

ENVIRONMENTAL REMEDIATION MUNICIPAL & UTILITY CONSTRUCTION SPECIALTY EARTHWORK February 7, 1997

Wisconsin Department of
Natural Resources
Environmental Response and
Repair Section
Bureau of Solid and Hazardous
Waste Management
101 South Webster Street,
GEF II, SE/3
Madison, Wisconsin 53707

Attn: Ms. Theresa Evanson

Re:

Operation and Maintenance Summary - January 1997 Landfill Gas and Leachate

Extraction System

Refuse Hideaway Landfill Middleton, Wisconsin

Terra Job #468

Dear Ms. Evanson:

This letter summarizes operation and maintenance (O&M) activities performed by Terra Engineering & Construction Corporation (Terra), during the month of January 1997 at the Refuse Hideaway Landfill. Specific tasks are discussed in the following sections:

SCHEDULED LEACHATE LOADOUT

Leachate/Condensate was pumped and transported by A-1 Sewer Service to the Madison Metropolitan Sewerage District Treatment Facility. The hauling dates and quantities are as follows:

Measured (1)
Volume
(gals)

December 30, 1996 4,435 gallons
December 31, 1996 4,117 gallons
January 9, 1997 9,444 gallons
January 20, 1997 8,324 gallons
January 30, 1997 8,205 gallons

Total Gallons

34,525 gallons

(1) Based on liquid level measurements at the collection tank.

February 7, 1997 Project No. 468

WEEKLY/MONTHLY MONITORING SCHEDULE

Weekly/Monthly monitoring of the landfill gas and leachate extraction system was performed on the following dates:

January 7,	1997	Quarterly Leachate Sampling
January 10,	1997	Weekly, Quarterly Leachate Sampling
January 20,	1997	Weekly
January 30,	1997	Weekly, Monthly Leachate Head Monitoring
		and Monthly Gas Probe Monitoring
February 5,	1997	Weekly, Monthly Gas Well Monitoring

There were seven (7) system shut downs during the period from January 2, 1997 to February 5, 1997.

The actual cause of the shut downs has not been determined. The temperature recorder tape indicates a fluctuating temp just before shut down. John Gwinn from Linklater Corp. thought one theory could be that the gas flow to the flare was not sufficient to keep the flare running. With fluctuating temps prior to shut down, the north and south dampers are closing causing the flame to rise out of sight of the ultra-violet sensor causing a shut down. Flow and damper adjustments were made to try to alleviate the shut down problem.

Other Work Performed

Ouarterly leachate sampling was conducted January 7, 1997 and January 10, 1997. Enclosed are results from the January 7, 1997 sampling round. January 10, 1997 results will be reported in the February report. Copies of all tests results will be forwarded to MMSD.

It was noted during monthly leachate head monitoring that GW-12 was not operating. Terra pulled the leachate pump. It was noted that the pumps float was obstructed by debris. The debris was cleared and the pump is working as intended.

On February 3, 1997, the compressors oil was changed. Compressor hours 1091.7 hours.

If you have any questions, please do not hesitate to call me.

Sincerely.

TERRA ENGINEERING & CONSTRUCTION CORP.

James A. Falbo Project Manager

Attachments REFUSE\jan97.rpt

REFUSE HIDEAWAY LANDFILL MONTHLY SUMMARY OF SYSTEM ALARM LOG

Date: <u>January 1997</u>

ALARM DATE	ALARM CAUSE	SOLUTION (HOURS FLARE NOT OPERATIONAL)				
01/02/97 (5:30 PM)	FLAME FAILURE. DUE TO LOW LANDFILL GAS CONTENT	RE-START BLOWER/FLARE, AT 3:42 PM. ON 01/03/97 (22.0 HRS)				
01/07/97 (4:45 PM)	FLAME FAILURE. DUE TO LOW LANDFILL GAS CONTENT	RE-START BLOWER/FLARE, AT 4:30 PM. ON 01/08/97 (24.0 HRS)				
01/13/97 (1:00 AM)	FLAME FAILURE. DUE TO LOW LANDFILL GAS CONTENT	RE-START BLOWER/FLARE, AT 3:52 PM. ON 01/14/97 (27.0 HRS)				
01/18/97 (6:30 AM)	FLAME FAILURE. DUE TO LOW LANDFILL GAS CONTENT	RE-START BLOWER/FLARE, AT 9:15 AM. ON 01/20/97 (51.0 HRS)				
01/25/97 (12:30 PM)	FLAME FAILURE. DUE TO LOW LANDFILL GAS CONTENT	RE-START BLOWER/FLARE, AT 8:55 AM. ON 01/27/97 (44.5 HRS)				
01/29/97 (1:35 PM)	FLAME FAILURE. DUE TO LOW LANDFILL GAS CONTENT	RE-START BLOWER/FLARE, AT 9:05 AM. ON 01/31/97 (43.5 HRS)				
02/03/97 (4:00 AM)	FLAME FAILURE. DUE TO LOW LANDFILL GAS CONTENT	RE-START BLOWER/FLARE, AT 1:50 PM. ON 02/03/97 (10.0 HRS)				

REFUSE HIDEAWAY LANDFILL MONTHLY GAS EXTRACTION WELLS MONITORING INFORMATION

Date: 2-5-17	
Temperature: 32 Fat 1/00	
Barometric pressure: 30 377 inches Hg	
Monitored by:	
Gas Detector Model No./Serial No.: <u>Gen 500 / Em/90</u>	
Date Gas Detector last calibrated: Factory calibrated:	(3)
Velometer Model No./Serial No.: AP 6 000	
Date Velometer last calibrated: Factory calibrated:	

WELL (1)	PR (IN M.C.)	PW (IIV W.C.)	ТБАР. (°P)	METHANE (%CR4)	OXYGEN (%02)	CARBON DIOXIDE (%CO2)	BALANCE *	GAS VELOCITY (PPM)	TOTAL FLOW (CFM)	METHANE FLOW (CPM)	ADJUSTED VELOCITY (FPM)
GW-1	-7	\mathcal{O}	35.4	0,0	Zoil	0.0	79.8	0.0	0.0	0.0	
GW-2	-7	0	37.8	0,0	213	Or O	78.7	0.0	00	0.0	
GW-3	-7	-51/2	60.4	41.4	00	35.3	23,3	1200	54	22,4	
GW-4 ⁽¹⁾	-7	-5	58.3	50.4	0.0	37.4	12,2	700	31.5	15.9	
GW-5 (1)	7	-7	68.0	59.4	0,0	40,1	0,5	700	31.5	18.7	
GW-6	-13	-9	61.1	38.4	0,0	33.1	28.5	500	22.5	8,64	
GW-7 ⁽¹⁾	-13	~(3	56.4	56.7	0	35.5	7.8	700 /	31.5	17.9	
GW-8 ⁽¹⁾	-13	-13	60.5	57.1	0.3	37.0	5.6	700	31.5	18.0	
GW-9 ⁽¹⁾	-12	-12	42.8	60.5	0,0	38.7	0.8	700	31.5	19.1	
GW-10	-12	-7	100,4	30,5	0.0	30.Z	39,3	600	27	8,2	
GW-11 ⁽¹⁾	-9	-9	32.8	65.6	0.0	34,0	0,4	600	27	17.7	
GW-12 ⁽¹⁾	-11	-7	97,8	47.8	0.0	33.2	19,0	12.00	54	25.8	
GW-13	-11	-11	57,9	55.9	0.0	38.4	9.7	400	18	10,1	

Notes: (1) Wells with leachate extraction pump and controls. (2) Gas flow (cfm) is calculated by multiplying the gas velocity (fpm) by 0.045 ft² for 3-inch diameter PVC pipe. (3) Calibration checked: 50% CH, read 15% CH, read 15% CH, read 15% CO2 read 15% CO2

NA Not Available or Not Applicable

NC No Change
 PH Header Pressure
 Well Pressure

REFUSE HIDEAWAY LANDFILL MONTHLY GAS PROBE MONITORING INFORMATION

Date: $1-3(-9)$	
Temperature: 35 Fat 71.00	
Barometric pressure: 30.07 inches Hg	
Monitored by: 5A+	
Gas Detector Model No./Serial No.: 6cm 500 /6m190	
Date Gas Detector last calibrated: Factory calibrated: May 94	(4)

Probe	Pressure (inches W.C.)	CH ₄ (%)	CH ₄ ⁽¹⁾ (% LEL)	O ₂ (%)
G-1\$	0,0	0.0	6.0	20,5
G-1D	0,0	0.0	0.0	203
G-6	0.0	0.0	0.0	19.4
G-8	0.0	0.0	0,0	20.7
G-9	0.0	0.0	0.0	70.3
G-10	0.0	0.0	6.0	18.4
GP-11S	0.0	0.0	0.0	70.7
GP-11D	0.0	0.0	0.0	18.4
GPW-1S	0.0	0.0	0.0	17.3
GPW-1M	0.0	0.0	0,0	20.1
GPW-1D	0.0	0.0	0.0	16.3
Speedway Building (2)	NA	ତ ତ	0.0	20.5
Speedway Building (3)	NA	0.0	0.0	70.7

Notes:

- (1) Percent of lower explosive limit of CH_4 (100% LEL = 5% CH_4 by volume).
- (2) Readings obtained from the northeast corner of the interior of the scale house.
- (3) Readings obtained from interior of Mechanic's shop.
- (4) See calibration data on Table 1.NA Not Available or Not Applicable.

REFUSE HIDEAWAY LANDFILL MONTHLY BRANCH AND FLARE MONITORING INFORMATION

Date: 2-5-97

	Pressure (in. W.C.)	CH ₄ ⁽¹⁾ (%)	O ₂ (%)	Gas Velocity (fpm)	Flow ⁽²⁾ (cfm)	Flow ⁽³⁾ (scfm)	Gas Temp	Valve Setting (fraction open)
Branch Monitoring	Station							
North Branch	-9	43.8	0.0	800	62.4	65,1	36.5	3/9
Central Branch	-11	43.3	0,0	900	70.2	72.3	40.5	3/9
South Branch	-6	52.8	0.0	1100	85.8	90.2	36.5	3/9
Flare Inlet Pipe								
Port A	+2							N/A
Port B	+2	47.4	0.0	1500	277.5	285.9	56.9	Full 1/2
Port C	+1							N/A

Notes:

(1) Percent CH₄ (methane).

Gas velocity is converted to gas flow by multiplying fpm x 0.185 @ 6-inch HDPE and fpm x 0.078 @ 4-inch PVC. Flows have been converted to standard conditions of 70°F and 406.9 inches water. (2)

(3)

Not applicable. NA

REFUSE HIDEAWAY LANDFILL MONTHLY LEACHATE HEAD MONITORING INFORMATION

Date: 1-31-97

								•	Compressor	
	LEACHA	TE HEAD	(ft)					Hour Reading		
Well	Gas Well Depth	Depth to Leachate	Leachate Head	Current Pump Cycles	Previous Pump Cycles	Difference	Gal. (3) Pumped	Current Hours	Previous Hours	Total Hours
GW-1	51.7	51.6	0.1					1065.7	850,3	215.3
GW-2	53.3	53.2	0.1							
GW-3	57	560	1.0							
GW-4 ⁽¹⁾	65 ·	64.4	0.6	123938	109360	14578	1385			
GW-5 ⁽¹⁾	70	69.3	0,7	540003	139652	100351	9533,345			
GW-6	36	33.9	2.1							
GW-7 ⁽¹⁾	. 60	54.7	0.3	217613	134907	136706	12987			
GW-8 ⁽¹⁾	69	68.6	0.4	361208	312 678	1	4610			
GW-9 ⁽¹⁾	66	65.5	0.5	254290	223800	30490	2897			
GW-10	70	66.3	3.7							
GW-11 ⁽¹⁾	65	64,5	0.5	114 071	872 45	26826	2548			
GW-12 ⁽¹⁾	81	74.7	6.3	310 824	310824	0.0	0,0			
GW-13 ⁽¹⁾	69	68.6	0,4	797990	245087	52908	5026			

38,986 gal

Notes:

(1) Wells with leachate extraction pumps and controls.

(2) Time of cycle meter reading was recorded on 12-31-96 and 1-31-97

(3) Difference x .095 gal/cycle = gallons pumped.

Refuse\forms1.

Page: 1

Client I.D. No.: LT2000000010 Work Order No.: 9701000078 Report Date: 01/28/97

Date Received: 01/07/97 Arrival Temperature: On Ice

TERRA ENGINEERING JIM FALBO 2201 VONDRON RD MADISON, WI 53704

TERRA ENGINEERING

Project Name: REFUSE HIDEAWAY

ANALYTICAL REPORT

Project Number: 468

Sample I.D. #:146492 Sample Description: LANDFILL LEACHATE	3		Date S	Sampled:01/07/97
<u>Analyte</u>	Result	<u>Units</u>	<u>LOD</u>	LOO
Selenium Matrix interference.	<1	μg/L	1	3
Hexavalent Chromium Hexavalent Chromium sample preparation date was	138 1/8/97	μg/L	5	17
Chromium, Total, Low Level (Cr6+ Confirmation) Copper Lead	45 <10 44	μg/L μg/L	10 10 30	33 33 100
Analysis Date Metals Sample Preparation	.1/08/97	μg/L	30	100

Comments for entire Work Order: None

Submitted By

ENVIRONMENTAL REMEDIATION MUNICIPAL & UTILITY CONSTRUCTION SPECIALTY EARTHWORK March 7, 1997

Wisconsin Department of
Natural Resources
Environmental Response and
Repair Section
Bureau of Solid and Hazardous
Waste Management
101 South Webster Street,
GEF II, SE/3
Madison, Wisconsin 53707

Attn: Ms. Theresa Evanson

Re:

Operation and Maintenance Summary - February 1997 Landfill Gas and Leachate

Extraction System

Refuse Hideaway Landfill Middleton. Wisconsin

Terra Job #468

Dear Ms. Evanson:

This letter summarizes operation and maintenance (O&M) activities performed by Terra Engineering & Construction Corporation (Terra), during the month of February 1997 at the Refuse Hideaway Landfill. Specific tasks are discussed in the following sections:

SCHEDULED LEACHATE LOADOUT

Leachate/Condensate was pumped and transported by A-1 Sewer Service to the Madison Metropolitan Sewerage District Treatment Facility. The hauling dates and quantities are as follows:

Measured (1) Volume <u>(gals)</u>

February 03, 1997 9,174 gallons February 07, 1997 4,453 gallons February 13, 1997 4,150 gallons February 17, 1997 4,163 gallons February 24, 1997 10.118 gallons

Total Gallons

32.058 gallons

Based on liquid level measurements at the collection tank.

∂RON ROAD ,, WI 53704-6795 ,21-3501 PHONE ∂8/221-4075 FAX

March 7, 1997 Project No. 468

WEEKLY/MONTHLY MONITORING SCHEDULE

Weekly/Monthly monitoring of the landfill gas and leachate extraction system was performed on the following dates:

February 10,	1997	Weekly
February 21,	1997	Weekly
February 28,	1997	Weekly
March 5,	1997	Monthly Leachate Head Monitoring
March 6,	1997	Weekly, Monthly Gas Probe Monitoring, Monthly
		Gas Well Monitoring

There were four (4) system shut downs during the period from February 5, 1997 to March 6, 1997.

Other Work Performed

Annual Leachate line clean-out was conducted by Visu-sewer on February 5. 1997.

If you have any questions, please do not hesitate to call me.

Sincerely,

TERRA ENGINEERING & CONSTRUCTION CORP.

James A. Falbo Project Manager

Attachments

REFUSE HIDEAWAY LANDFILL

MONTHLY GAS EXTRACTION WELLS MONITORING INFORMATION

Date:	
Temperature: 33 : Pat // 00gm	
Barometric pressure: 30.084 inches Hg	
Monitored by:	
Gas Detector Model No./Serial No.: ben 500/6m/90	
Date Gas Detector last calibrated: Factory calibrated: May44	(3)
Velometer Model No./Serial No.: Alhar bool	_
Date Velometer last calibrated: Factory calibrated:	

WELL (1)	PH (IN W.C.)	9W (IN W.C.)	TB@. (*P)	METHANE (\$CH4)	OXYGEN (%02)	CARBON DIOXIDE (%CO2)	BALANCE *	GAS VELOCITY (FPM)	(2) TOTAL FLOW (CPM)	METHANE PLOW (CPM)	ADJUSTED VELOCITY (FPM)
GW-1	7	0	37.3	0,0	20.3	7.3	72.4	0	0	0	
GW-2	-7	0	40.2	0.0	20.5	8.7	70.8	0	Ø	0	
GW-3	-7	-5	57.7	523	O. Z.	38.2	9.3	1250	56,25	32.5	
GW-4 (1)	-7	-7	564	62.6	0,3	37.1	0.0	500	22.5	12.7	
GW-5 ⁽¹⁾	-7	-4	51.3	55.9	0.8	42,0	1.3	700	31,5	16.Z	
GW-6	-8	-7	56.1	405	0.0	34.3	25.2	500	22.5	12.6	
GW-7 ⁽¹⁾	-8	-8	56.7	62.5	0.1	37.4	0.0	700	31.5	17,9	
GW-8 ⁽¹⁾	-8	-8	57.8	58.2	0.3	41.2	0.3	600	270	15.6	
GW-9 ⁽¹⁾	-8	-8	47.0	57.5	0.Z	39.Z	1.1	600	27.0	12.7	
GW-10	-10	-6	963	41.7	0.0	34,9	23.4	500	22,5	9.4	
GW-11 ⁽¹⁾	~10	~10	41.0	65.7	0.0	343	0,0	800	36	14,8	
GW-12 ⁽¹⁾	-10	-10	94.8	53,0	0.0	36.6	10.4	1000	45	23,9	
GW-13	-10	-10	62,8	57,0	0.4	40.7	1.9	500	22,5	14.1	

Notes:

(1) Wells with leachate extraction pump and controls.

(2) Gas flow (cfm) is calculated by multiplying the gas velocity (fpm) by 0.045 ft² for 3-inch diameter FVC pipe.
(3) Calibration checked: 3-4-9

(3) Calibration checked: 3-4-97

50 CH, read 50 CH,

15% CH, read 15 CH,

15% CO, read 15 CO,

NA Not Available or Not Applicable

2-5-97

NC No Change
PH Header Pressure
PW Well Pressure

REFUSE\cim05.tab

REFUSE HIDEAWAY LANDFILL MONTHLY GAS PROBE MONITORING INFORMATION

Date:	
Temperature: 33 F at ///00	
Barometric pressure: 30081/2 inches Hg	
Monitored by:	
Gas Detector Model No./Serial No.:	
Date Gas Detector last calibrated: Factory calibrated: May 94	(4)

Probe	Pressure (inches W.C.)	CH ₄ (%)	CH ₄ ⁽¹⁾ (% LEL)	O ₂ (%)
G-1S	0.0	0.0	0.0	19.3
G-1D	0.0	0.0	0.0	19.5
G-6	0.0	0.0	0,0	20.7
G-8	0.0	0.0	0.0	20.3
G-9	0.0	010	0.0	20.3
G-10	0.0	0.0	0.0	20.5
GP-11S	0.0	0.0	0.0	20.3
GP-11D	0.0	0,0	0.0	20.2
GPW-1S	0.10	0.0	0.0	20.1
GPW-1M	0.0	0.0	0.0	18.0
GPW-1D	0.0	0.0	0.0	17.8
Speedway Building (2)	NA	0.0	0.0	20.8
Speedway Building (3)	NA	0,0	0.0	20.7

Notes:

(1) P	ercent of lower	explosive limit	of CH ₄ (100%	LEL = 5% CH ₄ by volume).
-------	-----------------	-----------------	--------------------------	---

⁽²⁾ Readings obtained from the northeast corner of the interior of the scale house.

(4) See calibration data on Table 1.NA Not Available or Not Applicable.

⁽³⁾ Readings obtained from interior of Mechanic's shop.

REFUSE HIDEAWAY LANDFILL MONTHLY BRANCH AND FLARE MONITORING INFORMATION Date: 3-5-97

	Pressure (in. W.C.)	CH ₄ ⁽¹⁾ (%)	O ₂ (%)	Gas Velocity (fpm)	Flow ⁽²⁾ (cfm)	Flow ⁽³⁾ (scfm)	Gas Temp	Valve Setting (fraction open)
Branch Monitoring	Station							
North Branch	-10	50.3	Ø.Z	800	62.4	65.0	37.0	3/9
Central Branch	-8	46.8	O,B	600	46,8	48.9	37.5	3/9
South Branch	-8	45.7	2.6	1100	85.8	89.6	37.4	4/9
Flare Inlet Pipe								
Port A	+1							N/A
Port B	+]	50.6	0./	1400	259	268.3	51.7	Full to
Port C	(+3/4)							N/A

Notes:

(3)

The later flake pressures are low because valuing is reduced to maintain gas concentration.

The 3/10/97

(1) Percent CH₄ (methane).

(2) Gas velocity is converted to gas flow by multiplying fpm x 0.185 @ 6-inch HDPE and fpm x 0.078 @ 4-inch PVC.

Flows have been converted to standard conditions of 70°F and 406.9 inches water.

NA Not applicable.

REFUSE HIDEAWAY LANDFILL MONTHLY LEACHATE HEAD MONITORING INFORMATION

3-4-97 Date:

	T.PACHA	TE HEAD	(ft)						ompressor	
;	Dincin		(10)					He	our Reading	g
Well	Gas Well Depth	Depth to Leachate	Leachate Head	Current Pump Cycles	Previous Pump Cycles	Difference	Gal. (3) Pumped	Current Hours	Previous Hours	Total Hours
GW-1	51.7	51.7	0.0					1315,1	1065.7	249.4
GW-2	53.3	53.3	0,0							
GW-3	57	56.4	0.6							
GW-4 (1)	65	64,7	0.3	145/60	123938	21772	20/6			
GW-5 ⁽¹⁾	70	69.5	0.5	643957	540003	163954	9875.6			
GW-6	36	33.4	2.6							
GW-7 ⁽¹⁾	60	594	0.6	308894	217 613	91281	86717			
GW-8 ⁽¹⁾	69	68.7	0,3	409675	3612-08	48467	4604.4			
GW-9 ⁽¹⁾	66	65.4	0.6	285142	254290	30854	2930,9			
GW-10	70	65.3	4.7							
GW-11 ⁽¹⁾	65	64,3	0.7	1466 96	114071	32625	3099.4			
GW-12 ⁽¹⁾	81	80.4	0.6	369029	310824	58205	55295			
GW-13 ⁽¹⁾	69	68.6	0.4	350457	297990	57.467	4984,4			

41,711.9 gal

Notes:

(1) Wells with leachate extraction pumps and controls.

(2) Time of cycle meter reading was recorded on 3-4-9 and 1-31-9.

(3) Difference x .095 gal/cycle = gallons pumped.

REFUSE HIDEAWAY LANDFILL MONTHLY SUMMARY OF SYSTEM ALARM LOG

Date: <u>February 1997</u>

ALARM DATE	ALARM CAUSE	SOLUTION (HOURS FLARE NOT OPERATIONAL)
02/05/97 (11:00 PM)	FLAME FAILURE. DUE TO LOW LANDFILL GAS CONTENT	RE-START BLOWER/FLARE, AT 2:30 PM. ON 02/06/97 (15.5 HRS)
02/12/97 (10:30 AM)	FLAME FAILURE. DUE TO LOW LANDFILL GAS CONTENT	RE-START BLOWER/FLARE, AT 1:00 PM. ON 02/13/97 (26.5 HRS)
02/24/97 (6:00 AM)	FLAME FAILURE. DUE TO LOW LANDFILL GAS CONTENT	RE-START BLOWER/FLARE, AT 8:50 AM. ON 02/25/97 (27.0 HRS)
03/03/97 (1:30 AM)	FLAME FAILURE. DUE TO LOW LANDFILL GAS CONTENT	RE-START BLOWER/FLARE, AT 9:30 AM. ON 03/04/97 (32.0 HRS)

ANALYTICAL REPORT

Page:1

Client I.D. No.: LT2000000010 Work Order No.: 9701000171 Report Date: 02/04/97 Date Received: 01/10/97 Arrival Temperature: On Ice

TERRA ENGINEERING JIM FALBO 2201 VONDRON RD. MADISON, WI 53704

TERRA ENGINEERINO

Project Name: REFUSE HIDEAWAY

Project Number: 468

Sample Sample LD. #:146900 Description: LANDFILL LEACHATE	<u>.</u>	•	Date Sai	mpled:01/10/97
Analyte	Result	<u>Units</u>	LOD	LOO
Cadmium Chromium Nickel Zinc Mercury Elevated detection limit due to sample dilution presence of matrix interference.	<4 44 128 17 <0.4	μg/L μg/L μg/L μg/L μg/L	4 10 20 10 0.2	13 33 67 33 0.7
Oil and Grease pH (Lab) Cyanide Silver Estimated value. Elevated concentration due to sample Analysis Date Silver	1/13/97 8 6.70 12 0.4 dilution. 1/28/97	mg/L S.Ū.'s μg/L μg/L	4 NA 5 0.1	13 NA 17 0.3

Comments for entire Work Order: None

Submitted By:

ENVIRONMENTAL REMEDIATION MUNICIPAL & UTILITY CONSTRUCTION SPECIALTY EARTHWORK April 11, 1997

Wisconsin Department of
Natural Resources
Environmental Response and
Repair Section
Bureau of Solid and Hazardous
Waste Management
101 South Webster Street,
GEF II, SE/3
Madison, Wisconsin 53707

Attn: Ms. Theresa Evanson

Re: Operation and Maintenance

Summary - March 1997 Landfill Gas and Leachate

Extraction System

Refuse Hideaway Landfill Middleton, Wisconsin

Terra Job #468

Dear Ms. Evanson:

This letter summarizes operation and maintenance (O&M) activities performed by Terra Engineering & Construction Corporation (Terra), during the month of March 1997 at the Refuse Hideaway Landfill. Specific tasks are discussed in the following sections:

SCHEDULED LEACHATE LOADOUT

Leachate/Condensate was pumped and transported by A-1 Sewer Service to the Madison Metropolitan Sewerage District Treatment Facility. The hauling dates and quantities are as follows:

Measured (1) Volume (gals)

March 03, 1997 9,229 gallons March 13, 1997 14,062 gallons March 17, 1997 4,474 gallons

Total Gallons 27,765 gallons

(1) Based on liquid level measurements at the collection tank.

April 11, 1997 Project No. 468

WEEKLY/MONTHLY MONITORING SCHEDULE

Weekly/Monthly monitoring of the landfill gas and leachate extraction system was performed on the following dates:

March 14, 199	97	Weekly
March 21, 199	97	Weekly
March 25, 199	97	Weekly
March 31, 199	97	Monthly Leachate Head Monitoring, Quarterly
		Leachate Sampling, Quarterly Monitoring
April 4, 199	97	Weekly, Monthly Gas Probe Monitoring, Monthly
		Gas Well Monitoring

There were four (4) system shut downs during the period from March 6, 1997 to April 4, 1997.

Other Work Performed

On March 13, 1997, the leachate compressor shut down due to faulty unloader piston seals in the cylinder heads. The seals were replaced under warranty on March 31, 1997. The piston seals will be lubricated every three (3) months or 1,000 hours of operation so seals do not wear prematurely.

On March 18, 1997, all air filters in the compressor building were dismantled and cleaned. This will also take place every three (3) months or 1,000 hours of operation.

On March 21, 1997, the above ground well lateral on gas well 8 was replaced. The lateral broke due to gas header pipe settlement.

On March 31, 1997, quarterly leachate sampling was conducted. Results will be sent to the DNR and Madison Metropolitan Sewerage District when they are received.

If you have any questions, please do not hesitate to call me.

Sincerely,

TERRA ENGINEERING & CONSTRUCTION CORP.

James A. Falbo Project Manager

Attachments

REFUSE\mar97.rpt

REFUSE HIDEAWAY LANDFILL MONTHLY GAS EXTRACTION WELLS MONITORING INFORMATION

Date: 4-1-97	
Temperature: 60 Pat 2:00 pm	
Monitored by: TAP	
Gas Detector Model No./Serial No.: <u>Flm Soo / Lm /90</u> Date Gas Detector last calibrated: Factory calibrated: <u>May 94</u>	(2)
Velometer Model No./Serial No.: Date Velometer last calibrated: Factory calibrated:	

MELL (I)	PH (IN W.C.)	PW (224 W.C.)	ТЕМР. (*P)	METHANE (VCR4)	OXYGEN (\$02)	CARBON DIOXIDE (%CO2)	BALANCE \$	GAS VELOCITY (FPM)	(2) TOTAL PLOW (CFH)	METHANE FLOW (CPM)	ADJUSTED VELOCITY (FPM)
GW-1	-9	0	60.7	0.3	20.8	20.3	5.86	0	0	0	
GW-2	-9	0	601	0,4	21.4	24.0	54.2	0	0	O	
GW-3	-9	-6/z	63.3	48.3	0,0	46.4	5,3	1500	67.5	32.6	
GW-4 ⁽¹⁾	-9_	-9	60.9	61.1	0,0	38.8	0,0	650	29.3	17,9	
GW-5 ⁽¹⁾	-5	-5	63.1	54.0	1.2	45.4	0,0	700	31.5	17,0	
GW-6	-14	-11	68.1	30.6	0.1	34.2	34.6	700	31.5	9.6	
GW-7 ⁽¹⁾	-14	_14	64.5	59.4	0,0	39.0	1.3	500	22.5	134	
GW-8 ⁽¹⁾	-14	-14	73.4	58.2	0.0	41.8	0,0	500	22.5	13.1	
GW-9 ⁽¹⁾	-14	-14	63.1	57.5	0.8	41.7	0,0	600	27.0	15.5	
GW-10	-11	-7_	103.1	33.1	0.2	36.1	30,6	600	27,0	8.9	
GW-11 ⁽¹⁾	-10	-10	65.4	64.6	0.0	35.4	0.0	800	36.0	23,3	
GW-12 ⁽¹⁾	-10	-10	95.6	50,0	0.0	41.0	8.6	800	36.0	18.0	
GW-13	-10	-10	66.4	56.5	0.0	43.0	0,0	700	31.5	17,8	

Notes:

(1) Wells with leachate extraction pump and controls.

(2) Gas flow (cfm) is calculated by multiplying the gas velocity (fpm) by 0.045 ft² for 3-inch diameter PVC pipe.
(3) Calibration checked:

(3) Calibration checked: 4-1-47
50% CH, read 50 % CH, 15% CH, read 15 % CH, 15% CO, read 15 % CO,

NA Not Available or Not Applicable

NC No Change
PH Header Pressure
PW Well Pressure

REFUSE HIDEAWAY LANDFILL MONTHLY GAS PROBE MONITORING INFORMATION

Date:	
Temperature: 60 Fat 2100	
Barometric pressure: 30.214 inches Hg	
Monitored by:	
Gas Detector Model No./Serial No.: 6cm 500/6m/90	
Date Gas Detector last calibrated: Factory calibrated: May 94	(4)

Probe	Pressure (inches W.C.)	CH ₄ (%)	CH ₄ ⁽¹⁾ (% LEL)	O ₂ (%)
G-1S	0,0	0.0	0.0	21.2
G-1D	0,0	0.0	0:0	20.9
G-6	0.0	0,0	0,0	21,0
G-8	0.0	0.0	0.0	21,1
G-9	0.0	0.0	0.0	21.1
G-10	0.0	0.0	0.0	21.4
GP-11S	0.0	0.0	0,0	21.0
GP-11D	0.0	0.0	0.0	21.3
GPW-1S	0.0	0.0	0,0	20.8
GPW-1M	0.0	QD	0.0	71.2
GPW-1D	0.0	0.0	0.0	21.3
Speedway Building (2)	-	0.0	0.0	21.2
Speedway Building (3)	_	0.0	0.0	21.4

Notes:

(1)	Percent of lower explosive limit of CH ₄ (100% LEL = 5% CH ₄ by volume).
(-)	total or in the displacement of the contract o

Readings obtained from the northeast corner of the interior of the scale house.

4-1-97

⁽²⁾ (3) Readings obtained from interior of Mechanic's shop.

⁽⁴⁾ NA See calibration data on Table 1. Not Available or Not Applicable.

REFUSE HIDEAWAY LANDFILL MONTHLY BRANCH AND FLARE MONITORING INFORMATION Date: 4-1-97

	Pressure (in. W.C.)	CH ₄ ⁽¹⁾ (%)	O ₂ (%)	Gas Velocity (fpm)	Flow ⁽²⁾ (cfm)	Flow ⁽³⁾ (scfm)	Gas Temp	Valve Setting (fraction open)
Branch Monitoring	g Station							
North Branch	-1/	46.3	0,0	800	62.4	61.8	60.5	3/9
Central Branch	-14	42,3	0.0	900	70.7,	68.7	63.3	3/9
South Branch	-10	43.3	1.0	12.00	93.6	93.1	59.3	3/9
Flare Inlet Pipe								
Port A	+2							N/A
Port B	+2	44.7	0.2	1700	314.5	315,7	70.3	Full-
Port C	+1							N/A

Notes:

(1) Percent CH₄ (methane).

Gas velocity is converted to gas flow by multiplying fpm x 0.185 @ 6-inch HDPE and fpm x 0.078 @ 4-inch PVC. Flows have been converted to standard conditions of 70°F and 406.9 inches water. (2)

(3)

NA Not applicable.

REFUSE HIDEAWAY LANDFILL MONTHLY LEACHATE HEAD MONITORING INFORMATION

Date: 3-31-97

	LEACHATE HEAD (ft)		(ft)					Compressor Hour Reading		a
Well	Gas Well Depth	Depth to Leachate	Leachate Head	Current Pump Cycles	Previous Pump Cycles	Difference	Gal. (3) Pumped	Current Hours	Previous Hours	Total Hours
GW-1	51.7	51.7	0,0					H30.3	13151	115.2
GW-2	53.3	53.3	0.0							
GW-3	57	56.7	0.3							
GW-4 ⁽¹⁾	65	64.5	0.5	166098	145/60	20938	1989.11			
GW-5 ⁽¹⁾	70	69.4	0.6	727091	643957		7897.7			
GW-6	36	34.3	0.7							
GW-7 ⁽¹⁾	60	59.3.	0.7	396/16	308894	87227	8286,1			
GW-8 ⁽¹⁾	69	68.4	0.6	440110	409675	30435	28913			
GW-9 ⁽¹⁾	66	65.7	0.3	308417	285142	23275	2211.1			
GW-10	70	64.4	5.6							
GW-11 ⁽¹⁾	65	64.6	0.4	188 746	146696	42050	3994.75			
GW-12 ⁽¹⁾	81	80,6	0.4	463777	369029	94748	9001.1			
GW-13 ⁽¹⁾	69	68.5	005	389972	350457	39515	3753.9			

Notes:

40,025 gal

1) Wells with leachate extraction pumps and controls.

(2) Time of cycle meter reading was recorded on 3-3/97 and 3-4-97

(3) Difference x .095 gal/cycle = gallons pumped.

Refuse\forms1.

REFUSE HIDEAWAY LANDFILL MONTHLY SUMMARY OF SYSTEM ALARM LOG

Date: <u>March 1997</u>

ALARM DATE	ALARM CAUSE	SOLUTION (HOURS FLARE NOT OPERATIONAL)
03/12/97 (11:30 AM)	FLAME FAILURE. DUE TO LOW LANDFILL GAS CONTENT	RE-START BLOWER/FLARE, AT 1:55 PM. ON 03/13/97 (26.5 HRS)
03/16/97 (3:00 AM)	FLAME FAILURE. DUE TO LOW LANDFILL GAS CONTENT	RE-START BLOWER/FLARE, AT 2:30 PM. ON 03/18/97 (35.5 HRS)
03/22/97 (8:00 AM)	FLAME FAILURE. DUE TO LOW LANDFILL GAS CONTENT	RE-START BLOWER/FLARE, AT 9:00 AM. ON 03/24/97 (49.0 HRS)
03/30/97 (8:00 AM)	FLAME FAILURE. DUE TO LOW LANDFILL GAS CONTENT	RE-START BLOWER/FLARE, AT 1:10 PM. ON 03/31/97 (29.0 HRS)
		down - 140 hr
		Tot hr - 744 down - 19% time
	: :	

ENVIRONMENTAL REMEDIATION MUNICIPAL & UTILITY CONSTRUCTION SPECIALTY EARTHWORK May 9, 1997

Wisconsin Department of
Natural Resources
Environmental Response and
Repair Section
Bureau of Solid and Hazardous
Waste Management
101 South Webster Street,
GEF II, SE/3
Madison, Wisconsin 53707

Attn: Ms. Theresa Evanson

Re: Operation and Maintenance

Summary - April 1997 Landfill Gas and Leachate

Extraction System

Refuse Hideaway Landfill Middleton, Wisconsin

Terra Job #468

Dear Ms. Evanson:

This letter summarizes operation and maintenance (O&M) activities performed by Terra Engineering & Construction Corporation (Terra), during the month of April 1997 at the Refuse Hideaway Landfill. Specific tasks are discussed in the following sections:

SCHEDULED LEACHATE LOADOUT

Leachate/Condensate was pumped and transported by A-1 Sewer Service to the Madison Metropolitan Sewerage District Treatment Facility. The hauling dates and quantities are as follows:

Measured (1)
Volume
(gals)

April 01, 1997 4,896 gallons 16,410 gallons April 02, 1997 April 08, 1997 4,562 gallons April 10, 1997 4,250 gallons April 11, 1997 4,401 gallons April 15, 1997 4.232 gallons April 16, 1997 3,583 gallons April 17, 1997 9.326 gallons April 22, 1997 9,950 gallons April 25, 1997 4.743 gallons Total Gallons 66,353 gallons

(1) Based on liquid level measurements at the collection tank.

2201 VONDRON ROAD MADISON, WI 53704-6795 608/221-3501 PHONE 608/221-4075 FAX

May 9, 1997 Project No. 468

WEEKLY/MONTHLY MONITORING SCHEDULE

Weekly/Monthly monitoring of the landfill gas and leachate extraction system was performed on the following dates:

April 11, 1997	Weekly
April 18, 1997	Weekly
April 25, 1997	Weekly
May 1, 1997	Weekly
May 6, 1997	Monthly Leachate Head Monitoring,
	Monthly Gas Probe Monitoring

There were five (5) system shut downs during the period from April 4, 1997 to May 5, 1997.

Other Work Performed

On April 25, 1997, the control panel lost power when I was changing a light bulb in the panel. Academy Electric was called and found a blown fuse in the control panel. The fuse was replaced and the panel is operating properly.

On May 1, 1997, the flare safeguard control was discovered to be malfunctioning. Jim Dix of Linklater Corp. recommended the control be replaced. A new unit was ordered on May 6, 1997. Linklater estimates 2-4 weeks for delivery of the new control. No weekly or monthly gas well monitoring will be conducted until the new control is installed, since the flare is shut down.

Also enclosed are Quarterly Leachate Analytical Results. A copy of, the results were sent to the Madison Metropolitan Sewerage District.

If you have any questions, please do not hesitate to call me.

Sincerely,

TERRA ENGINEFIRING & CONSTRUCTION CORP.

James A. Falbo Project Manager

Attachments

REFUSE HIDEAWAY LANDFILL MONTHLY GAS PROBE MONITORING INFORMATION

Date: 5-6-97	•
Temperature: 35 Fat 2!00	
Barometric pressure: 20.21 inches Hg	
Monitored by:	•
Gas Detector Model No./Serial No.: 6en 500 /6m/90	
Date Gas Detector last calibrated: Factory calibrated: May 74	(4)

<u>. –</u>				
Probe	Pressure (inches W.C.)	CH ₄ (%)	CH ₄ ⁽¹⁾ (% LEL)	O ₂ (%)
G-18	0,0	0.0	0.0	20.9
G-1D	0.0	0.0	0.0	20.9
G-6	0.0	0.0	0,0	20.7
G-8	0.0	0.0	0.0	20.6
G-9	0.0	0.0	0.0	70.5
G-10	-0.5	0.0	0.0	20.7
GP-11S	0.0	0.0	0.0	19.6
GP-11D	0.0	0.0	0.0	20.4
GPW-1S	0.0	0.0	0.0	20.5
GPW-1M	0.0	0.0	0.0	21.0
GPW-1D	0.0	0.0	0.0	20.6
Speedway Building ⁽²⁾		0.0	0.0	20,9
Speedway Building (3)		0.0	0.0	20.8

Notes:

- (1)
- Percent of lower explosive limit of CH_4 (100% LEL = 5% CH_4 by volume). Readings obtained from the northeast corner of the interior of the scale house. (2)
- Readings obtained from interior of Mechanic's shop. (3)
- See calibration data on Table 1. (4)
- NA Not Available or Not Applicable.

REFUSE HIDEAWAY LANDFILL MONTHLY LEACHATE HEAD MONITORING INFORMATION

Date: <u>5-6-97</u>

	·	<u> </u>						(Compressor	
	LEACHA	TE HEAD	(ft)					H.	g	
Well	Gas Well Depth	Depth to Leachate	Leachate Head	Current Pump Cycles	Previous Pump Cycles	Difference	Gal. (3) Pumped	Current Hours	Previous Hours	Total Hours
GW-1	51.7	57.1	0,0					1700.5	1430.3	270,2
GW-2	53.3	\$3.3	0.0							
GW-3	57	56,5	0.5							
GW-4 ⁽¹⁾	65	64.6	0,4	234342	160098	74244	7053,2			7250
GW-5 ⁽¹⁾	70	69.5	10.5	912223		185132	17587.5			
GW-6	36	34.5	1.5							
GW-7 ⁽¹⁾	60	59.5	0.5	592018	396116	195902	18610.7			
GW-8 ⁽¹⁾	69	68.5	0.5	590220	440110	150110	14760.5			
GW-9 ⁽¹⁾	66	65,6	0.4	356477	308417	48060	4565.7			
GW-10	. 70	64.3	5.7							
GW-11 (1)	65	64.3	0.7	271957	188746	83211	7905.1			
GW-12 ⁽¹⁾	81	80.3	0.7	466568	463777	2791	256,2			
GW-13 ⁽¹⁾	69	68.4	0.6	481060	389972	91088	8 653,4			

78,892.3

Notes:

- (1) Wells with leachate extraction pumps and controls.
- (2) Time of cycle meter reading was recorded on 3-3/-97 and 5-6-97.
- (3) Difference x .095 gal/cycle = gallons pumped.

REFUSE HIDEAWAY LANDFILL MONTHLY SUMMARY OF SYSTEM ALARM LOG

Date: <u>April 1997</u>

ALARM DATE	ALARM CAUSE	SOLUTION (HOURS FLARE NOT OPERATIONAL)
04/04/97 (4:00 PM)	FLAME FAILURE. DUE TO LOW LANDFILL GAS CONTENT	RE-START BLOWER/FLARE, AT 8:40 AM. ON 04/07/97 (64.0 HRS)
04/13/97 (3:00 AM)	FLAME FAILURE. DUE TO LOW LANDFILL GAS CONTENT	RE-START BLOWER/FLARE, AT 8:40 AM. ON 04/14/97 (29.5 HRS)
04/20/97 (4:00 AM)	FLAME FAILURE. DUE TO LOW LANDFILL GAS CONTENT	RE-START BLOWER/FLARE, AT 11:00 AM. ON 04/23/97 (79.0 HRS)
04/24/97 (7:30 PM)	FLAME FAILURE. DUE TO FAULTY FLARE CONTROL	RE-START BLOWER/FLARE, AT 9:30 AM. ON 04/25/97 (11.0 HRS)
04/25/97 (2:20 PM)	FLAME FAILURE. DUE TO FAULTY FLARE CONTROL	RE-START BLOWER/FLARE, AT 11:15 AM. ON 04/29/97 (93.0 HRS)
04/29/97 (2:00 PM)	FLAME FAILURE. DUE TO FAULTY FLARE CONTROL	BLOWER NOT RESTORED UNTIL FLARE CONTROL IS REPLACED.
·		:
		·

ANALYTICAL REPORT

Page:1

Client I.D. No.: LT2000000010 Work Order No.: 9704000091 Report Date: 04/18/97 Date Received: 04/03/97 Arrival Temperature: On Ice

TERRA ENGINEERING JIM FALBO 2201 VONDRON RD. MADISON, WI 53704

Project Name: REFUSE HIDEAWAY

Project Number: 468

Sample Sample LEACHATE I.D. #:154059 Description:	·		<u>Date S</u>	ampled:04/03/97
Analyte	Result	<u>Units</u>	<u>LOD</u>	LOQ
Cyanide Analysis Date Cyanide	15 4/04/97	μg/L	5	17
Selenium Analysis Date Selenium	<1 4/10/97	μg/L	1	3
Hexavalent Chromium Analysis Date Hexavalent Chromium	112 4/04/97	μg/L	5	17
Mercury Analysis Date Mercury	<0.2 4/17/97	μg/L	0.2	0.7
Analysis Date Metals Sample Preparation Oil and Grease	4/07/97 5	mg/L		
Analysis Date Oil and Grease pH (Lab)	4/10/97 7.14 4/03/97	S.U.'s	NA	NA
Analysis Date pH Silver Analysis Date Silver	0.40 4/15/97	μg/L	0.10	0.33
Chromium Analysis Date Chromium	37 4/09/97	μg/L	5	17
Cadmium Analysis Date Cadmium	<4 4/09/97	μg/L	4	13
Copper Analysis Date Copper	<10 4/09/97	μg/L	10	33
Lead Analysis Date Lead	<40 4/09/97	μg/L	40	133
Zinc Estimated value: concentration was less than LOQ.	13	μg/L	5	17
Analysis Date Zinc Nickel Analysis Date Nickel	4/09/97 92 4/09/97	μg/L	20	67

Comments for entire Work Order: None

Submitted By: 10 -

ANALYTICAL REPORT

Page: I

Client I.D. No.: LT2000000010 Work Order No.: 9701000078 Report Date: 01/28/97

Date Received: 01/07/97 Arrival Temperature: On Ice

TERRA ENGINEERING JIM FALBO 2201 VONDRON RD. MADISON, WI 53704

TERRA ENGINEERING

Project Name: REFUSE HIDEAWAY

Project Number: 468

Sample I.D. #:146492 Description:LANDFILL LEACHATE		E W	Date S	Sampled:01	/07/97
Analyte	Result	Units	LOD	LOQ	
Selenium Matrix interference.	<1	μg/L	1	3	٠.,
Hexavalent Chromium Hexavalent Chromium sample preparation date was 1	138 /8/97.	μg/L	5	17	
Chromium, Total, Low Level (Cr6+ Confirmation) Copper	45 <10	μg/L μg/L	10 10	33 33	
Lead Analysis Date Metals Sample Preparation	44 .1/08/97	μg/L	30	100	· · · ·

Comments for entire Work Order: None

Submitted By

ENVIRONMENTAL REMEDIATION MUNICIPAL & UTILITY CONSTRUCTION SPECIALTY EARTHWORK June 6. 1997

Wisconsin Department of
Natural Resources
Environmental Response and
Repair Section
Bureau of Solid and Hazardous
Waste Management
101 South Webster Street,
GEF II, SE/3
Madison, Wisconsin 53707

Attn: Ms. Theresa Evanson

Re: Operation and Maintenance

Summary - May 1997

Landfill Gas and Leachate

Extraction System

Refuse Hideaway Landfill Middleton, Wisconsin

Terra Job #468

Dear Ms. Evanson:

This letter summarizes operation and maintenance (0&M) activities performed by Terra Engineering & Construction Corporation (Terra), during the month of May 1997 at the Refuse Hideaway Landfill. Specific tasks are discussed in the following sections:

SCHEDULED LEACHATE LOADOUT

Leachate/Condensate was pumped and transported by A-1 Sewer Service to the Madison Metropolitan Sewerage District Treatment Facility. The hauling dates and quantities are as follows:

Measured (1)
Volume
(gals)

May 01, 1997 9,341 gallons
May 05, 1997 5,006 gallons
May 14, 1997 8,058 gallons
May 19, 1997 9,080 gallons
May 29, 1997 4,032 gallons
May 30, 1997 8,991 gallons

Total Gallons 40,476 gallons

(1) Based on liquid level measurements at the collection tank.

June 6, 1997 Project No. 468

WEEKLY/MONTHLY MONITORING SCHEDULE

Weekly/Monthly monitoring of the landfill gas and leachate extraction system was performed on the following dates:

May 27, 1997

Monthly Leachate Head Monitoring, Monthly Gas Probe Monitoring

Due to flame safeguard control failure, no weekly or monthly gas well monitoring was conducted.

Other Work Performed

On May 9, 1997, quarterly maintenance was conducted on the leachate systems air compressor. The oil was changed, the air filters were cleaned out and the unloaders were greased.

If you have any questions, please do not hesitate to call me.

Sincerely,

TERRA ENGINEERING & CONSTRUCTION CORP.

≯ames A. Falbo Project Manager

Attachments

REFUSE HIDEAWAY LANDFILL MONTHLY GAS PROBE MONITORING INFORMATION

Date: 6-3-7/	
Temperature: 62 F at 2:00	
Barometric pressure: 26 06 b inches Hg	
Monitored by:	
Gas Detector Model No./Serial No.: Genson Gmiso	
Date Gas Detector last calibrated: Factory calibrated: May 54	(4)

Probe	Pressure (inches W.C.)	CH ₄ (%)	CH ₄ ⁽¹⁾ (% LEL)	O ₂ (%)
G-1S	0,0	51.8%	L100%	0.0
G-1D	0.0	22.3%	L 100 %	9.1
G-6	0.0	Ø. 0	0.0	20.7
G-8	0,0	0.0	0,0	20.5
G-9	0.0	0.0	0.0	20.7
G-10	0.0	0.0	0.0	20.8
GP-11S	0.0	0.0	0.0	16.0
GP-11D	0.0	0.0	0.0	16.0
GPW-1S	0.0	0.0	0.0	20.5
GPW-1M	0.0	0.0	0,0	20.7
GPW-1D	0.0	0.0	0.0	20.7
Speedway Building (2)		0.0	0.0	20.7
Speedway Building (3)	_	0.0	0.0	20.7

Notes:

(1)	Percent of lower explosive limit of CH ₄ (100% LEL = 5% CH ₄ by volume).
(2)	Readings obtained from the northeast corner of the interior of the scale hou

Readings obtained from interior of Mechanic's shop. See calibration data on Table 1.

(2) (3) (4) NA Not Available or Not Applicable.

REFUSE HIDEAWAY LANDFILL MONTHLY LEACHATE HEAD MONITORING INFORMATION

Date: 5-27-97

	LEACHA	TE HEAD	(ft)					1	Compressor our Reading	3
Well	Gas Well Depth	Depth to Leachate	Leachate Head	Current Pump Cycles	Previous Pump Cycles	Difference	Gal. (3) Pumped	Current Hours	Previous Hours	Total Hours
GW-1	51.7	51.7	0.0					1853.8	1700,5	153.3
GW-2	53.3	53.3	0.0						, , , , ,	
GW-3	57	55.4	1.6							
GW-4 ⁽¹⁾	65	63,0	2.0	276396	234342	42054	3995.13			
GW-5 ⁽¹⁾	70	69.6	0.4	603939	912223	91716	8713.0			
GW-6	36	34.0	2,0							
GW-7 ⁽¹⁾	60	59.7	0,3	675880	592018	83862	7966.9			
GW-8 ⁽¹⁾	69	68.6	0.4	540754	490220	50534	4800.73			
GW-9 ⁽¹⁾	66	65,3	0.7	375 252		18775	1783.6			
GW-10	70	63.9	6-1							
GW-11 ⁽¹⁾	65	64.5	0.5	309 786	271957	38029	3612.8			
GW-12 ⁽¹⁾	81	80.2	0.8	SOOHZ	466568	33574	3189.5			
GW-13 ⁽¹⁾	69	68,0	1.0	532606	481060	51546	4896.8			

38,958,46

Notes:

1) Wells with leachate extraction pumps and controls.

Time of cycle meter reading was recorded on 5-6-97 and 5-27-97

(3) Difference x .095 gal/cycle = gallons pumped.

REFUSE HIDEAWAY LANDFILL MONTHLY SUMMARY OF SYSTEM ALARM LOG

Date: <u>May 1997</u>

ALARM DATE	ALARM CAUSE	SOLUTION (HOURS FLARE NOT OPERATIONAL)			
	DUE TO FLAME SAFEGUARD CONTROL FAILURE, THE FLARE WAS NOT RUNNING FOR THE MONTH OF MAY				

ENVIRONMENTAL REMEDIATION MUNICIPAL & UTILITY CONSTRUCTION SPECIALTY EARTHWORK August 4, 1997

Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Fitchburg, WI 53711

Attn: Mr. Harlan Kuehling

Re:

Operation and Maintenance

Summary - June 1997

Landfill Gas and Leachate

Extraction System

Refuse Hideaway Landfill Middleton, Wisconsin

Terra Job #468

Dear Mr. Kuehling:

This letter summarizes operation and maintenance (O&M) activities performed by Terra Engineering & Construction Corporation (Terra), during the month of June 1997 at the Refuse Hideaway Landfill. Specific tasks are discussed in the following sections:

SCHEDULED LEACHATE LOADOUT

Leachate/Condensate was pumped and transported by A-1 Sewer Service to the Madison Metropolitan Sewerage District Treatment Facility. The hauling dates and quantities are as follows:

Measured (1)
Volume
(gals)

June 03, 19974,906 gallonsJune 05, 19979,511 gallonsJune 13, 19974,914 gallonsJune 19, 19974,739 gallonsJune 21, 199713,130 gallonsJune 26, 19974,452 gallons

Total Gallons 41,652 gallons

(1) Based on liquid level measurements at the collection tank.

2201 VONDRON ROAD MADISON, WI 53704-6795 608/221-3501 PHONE 608/221-4075 FAX

NOTE NEW ZIP 53718-6795 VISIT OUR WEBSITE: www.terraeng.com

August 4, 1997 Project No. 468

WEEKLY/MONTHLY MONITORING SCHEDULE

Weekly/Monthly monitoring of the landfill gas and leachate extraction system was performed on the following dates:

June 13, 1997	Weekly
June 17, 1997	Annual & Quarterly Leachate Samples,
	Quarterly Monitoring
June 19, 1997	Weekly
June 25, 1997	Weekly
June 30, 1997	Monthly Leachate Head Monitoring,
	Monthly Gas Probe Monitoring, Monthly
	Gas Well Monitoring, Weekly
July 15, 1997	Resample VOC Leachate

There were seven (7) system shut downs during the period from June 9, 1997 to June 30, 1997.

Other Work Performed

On June 9, 1997, the new Flame Safe Guard Control was installed. Restarted Flare at $12:00\ p.m.$ on June 19, 1997. Flare was down for 1,008 hours.

On June 11, 1997, a new Thermocouple was installed due to Thermocouple failure.

On June 17, 1997, Annual and Quarterly Leachate Samples were taken. Results are attached. A copy of the Annual and Quarterly Leachate Samples will be sent to Madison Metropolitan Sewerage District.

I have enclosed a copy of the Flame Safe Guard Control Owner's Manual.

If you have any questions, please do not hesitate to call me.

Sincerely,

TERRA ENGINEFING & CONSTRUCTION CORP.

James A. Falbo Project Manager

Attachments REFUSE\june97.rpt

REFUSE HIDEAWAY LANDFILL

MONTHLY GAS EXTRACTION WELLS MONITORING INFORMATION

Date: 6-30-17	•	
Temperature: Fat		
Barometric pressure: inches Hg Monitored by: 5/4/5		
Gas Detector Model No./Serial No.:	(3)	
Velometer Model No./Serial No.:		
Date Velometer last calibrated: Factory calibrated:		

MEIT (I)	PE (IN W.C.)	PW (IN W.C.)	TEMP. (*P)	METHANE (%CH4)	OXYGEN (%O2)	CARBON DIOXIDE (%CO2)	BALANCE *	GAS VELOCITY (PPM)	(2) TOTAL FLOW (CFM)	METHANE PLOW (CFM)	ADJUSTED VELOCITY (FPM)
GW-1	-7	+1.2	82.5	17,4	14.4	11.0	57.2				
GW-2	~7	+08	80.0	1.0	19.7	0.0	79.3				
GW-3	-6	-2.7	72.5	60.2	0,0	39.8	0.0	900	40.5	24,4	
GW-4 ⁽¹⁾	-6 1/z	-4.8	81.5	60.0	0.0	40.0	0.0	400	18.0	10.8	
GW-5 ⁽¹⁾	-242	-,7	82.5	57.6	0.2	42.2	0,0	250	11.3	6.5	
GW-6	-9	8.2-	72.5	61.7	0.0	38.3	0,0	650	29.3	18,0	
GW-7 ⁽¹⁾	-91/2	-9.2	83.3	63.0	0,0	37.0	0.0	400	18,0	11.3	
GW-8 ⁽¹⁾	-91/2		86.5	58.1	0.4	41.5	0,0	400	18.0	10,5	
GW-9 ⁽¹⁾	1-91/2	-8.1	823	59.9	0.3	39.8	0.0	350	15.8	9.4	
GW-10	8-	-4.2	92.2	61.1	0.0	38.9	OrO	400	18	11,0	
GW-11 ⁽¹⁾	-8	-6.9	B1.Z	66.1	0.0	33,9	0.0	200	9,0	6.0	
GW-12 ⁽¹⁾	-8	-6	99.1	60.3	0.0	39.7	0.0	650	29.3	17.7	
GW-13	-8	-6.9	83.3	62.8	0.0	37.Z	0.0	400	18	11.3	

Notes:

(1) Wells with leachate extraction pump and controls.

(2) Gas flow (cfm) is calculated by multiplying the gas velocity (fpm) by 0.045 ft² for 3-inch diameter PVC pipe.

(3) Calibration checked: 0 20 1

(3) Calibration checked: 50° CH, read 15° CO2 read 15° CO

NA Not Available or Not Applicable

NC No Change PH Header Pressure PW Well Pressure

REFUSE HIDEAWAY LANDFILL MONTHLY GAS PROBE MONITORING INFORMATION

Date: $6 - 30 - 9$	
Temperature: Fat	
Barometric pressure: inches Hg	
Monitored by:	•
Gas Detector Model No./Serial No.: 6em 500- 6m/90	1
Date Gas Detector last calibrated: Factory calibrated: MG \ 97	(4)

Probe e	Pressure (inches W.C.)	CH ₄ (%)	CH ₄ ⁽¹⁾ (% LEL)	O ₂ (%)
G-1S	7,6	28.8	1007	2,7
G-1D	t.6	45.5	100 >	0.0
G-6	0.0	0.0	0.0	15.0
G-8	0.0	0.0	0.0	20.3
G-9	0.0	0.0	0.0	20,4
G-10	0.0	0,0	0.0	20.4
GP-11S	+.6	7.62	160 >	0.0
GP-11D	+.6	13,9	100 >	0.0
GPW-1S	+1,3	0.0	0,0	20.0
GPW-1M	+1.4	0,0	0,0	19.5
GPW-1D	41,4	0.0	0.0	18.6
Speedway Building ⁽²⁾	0,0	0.0	0.0	20.7
Speedway Building ⁽³⁾	0.0	0.0	0.0	20.7

Notes:

(1)	Percent of lower	explosive limit of	CH_4 (100% LEL = 5% CH_4 by volume).

Readings obtained from the northeast corner of the interior of the scale house. Readings obtained from interior of Mechanic's shop. (2)

(4) NA See calibration data on Table 1.

Not Available or Not Applicable.

⁽³⁾

REFUSE HIDEAWAY LANDFILL MONTHLY BRANCH AND FLARE MONITORING INFORMATION Date: 6-30-97

	Pressure (in. W.C.)	CH ₄ ⁽¹⁾ (%)	O ₂ (%)	Gas Velocity (fpm)	Flow ⁽²⁾ (cfm)	Flow ⁽³⁾ (scfm)	Gas Temp	Valve Setting (fraction open)
Branch Monitoring	Station							
North Branch	-7.6	61.9	0,6	1000	78	72,9	82.0	3/9
Central Branch	-9.0	56.5	1.0	800	62.4	59.7	81.5	3/9
South Branch	-6.8	54.0	1.7	1100	85.8	70.5	72.0	3/9
Flare Inlet Pipe								
Port A	+ 2.1/2							N/A
Port B	+1/2	59.1	0.1	1400	259	249.6	920	Full
Port C	+ 1/2							N/A

Notes:

(1) Percent CH₄ (methane).

(2) Gas velocity is converted to gas flow by multiplying fpm x 0.185 @ 6-inch HDPE and fpm x 0.078 @ 4-inch PVC.

(3) Flows have been converted to standard conditions of 70°F and 406.9 inches water.

NA Not applicable.

REFUSE HIDEAWAY LANDFILL MONTHLY LEACHATE HEAD MONITORING INFORMATION

Date: 6-30-97

		· · · · · · · · · · · · · · · · · · ·						C	ompressor	
	LEACHA	TE HEAD	(ft)					Hour Reading		g
Well	Gas Well Depth	Depth to Leachate	Leachate Head	Current Pump Cycles	Previous Pump Cycles	Difference	Gal. (3) Pumped	Current Hours	Previous Hours	Total Hours
GW-1	51.7	46.3	5.4					2079.2	1853.8	225,4
GW-2	53.3	48.0	5,3							
GW-3	57	55.3	1.7							
GW-4 ⁽¹⁾	65	63,7	1.3_	335468	276396	59072	5611.8			
GW-5 ⁽¹⁾	70	69,5	15	154056	003939	150117	14261.1			
GW-6	36	36,0	0.0							
GW-7 ⁽¹⁾	60	58.0	2.0	783787	67588	107997	10251.2			
GW-8 ⁽¹⁾	69	68.5	0.5	597832	540 754	570 78	5422.4			
GW-9 ⁽¹⁾	66	65.5	0,5	417754	375-252	42502	4037.7			
GW-10	70	62.0	8.0							
GW-11 ⁽¹⁾	l.	64.5	0.5	353860	309986	43874	4168.0			
GW-12 ⁽¹⁾	81	80.5	0.5	56707Z	500142	66 930	6358,4			
GW-13 ⁽¹⁾	69	6.7	1.3	6 25505	532606	92899	8825.4			

58,936 gal

Notes:

(1) Wells with leachate extraction pumps and controls.

(2) Time of cycle meter reading was recorded on 5-27-97 and 6-30-97.

(3) Difference x .095 gal/cycle = gallons pumped.

TABLE 5.

REFUSE HIDEAWAY LANDFILL MONTHLY SUMMARY OF SYSTEM ALARM LOG

Date: <u>June 1997</u>

ALARM DATE	ALARM CAUSE	SOLUTION (HOURS FLARE NOT OPERATIONAL)
06/09/97 6:30 PM	FLAME FAILURE - DUE TO BAD THERMOCOUPLE	RESTART BLOWER/FLARE AT 10:00 AM ON 06/10/97 (8.5 HRS)
06/10/97 7:00 PM	FLAME FAILURE - UNKNOWN REASON	RESTART BLOWER/FLARE AT 1:05 PM ON 06/13/97 (66.0 HRS)
06/15/97 7:00 PM	FLAME FAILURE - UNKNOWN REASON	RESTART BLOWER/FLARE AT 1:50 PM ON 06/16/97 (19.0 HRS)
06/17/97 2:00 AM	FLAME FAILURE - UNKNOWN REASON	RESTART BLOWER/FLARE AT 10:00 AM ON 06/19/97 (56.0 HRS)
06/20/97 3:00 PM	FLAME FAILURE - DUE TO HIGH LEACHATE LEVEL	RESTART BLOWER/FLARE AT 9:30 AM ON 06/23/97 (66.5 HRS)
06/26/97 11:50 AM	FLAME FAILURE - UNKNOWN REASON	RESTART BLOWER/FLARE AT 1:05 PM ON 06/27/97 (24.0 HRS)
06/27/97 6:00 AM	FLAME FAILURE - UNKNOWN REASON	RESTART BLOWER/FLARE AT 10:00 AM ON 06/30/97 (76.0 HRS)

ANALYTICAL REPORT

Client I.D. No.: LT2000000010 Work Order No.: 9706000471 Report Date: 07/15/97

Page:1

Date Received: 06/17/97 Arrival Temperature: On Ice

TERRA ENGINEERING JIM FALBO 2201 VONDRON RD. MADISON, WI 53704

TERRA ENGINEERING

Project Name:

Baraboo, Wisconsin 53913

Project Number:

			•		
Sample Sample Description: LANDFILL LEACHA	ŢΈ	. ••		Date S	ampled:06/17/97
Analyte	Result	<u>Units</u>	<u>LOD</u>	LOQ	Method
Cyanide	< 10	μg/L	5	13	9010
Elevated detection limit due to sample dilution;	presence of	matrix	3	13	<i>7</i> 010
interference.			•		
Analysis Date Cyanide	6/25/97				9010
Selenium	<1	μg/L	1	3 .	7740
Analysis Date Selenium	6/23/97	, -			7740
Hexavalent Chromium	74	· μg/L	5	17	7196
Analysis Date Hexavalent Chromium	6/18/97				7196
Cadmium	<4	$\mu { m g/L}$	4	. 13	6010
Analysis Date Cadmium	6/24/97		_	10	6010
Chromium	34	μg/L	5	17	6010
Analysis Date Chromium	6/24/97 19	~/1	10	33	6010 6010
Copper Estimated value: concentration was less than LO		μg/L	. 10	33	0010
Analysis Date Copper	3. 6/25/97	•			6010
Lead	<40	$\mu { m g}/{ m L}$	40	133	6010
Analysis Date Lead	6/24/97	μ _Β , Δ	-	133	6010
Nickel	106	μg/L	20	67	6010
Analysis Date Nickel	6/24/97	μ ₀ , Δ	20	01	6010
Zinc	18	$\mu \mathrm{g/L}$	5	17 .	6010
Analysis Date Zinc	6/25/97	ro-			6010
Mercury	< 0.2	$\mu g/L$	0.2	0.7	7470
Analysis Date Mercury	7/02/97	r.o. –			7470
Analysis Date Metals Sample Preparation	6/18/97	٠., .	• •		3020
Oil and Grease	· 10 · .				413.1
Analysis Date Oil and Grease	6/23/97				413.1
pH (Lab)	7.19	S.U.'s	NA	NA `	9045
Analysis Date pH	6/13/97	_			9045
Silver	< 0.20	$\mu g/L$	0.10	0.33	7761
Elevated detection limit due to sample dilution.	6 100 107			•	554
Analysis Date Silver	6/23/97				7761
Sample Sample			•		•
I.D. #:161760 Description:LANDFILL LEACHA	TE .		• •	Data S	mpled:06/17/97
Description: Extra lettering				Date Da	impicu.
<u>Analyte</u>	Result	Units	LOD	LOQ	Method
	# 100 in#			,	
Analysis Date TCLP Herbicides	7/09/97				Sub Lab
See attached report for results. Analysis Date TCLP Pesticides	7/00/07	. •		•	Cub Tab
Analysis Date TCLP Pesticides	7/09/97	' .			Sub Lab
See attached report for results. Analysis Date TCLP SVOC's	7/09/97				Sub Lab
See attached report for results.	ולולטוו	•			SUU LAU
Extraction - TCLP	6/20/97		•		EPA 1311
TCLP ICP Arsenic	< 0.10	mg/L	0.10	0.33	EPA 6010
TODA TOT ATSOME	~0.10	g,	, 3.10	0.55	LIA WIO
	Submit	ted By: 👠			

Two decades of innovative environmental solutions.

Commonwealth Technology, Inc. WI DNR Lab Certification Number: 157066030 DHSS Certification Number: MW0289 1230 Lange Court

Phone 608-356-2760 Fax 608-356-2766 E-mail fyi@ctienv.com

ANALYTICAL REPORT

Page:2

Client I.D. No.: LT2000000010 Work Order No.: 9706000471 Report Date: 07/15/97 Date Received: 06/17/97 Arrival Temperature: On Ice

TERRA ENGINEERING JIM FALBO 2201 VONDRON RD. MADISON, WI 53704

Project Name:

Project Number:

Sample Sample I.D. #:161760 Description	•		Date Sa	<u>Date Sampled:</u> 06/17/97		
<u>Analyte</u>	Result	<u>Units</u>	LOD	LOO	Method	
TCLP ICP Barium TCLP ICP Cadmium TCLP ICP Chromium TCLP ICP Lead TCLP ICP Selenium TCLP Mercury Metals Sample Preparation TCLP Silver Matrix interference.	1.18 <0.004 0.037 <0.040 <0.1 <0.0002 6/20/97 <0.003	mg/L mg/L mg/L mg/L mg/L mg/L	0.005 0.004 0.005 0.040 0.1 0.0002	0.017 0.013 0.017 0.133 0.3 0.0007	EPA 6010 EPA 6010 EPA 6010 EPA 6010 EPA 7470 EPA 7470 EPA 7760	

Comments for entire Work Order: None

Submitted By: 1

Corporate Office & Laboratory 1795 Industrial Drive Green Bay, WI 54302 414-469-2436 • Fax: 414-469-8827 1-800-7-ENCHEM

- Analytical Report -

Project Name: TERRA - REFUSE

Submitter #: 1272.00

Project Number: 9706000471

Submitter: COMMONWEALTH TECHNOLOGY

WI DNR LAB ID: 113138520

Report Date: 7/9/97

Sample No.	Station ID	Collection Date	Sample No.	Station ID	Collection Date	
972091-001	161760 LANDFILL LEACHATE	6/17/97				

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample narrative. Release of this final report is authorized by Laboratory management, as is verified by the following signature.

Approval Signature

Date

Corporate Office & Laboratory 1795 Industrial Drive Green Bay, WI 54302 414-469-2436 • Fax: 414-469-8827

1-800-7-ENCHEM

- Analytical Report -

Project Name: TERRA - REFUSE

Project Number: 9708000471

Lab Sample Number: 972091-001

Station ID: 161760 LANDFILL LEACHATE

< 0.25

< 0.25

WI DNR LAB ID: 113138520

Submitter #: 1272.00

Submitter: COMMONWEALTH TECHNOLOGY

Report Date: 7/9/97

Collection Date: 6/17/97

Extraction Date: 6/24/97

Matrix Type: LEACHATE

7/1/97

7/1/97

SW846 8270

SW846 8270.

Semi-Volatile Organic Results Prep Method: SW846 3510 Extra

TCLP LIST - SEMIVOLATILES

2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dinitrotoluene Cresol, total

Hexachlorobenzene
Hexachlorobutadiene
Hexachloroethane
Nitrobenzene

Pentachlorophenol

Pyridine

Analyte

	•					
Result	EQL	Units	Code	Analysis Date	Analysis Method	
< 0.25	0.25	mg/L		7/1/97	SW846 8270	
< 0.050	0.050	mg/L		7/1/97	SW846 8270	
< 0.050	0.050	mg/L		7/1/97	SW846 8270	
< 0.15	0.15	mg/L		7/1/97	SW846 8270	
< 0.050	0.050	mg/L		7/1/97	SW846 8270	
< 0.050	0.050	mg/L		7/1/97	SW846 8270	
< 0.050	0.050	mg/l_		7/1/97	SW846 8270	
< 0.050	0.050	mg/L		7/1/97	SW846 8270	

Semi-Volatile Organic Results

mg/L

mg/L

0.25

0.25

TCLP LIST-HERBICIDES

Prep Method: SW-846 8150 Extraction Date: 6/23/97

Analyte	Result	EQL	Units	Code	Analysis Date	Analysis Method
2,4,5-TP (Silvex)	0.0013	0.00020	mg/L	D	6/26/97	SW846 8150
2.4-D	< 0.00020	0.00020	ma/L		6/24/97	SW846 8150

Semi-Volatile Organic Results

TCLP LIST - PESTICIDES

Prep Method: SW846 3510 Extraction Date: 6/23/97

Analyte	Result	EQL	Units	Code	Analysis Date	Analysis Method	
Chlordane	< 0.00050	0.00050	mg/L		6/28/97	SW846 8080	_
Endrin	< 0.0010	0.0010	mg/L		6/28/97	SW846 8080	
gamma-BHC (Lindane)	< 0.00050	0.00050	mg/L		6/28/97	SW846 8080	
Heptachlor and its epoxide	< 0.00050	0.00050	mg/L		6/28/97	SW846 8080	
Methoxychlor	< 0.0050	0.0050	mg/L		6/28/97	SW846 8080	
Toxaphene	< 0.050	0.050	mg/L		6/28/97	SW846 8080	

Corporate Office & Laboratory 1795 Industrial Drive Green Bay, WI 54302 414-469-2436 • Fax: 414-469-8827 1-800-7-ENCHEM

Data Qualifier Sheet

D Analyte value from diluted analysis.

Corporate Office & Laboratory 1795 Industrial Drive Green Bay, WI 54302 414-469-2436 • Fax: 414-469-8827 1-800-7-ENCHEM

- Analytical Report -

Date

Project Name: TERRA ENG

Submitter #: 1272.00

Project Number: 9707000340

Submitter: COMMONWEALTH TECHNOLOGY

WI DNR LAB ID: 113138520

Report Date: 7/24/97

Collection Sample No. Station ID

Collection Sample No. Station iD Date

972470-001 164918 LF LEACHATE 7/15/97

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample narrative. Release of this final report is authorized by Laboratory management, as is verified by the following signature.

Corporate Office & Laboratory 1795 Industrial Drive Green Bay, WI 54302 414-469-2436 • Fax: 414-469-8827

1-800-7-ENCHEM

- Analytical Report -

Project Name: TERRA ENG

Submitter #: 1272.00

Project Number: 9707000340

Submitter: COMMONWEALTH TECHNOLOGY

Lab Sample Number: 972470-001

Report Date: 7/24/97

Station ID: 164918 LF LEACHATE

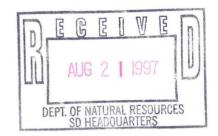
Collection Date: 7/15/97

WI DNR LAB ID: 113138520

Matrix Type: LEACHATE

Volatile Organic Results

TCLP LIST - VOLATILES


Prep Method: SW846 5030

Analyte	Result	LOD	LOQ	EQL	Units	Code	Analysis Date	Analysis Method
1,1-Dichloroethene	< 0.10			0.10	nig/L		7/21/97	SW846 8260
1,2-Dichloroethane	< 0.10			0.10	mg/L		7/21/97	SW846 8260
1,4-Dichlorobenzene	< 0.10			0.10	·· mg/L	J	7/21/97	SW846 8260
2-Butanone	< 0.20			0.20	mg/L		7/21/97	SW846 8260
Benzene	< 0.10		•	0.10	mg/L	j	7/21/97	SW846 8260
Carbon tetrachloride	< 0.10			0.10	mg/L		7/21/97	SW846 8260
Chlorobenzene	< 0.10			0.10	mg/L		7/21/97	SW846 8260
Chloroform	< 0.10			0.10	mg/L		7/21/97	SW846 8260
Tetrachloroethene	< 0.10			0.10	mg/L		7/21/97	SW846 8260
Trichloroethene	< 0.10			0.10	mg/L		7/21/97	SW846 8260
Vinyl chloride	< 0.050			0.050	mg/L	J	7/21/97	SW846 8260

SCS FIELD SERVICES, INC.

August 20, 1997 File No. 0797026.00

Mr. Harlan Kuehling, P.G. Hydrogeologist Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Fitchburg, WI 53711

Subject:

Operation and Maintenance of the Refuse Hideaway Landfill Gas (LFG) and

Leachate Collection System During July 1997

Dear Mr. Kuehling:

This letter report summarizes operation and maintenance (O&M) activities performed by SCS Field Services, Inc. (SCS-FS) at the Refuse Hideaway Landfill LFG and Leachate Collection System (Collection System) during July 1997.

SUMMARY

Highlights of the O&M activities completed by SCS-FS at the Collection System during July included:

- The LFG Recovery System recorded less than 10 percent downtime.
- .
- Sixteen loads of leachate totaling approximately 72,000 gallons were removed from the Leachate Collection System.
- The methane content measured at GP-11S was 9.1 percent, by volume, and the methane content measured in GP-11D was 16.9 percent, by volume. No methane was detected in the other Monitoring Locations.

BACKGROUND

LFG Recovery System

The Refuse Hideaway Landfill LFG Recovery System became operational in 1991. The Refuse Hideaway Landfill LFG Recovery System is defined as the following components:

- The Blower/Flare Station;
- The Collection System; and
- · Monitoring Locations.

The Blower/Flare Station consists of one centrifugal LFG blower, an enclosed flare, a candlestick flare (as a backup combustion unit), and associated controls and appurtenances. The Collection System consists of 13 extraction wells, four drip legs, and associated gas and

Mr. Harlan Kuehling, P.G. August 20, 1997 Page 2

pneumatic header piping. The Monitoring Locations include 11 wells located throughout the site, and ambient air monitoring within the nearby Speedway buildings.

Proper operation of the Collection System is verified through testing of the extraction wells. LFG withdrawal rates at individual wells are adjusted based on test results. Testing for subsurface gas migration is done at the Monitoring Locations. Operation of the Blower/Flare Station provides vacuum necessary to withdraw the gas from the landfill, which helps control surface emissions and subsurface migration; odors and emissions are controlled by combustion of the gas at the flare.

Leachate Collection System

The current leachate collection system was installed in 1996, and is comprised pneumatic pumps installed in eight of the existing LFG extraction wells. Compressed air for the pneumatic pumps is supplied by a compressor located at the Blower/Flare Station. The collected leachate is stored onsite in a 25,000 gallon underground storage tank. Leachate is removed from the tank by a subcontractor, and is transported to the Madison Metropolitan Sewage District for treatment and ultimate discharge.

SCS-FS began routine monitoring of the Collection System on July 1, 1997.

TESTING EQUIPMENT

Gas composition testing at the Recovery System was performed using a Landtec GEM-500 Infra-Red Gas Analyzer. The GEM-500 measures methane, carbon dioxide, and oxygen as percent by volume. The GEM-500 also calculates the balance gas component of the LFG (assumed to be nitrogen) and reports it as percent by volume.

Pressure testing was measured in inches of water column and was performed using the GEM-500. LFG flow was measured with the GEM-500 and a Dwyer Pitot tube. Temperature measurement was performed using a handheld, analog temperature probe. Combustion temperatures measured at the flare were obtained from the in-place instrumentation.

Leachate level determination was performed one of two ways:

- For the extraction wells that have a leachate extraction pump, leachate levels were obtained using the bubbler tube installed along with each pump.
- For the gas extraction wells that do not contain a leachate extraction pump, the leachate levels were monitored using an electric tape.

Mr. Harlan Kuehling, P.G. August 20, 1997 Page 3

ON-SITE ACTIVITIES

Weekly LFG activities were completed on July 5, 12, 18, 24, and 29. A summary of operational data collected during these weekly activities is shown in Table 1. Monthly activities were completed on July 29, 1997, with summaries shown in Tables 2, 3, and 4. Copies of all field data sheets are included with this report as Appendix A. The following activities were of note:

- With the exception of the five shutdowns discussed below, the Blower/Flare Station operation was consistent through the month. During the month of July methane concentrations at the blower inlet ranged from a high of 44.5 to a low of 36.8 percent, by volume. Oxygen levels recorded in July ranged from 1.5 to 2.1 percent, by volume.
- Sixteen loads of leachate totaling approximately 72,000 gallons were removed from the Leachate Collection System during the month of July. A summary of the loads removed is shown in Table 5.
- Five alarm responses occurred during the month of July. A summary of those alarms and possible causes are noted in Table 6.
- A visual inspection of the landfill cover did not indicate any significant erosion features. No leachate seeps were noted.

ISSUES TO RESOLVE

SCS-FS personnel met with the Wisconsin Department of Natural Resources (Department) at the Site on July 3, 1997. During this meeting, several operational considerations were discussed; SCS-FS notes from this meeting were summarized in a July 16, 1997 memorandum to yourself. In that memorandum, SCS-FS discussed implementing some different operational methods in an attempt to reduce unplanned system shutdowns (previously reported by others as being in excess of 80 times per year).

This involved increasing flows from certain LFG collection wells, and relaxing the 1.0 percent oxygen limit. The preliminary data presented by SCS-FS during the month of July tends to support that system downtime can be reduced in this manner; however composite oxygen levels for the month were between 1.5 percent and 2.1 percent.

If the Department's desire is to maintain a low system downtime, SCS-FS requests that a relaxed oxygen limit be allowed. Based on July monitoring data, this would tend to suggest that a composite (at the blower inlet) limit of 2.0 percent oxygen be allowed, and that no individual collection well have an oxygen level greater than 3.0 percent.

Mr. Harlan Kuehling, P.G. August 20, 1997 Page 4

RESOLUTION TO PREVIOUS ISSUES

As no previous issues existed, no resolution was necessary.

WORK PROJECTED FOR THE UPCOMING MONTH

SCS-FS will be contacting a local electrician to provide an estimate to install an ammeter and hour meter for the blower motor. This estimate will be forwarded to the Department for review and approval prior to performing the work.

SCS-FS will also attempt to coordinate an inspection of the enclosed flare during the month of August. This will be done during a planned system shutdown at which time the leachate collection lines will be jetted out. Because of scheduling conflicts, this work may be postponed until September 1997. The Department will be notified in advance of this scheduled work.

STANDARD PROVISIONS

The findings described above were recorded by both SCS-FS and SCS-FS contracted parties. Changes can and do occur which affect the operation of the system. Department personnel should contact SCS-FS immediately in the event of a system malfunction or operational deficiency.

Although SCS-FS is the primary party designated to operate and maintain the subject system, Department staff may find it necessary to make adjustments to the system if conditions change. SCS-FS should be notified of any adjustments made by Department staff.

SCS-FS is pleased to provide our services to the Department and we enjoy working on the project. Should you have questions, please do not hesitate to contact either of the undersigned.

Sincerely,

William O. Reed Regional Manager

SCS FIELD SERVICES, INC.

Galen S. Petoyan

President

SCS FIELD SERVICES, INC.

WOR:GSP;bms Enclosures

TABLE 1.

REFUSE HIDEAWAY LANDFILL
WEEKLY BLOWER/FLARE STATION SUMMARY FOR JULY 1997

Date	Time	Bar. Pres. [in-Hg]	Air Temp. [Deg F]	Blower Inlet Pressure [in-W.C.]	Blower Inlet Methane [%vol]	Blower Inlet Oxygen [%vol]	Blower Outlet Pressure [in-W.C.]	Flare Inlet Valve Position	Comments
07/05/97 07/12/97 07/18/97 07/24/97 07/29/97	10:30 am 9:00 am 10:00 am 1:00 pm 1:45 pm	29.75 29.83 30.00 29.85 30.02	70 80 80 80 70	-31.5 -31.0 -30.8 -30.5 -32.5	44.5 36.8 37.5 42.0 40.0	1.6 2.1 1.5 2.0 1.5	3.0 4.6 4.8 3.8 2.6	FULL OPEN FULL OPEN FULL OPEN FULL OPEN FULL OPEN	
arrerrerrerrerrerrerrerrerrerrerrerrerre	======	======================================	******	**********	40.2 44.5 36.8	1.7 2.1 1.5			======

TABLE 2.
REFUSE HIDEAWAY LANDFILL
LFG COLLECTION WELL TESTING RESULTS SUMMARY FOR JULY 1997

Well No.	Date	Methane [%vol]	Oxygen [%vol]	Well Pressure [in-W.C.]	Header Pressure [in-W.C.]	Flow [cfm]	Temp. [Deg F]	Valve Setting	Comments
GW-01	07/29/97	0.5	12.0	1.0	-11.0	0		0	
GW-02	07/29/97	15.0	14.0	3.0	-11.0	0		0	
GW-03	07/29/97	39.1	0.7	-7.0	-11.0	85	68	50	
GW-04	07/29/97	54.0	1.0	-10.0	-11.0	90	74	70	
GW-05	07/29/97	49.8	1.8	-6.0	-6.0	80	78	100	NOTE HEADER DROP BETWEEN GW4 AND GW5
GW-06	07/29/97	32.6	0.6	-7.6	-11.0	80	72	30	
GW-07	07/29/97	55.0	0.5	-9.5	-11.0	83	76	60	
GW-08	07/29/97	53.4	0.8	-7.5	-11.0	92	83	75	
GW-09	07/29/97	54.9	0.4	-8.9	-10.0	115	82	100	
GW-10	07/29/97	26.0	1.1	-2.0	-33.0	30	79	10	
GW-11	07/29/97	57.9	0.6	-31.1	-35.0	100	. 81	90	
GW-12	07/29/97	36.4	0.7	-11.0	-35.0	78	98	20	
GW-13	07/29/97	45.8	0.7	-29.5	-33.0	150	78	80	

TABLE 3.
REFUSE HIDEAWAY LANDFILL
LEACHATE HEAD MEASUREMENT SUMMARY FOR JULY 1997

Well No.	Date	Leachate Level [feet, above bottom of well]	Counter Reading
GW-01	07/29/97	7.7	N/A
GW-02	07/29/97	5.8	N/A
GW-03	07/29/97	4.7	N/A
GW-04	07/29/97	1.2	394,603
GW-05	07/29/97	0.4	314,210
GW-06	07/29/97	DRY	N/A
GW-07	07/29/97	1.9	902,116
GW-08	07/29/97	0.6	659,388
GW-09	07/29/97	0.6	455,343
GW-10	07/29/97	10.7	N/A
GW-11	07/29/97	0.4	430,494
GW-12	07/29/97	0.4	637,247
GW-13	07/29/97	0.6	764,350

TABLE 4.
REFUSE HIDEAWAY LANDFILL
MONITORING WELL TESTING RESULTS FOR JULY 1997

Well No.	Date	Methane [%vol]	Oxygen [%vol]	Pressure [in-W.C.]	Comments
G-01D	07/29/97	ND	17.9	0.0	
G-01S	07/29/97	ND	19.9	0.0	
G-06	07/29/97	ND	19.8	0.0	
G-08	07/29/97	ND -	19.9	0.0	
G-09	07/29/97	ND	19.0	0.0	
G-10	07/29/97	ND	20.0	0.0	
GP-11D	07/29/97	16.9	1.2	0.0	
GP-11S	07/29/97	9.1	0.8	0.0	
GPW-1D	07/29/97	ND	19.7	0.0	
GPW-1M	07/29/97	ND	19.0	0.0	
GPW-1S	07/29/97	ND	19.9	0.0	
SPEEDWAY BLDGS	07/29/97	ND	20.0	0.0	

TABLE 5. REFUSE HIDEAWAY LANDFILL LEACHATE HAULING SUMMARY FOR JULY 1997

Date	Beginning	Ending	Total
	Tank Depth	Tank Depth	Gallons
	[inches]	[inches]	Hauled
07/02/97	117	93	4,751
	95	75	4,399
07/03/97	82	61	4,695
	66	47	4,150
07/04/97	55	35	4,142
	36	11	4,074
07/09/97	74	52	4,878
	52	28	4,790
07/15/97	88	69	4,233
	69	48	4,612
07/16/97	55	34	4,333
07/18/97	55	33	4,524
07/21/97	55	35	4,142
07/24/97	58	37	4,411
07/28/97	58	31	5,554
	78	58	4,467
Total: Count:	========	=======	72,155 16

TABLE 6. REFUSE HIDEAWAY LANDFILL ALARM RESPONSES FOR JULY 1997

Alarm Date	Response Date	Alarm Codes	Comments
07/01/97	07/01/97	1,4	System Failure - Cause Unknown
07/04/97	07/05/97	1,4	System Failure - Cause Unknown
07/05/97	07/06/97	1,4	System Failure - Cause Unknown
07/19/97	07/22/97	1,4	System was restarted after 3 days to allow gas quality to improve
07/27/97	07/27/97	1,4	May have been caused by thunder storms
count:	=======================================	=====	

APPENDIX A FIELD DATA SHEETS

DATA SHEET A REFUSE HIDEAWAY LANDFILL

GAS WELL AND LEACHATE EXTRACTION SYSTEM GAS WELL MONITORING

Date:_	. 7/	29/9.	2			
Time: S	Start - // 0	<u>ට</u> End	. 13 4			
Тетре	rature:	70'	5			
Barome Monito	etric Pressure	: 30 210				
(Model No.: erial No.: Calibrated:	092			
Wall	Well Pressure	Header Pressure	CH4(2)	02 (%)	Valve Setting (fraction	Gas Veloc

Well	Well Pressure (in. WC)	Header Pressure (in. WC)	CH4(2) (%)	02 <u>(%)</u>	Valve Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) (cfm)	Gas Flow Temperature (°F)	Comments	
GW1	41.0	-//.0	0.5	/2	0%	· •	0.0			
GW2	<i>+</i> 3.0	-11.0	15.0	14	0%		0.0			
GW3	-7.0	-//.0	39.1	0.7	50%		<u>85</u>	68.0		_
GW4	-/0.0	-11.0	54.0	1.0	20%	_	90	74.0	-	• .
									NOTE: HEADER	PRESSUNC
GW5	-6.0	-6.0	49.8	1.8	100%		80	78.0	DROP BETWEEN O	W-446W=
3W6	-7.6	-11.0	32.6	0.6	30%		80	72.0		-
GW7	-9.5	-//.0	<u>55.0</u>	0.5	60%		83	76.0	· ···	-
GW8(1)	-7.5	-//. 0	<u>53.4</u>	0.8	75%		92	83.0	<u>-</u>	_
GW9(1)	-8.9	-10.0	54.9	0.4	100%		115	82.0	_	_
GW10	-2.0	-33.0	26.0	1.1	10%		30	79.0		
GW11(1)	<u>-3/./</u>	<u>-35. o</u>	57.9	<u>0, 6</u>	90%		100	81.0		· · · · · · · · · · · · · · · · · · ·
GW12	-11.0	<u>-35.</u> 0	36.4	0,7	20%		78	98.0	·	_
GW13	-29.5	- 33. ర	45.8	0.7	80%		150	78.0		_

Notes:

Notes:

(1) Wells with leachate pumps and controls.

(2) Percent combustibles by volume, primarily composed of CH4.

(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

· DATA SHEET B REFUSE HIDEAWAY LANDFILL

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Du. 21 7/5/	97		<u>.</u>						
Ti: .e: Start - 103 @	End. 12	٥٥_	-						
Twoperature: 7	203		-						
Ba. ometric Pressure: 2	235-1	n 	_	•					
Mi nitored by:	<u></u>		-		•	•			
Gas Detector Model N		~ 50	<u>0</u>						
Date Last Calibra		5)	-						
Lecation	Pressure	CH4(2)	(%) 02	Valve Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) _(cfm)	Gas Flow Temperature (°F);	Соттепт	
Ground Flare						•			
Sample Port A	+23	43.0	1.7	·	<u>-</u>	N/A	85	_	
- Sample Port B	12.0	43.0	1.6		<u>-</u> -	N/A	86		
- Sample Port C	+1,2	42.6	1.6			NA	88		
- Manual Valve				100 %	(1		
Blower									
- North Branch	-14.6	45.4	0.8	30%	-	NA	76		
- Central Branch	-12.2	46.5	2.2	20%		N/A	78		
- South Branch	- 4.5	42.7	2.8	20%		N/A	78	· · · · · · · · · · · · · · · · · · ·	
- Inlet Sample Port A	-30.8	44.4	1.6				o or the contract of the contr	-1	
Inlet Sample Port B	- 31.5	44.5	1.6				_		
Outlet Sample Port A	+3.0	43.4	1.6			•	_		
Pedestal Flare									
- Manual Vaive				<u>07</u>	<i>•</i>				

Notes:

(1) Wells with leachate pumps and controls.

(2) Percent combustibles by volume, primarily composed of CH4.
(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC
.078 @ 4" PVC
.185 @ 6" HDPE

DRF.kml/JCE [mad-401-781] 15292.03

· DATA SHEET B REFUSE HIDEAWAY LANDFILL

GAS WELL AND LEACHATE EXTRACTION SYSTEM

	_	BLO	WER AN	ND FLARE	SIATION	GAS MOI	MITORING	·
Die 7/12/	197							
T:: .e: Start - 93 0	End/2	00	_					•
To aperature:	80'5		_					
Bis. ometric Pressure: 2	7.83		_	•				
Minitored by:	/		_		•	•		
Gas Detector Model (Serial No Date Last Calibra	D.: 09	2_	<u>-</u>					
			-	Valve				
Lycation	Pressure (in. WC)	CHL(2)	(5 <u>c)</u> (7	Setting (fraction Open)	Gas Velocity ((pm)	Gas Flow(3) (cfm)	Gas Flow Temperature (OF)	Comments
Ground Flare						•		
- Sample Por: A	-30.4	36.7	z.2			N/A	80	
- Sample Port B	-29.5	36.8	2.1			·NA	8/	
- Sample Port C	+ 4.6	37.0	2.0			N/A	96	
- Manual Vaive				100%	•		į	• • • • • • • • • • • • • • • • • • • •
			•				100 mg/s	e de la companya del companya de la companya de la companya del companya de la co
Blower						man e	1. 100 man a	n mangan na mangan na n
- North Branch	-29.0	36.7	0.8	50%		256	76	
- Central Branch	-22.0	<u>33. z</u>	4.0	40%		230	78	
- South Branch	-14.0	32.8	50	10%		187	75	
- Inlet Sample Port A	-30.4	36:7	2.2					
- Inlet Sample Port B	-31.0	36.8	2.1					
Outlet Sample Port A	44.6	37.0	2.0			•		
Pedestal Flare	•							•

- Manual Vaive

Notes:

Notes:

(1) Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.
(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

· DATA SHEET B REFUSE HIDEAWAY LANDFILL

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Da. 1 7/18/	タフ	DEO.	1 1.20 7 12	, D I LIGHT				
T:: .e: Start - /000		00	•					
	20-							
Bis. ometric Pressure: 3	0.00)	-	•				
M: nitored by: 3	0/		-		•	•		
Gas Detector Model I Serial No Date Last Calibra	.: 09	2_	- -					•
Location	Pressure	CH4(2) (영)	(25) 02	Valve Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) (cfm)	Gas Flow Temperature (°F)	Comments
Ground Flare	<u>(i.i. 1.0)</u>	7.27	7.67	<u>Optinj</u>	710111	10001		
			, –		_	/^	<i>C</i> -3	_
Sample Port A	+ 4.1					N/A.	82	
- Sample Port B	+3.8	37.6	1.5			N/A	84	- ,
- Sample Port C	+2.2	37.2	1.4			~/A	94	
- Manual Vaive			• •	100%	6		į	
·								
Blower								
- North Branch	- 29.2	40.0	0.4	50%		2/0	78	
· Central Branch	- 21.6	32.7	4.0	40%		205	73	
- South Branch	-13.8	31.9	4.8	10%		106	70	· -
South Branch Inlet Sample Port A	-13.8			10%		106	70	
		37.3	1.6	10%		106	70	
• Inlet Sample Port A	-30.4	37.5	1.6	10%		/06	70	
Inlet Sample Port A Inlet Sample Port B	-30.8	37.5	1.6	10%		/06	70	
Inlet Sample Port A Inlet Sample Port B	-30.8	37.5	1.6	0%		/06	70	

Notes:

(1) Wells with leachate pumps and controls.

(2) Percent combustibles by volume, primarily composed of CH4.

(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

DRE/kml/JCE [maJ-401-781] 15292.03

DATA SHEET B REFUSE HIDEAWAY LANDFILL

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Dus: 7/24/	97		_				•	
Ti: =: Start - /300	End	00	-					
To inperature: 8	د د		_					
Ba. ometric Pressure: 2	9.85		-	•				
Minitored by:	//.5		_			•		
Gas Detector Model No. Serial No.		4 2	_					
Date Last Calibrat		9)	-					
1 yearion	Pressure (in. WC)	СНЦ(2) <u>(%)</u>	02 (%)	Valve Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) (cim)	Gas Flow Temperature (°F)	Comments
Ground Flare	•							
- Sample Port A	+3.3	42.3	2./			N/A	103.0	
- Sample Port B	+3.0	42.0	2.0	•		NIA	103.2	
- Sample Port C	+1.8	42.3	2.0			NA	105.0	
- Manual Vaive				100%			· ·	
Biower								
- North Branch	-29.2	44.0	0.8	60%		3/7	83.3	_
· Central Branch	- 10.0	36.0	4.8	10%		118	80.0	
- South Branch	-/0.6	40,2	4.0	10%	<u>-</u>	37	80.0	
- Inlet Sample Port A	-30.4	42.2	2.0				-	
- Inlet Sample Port B	-30.5	42.0	2.0				_	
Outlet Sample Port A	+3.8	42.0	2 .0			•	•	_
Pedestal Flare						•		•

- Manual Vaive

Notes:

Wells with leachate pumps and controls.
 Percent combustibles by volume, primarily composed of CH4.

(3) Gas velocity is converted to gas flow by multiplying FPM X.045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

DREkml/JCE [mad-401-78t] 15292.03

DATA SHEET B REFUSE HIDEAWAY LANDFILL

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Davis 7/29/8	7		-						
T:: .e: Start - /3 45	End- <u>/ /</u>	30	_						
Te operature: 70			_						
Ba. ometric Pressure: 3	0.02	7	-	•					
Menitored by:			-			•			
Gus Detector Model N Serial No			<u>.</u>						
Dare Last Calibra		57	-						
<u>Lecation</u>	Pressure	(양) (양)	(%) Oz	Valve Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) (cfm)	Gas Flow Temperature (°F)	Comments	
Ground Flare									
- Sample Port A	+2.4	40.0	1.5		<u>.</u>	NA	95.0	······································	
· Sample Port B	+2.0	40,0	1.5	-		MA	95.0		
- Sample Port C	+1.5	40.0	1.5			~/A	95.1		·
- Manual Vaive				100%			•		
Blower									
- North Branch	-31.4	41.1	0.6	60%		222	79.0		
- Central Branch	- /0.0	35.5	4.3	10%	<u>-</u>	160	76.0		•
- South Branch	-11.0	35.2	4.3	10%		148	72.0		
- Inlet Sample Port A	-32.0	40.0	1.6						<u> </u>
- Inlet Sample Port B	-32.5	40.0	1.5						
Outlet Sample Port A	42.6	40.5	1.6			•			
Pedestal Flare	-								•
Manual Vaive				0%					

Notes:

Notes:

(1) Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.
(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

DRE/kml/JCE [mad-401-781] 15292.03

DATA SHEET C REFUSE HIDEAWAY LANDFILL GAS AND LEACHATE EXTRACTION SYSTEM LEACHATE HEAD MONITORING

· / /	
Date: 7/2 9 / 97	
Time: Start- 1100 End 345	
Monitored By:	
Instrument Used: QEO / O.T. L MC75	_

•				
Well Riser	Riser Depth(2) (ft)	Depth to <u>Leachate (ft)</u>	Leachate Head (ft)	Comments CYCUE COUR
GW1-EAST	53.7	46.4	<u> 7.7 </u>	
-WEST	54.1			
GWZ-EAST	53.9	48.1	5.81	
-WEST	54.0			***
GW3-EAST	59.7	<u>55.01</u>	<u>4.7'</u>	
-WEST	59.7			
GW4-EAST	61.9		1.2	OK/ 394,603
-WEST	61.8			
GW5-EAST	70.0		0.4'	OK / 314,2101
-WEST	69.9			
GW6-EAST	40.0	DRY @ 36.0°		
-WEST	40.1			
GW7-EAST	60.0		1.9'	OR/902,116
-WEST	60.0			
W8 (1) و				
EAST	69.6		0.6	OR/659,388
-WEST	69.9		-	
GW9(1)	•		•	,
-NORTH	67.5		0.6	OK. / 455,343
-SOUTH	68.4			
GW10-				
-NORTH	72.8 .	62.1	10.7	
-SOUTH	72.7			
GW11(1)			,	,
-EAST	69.1	~	0.4	OR / 430, 494
-WEST	69.1	•		
GW12-EAST	80.0		0.4'	OK/637,247
-WEST	80.0	-		
GW13-EAST	73.1		0.6	OR / 764,350
-WEST	73.0			_
Leachate Tank	17.9			43"
		Tank Volume =	<u>6,363</u> gal	

Wells with leachate extraction pumps and controls installed.
 Depth is measured from top of 1-in, dia. riser pipe. Tank riser pipe is 2-in, dia.
 Use Table 1 to convert leachate head in tank to a volume in gallons.

DATA SHEET D REFUSE HIDEAWAY LANDFILL GAS AND LEACHATE EXTRACTION SYSTEM LEACHATE EXTRACTION WELL MONITORING(1)

REFER	· 70	DATA	SMEET	< ,

Date: 7/29/87

Monitored By: 25/87

Well With Pump	Current <u>Time</u>	Pump-on Frequency(2)	Current Pump Time (Hrs)(2)	Previous Monitoring . <u>Date(3)</u>	Previous Monitoring <u>Time(3)</u>	Previous Pump <u>Time (Hrs)(3)</u>	Elapsed Time (Hrs)	Elapsed Pump <u>Time (Hrs)</u>
GW8P			_	_	_			
GW9P								
GW11P								

Notes:

- (1) Refer to Data Sheet C for leachate head levels for the above listed wells.
- (2) Measurements recorded from controls and equipment located inside the pump control panel at the above listed wells.
- (3) Measurements recorded during previous monitoring.

DATA SHEET E REFUSE HIDEAWAY LANDFILL

GAS WELL AND LEACHATE EXTRACTION SYSTEM GAS PROBE MONITORING

Date: 7/29/97
Time: Start - 1/00 End- 1345
Temperature: 70'3
Barometric Pressure: 300
Monitored by:
Gas Detector Model No.: 620-500
Serial No.: 052
Date Last Calibrated: 7/47

Probe Pressure	CH ₄ (1)	CH ₄ (2)	02	. 3
(in. WC)	<u>(%)</u>	(% LEL)	<u>(%)</u>	Comments
0.0	0		19.9	<u> </u>
0.0			17.9	
0.0	0	0	19.8	
0.0	0	0	19.9	_
0.0	0		19.0	
0.0	0	6	20,0	
0.0	9.1		0.8	
0.0	16.9		1. 2	
0.0	0		19.9	
0.0	.0	0	19.0	
0.0	0.	.0	19.7	
0.0			20.0	
	Pressure (in. WC) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Pressure CH4(1) (in. WC) (%) 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 9.7 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0	Pressure CH4(1) CH4(2) (in. WC) (%) (% LEL) 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0 0.0 0 0	Pressure $CH_4(1)$ $CH_4(2)$ 0_2 (in. WC) (%) (% LEL) (%) 0.0 0 0 (9.9 0.0 0 0 (7.9 0.0 0 0 (9.9 0.0 0 0 (9.9 0.0 0 0 (9.9 0.0 0 0 (9.9 0.0 0 0 (9.9 0.0 0 (9.9 (9.9 0.0 0 (9.9 (9.9 0.0 0 (9.9 (9.9 0.0 0 (9.9 (9.9 0.0 0 (9.9 (9.9 0.0 0 (9.9 (9.9 0.0 0 (9.9 (9.9 0.0 0 (9.9 (9.9 0.0 0 (9.9 (9.9 0.0 0 (9.9 (9.9 0.0 0 (9.9

(1) Percent combustibles by volume, primarily composed of CH4.
 (2) Percent of lower explosive limit of CH4 (100% LEL = 5% CH4 by volume).

SCS FIELD SERVICES, INC.

September 18, 1997 File No. 0797026.00

Mr. Harlan Kuehling, P.G. Hydrogeologist Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Fitchburg, WI 53711

Subject:

Operation and Maintenance of the Refuse Hideaway Landfill Gas (LFG) and

Leachate Collection System During August 1997

Dear Mr. Kuehling:

This letter report summarizes operation and maintenance (O&M) activities performed by SCS Field Services, Inc. (SCS-FS) at the Refuse Hideaway Landfill LFG and Leachate Collection System (Collection System) during August 1997.

SUMMARY

Highlights of the O&M activities completed by SCS-FS at the Collection System during August included:

- The LFG Recovery System recorded no downtime.
- Thirteen loads of leachate totaling approximately 56,500 gallons were removed from the Leachate Collection System.
- The methane content measured at GP-11S was 0.1 percent, by volume (2 percent
 of the lower explosive limit in air), and the methane content measured in GP-11D
 was 12.7 percent, by volume. No methane was detected in the other Monitoring
 Locations.

BACKGROUND

LFG Recovery System

The Refuse Hideaway Landfill LFG Recovery System became operational in 1991. The Refuse Hideaway Landfill LFG Recovery System is defined as the following components:

- The Blower/Flare Station;
- · The Collection System; and
- Monitoring Locations.

The Blower/Flare Station consists of one centrifugal LFG blower, an enclosed flare, a candlestick flare (as a backup combustion unit), and associated controls and appurtenances. The Collection System consists of 13 extraction wells, four drip legs, and associated gas and pneumatic header piping. The Monitoring Locations include 11 wells located throughout the site, and ambient air monitoring within the nearby Speedway buildings.

Proper operation of the Collection System is verified through testing of the extraction wells. LFG withdrawal rates at individual wells are adjusted based on test results. Testing for

Mr. Harlan Kuehling, P.G. September 18, 1997 Page 2

subsurface gas migration is done at the Monitoring Locations. Operation of the Blower/Flare Station provides vacuum necessary to withdraw the gas from the landfill, which helps control surface emissions and subsurface migration; odors and emissions are controlled by combustion of the gas at the flare.

Leachate Collection System

The current leachate collection system was installed in 1996, and is comprised pneumatic pumps installed in eight of the existing LFG extraction wells. Compressed air for the pneumatic pumps is supplied by a compressor located at the Blower/Flare Station. The collected leachate is stored onsite in a 25,000 gallon underground storage tank. Leachate is removed from the tank by a subcontractor, and is transported to the Madison Metropolitan Sewage District for treatment and ultimate discharge.

SCS-FS and our subcontractor, Environmental Sampling Corporation (ESC), began routine monitoring of the Collection System on July 1, 1997. Figure 1 indicates the approximate layout of the Collection System.

TESTING EQUIPMENT

Gas composition testing at the Recovery System was performed using a Landtec GEM-500 Infra-Red Gas Analyzer. The GEM-500 measures methane, carbon dioxide, and oxygen as percent by volume. The GEM-500 also calculates the balance gas component of the LFG (assumed to be nitrogen) and reports it as percent by volume.

Pressure testing was measured in inches of water column and was performed using the GEM-500. LFG flow was measured with the GEM-500 and a Dwyer Pitot tube. Temperature measurement was performed using a handheld, analog temperature probe. Combustion temperatures measured at the flare were obtained from the in-place instrumentation.

Leachate level determination was performed one of two ways:

- For the extraction wells that have a leachate extraction pump, leachate levels were obtained using the bubbler tube installed along with each pump.
- For the gas extraction wells that do not contain a leachate extraction pump, the leachate levels were monitored using an electric tape.

ON-SITE ACTIVITIES

Weekly LFG activities were completed on August 4, 11, 22, and 27. A summary of operational data collected during these weekly activities is shown in Table 1. Monthly activities were completed on August 22, 1997, with summaries shown in Tables 2, 3, and 4. Copies of all field data sheets are included with this report as Appendix A. The following activities were of note:

 No alarm responses occurred during the month of August. The Blower/Flare system was operational 100 percent of the month of August. LFG quality at the Mr. Harlan Kuehling, P.G. September 18, 1997 Page 3

Blower/Flare station remained consistent through the month. During the month of August methane concentrations at the blower inlet ranged from a high of 44.5 to a low of 36.8 percent, by volume. Oxygen levels recorded in August ranged from 1.5 to 2.1 percent, by volume.

- Thirteen loads of leachate totaling approximately 56,500 gallons were removed from the Leachate Collection System during the month of August. A summary of the loads removed is shown in Table 5.
- A visual inspection of the landfill cover did not indicate any significant erosion features. No leachate seeps were noted.

ISSUES TO RESOLVE

Field monitoring collected in July and August has indicated a significant decrease in the header pressure (vacuum) between extraction wells GW 4 and GW 5. This may indicate a partial blockage within the header pipe. SCS-FS will continue to monitor pressures in the header piping as part of our routine services. If additional investigation is warranted, SCS-FS will prepare an estimate for prepare an estimate to perform this investigation.

The blower shaft bearings are requiring weekly greasing, a sign that they need to be replaced. SCS-FS will prepare an estimate for procuring and installing two new bearings.

RESOLUTION TO PREVIOUS ISSUES

The issue of allowable oxygen levels was discussed in our July 1997 report. It is SCS-FS's understanding that the Department desires that no more than 1.0 percent (by volume) of oxygen be allowed from each wellhead. SCS-FS will make adjust the wellfield vacuums accordingly in an attempt to achieve the desired maximum oxygen level. However, we again caution the Department that the reduction of LFG flows necessary to reduce the oxygen will probably result in increased system downtime.

WORK PROJECTED FOR THE UPCOMING MONTH

SCS-FS has received an estimate from Staff Electric Company (Madison) provide and install an ammeter and hour meter for the blower motor. SCS-FS has also received an estimate from the John Zink Company (Tulsa, OK) to perform a visual inspection of the enclosed flare. John Zink has a flare technician in the Madison area. Upon approval from the Department, both of these services are currently scheduled to be performed on Monday, September 22, 1997.

To allow for cooling, the flare inspection will require the blower and flare station to be turned off on Saturday, September 20, 1997. SCS-FS anticipates restarting the flare on Monday, September 22.

Due to scheduling conflicts, the annual cleanout of the leachate collection lines will be performed in October 1997. The Department will be notified in advance of this scheduled work.

Mr. Harlan Kuehling, P.G. September 18, 1997 Page 4

The Department has requested that SCS-FS to mow the entire landfill. We are currently requesting quotes to perform this service, and anticipate the mowing to occur in October. SCS-FS will submit an estimate for the Department's approval prior to performing this service.

STANDARD PROVISIONS

The findings described above were recorded by both SCS-FS and SCS-FS contracted parties. Changes can and do occur which affect the operation of the system. Department personnel should contact SCS-FS immediately in the event of a system malfunction or operational deficiency.

Although SCS-FS is the primary party designated to operate and maintain the subject system, Department staff may find it necessary to make adjustments to the system if conditions change. SCS-FS should be notified of any adjustments made by Department staff.

SCS-FS is pleased to provide our services to the Department and we enjoy working on the project. Should you have questions, please do not hesitate to contact either of the undersigned.

Sincerely,

William O. Reed Regional Manager

SCS FIELD SERVICES, INC.

WOR:GSP;bms Enclosures Galen S. Petoyan

President

SCS FIELD SERVICES, INC.

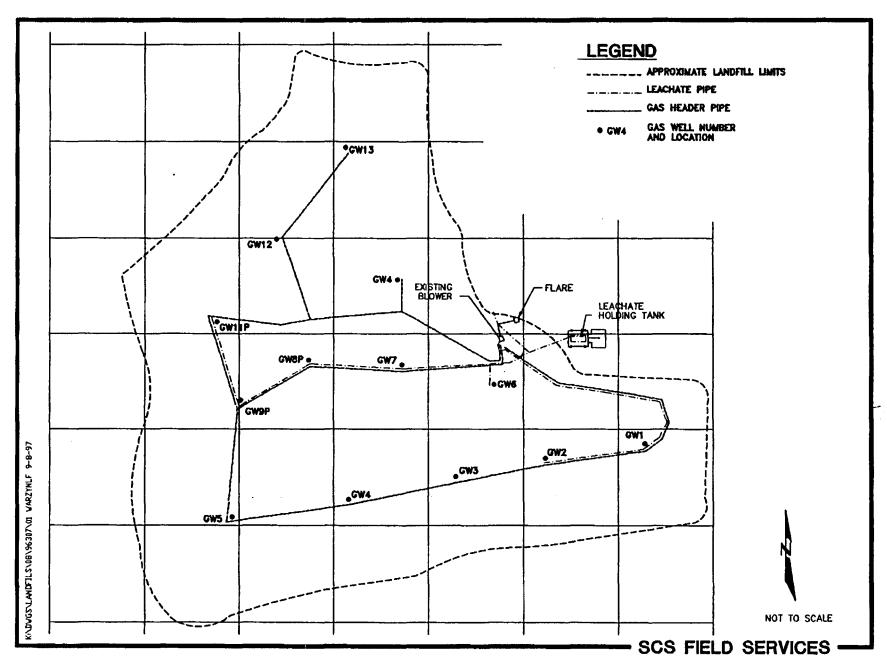


FIGURE 1
EXISTING GAS COLLECTION SYSTEM
REFUSE HIDEAWAY LANDFILL

TABLE 1.
REFUSE HIDEAWAY LANDFILL
WEEKLY BLOWER/FLARE STATION SUMMARY FOR AUGUST 1997

Date	Time	Bar. Pres. [in-Hg]	Air Temp. [Deg F]	Blower Inlet Pressure [in-W.C.]	Blower Inlet Methane [%vol]	Blower Inlet Oxygen [%vol]	Blower Outlet Pressure [in-W.C.]	Flare Inlet Valve Position	Comments
08/04/97 08/11/97 08/22/97 08/27/97	10:00 am 10:00 am 10:00 am 8:45 am	30.06 30.24 29.50	70 60 60 70	-32.0 -32.5 -32.2 -31.8	39.8 40.8 39.5 44.6	2.1 2.0 2.1 2.0	2.7 3.0 2.7 2.8	100 100 100 100	Changed chart recorder paper
auuuuu Average: Maximum: Minimum:	======	=====	======		41.2 44.6 39.5	2.1 2.1 2.0	=========	========	

TABLE 2.

REFUSE HIDEAWAY LANDFILL

LFG COLLECTION WELL TESTING RESULTS SUMMARY FOR AUGUST 1997

Well No.	Date	Methane [%vol]	Oxygen [%vol]	Well Pressure [in-W.C.]	Header Pressure [in-W.C.]	Flow [cfm]	Temp. [Deg F]	Valve Setting	Comments
GW-01	08/22/97	ND	20.6	-0.3	-13.3	0	83	0	
GW-02	08/22/97	ND	20.5	-1.0	-12.9	0	85	0	
GW-03	08/22/97	35.5	1.0	-5.2	-11.9	57	67	25	
GW-04	08/22/97	51.9	1.1	-8.7	-8.8	66	76	65	
GW-05	08/22/97	53.0	1.6	-3.9	-3.9	40	78	100	
GW-06	08/22/97	27.4	0.6	-5.6	-13.2	67	67	15	
GW-07	08/22/97	54.6	0.7	-13.6	-13.8	73	76	70	
GW-08	08/22/97	55.0	1.1	-10.8	-14.4	79	82	75	
GW-09	08/22/97	53.7	1.4	-14.2	-14.6	45	79	95	
GW-10	08/22/97	55.2	0.8	-1.6	-30.4	36	85	20	
GW-11	08/22/97	57.5	0.9	-30.2	-30.2	78	82	65	
GW-12	08/22/97	48.5	0.8	-4.0	-30.2	53	97	15	
GW-13	08/22/97	42.6	0.8	-29.8	-30.2	85	78	70	

TABLE 3.
REFUSE HIDEAWAY LANDFILL
LEACHATE HEAD MEASUREMENT SUMMARY FOR AUGUST 1997

Well No.	Date	Leachate Level [feet, above bottom of well]	Current Pump Cycles	Previous Pump Cycles	Difference
GW-01	08/22/97	7.8			0
GW-02	08/22/97	5.7			0
GW-03	08/22/97	4.2			0
GW-04	08/22/97	1.3	443,169	394,603	48,566
GW-05	08/22/97	0.6	445,428	314,210	131,218
GW-06	08/22/97	6.0			0
GW-07	08/22/97	3.3	973,337	902,116	71,221
GW-08	08/22/97	0.4	704,616	659,388	45,228
GW-09	08/22/97	1.7	488,064	455,343	32,721
GW-10	08/22/97	11.1			0
GW-11	08/22/97	1.3	498,156	430,494	67,662
GW-12	08/22/97	0.4	682,466	637,247	45,219
GW-13	08/22/97	2.9	884,696	764,350	120,346

TABLE 4.

REFUSE HIDEAWAY LANDFILL
MONITORING WELL TESTING RESULTS FOR AUGUST 1997

Well No.	Date	Methane [%vol]	Oxygen [%vol]	Pressure [in-W.C.]	Comments
G-01D	08/22/97	ND .	19.8	0.0	*
G-01S	08/22/97	ND	19.5	0.0	
G-06	08/22/97	ND	20.1	0.0	
G-08	08/22/97	ND	19.5	0.0	
G-09	08/22/97	ND	20.0	0.0	
G-10	08/22/97	ND	20.0	0.0	
GP-11D	08/22/97	12.7	5.2	-0.2	
GP-11S	08/22/97	0.1	19.8	0.6	
GPW-1D	08/22/97	ND	19.5	0.0	
GPW-1M	08/22/97	ND	20.0	0.0	
GPW-1S	08/22/97	ND	20.1	0.0	
SPEEDWAY BLDGS	08/22/97	ND	21.0	0.0	

TABLE 5. REFUSE HIDEAWAY LANDFILL LEACHATE HAULING SUMMARY FOR JULY 1997

Date	Beginning Tank Depth [inches]	Ending Tank Depth [inches]	Total Gallons Hauled
08/01/97	62	41	4,498
08/04/97	68	48	4,387
08/05/97	57	37	4,192
08/07/97	69	50	4,187
08/11/97	67	47	4,374
08/14/97	76	57	4,238
08/16/97	76	57	4,238
08/18/97	69 50	50 28	4,187 4,360
08/21/97	56	34	4,442
08/26/97	79	60	4,249
08/30/97	95	74	4,624
08/31/97	83	63	4,473
Total: Count:	=======================================	=======	56,449 13

APPENDIX A FIELD DATA SHEETS

GAS WELL AND LEACHATE EXTRACTION SYSTEM GAS WELL MONITORING

Date:	3/22/9	7			G/	AS WELL	noi vi i ordi		
	art - 1120		. 1500						
Tempera		70°							
Baromet	ric Pressure:								
Monitor	ed by: <u>V. 5</u>	reich,	P. Hartz						
G		Model No.: erial No.: Calibrated:	092					•	•
<u>Well</u>	Well Pressure (in. WC)	Header Pressure (in. WC)	CH4(2) (%)_	02 (%)	Valve Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) (cfm)	Gas Flow Temperature (°F)	Comments
GW1	-0.3	- 13.3	0.0	20.6	<u>%</u>		0.0	83	Gate closes, won't latel
GW2	- 1.0	-12.9	0.0	20.5	0%		0.0	84.5	Gate/cage broken tilled
ĠW3	-5.2	-11.9	35.5	1.0	25 %		57	<u>66.6°</u>	acte ok , sampling sort value broken
GW4	-8.7	-8.8	51.9	1.1	65%	_	66	76*	Gate ok
GW5	-3.9	-3.9	53.0	1.6	100%		40	<u>78°</u>	Gate ok
GW6	-5.6	-13.2	27.4	0.6	15 %		67	67°	Gate closes, won't latch
GW7	-13.6	-13.8	54.6	0.7	70%		73	75.9	Gate OK
GW8(1)	-10.8	-14.4	55.0	1.1	75%	· 	79	81.5°	Gate ok
GW9(1)	-14.2	-14.6	53.7	1.4	95%	_	45	79°	Gate OK
GW10	<u>-1.la</u>	-30.4	55.2	8.0	20%	<u>-</u> .	36	85"	gate ok
GW11(1) <u>-30.2</u>	-30.2	57.5	0.9	65%		8	81.54	-Gate-OK
GW12	-4.0	-30.2	48.5	0.8	15%		53	96.6"	Gate OK
GW13	- 29.8	-30.2	42.6	0.8	70%		85	<u> </u>	Gate ok

GW-4 - dead regolation above headen line Notes: Hissing sound wear Riser (Headerside) @ GW10

Notes: Hissing

(1) Wells with leachate pumps and controls.

(2) Percent combustibles by volume, primarily composed of CH4.

(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Des: 8/4/97			-						
Ti: e: Start - 1000	End- <u>/3</u> c	00	_						
Te aperature: 70) ' 5		-						
Bacometrie Pressure: 3	0.06	↓	_	•					
Minitored by: V. Str	eich :		-		•				
Gas Detector Model I Serial No	.: 159	て	0						
Date Last Calibra	ted: <u>7/9</u>	7	_	•		•			
Lo <u>cation</u>	Pressure (in. WC)	CH ₄ (2)	(29) 02	Valve Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) (c(m)	Gas Flow Temperature (0F)	Comments	
Ground Flare									
- Sample Port A	+2.1	40.0	2.3			N/A	940		, , , , ,
- Sample Port B	t2.0	40.1	2.3		· - <u>-</u> ·	~/A	940	.–	
- Sample Port C	+1.1	39.7	2.3			NA	960		
- Manual Vaive				16.090		•	1	Tuess s	
				•					
Blower		•.					<u>.</u>	San in Carlo	_
North Branch	<u>-31.0</u>	46.4	0.9	5070		<u> 201</u>	790		`.
- Central Branch	-10.2	33.6	4.5	2070		101	76°		
· South Branch	-10.6	<u>33.3</u>	3.3	3070		107	73.0	· · · · · · · · · · · · · · · · · · ·	
- Inlet Sample Port A	-31.5	40.3	2.2					·····	,
• Inlet Sample Port B	-3Z.D	39.8	Z. J.					<u> </u>	
- Outlet Sample Port A	+ 2.7	40.1	2.2	•		• • • • • • • • • • • • • • • • • • • •			
Pedestai Flare									

· Manual Vaive

%

88" per A-1 =14,251 gal, Notes:

(1) Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.

(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

DREAmI/JCE [mad-401-781] 15292.03

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

		aro.	A ETK MY	ID LEARE!	NOTIVIE	GAS MOI	MINCHILL	•
Das 8/11/97			-					
T:: =: Start . 1000	End- // 3	. 0	-					
Tu aperature: 60'	5		_					
Ba. ometric Pressure: 3	0.24	1	_	•				
Minitored by: V STE	E.CH				•	•		
Gus Detector Model (Serial No Date Last Calibra).: O ⁹ 1	₹.	- 					
<u>Location</u>	Pressure (in, WC)	CH ₄ (2)	0 <u>7</u> (%)	Valve Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) (ctm)	Gas Flow Temperature (OF)	Comments
Ground Flare								
- Sample Port A	+2.4	40.2	<u>z.l</u>			. <u>~/</u> A	83°	
- Sample Port B	+2.3	40.7	2.4			NA	833	
· Sample Port C	+1.4	8.04	7.0		-	N/A	ვ ც°	
- Manual Vaive				100%			¥.	
						••		
Blower							-	Carrier and
	-214	11	, a	50%		117	69°	en e
North Branch								
· Central Branch	-10.6	<u> 35.0</u>	4.4	20%		78_	690	
- South Branch	-10.6	35.8	4.1	<u>307,</u>	-	1110	660	
• Inlet Sample Port A	- 31.8	40.7	2.0					
• Inlet Sample Port B	- 32.5	40.8	2.0					
Oudet Sample Port A	+3.0	40.7	2.0					_
·								

Pedestal Flare

Notes:

· Manual Vaive

Leachate @ 66.5" = 11,400 gals. Greased Z fittings & top of blower

Notes:

(1) Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.
(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

DRE/kml/JCE [mad-401-78t] 15292.03

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

	D=. #: 8/22/5	7 7		_				:		
	T.: :: Start - 10:00	End-	50 ·	_						
	Te aperature: 60	<u></u>								
	Bis. ometric Pressure:			_	•					
	Mi nitored by:	orina Historia		_		•				
	Gus Detector Model (Serial No Date Last Calibra).: <u>0</u> 9	<u> </u>	- -					•	
			(7)		Valve Setting	Gas	Gas (3)	_Gas Flow		
	Location	Pressure (in. WC)	(명) (명)	(25) 03	(fraction Open)	Velocity ((pm)	Flow(3) (cfm)	Temperature (OF)	Comments	
	Ground Flare	•								
	· Sample Port A	+2.1	39.3	7.4			2/2	78.5°		
	- Sample Port B	+2.0	393	2.3	÷		NA	78.5°		
	- Sample Post C	+0.9	39.4	2.2			~/A	81.30		
	- Manual Vaive				(0)			į		
								•		
	Blower								•	
/: -	· North Branch	-31.2	48.4	<u>08</u>	5070		108	763		
6- 1	- Central Branch	-10.3	34.0	4.8	20%		98	740		
1 - E	- South Branch	-10.5	32.2	3.9	15%	· <u> </u>	 frf	70°	· .	
	- Inlet Sample Port A	<u>- 31.7</u>	40.1	2.2		,				
	- Inlet Sample Port B	-37.2	39.5	7.1					-	
	Outlet Sample Port A	+2.7	39.8	2.2			•			
	Pedestal Flare									
	- Manual Vaive		•		_0%_					
	Leachate @ Changed tage	10 5/8" in contr	ol pan.	el 8/	22/97 "	0:40 AM				
	(1) Wells with leachate pump (2) Percent combustibles by (3) Gas velocity is converted	volume, prim	arily comp			PVC				-

DRF.kml/JCE [mail-401-781] 15292.03

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Da. 31 8/27/97		·	-					
T:: .e: Start - 8 45	End/00	٥٥	_					
Te aperature: 70°								
Bis. ometric Pressure: 29	.5 4		_	•				
Minitored by: V. Streid	P. Har	tz	_ ·		•			
Gas Detector Model I Serial No Date Last Calibra	n.: <u> </u>		<u>-</u>					
Date Fast Cations	160. <u>8721</u>	4.1	_	Vaive				
Į geation	Pressure (in. WC)	(명) (대(2)	(%) 02	Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) <u>(cfm)</u>	Gas Flow Temperature (OF)	Соттепь
Ground Flare								
· Sample Port A	+2.2	43.8	2.0		<u>.</u>	98	99 °	
- Sample Port B	+2.1	45.8	2.0	,		NA	990	
- Sample Port C	+1.3	45.3	2.0		_	<u>N/A</u>	990	
- Manual Vaive				.100%			į	
Blower		·					-	
- North Branch	-30.6	48.6	1.4	50%		190	75.5	
- Central Branch	-20.0	39.9	4.1	20%		129	رندکیا۔	· · · · · · · · · · · · · · · · · · ·
- South Branch	-14.2	37.2	5.6	25%		144	71.4°	·
Inlet Sample Port A	-31.3	46.1	2.0					
• Inlet Sample Port B	8.15-	44.6	2.0					
Outlet Sample Port A	+2.8	44.5	2.0		-	•		
Pedestal Flare								
Manual Vaive				0%				
Notes: Leachaire & 1797 gal. (1) Wells with leachaire pump (2) Percent combustibles by (3) Gas velocity is converted	olume, prim:	ls. arily comp	osed of	CH4. X .045 @ 3*	PVC			
				.078 @ 4" .135 @ 6"				

DRF.kml/JCE [mad-401-781] 1529**2.03**

DATA SHEET C REFUSE HIDEAWAY LANDFILL GAS AND LEACHATE EXTRACTION SYSTEM LEACHATE HEAD MONITORING

Date: 8/22/97	
Time: Start- //20	End- 1500
Monitored By: V. streich	, P. Hartz
Instrument Used: GEm 50	à

Well Riser	Riser Depth(2) (ft)	Depth to Leachate (ft)	Leachate Head (ft)	Comments/cycle count (Hours)
GW1-EAST	53.7	45.95'		
-WEST	54.1			
GW2-EAST	53.9	48.20'	.48'	
-WEST	54.0	·		
GW3-EAST	59.7	55.50'	.35	
-WEST	59.7			
GW4-EAST	61.9			OK / 443169
-WEST	61.8			·
GW5-EAST	70.0		58′	ok/445,428
-WEST	69.9			
GW6-EAST	40.0	33.99′	.5 '	
-WEST	40.1			
GW7-EAST	60.0	•	3.34'	ok/ 973,337
-WEST	60.0			
W8 (1) کی				
-EAST	69.6		42'	OK/704,616
-WEST	69.9		· · · · · · · · · · · · · · · · · · ·	
GW9(1)			· · · · · · · · · · · · · · · · · · ·	
-NORTH	67.5	<u> </u>	1.67	OK/ 488,064
-SOUTH	68.4	·		
GW10-				
-NORTH	72.8	61.70'	-93'	
-SOUTH	72.7		<u> </u>	
GW11(1)				
-EAST	69.1		1.25'	ok/498,156
-WEST	69.1	 .	-	
GW12-EAST	80.0		.42'	ok/ 682,466
-WEST	80.0			
GW13-EAST	73.1		2.92'	OK/ 884, 696
-WEST	73.0			
Leachate Tank	17.9			40 % "

102 PT82

Votes:

Tank Volume =

⁽¹⁾ Wells with leachate extraction pumps and controls installed.
(2) Depth is measured from top of 1-in, dia, riser pipe. Tank riser pipe is 2-in, dia.
(3) Use Table 1 to convert leachate head in tank to a volume in gallons.

GAS WELL AND LEACHATE EXTRACTION SYSTEM GAS PROBE MONITORING

Date: 8/22/57
Time: Start - 13 40 End-
Temperature: 70'5
Barometric Pressure:
Monitored by: V. STREICH
Gas Detector Model No.: GEM 500
Serial No.: 092
Date Last Calibrated: 8/21/97

	Probe Pressure	CH ₄ (1)	CH ₄ (2)	· · · 02 ·· · ·	. 4
		•	•	_	C
<u>Location</u>	(in. WC)	<u>(%)</u>	(% LEL)	<u>(%)</u> _	Comments
G-1S	<u> </u>			19.5	
G-1D	0.0	0		19.8	
G-6	0.0			20.1	
G-8	0.0	0		19.5	
G-9	0.0	0		20.0	
G-10	0.0	0		20,0	
GP-11S	+ 0.6	0. i	4	19.8	
GP-11D	-0.2	12.7	272	5.2	
GPW-1S	_0.0			20.1	
GPW-1M	0.0			20.0	The state of the s
GPW-ID	0.0	0	0	19.5	
Speedway				ter ermen	Committee of the second of the
Buildings	0.0			21.0	

Notes:

- (1) Percent combustibles by volume, primarily composed of CH4.
 (2) Percent of lower explosive limit of CH4 (100% LEL = 5% CH4 by volume).

SCS FIELD SERVICES, INC.

October 23, 1997 File No. 0797026.00

Mr. Harlan Kuehling, P.G. Hydrogeologist Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Fitchburg, WI 53711

Subject: Operation and Maintenance of the Refuse Hideaway Landfill Gas (LFG) and

Leachate Collection System During September 1997

Dear Mr. Kuehling:

This letter report summarizes operation and maintenance (O&M) activities performed by SCS Field Services, Inc. (SCS-FS) at the Refuse Hideaway Landfill LFG and Leachate Collection System (Collection System) during September 1997.

SUMMARY

Highlights of the O&M activities completed by SCS-FS at the Collection System during September included:

- An inspection of the Linklater flare was performed on September 22, 1997. No major deficiencies were noted.
- The annual jetting of the leachate conveyance lines was performed on September 26, 1997. Approximately 1,600 feet of leachate line was jetted during this event.
- The annual leachate discharge permit with the Madison Metropolitan Sewerage District was renewed on September 28, 1997.
- Thirteen loads of leachate totaling approximately 58,700 gallons were removed from the Leachate Collection System.
- The methane content measured at GP-11S was 1.5 percent, by volume (30 percent
 of the lower explosive limit in air), and the methane content measured in GP-11D
 was 14.7 percent, by volume. These values are consistent with the previous
 monthly monitoring results. No methane was detected in the other Monitoring
 Locations.
- The LFG Recovery System recorded two hours of unplanned downtime.

Mr. Harlan Kuehling, P.G. October 23, 1997 Page 2

BACKGROUND

LFG Recovery System

The Refuse Hideaway Landfill LFG Recovery System became operational in 1991. The Refuse Hideaway Landfill LFG Recovery System is defined as the following components:

- · The Blower/Flare Station;
- · The Collection System; and
- Monitoring Locations.

The Blower/Flare Station consists of one centrifugal LFG blower, an enclosed flare, a candlestick flare (as a backup combustion unit), and associated controls and appurtenances. The Collection System consists of 13 extraction wells, four drip legs, and associated gas and pneumatic header piping. The Monitoring Locations include 11 wells located throughout the site, and ambient air monitoring within the nearby Speedway buildings.

Proper operation of the Collection System is verified through testing of the extraction wells. LFG withdrawal rates at individual wells are adjusted based on test results. Testing for subsurface gas migration is done at the Monitoring Locations. Operation of the Blower/Flare Station provides vacuum necessary to withdraw the gas from the landfill, which helps control surface emissions and subsurface migration; odors and emissions are controlled by combustion of the gas at the flare.

Leachate Collection System

The current leachate collection system was installed in 1996, and is comprised pneumatic pumps installed in eight of the existing LFG extraction wells. Compressed air for the pneumatic pumps is supplied by a compressor located at the Blower/Flare Station. The collected leachate is stored onsite in a 25,000 gallon underground storage tank. Leachate is removed from the tank by a subcontractor, and is transported to the Madison Metropolitan Sewage District for treatment and ultimate discharge.

SCS-FS and our subcontractor, Environmental Sampling Corporation (ESC), began routine monitoring of the Collection System on July 1, 1997. Figure 1 indicates the approximate layout of the Collection System.

TESTING EQUIPMENT

Gas composition testing at the Recovery System was performed using a Landtec GEM-500 Infra-Red Gas Analyzer. The GEM-500 measures methane, carbon dioxide, and oxygen as percent by volume. The GEM-500 also calculates the balance gas component of the LFG (assumed to be nitrogen) and reports it as percent by volume.

Mr. Harlan Kuehling, P.G. October 23, 1997 Page 3

Pressure testing was measured in inches of water column and was performed using the GEM-500. LFG flow was measured with the GEM-500 and a Dwyer Pitot tube. Temperature measurement was performed using a handheld, analog temperature probe. Combustion temperatures measured at the flare were obtained from the in-place instrumentation.

Leachate level determination was performed one of two ways:

- For the extraction wells that have a leachate extraction pump, leachate levels were obtained using the bubbler tube installed along with each pump.
- For the gas extraction wells that do not contain a leachate extraction pump, the leachate levels were monitored using an electric tape.

ON-SITE ACTIVITIES

Weekly LFG activities were performed on September 4, 10, 16, 27 and 30. A summary of operational data collected during these weekly activities is shown in Table 1. Monthly activities were completed on September 26, and 30, 1997, with summaries shown in Tables 2, 3, and 4. Copies of all field data sheets are included with this report as Appendix A. The following activities were of note:

- LFG quality at the Blower/Flare station remained stable throughout the month. During the month of September methane concentrations at the blower inlet ranged from a high of 47.0 to a low of 42.0 percent, by volume. Oxygen levels recorded in September ranged from 1.35 to 2.3 percent, by volume.
- Thirteen loads of leachate totaling approximately 58,700 gallons were removed from the Leachate Collection System during the month of September. A summary of the loads removed is shown in Table 5.
- One alarm response occurred during September. Aside from the planned shutdown
 in advance of the flare inspection, the Blower/Flare system was operational 99
 percent of the month of September. A summary of this event is shown in Table 6.
- A visual inspection of the landfill cover performed as part of the monthly activities did not indicate any significant erosion features. No leachate seeps were noted.
- An inspection of the Linklater enclosed flare was performed by a technician from the John Zink Company (Zink) on September 22, 1997. A copy of the Zink letter report is included as Appendix B. No major deficiencies were noted, and a proposal to perform the services recommended by Zink will be forthcoming from SCS-FS under a separate cover.

Mr. Harlan Kuehling, P.G. October 23, 1997 Page 4

- The annual hydraulic jetting of the leachate conveyance lines was performed by Visu-Sewer Clean & Seal, Inc. (VSI) on September 26, 1997. A total of 1,574 lineal feet of leachate line was jetted as part of this service. SCS-FS had anticipated jetting 986 lineal feet as part of it's bid for this project (the footage jetted in 1996), however SCS-FS jetted all leachate lines (including those between the landfill and the leachate storage tank), as part of this event. A copy of ESC's report of this event is included as Appendix C.
- On September 28, 1997 the Madison Metropolitan Sewerage District (MMSD)
 renewed the leachate discharge permit for the Refuse Hideaway Landfill. A copy of
 the permit is included as Appendix D. The current disposal fee of \$8.94 / 1,000
 gallons disposed will remain in effect, until at least December 31, 1997. MMSD will
 review the charges at that time, and will determine if a rate adjustment of warranted.

ISSUES TO RESOLVE

Field monitoring data collected since July has indicated a significant loss of header pressure (vacuum) between extraction wells GW 4 and GW 5. This may indicate a partial blockage within the header pipe. SCS-FS will continue to monitor pressures in the header piping as part of our routine services. If additional investigation is warranted, SCS-FS will prepare an estimate to perform this investigation.

The blower shaft bearings continues to require weekly greasing, a sign that they need to be replaced. SCS-FS will prepare an estimate for procuring and installing two new bearings.

RESOLUTION TO PREVIOUS ISSUES

The Department had requested that SCS-FS mow the entire landfill. We were unable to receive responsive quotes to perform this service, and therefore do not anticipate mowing the landfill in 1997.

WORK PROJECTED FOR THE UPCOMING MONTH

SCS-FS has contracted with Staff Electric Company (Madison) to provide and install an ammeter and hour meter for the blower motor. This service was previously approved by the Department and is scheduled to be performed on Friday, October 24, 1997.

STANDARD PROVISIONS

The findings described above were recorded by both SCS-FS and SCS-FS contracted parties. Changes can and do occur which affect the operation of the system. Department personnel should contact SCS-FS immediately in the event of a system malfunction or operational deficiency.

Mr. Harlan Kuehling, P.G. October 23, 1997 Page 5

Although SCS-FS is the primary party designated to operate and maintain the subject system, Department staff may find it necessary to make adjustments to the system if conditions change. SCS-FS should be notified of any adjustments made by Department staff.

SCS-FS is pleased to provide our services to the Department and we enjoy working on the project. Should you have questions, please do not hesitate to contact either of the undersigned.

Sincerely,

William O. Reed Regional Manager

SCS FIELD SERVICES, INC.

WOR:GSP;bms Enclosures Galen S. Petoyan

President

SCS FIELD SERVICES, INC.

TABLE 1.
REFUSE HIDEAWAY LANDFILL
WEEKLY BLOWER/FLARE STATION SUMMARY FOR SEPTEMBER 1997

Date	Time	Bar. Pres. [in-Hg]	Air Temp. [Deg F]	Blower Inlet Pressure [in-W.C.]	Blower Inlet Methane [%vol]	Blower Inlet Oxygen [%vol]	Blower Outlet Pressure [in-W.C.]	Flare Inlet Valve Position	Comments
09/04/97 09/10/97 09/16/97 09/27/97 09/30/97	10:30 am 3:00 pm 5:15 pm 4:00 pm 10:00 am	30.26 30.15	75 70 80 70 65	-29.8 -31.0 -31.5 -31.4 -32.2	42.0 44.0 43.2 47.0 44.3	2.3 1.9 2.1 1.3 1.6	5.3 2.7 2.8 2.9 2.6	100 100 100 100 100	
Average: Maximum: Minimum:	=======	=====	======	==========	44.1 47.0 42.0	1.8 2.3 1.3	***************************************	=======================================	======

TABLE 2.

REFUSE HIDEAWAY LANDFILL

LFG COLLECTION WELL TESTING RESULTS SUMMARY FOR SEPTEMBER 1997

Well No.	Date	Methane [%vol]	Oxygen [%vol]	Well Pressure [in-W.C.]	Header Pressure [in-W.C.]	Flow [cfm]	Temp. [Deg F]	Valve Setting	Comments
GW-01	09/30/97	3.8	19.0	0.0	-12.8	0	73	0	
GW-02	09/30/97	ND	20.1	-0.0	-12.2	0	74	0	
GW-03	09/30/97	43.6	0.7	-3.2	-12.0	19	67	25	
GW-04	09/30/97	43.2	1.4	-10.6	-11.8	0	71	60	
GW-05	09/30/97	53.0	1.6	-6.8	-7.0	0	76	100	
GW-06	09/30/97	39.4	3.0	-1.8	-27.5	0	62	10	
GW-07	09/30/97	52.0	0.7	-27.2	-27.8	70	76	60	
GW-08	09/30/97	53.3	1.8	-23.4	-28.2	60	83	50	
GW-09	09/30/97	52.2	2.4	-25.4	-28.0	73	73	60	
GW-10	09/30/97	43.7	0.6	-2.6	-2.6	0	88	25	
GW-11	09/30/97	59.3	0.7	-30.4	-30.2	52	79	80	
GW-12	09/30/97	51.0	0.8	-5.2	-29.9	78	97	20	
GW-13	09/30/97	45.5	0.7	-29.2	-29.4	115	78	70	

TABLE 3.

REFUSE HIDEAWAY LANDFILL
LEACHATE HEAD MEASUREMENT SUMMARY FOR SEPTEMBER 1997

Well No.	Date	Leachate Level [feet, above bottom of well]	Current Pump Cycles	Previous Pump Cycles	Difference
GW-01	09/26/97	7.8			0
GW-02	09/26/97	5.9			0
GW-03	09/26/97	4.1			0
GW-04	09/26/97	1.7	510,641	443,169	67,472
GW-06	09/26/97	6.0			0
GW-07	09/26/97	2.5	1,108,797	973,337	135,460
GW-09	09/26/97	2.1	546,235	488,064	58,171
GW-10	09/26/97	12.6			0
GW-11	09/26/97	1.3	568,597	498,156	70,441
GW-13	09/26/97	3.0	1,036,567	884,696	151,871

TABLE 4.
REFUSE HIDEAWAY LANDFILL
MONITORING WELL TESTING RESULTS FOR SEPTEMBER 1997

Well No.	Date	Methane [%vol]	0xygen [%vol]	Pressure [in-W.C.]	Comments
G-01D	09/30/97	ND	21.0	0.0	••••
G-01S	09/30/97	ND	21.0	0.0	
G-06	09/30/97	ND .	19.5	0.0	
G-08	09/30/97	ND	21.0	0.0	
G-09	09/30/97	ND	21.0	0.0	
G-10	09/30/97	ND	21.0	0.0	
GP-11D	09/30/97	14.5	0.5	0.0	
GP-11S	09/30/97	1.5	17.5	0.0	
GPW-1D	09/30/97	ND	21.0	0.0	
GPW-1M	09/30/97	ND	21.0	0.0	
GPW-1S	09/30/97	ND	21.5	0.0	
SPEEDWAY BLDGS	09/30/97	ND	21.0	0.0	

TABLE 5.
REFUSE HIDEAWAY LANDFILL
LEACHATE HAULING SUMMARY FOR SEPTEMBER 1997

Date 09/02/97	Beginning Tank Depth [inches] 68 78 58 58 48	Ending Tank Depth [inches] 58 68 48 38	Total Gallons Hauled
09/05/97	62	51	2,048
09/06/97	58	48	2,162
09/09/97	54 75	32 54	4,679 4,671
09/11/97	47	24	4,414
09/15/97	56	35	4,361
09/18/97	64 43	42 18	4,741 4,532
09/22/97	47	22	4,743
09/25/97	46	23	4,370
09/29/97	62 46	45 22	4,793 4,533
Total: Count:	========	========	====== 58,728 16

TABLE 6. REFUSE HIDEAWAY LANDFILL ALARM RESPONSES FOR SEPTEMBER 1997

Alarm Date	Response Date	Alarm Codes	Comments
09/30/97	09/30/97	N/A	DOWN 2 HOURS
count:	======= 1	====	=========

APPENDIX A FIELD DATA SHEETS

GAS WELL AND LEACHATE EXTRACTION SYSTEM GAS WELL MONITORING

Date:	7 /30/	3 77							
Time: Sta	in - 1115	End	•						
Tempera	ture:	్రక్							
-Baromeu	ric Pressure	:	<u> </u>						
Monitore	:d by:V.	STREICH	·						
Gas Detector Model No.: Serial							·		
Well	Well Pressure (in. WC)	Header Pressure (in. WC)	CH4(2) (%)	02 (%)	Valve Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) (cfm)	Gas Flow Temperature (0F)	Comments
GW1	-0.0	-12.8	3.8	19.0	0%_		0	ገ3. 2 ំ	
GW2	-0.2	-12.2	Ο, υ	20.1	0%.	_	_ 0	73.5	
GW3	-3.2	-12.0	43.5	0.7	25%		8-19	67	
GW4	-10.6	-11.8	43.2	1, 4	60%	-		710	
GW5	-6.8	-7.0	53.5	1.6	150%			' مات' - ا	
7W6	- 1.8	-27.5	39	3.0	10%		0	62"	-
GW7	- 27.2	-27.2	52.0	6.7	60%		70	75.5	
GW8(1)	-23,4	-28.2	53.3	1,8	50%		60	83	
GW9(1)	-25.4	-28.0	52.2	2.4	60%	-	73	" 3 ל	
GW10	-2.6	-2.6	43.7	C.6.	25%		٠ ن	88 °	
GW11(1)	-30.4	-30.2	59.3	0.7	80%		52	79°	· · · · · · · · · · · · · · · · · · ·
GW12	-5.2	-29.9	51.0	०.प्ट	20%	-	78	976	

70%

386

115

Notes:

GW13

Notes:

(1) Wells with leachate pumps and controls.

(2) Percent combustibles by volume, primarily composed of CH4.

(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 37 PVC

.078 @ 47 PVC

.185 @ 67 HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Date: 9/4/97								
Time: Start - 1030	End- //3	`&	_	•				
Temperature: 75								
Barometric Pressure: 30	2 26 4							
Monitored by: Rike He	erts.				•	•		
Gas Detector Model Serial No Dare Last Calibri	o.: <u> </u>		 					
l gration	Pressure (in. WC)	CH4(2) (%)	(%) Oz	Valve Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) _(c(m)	Gas Flow Temperature (°F)	Comments
Ground Flare								
· Sample Por: A	+2.1	42.6	2.3			135	49.0	
- Sample Port B	+2.0	44.7	2.2				99.0	
- Sample Port C	+1.3_	-2,3	2.2			_	99.3	
- Manual Vaive				100%			į.	·
Blower								•
- North Branch	-31.0	46.7	1.6	<u>50 %</u>		124	<u> </u>	
- Central Branch	-16.4	40.7	3.9	20%		-134	74.1	
- South Branch	-11.5	33.9	4.6	25%		113	8.99	

- Central Branch	-16 4	10.7 3.9	<u> 20%</u>	134	74.1	····
- South Branch	-11.5	33.9 4.6	25%	113	3.70	
- Inlet Sample Port A	-29.1	43.5 1.8				
- Inlet Sample Port B	-29.8	42.0 2.3				
Oudet Sample Port A	+ 5.3	43.3 1.8				

Pedestal Flare

· Manual Vaive

Noies: Leachate Tank @ 517/4" Flam Temp 1485° Compressor Hours 2595.1

(1) Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.

(3) Gas velocity is converted to gas flow by multiplying FPM X.045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

DRE;kml/JCE [mad-401-781] 15292.03

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

De. :: 1-16-3			-					
Till er Start -	End-	<u>.</u> .	_					
To aperature: 😌 🤊			_					
Ba. ometric Pressure:				•				
Menitored by:			_		•			
Gas Detector Model Serial N Date Last Calibr	lo.:							•
Location	Pressure (in. WC)	CH4(2) (%)	(%) Oz	Valve Setting (fraction Open).	Gas Velocity ((pm)	Gas Flow(3) (c(m)	Gas Flow Temperature (OF)	Comments
Ground Flare								
- Sample Por: A	+2 2	4+0	2.1			123	93	···
Sample Port B	**	<u> </u>	1.5			_	<u> 45</u>	
· Sample Port C	-1.2	42.4	1.3		. .		43.3	
- Manual Vaive				100%			į	
Blower							٠٠	
- North Branch	-29.8	47.5	1.5	<u>์สงใ</u>	_	13	76.7	
- Central Branch	-19.6	4-3.1	3.9	1003		70	75.5	
· South Branch	-13.5	33.7	5.1	200		4 %. - 77	72.5	
Inlet Sample Port A	-39.3	42.7	2.5					
· Inlet Sample Port B	-31.5	43.2	2.1				-	
Oudet Sample Port A	+2.8	43.2	2.2				-	
Pedestal Flare								•
Manual Vaive		•		0%				
Notes: Leady are trail	47 ³ 9 ³	7	Flu	ce Temp	1475	9		

							N SYSTEM NITORING	
Date: 9/10/97								
Time: Start - 1500	End. 145	<u>c</u>	-					
Temperature: 70's			-					
Barometric Pressure: 30	2.15 ^			•				
Monitored by: Frank	Personal					٠		
Gas Detector Model No.: ছিড্ডে প্রভাত Serial No.:		 						
Location	Pressure (in. WC)	(윤) (윤)	(<u>;;)</u> 02	Valve Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) (cfm)	Gas Flow Temperature (OF)	Comments
Ground Flare						• •		
- Sample Port A	+2.2	44.5	1.6			205	98.9	
- Sample Port B	1 5+	44.5	1,5				१६.८	
- Sample Port C	+1.2	-4.3	1.5				3.76	
- Manual Vaive				100%			1	
							•	
Blower							-	•
- North Branch	- 35.2	46.3	1.6	50%	-	176	74.6	
Central Branch	-20.5	40.6	4.0	20%	-	64	73.6	
- South Branch	-14,7	32.4	5.71	20%		45	70.3	
Inlet Sample Port A	-31.8	44.1	1.9					
- Inlet Sample Port B	-31.0	44.4	1.9					
Outlet Sample Port A	+2.7	44.0	1.9					
Pedestal Flare								
Manual Vaive				0%				

Manual Vaive

Notes: Tank 41" Flame Temp . 1376"

DRE/kmi/JCE [mad-401-781] 15292.03

GAS WELL AND LEACHATE EXTRACTION SYSTEM

Dus 9/27/5	· -			AD LEAKE	31A11O1	GAS MO	MITORING .	
Tr. e: Start - 1600 End- 1700								
To aperature: 70 G			_					
Ba. ometric Pressure:	···		_	•				
Mi nitored by: F. W.	property.		_		•	•		
Gas Detector Model No.: 650 500 Serial No.: 670 500 Date Last Calibrated: 6700								•
20.0 22.0 02.010			-	Valve				
Lecation	Pressure (in. WC)	CH4(2)	(<u>;e)</u> 05	Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) (cfm)	Gas Flow Temperature (OF)	Comments
Ground Flare								
· Sample Port A	<u> + 2.2 </u>	46.5	1. %			2/2	95.5	••••
· Sample Port B	<u>+ 2, 2.</u>	44.5	1. %				953	
- Sample Port C	<u>+1.3</u>	46.4	1.6				91. 0	
· Manual Vaive				125 %			Ţ	
Blower							-	
- North Branch	-20.2	47.9	1. 2.	50%	<u>.</u> .	166	、 ファ *	
	-20.3							
- Central Branch								
South Branch	-12.4	36.9	4.3	10 1-		45	67	
Inlet Sample Port A	-30.3	49.2	1.2					
· Inlet Sample Port B	-31.4	47.0	1.3	•				
· Outlet Sample Port A	+2.7	41.5	1.4			•		106° E
Pedestal Flare								•
- Manual Vaive		, .		0%				•
TABLE - 43								
Notes: FUE AS THE PROPERTY OF THE PARTY OF T								

Notes:

(1) Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.
(3) Gas velocity is converted to gas flow by multiplying FPM X.045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

DRF.kml/JCE [mad-401-781] 15292.03

GAS WELL AND LEACHATE EXTRACTION SYSTEM

		BLOV	VER AI	ND FLARE	NOITATE	GAS MOI	VITORING	
Dus: 9(30/97)			-					
Ti: ::: Start - 1000	End		-					
To aperature: 65			-					
Ballometric Pressure:			-	•		•		
Minitored by: V. STR	ACH .		-			:		
Gus Detector Model 1 Serial No Date Last Calibra	.: 392	508 	•					•
t ocation	Pressure (in. WC)	CH4(2) (명)	(%) 02	Valve Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) (c(m)	Gas Flow Temperature (OF)	Comments
Ground Flare								
· Sample Por: A	+2.0	44,2	1.4		~	223	37'	
- Sample Port B	-1.9	+4,0	با ۱		-		87 `	
- Sample Port C	*1.1	44.9	1.9		-		79.5	
- Manual Vaive				100%			Ň.	
							•	
Blower						•		
- North Branch	<u>-30,8</u>	46.4	1.3	<u>50%</u>		138	64.0	
· Central Branch	-26.2	43.4	2.2	25%		716	64.8	
- South Branch	-13.2	33.4	4.9	20%		Poi	63.5	
- Inlet Sample Port A	-31.5	44.4	1.6					
- Inlet Sample Port B	-32.2	44.3	1,6					
Oudet Sample Port A	+2.6	44.6	1.6					
Pedestal Flare								•
- Manual Vaive				3%				

Notes: Tank (\$ 30' Flan Fing 133+'

DRE.kml/JCE [mail-401-781] 15292.03

Notes: Peack of So

(1) Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.
(3) Gas velocity is converted to gas flow by multiplying FPM X.045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

DATA SHEET C REFUSE HIDEAWAY LANDFILL GAS AND LEACHATE EXTRACTION SYSTEM LEACHATE HEAD MONITORING

Date: 7/26/97	
Time: Start- 2930	End- 15 +5
Monitored By: Paker	Hartz
Instrument Used: @ 50	CIETER & TAJE

Weil Riser	Riser Depth(2) (ft)	Depth to Leachate (ft)	Leachate Head (ft)	Comments
GW1-EAST	53.7	45,9	7.3	
-WEST	54.1			
GW2-EAST	53.9	48.0	<u> </u>	
-WEST	54.0			
GW3-EAST	59.7	55.W	4.1	
-WEST	59.7			
GW4-EAST	61.9		1.7	5100+1 Hrs.
-WEST	61.8		***************************************	
GW5-EAST	70.0		<u>ə.ə</u>	(37474 Hes
-WEST	69.9			
GW6-EAST	40.0	34.0	6.0	
-WEST	40.1			
GW7-EAST	60.0		2.5	७३७९७ ४००
-WEST	60.0			
ر(1) 8∀د				
-EAST	69.6		0.4	779246 Hrs.
-WEST	69.9		· ·	
GW9(1)				
-NORTH	67.5		2.1	546235 Hrs.
-SOUTH	68.4			
GW10-				
-NORTH	72.8	60.2	12.6	
-SOUTH	72.7			
GW11(1)			_	
-EAST	69.1		1.3	568597 Hus.
-WEST	69.1	4		
GW12-EAST	80.0		0.3	744589 Hrs.
-WEST	80.0			
GW13-EAST	73.1		3.0	36567 Hrs.
-WEST	73.0			
Leachate Tank	17.9	14.6	3.3	·

5753 gal

Tank Volume =

Wells with leachate extraction pumps and controls installed.
 Depth is measured from top of 1-in, dia. riser pipe. Tank riser pipe is 2-in, dia.
 Use Table 1 to convert leachate head in tank to a volume in gallons.

GAS WELL AND LEACHATE EXTRACTION SYSTEM GAS PROBE MONITORING

Date: $9/30/94$
Time: Start - 10 +5 End- 1+00
Temperature: (,o 's
Barometric Pressure:
Monitored by: 1 Hartz
Gas Datastar Model No : C 10.1 1939

Serial No.: 92075

Date Last Calibrated: 9/29/97

Location	Probe Pressure (in. WC)	CH ₄ (1) (%)	CH ₄ (2) (% LEL)	02 (%)	Comments
G-1S	<u> </u>	<u> </u>	<u> </u>	21.0	
G-ID	<u>ు</u> .ం	্ ড, ভ	<u> </u>	21.0	
G-6	0.0	0,0	0	19.5	
G-8	٥,٥	၁.၅	S .	27. చ	
G-9	0.0	<u>ی</u> در د	<u></u>	21.0	
G-10	0.0	٥.٥	3	21.6	
GP-11S	. O, S	1.5		17.5	
GP-11D	0.0	14.5		0.5	
GPW-1S	. 0.0			21.5	
GPW-1M	<u> </u>	<u> </u>	3	21.0	
GPW-ID	ිය. ා	<u> </u>		21.0	The state of the s
Speedway Buildings	0.0	0.0	٥٠	21.0	

Percent combustibles by volume, primarily composed of CH4.
 Percent of lower explosive limit of CH4 (100% LEL = 5% CH4 by volume).

APPENDIX B

JOHN ZINK COMPANY FLARE INSPECTION REPORT

International Headquarters P.O. Box 21220 Tulsa, Oklahoma 74121-1220 918/234-1800

October 16, 1997

SCS Field Services 787 W. Sherwood Springfield, MO 65810

Attention:

Bill Reed

Reference:

Hideaway Landfill

Dear Mr. Reed:

Our Wisconsin technician inspected the flare system at the Hideaway Landfill in Middleton, WI on September 22nd.

His findings concluded the flare is in good condition and operating properly. There were a few items detailed in his report, as follows:

- The stack was not grounded. Recommendation was made to site personnel.
- There was no gravel in the interior/bottom of the flare, resulting in foundation breaking up. Recommendation was made to site personnel.
- Fire brick in some locations was broken up but not enough to impair the stack at this time.
- Some welds on waste gas header appeared to be cracked but overall, in good condition.
- Spark ignitor connection at plug was repaired by our technician.
- Conduit was sealed at ignition transformer panel by our technician.
- Inspected interior of control panel. Several wire terminals were loose. These were corrected by our technician. Relays appeared to be in like-new condition. Operation of the flare system controls was monitored.

Overall, the flare is in good condition. It is recommended to internally inspect the flare at any opportunity, bearing in mind that landfill flares are not shutdown on a regular basis. A qualified manufacturer's representative should inspect the flare at least on an annual basis, given the age of the flare system and the conditions of a few of the items noted. John Zink Company appreciates the opportunity to work with SCS Field Services and look forward to the growth of our relationship is servicing landfill flare systems throughout the U.S.

Sincerely,

Les Rarrett

	JOH	V ZI	MK.	Orig	inci SO#	1		New S	SO #	
司を	A KOCH NO	STRIES C	CMPANY			1		P.O. =		
11980 Sast Apriche - Tusa, Ghindma 74421-1980 3137934-1900 - F4x 3137934-1988				Customer		SCS fieldes			- 	
					ice Address	787	West Sherv	ucal	ddress	
				Invoice City		\leq_{c}	Springfield		ity	
Field S	ervice Eng	gineer:		State, Zip		1 m	MO 65810		Zip	
Di.	11 30	sea		Requested by					-	III Reed
	,, , , , , , , , , , , , , , , , , , ,	. m.v.		ICNI.	1 41 C	1B:			Number 41	7-881-7303
Are 1&C □ Techn	ical Asst A	gmt 🖸	PM Con	tract @	nave the Cus	ate)	Blanket Contract @		of ANY work. If	Yes, what type of T&C's? Other
Type of							□ TOSG	☐ Inspe		
(Check	🗷 at least	one in e	ach secti	on)	Internal		☐ Burners		•	Sales Call
					External		☐ Flares Vapor	Callo Train		Non-JZ Equip
	Time	Charg	geable H	ours	Warranty	Non /				
Date	Interval	Reg.	Wknd	OT	Hours	Rev		Descripti	on of Work Perfor	med
4.22	0830				 	 	TRAVE			
•	1900 1900						Inspect	10 11	2111 8/20	- ON Checklist
	1630				<u> </u>			ner in	tecrity u	velds - Pilot
							condition	1 - Pla	me schinn	er - WASTE
<u> </u>					<u> </u>	 	gas nea	der -	Refract	ory - thermo-
	1				ļ	<u> </u>	couple -	guene.	h air dan	ngers-elec-
				ļ	 	 	trical -	5100	that an	or grounded
					 	 	rod he	menor huriec	and et	ack granded
							to it -	Here	is no are	
							bottom o	+ the	stack c	auld use
					 	 	about 6	10	Reep cor	crete from
				-			breaking) 	- fire br	ick in tair
					 	 	condition	n som		s are broken
									ordition	
								lug Co	nnection	due to poor
					 	 	connetio	<u> </u>	sealed u	a conduit
Sub To	tal Hours				 	 	RATE INFORM	ATIONI:	trans for	mer panel
Total H		4		L	ــــــــــــــــــــــــــــــــــــــ		Regular Days @		Weekend Da	vs @ \$
Worked	-	7_					Reg OT Hours @		Wknd OT Ho	
	Parts and				<i></i>				. <u> </u>	·
Commer	nts or Recor	nmenda	tions _	<i>-//</i>		/				<u></u>
	:C1 D	//		/			17	22/0-		
work ve	erified By:_		ustomer R	epresent	autice			Dâte		Phone (Fax)
Work Su	ıbmitted By	':	120	1_//	Sen		9,	22.97		
Trip Exp	enses.	Jo	ohn Zink R	epresen	tative			Date /		☐ Add'l Info. Attached
Air Far			7				Leave Open	7.	7	Refer to Code List for Valid Codes
Mileag	e:		$\exists \subset$		Miles @	/mile)	Close	<u> </u>	Failure Codes:	
Tolls/T			4					1	Repair Codes:	
Car Re	ntal:		_ Meal	ls:	Date	Amoun	t Date	Amount	4	
Hotel:	Ting:		-	}				-	+	G0000
Fuel/Pa			-	r				 	Labor Total:	X (//)
Meals:				ļ					Expenses Total:	
Misc.:									Parts Total:	
Sub-To	otal:		1	L				<u> </u>	Grand Total:	<u> </u>

APPENDIX C

ENVIRONMENTAL SAMPLING CORP. LEACHATE CONVEYANCE LINE JETTING REPORT

REFUSE HIDEAWAY LANDFILL MIDDLETON, WISCONSIN ANNUAL LEACHATE CONVEYANCE PIPE CLEAN OUT & STATUS REPORT SEPTEMBER 1997

SYSTEM DESCRIPTION

The Leachate Extraction System at the Refuse Hideaway Landfill is designed to recover leachate and gas condensate. Leachate and gas condensate are extracted from the landfill using pneumatic air lift pumps placed in extraction wells found to have high leachate levels. The layout of the leachate and gas extraction system is shown in figure A.

Periodic maintenance and leachate conveyance pipe cleaning is required annually to keep the system operating smoothly and efficiently. Successful cleaning of the leachate conveyance piping system demonstrates that differential settlement has not occurred. On September 26, 1997, ESC personnel (F. Perugini, P. Hartz) were on-site to perform the annual leachate conveyance pipe cleaning. Visu Sewer was chosen to perform the cleaning based upon past site experience. Visu Sewer personnel Gary and Neil were on-site in truck #113. Truck #113 was loaded with 1000 gallons of water and the jetter nozzle pressure was set at approximately 2000 psi. Leachate conveyance pipe cleaning was performed by entering various clean outs on the low side and jetting upgradient. The total leachate conveyance piping system cleaned was approximately 1600 feet. Due to the rough terrain and location of Clean Out #3 (CO3) it was not entered.

I. System Clean Out Schedule

Set up #1 -- Visu Sewer truck #113 set up below Clean Out #2 (CO2). The jetter hose was walked up the slope and inserted into CO2. The jetter hose was positioned to head uphill towards GW-1 (see fig. #1). The distance traveled by the jetter hose was approx. 330 to 340 feet.

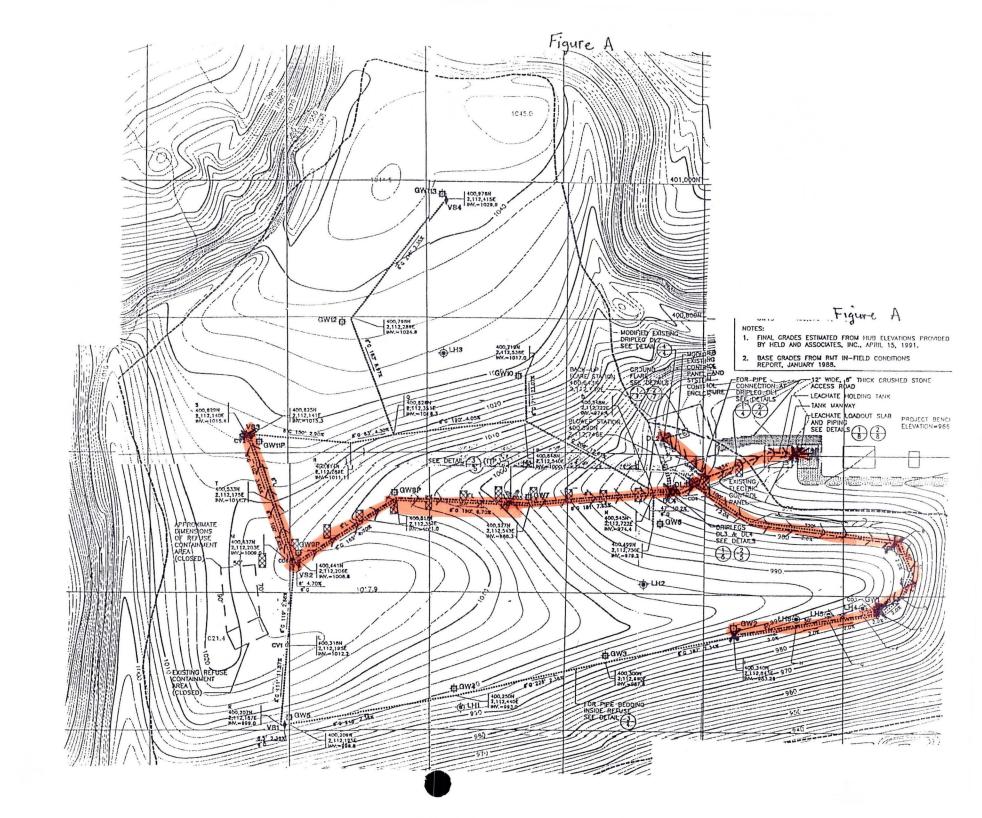
Set up #2 -- Visu Sewer truck #113 set up near the blower building. The jetter hose was inserted into Drip Leg #1 Clean Out (DL1 CO), the jetter hose was headed towards the Leachate Tank (see fig. #2). A visual confirmation was made at the Leachate tank.

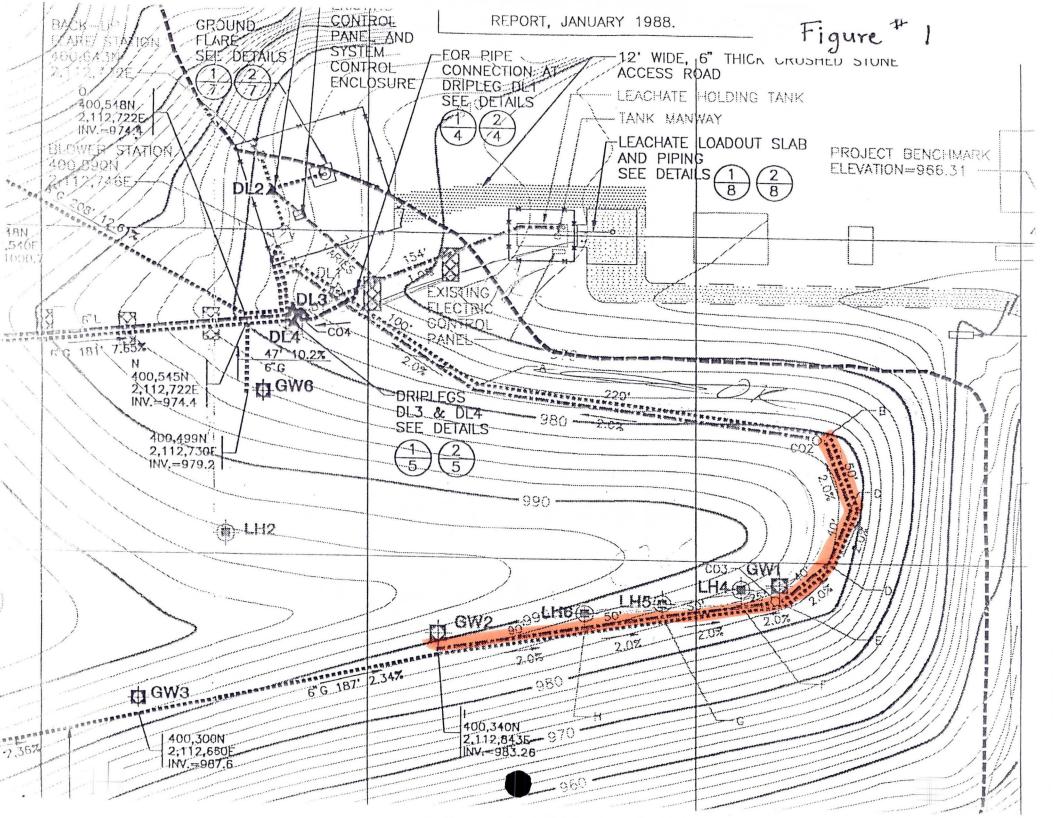
Set up #3 -- Visu Sewer truck #113 remained in the same location near the blower building. The jetter hose was inserted into Clean Out #1 (CO1) heading uphill towards Clean Out #2 (CO2) (see fig. #3). A visual confirmation was made at CO2 where pressure was heard in the line and water was observed.

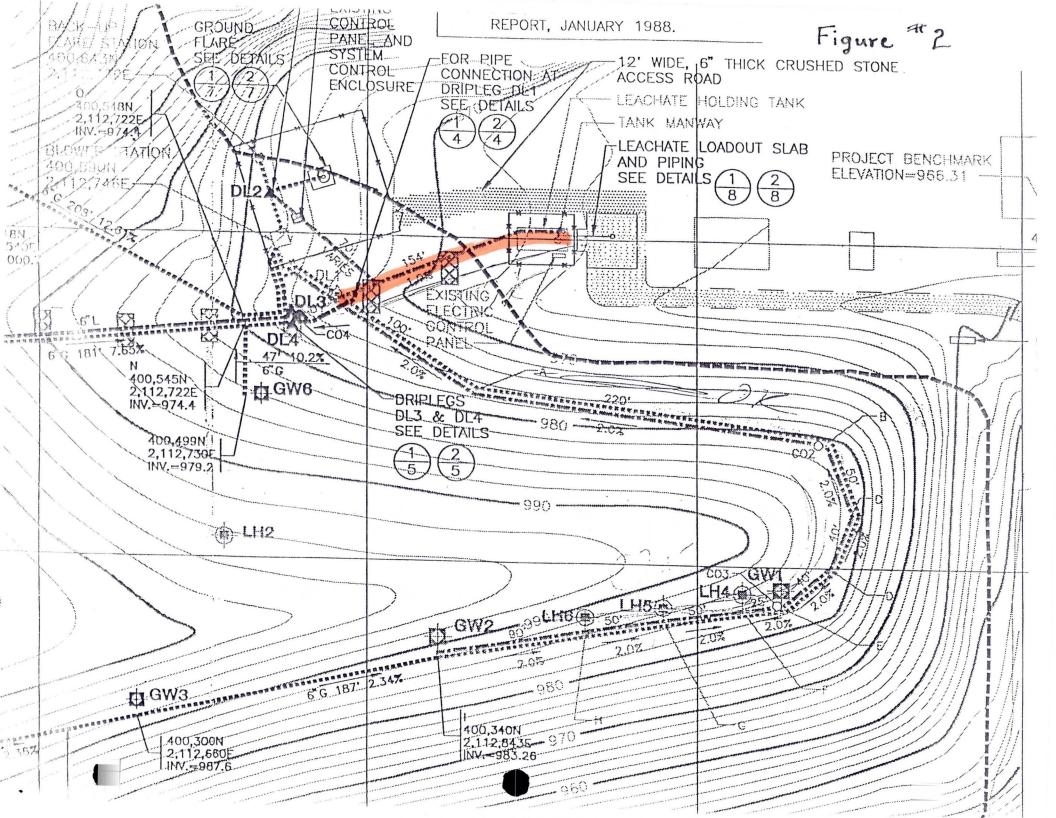
REFUSE HIDEAWAY LANDFILL MIDDLETON, WISCONSIN ANNUAL LEACHATE CONVEYANCE PIPE CLEAN OUT & STATUS REPORT SEPTEMBER 1997

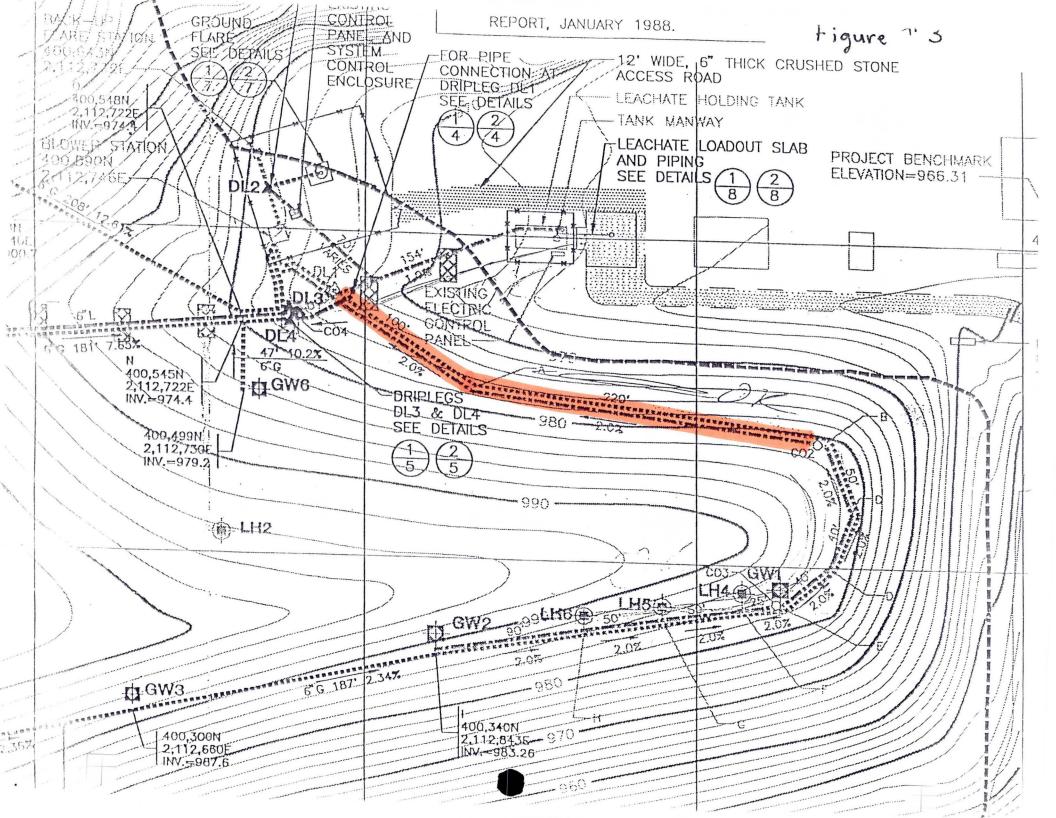
I. System Clean Out Schedule (cont.)

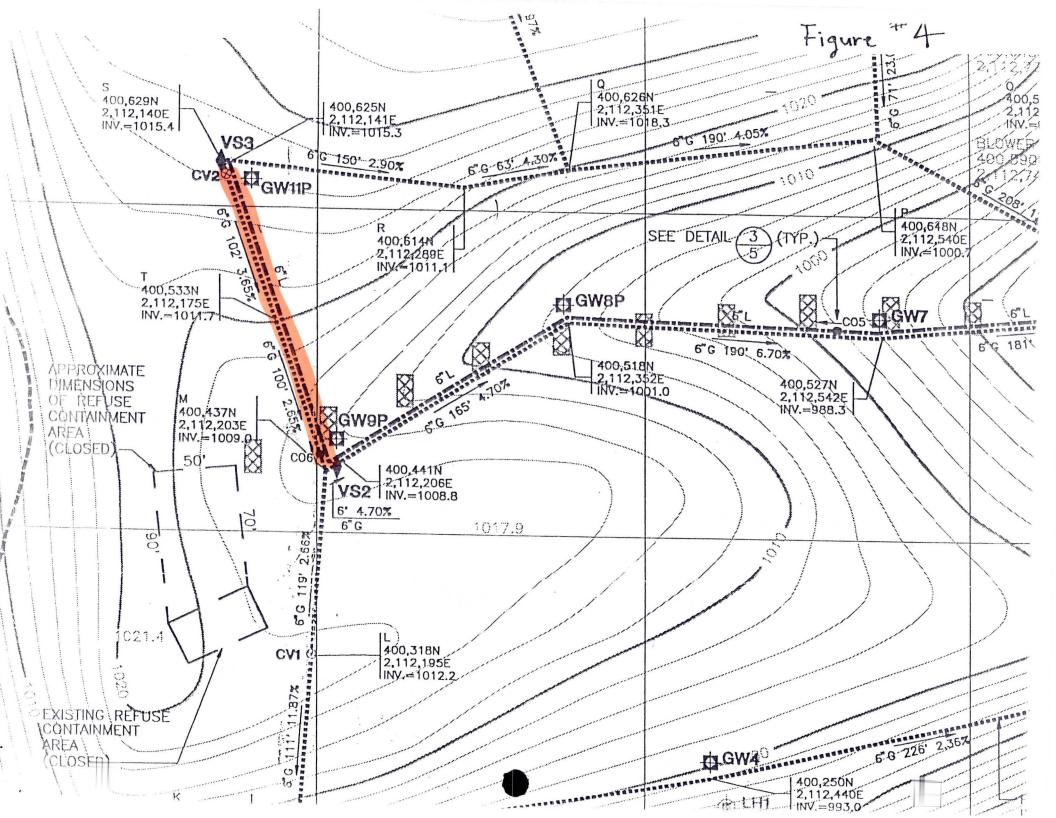
Set up #4 -- Visu Sewer truck #113 set up near Clean Out #6 (CO6). The jetter hose was inserted into CO6 heading towards GW-11 (see fig #4). The distance traveled by the hose was approx. 180 to 190 feet.

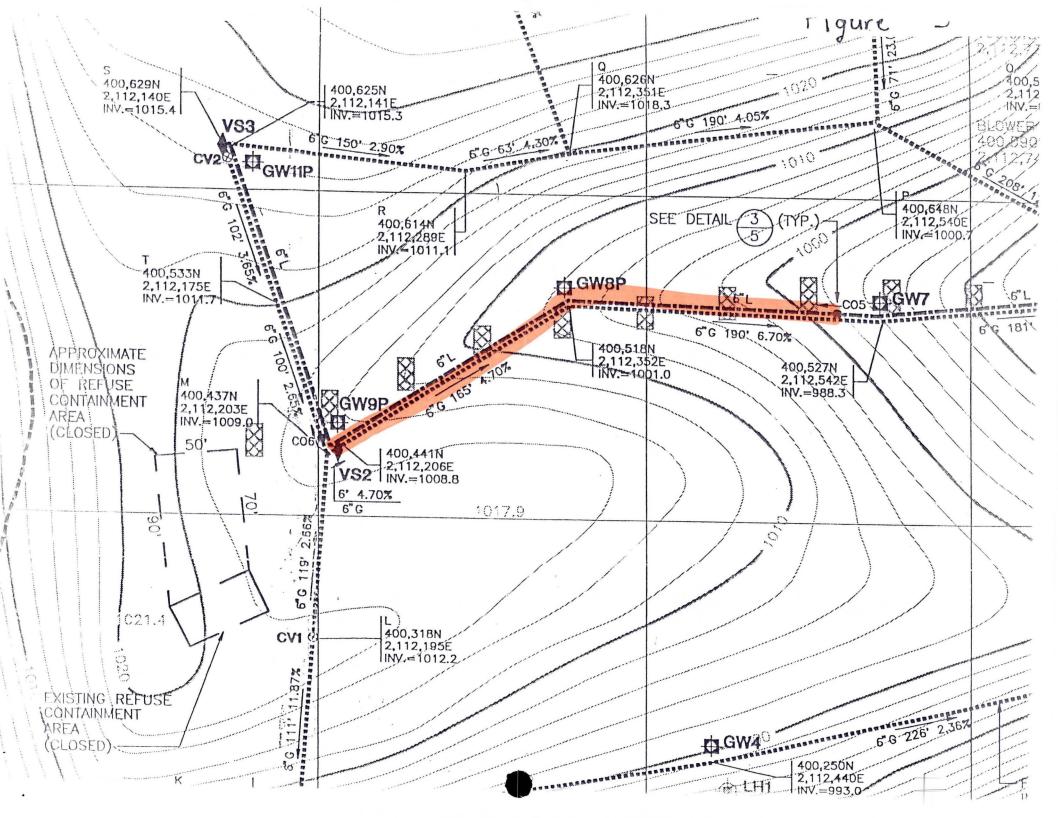

Set up #5 -- Visu Sewer truck #113 set up near the blower building. The jetter hose was inserted into Clean Out #5 (CO5). The jetter hose headed uphill towards GW-8P and then past the bend towards GW-9P (see fig. #5). A visual confirmation was noted at CO6. **Note:** There was some resistance when the jetter hose was removed from CO5. The distance traveled by the jetter hose was approx. 350 to 360 feet.

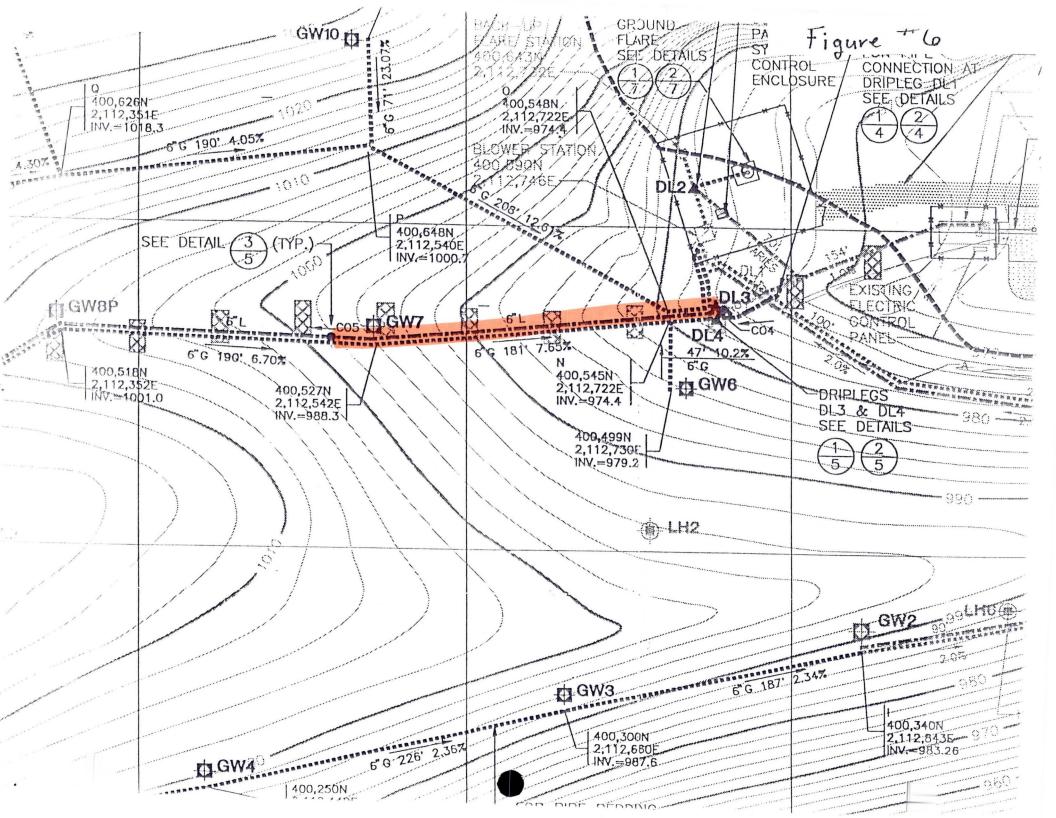

Set up #6 -- Visu Sewer truck #113 set up near the blower building. The jetter hose was inserted into Clean Out #4 (CO4) and the jetter hose headed uphill towards CO5 (see fig. #6). A visual confirmation was noted at CO5.

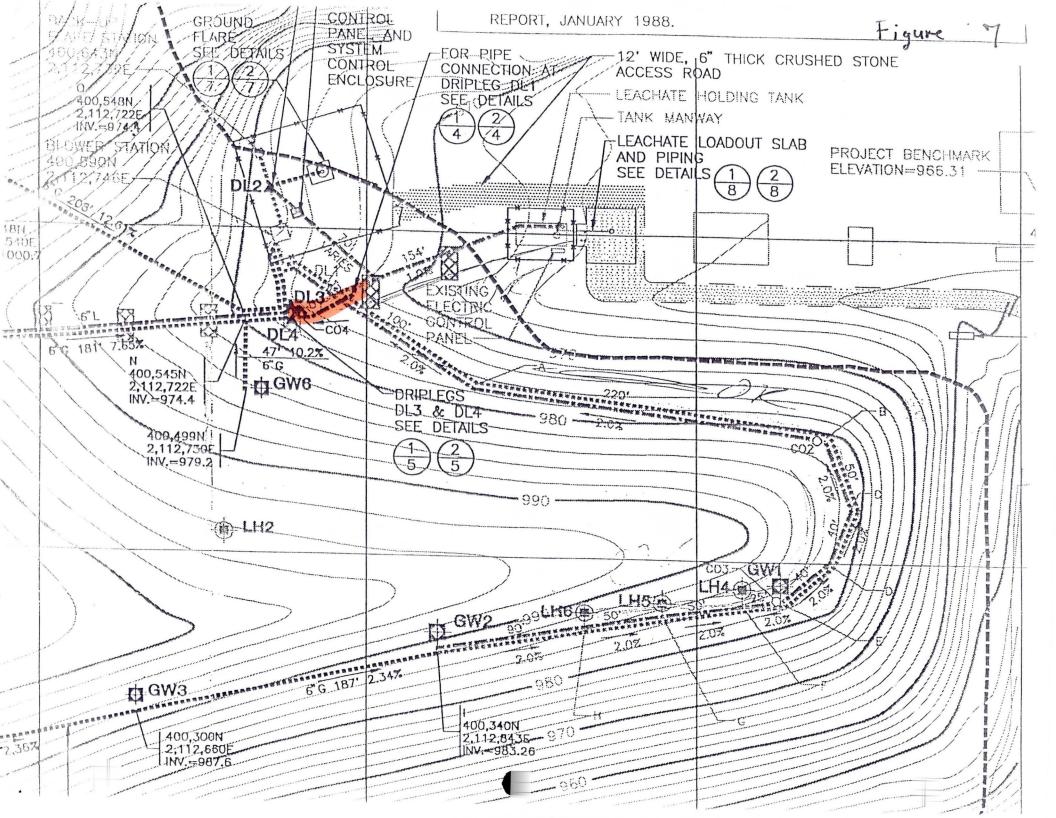

Set up #7 -- Visu Sewer truck #113 set up in the same location near the blower building. The jetter hose was placed into Drip Leg # 3 Clean Out (DL3-CO) which headed towards DL-1 CO (see fig. #7). The jetter hose was then placed in Drip Leg #4 Clean Out (DL4-CO) (see fig. #7). Water only was blasted through the lines. The flow was confirmed visually at the nest of clean outs.

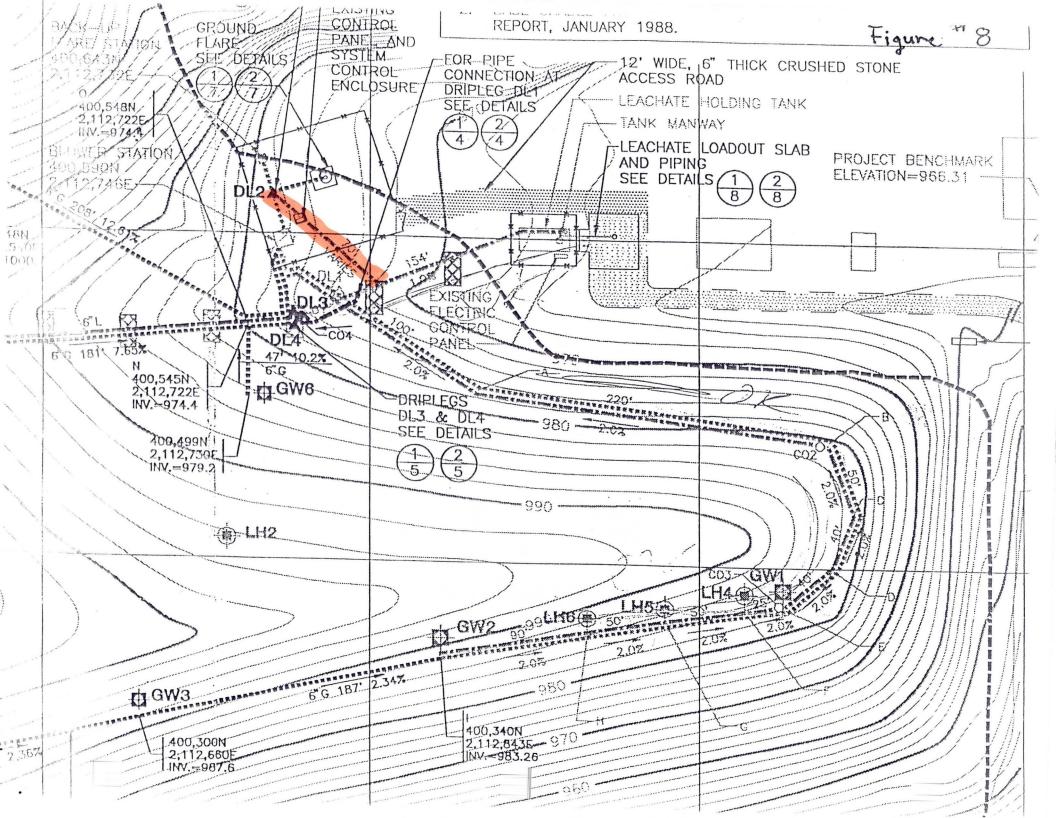

Set up #8 -- Visu Sewer truck #113 set up inside the fenced area. The jetter hose was placed in Drip Leg #2 Clean Out (DL2-CO) which heads towards the Leachate Tank (see fig # 8).). Water only was blasted through the lines. The flow was heard and seen in the Leachate Tank.

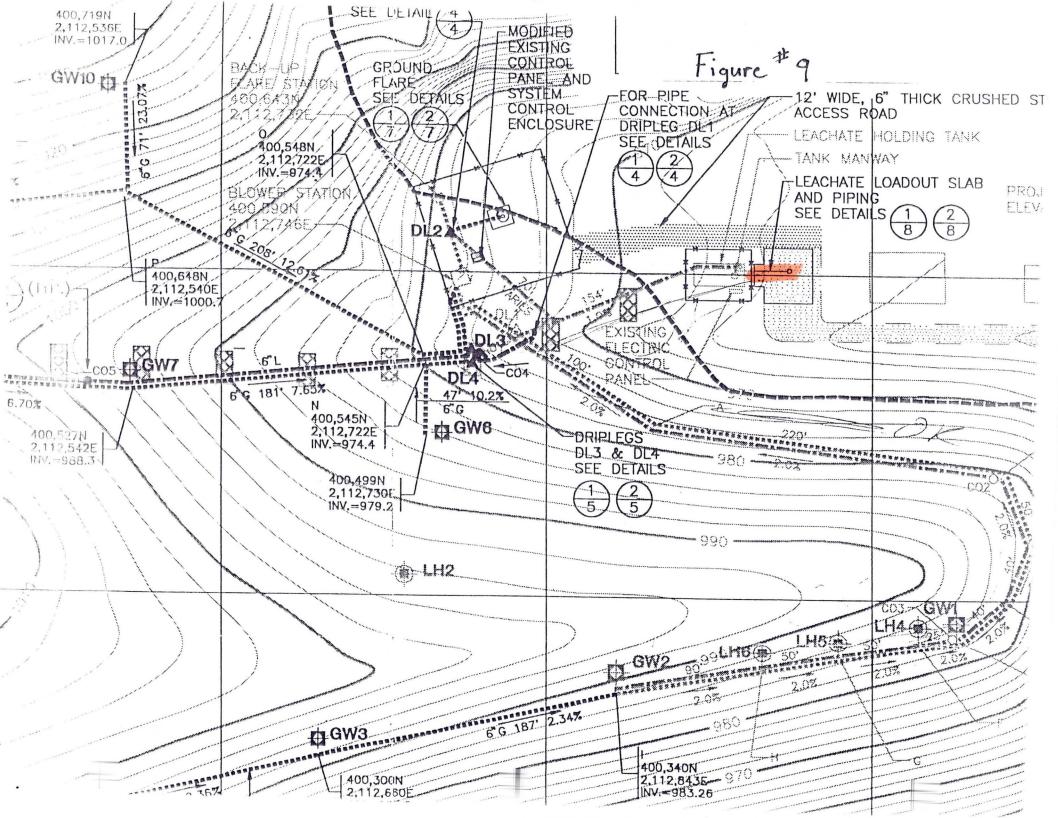

Set up #9 -- Visu Sewer truck #113 set up on the concrete Leachate Load Out pad. Sand and debris was removed from the silt trap inside the Leachate Load Out pad manhole, and the drain was then flushed with water. The pipe heading to the Leachate Tank was also flushed with water (see fig. #9). The concrete Leachate Load Out pad was hosed off and cleaned.











VISU-SEWER CLEAN & SEAL, INC.

W230 N4855 Betker Road • Pewaukee, Wisconsin 53072 414-695-2340 FAX 414-695-2359 1-800-876-8478

October 2, 1997

10-6-57 Ref

SCS Field Services, Inc. 787 W. Sherwood Springfield, MO 65810

Dear Sirs:

Enclosed please find the cleaning reports for the work completed for Refuse Hideaway Landfill. If you have any questions, please feel free to call.

Sincerely,

VISU-SEWER CLEAN & SEAL, INC.

Phillip S. Romagna

Phillip S. Romagna

Vice President

Enc.

CLEANING REPORT

VISU-SEWER CLEAN & SEAL, INC.

N59 W14397 Bobolink Ave., Menomonee Falls, WI 53051 (414) 252-3203 2849 Hedberg Dr., Minneapolis, MN 55343 (612) 593-1907

ROOT TREATMENT REPORT

LOCATION	MANHOLE TO MANHOLE	PIPE SIZE & Type	FOOTAGE	CLEANING (L,M,H/TIME)	COMMENTS
DL2CO	1	6"	69'		
date: 9-26-97					FOAM GALS
DL3CO		6"	0		Water Only Flush
DATE : 9-26-97					FOAM GALS
DL4CO		6"	0		Water Only Flush
DATE: 9-26-97					FOAM GALS
Sewer		3"	15'		Flushed Out and Cleaned Basin
DATE: 9-26-97					FOAM GALS
			TOTAL 1,574'		
DATE:					FOAM GALS
DATE:					FOAM GALS
PROJECT SCS-REFUSE H	CREW LEAD	DER/EQUIPMI	PAGE NO. 2		

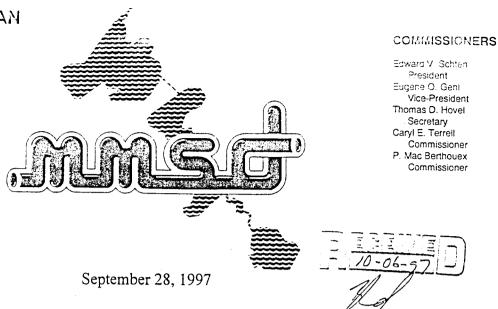
CLEANING REPORT

VISU-SEWER CLEAN & SEAL, INC.

N59 W14397 Bobolink Ave., Menomonee Falls, WI 53051 (414) 252-3203 2849 Hedberg Dr., Minneapolis, MN 55343 (612) 593-1907

ROOT TREATMENT REPORT

LOCATION	MANHOLE TO MANHOLE	PIPE SIZE & TYPE	FOOTAGE	CLEANING (L,M,H/TIME)	COMMENTS
C02	/	6"	3341		
DATE: 9-26-97					FOAM GALS
DL-1CO		6''	167'		
DATE: 9-26-97					FOAM GALS
CO1		6''	198'		
DATE: 9-26-97					FOAM GALS
CO6		6"	181'		
DATE: 9-26-97					FOAM GALS
C05		6"	395'		
DATE: 9-26-97					FOAM GALS
CO4		6"	215'		
DATE: 9-26-97					FOAM GALS
PROJECT SCS-REFUSE	HIDEAWAY LANDFILL	CREW LEAD	PAGE NO. 1		


APPENDIX D

MADISON METROPOLITAN SEWERAGE DISTRICT LEACHATE DISCHARGE PERMIT RENEWAL

MADISON METROPOLITAN SEWERAGE DISTRICT

1610 Moorland Road Madison, WI 53713-3398 Telephone (608) 222-1201 Fax (608) 222-2703

> James L. Nemke Chief Engineer & Director

Mr. William O. Reed SCS Field Services, Inc. 787 W. Sherwood Drive Springfield, MO 65810

Dear Mr. Reed:

Enclosed is a permit to allow disposal of leachate from the Refuse Hideaway Landfill at the District's wastewater treatment plant. As noted in your letter of September 11, 1997, the fees for disposal for the remainder of 1997 are \$8.94 per 1000 gallons. Please review the monitoring requirements of Part 2 of the permit. If you have any questions, please contact me.

Sincerely,

Paul H. Nehm

Director of Operations

and Maintenance

WASTEWATER DISCHARGE PERMIT

In compliance with the provisions of Articles 5 and 6 of the Madison Metropolitan Sewer District Sewer Use Ordinance and the District's Policy on Acceptance of Wastewater Containing Non-Typical Organic and Inorganic Constituents,

Department of Natural Resources
Post Office Box 7921
Madison, WI 53707

is hereby authorized to discharge contaminated groundwater from the above identified facility into the District sewerage system in accordance with the effluent limitations, monitoring requirements, and other conditions set forth in this permit.

All discharges authorized herein shall be consistent with the terms and conditions of this permit. The discharge of any pollutant identified in this permit more frequently than or at a level in excess of that authorized shall constitute a violation of the permit.

This permit shall become effective on September 25, 1997, and shall expire at midnight, September 24, 1998. Any appeals to the conditions of this permit must be made to the Chief Engineer and Director within thirty days of the signature date.

The permittee shall not discharge after the date of expiration. If the permittee wishes to continue to discharge after this expiration date an application shall be filed for reissuance of this permit in accordance with the requirements of Article 5 of the Madison Metropolitan Sewerage District Sewer Use Ordinance, at least thirty days prior to the expiration date.

In accordance with Articles 5 and 6 of the Madison Metropolitan Sewerage District Sewer Use Ordinance, the District reserves the right to amend this permit from time to time or to revoke the permit.

James L. Nemke

Chief Engineer and Director

Dated this 29th day of September, 1997.

PART 1--APPLICABLE EFFLUENT LIMITATIONS

SECTION 1--MMSD Pretreatment Standards

- (a) All wastewaters discharged to the MMSD shall not exceed the following effluent limitations:
 - 0.25 mg/l cadmium
 - 0.5 mg/l hexavalent chromium
 - 10.0 mg/l total chromium
 - 1.5 mg/l copper
 - 0.1 mg/l cyanide
 - 5.0 mg/l lead
 - 0.02 mg/l mercury
 - 2.0 mg/l nickel
 - 0.3 mg/l selenium
 - 3.0 mg/l silver
 - 8.0 mg/l zinc
- (b) The limitations listed in paragraph (a) apply to twenty-four hour flow proportionate samples collected from the total discharge of the permittee.
- (c) In addition, the permittee shall comply with all other applicable regulations and standards contained in the MMSD Sewer Use Ordinance. Included in these regulations are limitations on pH, slug loads, and oil and grease content.

SECTION 2--Toxicity Characteristics Leaching Procedure Requirements

(a) All wastewaters discharged to the MMSD shall not exceed the limitations of the Toxicity Characteristics Leaching Procedure (TLCP) as specified in the Federal Register of March 29, 1990.

PART 2--MONITORING AND REPORTING REQUIREMENTS

SECTION 1--Monitoring Requirements

The permittee shall monitor its wastewater discharges subject to regulations under Part 1 of this permit to ascertain compliance with the applicable limitations. Said monitoring to determine compliance with the standards specified in Part 1 shall be conducted each calendar quarter. The monitoring shall consist of sampling of the regulated wastewaters for those pollutants regulated under Part 1 of this permit and reporting of the results to the District. Samples shall be obtained by collecting a representative sample of the contents of the on-site 25,000 gallon storage tank. Samples shall be collected on a quarterly basis to show compliance with Part I Section 1 and on an annual basis to show compliance with Part I Section 2.

Laboratory analysis of samples collected shall be performed in accordance with 40 CFR Part 136 or other such methods as approved by the District.

SECTION 2--Reporting Requirements

Self-monitoring results shall be reported to the District within three days of the end of the calendar quarter.

If the permittee monitors any pollutant more frequently than required by this permit, the results of such monitoring shall be submitted to the District.

If sampling performed by the permittee indicates a violation of any provisions of this permit, the permittee must notify the District of the violation within 24 hours of becoming aware of it. The permittee must also repeat the sampling and analysis and submit the results of the repeat analysis to the District within 30 days after becoming aware of the violation.

All reports shall be signed and sworn by a responsible corporate officer of the permittee. A responsible corporate officer is defines as:

- 1. A president, secretary, treasurer, or vice president of the corporation in charge of a principal business function, or any other person who performs similar policy-or decision-making functions for the permittee, or
- 2. The manager of one or more manufacturing, production, or operation facilities employing more than 250 persons or having gross annual sales or expenditures exceeding \$25 million, if authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures.

The individual signing the report shall make the following certification:

"I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment for knowing violations."

All reports required by this permit shall be submitted to:

Madison Metropolitan Sewerage District 1610 Moorland Road Madison, Wisconsin 53713

The Madison Metropolitan Sewerage District will randomly collect and analyze samples of leachate to verify leachate quality.

PART 3--MONITORING AND SAMPLING FACILITIES

SECTION 1--Sampling Facilities

In order to permit monitoring of the leachate, by the District, the permittee shall construct facilities to allow for collection of a representative sample from the on-site 25,000 gallon storage tank.

SECTION 2--Discharge Permit

Since the Refuse Hideaway Landfill is outside the District's service area, all wastewater from the site shall be hauled to the Nine Springs Wastewater Treatment Plant and disposed of at a designated location at this plant. The hauler shall have in effect a Septage Disposal Permit issued by the District.

PART 4--GENERAL CONDITIONS

1. Right of Entry

The permittee shall, after reasonable notification by the District, allow the District or its representatives, exhibiting proper credentials and identification, to enter upon the premises of the permittee at all reasonable hours, for the purposes of inspection, sampling, or records inspection. Reasonable hours in the context of inspection and sampling includes any time the permittee is operating any process which results in collection of wastewater in the on-site storage tank.

2. Records Retention

- a) The permittee shall retain and preserve for no less than three (3) years, any records, books, documents, memoranda, reports, correspondence and any and all summaries thereof, relating to monitoring, sampling and chemical analyses made or by or in behalf of the permittee in connection with its discharge.
- b) All records that pertain to matters that are the subject of special orders or any other enforcement or litigation activities brought by the District shall be retained and preserved by the permittee until all enforcement activities have concluded and all periods of limitation with respect to any and all appeals have expired.

3. Severability

The provisions of this permit are severable, and if any provision of this permit or the application of any provision of this permit to any circumstance, is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

4. Confidential Information

Except for data determined to be confidential under Article 7.2 MMSD Sewer Use Ordinance, all reports required by this permit shall be available for public inspection at the headquarters of the District.

5. Recording of Results

For each measurement or sample taken pursuant to the requirements of this permit, the permittee shall record the following information:

- a) The exact place, date, and time of sampling;
- b) The dates the analyses were performed;

- c) The person(s) who performed the analyses;
- d) The analytical techniques or methods used; and
- e) The results of all required analyses.

6. Falsifying Information

Knowingly making any false statement on any report or other document required by this permit or knowingly rendering any monitoring device or method inaccurate, may result in punishment under the criminal laws of Wisconsin as well as being subjected to civil penalties and relief.

7. Modification or Revision of Permit

- a) The terms and conditions of this permit may be subject to modification by the District at any time as limitations or requirements as identified in the MMSD Sewer Use Ordinance are modified or other just cause exists.
- b) This permit may also be modified to incorporate special conditions resulting from the issuance of a special order.
- c) Any modifications which result in new conditions in the permit shall include a reasonable time schedule for compliance if necessary.

8. Dilution

No permittee shall increase the use of potable or process water or, in any way, attempt to dilute a discharge as a partial or complete substitute for adequate treatment to achieve compliance with the limitations contained in this permit.

9. Accidental Discharges

The permittee shall provide protection from the accidental discharge of prohibited or regulated materials or substances established by the MMSD Sewer Use Ordinance. Where necessary, facilities to prevent the accidental discharge of prohibited materials shall be provided and maintained at the permittee's expense. Permittees shall notify the District immediately upon the occurrence of an accidental discharges of substances prohibited by the MMSD Sewer Use Ordinance. The District should be notified by telephone at 222-1201. During normal business hours the modification shall be made to the Director of Wastewater Treatment Operations. During other times, the notification shall be made to the operator on duty. The notification shall include location of discharge, date and time thereof, type of waste, concentration and volume, and corrective actions taken. The permittee shall also provide such notification to the appropriate local municipal officials. In addition, the

permittee should immediately notify the State of Wisconsin of the accidental spill at (608) 266-3232 (twenty-four hour number).

40 CFR 403.8(f) (v) requires the District to evaluate each significant industrial user at least once every two years to determine whether a plan to control slug discharges is necessary. If it is determined that such a plan is necessary, the plan shall contain the following:

- 1. A description of discharge practices including non-routine batch discharges.
- 2. A description of stored chemicals.
- 3. Procedures for immediately notifying the District of a slug discharge and procedures for follow-up written notification within five days.
- 4. Procedures to prevent adverse impact from accidental spills.

10. Notice of Intent

Any permittee planning to alter or change any activity at the permittee's facility that would significantly increase or decrease the volume or alter the content of any existing source of industrial wastewater discharge into the District sewerage system must file a written Request to Discharge Form in accordance with Article 5 of the MMSD Sewer Use Ordinance. A significant increase or decrease shall be defined at a twenty-five percent increase or decrease in the volume of industrial wastewater currently being discharged by a permittee. An alteration shall be defined as any change in chemicals utilized with a process which will significantly alter the characteristics of the industrial waste discharge or the addition of any new process or production wastewater discharges.

11. Proper Disposal of Pretreatment Sludges

The disposal of sludges generated within wastewater pretreatment systems shall be done in accordance with Section 405 of the Clean Water Act and Subtitles C and D of the Resource Conservation and Recovery Act.

12. Operating Upsets

Any permittee that experiences an upset in operations that places the permittee in a temporary state of noncompliance with the provisions of either this permit or the MMSD Sewer Use Ordinance shall inform the District thereof within twenty-four hours of first awareness of the commencement of the upsets in accordance with Article 5.5.5 of the MMSD Sewer Use Ordinance.

13. Limitations on Permit Transfer

Wastewater discharge permits are issued to a specific user for a specific operation and are not assignable to another user or transferable to any other location without prior written approval of the District. Sale of a user shall obligate the purchaser to seek prior written approval of the District for continued discharge to the District sewerage system.

14. Property Rights

The issuance of this permit does not convey any property rights in either real or personal property, or any exclusive privileges, nor does it authorize any invasion of personal rights, nor any infringement of federal, state, or local laws or regulations.

15. <u>Fees</u>

The permittee will incur all costs billed by the District for leachate discharged to the District's sewerage system for leachate quantities and strengths as reported by the permittee to the District and as ascertained by the District through additional sampling. The costs shall include charges for the volume, CBOD, Total Suspended Solids, and Total Kjeldahl Nitrogen discharged and for ten (10) equivalent meters and one (1) actual customer and shall be based on the then prevailing District service charge rates. In accordance with the District's Policy on Acceptance of Wastewater Generated Outside of the District, a cumulative 10 percent surcharge shall be imposed on the discharge cost each quarter until such surcharge reaches 100 percent.

16. Hazardous Waste Notification

The permittee shall notify the District, the Department of Natural Resources, and the EPA Regional Waste Management Division Director in writing of any discharge to the sanitary sewer system of a substance which, if otherwise disposed of, would be hazardous water under 40 CFR Part 261. Such notification must include the name of the hazardous waste as set forth in 40 CFR Part 261, the EPA hazardous waste number, and the type of discharge. If the permittee discharges to the sanitary sewer more than 100 kilograms of such waste per calendar month, the additional notification requirements of 40 CFR 403.12 (p) apply. In the case of any notification made under this section, the permittee shall certify that it has a program in place to reduce the volume and toxicity of hazardous wastes generated to the degree it has determined to be economically practical.

17. Penalties

Violations of this permit are enforceable under Article XIII of the District's Sewer Use Ordinance. Included as enforcement remedies are special orders, injunctive relief, fines, and termination of service.

18. Bypass of Pretreatment Facilities

Bypassing of any permittee pretreatment facilities is only allowed in accordance with the provisions of 40 CFR 403.17. If the permittee knows in advance of the need for a bypass, it shall submit notice to the District, if possible at least ten days before the date of the bypass.

SCS FIELD SERVICES, INC.

November 20, 1997 File No. 0797026.00

Mr. Harlan Kuehling, P.G. Hydrogeologist Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Fitchburg, WI 53711

Subject: Operation and Maintenance of the Refuse Hideaway Landfill Gas (LFG) and Leachate Collection System During October 1997

Dear Mr. Kuehling:

This letter report summarizes operation and maintenance (O&M) activities performed by SCS Field Services, Inc. (SCS-FS) at the Refuse Hideaway Landfill LFG and Leachate Collection System (Collection System) during October 1997.

SUMMARY

Highlights of the O&M activities completed by SCS-FS on the Collection System during October included:

- As approved by the Department of Natural Resources (Department), an ammeter and a hour meter were installed to monitor blower motor operation.
- The methane content measured at GP-11S was 1.5 percent, by volume (30 percent
 of the lower explosive limit [LEL] in air), and the methane content measured in GP11D was 5.0 percent, by volume (100 percent of the LEL). Methane gas levels
 below the LEL were detected in the GPW series monitoring wells on October 31,
 1997. The GPW series wells were retested on November 4, 1997, and no methane
 was detected.
- The LFG Recovery System was operational 97 percent of the time during the month of October.

BACKGROUND

LFG Recovery System

The Refuse Hideaway Landfill LFG Recovery System became operational in 1991. The Refuse Hideaway Landfill LFG Recovery System consists of the following components:

- The Blower/Flare Station;
- The Collection System; and
- Monitoring Locations.

Mr. Harlan Kuehling, P.G. November 20, 1997 Page 2

The Blower/Flare Station includes one centrifugal LFG blower, an enclosed flare, a candlestick flare (as a backup combustion unit), and associated controls and appurtenances. The Collection System consists of 13 extraction wells, four drip legs, and associated gas and pneumatic header piping. The Monitoring Locations include 11 wells located throughout the site, and ambient air monitoring within the nearby Speedway buildings.

Proper operation of the Collection System is verified through testing of the extraction wells. LFG withdrawal rates at individual wells are adjusted based on test results. Testing for subsurface gas migration is done at the Monitoring Locations. Operation of the Blower/Flare Station provides vacuum necessary to withdraw the gas from the landfill, which helps control surface emissions and subsurface migration; odors and emissions are controlled by combustion of the gas at the flare.

Leachate Collection System

The current leachate collection system was installed in 1996, and is comprised pneumatic pumps installed in eight of the existing LFG extraction wells. Compressed air for the pneumatic pumps is supplied by a compressor located at the Blower/Flare Station. The collected leachate is stored onsite in a 25,000 gallon underground storage tank. Leachate is removed from the tank by a subcontractor, and is transported to the Madison Metropolitan Sewage District for treatment and ultimate discharge.

SCS-FS and our subcontractor, Environmental Sampling Corporation (ESC), began routine monitoring of the Collection System on July 1, 1997. Figure 1 indicates the approximate layout of the Collection System.

TESTING EQUIPMENT

Gas composition testing at the Recovery System was performed using either a Landtec GEM-500 Infra-Red Gas Analyzer, or a Gastech 1939OX Gas Analyzer. The GEM-500 measures methane, carbon dioxide, and oxygen as percent by volume. The GEM-500 also calculates the balance gas component of the LFG (assumed to be nitrogen) and reports it as percent by volume.

The Gastech 1939OX measures methane and oxygen, and reports the results as either percent LEL (for methane), or as percent by volume.

Pressure testing was measured in inches of water column and was performed using the GEM-500. LFG flow was measured with the GEM-500 and a Dwyer Pitot tube. Temperature measurement was performed using a handheld, analog temperature probe. Combustion temperatures measured at the flare were obtained from the in-place instrumentation.

Mr. Harlan Kuehling, P.G. November 20, 1997 Page 3

Leachate level determination was performed one of two ways:

- For the extraction wells that have a leachate extraction pump, leachate levels were obtained using the bubbler tube installed along with each pump.
- For the gas extraction wells that do not contain a leachate extraction pump, the leachate levels were monitored using an electric tape.

ON-SITE ACTIVITIES

Weekly LFG activities were performed on October 10, 16, 21 and 31. A summary of operational data collected during these weekly activities is shown in Table 1. Monthly activities were completed on October 31, 1997, with summaries shown in Tables 2, 3, and 4. Copies of all field data sheets are included with this report as Appendix A. The following activities were of note:

- LFG quality at the Blower/Flare station remained stable throughout the month.
 During the month of October methane concentrations at the blower inlet ranged
 from a high of 40.0 to a low of 37.4 percent, by volume. Oxygen levels recorded in
 October ranged from 0.8 to 2.0 percent, by volume.
- Thirteen loads of leachate totaling approximately 36,700 gallons were removed from the Leachate Collection System during the month of October. A summary of the loads removed is shown in Table 5.
- One Blower/Flare system alarm response occurred in October. The Blower/Flare system shutdown on October 24, and was restarted on October 25, 1997. The shutdown was due to low LFG flow. The Blower/Flare system was operational 97 percent of the month of October. A summary of the alarm event is shown in Table 6.
- The leachate compressor shutdown on or around October 16, 1997, requiring additional alarm response and project management time related to repairs.
 Materials were ordered, and repairs made by Energetics (Janesville, WI) between October 22, and October 27, 1997. The leachate compressor was successfully restarted on October 27, 1997.
- A visual inspection of the landfill cover performed as part of the monthly activities did not indicate any significant erosion features. No leachate seeps were noted.

ISSUES TO RESOLVE

Field monitoring data collected since July has indicated a significant loss of header pressure (vacuum) between extraction wells GW 4 and GW 5. This may indicate a partial blockage

Mr. Harlan Kuehling, P.G. November 20, 1997 Page 4

within the header pipe. SCS-FS will continue to monitor pressures in the header piping as part of our routine services. If additional investigation is warranted, SCS-FS will prepare an estimate to perform this investigation.

RESOLUTION TO PREVIOUS ISSUES

SCS-FS is unaware of any previous issues requiring resolution.

WORK PROJECTED FOR THE UPCOMING MONTH

SCS-FS will be submitting to the Department, an estimate to perform recommended modifications to the flare, as discussed by the John Zink Company.

The blower shaft bearings continues to require weekly greasing, a continuing sign that they need to be replaced. SCS-FS will prepare an estimate for procuring and installing two new bearings.

STANDARD PROVISIONS

The findings described above were recorded by both SCS-FS and SCS-FS contracted parties. Changes can and do occur which affect the operation of the system. Department personnel should contact SCS-FS immediately in the event of a system malfunction or operational deficiency.

Although SCS-FS is the primary party designated to operate and maintain the subject system, Department staff may find it necessary to make adjustments to the system if conditions change. SCS-FS should be notified of any adjustments made by Department staff.

SCS-FS is pleased to provide our services to the Department and we enjoy working on the project. Should you have questions, please do not hesitate to contact either of the undersigned.

Sincerely,

William O. Keed Regional Manager

SCS FIELD SERVICES, INC.

Saler S. Petayla / wan Galen S. Petoyan

President

SCS FIELD SERVICES, INC.

WOR:GSP;bms Enclosures

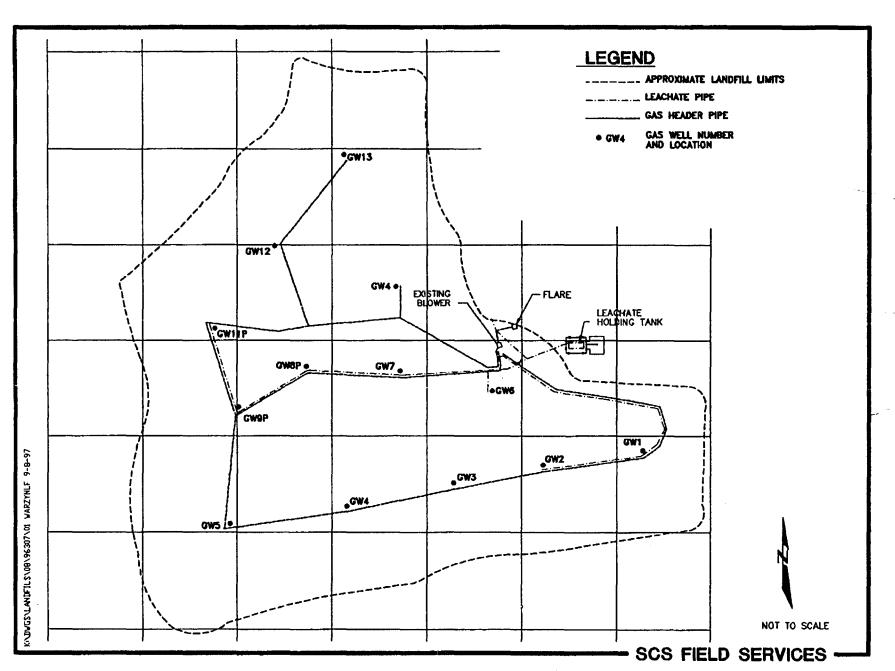


FIGURE 1
EXISTING GAS COLLECTION SYSTEM
REFUSE HIDEAWAY LANDFILL

TABLE 1.

REFUSE HIDEAWAY LANDFILL
WEEKLY BLOWER/FLARE STATION SUMMARY FOR OCTOBER 1997

Date	Bar. Pres. [in-Hg]	Blower Inlet Pressure [in-W.C.]	Blower Inlet Methane [%vol]	Blower Inlet Oxygen [%vol]	Blower Outlet Pressure [in-W.C.]	Flare Inlet Volume [cfm]	Flare Inlet Valve Position	Comments
10/10/97 10/16/97 10/21/97 10/31/97	30.42 30.43 30.30 29.70	-32.6 -32.9 -32.5 -32.1	38.5 37.4 38.0 40.0	0.8 1.1 1.3 2.0	3.2 3.1 2.6 2.9	0.0 19.1 26.8 15.5	100 100 100 100	COMPRESSOR NOT RUNNING CLOSED N.BRANCH INLET 1 NOTCH
======= Average: Maximum: Minimum:	======	**********	38.5 40.0 37.4	1.3 2.0 0.8			4=======	=======================================

TABLE 2.

REFUSE HIDEAWAY LANDFILL

LFG COLLECTION WELL TESTING RESULTS SUMMARY FOR OCTOBER 1997

Well No.	Date	Methane [%vol]	0xygen [%vol]	Well Pressure [in-W.C.]	Header Pressure [in-W.C.]	Flow [cfm]	Temp. [Deg F]	Valve Setting	Comments
GW-01	10/31/97	55.3	1.0	0.0	-11.3	0.0	69	0	
GW-02	10/31/97	29.7	8.3	0.0	-11.1	0.0	66	0	
GW-03	10/31/97	49.7	0.7	-3.3	-12.0	4.9	65	25	
GW-04	10/31/97	39.0	1.7	-10.4	-12.0	15.9	70	60	
GW-05	10/31/97	54.0	0.9	-4.9	-6.0	5.2	74	100	
GW-06	10/31/97	25.2	10.0	-0.4	-29.9	0.0	65	10	
GW-07	10/31/97	46.1	0.7	-30.0	-30.0	4.1	73	70	
GW-08	10/31/97	53.1	1.6	-18.6	-30.0	1.9	83	50	
GW-09	10/31/97	51.9	2.4	-22.3	-30.0	0.7	75	50	
GW-10	10/31/97	25.2	0.8	-12.3	-29.8	1.6	111	30	
GW-11	10/31/97	56.6	0.7	-28.4	-30.0	9.9	76	80	
GW-12	10/31/97	39.0	0.7	-10.4	-30.0	3.2	97	30	
GW-13	10/31/97	44.5	0.7	-29.0	-29.0	2.5	78	60	
====	2222222	======		=======	#======	 49.9	======	======	=======

Total:

%vol Percent by volume in-W.C. Inches of water column cfm Cubic feet per minute

Deg F Degrees Fahrenheit ND None Detected

TABLE 3.
REFUSE HIDEAWAY LANDFILL
LEACHATE HEAD MEASUREMENT SUMMARY FOR OCTOBER 1997

Well No.	Date	Leachate Level [feet, above bottom of well]	Current Pump Cycles	Previous Pump Cycles	Difference
GW-01	10/31/97	7.6			0
GW-02	10/31/97	7.4			0
GW-03	10/31/97	5.1			0
GW-04	10/31/97	1.7	551,674	510,641	41,033
GW-06	10/31/97	6.3			0
GW-07	10/31/97	3.2	232,162	108,797	123,365
GW-09	10/31/97	2.1	594,647	546,235	48,412
GW-10	10/31/97	27.6			0
GW-11	10/31/97	1.3	619,869	568,597	51,272
GW-13	10/31/97	3.0	144,981	36,567	108,414

TABLE 4.
REFUSE HIDEAWAY LANDFILL
MONITORING WELL TESTING RESULTS FOR OCTOBER 1997

Well No.	Date	Methane [%vol]	Oxygen [%vol]	Pressure [in-W.C.]	Comments
G-01D	10/31/97	ND	21.0	0.0	
G-01S	10/31/97	ND	21.0	0.0	
G-06	10/31/97	0.5	19.5	0.0	
G-08	10/31/97	ND	21.0	0.0	
G-09	10/31/97	ND	21.0	0.0	
G-10	10/31/97	ND	20.5	0.0	
GP-11D	10/31/97	5.0	2.5	0.0	
GP-11S	10/31/97	1.5	16.5	0.0	
GPW-1D	10/31/97	1.5	18.0	1.0	
GPW-1M	10/31/97	1.0	17.5	0.9	
GPW-1S	10/31/97	0.5	21.0	0.0	
SPEEDWAY BLDGS	10/31/97	ND	21.0		

TABLE 5.
REFUSE HIDEAWAY LANDFILL
LEACHATE HAULING SUMMARY FOR OCTOBER 1997

Date	Beginning Tank Depth [inches]	Ending Tank Depth [inches]	Total Gallons Hauled
10/02/97	45	19	4,795
10/07/97	61 40	39 12	4,679 4,743
10/13/97	64	43	4,382
10/16/97	40	12	4,743
10/24/97	58	38	4,214
10/27/97	41	15	4,552
10/31/97	54	31	4,625
====== Total: Count:	=======	=======	36,733 8

TABLE 6. REFUSE HIDEAWAY LANDFILL ALARM RESPONSES FOR OCTOBER 1997

Alarm Date	Response Date	Alarm Codes	Comments
10/16/97	10/17/97	N/A	Leachate compressor evaluation.
10/24/97	10/25/97	1,4	Low LFG Flow
count:	2=======	=====	

APPENDIX A FIELD DATA SHEETS

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Dé.e: 10/10/97	1						•		
Ta .e: Start - 1025	End. 12	0	_						
Te aperature: 70°		,	_						
Balometric Pressure:	10,42 ↓		_	•					
Mi nitored by: Peter	fartz				•	•			
Gas Detector Mode Serial N Date Last Calib	10.: 09E			·					
L <u>gration</u>	Pressure tin. WC)	(요) Chr(5)	02 (%)	Valve Setting (fraction Open)	Gas Velocity ((pm)	Gas / Flow(3) <u>(cím)</u>	Gas Flow Temperature (OF)	Comments	
Ground Flare									
- Sample Port A	12.4	38.7	0.9		~	po reth	90		
- Sample Port B	+2,3	38.2	0.9		-	NO CUTA	76	· · · · · · · · · · · · · · · · · · ·	
- Sample Port C	+1.3	38,4	1.0			No WIN	95		
· Manual Valve	·			.100%			\		
	•			,					
Blower							•	•	
· North Branch	-31.4	32.7	1.1.	90	<u> </u>	H-DATA	72"		
· Central Branch	-27.1	346	4.5	28		P. DATA	74"		
- South Branch	-11.7	34.4	3.9	15		Nº DATA	72°		_
· Inlet Sample Port A	-31,6	38.8	1.6						
- Inlet Sample Port B	-32.6	38.5	0.8						_
· Oudet Sample Port A	+3.2	<u>58.7</u>	0.9			•			
Pedestal Flare	•								•
- Manual Vaive				<u>ی</u>					
	1448		'		•				
Notes:	touk (9 40	/8		•			•	
415 Malla subbit and as a second									

DRF,kml/JCE [ma.4-401-781] 15292.03

Notes:

(1) Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.
(3) Gas velocity is converted to gas flow by multiplying FPM X.045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

		BLO	WERA	ND FLARE	OITATE	4 GAS MO	NITORING	
D: =: 10/16/97	····							
Ti: .e: Start - 1030	End11_2	30	_				•	
To aperature: 60's								
	0.43		_	•	•			
Minitored by: Peter Ho	urtz.					•		
Gas Desector Mode Serial N		500						
Date Last Calib		1	_					
t <u>essuon</u>	Pressure (in. WC)	CH4(2)	(25) 05	Valve Setting (fraction Open)_,	Gas Velocity (fpm)	Gas Flow(3) (c(m)	Gas Flow Temperature (°F)	Comments
Ground Flure								
Sample Port A	+2.6	38.2	0.7			137	86°	
· Sample Port B	12.4	37.8	0.9				36°	
- Sample Port C	+1.3	38.1	0.8				90°	
· Manual Valve	. ,			.100%			•	
Blower							··	
- North Branch	- 31.3	33.8	0.3	75%	<u> </u>	150	73*	
· Central Branch	-28.5	40.7	3.5	25%		153	74°	
- South Branch	-12.3	34.6	3.6	15%	-	46 97	770	
- Inlet Sample Port A	-31.8	38.0	1.0				•	·····
- Inlet Sample Port B	-32.9	37.4	1,1				,	
- Oudet Sample Port A	+3.1	37.9	0.9			•		
							•	
Pedestal Flare								•
- Manual Vaive		•		0%				
Tank @ 40" Flace Temp: 123 Notes:								·
(1) Wells with leachate pum (2) Percent combustibles by (3) Gas velocity is converted	ps and controls volume, prima	s. rily compo	osed of (.185 @ 6" .045 @ 3" .045 @ 3"	PVC			

DREEmBJCE [maJ-401-781] (5292.03)

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Dis: 10/2/	197		-1		·			,	
T:: .=: Sturt - 930	End		 .				•		
Te aperature: 40 3			_						
Balometric Pressure: 36	-3 E>		<u>.</u>	•	•				
M: nitored by: 7	2				•				
Gas Detector Model Serial N Date Last Calibr	o.:	- 500 92 /17	<u>-</u>		•				
l <u>ocation</u>	Pressure (in, WC)	CFLJ(2) (영)	(%) OZ	Valve Setting (fraction Open)	Gas Velocity ((pm)	Gas Flow(3) (c(m)	Gas Flow Temperature (OF)	Comments	
Ground Flare									
· Sample Port A	+2.0"	38.6	100	,		145	70		
· Sample Port B	41.6	38.4	1.1			<u> </u>	70		`
- Sample Port C	11.0	38.5	1.0	•	<u>.</u>		39 075		
· Manual Valve			•	1007.			· .		
Blower	æ·.	•					.ب.		
- North Branch	-31.5"	34.0	0.7	75%		145	65		
· Central Branch	-28.5"	40.9	3.6	25%		130	<i>i5</i>	<u></u>	
- South Branch	-12.6"	34.7	4.0	15%		75	05		
- Inlet Sample Port A	-31.9 *	38.6	1.2				-		
· Inlet Sample Port B	- 32.5	38.0	<u>3. /</u>					···	
· Outlet Sample Port A	+2.6	37.9	1.4			•	_		
	•,						•		
Pedestal Flare					•				•
- Manual Voive		• :	-	010					
Notes: FLANC T	17" imp - 1	780	• .	• • • • • • • • • • • • • • • • • • •					

⁽¹⁾ Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.
(3) Gas velocity is converted to gas flow by multiplying FPM X.045 @ 3* PVC
.078 @ 4* PVC .135 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Dr. 10 31 -	۲ ۱	(SNETIAL)					•	
T:: . =: Start - 0945	End. 105	<u> </u>		•			•		
To aperature: 50				· · · · · · · · · · · · · · · · · · ·					
Ba. ometric Pressure:	29.7 V			•					
Mi nitored by: U. Sa	REICH				•				
Gas Detector Model Serial N Date Last Calibr	o.: 09	n 500							
·	•			Valve		_			
i <u>waadon</u>	Pressure (in. WC)	CH4(2) ((<u>(%)</u> 03	Setting (fraction Open)	Gas Velocity (fpm)	G u Flow(3) <u>(c(m)</u>	Gas Flow Temperature (°F)	Comments	<u>.</u>
Ground Flare									
- Sample Port A	+2.4	41.4 1	18	•		84	84.7		
- Sample Port B	+2.3	40.21	<u>:</u> 4	•					
- Sample Port C	+1.4	40,4 1.	ون	-			84,6		
- Manual Vaive	• •		<u>.</u>	120 %			¥		
		:		•			•		
Blower				<u>.</u>			•—•	Hinn c) =
North Branch	-30,5	<u>33.7 Z</u>	<u>3</u>	70% 80%	· ——	165	64.0	closed or	
· Central Branch	-30.2	45.7 3	4	50%	.	128	60.6		
· South Branch	-11.6	39,1 3	8	25%	 -	122	60.1	· ·	
- Inlet Sample Port A	-31.0	39.6 2	,ر				60.6		
· Inlet Sample Port B	-32.1	40.0 Z	0				63.5		
- Oudet Sample Port A	+2.9	39.4 1	.8			•	-		··
FLA	FE TEMP	1424					•		
	nox							•	•
- Manual Valve			_	0%					

Notes:

(1) Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.

DREEmWCE [mad-401-78f] 15292.03

^{(3) (3}as velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Dr. 10/31/97	(Final)		_				•	•
Ti: .e: Start - 1300	End. 131	5	 .				•	
Te aperature: 60'5			_					
Ba.ometric Pressure: 29	7 V		-	•	•	,		
Mi nitored by: P. Haet	٤	····	_		•	•		
Gus Detector Mod	el No.:							
Serial Dare Last Calil			_					
l <u>esation</u>	Pressure (in. WC)	CHL(2)	(છ) જ	Vaive Setting (fraction Open)	Gas Velocity ((pm)	Gas Flow(3) (c(m)	Gas Flow Temperature(OF)	Commenu
Ground Flare								
· Sample Port A	· ·							
Sample Port B				• .				
- Sample Port C		•			 .			
Manual Valve							į	
	•				•			•
Blower		•		•	٠		٠٠	
- North Branch	-29.9	36.2	1.3	70 %	·		<u> </u>	
· Central Branch	-29,5	45.2	১.છ	50%		<u> </u>		
· South Branch	-11.9	38.3	4.5	25%	<u> </u>	<u>.</u>		
- Inlet Sample Port A	-30.6	41.5	1.7				-	
- Inlet Sample Port B				•				
Outlet Sample Port A						•	-	
	•.						•	
Adestal Flare		• '	•					•
Manual Vaive		• • •	·	·		** **		
√o <u>re</u> ≤:	•							

⁽¹⁾ Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.
(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM GAS WELL MONITORING

Date:	10/3	1/97							
Time: St	ап - <u>/о</u>	15_ End	ı. <u> </u>	•					
Tempera	iture: S	<u>co,</u>							•
Baromet	ric Pressure	<u> 29.</u>	70						
Monitore	ed by: <u>/</u>	STREI	<u> </u>						
G	S	Model No.: serial No.: (Calibrated)	092	500				•	
<u>Well</u>	Well Pressure (in. WC)	Header Pressure (in. WC)	CH4(2) (%)	02 <u>(%)</u>	Valve Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) (ctm)	Gas Flow Temperature (OF)	Comments
GW1		-11.3_	55.7	<u>0.1.</u>	070			69.2	
GW2	0	-11.1	<u>Z9.7</u>	රි. 3	<u>0%</u>		0	66.0	
GW3	-3.3	-12	49.7	6.7	25%		109	65.2	
GW4	-10.4	-12	39.0	1.7	6070		354	69.8	
GW5	-4.9	<u>-6.</u>	54.0	<u>0,9</u>	100%		115	73.5	flow reading varies
G ₩6	-0.4	-29.9	25.2	10.0	1090		0	64.5	
GW7	<u>-30.0</u>	<u>-30.0</u>	46.1	0.7	70%		91	73.3	
GW8(1)	-18.6	-30.0	<u> 53.1</u>	1.6	50%		42	82.5	
GW9(1)	-27.3	-30.0	51.9	7.4	5070		161	75.2	
GW10	-12.3	-29.8	2512	0.8	30%	·	36	111.2	
GW11(1)	-28.4	-30	56,6	0.7	80%		720	75.5	
GW12	-10, <u>4</u>	-30	39.0	0.7	30%	*	72	96,8	
GW13	-29.0	-29"	14.5	0.7	6070		56	77.7	•

Notes:

Notes:

(1) Wells with leachate pumps and controls.

(2) Percent combustibles by volume, primarily composed of CH4.

(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM GAS PROBE MONITORING

7									
Time: Start - <u>o9 45</u> En									
60's									
ssure:_	29.70	4							
Relie	Hortz								
Gas Detector Model No.: 19390 y									
Serial No.:									
	45 60's ssure:_ Peke	45 Enc 60's ssure: 29.70 Peke Hortz							

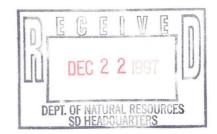
Date Last Calibrated: 10/97

	Probe Pressure	CH ₄ (1)	CH ₄ (2)	02	
Location	(in. WC)	<u>(%)</u>	(% LEL)	<u>(%)</u>	Comments
G-1S	0.0	0.0	0.0	21.0	
G-ID	0,0	6.0	٥٠٥	21.0	
G-6	0.0	0.5	0.0	19.5	
, G- 8	٥.٥	0,0	0.0	21.0	
G-9	0.0	0.6	0:0	21.0	
G-10	. 0.0	0.0	0.0	20.5	
GP-11S	0.0	1.5		16.5	
GP-11D	0.0	5.0		2.5	
GPW-1S	0.0	0.5	0.0	21.0	
GPW-1M	+09	<i>J.</i> ö¨		רו.\$	
GPW-1D	+ 1.0	1.5		/8. o	
Speedway					
Buildings	0.0	0.0	0.0	21.0	

Notes:

Percent combustibles by volume, primarily composed of CH4.
 Percent of lower explosive limit of CH4 (100% LEL = 5% CH4 by volume).

DATA SHEET C REFUSE HIDEAWAY LANDFILL GAS AND LEACHATE EXTRACTION SYSTEM LEACHATE HEAD MONITORING


Date: 10/31/9	in			
Time: Start!				
Monitored By:	Refer Hartz			
Instrument Use	d: unless level time; lighting	1 here indicators		
	model # \$1433 model serial # MATU Riser Riser	# 6020 #3807 Depth to	Leachate	
Well Riser	Depth(2) (ft)	Leachate (ft)	Head (ft)	Comments
GW1-EAST	53.7	46.10	<u> 7.6</u> ′	
-WEST	54.1			
GW2-EAST	53.9	46.50'	7.4'	
-WEST-	54.0			
GW3-EAST	59.7	54.60'	5,1'	
WEST	59.7			
GW4-EAST	61.9		1.7	551674 Has.
WEST	61.8			Man
GWS-EAST	70.0		0.B'	793913 44.
-WEST	69.9			
GW6-EAST	40.0	33.701	<u>6.3'</u>	
-WEST	40.1		3.2'	2221/2
GW7-EAST	60.0			232162 HC
<west< td=""><td>60.0</td><td>•</td><td></td><td></td></west<>	60.0	•		
				840 445 +
-EAST	69.6		. ab	5-0 143
-WEST- GW9(1)	69.9			•
-NORTH	67.5	_	2.1	594647
50UTH-	68.4			514641 7
GW10-			With the property	The second secon
-NORTH	72.8	45.20'	<u> </u>	–
-\$0UTH	72.7			
GW11(1)				
-EAST	69.1	-	1:25	419869 the
•WEST	69.1	•		
GW12-EAST	80.0	~	_0-4'	799044 14->.
-WEST	80.0			·\
GW13-EAST	73.1		3.0'	144981 H-s
~WEST	73.0			
		- A '	4.5	
Leachate Tank	17.9	13.4.	4.7	
		Tank Volume =	8693 gai	•
Yotes: +u-l	. 6 24"			•

⁽¹⁾ Wells with leachate extraction pumps and controls installed.
(2) Depth is measured from top of 1-in, dia, riser pipe. Tank riser pipe is 2-in, dia.
(3) Use Table 1 to convert leachate head in tank to a volume in gallons.

SCS FIELD SERVICES, INC.

December 15, 1997 File No. 0797026.00

Mr. Harlan Kuehling, P.G. Hydrogeologist Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Fitchburg, WI 53711

Subject: Operation and Maintenance of the Refuse Hideaway Landfill Gas (LFG) and Leachate Collection System During November 1997

Dear Mr. Kuehling:

This letter report summarizes operation and maintenance (O&M) activities performed by SCS Field Services, Inc. (SCS-FS) at the Refuse Hideaway Landfill LFG and Leachate Collection System (Collection System) during November 1997.

SUMMARY

Highlights of the O&M activities completed by SCS-FS on the Collection System during November included:

- No methane was detected in any of the Monitoring Locations. This is the first month that SCS-FS has not detected methane in GP-11S or GP-11D.
- The LFG Recovery System was operational 652 hours, or approximately 90 percent of the time during the month of November.
- New caps and seals were installed on the leachate and LFG collection line cleanouts. These caps were installed to reduce the amount of air being drawn into the LFG collection system.

BACKGROUND

LFG Recovery System

The Refuse Hideaway Landfill LFG Recovery System became operational in 1991. The Refuse Hideaway Landfill LFG Recovery System consists of the following components:

- The Blower/Flare Station;
- The Collection System; and
- Monitoring Locations.

The Blower/Flare Station includes one centrifugal LFG blower, an enclosed flare, a candlestick flare (as a backup combustion unit), and associated controls and appurtenances. The Collection System consists of 13 extraction wells, four drip legs, and associated gas and

Mr. Harlan Kuehling, P.G. December 15, 1997 Page 2

pneumatic header piping. The Monitoring Locations include 11 wells located throughout the site, and ambient air monitoring within the nearby Speedway buildings.

Proper operation of the Collection System is verified through testing of the extraction wells. LFG withdrawal rates at individual wells are adjusted based on test results. Testing for subsurface gas migration is done at the Monitoring Locations. Operation of the Blower/Flare Station provides vacuum necessary to withdraw the gas from the landfill, which helps control surface emissions and subsurface migration; odors and emissions are controlled by combustion of the gas at the flare.

Leachate Collection System

The current leachate collection system was installed in 1996, and is comprised pneumatic pumps installed in eight of the existing LFG extraction wells. Compressed air for the pneumatic pumps is supplied by a compressor located at the Blower/Flare Station. The collected leachate is stored onsite in a 25,000 gallon underground storage tank. Leachate is removed from the tank by a subcontractor, and is transported to the Madison Metropolitan Sewage District for treatment and ultimate discharge.

SCS-FS and our subcontractor, Environmental Sampling Corporation (ESC), began routine monitoring of the Collection System on July 1, 1997. Figure 1 indicates the approximate layout of the Collection System.

TESTING EQUIPMENT

Gas composition testing at the Recovery System was performed using a Landtec GEM-500 Infra-Red Gas Analyzer. The GEM-500 measures methane, carbon dioxide, and oxygen as percent by volume. The GEM-500 also calculates the balance gas component of the LFG (assumed to be nitrogen) and reports it as percent by volume.

Pressure testing was measured in inches of water column and was performed using the GEM-500. LFG flow was measured with a Dwyer 471-1 Digital Thermo Anemometer. Temperature measurement was performed using a handheld, analog temperature probe. Combustion temperatures measured at the flare were obtained from the in-place instrumentation.

Leachate level determination was performed one of two ways:

- For the extraction wells that have a leachate extraction pump, leachate levels were obtained using the bubbler tube installed along with each pump.
- For the gas extraction wells that do not contain a leachate extraction pump, the leachate levels were monitored using an electric tape.

Mr. Harlan Kuehling, P.G. December 15, 1997 Page 3

ON-SITE ACTIVITIES

Weekly LFG activities were performed on November 4, 11, 20 and 26. A summary of operational data collected during these weekly activities is shown in Table 1. Monthly activities were completed on November 20, 1997, with summaries shown in Tables 2, 3, and 4.

Copies of all field data sheets are included with this report as Appendix A. The following activities were of note:

- LFG quality at the Blower/Flare station remained stable throughout the month. During the month of November methane concentrations at the blower inlet ranged from a high of 40.5 to a low of 37.7 percent, by volume. Oxygen levels recorded in November ranged from 1.2 to 1.3 percent, by volume.
- Based on pump cycle readings, the pneumatic leachate pump in GW-07 was not operational between October 31, and November 20, 1997. SCS-FS will investigate the cause of this during December. In general, leachate levels were higher during November. This may be due to the air compressor being down for repairs in October. A summary of leachate head measurements is shown in Table 3.
- Five loads of leachate totaling approximately 22,600 gallons were removed from the Leachate Collection System during the month of November. A summary of the loads removed is shown in Table 5.
- Two Blower/Flare system alarm responses occurred in November. Both shutdowns
 were reported as General Alarms, and were interpreted by SCS-FS to be due to low
 LFG flow. Based on readings recorded by the hour meter installed in October, the
 Blower/Flare system was operational for 652 hours for the month, or approximately
 90 percent of the month of November. A summary of the alarm events is shown in
 Table 6.
- A visual inspection of the landfill cover performed as part of the monthly activities did not indicate any significant erosion features. No leachate seeps were noted.

ISSUES TO RESOLVE

Field monitoring data collected since July has indicated a significant loss of header pressure (vacuum) between extraction wells GW 4 and GW 5. This may indicate a partial blockage within the header pipe. SCS-FS will continue to monitor pressures in the header piping as part of our routine services. If additional investigation is warranted, SCS-FS will prepare an estimate to perform this investigation.

RESOLUTION TO PREVIOUS ISSUES

SCS-FS is unaware of any previous issues requiring resolution.

Mr. Harlan Kuehling, P.G. December 15, 1997 Page 4

WORK PROJECTED FOR THE UPCOMING MONTH

As discussed in a previous section of this report, the leachate levels were generally elevated during November. This is most likely due to the air compressor being down for repairs between October 16 and October 27, 1997 (see SCS-FS's October monthly report). Based on cycle counter readings, It was also noted that one of the pneumatic pumps (GW-07) was not operating during the month of November. SCS-FS will pay particularly close attention to the pumping activities, as well as leachate head measurements throughout the month of December.

At the request of the Department, SCS-FS will begin preparing and submitting quarterly reports summarizing O&M activities at the Refuse Hideaway Landfill. The first quarterly report will cover the period of July 1997, through September 1997.

STANDARD PROVISIONS

The findings described above were recorded by both SCS-FS and SCS-FS subcontracted parties. Changes can and do occur which affect the operation of the system. Department personnel should contact SCS-FS immediately in the event of a system malfunction or operational deficiency.

Although SCS-FS is the primary party designated to operate and maintain the subject system, Department staff may find it necessary to make adjustments to the system if conditions change. SCS-FS should be notified of any adjustments made by Department staff.

SCS-FS is pleased to provide our services to the Department and we enjoy working on the project. Should you have questions, please do not hesitate to contact either of the undersigned.

Sincerely,

William O. Reed Regional Manager

SCS FIELD SERVICES, INC.

WOR:GSP;bms Enclosures Galen S. Petoyan

President

SCS FIELD SERVICES, INC.

5. Petoplun

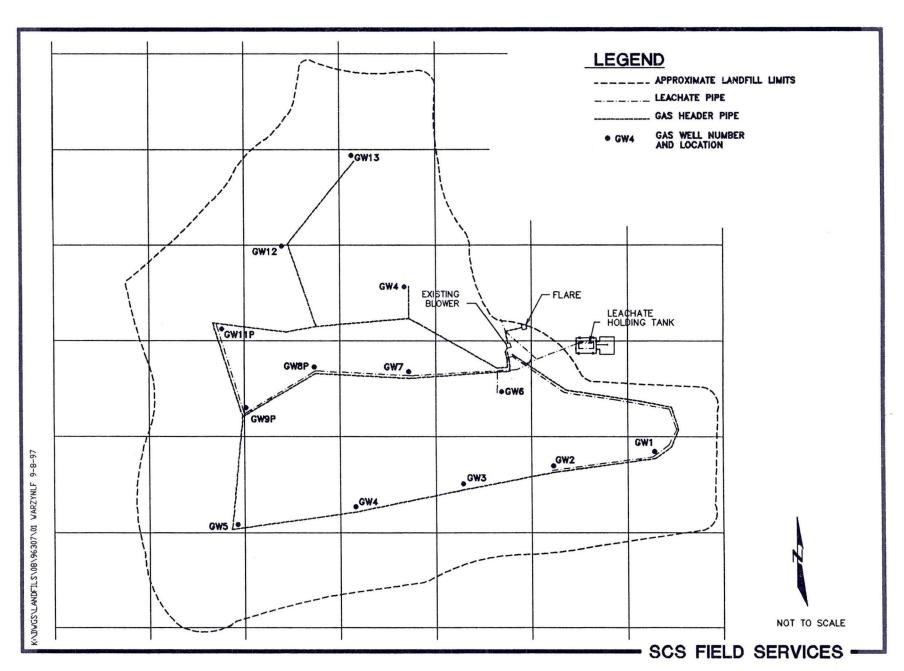


FIGURE 1

EXISTING GAS COLLECTION SYSTEM
REFUSE HIDEAWAY LANDFILL

TABLE 1.
REFUSE HIDEAWAY LANDFILL
WEEKLY BLOWER/FLARE STATION SUMMARY FOR NOVEMBER 1997

Date	Bar. Pres. [in-Hg]	Blower Inlet Pressure [in-W.C.]	Blower Inlet Methane [%vol]	Blower Inlet Oxygen [%vol]	Blower Outlet Pressure [in-W.C.]	Flare Inlet Volume [cfm]	Flare Inlet Valve Position	Comments
11/04/97 11/11/97 11/20/97 11/26/97	30.10 29.80 30.30 30.30	-33.2 -32.9 -32.6 -32.5	38.8 38.0 40.5 37.7	1.2 1.2 1.3 1.3	3.3 3.8 3.9 4.0	202.0 13.0 266.4 277.5	100 100 100 100	Probable incorrect flow reading
====== Average: Maximum: Minimum:			38.8 40.5 37.7	1.3 1.3 1.2		========	222322222	

TABLE 2.

REFUSE HIDEAWAY LANDFILL

LFG COLLECTION WELL TESTING RESULTS SUMMARY FOR NOVEMBER 1997

Well No. GW-01	Date 11/20/97	Methane [%vol] 59.9	Oxygen [%vol] 0.2	Well Pressure [in-W.C.] 	Header Pressure [in-W.C.] -12.5	Flow [cfm]	Temp. [Deg F]	Valve Setting [% open]	Comments
GW-02	11/20/97	32.1	7.7	-0.2	-12.5	0.0	40	5	
GW-03	11/20/97	53.7	0.1	-3.5	-12.5	44.1	63	30	
GW-04	11/20/97	39.7	1.2	-10.8	-12.5	13.1	56	60	
GW-05	11/20/97	56.1	0.9	-5.7	-6.0	10.8	56	100	
GW-06	11/20/97	51.1	2.7	-2.0	-24.0	18.0	52	20	
GW-07	11/20/97	46.8	0.4	-19.3	-20.5	19.4	64	65	
GW-08	11/20/97	57.4	1.1	-9.0	-20.0	25.7	67	50	
GW-09	11/20/97	59.4	0.5	-14.5	-20.0	13.3	44	50	
GW-10	11/20/97	25.5	0.4	-11.9	-28.0	31.3	97	25	
GW-11	11/20/97	56.0	0.2	-28.7	-30.5	13.3	45	80	
GW-12	11/20/97	31.1	0.2	-14.6	-30.5	31.5	82	30	
GW-13	11/20/97	47.6	0.2	-28.1	-29.0	20.3	74	65	
=====	======	======	.====	=======	=======	===== 247.6	222222	2223222	======

Total:

TABLE 3.
REFUSE HIDEAWAY LANDFILL
LEACHATE HEAD MEASUREMENT SUMMARY FOR NOVEMBER 1997

Well No.	Date	Leachate Level [feet, above bottom of well]	Current Pump Cycles	Previous Pump Cycles	Difference
GW-01	11/20/97	11.9			0
GW-02	11/20/97	6.9			0
GW-03	11/20/97	4.2			0
GW-04	11/20/97	3.1	577,459	551,674	25,785
GW-05	11/20/97	21.1	893,078	793,913	99,165
GW-06	11/20/97	3.5			0
GW-07	11/20/97	8.9	232,162	232,162	0
GW-08	11/20/97	9.2	880,487	840,445	40,042
GW-09	11/20/97	5.8	602,208	594,647	7,561
GW-10	11/20/97	12.9			0
GW-11	11/20/97	7.0	650,594	619,869	30,725
GW-12	11/20/97	7.7	844,760	799,044	45,716
GW-13	11/20/97	10.9	219,530	144,981	74,549

TABLE 4.
REFUSE HIDEAWAY LANDFILL
MONITORING WELL TESTING RESULTS FOR NOVEMBER 1997

Well No.	Date	Methane [%vol]	Oxygen [%vol]	Pressure [in-W.C.]	Comments
G-01D	11/20/97	ND	21.0	0.0	
G-01S	11/20/97	ND	21.0	0.0	
G-06	11/20/97	ND	20.0	0.0	NO LOCK ON PROBE
G-08	11/20/97	ND	20.5	0.0	
G-09	11/20/97	ND	20.5	0.0	
G-10	11/20/97	ND	20.5	0.0	
GP-11D	11/20/97	ND	18.0	0.0	
GP-11S	11/20/97	ND	17.5	0.6	
GPW-1D	11/20/97	ND	17.5	0.3	LOCK DOES NOT CLOSE
GPW-1M	11/20/97	ND	18.0	0.2	
GPW-1S	11/20/97	ND	20.5	0.0	LOCK DOES NOT CLOSE
SPEEDWAY BLDGS	11/20/97	ND	21.0	0.0	

TABLE 5. REFUSE HIDEAWAY LANDFILL LEACHATE HAULING SUMMARY FOR NOVEMBER 1997

Date	Initial Tank Depth [inches]	Initial Tank Volume [gallons]	Final Tank Depth [inches]	Final Tank Volume [gallons]	Total Gallons Hauled
11/03/97	53	8477	30	3831	4,646
11/06/97	46	6985	23	2615	4,370
11/10/97	44	6569	20	2135	4,434
11/13/97	39	5553	12	1010	4,543
11/24/97	NR		NR		4,620
====== Total: Count:	========	========			22,613 5

TABLE 6. REFUSE HIDEAWAY LANDFILL ALARM RESPONSES FOR NOVEMBER 1997

Alarm Response Date Date		Alarm Codes	Alarm Text	Comments
11/06/97	11/07/97	04	General Alarm	
11/14/97	11/17/97	04	General Alarm	Allowed LFG to recover.
count:	2	=====	****	=======================================

APPENDIX A FIELD DATA SHEETS

GAS WELL AND LEACHATE EXTRACTION SYSTEM GAS WELL MONITORING

Date:	11/4/97							•		
Time: St	art - 1020		1046							
Тетрега	ture: 53	- ²			,					
Baromet	ric Pressure	: 30,10	4		,					
Monitore	d by: Pele	x (fact z								
G	S	Model No.: Serial No.: t Calibrated	092	<i>o</i>				·		
	Well Pressure	Header Pressure	CH ₄ (2)	. 02	Valve Setting (fraction	Gas Velocity	Gas Flow(3)	Gas Flow Temperature	a	
Well .	(in. WC)	(in. WC)	<u>(%)</u> 59.0	(%)	Open)	(fpm)	(cfm) 140 20	<u>(°F)</u>	opened value	
GW1	-1.0	-10.0	52.7 47.8	0.4	@ 10% @ 0%			53,5	obenet valed	2 2000.42
GW2	-0.8	-6.0	48.9	٥.3	Q10%·		9	55.8	opened value	z roteles
GW3								•		
		•								
GW4					. 					 :: :
GW5				-					<u> </u>	
∃W6										
GW7					· .			• ,		
GW8(1)										
GW9(1)			 							
GW10						<u>.</u>				
GW11(1)										
GW12										
GW13										

Notes:

Notes:

(1) Wells with leachate pumps and controls.

(2) Percent combustibles by volume, primarily composed of CH4.

(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC

.078 @ 4" PVC

.185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM GAS WELL MONITORING

Date:_	11/2	0/97								
Time: S	tan - 12	O O End	1- 153	<u> </u>						
Тетрег	rature:3	5°								
Barome	tric Pressure	: <u> </u>	3							
Monitor	red by: <u> </u>	STRE	1CH							
. (Model No.: Serial No.: t Calibrated:	09	٧						
Well GW1	(in. WC)	Header Pressure (in. WC)	CH4(2) (%) 59.9	02 (%) O. Z	Valve Setting (fraction Open) 1070	Gas Velocity (fpm)	Gas Flow(3) (cfm)	Gas Flow Temperature (OF)	Comments	···-
GW2	-0.2	-12.5	32.1	7.7	5%	o		40		
GW3	-3.5	-12.5	53.7	0.1	30%	980		63		
GW4	-10.8	-12.5	39.7	1.2	60%	290		56		_
GW5	-5.7	-6.0	56.1	0.9		240		56		
3W6	-0-4-	-24.0	51.1	2.7	207. - 107.	. 400		52		
GW7	-19.3	-70.5	46.8	0.4	65%	430		64		_
GW8(1)	-9.0	-20.0	57.4	1.1	50%	570		67		
GW9(1)	-14.5	-20.0	59.4	0.5	50%	295		44		
GW10	-11.9	-28.0	25.5	0.4	25%	695		97		
GW11(1)	<u>-28.7</u>	-30.5	56.0	0.2	80%	295		45		_
GW12	-14.6	-30.5	31.1	0.2	30%	700		82		
GW13	-28.1	-29.0	47.6	0.2	65%	450		74		

Notes:

Notes:

(1) Wells with leachate pumps and controls.

(2) Percent combustibles by volume, primarily composed of CH4.

(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC

.078 @ 4" PVC

.185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM

		BLC	WER A	ND FLARE	STATION	N GAS MO	MITORING	,
Date: 11/4/97	···	·		,			·	
T:: .e: Start - 0920	End- 101	5	_					
To aperature: 55°								
Balometric Pressure:	30,101			•				
Monitored by: Pelan b	fartz_				•	•		
Gas Detector Mode Serial		500						•
Dare Last Calit		97						
				Valve Setting	Gas	Gas	Gas Flow	
l ocation	Pressure tin. WC)	CH4(2)	(25) 05	(fraction Open)	Velocity (fpm)		Temperature (OF)	Comments
Ground Flare			ماندند					
· Sample Port A	+ 2.7	38.7	1.4		~	202	78.2	
·	7						70.0	
- Sample Port B	<u> +2/2] </u>							
- Sample Port C	+1.4	38.5	1.2		-		69.1	
- Manual Valve				100%			į	
					,	,	•	
							1	
Blower						13.		
North Branch	-31.0	31.2	0.8	70%		14	61.3°	
- Central Branch	-30.8	46.4	2.8	53%	ma.	101	56.3°	
· South Branch	-12.4	39.3	3.9	20%		98	54.8"	
· Inlet Sample Port A	-31.6	39.1.	1.1				56.6	
· Inlet Sample Port B	-33.2	38.8	1.2				-	
· Oudet Sample Port A	+3.3	7.88	1.2			•		
Pedestal Flare	•							•
- Manual Vaive				0%				
Flow. Tomo	1256°	•				•		

Fem K @ 373/4"

Notes:

complete at 12:00

(1) Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.

⁽³⁾ Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Dus: 11/11/97			-				•		
T:: .e: Start - / 53 8	End- 14	ō }	— .		·				
Temperature: 30	<u> </u>		 -						
Ba. ometric Pressure:	29.80	1	_	•	•	••••			
M: nitored by: F. Pt	RULINI		_		•	•			
Gas Detector Model Serial N Date Last Calibr	lo.: 09	7 7	-0 + -	Dayon.	From	•			• •
	Pressure	CŀL;(2)	02	Valve Setting (fraction	Gas Velocity		Gas Flow Temperature	_	
Lecation	(in. WC)	<u>(%)</u>	(25)	Open).	(fpm)	(cím)	<u>(°F)</u>	Comment	<u>us</u>
Ground Flare									
· Sample Port A	+30	38.0	1.5	-	170		72.5		
- Sample Port B	42.9	<u>37.7</u>	1.4	• .	61		72.5		
- Sample Port C	71.4	37.7	1.2		· · · · · · · · · · · · · · · · · · ·		70.5		
- Manual Valve		•	•	100%	9		į		
			:		•		•		
Blower		•				•			
- North Branch	-30.5 39/20	38	0.9	70°/	270	<u> </u>	59"		
· Central Branch	-21.8						58.		
· South Branch	-10.8	39.5	3.0	10%	40		55.	•	
- Inlet Sample Port A	-31.6	38.4	0.7				_		
· Inlet Sample Port B	- 32.9	38.0	1,2	•			· -	 	
· Oudet Sample Port A	+3.8	37.6	1.2			•			

Pedestal Flare

· Manual Vaive

TINN 28 11113-147.4 Notes: HIMPS "

Notes:

(1) Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.
(3) Gas velocity is converted to gas flow by multiplying FPM X.045 @ 3" PVC...078 @ 4" PVC...185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Du.e: /// Zo	/97		_	- · · · · · · · · · · · · · · · · · · ·			•	
T:: .e: Start - 1115	End).7	-00	<u>.</u> .					
Te aperature: 35	o .	· · · · · · · · · · · · · · · · · · ·						
Ba. ometric Pressure:	30.30			•		٠.		
Mi nitored by: V.	STREICH				,	•		
Gus Detector Mode Serial I Date Last Calib	Yo.:	95	<u></u> 	•				
l <u>ocation</u>	Pressure	(윤) (윤)	07 (%)	Valve Setting (fraction Open)	G25 Velocity ((pm)	Gas Flow(3) (c(m)	Gas Flow Temperature (OF)	Соттепи
Ground Flare		•						
· Sample Port A	+3.0	39.0	1.7		1440		73.5	
- Sample Port B	+2.9	39.6	1.6	٠.				
· Sample Port C	+1.8	39.1	1.7				62.5	
- Manual Vaive	•			<i>i</i> s •	,		i	
	·				•		·•	•
Blower	· .•			• • • • • • • • • • • • • • • • • • •				
· North Branch	-30.6	33.2	1.6	80%	1457		53.0	
· Central Branch	-28.0	34.6	6.0	-30%- 50%	485		46.0	
· South Branch	-12.0	40.9	4.1	2070	1085		49.8	
· Inlet Sample Port A	-31.4	40.1	1.5					······································
· Inlet Sample Port B	-32.6	40.5	1.3					
· Oudet Sample Port A	+3.9	39.7	1.7			•		
	•			•		•		

Pedestal Flare

· Manual Vaive

Notes:

Notes:

(1) Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.
(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Du. #: 11/20/	97							•	
T:: .e: Start - /530	_ End- <u>/6</u>	00	_				•		
Tu aperature: 35			_						
Ba. ometric Pressure:	•	<u>-</u>	_	•					
M: nitored by: P.	HARTZ		- · ·		. •	• • • • •			
Gas Detector Mod Serial Date Last Cali	lel No.: <u>Ge N</u> No.: 0 brated: ///	92	 		•				
l <u>scation</u>	Pressure (in. WC)	(명) (명)	(!!) 02	Valve Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) (cfm)	Gas Flow Temperature (OF)	Comments	
Ground Flare									
- Sample Port A		·							
· Sample Port B			· · ·	· .				•	
- Sample Port C		:		•		· · · · · · · · · · · · · · · · · · ·			
- Manual Vaive				<u> </u>	•		· ·		
Blower					•			•	
- North Branch	-29.5	38.0	1.9			•			
- Central Branch	-16.6	40.9	4.0				·····		
- South Branch	-10.4	याः य	3.3						
· Inlet Sample Port A									
- Inlet Sample Port B	-32.2	40.3	1.2		•		· •		
· Outlet Sample Port A	••		·····			. •	4.●		
Pedestal Flare	•			· .					

· Manual Vaive

Notes:

Notes:

(1) Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.
(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Di. 0: 11/26/9	7		_						
T:: .e: Start - 11 8 0	End		 ,						
Tu aperature: 40°	·		<u>. </u>		٠.				
Ba. ometric Pressure:	30.3	· · · · · · · · · · · · · · · · · · ·	_	•					
Mi nitored by: V STRE	EICH		- -			. •			
Gas Detector Model Serial N	No.: <u>680</u>	7500	→		•				•
Date Last Calibr	ated:	97	-		· ·				
•				Valve Setting	Gas	Gas	Gas Flow		
l <u>scation</u>	Pressure (in. WC)	CH4(2) <u>(영)</u>	(<u>(%)</u> 05	(fraction Open)	Velocity	Flow(3) (cfm)	Temperature (OF)	Comr	nents
Ground Flare	•								
- Sample Port A	+3.3	36.9	1.5		1500		750		
- Sample Port B	+ 3.0	36,4	1.5				<u></u>		
Sample Port C	+1.9	<u>37.0</u>	1.5			 .	66.7		
Manual Valve				10.0 %	•		1		
	•				•		•		•
Blower	.*.	•		• • •				•	
North Branch	-30,5	29.8	1.9	ገ ና ማ。	1960		56,2		
- Central Branch	-19,1	44.3	2.4	207.	575		53.0		
- South Branch	- 11.9	36.Z	4.0	107,	1220	الإسماري	51.8		
· Inlet Sample Port A	-31.2	37.4	1,4				-		
· Inlet Sample Port B	-32.5	37.7	1,3	•	٠.			-,	
· Outlet Sample Port A	+ 4.0	37.0	1.5		٠	•	-		
				•					
Pedestal Flare	•,					*********	•		
Manual Vaive			_	0					
AM PS = 610		• :			•			•	
HAR METER = 4	21.7								
Notes: 1200	عد ٥	345	, h	£	19 0"	nt.	umping	•	
(1) Wells with leachate pump (2) Percent combustibles by v (3) Gas velocity is converted	olume, prima	s. rily compo	sed of C	H4.	PVC PVC	ver p	umping		•

DREAmI/JCE [maJ-401-781] 15292.03

DATA SHEET C REFUSE HIDEAWAY LANDFILL GAS AND LEACHATE EXTRACTION SYSTEM LEACHATE HEAD MONITORING

Date: 11/20/97	
Time: Start- 1:15	
Monitored By:	P. H.
Instrument Used:	QEO + O.T. U. MEZAM

Well Riser	Riser Depth(2) (ft)	Depth to Leachate (ft)	Leachate Head (ft)	cycle coust Commonts
GW1-EAST	53.7	45.4'	11.9'	
-WEST	54.1			
GW2-EAST	53.9	47.0	6.91	
-WEST	54.0			
GW3-EAST	59.7	55.5'	4.2'	
-WEST	59.7			
GW4-EAST	61.9	<u>_\$8.8'</u>	3.1'	577,459
-WEST	. 61.8			
GW5-EAST	70.0	48.9'	21.1	893,078
-WEST	69.9			
GW6-EAST	40.0	36.5	3.5′	
-WEST	40.1		•	
GW7-EAST	60.0	51,1	8.9'	232,162
-WEST	60.0			
W8 (1) کر				
-EAST	69.6	60.4	9.2.	880,487
-WEST	69.9		•	
GW9(1)	•	• • • • • • • • • • • • • • • • • • • •		
-NORTH	67 .5	61.7	5.8'	6 02,208
-south	68.4	•	***	
GW10-			#14 F #1740 HERE!	
-NORTH	72.8	59.9	12.9'	
-SOUTH	72.7		# 1 to 10 to	
GW11(1)				
-EAST	69.1	62.1	ካ. ٥ '	650, 594
-WEST	69.1	•		
GW12-EAST	. 80.0	<u> </u>	ካ.ካ'	844,760
-WEST	80.0			. (
GW13-EAST	73.1	62.2	10.9'	219,530
-WEST	73.0			
Leachate Tank	17.9	4.1	13.8	

⁽¹⁾ Wells with leachate extraction pumps and controls installed.
(2) Depth is measured from top of 1-in, dia. riser pipe. Tank riser pipe is 2-in, dia.
(3) Use Table 1 to convert leachate head in tank to a volume in gallons.

GAS WELL AND LEACHATE EXTRACTION SYSTEM GAS PROBE MONITORING

7.91

20.0

17.8

Time: Start	/200 End	- 1216			
Temperature:					
Barometric Pre	essure: 30.00	≠			
Monitored by:	Pola Houtz			•. •	
Gas Dete	ctor Model No.:	Gen 500		*.	
	Serial No.:	092			
Date 1	Last Calibrated: _	11/3/97	•	•	
Location G-1S G-1D G-6	Probe Pressure (in. WC)	CH ₄ (1) (%)	CH ₄ (2) (% LEL)	0 ₂ (%)	Comments

0.0

0,0

0,0

0.12

Notes:

G-8 G-9 G-10 GP-11S GP-11D GPW-1S

GPW-1M

GPW-ID

Speedway Buildings

Date: 11/4/97

0.0

-0.3

· 0.3

0.0

0.0

0.0

⁽¹⁾ Percent combustibles by volume, primarily composed of CH4.

⁽²⁾ Percent of lower explosive limit of CH4 (100% LEL = 5% CH4 by volume).

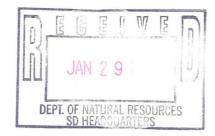
GAS WELL AND LEACHATE EXTRACTION SYSTEM GAS PROBE MONITORING

Date: /1/20/97	
Time: Start - 11:00 End	i- 1:00
Temperature: 40'5	
Barometric Pressure: 30.	3
Monitored by: P. Hantz	
Gas Detector Model No.:	1939 oxy
Serial No.:	92075
Date Last Calibrated:	11/97
•	

	Probe Pressure	CH ₄ (1)	CH4(2)	02	. •
Location	(in. WC)	<u>(%)</u>	(% LEL)	<u>(%)</u>	Comments
G-1S	0.0	0.0		21,0	
G-1D	0.0	0,0	• •	21.0	
G-6	0,0	0,0		20.0	
G-8	0.0	0.0		20.5	
G-9	0.0	0.0		20.5	
G-10	0.0	0.0		20.5	
GP-11S	+0.6	0.0		17.5	
GP-11D	0.0	0,0	-	18.0	
GPW-1S	0.0	0.0		20.5	
GPW-1M	+ 0.E	0,0		18.0	,
GPW-1D	+0.3	0.0		17.5	
Speedway	,				
Buildings	0.0	0.0	-	21.0	

Notes:

-No lock on 6-6


⁽¹⁾ Percent combustibles by volume, primarily composed of CH4.
(2) Percent of lower explosive limit of CH4 (100% LEL = 5% CH4 by volume).

⁻lock on Cap 115, 110 Does not shut.

SCS FIELD SERVICES, INC.

January 26, 1998 File No. 0797026.00

Mr. Harlan Kuehling, P.G. Hydrogeologist Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Fitchburg, WI 53711

Subject: Operation and Maintenance of the Refuse Hideaway Landfill Gas (LFG) and

Leachate Collection System During December 1997

Dear Mr. Kuehling:

This letter report summarizes operation and maintenance (O&M) activities performed by SCS Field Services, Inc. (SCS-FS) at the Refuse Hideaway Landfill LFG and Leachate Collection System (Collection System) during December 1997.

SUMMARY

Highlights of the O&M activities completed by SCS-FS on the Collection System during December included:

- For a second consecutive month, no methane was detected in any of the Monitoring Locations.
- The LFG Recovery System was operational 644 hours, or approximately 87 percent of the time during the month of December (not including the planned shutdown beginning December 29, 1997).
- SCS-FS began replacement of the blower bearings on December 29, 1997. Due to unplanned circumstances encountered during the bearing replacement, the Blower/Flare station was inoperable between December 29, 1997, and January 5, 1998.
- Contract specified quarterly O&M activities including the collection of a quarterly leachate sample was performed on December 18, 1997.

BACKGROUND

LFG Recovery System

The Refuse Hideaway Landfill LFG Recovery System became operational in 1991. The Refuse Hideaway Landfill LFG Recovery System consists of the following components:

- The Blower/Flare Station;
- · The Collection System; and
- · Monitoring Locations.

Mr. Harlan Kuehling, P.G. January 26, 1998 Page 2

The Blower/Flare Station includes one centrifugal LFG blower, an enclosed flare, a candlestick flare (as a backup combustion unit), and associated controls and appurtenances. The Collection System consists of 13 extraction wells, four drip legs, and associated gas and pneumatic header piping. The Monitoring Locations include 11 wells located throughout the site, and ambient air monitoring within the nearby Speedway buildings.

Proper operation of the Collection System is verified through testing of the extraction wells. LFG withdrawal rates at individual wells are adjusted based on test results. Testing for subsurface gas migration is done at the Monitoring Locations. Operation of the Blower/Flare Station provides vacuum necessary to withdraw the gas from the landfill, which helps control surface emissions and subsurface migration; odors and emissions are controlled by combustion of the gas at the flare.

Leachate Collection System

The current leachate collection system was installed in 1996, and is comprised pneumatic pumps installed in eight of the existing LFG extraction wells. Compressed air for the pneumatic pumps is supplied by a compressor located at the Blower/Flare Station. The collected leachate is stored onsite in a 25,000 gallon underground storage tank. Leachate is removed from the tank by a subcontractor, and is transported to the Madison Metropolitan Sewage District (MMSD) for treatment and ultimate discharge.

SCS-FS and our subcontractor, Environmental Sampling Corporation (ESC), began routine monitoring of the Collection System on July 1, 1997. Figure 1 indicates the approximate layout of the Collection System.

TESTING EQUIPMENT

Gas composition testing at the Recovery System was performed using a Landtec GEM-500 Infra-Red Gas Analyzer. The GEM-500 measures methane, carbon dioxide, and oxygen as percent by volume. The GEM-500 also calculates the balance gas component of the LFG (assumed to be nitrogen) and reports it as percent by volume.

Pressure testing was measured in inches of water column and was performed using the GEM-500. LFG flow was measured with a Dwyer 471-1 Digital Thermo Anemometer. Temperature measurement was performed using a handheld, analog temperature probe. Combustion temperatures measured at the flare were obtained from the in-place instrumentation.

Leachate level determination was performed one of two ways:

- For the extraction wells that have a leachate extraction pump, leachate levels were obtained using the bubbler tube installed along with each pump.
- For the gas extraction wells that do not contain a leachate extraction pump, the leachate levels were monitored using an electric tape.

Mr. Harlan Kuehling, P.G. January 26, 1998 Page 3

ON-SITE ACTIVITIES

Weekly LFG activities were performed on December 5, 11, 18, 23 and 29. A summary of operational data collected during these weekly activities is shown in Table 1. Monthly activities were completed on December 23, 1997, with summaries shown in Tables 2, 3, and 4.

Copies of all field data sheets are included with this report as Appendix A. The following activities were of note:

- LFG quality at the Blower/Flare station varied somewhat throughout the month.
 This could be attributed to adjustments made during the month. During the month of December methane concentrations at the blower inlet ranged from a high of 59.9 to a low of 39.7 percent, by volume. Oxygen levels recorded in December ranged from 0.4 to 1.8 percent, by volume.
- The pneumatic leachate pump in GW-07 was not operational during December. In December, SCS-FS and subcontracted parties determined that the cause of the problem was not due to either the air compressor system, or wellhead freezing. The pneumatic pump will be removed from the well and inspected in January.
- A summary of leachate head measurements is shown in Table 3.
- Methane monitoring was performed on December 23, 1997. No methane was
 detected at any of the monitoring locations. This marks the second consecutive
 month that no methane was detected in monitoring probes GP-11S and GP-11D. A
 summary of the monthly methane monitoring is shown in Table 4.
- Seven loads of leachate totaling approximately 28,900 gallons were removed from the Leachate Collection System during the month of December. A summary of the loads removed is shown in Table 5.
- Four Blower/Flare system alarm responses occurred in December. All shutdowns
 were reported as General Alarms, and were interpreted by SCS-FS to be due to low
 LFG flow. Based on readings recorded by the hour meter, the Blower/Flare system
 was operational for 644 hours for the month, or approximately 87 percent of the
 month of December. A summary of the alarm events is shown in Table 6.
- Quarterly O&M Services were performed on December 18, 1998. A summary of this event is shown in Table 7.
- A quarterly leachate sample was collected from the underground leachate storage tank. All analyzed parameters are within the limits specified by the MMSD permit number NTO-5E. A copy of the laboratory report and chain of custody is included as Appendix B.

Mr. Harlan Kuehling, P.G. January 26, 1998 Page 4

• A visual inspection of the landfill cover performed as part of the monthly activities did not indicate any significant erosion features. No leachate seeps were noted.

ISSUES TO RESOLVE

As referred to in the summary section of this report, the replacement of the blower bearings was finished on January 5, 1998. Completion of the work was performed by a representative from the J.W. Deabler Company (Waukesha, WI, an authorized New York Blower representative). Subsequent to that replacement, Deabler personnel have been called to the site to review bearing alignment and temperatures. Additional work on the bearings may be required in late January 1998.

RESOLUTION TO PREVIOUS ISSUES

SCS-FS is unaware of any issues requiring resolution.

WORK PROJECTED FOR THE UPCOMING MONTH

Aside from the routine services planned for the month, ESC will remove the pneumatic pump from GW-07 for additional inspection.

STANDARD PROVISIONS

The findings described above were recorded by both SCS-FS and SCS-FS subcontracted parties. Changes can and do occur which affect the operation of the system. Department personnel should contact SCS-FS immediately in the event of a system malfunction or operational deficiency.

Although SCS-FS is the primary party designated to operate and maintain the subject system, Department staff may find it necessary to make adjustments to the system if conditions change. SCS-FS should be notified of any adjustments made by Department staff.

SCS-FS is pleased to provide our services to the Department and we enjoy working on the project. Should you have questions, please do not hesitate to contact either of the undersigned.

Sincerely,

William O. Reed Regional Manager

SCS FIELD SERVICES, INC.

Galen S. Petoyan

President

SCS FIELD SERVICES, INC.

WOR:GSP;bms Enclosures

TABLE 1.
REFUSE HIDEAWAY LANDFILL
WEEKLY BLOWER/FLARE STATION SUMMARY FOR DECEMBER 1997

Date	Bar. Pres. [in-Hg]	Blower Inlet Pressure [in-W.C.]	Blower Inlet Methane [%vol]	Blower Inlet Oxygen [%vol]	Blower Outlet Pressure [in-W.C.]	Flare Inlet Volume [cfm]	Flare Inlet Valve Position	Comments
12/05/97	29.93	-33.0	44.5	1.8	4.5	373.0	100	
12/11/97	30.15	-29.0	39.8	0.4	4.1	291.4	100	
12/18/97		-31.2	59.9	0.7	4.6	367.4	100	
12/23/97	30.20	-32.5	42.4	8.0	5.6	373.7	100	BEFORE WELLFIELD
12/29/97	29.60	-31.9	39.7	0.7	5.9	331.7	100	SHUT DOWN AT 1030 TO REPLACE BLOWER BEARINGS
=======	======	=========	========	=========	=========	========	========	***************************************
Average:			45.3	0.9				
Maximum:			59.9	1.8				
Minimum:			39.7	0.4				

TABLE 2.
REFUSE HIDEAWAY LANDFILL
LFG COLLECTION WELL TESTING RESULTS SUMMARY FOR DECEMBER 1997

Well No.	Date	Methane [%vol]	0xygen [%vol]	Well Pressure [in-W.C.]	Header Pressure [in-W.C.]	Flow [cfm]	Temp. [Deg F]	Valve Setting [% open]	Comments
GW-01	12/23/97	23.4	0.7	-1.4	-12.0	9.9	58	10	
GW-02	12/23/97	8.6	15.9	-1.5	-12.0	1.8	33	<10	VALVE FROZEN
GW-03	12/23/97	45.3	0.4	-9.6	-12.0	73.4	64	75	
GW-04	12/23/97	44.1	1.2	-10.9	-12.0	14.6	69	40	
GW-05	12/23/97	58.3	1.3	-8.0	-8.0	8.4	57	100	
GW-06	12/23/97	46.3	0.5	-5.4	-28.0	10.6	56	25	
GW-07	12/23/97	49.3	0.5	-28.3	-28.0	12.4	57	70	
GW-08	12/23/97	63.3	0.8	-17.5	-28.0	10.8	76	70	
GW-09	12/23/97	59.2	1.7	-20.5	-28.0	8.3	40	60	
GW-10	12/23/97	29.0	0.5	-12.2	-29.0	21.8	108	30	
GW-11	12/23/97	56.5	0.4	-28.8	-29.0	12.8	63	100	
GW-12	12/23/97	32.6	0.4	-15.0	-29.0	37.8	96	25	
GW-13	12/23/97	51.3	0.4	-28.0	-29.0	15.8	74	90	
=====	=======	======	=====	=======	=======	238.4	======	======	========

Total:

TABLE 3.
REFUSE HIDEAWAY LANDFILL
LEACHATE HEAD MEASUREMENT SUMMARY FOR DECEMBER 1997

Well No.	Date	Leachate Level [feet, above bottom of well]	Current Pump Cycles	Previous Pump Cycles	Difference
GW-01	12/23/97	5.5			0
GW-02	12/23/97	5.1			0
GW-03	12/23/97	4.2			0
GW-04	12/23/97	0.9	596,412	577,459	18,953
GW-05	12/23/97	0.8	972,707	893,078	79,629
GW-06	12/23/97	5.8			0
GW-07	12/23/97	2.9	232,164	232,162	2
GW-08	12/23/97	0.4	914,808	880,487	34,321
GW-09	12/23/97	2.1	605,205	602,208	2,997
GW-10	12/23/97	10.0			0
GW-11	12/23/97	1.0	676,536	650,594	25,942
GW-12	12/23/97	0.6	886,992	844,760	42,232
GW-13	12/23/97	2.6	286,445	219,530	66,915

TABLE 4.
REFUSE HIDEAWAY LANDFILL
MONITORING WELL TESTING RESULTS FOR DECEMBER 1997

Well No.	Date	Methane [%vol]	0xygen [%vol]	Pressure [in-W.C.]	Comments
G-01D	12/23/97	ND	19.5	0.0	
G-01S	12/23/97	ND	19.5	0.0	
G-06	12/23/97	ND	19.5	0.0	
G-08	12/23/97	ND	19.5	0.0	
G-09	12/23/97	ND	19.5	0.0	
G-10	12/23/97	ND	19.5	-0.6	
GP-11D	12/23/97	ND	19.5	0.0	
GP-11S	12/23/97	ND	19.0	0.0	
GPW-1D	12/23/97	ND	19.5	-0.5	
GPW-1M	12/23/97	ND -	19.5	-0.5	
GPW-1S	12/23/97	ND	19.0	0.0	
SPEEDWAY BLDGS	12/23/97	ND	19.0	0.0	

TABLE 5.
REFUSE HIDEAWAY LANDFILL
LEACHATE HAULING SUMMARY FOR DECEMBER 1997

Date	Initial Tank Depth [inches]	Initial Tank Volume [gallons]	Final Tank Depth [inches]	Final Tank Volume [gallons]	Total Gallons Hauled
12/04/97	46	6,985	26	3,120	3,865
12/08/97	48	7,406	23	2,615	4,791
12/11/97	37	5,157	8	555	4,602
12/16/97	41	5,955	13	1,137	4,818
12/18/97	22	2,452	8	555	1,897
12/23/97	35	4,769	8	555	4,214
12/29/97	44	6,569	18	1,831	4,738
Total: Count:	========	******	=======	*******	28,925 7

TABLE 6.
REFUSE HIDEAWAY LANDFILL
ALARM RESPONSES FOR DECEMBER 1997

Alarm Date			Alarm Text	Comments			
11/28/97	12/02/97	04	General Alarm	Allowed LFG to recover			
12/09/97	12/10/97	04	General Alarm				
12/17/97	12/18/97	04	General Alarm				
12/24/97	12/26/97	04	General Alarm				
====== Count:	=======================================	====	==========				

TABLE 7. REFUSE HIDEAWAY LANDFILL QUARTERLY COLLECTION SYSTEM O&M

Date of Service: 12/18/97

Exercise CV1, CV2, Branch Valves: Yes

Exercise Well Valves: Yes

Exercise Blower Inlet and Outlet Valves: Yes

Exercise Flare Inlet Valves: Yes

(Enclosed and Candlestick Flares)

Inspect Air Dryer Dessicant: Yes

Status of Air Dryer Dessicant: Good Inspect Blower (Visual): Yes

Comments: Replacement of blower bearing recommended

APPENDIX A FIELD DATA SHEETS

GAS WELL AND LEACHATE EXTRACTION SYSTEM GAS WELL MONITORING

Date:	12/5/9	7							
Time: Sta	n - 11:00	End	- (1:30						
Temperat	ure: 30'	s lower			 .				
Barometr	ic Pressure	29.93	<u> </u>		X WELL	FIELD	ADJus	TMENT)X	_
Monitore	d by: Pe	for Hart.	2-		(· · ·	, MCH (
Ga	S	Model No.: erial No.: Calibrated:							
Well GW1	Well Pressure (in. WC)	Header Pressure (in. WC)	CH4(2) (%)	02 (%)	Valve Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) (cfm)	Gas Flow Temperature (°F)	Comments
GW2									
GW3					50%				· · · · · · · · · · · · · · · · · · ·
GW4	· 1.				55%				
GW5									
3W6			<u> </u>						
GW7								•	· .
GW8(1)									
GW9(1)					60%				
GW10					-				
GW11(1)			•		100%				
GW12		·							
GW13					80%				

Notes: GEW 9 has leaking around the Header

Notes: Gew

(1) Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.
(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM GAS WELL MONITORING

Date:	12/11/97								
Time: St	art - 120	5 End	j	· 					
Tempera	ture:		 					•	•
Baromet	ric Pressure	:							
Monitore	d by:							***	•
		Model No.:						•	
	S	erial No.:							
	Date Las	t Calibrated:							
Well GW1	Weil Pressure (in. WC) -0.5	Header Pressure (in. WC)	CH4(2) (%)	02 (%)	Valve Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) (cfm) Frm 321 231	Gas Flow Temperature (°F)	Comments After upper Belove lowek
					• • • • • • • • • • • • • • • • • • • •		•		
GW2	-5.0				70%		1717		
GW3	-4.7				50%o		1565	·	
GW4	-	•		**					
0114									
GW5									· · · · · · · · · · · · · · · · · · ·
ЭW6								· · · · · · · · · · · · · · · · · · ·	
C1114					•			•	eyete connt p
GW7									232162
GW8(1)								······································	
GW9(1)	-20.0 -16.6				75% 65%		286 ·		
								·, 	, <u>, , , , , , , , , , , , , , , , , , </u>
GW10						·			
GW11(1)	-29.5				100%		397		
		· ·							
GW12								 	
GW13									

Notes:

Notes:

(1) Wells with leachate pumps and controls.

(2) Percent combustibles by volume, primarily composed of CH4.

(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC

.078 @ 4" PVC

.185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM GAS WELL MONITORING

Date:	23 DEC	97						
Time: S	tart - 10 10	End- 124	5					
Тетрег	ature: HIGH	2015						
Barome	tric Pressure: 3	0.2 -						
Monitor	red by: V. STR	EICH	 					
(Gas Detector Model N Serial No. Date Last Calibrat	: 09						•
Well GW1	Well Heade Pressure Pressur (in. WC) (in. WC	CH ₄ (2)	02 (%) 0.7	Valve Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) (cfm)	Gas Flow Temperature (OF) S8.0	Comments VALVE STUCK OR FROZEN
GW2	-1.5 -12	8.6	15.9	<107°	40		33,3	UNABLE TO CLOSE
GW3	<u>-9.6</u> -12	45.3	0.4		1630		64.4	
GW4	-10.9 -11-81Z	44.1	1.2	40%	325		68.6	,
GW5	-80 -8	<u>\$8.3</u>	1.3	10070	187		57.4	
3W6	-5.4 -Z8	46.3	0.5	25 %	235		56.0	
GW7	-28.3 -28	49.3	0.5	7070	275		56.5	· · · · · · · · · · · · · · · · · · ·
GW8(1)		6 3.3	0.8	७०७० -५०७०	240		76.1	
GW9(1)	-20.5 - 26.2 -28	59.2	1.7	607 ₀	185	•	39.5	
GW10	-12.2 -29	29.0	0.5	30%	485		108.0	
GW11(1) <u>-28.8</u> -29	56.5	0.4	100%	<u> 285</u>		62.5	
GW12	-15.0 -29	32.6	0.4	25%	840		95.5	
GW13	-28.0 -29	51.3	0.4	90%	350		74.1	
Notes:	Note:	SNOW M.	ELTED or Ve	AROUND NTING	GW-8	- Top 0	e GW.4	

Notes:

Notes:

(1) Wells with leachate pumps and controls.

(2) Percent combustibles by volume, primarily composed of CH4.

(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC

.078 @ 4" PVC

.185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Di. 0: 12/5/97			-				•	•
T:: .e: Start - 11'.30	End. 12:1	2.6	_					
To aperature: 30's	lower	·.	_					
Ba. ometric Pressure:	29.93 ↓			•				·
Monitored by: Pelen 1	fartz				•	•	•	
Gas Detector Mode Serial I Date Last Calib	۷o.: <u>9ء م</u>		- -					
l <u>scation</u>	Pressure (in. WC)	CH4(2)	(%) Oz	Valve Setting (fraction Open)	Gas Velocity (fpm)	(efm)	Gas Flow Temperature (OF)	Comments
Ground Flare						FPM		
· Sample Port A	+3.5	45.0	1,8			2016	62.5	
- Sample Port B	+3,0	44.5	1.9		-		6z. o	
- Sample Port C	42,5	45.0	1.9	,	<u>.</u>		57.5	
- Manual Valve	• • •			100%			· ·	
							•	
Blower								•
North Branch	- 30.5	36.0	2.4	75%		1290	54.5	
· Central Branch	-19.0	52.0	2.5	25%		564	45.3	
· South Branch	<u>-7.8</u>	52.5	1.7	25%		1076	42.1	
· Inlet Sample Port A	-31.5	44.0	1.9			• •	•	
Inlet Sample Port B	- 33.0	44.5	1.8			-		

Pedestal Flare

· Outlet Sample Port A

· Manual Vaive

- Gwa - Sneking air around
well - Duck +aperl

_ C/6 _ Floor Temp & 1530 · Leuchale Tank 33.1"

Notes:

(1) Wells with leachate pumps and controls.

(2) Percent combustibles by volume, primarily composed of CH4.

+4.5

43.5 1,5

DRE/kml/JCE [mad-401-781] 15292.03

⁽³⁾ Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Du.e. 12/10/97			·					•
T:: .e: Start - 1245	End. 1:3	υ	 .					
Te aperature: UPPER	20'5	···	_					
Ba. ometric Pressure:	29.95 7			•				
Mi nitored by: Pala Ho	nt z			,	. •			
Gas Detector Mode Serial I Date Last Calit	No.: 697		_			••		
l <u>ocation</u>	Pressure (in, WC)	(당) (당)	02 (%)	Valve Setting (fraction Open)	Gas Velocity (ſpm)	Gas Flow(3) (c(m)	Gas Flow Temperature (OF)	Comments
Ground Flare								
· Sample Port A	+3.3	47.2	ها.ه	,		120	62.3	
- Sample Port B	+3.2	47.7	0.6				62.3	· · · · · · · · · · · · · · · · · · ·
- Sample Port C	+1,7	47.5	06		<u></u>		65.1	
Manual Vaive	· •			100%	•		i.	
		•			•			
Blower	. •						to *	
· North Branch	-29.0	53.4	0.7	75%		53	58,3	
· Central Branch	- 17.2	52,6	0.5	25%		59	. 59.1	
- South Branch	-6.1	44.6	2.0	15%	-	<u>د</u> ن	57.7	
· Inlet Sample Port A	-30.2	<u>50,5</u>	2.ه				-	
· Inlet Sample Port B	-31.5	1.02	0,5				-	A
Outlet Sample Port A	+4.5	49.6	0.6			•	_	

Pedestal Flare

· Manual Vaive . Flare Temp: 1495°

- Repaired constar have on GEW#9 Notes:

Notes:

(1) Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.
(3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Da. e: 12/11/97				6		• • • • • •	••	•
T:: .e: Start - 113.5	End- 12	·.ø•	-					
To aperature: uppel 2	.0'5					_		
Ba. ometric Pressure: 30.	,15 1				ZE FORT			
M: nitored by: P.Hantz				Í	361			
Gas Detector Model Serial N Date Last Calibr	o.: 092							· ·
				Valve Setting	Gas	Gas	Gas Flow	
Location	Pressure (in. WC)		(<u>15)</u> 05	(fraction Open)	Velocity (fpm)	Flow(3) -(c(m)- FPM	Temperature (OF)	Comments
Ground Flare								
- Sample Port A	43.2	37.5 0.	. 8			1595	:70.3	
- Sample Port B	+3.1	37.2 0	.8	•	•			
- Sample Port C	+1.9	38.1 0	.7		-	<u></u>	64.2	
Manual Valve		•.		100%	•	• • •	•	
							•	
Blower		•						
· North Branch	-30.2	32.2 0.	8	75%		1399	53.4	
· Central Branch	-27.2	44.6 0	.s	25%	<u> </u>	565	45.9	
· South Branch	-7.2	37.9 2.	.8	15%		1127	46.8	
- Inlet Sample Port A	- <u>30. 9</u>	38.1 0.	8				48.9	
- Inlet Sample Port B	-31.9	38.2 0.	7_				47.1	
· Outlet Sample Port A	+41	<u>37.9</u> o.	8	٠		•	-	***************************************

Pedestal Flare

· Manual Vaive

Notes:

Notes:

(1) Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.
(3) Gas velocity is converted to gas flow by multiplying FPM X.045 @ 3" PVC.078 @ 4" PVC.185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Da. 0: 12/11/97									
T:: .e: Start - 1:00	End1:3	0					·		
Te aperature: Mepen	20'5			. NGT	ER				
Ba. ometric Pressure: 36	o. 15 T		· ·	· Ari					
Mi nitored by: P. Hart	'ک		·		•	•			
Gas Detector Model Serial N Date Last Calibr	0.: 092	_				•. •.			
L <u>esation</u>	Pressure	CH4(2)	(%) Oz	Valve Setting (fraction Open)	Gas Velocity (fpm)	Gas Flow(3) (c(ra)	Gas Flow Temperature (°F)	Comment	
Ground Flare	<u> </u>	-	مكند	<u> </u>	J.FT.	FPM			
· Sample Port A	+3.2	38.9	0.4		-	1575	71.3	Manual Property Control of Contro	
- Sample Port B	t3.0	38.8	0.4	,		-			
- Sample Port C	+1.8.	38.9	0.4	-					
Manual Vaive			•	.100%			i		
			•				•		
Blower	. •			•			-		
North Branch	-27.2	34.8	0.4	75 %		1570	54.4		
· Central Branch	-18.2	47.1	0.3	25%	-	528	46.4	· · · · · · · · · · · · · · · · · · ·	
South Branch	-7.6	39.5	2.3	15%	-	1227	46.2		
• Inlet Sample Port A	-31,9	39.4	0.4						
· Inlet Sample Port B	-29.0	39.8	0.4						
· Oudet Sample Port A	+4.1	39.4	0.4			•	•		
							٠		

Pedestal Flare

0% · Manual Vaive 1225P Notes: (pump , ran for an average of 90 see .)

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Dr. 2: 12/18/97			_					•
T:: .e: Start - 12:00	End. 122	ς	_	٠		• • •		
To aperature: 40°5°								
Ba. ometric Pressure:			_	•				
M: nitored by: Peter Ha	etz Frank	c Penlegin	<u>i</u>		•	•		
Gas Detector Mode Serial N Date Last Calib	io.: <u>092</u>		 					
1 <u>scation</u>	Pressure tin. WC)	CH4(2)	(%) O2	Valve Setting (fraction Open)	Gas Velocity (fpm)		Gas Flow Temperature (OF)	Comments
Ground Flare	• 4			'مئننيشبنيه		PPM		
· Sample Port A	+3.6	59.3	8.0	,		1986	63.2	
- Sample Port B	N A	~ A N	NA.		_			
- Sample Port C	+1.9	5.82	0.8				54.5	
· Manual Vaive			•	100%			i	
			•				•	
Blower				••••			٠٠	•
· North Branch	-28.8	63.4	8.0	75%		3190	56.16	· · · · · · · · · · · · · · · · · · ·
· Central Branch	-16.1	64.7	0.7	25%	<u>-</u>	764	44.8	· · · · · · · · · · · · · · · · · · ·
South Branch	- 4.6	1.52	2.0	25%	_	1568	46.9	
· Inlet Sample Port A	-30.0	59.2	1.2					
• Inlet Sample Port B	-31.2	59.9	0.7	-			•	
· Outlet Sample Port A	+ 4.6	59.6	8.0			•	•	
				•			•	
Pedestal Flare	···							•
• Manual Vaive				0%		system	down 24 hr	.

0:6

Notes: 8117

(1) Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.

(3) Gas velocity is converted to gas flow by multiplying FPM X.045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

DREkml/JCE [maJ-401-781] 15292.03

¹⁵⁰⁵

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Di. #: 12/23/	97						BEFOR	⊑
T:: .e: Start . 0930	End. 101	0		. •			WELL	
Te aperature: High	20'5			•				
Ba. omeuic Pressure: 3 @	. 2 4		_	•				
Mi nitored by: U. 5 Tr.	25104				•	•		
Gas Detector Model Serial No Date Last Calibra	o.: 🔝 💇	150°	<u>-</u>					
				Valve Setting	Gas	Gas	Gas Flow	
Location	Pressure tin. WC)	(양) (양)	(%) (%)	(fraction Open)	Velocity (fpm)	Flow(3) (cfm)	Temperature (OF)	Comments
Ground Flare								
· Sample Port A	+4.2	42.0	0.9		2020		68.0	
· Sample Port B	+ 4.0	41.9	0.9					
- Sample Port C	+2.2	4.2.4	0.8				59.0	
Manual Valve	•			<u></u>			i	
	•		•	•	•		•	
Blower	. •			•			`	
- North Branch	-30.2	37.9	0.7	75%	1305		43.7	
- Central Branch	-285	50.0	1.2	307.	630	 .	40.4	
· South Branch	- 15.6	34,Z	5.2	25%	1820		41.0	
· Inlet Sample Port A	-30.9	42.5	0,8			** * **		
Inlet Sample Port B	-32.5	42.4	0.8					
- Outlet Sample Port A	+5.6	42.3	0.9			•		
	•							

Pedestal Flare

· Manual Vaive

temp = 1473 AMP = 9:0 Hours = 906.3

Notes:

 Wells with leachate pumps and controls.
 Percent combustibles by volume, primarily composed of CH4.
 Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

\ .	,							
Di. 01 172/23/	97		_					
T:: .e: Start - 1245	_ End		_ .					
To aperature: HIGH	2015							
Ba. ometric Pressure: 스	0,2	,	· ••	•				
M: nitored by: V. 57	TREICH				·*,	•		
Gas Detector Mode Serial I	:1 No.: <u>GEM</u> No.: O	500 92	·		٠.			
Date Last Calib	orated:		-					
	Pressure	CH4(2)	02	Valve Setting (fraction	Gas Velocity	Gas Flow(3)	Gas Flow Temperature	
Lecation	(in. WC)	(G)	(2)	Open).	((pm)	(c(m)	(°F)	Comments
Ground Flare								
· Sample Port A	····							
- Sample Port B				٠.		 .		
· Sample Port C								
- Manual Valve		٠.		<u> </u>	•		· ·	
				. •	•			
Blower	. *							•
· North Branch	-30.0	36.1	0.5	75%				
· Central Branch	-28.9. -27.9	50.8	<u>0,8</u>	40% - 25%				OPENED IMPER PIN
South Branch	-15.0	34.4	4.0	20%	 -			
· Inlet Sample Port A	-30.8	41.7	0.6					
· Inlet Sample Port B							•	
Oudet Sample Port A	• • • • • • • • • • • • • • • • • • • •					•	•	
							·	

Pedestal Flare

· Manual Vaive

Notes:

Notes:

(1) Wells with leachate pumps and controls.
(2) Percent combustibles by volume, primarily composed of CH4.
(3) Gas velocity is converted to gas flow by multiplying FPM X.045 @ 3" PVC .078 @ 4" PVC .185 @ 6" HDPE

GAS WELL AND LEACHATE EXTRACTION SYSTEM BLOWER AND FLARE STATION GAS MONITORING

Dis: 12/29/97							
Ti: .e: Start - 0915	End. 0135	:					
To aperature: 30's ha	reic						
Balometric Pressure: 29.	60 T		•				
Minitored by: Peter Have	ł z			•	•		
Gas Detector Model		08					
Serial N Dare Last Calibr	o.: <u>८२८</u> ated: <u>१२/५५</u>		•				·
			Valve	_			
		CH4(2) 02		Gas Velocity		Gas Flow Temperature	
Location	(in. WC)	(<u>w</u>) (<u>u</u>	o) Open)	(fpm)	(cim) FP M	<u>(of)</u>	Comments
Ground Flare							
· Sample Port A	+ 4.8	39.1 0.8	3		1793	69.8	
- Sample Port B	+ 4.7	39.2 0.9	3				
- Sample Port C	+2,7	39.4 0.	1_			59.5	
- Manual Vaive			100%			į	
			•				
Blower							
	.	N 5 4 1			1300		
- North Branch	-30.4	36.3	7 75%		1395	51.8	
· Central Branch	-58.9	48.7 0.8	3 40%		798	41,9	
- South Branch	-17.0	29.2 5.4	25%		1835	44.1	
- Inlet Sample Port A	-30.9	39.1 0.	1_				
• Inlet Sample Port B	-31.9	39.7 0.	7			-	
Outlet Sample Port A	+5.9	39.3 0,-	<u>1</u>		•	•	

Pedestal Flare

- Manual Vaive Flace temp: 1455°

Amps = 9.0 Hours - 1002.9 leachate tout @ 16.5"

Notes: - SYSTEM SHAT DOWN @ 10:30 for REpairs to blower bearings

(2) Percent combustibles by volume, primarily composed of CH4. (3) Gas velocity is converted to gas flow by multiplying FPM X .045 @ 3" PVC

.078 @ 4" PVC .185 @ 6" HDPE

DATA SHEET C REFUSE HIDEAWAY LANDFILL GAS AND LEACHATE EXTRACTION SYSTEM LEACHATE HEAD MONITORING

Time: Start- 10 45	End- 1200	 ·		
Monitored By: Pe 1	enc Haritz	MODEL # , serial "		
Instrument Used: Ra	or waters level invisioning	51423 19476		
(4td) Rem	de Lighted Real involvements	Depth to	Leachate	
Well Riser	Depth(2) (ft)	Leachate (ft)	Head (ft)	Comments / cycle Cour
GW1-EAST	53.7	48.2'	<u> </u>	<u> </u>
-WEST	54.1			
GW2-EAST	53.9	48.8'	5.1'	
-WEST	54.0			
GW3-EAST	59.7	<u>55. 5</u>	4.2'	
-WEST	59.7		******	
GW4-EAST	61.9	<u></u>	0.92'	596,412
-WEST	61.8	· ·		· · · · · · · · · · · · · · · · · · ·
GW5-EAST	70.0	<u> </u>	0.75'	972,767 1
-WEST	69.9			
GW6-EAST	40.0	34.2	_5.8′	
-WEST	40.1			
GW7-EAST	60.0		2.87'	ramp not excling - 232, 16+
-WEST	60.0			
W8 (1) د				
-EAST	. 69.6	A Section 1985		914 808
-WEST	69.9			
GW9(1)				
-NORTH	67.5	<u> </u>	2.1	605 205
-SOUTH	68.4	·		
GW10-		- 100 - 10 and 1	What has a decimal to	***
-NORTH	72.8	62.81	10.01	
-SOUTH	72.7			
GW11(1)	•		4. 1984 40.00 9. 10.0 10.0 10.0 10.0	
-EAST	69.1		1.0	<u>676,536</u>
-WEST	69.1			
GW12-EAST	. 80.0		0.58	886,992
-WEST	80.0			
GW13-EAST	73.1		2.58'	286,445
-WEST	73.0		•. •	
Leachate Tank	17.9	· · ·		

Yotes:

⁽¹⁾ Wells with leachate extraction pumps and controls installed.
(2) Depth is measured from top of 1-in, dia, riser pipe. Tank riser pipe is 2-in, dia.
(3) Use Table 1 to convert leachate head in tank to a volume in gallons.

GAS WELL AND LEACHATE EXTRACTION SYSTEM GAS PROBE MONITORING

Date: 12/23/97
Time: Start - 0930 End- 1030
Temperature: 20's upper
Barometric Pressure:
Monitored by: P. Hartz
Gas Detector Model No.: 1939 ox
Serial No.: 92075
Date Last Calibrated: 12/97

Location	Probe Pressure (in. WC)	CH ₄ (1) (%)	CH ₄ (2) (% LEL)	02 · (%)	Comments
G-1S	0.0	0,0		19.5	
G-ID	0.0	0.0		19.5	
G-6	0.0	0.0		19.5	No lock -
G-8	0.0	0.0		19.5	
G-9	0.0	0.0		19.5	
G-10	~ O.lo	0.0		19.5	
GP-11S	0.0	0.6		19,0	
GP-11D	0.0	0.0	_	19.5	
GPW-1S	0.0	0.0	-	19. 0	
GPW-1M	-0.5	0.0	-	19.5	
GPW-1D	-0.5	0.0		19.5	
Speedway					
Buildings	0.0	0.0	<u> </u>	19.0	
					was and a second of the second

Notes:

1

Percent combustibles by volume, primarily composed of CH4.
 Percent of lower explosive limit of CH4 (100% LEL = 5% CH4 by volume).

APPENDIX B QUARTERLY LEACHATE ANALYTICAL REPORT

Accredited Lab Data for Today's Environment

ANALYTICAL REPORT

ESC FRANK PERUGINI PO BOX 12 MUSKEGO, WI 53150

1230 Lange Court Baraboo, WI 53913-3901 Phone: 800-228-3012 Fax: 608-356-2766

email: fyi@ctienv.com Page:1

Client I.D. No.: LE00000000001 Work Order No.: 9712000534 Report Date: 01/13/98

Date Received: 12/19/97 Arrival Temperature: On Ice

Project Name: REFUSE HIDEAWAY

Project Number:

Sample Sample					
I.D. #: 182145 Description: LEACHATE TAN	K			Date S	ampled: 12/18/97
Analyte	Result	Units	LOD	LOO	Method.
Conductivity	13400 12/23/97	umhos/c	cm l	NA	9050
Analysis Date Conductivity Cyanide	<0.025	mg/L	0.025	0.065	9050 9010
Sample was diluted 1:5. Analysis Date Cyanide Hexavalent Chromium Estimated value: concentration was less than I 1:10.	12/24/97 130 LOQ. Sample wa	μg/L is diluted	5	17	9010 7196
Analysis Date Hexavalent Chromium Mercury Matrix interference:sample outside of lab cont	12/19/97 <0.2 rol limits for spik	μg/L ce	0.2	0.7	7196 7470
recovery. Analysis Date Mercury	1/06/98 12/22/97				7470
Analysis Date Metals Sample Preparation pH (Lab)	7.7	S.U.'s	NA	NA	3020 9045
Analysis Date pH Chromium, Total	12/24/97 50	μg/L	1	3	9045 6010B
Analysis Date Chromium Copper, Total	12/21/97 68	µg/L	1	3	6010B 6010B
Analysis Date Copper Lead, Total	12/21/97 39	μg/L	l	5	6010B 6010B
Analysis Date Lead Nickel, Total	12/21/97 105	μg/L	2	7	6010B 6010B
Analysis Date Nickel Silver, Total	12/21/97 <0.5		0.5	1.7	6010B 6010B
Analysis Date Silver	12/21/97	μg/L σσ			6010B
Zinc, Total Analysis Date Zinc	222 12/21/97	μg/L	1	3	6010B 6010B
Selenium, Total Analysis Date Selenium	12/21/97	µg/L	3	10	6010B 6010B

Comments for entire Work Order: NONE

Submitted By:

WI DNR Lab Certification Number: 157066030 DATCP Certification Number: 000289 Lexington, Kentucky Louisville, Kentucky Baraboo, Wisconsin

Printed on recycled paper

			o fai	Technology, I			FILL		برساه	S NEE	DED BEL	ow				Remarks:		1228
Form ENV 1230 Bara 1-80 Project #	ierly the L IRONME Lange boo, WI 0-228-30	aboral NTAL Court 53913	AND (608)	ision of Mid-State Associates ANALYTICAL SERVICES 356-2760 FAX: (608) 3: Name:	66-2766		30	pecific conductivity	Chounty Hikkey Silved	الما								53
مه هدما			C .	gial ESC (414).4	27.5022	Number of	2	1-3	إزا	2			'			Space Below F	r I shoretone	los
Date	Time	Comp	Grab	Sample Description	Sample #	Containers	3	2 2	122	31			•			Pres.	Sample I.D	
	1240	Comp			Sample	3	1	11		~		+			+	i i	<u> </u>	2145
12/18	1/2 70	 	X	Leachate Tank	 		+-	╁╌┤				+	-		+-		180	7147
	-	1-	 	1-6A-	 	 	 	╂╾┤					++-		+	- 	1	04.110
	 	 			 	 	 	 	-			1-	 	 	+-	 	 -	141.45 p. 2.5
·	1	 			1	 	+	+				+-	 	 	+		 	
	 				+		+	1-			-	-			- -		:	
	 	1	 		·	<u> </u>	+	+				1	 -		+	 	-	
	 			 	 		1	1	-			1-	 		- -		 	
	 		 				1					+			+		 	
~	 	 			 	 	1-	1				1			+			
	†~~ ~						1					1			1			
								1							1	2		3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
							1								\top	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
							1						1					
					1								1:1				18 18 18 18 18 18 18 18 18 18 18 18 18 1	
		1										7					Harry Sales	energy ger Harborger
			1		-							1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
								1										
							1	1							1			
	1				-		\top	1				_	 	1-1	_	1.5.		
Sampled Fru - 4	By: R11		RLa	Hantz	: :	<u></u>	<u></u>				Relinge	ished B	y: ,	-l			Date:	Time:
Acceived 1/C	046	200	24	(ell)	· /	Daly. 97		Time	H)	Receiv		ob.") ,	0	iel	Date: 12/19/	17 Time: 8:2
Remarks:		~ •	<i>F</i>	-		, v					Date S Dispos		-			oped Via: Fed. Exp	UPS Hand	U.S. M
Sublab: _ is this a f	ECFA projec	:t? (Pleas	e indica	le "Yes" or 'No")										Samp Deg. (on ice	pH:	

SCS FIELD SERVICES, INC.

January 28, 1998 File No. 0797026.00

Mr. Paul H. Nehm Director of Operations and Maintenance Madison Metropolitan Sewerage District 1610 Moorland Road Madison, WI 53713

Subject:

Results of Leachate Analysis - Refuse Hideaway Landfill, Permit NTO-5E

Dear Mr. Nehm:

For our client, the Wisconsin Department of Natural Resources, SCS Field Services, Inc. (SCS-FS), hereby submits the laboratory analytical results of a leachate sample collected from the subject site. All analyzed compounds are below the effluent limitations contained in the site's discharge permit.

The sample was collected on December 18, 1997, and received by the laboratory the same day. Copies of the analysis, and chain of custody are attached.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment for knowing violations.

If you have any questions, please feel free to contact me at (417) 881-7303.

Sincerely,

William O. Reed

Regional Manager

SCS FIELD SERVICES, INC.

WOR:bms Enclosure

cc: Harlan Kuehling, P.G. - WDNR

E:\PROJECTS\0797026.00\1297leach.wpd

Accredited Lab Data for Today's Environment

ANALYTICAL REPORT

Project Name: REFUSE HIDEAWAY

ESC FRANK PERUGINI PO BOX 12 MUSKEGO, WI 53150

1230 Lange Court Baraboo, WI 53913-3901 Phone: 800-228-3012 Fax: 608-356-2766 email: fyi@ccienv.com

Page:1

Client I.D. No.: LE00000000001 Work Order No.: 9712000534 Report Date: 01/13/98 Date Received: 12/19/97 Arrival Temperature: On Ice

Project Number:

1.D. #:182145 Description	LEACHATE TA	N.K.			•	Sampled: 12/18
Analyte		Result	Units	LOD	LOO	Method.
Conductivity		13400 12/23/97	umhos/	cm 1	NA	9050 9050
Analysis Date Conductivity Cyanide		< 0.025	mg/L	0.025	0.065	9010
Sample was diluted 1:5. Analysis Date Cyanide		12/24/97				9010
Hexavalent Chromium Estimated value: concente	ation was less than	130 LOO Sample W	ug/L	5	17	7196
1:10.			os unaced			
Analysis Date Hexavalent Chr Mercurv		12/19/97 <0.2	μg/L	0.2	0.7	7196 7470
Matrix interference:sampl	e outside of lab co	ntrol limits for spi	ke			
recovery. Analysis Date Mercury	_	1/06/98				7470
Analysis Date Metals Sample I oH (Lab)	Preparation	12/22/97 7.7	S.U.'s	NA	NA	3020 9045
Analysis Date pH		12/24/97			•	9045
Chromium, Total Analysis Date Chromium		50 12/21/97	μg/L	I	3	6010B 6010B
Copper, Total		68 12/21/97	μg/L	1	3	6010B
inalysis Date Copper lead, Total		39	μg/L	i	5	6010B 6010B
inalysis Date Lead lickel, Total		12/21/97 105	μg/L	2	7	6010B 6010B
nalysis Date Nickel	×	12/21/97		_		6010B
ilver, Total nalysis Date Silver		<0.5 12/21/97	μg/L	0.5	1.7	6010B 6010B
inc, Total		222	μg/L	1	3	6010B
Inalysis Date Zinc elenium, Total		.12/2,1/97 5	µg/L	3	10	6010B 6010B
inalysis Date Selenium		12/21/97				6010B

Comments for entire Work Order: NONE

Submitted By:

WI DNR Lab Certification Number: 157066030 DATCP Certification Number: 000289

Lexington, Kentucky Louisville, Kentucky Baraboo, Wisconsin

~	:	•		Parameter		· · · ·	FILLI	N AN	AĻYSIS	NEE	DED BELOY	N					Remarks:	1:	228
Form ENV 1230 Bara 1-800 Project #:	erly the L RONME Lange boo, WI 0-228-30	aborali NTAL Court 53913 072 (AND AND (608) 3	Technology, Ir sion of Mid-Stale Associates ANALYTICAL SERVICES 56-2760 FAX: (608) 35 Name:	6-2766		30	perion conductivity	Chounty Wikks Silven	[W -1]									534
بهجعنط			fr and	gini ESC (414)4	27.5033	of Number	1 2	T &	7 2	الو			1		1		Space Below Fo	r Laboratory Use	
Date	Time	Comp	Grab	Sample Description	Sample #	Containers	CYAN	H C. Y	101	3	\ \		•	ı	-		Pres.	Sample I.D. #'s	
12/18	1240	<u> </u>	X	Leachate Tank		3	1						_	1		1		182	145
				LR5	1													18	2146
													'						
	<u> </u>					<u> </u>								4.	_ _				
	 	<u> </u>	<u></u>		<u> </u>	<u> </u>						1		4		↓		<u> </u>	·
ļ 		<u> </u>			 	<u> </u>		<u> </u>				1_1		_	_ _				
	 	-	<u></u>		 									-}-		-			
	 	 			 	ļ		 	11			1-1	- -	+		-		:	
		 	 		 	}			╂			1				+-			<u> </u>
		┼			 	 	+-							-+					
	 	┼	 		-	-			1-1			1-1		+		╁			
	 	 	 	<u> </u>	 	 	- 	╁	1-1		 	1-		+		+	11.51.51		
	 	1			 			 	-		 	+		+		+-			
<u> </u>		1	 					 		_		-		-†		╁			
	 	 					_		1-1		 	1	1	十	1	+			le in keja – kristina – j Septa
	1.	†			: 	1	1-	\vdash	\vdash		 	+		+	_	+			
 	1	1			:	 	_	1-	1	 				7	_	_			
	1	1	1			1	1	1		-		-		十	1	1			
	1	1	<u> </u>		1		1	1	1			1	<u> </u>	7	1	1	115		
Sampled Fra - 4	By: c R-~9.	<i>i=</i> i	RLa	H-ntz	:		•			^	Relinquis	41.	7					Date: 17/19/47	Time:
Received -//	845 2020	20	241	lel W	: :	Daly. 18/87		Tim ()	J.	2	Receive	d By La	b.**	5	,	\int	ill	Date: 19/17	Time: 8:25
Aemarks			7	1				7			Date Sa Dispose				Sampl	e Ship	pped Via: Fed. Exp	UPS Hand	U.S. Mail
Sublab: Is this a	PECFA proje	ct? (Plea	se indica	te "Yes" or "No")											Sampl Deg. C		us: on icl	pH:	