

### ANNUAL REPORT

### 1993

Refuse Hideaway Landfill Town of Middleton Dane County, Wisconsin

Prepared by:

Wisconsin Department of Natural Resources 101 South Webster Street Madison, Wisconsin

Prepared by:

Terra Engineering and Construction Corp. 2201 Vondron Road Madison, Wisconsin

REFUSE\93-ann.rpt

--

TABLE OF CONTENTS

| Gas Extraction Wells                | •••   | ••  | • • | • | •   |     | • | • | • | • | •   | ••• | • | •. | • | • | • | •  | 1 |
|-------------------------------------|-------|-----|-----|---|-----|-----|---|---|---|---|-----|-----|---|----|---|---|---|----|---|
| Leachate/Condensate Extraction      | ••    | ••• | ••• | • | •   | ••• | • | • | • | • | •   |     | • | •  | • | • | • | •. | 2 |
| Blower/Flare                        | •••   |     | ••• | • | •   | ••• | • | • | • | • | •   | • • | • | •  | • | • | • |    | 3 |
| Alarm Conditions                    | •••   | ••• | ••• | • | •   | ••• | • | • | • | • | •   | • • | • | •  | • | • | • | •  | 3 |
| Analytical Results                  | •••   | • • | ••• | • | • • | ••• | • | • | • | • | •   | •   | • | •  | • | • | • | •  | 4 |
| General Observations and Conclusion | • • • | ••• | ••• | • | • • | ••  | • | • | • | • | • • | • • | • | •  | • | • | • | •  | 5 |

| ſ | RECEIVED                                          | ) |
|---|---------------------------------------------------|---|
|   | MAR 2   1994                                      |   |
|   | MERG & REMEDIAL RESPONS<br>BUR OF SOLID & HAZRD V |   |



**TERRA** 

ENGINEERING & CONSTRUCTION CORPORATION ▲

ENVIRONMENTAL REMEDIATION MUNICIPAL & UTILITY CONSTRUCTION SPECIALTY EARTHWORK March 15, 1994

Wisconsin Department of Natural Resources Environmental Response and Repair Section Bureau of Solid and Hazardous Waste Management 101 South Webster Street, GEF II, SE/3 Madison, Wisconsin 53707

Attn: Ms. Theresa Evanson

Re: Operation and Maintenance Summary - Annual Report 1993 Landfill Gas and Leachate Extraction System Refuse Hideaway Landfill -Middleton, Wisconsin Terra Job # 468

Dear Ms. Evanson:

This report summarizes operation and maintenance (O&M) activities performed by Terra Engineering & Construction Corporation (Terra), during 1993 at the Refuse Hideaway Landfill.

Included in this report are five tables which summarize gas extraction well monitoring, gas probe monitoring, leachate head monitoring, leachate/condensate loadout volumes and monthly alarm conditions encountered. Also included are Construction Observation Report: Shallow Gas Recovery and Leachate Head Reduction System Installation, the leachate analytical results for Quarterly and Annual sampling events, analytical results from the Biennial Flare inlet sampling and a system inspection report provided by Linklater Corporation. A brief discussion of each aspect of the gas and leachate extraction system including notable highlights are presented in the following sections. Previously submitted reports can be referenced for further details.

#### Gas Extraction Wells

Table 1 is an annual summary of the monthly data collected from each of the thirteen (13) gas wells.

The valves on gas wells GW-1 and GW-2, which had been re-opened on January 30, 1993, were closed on March 30, 1993 due to the presence of oxygen and the low concentration of methane. These are the two "original" gas wells installed during 1989-90. Continued monthly monitoring indicated no increase in methane production from these two wells. The valves will remain closed until a noticeable increase in methane production is observed however, with the valves closed through out the year, there has been no evidence of stressed vegetation in the area of GW-1 and GW-2, suggesting that methane production has diminished.

REFUSE\93-ann.rpt

2201 VONDRON ROAD MADISON, WI 53704-6795 608/221-3501 PHONE 608/221-4075 FAX

-2-

Modifications were made to five gas wells (GW-4, GW-5, GW-7, GW-12 and GW-13) in September 1993 to allow the permanent pumps to discharge leachate from the wells into the existing header pipe. Gas well GW-5 was also modified to allow the recently installed lateral gas wells to draw vacuum from the existing header pipe at gas well GW-5. For further details refer to the Construction Observation Report: Shallow Gas Recovery and Leachate Head Reduction System Installation which is attached as Appendix 1.

#### Leachate/Condensate Extraction

A permanent leachate extraction pump was installed in each of five gas wells(GW-4, GW-5, GW-7, GW-12 and GW-13) during the month of November 1993. The placement of the permanent pumps also included the installation of electrical service wire from the main control panel at the flare to each of the gas wells noted above. Pump control panels were also installed to provide automatic shut off and re-start capabilities to each pump. Details of the permanent pump installation are described in the Construction Observation Report: Shallow Gas Recovery and Leachate Head Reduction System Installation.

The existing pumps in gas wells GW-8, -9, -11 were inspected and repairs were made to each in March 1993, broken wire leads were replaced in gas well GW-8. The pump in GW-8 was later removed and cleaned. A stainless steel screen was installed over the pump to prevent material from entering and clogging the pump's impellers.

In May 1993, the electrical junction boxes at gas wells GW-8, -9, and -11 were replaced along with the above ground conduit. This was done after water was observed with in the "weather proof" boxes. The boxes had oxidized to the point were they were no longer effective against the weather.

In November 1993, the wire leads to the leachate pump in GW-9 were replaced after an inspection of the wires showed them to be frayed. The leachate head in gas well GW-9 had decreased to less than one foot, possibly due to the pumping efforts of the recently installed pumps. The pump in GW-9 has remained off as the coyote controls could not be re-set due to the decreased leachate head in the gas well.

The annual cleaning of the leachate/condensate conveyance pipe for 1993 was performed in February 1994.

Eight (8) erroneous high leachate alarms have been alerted to Terra during 1993. (see table 5). The cause for these alarms is thought to be a loose electrical connection at the leachate tank panel. These alarms do not shut down the flare, however, the power to the permanent pumps is shut off until the alarm condition is corrected and re-set.

#### Blower/Flare

In January 1993 the thermocouple at the flare failed. The failure was due to broken thermocouple wires. A new thermocouple was purchased and installed during the same month.

-3-

In March 1993, flare temperatures were observed to fluctuate between 1400 to 1700 degrees fahrenheit. The flare manufacturer, Linklater Corporation was contacted for assistance and a site visit by their representative, Mr. John Gwinn, was scheduled.

In May 1993, the flare controls were re-programmed and an over all inspection of the system was performed by Mr. John Gwinn. Terra submitted his report to the DNR with the June 1993 Monthly Report. A copy of this report is attached as Appendix 2. Mr. Gwinn's report indicated that the system was in "excellent" condition. His recommendations included: cleaning the U.V. sensor in the flare (performed July 1993), changing the blower belts (performed in May 1993), cleaning the flame arrestors, replace arrestor gaskets, install pressure monitoring ports on the down stream arrestor (performed May 1993) and painting the flare (performed in November 1993)

In June of 1993, Clean Air Engineering (CAE) was subcontracted by Terra to collect and analyze Biennial Flare inlet gas samples. These analytical results were submitted to the DNR and are attached as Appendix 3.

In December 1993, the second thermocouple failed. The two thermocouples, the original removed in January 1993 and the replacement, were sent to Linklater Corporation for re-building. One of the two re-buildings was performed under warrantee. Mr. John Gwinn of Linklater believes that some constituents of the landfill gas are "attacking" the thermocouple wire, causing the wire to break and the thermocouple to fail. If another thermocouple failure occurs, it will immediately be replaced with the rebuilt spare in Terra's possession, minimizing the flare down time. Prior to each thermocouple failure, frequent temperature fluctuations were observed on the temperature recorder tape. Future drastic temperature fluctuations will be noted and the thermocouple may have to be removed for inspection.

#### Alarm Conditions

Table 5 contains the twelve monthly alarm condition summaries previously submitted with the monthly reports.

-4-

#### Alarm Conditions (cont)

During 1993 the flare was down for a total of approximately 833.96 hours. A breakdown of alarm conditions and "down time" is as follows. (hours are approximate).

Flare down due to thermocouple failure: 459.50 hrs. Flare down due to loss of vacuum: 26.88 hrs. Flare down "cause not determined: 245.83 hrs. Flare down due to manual shut down: 101.75 hrs.

It is anticipated that with the spare thermocouple any future down time due to thermocouple failure will be substantially lower than that observed in 1993.

Vacuum loss alarms typically occurred during the monthly leachate head monitoring. The sensitivity of the existing vacuum switches is such that a minor change in header pressure will trip the switch and shut down the blower. Removal and inspection of the vacuum switches is anticipated. Following the inspection, replacement switches or installation of another type of alarm switch will be discussed.

Down time due to "cause not determined" may be due to vacuum loss or electrical service interruption during stormy weather.

Manual shut downs were preformed during flare inspection, flame arrestor cleaning, flare painting and during the time prior to the thermocouple failure when flare temperatures had increased dramatically.

The erroneous leachate alarms, as previously mentioned, could be due to loose electrical connections. We are currently addressing a variety of possible solutions to these alarm conditions.

#### Analytical Results

Appendix 4 contains the analytical results for leachate analyses performed during 1993. It is our understanding that a "turn around document" (TAD) showing all analytical results has been forwarded to your offices from the laboratory of record (Mid-State Laboratories).

Leachate samples were obtained on a quarterly basis from the 25,000 gallon underground leachate/condensate collection tank utilizing a dedicated teflon bailer.

ć

#### Analytical Results (cont)

The sampling dates are as follows:

| Quarterly | March 22, 1993   |
|-----------|------------------|
| Quarterly | June 1, 1993     |
| Quarterly | August 30, 1993  |
| Annual .  | October 5, 1993  |
| Quarterly | December 9, 1993 |

Copies of the Quarterly and Annual analytical results were forwarded to the Madison Metropolitan Sewerage District to comply with the District's Discharge Permit No. NTO-5, and the renewed permit No. NATO-5A. The renewed permit is valid until September 25, 1994. A copy of this permit is attached as Appendix 5.

#### General Observations and Conclusion

The installation of lateral shallow gas extraction wells appear to be minimizing the gas migration as evidenced by the monthly gas readings in gas probes GP-11s and GP-11d. As previously reported, the gas concentrations at these probes vary seasonally and continued monthly monitoring will be necessary to make true comparisons with past data.

The leachate extraction pumps appear to be the "high maintenance" item. The relative high temperatures of the leachate, frayed or broken lead wires and/or foreign material entering the pumps have been causes for past pump malfunctions. Monthly monitoring of the control panels and leachate head data will provide a good warning signal that malfunctions have occurred.

As spring approaches, Terra will be monitoring the cap for excessive erosion and looking for vegetation to appear in the areas of recent cap repair.

The cracks that have appeared in the flare foundation pad have been documented and will be inspected regularly during the weekly monitoring event. Any further changes observed in the condition of the flare foundation pad will be brought to your attention.

Terra will continue to use all the information collected, from monitoring data to information regarding the performance of this type of system to maintain and, where possible, improve the existing gas and leachate extraction system.

March 15, 1994 Project No. 468

If you have any questions or comments regarding this report, please do not hesitate to contact us.

-6-

Sincerely, TERRA ENGINEERING & CONSTRUCTION CORP.

MM. Joberg

Kirk Solberg, Environmental Geologist

## TABLE 1

# GAS EXTRACTION WELL MONITORING SUMMARY

WELL NUMBER: GW-1

| DATE                    | VACUUM<br>(IN.OF H2O) | TEMP.<br>(F) | METHANE<br>(%CH4) | OXYGEN<br>(%02) | CARBON<br>DIOXIDE<br>(%CO2) | AIR VELOCITY<br>(FT/MIN) | CALCULATED<br>FLOW (CFM) |
|-------------------------|-----------------------|--------------|-------------------|-----------------|-----------------------------|--------------------------|--------------------------|
| 01/30/93                | -1.0                  | 53.0         | 13.8              | 11.4            | 11.6                        | 525                      | 23.6                     |
| 03/01/93                | -2.0                  | 46.0         | 7.3               | 0.4             | 21.7                        | <10                      | <0.45                    |
| 03/30/93                | +0.5                  | 61.8         | 50.1              | 0.0             | 32.9                        | 0                        | 0                        |
| 04/27/93                | -0.5                  | 55.9         | 7.1               | 14.1            | 6.8                         | 0                        | 0                        |
| 05/18/93                | 0.0                   | 78.6         | 7.0               | 15.2            | 6.2                         | <10                      | <0.45                    |
| 06/28/93                | 0.0                   | 67.6         | 16.2              | 13.1            | 11.1                        | <100                     | <4.5                     |
| 07/27/93                | 0.0                   | 70.0         | 17.1              | 12.4            | 10.5                        | <100                     | <4.5                     |
| 08/30/93                | 0.0                   | 70.3         | 0.3               | 20.3            | 0.0                         | <100                     | <4.5                     |
| 09/28/93                | -1.0                  | 55.5         | 8.3               | 12.6            | 9.3                         | <100                     | .<4.5                    |
| 10/29/93                | -1.0                  | 37.0         | 5.0               | 20.0            | 4.1                         | <100                     | <4.5                     |
| 12/03/93                | -1.0                  | 36.0         | 5.0               | 20.0            | 4.3                         | <100                     | <4.5                     |
| 12/29/93 <sup>(1)</sup> | N/A                   | N/A          | N/A               | N/A             | N/A                         | N/A                      | N/A                      |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |

NA: Not Available

<sup>(1)</sup> Thermocouple failure has blower/flare shutdown until repairs can be made. No monthly adjustments were made for December.

WELL NUMBER: GW-2

| DATE        | VACUUM<br>(IN.OF H2O) | TEMP.<br>(F) | METHANE<br>(%CH4) | OXYGEN<br>(%02) | CARBON<br>DIOXIDE<br>(%CO2) | AIR VELOCITY<br>(FT/MIN) | CALCULATED<br>FLOW (CFM) |
|-------------|-----------------------|--------------|-------------------|-----------------|-----------------------------|--------------------------|--------------------------|
| 01/30/93    | -2.0                  | 53.3         | 0.0               | 20.4            | 0.1                         | 475                      | 21.4                     |
| 03/01/93    | -4.0                  | 52.0         | 16.8              | 0.3             | 25.5                        | <10                      | <.45                     |
| 03/30/93    | 0                     | 61.3         | 49.4              | 0.0             | 31.5                        | 0                        | 0                        |
| 04/27/93    | -1.0                  | 54.3         | 0.0               | 20.0            | 0.0                         | 0                        | 0.                       |
| 05/18/93    | -1.0                  | 78.6         | 0.0               | 21.7            | 0.0                         | <10                      | <0.45                    |
| 06/28/93    | 0.0                   | 67.6         | 21.1              | 0.0             | 26.1                        | <100                     | <4.5                     |
| 07/27/93    | 0.0                   | 70.0         | 20.0              | 0.0             | 28.7                        | <100                     | <4.5                     |
| 08/30/93    | 0.0                   | 76.1         | 0.8               | 20.1            | 0.0                         | <100                     | <4.5                     |
| 09/28/93    | -2.0                  | 55.5         | 11.8              | 0.0             | 13.3                        | <100                     | <4.5                     |
| 10/29/93    | -1.0                  | 37.0         | 5.0               | 20.0            | 3.9                         | <100                     | <4.5                     |
| 12/03/93    | -1.0                  | 37.0         | 5.0               | 20.0            | 4.4                         | <100                     | <4.5                     |
| 12/29/93(1) | N/A                   | N/A          | N/A               | N/A             | N/A                         | N/A                      | N/A                      |
|             |                       |              |                   |                 |                             |                          |                          |
|             |                       |              |                   |                 |                             |                          |                          |
|             |                       |              |                   |                 |                             |                          |                          |

N

NA: Not Available

(1) Thermocouple failure has blower/flare shutdown until repairs can be made. No monthly adjustments were made for December.

REFUSE\refuse93.tbl

WELL NUMBER: GW-3

| DATE                    | VACUUM<br>(IN.OF H2O) | TEMP.<br>(F) | METHANE<br>(%CH4) | OXYGEN<br>(%02) | CARBON<br>DIOXIDE<br>(%CO2) | AIR VELOCITY<br>(FT/MIN) | CALCULATED<br>FLOW (CFM) |
|-------------------------|-----------------------|--------------|-------------------|-----------------|-----------------------------|--------------------------|--------------------------|
| 01/30/93                | N/A                   | 57.0         | 46.9              | - • 0.5         | 37.7                        | 2200                     | 99.0                     |
| 03/01/93                | -7.0                  | 60.0         | 41.3              | 0.3             | 35.1                        | 2300                     | 103.5                    |
| 03/30/93                | (0.0)                 | 61.3         | 57.6              | 0.0             | 40.7                        | 1600                     | 72.0                     |
| 04/27/93                | -3.5                  | 59.3         | 51.1              | 0.0             | 37.2                        | 1400                     | 63.0                     |
| 05/18/93                | -4.5                  | 67.2         | 41.4              | 0.0             | 35.6                        | 1400                     | 63.0                     |
| 06/28/93                | -6.5                  | 65.3         | 48.4              | 0.0             | 37.4                        | 1400                     | 63.0                     |
| 07/27/93                | -8.0                  | 64.7         | 38.8              | 0.0             | 33.2                        | 2000                     | 90.0                     |
| 08/30/93                | -7.0                  | 69.0         | 40.5              | 0.0             | 33.3                        | 2600                     | 117.0                    |
| 09/28/93                | -8.5                  | 64.0         | 42.1              | 0.0             | 32.3                        | 1700                     | 76.5                     |
| 10/29/93                | -7.5                  | 62.6         | 54.0              | 0.0             | 39.1                        | 2300                     | 103.5                    |
| 12/03/93                | -7.0                  | 66.0         | 45.0              | 0.0             | 35.0                        | 2450                     | 110.3                    |
| 12/29/93 <sup>(1)</sup> | N/A                   | N/A          | N/A               | N/A             | N/A                         | N/A                      | N/A                      |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |

NA: Not Available

(1) Thermocouple failure has blower/flare shutdown until repairs can be made. No monthly adjustments were made for December.

WELL NUMBER: GW-4

| DATE                    | VACUUM<br>(IN.OF H2O) | TEMP.<br>(F) | METHANE<br>(%CH4) | OXYGEN<br>(%02) | CARBON<br>DIOXIDE<br>(%C02) | AIR VELOCITY<br>(FT/MIN) | CALCULATED<br>FLOW (CFM) |
|-------------------------|-----------------------|--------------|-------------------|-----------------|-----------------------------|--------------------------|--------------------------|
| 01/30/93                | N/A                   | 62.0         | 46.8              | 0.5             | 36.6                        | 750                      | 33.8                     |
| 03/01/93                | -11.5                 | 63.0         | 45.4              | 0.6             | 35.6                        | 1600                     | 72.0                     |
| 03/30/93                | -16.0                 | 62.2         | 50.8              | 0.0             | 36.9                        | 950                      | 42.8                     |
| 04/27/93                | -7.0                  | 61.0         | 52.0              | 0.0             | 37.4                        | 450                      | 20.3                     |
| 05/18/93                | -8.5                  | 69.0         | 40.8              | 0.0             | 34.4                        | 1250                     | 56.3                     |
| 06/28/93                | -10.0                 | 68.0         | 49.9              | 0.0             | 37.8                        | 750                      | 33.8                     |
| 07/27/93                | -15.0                 | 69.9         | 43.9              | 0.0             | 35.1                        | 750                      | 33.8                     |
| 08/30/93                | -14.0                 | 77.1         | 42.2              | 0.0             | 34.0                        | 1200                     | 54.0                     |
| 09/28/93                | -13.0                 | 62.2         | 44.8              | 0.0             | 34.0                        | 750                      | 33.8                     |
| 10/29/93                | -13.0                 | 73.0         | 48.2              | 0.0             | 38.0                        | 1500                     | 67.5                     |
| 12/03/93                | -14.0                 | 68.7         | 45.2              | 0.0             | 34.3                        | 1300                     | 58.5                     |
| 12/29/93 <sup>(1)</sup> | N/A                   | N/A          | N/A               | N/A             | N/A                         | N/A                      | N/A                      |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |

NA: Not Available

REFUSE\refuse93.tbl

<sup>(1)</sup> Thermocouple failure has blower/flare shutdown until repairs can be made. No monthly adjustments were made for December.

WELL NUMBER: GW-5

| DATE                    | VACUUM<br>(IN.OF H2O) | TEMP.<br>(F) | METHANE<br>(%CH4) | OXYGEN<br>(%02) | CARBON<br>DIOXIDE<br>(%CO2) | AIR VELOCITY<br>(FT/MIN) | CALCULATED<br>FLOW (CFM) |
|-------------------------|-----------------------|--------------|-------------------|-----------------|-----------------------------|--------------------------|--------------------------|
| 01/30/93                | -11.5                 | 74.6         | 56.3              | 0.4             | 41.7                        | 800                      | 36.0                     |
| 03/01/93                | -11.5                 | 80.0         | 56.3              | 0.5             | 43.1                        | 800                      | 36.0                     |
| 03/30/93                | -16.0                 | 78.4         | 56.7              | 0.0             | 43.2                        | 850                      | 38.3                     |
| 04/27/93                | -7.0                  | 77.0         | 56.8              | 0.0             | 42.2                        | 500                      | 22.5                     |
| 05/18/93                | -9.0                  | 80.2         | 53.7              | 0.0             | 43.9                        | 700                      | 31.5                     |
| 06/28/93                | -16.5                 | 81.1         | 55.7              | 0.0             | 43.1                        | 420                      | 18.9                     |
| 07/27/93                | -17.0                 | 82.5         | 55.4              | 0.0             | 42.9                        | 750                      | 33.8                     |
| 08/30/93                | -16.0                 | 83.8         | 55.7              | 0.0             | 42.6                        | 1000                     | 45.0                     |
| 09/28/93                | -14.5                 | 80.7         | 49.5              | 0.0             | 33.4                        | 600                      | 27.0                     |
| 10/29/93                | -13.0                 | 77.0         | 41.0              | 7.2             | 31.0                        | 800                      | 36.0                     |
| 12/03/93                | -14.0                 | 67.0         | 57.0              | 0.9             | 37.0                        | 900                      | 40.5                     |
| 12/29/93 <sup>(1)</sup> | N/A                   | N/A          | N/A               | N/A             | N/A                         | N/A                      | N/A                      |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |

NA: Not Available

<sup>(1)</sup> Thermocouple failure has blower/flare shutdown until repairs can be made. No monthly adjustments were made for December.

WELL NUMBER: GW-6

| DATE                    | VACUUM<br>(IN.OF H2O) | TEMP.<br>(F) | METHANE<br>(%CH4) | OXYGEN<br>(%02) | CARBON<br>DIOXIDE<br>(%CO2) | AIR VELOCITY<br>(FT/MIN) | CALCULATED<br>FLOW (CFM) |
|-------------------------|-----------------------|--------------|-------------------|-----------------|-----------------------------|--------------------------|--------------------------|
| 01/30/93                | -13.5                 | 66.0         | 34.0              | 0.2             | 33.1                        | 700                      | 31.5                     |
| 03/01/93                | -4.0                  | 63.0         | 19.7              | 0.4             | 26.7                        | 950                      | 42.8                     |
| 03/30/93                | -2.0                  | 70.0         | 44.2              | 0.0             | 33.9                        | 1100                     | 49.5                     |
| 04/27/93                | -3.0                  | 68.3         | 28.2              | 0.0             | 28.1                        | 1450                     | 65.3                     |
| 05/18/93                | -4.0                  | 71.0         | 20.5              | 0.0             | 27.3                        | 200                      | 9.0                      |
| 06/28/93                | -3.0                  | 75.0         | 30.5              | 0.0             | 30.3                        | 700                      | 31.5                     |
| 07/27/93                | -4.0                  | 73.0         | 18.4              | 0.0             | 25.9                        | 800                      | 36.0                     |
| 08/30/93                | -1.5                  | 84.0         | 37.4              | 0.0             | 33.6                        | 1200                     | 54.0                     |
| 09/28/93                | -1.5                  | 57.5         | 0.4               | 19.8            | 0.0                         | <100                     | <4.5                     |
| 10/29/93                | -2.0                  | 32.1         | 13.9              | _15.5           | 10.5                        | <100                     | <4.5                     |
| 12/03/93                | -1.0                  | 72.0         | 44.4              | 0.0             | 35.6                        | 900                      | 40.5                     |
| 12/29/93 <sup>(1)</sup> | N/A                   | N/A          | N/A               | N/A             | N/A                         | N/A                      | N/A                      |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |

#### NA: Not Available

(1) Thermocouple failure has blower/flare shutdown until repairs can be made. No monthly adjustments were made for December.

REFUSE\refuse93.tbl

WELL NUMBER: GW-7

| DATE                    | VACUUM<br>(IN.OF H2O) | TEMP.<br>(F) | METHANE<br>(%CH4) | OXYGEN<br>(%02) | CARBON<br>DIOXIDE<br>(%CO2) | AIR VELOCITY<br>(FT/MIN) | CALCULATED<br>FLOW (CFM) |
|-------------------------|-----------------------|--------------|-------------------|-----------------|-----------------------------|--------------------------|--------------------------|
| 01/30/93                | -8.5                  | 87.4         | 53.1              | 0.2             | 38.3 * *                    | 1250                     | 56.3                     |
| 03/01/93                | -13.0                 | 87.0         | 52.8              | 0.3             | 39.8                        | 1000                     | 45.0                     |
| 03/30/93                | -15.0                 | 87.2         | 55.3              | 0.0             | 39.7                        | 1150                     | 51.8                     |
| 04/27/93                | -15.0                 | 86.1         | 56.4              | 0.0             | 38.4                        | 1750                     | 78.8                     |
| 05/18/93                | -21.0                 | 88.8         | 49.9              | 0.0             | 39.7                        | 1300                     | 58.5                     |
| 06/28/93                | -19.0                 | 86.0         | 54.8              | 0.0             | 40.2                        | 1550                     | 69.8                     |
| 07/27/93                | -20.0                 | 83.5         | 51.2              | 0.0             | 38.3                        | 1100                     | 49.5                     |
| 08/30/93                | -21.0                 | 87.0         | 51.5              | 0.0             | 38.6                        | 1550                     | 69.8                     |
| 09/28/93                | -22.5                 | 84.5         | 55.6              | 0.0             | 38.2                        | 750                      | 33.8                     |
| 10/29/93                | -22.0                 | 84.0         | 55.0              | 0.0             | 41.6                        | 1300                     | · 58.5                   |
| 12/03/93                | -23.0                 | 82.0         | 55.6              | 0.0             | 37.0                        | 800                      | 36.0                     |
| 12/29/93 <sup>(1)</sup> | N/A                   | N/A          | N/A               | N/A             | N/A                         | N/A                      | N/A                      |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |

NA: Not Available

REFUSE\refuse93.tbl

<sup>(1)</sup> Thermocouple failure has blower/flare shutdown until repairs can be made. No monthly adjustments were made for December.

WELL NUMBER: GW-8

| DATE                    | VACUUM<br>(IN.OF H2O) | TEMP.<br>(F) | METHANE<br>(%CH4) | OXYGEN<br>(%02) | CARBON<br>DIOXIDE<br>(%CO2) | AIR VELOCITY<br>(FT/MIN) | CALCULATED<br>FLOW (CFM) |
|-------------------------|-----------------------|--------------|-------------------|-----------------|-----------------------------|--------------------------|--------------------------|
| 01/30/93                | -13.0                 | 91.2         | 56.5              | 0.1             | 41.5                        | 625                      | 28.1                     |
| 03/01/93                | -13.5                 | 91.0         | 56.7              | 0.5             | 42.1                        | 950                      | 42.8                     |
| 03/30/93                | -16.0                 | 92.0         | 56.6              | 0.0             | 43.6                        | 1020                     | 45.9                     |
| 04/27/93                | -16.0                 | 95.0         | 58.3              | 0.0             | 41.4                        | 1400                     | 63.0                     |
| 05/18/93                | -28.0                 | 97.1         | 51.6              | 0.0             | 42.4                        | 1200                     | 54.0                     |
| 06/28/93                | -16.0                 | 98.2         | 55.3              | 0.0             | 43.1                        | 1200                     | 54.0                     |
| 07/27/93                | -21.0                 | 104.5        | 56.0              | 0.0             | 41.4                        | 700                      | 31.5                     |
| 08/30/93                | -21.0                 | 98.6         | 54.3              | 0.0             | 41.6                        | 1100                     | 49.5                     |
| 09/28/93                | -22.0                 | 95.6         | 58.8              | 0.0             | 40.5                        | 1150                     | 51.8                     |
| 10/29/93                | -22.5                 | 80.0         | 60.4              | 0.5             | 44.3                        | 900                      | 40.5                     |
| 12/03/93                | -22.0                 | 85.0         | 62.4              | 0.0             | 38.6                        | 800                      | 36.0                     |
| 12/29/93 <sup>(1)</sup> | N/A                   | N/A          | N/A               | N/A             | N/A                         | N/A                      | N/A                      |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |

.

NA: Not Available

<sup>(1)</sup> Thermocouple failure has blower/flare shutdown until repairs can be made. No monthly adjustments were made for December.

WELL NUMBER: GW-9

| DATE        | VACUUM<br>(IN.OF H20) | TEMP.<br>(F) | METHANE<br>(%CH4) | OXYGEN<br>(%02) | CARBON<br>DIOXIDE<br>(%C02) | AIR VELOCITY<br>(FT/MIN) | CALCULATED<br>FLOW (CFM) |
|-------------|-----------------------|--------------|-------------------|-----------------|-----------------------------|--------------------------|--------------------------|
| 01/30/93    | -13.0                 | 104.0        | 56.3              | 0.0             | 41.6                        | 600                      | 27.0                     |
| 03/01/93    | -13.5                 | 101.5        | 56.6              | 0.3             | 42.7                        | 650                      | 29.3                     |
| 03/30/93    | -15.0                 | 104.3        | 56.6              | 0.0             | 41.4                        | 875                      | 39.4                     |
| 04/27/93    | -16.0                 | 103.6        | 57.3              | 0.0             | 41.1                        | 550                      | 24.8                     |
| 05/18/93    | -24.0                 | 104.1        | 52.7              | 0.0             | 43.4                        | 700                      | 31.5                     |
| 06/28/93    | -20.0                 | 101.5        | 54.7              | 0.0             | 43.3                        | 600                      | 27.0                     |
| 07/27/93    | -21                   | 104.0        | 55.2              | 0.0             | 41.4                        | 700                      | 31.5                     |
| 08/30/93    | -22.0                 | 98.6         | 56.0              | 0.0             | 42.4                        | 1200                     | 54.0                     |
| 09/28/93    | -20.0                 | 97.8         | 56.5              | 0.0             | 41.5                        | 600                      | 27.0                     |
| 10/29/93    | -22.0                 | 99.0         | 62.0              | 0.0             | 46.4                        | 500                      | 22.5                     |
| 12/03/93    | 0.0                   | 96.0         | 68.7              | 0.0             | 42.4                        | 400                      | 18.0                     |
| 12/29/93(1) | N/A                   | N/A          | N/A               | N/A             | N/A                         | N/A                      | N/A                      |
|             |                       |              |                   |                 |                             |                          |                          |
|             |                       |              |                   |                 |                             |                          |                          |
|             |                       |              |                   |                 |                             |                          |                          |

NA: Not Available

<sup>(1)</sup> Thermocouple failure has blower/flare shutdown until repairs can be made. No monthly adjustments were made for December.

WELL NUMBER: GW-10

| DATE                    | VACUUM<br>(IN.OF H2O) | TEMP.<br>(F) | METHANE<br>(%CH4) | OXYGEN<br>(%02) | CARBON<br>DIOXIDE<br>(%CO2) | AIR VELOCITY<br>(FT/MIN) | CALCULATED<br>FLOW (CFM) |
|-------------------------|-----------------------|--------------|-------------------|-----------------|-----------------------------|--------------------------|--------------------------|
| 01/30/93                | -4.0                  | 90.3         | 36.8              | 0.0             | 32.4                        | 850                      | 38.3                     |
| 03/01/93                | -4.0                  | 88.0         | 37.2              | 0.3             | 32.5                        | 1050                     | 47.3                     |
| 03/30/93                | +0.25                 | 85.1         | 59.1              | 0.0             | 43.1                        | 975                      | 43.9                     |
| 04/27/93                | -3.5                  | 88.0         | 35.4              | 0.0             | 31.0                        | , 600                    | 27.0                     |
| 05/18/93                | -10.0                 | 94.4         | 29.4              | 0.0             | 30.0                        | 1700                     | 76.5                     |
| 06/28/93                | -4.0                  | 93.3         | 34.0              | 0.0             | 32.8                        | 1000                     | 45.0                     |
| 07/27/93                | -4.0                  | 90.5         | 33.6              | 0.0             | 31.1                        | 750                      | 33.8                     |
| 08/30/93                | -4.5                  | 96.2         | 35.1              | 0.0             | 32.2                        | 1150                     | 51.8                     |
| 09/28/93                | -2.0                  | 91.0         | 35.6              | 0.0             | 30.2                        | 900                      | 40.5                     |
| 10/29/93                | -4.0                  | 93.0         | 51.1              | 0.0             | 42.6                        | 650                      | 29.3                     |
| 12/03/93                | -11.5                 | 103.0        | 34.7              | 0.0             | 31.5                        | 2000                     | 90.0                     |
| 12/29/93 <sup>(1)</sup> | N/A                   | N/A          | N/A               | N/A             | N/A                         | N/A                      | N/A                      |
|                         |                       |              | _                 |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |

NA: Not Available

REFUSE\refuse93.tbl

<sup>(1)</sup> Thermocouple failure has blower/flare shutdown until repairs can be made. No monthly adjustments were made for December.

WELL NUMBER: GW-11

| DATE                    | VACUUM<br>(IN.OF H2O) | TEMP.<br>(F) | METHANE<br>(%CH4) | OXYGEN<br>(%02) | CARBON<br>DIOXIDE<br>(%CO2) | AIR VELOCITY<br>(FT/MIN) | CALCULATED<br>FLOW (CFM) |
|-------------------------|-----------------------|--------------|-------------------|-----------------|-----------------------------|--------------------------|--------------------------|
| 01/30/93                | N/A                   | 101.5        | 56.8              | 0.0             | 40.5                        | 375                      | 16.9                     |
| 03/01/93                | -9.0                  | 94.0         | 57.2              | 0.5             | 41.6                        | 600                      | 27.0                     |
| 03/30/93                | -14.0                 | 100.7        | 58.1              | 0.0             | 42.8                        | 750                      | 33.8                     |
| 04/27/93                | -13.0                 | 100.0        | 58.8              | 0.0             | 40.8                        | 700                      | 31.5                     |
| 05/18/93                | -23.0                 | 107.0        | 53.1              | 0.0             | 32.8                        | 600                      | 27.0                     |
| 06/28/93                | -18.0                 | 101.1        | 56.3              | 0.0             | 42.1                        | 600                      | 27.0                     |
| 07/27/93                | -16.0                 | 90.5         | 57.3              | 0.0             | 41.5                        | 400                      | 18.0                     |
| 08/30/93                | -18.5                 | 99.6         | 57.2              | 0.0             | 41.2                        | 1950                     | 87.8                     |
| 09/28/93                | -21.0                 | 89.4         | 55.5              | 0.0             | 32.8                        | 600                      | 27.0                     |
| 10/29/93                | -16.0                 | 94.0         | 64.1              | 0.0             | 42.5                        | 600                      | 27.0                     |
| 12/03/93                | -16.0                 | 77.3         | 68.5              | 0.0             | 40.0                        | 450                      | 20.3                     |
| 12/29/93 <sup>(1)</sup> | N/A                   | N/A          | N/A               | N/A             | N/A                         | N/A                      | N/A                      |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |

NA: Not Available

(1) Thermocouple failure has blower/flare shutdown until repairs can be made. No monthly adjustments were made for December.

WELL NUMBER: GW-12

| DATE                    | VACUUM<br>(IN.OF H2O) | TEMP.<br>(F) | METHANE<br>(%CH4) | OXYGEN<br>(%02) | CARBON<br>DIOXIDE<br>(%CO2) | AIR VELOCITY<br>(FT/MIN) | CALCULATED<br>FLOW (CFM) |
|-------------------------|-----------------------|--------------|-------------------|-----------------|-----------------------------|--------------------------|--------------------------|
| 01/30/93                | N/A                   | 98.3         | 45.0              | 0.8             | 34.4                        | 1900                     | 85.5                     |
| 03/01/93                | -7.0                  | 96.0         | 42.5              | 0.3             | 33.5                        | 1450                     | 65.3                     |
| 03/30/93                | -10.5                 | 95.3         | 44.3              | 0.0             | 33.8                        | 1600                     | 72.0                     |
| 04/27/93                | -10.0                 | 77.0         | 45.6              | 0.0             | 34.1                        | 1700                     | 76.5                     |
| 05/18/93                | -13.0                 | 89.7         | 41.0              | 0.0             | 35.0                        | 2500                     | 112.5                    |
| 06/28/93                | -10.0                 | 83.1         | 45.1              | 0.0             | 36.4                        | 2450                     | 110.3                    |
| 07/27/93                | -14.0                 | 95.1         | 44.3              | 0.0             | 35.0                        | 2150                     | 96.8                     |
| 08/30/93                | -15.0                 | 98.6         | 42.3              | 0.0             | 35.1                        | 2550                     | 114.8                    |
| 09/28/93                | -17.5                 | 99.5         | 48.5              | 0.0             | 33.6                        | 900                      | 40.5                     |
| 10/29/93                | -14.5                 | 101.0        | 45.6              | 0.0             | 38.3                        | 1400                     | 63.0                     |
| 12/03/93                | -14.0                 | 102.0        | 41.7              | 0.0             | 33.7                        | 2500                     | 112.5                    |
| 12/29/93 <sup>(1)</sup> | N/A                   | N/A          | N/A               | N/A             | N/A                         | N/A                      | N/A                      |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |

NA: Not Available

<sup>(1)</sup> Thermocouple failure has blower/flare shutdown until repairs can be made. No monthly adjustments were made for December.

WELL NUMBER: GW-13

| DATE                    | VACUUM<br>(IN.OF H2O) | TEMP.<br>(F) | METHANE<br>(%CH4) | OXYGEN<br>(%02) | CARBON<br>DIOXIDE<br>(%CO2) | AIR VELOCITY<br>(FT/MIN) | CALCULATED<br>FLOW (CFM) |
|-------------------------|-----------------------|--------------|-------------------|-----------------|-----------------------------|--------------------------|--------------------------|
| 01/30/93                | N/A                   | 82.0         | N/A               | N/A             | N/A                         | 950                      | 42.8                     |
| 03/01/93                | -8.5                  | 76.0         | 51.4              | 0.4             | 39.9                        | 700                      | 31.5                     |
| 03/30/93                | -13.0                 | 84.5         | 48.1              | 0.0             | 38.2                        | 1300                     | 58.5                     |
| 04/27/93                | -12.0                 | 82.2         | 49.6              | 0.0             | 37.5                        | 950                      | 42.8                     |
| 05/18/93                | -17.0                 | 77.9         | 49.6              | 0.0             | 40.2                        | 1500                     | 67.5                     |
| 06/28/93                | -18.5                 | 85.0         | 50.5              | 0.0             | 40.1                        | 1250                     | 56.3                     |
| 07/27/93                | -18.0                 | 81.5         | 49.5              | 0.0             | 38.6                        | 1100                     | 49.5                     |
| 08/30/93                | -18.0                 | 84.3         | 51.2              | 0.0             | 39.8                        | 1450                     | 65.3                     |
| 09/28/93                | -21.0                 | 80.4         | 57.3              | 0.0             | 38.5                        | 900                      | 40.5                     |
| 10/29/93                | -16.0                 | 76.6         | 64.4              | 0.0             | 44.7                        | 500                      | 22.5                     |
| 12/03/93                | -16.0                 | 82.0         | 62.1              | 0.0             | 38.7                        | 800                      | 36.0                     |
| 12/29/93 <sup>(1)</sup> | N/A                   | N/A          | N/A               | N/A             | N/A                         | N/A                      | N/A                      |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |
|                         |                       |              |                   |                 |                             |                          |                          |

#### NA: Not Available

<sup>(1)</sup> Thermocouple failure has blower/flare shutdown until repairs can be made. No monthly adjustments were made for December.

# TABLE 2

# GAS PROBE MONITORING SUMMARY

GAS PROBE G-1S

| DATE     | PRESSURE<br>(in.WC) | METHANE<br>(%CH4) | METHANE<br>(%LEL) <sup>(1)</sup> | OXYGEN<br>(%02) |
|----------|---------------------|-------------------|----------------------------------|-----------------|
| 01/30/93 | 0.0                 | ·0.0              | 0.0                              | 19.4            |
| 03/01/93 | 0.0                 | 0.0               | 0.0                              | 20.4            |
| 03/30/93 | 0.0                 | 0.1               | 2.0                              | 20.2            |
| 04/27/93 | 0.0                 | 0.0               | 0.0                              | 20.0            |
| 05/18/93 | 0.0                 | 0.0               | 0.0                              | 20.8            |
| 06/28/93 | 0.0                 | 0.0               | 0.0                              | 20.9            |
| 07/27/93 | 0.0                 | 0.0               | 0.0                              | 20.5            |
| 08/30/93 | 0.0                 | 0.0               | 0.0                              | 16.5            |
| 09/28/93 | 0.0                 | 0.2               | 4.0                              | 19.6            |
| 10/26/93 | 0.0                 | 0.0               | 0.0                              | 20.4            |
| 12/03/93 | 0.0                 | 0.0               | 0.0                              | 20.5            |
| 12/29/93 | 0.0                 | 0.0               | 0.0                              | 21.5            |
|          |                     |                   |                                  |                 |
|          |                     |                   |                                  |                 |
|          |                     |                   |                                  |                 |

(1) Percent of lower explosive limit of Methane (100% LEL = 5% CH4 by volume)

GAS PROBE G-1D

| DATE     | PRESSURE<br>(in. WC) | METHANE<br>(%CH4) | METHANE<br>(%LEL) <sup>(1)</sup> | OXYGEN<br>(%02) |
|----------|----------------------|-------------------|----------------------------------|-----------------|
| 01/30/93 | 0.0                  | 0.0               | 0.0                              | 19.4            |
| 03/01/93 | 0.0                  | 0.0               | 0.0                              | 20.4            |
| 03/30/93 | 0.0                  | 0.0               | 0.0                              | 20.4            |
| 04/27/93 | 0.0                  | 0.0               | 0.0                              | 20.1            |
| 05/18/93 | 0.0                  | 0.0               | 0.0                              | 20.7            |
| 06/28/93 | 0.0                  | 0.1               | 2.0                              | 20.8            |
| 07/27/93 | 0.0                  | 0.0               | 0.0                              | 20.4            |
| 08/30/93 | 0.0                  | 0.0               | 0.0                              | 18.4            |
| 09/28/93 | Slight Neg           | 0.1               | 2.0                              | 19.9            |
| 10/26/93 | 0.0                  | 0.0               | 0.0                              | 20.4            |
| 12/03/93 | 0.0                  | 0.0               | 0.0                              | 20.5            |
| 12/29/93 | 0.0                  | 0.0               | 0.0                              | 21.6            |
|          |                      |                   |                                  |                 |
|          |                      |                   |                                  |                 |
|          |                      |                   |                                  |                 |

(1) Percent of lower explosive limit of Methane (100% LEL = 5% CH4 by volume)

GAS PROBE G-6

| DATE     | PRESSURE<br>(in. WC) | METHANE<br>(%CH4) | METHANE<br>(%LEL) <sup>(1)</sup> | OXYGEN<br>(%02) |
|----------|----------------------|-------------------|----------------------------------|-----------------|
| 01/30/93 | 0.0                  | . 0.0             | 0.0                              | 19.4            |
| 03/01/93 | 0.0                  | 0.0               | 0.0                              | 20.6            |
| 03/30/93 | 0.0                  | 0.1               | 2.0                              | 20.9            |
| 04/27/93 | 0.0                  | 0.0               | 0.0                              | 20.0            |
| 05/18/93 | 0.0                  | 0.0               | 0.0                              | 21.0            |
| 06/28/93 | 0.0                  | 0.0               | 0.0                              | 21.2            |
| 07/27/93 | 0.0                  | 2.6               | 52                               | 0.0             |
| 08/30/93 | 0.0                  | 0.0               | 0.0                              | 20.5            |
| 09/28/93 | 0.0                  | 0.2               | 4.0                              | 20.4            |
| 10/26/93 | 0.0                  | 0.0               | 0.0                              | 20.5            |
| 12/03/93 | 0.0                  | 0.0               | 0.0                              | 20.6            |
| 12/29/93 | 0.0                  | 0.0               | 0.0                              | 21.1            |
|          |                      |                   |                                  |                 |
|          |                      |                   |                                  |                 |
|          |                      |                   |                                  |                 |

(1) Percent of lower explosive limit of Methane (100% LEL = 5% CH4 by volume)

REFUSE\gaspro93.tbl

GAS PROBE G-8

| DATE     | PRESSURE<br>(in. WC) | METHANE<br>(%CH4) | METHANE<br>(%LEL) <sup>(1)</sup> | OXYGEN<br>(%02) |
|----------|----------------------|-------------------|----------------------------------|-----------------|
| 01/30/93 | 0.0                  | 0.0               | 0.0                              | 19.8            |
| 03/01/93 | 0.0                  | 0.0               | 0.0                              | 20.1            |
| 03/30/93 | 0.0                  | 0.0               | 0.0                              | 20.8            |
| 04/27/93 | 0.0                  | 0.0               | 0.0                              | 19.9            |
| 05/18/93 | 0.0                  | 0.0               | 0.0                              | 20.5            |
| 06/28/93 | 0.0                  | 0.0               | 0.0                              | 20.9            |
| 07/27/93 | 0.0                  | 0.0               | 0.0                              | 20.3            |
| 08/30/93 | 0.0                  | 0.0               | 0.0                              | 20.8            |
| 09/28/93 | 0.0                  | 0.0               | 0.0                              | 20.2            |
| 10/26/93 | 0.0                  | 0.0               | 0.0                              | 20.5            |
| 12/03/93 | 0.0                  | 0.0               | 0.0                              | 20.2            |
| 12/29/93 | N/A                  | N/A               | N/A                              | N/A             |
|          |                      |                   |                                  |                 |
|          |                      |                   |                                  |                 |
|          |                      |                   |                                  |                 |

N/A: Not Available

(1) Percent of lower explosive limit of Methane (100% LEL = 5% CH4 by volume)

PRESSURE METHANE (%LEL)<sup>(1)</sup> DATE METHANE OXYGEN (in. WC) (%CH4) (%02) 01/30/93 0.0 0.0 0.0 18.6 0.0 0.0 03/01/93 0.0 16.9 2.0 03/30/93 0.0 0.1 20.7 04/27/93 0.0 0.0 0.0 18.9 0.0 0.0 0.0 20.8 05/18/93 06/28/93 0.0 0.0 0.0 20.4 07/27/93 0.0 0.0 0.0 20.9 0.0 0.0 0.0 20.5 08/30/93 0.0 0.0 0.0 20.4 09/28/93 0.0 20.9 10/26/93 0.0 0.0 0.0 0.0 12/03/93 0.0 20.1 12/29/93 N/A N/A N/A N/A

N/A: Not Available

GAS PROBE G-9

(1) Percent of lower explosive limit of Methane (100% LEL = 5% CH4 by volume)

GAS PROBE G-10

| DATE     | PRESSURE<br>(in. WC) | METHANE<br>(%CH4) | METHANE<br>(%LEL) <sup>(1)</sup> | 0XYGEN<br>(%02) |
|----------|----------------------|-------------------|----------------------------------|-----------------|
| 01/30/93 | +1.0                 | 0.0               | 0.0                              | 19.9            |
| 03/01/93 | +0.5                 | 0.0               | 0.0                              | 20.5            |
| 03/30/93 | 0.0                  | 0.1               | 2.0                              | 18.5            |
| 04/27/93 | +0.5                 | 0.0               | 0.0                              | 20.2            |
| 05/18/93 | Slight Neg           | 0.0               | 0.0                              | 21.0            |
| 06/28/93 | -0.5                 | 0.0               | 0.0                              | 21.0            |
| 07/27/93 | 0.0                  | 0.0               | 0.0                              | 20.4            |
| 08/30/93 | -0.5                 | 0.0               | 0.0                              | 20.6            |
| 09/28/93 | 0.0                  | 0.0               | 0.0                              | 20.4            |
| 10/26/93 | Slight Neg           | 0.0               | 0.0                              | 20.6            |
| 12/03/93 | Slight Neg           | 0.0               | 0.0                              | 20.6            |
| 12/29/93 | N/A                  | N/A               | N/A                              | N/A             |
|          |                      |                   |                                  |                 |
|          |                      |                   |                                  |                 |
|          |                      |                   |                                  |                 |

N/A: Not Available

(1) Percent of lower explosive limit of Methane (100% LEL = 5% CH4 by volume)

.

GAS PROBE GP-11S

| DATE     | PRESSURE<br>(in. WC) | METHANE<br>(%CH4)・ | METHANE<br>(%LEL) <sup>(1)</sup> | OXYGEN<br>(%02) |
|----------|----------------------|--------------------|----------------------------------|-----------------|
| 01/30/93 | 0.0                  | 0.0                | 0.0                              | 19.8            |
| 03/01/93 | 0.0                  | 0.0                | 0.0                              | 20.6            |
| 03/30/93 | 0.0                  | 0.0                | 0.0                              | 20.2            |
| 04/27/93 | 0.0                  | 0.0                | 0.0                              | 19.4            |
| 05/18/93 | 0.0                  | 0.0                | 0.0                              | 21.3            |
| 06/28/93 | 0.0                  | 40.0               | >100                             | 0.0             |
| 07/27/93 | 0.0                  | 42.3               | >100                             | 0.0             |
| 08/30/93 | 0.0                  | 28.1               | >100                             | 0.0             |
| 09/28/93 | 0.0                  | 0.1                | 2.0                              | 19.5            |
| 10/26/93 | 0.0                  | 0.0                | 0.0                              | 18.3            |
| 12/03/93 | 0.0                  | 0.0                | 0.0                              | 20.4            |
| 12/29/93 | 0.0                  | N/A                | N/A                              | 21.3            |
|          |                      |                    |                                  |                 |
|          |                      |                    |                                  |                 |
|          |                      |                    |                                  |                 |

N/A: Not Available

(1) Percent of lower explosive limit of Methane (100% LEL = 5% CH4 by volume)

| DATE     | PRESSURE<br>(in. WC) | METHANE<br>(%CH4) | METHANE<br>(%LEL) <sup>(1)</sup> | OXYGEN<br>(%02) |
|----------|----------------------|-------------------|----------------------------------|-----------------|
| 01/30/93 | -0.5                 | 0.0               | 0.0                              | 19.8            |
| 03/01/93 | 0.0                  | 0.0               | 0.0                              | 20.7            |
| 03/30/93 | 0.0                  | 0.0               | 0.0                              | 21.2            |
| 04/27/93 | 0.0                  | 0.0               | 0.0                              | 19.1            |
| 05/18/93 | 0.0                  | 0.0               | 0.0                              | 21.3            |
| 06/28/93 | 0.0                  | 58.5              | >100                             | 0.0             |
| 07/27/93 | 0.0                  | 53.1              | >100                             | 0.0             |
| 08/30/93 | 0.0                  | 24.0              | >100                             | 0.0             |
| 09/28/93 | 0.0                  | 2.5               | 50.0                             | 17.2            |
| 10/26/93 | 0.0                  | 3.4               | 68.0                             | 15.6            |
| 12/03/93 | 0.0                  | 0.0               | 0.0                              | 20.4            |
| 12/29/93 | 0.0                  | N/A               | N/A                              | 21.0            |

(1) Percent of lower explosive limit of Methane (100% LEL = 5% CH4 by volume)

.

.

GAS PROBE GPW-1S

| DATE     | PRESSURE<br>(in. WC) | METHANE<br>(%CH4): | METHANE<br>(%LEL) <sup>(1)</sup> | OXYGEN<br>(%02) |
|----------|----------------------|--------------------|----------------------------------|-----------------|
| 01/30/93 | 0.0                  | 0.0                | 0.0                              | 17.7            |
| 03/01/93 | 0.0                  | 0.0                | 0.0                              | 17.7            |
| 03/30/93 | 0.0                  | 0.0                | 0.0                              | 17.2            |
| 04/27/93 | 0.0                  | 0.0                | 0.0                              | 18.1            |
| 05/18/93 | 0.0                  | 0.0                | 0.0                              | 19.0            |
| 06/28/93 | 0.0                  | 0.0                | 0.0                              | 19.6            |
| 07/27/93 | 0.0                  | 0.0                | 0.0                              | 18.1            |
| 08/30/93 | 0.0                  | 0.0                | 0.0                              | 17.9            |
| 09/28/93 | 0.0                  | 0.0                | 0.0                              | 16.6            |
| 10/26/93 | 0.0                  | 0.0                | 0.0                              | 18.6            |
| 12/03/93 | 0.0                  | 0.0                | 0.0                              | 18.5            |
| 12/29/93 | 0.0                  | 0.0                | 0.0                              | 18.2            |
|          |                      |                    |                                  |                 |
|          |                      |                    |                                  |                 |
|          |                      |                    |                                  |                 |

(1) Percent of lower explosive limit of Methane (100% LEL = 5% CH4 by volume)

| DATE     | PRESSURE<br>(in. WC) | METHANE<br>(%CH4) | METHANE<br>(%LEL) <sup>(1)</sup> | OXYGEN<br>(%02) |
|----------|----------------------|-------------------|----------------------------------|-----------------|
| 01/30/93 | +1.5                 | 0.0               | 0.0                              | 18.0            |
| 03/01/93 | +0.5                 | 0.0               | 0.0                              | 17.7            |
| 03/30/93 | +0.25                | 0.1               | 0.0                              | 17.8            |
| 04/27/93 | +0.25                | 0.0               | 0.0                              | 19.1            |
| 05/18/93 | 0.0                  | 0.0               | 0.0                              | 20.7            |
| 06/28/93 | -0.5                 | 0.1               | 2.0                              | 21.0            |
| 07/27/93 | 0.0                  | 0.0               | 0.0                              | 20.7            |
| 08/30/93 | -0.5                 | 0.0               | 0.0                              | 19.2            |
| 09/28/93 | 0.0                  | 0.0               | 0.0                              | 20.8            |
| 10/26/93 | SLIGHT NEG           | 0.0               | 0.0                              | 20.6            |
| 12/03/93 | SLIGHT NEG           | 0.0               | 0.0                              | 20.9            |
| 12/29/93 | 0.0                  | N/A               | N/A                              | 17.7            |

N/A: Not Available

(1) Percent of lower explosive limit of Methane (100% LEL = 5% CH4 by volume)

GAS PROBE GPW-1D

| DATE     | PRESSURE<br>(in. WC) | METHANE<br>(%CH4) | METHANE<br>(%LEL) <sup>(1)</sup> | OXYGEN<br>(%02) |
|----------|----------------------|-------------------|----------------------------------|-----------------|
| 01/30/93 | +1.5                 | 0.0               | 0.0                              | 17.7            |
| 03/01/93 | +0.5                 | 0.0               | 0.0                              | 17.7            |
| 03/30/93 | +0.5                 | 0.0               | 0.0                              | 17.8            |
| 04/27/93 | +0.25                | 0.0               | 0.0                              | 17.8            |
| 05/18/93 | 0.0                  | 0.0               | 0.0                              | 18.6            |
| 06/28/93 | -0.5                 | 0.0               | 0.0                              | 20.9            |
| 07/27/93 | 0.0                  | 0.0               | 0.0                              | 18.0            |
| 08/30/93 | -0.5                 | 0.0               | 0.0                              | 17.1            |
| 09/28/93 | 0.0                  | 0.0               | 0.0                              | 17.9            |
| 10/26/93 | SLIGHT NEG           | 0.0               | 0.0                              | 20.9            |
| 12/03/93 | SLIGHT NEG           | 0.0               | 0.0                              | 20.9            |
| 12/29/93 | 0.0                  | 0.0               | 0.0                              | 17.4            |
|          |                      |                   |                                  |                 |
|          |                      |                   |                                  |                 |
|          |                      |                   |                                  |                 |

(1) Percent of lower explosive limit of Methane (100% LEL = 5% CH4 by volume)

SPEEDWAY SCALE HOUSE

| DATE     | PRESSURE<br>(in. WC) | METHANE<br>(%CH4) | METHANE<br>(%LEL) <sup>(1)</sup> | OXYGEN<br>(%02) |
|----------|----------------------|-------------------|----------------------------------|-----------------|
| 01/30/93 | N/A                  | N/A               | N/A                              | N/A             |
| 03/01/93 | N/A                  | 0.0               | 0.0                              | 20.6            |
| 03/30/93 | N/A                  | 0.0               | 0.0                              | 20.6            |
| 04/27/93 | N/A                  | 0.0               | 0.0                              | 20.0            |
| 05/18/93 | N/A                  | 0.0               | 0.0                              | 20.7            |
| 06/28/93 | N/A                  | 0.0               | 0.0                              | 20.9            |
| 07/27/93 | N/A                  | 0.0               | 0.0                              | 20.4            |
| 08/30/93 | N/A                  | 0.0               | 0.0                              | 20.9            |
| 09/28/93 | N/A                  | 0.0               | 0.0                              | 20.2            |
| 10/26/93 | N/A                  | 0.0               | 0.0                              | 20.4            |
| 12/03/93 | N/A                  | 0.0               | 0.0                              | 20.5            |
| 12/29/93 | N/A                  | 0.0               | 0.0                              | 22.1            |
|          |                      |                   |                                  |                 |
|          |                      |                   |                                  |                 |
|          |                      |                   |                                  |                 |

N/A: Not Available, Not Applicable

(1) Percent of lower explosive limit of Methane (100% LEL = 5% CH4 by volume)

| DATE     | PRESSURE<br>(in. WC) | METHANE<br>(%CH4) | METHANE<br>(%LEL) <sup>(1)</sup> | OXYGEN<br>(%02) |
|----------|----------------------|-------------------|----------------------------------|-----------------|
| 01/30/93 | N/A                  | N/A               | N/A                              | N/A             |
| 03/01/93 | N/A                  | 0.0               | 0.0                              | 20.6            |
| 03/30/93 | N/A                  | 0.0               | 0.0                              | 20.6            |
| 04/27/93 | N/A                  | 0.0               | 0.0                              | 20.0            |
| 05/18/93 | N/A                  | 0.0               | 0.0                              | 20.7            |
| 06/28/93 | N/A                  | 0.0               | 0.0                              | 20.9            |
| 07/27/93 | N/A                  | 0.0               | 0.0                              | 20.4            |
| 08/30/93 | N/A                  | 0.0               | 0.0                              | 21.0            |
| 09/28/93 | N/A                  | 0.0               | 0.0                              | 20.2            |
| 10/26/93 | N/A                  | 0.0               | 0.0                              | 20.4            |
| 12/03/93 | N/A                  | 0.0               | 0.0                              | 20.5            |
| 12/29/93 | N/A                  | 0.0               | 0.0                              | 21.0            |

N/A: Not Available, Not Applicable

(1) Percent of lower explosive limit of Methane (100% LEL = 5% CH4 by volume)

# LEACHATE HEAD SUMMARY

### REFUSE HIDEWAY LANDFILL LEACHATE HEAD MONITORING SUMMARY 1993

.

|          |                      |      |      |        | purps | Na3  |        |        |                   |       |        |        |       |
|----------|----------------------|------|------|--------|-------|------|--------|--------|-------------------|-------|--------|--------|-------|
|          | LEACHATE HEAD (FEET) |      |      |        |       |      |        |        |                   |       |        |        |       |
| DATE     | GW-1                 | GW-2 | GW-3 | (GW-4) | GW-5) | GW-6 | (GW-7) | GW-8 * | G₩-9 <del>×</del> | GW-10 | GW-11₩ | GW-12) | GW-13 |
| 01-28-93 | 2.5                  | 5.2  | 1.0  | 11.2   | 10.7  | 0.0  | 6.0    | 17.0   | 18.5              | 5.0   | 16.4   | 15.6   | 7.8   |
| 03-01-93 | 2.7                  | 4.8  | 7.0  | 10.5   | 10.3  | 0.0  | 4.6    | 23.2   | 0.0               | 4.8   | 0.0    | 23.8   | 7.7   |
| 03-30-93 | 2.7                  | 4.5  | 0.7  | 10.8   | 10.0  | 0.0  | 5.8    | 9.9    | 20.6              | 4.9   | 10.0   | 17.0   | 8.0   |
| 04-26-93 | 3.0                  | 4.5  | 0.7  | 8.7    | 0.6   | 0.1  | 5.9    | 12.5   | 0.0               | 4.8   | 10.5   | 18.0   | 8.8   |
| 05-18-93 | 3.5                  | 4.8  | 0.7  | 12.7   | 11.9  | 0.4  | 6.6    | 4.5    | 0.0               | 4.3   | 2.3    | 19.0   | 9.4   |
| 06-28-93 | 4.1                  | 5.2  | 0.8  | 12.0   | 12.4  | 0.3  | 5.9    | 23.7   | 20.3              | 5.1   | 2.3    | 20.1   | 9.3   |
| 07-30-93 | 3.9                  | 5.0  | 0.7  | 12.2   | 12.2  | 0.5  | 7.4    | 12.7   | 0.0               | 4.8   | 0.0    | 21.2   | 9.7   |
| 08-30-93 | 3.6                  | 5.5  | 1.1  | 12.5   | 19.8  | 0.1  | 7.9    | N/A    | 0.0               | 5.3   | 2.5    | 6.0    | 11.1  |
| 09-28-93 | 3.8                  | 4.9  | 0.8  | 12.2   | 13.1  | 0.0  | 7.7    | 16.0   | N/A               | 5.5   | 18.3   | 21.4   | 10.0  |
| 10-27-93 | 3.9                  | 5.1  | 0.9  | 6.7    | 13.0  | 0.0  | 9.8    | 13.8   | 22.2              | 4.3   | 2.4    | 22.5   | 11.8  |
| 12-03-93 | 4.2                  | 5.5  | 0.2  | 0.0    | 18.3  | 0.0  | 2.5    | 0.0    | 0.0               | 4.7   | 0.0    | 20.8   | 6.1   |
| 12-23-93 | 2.4                  | 4.7  | 0.5  | 10.5   | 33.7  | 1.0  | 6.7    | 30.0   | 0.0               | 6.7   | 6.2    | 22.0   | 6.5   |
|          |                      |      |      |        |       |      |        |        | _                 |       |        |        |       |

N/A: Not Available

•

.

REFUSE\kaj02

•

# LEACHATE / CONDENSATE

## LOAD OUT SUMMARY

REFUSE\93-ann.rpt

## REFUSE HIDEAWAY LANDFILL LEACHATE LOADOUT SUMMARY FOR 1993

| DATE               | GALLONS           | MONTHLY TOTAL (Gals)                  |
|--------------------|-------------------|---------------------------------------|
| JANUARY 4, 1993    | 2767              |                                       |
| JANUARY 19, 1993   | 1887              | JANUARY 4654                          |
| FEBRUARY 1, 1993   | 2815              |                                       |
| FEBRUARY 12, 1993  | 4580              |                                       |
| FEBRUARY. 19, 1993 | 4532              | FEBRUARY 11927                        |
| MARCH 11, 1993     | 4246              |                                       |
| MARCH 25, 1993     | 4214              | MARCH 8460                            |
| APRIL 16, 1993     | 4536              |                                       |
| APRIL 17, 1993     | 6888              |                                       |
| APRIL 20, 1993     | 4387              | APRIL 15811                           |
| MAY 8, 1993        | 4429              |                                       |
| MAY 20, 1993       | 4473              | MAY 8902                              |
| JUNE 12, 1993      | 3905              |                                       |
| JUNE 18, 1993      | 2622              | JUNE 6527                             |
| JULY 7, 1993       | 2383              |                                       |
| JULY 14, 1993      | 15311 (3.5 LOADS) | JULY 17694                            |
| AUGUST 13, 1993    | 2633              |                                       |
| AUGUST 23, 1993    | 2461              |                                       |
| AUGUST 24, 1993    | 4791              |                                       |
| AUGUST 26, 1993    | 5032              | AUGUST 14917                          |
| SEPTEMBER 16, 1993 | 4848              |                                       |
| SEPTEMBER 24, 1993 | 2658              | SEPTEMBER 7506                        |
| OCTOBER 20, 1993   | 4695              | OCTOBER 4695                          |
| NOVEMBER 10, 1993  | 5140              |                                       |
| NOVEMBER 11, 1993  | 4889              |                                       |
| NOVEMBER 23, 1993  | 4878              | NOVEMBER 14907                        |
| DECEMBER 3, 1993   | 5123              |                                       |
| DECEMBER 4, 1993   | 5139              |                                       |
| DECEMBER 10, 1993  | 4887              |                                       |
| DECEMBER 10, 1993  | 2114              |                                       |
| DECEMBER 16, 1993  | 5020              |                                       |
| DECEMBER 23, 1993  | 3062              |                                       |
| DECEMBER 31, 1993  | 3243              | DECEMBER 28588                        |
|                    | TOTAL = 144588    | · · · · · · · · · · · · · · · · · · · |

## ALARM CONDITION

## SUMMARY

REFUSE\93-ann.rpt

## REFUSE HIDEAWAY LANDFILL MONTHLY SUMMARY OF SYSTEM ALARM LOG January 1993

| Alarm Date | s | Alarm Cause                                                                                                                                                                           | Solution<br>(hours flare not operational)                                                                                            |
|------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1/4/93     | 2 | Unknown, no alarm received<br>from Verbatim system. Low<br>battery indicated, but power still<br>on to system. When power was<br>switched off, Verbatim indicated<br>alarm condition. | Restarted (17hrs)                                                                                                                    |
| 1/11/93    |   | Thermocoupler malfunction.                                                                                                                                                            | Troubleshoot flare and<br>thermocoupler. Order<br>replacement from Linklater and<br>replace thermocoupler on 1/23/93.<br>(312 hours) |

ECRS\Refuse\89-jan93.rpt

### REFUSE HIDEAWAY LANDFILL MONTHLY SUMMARY OF SYSTEM ALARM LOG February 1993

| Alarm Dates | Alarm Cause                                                                                          | Solution<br>(hours flare not operational) |
|-------------|------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 2/14/93     | Unknown, no alarm received<br>from Verbatim system. Low<br>temperature alarm disengaged on<br>flare. | Restarted (37 hrs)                        |
| 2/25/93     | Flame out. Possibly due to high winds.                                                               | Restarted (4 hrs)                         |

ECRS\Refuse\87-feb93.rpt

1

ſ

### REFUSE HIDEAWAY LANDFILL MONTHLY SUMMARY OF SYSTEM ALARM LOG March 1993

| Alarm Dates | Alarm Cause                   | Solution<br>(hours flare not operational) |
|-------------|-------------------------------|-------------------------------------------|
| 3-20-93     | Cause Could Not Be Determined | Flare Down for Approximately 2 hours.     |

### REFUSE HIDEAWAY LANDFILL MONTHLY SUMMARY OF SYSTEM ALARM LOG Date: <u>April 1993</u>

| Alarm Dates    | Alarm Cause                                         | Solution<br>(hours flare not operational)  |
|----------------|-----------------------------------------------------|--------------------------------------------|
| APPIL 12, 1993 | GENERAL ALARM CONDITION                             | RE-START FLARE.<br>FLARE DOWN FOR 8 Hours. |
| APRIL 20, 1993 | GENERAL ALARM CONDITION<br>DUE TO ELECTRICAL OUTAGE | RE-OTART FLARE<br>FLARE DOWN FOR 3 HOURS.  |
|                |                                                     |                                            |

ECRS\Refuse\forms1.bjh/KJS/ak'd BJH 6/4/93

## REFUSE HIDEAWAY LANDFILL MONTHLY SUMMARY OF SYSTEM ALARM LOG Date: <u>Jone 9 1993</u>

| Alarm Dates  | Alarm Cause                                                     | Solution<br>(hours flare not operational)                                                       |
|--------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| May 8,1993   | General Alarm condition due<br>to Thunderstorms in the<br>arca. | Re-sturt Flare later the<br>same day. Flare was down<br>for 8.5 hours.                          |
| May 18, 1993 | Flame Feilure while ECRS<br>personnel on site                   | Re-start Flare Me<br>sume day. Flare was<br>down for 15 minutes.                                |
| May 29, 1993 | Flame Failure possibly<br>due to low flow.                      | Re-sturt Flare on June 1, APB<br>and adjust value to<br>increase flow. Flare down<br>.73 hours. |

ECRS\Refuse\forms1.bjh

### REFUSE HIDEAWAY LANDFILL MONTHLY SUMMARY OF SYSTEM ALARM LOG Date: \_\_\_\_\_July 22, 1993\_\_\_\_\_

| Alarm Dates          | Alarm Cause                                                                                                                       | Solution<br>(hours flare not operational)                                                                             |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 06/07/93             | General alarm condition possibly<br>due to thunder storms in the<br>area.                                                         | Re-start flare.<br>Flare was down for 3.25 hrs.                                                                       |
| 06/12/93             | Flame failure alarm - cause not<br>determined                                                                                     | Re-start flare.<br>Flare was down for 23.25 hrs.                                                                      |
| 06/14/93             | General alarm condition due to<br>Erroncous High Leachate alarm.<br>Flare did not shut down.                                      | Rc-set alarm on leachate tank<br>control panel.                                                                       |
| 06/17/93<br>06/17/93 | General alarm condition due to<br>false High Leachate alarm.<br>Flame failure - cause not<br>determined.                          | Rc-start flarc, rc-set High<br>Leachate Level alarm.<br>Flare was down 19.5 hrs.                                      |
| 06/25/93             | No alarm condition alerted.<br>Cause for flare shut down and<br>absence of alarm not determined.                                  | Re-start flarc.<br>Flare was down approximately<br>21.0 hrs.                                                          |
| 06/28/93             | Flame failure three times this<br>date.<br>Cause not determined.                                                                  | Rc-start flarc. Flarc was down<br>approximately 0.5 hrs.                                                              |
| 06/30/93<br>06/30/93 | Flame failure - cause not<br>determined.<br>General alarm and flame failure<br>likely due to high winds and<br>lightning in area. | Rc-start flarc. Flarc was down<br>approximately 0.25 hrs. Rc-start<br>flarc, flare was down<br>approximately 5.0 hrs. |

Ż

# 

| Alarm Dates      | Alarm Cause                                                                                                                                                                          | Solution<br>(hours flare not operational)                                                                                                         |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| July 5,<br>1993  | General alarm.<br>"False" high leachate alarm                                                                                                                                        | Attempted to re-set leachate<br>tank alarm on 7/5/93, but it<br>would not reset. Able to re-<br>set alarm on 7/7/93.*<br>Flare did not shut down. |
| July 6,<br>1993  | Flame failure possibly due<br>to U.V. Sensor or due to<br>time relay switch which<br>shuts system down if<br>leachate tank alarm is not<br>re-set after a certain<br>period of time, | Re-acknowledge leachate tank<br>alarm, re-start flare on<br>7/6/93. Flare was down for 9<br>hours.                                                |
| July 7,<br>1993* | No alarm. Able to re-set<br>high leachate alarm                                                                                                                                      | N/A                                                                                                                                               |
| July 15,<br>1993 | Flame failure possibly due<br>to a dirty U.V. Sensor at<br>the flare.                                                                                                                | Clean U.V. Sensor.<br>Re-start Flare.<br>Flare was down for 4.5 hours.                                                                            |
| July 28,<br>1993 | General alarm, possibly due<br>to U.V. Sensor                                                                                                                                        | Re-start flare.<br>Flare was down for 4.0 hours.                                                                                                  |
| July 30,<br>193  | Flare went down while KJS on<br>sight due to possible U.V.<br>Sensor.                                                                                                                | Re-start flare. Flare was<br>down for 1.0 hours.                                                                                                  |

REFUSE\78JUL93.RPT

•

### 

| Alarm Dates | Alarm Cause                                              | Solution<br>(hours flare not operational)                                                           |
|-------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 08/10/93    | Flame failure possibly due to a sensitive vacuum switch. | Flare went down while gas wells<br>were being monitored. Restart<br>flare. (Time down: 20 minutes). |
| 08/14/93    | Flame failure possibly due to a sensitive vacuum switch. | Re-start flare on August 15, 1993.<br>(Time down: 21 hours 50 minutes).                             |
| 08/30/93    | Flame failure possibly due to a sensitive vacuum switch. | Flare went down while gas wells<br>were being monitored. Restart<br>flare. (Time down: 1 hour).     |

Refuse\forms1.bjh

### REFUSE HIDEAWAY LANDFILL MONTHLY SUMMARY OF SYSTEM ALARM LOG Date: \_\_\_\_\_October 18, 1993\_\_\_\_\_

| Alarm Dates | Alarm Cause                                                                             | Solution<br>(hours flare not operational)                                                                                                                |
|-------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 09/13/93    | Low temperature alarm due to<br>damper over switch was in the<br>"off" position.        | Re-start flare, switch damper<br>override switch to "auto"<br>position.(Flare down 1.25 hours).                                                          |
| 09/13/93    | General alarm condition due to<br>false high leachate alarm.                            | Re-set alarm. Flare does not shut<br>down due to high leachate alarm.<br>Electricity to pumps is shut down<br>during a high leachate alarm<br>condition. |
| 09/28/93    | Two general alarms due to flare<br>failure likely caused by sensitive<br>vacuum switch. | Re-start flare. Terra personnel on-<br>site during shut downs. (Flare<br>down .25 hours).                                                                |

### REFUSE HIDEAWAY LANDFILL MONTHLY SUMMARY OF SYSTEM ALARM LOG Date: <u>November 11, 1993</u>

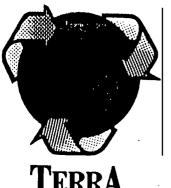
| Alarm Dates | Alarm Cause                                                                | Solution<br>(hours flare not operational)                                            |
|-------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 10/17/93    | General alarm erroneous high<br>leachate alarm                             | Re-set alarm at leachate tank<br>panel. Flare did not shut down.                     |
| 10/20/93    | General alarm - flame failure                                              | Re-start flare, cause for shut<br>down not (2 hrs)                                   |
| 10/21/93    | General alarm erroneous high<br>leachate alarm                             | Re-set alarm after tightening<br>electrical connections. Flare did<br>not shut down. |
| 10/22/93    | Manual shut down of flare due<br>to flame exiting the top of the<br>flare. | Re-start flare (76 hrs.)                                                             |

### REFUSE HIDEAWAY LANDFILL MONTHLY SUMMARY OF SYSTEM ALARM LOG Date: <u>December 4, 1993</u>

| Alarm Dates | Alarm Cause                                                                                                              | Solution<br>(hours flare not operational)                         |
|-------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 11/08/93    | Flame Failure likely due to<br>vacuum switch.                                                                            | Terra personnel on-site. Re-start<br>Flare. (Flare down 0.5 hrs.) |
| 11/09/93    | Flame Failure likely due to low<br>Flow to Flare.                                                                        | Re-start flare. (Flare down 1.25<br>hrs.)                         |
| 11/09/93    | Flame Failure likely due to low<br>Flow to Flare.                                                                        | Re-start flare. (Flare down 0.33<br>hrs.)                         |
| 11/10/93    | Manual shut down for Flare<br>painting.                                                                                  | Re-start flare after painting.<br>(Flare down 24.5 hrs.)          |
| 12/03/93    | Flare shut down four (4) times<br>due to vacuum switches which<br>are occassionally activated<br>during well monitoring. | Re-start flare. (Flare was down<br>for a total of 0.25 hrs.)      |

## REFUSE HIDEAWAY LANDFILL MONTHLY SUMMARY OF SYSTEM ALARM LOG Date: January 17, 1994

| Alarm Dates | Alarm Cause                                                                                                                         | Solution<br>(hours flare not operational)                                               |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 12/23/1993  | Flame failure likely due to<br>vacuum switch sensing change<br>in header pressure while<br>obtaining leachate head<br>measurements. | Re-start flare after<br>obtaining leachate head<br>measurements. (Flare down 1<br>hour) |
| 12/25/1993  | Low Temperature alarm<br>condition alerted at 12:15<br>am.                                                                          | Flare operational re-set<br>alarm.                                                      |
| 12/25/1993  | High Temperature alarm<br>condition at 8:25 pm.                                                                                     | Flare shut down.<br>Thermocouple failure. Replace<br>thermocouple (pending).            |


REFUSE\78DEC93.RPT

## **APPENDIX 1**

## CONSTRUCTION OBSERVATION REPORT:

# SHALLOW GAS RECOVERY AND LEACHATE HEAD REDUCTION SYSTEM INSTALLATION

REFUSE\93-ann.rpt



▲ ENGINEERING & CONSTRUCTION CORPORATION ▲

ENVIRONMENTAL REMEDIATION MUNICIPAL & UTILITY CONSTRUCTION SPECIALTY EARTHWORK

# CONSTRUCTION OBSERVATION REPORT

Shallow Gas Recovery and Leachate Head Reduction System Installation

> Refuse Hideaway Landfill Town of Middleton Dane County, Wisconsin

> > Prepared for:

Wisconsin Department of Natural Resources 101 South Webster Street Madison, Wisconsin

Prepared by:

Terra Engineering and Construction Corp. 2201 Vondron Road Madison, Wisconsin

February 11, 1994

2201 VONDRON ROAD MADISON, WI 53704-6795 608/221-3501 PHONE 608/221-4075 FAX

## TABLE OF CONTENTS

| INTRODUCTION      | PAGE 2 |
|-------------------|--------|
| SITE DESCRIPTION  | PAGE 2 |
| BACKGROUND        | PAGE 3 |
| PURPOSE AND SCOPE | PAGE 3 |

## CONSTRUCTION ACTIVITIES OBSERVED

| GAS EXTRACTION      | PAGE 3 | i |
|---------------------|--------|---|
| CLAY CAP REPAIR     | PAGE 4 |   |
| LEACHATE EXTRACTION | PAGE 5 | ŀ |
| SYSTEM START-UP     | PAGE 6 | ł |
| GENERAL NOTES       | PAGE 6 | ) |

# **ATTACHMENTS**

| LATERAL GAS WELL AND REPAIR AREA LOCATIONS            | PAGE 7       |
|-------------------------------------------------------|--------------|
| DENSITY TEST RESULTS                                  | PAGE 8       |
| MOISTURE DENSITY CURVES                               | PAGES 9 - 11 |
| ELECTRICAL TRENCH LAYOUT                              | PAGE 12      |
| GAS WELL GW-5 RETRO-FIT AND LATERAL GAS WELL DETAIL   | PAGE 13      |
| РНОТОS                                                | PAGE 14      |
| TYPICAL GAS/LEACHATE EXTRACTION WELL RETRO-FIT DETAIL | PAGE 15      |

#### CONSTRUCTION OBSERVATION REPORT

### Shallow Gas Recovery and Leachate Head Reduction System Installation

### Refuse Hideaway Landfill Town of Middleton Dane County, Wisconsin

#### INTRODUCTION

This report describes construction activities performed during the installation of two (2) shallow lateral gas recovery wells as well as the placement of five (5) permanent leachate pumps. Restoration of the clay cap and cover is also addressed in this report.

#### SITE\_DESCRIPTION

The Refuse Hideaway Landfill is located in the NW 1/4 of Sec 8 T7N-R8E in Dane County and is currently closed.

There are thirteen (13) existing landfill gas extraction wells located on the site. The wells were installed in 1991 in order to control off-site migration of landfill gas. Vacuum to the wells is provided by a blower located in the Blower House. The landfill gas is piped via a 6" HDPE header pipe, to an enclosed flare where it is burned.

There are permanent leachate head reduction pumps located in three gas wells (GW-8, GW-9 and GW-11). The submersible pumps are outfitted with hour meters, Coyote pump controls and Franklin starters. The leachate is discharged from the wells, into a leachate conveyance system which consists of approximately 800 lineal feet of piping. The leachate is collected in a buried 25,000 gallon collection tank. The conveyance piping also transports condensate which accumulates within the active header piping. The condensate is transferred to the conveyance pipe through 4 drip legs located along the header piping.

### BACKGROUND

Observations made during monthly activities dating back to July of 1993 showed the following:

- Elevated landfill gas concentrations at the facility property line in gas probe GP-11
- Stressed vegetation in the area of gas well GW-5
- Landfill gas emanating from the landfill surface in the vicinity of gas well GW-5
- Elevated leachate levels in five gas wells, GW-4, 5, 7, 12 and 13

#### PURPOSE AND SCOPE

In an effort to remediate the above mentioned conditions and to comply with the regulatory requirement of maintaining less than 1.25% methane by volume in air at the property line, it was decided that two shallow gas lateral wells should be installed, as well as installing permanent leachate head reduction pumps in those wells which showed elevated leachate levels.

The lateral wells would be placed in the areas adjacent to Gas Well GW-5. The enhanced gas recovery in this area would lead to decreased migration and healthier vegetation as gas would not be emanating through the cap and harming the existing vegetation. The elevated leachate heads would be decreased by installing five (5) permanent pumps into the gas wells showing the greatest head. Decreasing the leachate head would improve the gas extraction system by opening more screen in each well.

In order to facilitate the upgrade of the existing gas and leachate extraction systems, five (5) gas wells heads (GW-4, 5, 7, 12, 13) were retrofitted.

The purpose of the retrofit to the five (5) gas wells is to allow the leachate pumped from each gas well to be discharged into the existing vacuum header pipe, which transports the leachate to the collection tank via gravity flow.

A retro-fit of the header pipe at gas well GW-5 was also performed in order to use the existing vacuum from the header pipe for use in the two (2) lateral gas wells installed in the area of gas well GW-5. Drawings of the header pipe retro-fit and the typical well head retro-fit are attached.

### Construction Activities Observed

### GAS\_EXTRACTION

Excavation for the installation of the shallow gas lateral wells in the area of gas well GW-5 began the week of September 6, 1993. The lateral wells extend from gas well GW-5, one in a Northwesterly direction for 155 feet, the other trends in a East Northeast direction for 95 feet. A plan of the area of the lateral gas wells is attached.

REFUSE\COR.468

#### GAS EXTRACTION (CON'T)

The lateral wells are constructed of 4-inch perforated High Density Polyethylene (HDPE) which are fused onto 2-inch solid HDPE pipe. The 2-inch solid HDPE pipe are connected to the existing vacuum header riser at gas well GW-5. A drawing of the lateral gas well detailed is attached.

Trenching for the lateral gas wells extended down into the refuse. The depth of the trenches varied from 5 to 15 feet below ground surface. Prior to the placement of the perforated HDPE extraction pipe into the trench, a 6 inch layer of gravel bedding was spread across the base of the trench. After placement, the perforated pipe was then covered with approximately 6 inches of the same bedding material. The gravel bedding is used to prevent the perforations from becoming blocked by refuse or soil. The trenches were backfilled with the previously excavated refuse to with-in approximately 2.5 feet The remaining 2.5 feet was backfilled with the previously of the surface. excavated cap material, compacted with a sheepfoot compactor and covered with topsoil. Prior to placement of cover soil, eight (8) field density test were conducted on the compacted clay, results of the density tests are tabulated in this report. The test results show that the clay was recompacted to at least 90% of the maximum density of the clay cap material. A maximum density of 118 pounds per cubic foot (pcf) was used based on previous moisture-density tests performed on the clay cap material. Refer to Construction Observation Reports for Clay Cap Restoration (Dames and Moore 1992) and Partial Gas and Leachate Extraction System Interim Remedial Measures (Warzyn, November 1990). Copies of the three (3) moisture density curves are attached.

In order to increase the efficiency of the lateral gas wells, each trench contained a length of 4-inch perforated HDPE pipe adjacent to a 4-inch HDPE solid pipe extending from gas well GW-5 for half the length of the trench. The perforated HDPE extracts landfill gas from the first half of the trench. The solid HDPE extends the vacuum header pipe to the second half of the trench where a length of perforated HDPE extracts landfill gas from the remaining length of the trench. In doing this, a consistent vacuum is maintained through out the length of the trench.

At the end of each lateral trench, a one-inch polyvinyl chloride (PVC) riser was installed for future pressure and gas monitoring. The vacuum header retro-fit at GW-5 also included a ball valve on each lateral header pipe, which may be adjusted to increase or decrease the vacuum to the lateral system. A photo of the well head retrofit is attached.

#### CLAY CAP\_REPAIR

The area of cap repair included areas larger than the lateral gas well trenches. These were areas of stressed vegetation and erosion where landfill gas had been emanating through the cap.

The irregular shaped areas adjacent to the trenches are shown on an attached plan. The cap repair in these areas entailed removal of approximately 18 inches of root zone material, scarifying and recompacting the existing clay cap material, re-establishing the root zone and placing approximately 6 inches of topsoil over the areas. Density test performed in these areas indicated compaction of the clay cap material met or exceeded 90% compaction. Refer to the tabulated density test results. Density tests were performed using Troxler nuclear density testing equipment (ASTM D2922).

#### CLAY CAP REPAIR (CON'T)

Following backfill and compaction of the clay cap, the repaired areas received approximately 4-inches of topsoil, seed and mulch. The seed is a "Quick-2-GRO Lawn Seed Mixture" composed of 24.5% creeping red fescue, 24.5% perennial rye grass, 24.23% annual rye grass and 21.25% Kentucky Bluegrass with the remainder containing inert matter, other crop seed and weed seed.

#### LEACHATE EXTRACTION

In an effort to reduce elevated leachate heads in gas wells GW-4, 5, 7, 12 and 13, a permanent submersible pump was installed in each of these gas wells.

Electrical power for the new pumps is provided from the existing electrical panel located adjacent to the Blower/Flare Control Panel. Town and Country Electric of Madison was subcontracted to install all wiring for the permanent pumps. A layout of the trenching for the electrical conduit to the five (5) gas wells is attached.

At each gas well out-fitted with a permanent pump, a pump panel was installed. The weatherproof panel contains pump controls which include a fuse box, Franklin pump starter, Coyote Control, GFI electrical outlet and a pump hour meter.

The Coyote Control is used as an automatic on-off switch for the pump. Once started, the Coyote Control senses the amperage required to pump leachate from the gas well. A change in amperage occurs when the pump "spins free" i.e. reduces the leachate head past the pump intake, or if there is blockage in the discharge hose. In the former case, an underload condition is indicated on the controls, an overload condition occurs in the latter case. If either condition occurs, the power to the pump is shut off. The power to the pump remains off for a set period of time. During this "down" time the well recharges and once power is restored, leachate can once again be pumped from the well. The pump hour meters run only when the pump runs. The meters are used to not only estimate a pumping volume, but also as a diagnostic as to weather or not the pump is pumping too often, or not enough. A photo of a typical control panel is included in this report.

Trenching for electrical conduit installation from the existing electrical panel to the individual gas wells began on October 7, 1993. The trenches were typically 18-inches deep and were backfilled with the same excavated material. Compaction of the shallow trenches was performed with rubber tired equipment.

Once the wires were pulled through the 1/2-inch conduit, the pump panels located at each well were wired. The electrical wires are run through a 1/2 inch conduit from the panel to the gas well riser. A junction box is strapped to the gas well head. The submersible pump wire leads are routed through the gas well riser into the junction box where the power connection is made. The conduit from the pump panel to the junction box includes a "seal off" to prevent methane from entering the pump panel through the conduit.

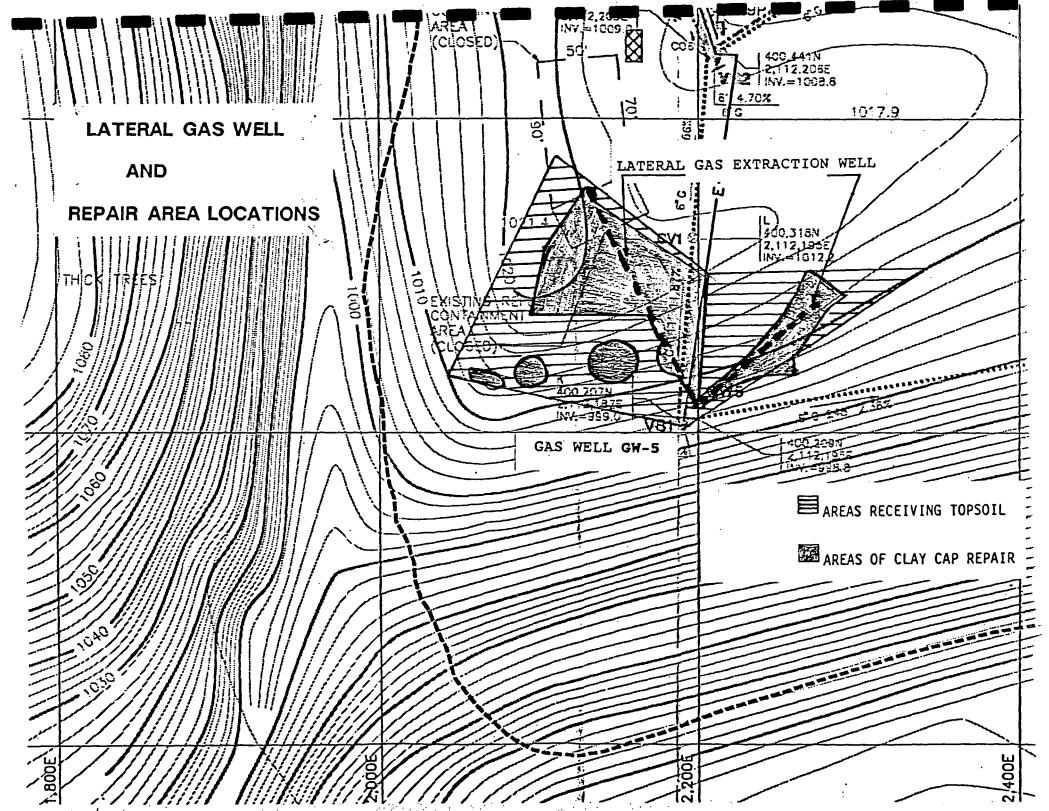
#### LEACHATE EXTRACTION (CON'T)

The pumps were installed by Terra personnel on October 25 and 27, 1993. The pumps were set at a depth to remain approximately 1 to 2 feet above the bottom of the well. The pumps are supported by 1/4-inch stainless steel cable that is attached to the well head flange through an eye bolt. Leachate is discharged through a 1-inch reinforced flexible hose. The flexible hose is connected to a stainless steel stab fitting and a nipple which is threaded through the gas well flange. A ball valve was installed to control discharge flow. A 1-inch true union connects the ball valve to the 1-inch coated steel to HDPE transition fitting. The transition fitting was then fused to the vacuum header riser. The exposed HDPE was then insulated, taped and painted with a ultra violet protection paint.Leachate pumped from the gas wells and discharged into the vacuum header pipe is eventually discharged into to 25,000 gallon buried collection tank through the leachate/condensate conveyance line via existing driplegs located along the vacuum header pipe. A drawing of the typical Gas/Leachate Extraction Well retrofit is attached.

#### SYSTEM START-UP

Monthly monitoring of the permanent pumps in gas wells GW-4, 5, 7, 12 and 13 began in October, 1993. Based on early pump hour meter readings, problems were discovered in gas wells GW-5 and GW-13. The problem in GW-5 was a blown fuse which was corrected. The problem in GW-13 appeared to be a malfunctioning pump. The pump was removed, bench tested and returned to the supplier. A replacement pump was installed on November 9, 1993.

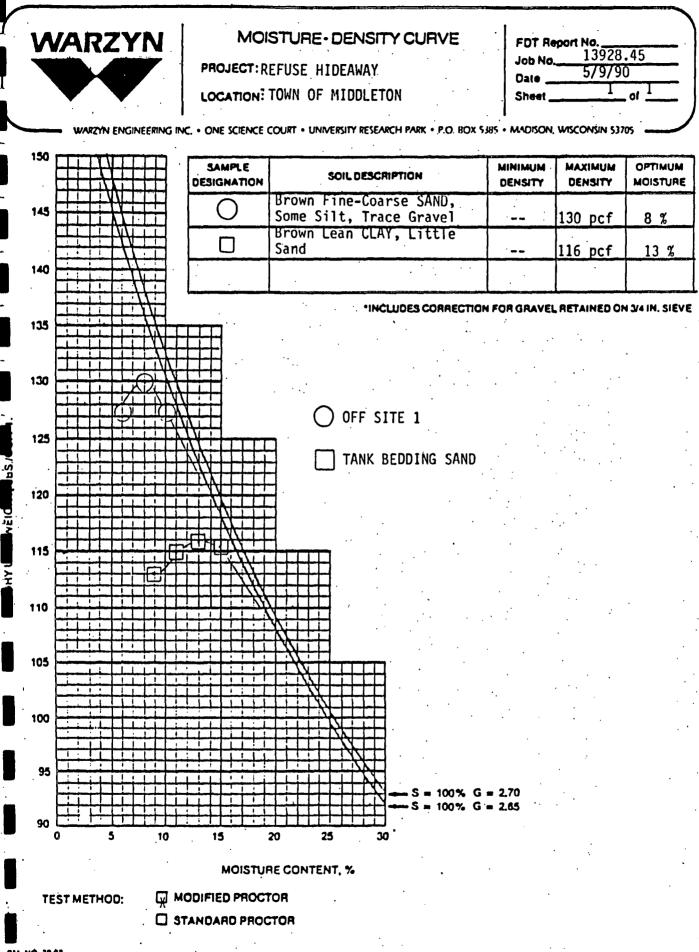
#### GENERAL\_NOTES


The installation of the five (5) permanent pumps had an immediate effect on the volume of leachate hauled off-site. The increase in leachate volume removed is not expected to continue as the recharge time for the gas wells has increased compared to the recharge time experienced when pumping began. The leachate heads have been reduced in some wells. Further pumping will be necessary before a more noticeable decrease in leachate head is observed.

The effects of the lateral gas wells on the stressed vegetation around gas well GW-5 may take some time to notice as the seed had not sprouted prior to snow covering the area. There was a noticeable decrease in the percent of methane observed in gas probes 11 - shallow and deep. Historical data of this site suggests that there is a drop in migration due to the seasonal change. Continued monthly monitoring and comparisons with past data will be needed before determining the effects of the lateral gas extraction wells.

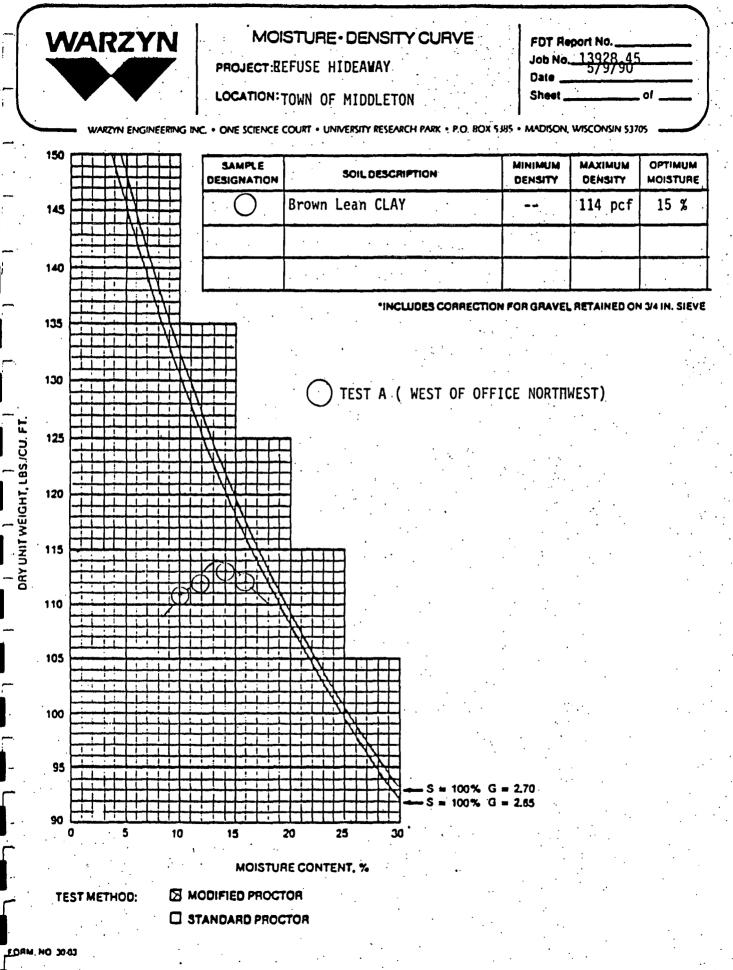
If you have any questions regarding this report, please do not hesitate to contact us.

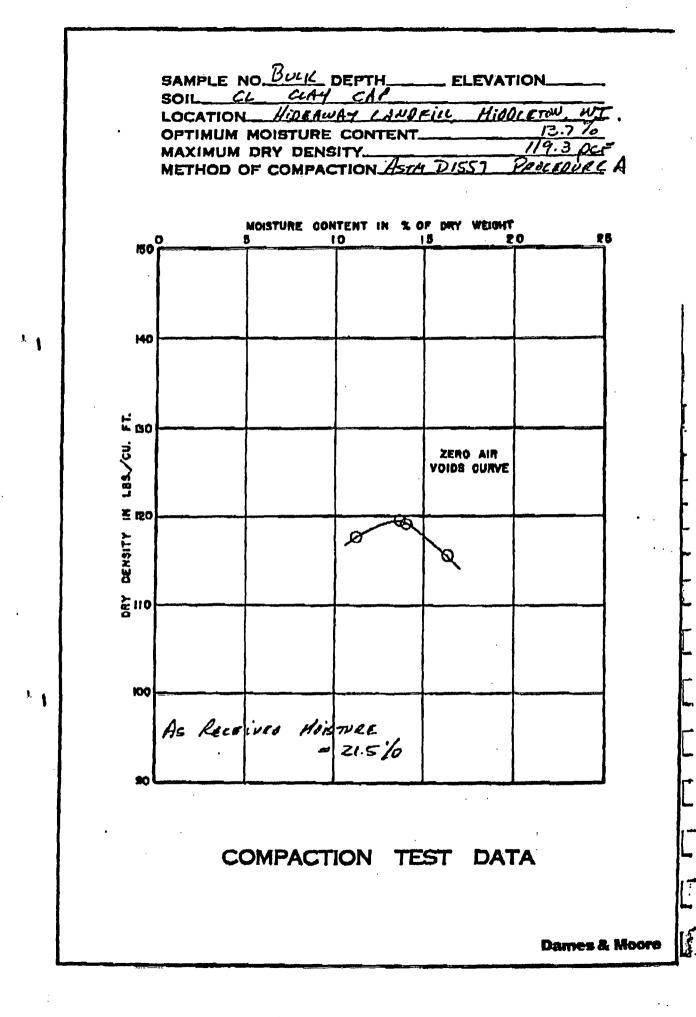
Sincerely, TERRA ENGINEERING & CONSTRUCTION CORP.

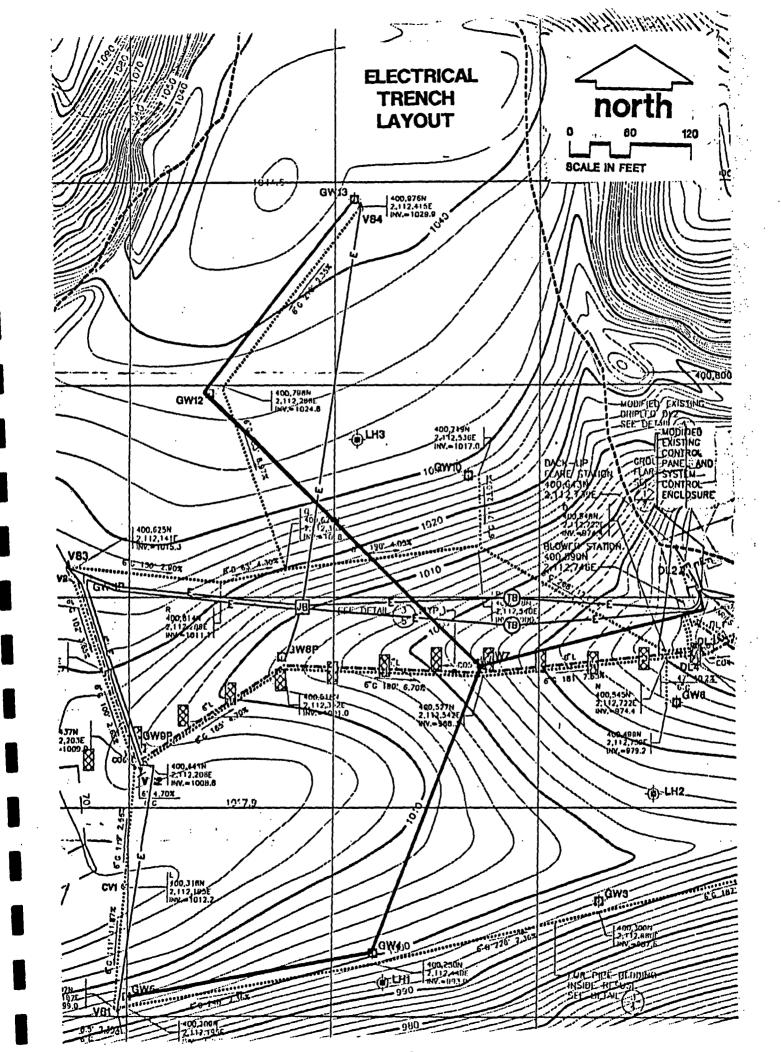

Kirk J. Solberg Environmental Geologist

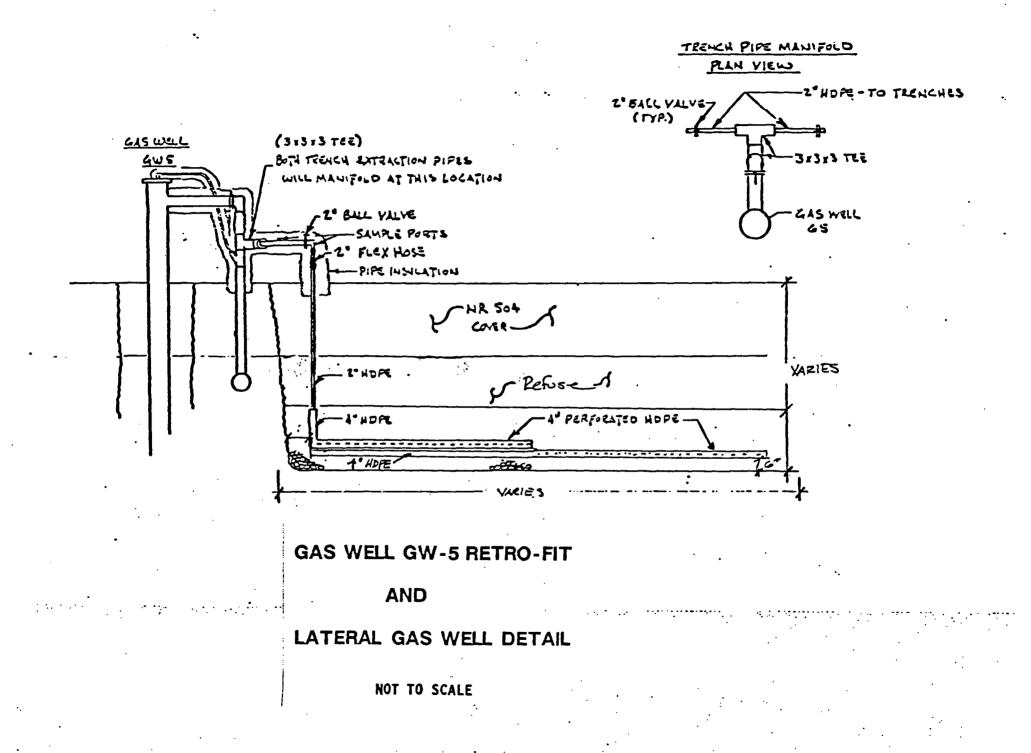


## DENSITY TEST RESULTS


| TEST<br>∦ | SOIL TEST  | LOCATION            | ELEVATION                      | MAX<br>DENSITY<br>(PCF) | WET<br>DENSITY<br>(PCF) | X MOISTURE | DRY<br>DENSITY<br>(PCF) | 2 PROCTOR |
|-----------|------------|---------------------|--------------------------------|-------------------------|-------------------------|------------|-------------------------|-----------|
| 1         | BROWN CLAY | 45 FT NE OF GW-5    | 1.5 BELOW<br>GROUND_SURFACE    | 118                     | 131.6                   | 20.6       | 109.1                   | 92.5      |
| 2         | BROWN CLAY | 90 FT NE OF GW-5    | 1.5 BELOW<br>GROUND SURFACE    | 118                     | 130.4                   | 20.8       | 108.0                   | 91.5      |
| 3         | BROWN CLAY | 40 FT NE OF GW-5    | O.5 FT BELOW<br>GROUND SURFACE | 118                     | 132.0                   | 20.8       | 109.2                   | 92.5      |
| 4         | BROWN CLAY | 85 FT NE OF GW-5    | 0.5 FT BELOW<br>GROUND SURFACE | 118                     | 129.6                   | 21.5       | 106.6                   | 90.4      |
| 5         | BROWN CLAY | 70 FT WEST OF GW-5  | 1.5 FT BELOW<br>GROUND SURFACE | 118                     | 130.3                   | 21.9       | 106.8                   | 90.5      |
| 6         | BROWN CLAY | 120 FT WEST OF GW-5 | 1.5 FT BELOW<br>GROUND SURFACE | 118                     | 132.5                   | 21.4       | 109.2                   | 92.5      |
| 7         | BROWN CLAY | 75 FT WEST OF GW-5  | 0.5 FT BELOW<br>GROUND SURFACE | 118                     | 130.4                   | 22.0       | 106.9                   | 90.6      |
| 8         | BROWN CLAY | 115 FT WEST OF GW-5 | 0.5 FT BELOW<br>GROUND SURFACE | 118                     | 132.9                   | 21.0       | 109.8                   | 93.1      |

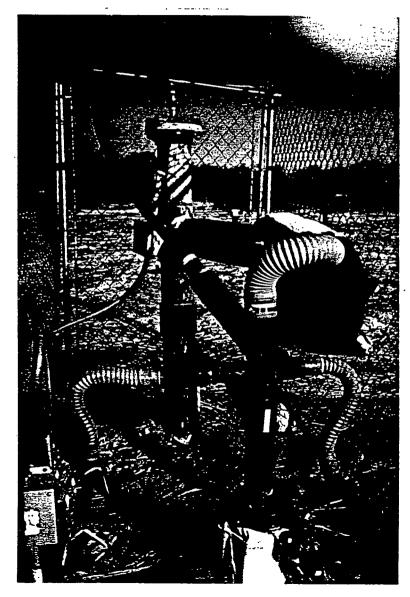

REFUSE\kaj01.tab





AN, NÓ 30-03,

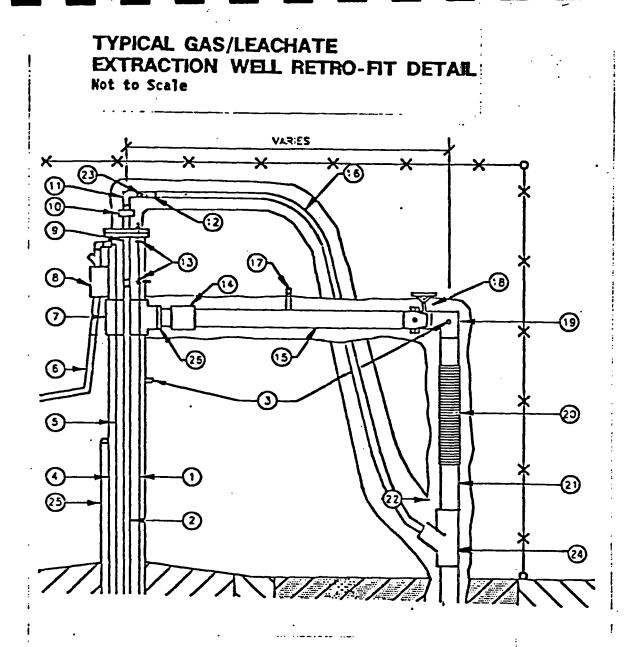
· ·











# GAS WELL GW-5

# WELL HEAD RETROFIT





TYPICAL PUMP CONTROL PANEL



#### KEY ന 1/4 DIA 304 STANLESS STEEL PULLOUT CABLE മ 1" DIA FLEXIBLE DISCHARGE HOSE ത 1/4" PVC LABODCK VALVE ค 5" DIA SCH BO PVC GAS WELL PIPE ൭ ELECTRICAL WRING FOR PUNP ര ELECTRICAL CONDUIT AND WIRING FOR PUMP ര 5 x 4 SCH. 80 PVC TEE ര WELL CASING PENETRATION WITH SEALED CONDUIT TO ELECTRICAL JUNCTION BOX STRUPPED TO WELL CASING (9) 1" DAL STANLESS STEEL NIPPLE THREADED THROUGH BUND FLANDE ത 1" DIA STEEL UNON FLANCE $\bigcirc$ 1" D'A STEEL 90" ELL $\bigcirc$ 1" DA COATED STEEL TO HOPE TRANSJON FITTING $\odot$ 1/4" STANLESS STEEL EVERDLT WITH WASHERS AND NUT **(** • ) J DA PVC COUPLING $\odot$ J CA SCH ED PVC PIPE • 1" DIA HOPE LEACHATE DISCHARGE PIPE $3/4^{\circ}$ = $1/2^{\circ}$ SCH. BO PVC REDUCING BUSHING WITH $1/2^{\circ}$ DIA SCH. BO PVC NPPLE AND CAP (MONITORING PORT) ത J DIA CEAR COCRATED SUTTERFLY VALVE $(\mathbf{n})$ J DA SCH 80-PVC 90"ELL ത J DIA FLEXIBLE TUBING WITH CLAMPS 6 ത J DA HOPE POPE PIPE INSULATION WITH WATERPROOF COVER INSTALLED TO APPROXIVATELY 24" BELOW FINAL GROE 62) D I EALL VILVE () 3" HOPE BYE WITH BUSHING TWO-1" DA ROD SCH BO PYC PIPES STRAPPED TO WELL PIPE SUP CAP AT TOP 4" = 3" REDUCING COUPLING WITH 3" MALE ADAPTER

| TENRA ENGINEERI<br>2201 Vondron No.<br>Phone: 608-221-3 | al, Radison, Vi | is. 53704           |  |  |  |
|---------------------------------------------------------|-----------------|---------------------|--|--|--|
| REFUSE HIDEWAY LANDFILL                                 |                 |                     |  |  |  |
| WELL HEAD DETAIL                                        |                 |                     |  |  |  |
| <b>ir.</b><br>Mte: 7/16/93                              | 7468            | 346. 110.<br>1 6F 3 |  |  |  |

#### Notes:

This Detail Revised from Drawing 15292-D3, Extraction Well Details, Construction Observation Report, Gas and Leachate Extraction System. Refuse Hideaway Landfill, Dated November 04, 1991

# **APPENDIX 2**

# BLOWER FLARE INSPECTION REPORT

REFUSE\93-ann.rpt

ECRS 2201 VONDRON RD. MADISON, WI. 73704-6795



6-29-93

TERRA ENGINEER

ATTN:KIRK SOLBERG REFUGE HIDEAWAY LANDFILL FLARE SERVICE CALL

DEAR BRIAN:

I AM VERY PLEASED WITH WHAT WE WERE ABLE TO ACCOMPLISH MONDAY ON SITE WITH THE FLARE. I DO APPRECIATE THE COURTESY AND HELP YOU AND BRIAN HEGGE EXTENDED TO ME WHILE I WAS THERE.

ENCLOSED PLEASE FIND THE FOLLOWING:

MY TRIP REPORT INCLUDING FLARE CONDITION AND SUGGESTED SPARE PARTS LIST.

PAINTING SPECIFICATION AND DATA SHEET FOR SHERWIN WILLIAMS RUST INHIBITIVE, HEAT RESISTANT PAINT.

OUR INVOICE FOR THE SERVICE CALL.

1 - SET OF KEYS FOR REFUSE HIDEAWAY WHICH I FAILED TO RETURN TO YOU ON MONDAY.

AS PER OUR CONVERSATION ON MONDAY I AM VERY INTERESTED IN A COPY OF THE GAS TEST REPORT THAT THE DNR IS CONDUCTING AND THE QUANTITY OF H2S IN THE GAS.

I WOULD LIKE A COPY OF 24 HR. SECTION OF THE TEMPERATURE RECORDER CHART AFTER YOUR NEXT GOOD STORM. THIS WILL ALLOW ME TO ANALYZE HOW WELL THE TEMPERATURE CONTROLLER IS RESPONDING TO SEVERE CHANGES.

AS IN THE PAST, PLEASE IF YOU HAVE ANY QUESTIONS, OR IF WE CAN BE OF SERVICE IN THE FUTURE DO NOT HESITATE TO CONTACT US.

BEST REGARDS,

millo

JOHN W GWINN MGR. OF TECHNICAL SERVICE

ENCLS:

#### SERVICE REPORT

#### **REFUSE HIDEAWAY LANDFILL SITE**

5-2-93 I ARRIVED MADISON WI. 9:30 P.M. AND MET KIRK AT THE HAMPTON INN ABOUT 10:30 P.M. WE WENT TO THE REFUSE HIDEAWAY LANDFILL SITE AND STARTED THE FLARE. IT STARTED OK THE PILOT WAS A LITTLE HESITANT ON THE FIRST ATTEMPT TO LIGHT BUT IGNITED OK ON THE SECOND ATTEMPT.

THE BURNER LIT OFF AS QUIET AND SMOOTH AS EVER, WITH A VERY INTENSE, SHORT, BLUE FLAME. THERE WAS A SMALL AMOUNT OF YELLOW/ORANGE TINGE TO THE ENDS OF THE FLAME INTERMITTENTLY WHEN IT FIRST IGNITED AND REMAINED FOR ABOUT 2-4 MINUTES. AS SOON AS THE BURNER BLOCKS & STACK WARMED UP, THESE YELLOW/ORANGE FLAME TAILS DISAPPEARED COMPLETELY.

WE OBSERVED THE OPERATION FOR ABOUT ONE HALF HOUR, AND THE TEMPERATURE CONTROLLER WAS NOT HOLDING TEMPERATURE WELL.

WE SHUT-DOWN THE FLARE AND CLOSED THE PANEL AND RETURNED TO THE HOTEL.

WE WILL START AGAIN AT 7:00 A.M. TOMORROW.

- 5-3-93 I ARRIVED ON SITE AT REFUSE HIDEAWAY LANDFILL AT 7:00 A.M. WE OPENED THE HIGH FIRE DAMPER AND INSPECTED THE INSIDE OF THE FLARE, OUR FINDINGS WERE AS FOLLOWS:
  - 1. CERAMIC FIBER LINING IS IN EXCELLENT CONDITION SOME DISCOLORATION AT AND ABOVE THE BURNER LEVEL.
  - 2. NO VISIBLE SIGNS OF MISSING OR DAMAGED LINING, OR HOT SPOTS ON THE EXTERIOR OF THE STACK.
  - 3. THE BURNER TILES ARE ALSO IN EXCELLENT CONDITION. THERE IS ONLY ONE OUTER TILE CRACKED. THE CRACKED TILE HAS NOT MOVED AND IS SECURELY HELD IN PLACE BY THE RETAINING CLIPS.
  - 4. THE ORIFICES ON THE BURNER SPUDS ARE ALL CLEAR AND SHOW NO SIGN OF CLOGGING, EXCESSIVE DISCOLORATION FROM EXCESSIVE TEMPERATURE OR EROSION.
  - 5. THE PILOT CAN & ORIFICE ALSO ARE CLEAN AND CLEAR. THE IGNITOR ROD WAS WARPED AND OUT OF ADJUSTMENT.
  - 6. THERE IS SOME MATERIAL, ASH & REFRACTORY MORTAR (VERY SMALL AMOUNT) ON THE FLOOR OF THE FLARE. THIS MATERIAL IS OF NO CONSEQUENCE.

THEN WE INSPECTED THE FLARE EXTERIOR AND OUR FINDINGS WERE AS FOLLOWS:

- 1. THE FLARE IS RUSTING IN SOME AREAS MAINLY AROUND THE TEST PORTS AND PILOT HOUSING, WHICH ARE EXPOSED TO HIGHER HEAT. THERE ARE SEVERAL OTHER AREAS THAT ARE SHOWING SIGNS OF WEAR BUT NO SIGNS OF SERIOUS CORROSION.
- 2. THE HIGH FIRE DAMPER MOTOR ACTUATION ARM WAS BENT. I DISCONNECTED THE LINKAGE AND STRAIGHTENED THE CRANK ARM AND RE-ADJUSTED THE DAMPER FOR PROPER OPERATION.
- 3. THE PILOT ASSEMBLY WAS DISCONNECTED AND REMOVED. WE RE-ADJUSTED THE SPARK ROD GAP AND ALIGNMENT AND RE-ASSEMBLED THE PILOT. WE THEN TESTED THE PILOT AND THE UV SYSTEM. ALL OF THE PILOT SYSTEM WORKS VERY WELL.

NEXT WE CHECKED THE BLOWER AND RE-TENSIONED THE BELTS. THE FINDINGS WERE:

- 1. ONE OF THE TWO BELTS IS STRETCHED AND THEY WILL NOT TIGHTEN EQUALLY. THIS LEAVES ONE BELT CARRYING MOST OF THE LOAD.
- 2. I LATER CHECKED THE BEARINGS, AND THEY DO NOT SEEM TO BE RUNNING HOT AND ARE OPERATING QUIETLY. THE BLOWER ALSO SEEMS TO BE IN GOOD RUNNING ORDER.

WE THEN STARTED THE FLARE AND WITH THE FOLLOWING RESULTS:

THE PILOT LIT AND MAINTAINED U.V. SIGNAL ON THE FIRST ATTEMPT.

I THEN TURNED THE OPERATE SWITCH TO AUTOMATIC AND THE BLOWER STARTED AND THE BURNER IGNITED <u>VERY</u> WELL, LIGHT BLUE FLAME WITH A VERY INTERMITTENT YELLOW/ORANGE TIPS. AS SOON AS THE FLARE WARMED UP THE YELLOW/ORANGE COLORATION LEFT.

WE CHECKED THE PRESSURE ON THE BURNER, AND IT WAS 2.5" W.C. THE PRESSURE AT THE BLOWER WAS OVER 4.5" LEAVING A 2" W.C. DROP ACROSS THE PIPING AND THE FLAME ARRESTOR.

I BELIEVE THAT THE FLAME ARRESTOR IS GETTING DIRTY AND NEEDS TO BE CLEANED.

WITH THE FLARE WELL WARMED UP, I STARTED RE-TUNING THE CONTROLLER. IT HAD BEEN OPERATING WITH A 75 DEGREE F TO 200 DEGREE F TEMPERATURE SWING. I FINALLY SET THE CONTROLLER AND IT IS HOLDING ABOUT A 50 DEGREE TO 75 DEGREE TOTAL SWING WITH A VERY FAST RECOVERY (LESS THAN 4 MINUTES).

DURING THE TUNING PROCESS I CHANGED THE MANUAL GAS VALVE SETTING TO CAUSE A TEMPERATURE UPSET TO WATCH THE CONTROLLERS RESPONSE. DURING THESE VALVE CHANGES THE FOLLOWING OBSERVATIONS WERE MADE.

MAXIMUM BURNER PRESSURE 3.5 W.C. AT THE BURNER. THE BURNER OPERATION VERY STABLE LIGHT BLUE IN COLOR AND NO YELLOW OR ORANGE TAILS.

BURNER PRESSURE REDUCED TO 1.0" W.C. BURNER REMAINED VERY STABLE AND WITH GOOD COLOR (NO YELLOW FLARE TAILS)

BURNER PRESSURE REDUCED TO 0.5" W.C. AND STILL STABLE LIGHT BLUE IN COLOR WITH VERY INTERMITTENT YELLOW/ORANGE FLAME TAILS BUY VERY SPORADIC.

BURNER PRESSURE REDUCED TO LESS THAN 0.5" W.C. WITH STILL GOOD BURNER COMBUSTION, BUT NOT AS STABLE AS BEFORE, STILL A GOOD CLEAN FLAME.

PRESSURE REDUCED TO 0.25" W.C. AND FLAME BECAME UN-STABLE WITH SOME CIRCULAR SWIRLING AND YELLOW FLAME TAILS. THE FLARE DID NOT HOLD TEMPERATURE AT THIS LOW FLOW RATE, AND WHEN THE DAMPERS WENT COMPLETELY CLOSED, THE FLAME RAISED UP OFF OF THE BURNER AND OUT OF THE LINE OF SIGHT OF THE U.V. SENSOR THE U.V. LOST SIGHT OF THE FLAME AND SHUT THE SYSTEM DOWN.

I RE-SET THE FLAME SAFEGUARD AND RE-SET THE GAS FLOW TO ABOUT 0.50" W.C. AND STARTED THE FLARE AGAIN. IT IGNITED WITHOUT A PROBLEM AND WOULD MAINTAIN TEMPERATURE AT 0.50" W.C..

IF THE NEED EVER ARISES TO OPERATE THE FLARE ON A CONTINUAL BASIS AT A FLOW RATE LESS THAN THAT OF 0.5" W.C., IT WILL BE NECESSARY TO RE-ADJUST THE LOW FIRE DAMPER. AT THIS LOWER FLOW THE FLARE MAY NOT MAINTAIN MINIMUM OPERATING TEMPERATURE OF 1400 DEGREE F.

IF THE METHANE CONTENT DROPS TO BELOW 42% IT WILL BE NECESSARY TO RE-ADJUST THE SHUTTERS ON THE BURNER. IF THIS DOES OCCUR CONTACT LINKLATER CORPORATION/CUSTOM COMBUSTION ENGINEERING FOR THE PROPER SETTING.

FROM MY OBSERVATION AT THIS SITE, HAVING INSUFFICIENT GAS SUPPLY TO OPERATE PROPERLY IS A LONG WAY OFF, THERE SEEMS TO BE AN ABUNDANCE OF GAS AS THE FIELD GOES POSITIVE IN A VERY SHORT TIME WHEN THE FLARE IS SHUT DOWN.

I WAS VERY PLEASED WITH THE CONDITIONS OF THE FLARE AND ITS OPERATIONS, ESPECIALLY FOR BEING IN SERVICE FOR 2 YEARS. THE FLARE AND CONTROLS ARE IN <u>EXCELLENT</u> <u>CONDITION</u>. WE HAVE THE FOLLOWING SUGGESTIONS:

- 1. PURCHASE 2 SETS OF GASKETS (4 TOTAL) FOR EACH OF THE TWO FLAME ARRESTORS. AFTER THE NEW GASKETS HAVE ARRIVED, DISASSEMBLE THE FLAME ARRESTORS AND STEAM CLEAN THE CENTER FLAME BANK AND INSPECT. THE CELLS SHOULD ALL BE CLEAR AFTER CLEANING. AFTER CLEANING, RE-ASSEMBLE USING NEW GASKETS AND CAREFULLY RE-TIGHTEN THE BOLTS. THE BOLTS ARE MUCH LARGER THAN NEEDED AND OVER TORQUING WILL CAUSE DAMAGE TO THE FLAME ARRESTOR HOUSING.
- 2. RETURN THE OLD THERMOCOUPLE TO LINKLATER CORPORATION/CUSTOM COMBUSTION ENGINEERING TO BE RE-BUILT. THIS WILL SERVE AS A SPARE AND RE-BUILDING WILL BE MUCH CHEAPER THAN A NEW THERMOCOUPLE.
- 3. RE-PAINT THE EXTERIOR OF THE FLARE, OR AT LEAST TOUCH UP THE RUSTED AREAS. PAINT THE PILOT GAS SUPPLY LINE SAFETY YELLOW.

WE RECOMMEND THAT THE FOLLOWING PARTS BE KEPT ON HAND AS SPARES:

- 1 SPARE DUAL ELEMENT THERMOCOUPLE
- 1 U.V. SENSOR REPLACEMENT TUBE
- 1 SET OF "V" BELTS FOR THE BLOWER DRIVE
- 2 REPLACEMENT SWIVEL JOINT FOR THE DAMPER ACTUATOR RODS
- 1 SET (2) GASKETS FOR EACH FLAME ARRESTOR
- **10 CONTROL PANEL REPLACEMENT LAMPS**
- 1- IGNITER ELECTRODE AND INSULATOR ASSEMBLY

ECRS

# **APPENDIX 3**

# BIENNIAL FLARE INLET GAS ANALYTICAL RESULTS



**Clean Air Engineering** 

I.

500 W. Wood St. • Palatine, IL 60067 • 708-991-3300

Mr. Kirk J. Solberg Technical Manager Environmental Construction & Remediation Services, Inc. 2201 Vondron Road Madison, Wisconsin 53704-6795

## REPORT ON COMPLIANCE TESTING

Conducted at: ENVIRONMENTAL CONSTRUCTION & REMEDIATION SERVICES, INC. FLARE INLET MIDDLETON, WISCONSIN

Environmental Construction & Remediation Services, Inc. P.O. No: C6024 CAE Project No: 6671 July 28, 1993

| CO | NĽ | 1 | N  | T C |
|----|----|---|----|-----|
|    | Υ. |   | N. |     |

| _  |                                                      |     |
|----|------------------------------------------------------|-----|
| 1. | SUMMARY                                              |     |
|    | INTRODUCTION                                         | 1-1 |
|    | SUMMARY OF TEST RESULTS                              | 1-2 |
|    | Table 1 - EPA Methods 3C, 18 and 25C                 | 1-2 |
| 2. | DESCRIPTION OF INSTALLATION                          | 2-1 |
| З. | SUMMARY OF PROCEDURES                                |     |
|    | SAMPLING PROCEDURES                                  | 3-1 |
|    | Figure 1 - EPA Method 18 Sampling Apparatus          | 3-2 |
|    | Figure 2 - EPA Methods 3C and 25C Sampling Apparatus | 3-3 |
|    | Figure 3 - Sampling Point Locations                  | 3-4 |
|    | Figure 4 - Sampling Point Locations                  | 3-5 |
|    | ANALYTICAL PROCEDURES                                | 3-6 |
|    | EPA Method 3C                                        | 3-6 |
|    | EPA Method 18                                        |     |
|    | EPA Method 25C                                       |     |
|    | QUALITY CONTROL PROCEDURES                           | 3-7 |
| 4. | COMMENTS                                             | 4-1 |
| 5. | APPENDIX                                             |     |
|    | NOMENCLATURE                                         | 5-1 |
|    | SAMPLE CALCULATIONS                                  | 5-2 |
|    | PARAMETERS                                           | 5-3 |
|    | CALIBRATION DATA                                     |     |
|    | FIELD DATA                                           |     |
|    | FIELD DATA PRINTOUTS                                 |     |
|    |                                                      |     |
|    |                                                      | 5-8 |



#### SUMMARY

#### INTRODUCTION

Clean Air Engineering was contracted by Environmental Construction & Remediation Services, Inc. to determine the levels of benzene, vinyl chloride and total gaseous nonmethane organics (TGNMO) emissions at their facility, located in Middleton, Wisconsin, for compliance purposes.

The testing took place at the Flare Inlet on June 8, 1993. Coordinating the field testing were:

B. Hegge - Environmental Construction & Remediation Services, Inc. K. Wepprecht - Clean Air Engineering

The test conditions and results of analysis are presented in Table 1 on page 1-2.

To the best of our knowledge, the data presented in this report are accurate and complete.

Respectfully submitted,

Reviewed by,

Kustin von Schmidt Paul Kristin von Schmidt-Pauli

Project Manager (708)991-6200 ext. 2005

Patrick Clark, P.E. Manager, VOC Services



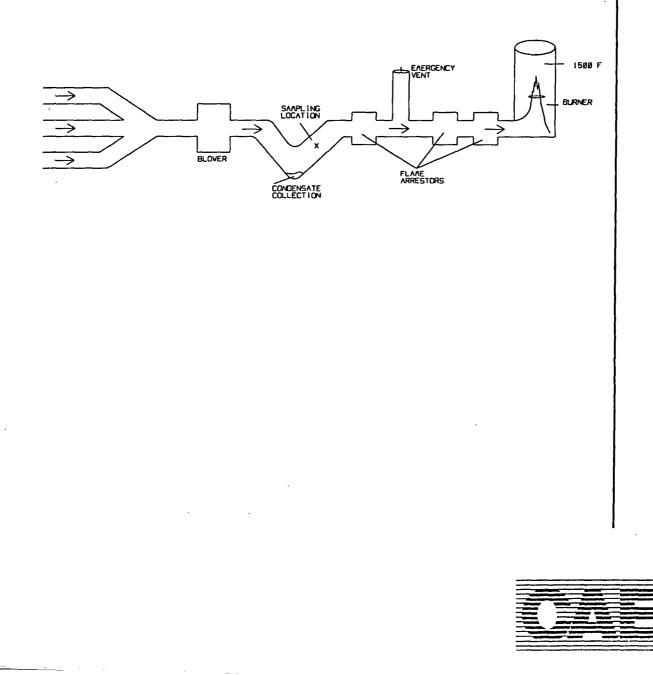
1-1

SUMMARY OF TEST RESULTS - Table 1

|                  | lethods 3C, 18 and 25C<br>en, Carbon Dioxide, Benz<br>Inlet | zene, Vinyl ( | Chloride an | d TGNMO   |                                         |
|------------------|-------------------------------------------------------------|---------------|-------------|-----------|-----------------------------------------|
| Run No           | ).                                                          | 1             | . 2         | 3         | Average                                 |
| Date (1          | 993)                                                        | June 8        | June 8      | June 8    |                                         |
| Start Th         | me (approx.)                                                | 09:25         | 10:55       | 12:23     |                                         |
| Stop Tir         | me (approx.)                                                | 10:25         | 11:55       | 13:33     |                                         |
| Gas_Co           | nditions                                                    | •             | •           |           |                                         |
| Τs               | Temperature (°F)                                            | 94            | 93          | 93        | 93                                      |
| Bwo              | Moisture (volume %)                                         | 1.86          | 2.19        | 1.69      | 1.91                                    |
| O <sub>2</sub>   | Oxygen (dry volume %)                                       | 2.6           | 1.9         | 1.7       | 2.0                                     |
| CO2              | Carbon dioxide (dry volume %)                               | 32.6          | 34.9        | 35.0      | 34.2                                    |
| Volume           | tric Flow Rate                                              |               | *<br>*,     |           | ••••••••••••••••••••••••••••••••••••••• |
| Qa               | Actual conditions (acfm)                                    | 317           | 315         | ∈319 ⊺    | 317                                     |
| Q <sub>std</sub> | Standard conditions (dscfm)                                 | 290           | 287         | 293       | 290                                     |
| Volatile         | Organics                                                    |               |             |           |                                         |
| Benzen           | 0                                                           |               |             |           |                                         |
| С                | Concentration (ppm)                                         | 2.32          | 2.16        | 2.12      | 2.20                                    |
| E                | Emission rate (lb/hr)                                       | 8.20E-03      | 7.54E-03    | 7.56E-03  | 7.76E-03                                |
| Vinyl Ch         | nloride                                                     |               |             |           |                                         |
| ć                | Concentration (ppm)                                         | <0.022        | <0.024      | <0.025    | <0.023                                  |
| Ε                | Emission rate (lb/hr)                                       | <6.13E-05     | <6.67E-05   | <7.04E-05 | <6.61E-05                               |
| TGNMO            | as carbon                                                   |               |             |           |                                         |
| C.               | Concentration (ppm)                                         | 1,207.2       | 1,558.3     | 1,271.1   | 1,345.5                                 |
| E                | Emission rate (lb/hr)                                       | 0.655         | 0.837       | 0.696     | 0.729                                   |

< Indicates below detection limit.

. بر ا


1-2

# **DESCRIPTION OF INSTALLATION**

Environmental Construction & Remediation Services, Inc. operates a landfill with a flare being used to control emissions. The flare inlet line, or landfill gas supply line, is fed with landfill gas from 13 total wells from three different sections of the landfill. The three lines from the different landfill sections are ducted to a common supply. The flow is generated by a blower located after the three supply lines combine, but before the test ports.

The testing reported in this document was performed at the Flare Inlet.

A schematic of the process is shown below.



#### SUMMARY OF PROCEDURES

#### SAMPLING PROCEDURES

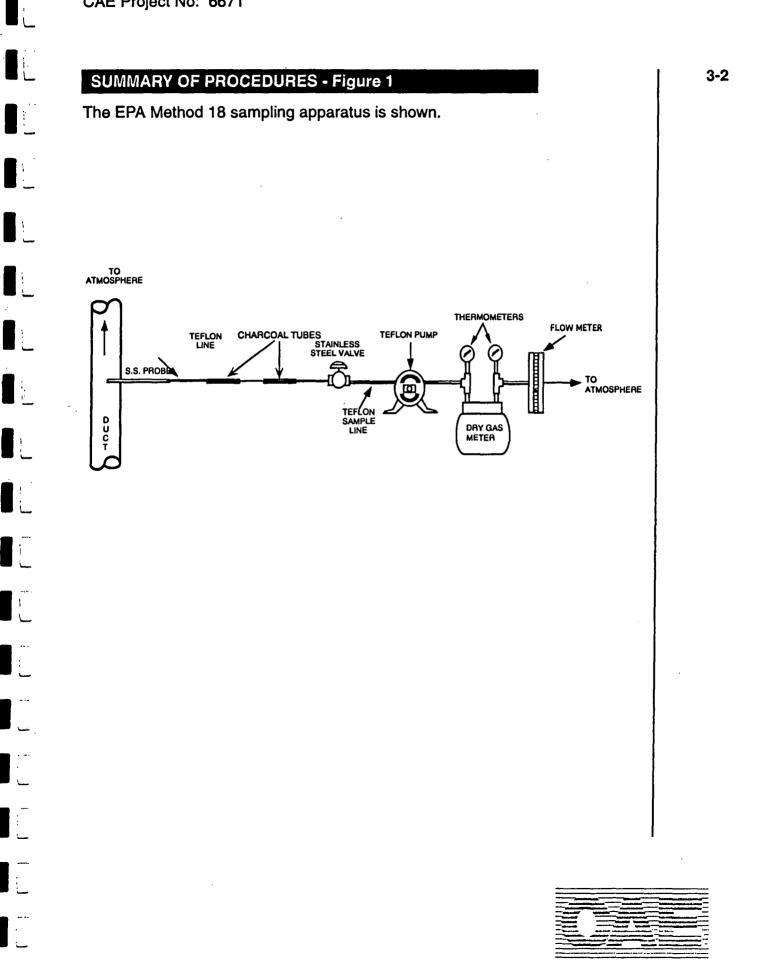
The sampling followed procedures as detailed in U.S. Environmental Protection Agency (EPA) Methods 1, 2, 3C, 4 and 18. These methods are titled:

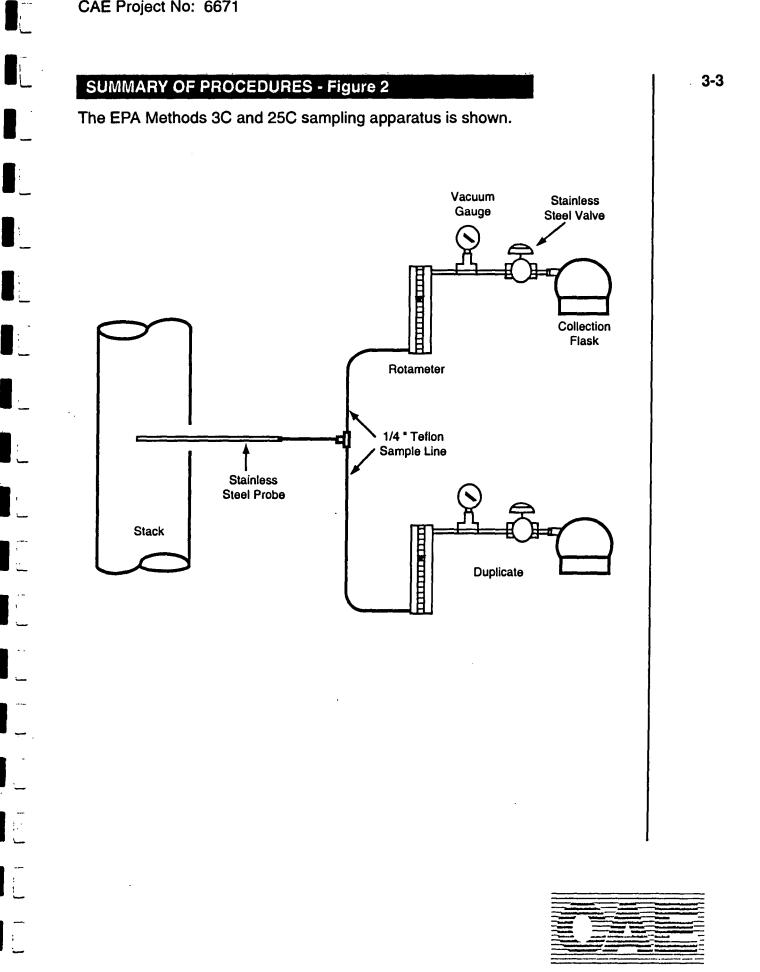
- Method 1 "Sample and Velocity Traverses for Stationary Sources;"
- Method 2 "Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube);"
- Method 3C "Determination of Oxygen, Carbon Dioxide, Nitrogen and Methane from Stationary Sources;"
- Method 4 "Determination of Moisture Content in Stack Gases;"
- Method 18 "Measurement of Gaseous Organic Compound Emissions by Gas Chromatography."

These methods appear in detail in Title 40 of the Code of Federal Regulations (CFR), Part 60, Appendix A.

In addition to the previous methods, Proposed Method 25C was also referenced. This method is titled:

• Proposed Method 25C — "Determination of Nonmethane Organic Compounds (NMOC) in Landfill Gases."


The sampling apparatus are shown in Figures 1 and 2 on pages 3-2 and 3-3, respectively. All equipment was calibrated at the Clean Air Engineering laboratory prior to shipment to the job site.

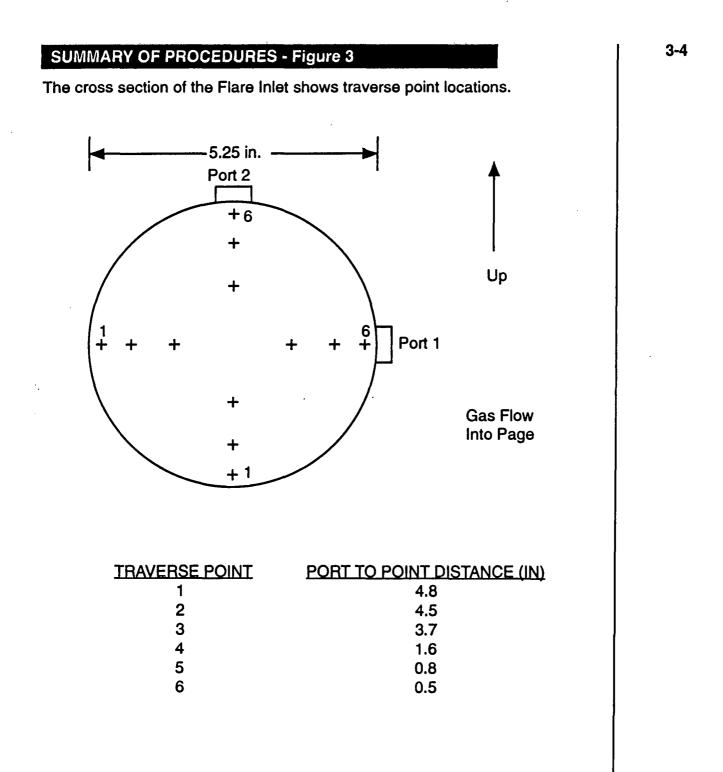

#### Sampling Locations

The Flare Inlet has two ports. For velocity determination, six points were traversed per port for Run 1. For Runs 2 and 3, eight points were traversed per port. For moisture determination and benzene, vinyl chloride and TGNMO testing, a single point was sampled for 60 minutes. The traverse point locations are shown in Figures 3 and 4 on pages 3-4 and 3-5, respectively.

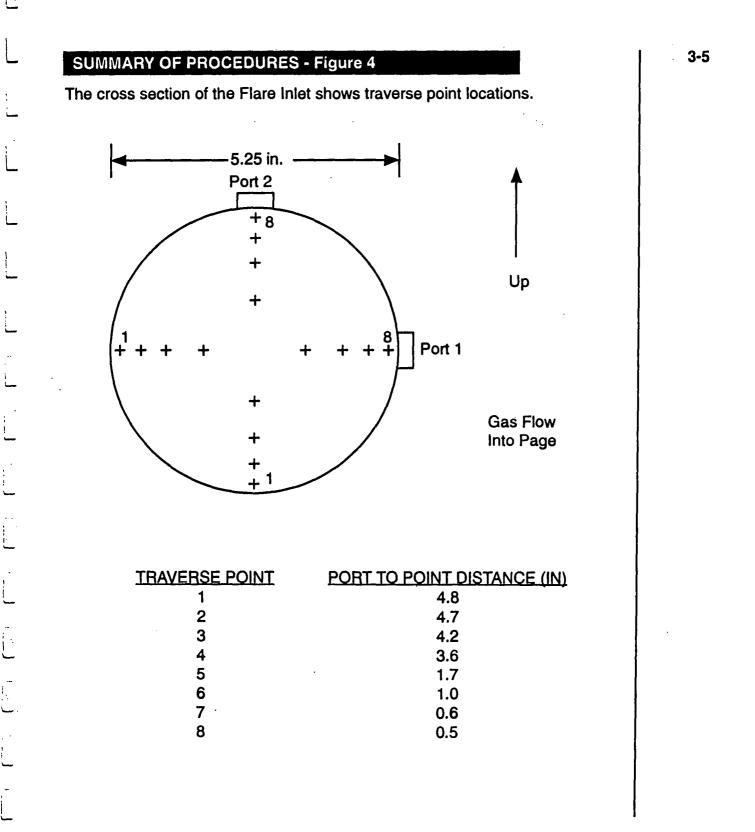


3-1






....


:

`\_\_

] : |







# SUMMARY OF PROCEDURES

#### **ANALYTICAL PROCEDURES**

#### Oxygen, Carbon Dioxide and Nitrogen

The oxygen, carbon dioxide and nitrogen concentrations were determined following procedures described in EPA Method 3C. A portion of the collected gas sample was injected into a gas chromatograph (GC) and the oxygen, carbon dioxide and nitrogen concentrations were determined using a thermal conductivity detector (TCD). The gas analyzer was calibrated and monitored for detector linearity over the range of sample concentrations.

### Benzene and Vinyl Chloride

The benzene and vinyl chloride concentrations were determined following procedures detailed in the EPA Method 18. Collected charcoal tubes were desorbed with 2 ml of carbon disulfide. A portion of the carbon disulfide was analyzed using a gas chromatograph equipped with a flame ionization detector. The results of the field blanks are included in the Laboratory Data section of the Appendix.

# Nonmethane Organic Compounds (NMOC)

The NMOC emissions were determined following procedures detailed in Proposed EPA Method 25C. The NMOC content of the collected tank samples was determined by injecting a portion of the sample into a gas chromatographic column and separating the NMOC from carbon monoxide, methane and carbon dioxide. Prior to sampling, the probe and sample line were purged with the stack gas. The emission sample was withdrawn at a constant rate through a chilled condensate trap by means of an evacuated sample tank. At the conclusion of testing, the sample tank was pressurized further to prepare it for analysis. For analysis, a portion of the sample gas was injected into the GC columns via a pneumatic gas sample valve (GSV). The columns separated the NMOC from carbon monoxide, carbon dioxide and methane. The NMOC was oxidized to carbon dioxide, reduced to methane and measured using a flame ionization detector.

The gas analyzer was calibrated and monitored for catalyst efficiency and system linearity with: 20 ppm, 200 ppm and 3,000 ppm propane; and 50 ppm, 500 ppm and 1% carbon dioxide.

| The second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| The second diversion of the second se |
| "The second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The second secon |
| The second secon |
| Thereis and france. All and Thereis **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ""There are a second division of the second se                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| And an opposite the supervised statement of the supervised by the supervised statement of the supervised statement |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

3-6

# SUMMARY OF PROCEDURES

1

:

#### **QUALITY CONTROL PROCEDURES**

Quality control procedures for all aspects of field sampling; sample preservation and holding time; reagent quality; analytical method; analyst training and safety; and instrument cleaning, calibration and safety were followed. These procedures are generally consistent with EPA guidelines documented in "Quality Assurance Manuals for Air Pollution Measurement Systems," Vol 3, "Stationary Source Specific Methods" (EPA-600/4-77-027b). 3-7

# 4-1 COMMENTS No deviations from standard U.S. EPA testing procedures were noted. . . **.** .

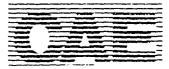
1. <sup>1</sup>.

# APPENDIX NOMENCLATURE 5-1 SAMPLE CALCULATIONS 5-2 PARAMETERS 5-3

| PARAMETERS           | 5-3 |
|----------------------|-----|
| CALIBRATION DATA     | 5-4 |
| FIELD DATA           | 5-5 |
| FIELD DATA PRINTOUTS | 5-6 |
|                      | 5-7 |
| CHAIN OF CUSTODY     | 5-8 |

# NOMENCLATURE

. با


.-

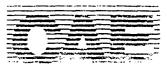
| •                |            | cheerberge                                                                       |
|------------------|------------|----------------------------------------------------------------------------------|
| A                | -          | absorbance                                                                       |
| An<br>ADD        |            | cross sectional area of nozzle (ft <sup>2</sup> )                                |
| APD              | <b>.</b> . | _ aerodynamic particle diameter (μm)                                             |
| area;            | -          | total area of jets per stage                                                     |
| A <sub>s</sub>   | -          | cross sectional area of stack (ft <sup>2</sup> )                                 |
| B <sub>mix</sub> | -          | proportion of water vapor in the mixed gas stream by volume                      |
| Bwo              | -          | proportion of water vapor in the gas stream by volume                            |
| Bws              | -          | proportion of water vapor in the gas stream by volume at saturated conditions    |
| C                | -          | measured concentration in the gas stream                                         |
| Cgas             | -          | concentration calibrated for drift as per Eq. 6C-1 of EPA Method 6C              |
| Cj               | -          | Cunningham's slip factor                                                         |
| Cma              | -          | actual concentration of the upscale calibration gas                              |
| Cmf              | -          | final system calibration bias check response for the upscale calibration gas     |
| C <sub>mi</sub>  | -          | initial system calibration bias check response for the upscale calibration gas   |
| Cof              | -          | final system calibration bias check response for the zero gas                    |
| Coi              | -          | initial system calibration bias check response for the zero gas                  |
| С <sub>р</sub>   | -          | pitot tube coefficient (dimensionless)                                           |
| D <sub>eq</sub>  | -          | equivalent diameter (cm)                                                         |
| - Df             | -          | dilution factor                                                                  |
| b D <sub>S</sub> | -          | jet diameter (cm)                                                                |
| D50              | -          | aerodynamic particle diameter at 50% cut point (μm)                              |
| E                | -          | emission rate                                                                    |
| Fd               | -          | ratio of the volume of dry effluent gas to the gross calorific value of the fuel |
|                  |            | (dscf/MBtu)                                                                      |
| Fc               | -          | ratio of the volume of carbon dioxide produced to the gross calorific value of   |
|                  |            | the fuel (dscf/MBtu)                                                             |
| GCV              | -          | gross calorific value of fuel consistent with the ultimate analysis (Btu/lb)     |
| GMD              | -          | geometric mean diameter (µm)                                                     |
| i                | •          | stage number                                                                     |
| %                | -          | percent of isokinetic sampling (acceptable: $90 \le \% \le 110\%$ )              |
| i                | -          | iteration number                                                                 |
| Kc               | -          | spectrophotometer calibration factor                                             |
| Kn               | -          | Knudson's number (dimensionless)                                                 |
|                  |            |                                                                                  |



# NOMENCLATURE (Continued)

| Кp                               | -          | pitot tube constant: 85.49 (ft/sec) $\sqrt{\frac{(Ib / Ib - mole)(in. Hg)}{(°R)(in. H_2O)}}$ |  |  |  |  |
|----------------------------------|------------|----------------------------------------------------------------------------------------------|--|--|--|--|
| KsRT                             |            | stage constant                                                                               |  |  |  |  |
| LFE                              | -          | laminar flow element                                                                         |  |  |  |  |
| Md                               | <b>-</b> . | dry molecular weight of stack gas (lb/lb-mole)                                               |  |  |  |  |
| MMD                              | -          | mass median diameter (μm)                                                                    |  |  |  |  |
| mn                               | -          | total amount of particulate matter collected (g)                                             |  |  |  |  |
| Ms                               | -          | molecular weight of stack gas, wet basis (lb/lb-mole)                                        |  |  |  |  |
| Mwm                              | -          | molecular weight of mixed gas, wet basis (lb/lb-mole)                                        |  |  |  |  |
| N                                | -          | normality of titrant (meq/ml)                                                                |  |  |  |  |
| O <sub>pa</sub>                  | -          | average actual opacity calculated over the averaging interval (%)                            |  |  |  |  |
| P <sub>1</sub> -P <sub>atm</sub> | -          | total pressure differential (in. H <sub>2</sub> O)                                           |  |  |  |  |
| P <sub>1</sub> -P <sub>2</sub>   | -          | velocity pressure differential (in. H <sub>2</sub> O)                                        |  |  |  |  |
| P4-P5                            | -          | pitch angle pressure differential (in. H <sub>2</sub> O)                                     |  |  |  |  |
| Pa total                         | -          | absolute pressure down stream of impactor (in. Hg)                                           |  |  |  |  |
| Pb                               | -          | barometric pressure (in. Hg)                                                                 |  |  |  |  |
| Pf                               | -          | final absolute pressure of flask (in. Hg)                                                    |  |  |  |  |
| .Pi                              | -          | initial absolute pressure of flask (in. Hg)                                                  |  |  |  |  |
| Pife                             | -          | absolute pressure at LFE inlet (in. Hg)                                                      |  |  |  |  |
| PR                               | -          | recycle ratio at stack condition (%)                                                         |  |  |  |  |
| Ps                               | -          | äbsolute stack gas pressure (in. Hg)                                                         |  |  |  |  |
| PSi                              | -          | local pressure downstream of each stage (in. Hg)                                             |  |  |  |  |
| Pv                               | -          | Vapor pressure, actual (in. Hg)                                                              |  |  |  |  |
| Qa                               | -          | volumetric flow rate at actual conditions (acfm)                                             |  |  |  |  |
| Q <sub>cm</sub>                  | -          | flow rate through the impactor (cm <sup>3</sup> /s)                                          |  |  |  |  |
| Qr                               | -          | recycle flow rate at sampler conditions (acfm)                                               |  |  |  |  |
| Q <sub>rstd</sub>                | -          | recycle flow rate at standard conditions (dscfm)                                             |  |  |  |  |
| Qs                               | -          | flow rate through the sampler at sampler conditions (acfm)                                   |  |  |  |  |
| Q <sub>sstd</sub>                | -          | sample flow rate at standard conditions (dscfm)                                              |  |  |  |  |
| Q <sub>std</sub>                 | -          | volumetric flow rate at standard conditions, dry basis (dscfm)                               |  |  |  |  |
| Qt                               | -          | total (mixed) cyclone flow rate at sampler conditions (acfm)                                 |  |  |  |  |
| Qtstd                            | -          | total flow rate through sampler at standard conditions (dscfm)                               |  |  |  |  |
| R                                | -          | resultant angle (°)                                                                          |  |  |  |  |




<u>.</u>

i

# NOMENCLATURE (Continued)

Î

| R <sup>2</sup>    | -              | coefficient of regression                                                                |
|-------------------|----------------|------------------------------------------------------------------------------------------|
| Re                | -              | Reynolds number (dimensionless)                                                          |
| RhoG              | <del>.</del> - | density of gas (lb/ft <sup>3</sup> and g/cm <sup>3</sup> )                               |
| RhoP              | -              | density of particulate (lb/ft <sup>3</sup> and g/cm <sup>3</sup> )                       |
| Sr                | -              | recycle flow, LFE calibration constant                                                   |
| St                | -              | total flow, LFE calibration constant                                                     |
| std               | -              | standard conditions, 29.92 in. Hg, 68 °F                                                 |
| Тb                | -              | filter temperature (°F)                                                                  |
| T <sub>c</sub>    | -              | conditioner temperature (°F)                                                             |
| Tf                | -              | final absolute temperature of flask (°R)                                                 |
| T <sub>lfe</sub>  | -              | average LFE temperature (°F)                                                             |
| Tm                | -              | average dry gas meter temperature (°F)                                                   |
| Tr                | -              | average recycle temperature (°F)                                                         |
| Τs                | -              | average stack temperature (°F)                                                           |
| T <sub>sc</sub>   | -              | average stack temperature (°C)                                                           |
| T <sub>std</sub>  | -              | absolute temperature, standard conditions (528 °R)                                       |
| Vac.              | -              | pump vacuum (in. Hg)                                                                     |
| Va                | -              | volume of aliquot (ml)                                                                   |
| -V <sub>f</sub>   | -              | volume of flask (ml)                                                                     |
| Vic               | -              | total volume of liquid collected in impingers and silica gel (ml)                        |
| Vm                | -              | volume of gas sample through the dry gas meter at meter conditions (ft <sup>3</sup> or   |
|                   |                | liters)                                                                                  |
| Vmstd             | -              | volume of gas sample through the dry gas meter at standard conditions (ft <sup>3</sup> ) |
| V <sub>sc</sub>   | -              | volume of flask sample, standard conditions (ml)                                         |
| V <sub>soln</sub> | -              | total volume of solution (ml)                                                            |
| Vt                | -              | volume of titrant used to titrate aliquot (ml)                                           |
| Vtb               | -              | volume of titrant used to titrate blank (ml)                                             |
| V <sub>wstd</sub> | -              | volume of water collected at standard conditions (ft <sup>3</sup> )                      |
| Vs                | -              | stack gas velocity (ft/sec)                                                              |
| Wr                | -              | recycle flow, LFE calibration constant                                                   |
| Wt                | -              | total flow, LFE calibration constant                                                     |
| Xs                | -              | number of jets per stage                                                                 |
| Yd                | -              | gas meter correction factor (dimensionless)                                              |
| α                 | -              | relative standard deviation of polydispersity                                            |
|                   |                |                                                                                          |



# NOMENCLATURE (Continued)

| ΔΗ<br>ΔΗ@<br>ΔΡ<br>√ΔΡ | -<br>-<br>- | average pressure drop across meter box orifice (in. H <sub>2</sub> O)<br>meter orifice calibration coefficient (in. H <sub>2</sub> O)<br>- pressure drop across impactor (in. Hg)<br>average square roots of velocity heads of stack $gas(\sqrt{in. H_2O})$ |
|------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ΔPr                    | -           | pressure drop across the recycle flow LFE (in. $H_2O$ )                                                                                                                                                                                                     |
| ΔPt                    | -           | pressure drop across the total flow LFE (in. $H_2O$ )                                                                                                                                                                                                       |
| μgas                   | -           | viscosity of stack gas (μpoise)                                                                                                                                                                                                                             |
| μlfe                   | -           | gas viscosity at LFE conditions                                                                                                                                                                                                                             |
| μm                     | -           | gas viscosity of the mixed gas                                                                                                                                                                                                                              |
| λ                      | -           | gas mean free path (cm)                                                                                                                                                                                                                                     |
| ρ                      | -           | gas density (lb/ft <sup>3</sup> )                                                                                                                                                                                                                           |
| $\sigma_{g}$           | -           | geometric standard deviation                                                                                                                                                                                                                                |
| Θ                      | -           | total sampling time (min)                                                                                                                                                                                                                                   |
| X                      | -           | intermediate angle used to calculate the pitch angle (°)                                                                                                                                                                                                    |

ENVIRONMENTAL CONSTRUCTION & REMEDIATION SERVICES, INC. CAE Project No: 6671 Flare Inlet

| VELOCITY AND MOISTURE PARAMETERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                 |                                                                                                 |                                                                                                 |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--|--|--|
| Run No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . 1                                                                                             | 2                                                                                               | 3                                                                                               |  |  |  |
| Date (1993)<br>Start Time (approx.)<br>Stop Time (approx.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | June 8<br>09:22<br>10:22                                                                        | June 8<br>10:55<br>11:55                                                                        | June 8<br>12:23<br>13:33                                                                        |  |  |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.9865<br>0.99<br>6.4<br>0.15<br>28.76<br>2.56<br>32.6<br>18.0<br>48.83<br>91<br>94<br>2.00     | 0.9865<br>0.99<br>6.6<br>0.15<br>28.76<br>1.86<br>34.9<br>21.0<br>48.47<br>92<br>93<br>2.00     | 0.9865<br>0.99<br>6.5<br>0.15<br>28.76<br>1.65<br>35.0<br>16.0<br>48.04<br>91<br>93<br>2.00     |  |  |  |
| Flow Results<br>$V_{wstd}$ Volume of water collected (ft <sup>3</sup> )<br>$V_{mstd}$ Volume metered, standard (ft <sup>3</sup> )<br>$P_s$ Sample gas pressure, absolute (in. Hg)<br>$P_v$ Vapor pressure, actual (in. Hg)<br>$B_{wo}$ Moisture in sample (% by volume)<br>$B_{ws}$ Saturated moisture (% by volume)<br>$\sqrt{\Delta P}$ Velocity head ( $\sqrt{in. H_2O}$ )<br>$M_d$ MW of sample gas, dry (Ib/Ib-mole)<br>$M_s$ MW of sample gas, wet (Ib/Ib-mole)<br>$V_s$ Velocity of sample (ft/sec)<br>$Q_a$ Volumetric flow rate, actual (acfm)<br>$Q_{std}$ Volumetric flow rate, standard (dscfm) | 0.85<br>44.60<br>29.23<br>1.58<br>1.86<br>5.42<br>0.550<br>33.32<br>33.03<br>35.2<br>317<br>290 | 0.99<br>44.15<br>29.25<br>1.55<br>2.19<br>5.32<br>0.549<br>33.66<br>33.32<br>35.0<br>315<br>287 | 0.75<br>43.89<br>29.24<br>1.54<br>1.69<br>5.26<br>0.557<br>33.67<br>33.40<br>35.5<br>319<br>293 |  |  |  |

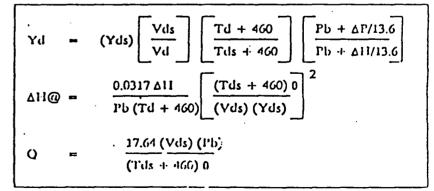
Flare Inlet

# **VOLATILE ORGANICS PARAMETERS**

| Run No.           |                                             |                 | į <b>1</b> | 2         | 3                        |
|-------------------|---------------------------------------------|-----------------|------------|-----------|--------------------------|
| Date (1993)       |                                             |                 | June 8     | June 8    | June 8                   |
| Start Ti          | me (approx.)                                | •               | 09:25      | 10:55     | 12:23                    |
| Stop Ti           | me (approx.)                                |                 | 10:25      | 11:55     | 13:33                    |
| Sampli            | ng Locations                                |                 |            |           |                          |
| Pb                | Barometric pressure (in. Hg)                |                 | 28.76      | 28.76     | 28.76                    |
| Vm                | Volume metered, meter conditions (lit       | er)             | 56.38      | 51.85     | 49.73                    |
| Vm                | Volume metered, meter conditions (ft        | 9)              | 1.991      | 1.831     | 1.756                    |
| ΔΗ                | Meter box orifice pressure drop (in. H      | <sub>2</sub> O) | 1.0        | 0.8       | 0.8                      |
| Yd                | Dry gas meter correction factor             |                 | 0.9991     | 0.9991    | 0.9991                   |
| T <sub>m</sub>    | Dry gas meter temperature (°F)              |                 | 79         | 84        | 81                       |
| Calcula           | ated Results                                |                 |            |           |                          |
| V <sub>mstd</sub> | Volume metered, standard (ft <sup>3</sup> ) |                 | 1.877      | 1.710     | 1.649                    |
| Flow R            | esults from Velocity and Moisture Pa        | rameters        | <b>i</b> . |           | <b>.</b> The Total State |
| Qa                | Volumetric flow rate, actual (acfm)         |                 | . 317      | 315       | 319                      |
| Q <sub>std</sub>  | •                                           |                 | 290        | 287       | 293                      |
| Benzen            | le                                          | Blank           | • •        |           | re schille               |
|                   | mg                                          | <0.002          | 0.401      | 0.339     | 0.322                    |
| С                 | Concentration (ppm)                         |                 | 2.32       | 2.16      | 2.12                     |
| jΕ                | Emission rate (Ib/hr)                       |                 | 8.20E-03   | 7.54E-03  | 7.56E-03                 |
| Vinyl C           | hloride                                     |                 | •          |           |                          |
| -                 | mg                                          | <0.003          | <0.003     | <0.003    | <0.003                   |
| С                 | Concentration (ppm)                         |                 | <0.022     | <0.024    | <0.025                   |
| E                 | Emission rate (Ib/hr)                       |                 | <6.13E-05  | <6.67E-05 | <7.04E-05                |

< Indicates below detection limit.

# POST TEST CALIBRATION CHECK


| Client/Owner: cestn # 11 | Project Number:     |              |           |                         |  |
|--------------------------|---------------------|--------------|-----------|-------------------------|--|
| Operator:M.KUBER.        | A                   | Date:        | 6.30.43   | <u>.</u>                |  |
|                          |                     |              | •         |                         |  |
| Meter Box No.: 71-V7     | Meter Box Vacuum: / | Meler Box Yo | 1: 0.9941 | Barometric Press.: 29.2 |  |

|       |     |      |        | Stand   | dard Met<br>Volumo<br>ft <sup>3</sup> |            | Mcter   | Box Gas V<br>ft <sup>3</sup> | /olume |    | d. Mo<br>mpera<br>°F |            | M<br>Tei | lcter<br>mpera<br>°F | Box<br>ature |       |        |     |
|-------|-----|------|--------|---------|---------------------------------------|------------|---------|------------------------------|--------|----|----------------------|------------|----------|----------------------|--------------|-------|--------|-----|
| Q     | ۵H  | ۸P   | Yds    | Initial | Final                                 | Vds<br>Net | Initial | Final                        | Vd Net | In | Out                  | Tds<br>Avg |          | Out                  | Td<br>Avg    |       | Yd     | ۵H@ |
| 2.046 | 3.0 | -2.0 | 1.0000 | 0       | 1,002                                 | 1.002      | U       | 27,73                        | 0.9793 | 76 | 76                   | 76         | 88       | ••                   | 88           | 20.77 | 1.0330 | NIA |
| ).046 | 3.0 | -2.0 | 1.0000 | 0       | 1.035                                 | i.035      | U       | 28.01                        | 1.0103 | 76 | 76                   | 76         | 88       | -                    | 88           | 21.32 | 1.0342 | NIA |
| 36    | 3.0 | -2.0 | i.0000 | 0       | 1.063                                 | 1,063      | 0       | 29.31                        | i,0372 | 76 | 76                   | 76         | 89       |                      | 89           | 21,74 | 1.0366 | NA  |

#### Nomenclature

- Pb Barometric Pressure
- O Flow Rate (cfm)
- 411 Orifice Pressure Differential ("H2O)
- I ΔP Inlet Pressure Differential ("H2O)
- Vd Volume Dry Gas Meter ( $[t^3)$
- Volume Dry Standard (ft<sup>3</sup>)
- d Meter Correction Factor (unitless)
- ds Standard Meter Correction Factor (unitless)
- 1@ Orifice Pressure Differential that gave 0.75 cfm of air at 70" IF and 29.92 "Hg ("H2O)

# Calculations





ſ

# METER BOX FULL TEST CALIBRATION

|               |         | 16.92           |                                               |                           |                      |                 |                  | · · · ·        | Operato                |                |                    |                |    | £                  |            |           |             |         |
|---------------|---------|-----------------|-----------------------------------------------|---------------------------|----------------------|-----------------|------------------|----------------|------------------------|----------------|--------------------|----------------|----|--------------------|------------|-----------|-------------|---------|
| 210           | er Box  | No.:            | 71.77                                         | <u></u>                   | Meter Bo             |                 | N/I              | l_             | Meter Bo               |                | : . 9              | 991            |    |                    | Baro       | metric Pr | cssure: 24  | 9.18    |
|               |         |                 |                                               | Stand                     | lard Met<br>Volume f | er Gas          | Meter            | Box Gas<br>ft  | Volume                 |                | d. Mo<br>nper<br>F | eter<br>ature  |    | eter<br>npera<br>F |            |           |             | · · · · |
| <u>)</u>      | ۵H      | ΔP              | Yds                                           | Initial                   | Final                | Vds<br>Nct      | Initial          | Final          | Vds<br>Nct             | In             | Out                | Tds<br>Avg     |    | Out                | Tds<br>Avg |           | LY J        | ∆H@     |
| 3             | 1.8     | -2.3            | 1.0000                                        | . 0                       | 1.000                | 1.000           | 0                | 28.13          | .9934                  | 80             | 80                 | 80             | 81 | 81                 | 81         | 28.40     | .9981       | N/A     |
| +             | 1.9     | -2.3            | 1.0000                                        | 0                         | 1.001                | 1.001           | 0                | 28.14          | .9937                  | 80             | 80                 | 80             | 82 | 82                 | 82         | 28.06     | 1.0004      | NIA     |
| 3             | 1.9     | -z.3            | 1.0000                                        | 0                         | 1.034                | 1.034           | 0                | 29.11          | 1.0280                 | 80             | 80                 | 80             | 82 | 82                 | 82         | 29.06     | .9989       | NA      |
| -+            |         |                 |                                               |                           |                      |                 |                  |                |                        |                | ·                  |                |    |                    |            |           |             |         |
| $\frac{1}{1}$ |         |                 |                                               | - <u>-</u>                |                      |                 |                  |                |                        |                |                    |                |    |                    |            |           | ·           |         |
| $\frac{1}{1}$ |         |                 |                                               |                           |                      |                 |                  |                |                        |                |                    |                |    |                    |            |           |             |         |
| +             |         | ·               |                                               |                           |                      |                 |                  |                |                        |                |                    |                |    |                    |            |           | <br>        |         |
| ╉             |         |                 |                                               |                           |                      |                 |                  |                |                        |                | - <u></u>          |                |    |                    |            |           |             |         |
| ╈             |         |                 |                                               |                           |                      |                 |                  |                |                        |                |                    |                |    |                    |            |           |             |         |
| +             |         |                 |                                               |                           |                      |                 |                  | ·              |                        |                |                    |                |    |                    |            |           |             |         |
| _             | ]       |                 | · · ·                                         |                           |                      |                 |                  |                |                        |                |                    |                |    |                    |            |           |             |         |
|               | Baros   | No<br>netric Pr | menclatu                                      | re                        |                      | l [             |                  | Calculatio     |                        |                |                    | /acuun         |    |                    |            |           | nometer Cal |         |
|               | Flow    | Data (afi       |                                               | the contracts             | 、                    | Yd ⇒ (          | Vds Vds          | <u>Td + 46</u> | 0 [195 + 2             | <u>\P/13.(</u> | 5                  | itandar<br>Hg) | ]  | Vacut<br>Gauge     |            | Standar   | d Inlet     | Outlet  |
|               | Inlet I | ressure         | re Differentia<br>Differentia<br>Jas Meter ([ |                           | ,                    | 1(              | ``"[va_          | Tds + 40       | ю][еь + 2              | AU/13.         | ୍ରା  _             | 5.2            |    | 5                  |            | 40        | 40          | 40      |
| •             | Volun   | ic Dry C        | tandard (ft<br>ion Factor                     |                           | ļ                    | Δ1 <i>1</i> @ = | <u>0.0317 ΔI</u> | <u>1 (ra</u>   | s + 460)0 <sup>2</sup> | 2              | -                  | 10.            |    | 10                 |            | 60        | 60          | 60      |
| 3             | Stand   | ard Met         | er Correction<br>re Different                 | n Factor (                | unitless)            | ang -           | Pb(Td +          | 460) (Vd       | s)(Yds)                |                |                    | 15.2           |    | 15                 | •          | 70        | 70          | 70      |
| 0             | of air  | at 70°F a       | and 29.92 "I                                  | liai that ga<br>Ig ("H2O) | ve 0.75 cln          |                 | 17.64 (Vu        | ls)(Fb)        |                        |                | -                  | 20.            |    | ZO                 |            | 12        |             | 110     |
|               |         |                 | ·····                                         |                           |                      | 0 =             | (Tels 4) 4       | 60)0           | •                      |                | _  [-              |                |    |                    |            | 140       |             | 120     |
|               |         |                 |                                               |                           |                      |                 |                  |                |                        |                | ,_                 |                |    |                    |            | .,        |             |         |
|               | _] .    |                 | 1                                             | <b>j</b>                  | }                    | ] ]             |                  | 1.2.1          |                        | 1              |                    | 1              |    |                    |            | ·.        |             |         |

**1** |

|            |                                    | <b>••••</b>                     |                                                 |                                                               |                                        |               | , <b>1997</b>   |                |                      | ن<br>الم<br>الم |                | · . [                          |             | [ <b>****</b>             | ſ          |                    |                       | (                  |
|------------|------------------------------------|---------------------------------|-------------------------------------------------|---------------------------------------------------------------|----------------------------------------|---------------|-----------------|----------------|----------------------|-----------------|----------------|--------------------------------|-------------|---------------------------|------------|--------------------|-----------------------|--------------------|
|            |                                    | -29-<br>No.: (                  |                                                 |                                                               | Acter Ro                               | x ΔΠ(ψ:       | 1.76.8          | <u></u>        | Operato<br>Meter Bo  |                 |                |                                |             |                           | Baro       | metric Pr          | essure: 2             | 14.50              |
|            |                                    |                                 | 2                                               | Stan                                                          |                                        | er Gas        |                 | Box Gas        |                      | St              | d. M           |                                | M           | cter l<br>nper:           | Box        |                    |                       |                    |
| 0          | 211                                | ۵P                              | Yds                                             | Initial                                                       | Final                                  | Vds<br>Nct    | Initial         | Final          | Vds<br>Nct           | In              | Out            | Tds<br>Avg                     |             | Out                       | Tds<br>Avg |                    | Yd                    | <u>ΔΗ(ψ</u> )      |
| 15         | <u>3.0</u>                         | -4.0                            | 1.0000                                          |                                                               | 10005                                  | 111.005       | 380.589         | <u>390.506</u> | 9417                 | 65              | 65             | 65                             | 74          | 6.2                       | 68         | 10.5               | .9972                 | 1.8348             |
| <u>'S</u>  | 3.0                                | -4.0                            | 1.0000                                          | - <u>-</u> 4                                                  | 10:000                                 | 10.000        | 400.547         | 10.540         | 9.4213               | 65              | 63             | <u>65</u>                      | 75          | <u>63</u>                 | 69         | 10.53              | .9960                 | 1.8436             |
| <u>.</u> 0 | <u>05</u>                          | -2.6                            | 1000                                            | <u>k</u>                                                      | 5.003                                  | 5.003         | <u>11)4.344</u> | 429.335        | <u>S.cxii</u>        | 65              | <u>65</u>      | 65                             | 71          | 66                        | 68         | 12.35              | . <u>9807</u><br>9807 | <u>, i. 0115</u>   |
|            | 0.5                                | -0.6                            | 1.0000                                          |                                                               | 5.00.2                                 | 5.002         | <u>1/71.335</u> | 434.435        | 5.02                 | 05              | <u>65</u>      | 05                             | 7.L         | 60_                       | 08         | 10.33              | .9807                 | 1.6918             |
|            | 1.5                                |                                 |                                                 | d'                                                            | 10.125                                 | 10.12.5       | 190.172         | 450.402        | 10.379               | 65              | 65             | 65                             | <u>75</u>   | 67                        | 71         | 14.71              | .9833                 | 1.7740             |
| <u>'8</u>  | <u></u>                            | - <u>3.0</u>                    | <u>j.000</u>                                    |                                                               | 10.005                                 | <u>10.005</u> | 450 .402        | 460.582        | ]0:18                | 65_             | 65             | 65                             | 74          | 67                        | 10         | <u>14.58</u>       | .9811                 | <u>1.7.22</u>      |
|            |                                    |                                 |                                                 | · · ·                                                         | · - ·                                  | · · ·         |                 | ·              |                      |                 |                |                                |             |                           |            |                    |                       |                    |
|            |                                    |                                 |                                                 |                                                               |                                        |               |                 |                |                      |                 |                |                                |             |                           |            |                    |                       |                    |
|            |                                    |                                 |                                                 |                                                               |                                        |               |                 |                |                      |                 |                |                                |             |                           |            |                    |                       |                    |
|            |                                    |                                 |                                                 |                                                               |                                        |               |                 |                |                      |                 |                |                                |             |                           |            |                    |                       | ·                  |
|            |                                    | No                              | menclatu                                        | re                                                            | ··· •• • • • • • • • • • • • • • • • • |               | (               | Calculatio     | ns                   | ·               |                | Vacuun                         |             |                           |            |                    | mometer Cal           |                    |
|            | Flow<br>Orific<br>Inlet I<br>Volur | Pressure<br>ne Dry G            | n)<br>re Differen<br>Differentia<br>las Meter ( | (r <sup>2</sup> )                                             | )                                      | Yd =          | (Yds)<br> Vd    |                | 50   Pb + 4          | AH/13.          | <u>6     (</u> | Standar<br>(Hg)<br><u>5. (</u> | d<br>       | Vacui<br>Gauge<br>5<br>10 | :          | Standa<br>40<br>45 | 40                    | Outlet<br>40<br>45 |
| 15<br>- Gy | Meter<br>Stand<br>Orific           | Correct<br>ard Mete<br>c Pressu | re Differen                                     | )<br>(unitless)<br>on Factor (<br>tial that ga<br>log ("11gO) | unitless)<br>ve 0.75 cfn               | AH@           | 0.0317 Δ1<br>=  | 460) (Vd       | s + 460)0<br>s)(Yds) | -               |                | 10<br>1~1.6<br>19-5            |             | 15<br>20                  | <br>)      | 50                 | 50<br>65              | <u>50</u><br>65    |
| -          |                                    |                                 |                                                 |                                                               |                                        | () is         | (Tds + 4        |                |                      | • <b></b> ·     | _              | дч. ч<br>д.т.                  | <u>-</u> [] | Э .<br>Ma                 |            | 85                 | ,- 85<br>100          | 100                |

.

# POST TEST CALIBRATION CHECK

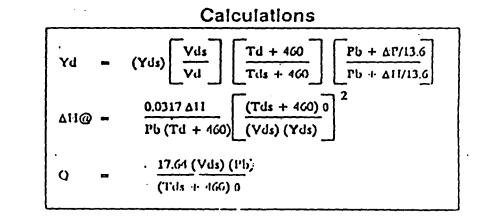
Client/Owner: ECES

Project Number: (26-71

Operator: <u>M.KUDERA</u>

Date: <u>6.21.93</u>

| Meter Box No.: 61-5 | Meter Box Vacuum: | 3 | Meter Box Yd: , 9865 | Barometric Press.: 29.26 |
|---------------------|-------------------|---|----------------------|--------------------------|
|                     |                   |   |                      |                          |


|    |     |      |                 | Stan    | dard Met<br>Volumo<br>ft <sup>3</sup> |            | Mcter   | Box Gas V<br>(1 <sup>3</sup> | /olume |    | id. Me<br>npera<br>°F |            |    | leter<br>mpera |           |       |        |        |
|----|-----|------|-----------------|---------|---------------------------------------|------------|---------|------------------------------|--------|----|-----------------------|------------|----|----------------|-----------|-------|--------|--------|
| Q  | ۵H  | ΔP   | Yds             | Initial | Final                                 | Vds<br>Net | Initial | Final                        | Vd Net | In | Out                   | Tds<br>Avg |    | Out            | Td<br>Avg |       | Yd     | ΔH@    |
| 66 | 1.5 | -3.2 | 1.0000          | 0       | 10.002                                | 10.002     | 139.615 | 149,450                      | 9.835  | 76 | 76                    | 76         | 92 | 83             | 87        | 14.44 | 1.0256 | 1.7790 |
| ,6 | 1.5 | -3.2 | 1.0 <i>00</i> 0 | 0       | 10.037                                | 10.037     | 149.450 | 159,379                      | 9,929  | 76 | 76                    | 76         | 93 | 87             | 90        | 14.54 | 1.0250 | 1,7814 |
| 6  | i.5 | -3.2 | 1.0000          | 0       | 10.000                                | 10.000     | 159.379 | 169,332                      | 9,453  | 76 | 76                    | 76         | 9· | 90             | 93        | 14.52 | 1.0243 | 1.7799 |

### Nomenclature

- Barometric Pressure Flow Rate (cfm)
- I Orifice Pressure Differential ("1120) Inlet Pressure Differential ("1120)
- Volume Dry Gas Meter (ft<sup>3</sup>)
- is Volume Dry Standard ((t<sup>3</sup>)

1 1 1

- Meter Correction Factor (unitless)
- s Standard Meter Correction Factor (unitless)
- Orifice Pressure Differential that gave 0.75 cfm of air at 70" IF and 29.92 "Hg ("H2O)



| and the second se |                                                                                                                |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the second s | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |   |
| the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                | _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |   |

FLARE

Location: INLET

Form 66-VEL DS

# Velocity Determination Field Data Sheet

1

.

Page \_ / \_ of \_ / \_\_

٢

1

ſ.

ſ

|                                                                                                                |                                                                        |                   |              |            |          | •        |                 |                  |                         |          |                |            |                                               |          |             |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------|--------------|------------|----------|----------|-----------------|------------------|-------------------------|----------|----------------|------------|-----------------------------------------------|----------|-------------|
| Client 2                                                                                                       | ECRS                                                                   | - <u>-</u>        | Project Nur  | nber 667   | 7/       | Cr       | oss-Section     | of Test Lo       | cation                  |          | rometric Pres  |            | 974                                           |          | • Hg / mbar |
| Plant                                                                                                          | SEFUSE                                                                 |                   | Unit FLA     |            |          |          | · _             |                  |                         |          | uct Diameters  |            |                                               |          |             |
| Date &                                                                                                         | 18193                                                                  |                   | Intel/Outlet | /Stack     |          |          | 20              | 514              | TOP                     | 1 1      | uct Diameters  |            | <u>am                                    </u> |          | ·           |
| Pyromete                                                                                                       | er Numbe                                                               | 1 41-5            |              | .99        |          |          | 201             |                  |                         | I        | ata Recorder   |            |                                               |          |             |
| Pitot Nun                                                                                                      |                                                                        |                   | Ambient Te   |            | 80       |          |                 |                  | SIPE                    |          | obe Operator   |            | ·                                             |          |             |
| Pitot Lea                                                                                                      | k Check                                                                | <u> </u>          | Before 3     | After      |          |          | int all the way |                  | OUT                     | -   So   | ource of Moist | ure Data   | M4 7                                          | RAIN     |             |
|                                                                                                                | •                                                                      | ~                 |              |            |          | Area (   |                 | <br>er((inj)   G | as Flow                 | -   -    | ource of Mole  |            |                                               | 000      |             |
|                                                                                                                |                                                                        |                   |              |            |          | .60      |                 |                  |                         | l l'     | Surce of Mole  | cular weig | ni Dala                                       | C-SVY    |             |
|                                                                                                                |                                                                        | · · · · ·         |              | <b></b>    |          |          | ·               | <u></u>          |                         |          |                |            |                                               |          |             |
|                                                                                                                | Run                                                                    |                   |              |            | Run      | <u> </u> |                 | 3                | Run                     | 3        |                |            | Run                                           | <b></b>  |             |
|                                                                                                                | es ("H₂O)                                                              | +6.4              |              | Static Pre |          | 6.0      |                 |                  | es ("H <sub>2</sub> O)  | +6.5     |                | Static Pre |                                               | <b> </b> |             |
| The second s | Start Time 10 <sup>24</sup><br>Stop Time 10 <sup>25</sup><br>Stop Time |                   |              |            |          | 12-10    |                 | 1                | art Time                | 12       |                | 1          | art Time                                      | <u> </u> |             |
| Los and the second second                                                                                      | Stop Time /0ジ Stop Time                                                |                   |              |            | op Time  | 1213     | -               | S                | op Time                 | 130      |                | St         | op Time                                       |          |             |
| Traverse                                                                                                       | erse Velocity Stack Traverse Vel                                       |                   |              |            | Velocity | Stack    | (di tinin y     |                  | Velocity                | Stack    |                | Traverse   | Velocity                                      | Stack    |             |
| Point                                                                                                          | Head                                                                   | Temp              |              | Point      | Head     | Temp     |                 | Point            | Head                    | Тетр     |                | Point      | Head                                          | Temp     |             |
| Number                                                                                                         |                                                                        | <sup>®</sup> (°F) | Notes        | Number     | ∆P's     | े(°F)    | Notes           | Number           |                         | े(°F)    | Notes          | Number     | ΔP's                                          | (°F)     | Notes       |
| 1-1                                                                                                            | .20                                                                    | 94                |              | 1-1        | 20       | 93       |                 | 1-1              | 17                      | 91       |                |            |                                               |          |             |
| _ Z                                                                                                            | 131                                                                    | 93                |              | Z          | .18      | 92       |                 | <u>Z'</u>        | .30                     |          |                |            | · ·                                           |          | <u> </u>    |
| 3                                                                                                              | .35                                                                    | 94                |              | 3          | .25      | 94       |                 | 3                | .35                     | 93       |                |            |                                               |          |             |
| 4                                                                                                              | .34                                                                    | 94_               |              | 4          | . 31     | 93       |                 | 4                | .26                     |          |                |            |                                               |          |             |
| _ 5                                                                                                            | .33                                                                    | 94                |              | 5          | .33      | 92       |                 | 5                | 131                     | 43       |                |            |                                               |          |             |
| 6                                                                                                              | ·27                                                                    | 94                |              | 6          | .34      | 93       |                 | 6                | ,35                     | _        |                | l          |                                               |          |             |
| 2-1                                                                                                            | .24                                                                    | 43                |              | 7          | 34       | 9Z       |                 | 7                | ,37                     | 93       |                |            |                                               |          |             |
| Z                                                                                                              | .32                                                                    | 93                |              | ч          | .30      | 23       |                 | 8                | .37-                    |          |                |            | · .                                           |          |             |
| 3                                                                                                              | ,33                                                                    | 93                |              | 2-1        | .21      | 92       |                 | 2-1              | .17                     | 4Z       |                |            | •                                             |          |             |
| 7                                                                                                              | .3Z                                                                    | 93                |              | Z          | . 35     | 93       |                 | 2                | .31                     | l        |                |            |                                               |          |             |
| 5                                                                                                              | .3Z                                                                    | 74                |              | 3          | .36      | 44       |                 | 3                | 134                     | 13       |                |            | . <u></u>                                     |          |             |
| <u> </u>                                                                                                       | .32                                                                    | 77                |              | 4          | .37      | 73       |                 | 4                | .35                     | <u> </u> |                |            | <u> </u>                                      |          |             |
| I                                                                                                              | L                                                                      | <u> </u>          |              | 5          | .37      | 97       | <u>.</u>        | 5                | •34                     | 93       |                |            |                                               |          |             |
| }                                                                                                              |                                                                        |                   |              | 6          | .35      | 94       |                 | 6                | .35                     |          |                |            |                                               | <b></b>  |             |
| :<br>                                                                                                          | l                                                                      |                   |              | 7          | .32_     | 93       |                 | 7                | .36                     | 93       |                |            | l                                             | <u> </u> |             |
| t<br>1 <del></del>                                                                                             |                                                                        |                   |              | ö          | .29      | 73       |                 | C                | , 32                    |          |                |            |                                               |          | L           |
| Total                                                                                                          |                                                                        | A                 |              |            |          | 6        |                 |                  |                         |          |                |            |                                               |          |             |
| Average                                                                                                        | (5499)                                                                 | 191               |              |            | . 5481   | (93)     |                 | 1                | (5/39)                  | (93)     | 4              | Í          |                                               |          |             |
| ······                                                                                                         |                                                                        |                   | ·            |            |          |          | ···             | <u></u>          | $\overline{\mathbf{y}}$ |          | · ·            |            |                                               |          | 1           |

τ.

( c) n

| Location:                    | FLARE                                     | Run:                           | 1                   | M                     | oisture Detern<br>Field Data S                           |                                              |                                      | Page <u>/</u> of <u>/</u> .    |
|------------------------------|-------------------------------------------|--------------------------------|---------------------|-----------------------|----------------------------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------|
| Client ECK                   | - 1                                       | oject Numbe<br>nit <i>FLAR</i> |                     |                       | Cross-Section of Test                                    | Location                                     | Ambient Temp. (<br>Bar. Press.       | (°F) 80<br>774 (in. Hg / mbar) |
| Date 6/8/                    | 93 년                                      | et/Outlet/S                    | tack                |                       |                                                          | TOP                                          | Probe Length                         | N/A<br>N/A                     |
| Meter Operat<br>Meter Box Nu |                                           | 5                              |                     | N                     | î                                                        | 51015                                        | Probe Material<br>IGS Bag ID No.     | MA .                           |
|                              | .7862 Yo                                  | , 986                          | 5                   |                       | <u> </u>                                                 | 51012                                        |                                      | 4 Silica Gel (gm) j4           |
|                              | fore <i>,001</i> cl<br>ter <i>.001</i> cl |                                | <u>5 "н</u><br>5 "н |                       |                                                          | Gas Flow<br>IN OUT                           | Total Vic /                          | 2 JAM/PM Stop Time: 1022 AM/PM |
| Traverse<br>Point            | Min/pt                                    | Pump<br>Vacuum                 | Impinger<br>Outlet  | Orifice<br>Setting    | Initial Volume<br>767-14                                 | Dry G                                        | Temperature at<br>as Meter<br>Outlet | Notes                          |
| Number                       | Clock Time                                | (in. Hg)                       | Temp.<br>(°F)       | (in H <sub>2</sub> O) | Gaş Sample Volume<br>V <sub>m</sub> (ft <sup>3/</sup> L) | CO.2.49217 19 0 2021 3 2 2 - 2 5 7 4 6 9 6 6 |                                      |                                |
| NIP                          | 5                                         | 0                              |                     | 20                    | 971.15                                                   | 86                                           | 77                                   |                                |
|                              | 10                                        | 0                              |                     | 2.0                   | 975.16                                                   | 92                                           | 78                                   |                                |
|                              | 15                                        | 0                              |                     | 2.0                   | 979.15                                                   | 95                                           | 81                                   |                                |
|                              | 20                                        | 0                              |                     | 2.0                   | 985,18                                                   | 96                                           | 8Z.                                  |                                |
| <u></u>                      | 25                                        | Ō                              |                     | 2.0                   | 987.21                                                   | 98                                           | 84                                   |                                |
|                              | 30                                        | 0                              |                     | 20                    | 991.36                                                   | 48                                           | 85                                   |                                |
|                              | 35                                        | 0                              |                     | Z.0                   | 995.33                                                   | 19                                           | 87                                   |                                |
|                              | 40                                        | 0                              |                     | 2.0                   | 949.46                                                   | 99                                           | 87                                   |                                |
|                              | 45                                        | 0                              |                     | 2.0                   | 003., 45                                                 | 100                                          | 88                                   |                                |
|                              | 50                                        | 0                              |                     | 2.0                   | 007.91                                                   | 100                                          | 89                                   |                                |
|                              | 55                                        | 0                              |                     | 2.0                   | 011.61                                                   | 101                                          | 90                                   |                                |
|                              | 60                                        | Ö                              |                     | 2.0                   | 015.97                                                   | 99                                           | 89                                   |                                |
| otal                         |                                           |                                |                     |                       | (48.83)                                                  |                                              | Æ                                    |                                |
| verage                       |                                           |                                | L(                  | 10/                   |                                                          |                                              |                                      | l                              |
|                              | •                                         |                                | (                   |                       | · · ·                                                    |                                              |                                      |                                |

| Location:         | FLACE<br>INLET | Run:_              | Z                  |                                  | loisture Detern<br>Field Data S                          |                                 | :                                 | Page_/of_/                                   |
|-------------------|----------------|--------------------|--------------------|----------------------------------|----------------------------------------------------------|---------------------------------|-----------------------------------|----------------------------------------------|
| Client ECK        |                | oject Numbe        | 1 6671             |                                  | Cross-Section of Test                                    | Location                        | Ambient Temp. (                   | F) 80                                        |
| Plant REFUS       | E<br>DFIFF UI  | nit FLACE          |                    |                                  |                                                          |                                 | Bar. Press. 9.7                   |                                              |
| Date 6/8/         |                | Ét/Outlet/Si       | ack                |                                  |                                                          | ~~~ <i>f</i>                    | Probe Length                      | NIA                                          |
| Meter Opera       |                |                    |                    | N N                              | :7_                                                      |                                 | Probe Material                    | NIA                                          |
| Meter Box N       |                |                    |                    |                                  | o                                                        | 4 100°                          | IGS Bag ID No.                    | NA                                           |
| Meter ∆H@ /       | 726Z Yo        | , 986              | 5                  |                                  |                                                          |                                 | $H_2O(ml)$                        | Silica Gel (gm) 12                           |
|                   | fore 001 c     |                    | н"<br>"Н           | 의 이 이                            | a (ft <sup>3</sup> ) Port Len (in.) $3'4''$              | Gas Flow                        | Total Vic Z                       | ر<br><u>ت</u> مسرعها Stop Time: // کت مسرعها |
| <b>h</b>          |                |                    |                    | <u> </u>                         | · · · · · · · · · · · · · · · · · · ·                    | 1,                              | Start Time./0                     | AM/PM SLOP THILE. // AM/PM                   |
| Traverse<br>Polnt | Min/pt         | Pump               | Impinger<br>Outlet | Orifice                          | Initial Volume                                           |                                 | Temperature at as Meter           | Notes                                        |
| Number            | Clock Time     | Vəcuum<br>(in: Hg) | Temp.<br>(°F)      | Setting<br>(in H <sub>2</sub> O) | Gas Sample Volume<br>V <sub>m</sub> (ft <sup>3/</sup> L) | Inlet<br>T <sub>m in</sub> (°F) | Outlet<br>T <sub>m out</sub> (°F) | Wittes                                       |
| NIA               | .5-            | Ü                  |                    | Z.0                              | 020.34                                                   | 97                              | 90                                |                                              |
|                   | 10             | 0                  |                    | 20                               | 024:34                                                   | 98                              | 90                                |                                              |
|                   | 15             | 0                  | •                  | 2.0                              | 028:45                                                   | 96                              | 90                                |                                              |
|                   | 20             | 0                  |                    | 2.0                              | 032.37                                                   | 96                              | 89                                |                                              |
|                   | 25             | υ                  |                    | 2.0                              | 036.48                                                   | 97                              | 89                                |                                              |
|                   | 30             | Ο                  |                    | 20                               | 040.26                                                   | 97                              | 89                                |                                              |
|                   | 35             | 0                  |                    | 2.0                              | 044.35                                                   | <u> </u>                        | 89                                | · · · · · · · · · · · · · · · · · · ·        |
|                   | 40             | 0                  |                    | 2.0                              | 048.32                                                   | 98                              | 89                                |                                              |
|                   | 45             | 0                  |                    | 2.0                              | 057.31                                                   | 97                              | 89                                |                                              |
|                   | 50             | Ü                  |                    | 2.0                              | 056-27                                                   | 93                              | 87                                |                                              |
|                   | 55             | 0                  |                    | 2.0                              | 060.04                                                   | 92                              | 85                                |                                              |
|                   | 60             | 0                  |                    | 20                               | 064.19                                                   | 92                              | 87                                |                                              |
| Total             |                |                    |                    |                                  | (48.47)                                                  | (0                              |                                   |                                              |
| Average           |                |                    |                    | $(2.0)^{-1}$                     |                                                          | ( 7.                            | 4/                                |                                              |

.

-{**--**

| Location:                                                                                | FLARE<br>INLET                | Run:_                     | F                           |                                              | bisture Deter<br>Field Data S                                       |                            |                                       | Page_/of_/                              |
|------------------------------------------------------------------------------------------|-------------------------------|---------------------------|-----------------------------|----------------------------------------------|---------------------------------------------------------------------|----------------------------|---------------------------------------|-----------------------------------------|
| Client ECCS<br>Plant ZEFUS<br>Date 6/3/4<br>Meter Operat<br>Meter Box Nu<br>Meter ΔH@ /. | or FO                         | et/Outlet/St              | ?E                          | A N                                          | Cross-Section of Tes<br>، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،       | t Location<br>7012<br>SiOE | · · · · · · · · · · · · · · · · · · · | 974 (in. Hg / mbar<br>N/A<br>N/A<br>N/A |
|                                                                                          | fore , 00 / cl<br>er ,00 / cl | /m@<br>/m@ /              | ≁ "н<br>5 "н                |                                              | (ft <sup>3</sup> ) Port Leg (in.)<br>$3^{\prime\prime\prime\prime}$ | Gas Flow<br>IN OUT         | Total VIc /                           | 23 AM/BA Stop Time: / 33 AM/P           |
| Traverse<br>Point<br>Number                                                              | Min/pt<br>Clock Time          | Pump<br>Vacum<br>(in, Hg) | Impinger<br>Outlet<br>Temp. | Orifice<br>Setting<br>(in H <sub>2</sub> O): | Initial Volume<br>Ob 4- 225<br>Gas Sample Volume                    | Dry G<br>Inlet             | Femperature at<br>as Meter<br>Outlet  | Notes                                   |
| NIA                                                                                      | 5                             | 0                         | (*F)                        | 20                                           | V <sub>m</sub> (ft <sup>3/</sup> L)<br>تنگ 24                       | 1 m in (17)<br>92          | BG<br>BG                              |                                         |
|                                                                                          | 10                            | O                         |                             | Z.0                                          | 072.24                                                              | 96                         | 86                                    |                                         |
|                                                                                          | 15                            | 0                         |                             | 2.0                                          | 0.76.71                                                             | 46                         | 8.7                                   |                                         |
|                                                                                          | 20                            | 0                         |                             | 20                                           | 080.ZI                                                              | 95                         | 87                                    |                                         |
|                                                                                          | 25                            | 0                         |                             | 20                                           | 084.20                                                              | 95                         | 87                                    |                                         |
|                                                                                          | 30                            | 0                         |                             | 2.0                                          | 083.36                                                              | 95                         | - 87                                  |                                         |
|                                                                                          | 35                            | Ì                         | •                           | 20                                           | 092.19                                                              | . 95                       | 86                                    |                                         |
|                                                                                          | 40                            | 0                         |                             | 2.0                                          | 096.20                                                              | 45                         | 85                                    | · · · · · · · · · · · · · · · · · · ·   |
| · · · · ·                                                                                | 45                            | 0                         |                             | 20                                           | 100.18                                                              | 95                         | 86                                    |                                         |
|                                                                                          | 50                            | 0.                        |                             | 2.0                                          | 104.18                                                              | 96                         | 85                                    | •                                       |
| ·                                                                                        | 55                            | 0                         |                             | 2.0                                          | 108.26                                                              | 96                         | 86                                    |                                         |
|                                                                                          | 60                            | 8                         |                             | 2.0                                          | 112.26                                                              | 94                         | 85                                    |                                         |
| otal                                                                                     |                               |                           |                             | 12                                           | (48.04)                                                             | 91                         | ·D                                    |                                         |
| verage                                                                                   |                               |                           | <i>/</i>                    | 4.]/                                         |                                                                     | · //                       | X                                     | <u> </u>                                |

....J

|                            |                     |                       |                   |             |                                    | I        |                                     |          |     |                   | (      |              |            |
|----------------------------|---------------------|-----------------------|-------------------|-------------|------------------------------------|----------|-------------------------------------|----------|-----|-------------------|--------|--------------|------------|
| 'ocation:                  | FLARE               | Rur                   | n:/               | Me          |                                    |          | Adsorbi<br>Data She                 |          | S   |                   | Pa     | ige_/o       | f          |
| Client Ed                  | ·                   | Project Nurr          | nb <b>er</b> 6671 |             | Cros                               | ss-S     | ection of Test L                    | ocation  | An  | nbient Temp. (*F) | ) ඊ    | 0            |            |
|                            | WIG OF              | Unit FLA              |                   |             |                                    |          | ·                                   |          | Ba  | r. Press. 97      | 4      | · (in. l     | Hg / mbar) |
| Date 6/3                   | · · · · · · · · · · | Indel/Outlet          | /Stack            |             |                                    |          |                                     | TOP      | _   | be Length Z'      | - 7) - |              |            |
| Meter Opera                |                     | 20                    |                   | _           | N                                  | <u> </u> |                                     |          |     |                   | then.  | ·            |            |
| Meter Box N                | lumber 7            | <u>-1-17</u>          |                   |             | ·                                  |          | []                                  | SIDE     |     | S Bag ID No.      |        | ·            | ·          |
| , <u>u</u>                 | ··· <u>·</u> ····   |                       |                   | ]           |                                    | $ \sim$  |                                     |          | - H | be No: /          |        | Type: CHARC  |            |
| _eak Rate Be               | efore . 01          | cf/m@                 | 10 "              | Hg          | Area (ft <sup>3</sup> )            | Po       | ort Len (in.)                       | Gas Flow |     | be No: Z          |        | Type: CHAR   |            |
| Leak Rate A                | fter .00            | cf/m @                | 10 "              | Hg          | .601                               |          | 31                                  | டு லா    |     | be No: <u>3</u>   |        | Type: CAYAR  |            |
| 3، ن د                     |                     |                       | л                 |             |                                    |          | 7                                   |          | St  | art Time: 928     | Jest/F | м Stop Time: | AM/PM      |
|                            |                     | 0.00                  | FI                | Ini         | tial Volume                        |          | Gas Sample                          | Bath     |     |                   | 2004   |              |            |
| Min/pt                     | Pump<br>Vacuum      | Orifice<br>Setting    | Flow<br>Rate      |             | tial Volume                        |          | Temperature a                       |          |     |                   | Note   | <b>.</b>     |            |
| ock Time                   | (in. Hg)            | (in H <sub>2</sub> O) | L/m               | GasS        | Sample Volum<br>V <sub>m</sub> (L) | )e       | Dry Gas Mete<br>T <sub>m</sub> (°F) | /        |     |                   | INOLE  | -            |            |
| .5                         | 0                   | Z.8                   | 1.0               |             | 37.14                              |          | 7.3                                 | NIA      |     |                   |        |              |            |
| 10                         | 0                   | 7.8                   | 1.0               | 51          | 41.55                              |          | 74                                  | NA       |     |                   |        |              |            |
| 15                         | 0                   | 2.8                   | 1.0               | 5'          | 16.35                              |          | 75                                  | lilp     |     |                   |        | · · · ·      |            |
| 20                         | 0                   | Z.8                   | 1.0               | 52          | 51. ZZ                             |          | 77                                  | NIA      |     |                   | _      |              |            |
| 25                         | 0                   | Z. 8                  | 10                |             | 6.00                               |          | 75                                  | NIA      |     |                   |        |              |            |
| 15<br>20<br>25<br>30<br>35 | 0                   | 2.8                   | 1.0               |             | 0.80                               |          | 79                                  | N/A      |     |                   |        |              |            |
| 35                         | 0                   | Z.8                   | 1.0               | 56          | 5.60                               |          | 80                                  | NA       |     |                   |        |              |            |
| 40                         | 0                   | Z.8                   | 1.0               | 57          | 1. 30                              |          | 81                                  | NIA      |     |                   |        |              |            |
| 45                         | 0                   | 2.8                   | 1.0               | 57          | 5.72                               |          | 8Z                                  | NIA      |     |                   |        |              |            |
| 50                         | 0                   | 2.8                   | 1.0               | 58          | 0.00                               |          | 83                                  | NA       |     |                   |        |              |            |
| 55                         | 0                   | 2.8                   | 1.0               | 58          | 4.50                               |          | 83                                  | NA       |     |                   |        |              | · .        |
| 60                         | 0                   | 2.6                   | 1.0               |             | 9,2Z                               |          | 83                                  | N/A      |     |                   |        |              |            |
| otal                       |                     | 60)                   | 6                 | 151         | AD .                               |          | 6                                   |          |     |                   |        |              |            |
| -verage                    |                     | 6.0/                  | (1.0)             | 750         | 0.38                               |          | (19)                                |          |     |                   |        |              |            |
|                            | •                   |                       |                   | $\subseteq$ |                                    |          |                                     |          |     |                   |        |              |            |

ı

| ocation                    | FURE<br>INLET              | Rur                                         | n: Z                |       |                            |          | Adsorbir<br>Data She                                                 |          | S           |                                         | Page_     | <u>/of_/_</u> .                        |
|----------------------------|----------------------------|---------------------------------------------|---------------------|-------|----------------------------|----------|----------------------------------------------------------------------|----------|-------------|-----------------------------------------|-----------|----------------------------------------|
| lient EL                   | - 1                        | Project Nurr                                | nber 6671           |       | Cros                       | ss-S     | ection of Test Lo                                                    | cation   | Ambient T   | emp. (°F)                               | 80        |                                        |
|                            | NOFICE                     | Unit FLA                                    |                     | _     |                            |          |                                                                      |          | Bar. Press. |                                         |           | (in. Hg /(mbai)                        |
|                            |                            | Inter/Outlet                                | /Stack              |       |                            |          | · a                                                                  | 7C/P     | Probe Leng  |                                         |           |                                        |
| leter Opera                |                            |                                             |                     |       | N -                        |          |                                                                      |          | Probe Ma    |                                         | flon      |                                        |
| Aeter Box N                | lumber 7                   | ¢1−V7                                       |                     |       |                            |          | <u> </u>                                                             | ; IAE    | IGS Bag ID  | No                                      |           | •                                      |
| íd ·                       |                            |                                             |                     |       | · *****                    |          |                                                                      |          | Tube No:    | 1                                       | Туре      | : CHARCOAL                             |
| eak Rate B                 | efore 01                   | cf/m@                                       | 10 "                | Hg    | Area (ft <sup>3</sup> )    | Po       | rt Len (in.)                                                         | Gas Flow | Tube No:    | 2                                       | Туре      | : CHMRCETAL                            |
|                            | fter ,001                  |                                             |                     | 'Hg   | .601                       |          | 3/4                                                                  | N our    | Tube No:    | 3                                       | Туре      | : CHANR WAL                            |
|                            |                            |                                             |                     |       | <b>L</b>                   |          | <u> </u>                                                             | J        | Start Tim   | e: /0 <u>.55</u>                        | AM/PM Sto | op Time: /155 AM/PM                    |
| Min/pt<br>Clock Time       | Pump<br>Vacuum<br>(in: Hg) | Orifice<br>Setting<br>(in H <sub>2</sub> O) | Flow<br>Rate<br>L/m | Gas S | tial Volume                |          | Gas Sample<br>Temperature al<br>Dry Gas Meter<br>T <sub>m</sub> (°F) | Temp     |             |                                         | Notes     |                                        |
| 5                          | D                          | Z·Z                                         | .E                  |       | V <sub>m</sub> (Ľ)<br>5. 1 | 1994<br> | 84                                                                   | N/A      |             | hán priser chí d                        |           |                                        |
|                            | $\ddot{\mathcal{O}}$       | 23                                          | . 8                 | 9     | 1.5                        |          | 83                                                                   | NIA      |             | ······                                  |           |                                        |
| 10<br>15                   | 0                          | 2.2.                                        | ·8                  |       | 1.95                       |          | 83                                                                   | NA       |             | · · · ·                                 |           |                                        |
| 20                         | 0                          | 2.2                                         | .0<br>,8            |       | . jD                       |          | 83                                                                   | NIA      |             |                                         |           | ······································ |
|                            | 0                          | 1                                           |                     |       | .50                        |          | 33                                                                   | NIA      |             |                                         |           |                                        |
| 25                         |                            | 2.2                                         | ,8                  | }     |                            |          |                                                                      |          |             |                                         |           |                                        |
| 30                         | 0                          | 24                                          | · 8                 |       | .60                        |          | 83                                                                   | NA       |             |                                         |           | <u></u>                                |
| 35                         | 0                          | Z.4                                         | . 8                 | 31    | .00                        |          | 84                                                                   | NA       |             | • · · · · · · · · · · · · · · · · · · · |           |                                        |
| 40                         | 0                          | Z.4                                         | .8                  | 34    | .90                        |          | 92                                                                   | NA       |             |                                         |           |                                        |
| 45                         | 0.                         | 2.4                                         | . 8                 | 39    | .10                        |          | EE.                                                                  | NA       |             |                                         |           |                                        |
| 30<br>35<br>40<br>45<br>50 | 0                          | 2.4                                         | . 3                 | 43    | .00                        |          | 8Z                                                                   | NA       |             |                                         |           |                                        |
| 55                         | 0                          | 2.2                                         | . 8                 | 46    | .90                        |          | 81                                                                   | NA       |             |                                         |           |                                        |
| ΰŨ                         | 0                          | 2.Z                                         | .7                  | 51    | . 85                       |          | 8Z                                                                   | NA       |             |                                         |           |                                        |
| otal                       |                            | 67                                          |                     | B     | 1.85)                      |          |                                                                      |          |             |                                         |           |                                        |
| verage                     |                            | (6.5)                                       | (.8)                |       |                            |          | (84)                                                                 |          |             |                                         |           |                                        |
|                            | • • • • • • •              |                                             |                     |       |                            | ,        |                                                                      |          |             |                                         |           | ····                                   |

|                                                                                        |                                 |                                             |                     | :     |                                                                | :    |                                                              |                                                                       |                |                                                                                                                                                                                     |                                       |  |
|----------------------------------------------------------------------------------------|---------------------------------|---------------------------------------------|---------------------|-------|----------------------------------------------------------------|------|--------------------------------------------------------------|-----------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
| _ocation:Run: Method 18 - Adsorbing Tubes<br>_ocation:Run: Field Data Sheet Page_/of_/ |                                 |                                             |                     |       |                                                                |      |                                                              |                                                                       |                |                                                                                                                                                                                     |                                       |  |
|                                                                                        | 055<br>00714<br>8/93<br>ator po | het/Outlet                                  | nf.f.               |       | Cross-Section of Test Location                                 |      |                                                              |                                                                       | Ba<br>Pr<br>Pr | Ambient Temp. (°F)       80         Bar. Press.       974       (in. Hg / mbar)         Probe Length       N/17         Probe Material       N/17         IGS Bag ID No.       N/17 |                                       |  |
| Yd<br>Leak Rate Before . 001 cf/m @ 1/0 "Hg<br>Leak Rate After . 001 cf/m @ 1 / "Hg    |                                 |                                             |                     |       | Area (ft <sup>3</sup> ) Port Len (in.)<br>. ( $_{0}$ ) $3'/4'$ |      | Gas Flow<br>IN OUT                                           | Tube No: $/$<br>Tube No: $Z$<br>Tube No: $3$<br>Start Time: $/2^{23}$ |                | Type: CHIRCOPL<br>Type: CHIRCOPL<br>Type: CHIRCOPL<br>Stop Time: / 35 AM/PM                                                                                                         |                                       |  |
| Min/pt<br>Clock Time                                                                   | Pump<br>Vacuum<br>(in. Hg)      | Orifice<br>Setting<br>(In H <sub>2</sub> O) | Flow<br>Rate<br>L/m | Gas S | tial :Volume<br>Sample Volum<br>Vm (L)                         | E Te | Gas Sample<br>mperature<br>Ƴ Gas Meto<br>T <sub>m</sub> (°F) | at Bath<br>er Temp<br>•F                                              |                | No                                                                                                                                                                                  |                                       |  |
| 5<br>10                                                                                | 0<br>0                          | 2.Z<br>2.4                                  | - ぢ<br>- ど          | 4     | 1, .36<br>55                                                   |      | <u>81</u><br>82                                              |                                                                       |                |                                                                                                                                                                                     |                                       |  |
| <u>15</u><br>20                                                                        | 0                               | 2.4<br>2.2                                  | .E<br>.8            | 13    | .55                                                            | _    | 82<br>82                                                     |                                                                       |                |                                                                                                                                                                                     |                                       |  |
| 25                                                                                     | 0                               | Z.4<br>Z.4<br>Z.4                           | .8<br>.8<br>.0      | 20    | 0.0                                                            |      | 81<br>81                                                     |                                                                       |                |                                                                                                                                                                                     |                                       |  |
| 30                                                                                     | 0                               | 2.7<br>2.7                                  | .0<br>.0<br>.8      | 20    | 1.4 <u>3</u><br>.60                                            |      | 81<br>80                                                     |                                                                       |                |                                                                                                                                                                                     |                                       |  |
| 40<br>45<br>50                                                                         | 0                               | Z.H<br>Z.H                                  | .0<br>.2<br>.8      | 37    | 4. 75<br>2.75                                                  |      | 80<br>79                                                     |                                                                       |                |                                                                                                                                                                                     |                                       |  |
| 55<br>W                                                                                | 0                               | 2.4<br>2.2                                  | .0<br>.0<br>.7      | 47    | 7.54                                                           |      | 30<br>80                                                     |                                                                       |                |                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · · |  |
| Total<br>\verage                                                                       | (                               | 2.4)                                        |                     |       | .13                                                            | 7    | Ê                                                            |                                                                       |                |                                                                                                                                                                                     |                                       |  |
|                                                                                        |                                 |                                             |                     |       |                                                                | C    |                                                              |                                                                       |                |                                                                                                                                                                                     |                                       |  |

.

## Volatile Organic Carbon by Method 25

| Client: ECRS               | Project #: 6671                 |
|----------------------------|---------------------------------|
| Plant: MADISON Wisc.       | Sample Location: Inter To FLARC |
| Operator: KultuleFALECHT   | Date: 6/8/93                    |
| Run Number:                | Sample ID:                      |
| Tank Number:               | Trap Number:                    |
| Sampling Train ID#: 85/3 B | % CO2:                          |
| Side: Left / Right         | % H2O:                          |
| Start Time: ?:22 AM        | Stop Time: 10 22 AM             |

|                   | Tank                       | Vacuum              | Barometric Pressure | Ambient Temperature |  |
|-------------------|----------------------------|---------------------|---------------------|---------------------|--|
| Pressure Readings | Manometer<br>mm Hg / in Hg | Gauge<br>mm Hg (RHg | mm Hg / in Hg       | сФ                  |  |
| Pre Test          | 720                        | 27.8                | 974                 | 84.0                |  |
| Post Test         | 196                        | 7.0                 | 974                 | 84.8                |  |

| Leak Rate | Tank *<br>Allowable | (in Hg)<br>Actual | Trap<br>black ball reading |
|-----------|---------------------|-------------------|----------------------------|
| Pre Test  |                     | 27.8              | 0                          |
| Post Test |                     | 1. c              | σ                          |

$$\Delta P = .01 \frac{F P b \emptyset}{V'}$$

 $\Delta P = Pressure Change (in Hg)$ 

F = Sampling Flow Rate cc / min

Pb = Barometric Pressure (in Hg)

Ø = Leak Check Time Period (min)

Vt = Sample Train Volume (cc); approx 100 cc

| Clock<br>Time | Gauge<br>Vacuum<br>( in Hg) | Flowmeter<br>Setting<br>(silver ball) | Probe Temp<br>C / F | Filter Temp<br>C / F | Notes |
|---------------|-----------------------------|---------------------------------------|---------------------|----------------------|-------|
| . 5           | 26.0                        | 45                                    | · NA                | NA                   |       |
| 10            | 25.0                        | 45                                    | r                   | i                    |       |
| 15            | 23.5                        | 55                                    |                     |                      |       |
| 20            | 22.0                        | 55                                    |                     |                      |       |
| 25            | 200                         | 55                                    |                     |                      |       |
| 20            | 18.8                        | 50                                    |                     |                      |       |
| 35            | 16.8                        | 60                                    |                     |                      |       |
| 40            | 15.0                        | 60                                    |                     |                      |       |
| 45            | 13.8                        | ico                                   |                     |                      |       |
| 50            | 11.D                        | 40                                    |                     |                      |       |
| 55            | 9.0                         | 60                                    |                     | <i>w</i>             |       |
| 60            | 7.0                         | 60                                    |                     |                      |       |
|               |                             |                                       |                     |                      |       |
|               |                             |                                       |                     |                      |       |

**Clean Air Engineering** 

| Client: <u>EC</u>                                                                                           | <u>K'S</u>                                                                                                                                                                                                                              | <u></u>                               |                                                | Project #:                                                                                                                                       |                 |                                 |  |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------|--|
| Plant: Mr.                                                                                                  | D'. SOLI                                                                                                                                                                                                                                |                                       |                                                | Sample Locatio                                                                                                                                   | n: <u>Flake</u> | INET                            |  |
| Operator: <u></u>                                                                                           | SP-TWE                                                                                                                                                                                                                                  | RECHT                                 |                                                | Date: 6-8-                                                                                                                                       | 93              |                                 |  |
| Run Number:                                                                                                 | 2                                                                                                                                                                                                                                       |                                       |                                                | Sample ID:                                                                                                                                       |                 |                                 |  |
| Tank Number                                                                                                 | Client: $\underline{\mathcal{LCRS}}$<br>Plant: $\underline{\mathcal{MRTSOM}}$<br>Operator: $\underline{\mathcal{KRTWERSECHT}}$<br>Run Number: $\underline{2}$<br>Tank Number: $\underline{47206}$<br>Sampling Train ID#: <u>B53 1 B</u> |                                       |                                                |                                                                                                                                                  |                 |                                 |  |
| Sampling Trai                                                                                               | in ID#:_ <u></u>                                                                                                                                                                                                                        | 31 3                                  |                                                | % CO2:                                                                                                                                           |                 | <u></u>                         |  |
|                                                                                                             |                                                                                                                                                                                                                                         |                                       |                                                | % H2O:                                                                                                                                           |                 |                                 |  |
| Start Time:                                                                                                 |                                                                                                                                                                                                                                         | 5 <u>4</u> m                          |                                                | Stop Time:                                                                                                                                       | 1:55 PM         |                                 |  |
|                                                                                                             | r-                                                                                                                                                                                                                                      | Tank V                                | acuum                                          | Barometri                                                                                                                                        | c Pressure      | Ambient Temperat                |  |
| Tank Vacuum           Pressure Readings         Manometer         Gau           mm Hg / in Hg         mm Hg |                                                                                                                                                                                                                                         |                                       |                                                |                                                                                                                                                  |                 | C/F                             |  |
| Pre Test 112                                                                                                |                                                                                                                                                                                                                                         | 27. 2                                 | 97:4                                           | mb                                                                                                                                               | 84.0            |                                 |  |
| Post Test                                                                                                   | Post Test 192                                                                                                                                                                                                                           |                                       | 70                                             | 973                                                                                                                                              |                 | 87.0                            |  |
| Pre Test<br>Post Test                                                                                       | Allowable                                                                                                                                                                                                                               | 27.8<br>7.0                           | black ball reading                             | $\Delta P$ = Pressure Change (in<br>F = Sampling Flow Rate c<br>Pb = Barometric Pressure<br>Ø = Leak Check Time Peri<br>Vt = Sample Train Volume |                 | c / min<br>(in Hg)<br>iod (min) |  |
| Clock<br>Time                                                                                               | Gauge<br>Vacuum<br>( in Hg)                                                                                                                                                                                                             | Flowmeter<br>Setting<br>(silver ball) | Probe Temp<br>C / F                            | Filter Temp<br>C / F                                                                                                                             |                 | Notes                           |  |
| 5                                                                                                           | 25.f                                                                                                                                                                                                                                    | 60                                    | An                                             | NA                                                                                                                                               |                 |                                 |  |
| 9                                                                                                           | 13.5                                                                                                                                                                                                                                    | 40                                    |                                                |                                                                                                                                                  |                 |                                 |  |
|                                                                                                             | 22.0                                                                                                                                                                                                                                    | 55                                    |                                                |                                                                                                                                                  | ļ               |                                 |  |
|                                                                                                             | 20.6                                                                                                                                                                                                                                    | 55                                    |                                                |                                                                                                                                                  |                 |                                 |  |
| 25                                                                                                          | 19.0                                                                                                                                                                                                                                    | 55                                    | <u>                                       </u> |                                                                                                                                                  |                 |                                 |  |
| 30<br>35                                                                                                    | 17.~                                                                                                                                                                                                                                    | 51                                    |                                                |                                                                                                                                                  |                 |                                 |  |
|                                                                                                             | 15.Z                                                                                                                                                                                                                                    | 60                                    | <u> </u>                                       |                                                                                                                                                  |                 |                                 |  |
| 40                                                                                                          | 13.2                                                                                                                                                                                                                                    | 60                                    |                                                |                                                                                                                                                  |                 |                                 |  |
| 45 KU                                                                                                       | 12/01/                                                                                                                                                                                                                                  | 8 55                                  | +                                              |                                                                                                                                                  |                 |                                 |  |
|                                                                                                             | <u>10. D</u>                                                                                                                                                                                                                            | 55                                    | ╆┈┢╴┈                                          |                                                                                                                                                  | <br>            |                                 |  |
| 55                                                                                                          | 8,2                                                                                                                                                                                                                                     | <u>50</u><br>30                       | <u>∔</u> -↓                                    |                                                                                                                                                  |                 |                                 |  |
| 60                                                                                                          | 1.0                                                                                                                                                                                                                                     |                                       |                                                |                                                                                                                                                  |                 |                                 |  |

Clean Air Engineering

•

## Volatile Organic Carbon by Method 25

| Client: <u>ICRS</u>       | Project #: 6671     |
|---------------------------|---------------------|
| Plant: MADISON, WSC.      | Sample Location:    |
| Operator: KURT WEPPRECHT  | Date: <u>6-8-93</u> |
| Run Number: 3             | Sample ID:          |
| Tank Number: $4729$       | Trap Number:        |
| Sampling Train ID#: 05138 | % CO2:              |
| Side: Left Right          | % H2O:              |
| Start Time:               | Stop Time: 1:24 pm  |

| Desseure Desettere |                          | Vacuum                | Barometric Pressure | Ambient Temperature |  |
|--------------------|--------------------------|-----------------------|---------------------|---------------------|--|
| Pressure Readings  | Manemeter<br>mm Hg in Hg | Gauge<br>mm Hg( in Hg | mm Hg / in Hg       | C/F                 |  |
| Pre Test           | 720                      | 27.8                  | 974 mb              | 84.0                |  |
| Post Test          | 132                      | 5.0                   | 972 mb              | 82.                 |  |

| Leak Rate | Tank *<br>Allowable | (in Hg)<br>Actual | <b>Trap</b><br>black ball reading |
|-----------|---------------------|-------------------|-----------------------------------|
| Pre Test  |                     | 27.8              | 0                                 |
| Post Test |                     | 5.0               | D                                 |

$$\Delta P = .01 \frac{F Pb \emptyset}{Vt}$$

 $\Delta P$  = Pressure Change (in Hg) F = Sampling Flow Rate cc / min

Pb = Barometric Pressure (in Hg)

Ø = Leak Check Time Period (min)

Vt = Sample Train Volume (cc); approx 100 cc

| Clock<br>Time | Gauge<br>Vacuum<br>( in Hg) | Flowmeter<br>Setting<br>(silver ball) | Probe Temp<br>C / F | Filter Temp<br>C / F | Notes |
|---------------|-----------------------------|---------------------------------------|---------------------|----------------------|-------|
| - 5           | 250                         | 65                                    | Ne                  | NA                   |       |
| 10            | 23.0                        | 65                                    |                     |                      |       |
| 15            | 21.0                        | 62                                    |                     |                      |       |
| 23            | 19.0                        | 60                                    |                     |                      | · .   |
| 25            | 17.0                        | 62                                    |                     |                      |       |
| 30            | 15.0                        | 60                                    |                     |                      |       |
| 35            | 13.0                        | 60                                    |                     |                      |       |
| 40            | 11.0                        | 55                                    |                     |                      |       |
| 45            | 9.4                         | 55                                    |                     |                      |       |
| 50            | R D                         | 55                                    |                     | Y                    |       |
| 55            | 6.5                         | 55                                    | Y                   |                      |       |
| 60            | 3.0                         | 55                                    |                     |                      |       |
|               |                             |                                       |                     |                      |       |
|               |                             |                                       |                     |                      |       |

**Clean Air Engineering** 

Book No.

Post Bak. (Pre) (Temp) (VAC.) TANKI BAR Temip VAC **.**... 47171 981mb 74.6 710mm 982 75.2° 1 2mm 98/mb 74.6 7/6mm 98Z 4/1/57 75.2 T O \_\_\_\_ 98/mb 74.6 724mm 47113 98z 75.2°5 28.mm \_\_\_\_\_\_,ski - Runt 1 TANK 4-T17/ Run#2-TANK 47157 Runt3 THAK 47/13 368 348 To Page No..

| ر هادها از بر العاديونوردو اورو دور دور العديد.<br>ا | والمراجعة والمتحد والمحمول والمحار المراجع والمحار المراجع والمحار والمراجع | ì |
|------------------------------------------------------|-----------------------------------------------------------------------------|---|
| Care Section                                         |                                                                             | : |

Dete

Invented by

## Field Data Printout

| Location: Flare Inlet         | Method: 1,2,4                  | Bar. Press. (in. Hg): 28.76            |
|-------------------------------|--------------------------------|----------------------------------------|
| Test Run: 1                   | Testing Type: Flow & Wet       | Assumed Moisture (%):                  |
| Client: ECRS                  |                                |                                        |
| Project No: 6671              |                                | Nozzle Diameter (D <sub>n</sub> ):     |
| Test Date: 6/08/93            |                                | O <sub>2</sub> (dry volume %): 2.56    |
| Meter ΔH@: 1.7862             | Area (ft <sup>2</sup> ): 0.150 | CO <sub>2</sub> (dry volume %): 32.6   |
| Meter Y <sub>d</sub> : 0.9865 |                                | Start Time (approx.): 09:22            |
| Pitot C <sub>p</sub> : 0.99   |                                | Stop Time (approx.): 10:22             |
| Static P: 6.4                 |                                | H <sub>2</sub> O (condensate, ml): 4.0 |
|                               |                                | H <sub>2</sub> O (silica, gm): 14.0    |
|                               |                                |                                        |

ſ

| Traverse | Run    | Pitot                  | Sample                 | Metered            | Stack            | Dry Ga            | s Meter            | √ap,                    | Volume             |
|----------|--------|------------------------|------------------------|--------------------|------------------|-------------------|--------------------|-------------------------|--------------------|
| Point    | Time   | ΔP,                    | Δн                     | (ft <sup>3</sup> ) | T <sub>s</sub> · | T <sub>m in</sub> | T <sub>m out</sub> | (calculated)            | (caiculated)       |
|          | 0.0    | (in. H <sub>2</sub> O) | (in. H <sub>2</sub> O) | 967.14             | (°F)             | (°F)              | (°F)               | (vin. H <sub>2</sub> O) | (ft <sup>3</sup> ) |
| 1-01     | 5.0    | 0.20                   | 2.0                    | 971.15             | 94               | 86                | 77                 | 0.45                    | 4.01               |
| 1-02     | 10.0   | 0.31                   | 2.0                    | 975.16             | 93               | 91                | 78                 | 0.56                    | 4.01               |
| 1-03     | 15.0   | 0.35                   | 2.0                    | 979.15             | 94               | 95                | 81                 | 0.59                    | 3.99               |
| 1-04     | 20.0   | 0.34                   | 2.0                    | 983.18             | 94               | 96                | 82                 | 0.58                    | 4.03               |
| 1-05     | 25.0   | 0.33                   | 2.0                    | 987.21             | 94               | 98                | 84                 | 0.57                    | 4.03               |
| 1-06     | 30.0   | 0.27                   | 2.0                    | 991.36             | 94               | 98                | 85                 | 0.52                    | 4.15               |
| 2-01     | 35.0   | 0.24                   | 2.0                    | 995.33             | 93               | 99                | 87                 | 0.49                    | 3.97               |
| 2-02     | 40.0   | 0.32                   | 2.0                    | 999.46             | 93               | 99                | 87                 | 0.57                    | 4.13               |
| 2-03     | 45.0   | 0.33                   | 2.0                    | 1003.45            | 93               | 100               | 88                 | 0.57                    | 3.99               |
| 2-04     | 50.0   | 0.32                   | 2.0                    | 1007.51            | 93               | 100               | 89                 | 0.57                    | 4.06               |
| 2-05     | 55.0   | 0.32                   | 2.0                    | 1011.61            | 94               | 101               | <b>90</b> .        | 0.57                    | 4.10               |
| 2-06     | 60.0   | 0.32                   | 2.0                    | 1015.97            | 94               | 99                | 89                 | 0.57                    | 4.36               |
| Final    | . 60.0 |                        | 2.0                    | 48.83              | 94               | 9                 | 1                  | 0.55                    |                    |

## Field Data Printout

| Location: Inlet Flare         | Method: 1,2,4            | Bar. Press. (in. Hg): 28.76            |
|-------------------------------|--------------------------|----------------------------------------|
| Test Run: 2                   | Testing Type: Flow & Wet | Assumed Moisture (%):                  |
| Client: ECRS                  |                          |                                        |
| Project No: 6671              |                          | Nozzle Diameter (D <sub>n</sub> ):     |
| Test Date: 6/08/93            | •                        | O <sub>2</sub> (dry volume %): 1.86    |
| Meter ΔH@: 1.7862             | Area (ft²): 0.150        | CO <sub>2</sub> (dry volume %): 34.9   |
| Meter Y <sub>d</sub> : 0.9865 |                          | Start Time (approx.): 10:55            |
| Pitot C <sub>p</sub> : 0.99   |                          | Stop Time (approx.): 11:55             |
| Static P: 6.6                 |                          | H <sub>2</sub> O (condensate, ml): 9.0 |
|                               |                          | H <sub>2</sub> O (silica, gm): 12.0    |

ę,

| Traverse | Run  | Pitot                  | Sample                 | Metered            | Stack | Dry Ga            | s Meter            | √∆P <sub>s</sub> | Volume             |
|----------|------|------------------------|------------------------|--------------------|-------|-------------------|--------------------|------------------|--------------------|
| Point    | Time | ΔP.                    | ΔН                     | (ft <sup>3</sup> ) | Τ     | T <sub>m in</sub> | T <sub>m out</sub> | (calculated)     | (calculated)       |
|          | 0.0  | (in. H <sub>2</sub> O) | (in. H <sub>2</sub> O) | 15.73              | (°F)  | (°F)              | (°F)               | (√in. H₂O)       | (ft <sup>3</sup> ) |
| 1-01     | 5.0  | 0.20                   | 2.0                    | 20.34              | 93    | 97                | 90                 | 0.45             | 4.62               |
| 1-02     | 10.0 | 0.18                   | 2.0                    | 24.34              | 92    | 98                | 90                 | 0.42             | 4.00               |
| 1-03     | 15.0 | 0.25                   | 2.0                    | 28.45              | 94    | 96                | 90                 | 0.50             | 4.11               |
| 1-04     | 20.0 | 0.31                   | 2.0                    | 32.37              | 93    | 96                | 89                 | 0.56             | 3.92               |
| 1-05     | 25.0 | 0.33                   | 2.0                    | 36.48              | 92    | 97                | 89                 | 0.57             | 4.11               |
| 1-06     | 30.0 | 0.34                   | 2.0                    | 40.26              | 93    | 97                | 89                 | 0.58             | 3.78               |
| i 1-07   | 35.0 | 0.34                   | 2.0                    | 44.35              | 92    | 98                | 89                 | 0.58             | 4.09               |
| 1-08     | 40.0 | 0.30                   | 2.0                    | 48.32              | 93    | 98                | 89                 | 0.55             | 3.97               |
| 2-01     | 45.0 | 0.21                   | 2.0                    | 52.31              | 92    | 97                | 89                 | 0.46             | 3.99               |
| 2-02     | 50.0 | 0.35                   | 2.0                    | 56.27              | 93    | 93                | 87                 | 0.59             | 3.96               |
| 2-03     | 55.0 | 0.36                   | 2.0                    | 60.04              | 94    | 92                | 85                 | 0.60             | 3.77               |
| - 2-04 - | 60.0 | 0.37                   | 2.0                    | 64.19              | 93    | 92                | 87                 | 0.61             | 4.15               |
| 2-05     | :    | 0.37                   |                        |                    | 94    |                   |                    | 0.61             |                    |
| 2-06     |      | 0.35                   | •                      | •                  | 94    |                   |                    | 0.59             |                    |
| 2-07     |      | 0.32                   |                        |                    | 93    |                   |                    | 0.57             |                    |
| 2-08     |      | 0.29                   |                        |                    | 93    |                   |                    | 0.54             |                    |
| Final    | 60.0 |                        | 2.0                    | 48.47              | 93    | 9                 | 2                  | 0.55             |                    |

#### Field Data Printout

Bar. Press. (in. Hg): 28.76 Location: Flare Inlet Method: 1,2,4 Testing Type: Flow & Wet Assumed Moisture (%): Test Run: 3 **Client: ECRS** Nozzle Diameter (D<sub>n</sub>): i Project No: 6671 Test Date: 6/08/93 O2 (dry volume %): 1.65 CO2 (dry volume %): 35.0 Area (ft<sup>2</sup>): 0.150 Meter AH@: 1.7862 Meter Y<sub>d</sub>: 0.9865 Start Time (approx.): 12:23 Stop Time (approx.): 13:33 Pitot C<sub>p</sub>: 0.99 H<sub>2</sub>O (condensate, ml): 2.0 Static P: 6.5 H<sub>2</sub>O (silica, gm): 14.0

| Traverse | Run  | Pitot                  | Sample                 | Metered            | Stack          | Dry Ga            | s Meter            | √∆P <sub>s</sub> | Volume             |
|----------|------|------------------------|------------------------|--------------------|----------------|-------------------|--------------------|------------------|--------------------|
| PoInt    | Time | ΔP,                    | Δн                     | (ft <sup>3</sup> ) | T <sub>s</sub> | T <sub>m In</sub> | T <sub>m out</sub> | (calculated)     | (calculated)       |
|          | 0.0  | (in. H <sub>2</sub> O) | (in. H <sub>2</sub> O) | 64.23              | (°F)           | (°F)              | (°F)               | (√in. H₂O)       | (ft <sup>3</sup> ) |
| 1-01     | 5.0  | 0.17                   | 2.0                    | 68.24              | 91             | 92                | 86                 | 0.41             | 4.02               |
| 1-02     | 10.0 | 0.30                   | 2.0                    | 72.24              |                | 96                | · 86               | 0.55             | 4.00               |
| 1-03     | 15.0 | 0.35                   | 2.0                    | 76.41              | 93             | 96                | 87                 | 0.59             | 4.17               |
| 1-04     | 20.0 | 0.26                   | 2.0                    | 80.21              |                | 95                | 87                 | 0.51             | 3.80               |
| 1-05     | 25.0 | 0.31                   | 2.0                    | 84.20              | 93             | 95                | 87                 | 0.56             | 3.99               |
| 1-06     | 30.0 | 0.35                   | 2.0                    | 88.36              |                | 95                | 87                 | 0.59             | 4.16               |
| 1-07     | 35.0 | 0.37                   | 2.0                    | 92.19              | 93             | 95                | 86                 | 0.61             | 3.83               |
| 1-08     | 40.0 | 0.37                   | 2.0                    | 96.20              |                | 95                | 85                 | 0.61             | 4.01               |
| 2-01     | 45.0 | 0.17                   | 2.0                    | 100.18             | 92             | 95                | 86                 | 0.41             | 3.98               |
| 2-02     | 50.0 | 0.31                   | 2.0                    | 104.18             |                | . 96              | 85                 | 0.56             | 4.00               |
| 2-03     | 55.0 | 0.34                   | 2.0                    | 108.26             | 93             | 96                | 86                 | 0.58             | 4.08               |
| . 2-04   | 60.0 | 0.35                   | 2.0                    | 112.26             |                | 94                | 85                 | 0.59             | 4.00               |
| - 2-05   | 1    | 0.34                   |                        | Į                  | 93             |                   |                    | 0.58             |                    |
| · 2-06   | · ·  | 0.35                   |                        |                    |                |                   |                    | 0.59             |                    |
| 2-07     |      | 0.36                   |                        |                    | 93             |                   |                    | 0.60             |                    |
| 2-08     |      | 0.32                   |                        |                    |                |                   |                    | 0.57             |                    |
| Final    | 60.0 |                        | 2.0                    | 48.04              | 93             | 9                 | 1                  | 0.56             |                    |

## CERTIFICATE OF ANALYSIS

| CUSTOMER: ECRS                                      | DATE RECEIVED:    | JUNE 8, 1993          |
|-----------------------------------------------------|-------------------|-----------------------|
| SAMPLE TYPE: STAINLESS STEEL CANNISTERS             | JOB/P.O.NUMBER:   | 85-6671               |
| PARAMETERS: NITROGEN, OXYGEN &<br>CARBON DIOXIDE    | DATE REPORTED:    | JULY 8, 1993          |
| MARKS: 85227-01-03                                  |                   |                       |
|                                                     | `                 |                       |
| LABORATORY - FIELD NITROONNUMBER IDENTIFICATION (%) | GEN OXYGEN<br>(%) | CARBON DIOXIDE<br>(%) |

| 85240-01 | INLET RUN 1 | 20.2 | 2.56 | 32.6 |
|----------|-------------|------|------|------|
| 85240-02 | INLET RUN 2 | 18.6 | 1.86 | 34.9 |
| 85240-03 | INLET NUN 3 | 17.9 | 1.65 | 35.0 |

Analyst: Reviewed by: Gary Zapol O Analytical Chemist

€<sup>†</sup>

.

**A**I Patrick Clark, P.E. Manager, VOC Services



| CUSTOMER: ECRS                       | DATE RECEIVED: JULY 6, 1993  |
|--------------------------------------|------------------------------|
| SAMPLE TYPE: CHARCOAL TUBES          | JOB/P.O.NUMBER: 85-6671      |
| PARAMETERS: VINYL CHLORIDE & BENZENE | DATE REPORTED: JULY 21, 1993 |

MARKS: 85248-01-12

| LABORATORY<br>NUMBER | FIELD<br>IDENTIFICATION | VINYL CHLORIDE<br>(Mg) | BENZENE<br>(Mg) |
|----------------------|-------------------------|------------------------|-----------------|
| 85240-01,02,03       | BLANK                   | <0.003                 | <0.002          |
| 85240-04,05,06       | INLET RUN 1             | <0.003                 | 0.401           |
| 85240-07,08,09       | INLET RUN 2             | <0.003                 | 0.339           |
| 85240-10,11,12       | INLET RUN 3             | <0.003                 | 0.322           |

Analyst: Reviewed by: Gary Zap Analytical Chemist

Patrick Clark, P.E. Manager, VOC Services

Method 25C Results

Client: D85 - ECRS Landfill: Madison, W1 Date Sampled: 6/08/93

· . ·

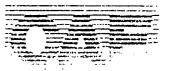
1

CAE Job # 6671 D85 Lab # 85234 Reported: 6/30/93

i

|         |          | l.N.s      |
|---------|----------|------------|
|         | i        | Nonmethane |
|         | Sample - | carbons    |
| Source  | Run ID # | (ppmv asC) |
| Outlets |          | 1207.2     |
|         | Run-2    | 1558.3     |
|         | Run-3    | 1271.1     |

compiled By: /homas () / 30/93


Page 1

Approved By: 6.1. Un: 6/30/93

CAE JOB # 6671 Landfill: Madison, WI Client: D85 - ECRS Sample Location: Disk/File 85180DET (In/Out) Inlet Page No. 2 Reported: 6/30/93 Preliminary Data-6/08/93 6/08/93 6/08/93 Sample Date .i Run No. Run-2 Kun-3 Kun-1 Tank No. 41154 4T206 4129 3998 Tank Volume V(cc) 4035 4041 Field Data------720 -712 -720 **F.L.A** (mm Hg) TTI (٢) 84 84 84 (mm Hg) **PP1** 731 731 731 -196 -192  $\mathbf{b}\mathbf{L}$ (mm Hg) -132TT 85 82 8Ż (F) ЧY 731 730 729 (mm Hg) PT - Lab (mm Hg) -231 -213-158 TT - Lab (ド) 76 76 76 Pb - Lab 744 744 744 (mm Hg) 386 607 PTF (mm Hg) 318 TTF 76 76 76 (F) PPE (mm Hg) 744 744 744 ٧s (cc) 2697 2662 3039 Dil. Factor 2.059 2.200 2.328 Ba (ppmv C) **Ú.4** Ú.8 3.1 Ctm 1 (ppmv C) 566.5 702.5 533.8 Ctm 2 (ppmv C) 582.3 710.5 551.1 Ctm 3 (ppmv C) 611.0 714.6 562.1 586.6 709.2 549.Ú Avg. Ctm (ppmv C) RSD Ctm (%) 3.8 Ú.Ý 2.6 1558.3 Ct (ppmv C) 1207.2 1271.1

| <br>                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br>                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <br>                                                                                                           | The state of the s |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <br>The second second                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <br>                                                                                                           | The second secon |
| <br>                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Landtill: Madison, WI CAE Job # 6671 Client: D85 - ECRS Sample Location: Flare Disk/File 851800ET (in/Out) Outlet Reported: 6/30/93 Page No. 3 Preliminary Data-----6/08/93 6/08/93 6/08/93 Sample Date Run-2 Run-3 Run No. Run-1 Tank No. 41157 41171 41113 lank Volume V(cc) 4000 4033 4021 Field Data-----\_ \_ \_ \_ (mm Hg) -710 -716 -724 P11 TTT (F) 15 75 - 75 (mm Hg) 736 736 736 PP1  $\mathbf{P1}$ -2 0 -28 (mm Hg) 75 75 Τľ (+) 15 ۲b 737 737. (mm Hg) 731 PT - Lab (mm Hg) -7 -8 -35 II = Lab16 16 -(+) 16 Pb - Lab 744 744 744 (mm Hg) PIF (mm Hg) 388 396 396 11F (F) 76 76 -76 PbF (mm Hg) 744 744 744 ٧s 3755 3640 (cc) 3683 Dil. Factor 1.594 1.587 1.633



## **APPENDIX 4**

## LEACHATE ANALYTICAL RESULTS





Laboratory Services 1230 Lange Ct. Baraboo, WI 53913 608-356-2760

mğ/Ĺ

mg/L

#### CANBLYS CALINGORT E

ECRS BRIAN HEGGE 2201 VONDRON ROAD

MADISON, WI 53704

Silver, Total

Client I.D. No.:1184 Work Order No.:9303000336 Project Name:REFUSE HIDEAWAY Project Number:C6024.01 Arrival Temperature:ON ICE

#### Sample <u>I.D. #:</u>7447 Sample Description:LEACHATE Date Sampled:03/22/93 Analyte Result Units Cyanide, Total Lead, Total Mercury, Total, Low Level Elevated detection limit due to matrix 50.8 0.02 ug/L. mg/L < 0.0002 mg/L interference. Metals Sample Preparation Nickel, Total Oil and Grease 3/26/93 0.06 mg/L mg/L 9.0 Selenium, Total, Low Level <2 ug/L 7.68 pH (Lab) Hexavalent Chromium EXCEEDED HOLDING TIME ug/L 141 Cadmium, Total Chromium, Total Copper, Total Zinc, Total 0.005 mg/L mg/L mg/L

0.07 0.009 0.036

< 0.5

Submitted By: Wisconsin DNR Laboratory Certification Number: 157066030 DHSS Certification Number MW0289



JUL 18 1993

Laboratory Services 1230 Lange Ct. Baraboo, WI 53913 608-356-2760

TERRA ENGINEER

TERRA ENGINEERING & CONSTRUCT. KIRK SOLBERG 2201 VONDRON ROAD MADISON, WI 53704 Client I.D. No.:1184 Work Order No.:9306000022 Project Name:REFUSE HIDEAWAY Project Number:C6024.01 Arrival Temperature:N/A

| <b>Sample</b><br><u>I.D. #:</u> 15551                                                                                                                                                                                                                                                   | Sample<br>Description:LEACHATE |                                                                                                                                       | Date                                                                         | Sampled:06/01/93 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------|
| <u>Analyte</u>                                                                                                                                                                                                                                                                          |                                | Result                                                                                                                                | Units                                                                        | . <u></u> .      |
| Cadmium, Total<br>Copper, Total<br>Hexavalent Chromium<br>Lead, Total<br>Mercury, Total, Low<br>Metals Sample Prep<br>Nickel, Total<br>Oil and Grease<br>Zinc, Total<br>PH (Lab)<br>Cyanide, Total<br>Silver, Total, Low Los<br>Selenium, Total, Low<br>Elevated detec<br>interference. | Level<br>aration               | $\begin{array}{c} 0.004\\ 0.02\\ 76\\ 160\\ < 0.02\\ < 0.0002\\ 6/2/93\\ 0.110\\ < 5.0\\ 0.050\\ 8.01\\ 12\\ < 0.5\\ < 20\end{array}$ | mg/L<br>mg/L<br>ug/L<br>mg/L<br>mg/L<br>mg/L<br>mg/L<br>ug/L<br>ug/L<br>ug/L |                  |

Submitted By: Wisconsin DNR Laboratory Certification Number: 157066030 DHSS Certification Number: MW0289

)

## Page:1



للتجوز



Laboratory Services 1230 Lange Ct. Baraboo, WI 53913 608-356-2760

## TERRA ENGINEERING ANALYTICAL REPORTS

#### TERRA ENGINEERING & CONSTRUCT. KIRK SOLBERG 2201 VONDRON ROAD MADISON, WI 53704

Client I.D. No.:1184 Work Order No.:9308000672 Project Name:REFUSE HIDEAWAY Project Number:468 Arrival Temperature:8.8C Report Date: 11/30/93

| SampleSampleI.D. #:27893Description: REFUSE HIDEAU                                                                                                                                                                                                                                                                                                                                                | Sample<br>Description:REFUSE HIDEAWAY (LEACHATE)                                                                  |                                                              |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
| Analyte                                                                                                                                                                                                                                                                                                                                                                                           | Result                                                                                                            | Units                                                        |  |
| Cadmium, Total<br>Chromium, Total<br>Copper, Total<br>Cyanide, Total<br>Hexavalent Chromium<br>Lead, Total<br>Metals Sample Preparation<br>Nickel, Total<br>Oil and Grease<br>Selenium, Total, Low Level<br>Elevated detection limit due to matrix<br>interference.<br>Silver, Total, Low Level<br>Zinc, Total<br>pH (Lab)<br>Mercury, Total, Low Level<br>Elevated detection limit due to matrix | $< 5 \\ 170 \\ 10 \\ 0.078 \\ 435 \\ < 20 \\ 9/1/93 \\ 100 \\ 10 \\ 0.6 \\ < 0.5 \\ 27 \\ 8.47 \\ < 0.4 \\ < 0.4$ | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L |  |

Wisconsin DNR Laboratory Certification Number: 157066030 DHSS Certification Number: MW0289

Submitted By:





Laboratory Services 1230 Lange Ct. Baraboo, WI 53913 608-356-2760

## TERRA ENGINEERING ANALYTICAL REPORT

#### TERRA ENGINEERING & CONSTRUCT. KIRK SOLBERG 2201 VONDRON ROAD MADISON, WI 53704

#### Sample <u>I.D. #:</u>33585

1

Sample Description:LEACHATE

| Analyte                                                | Result    | <u>Units</u> |
|--------------------------------------------------------|-----------|--------------|
| Arsenic, TCLP                                          | < 0.214   | mg/L         |
| Barium, TCLP                                           | 0.18      | mg/L         |
| Cadmium, TCLP                                          | < 0.004   | mg/L         |
| Chromium, TCLP                                         | 0.055     | mg/L         |
| Lead. TCLP                                             | < 0.09    | mg/L         |
| Mercury, TCLP                                          | < 0.0024  | mg/L         |
| Selenium, TCLP                                         | < 0.186   | mg/L         |
| Silver, TCLP                                           | < 0.012   | mg/L         |
| Chlordane, TCLP                                        | < 0.002   | mg/L         |
| Endrin, TCLP                                           | < 0.00008 | mg/L         |
| Heptachlor, TCLP                                       | < 0.00004 | mg/L         |
| Heptachlor Epoxide, TCLP                               | < 0.00004 | mg/L         |
| Lindane, TCLP                                          | < 0.00004 | mg/L         |
| Methoxychlor, TCLP                                     | < 0.0001  | mg/L         |
| Toxaphene, TCLP                                        | < 0.002   | mg/L         |
| 2,4-D, TCLP                                            | < 0.003   | mg/L         |
| 2,4,5-TP, Silvex, TCLP                                 | < 0.0003  | mg/L         |
| 1,4-Dichlorobenzene, TCLP                              | < 0.020   | mg/L         |
| 2,4-Dinitrotoluene, TCLP                               | < 0.050   | mg/L         |
| Hexachlorobenzene, TCLP                                | < 0.050   | mg/L         |
| Hexachlorobutadiene, TCLP                              | < 0.050   | mg/L         |
| Hexachloroethane, TCLP                                 | < 0.050   | mg/L         |
| Nitrobenzene, TCLP                                     | < 0.050   | mg/L         |
| Pyridine, TCLP                                         | < 0.100   | mg/L         |
| Cresol, TCLP                                           | < 0.050   | mg/L         |
| Pentachlorophenol, TCLP                                | < 0.250   | mg/L         |
| 2,4,5-Trichlorophenol, TCLP                            | < 0.050   | mg/L         |
| 2,4,6-Trichlorophenol, TCLP                            | < 0.050   | mg/L         |
| Benzene, TCLP                                          | < 0.020   | mg/L         |
| Carbon Tetrachloride, TCLP                             | < 0.020   | mg/L         |
| Chlorobenzene, TCLP                                    | < 0.020   | mg/L         |
| Chloroform, TCLP                                       | < 0.020   | mg/L         |
| 1,2-Dichloroethane, TCLP                               | < 0.020   | mg/L         |
| 1,1-Dichloroethylene, TCLP                             | < 0.020   | mg/L         |
| Methyl Ethyl Ketone, TCLP<br>Tetrachloroethylene, TCLP | < 0.400   | mg/L         |
| Tetrachloroethylene, TCLP                              | < 0.020   | mg/L         |
| Trichloroethylene, TCLP                                | < 0.020   | mg/L         |
| Vinyl Chloride, TCLP                                   | < 0.020   | mg/L         |
| TCLP ZHE Extraction                                    | 10/12/93  |              |
|                                                        |           |              |

# Submitted By:

Wisconsin DNR Laboratory Certification Number: 157066030 DHSS Certification Number: MW0289 Page:1

Client I.D. No.:1184 Work Order No.:9310000133 Project Name:REFUSE HIDEAWAY Project Number:468 Arrival Temperature:ON ICE Report Date: 12/06/93

#### Date Sampled: 10/05/93





Laboratory Services 1230 Lange Ct. Baraboo, WI 53913 608-356-2760

## TERRA ENGINEERING

ANALYTICAL REPORT

#### TERRA ENGINEERING & CONSTRUCT. KIRK SOLBERG 2201 VONDRON ROAD MADISON, WI 53704

Client I.D. No.:1184 Work Order No.:9312000236 Project Name:REFUSE HIDEAWAY Project Number:QUARTERLY Arrival Temperature:15.9C Report Date: 01/06/94

| Sample<br>I.D. #:42536                                                                                                                                                                                                                  | Sample<br><u>Description:</u> REFUSE HIDEAWAY-LEACHATE  |                                                                                                                                                                                       | Date Sampled: 12/09/93                                       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
| Analyte                                                                                                                                                                                                                                 | an a said ( namanganganganganganganganganganganganganga | Result                                                                                                                                                                                | Units                                                        |  |
| Hexavalent Chromiu<br>Oil and Grease<br>pH (Lab)<br>Cadmium, Total<br>Chromium, Total<br>Copper, Total<br>Lead, Total<br>Mercury, Total, Low<br>Elevated detect<br>interference.<br>Metals Sample Prepa<br>Nickel, Total<br>Zinc. Total | Level<br>ion limit due to matrix<br>aration             | $\begin{array}{c} 0.008 \\ 12/10/93 \\ 150 \\ 246 \\ 8 \\ 7.95 \\ 8 \\ 120 \\ 20 \\ < 20 \\ < 20 \\ < 0.4 \\ \end{array}$ $\begin{array}{c} 12/10/93 \\ 110 \\ 19 \\ - 5 \end{array}$ | mg/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L |  |
| Silver, Total, Low Le<br>Selenium, Total, Low<br>Elevated detect<br>interference.                                                                                                                                                       | vel<br>/ Level<br>ion limit due to matrix               | <0.5<br><0.2                                                                                                                                                                          | ug/L<br>ug/L                                                 |  |

Page:1

Submitted By:

Wisconsin DNR Laboratory Certification Number: 157066030 DHSS Certification Number: MW0289

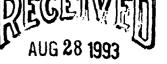
## **APPENDIX 5**

## **MMSD DISCHARGE PERMIT**

į.

## SEWERAGE DISTRICT

1610 Moorland Road Madison, WI 53713-3398 Telephone (608) 222-1201 Fax (608) 222-2703


> James L. Nemke Chief Engineer & Director



#### COMMISSIONERS

Lawrence B. Połkowski President Edward V. Schten Vice-President Harold L. Lautz Secretary Eugene O. Gehl Commissioner Thomas D. Hovel Commissioner

August 27, 1993



TERRA ENGINEERING

Mr. Kirk J. Solberg Terra Engineering & Construction Corporation 2201 Vondron Road Madison, WI 53704-6795

Dear Mr. Solberg:

In response to your letter of August 24, 1993, I have enclosed Permit No. NTO-5A for the Refuse Hideaway Landfill. This permit allows discharge of wastewater from this facility to the District's Nine Springs Wastewater Treatment Plant until September 25, 1994.

I understand your firm now has the responsibility to perform the testing specified by the permit. If you have any questions on the permit, please contact me.

Sincerely,

& H/ Helen

Paul H. Nehm Director of Wastewater Treatment Operations

**Enclosure** 

PHN/nkb



## WASTEWATER DISCHARGE PERMIT

In compliance with the provisions of Articles 5 and 6 of the Madison Metropolitan Sewer District Sewer Use Ordinance and the District's Policy on Acceptance of Wastewater Containing Non-Typical Organic and Inorganic Constituents,

> Department of Natural Resources Post Office Box 7921 Madison, WI 53707

is hereby authorized to discharge wastewater from the Refuse Hideaway Landfill into the District sewerage system in accordance with the effluent limitations, monitoring requirements, and other conditions set forth in this permit.

All discharges authorized herein shall be consistent with the terms and conditions of this permit. The discharge of any pollutant identified in this permit more frequently than or at a level in excess of that authorized shall constitute a violation of the permit.

This permit shall become effective on September 26, 1993, and shall expire at midnight, September 25, 1994. Any appeals to the conditions of this permit must be made to the Chief Engineer and Director within thirty days of the signature date.

The permittee shall not discharge after the date of expiration. If the permittee wishes to continue to discharge after this expiration date an application shall be filed for reissuance of this permit in accordance with the requirements of Article 5 of the Madison Metropolitan Sewerage District Sewer Use Ordinance, at least thirty days prior to the expiration date.

In accordance with Articles 5 and 6 of the Madison Metropolitan Sewerage District Sewer Use Ordinance, the District reserves the right to amend this permit from time to time or to revoke the permit.

James L. Nimher James L. Nemke By:

ļ

١.

Chief Engineer and Director

Dated this  $27^{n}$  day of <u>August</u>, 19<u>93</u>.