98 Jan-95 Jul-97 Jul-98 Jan-95 Jul-97 Jul-98	80 0.6 0.6 0.6 0.6 0.6 0.03 0.003 0.003 0.003 0.003 0.003 0.003 5 5 5	 6 6 6 6 6 6 6 0.03 0.03 0.03 0.03 0.03	ND ND ND ND ND ND ND ND ND 1.6Q ND ND ND ND ND ND ND NA	ND ND ND ND ND ND ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND N	ND N	ND SO.78 ND ND SO.78 ND ND NA	ND N	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND N
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs Arochlor-1242 Arochlor-1248	Jan-95 Jan-95 Oct-94 Jan-95 Jul-95 Jul-97 Jul-98 Oct-94 Jan-95 Jul-97 Jul-98 Oct-94 Jul-97 Jul-98 Jul-97 Jul-98 Jul-97 Jul-98 Jan-95 Jul-95 Jul-98 Oct-94 Jan-95 Jul-98 Jan-95 Jul-98	80 0.6 0.6 0.6 0.6 0.6 0.03 0.003 0.003 0.003 0.003 0.003 0.003 5 5 5 5	 6 6 6 6 6 6 6 0.03 0.03 0.03 0.03 0.03	ND ND ND ND ND ND ND ND ND 1.6Q ND ND ND ND ND ND ND ND NA	ND ND ND ND ND ND ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND N	ND N	ND SO.78 ND ND SO.78 ND ND NA	ND N	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND N
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs Arochlor-1242 Arochlor-1248	Jan-95 Jan-95 Oct-94 Jan-95 Jul-95 Jul-96 Jul-97 Jul-98 Oct-94 Jul-97 Jul-98 Oct-94 Jul-97 Jul-98 Jul-97 Jul-98 Jul-97 Jul-98 Jan-95 Jul-95	80 0.6 0.6 0.6 0.6 0.6 0.003 0.003 0.003 0.003 0.003 0.003 0.003 5 5 5 5	 6 6 6 6 6 6 6 6 0.03 0.03 0.03 0.03 0.0	ND ND ND ND ND ND ND ND ND 1.6Q ND ND ND ND ND ND ND NA	ND ND ND ND ND ND ND ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND N	ND N	ND SO.78 ND ND SO.78 ND ND NA	ND N	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND N
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs Arochlor-1242 Arochlor-1248 Metals: Arsenic	Jan-95 Jan-95 Oct-94 Jan-95 Jul-95 Jul-97 Jul-98 Oct-94 Jan-95 Jul-97 Jul-98 Oct-94 Jul-97 Jul-98 Jul-97 Jul-98 Jul-97 Jul-98 Jan-95 Jul-95 Jul-98 Oct-94 Jan-95 Jul-98 Jan-95 Jul-98	80 0.6 0.6 0.6 0.6 0.6 0.03 0.003 0.003 0.003 0.003 0.003 0.003 5 5 5 5	 6 6 6 6 6 6 6 0.03 0.03 0.03 0.03 0.03	ND ND ND ND ND ND ND ND ND 1.6Q ND ND ND ND ND ND ND NA	ND ND ND ND ND ND ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND N	ND N	ND SO.78 ND ND SO.78 ND ND NA	ND N	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND 8.9Q 25 54 ND ND 84 25 38 ND ND 27 7 ND ND 7.6 ND 4.8 8
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs Arochlor-1242 Arochlor-1248 Metals: Arsenic	Jan-95 Jan-95 Oct-94 Jan-95 Jul-95 Jul-96 Jul-97 Jul-98 Oct-94 Jul-97 Jul-98 Jul-97 Jul-98 Jul-97 Jul-98 Jul-97 Jul-98 Jan-95 Jul-97 Jul-98 Jan-95 Jul-97 Jul-98 Oct-94 Jan-95 Jul-97 Jul-98	80 0.6 0.6 0.6 0.6 0.03 0.003 0.003 0.003 0.003 0.003 0.003 5 5 5 5 5	 6 6 6 6 6 6 6 6 0.03 0.03 0.03 0.03 0.0	ND ND ND ND ND ND ND ND ND 1.6Q ND ND ND ND ND ND ND NA	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND N	ND N	ND N	ND N	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND ND ND ND ND ND ND ND 8.9Q 25 54 ND ND 84 25 38 ND ND ND ND 84 84 86.2 6.7
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs Arochlor-1242 Arochlor-1248 Metals: Arsenic	Jan-95 Jan-95 Jan-95 Oct-94 Jan-95 Jul-96 Jul-97 Jul-98 Oct-94 Jul-98 Oct-94 Jul-97 Jul-98 Jan-95 Jul-97 Jul-98 Jan-95 Jul-97 Jul-98 Jan-95 Jul-97 Jul-98 Oct-94 Jan-95 Jul-97 Jul-98 Oct-94 Jan-95 Jul-97 Jul-98 Oct-94 Jan-95 Jul-97 Jul-98 Oct-94 Jan-95 Jul-97 Jul-98	80 0.6 0.6 0.6 0.6 0.03 0.003 0.003 0.003 0.003 0.003 0.003 5 5 5 5 5 5 5 5		ND 1.6Q ND ND ND ND ND ND NA	ND ND ND ND ND ND ND ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND 1.3J 5.1 ND NA NA NA NA ND NA NA NA ND NA NA NA NA ND	ND N	ND SO.78 ND ND SO.78 ND ND NA NA NA NA NA NA NA NA 16 ND 4.4 2.7 4.5 170 140 160	ND ND ND ND ND ND ND ND ND NA NA NA NA NA ND	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND ND ND ND ND ND ND 8.9Q 25 54 ND ND 84 25 38 ND ND 27 7 ND ND ND 84 25 15 15 15 15 15 15 15 15 15 15 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs: Arochlor-1242	Jan-95 Jan-95 Jan-95 Oct-94 Jan-95 Jul-96 Jul-97 Jul-98 Oct-94 Jul-98 Jul-96 Jul-97 Jul-98 Jul-96 Jul-97 Jul-98 Jan-95 Jul-98 Jan-95 Jul-97 Jul-98 Oct-94 Jan-95 Jul-97 Jul-98 Oct-94 Jan-95 Jul-95 Jul-96 Jul-97 Jul-98	80 0.6 0.6 0.6 0.6 0.03 0.003 0.003 0.003 0.003 0.003 0.003 5 5 5 5 5 5 5 5 5		ND N	ND ND ND ND ND ND ND ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND N	ND N	ND SO.78 ND ND SO.78 ND ND NA NA NA NA NA NA NA NA NA 16 ND 4.4 2.7 4.5 170 140 160 200	ND ND ND ND ND ND ND ND ND ND ND NA NA NA NA ND ND ND NA NA NA NA ND ND ND ND ND ND ND ND ND ND ND ND ND	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND ND ND ND ND ND ND 8.9Q 25 54 ND ND 84 25 38 ND ND 27 7 ND ND ND 27 7 ND ND 150 260 130 110
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs Arochlor-1242 Arochlor-1248 Metals: Arsenic	Jan-95 Jan-95 Jan-95 Oct-94 Jan-95 Jul-96 Jul-97 Jul-98 Oct-94 Jul-98 Jul-96 Jul-97 Jul-98 Jul-97 Jul-98 Jan-95 Jul-97 Jul-98 Jan-95 Jul-97 Jul-98 Oct-94 Jan-95 Jul-97 Jul-98 Oct-94 Jan-95 Jul-95 Jul-96 Jul-97 Jul-98 Oct-94 Jan-95 Jul-96 Jul-97 Jul-98	80 0.6 0.6 0.6 0.6 0.6 0.03 0.003 0.003 0.003 0.003 0.003 5 5 5 5 5 5 5 5 5 5 5 5 5		ND N	ND ND ND ND ND ND ND ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND N	ND N	ND S0.78 ND ND S1.4 ND NA NA NA NA ND NA NA NA NA NA NA 16 ND 4.4 2.7 4.5 170 140 160 200 230	ND ND ND ND ND ND ND ND ND ND NA NA NA ND ND ND ND NA NA NA NA ND ND ND ND ND ND ND ND ND ND ND ND ND	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND ND ND ND ND ND ND 8.9Q 25 54 ND ND 84 25 38 ND ND 27 7 ND ND ND 84 25 38 ND ND 10 10 10 10 10 10 10 10 10 10 10 10 10
Phenanthrene Bis(2-ethylhexyl)phthalate PCBs Arochlor-1242 Arochlor-1248 Metals: Arsenic	Jan-95 Jan-95 Jan-95 Oct-94 Jan-95 Jul-96 Jul-97 Jul-98 Oct-94 Jul-98 Jul-96 Jul-97 Jul-98 Jul-96 Jul-97 Jul-98 Jan-95 Jul-98 Jan-95 Jul-97 Jul-98 Oct-94 Jan-95 Jul-97 Jul-98 Oct-94 Jan-95 Jul-95 Jul-96 Jul-97 Jul-98	80 0.6 0.6 0.6 0.6 0.03 0.003 0.003 0.003 0.003 0.003 0.003 5 5 5 5 5 5 5 5 5		ND N	ND ND ND ND ND ND ND ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND N	ND N	ND SO.78 ND ND SO.78 ND ND NA NA NA NA NA NA NA NA NA 16 ND 4.4 2.7 4.5 170 140 160 200	ND ND ND ND ND ND ND ND ND ND ND NA NA NA NA ND ND ND NA NA NA NA ND ND ND ND ND ND ND ND ND ND ND ND ND	590Q 1100Q ND 1200Q 4Q 33Q 48Q 210 1300 ND ND ND ND ND NA NA NA NA NA NA NA NA NA NA NA NA NA	ND ND ND ND ND ND ND 8.9Q 25 54 ND ND 84 25 38 ND ND 27 7 ND ND ND 27 7 ND ND 150 260 130 110

L L

Г

PROJECT NUMBER: 8E13503 **BEGINNING DATE:**

ENDING DATE:

7-Jan-98

TABLE 1 7-Jan-98 **MUNICIPAL WELL RESULTS**

(1) PAL = NR140 Preventive Action Limit

(2) ES = NR140 Enformcement Standard

Parameter	PAL (1)	ES (2)	Units	MW-1-98-1 1/7/98	MW-2-98-1 not sampled	MW-3-98-1 1/7/98	MW-4-98-1 1/7/98	DUP1-98-1 1/7/98 (MW-4-98-1)	TB-1-98-1
1,1,1-Trichloroethane	40	200	ug/L	ND	-	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.02	0.2	ug/L	ND	_	ND	ND	ND	ND
1,1,2-Trichloroethane	0.5	5	ug/L	ND	_	ND	ND	ND	ND
1,1-Dichloroethane	85	850	ug/L	ND	_	ND	ND	ND	ND
1,1-Dichloroethene	0.7	7	ug/L	ND	-	ND	ND	ND	ND
1,2-Dichloroethane	0.5	5	ug/L	ND	_	ND	ND	ND	ND
1,2-Dichloropropane	0.5	5	ug/L	ND	-	ND	ND	ND	ND
2-Butanone	90	460	ug/L	ND		ND	ND	ND	ND
2-Hexanone			ug/L	ND		ND	ND	ND	ND
4-Methyl-2-Pentanone	50	500	ug/L	ND	-	ND	ND	ND	ND
Acetone	200	1000	ug/L	ND	-	ND	ND	ND	ND
Benzene	0.5	5	ug/L	ND	_	ND	ND	ND	ND
Bromodichloromethane	0.06	0.6	ug/L	ND	_	ND	ND	ND	ND
Bromoform	0.44	4.4	ug/L	ND		ND	ND	ND	ND
Bromomethane	1	10	ug/L	ND	_	ND	ND	ND	ND
Carbon disulfide			ug/L	ND	_	ND	ND	ND	ND
Carbon tetrachloride	0.5	5	ug/L	ND	_	ND	ND	ND	ND
Chlorobenzene	20	100	ug/L	ND	_	ND	ND	ND	ND
Chlorodibromomethane	6	60	ug/L	ND	_	ND	ND	ND	ND
Chloroethane	80	400	ug/L	ND	_	ND	ND	ND	ND
Chloroform	0.6	6	ug/L	ND	_	ND	ND	ND	ND
Chloromethane	0.3	3	ug/L	ND	_	ND	ND	ND	ND
1,2-Dichloroethene, total	7	70	ug/L	ND	-	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.02	0.2	ug/L	ND		ND	ND	ND	ND
Ethylbenzene	140	700	ug/L	ND	-	ND	ND	ND	ND
Methylene chloride	0.50	5	ug/L	ND	-	ND	ND	ND	ND
Styrene	10	100	ug/L	ND	_	ND	ND	ND	ND
Tetrachloroethene	0.5	5	ug/L	ND	-	ND	ND	ND	ND
Toluene	68.6	343	ug/L	ND	_	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.02	0.2	ug/L	ND	_	ND	ND	ND	ND
Trichloroethene	0.5	5	ug/L	ND	_	ND	ND	ND	ND
Vinyl acetate			ug/L	ND		ND	ND	ND	ND
Vinyl Chloride	0.02	0.2	ug/L	ND	_	ND	ND	ND	ND
Xylene, total	124	620	ug/L	ND	-	ND	ND	ND	ND
Total VOCs			ug/L	0.0	-	0.0	0.0	0.0	0.0
Winter 1997 Total VOCs			ug/L	0.0	_	0.0	0.0	0.0	_

PROJECT NUMBER: 8E13503
BEGINNING DATE: 7-Jan

7-Jan-98

TABLE 2 POTW AND RANNEY COLLECTOR RESULTS

Parameter	:-3-98-1 /7/98
1,1,2,2-Tetrachloroethane	
1,1,2,2-Tetrachloroethane	
1,1,2-Trichloroethane	
1,1-Dichloroethane	
1,1-Dichloroethene ug/L ND ND ND ND ND ND ND 1,2-Dichloroethane ug/L ND	
1,2-Dichloroethane	
1,2-Dichloropropane	
2-Butanone ug/L ND ND 2.7 Q 2-Hexanone ug/L ND ND ND ND 4-Methyl-2-Pentanone ug/L ND ND ND ND Acetone ug/L 24 ND 13 Benzene ug/L ND ND ND ND 7.1 5.5 3.6 Bromodichloromethane ug/L ND	
2-Hexanone ug/L ND ND ND ND ND ND ND Adelene ug/L ND	
######################################	
Acetone ug/L 24 ND 13 Benzene ug/L ND ND ND 7.1 5.5 3.6 Bromodichforomethane ug/L ND	-
Benzene	
Bromodichioromethane	
Bromodichloromethane Ug/L ND ND ND ND ND ND ND N	.0
Bromomethane	
Carbon disulfide ug/L ND ND 1.2 Q Carbon tetrachloride ug/L ND ND	
Carbon tetrachloride ug/L ND ND<	
Chiorobenzene	
Chlorodibromomethane	
Chioroethane	D
Chicroform	
Chloromethane	
,2-Dichloroethene, total	
Cie-1,3-Dichloropropene ug/L ND ND ND S4 90 25 Ethylbenzene ug/L ND ND ND 54 90 25 Methylene chloride ug/L ND ND ND ND Styrene ug/L ND ND ND Tetrachloroethene ug/L ND ND ND Toluene ug/L 1.4 ND 3000 D 60 110 5	
Ethylbenzene ug/L ND ND ND 54 90 25 Methylene chloride ug/L ND South ND ND	
Methylene chloride ug/L ND ND ND Styrene ug/L ND ND ND Fetrachloroethene ug/L ND ND ND Foluene ug/L 1.4 ND 3000 D 60 110 5	
Styrene ug/L ND ND ND Tetrachloroethene ug/L ND ND ND Toluene ug/L 1.4 ND 3000 D 60 110 5	50 D
Fetrachloroethene ug/L ND ND ND Foluene ug/L 1.4 ND 3000 D 60 110 5	
Toluene ug/L 1.4 ND 3000 D 60 110 5	
•	
and 4 Plablesons with AIP AIP AIP	
rans-1,3-Dichloropropene ug/L ND ND ND	
Frichtoroethene ug/L ND ND ND	
/inylecetate ug/L ND ND ND	
/inyl Chloride ug/L ND ND ND	
(ylene, total ug/L ND ND ND 380 D 790 D 11:	13
,3-Dichlorobenzene ug/L ND ND ND	D
I,2-Dichlorobenzene ug/L ND ND ND	D
1,4-Dichlorobenzene ug/L ND ND ND	D
Total VOCs ug/L 26.44 0.0 8019 501.1 995.5 37	71
Winter 1997 Total VOCs ug/L 60.95 0.0 42.78 24900 20490 204	

TABLE 1 MUNICIPAL WELL RESULTS (1) PAL = NR140 Preventive Action Limit

BEGINNING DATE: ENDING DATE:

1-Apr-98 2-Apr-98 (2) ES = NR140 Enformcement Standard

Parameter	PAL (1)	ES (2)	Units	MW-1-98-2 4/2/98	MW-2-98-2 not sampled	MW-3-98-2 4/2/98	MW-4-98-2 4/2/98	DUP1-98-2 4/2/98 (MW-4-98-2)	TB-1-98-2	FB-1-98-2
1,1,1-Trichloroethane	40	200	ug/L	ND		ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.02	0.2	ug/L	ND		ND	ND	ND	ND	ND
1,1,2-Trichloroethane	0.5	5	ug/L	ND		ND	ND	ND	ND	ND
1,1-Dichloroethane	85	850	ug/L	ND		ND	ND	ND	ND	ND
1,1-Dichloroethene	0.7	7	ug/L	ND		ND	ND	ND	ND	ND
1,2-Dichloroethane	0.5	5	ug/L	ND		ND	ND	ND	ND	ND
1,2-Dichloropropane	0.5	5	ug/L	ND	-	ND	ND	ND	ND	ND
2-Butanone	90	460	ug/L	ND		ND	ND	ND	ND	ND
2-Hexanone			ug/L	ND		ND	ND	ND	ND	ND
4-Methyl-2-Pentanone	50	500	ug/L	ND		ND	ND	ND	ND	ND
Acetone	200	1000	ug/L	ND		ND	ND	ND	ND	ND
Benzene	0.5	5	ug/L	ND		ND	ND	ND	ND	ND
Bromodichloromethane	0.06	0.6	ug/L	ND		ND	ND	ND	ND	ND
Bromoform	0.44	4.4	ug/L	ND	-	ND	ND	ND	ND	ND
Bromomethane	1	10	ug/L	ND		ND	ND	ND	ND	ND
Carbon disulfide			ug/L	ND		ND	ND	ND	ND	0.69 Q
Carbon tetrachloride	0.5	5	ug/L	ND		ND	ND	ND	ND	ND
Chlorobenzene	20	100	ug/L	ND		ND	ND	ND	ND	ND
Chlorodibromomethane	6	60	ug/L	ND		ND	ND	ND	ND	ND
Chloroethane	80	400	ug/L	ND		ND	ND	ND	ND	ND
Chloroform	0.6	6	ug/L	ND		ND	ND	ND	ND	ND
Chloromethane	0.3	3	ug/L	ND		ND	ND	ND	ND	ND
1,2-Dichloroethene, total	7	70	ug/L	ND		ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.02	0.2	ug/L	ND		ND	ND	ND	ND	ND
Ethylbenzene	140	700	ug/L	ND		ND	ND	ND	ND	ND
Methylene chloride	0.50	5	ug/L	ND	-	ND	ND	ND	ND	ND
Styrene	10	100	ug/L	ND	-	ND	ND	ND	ND	ND
Tetrachloroethene	0.5	5	ug/L	ND		ND	ND	ND	ND	ND
Toluene	68.6	343	ug/L	ND		ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.02	0.2	ug/L	ND		ND	ND	ND	ND	¹ ND
Trichloroethene	0.5	5	ug/L	ND		ND	ND	ND	ND	ND
Vinyl acetate			ug/L	ND		ND	ND	ND	ND	ND '
Vinyl Chloride	0.02	0.2	ug/L	ND		ND	ND	ND	ND	ND
Xylene, total	124	620	ug/L	ND	-	ND	ND	ND	ND	ND
Total VOCs			ug/L	0.0		0.0	0.0	0.0	0.0	0.69

PROJECT NUMBER: 8E13503 BEGINNING DATE:

1-Apr-98

TABLE 2

POTW AND RANNEY COLLECTOR RESULTS

BEGINNING DATE: ENDING DATE:	1-Apr-98 2-Apr-98		POTW AND R	ANNEY COLLEC	TOR RESULTS		
Parameter	Units	POTW-I-98-2 4/1/98	POTW-E-98-2 4/1/98	POTW-S-98-2 4/1/98	RC-1-98-2 4/1/98	RC-2-98-2 4/1/98	RC-3-98-2 4/1/98
1,1,1-Trichloroethane	ug/L	ND	ND	ND			
1,1,2,2-Tetrachloroethane	_	ND	ND	ND			
1,1,2-Trichloroethane	ug/L	ND	ND	ND			
1,1-Dichloroethane	ug/L	ND	ND	ND			
1,1-Dichloroethene	ug/L	ND	ND	ND			
1,2-Dichloroethane	ug/L	ND	ND	ND			
1,2-Dichloropropane	ug/L	ND	ND	ND			
2-Butanone	ug/L	ND	ND	5.9 Q			
2-Hexanone	ug/L	ND	ND	ND			-
4-Methyl-2-Pentanone	ug/L	ND	ND	ND			
Acetone	ug/L	27	ND	49			
Benzene	ug/L	0.44 Q	ND	ND	44	46	ى 38
Bromodichloromethane	ug/L	ND	ND	ND			
Bromoform	ug/L	ND	ND	ND			
Bromomethane	ug/L	ND	ND	ND			
Carbon disulfide	ug/L	ND	ND	1.4			
Carbon tetrachloride	ug/L	ND	ND	ND			
Chlorobenzene	ug/L	ND	ND	ND	ND	ND	ND
Chlorodibromomethane	ug/L	ND	ND	ND			
Chloroethane	ug/L	ND	ND	ND			
Chloroform	ug/L	ND	ND	ND			
Chloromethane	ug/L	ND	ND	ND			
1,2-Dichloroethene, total	ug/L	1.6	ND	ND			
cis-1,3-Dichloropropene	ug/L	ND	ND	ND			
Ethylbenzene	ug/L	8.3	1.9	ND	3700 D	3500 D	1800 D
Methylene chloride	ug/L	ND	ND	ND			
Styrene	ug/L	ND	ND	ND			
Tetrachloroethene	ug/L	ND	ND	ND			
Toluene	ug/L	20	0.35 Q	6.3	9400 D	8600 D	1900 D
trans-1,3-Dichloropropene	ug/L	ND	ND	ND			
Trichloroethene	ug/L	ND	ND	ND			
Vinyl acetate	ug/L	ND	ND	ND			
Vinyl Chloride	ug/L	ND	ND	ND			
Xylene, total	ug/L	65	13	ND	25600 D	25200 D	8700 D
1,3-Dichlorobenzene	ug/L	. -	-	-	ND	ND	ND
1,2-Dichlorobenzene	ug/L	-	-	-	12	11	3.2
1,4-Dichlorobenzene	ug/L	-	-	-	ND	ND	ND
Total VOCs	ug/L	122	15.3	62.6	38756	37357	12441

BEGINNING DATE:

ENDING DATE:

1-Apr-98

2-Apr-98

TABLE 3 PERIMETER MONITORING WELL RESULTS (1) PAL = NR140 Preventive Action Limit

(2) ES = NR140 Enformcement Standard

Parameter	PAL (1) ES (2)	Units	W-01A-98-2 4/1/98	W-3A-98-2 4/2/98	DUP3-98-2 4/2/98 (W-3A-98-2)	W-3B-98-2 4/2/98	W-04A-98-2 4/1/98	W-07-98-2 4/1/98	W-08R-98-2 4/1/98
1,1,1-Trichloroethane	40	200	ug/L	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.02	0.2	ug/L	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	85	850	ug/L	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.7	7	ug/L	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	ND
2-Butanone	90	460	ug/L	ND	ND	ND	ND	ND	ND	ND
2-Hexanone			ug/L	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-Pentanone	50	500	ug/L	ND	ND	ND	ND	ND	ND	ND
Acetone	200	1000	ug/L	ND	ND	ND	ND	ND	ND	ND
Benzene	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	0.06	0.6	ug/L	ND	ND	ND	ND	ND	ND	ND
Bromoform	0.44	4.4	ug/L	ND	ND	ND	ND -	ND	ND	ND
Bromomethane	1	10	ug/L	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide			ug/L	ND	ND	0.5 Q	ND	ND	ND	ND
Carbon tetrachloride	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	20	100	ug/L	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane	6	60	ug/L	ND	ND	ND	ND	ND	ND	ND
Chloroethane	80	400	ug/L	ND	ND	ND	ND	ND	ND	ND
Chloroform	0.6	6	ug/L	ND	ND	ND	ND	ND	ND	ND
Chloromethane	0.3	3	ug/L	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene (Total)	7	70	ug/L	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.02	0.2	ug/L	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	140	700	ug/L	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	0.50	5	ug/L	ND	ND	ND	ND	ND	ND	ND
Styrene	10	100	ug/L	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	ND
Toluene	68.6	343	ug/L	ND	0.50 Q	0.47 Q	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.02	0.2	ug/L	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate			ug/L	ND	ND	ND	ND	ND	ND	ND 1
Vinyl Chloride	0.02	0.2	ug/L	ND	ND	ND	ND	ND	ND	ND
Xylene, total	124	620	ug/L	ND	ND	ND	ND	ND	ND	ND
Total VOCs			ug/L	0.0	0.50	0.98	0.00	0.00	0.00	0.00

TABLE 3 CONTINUED PERIMETER MONITORING WELL RESULTS (1) PAL = NR140 Preventive Action Limit

BEGINNING DATE: ENDING DATE:

1-Apr-98 2-Apr-98 (2) ES = NR140 Enformcement Standard

Parameter	PAL (1)	ES (2)	Units	W-20-98-2 4/2/98	W-22-98-2 4/2/98	W-23-98-2 4/2/98	DUP2-98-2 4/2/98 (W-23-98-2)	W-27-98-2 4/2/98	PW-08- 4/2/98	98-2
1,1,1-Trichloroethane	40	200	ug/L	ND	ND	ND	ND	0.80 Q	ND	H(5)
1,1,2,2-Tretrachloroethane	0.02	0.2	ug/L	ND	ND	ND	ND	ND	ND	H(5)
1,1,2-Trichloroethane	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	H(5)
1,1-Dichloroethane	85	850	ug/L	ND	ND	ND	ND	ND	ND	H(5)
1,1-Dichloroethene	0.7	7	ug/L	ND	ND	ND	ND	ND	ND	H(5)
1,2-Dichloroethane	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	H(5)
1,2-Dichloropropane	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	H(5)
2-Butanone	90	460	ug/L	ND	ND	ND	ND	ND	ND	H(5)
2-Hexanone			ug/L	ND	ND	ND	ЙD	ND	ND	H(5)
4-Methyl-2-pentanone	50	500	ug/L	ND	ND	ND	ND	ND	ND	H(5)
Acetone	200	1000	ug/L	ND	ND	ND	ND	ND	6.0	B(12), H(5
Benzene	0.5	5	ug/L	ND	ND	1.5	1.6	ND	ND	H(5)
Bromodichloromethane	0.06	0.6	ug/L	ND	ND	ND	ND	ND	ND	H(5)
Bromoform	0.44	4.4	ug/L	ND	ND	ND	ND	ND	ND	H(5)
Bromomethane	1	10	ug/L	ND	ND	ND	ND	ND	ND	H(5)
Carbon disulfide			ug/L	ND	0.90 Q	0.59 Q	0.94 Q	0.99 Q	ND	H(5)
Carbon tetrachloride	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	H(5)
Chlorobenzene	20	100	ug/L	ND	ND	ND	ND	ND	ND	H(5)
Chlorodibromomethane	6	60	ug/L	ND	ND	ND	ND	ND	ND	H(5)
Chloroethane	80	400	ug/L	ND	ND	ND	ND	ND	ND	H(5)
Chloroform	0.6	6	ug/L	ND	ND	ND	ND	ND	ND	H(5)
Chloromethane	0.3	3	ug/L	ND	ND	ND	ND	ND	ND	H(5)
1,2-Dichloroethene, (Total)	7	70	ug/L	ND	ND	2.0	2.1	16.1	ND	H(5)
cis-1,2-Dichloropropene	0.02	0.2	ug/L	ND	ND	ND	ND	ND	ND	H(5)
Ethylbenzene	140	700	ug/L	ND	ND	ND	ND	ND	ND	H(5)
Methylene chloride	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	H(5)
Styrene	10	100	ug/L	ND	ND	ND	ND	ND	ND	H(5)
Tetrachloroethene	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	H(5)
Toluene	68.6	343	ug/L	ND	ND	ND	ND	ND	ND	H(5)
trans-1,3-Dichloropropene	0.02	0.2	ug/L	ND	ND	ND	ND	ND	ND	H(5)
Trichloroethene	0.5	5	ug/L	ND	ND	ND	ND	88	ND	H(5)
Vinyl acetate			ug/L	ND	ND	ND	ND	ND	ND	H(5)
Vinyl Chloride	0.02	0.2	ug/L	ND	ND	1.4 Q	1.60 Q	ND	ND	H(5)
Xylene, total	124	620	ug/L	ND	ND	ND	ND	ND	ND	H(5)
Total VOCs			ug/L	0.00	0.90	5.49	6.24	105.89	6.00	

Indicates concentration in exceedance of Preventative Action Limit Indicates concentration in exceedance of Enforcement Standard

TABLE 1
MUNICIPAL WELL RESULTS

8E13503

(1) PAL = NR140 Preventative Action Limit

BEGINNING DATE:

30-Jun-98

(2) ES = NR140 Enforcement Standard

2-Jul-98

ENDING DATE.	#-Jui-	70							
				MW-1-98-3	MW-2-98-3	MW-3-98-3	MW-4-98-3	DUP-1-98-3	TB-1-98-3
Parameter	PAL (1)	ES (2)	Units	7/1/98	7/1/98	7/1/98	7/1/98	7/1/98	
	0.3.				^ **	0.44		(MW-4-98-3)	-0.44
Chloromethane	0.3		rug/L	<0.44	<0.44	<0.44	<0.44	<0.44	<0.44
Bromomethane	1		ug/L	<0.94	<0.94	<0.94	<0.94	₹0.94	<0.94
Vinyl Chloride	0.02		ug/L	<0.52	<0.52	<0.52	<0.52	<0.52	<0.52
Chloroethane	80		ug/L	<0.63	< 0.63	<0.63	<0.63	<0.63	<0.63
Methylene chloride	0.5		ug/L	<0.38	<0.38	<0.38	<0.38	<0.38	< 0.38
Acetone	200		ug/L	<3.1	<3.1	<3.1	<3.1	<3.1	<3.1
Carbon disulfide			ug/L	<0.40	<0.40	<0.40	<0.40	<0.40	< 0.40
1,1-Dichloroethene	0.7	7	ug/L	<0.47	<0.47	<0.47	<0.47	<0.47	<0.47
1,1-Dichloroethane	85	850	ug/L	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61	< 0.61
1,2-Dichloroethene, total	7	70	ug/L	<1.1	<1.1	<1.1	<1.1	<1.1	<1.1
Chloroform	0.6	6	ug/L	0.5	< 0.41	< 0.41	<0.41	< 0.41	< 0.41
1,2-Dichloroethane	0.5	5	ug/L	<0.54	< 0.54	<0.54	<0.54	<0.54	<0.54
2-Butanone	90	460	ug/L	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2
1,1,1-Trichloroethane	40	200	ug/L	< 0.53	< 0.53	< 0.53	<0.53	< 0.53	< 0.53
Carbon tetrachloride	0.5	5	ug/L	< 0.90	<0.90	<0.90	<0.90	<0.90	<0.90
Bromodichloromethane	0.06	0.6	ug/L	<0.41	< 0.41	< 0.41	< 0.41	<0.41	< 0.41
1,2-Dichloropropane	0.5	5	ug/L	< 0.34	< 0.34	< 0.34	< 0.34	< 0.34	< 0.34
cis-1,2-Dichloropropene	0.02	0.2	ug/L	< 0.54	< 0.54	< 0.54	< 0.54	<0.54	< 0.54
Trichloroethene	0.5	5	ug/L	<0.49	<0.49	< 0.49	<0.49	<0.49	< 0.49
Chlorodibromomethane	6	60	ug/L	< 0.43	<0.43	<0.43	< 0.43	<0.43	< 0.43
1,1,2-Trichloroethane	0.5	5	ug/L	< 0.47	<0.47	< 0.47	< 0.47	<0.47	< 0.47
Benzene	0.5	5	ug/L	<0.44	<0.44	<0.44	<0.44	<0.44	<0.44
trans-1,3-Dichloropropene	0.02	0.2	ug/L	<0.26	<0.26	<0.26	<0.26	<0.26	< 0.26
Bromoform	0.44	4	ug/L	<0.58	< 0.58	< 0.58	<0.58	<0.58	< 0.58
4-Methyl-2-pentanone	50	500	ug/L	< 0.61	< 0.61	< 0.61	<0.61	< 0.61	< 0.61
2-Hexanone		,	ug/L	< 0.61	< 0.61	<0.61	< 0.61	< 0.61	< 0.61
Tetrachloroethene	0.5		ug/L	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41
1,1,2,2-Tretrachloroethane	0.02	0.2	ug/L	< 0.68	<0.68	< 0.68	< 0.68	<0.68	< 0.68
Toluene	68.6		ug/L	< 0.40	< 0.40	< 0.40	< 0.40	<0.40	< 0.40
Chlorobenzene	20		ug/L	< 0.43	< 0.43	< 0.43	< 0.43	< 0.43	< 0.43
Ethylbenzene	140		ug/L	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Styrene	10		ug/L	< 0.37	< 0.37	< 0.37	< 0.37	< 0.37	< 0.37
Xylene, total	124		ug/L	<1.31	<1.31	<1.31	<1.31	<1.31	<1.31
Vinyl acetate			ug/L	<0.70	<0.70	<0.70	<0.70	<0.70	<0.70
Total Volatile Organic Compo	ounds	1	ug/L	0.5	0.0	0.0	0.0		
July 1997 Total VOCs		1	ug/L	0.0	0.0	0.0	0.0		

ND = Not Detected

TABLE 2 POTW AND RANNEY COLLECTOR RESULTS

PROJECT NUMBER: 8E13503 BEGINNING DATE: 30-Jun-98 ENDING DATE: 2-Jul-98

		POTW-1-98-3	POTW-E-98-3	POTW-S-98-3	RC-1-98-3	RC-2-98-3	RC-3-98-3
Parameter I	Units	7/1/98	7/1/98	7/1/98	7/1/98	7/1/98	7/1/98
Chloromethane	ug/L	<0.44	<0.44	<0.44			
Bromomethane	ıg/L	<0.94	<0.94	< 0.94		-	
Vinyl Chloride	ıg/L	<0.52	<0.52	<0.52			
Chloroethane	ıg/L	< 0.63	< 0.63	< 0.63			
Methylene chloride	ıg/L	<0.38	<0.38	<0.38		فب	
Acetone	ıg/L	23	<3.1	<3.1			
Carbon disulfide	ıg/L	<0.40	<0.40	< 0.40			
1,1-Dichloroethene	ıg/L	<0.47	<0.47	<0.47			
1,1-Dichloroethane	ıg/L	<0.61	< 0.61	< 0.61			
1,2-Dichloroethene, total	ıg/L	<1.1	<1.1	<1.1			
Chloroform	ıg/L	0.77 Q	<0.41	<0.41			
1,2-Dichloroethane	ıg/L	<0.54	<0.54	<0.54			
2-Butanone	ıg/L	1.8 Q	<1.2	2.9 Q			
1,1,1-Trichloroethane	ıg/L	<0.53	< 0.53	<0.53			
Carbon tetrachloride u	ıg/L	<0.90	<0.90	<0.90			
Bromodichloromethane	ıg/L	<0.41	<0.41	< 0.41			
1,2-Dichloropropane u	ıg/L	<0.34	<0.34	<0.34			
cis-1,2-Dichloropropene u	ıg/L	<0.54	<0.54	<0.54			
Trichloroethene	ıg/L	<0.49	<0.49	<0.49			
Chlorodibromomethane	ıg/L	< 0.43	< 0.43	< 0.43			
1,1,2-Trichloroethane u	ıg/L	<0.47	<0.47	<0.47			
Benzene	ıg/L	<0.44	<0.44	<0.44	25 Q	29 Q	15 Q
trans-1,3-Dichloropropene u	ıg/L	<0.26	<0.26	<0.26			
Bromoform u	ıg/L	< 0.58	<0.58	<0.58			
4-Methyl-2-pentanone u	g/L	< 0.61	<0.61	< 0.61			
2-Hexanone u	g/L	< 0.61	<0.61	< 0.61			
Tetrachloroethene u	g/L	< 0.41	<0.41	<0.41			
1,1,2,2-Tretrachloroethane u	g/L	<0.68	<0.68	<0.68			
Toluene u	g/L	0.61 Q	<0.40	46	2900	2800	1200
Chlorobenzene u	g/L	< 0.43	<0.43	<0.43	<8.6	<22	<8.6
Ethylbenzene u	g/L	< 0.50	<0.50	<0.50	1200	1200	590
Styrene u	g/L	< 0.37	< 0.37	< 0.37			
Xylene, total u	g/L	<1.31	<1.31	<1.31	10500	9900	4800
Vinyl acetate u	g/L	< 0.70	< 0.70	< 0.70			
1,3-Dichlorobenzene u	g/L	<0.64	<0.64	< 0.64	<13	<32	<13
1,2-Dichlorobenzene u	g/L	< 0.36	< 0.36	< 0.36	8.4 Q	<18	<7.2
1,4-Dichlorobenzene u	g/L	1.1 Q	<0.43	<0.43	<8.6	<22	<8.6
Total Volatile Organic Compounds u	g/L	27.28	0.0	48.9	14633.6	13929	6605
July 1997 Total VOCs u	g/L	118	0.0	74	NS	137	12100

NA = Not Analyzed

ND = Not Detected

NS = Not Sampled

TABLE 3 SUMMARY OF MONITORING WELL RESULTS

PROJECT NUMBER: 8E13503 BEGINNING DATE: 30-Jun-98 ENDING DATE: 2-Jul-98

(1) PAL = NR 140 Preventative Action Limit

(2) ES = NR 140 Enforcement Standard

Martinam	Parameter	PAL (1)	ES (2) Units	W-6A-98-3 7/1/98	W-19A-98-3 7/2/98	DUP2-98-3 7/2/98 (W-19A-98-3)	W-21A-98-3 7/1/98	W-24A-98-3 7/1/98	W-28-98-3 not sampled
Armeire 1986	Bartum	0.4		me/L	0.053	CHOPPING L	(11-19A-98-3)	0.180	0.160	
Archer 1016 6,0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0				-						
Archer 1312 0.0 0.0 0.0 ugl. Archer 1312 0.0 0.0 0.0 ugl. Archer 1314 0.0 0.0 0.0 ugl. Archer 1316 0.0 u		0.03								
Ancher 1332		0.03								
Archer 1134 0.0 0.0 0.0 ugh. Archer 1234 0.0 0.0 0.0 ugh. Archer 1234 0.0 0.0 0.0 ugh. Archer 1234 0.0 0.0 0.0 ugh. Archer 1236 0.0 ugh.										
Archier 1348 6,3										
Archer 1254 0.03 0.3 ugl. Archer 1260 1000 1000 ugl. c. 630 Archer 1260 1000 1000 ugl. c. 630 Archer 1260 1000 1000 ugl. c. 630 Archer 1260 ugl.								-		
Arceler 120 0.05										
Accioner 100 1000 ugl. 6530 ugl. 653										
The control of the		•.			~620			-150	<150	
Proceediments						-0.44	ابيم			
None						C0.44	(0.44	I		
Informerchane										
Section Sect										
Carbon distable										
Carbon testachforder		90	460							
Chlorocheme		•								
Chlorothase 80 400 ugl, 130		0.5	5							
Chlororem	Chlorobenzene					0.51 Q	0.47 Q			
Cheromechane Observanch Cheromethane Observa	Chloroethane									
Differentiable	Chloroform	0.6	6	ug/L						
1,3, Delichorobenzere	Chloromethane	0.3	3	ug/L	<88			<22	<22	
1.3.Delichorobenzene	Dibromochloromethane	6	60	ug/L	<86			<22	<22	
A. Dichloroversemen	1,2-Dichlorobenzene	60	600	ug/L	<72	<0.36	<0.36	<18	<18	
Li-Dichloreschane	1,3-Dichlorobenzene	125	1250	ug/L	<130	0.70 Q	0.66 Q	<32	⊲2	
	1,4-Dichlorobenzene	15	75	ug/L	<86	0.80 Q	0.80 Q	<22	<22	
15-12_Dichloroethene	1,1-Dichloroethane	85	850	ug/L	<120			<30	<30	
Paralle 1,12 10 10 10 10 10 10 10	,2-Dichloroethane	0.5	5	ug/L	<110			<27	<27	
Li Dichleroechene	cis-1,2-Dichloroethene	7	70	ug/L	360			<23	<23	
Li-Dichloropropage 0.7 7 uyl. .94 .23 .23 .23 .24 .25 .25 .25 .27 .2		20	100		<52			⊲2	⊲2	
	1,1-Dichloroethene	0.7	7		<94			<23	<23	
Control Cont		0.5	5		<68			<17	<17	
A-Dioxane		0.02						<13		
Ethyphenzene 140 700 ug/L 22000 3.4 Q 3.7 Q 3200 2800 2400 2414 240 4400 2.8 Q 2.48 Q 12300 9860 2400 2400 2400 2400 2400 2400 2400 24										
Defixation	· ·	140	700			3.4 0	3.7 OF			
Methylene chloride 0.5 5 ug/L <76 <19 <19	•					3.4 Q	3., 4 <u>F</u>			
Company Comp										
Styrene 10 100 ug/L <74 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <										
1,1,2,7-terrachloroethane										
Tetrachloroethene	•			-						
Toluene 68.6 343 ug/L 48000 <0.40 <0.40 1600 1100 1,1,1-Trichloroethane 40 200 ug/L <110										
1,1,1-Trichloroethane						-0.40	۳ میر			
1,1,2-Trichloroethane					·	<0.40	<0.40			
Frichloroethene										
Annie Anni										
Vinj chloride										
124 620 ug/L 103000 2.28 Q 2.48 Q 12300 9860	Vinyl acetate		•	ug/L	<140			<35	⊲35	
10 11 11 12 13 14 15 15 15 15 15 15 15							_			
As (2-Ethylhexyl) phthalate 0.6 6 ug/L 2.8 Q <1.2 5.1 c,4-Dimethylphenol - ug/L 180 D 69 69 69 69 69 69 69 69 69 69 69 69 69		124	620			2.28 Q	2.48 Q			
1.4-Dimethylphenol	•			ug/L	the second secon					
-Methylnaphthalene ug/L < 1.8	is (2-Ethylhexyl) phthalate	0.6	6	ug/L	1 1 1 1 1 1 1			<1.2		
-Methylphenol ug/L 42 16 14 ug/L 120 12 9.9 replication of the state of t	,4-Dimethylphenol	•	•	ug/L	180 D			69 :	69	
-Methylphenol ug/L 120 12 9.9 kaphthalene 8 40 ug/L 15 25 24 thenanthrene ug/L 1.6 Q <0.71 <0.77 thenol 1200 6000 ug/L 61 5.1 6.6 otal Volatile Organic Compounds ug/L 174410.4 7.7 8.1 18947.1 15269.6	-Methylnaphthalene	•		ug/L	<1.8			<1.9	<2.0	
Kaphthalene 8 40 ug/L 15 25 24 thenanthrene - - ug/L 1.6 Q <0.71	-Methylphenol		•	ug/L	42			16	14	
Kaphthalene 8 40 ug/L 15 25 24 thenanthrene - - ug/L 1.6 Q <0.71		•			120			12	9.9	
thenanthrene ug/L 1.6 Q <0.71 <0.77 thenol 1200 6000 ug/L 61 5.1 6.6 Outal Volatile Organic Compounds ug/L 174410.4 7.7 8.1 18947.1 15269.6		8	40		15			25	24	
Phenol 1200 6000 ug/L 61 5.1 6.6 Fotal Volatile Organic Compounds ug/L 174410.4 7.7 8.1 18947.1 15269.6										
otal Volatile Organic Compounds ug/L 174410.4 7,7 8.1 18947.1 15269.6		1200	6000							
						77	8 I			
										1.

idicates results in exceedance of the PAL.	
ndicates result in exceedance of the ES	
D = Nut Datastad	

TABLE 3 CONTINUED SUMMARY OF MONITORING WELL RESULTS

PROJECT NUMBER: 8E13503
BEGINNING DATE: 30-Jun-98
ENDING DATE: 2-Jul-98

(1) PAL = NR 140 Preventative Action Limit (2) ES = NR 140 Enforcement Standard

Parameter	PAL (1)	ES (2) Units	W-29-98-3 7/1/98	W-30-98-3 7/1/98	DUP-3-98-3 7/1/98 (W-30-98-3)	W-38-98-3 7/1/98	W-41-98-3 7/1/98	W-42-98-3 7/1/98
Barium	0.4	2	mg/L	0.32	0.082	0.082			
Arsenic	5	50	mg/L	0.0045	0.0023	0,0021			
Aroclor 1016	0.03	0.3	ug/L						
Aroclor 1221	0.03	0.3	ug/L						
Aroclor 1232	0.03	0.3	ug/L						
Aroclor 1242	0.03	0.3	ug/L						
Aroclor 1248	0.03	0.3	ug/L						
Aroclor 1254	0.03	0.3	ug/L					-	
roclor 1260	0.03	0.3	ug/L						
cetone	200	1000	ug/L	<3.1	<3.1	<3.1			
enzene	0.5	5	ug/L	110	6.7	6.5	1500	1.7 Q	50
romodichioromethane	0.06	0.8	ug/L	<0.41	<0.41	<0.41			
romoform	0.44	4.4	ug/L	<0.58	<0.58	<0.58			
romomethane	1	10	ug/L	< 0.94	<0.94	<0.94			
-Butanone (MEK)	90	460	ug/L	<1.2	<1.2	<1.2			
Carbon disulfide	-	-	ug/L	1.0 Q	<0.40	<0.40			
arbon tetrachioride	0.5	5	ug/L	<0.90	<0.90	<0.90			
hlorobenzene	•		ug/L	<0.43	<0.43	<0.43	<4.3	<0.86	42
hloroethane	80	400	ug/L	<0.63	<0.63	<0.63			~
hloroform	0.6	6	ug/L	<0.41	<0.41	<0.41			
hloromethane	0.3	3	ug/L	<0.44	<0.44	<0.44			
ibromochloromethane	6	60	ug/L	<0.43	<0.43	<0.43			
2-Dichlorobenzene	60	600	ug/L	<0.36	<0.36	<0.36	<3.6	<0.72	<1
3-Dichlorobenzene	125	1250	ug/L	<0.64	<0.64	<0.64	<6.4	<1.3	٠.
4-Dichlorobenzene	15	75	ug/L	<0.43	<0.43	<0.43	<4.3	<0.86	4
1-Dichloroethane	85	850	ug/L	<0.61	<0.61	<0.61		1000	•
2-Dichloroethane	0.5	5	ug/L	<0.54	<0.54	<0.54			
s-1,2-Dichloroethene	7	70	ug/L	11	<0.46	<0.46			
ans-1,2-Dichloroethene	, 20	100	ug/L	<0.26	<0.64	< 0.64			
1-Dichloroethene	0.7	7	ug/L	<0.47	<0.47	<0.47			
	0.5	5		<0.34	<0.34	<0.34			
2-Dichloropropane	0.02	0.2	ug/L	<0.54	<0.54	<0.54			
s-1,3-Dichloropropene ans-1,3-Dichloropropene	0.02	0.2	ug/L	<0.26	<0.26	<0.26			
4-Dioxane	0.02		ug/L	230 D		35			
	140	700	ug/L	230 D 24	35 <0.50	<0.50	130	21 Г	330
thythenzene Haxanone			ug/L			<0.61	150	21 L	330
	0.5	5	ug/L	<0.61	<0.61	<0.38			
lethylene chloride	50		ug/L	<0.38	<0.38	<0.58			
Methyl-2-pentanone (MIBK)		500	ug/L	1.9	<0.61				
tyrene 1,2,2,-Tetrachloroethane	10 0.02	100	ug/L	<0.37	<0.37	<0.37 <0.68			
		0.2	ug/L	<0.68	<0.68				
etrachloroethene	0.5	5	ug/L	<0.41	<0.41	<0.41		٦ ,,,, ٦	
oluene	68.6	343	ug/L	13	<0.40	<0.40	8.4 Q	<0.80	28
1,1-Trichloroethane	40	200	ug/L	<0.53	<0.53	<0.53			
1,2-Trichloroethane	0.5	5	ug/L	<0.47	<0.47	<0.47			
richloroethene	0.5	5	ug/L	<0.49	<0.49	<0.49			
nyl acetate			ug/L	<0.70	<0.70	<0.70			
inyl chloride	0.02	0.2	ug/L	4.9	<0.52	<0.52	****		***
/lenes (total)	124	620	ug/L	103.8	12.5	12.5	2118	764.9	1280
retophenone		•	ug/L	<0.93	<0.85	<0.85			
s (2-Ethylhexyl) phthalate	0.6	6	ug/L	<1.4	7.0	7.5			
-Dimethylphenol	•	•	ug/L	4.8	<1.0	<1.0			
Methylnaphthalene	•	•	ug/L	<2.0	<1.9	<1.9	•		
Methylphenol	•	•	ug/L	<1.1	<0.97	<0.97			
Methylphenol	-	٠	ug/L	<1.0	<0.91	<0.91			
iphthalene	8	40	ug/L	<2.3	<2.1	<2.1			
nenanthrene	-	•	ug/L	<0.78	< 0.71	<0.72			
nenol	1200	6000	ug/I,	7.2	<0.49	<0.50			
otal Volatile Organic Compounds			ug/l.	511.6	61.2	61.5	3756.4	787.6	1688
ily 1997 Total VOCs			ug/L	1257	16	15	2900	670	1610

ND = Not Detected

Indicates results in exceedance of the PAL Indicates result in exceedance of the ES

TABLE 3 CONTINUED SUMMARY OF MONITORING WELL RESULTS

PROJECT NUMBER: 8E13503
BEGINNING DATE: 3-Jun-98
ENDING DATE: 2-Jul-98

(1) PAL = NR 140 Preventative Action Limit

(2) ES :	× NR	140	Enforcement	Standard
----------	------	-----	-------------	----------

	DAT (1)	PC (3)		W-43-98-3	W-47-98-3	W-47-98-3	PW-08-98-3
Parameter	PAL (I)	ES (2)	Units	7/1/98	7/1/98 (PCB'S unfiltered)	7/1/98	7/2/98
D - 1	0.4	2	a	0.45	0.079	(PCB's filtered)	
Barium	5	50	mg/L	0.45 0.027	0.0067		
Arsenic	0.03	0.3	mg/L	0.027	<1.0	<0.60	
Aroclor 1016			ug/L				
Aroclor 1221	0.03	0.3	ug/L		<1.0	<0.60	
Aroclor 1232	0.03	0.3	ug/L		<1.0	<0.60	
Aroctor 1242	0.03	0.3	ug/L		7.5	<0.60	
Aroclor 1248	0.03	0.3	ug/L		<1.0	<0.60	
Aroclor 1254	0.03	0.3	ug/L		<1.0	<0.60	_
Aroclor 1260	0.03	0.3	ug/L		<1.0	<0.60	-
Acetone	200	1000	ug/L	<310	<310		<3.1
Senzene	0.5 .	5	ug/L	2700	210		<0.44
romodichloromethane	0.06	8.0	ug/L	<41	<41		≤0.41
Fromoform	0.44	4.4	ug/L	<58	<58		<0.58
fromomethane	1	10	ug/L	<94	<94		<0.94
-Butanone (MEK)	90	460	ug/L	<130	<130		<1.2
Carbon disulfide	•	•	ug/L	<40	<40		<0.40
Carbon tetrachloride	0.5	5	ug/L	<90	<90		<0.90
Thlorobenzene		•	ug/L	<43	<43		<0.43
Thloroethane	80	400	ug/L	<63	<63		<0.63
Chloroform	0.6		ug/L	<41	<41		<0.41
hloromethane	0.3		ug/L	<44	<44		<0.44
Hbromochloromethane	6		ug/L	<43	<43		<0.41
,2-Dichlorobenzene	60		ug/L	<36	⊲36		<0.36
3-Dichlorobenzene	125		ug/L	<64	<64		<0.64
4-Dichlorobenzene	15	75	ug/L	<43	<43		<0.43
1-Dichloroethane	85		ug/L	<61	<61		<0.61
,2-Dichloroethane	0.5	5	ug/L	<54	<54		<0.54
s-1,2-Dichloroethene	7	70	ug/L	<46	210		<0.46
	20			<64	<64		<0.64
rans-1,2-Dichloroethene		7	ug/L		<64 <47		<0.47
,i-Dichloroethene	0.7		ug/L	<47			
,2-Dichloropropane	0.5		ug/L	<34	<34		<0.34
is-1,3-Dichloropropene	0.02		ug/L	<54	<54		<0.54
rans-1,3-Dichloropropene	0.02		ug/L	<26	<26		<0.26
,4-Dioxane	•		ug/L	<3600	290		
thylbenzene	140		ug/L	12000	7900		<0.50
-Haxanone	•		ug/L	<61	<61		<0.61
fethylene chloride	0.5		ug/L	<38	<38		<0.38
-Methyl-2-pentanone (MIBK)	50		ug/L	<61	<61		<0.61
tyrene	10	100	ug/L	530	<37		<0.37
,1,2,2,-Tetrachloroethane	0.02		ug/L	<68	<68		<0.68
etrachloroethene	0.5		ug/L	<41	<41		<0.41
oluene	68.6		ug/L	580	7400		<0.40
,1,1-Trichloroethane	40	200	ug/L	<53	<53		<0.53
1,2-Trichloroethane	0.5	5	ug/L	<47	<47		<0.47
richloroethene	0.5	5	ug/L	<49	<49		<0.49
inyl acetate	•		ug/L	<70	<70		<0.70
inyl chloride	0.02		ug/L	<52	<52		<0.52
ylenes (total)	124	620	ug/L	7800	71000		<0.77
cetophenone			ug/L	<850	240		
is (2-Ethylhexyl) phthalate	0.6		ug/L	74000	84		
,4-Dimethylphenol			ug/L	<1000	830		
Methylnaphthalene	•		ug/L	4200	35 Q		
Methylphenol			ug/L	<980	120		Ł
Methylphenol	-		ug/L	<920	190		•
	8			<2100	110		
aphthalene			ug/L				
henanthrene			ug/L	1300	8.9 Q		
benol	1200	6000	ug/L	<500	48		
otal Volatile Organic Compounds			ug/l.	103110	88676	0	0
uly 1997 Total VOCs			ug/l.	18020	55200		

Indicates result in exceedance of the ES

TABLE 4
NR 140 PAL and ES EXCEEDANCES

8E13503

BEGINNING DATE:

30-Jun-98

ENDING DATE:

2-Jun-98

(1) PAL = NR 140 Preventative Action Limit

(2) ES = NR 140 Enforcement Standard

Parameter	PAL (1)	ES (2)	Units	W-06A-98-3	W-21A-98-3	W-24A-98-3	W-29-97-3	w
Benzene	1	5	ug/L	ES	ES	ES	ES	
cis-1,2-Dichloroethene	7	70	ug/L	ES			PAL	
Ethylbenzene	140	700	ug/L	ES	ES	ES		
Toluene	69	343	ug/L	ES	ES	ES		
Vinyl Chloride	0.02	0.2	ug/L				ES	
Xylenes (total)	124	620	ug/L	ES	ES	ES		
bis (2-ethylhexyl) pthalate	6	1	ug/L	PAL		PAL		
Napthalene	8	1	ug/L	PAL	PAL	PAL		

Parameter	PAL (1)	ES (2)	Units	W-38-98-3	W-41-98-3	W-42-98-3	W-43-98-3	W-47-98-3	W-47-98-3
								unfiltered	filtered
Arochlor 1242	0.03	0.3	ug/L	NA	NA	NA	NA	ES	
Barium	0.4	2	mg/L	NA	NA	NA	PAL		NA
Benzene	1	5	ug/L	ES	PAL	ES	ES	ES	NA
cis-1,2-Dichloroethene	7	70	ug/L					ES	NA
Ethylbenzene	140	700	ug/L			ES	ES	ES	NA
Styrene	10	100	ug/L	NA	NA	NA	ES		NA
Toluene	69	343	ug/L	ES		ES	ES	ES	NA
Xylenes (total)	124	620	ug/L	ES	ES	ES	ES	ES	NA
bis (2-ethylhexyl) pthalate	6	1	ug/L	NA	NA	NA	ES	ES	NA
Napthalene	8	i .	ug/L	NA	NA	NA		ES	, NA

NA Indicates that parameter was not analyzed for.

8E13503

TABLE 1 MUNICIPAL WELL RESULTS

(1) PAL = NR140 Preventative Action Limit

BEGINNING DATE: ENDING DATE:

7-Oct-98 9-Oct-98

(2) ES = NR140 Enforcement Standard

Parameter	PAL (1)	ES (2)	Units	MW-1-98-3 not sampled	MW-2-98-3 not sampled	MW-3-98-4 10/8/98	MW-4-98-4 10/8/98	DUP-1-98-4 10/8/98 (MW-4-98-4)	FB-1-98-4 10/7/98	TB-1-98-4 10/7/98
1,1,1-Trichloroethane	40	200	ug/L	~	~	ND	ND	ND	ND	ND
1,1,2,2-Tretrachloroethane	0.02	0.2	ug/L	~	~	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	0.5	5	ug/L	~	~	ND	ND	ND	ND	ND
1,1-Dichloroethane	85	850	ug/L	~	~	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.7	7	ug/L	~	~	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.5	5	ug/L	~	~	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.5	5	ug/L	~	~	ND	ND	ND	ND	ND
2-Butanone	90	460	ug/L	~	~	ND	ND	ND	ND	ND
2-Hexanone			ug/L	~	~	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	50	500	ug/L	~	~	ND	ND	ND	ND	ND
Acetone	200	1000	ug/L	~	~	ND	ND	ND	ND	ND
Benzene	0.5	5	ug/L	~	~	ND	ND	ND	ND	ND
Bromodichloromethane	0.06	0.6	ug/L	~	~	ND	ND	ND	ND	ND
Bromoform	0.44	4	ug/L	~	~	ND	ND	ND	ND	ND
Bromomethane	1	10	ug/L	~	~	ND	ND	ND	ND	ND
Carbon disulfide			ug/L	~	~	ND	ND	ND	ND	ND
Carbon tetrachloride	0.5	5	ug/L	~	~	ND	ND	ND	ND	ND
Chlorobenzene	20	100	ug/L	~	~	ND	ND	ND	ND	ND
Chlorodibromomethane	6	60	ug/L	~	~	ND	ND	ND	ND	ND
Chloroethane	80	400	ug/L	~	~	ND	ND	ND	ND	ND
Chloroform	0.6	6	ug/L	~	~	ND	ND	ND	ND	ND
Chloromethane	0.3	3	ug/L	~	~	ND	ND	ND	ND	ND
1,2-Dichloroethene, total	7	70	ug/L	~	~	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	0.02	0.2	ug/L	~	~	ND	ND	ND	ND	ND
Ethylbenzene	140	700	ug/L	~	~	ND	ND	ND	ND	ND
Methylene chloride	0.5	5	ug/L	~	~	ND	ND	ND	ND	ND
Styrene	10	100	ug/L	~	~	ND	ND	ND	ND	ND
Tetrachloroethene	0.5	5	ug/L	~	~	ND	ND	ND	ND	ND
Toluene	68.6	343	ug/L	~	~	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.02	0.2	ug/L	~	~	ND	ND	ND	ND	ND
Trichloroethene	0.5	5	ug/L	~	~	ND	ND	ND	ND	ND
Vinyl acetate			ug/L	~	~	ND	ND	ND	ND	, ND
Vinyl Chloride	0.02	0.2	ug/L	~	~	. ND	ND	ND	ND	ND
Xylene, total	124	620	ug/L	~	~	ND	ND	ND	ND	NP
Total VOCs			ug/L	~	~	0.0	0.0	0.0	0.0	0.0
July 1997 Total VOCs			ug/L	0.0	~	0.0	0.0	0.0	0.0	0.0

TABLE 2 POTW AND RANNEY COLLECTOR RESULTS

PROJECT NUMBER: 8E13503 BEGINNING DATE: 7-Oct-98 ENDING DATE: 9-Oct-98

Parameter	Units	POTW-1-98-4 10/8/98	POTW-E-98-4 10/8/98	POTW-S-98-4 10/8/98	RC-1-98-4 10/8/98	RC-2-98-4 10/8/98	RC-3-98-4 10/8/98
I,1,1-Trichloroethane	ug/L	ND -	ND ND	ND			
1,1,2,2-Tretrachloroethane	ug/L	ND	ND	ND	-		
1,1,2-Trichloroethane	ug/L	ND	ND	ND			
1,1-Dichloroethane	ug/L	ND	ND	ND			
1,1-Dichloroethene	ug/L	ND	ND	ND	ب		
1,2-Dichloroethane	ug/L	ND	ND	ND			
1,2-Dichloropropane	ug/L	ND	ND	ND			
2-Butanone	ug/L	ND	ND	9.3			
2-Hexanone	ug/L	ND	ND	ND			
4-Methyl-2-pentanone	ug/L	ND	ND	ND			
Acetone	ug/L	6.8 Q	ND	24			
Benzene	ug/L	ND	ND	ND	180	190	490 D
Bromodichloromethane	ug/L	ND	ND	ND			
Bromoform	ug/L	ND	ND	ND			
Bromomethane	ug/L	ND	ND	ND			
Carbon disulfide	ug/L	ND	ND	ND			
Carbon tetrachloride	ug/L	ND	ND	ND			
Chlorobenzene	ug/L	ND	ND	ND	ND	ND	ND
Chlorodibromomethane	ug/L	ND	ND	ND			
Chloroethane	ug/L	ND	ND	ND			
Chloroform	ug/L	0.78 Q	ND	ND			
Chloromethane	ug/L	ND	ND	ND			
1,2-Dichloroethene, total	ug/L	2.8	ND	ND			
cis-1,3-Dichloropropene	ug/L	ND	ND	ND			
Ethylbenzene	ug/L	ND	ND	ND	55	43	1700 D
Methylene chloride	ug/L	ND	ND	ND			
Styrene	ug/L	ND	ND	ND			
Tetrachloroethene	ug/L	8.3	2.2	ND			
Toluene	ug/L	ND	ND	10	27	28	430 D
trans-1,3-Dichloropropene	ug/L	ND	ND	ND			
Trichloroethene	ug/L	8.2	0.76 Q	ND			
Vinyl acetate	ug/L	ND	ND	ND			
Vinyl Chloride	ug/L	ND	ND	ND			
Xylene, total	ug/L	ND	ND	ND	987 D	1037 D	2760 D
1,3-Dichlorobenzene	ug/L	~	~	~	ND	ND	ND
1,2-Dichlorobenzene	ug/L	~	~	~	0.87 Q	0.97 Q	0.67 Q
1,4-Dichlorobenzene	ug/L	~	~	~	ND	ND	ND
Total VOCs	ug/L	26.88	2.96	43.3	1249.87	1298.97	5380.67
July 1997 Total VOCs	ug/L	16.8	0	6.8	~	533	~

ND = Not Detected

TABLE 3
SUMMARY OF MONITORING WELL RESULTS

BEGINNING DATE: ENDING DATE: 07-Oct-98 09-Oct-98

(1)	PAL	•	NR	140	Preventative Action Limit
(2)	ES	***	NR	140	Enforcement Standard

				W-01A-98-4	W-03A-98-4	DUP3-98-4	W-03B-98-4	W-04A-98-4	W-07-98-4	W-08R-98-4
Parameter	PAL (1)	ES (2)	Units	10/7/98	10/9/98	10/9/98	10/9/98	10/7/98	not sampled	not sampled
					•	(W-03A-98-4)				
1,1,1-Trichloroethane	40	200	ug/L	ND	ND	ND	ND	ND	ND	~
1,1,2,2-Tretrachloroethane	0.02	0.2	ug/L	ND	ND	ND	ND	ND	ND	~
1,1,2-Trichloroethane	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	~
1,1-Dichloroethane	85	850	ug/L	, ND	ND	ND	ND	ND	ND	~
1,1-Dichloroethene	0.7	7	ug/L	ND	ND	ND	ND	ND	ND	~
1,2-Dichloroethane	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	~
1,2-Dichloropropane	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	~
2-Butanone	90	460	ug/L	ND	ND	ND	ND	ND	ND	~
2-Hexanone			ug/L	ND	ND	ND	ND	ND	ND	~
4-Methyl-2-pentanone	50	500	ug/L	ND	ND	ND	ND	ND	ND	~
Acetone	200	1000	ug/L	ND	ND	ND	ND	ND	ND	~
Benzene	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	~
Bromodichloromethane	0.06	0.6	ug/L	ND	ND	ND	ND	ND	ND	~
Bromoform	0.44	4	ug/L	ND	ND	ND	ND	ND	ND	~
Bromomethane	1	10	ug/L	ND	ND	ND	ND	ND	ND	~
Carbon disulfide			ug/L	ND	ND	ND	ND	ND	ND	~
Carbon tetrachloride	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	~
Chlorobenzene	20	100	ug/L	ND	ND	ND	ND	ND	ND	~
Chlorodibromomethane	6	60	ug/L	ND	ND	ND	ND	ND	ND	~
Chloroethane	80	400	ug/L	ND	ND	ND	ND	ND	ND	~
Chloroform	0.6	6	ug/L	ND	ND	ND	ND	ND	ND	~
Chloromethane	0.3	3	ug/L	ND	ND	ND	ND	ND	ND	~
1,2-Dichloroethene, total	7	70	ug/L	ND	ND	ND	ND	ND	ND	~
cis-1,3-Dichloropropene	0.02	0.2	ug/L	ND	ND	ND	ND	ND	ND	~
Ethylbenzene	140	700	ug/L	ND	ND	ND	ND	ND	ND	~
Methylene chloride	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	~
Styrene	10	100	ug/L	ND	ND	ND	ND	ND	ND	~
Tetrachloroethene	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	~
Toluene	68.6	343	ug/L	ND	ND	ND	ND	ND	ND	~
trans-1,3-Dichloropropene	0.02	0.2	ug/L	ND	ND	ND	ND	ND	ND	~
Trichloroethene	0.5	5	ug/L	ND	ND	ND	ND	ND	ND	_
Vinyl acetate	***	-	ug/L	ND	ND	ND	ND	ND	ND	~
Vinyl Chloride	0.02	0.2	ug/L	ND	ND	ND	ND	NB	ND	_
Xylene, total	124	620	ug/L	ND	ND	ND	ND	√ ND ND	ND	_
Ayrency total	127	020	ug/ L	ND	No		,,,	,	110	~
Total VOCs			ug/L	0.0	0.0	0,0	0.0	0.0	0.0	-
October 1997 Total VOCs			ug/L	0.0	0.0	0.0	0.0	0.0	0.0	~

ND = Not Detected

PROJECT NUMBER: 8E13503 BEGINNING DATE: 07-Oct-98

09-Oct-98

ENDING DATE:

TABLE 3 CONTINUED SUMMARY OF MONITORING WELL RESULTS

(1) PAL = NR 140 Preventative Action Limit

(2) ES = NR 140 Enforcement Standard

				W-20-98-4	W-22-98-4	W-23-98-4	DUP-2-98-4	W-27-98-4	PW-08-98-4
Parameter	PAL (1)	ES (2)	Units	10/9/98	10/9/98	10/8/98	10/8/98 (W-23-98-4)	10/8/98	10/9/98
1,1,1-Trichloroethane	40	200	ug/L	ND	ND	ND	ND	ND	ND
1,1,2,2-Tretrachloroethane	0.02	0.2	ug/L	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	0.5	5	ug/L	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	85	850	ug/L	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	0.7	7	ug/L	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	0.5	5	ug/L	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	0.5	5	ug/L	ND	ND	ND	ND	ND	ND
2-Butanone	90	460	ug/L	ND	ND	ND	ND	ND	ND
2-Hexanone			ug/L	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	50	500	ug/L	ND	ND	ND	ND	ND	ND
Acetone	200	1000	ug/L	ND	ND	ND	ND	ND	ND
Benzene	0.5	5	ug/L	ND	1.9	2	2.1	ND	ND
Bromodichloromethane	0.06	0.6	ug/L	ND	ND	ND	ND	ND	ND
Bromoform	0.44	4	ug/L	ND	ND	ND	ND	ND	ND
Bromomethane	1	10	ug/L	ND	ND	ND	ND	ND	ND
Carbon disulfide			ug/L	ND	ND	ND	ND	ND	3.0
Carbon tetrachloride	0.5	5	ug/L	ND	ND	ND	ND	ND	ND
Chlorobenzene	20	100	ug/L	ND	ND	ND	ND	ND	ND
Chlorodibromomethane	6	60	ug/L	ND	ND	ND	ND	ND	ND
Chloroethane	80	400	ug/L	ND	ND	ND	ND	ND	ND
Chloroform	0.6	6	ug/L	ND	ND	ND	ND	ND	ND
Chloromethane	0.3	3	ug/L	ND	ND	ND	ND	ND	ND
1,2-Dichloroethene, total	7	70	ug/L	ND	ND	1.3 Q	1.1 Q	12	ND
cis-1,3-Dichloropropene	0.02	0.2	ug/L	ND	ND	ND	ND L	ND	ND
Ethylbenzene	140	700	ug/L	ND	ND	ND	ND	ND	ND
Methylene chloride	0.5	5	ug/L	ND	ND	ND	ND	ND	ND
Styrene	10	100	ug/L	ND	ND	ND	ND	ND	ND
Tetrachloroethene	0.5	5	ug/L	ND	ND	ND	ND	ND	ND
Toluene	68.6	343	ug/L	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	0.02	0.2	ug/L	ND	ND	ND	ND	ND	ND
Trichloroethene	0.5	5	ug/L	ND	ND	ND	ND	100	1.6
Vinyl acetate			ug/L	ND	ND	ND	ND	ND I	ND
Vinyl Chloride	0.02	0.2	ug/L	ND	ND	0.68 Q	0.72 Q	ND	ND
Xylene, total	124	620	ug/L	ND	ND	ND	ND	, ND	ND
			9						
Total VOCs			ug/L	0.0	1.9	4.0	3.9	112.0	4.6
October 1997 Total VOCs			ug/L	0.0	3.9	8.0	9.0	221.4	0.0

ND = Not Detected

Indicates concentration in exceedance of Preventative Action Limit

Indicates concentration in exceedance of Enforcement Standard

Page B-1

► W-04A × W-06A าสท-99 86-J₂O 86-lnL 86-1qA 86-nst 76-100 76-luc 7e-1qA 76-nsl 96-10O 96-Inc **36-19A** Jan-96 **96-100** 36-lnc **26-19A** 26-nsL Groundwater Elevation (ff. MSL) 770 730 720 780

Groundwater Elevation Trends Glacial Wells, 1995 to 1998 Cook Composites and Polymers Co.

Page B-2

Groundwater Elevation Trends Glacial Wells, 1995 to 1998 Cook Composites and Polymers Co.

Groundwater Elevation Trends Glacial Wells, 1995 to 1998 Cook Composites and Polymers Co.

Page B-3

Page B-4

Cook Composites and Polymers Co.

Groundwater Elevation Trends Glacial Wells, 1995 to 1998

Page B-5

Groundwater Elevation Trends Glacial Wells, 1995 to 1998 Cook Composites and Polymers Co.

Page B-6

Groundwater Elevation Trends Shallow Dolomite Wells, 1995 to 1998 Cook Composites and Polymers Co.

Page B-7

าสท-99

Jan-95

089

700

Groundwater Elevation (ft. MSL)

780

770

292

750

069

86-1₂O 86-lul 86-1qA 98-nsL 76-1₃O Shallow Dolomite Wells, 1995 to 1998 Cook Composites and Polymers Co. Groundwater Elevation Trends **76-lu** 7e-1qA 76-nst 96-1₂O 96-Inr **∂**8-1qA Jan-96 26-12O **26-In**℃ **26-19A**

-- W-23

₩-25 -W-28

Page B-8

Groundwater Elevation Trends Shallow Dolomite Wells, 1995 to 1998 Cook Composites and Polymers Co.

Page B-9

Groundwater Elevation Trends Deep Dolomite Wells, 1995 to 1998 Cook Composites and Polymers Co.

Total VOC Trends
Perimeter Glacial Wells, 1995 to 1998
Cook Composites and Polymers Co.

Page B-10

Total VOC Trend
Glacial Drift Progress Wells, 1995 to 1998
Cook Composites and Polymers Co.

Page B-11

Total VOC Trends
Glacial Drift Progress Wells, 1995 to 1998
Cook Composites and Polymers Co.

Page B-12

Total VOC Trends
Perimeter Dolomite Wells, 1995 to 1998
Cook Composites and Polymers Co.

Page B-13

Total VOC Trends
Perimeter Dolomite Wells, 1995 to 1998
Cook Composites and Polymers Co.

Page B-14

◆-W-21A ■ W-29 Jul-99 Jul-98 Jul-97 Jul-96 0 Jul-95 35000 -25000 15000 -10000 2000 30000 20000 ٦/6n

Total VOC Trends
Dolomite Progress Wells, 1995 to 1998
Cook Composites and Polymers Co.

Page B-15

Total VOC Trends

Dolomite Progress Wells, 1995 to 1998

Cook Composites and Polymers Co.

Page B-16